
Construction of Component-Based
Applications by Planning

by

Tatiana Kichkaylo

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2005

Research Advisors:

Vijay Karamcheti

Ernest Davis

c© Tatiana Kichkaylo

All Rights Reserved 2005

You are never given a wish without also being

given the power to make it true.

You may have to work for it, however.

Richard Bach

Acknowledgments

First of all, I would like to thank my advisors, Vijay and Ernie, for letting me explore

and invent while still keeping me on track. Striking this balance was not an easy task,

but you did it. I would also like to thank all people who asked tough questions. John,

Dan, and Robert, thank you for your time and help.

I am eternally grateful to my parents for making me who I am. You taught me that,

no matter what happens, it is important to keep working. Reminding myself about “at

least two ways out” helped me many times.

I thank Anca, my sisterfor all practical purposes, for taking good care of me

and making me feel home. I thank my friends, Sveta, Dana, Igor, Oana, Gela, for

accepting my not exactly angelic personality. And I thank all my teachers for telling

me that no matter how far we get, there is still a road ahead.

iv

Abstract

Many modern wide-area distributed systems are component-based. This approach

provides great flexibility in adapting applications to the changing state of the envi-

ronment and user requirements, but increases the complexity of configuring the appli-

cations. Because of the scale and heterogeneity of modern wide-area environments,

manual configuration is hard, inefficient, suboptimal, and error-prone. Automated

application configuration is desired.

Constructing distributed applications requires choosing a set of components that

will constitute the application instance and assigning network resources to component

executions and data transfers. Stated this way, the application configuration problem

(ACP) is similar to the planning (action selection) and scheduling (resource alloca-

tion) problems studied by the Artificial Intelligence (AI) community.

This thesis investigates the problem of solving the ACP using AI planning tech-

niques. However, the ACP poses several challenges not usually encountered and ad-

dressed by the traditional AI solutions. The problem specification for the ACP can

be much larger than the solution, with the relevant portions only identified during the

search. Additionally, the interactions between planning operators are numeric rather

than logical. Finally, it is desirable to be able to trade off quality of the solution versus

v

search time.

We show that the ACP is undecidable in general. Therefore, instead of a single

algorithm, we propose a set of techniques that can be used to compose an algorithm

for a particular variety of the ACP that can exploit natural restrictions exhibited by

that variety. These techniques address the challenges above by dynamically obtaining

portions of the problem specification as necessary during the search, using envelope

hierarchies based on numeric information for pruning and search guidance, and dis-

cretizing continuous variables to approximate numeric parameters without restricting

the form of supported numeric functions.

We illustrate these techniques by describing their use in algorithms tailored for

two specific varieties of the ACP — snapshot configurations for dynamic component-

based frameworks, and scheduling of grid workflows with replica selection and ex-

plicit resource reservations. Experimental evaluation of the performance of these two

algorithms shows that the techniques successfully achieve their goals, with acceptable

run-time overhead.

Contents

Acknowledgments iv

Abstract v

List of Figures xiii

List of Tables xvii

List of Appendices xviii

1 Introduction 1

1.1 Motivation . 1

1.2 Approach and challenges . 3

1.3 Contributions . 7

1.4 Thesis organization . 9

1.5 Conventions . 10

2 Background 11

2.1 Component-based frameworks . 11

vii

2.1.1 Dynamic component-based frameworks 12

2.1.2 Computational grids . 13

2.1.3 Planners for the ACP . 15

2.2 AI planning . 18

2.2.1 The classical planning problem 18

2.2.2 Planning with numeric state variables 20

2.2.3 Search in planning . 22

2.2.4 Scheduling . 26

2.2.5 Planning with resources . 26

2.3 Example problems . 29

2.3.1 Mail application . 29

2.3.2 Webcast application . 32

2.3.3 Grid planning . 33

2.4 Summary . 38

3 The Application Configuration Problem 39

3.1 General model of ACP . 40

3.1.1 Environment . 40

3.1.2 Components and data . 40

3.1.3 Numeric properties . 42

3.1.4 User goal . 42

3.1.5 Application configuration 43

3.1.6 Metrics . 44

3.1.7 Architecture . 45

viii

3.1.8 Correctness of information 46

3.2 Component Placement Problem . 46

3.2.1 Assumptions . 48

3.2.2 Metrics . 50

3.2.3 Compilation into a planning problem 51

3.3 CPP and AI problems . 55

3.3.1 CPP and STRIPS planning 56

3.3.2 Network space and physical time 58

3.3.3 CPP and metric planning . 60

3.3.4 CPP and scheduling . 61

3.4 Challenges . 62

3.5 Summary . 63

4 Dealing with large-scale open worlds 65

4.1 Techniques . 66

4.1.1 On-demand compilation . 66

4.1.2 Combining regression and progression 69

4.2 Algorithm . 71

4.2.1 The core algorithm . 71

4.2.2 Reasoning about resources 78

4.2.3 Example . 80

4.3 Evaluation . 83

4.3.1 Planning under various conditions 84

4.3.2 Scalability with respect to network size 85

ix

4.3.3 Scalability with respect to irrelevant components 87

4.3.4 Reusability of existing deployments. 88

4.4 Summary . 89

5 Dealing with complex resource functions 91

5.1 Ramifications of numeric interactions between operators 91

5.2 Techniques . 93

5.2.1 Adding a new envelope . 93

5.2.2 Bounded envelope graphs 96

5.2.3 Hierarchy of envelopes . 96

5.2.4 Other modifications of the algorithm 97

5.3 Algorithm . 98

5.3.1 First level graph . 98

5.3.2 Second level graph . 99

5.3.3 Third level graph . 100

5.3.4 Example . 102

5.4 Evaluation . 104

5.4.1 Experimental setup . 104

5.4.2 Planning time . 106

5.4.3 Memory consumption . 108

5.5 Summary . 109

6 Optimizing resource consumption 110

6.1 Limitations of the greedy approach 110

6.2 Techniques . 113

x

6.2.1 Cost functions . 114

6.2.2 Resource levels . 115

6.2.3 Leveled operators . 117

6.2.4 Constructing leveled operators 118

6.3 Algorithm . 121

6.3.1 Envelope construction . 122

6.3.2 Cost of propositions . 123

6.3.3 Cost of sets of propositions 124

6.3.4 Main regression graph . 124

6.3.5 Example . 125

6.3.6 Additional pruning . 128

6.4 Evaluation . 130

6.4.1 Experiment . 131

6.4.2 Quality of solution . 133

6.4.3 Scalability . 135

6.4.4 Limiting expansion of the PLRG 136

6.5 Summary . 139

7 Planning for grids 141

7.1 Model . 142

7.1.1 Network . 143

7.1.2 Jobs and files . 144

7.1.3 Metrics . 146

7.1.4 Compiler module . 147

xi

7.1.5 Implementation details . 148

7.2 Algorithm . 149

7.2.1 Constructing the envelope graph 149

7.2.2 Constraint propagation . 151

7.2.3 Reservation constraint . 152

7.2.4 Limiting transfer sequences 154

7.2.5 Critical path scheduler . 156

7.3 Evaluation . 157

7.3.1 Handling expressiveness . 157

7.3.2 Performance . 162

7.3.3 Solution quality . 167

7.4 Summary . 168

8 Conclusions and future work 171

8.1 How to design planners for the ACP 172

8.1.1 Algorithm . 172

8.1.2 Modeling . 175

8.2 Model extensions . 176

8.3 Algorithm improvements . 177

8.4 Conclusion . 179

Appendices 180

Bibliography 200

xii

List of Figures

2.1 Abstract structure of the mail application. 31

2.2 Component deployment of the mail application. 31

2.3 The webcast application . 33

2.4 Abstract structure of the webcast application. 33

2.5 Simple grid application. 34

2.6 Network for simple grid application. 35

2.7 Plan for simple grid planning problem 36

2.8 Montage workflow. 37

2.9 Example network for grid applications. 38

3.1 Objects of the application configuration problem. 41

3.2 Interval-computable function. 50

3.3 Component description. 53

3.4 Interface description. 54

3.5 Planning operator for placing aViewMailServer component on a host. 55

3.6 A propositional STRIPS problem. 57

3.7 Compilation of propositional STRIPS problem into a CPP. 58

xiii

4.1 Process flow graph for solving CPP 67

4.2 The Sekitei 1 algorithm . 72

4.3 Regression graph . 74

4.4 Progression graph. 75

4.5 A simple example of a mail application. 81

4.6 Regression graph . 82

4.7 Construction of resource maps . 83

4.8 Planning under various conditions. 85

4.9 9-stub networkN99 . 86

4.10 Scalability of Sekitei 1 w.r.t. network size for the mail application. . . 86

4.11 Scalability of Sekitei 1 w.r.t. increasing number of irrelevant compo-

nents. 88

4.12 Reuse of existing deployments. 89

5.1 Envelope hierarchy . 97

5.2 A simple example of a mail application. 102

5.3 RPG1 of Sekitei 2. 103

5.4 RPG2 of Sekitei 2. 103

5.5 RPG3 of Sekitei 2. 104

5.6 Scalability of the original Sekitei 1 algorithm w.r.t. increasing number

of relevant components. 107

5.7 Scalability of Sekitei 1 with positive memoization w.r.t. increasing

number of relevant components. 107

5.8 Scalability of Sekitei 2 w.r.t. increasing number of relevant components.107

xiv

5.9 The average number of generated constants on four configuration of

the webcast application. 108

6.1 Resource optimization is required to find a plan. 111

6.2 Plan for the problem presented in Figure 6.1. 112

6.3 Effect of cost functions on the choice of plan. 112

6.4 plZip operator before leveling. 114

6.5 Specification of an interface with resource levels. 116

6.6 Expansion of plZip operator using one cutpoint for T stream (50) and

Z stream (30). 119

6.7 Leveled operator with additional mark-up. 121

6.8 Resource optimization is required to find a plan. 126

6.9 Per-Proposition Logical Regression Graph 127

6.10 Propagation of resource maps in the MRG. 128

6.11 Suboptimal and optimal plans for theSmallnetwork. 132

6.12 The 600-host network. 137

7.1 Parallel and sequential reservations of link bandwidth. 145

7.2 Trade-off between computation and communication 147

7.3 GPRS envelope and constraint network. 151

7.4 Envelope graph with an infinite loop 152

7.5 Implementation of the reservation constraint. 153

7.6 Types of file nodes. 155

7.7 Abstract structure of a grid application 159

7.8 Network structure. 159

xv

7.9 Resource availability. 160

7.10 Plan. 161

7.11 Resource reservations. 161

7.12 Synthetic network used in performance evaluation. 162

7.13 Application kernel. 163

7.14 Scalability of GPRS wrt the network size. 164

7.15 Scalability of GPRS wrt the width of the workflow. 165

7.16 Scalability of GPRS wrt the depth of the workflow. 166

7.17 Sub-optimal plan generated by GPRS. 167

xvi

List of Tables

2.1 Advantages and disadvantages of the four planning techniques for

construction of applications. 25

6.1 Resource levels for the four interface types. 116

6.2 Resource level scenarios. 133

6.3 Scalability evaluation of Sekitei 3. 134

6.4 Effect of hop distance multiplier on search efficiency. 138

7.1 Parameters of synthetic application. 163

xvii

List of Appendices

A Performance of metric planners on the CPP 180

A.1 Performance evaluation for existing planners 180

A.1.1 Webcast application . 181

A.1.2 Grid application . 183

A.2 Webcast application . 183

A.2.1 Webcast domain file . 183

A.2.2 Webcast problem file . 186

A.3 Grid application . 186

A.3.1 Grid domain file . 186

A.3.2 Grid problem file . 188

B Compiler interface for the Sekitei planner 190

C Component descriptions for PSF webcast application 193

D Grid application test 197

xviii

Chapter 1

Introduction

1.1 Motivation

A growing number of distributed applications spanning various areas such as adaptive

component frameworks, web services, and grid computing, are being structured as

aggregations of multiple independent components communicating over a wide-area

network such as the Internet. Components cooperate to realize application functional-

ity by invoking each other’s services, processing data streams, or reading and writing

files.

For example, consider a distributed application that delivers a stream of image and

text data from a remote server to a client. In the simplest case, this application con-

sists of the server and client components deployed on two different Internet hosts. De-

pending on the properties of the client’s computer, the properties of the network path

between the client and the server, and the client’s Quality-of-Service requirements,

additional components may be injected into the data path. For example, a transcod-

1

ing component may be required to convert data into the format understandable by the

client; compression and decompression components may be inserted to reduce band-

width requirements; and encryption components may be used to deal with insecure

links.

Although it is possible to encapsulate all the above functionality in the two end-

point components (the client and the server), creation of specialized components with

well-defined interfaces has several advantages:

• Separate components can be deployed on nodes other then the end points allow-

ing for better load balancing.

• Components can be independently created and modified, reducing the develop-

ment cost of the end-point components.

• Specialized components, such as compression and encryption, can be reused

across many applications.

Given such a modular approach, the notion of a “distributed application” is shifting

from the traditional view of statically deployed entities into one defined by a high-

level description of its components, their locations, and the linkages between them.

An application configuration is an instance of such an application.

Irrespective of how much flexibility the components of an application offer, the

usefulness of distributed component-based applications from the human user’s point

of view ultimately depends on the ability of the particular application configuration to

deliver the service requested by the user. Many different application configurations,

defined by different sets of components and different component locations, can sat-

isfy the client requirements. Some of such feasible configurations may be preferable,

2

because, for example, they have smaller requirements with respect to some expensive

resource. The best choice depends on the current state of the environment (resource

availability and costs) and user goals.

What makes it difficult to optimize this choice in wide-area environments, where

such flexibility offers the most benefit, is their scale and heterogeneity. For exam-

ple, when deploying a computationally intensive grid application, one may consider

multiple hosts with different properties and an ever-expanding set of reusable com-

ponents. In large networks, resource availability constantly changes, which make it

impossible to predict the future run-time conditions and construct an application con-

figuration that will always work. It is also desirable to be able to seamlessly integrate

new versions and types of components into existing applications. Manual approach to

application configuration does not provide flexibility necessary to adapt applications

to such changes. In addition, manual configuration is hard, inefficient, suboptimal,

and error-prone. Automated application configuration is desired.

In this thesis we investigate the problem of automated construction of good ap-

plication configurations at the deployment time of the application. We refer to this

as theApplication Configuration Problem (ACP) . Solving the ACP requires rea-

soning about both qualitative (logical) and quantitative (numerical) characteristics of

application components and environments.

1.2 Approach and challenges

To construct an application configuration given a set of available components and a

state of the environment one needs to make the following decisions:

3

1. Select a set of component instances;1

2. Configure the components, which may involve choosing linkages between com-

ponent instances and selecting values for component parameters;

3. Assign components to network hosts and data transfers to network links.

The above three decisions depend on each other. For instance, in the context of

our earlier example, if one chooses to use compression to cope with a link of low

bandwidth, the new application configuration will have smaller bandwidth require-

ments and higher CPU requirements compared to the no-compression configuration.

This in turn may affect feasibility of new component mappings. This interdependency

suggests that all three decisions need to be made simultaneously.

To be useful in practice, an algorithm for solving the ACP needs to provide suffi-

ciently high performance, because an application configuration should be constructed

at deployment time. This high performance requirement is at odds with the need to

support a flexible model capable of accurately describing interactions between com-

ponents and their resource consumption behavior. Development of a model and an

algorithm that can address both these requirements simultaneously is a major research

challenge.

Unfortunately, the three subproblems listed above are computationally hard even

when considered separately. The mapping subproblem, for example, is as an NP-hard

scheduling problem. The ACP, which requires making all three decisions, is therefore

even harder.
1It is possible to have more than one instance of a given component type in a configuration. For example,

compression can be applied independently to different files.

4

One way to address the complexity of the problem is to restrict the expressiveness

of the model. Some of the existing algorithms for solving the ACP have chosen this

approach. CANS [37] supports only sequences of components aligned along a given

network path. Ninja [44] works only with components already running in the network

(as opposed to choosing a host for deployment), which drastically reduces the number

of options the planner needs to consider. The limited models allow for creation of

fast specialized algorithms. For example, the CANS planner can find a solution in

polynomial time using a dynamic programming algorithm. In this thesis we describe

a more general solution.

Another possibility is to represent the ACP as an optimization problem, such as

an integer linear programming (ILP) or a constraint satisfaction problem (CSP). For

example, one could encode the fact that a component of a given type is deployed on

a given host using a Boolean variable, and then pose a constraint that the total CPU

consumption of all components on a host does not exceed the available value of the

resource. However, such approaches also have limitations. First, compilation of all

choices involved in expressing the ACP as an optimization problem loses the prob-

lem structure, making it hard to determine relevant parts of the problem specification

during the search. Using all available information from the very beginning would

create optimization problems of very large size, resulting in low performance of the

algorithm. Second, traditional optimization techniques, such as linear programming,

often support only limited form of functions describing resource consumption behav-

ior. For the application configuration problem, it is desirable to lift such restrictions.

Our approach is motivated by the observation that the problems of component se-

lection and mapping (resource allocation) are similar to the planning and scheduling

5

problems investigated by the Artificial Intelligence (AI) community. AI offers several

decades of experience in knowledge representation, planning and scheduling. In re-

cent years several major breakthroughs have been made that allow modern planning

algorithms to achieve good performance on challenging benchmarks. This gives us

hope that AI can provide techniques for achieving a good balance between flexibil-

ity and scalability. The techniques presented in this work are based mostly on AI

planning. Therefore, we refer to the algorithm for solving the ACP as aplanner.

In Chapter 3 we show how the ACP can be modeled as a planning problem with

numeric state variables. However, existing planning algorithms are not capable of

solving the ACP efficiently. To make AI planning algorithms efficiently solve the

ACP, the following three issues need to be addressed.

Scale: The first problem a planner for the ACP needs to address is the scale of the

problem specification. When constructing a configuration of an application, one

may need to consider thousands of network nodes and hundreds of components

available for deployment. Existing AI planners assume that the whole problem

specification is given as an input, and rely on this fact to perform various sorts

of reachability analyses. Even though the size of the constructed configuration

is usually small, using a complete problem specification (and even obtaining it)

is often not feasible for the ACP, and new techniques need to be developed to

deal with the scale.

Resource functions:The next feature of the ACP that is not supported by existing

planners is the fact that resource behavior of components may be described by

arbitrary functions. Existing planners usually assume that resource expressions

6

have a particular form, e.g. linear functions with at most one variable [62],

and rely on the structure of the resource expression to perform analysis. Some

of the existing planning algorithms assume reversibility of resource functions,

i.e. that function arguments can be computed given the result. In general, the

assumptions of linearity and reversibility do not hold for the ACP. For example,

functions describing resource consumption of a component may be specified as

tables of profiling results. The algorithm for the ACP needs to be able to deal

with such functions.

Feasibility vs. optimality: As we show in Section 3.3.3, even the problem of find-

ing any feasible solution for the ACP is computationally hard. In practice it is

desirable to find a “good” application configuration as opposed to just any one.

In this thesis we develop techniques to address these issues, and show how these

techniques can be used to implement efficient algorithms for solving several varieties

of the ACP.

1.3 Contributions

This thesis develops techniques that permitefficientsolutions to the application con-

figuration problem withexpressivemodels.

The overall contributions of this thesis include

• Modeling of the ACP as an AI planning problem with numeric state variables.

The models developed provide expressiveness to capture important properties

7

of the ACP and provide necessary information for automated application con-

figuration.

• Complexity analysis of the ACP.

• A set of techniques for solving the ACP in expressive models. The proposed

techniques allow a planner to deal efficiently with large-scale open worlds and

complex numeric dependencies between configuration components, and to trade

off search time and the solution quality.

• Planning algorithms for two varieties of the ACP as example applications of

these techniques. In this thesis we describe a planner for the component place-

ment problem (Sekitei) and a planner for computational grid applications with

explicit resource reservations and sharing (GPRS).

• Evaluation of performance and scalability of these algorithms. We show that

these algorithms efficiently prune the search space and obtain high quality solu-

tions within reasonable time.

Specifically, the thesis introduces the following techniques:

T1 On-demand compilation of problem specificationpermits the planner to ob-

tain necessary parts of the search space on-the-fly and hides unimportant se-

mantic details of the problem (e.g. units of measurement) from the planning

algorithm.

T2 Regression-progression searchenables efficient cost-based pruning of the search

space.

8

T3 Bounded resource envelopesenhances the pruning power of the search in the

presence of numeric functions.

T4 Envelope hierarchieshelp to reduce the overhead of envelope computation in

large search spaces.

T5 Costs depending on resource consumptionmake it possible to find good ap-

plication configurations with respect to resource consumption and to specify

preferences for resource tradeoffs.

T6 Resource levelsimprove solution quality in the presence of non-reversible nu-

meric functions and provide the means for performance-quality tradeoffs.

T7 Constraint-based representation of reservationsallows the planner to effi-

ciently reason about resource reservations and sharing.

1.4 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 provides background in-

formation, including an overview of related work and examples of the application

configuration problem addressed in this thesis. Chapter 3 gives a formal definition of

the application configuration problem. It also includes an analysis of the complexity

of the ACP, sets the ACP in the context of traditional AI planning and scheduling

problems, and identifies challenges that an algorithm for the ACP needs to address.

Chapters 4, 5, and 6 introduce techniques for addressing these challenges. In these

three chapters we incrementally introduce Sekitei — a planner for the component

placement problem, which is a special case of the ACP. Each of the chapters describes

9

a versionof the algorithm, which incorporates techniques introduced in that chapter,

and provides empirical evaluation of the performance of that version.

Chapter 7 illustrates how the same techniques can be applied to another instance

of the ACP, namely, planning for grid applications with explicit reservations.

Finally, Chapter 8 provides arecipefor constructing efficient planners for different

varieties of the ACP and outlines possible directions for future research.

1.5 Conventions

In this thesis the following formatting conventions are used.

The defined terms are shown inbold font. Other important terms, including for-

ward references, are shown initalics.

Left-to-right top-to-bottom direction in illustrations is from the goal (client) to the

initial state (servers).

To avoid confusion, termsoperatorandnoderefer to the planning algorithm, and

termsactionandhostto the application configuration problem being solved.

10

Chapter 2

Background

In this thesis we investigate application of AI planning and scheduling to the prob-

lem of construction of application configurations. In this chapter we first describe

two types of component-based systems that require solving the ACP, and the current

approaches for solving the ACP in those systems. We then discuss state-of-the-art

AI planning techniques and their strengths and weaknesses with respect to the ACP.

Finally, we describe several instances of the ACP we will use in this thesis to illustrate

our solutions.

2.1 Component-based frameworks

The component-based approach is becoming increasingly popular in areas such as

adaptive component frameworks, web services, and grid computing. The common

model in such systems is that an application consists of communicating components

distributed in a wide-area network. Application components can be reused across

11

several applications and dynamically orchestrated to achieve various objectives, such

as quality of service delivered to the client and high throughput of the system.

In this section we discuss two classes of such systems: adaptive component-based

systems and computational grids.

2.1.1 Dynamic component-based frameworks

Dynamic component-based frameworks (DCBF), such as PSF [51], CANS [38], Ninja

[44], and Conductor [98, 84], provide system-level support for run-time deployment

and connection of application components. In such systems, all components of an

application run simultaneously and communicate by invoking each other’s methods

using RPC such as Java RMI or by processing streams of data.

The goal of DCBFs is to ensure quality of service received by a client by creat-

ing and modifying an application configuration according to the current state of the

environment, e.g. changes in network topology and resource availability.

The common mode of operation among existing DCBFs is as follows. Each of the

network hosts executes a run-time environment of the DCBF. This run-time environ-

ment provides monitoring functions, as well as a component life-time management

facility capable of uploading, starting, connecting, and reconfiguring components.

A client wishing to join the system sends a request to the run-time environment of

the local host. The DCBF then uses a planning module (see Section 2.1.3) to design

an application configuration, and deploys the chosen configuration. Some systems,

e.g., CANS [38] monitor the state of the environment throughout the life time of the

application configuration, and initiatereconfigurationwhen necessary.

DCBFs differ in the details of the application model they assume. For example,

12

CANS and Conductor support stream-based applications, while PSF is designed for

request-reply applications. Frameworks can support fixed (Conductor) or extendible

(PSF) sets of application properties. Some systems, such as CANS and PSF, support

run-time uploading of component code, while others (Ninja), require the code to be

present on the destination node.

Despite these differences, DCBFs share common features.

1. The total number of components constituting an application configuration is

usually small.

2. Logical compatibility of components is captured by the types of data stream-

s/interfaces.

3. All components of an application are active simultaneously, and therefore com-

pete for the same network resources.

4. The network considered by a DCBF is usually large and can contain up to hun-

dreds of hosts.

5. An application configuration typically requires a small number of parallel data

streams. For example, CANS and Conductor are restricted to chains.

2.1.2 Computational grids

Computational grid infrastructures, such as Globus Grid [30], are another example

of component based applications. The overall objective in grids is to seamlessly or-

chestrate resources distributed in a wide-area network for execution of computation

13

and data-intensive applications. The typical goal of such applications is to obtain a

particular data product — a file.

An application configuration in this case consists of a (partially ordered) set of data

transfers and component executions (jobs) mapped onto network resources. The de-

cision of whether to execute jobs sequentially or in parallel depends on the producer-

consumer relations between the jobs and on the resource availability. Given sufficient

resources, multiple jobs can be executed concurrently on the same host. Alternatively,

job executions may be divided between several hosts and necessary file transfers may

be arranged.

In current grid systems, a user submits a workflow that describes the application

structure to a grid scheduling service, such as DAGMan [90]. The scheduling service

then discovers necessary resources [81, 89], submits jobs for execution, and monitors

the progress of the application, resubmitting jobs if necessary.

The following features are typical in modern grid applications:

1. The total number of different component types constituting an application con-

figuration is usually small. However, multiple instances of each type may be

present, so that the application consists of multiple (sometimes hundreds) par-

allel job sequences.

2. Logical compatibility of jobs is captured by the types of input and output data

files.

3. The application is distributed in both network space and physical time, i.e. jobs

can be executed sequentially or in parallel on a set of hosts.

14

4. The network is usually small and consists of a few hosts. Each of these hosts can

be a single machine (e.g. a supercomputer) or a cluster of machines organized

in a pool [90].

5. Both job executions and data transfers [1] can take a long time. Therefore, it

is worthwhile to invest a significant amount of time into construction of a good

configuration.

2.1.3 Planners for the ACP

In component-based systems of both classes described above, in order to achieve good

performance, the application configuration needs to be constructed at run-time. Some

CBFs assume the existence of an external planner [69, 103, 12]; others [33, 44, 38,

51, 84] implement their own planning module. To achieve good performance, the

systems of the second category usually simplify the application configuration problem

by putting restrictions on the supported application model. This section provides an

overview of several such solutions.

Systems such as Ninja [44], CANS [38], and Conductor [84], all of which en-

able the deployment of appropriate transcoding components along the network path

between clients and servers, simplify the assumptions of the planning problem in

order to perform directed search. The Ninja planning module focuses on choosing

existing instances of multiple input/output components in the network so as to satisfy

functional and resource requirements on component deployment. Conductor restricts

itself to single-input, single-output components, focusing on satisfying resource con-

straints. CANS adopts similar component restrictions, but can handle constraints im-

15

posed by the interactions between application components and network resources, and

additionally can efficiently plan for a range of optimization criteria. For example, the

CANS planner [37] can ensure that host and link capacities along the path are not

exceeded by deployed components, while simultaneously optimizing an application

metric of interest (e.g., response time).

More general are systems such as Partitionable Services Framework (PSF) [51],

which permit network services to be constructed as a flexible assembly of smaller

components, permitting customization and adaptation to network and usage situa-

tions. The PSF planner works with very general component and network descriptions:

components can implement and require multiple interfaces (these define “ports” for

linkages), can specify resource restrictions, and additionally impose deployment lim-

itations based on application-dependent properties (e.g. privacy of an interface). This

generality comes at a cost: the original PSF planning module performed exhaustive

search to find a valid deployment. A more recent version of PSF uses the Sekitei

planner described in Chapter 4 of this thesis.

Globus Architecture for Reservation and Allocation (GARA) [33], the planning

module in the Globus [30] architecture, assumes that the task graph is given and de-

ploys these tasks so as to minimize resource consumption. GARA supports resource

discovery and selection (based on attribute matches), and allows advance reserva-

tion for resources like CPU, memory, and bandwidth. However, it does not consider

application-specific properties, such as that some interactions need to be secure.1

1Globus sets up secure connections between application components, thereby satisfying this particular con-

straint. However, there is no general mechanism to specify component properties that are affected by the environ-

ment.

16

Pegasus [9] is a grid planner that uses AI techniques. Pegasus generates grid

workflows (application configurations) to achieve a user objective — creation of a

particular data product. Automated generation of workflows aims to achieve several

goals. First, it makes the grid more user-friendly. The automated planner allows the

user to specify only a high-level objective instead of a complete task graph. Second,

automated generation of workflows permits run-time customization of workflows ac-

cording to the current resource availability, which leads to better performance of the

application. Finally, the automated planner/scheduler can simultaneously work on

goals of several users, taking advantage of possible sharing of intermediate data prod-

ucts to improve the global resource utilization [10].

The main challenge Pegasus faces is that of coping with the scale of the problem.

As mentioned in Section 2.1.2, grid applications may involve hundreds of compo-

nents. To deal with such scale, Pegasus divides the application configuration problem

into the logical part (selecting components and logical types) and the resource alloca-

tion part. Randomized scheduling algorithms such as GRASP [7] are used to obtain

high quality schedules.

Pegasus models logical compatibility of components using types of input and out-

put data files. However, it assumes that jobs can execute on any of the available hosts

and does not support explicit resource reservations.

One can point out two reasons for the latter model restriction. First, simplicity of

the model helps to design more efficient algorithms. Second, the current grid frame-

works, such as Globus, do not yet provide facility for representing time-dependent

resource availability. However, several ongoing efforts aim to extend the grid models

to express such information [2, 70].

17

2.2 AI planning

In this section we describe the traditional AI planning problem and approaches for

solving it. We also discuss the complexity of planning, including planning with nu-

meric state variables.

2.2.1 The classical planning problem

The classical planning problem is to find a sequence of actions (operators) — a plan

— that achieves a goal state when executed starting from the initial state. Now let us

define these terms more formally.

In the classical planning problem, aworld contains sets of typedobjects, e.g.

passengers, boxes, airplanes.

Objects can be used as arguments for predicates. Apredicate describes a state-

ment about the world, which can be true or false at a given time.

A world state is described by a set ofground (variable-free) instances of predi-

cates, referred to aspropositions, that are true in that state.

The initial state is a completely specified world state. Propositions that are not

known to be true are considered false.2 A goal is a logical formula over propositions.

Any world state in which this formula evaluates to true is a goal state.

For example, in an air travel planning domain,3 passengerA, planeB, andcityC

are objects,boarded(?h: human ?p:plane)4 is a predicate with two parameters that

states that the passenger?h is on the plane?p, andboarded(passengerA planeB)is
2This is called theclosed world assumption.
3In this section we adopt the example used in [62]
4Identifiers prefixed with a question mark denote variables.

18

a proposition that can be true or false in different world states.

A world state can be changed by the application of an operator. Anoperator has

typed parameters (like a predicate), a precondition, and effects. The set of parameters

can be empty. The precondition is a conjunction of propositions and/or their nega-

tions. An operator is applicable in a world state if its precondition evaluates to true in

that state. Effects of an operator are defined by a set of propositions that the operator

makes true (the ADD list) and a set of propositions that it makes false (the DELETE

list). For example, the following operator describes boarding of a passenger to a plane

in some city. The operator can be applied in any world state, where both the passenger

and the plane are in that city. As a result of the operator application, the passenger

is considered to have boarded and no longer in the city. The rest of the world state

is not affected. In this operator definition, the passenger, the plane, and the city are

parameters, so that the operator can beinstantiatedwith any objects of appropriate

types in the world.

board(?h: human ?p: plane ?c: city)

pre: in(?h ?c)∧ in(?p ?c)

eff: ADD boarded(?h ?p); DEL in(?h ?c)

Theplanning domain is a set of objects, a set of predicates, and a set of operators.

A planning problem is defined by a planning domain, an initial state, and a goal.

A plan is a sequence of ground instances of operatorso1 · · · on such thato1 is

applicable in the initial state andoi is applicable in the world state resulting from

execution ofo1 · · · oi−1. The planning problem is to find a plan that, when executed

starting in the initial state, brings the world to a goal state. For example, if initially

bothpassengerAandplaneBare incityD, then the plan{board(passengerA planeB),

19

fly(planeB cityC cityD), debark(passengerA planeB)} achieves the goalin(passengerA

cityD).

Due to interactions between the operators (one operator can delete preconditions

of another), the length of the shortest plan that achieves a goal can be exponen-

tial. The problem of determining if a solution exists for a given planning problem

is EXPSPACE-complete [28] (the purely propositional case, when predicates have no

parameters, is PSPACE-complete [13]). However, on average, planning can be quite

efficient [14].

2.2.2 Planning with numeric state variables

The trend in classical planning research has been towards faster algorithms and more

expressive languages. Many modern planners can support universal and existential

quantifiers and disjunction in goals and preconditions [77]. However, even with

this extension, the classical planning problem is purely logical, i.e. it involves only

Boolean values.

Many realistic applications also require reasoning about numeric resources. Plan-

ning with numeric state variables is often referred to asmetric planning. Metric plan-

ners extend the above definition of the planning problem in the following way.

A resourceis a real-valued variable. In addition to the truth values for all propo-

sitions, the world state in a metric planning problem contains values for all resources.

The goal expression can include (in)equalities with resources, e.g. in the earlier air

travel example one might want to complete a trip in a certain amount of time.

Operators in metric planning can have resource preconditions and resource effects.

The example below describes an operator for flying between two cities. In this speci-

20

fication,distanceis adatabase entry, i.e. a constant that can be looked up during the

operator instantiation, and$gasand$timeare numeric state variables (resources).

fly(?p: plane ?c1 ?c2: city)

pre: in(?p ?c1)∧ ($gas> distance(?c1 ?c2)/3)

eff: ADD in(?p ?c2); DEL in(?p ?c1);

$gas -= distance(?c1 ?c2)/3;

$time += distance(?c1 ?c2)∗(3/20).

The form of the expressions that might be used in resource preconditions and

effects is usually limited. In most cases, only constants (like in the example above)

or simple linear expressions are allowed [62, 57]. More complex expressions are

either not supported at all, or ignored during the planning phase and then checked by

a symbolic execution phase. Such decoupling can cause significant degradation of

performance.

Addition of real-valued variables greatly increases the complexity of the planning

problem. Helmert [47] analyses several classes of the metric planning problem, ad-

mitting various forms of functions in goal conditions and preconditions and effects of

planning operators, and shows that in most cases metric planning is undecidable.

Note that, although operators can use continuous variables in their preconditions

and effects, only discrete variables are allowed in operator parameters. Planning Do-

main Definition Language (PDDL) [35, 26] can be used to encode such planning

problems.

21

2.2.3 Search in planning

Planning can be viewed as search in the space of all possible sequences of operators

or all possible world states. AI planners build totally ordered or partially ordered

plans. Search techniques used by planners of both categories can be divided into

four categories. In this section we present these categories in the context of classical

planning and describe their advantages and deficiencies with respect to the ACP.

Refinement planners

Refinement planners build a plan by performing a means-ends analysis. For exam-

ple, UCPOP [79] is a partial order planner that supports universal quantification and

conditional effects. UCPOP uses a notion ofcausal links, which are used to record

why a step was added to a plan and to protect its purpose. UCPOP keeps a set of

flaws(things that have to be fixed before the plan is complete) and resolves at least

one flaw at each step. A flaw can be an unsatisfied precondition of some action, or a

threatened causal link. Initially, the plan contains two artificial steps: the initial step

that has the initial state as its postcondition, and the final step that has the goal state

as its precondition. The initial set of flaws therefore contains the goal state. Flaws

are resolved nondeterministically by adding new steps to the plan, adding causal links

between existing steps, and ordering steps to protect causal links.

Refinement planners adopt the least commitment principle, i.e., they delay binding

variables to particular values until it is really necessary. Applied to the ACP, this

means that most of the possible ground instances of operators are never instantiated,

and therefore the total memory requirements of the planner depend on the size of the

22

final plan rather than the size of the ground specification of the problem. Moreover,

the planner makes explicit the justification for a planning decision (e.g. an encryption

component is placedbecausea particular link is insecure). This provides natural

hooks for monitoring. The main disadvantage of refinement planners is their slow

performance compared to other approaches.

Planning graph based (progression) planners

Planning-graph based (progression) planners are currently among the fastest ones.

Such planners (GraphPlan [8], IPP [64]) first build a special data structure — the

planning graph— that optimistically describes all world states possibly achievable in

a given number of parallel steps. Aparallel stepincludes one or more operators that

do not conflict with one another and can be executed in any order. The second phase

of the algorithm searches this graph for a solution. Planning-graph based algorithms

are sound and complete. In addition, planning-graph based algorithms guarantee that

the solution found has the minimum number of parallel steps.

Progression planners build the planning graph in the forward direction from the

initial state. Therefore complex expressions in effects can be easily processed. The

main disadvantage of this approach is that progression planners use a complete ground

specification of the initial state for construction of the planning graph. This makes

such planners very sensitive to the size of the search space [63].

Regression planners

Regression planners (HSPr [11], Unpop [71]) build aregression graphfrom goals

towards the current planning state. The regression graph contains all operators that

23

might possibly be useful for achieving the goals starting from the current state. Such

a graph can be used to estimate the cost of achieving a goal, which serves as a heuris-

tic to guide the search. Regression planners are sound and, under some conditions,

complete [71].

Regression planners effectively determine the relevant portion of the search space.

This feature is very useful for application configuration [72]. However, it is extremely

hard to incorporate support for complex effect expressions in such planners.

Compilation-based planners

The fourth approach is to reduce the planning problem to a sequence of simpler (NP-

hard) problems. The planner first non-deterministically guesses the number of re-

quired plan steps, and then constructs and solves a problem instance corresponding to

this number of plan steps in another formalism (SATPLAN [55], ILP-PLAN [57]). A

variant of this idea is to apply this technique to the plan extraction phase of the Graph-

Plan algorithm (BlackBox [56], GP-CSP [25]). Various target formalizations might

be used. For example, SATPLAN and BlackBox use compilation into a Boolean sat-

isfiability problem, ILP-PLAN into an integer linear program, and GP-CSP compiles

into a constraint satisfaction problem. Compilation-based planners achieve relatively

good performance by using fast, often randomized, algorithms for solving the prob-

lems they compile into. Moreover, such algorithms permit additional restrictions on

the solution, e.g. particular operators or combinations of operators can be prohibited,

cost functions introduced. On the other hand, compilations like that of SATPLAN

have very high memory requirements.

Compilation-based planners that use numeric optimization problems such as ILP

24

Class Search
direction

Advantages Disadvantages

Refinement Means-ends
analysis

Small memory requirements
Natural hooks for replanning

Slow

Progression From initial
state

Fast
Easy reasoning about com-
plex effects

Sensitive to the size of the
search space

Regression From goal Effectively cuts the relevant
portion of the search space

Hard to support complex
interactions

Compilation N/A Natural extension for re-
source planning
Natural support for optimiza-
tion

Big memory requirements
Hides the problem struc-
ture

Table 2.1:Advantages and disadvantages of the four planning techniques for construction of

applications.

as their target formalism provide natural support for resource planning and optimiza-

tion, which is highly desirable for construction of applications. On the other hand, the

compilation process completely hides the structure of the original problem from the

solver, making it very hard to extract information for monitoring and replanning. It

also precludes use of heuristics based on the problem structure in solving the target

problems.

Table 2.1 summarizes features of the four classes of planners relevant to solving

the ACP. In all four groups, the algorithms that work with ground instances of op-

erators are faster than those working with lifted operators (i.e. those containing vari-

ables), even though the space searched by the latter is often smaller. Some researchers

have suggested [99, 75] that it might be possible to make the lifted operators planners

work faster by extracting information about possible variable bindings from the prob-

lem.

25

2.2.4 Scheduling

Scheduling focuses on finding the best (according to some metric) sequence of ac-

tions subject to various constraints. Note that although the problems of planning and

scheduling are nominally different (planning focuses on thechoiceof actions, while

scheduling focuses onordering), one can extend the tradeoffs and techniques for deal-

ing with resource constraints from one domain into the other.

The algorithms in [67] and [73] describe computation ofresource envelopesfor

scheduling problems with constant changes of resource levels. Both resource en-

velopes and temporal networks [23] use graph-theoretic algorithms to prune the search

space.

Scheduling systems that need to support complex resource functions discretize

resources to decrease the search space and use heuristic search to find agood(subop-

timal) solution. For example, the algorithm described in [36] uses forward chaining

to cope with sequence-dependent and non-reversible resource functions.

Contemporary schedulers are capable of solving large problem instances. The

scheduling problem is NP-hard, and exact methods have limited scalability due to the

combinatorial complexity of the search. Therefore, schedulers often use randomized

algorithms [7, 17], which allow them to obtain high quality (although sub-optimal)

solutions fast.

2.2.5 Planning with resources

Many real world planning problems require support for numeric (metric) resources.

Metric planners can be divided into three groups.

26

Extensions of classical planners

Several metric planners are relatively straightforward extensions of classical planners.

Zeno [78] is a least commitment planner. It supports metric preconditions and

effects, as well as deadline goals. The logical part of Zeno is similar to UCPOP. Zeno

uses Gaussian elimination and the Simplex algorithm to solve linear equalities and

inequalities, and delays processing of non-linear expressions until they are linearized.

RIFO [62] is an extension of IPP [64], which is a planning graph-based algorithm.

In parallel with the planning graph, RIFO builds a resource time map (RTM) — a data

structure that contains optimistic boundaries for resource values at each time step.

RTM is similar to resource envelopes of scheduling, but it reflect logical, rather than

temporal, flexibility of a solution. During the plan extraction phase, the goal resource

intervals are propagated backwards along with the logical goals. Finally, to ensure

correctness of the plan, symbolic execution of the found plan is performed. The main

disadvantage of this approach is that to allow the algorithm to propagate the resource

goals during the plan extraction phase, the form of resource effect expressions is very

restricted (only constant deltas or linear equations with at most one other resource

variable are allowed).

The compilation approach seems very attractive for planning with resources. How-

ever, the need to merge both logical and resource expressions in one compilation

makes the compilation process complicated. LPSAT [95] combines a SAT solver

with an incremental Simplex system called by the SAT solver. TM-LPSAT [86] ex-

tends that work to support external processes and durative actions. ILP-PLAN [57])

compiles the planning planning problem (both logical and metric parts) into an integer

27

linear program. All three systems are limited to linear expressions in preconditions

and effects.

Heuristic planners

Several modern high-performance planners, such as FF [48, 49] and SAPA [24] use

solutions torelaxedplanning problems to drive search. The relaxation usually in-

volves ignoring delete effects and negative preconditions of actions. Such relaxed

problems can be solved in polynomial time.

The solution to a relaxed problem is then used in the nextphaseof the algorithm

to guide the search for the original problem. Bonet and Geffner [11] point out that

GraphPlan-based algorithms can be viewed as a special case of heuristic planners.

Constraint-based interval planners

Several planners targeted for the aerospace domain (IxTeT [41], HSTS [54], AS-

PEN [80]) use the constraint-based interval model of the planning problem [87, 53].

In this model, both propositions and actions are modeled astokenson timelinescor-

responding to objects.

This formalism naturally allows for specification of external events, such as change

in resource availability. Numeric constraints can be implemented using resource en-

velope techniques. While traditional AI planners offer limited support for numeric

expressions [35, 26], the CBI formalism allows for very expressive resource models

[5]. The disadvantage of CBI planners that they are not well suited for open worlds

(all available objects are considered by the planners) and usually rely on domain-

dependent search control to achieve good performance.

28

2.3 Example problems

In this section we present example applications that we use throughout this thesis. The

applicability of our techniques is not limited to these domains. We have chosen these

applications because they exhibit properties, which, we believe, are characteristic of

component-based systems in general.

The first two applications are mail and webcast applications that can be instanti-

ated using a dynamic component-based system such as CANS or PSF. We also present

a simple application that involves generation and scheduling of workflows on compu-

tational grid infrastructures such as Globus Grid.

2.3.1 Mail application

This application is a component-based security-sensitive mail service, originally in-

troduced in [51]. The mail service provides expected functionality — user accounts,

folders, contact lists, and the ability to send and receive e-mail. In addition, it allows

a user to associate a trust level with each message depending on its sender or recipi-

ent. A message is encrypted according to the sender’s sensitivity and sent to the mail

server, which transforms the ciphertext into a valid encryption corresponding to the

receiver’s sensitivity and saves the new ciphertext into the receiver’s account. The

encryption/decryption keys are generated when the user first subscribes to the service.

The mail service is constructed by flexibly assembling the following components:

(i) a MailServer that manages e-mail accounts, (ii)MailClient components of dif-

fering capabilities, (iii)ViewMailServer components that replicate theMailServer

as desired, and (iv)Encryptor /Decryptor components that ensure confidentiality of

29

interactions between the other components. These components allow the mail appli-

cation to be deployed in different environments. If the environment is secure and has

high available bandwidth, theMailClient can be directly linked to theMailServer .

The existence of insecure links and nodes triggers deployment of anEncryptor and

Decryptor pair to protect message privacy. Similarly, theViewMailServer can serve

as a cache to overcome links with low available bandwidth.

The mail application uses the request-reply model of interaction between compo-

nents. Components exposeinterfaces, whose methods can be invoked by other com-

ponents. In the mail application, theMailServer component exposes (implements)

MailServerInterface (MSI), against whichMailClient makes requests.

Types of the required and implemented interfaces describe qualitative compatibil-

ity of components. To model quantitative compatibility of components and network

resources, such as resource requirements and quality-of-service characteristics of the

application, we define numeric interface properties, e.g. supported request rate.

Figure 2.1 shows the abstract structure of the mail application, which describes

all possible configurations of the application. Rectangles correspond to component

types, ovals represent interfaces. In the mail application, each component invokes

and exposes at most one interface. Therefore, all legitimate configurations of this

application are chains. However, it is possible to have more than one instance of the

same component type in such a chain.

Figure 2.2 illustrates a simple scenario where theMailClient can be deployed on

node0 only if connected to aMailServer through aViewMailServer . Directly link-

ing theMailClient to theMailServer is not possible because the link between them

does not have enough available bandwidth to satisfy theMailClient requirements.

30

MailServer

EncrI

MailClient

Encryptor

MSI

Decryptor

ViewMailServer

Figure 2.1:Abstract structure of the mail application. Rectangles represent components, and

ovals represent interfaces.

MSI

0

1

2

High−bandwidth link

Low−bandwidth link

MailClient MailServer

ViewMailServer

MSI

Figure 2.2: Component deployment of the mail application.

31

2.3.2 Webcast application

The second application models a webcast scenario (Figure 2.3), where a server pro-

vides a combined media stream consisting of images and text, which needs to be

delivered to a client.

The webcast application uses the publish-subscribe model of component interac-

tion. In the beginning of a session, the client subscribes for a data stream with par-

ticular QoS properties, such as minimum frame rate. After that, the server pushes the

data stream towards the client until the session is terminated. Although this mode of

communication is different from the request-reply mode used in the mail application,

we use a unified scheme described in section 3.2 to model both kinds of applications.

The frame rate requested by the client translates into a minimum bandwidth re-

quirement. If the network between the client and the server has stable high band-

width, a direct connection is made. However, in more resource-restricted situations

additional components might be injected into the network: Figure 2.3 shows an exam-

ple of such injection involvingSplitter , Merger , and text compression components

(Zip andUnzip). Similarly, aFilter component may be injected to change parame-

ters of the image stream, such as the color depth. In the example shown in the figure,

the network consists of two high-bandwidth LANs with a low bandwidth link between

them. TheServer located on host 7 produces a media stream, and theClient on host

0 wants to consume this stream with a particular frame rate. This goal is achieved by

splitting the media stream (M) into text (T) and image (I) components, zipping the

text portion of the stream, so that the combined I+Z bandwidth is less than that of the

original M stream, sending the I and Z streams to the client LAN, and performing the

32

Z

0

1

2

6

7

4
5

3

ZI
ZI

Client

Merger

Unzip

M

T Z

Splitter

Zip

Server
M

T
I

Figure 2.3: The webcast application

M

SplitterMerger

I

T
Unzip Zip

Z

ServerClient

Filter

Figure 2.4:Abstract structure of the webcast application. Rectangles represent components,

and ovals represent interfaces.

reverse transformations there.

Figure 2.4 describes the abstract structure of the webcast application. Since the

Splitter component produces and theMerger component requires two interfaces,

some configurations of the webcast application might have a DAG structure.

2.3.3 Grid planning

The second variety of the application configuration problem we will consider is gen-

eration and scheduling of workflows for computational grids [20].

A grid application consists of jobs that process files. Unlike the previous ex-

33

F1 First

Second

F5
F4

Third F6

F3

F2

Figure 2.5:Abstract structure of a simple grid application. Boxes represent jobs, and circles

represent files.

amples, some of jobs constituting a grid application may need to run sequentially.

Therefore, grid planning requires a more sophisticated resource model. In particular,

resource availability is represented as a (piecewise constant) function of time, and an

application configuration contains explicit resource reservations.

To make this more concrete, let us first present a small synthetic example.

Simple example. The application shown in Figure 2.5 consists of three instances of

different component (job) types. TheFirst job requires fileF1 and produces filesF3

andF4. TheSecondjob requires fileF4 and producesF5. TheThird job requires files

F2, F3, andF5 and producesF6.

The network consists of four hosts (Figure 2.6). FileF1 is initially available on

host2, andF2 on host1. The files are available there from the very beginning. In

principle, the availability time of files may be greater than zero, for example, when

another workflow currently being executed is expected to produce the file at a known

(planned) moment in the future.

The goal in grid planning is to make an instance of a given file available on a

given network host as quickly as possible. In our example, an instance ofF6 should

be obtained onhost3.

34

Goal

host1

host2

host3

host4
F1

F2 F6

Initial availability

Figure 2.6:Network for the simple grid application. The initial and goal locations of files are

shown next to the hosts.

As in our previous examples, the grid application consists of component execu-

tions connected by data transfers. The main difference from the dynamic component-

based applications discussed in the previous sections is that in the grid applications

different jobs and data transfers can be executed sequentially. Therefore, the planner

needs to reason about physical time in addition to network resources.

For each job and each network host, the possible start time and duration of exe-

cution of the job on the host depends on resource availability on the host and job’s

resource requirements. In our example, we assume that the resource availability is

all-or-nothing, so that the job duration is a constant for each host. JobFirst can run

on host1starting at time points 2 and 12. JobSecondcan run onhost4starting at 10,

25, or 35. JobThird can run onhost1starting at 5, 25, 45, or 65. For every job-host

pair, job execution takes 10 time units.

Files can be transfered over network paths consisting of links. Duration of the

transfer depends on the size of the file and the current available network bandwidth.

In our simplified example, any data transfer takes 10 time units to complete.

Figure 2.7 present a configuration (an execution plan) for our simple grid planning

problem. The completion time of this plan, i.e. the earliest availability time ofF6 on

35

55

F4

F3

F5F4

65 75

F2

F6

85

host1

host2

host3

host4

Time

F6

32

F5
F3

0

F1

F2

12 22 35 45

Second

First Third

Figure 2.7:Example plan with completion time 85. Horizontal lines represent hosts. Circles

show existence of a file on a node (the first time the file appears and the moment

when it is required). Rectangles correspond to execution of a component. Solid

lines are data transfers.

host3is 85.

The earliest time componentFirst can be executed is 12, because the required

file F1 needs to be transferred fromhost2. The data transfer takes at least 10 time

units. Similarly, componentSecondcan start executing onhost4at time point 35, and

componentThird is scheduled to run onhost1at time point 65. No data transfers are

scheduled for filesF2 andF3, because they are already available onhost1. The final

step of the plan is the data transfer of fileF6 from host1to host3.

Realistic example. In practice, grid workflows may involve hundred of jobs and files.

For example, Figure 2.8 shows an instance of a Montage workflow [6] with 57 jobs

and 108 files. The goal of this application is to construct a map of a particular region

of the sky out of pieces. Achieving this goal requires several stages of processing,

including projecting original images on the required plane, computing differences

between projected pieces, calculating background model, adjusting the images, and

36

Figure 2.8:Montage workflow. Empty circles represent files, with the source files shown in

the bottom of the figure. The filled circles represent jobs. The goal is to obtain the

data files shown in the top of the figure.

putting together the final mosaic.

Some of the intermediate data products may be already available, or be scheduled

to be produced, in the network, for example, as a by-product of another workflow.

The choice of whether to recompute such data, which requires host resources, or to

reuse the existing files, which requires link resources for data transfer, depends on the

current resource availability.

An important distinction between the dynamic component-based applications pre-

sented earlier and grid applications is the size of the network. Grid applications often

require large amount of resource, typically available only in supercomputer sites or

at large cluster farms, and therefore the total number of hosts that may participate

in a grid application configuration is usually small. Figure 2.9 shows a simple net-

37

clusters

routers

Figure 2.9: Example network for grid applications.

work consisting of 6 supercomputers. The hosts are organized in two clusters. All

communication between the clusters uses a shared link, which is modeled using two

specialized router hosts. Routers are artificial hosts, which can not perform computa-

tion or store data.

2.4 Summary

In this chapter we discussed example component-based systems that need to solve the

ACP.

Existing systems, both dynamic component-based systems and computational grid

frameworks, address the complexity of the ACP by putting additional restrictions on

the problem model. In this thesis we show that it is possible to efficiently solve the

ACP without sacrificing expressiveness of the model.

Section 2.2 gave an overview of AI planning. Metric AI planners can handle very

expressive models. However, none of the existing planners we found was able to

efficiently handle the ACP (see Appendix A).

In the next chapter we present a detailed model of the ACP, analyze complexity of

this problem, and identify challenges that a planner for the ACP needs to address.

38

Chapter 3

The Application Configuration

Problem

In this chapter we describe the general model of the ACP, the architecture used for

integrating the planner with the underlying component-based framework, and the as-

sumptions we make about the services provided by the framework. We also introduce

a model for a variation of the ACP for the dynamic component-based systems called

the Component Placement Problem. We show how the CPP (and the ACP in general)

can be represented as a planning problem. We analyze the computational complexity

of the CPP and reasons for poor performance of existing planners. We conclude this

chapter by summarizing challenges that need to be addressed to design a scalable and

efficient planner for the CPP/ACP.

39

3.1 General model of ACP

The ACP is a problem of constructing a configuration of a component-based appli-

cation given specifications of environment, components, and user goal. This section

describes these specifications.

3.1.1 Environment

The environment is a wide-area network consisting of hosts (computational nodes

and routers) and links. Usually, they are abstractions for the physical hosts and links

in the network that capture the dominant bottlenecks. These hosts/links may or may

not correspond to physical resources of the network. For example, the fact that all

communication between two geographical regions shares a particular network path

can be captured by a topology that involves two (artificial) routers connected by a

single (artificial) link.

In addition to the network topology, hosts and links may have numericproperties

associated with them as described in Section 3.1.3.

3.1.2 Components and data

To reason automatically about valid application configurations, one needs to formal-

ize the notion of linkage compatibility between components. To achieve a high degree

of interchangeability and reusability of components, the linkage compatibility infor-

mation needs to be local, as opposed to application-wide.

In our model,componentsare described as independent executable modules,

whose intended functionality is completely captured by thetypesof input and out-

40

ru
ns

 o
n

component data

host link
connected by

se
nt

 o
ve

r

Application

Network

produced by, consumed by

requires, produces

available on

Figure 3.1: Objects of the application configuration problem.

put data (Figure 3.1). In this thesis, we consider two kinds ofdata: (i) files and (ii)

interfaces. An interface can be used to make calls against it (e.g. a mail server in-

terface for sending and receiving messages), or it can be viewed as a provider of a

continuous stream of data (e.g. a video interface).

A component can bedeployed(executed) on a network host.

Data can beproducedandconsumedby components andtransferedover network

links. A data item (file, interface) can be consumed by a component running on a

network host if the data isavailableon that host. A data item becomes available on

a host when it is produced by a component running on that host or is transfered over

the network from another node where that data item is available.

Each componentrequiresa set of data items to be present on a host before the

component can be executed/deployed on that host. These data items are to becon-

sumedby the component. Consumed data items remain on the host and can be used

by other components. However, the numeric properties of the consumed data may

change as a result of component execution. For example, the sharing of a mail server

41

by several clients can be modeled by decreasing the maximum supported request rate

of the server after connecting a new client to the server’s interface.

The set of required data items constitutes a component’squalitative require-

ments.

3.1.3 Numeric properties

There may benumeric (real-valued)properties associated with network links, net-

work hosts, and data items available on the hosts. For examples, one might consider

link bandwidth, host memory, and request rate supported by an interface.

Properties of data on hosts are determined by the properties of the data transfer or

the component execution that created that data.

Properties of links can be changed by data transfers. For example, link bandwidth

can be consumed. Similarly, properties of hosts can be affected by executing compo-

nents.

Numeric properties of hosts and available data can be used to specify a compo-

nent’squantitative requirements. For example, a component may require a partic-

ular amount of available memory to process an incoming video stream of a certain

bandwidth (resource consumption requirement), or a client component may require

the mail interface to support a given minimum request rate (client’s Quality-of-Service

requirement).

3.1.4 User goal

We consider two types of usergoals. A user might request that an instance of a

given component type (user’s client) be running on a given network host (user’s host).

42

Deployment of a client component on a user’s host may require satisfying the com-

ponent’s qualitative and quantitative (QoS) requirements, which in turn may require

deployment of additional component instances and data transfers.

Alternatively, a user may request that a particular data item (file) be present on a

particular network host. Achieving this goal may require performing computations

(executing components) to produce this data item and transferring files over the net-

work. This kind of user goal is often found in computational grids.

In both cases, the user may havebudget restrictions (e.g. disk quotas, deadlines)

andmetrics (preferences) (e.g. obtain the data as fast as possible given the budget

restrictions).

So far, we have described the goal as a single client placement or data product.

In general, the goal may require simultaneous placement of several components on

different network hosts (e.g., setting up a video-conference) or producing multiple

data products. The algorithms presented in this thesis are capable of achieving such

conjunctive goals. However, when discussing modeling and complexity issues, we

will limit ourselves to singleton goals for simplicity.

3.1.5 Application configuration

A feasible application configurationfor a given state of the environment and a given

user goal is a set of executable component instances and data transfers such that:

1. Each component instance is mapped onto a network host and scheduled to exe-

cute at a certain time.

2. Each data transfer is mapped onto a network link and scheduled to execute at a

43

certain time.

3. The properties of a data item on a host, including earliest availability time of

a file and maximum supported request rate of an interface, correspond to the

action that created that data item.

4. Qualitative and quantitative constraints of all components are satisfied.

5. At any given moment, the total resource consumption requirements of all com-

ponents running on a given host do not exceed the amount of host resources

available at that moment.

6. At any given moment, the total resource consumption requirements of all data

transfers over a link do not exceed the amount of resources available on that link

at that moment.

7. The user goal is satisfied.

Given the complexity of the problem, discussed later in this chapter, even finding

a feasible application configuration in an automated way is a hard and important task.

However, in practice, one additionally desires that the configuration be agoodone.

The following section makes this statement more formal.

3.1.6 Metrics

To define the notion ofoptimalityof configuration we introduce acost function cap-

turing the total resource consumption of the configuration.

To do so, we define acost of an action, where the action is associated with a

component execution or a data transfer, as a function of properties of the network

44

resources and data consumed by that action, and acost of configurationas a (non-

decreasing) function of costs of all actions in that configuration. This specification of

cost allows us to specifypreferencesover resources (see Section 6.1 for details).

The cost of a configuration corresponds to the total resource consumption of the

application. Our model also supports the notion ofduration as an alternative met-

ric. In computational grid applications, duration of a configuration is defined as the

completion time of computation, i.e. the earliest moment in time when the user goal

is achieved (the required data item is produced and delivered to the client machine).

This way, the duration corresponds to the delay of the final data product with respect

to the beginning of computation.

In dynamic component-based systems, where all components of a configuration

are running simultaneously, the duration is defined as the number of actions on the

longest path through the configuration. This way, duration corresponds to the number

of transformations seen by a data packet, and has no direct correspondence to the

delay with respect to the server producing the data stream. To describe the latter, one

may also define adelayproperty of an interface (data stream) with the semantics of

accumulated latency with respect to the server. However, this property is not assigned

any special significance by the planner, and is treated the same way as, for example,

CPU or bandwidth.

3.1.7 Architecture

We assume that a component-based framework has a single centralized instance of a

planner. The information about the current state of the environment and requirements

of components is collected and stored by external services. The planner can access

45

this information by making calls against these services. We assume that information

provided by external services is complete and correct, and access to this information

is free and instantaneous.

3.1.8 Correctness of information

We assume that if an external service reports that a particular amount of resource is

available, the reported amount of resource can be consumed by a new application con-

figuration. Detection and processing of failures during resource allocation is outside

the scope of our model and needs to be handled by external means.

We assume that planning for different clients is done sequentially. This means that

if another application is concurrently using the resources required by a configuration

being designed, the resource consumption of such an application is already reflected

in the numbers reported by external services. A new application configuration cannot

affect resource behavior of already running applications. In Chapter 8 we discuss an

extension to this model.

3.2 Component Placement Problem

As we mentioned before, the ACP in general is computationally hard, and it is nec-

essary to choose planning techniques to take advantage of the natural restrictions of

each ACP variety to achieve good performance. In this section we describe theCom-

ponent Placement Problem(CPP), which is a variety of the ACP that is encountered

in dynamic component-based systems such as the Partitionable Services Framework

[51]. The goal of the CPP is to find a snapshot configuration of a component-based

46

application, in which components process continuous streams of data. Chapter 7 dis-

cusses a variety of the ACP encountered in computational grid frameworks. The grid

ACP deals with workflows that process files and requires reasoning about physical

time in addition to network resources.

The CPP has the same structure as the general ACP. The problem specification

describes:

• A network environment as a graph of links and hosts with numeric properties

associated with them.

• A set of interface types that correspond to typed data streams. An instance of an

interface on a node may have a set of numeric properties.

• A set of component types specified by sets of consumed and produced inter-

face types and numeric formulas describing resource requirements and effects

of component deployment.

• A user goal as a pair of a component type and a network host on which an

instance of the given type needs to be deployed.

In general, dynamic component-based applications can realize apublish-subscribe

or a request-replymodel of interaction between components. In the former case,

properties are propagated from the required to the implemented interfaces, e.g., the

bandwidth of the incoming data stream directly affects the bandwidth of the produced

data stream. In request-reply applications the dependency is reversed: the request rate

of the required interface depends on the request rate of the implemented interface.

For simplicity, we use the forward propagation model to describe both types of

47

interaction. To do so, we add a set of interface properties describing the upper bounds

on the supported request rate and response size. This is an approximation, which may

lead to over-reservation of resources. However, as we describe in Section 6.2.2, our

algorithm still produces good results.

The major restriction of the CPP compared to the general ACP is the absence of

the time aspect. The CPP is concerned with snapshot configurations, which means

that the planner does not need to reason about sharing network resources in time. On

the other hand, a planner for the CPP still needs to deal with the scale of the problem

and with the non-reversibility of resource functions.

3.2.1 Assumptions

To design an efficient algorithm for the CPP, we make several additional assumptions,

which naturally hold for this variety of the ACP.

First, we assume that once an interface becomes available on a host, it does not

disappear from it, and components may require onlypresenceof an interface on a

host, not theabsenceof an interface. This allows us to simplify the translation of the

CPP into a planning problem. Note that, in the presence of the numeric resources, this

restriction does not cause loss of generality, since the absence of an interface can be

modeled, for example, by setting its bandwidth to zero.

Second, we assume that instances of the same interface type on a host are sepa-

rated from each other by at least one component instance. For example, it is possi-

ble to have two instances ofMailServerInterface on a host if they are separated

by a ViewMailServer , i.e. theViewMailServer component consumes one of the

instances and produces the other. On the other hand, it is not allowed to have a

48

ViewMailServer component produce (or consume) more than one data stream of

type MailServerInterface . This assumption is necessary to distinguish between

different streams at each stage of processing.

Third, we assume that all functions used in describing component and link cross-

ing behavior aremonotonicandforward computable.

Forward computability means that outputs of an action, e.g. memory require-

ments of a component or link bandwidth of a link crossing action, can be efficiently

computed given properties of input streams, and initial values of properties of hosts

and links. If a value of a forward computable function is not defined for a given set of

arguments, an exception is raised, and the planning action that requested the function

evaluation is pruned from the search.

Although we require all functions to be easily computable in the forward direction,

their reverse computability is not required. For example, there may be no easy way to

compute the required bandwidths of two input streams being merged given the value

for the bandwidth of the combined output stream.

We also require functions to bemonotonic. The purpose of this restriction is to

enable computation of intervals of function values given intervals for its parameters.

In case of monotonic functions, it suffices to compute only a finite set of function

values to obtain the interval for the image.

f([m1, M1], ..., [mn, Mn]) = [min S, max S], (3.1)

where S = {f(b1, ..., bn)|bi ∈ {mi, Mi}}

In practice, the monotonicity requirement can be easily extended to a weaker re-

quirement ofinterval-computability(see Figure 3.2). In the rest of this thesis, when-

49

y=f(x)

x

y

x1

x2
y1

y2

Figure 3.2: Interval-computable function.f([x1, x2]) = [y1, y2].

ever a monotonic function is required, an interval-computable function can be used.

3.2.2 Metrics

In Chapters 4-6 we describe three versions of our algorithm for the CPP that use

different sets of techniques. The chosen set of techniques affects the expressiveness

of the model the planner can handle, including the kinds of metrics the planner can

optimize.

The first two versions minimize theparallel lengthof the plan, i.e. the number

of hops, including components, on the longest path from the server(s) to the client.

Intuitively, this means that application configurations with the smallest number of

component instances and used links are preferred. If processing of a data packet by

each action has the same duration, the parallel length of the plan corresponds to the

total delay with respect to the server.

The third version of the planner, presented in Chapter 6, aims to minimize the

total costof the plan. As we discussed in Section 3.1.6, the cost of the plan is a non-

decreasing function of costs of actions in the plan (a sum in all our examples), and the

50

cost of an action is a function of its resource consumption. As with all functions in

the CPP, we require cost functions to be monotonic and forward computable.

3.2.3 Compilation into a planning problem

The CPP can be viewed as an AI planning problem with numeric resources:

• The state of the system is described by the availability of interfaces on hosts and

placement of components on hosts. This information is described by a set of

propositional (Boolean) variables.

• Properties of hosts, links, and interfaces on hosts are described by real-valued

resource variables.

• Operators correspond to placing a component on a host and sending an interface

over a link.

• The CPP goal is translated into a propositional goal of having a component

placed on a host.

The state of the world in CPP is described by the network topology, the ex-

istence of interfaces on hosts, and the properties of links and hosts. This infor-

mation is mapped into propositional and numeric variables. For example, the fact

that MailServerInterface is available on host 0 is represented by proposition

avMSI(0) , and the amount of available CPU on host 1 by a real-valued resource

variablecpu(1) .

Compilation of the CPP into a planning problem generates two operators:

pl <component>(?n) places a component on a host, andcr <interface>(?n1,?n2)

51

sends an interface across a link.

Figure 3.3 shows a PSF-style description of theViewMailServer component.

This component acts as a cache for a mail server, and requires and implements

MailServerInterface . An instance of theViewMailServer can be placed on a

network host if that host has sufficient number of available CPU cycles to process

the incoming requests (MSI i.NumReq). The number of requests forwarded by the

ViewMailServer is proportional to the number of incoming requests. In addition, the

maximum number of incoming requests is limited, and the required interface should

be secure for theViewMailServer to use it. TheEffectssection of the component

description describes properties of the implemented interface and the resource con-

sumption of the component.

Figure 3.5 presents the planning operator corresponding to placing a

ViewMailServer component on a network host. The preconditions of this operator

result from the resource requirements of the component and the fact that

MailServerInterface (MSI) is a required (consumed) interface. The effects come

from the effects section of Figure 3.3, withMaxReq providing the upper bound on the

NumReqparameter of the implemented (produced) interface.

An operator schema (parameterized operator) has the following sections (line

numbers refer to the code fragment in Figure 3.5):

• logical precondition of the operator, i.e., a set of propositions (Boolean vari-

ables) that need to be true for the operator to be applicable (line 2);

• resource preconditions described by arbitrary monotonic forward-computable

functions that return Boolean values (lines 3-6);

52

<Componentname =V MS >

<Linkages>

<Implements> <Interface name =MSIi >

<Properties>

MSIi.T rust− derived

MSIi.Sec− derived

MSIi.NumReq − derived

MSIi.ReqSize− derived

MSIi.RRF := 10

MSIi.ReqCPU := 2

MSIi.MaxReq := 100

<Requires> <Interface name =MSIr >

<Conditions>

Node.NodeCPU ≥ (MSIi.NumReq ∗MSIi.ReqCPU)

MSIr.NumReq ≥ (MSIi.NumReq ∗MSIi.RRF)

MSIi.NumReq ≤ MSIi.MaxReq

MSIr.Sec = True

MSIr.T rust ≥ 5

<Effects>

MSIi.Sec := True

MSIi.T rust := Node.Trust

MSIi.ReqSize := 1000

MSIi.NumReq := MIN(MSIr.NumReq/MSIi.RRF,

MSIi.MaxReq,Node.NodeCPU/MSIi.ReqCPU)

Node.NodeCPU := Node.NodeCPU −MSIi.NumReq ∗MSIi.ReqCPU

——–

V MS = ViewMailServer,MSI = MailServerInterface.

Superscriptsr andi indicate required and implemented interfaces.

Figure 3.3: Component description.

53

<Interface name =MSI >

<Crosslink>

MSId.Sec := MSIo.Sec AND Link.Sec

Link.BW := Link.BW− MIN(Link.BW, MSIo.NumReq ∗MSIo.ReqSize)

MSId.NumReq := MIN(MSIo.NumReq, Link.BW/MSIo.ReqSize)

MSId.ReqSize := MSIo.ReqSize

——–

MSI = MailServerInterface.

Superscriptso andd correspond to interfaces at link origin and destination.

Figure 3.4: Interface description.

• logical effects, i.e., a set of propositions made true by an application of the

operator (line 7);

• resource effects represented by a set of assignments to resource variables (lines

8-13).

Given the operator definition above, the compilation of the CPP into a planning

problem is straightforward. For each of the component types, the compiler generates

an operator schema for a placement operator. In addition, an operator for link crossing

is generated for each interface type. The initial state is created based on the properties

of the network. The goal of the CPP is translated into a Boolean goal of the planning

problem.

54

1 plVMS(?n: host)
2 PRE: avMSI (?n)
3 cpu(?n) > MSIMaxReq*MSIReqCPU
4 numReq(MSI,?n) > MSIMaxReq*MSIRRF
5 sec(MSI, ?n) = True
6 trust(MSI, ?n) > 5
7 EFF: avMSI (?n), plVMS(?n)
8 numReq(MSI, ?n) := MIN(numReq(MSI, ?n)/MSIRRF,
9 MSIMaxReq, cpu(?n)/MSIReqCPU)
10 cpu(?n) := cpu(?n) - numReq(MSI, ?n)*MSIRRF/MSIReqCPU
11 sec(MSI, ?n) := True
12 trust(MSI, ?n) := ntrust(?n)
13 reqSize(MSI, ?n) := 1000

Figure 3.5: Planning operator for placing aViewMailServer component on a host.

3.3 CPP and AI problems

As we have shown in the previous section, by introducing operators for component

placement and link crossing, the CPP can be compiled into a planning problem with-

out negative logical preconditions and effects, but with very general resource func-

tions.

The computational complexity of planning is high [28]. Moreover, planning with

numeric state variables is undecidable [47]. To justify the use of AI planning for a

seemingly simpler problem (CPP), we will show that (PSPACE-complete) proposi-

tional STRIPS planning can be reduced to the CPP. We will also prove that the CPP,

like metric planning, is undecidable in general.

A secondary role of the STRIPS-to-CPP reduction discussed below is to demon-

strate the relationship between the network space and physical time, which makes it

possible to use AI planning for solving the CPP.

55

3.3.1 CPP and STRIPS planning

Intuitively, a state of the world in traditional AI planning corresponds to a state of an

interface in the CPP. The following reduction makes this statement more formal.

A propositional STRIPS planning domain is described by a set of Boolean vari-

ablesP = {pi}, a set of operatorsA = {aj}, where each operator is defined by a

list of preconditions (a conjunction of a subset of the variables or their negations),

an add list (a set of variables that become true as the result of the action execution),

and a delete list (the set of variables that become false). A STRIPS planning problem

is defined by a planning domain, an initial state (a complete truth assignment to all

variables), and a goal state (a partial truth assignment). The goal of the planner is to

find a (totally ordered) sequence of operators that when executed in the initial state

brings the system to a goal state.

A propositional STRIPS problem is identical to the following CPP problem. The

network contains only one host, and no resources are associated with this host. There

is only one interface type with|P | properties. Initially, this interface is available on

the host. For each variablepi, the value of the corresponding property is 1 iffpi is

true in the initial state. For each operatoraj, the CPP contains a component that con-

sumes and produces the interface. The placement precondition of this component is a

conjunction of equalities corresponding to the operator’s preconditions. The effects of

the component placement are assignments of 0 or 1 to some properties of the interface

(in accordance to the add and delete lists) and identity assignments to the rest of the

properties. The identity assignments correspond to the frame assumption in STRIPS

that properties not in the add or delete list remain unchanged. An additional compo-

56

operator precondition add delete
opA none p none
opB none q p
opC p ∧ q g none

Figure 3.6: A propositional STRIPS problem.

nentCgoal is constructed with placement preconditions generated from the goal state

description. The goal of the CPP is to placeCgoal on the host.

To illustrate this reduction, consider the following problem (Figure 3.6). The

world state is described by three Boolean variablesp, q, andg, all of which are ini-

tially false. There are three actions, whose preconditions and effects are shown in the

figure. The goal is to achieveg.

This problem maps to the following CPP (Figure 3.7). Initially, there is interface

Int available on the host 0 with three properties set to 0:Int .p(0) = 0, Int .q(0) =

0, Int .g(0) = 0. There are four component types, each of which consumes and pro-

duces interface of typeInt . The resource requirements and effects of the components

are given in Figure 3.7. Values on the left side of the effect assignments refer to the

produced data stream, and those on the right side of the assignments to the consumed

stream. The goal is to placeCGoal on host 0.

The solution for this CPP is to place a chain of componentscompB -compA-

compC -CGoal on the host. This CPP solution corresponds to the sequence of operators

opB, opA, opC, which is a solution for the original STRIPS problem.

The above reduction shows how a propositional planning problem can be cast

as a CPP. This reduction requires only a small part of the expressive power of the

CPP. Only constants are used in requirements and effects of components, while the

CPP allows for more general functions. The presence of general numeric functions in-

57

component requirements effects
compA none Int .p(n) := 1;

Int .q(n) := Int .q(n);
Int .g(n) := Int .g(n)

compB none Int.p(n) := 0;
Int .q(n) := 1;

Int .g(n) := Int .g(n)
compC Int .p(n) = 1, Int .p(n) := Int .p(n);

Int .q(n) = 1 Int .q(n) := Int .q(n);
Int .g(n) := 1

CGoal Int .g(n) = 1 Int .p(n) := Int .p(n);
Int .q(n) := Int .q(n);
Int .g(n) := Int .g(n)

Figure 3.7: Compilation of propositional STRIPS problem into a CPP.

creases the computational complexity of the problem. Propositional STRIPS planning

is PSPACE-complete [13], and the CPP is undecidable (see Section 3.3.3).

3.3.2 Network space and physical time

The STRIPS-to-CPP reduction presented in the previous section illustrates the main

insight that allows us to use AI planning for solving the time-free component place-

ment problem, namely, the correspondence between physical time and network space.

The planning problem resulting from compiling a CPP into a planning problem

can be viewed as a “normal” planning problem with numeric resources. This problem

has discrete time steps corresponding to evolution of a data packet through a data path

(e.g. processed by a component,thentransmitted to another node over a network link).

In the model of the CPP described in Section 3.2, the exact delay of a packet from its

origin is viewed as one of the properties of the interface (similar to bandwidth), and

the problem specification can define any function for manipulating delays. However,

58

the definition of the CPP does not require existence of the delay, therefore the core

CPP problem istimeless[58].

Note, however, that the transformation of a data stream by components and links

along a data path is similar to transformation of a world state by operators along the

time line. Different data paths can affect each other via shared network resources

just as operators in classic planning interact via shared variables. For example, in

the CPP it is possible to put two components processing different data streams onto

the same network host. This situation corresponds to parallel execution of opera-

tors in traditional planning. In both cases, if the sum of resource requirements of

components/operators exceeds the available amount of resources, a conflict occurs.

Techniques for resolving conflicts in classic planning, such as promotion and demo-

tion [79], correspond to changes in a data path in the CPP, e.g. by sending a data

stream to another host. Even though the CPP does not have an explicit time compo-

nent, it can be considered“planning in space”similar to the traditional“planning in

time”.

There are, however, important differences. The time considered by traditional

planning is homogeneous. A logical state enables the same set of operators regardless

of at what point along the time line this state occurs. In the CPP, different hosts

and links have different properties. Therefore, different sets of components may be

deployed on different hosts even if exactly the same data streams are available on

these hosts.

Moreover, time in classical planning is linear. For each step there is exactly one

step immediately preceding it and one step immediately following it. On the other

hand, the network in the CPP is a graph. There are several paths leading to and from

59

each host.

Finally, the network space is always discrete. Physical time, depending on the

planning model, can be discrete or continuous.

3.3.3 CPP and metric planning

In Section 3.2.3 we showed how the CPP can be compiled into a STRIPS planning

problem with numeric state variables. In [47] Helmert shows several undecidable

classes of such planning problems. In particular, the plan existence problem is un-

decidable if operator preconditions contain comparisons of numeric variables to zero

and numeric effects of operators contain increments and decrements (i.e.v = v + 1

andv = v − 1).1

This planning problem can be reduced to the CPP using the same technique we

used in Section 3.3.1: by creating a CPP component type for each planning operator

and a separate component type for the goal. Translation of numeric preconditions

and effects is trivial. This reduction proves that, in general,the CPP is undecid-

able. Since the CPP is asimplifiedspecial case of the ACP, this result also implies

undecidability of the ACP.

Note that this undecidability result holds because of the unbounded size of the

search space. The reason for this is that, although the network topology and the set of

component types are finite, the CPP does not specify an upper bound on the number

of components that can be placed on a host or the number of streams that can be sent

over the same network link.

However, in reality, every action usually consumes at least one non-replenishable
1In [47] this problem is referred to as PLAN EX-(C∅, C0, E±1).

60

resource. For example, sending a data stream over a network link consumes link

bandwidth, and a component placed on a network host consumes CPU cycles. Be-

cause of this consumption of non-replenishable resources, in reality, the total number

of actions that can constitute a plan is limited.2 This means that, in practice, it may

be possible to determine existence or non-existence of a solution for the CPP in finite

time.

3.3.4 CPP and scheduling

While AI planning is usually concerned with finding a feasible sequence of operators

that achieve the goal, the problem of scheduling is to find an optimal ordering of a

given partially ordered set of tasks. Since the CPP is also concerned with optimality,

we would like to discuss the relationship between the CPP and scheduling.

In the CPP, a data stream may be forced to “jump” to a new host because of limited

resources at the source host. Hosts and links in the CPP correspond to resources in

scheduling terminology.

In scheduling, the problem is to allocate a given set of resources to a given set

of tasks. In the CPP the set of components constituting an application configuration

is not fixed. A planner may decide to use a caching component to deal with a low-

bandwidth path, a pair of zip/unzip components, or choose a longer network path.

This need for choosing an action and the fact that the plan length cannot be computed

in advance prevent us from directly using scheduling techniques for solving the CPP.

In scheduling, it is often trivial to find a feasible solution by stretching the schedule
2Assuming that there is some minimum bound on the resource consumption, so that the system does not

experience Zeno’s paradox.

61

over time. In the CPP many resources, such as network bandwidth, are consumable.

Stretching the component DAG over the network simply replaces one resource conflict

with another, and often does not lead to a solution. Instead, one needs to change the

DAG itself, i.e. the set of components participating in the deployment. The problem

of finding a feasible solution for a CPP requires solving the plan existence problem in

the presence of resource constraints, which is undecidable in general. Therefore, the

CPP is computationally harder than traditional scheduling.

3.4 Challenges

Although the CPP can be presented as a STRIPS planning problem with numeric

resources, existing algorithms supporting the STRIPS formalism are not well suited

for solving the CPP. Appendix A gives evaluations of the performance of several state-

of-the-art planners on the CPP and the grid planning variety of the ACP, which shows

that the existing planners are not well-suited for solving the ACP. We have analyzed

the reasons for poor performance of the existing planners and identified the following

three challenges.

First, most of the algorithms supporting numeric resources employ forward chain-

ing. This approach requires complete knowledge of the initial state before the search

can start. Satisfying this requirement would mean feeding, among other things, the

complete state of the network to the planner, because it is generally impossible to pre-

dict which parts of the network will be relevant to the solution. Regression-based al-

gorithms are better equipped for identifying relevant operators and data (e.g., portions

of the network), but require reversibility of resource functions. Some combination of

62

techniques is required to address the two issues simultaneously.

Second, in the absence of negative Boolean preconditions and effects, the only

negative interaction between operators is via numeric resources. We are not aware of

an existing planning algorithm capable of deriving significant search guidance from

numeric conflicts. Numeric planners described in literature tend to pose to tight re-

strictions on the syntactic form of resource functions [49], or use some sort of an

envelope over a set of plans for pruning [62]. As our experiments show, resource

envelope over a planning graph quickly loses informedness and does not provide sig-

nificant pruning. New techniques need to be developed for resource-guided search.

Finally, in the CPP, not just a feasible, but an (approximately) optimal solution

is desired. Finding an approximately optimal solution in the presence of arbitrary

non-reversible monotonic functions also requires development of new techniques.

3.5 Summary

In this chapter we described the general model of the ACP and its specialization for

dynamic component-based frameworks — the component placement problem (CPP).

We have shown that CPP, and therefore also the more general ACP, are undecidable.

We discussed similarities between the ACP and traditional planning and schedul-

ing problems that permit casting of the ACP as an AI problem. Section 3.2.3 shows

how the CPP can be represented as a STRIPS planning problem with numeric re-

sources. In a similar way, a more general ACP, such as the grid ACP discussed in

Chapter 7, can be compiled into a planning problem with numeric resources and du-

rative operators [26] (see Appendix A.3 for an example). We also discussed the novel

63

challenges of the ACP that prevent existing planners from scaling well on this prob-

lem.

A number of previous projects have considered models for declarative descriptions

of application components with the purpose of automated discovery and composition

[76, 97, 43, 52, 22, 100, 32]. Some of these models also include specification of

execution preconditions and resource requirements [34, 92, 51, 82, 3, 89].

The kind of information a component description needs to provide depends on

the use of that information. In this thesis, we consider the problem of automated

deployment-time construction of applications so as to satisfy user requirements given

the current state of the environment. Achieving this objective justifies the model de-

scribed in this chapter.

Our model assumes that it is possible to measure the state of the network and to

allocate to the application the amount of resources prescribed by the plan. Although

the modern Internet does not yet fully provide this kind of facility, we are confident

that future research will enable such functionality [102, 96, 31, 33].

64

Chapter 4

Dealing with large-scale open worlds

In Section 1.3 we gave a list of techniques for construction of efficient planners sup-

porting expressive problem models. In this and the two following chapters we show

how these techniques are used in Sekitei, a planner for the component placement

problem. Chapter 7 describes application of the same techniques for construction of

GPRS, a planner for computational grids.

To better illustrate how each of these techniques works, we introduce them in

groups corresponding to the three challenges identified in Section 3.4, which these

techniques address. The three groups of techniques correspond to threeversionsof

the Sekitei algorithm, referred to as Sekitei 1, Sekitei 2, and Sekitei 3. Each of the

versions extends the previous one and improves the performance of the algorithm

and/or expressiveness of the supported model.

In this chapter we describe Sekitei 1. This version of the planner introduces the

techniques for dealing with large-scale open worlds: on-demand compilation of the

problem specification (T1 in Section 1.3) and regression-progression search (T2). We

65

begin by describing these techniques. Then we present the Sekitei 1 algorithm and

its evaluation on the mail and webcast applications described in Section 2.3. We

conclude this chapter by discussing the benefits provided by the two techniques and

reviewing the challenges that are not addressed by them.

4.1 Techniques

Sekitei uses two techniques — on-demand compilation (T1) and regression-progression

search (T2) — to efficiently identify relevant portions of the problem specification

during the search. This allows the planner to support complex dependencies between

actions, such as numeric dependencies via shared resources, which are hard to deal

with using static pruning techniques.

As mentioned in Section 3.1.7, the planner obtains information about the problem

and the current state of the world by querying external services. On-demand compila-

tion of the problem specification hides the interactions of the planner with the external

services from the search algorithm, making the planner framework-independent.

Regression-progression search provides the means for identifying the relevant por-

tions of the world state in the presence of non-reversible functions. This technique

guides the search towards the cheapest solution and relies on an on-demand compiler

for the actual construction of operators and data.

4.1.1 On-demand compilation

The first problem a planner for the CPP needs to address is the scale of the problem

specification. When constructing a configuration of an application, one may need to

66

problem

component
placement
problem

plan
deployment

plan

framework

decompiler

planner

planning
compiler

Figure 4.1: Process flow graph for solving CPP

consider thousands of network hosts and hundreds of component types available for

deployment even if the final configuration involves only a dozen network hops and a

few component instances.

Most existing AI planners assume that the whole problem specification is given as

an input, and rely on this fact to perform various sorts of reachability analyses.

Even for small application configurations, obtaining a complete problem speci-

fication is often not feasible for the CPP. The planner needs to discover portions of

the initial state as they become relevant during the search. Moreover, in the pres-

ence of arbitrary numeric functions, reachability analysis does not provide significant

pruning.

It is desirable to make the planner module independent of a particular set of ser-

vices provided by the framework. To achieve this, the planner is cushioned from the

framework by framework specificcompiler anddecompiler modules (Figure 4.1).

The planner communicates with these modules using ground variables, whose se-

mantics is hidden from the planner.

67

Compiler

The compiler produces two main types of information. First, it returns ground in-

stances of operators that can achieve a given ground logical variable. The precon-

ditions and effects of the returned operators are represented as functions of ground

variables and constants. Second, for a given ground variable, the compiler can return

its value in the initial state of the world and an optimistic value. (See Appendix B for

the complete specification of the Compiler interface required by Sekitei.)

For example, given a request for operators that achieve availability of mail inter-

face on host 0, the compiler may return a ground operator for placing aViewMailServer

component on that host —plVMS(0) . The precondition formula of that operator

uses several variables, including the amount of available CPU on host 0 —cpu(0) .

The initial value of this variable is the interval[v, v], wherev is the actual value of

the available CPU on host 0, obtained by querying external services. The optimistic

value of the same variable is the interval[0, v], which means that the available CPU

can be decreased by application of planning operators, but not increased.

Note that the planner does not need to understand the meaning of the ground vari-

ables or ways to access framework services. The compiler is responsible for resolving

all semantic issues, including conversion and normalizing of units of measurement.

Decompiler

The plans produced by the planner are sequences of ground operators with dependen-

cies between them, but with no semantics attached. The purpose of the decompiler is

to convert these ground plans into a format understandable by the framework.

68

In case of DCBFs, a plan can be represented by a sequence of ground instances

of pl <component> (<host>) andcr <interface> (<from>,<to>) operators. In-

formation about logical support is easily extractable from the plan. For example, the

fact that operatorcrMSI(1,0) depends on propositionavMSI(1) produced by

operatorplVMS(1) means that aViewMailServer component needs to be placed

on host 1 to produce theMailServerInterface before this interface is sent over

the link to host 0. This information can be represented as a framework-specific de-

ployment plan, which consists of (component, host) pairs and linkage directives, e.g.

(VMS,1,MSI,MC,0) (place aMailClient component on host 0 and make it invoke

MailServerInterface of theViewMailServer component running on host 1).

It is expected that the compiler and decompiler for a given framework share the

assumptions about semantics of ground variables and operators. In fact, a single object

can implement both interfaces. This way, the decompiler can restore the dependencies

between the operators constituting the plan and the actions and objects of the original

problem.

4.1.2 Combining regression and progression

The next question is how to organize the search. Section 2.2 gave an overview of four

kinds of search techniques traditionally used in planning. Let us briefly review the

advantages and deficiencies of each of them with respect to the component placement

problem.

Compilation-based techniques naturally support optimization. However, perfor-

mance of such techniques depends on the performance of the underlying optimization

engine, and therefore algorithms based on such techniques are usually limited to lin-

69

ear functions [57, 95, 86]. The CPP requires supporting arbitrary numeric functions,

which prevents us from using compilation-based techniques.

Pure means-end analysis planners such as Zeno search for a feasible solution and

are hard to extend to support optimization.

The two remaining classes — regression and planning graph based planners —

both have properties required for solving the CPP.

The CPP is typically characterized by a small goal and a large initial state speci-

fication. Therefore, regression, i.e. search backwards from the goal state, presents a

natural approach to dealing with the open nature of the world. The planner repeatedly

queries the compiler module for ways to achieve the current state, thus discovering

relevant portions of the problem specification during the search. The only information

that needs to be provided to the planner from the very beginning is the goal specifica-

tion.

However, regression techniques are not well suited for numeric planning. In par-

ticular, they require that all functions used for describing application behavior be re-

versible, which does not hold for the CPP.

An alternative strategy is to perform forward search in a way similar to GraphPlan-

based algorithms [8, 64]. This approach provides several benefits. First, the main data

structure used in such planners — the planning graph — is anenvelopeover all possi-

bly executable sequences of operators. Incremental expansion of this envelope guar-

antees that the first found solution has the optimal length. Second, since all functions

used in the CPP are required to be monotonic and forward computable, it is possible

to construct a resource envelope parallel to the planning graph [62]. This helps to

identify resource conflicts at earlier stages of search.

70

The main problem with using the planning graph techniques for solving the CPP

is that they use the complete specification of the initial state to construct the planning

graph. Even if we assume that it is possible to obtain a complete specification of the

initial state, the planning graph becomes prohibitively large and expensive to compute.

Our approach is to combine the regression and progression techniques in such

a way as to compensate for their deficiencies while taking advantage of the useful

properties of both.

4.2 Algorithm

In this section we describe Sekitei 1 — the version of the Sekitei algorithm that uses

on-demand compilation (T1) and regression-progression (T2) to deal with large scale

open worlds and non-reversible functions.

4.2.1 The core algorithm

The algorithm uses two data structures: aregression graph(RG) and aprogression

graph(PG). RG contains operators relevant for the goal. An operator isrelevant if it

can participate in a sequence of actions reaching the goal, and is calledpossibleif it

belongs to a subgraph of RG rooted in the initial state. PG describes all world states

reachablefrom the initial state in a given number of steps. Only possible operators

of the RG are used in construction of the PG.

The Sekitei 1 algorithm consists of four phases — regression, progression, plan

extraction, and symbolic execution. Communication between the phases is shown in

Figure 4.2 and described in detail below.

71

Each of the phases solves arelaxed problem. A solution to the relaxed problem is

an argument of a new subproblem, which is passed to the next phase of the algorithm.

Theregression phaseof the algorithm finds a smallest set of possible operators for the

original problem with all resource requirements ignored. This set of operators is then

used by theprogression phaseto determine if the goal is reachable given this set of

operators and an aggregated version of resource constraints. If it is not, the algorithm

backtracks to the regression phase to obtain a bigger set of possible operators. If the

goal is reachable, the PG, which contains an aggregated representation of all plans

reaching the goal, is passed to the third phase of the algorithm,plan extraction. The

plan extraction phase performs a search in the PG, and all candidate plans are passed

to the last phase of the algorithm forsymbolic execution. Success of the fourth phase

guarantees that the found plan is correct.

replay succeeded

goal possible

create RG for goal

add layer to RG

build PG

return plan

NO

YES

NO

NO

YES

YES

extract plan

plan found

YES

NO

REGRESSION PROGRESSION SYMBOLIC EXECUTION

replay plan

PLAN EXTRACTION

goal reachable

Figure 4.2: The Sekitei 1 algorithm

72

Regression phase

The regression phase considers only logical preconditions and effects of operators in

building the RG, an optimistic representation of all operators that might be useful for

achieving the goal. RG contains interleaving proposition and operator levels, starting

and ending with a proposition level, and is constructed as follows.

• Proposition level 0 is filled in with the goal specification.

• Operator leveli contains all operators that achieve some of the propositions of

level i− 1.

• Proposition leveli contains all logical preconditions of the operators of the op-

erator leveli.

RG is initially constructed until the goal becomes possible, but may be extended

if required. Figure 4.3 shows the RG for the problem presented in Section 2.3.1. In

this problem, the only host on which the server can be executed is host 2. The goal

is to place client on host 0. Logically, the shortest plan to achieve the goal consists

of three operators (bold lines in the figure) — place the server on host 2 (plMS(2)),

transfer the mail stream to host 0 (crMSI(2,0)), and place the client (plMC(0)).

Therefore, initially the RG is extended only to level 3. Construction of the progression

graph using the propositions and operators of the path shown in bold detects a conflict

(the client’s QoS requirements are not satisfied). Therefore, the regression graph is

expanded to level 4, and later to level 5. Corresponding possible subgraphs are shown

in thin solid and dotted lines respectively.

73

placedMC(0)

avMSI(2) avMSI(1)

plVMS(1) crMSI(2,1)plVMS(2)

avMSI(2) avMSI(1)

plMS(2) crMSI(1,2)

plMS(2) plVMS(2) crMSI(2,1)

avMSI(2)

plMS(2)

crMSI(2,0) crMSI(1,0)

avMSI(0)

plMC(0)

Level 3

Level 2

Level 0

Level 1

Level 4

Level 5

Figure 4.3: Regression graph

Progression phase

RG provides a basis for the second phase of the algorithm, the construction of the pro-

gression graph. PG also contains interleaving operator and proposition levels, starting

and ending in a proposition level. In addition, this graph contains information about

mutual exclusion (mutex) relations [62], e.g., that the placement of a component on

a host might exclude placement of another component on the same host (because of

CPU capacity restrictions). Because of the propagation of mutex relations, the PG

is less optimistic than the RG. Figure 4.4 shows the PG corresponding to the RG in

Figure 4.3, which is constructed as described below. Straight lines show relations

between propositions and operators, the dotted arc corresponds to a mutex relation.

• Proposition level 0 contains propositions true in the initial state.

• For each proposition of leveli − 1, a no-op (frame) operator is added to level

74

Level 3

plMC(0)

avMSI(0)

crMSI(2,0) crMSI(1,0)

avMSI(2) avMSI(1)

[avMSI(2)] [avMSI(1)] crMSI(1,2) plVMS(1)

placedMC(0)

crMSI(2,1)

Level 2avMSI(2) avMSI(1)

plVMS(2) [avMSI(2)] crMSI(2,1)

avMSI(2)
plMS(2)

Level 1

Level 5

Level 4

Figure 4.4: Progression graph.

i that has that proposition as its precondition and effect, and consumes no re-

sources (marked with square brackets in the figure). The no-op operators are

necessary to model situations when the given proposition is not affected by any

operator of the current step.

• For each possible operator contained in the corresponding layer of the RG, an

operator node is added to the PG if none of the operator’s preconditions is mutex

at the previous proposition level.

• The union of logical effects of the operators of the leveli forms theith proposi-

tion level of the graph.

• Two operators of the same level are marked as mutex if (i) some of their pre-

conditions are mutex, (ii) one operator changes a resource variable used in an

expression for preconditions or effects of the other operator, or (iii) their total

75

resource consumption exceeds the available value.

• Two propositions of the same level are marked mutex if all operators that can

produce these preconditions are pairwise mutex.

In addition to purely logical structure, construction of the PG takes into account

resource preconditions and effects. For each propositional layer of the PG, anopti-

mistic resource map(ORM) is computed as described in Section 4.2.2. An optimistic

resource map describes possible levels of resources achievable at a given stage of

plan execution in the form ofintervals. ORM may contain false positives, but no false

negatives. Given the assumption about monotonicity of resource functions, this means

that, if an execution of an operator fails in the optimistic resource map for some layer

of the PG, no valid plan can contain that operator at the position corresponding to the

layer. However, success of an operator execution in the optimistic map does not guar-

antee existence of a valid plan containing that operator. Operators whose execution

fails in the optimistic map of the preceding propositional layer, are not added to the

PG.

Because of this resources-based pruning, it is possible that the last level of the PG

does not contain the goal, or some of the goal propositions are mutually exclusive. In

this case, a new level is added to the RG, and the PG is reconstructed.

Plan extraction phase

If the PG contains the goal and the goal is not mutex, then the plan extraction phase

is started. This phase exhaustively searches the PG [8], using a memoization tech-

nique to prevent reexploration of bad sets of propositions in subsequent iterations as

76

described below.

The plan extraction phase performs backward search in the progression graph.

For each level of the PG, the planner constructs a set of propositions of that level to

participate in the plan. For a subset of propositionsPi at level i, a set of operators

Oi of the same level is selected non-deterministically, such that the operators are not

mutually exclusive and the union of effects ofOi includesPi. Pi−1 is the union of

preconditions ofOi. The process is repeated until the initial state (level 0 of the PG)

is reached.

Originally, planning graphs were designed to support only Boolean variables in

the world state [8]. In the Boolean-only setting, when a set of propositionsPi is

considered during the plan extraction, two outcomes of the search fromPi towards

the earlier levels of the PG are possible. If the set is achievable, then a plan including

Pi will be immediately returned by the algorithm. If the set is not achievable, i.e.

Pi is pairwise consistent but contains a mutex of size greater than 2, then the search

backtracks past leveli. In the latter case, the same setPi may be revisited along some

other search path. The idea of the memoization technique is to save (create amemo

for) the setPi as non-achievable so that to avoid repetitive exploration of the portion

of the PG below it.

The plan extracted from the PG shown in Figure 4.4 is marked in bold lines.

Symbolic execution

Optimistic resource maps constructed during the second phase of the algorithm con-

stitute aresource envelopeover all possible plans similar to thelogical enveloperep-

resented by the PG. The plan extraction phase described in the previous section per-

77

forms the search in the PG by propagating backwards sets of propositions. The RIPP

planner [62] adopts a similar mechanism, propagating backwards through an ORM-

like structure (which it callsResource Time Maps) numeric intervals for each of the

resource variables. To make such propagation possible, RIPP requires all numeric

functions to be linear with at most one additional variable.

The functions used to specify the CPP may be non-linear and non-reversible.

Therefore, symbolic execution is the only way to ensure soundness of a solution.

It is implemented in a straightforward way: a copy of the initial state is made, and

then all operators of the plan are applied in sequence, their preconditions evaluated at

the current state, and the state modified according to the effect assignments. Note that

correctness of the logical part of the plan is guaranteed by the previous phases; here,

only resource conditions need to be checked.

4.2.2 Reasoning about resources

The layered structure of the Sekitei 1 algorithm allows it to prune the search space and

thus deal with the scale of the CPP. The other important feature of this problem is that

the world state contains real-valued resource variables and operators have resource

preconditions and effects. This section describes how our algorithm reasons about

resources.

We assume that all resource functions are monotonic (see Section 3.2.1 for the

formal definition). This assumption is true for the applications we are addressing. For

example, if bandwidth of a data stream at the source increases, the bandwidth at the

destination will not decrease, and if a component can be deployed on a host with less

resources, it still can be deployed on that host if more resources become available.

78

Let us now introduce several definitions.

Execution of an operator changes values of resource variables as described by the

operator’s resource effects. LetV = {v1, ..., vn} be the set of all resource variables.

A state is described by a set of name-value pairs for all variables:

S = {(v1, ci), ..., (vn, cn)}, where ∀i ci ∈ R (4.1)

Execution of an operatorop in a state produces a new state where values of some

variables are changed:

exec(op, S) = S ′ (4.2)

A resource mapis a mapping of each variable inV to a minimum and maximum

value.

An optimistic resource map lmap(l) for a given layerl of the planning graph

is defined recursively as follows.lmap(0) maps each variable into its minimum and

maximum value in the initial state. Forl > 0, lmap(l) maps resourcev to the mini-

mum and maximum value ofv over all states that result from applying any operator

of layerl of the progression graph to any state consistent withlmap(l − 1).

According to this definition, to compute a map resulting from execution of an oper-

ator in an optimistic mapmap, we need to execute the operator in a (possibly infinite)

set of states consistent with themap. However, since all resource functions are mono-

tonic, it is sufficient to consider execution of the operator only in the (finitely many)

states, in which every variable is equal to one of the boundaries of the corresponding

interval.1

1In practice, only two evaluations of each function are usually required to produce the image intervals.

79

Let single(map) be a set of all such states for the mapmap:

map = {(v1, cm1, cM1), ..., (vn, cmn, cMn)} (4.3)

single(map) = {{(v1, c1), ..., (vn, cn)}|∀i ci ∈ {cmi, cMi}}

Now the optimistic resource map can be computed as follows.

1. lmap(0) = {(vi, cmi, cMi)|vi ∈ V }, wherecmi and cMi are minimum and

maximum values for resourcevi in the initial state.

2. Letops(l) be the set of operators, including no-ops, of layerl > 0 of the plan-

ning graph. Then

lmap(l) = {(vi, cmi, cMi) | cmi = min c, cMi = max c, (4.4)

(vi, c) ∈ exec(op, S), op ∈ ops(l),

S ∈ single(lmap(l − 1))}

Sekitei uses optimistic resource maps to check numeric preconditions of operators.

This allows to identify some resource conflicts during the progression phase of the

algorithm (as opposed to the symbolic execution phase), which in turn significantly

improves performance of the planner.

4.2.3 Example

To illustrate how Sekitei 1 works, consider the following simple example of the mail

application (Figure 4.5). The network consists of three hosts connected in a chain.

There is an instance of theMailServer running on host 2 able to serve up to 10 re-

quests per second, i.e.,MailServerInterface (MSI) is available on that host with

80

MSI.NumReq=10

0 1 2

MSI.NumReq>7
MSI.ReqSize=10

Link.BW=100 Link.BW=40

MailClient MailServer
Produces:Requires:

Figure 4.5: A simple example of a mail application.

MailServerInterface .NumReq=10. The link between hosts 1 and 2 has low band-

width as shown in the figure. We want to place aMailClient on host 0, and the

client needs to be able to issue 7 requests per second with request size 10. Sup-

pose now that we can place aViewMailServer component on any of the hosts, and

ViewMailServer reduces the number of client requests by a factor of two. There-

fore, a good deployment plan would include two link crossing operations, placing

MailClient on host 0, and placingViewMailServer on host 0 or 1.

Figure 4.6 shows the regression graph for this problem, extended to the level that

contains a solution. Similar to the example described in Section 4.2.1, the first time

the RG contained a possible subgraph is one level earlier. However, the correspond-

ing progression graph has a resource conflict. We illustrate the construction of the

progression graph and the resource envelope using the possible subgraph of the RG

shown in Figure 4.6. This subgraph describes execution sequences involving injecting

an instance ofViewMailServer into the path between the client and the server (one

sequence for each of the three possible locations of theViewMailServer).

Figure 4.7 shows the PG that contains a solution with resource maps built for

each proposition layer. The initial map contains intervals for each resource variable

corresponding to values of those variables in the initial state. The second map is

81

crMSI(1,2)

plVMS(0) crMSI(1,0)

crMSI(0,1) plVMS(1) crMSI(2,1)crMSI(1,0)plVMS(0)

avMSI(0)

crMSI(2,1)plVMS(1)crMSI(0,1)crMSI(1,0)plVMS(0)

avMSI(0) avMSI(1)

plMC(0)

avMSI(1)avMSI(0)

avMSI(1) avMSI(2)

avMSI(2)

avMSI(0)

placedMC(0)

plVMS(2)

Figure 4.6:The regression graph for the problem shown in Figure 4.5. Possible subgraph is

shown in bold font.

a union of maps resulting from execution of each of the three operators of the first

operator layer (crMSI(2,1) , plVMS(2) , and[avMSI(2)]) in the initial resource map.

For example, the number of requests supported byMailServerInterface on host

1 (MSI.NumReq(1)) can be between 0 and 4. The value 0 is obtained ifplVMS(2) or

[avMSI(2)] are executed. The value 4 results from the execution ofcrMSI(2,1) . As

can be seen from the graph, even though the logical precondition of placement of the

Client on host 0 (avMSI(0)) can be achieved in two link crossing operations, at least

three plan steps are required to satisfy its resource preconditionMSI.NumReq(0) >7.

The envelope graph formed by the resource maps achieves pruning based on the

numeric part of the problem specification by identifying situations when the resource

preconditions of operators cannot be satisfied, as illustrated by the above example.

However, the envelope graph is optimistic and can contain values, which are not actu-

ally achievable (false positives). For example, the graph shown in Figure 4.7 reports

that the bandwidth of the link between hosts 0 and 1 can be in the interval[0, 100]. The

82

avMSI(2)

[0, 100]
[0, 40]
[0, 8]
[0, 8]
[10, 20]

[60, 100]
[0, 40]
[0, 4]
[0, 8]
[10, 20]

[100, 100]
[0, 40]
[0, 0]
[0, 4]
[10, 20]

[100, 100]
[40, 40]
[0, 0]
[0, 0]
[10, 10]

[0, 100]
[0, 40]
[0, 8]
[0, 8]
[10, 20]

Link.BW(1,2)
MSI.NumReq(0)
MSI.NumReq(1)
MSI.NumReq(2)

Link.BW(0,1)
Legend

placedMC(0) plMC(0) avMSI(0)

[avMSI(0)]

plVMS(0)

crMSI(1,0)

avMSI(0)

avMSI(1)

crMSI(1,0)

plVMS(1)

[avMSI(1)]

crMSI(2,1)

avMSI(1)

avMSI(2)
plVMS(2)

[avMSI(2)]

crMSI(2,1)

Figure 4.7:The progression graph with per-layer resource maps for the problem shown in

Figure 4.5.[avMSI(2)] is a no-op operator for propositionavMSI(2) .

only way to achieve value 0 is to execute bothcrMSI(1,0) operators, which is not

allowed on any path encoded in the PG. The value 0 appears in the graph only because

the resource maps produced by execution of operators of each level are unioned, and

therefore the dependency information encoded in the PG is lost.

One way to decrease the number of such false positives and thus increase the prun-

ing power of the envelope graph is to propagate the resource maps at finer granularity,

e.g., per each path as opposed to for the whole graph. However, this would make the

envelope graph prohibitively expensive to compute. We will discuss the problem of

choosing an appropriate granularity of envelope graphs in Chapter 5.

4.3 Evaluation

In this section we present experimental results illustrating performance of the Sekitei

1 algorithm. First, we illustrate scalability of the algorithm with respect to the prob-

lem size. Second, we show how Sekitei can take advantage of existing component

deployments. The measurements reported in this section were taken on a 700MHz

Pentium III machine running Windows 2000 and the 1.3.1 Java HotSpot(TM) Client

83

VM using a Java implementation of the Sekitei algorithm.

To model different wide-area network topologies, we used the GT-ITM tool [16,

101] to generate eight different networksNk (for different k ∈ {22, 33, . . . , 99}

hosts). Each topology simulates a WAN formed by high speed and secure stubs

(LANs) connected by slow and insecure links. The initial topology configuration

files (.alt) were augmented with link and host properties using the Network EDitor

tool [59]. The numeric values were chosen so as to make direct connection between

stubs infeasible (see Appendix A.2 for an example).

The performance of the planner was evaluated using applications described in Sec-

tions 2.3.1 and 2.3.2. The goal in both applications is to deploy the client components

on specific hosts. The “best” deployment is defined as the one with the fewest number

of components.

4.3.1 Planning under various conditions

The purpose of the first experiment is to show that the planner finds a valid compo-

nent deployment plan even in hard cases, and usually does so in a small amount of

time. The experiment, involving the mail service application, is conducted as follows.

For each network topologyNk, wherek ∈ 22, 33, ..., 99, and for each hostn in the

networkNk, the goal is to deploy aMailClient component on the hostn given that

theMailServer is running on some host. The algorithm indeed finds a solution when

it exists.

The data points in Figure 4.8 represent the time needed to find a valid plan for each

of the different networks, and correspond to the following cases. When the client and

the server are located in the same stub, the algorithm essentially finds the shortest

84

path between two hosts, which takes a very short time.2 Placement of a client in a

different stub requires inserting additional components into the path, and therefore

takes longer.

0

5

10

15

20

25

30

Network size

P
la

nn
in

g
tim

e
(s

)

22 99887766554433

Figure 4.8: Planning under various conditions.

4.3.2 Scalability with respect to network size

To see how the performance of the algorithm is affected by the size of the network,

we ran the following experiment. Taking theN99 network topology (Figure 4.9) as

our reference and starting with a small network with only two stubs, we added one

stub at a time until the original 9-stub configuration was achieved. For each of the

obtained networks we ran the planner with the goal of placingMailClient on a fixed

host. Figure 4.10 shows the planning time as a function of the network size.

As shown in the figure, the running time of the planner increases very little with

the size of the network. Moreover, the graph tends to flatten. Such behavior can be

explained by the fact that the regression phase of the algorithm considers only hosts
2The algorithm does not distinguish any special cases. “The shortest path” is only a characterization of the

result.

85

server

client

1

2

3

4

5

6

7

8

9

Figure 4.9: 9-stub networkN99

reachable in the number of steps bounded by the length of the final plan. Even this set

is further pruned at the progression stage. These results show that our algorithm is ca-

pable of identifying the part of the network relevant to the solution, without additional

preprocessing.

0

0.5

1

1.5

2

2.5

20 28 44 54 64 72 79 93
Network size

Pl
an

ni
ng

 ti
m

e
(s

)

Figure 4.10: Scalability of Sekitei 1 w.r.t. network size for the mail application.

86

4.3.3 Scalability with respect to irrelevant components

To analyze the scalability of the planner when the application framework consists

of a large number of components, we classify components into three categories: (i)

absolutely useless components that can never be used in any configuration of the ap-

plication; (ii) components useless given availability of interfaces in the network, and

(iii) useful components, i.e., those that implement an interface relevant for achieving

the goal and whose required interfaces are either already present or can be provided

by other useful components.

Figure 4.11 shows the effect of irrelevant components in the problem specification

on the planning time. The two plots correspond to two situations: the mail service

application augmented first with ten absolutely useless components, and then with ten

components that implement (produce) interfaces meaningful to the application, but

require (consume) interfaces that cannot be provided. The absolutely useless com-

ponents are rejected by the regression phase of the algorithm and do not affect its

performance at all.3 Components whose implemented interfaces are useful, but re-

quired interfaces cannot be provided can be pruned out only during the second phase,

which also takes into account the initial state of the network (the required interfaces

might be available somewhere from the very beginning). The running time increases

as a result of processing these components in the first phase (polynomial in the number

of components).

Scalability with respect to relevant components is discussed in Section 5.4.
3Slight fluctuations are a result of artifacts such as garbage collection.

87

0

1

2

R
a
ti

o
 t

o
 t

h
e
 b

a
s
e
 c

a
s
e

Absolutely useless components

Components with unavailable required interfaces

Figure 4.11: Scalability of Sekitei 1 w.r.t. increasing number of irrelevant components.

4.3.4 Reusability of existing deployments.

In practical scenarios, by the time a new client requests a service, the network may

already contain some of the required components. To see how the planning time is

affected by reuse of existing deployments, we ran the following experiment. Starting

with the webcast application and theN99 topology where theServer was present on a

fixed host, we analyzed the planning costs for the goal of putting theClient on each

of the network hosts in turn. The X-axis in Figure 4.12 represents the order in which

the hosts were chosen. The network state is saved between the runs, so that clients

can join existing paths. We assume that clients are using exactly the same data stream,

and there is no overhead for adding a new client to a server.

As expected, it is very cheap to add a new client to a stub that already has a client of

the same type deployed (this corresponds to the majority of the points in Figure 4.12),

because most of the path can be reused. The problem in this case is effectively reduced

to finding the closest host where the required interfaces are available.

88

0

0.5

1

1.5

2

2.5

3 53 12 64 21 73 30 81 47 8 58 17
Host index

Pl
an

ni
ng

 ti
m

e
(s

)

Figure 4.12: Reuse of existing deployments.

4.4 Summary

In this chapter we described the techniques used in the Sekitei planner to cope with

the large specifications of the initial state of the world, when not all of the information

is necessary to construct a good plan.

Sekitei uses combined regression-progression search (T2) to identify relevant por-

tions of the problem specification in the presence of non-reversible functions. The

regression part uses only the (easily reversible) logical part of operator specifications,

and ensures that the search focuses only on the relevant operators and variables. The

progression part is used to construct envelopes that may use non-reversible functions.

Envelopes can detect some resource conflicts and thus achieve additional pruning of

the search space.

During construction of the graphs using the regression-progression technique, the

planner queries the on-demand compiler module for necessary information. Only

some parts of the problem specification are obtained from the external services and

89

compiled into planning operators. This way, the on-demand compilation technique

(T1) allows the planner to work with large scale open worlds.

Several planners [29, 42] can explicitly plan for obtaining necessary information

about the world state. However, we are not aware of a planning algorithm capable

of acquiringoperatorsduring search. Bacchus and Teh [4] investigate the dynamic

relevance of operators. However, their planner uses a greedy approach based only on

the logical part of operator specifications.

As we showed in Section 4.3, Sekitei 1 scales well with the size of the network

and the number of component types not used in the application configuration. The

on-demand compilation and regression-progression search techniques (T1 and T2)

allow the planner to simply ignore such irrelevant information based on logical part of

operator specifications. However, these techniques alone are insufficient for dealing

with complex numeric interactions between operators. We address this issue in the

next chapter.

90

Chapter 5

Dealing with complex resource

functions

In Chapter 4 we described the Sekitei 1 algorithm and the techniques it uses to prune

irrelevant information in large-scale open worlds. However, as we discuss in Sec-

tion 5.1, such logic-driven pruning is insufficient to achieve good performance of the

algorithm on the CPP. In Section 5.2 we introduce techniques that permit Sekitei to

perform efficient pruning of the search space based on the numeric part of the search

specification. We then present Sekitei 2 — the extension of the Sekitei 1 algorithm

with these technique — and evaluate its performance.

5.1 Ramifications of numeric interactions between operators

One of the main features of the CPP that distinguishes it from traditional AI planning

problems with metric resources is the numeric character of dependencies between

91

the operators. Considering only logical constraints, most of the component place-

ment problems have a simple solution. For example, in stream delivering applications

such as webcast (Section 2.3.2) the client can often be directly connected to the server

along the shortest path through the network. Configurations involving additional com-

ponents, such as compression and encryption, are necessary only due to resource and

QoS constraints.

The first version of the Sekitei algorithm described in the previous chapter builds

an optimistic resource envelope for the whole planning graph, but does not propagate

intervals backwards during the plan extraction phase because of non-reversibility of

resource functions. The resource conditions are checked only when the plan extraction

phase completes plan construction, i.e. during the symbolic execution phase.

The envelope allows the planner to identify some resource conflicts, which helps

to significantly improve performance of the planner. However, for applications with

more complex structure (e.g., DAGs as opposed to chains), a single envelope for the

whole search space is not enough to identify resource conflicts between different

branches of the application. For example, non-trivial configurations of the webcast

application require transferring two data streams over the network. Data transfers and

components processing these streams may compete for the same network resources.

In such cases, if a single envelope is used, many resource conflicts are detected very

late. If the operator that fails during the symbolic execution is close to the end of the

plan, then the same plan prefixes are evaluated many times, which leads to a worst

case exponential time spent in the third phase of the algorithm before the conflict can

be detected.

92

5.2 Techniques

This section introduces techniques used in Sekitei 2 in addition to the techniques

used in Sekitei 1. We start by providing intuition for how additional envelopes can

improve the pruning power of the planning algorithm. Then, we describe construction

of bounded envelopes(T3). Finally, we combine these ideas to constructenvelope

hierarchies(T4), which help to increase the pruning power of the algorithm while

incurring a small computational overhead.

5.2.1 Adding a new envelope

In the previous chapter we described Sekitei 1 as consisting of four phases. Sekitei 1’s

algorithm can also be viewed as a hierarchy of two levels of the regression-progression

search. The first level of the hierarchy, which consists of the regression and progres-

sion phases, builds an envelope graph by aggregating information for all executable

sequences of operators. The second level, consisting of the plan extraction and sym-

bolic execution phases, also uses the regression-progression search technique, but

considers each executable sequence separately. This second level of the hierarchy

essentially performs exhaustive search in the progression graph.

Sekitei 1 uses a memoization technique [8] to avoid reexploration of sets of propo-

sitions not achievable together. In the presence of numeric state variables, the same

set of propositions can be revisited even if it was successfully achieved, because the

failure of numeric constraints can be detected later (closer to the goal). For this rea-

son, Sekitei 1 does not scale well with the number of additional components in the

plan (see Section 5.4).

93

One solution to the late resource conflict detection problem is to save intermedi-

ate results. Similar to the (negative) memoization used in GraphPlan-based planning

algorithms [8], we usepositive memoizationto save good sets of propositionsalong

with corresponding resource maps.

Similar to the optimistic resource map for the whole layer, we define an optimistic

resource mapsmap(q, l) for a subset of propositionsq at layerl of a planning graph:

1. smap(q, 0) = lmap(0) for all q.

2. Letops(q, l) be a set of smallest subsets of operators, including no-ops, at layer

l that together achieveq.

Let precs(o, l) be a set of preconditions (propositions at levell− 1) of the set of

operatorso at levell.

Then the optimistic resource mapsmap(q, l) for l > 0 is defined as follows:

smap(q, l) = {(vi, cmi, cMi) | cmi = min c, cMi = max c, (5.1)

(vi, c) ∈ exec(op, S), op ∈ O, O ∈ ops(q, l),

S ∈ single(smap(precs(O, l), l − 1))}

In words, each subset of operators achievingq is executed in the optimistic

resource map for the union of preconditions of these operators, and then the

map forq is computed as a union of the resulting maps.

After the optimistic map is computed for the goal state, the plan extraction phase

proceeds as usual, except every time a subset of operatorso is chosen at some levell,

the plan tail includingo is replayed (symbolically executed) in the optimistic map of

94

o’s preconditionssmap(precs(o, l), l − 1). This helps to identify resource conflicts

close to the goal early, and greatly improves planning time.

For example, consider the second layer of the PG shown in Figure 4.7. This layer

contains three operators,crMSI(1,0) , plVMS(1) , and [avMSI(1)] , which have the

same logical preconditionavMSI(1). avMSI(1)is logically achievable. However, two

of the operators lead to a resource conflict. Therefore, without the positive memo-

ization, the planner will try to achieve propositionavMSI(1)up to three times. Using

the positive memoization technique, an optimistic resource map for the singleton set

containing this proposition is computed only once, and then reused when the other

two operators are considered by the plan extraction procedure.

The memoized good sets and their resource maps form thesecond envelope graph.

Note that this new envelope graph hasfiner granularity than the first graph. The

envelope at the first level of hierarchy is constructed for the whole progression graph,

while the new envelope is constructed per set of propositions.

Adding positive memoization to Sekitei 1 results in orders of magnitude speedup

on some instances of the webcast problem and a small increase of running time on

simple problems (see Section 5.4 for results). Note that the use of positive memoiza-

tion does not put any additional restrictions on the form of resource functions. Un-

fortunately, positive memoization has high memory requirements. Having resource

maps for all sets of propositions (essentially, most of the subsets of sets of proposi-

tions for each layer of the planning graph) leads to a worst case exponential memory

explosion.

This tradeoff between the pruning power of an envelope graph and the computa-

tional cost of constructing it is the main obstacle in using envelope-based pruning. In

95

Section 5.2.3 we will show how to resolve this trade-off.

5.2.2 Bounded envelope graphs

The envelope graphs of Sekitei are constructed from the goal using the regression-

progression technique (T2). The envelopes grow as more information becomes nec-

essary during the search.

In Sekitei, the purpose of the envelope graphs is to prune the search space and

to producelower bound estimatesof costs of achieving intermediate goals, such as

propositions or sets of propositions.

Note that the bounds produced by an envelope are used only to choose between

options during the search. Therefore, the exact values of the lower bounds are irrele-

vant, and the expansion of the graph needs to be performed only until the values are

accurate enough to make the correct choice (T3). In the next section we describe how

Sekitei 2 computes bounds for envelope expansion.

5.2.3 Hierarchy of envelopes

In Section 5.2.1 we described a two-level hierarchy of envelopes based on the positive

memoization technique. However, positive memoization has high memory (and com-

putational) overhead. Sekitei 2 addresses this issue using ahierarchy of bounded en-

velope graphs(T4) to combine the high pruning power of fine-granularity envelopes

with the low computational overhead of coarse-granularity envelopes.

The communication between the levels of the hierarchy is bidirectional. The

coarse envelopes perform some pruning of the search space and provide finer en-

velopes with the sets of relevant propositions and operators (compare to the pruning

96

Coarser envelope

Bounds for graph
expansion

Relevant operators

Finer envelope

Fine envelope

Coarse envelope

Lower bound estimates

and propositions

Figure 5.1: Envelope hierarchy

achieved by the RG and PG for the plan extraction and symbolic execution phases of

Sekitei 1). The lower bounds on costs of achieving intermediate goals (e.g., propo-

sitions or sets of propositions) are used to choose between options during expansion

of finer envelopes. In the opposite direction, the fine envelopes provide the coarser

envelopes with the bounds for graph expansion (Figure 5.1). Sekitei 2’s algorithm

described in Section 5.3 uses a three-level hierarchy.

5.2.4 Other modifications of the algorithm

When replacing the per-layer graphs of Sekitei 1 with an envelope hierarchy of Sekitei

2, several points are worth mentioning.

First, in the presence of arbitrary resource functions, mutex relations based on re-

source interference between operators do not provide sufficient pruning, and therefore

can be omitted. Note that, since the CPP does not have negative logical preconditions

or effects (component placement does not require or result in theabsenceof an inter-

face on a host), resource interference is the only source of mutex relations.

97

Second, recall that the purpose of the PG in the Sekitei 1 algorithm is to compute

mutex relations and to provide basis for computation of the memoization table. With-

out mutex relations, there is no need to explicitly store the PG. All information con-

tained in the PG can be merged into the RG. Such a combined regression-progression

graph constitutes a single envelope graph.

Finally, the regression part of the envelope construction algorithm uses only posi-

tive logical values. Negations in preconditions and effects are not supported by Sekitei

2. However, this restriction does not limit the expressive power of the algorithm, be-

cause logical expressions involving negations can be represented as numeric functions

(see Section 3.3).

5.3 Algorithm

Sekitei 2 uses a hierarchy of three envelope graphs. The first graph computes the

cheapest way to achieve a single proposition based only on the logical part of the

specification of operators. The second graph takes into account optimistic resource

maps and sets of propositions. Finally, the last and the most computationally expen-

sive graph works with plan tails similar to the plan extraction phase of Sekitei 1.

5.3.1 First level graph

The first graph of the hierarchy used in Sekitei 2 (RPG1, forregression-progression

graph), is a simplified version of the regression graph of Sekitei 1. RPG1 uses more

aggregation than the original RG, and therefore is even cheaper to compute.

Each of the graph nodes maintains a lower bound of the cost of achieving that node

98

from the initial state. The cost of each proposition is taken as the minimum cost of all

operators that can logically achieve it. The cost of an operator is taken as the cost of

its most expensive precondition plus the lower bound on the operator cost. Sekitei 2

assumes integer costs.

RPG1, as all graphs in Sekitei, is expanded using the regression-progression tech-

nique (T2). During the graph expansion, the cost of a leaf, i.e., a not yet expanded

node, is 0.1 After each node expansion, the updated (increased) cost estimates are

propagated forward.

To start with, the graph is expanded until the initial state is reached. Further ex-

pansion of the graph may be required when the second level envelope graph extends

the bound.

5.3.2 Second level graph

The second-level graph of Sekitei 2 (RPG2) contains three types of nodes: AND nodes

correspond to operators, OR nodes to propositions, and aggregate nodes to collections

of propositions. Each of the nodes maintains acostof reaching the current node from

the initial state. In the case of unit costs of operators, this node cost corresponds to

the layer number of the PG of Sekitei 1.

A node is considereddeadif it cannot be achieved in the given number of steps (its

operator/proposition does not belong to the corresponding layer of the PG). Otherwise

the node is considered alive and has an optimistic resource map associated with it.

A goal node is a special kind of an AND node with all goal propositions being its

preconditions.
1See Section 6.4.4 for a better lower bound estimate.

99

The nodes of the RPG2 are expanded as follows. An OR (proposition) node with

costn > 0 has a child AND node with costn for each operator that can achieve

this proposition. An OR node with cost0 is achieved by a special INIT node if the

proposition is true in the initial state. The map of such a node is equal to the initial

map. An OR node is dead if all of its children are dead. Otherwise the map of the

node is computed as a union of the maps of its alive children.

An AND node with costn and a set of preconditionsS is expanded as follows. A

set of all aggregate nodes is created such that

• An aggregate node has|S| child nodes, one for each of the propositions inS.

• The cost of each proposition node is betweenn − 1 and minimum cost of that

proposition obtained from RPG1.

• At least one of the children of an aggregate node has costn− 1.

• An aggregate node is dead if at least one of its children is dead. Otherwise the

map of the node is computed as a union of maps of its children.

An AND node is dead if all of its children are dead, or if the operator fails in the map

computed as a union of maps of the node’s alive children. The map resulting from a

successful execution is taken as a map of the AND node.

5.3.3 Third level graph

Since resource maps are unioned at various points during construction of the RPG2,

the graph is optimistic. This means that even if the goal node is not dead, the cor-

responding graph may not contain a solution. To extract a solution (or prove its ab-

100

sence), a search is performed in the regression graph. The basic idea is similar to that

of the plan extraction step of Sekitei 1 with positive memoization. A totally ordered

plan tail is grown starting from the goal state. After selection of a new operator, the

plan tail is replayed in the corresponding resource map. The following describes plan

construction for a given aggregate node of the goal node.

1. Create a Queue, and initialize it with OR nodes of the aggregate node.

2. Create an empty plan tail.

3. Select the most expensive OR nodeOrN from the Queue. If the cost is 0, return

the plan tail.

4. Nondeterministically choose an AND nodeAndN from among the children of

OrN . Add the corresponding operator to the plan tail.

5. Nondeterministically select an aggregate nodeAgN of AndN .

6. Compute a working resource map as a union of the maps of OrR nodes from the

queue and the map ofAgN .

7. Execute the plan tail in the working map. If the execution fails, backtrack.

8. Add children ofAgN to the Queue.

9. Go to step 3.

Initially, each of the envelope graphs is expanded until it reaches the initial state.

The coarser is an envelope, the more optimistic it is. Therefore, coarse envelopes

reach the initial state relatively fast, which limits their expansion. The finer, less

101

MSI.NumReq=10

0 1 2

MSI.NumReq>7
MSI.ReqSize=10

Link.BW=100 Link.BW=40

MailClient MailServer
Produces:Requires:

Figure 5.2: A simple example of a mail application.

optimistic envelopes can detect conflicts that coarser envelopes missed. For example,

the third level envelope can detect failure during the plan tail execution (step 7) even

though it uses the conflict-free second level envelope.

Every time a failure is detected during construction of an envelope graph, a new,

more expansive node is fetched from the graph’s queue. At this moment, the new

expansion bounds are imposed on the next coarser envelope in the hierarchy to ensure

correct ordering of the nodes resulting from expansion of the newly fetched node.

5.3.4 Example

Figure 5.2 repeats the example problem from Section 4.2.3. As earlier, the goal is to

deliver a mail stream with high supported request rate over a link with low bandwidth.

Analysis of numeric restrictions shows that the direct connection does not satisfy

client requirement, but a configuration involving a caching component on host 1 does.

Figure 5.3 shows the first-level graph for this problem expanded so as to include

operators for placing the caching component (plVMS(0) , plVMS(1) , plVMS(2)). The

arrows go from preconditions to operators and from operators to their effects.

Figure 5.4 shows the second level graph for the same problem. In this example all

operators have exactly one precondition. Therefore, all AND nodes have exactly one

102

initial state

plMC(0)=3plVMS(0)=3

avMSI(0)=2

crMSI(1,0)=2 crMSI(1,0)=2plVMS(1)=2crMSI(1,2)=2

crMSI(2,1)=1plVMS(2)=1

avMSI(2)=0

placedMC(0)=3

avMSI(1)=1

Figure 5.3: RPG1 of Sekitei 2.

2
avMSI(1)2

avMSI(0)2

crMSI(2,1)2

avMSI(1)1

avMSI(2)1 plVMS(2)1

crMSI(2,1)1

plMC(0) 3

plVMS(0)3

crMSI(1,0)3

avMSI(0)3

placedMC(0)3

plMC(0) 4placedMC(0)4AndGoal4

AndGoal3

avMSI(2)0

[100, 100]
[40, 40]
[0, 0]
[0, 0]
[10, 10]

[100, 100]
[0, 0]
[0, 0]
[4, 4]
[10, 10]

[100, 100]
[40, 40]
[0, 0]
[0, 0]
[20, 20]

Link.BW(1,2)
MSI.NumReq(0)
MSI.NumReq(1)
MSI.NumReq(2)

Link.BW(0,1)
Legend

[20, 60]
[0, 40]
[4, 8]
[4, 8]
[10, 20]

[100, 100]
[0, 40]
[0, 0]
[4, 8]
[10, 20]

[60, 60]
[0, 0]
[4, 4]
[4, 4]
[10, 10]

crMSI(1,0)

GOAL

2

plVMS(1)

Figure 5.4:RPG2 of Sekitei 2. The shaded boxes show the nodes of the graph that are declared

dead during the progression phase of the graph construction.

aggregate node, which are not shown in the figure. Proposition nodes are shown in

italics, operator nodes in normal font. Subscripts correspond to the cost of a node. The

execution of operator plMC(0) fails in the resource map foravMSI(0)2. Therefore

nodesplMC(0)3, placedMC(0)3, andAndGOAL3 are marked dead.

RPG2 takes unions of resource maps for preconditions of operators, and thus is

optimistic. The third-level graph (Figure 5.5) considers sequential plan tails and does

not perform such aggregation. This way RPG3 guarantees correctness of the solution.

103

GOAL {placedMC(0)} plMC(0) {avMSI(0)}

plVMS(0) {avMSI(0)} crMSI(1,0) {avMSI(1)} crMSI(2,1) {avMSI(2)} INIT

crMSI(1,0) {avMSI(1)} plVMS(1) {avMSI(1)} crMSI(2,1) {avMSI(2)} INIT

crMSI(2,1)

Figure 5.5:RPG3 of Sekitei 2 does not perform aggregation, which allows it to detect con-

flicts missed by RPG2. The shaded box marks a node where one such conflict

is detected. The bold box marks an alternative solution. In this example both

solutions have the same cost, and either one can be found by the planner.

5.4 Evaluation

In this section we evaluate the effect of the hierarchy of bounded envelopes (tech-

niquesT3 andT4) on the performance of the planner. We use Java implementations

of Sekitei 1, Sekitei 1 with positive memoization (a two-level envelope hierarchy),

and Sekitei 2 (a three-level envelope hierarchy). All measurements are taken on a

700MHz Pentium III running Windows 2000 with up to 200MB of memory available

for the Java VM.

5.4.1 Experimental setup

In the experiments described below we used the webcast application from Section 2.3.2.

Appendix C provides the specifications of components, including the functions de-

scribing preconditions and effects.

The client requires the incoming data stream to have bandwidth greater than 80

units and to have low resolution. Depending on the resolution of the stream produced

by the server and the available bandwidth between the server and the client, differ-

ent sets of additional components may be required to satisfy client’s preconditions.

104

Logically, all components may be used. To choose the best configuration, the planner

needs to efficiently reason about the numeric conditions.

To evaluate the effect of relevant components with numeric dependencies on the

performance of the planner, we used theN99 network and four different scenarios

described below.

Cfg 1. In the first case the transit links have high bandwidth (100 units), and the

server produces a low resolution stream. In this situation, theClient can be

directly connected to theServer .

Cfg 2. In the second case, the server produces the stream with high resolution.

Therefore, the planner decides to insertSplitter , Merger , andFilter compo-

nents into the data path.

Cfg 3. In the third case the bandwidth of transit links is low (70 units), but the server

produces the stream of the required resolution. To satisfy client’s requirements

the text portion of the stream needs to be compressed. The planner decides to

addSplitter , Merger , Zip , andUnzip components into the data path.

Cfg 4. Finally, in the fourth configuration, the links have low bandwidth (70 units)

and the server produces a high-resolution stream, so that five additional com-

ponents are required to satisfy client’s requirements:Splitter , Merger , Zip ,

Unzip , andFilter .

LAN hosts have 10 units of available CPU. This limits the number of compo-

nents that can be placed together on the same host, increasing the number of resource

conflicts encountered during the search and thus making the problem even harder.

105

5.4.2 Planning time

Figure 5.6 shows the performance of Sekitei 1 (without optimizations) for an increas-

ing number of useful components.

In this experiment, the webcast client is placed in turn on each of the nodes of the

N99 network given a fixed location of the server. The graph shows average planning

time per client per stub. The four bars correspond to four different network conditions

and application configurations. Note that the Y-axis is shown using log scale.

The choice of whether a useful component is actually used in the final plan is made

during the third phase of the algorithm, which in the worst case takes time exponential

in the length of the plan. Larger numbers of useful components increase the branching

factor of the PG, and therefore the base of the exponent. This means that in hard cases

(very strict resource constraints, multiple component types implementing the same

interface, highly connected networks) the planning process can take a long time.

Figure 5.7 shows the planning time for the same experiment presented above for

the planner with the positive memoization technique discussed in Section 5.2.1. The

modified version of the planner takes about the same time on simple problems (Cfg

1), and scales much better on harder instances. Figure 5.8 shows the additional im-

provements of Sekitei 2. These results demonstrate that a hierarchy of envelopes (T4)

provides orders of magnitude performance improvement on problems involving tight

resource constraints.

106

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9
Stub index

Pl
an

ni
ng

 ti
m

e
(s

)

Cfg1
Cfg2
Cfg3
Cfg4

Figure 5.6:Scalability of the original Sekitei 1 algorithm w.r.t. increasing number of relevant

components. The highest peaks correspond to about 15 minutes.

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9
Stub index

Pl
an

ni
ng

 ti
m

e
(s

)

Cfg1
Cfg2
Cfg3
Cfg4

Figure 5.7:Scalability of Sekitei 1 with positive memoization w.r.t. increasing number of

relevant components. The highest peaks correspond to about 10 seconds.

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9
Stub index

Pl
an

ni
ng

 ti
m

e
(s

)

Cfg1
Cfg2
Cfg3
Cfg4

Figure 5.8:Scalability of Sekitei 2 w.r.t. increasing number of relevant components. The

highest peaks correspond to about 2.3 seconds.

107

1

10

100

1000

10000

100000

1000000

Cfg 1 Cfg 2 Cfg 3 Cfg 4

N
um

be
r o

f c
on

st
an

ts

Sekitei 1
Positive Memoization
Sekitei 2

Figure 5.9:The average number of generated constants on four configuration of the webcast

application.

5.4.3 Memory consumption

The main source of memory consumption in all versions of Sekitei is the values of

resource intervals stored in resource maps. To evaluate the memory behavior of the

algorithm, we recorded the maximum number of such intervals present in memory at

any given moment during planning. Although this number is affected by the garbage

collection behavior of a Java VM, it is a reasonable estimate of the memory consump-

tion of the algorithm.

Figure 5.9 shows (on log scale) the average number of constants generated by the

three versions of Sekitei on four configurations of the webcast application discussed

above. Sekitei 2 scales much better with respect to memory consumption as compared

to the positive memoization version of Sekitei 1. In fact, memory consumption of

Sekitei 2 is comparable to that of the original version of the algorithm.

We also tested the scalability of Sekitei 2 with respect to irrelevant operators. The

behavior of the planner is similar to that reported in Section 4.3, and we do not present

108

the detailed results here.

5.5 Summary

In this chapter we showed how a hierarchy of bounded envelopes (T3 andT4) helps

Sekitei to cope with numeric dependencies between operators.

The idea of an envelope as a cheap data structure to identify conflicts has been

used before in the context of planning and scheduling [73, 67, 62]. GRT-R [83] uses

a finer granularity map to achieve better pruning by saving more intermediate re-

sults in memory. TP4 [46] propagates achievable resource values for constant effects

in a regression-based planner. The technique of using a hierarchy of bounded en-

velopes allows our planner to support more expressive functions than those of TP4

while avoiding the memory explosion problem of GRT-R.

The techniques described in this and the previous chapters allow the Sekitei plan-

ner to efficiently prune large search spaces and cope with complex interactions be-

tween operators. However, Sekitei 2 still uses greedy propagation of numeric values

and assumes unit action cost. In the next chapter we address these issues.

109

Chapter 6

Optimizing resource consumption

The two versions of Sekitei described so far minimize the number of steps in the plan

and employ a greedy strategy for resource assignment.

In this chapter we provide examples that illustrate shortcomings of this approach,

and introduce two techniques (T5 andT6) to address them. We also present Sekitei

3 — the version of the algorithm that uses techniquesT1–T6 to address all three

challenges listed in Section 3.4.

6.1 Limitations of the greedy approach

Because of the non-reversibility of resource functions, the numeric part of the enve-

lope graphs can be propagated only in the forward direction. This forces the planner to

adopt a greedy approach with respect to resource allocation: as much data as possible

is processed and pushed through the network, incurring high resource requirements.

Because of this greediness, the versions of the planner described so far guarantee

110

lbw(n0, n1) = 70
n0n1

Goal:
ibw(M, n1)>=90

ibw(M, n0) = 200
cpu(n0) = 30

Figure 6.1: Resource optimization is required to find a plan.

feasibility of a solution, but cannot minimize resource consumption. Although it is

possible to add a post-processing step to achieve this latter goal, this is not enough as

the following examples demonstrate:

Scenario 1. Consider the example in Figure 6.1, where we want to deliver at least 90

units of bandwidth of the M stream (the requirement of the client component) over

the link with bandwidth 70. The source node has 200 units of M available, but only

30 units of CPU. Suppose, transformation of 200 units of M by the splitter requires 40

units of CPU. Sending the M stream directly to the client does not satisfy the client’s

bandwidth requirements, and the amount of CPU available on noden0 is less than that

required for processing all available bandwidth of the M stream, as would be required

by the greedy approach. Consequently, a greedy planner will not find a solution to

this CPP even though one exists. If we allow the splitter to transform only 90 units

of bandwidth of the available M stream (the amount required by the client), then the

total CPU requirements of the Splitter and Zip components may be less than 30 units,

and the solution shown on Figure 6.2 can be found, which involves splitting the M

stream and compressing its text component on noden0 and performing the reverse

transformations on noden1 .1

1We assume that the target node has sufficient CPU resources for the Unzip and Merger components.

111

place Splitter on node n0,
place Zip on node n0,
cross with Z stream from n0 to n1,
cross with I stream from n0 to n1,
place Unzip on node n1,
place Merger on node n1.

Figure 6.2: Plan for the problem presented in Figure 6.1.

Have

TTT

TZ

Zp

Un

lbw=100
lbw=100

lbw=100

lbw=100

lbw=50

lbw=100
lbw=100

lbw=100

lbw=100

lbw=50

Goal

Goal
ibw(T)=100

ibw(T)=100

ibw(T)>90

ibw(T)>90
Have

Figure 6.3: Effect of cost functions on the choice of plan.

Scenario 2. Another desirable feature not provided by the greedy model is the ability

to specify preferences over the space of generated plans. For example, consider the

problem shown in Figure 6.3. Here the goal is to deliver a text stream from the server

to the client, which requires the incoming stream to have bandwidth greater than 90

units. In this scenario, there are two possible application configurations: one involving

a crossing of three links, and another that would require two link crossings and the use

of Zip and Unzip components. Which plan would perform better in a given situation

depends on the relative cost of link bandwidth and host resources. Such tradeoffs can

be performed by introducing a cost function that depends on resource consumption,

which an ideal planner can then optimize. Note that, in general, the cheapest plan is

not necessarily the one with the smallest number of steps.

112

6.2 Techniques

The scenarios described in the previous section illustrate two shortcomings of Sekitei

2: inability to optimize resource consumption or other user-supplied cost and perfor-

mance metrics, and inability to find plans in resource-constrained situations.

The reason for the former is that the version of the algorithm presented so far as-

sumes unit operator cost. Making the operator cost a function of consumed resources

allows the planner to reason about relative quality of different solutions. However,

just introducing such cost functions does not address the problems above.

The reason for the inability of Sekitei 2 to optimize resource consumption in an

application configuration is the non-reversible nature of the resource functions, which

forces the planner to adopt a greedy approach. The simplest way to address this

issue is to assume reversibility of functions, in which case the required values of

resources can be propagated during the regression phase [62]. However, this is at

odds with what one finds in practice. Functions describing component behavior are

often represented by tables obtained by application profiling. It is not always possible

to derive an analytical representation of such functions, and even less reasonable to

assume reversibility of such functions. Consequently, we adopt a different approach,

which approximates optimality while still being practically usable.

In this section we introduce two techniques that embody the above observations.

First, we extend the action specification with a cost function depending on the values

of numeric state variables (T5), which in the case of the CPP describe consumed re-

sources and parameters of incoming data streams. Second, we add discrete parameters

corresponding to intervals of values of real-valued resources (T6). Sekitei 3 incorpo-

113

(:action plZip
:parameters (?n - host)
:precondition (>= (cpu ?n) (/ (ibw T ?n) 10))
:effect (and (placed Zip ?n)

(assign (ibw Z ?n) (/ (ibw T ?n) 2))
(decrease (cpu ?n) (/ (ibw T ?n) 10)))

:cost (+ 1 (/ (ibw T ?n) 10))
)

Figure 6.4: plZip operator before leveling. The extension to PDDL is shown in bold font.

rates these extensions into the algorithm based on a hierarchy of bounded envelopes

described in the previous chapter.

6.2.1 Cost functions

Most of the classical planning algorithms minimize the length of the plan. In the CPP

(and the ACP in general), the shortest plan is not always the best. It is desirable to

be able to express relative costs of different resources and find a configuration that

minimizes the total resource consumption of the application.

To achieve this goal, we extend specification of operators with cost functions that

use numeric state variables. Such functions can be attached to component types

(for deployment actions) and interface types (for data transfer actions), or directly

to PDDL operators. Figure 6.4 gives an example of a PDDL-style operator with a

cost function. This operator describes placing of a Zip component on a host. The

component requires that the host has sufficient CPU to process the incoming stream.

The bandwidth of the produced compressed stream is half of that of the consumed

text stream.

As defined in Section 3.2.2, every action of the ACP has a cost described by a

114

function of the consumed resources and the properties of the data being processed.

This action cost function is directly mapped onto the cost of the corresponding plan-

ning operator. The total cost of an application configuration is a function of costs of

individual actions constituting it. The cost functions can describe the overhead of the

initial deployment of the application, the run-time cost of the configuration (e.g., the

total amount of resources required to sustain a data stream), or a combination of both.

For the cost functions of operators to be used with Sekitei’s resource envelope

technique, they need to be monotonic and forward computable as defined in Sec-

tion 3.2.1. In addition, a function that computes the total cost of a configuration using

costs of individual operators needs to be defined. Our current implementation per-

forms summation, but any non-decreasing function can be used instead.

Note that the cost functions describe a metric. This metric is definedin additionto

the qualitative and quantitative constraints, both local and global, imposed by resource

availability and execution preconditions of actions. The planner searches for a feasible

configuration that minimizes the total cost.

6.2.2 Resource levels

To permit the planner to reason about numeric resources during the regression phase

of the search, we introduce discrete counterparts for continuous variables. Every in-

terface property or network resource, which appears as a real-valued variable in a

specification formula, is assumed to have one or morelevelsassociated with it. The

levels specify disjoint intervals of values of the resource and are defined by the inter-

val bounds. Resources for which no intervals are specified are assumed to have one

interval [0,∞). For example, the specification of the M stream shown in Figure 6.5

115

<interface name=M>
<cross effects>

M.ibw’ := min(M.ibw, Link.lbw)
Link.lbw’ -= min(M.ibw, Link.lbw)

<levels>
<cutpoint value=30>
<cutpoint value=70>
<cutpoint value=90>
<cutpoint value=100>

Figure 6.5:Specification of an interface with resource levels. The tick mark in the specifica-

tions serves to distinguish the value of a resource after the link crossing operation.

interface level 1 level 2 level 3 level 4 level 5
M [0,30] [30,70] [70,90] [90,100] [100,∞)
I [0,9] [9,21] [21,27] [27,30] [30,∞)
T [0,21] [21,49] [49,63] [63,70] [70,∞)
Z [0,10] [10,25] [25,31] [31,35] [35,∞)

Table 6.1: Resource levels for the four interface types.

defines five intervals for the bandwidth property:[0, 30], [30, 70], [70, 90], [90, 100],

and[100,∞). Table 6.1 shows levels for bandwidth of other streams.

Additionally, a property of a resource can be marked as beingdegradable, upgrad-

able, or neither. A degradable resource tag indicates that the availability of a resource

at a higher value indicates its availability at a lower value as well. For example, link

bandwidth is a degradable resource. Similarly, an upgradable resource is assumed

available at a higher value when a lower value is present. Information about degrad-

ability (upgradability), which can be obtained automatically by syntactic analysis of

the problem specification or provided manually, helps the planner to find plans in

resource-constrained situations as described below.

The key insight underlying the resource discretization technique is that more than

an exact understanding of the resource consumption effects of a planning operator,

116

what we care about is the ability to identify operators that come close to the right

(optimal) decision. The latter is somewhat easier and more reasonable for a domain

expert to provide information on. In particular, experts are already used to thinking of

different operational regimes for components as also qualitatively different regions of

values for network resources.

6.2.3 Leveled operators

The main benefit from identifying resource levels is that we can incorporate that in-

formation when defining operators for the AI-style planning problem compiled from

the CPP specification. Specifically, levels for all resources mentioned in the operator

specification are added as parameters to the operator.

The set of levels is discrete, which means that search techniques that use data

structures such as progression and regression graphs are still applicable to the prob-

lem.

On the other hand, the resource levels correspond to intervals of real values for re-

sources. Therefore, adding resource levels to operator parameters is an approximation

for using real-valued parameters.

Note that the resource levels are used in addition to, rather than instead of, real-

valued resources. The effect the resource levels have on the planning problem is that

of replacing metric operators with sets of operators with additional resource precondi-

tions restricting values of numeric state variables. Such modification of the operators

essentially pushes part of the resource restrictions into the discrete (logical) specifica-

tion of operators, thus allowing the planner to reason about numeric resources during

the regression phase of the search.

117

For example, given two resource levels for bandwidth of text and zip streams,

the plZip operator (Figure 6.4) can be replaced with four operators as shown in

Figure 6.6. Each of these new operators has additional preconditions based on the

resource intervals, which limit applicability of these operators, and different lower

bounds on the cost. During the envelope construction, the planner uses the cheapest

operators that do not cause conflicts, thus optimizing the cost of the solution and its

resource consumption.

6.2.4 Constructing leveled operators

Extension of operators with parameters for resource levels can be done automatically

(ideally), or manually. The manual approach may produce a smaller set of operators,

and thus improve the performance of the planner. Let us first consider the automatic

approach.

The planner tries to instantiate each operator from the program description with

all possible values for its parameters. Ground operators for which the resource re-

quirements are not satisfied are immediately pruned from further consideration. The

following algorithm checks feasibility of a ground leveled operator and computes its

cost.

1. Construct an optimistic resource map for intervals corresponding to the chosen

levels of required resource variables.

2. Check if resource preconditions hold in the optimistic map. If not, ignore the

ground operator.

118

(:action plZip00
:parameters (?n - node)
:precondition (and (>= (cpu ?n) (/ (ibw T ?n) 10))

(< (ibw T ?n) 50) (< (/ (ibw T ?n) 2) 30))
:effect (and (placed Zip ?n)

(assign (ibw Z ?n) (/ (ibw T ?n) 2))
(decrease (cpu ?n) (/ (ibw T ?n) 10)))

:cost (+ 1 (/ (ibw T ?n) 10)))

(:action plZip01
:parameters (?n - node)
:precondition (and (>= (cpu ?n) (/ (ibw T ?n) 10))

(< (ibw T ?n) 50) (>= (/ (ibw T ?n) 2) 30))
:effect (and (placed Zip ?n)

(assign (ibw Z ?n) (/ (ibw T ?n) 2))
(decrease (cpu ?n) (/ (ibw T ?n) 10)))

:cost (+ 1 (/ (ibw T ?n) 10)))

(:action plZip10
:parameters (?n - node)
:precondition (and (>= (cpu ?n) (/ (ibw T ?n) 10))

(>= (ibw T ?n) 50) (< (/ (ibw T ?n) 2) 30))
:effect (and (placed Zip ?n)

(assign (ibw Z ?n) (/ (ibw T ?n) 2))
(decrease (cpu ?n) (/ (ibw T ?n) 10)))

:cost (+ 1 (/ (ibw T ?n) 10)))

(:action plZip11
:parameters (?n - node)
:precondition (and (>= (cpu ?n) (/ (ibw T ?n) 10))

(>= (ibw T ?n) 50) (>= (/ (ibw T ?n) 2) 30))
:effect (and (placed Zip ?n)

(assign (ibw Z ?n) (/ (ibw T ?n) 2))
(decrease (cpu ?n) (/ (ibw T ?n) 10)))

:cost (+ 1 (/ (ibw T ?n) 10)))

Figure 6.6:Expansion of plZip operator using one cutpoint for T stream (50) and Z stream

(30).

119

3. Evaluate the cost function in the optimistic map. Take the minimum cost (the

lower bound of the interval) as the cost of the operator.

4. Compute resource effects in the optimistic map. If the resulting intervals do not

intersect with those required by the chosen levels, ignore the ground operator.

For example, if the amount of CPU on hostn0 in the initial state is 10 units,

then theplaceZip operator (Figure 6.4) for hostn0 , [0, 21] resource interval for the

incoming T stream, and[10, 25] interval for the produced Z stream is generated as

follows:

• The optimistic map is{(cpu n0)=[0,10], (ibw T n0)=[0,21] }.

• The precondition(>= (cpu n0) (/ (ibw T n0) 10)) is satisfied.

• The cost formula(+ 1 (/ (ibw T n0) 10)) evaluates to[1,3] . There-

fore, the cost of the ground operator is 1.

• The resulting value of bandwidth of the Z stream is[0, 10.5] , which is

consistent with the second level interval for Z[10, 25] .

The described algorithm does not assume anything about how the intervals are

defined. It is still able to prune some operators (e.g.placeZip with the[0, 21] interval

for T and the[25, 31] interval for Z will be pruned), but lots of other operators will pass

the tests. If the levels in operators are introduced manually, it is possible to further

reduce the number of operators. For example, a human can see that, given the way the

intervals are defined,placeZip produces the same level of stream Z as the incoming

stream T, allowing the definition shown in Figure 6.7.

120

(:action placeZip
:parameters (?n - node)
:precondition (>= (cpu ?n) (/ (ibw T ?n) 10))
:levelprecondition (= (IN ibw Z ?n) (OUT ibw T ?n))
:effect (and (placed Zip ?n)

(assign (ibw Z ?n) (/ (ibw T ?n) 2))
(decrease (cpu ?n) (/ (ibw T ?n) 10)))

:cost (+ 1 (/ (ibw Z ?n) 5))
)

Figure 6.7: Leveled operator with additional mark-up.

6.3 Algorithm

The third version of our algorithm, Sekitei 3, uses the techniques introduced in the pre-

vious chapters for dealing with large-scale open worlds and non-reversible resource

functions. Moreover, it takes these techniques one step further to take advantage of

resource levels and support optimization.

Sekitei 3 uses a three-level hierarchy of envelopes with different granularity (T3

andT4). An on-demand compiler module (T1) is used to hide semantics of the prob-

lem domain from the planner, and regression-progression search (T2) is used for ex-

pansion at all levels of the envelope hierarchy.

For more unified treatment of different kinds of dependencies, Sekitei 3 exploits

the idea of compilation of a logical problem into a numeric one (Section 3.3.1). All

discrete variables used in search correspond to levels of numeric variables. Boolean

variables are treated as numeric variables with two levels.

The first graph of Sekitei 3, the per-proposition logical regression graph, esti-

mates the minimum cost of achieving a proposition from the initial state. Both re-

121

source restrictions and interactions between actions are ignored in this case.2 Given

the minimum proposition cost, the second graph computes the minimum logical cost

of achieving asetof propositions. This phase takes into account logical interactions

between actions, but ignores resource restrictions. Finally, during the last phase of

the algorithm, the search for a plan is performed that uses all types of restrictions and

estimates the remaining cost using the logical cost of achieving a set of propositions.

6.3.1 Envelope construction

Similar to Sekitei 1 and 2, Sekitei 3 builds envelope graphs using regression-progression

search (T2). To support non-unit operator cost, Sekitei 3 uses A*-like search instead

of per-layer expansion.3

The classical A* search [45, 65, 85, 66] finds the shortest path from a particular

state (the initial state) to some state that satisfies the goal condition. For each inter-

mediate state, the distance from the initial state to the current state is known exactly,

and the distance from the current state to the goal is estimated using an admissible

heuristic. The termadmissiblemeans that the heuristic does not overestimate the true

value.

The envelope construction algorithm of Sekitei 3 differs from classical A* in sev-

eral aspects. First, an envelope is constructed using bidirectional regression-progression

(T2) search as opposed to a single pass of A*. This is necessary, because during the

regression phase both parts of the cost of a graph node (to the goal and to the initial

state) are lower bounds, and more accurate values are obtained during the forward
2Except for the resource restrictions reflected by the leveling of actions.
3Note that per-layer expansion can be considered a special case of the more general A*-like algorithm.

122

propagation of numeric expressions.

Second, the purpose of A* search is to construct an actualpath from one state

to another. The purpose of the envelope graph is to prune unreachable states and to

provide lower bounds on the cost of achieving states. The envelopes are organized

into a hierarchy (T4), which allows Sekitei to use bounded (incomplete) expansion of

the graphs (T3).

The same bounded bidirectional A*-like expansion algorithm is used for all three

levels of the envelope hierarchy. Below we describe the purpose of each envelope.

Then, we illustrate construction of all three graphs using an example.

6.3.2 Cost of propositions

The first-level envelope — per-Proposition Logical Regression Graph (PLRG) esti-

mates the minimum logical cost of achieving a proposition from the initial state and

identifies the set of relevant operators [60]. Compared to RPG1 of Sekitei 2, PLRG

is extended to support non-unit operator cost. Since the PLRG only considers logical

preconditions and effects, its cost estimates are a lower bound on the actual cost of

achieving a proposition, and therefore can be used as an admissible heuristic in the

later stages of the algorithm.

The PLRG is expanded from the goal state until a solution is obtained, a bound

is reached, or no further expansion is possible. The latter implies that the goal is

logically unreachable from the initial state, and the problem has no solution.

123

6.3.3 Cost of sets of propositions

The second-level envelope — per-Set LRG (SLRG) — estimates the minimum logical

cost of a set of propositions. The nodes of the SLRG correspond to sets of proposi-

tions. New nodes are generated by regressing over operators. Sekitei 2’s RPG2 is

also built for sets of propositions. The difference between RPG2 and SLRG is that

RPG2 can contain several nodes for a given set of propositions that differin costof

achieving them, while SLRG can contain several nodes for a given set that differin

resource levels achieved.

During the leveling of operators, the level propositions are created for all re-

source variables mentioned in operators. However, only levels of interfaces need to be

achieved, and the rest are only checked. Only operators that achieve suchimportant

propositions are used for branching.

The SLRG computes set costs for important propositions only. For each important

proposition, the best achievable levels of unimportant resources are computed in the

PLRG. This information is then used to improve estimates of the cost of achieving

sets of important propositions.

6.3.4 Main regression graph

The final level of the envelope hierarchy of Sekitei 3 is the main regression graph

(MRG). The MRG contains totally ordered plan tails. The logical cost of achieving a

set of propositions is used as an estimate of the remaining cost.

Each MRG node has an operator and a set of propositions describing the state in

which the operator is to be executed. The operator of a node needs to achieve at least

124

one proposition of the parent node.

Whenever a new node is created by regressing the current cheapest node over an

operator, the plan tail including this operator is replayed in the optimistic map of this

operator. If the execution fails, the new node is pruned from the search. Such partial

execution allows early detection of violations of quality-of-service requirements, and,

for example, discarding of partial plans whose total latency exceeds a given limit.

The optimistic map contains intervals for all resource variables required by the

operator as specified by its leveled resource preconditions. Before execution of each

successive operator in the plan tail, the interval produced by execution of the previous

operator is intersected with the optimistic interval of the current operator, and new

optimistic intervals are added if necessary.

The main difference between SLRG and MRG is propagation of resource maps in

the MRG. Since resource failures depend on the plan tail, it is not possible to reuse

nodes in the MRG. The MRG is a tree, while the PLRG and SLRG are general graphs.

The search in the MRG ends when all propositions, both important and unim-

portant, are present in the initial state, and the plan tail successfully executes in the

resource map of the initial state.

6.3.5 Example

Figure 6.8 repeats the example from the beginning of this chapter. Due to limited CPU

and bandwidth resources, a greedy approach fails to find a solution in this scenario.

In this section we assume the resource discretization shown in Table 6.1.

Figure 6.9 shows a portion of the PLRG for the problem in Figure 6.8. Recall that

during leveling of operators, each operator is executed in the optimistic map formed

125

lbw(n0, n1) = 70
n0n1

Goal:
ibw(M, n1)>=90

ibw(M, n0) = 200
cpu(n0) = 30

Figure 6.8: Resource optimization is required to find a plan.

by levels of required variables, such as bandwidths of a link and of an incoming stream

for the link crossing operator. The resulting map is then compared with the expected

values prescribed by the level intervals for the output data. Operators for crossing the

link with the M stream with levels above the first one fail this test, because it is not

possible to deliver more than 70 units of interface bandwidth over a link of bandwidth

70 regardless of the bandwidth of the incoming stream.

Without these link crossing operators, the cheapest way to achieve the proposition

L(ibw(M,n1))=2 , which states that the M stream bandwidth on hostn1 is in the

second level interval [70,90], is to use Splitter and Merger components.

The PLRG consists of operator and proposition nodes, and thus contains infor-

mation about logical support. When estimating the cost of a proposition, the cost

of a proposition node is taken as the minimum of the costs of supporting opera-

tors, and the cost of an operator node as the maximum cost of its preconditions

plus the cost of the operator. For example, the logical cost of achieving the propo-

sition placed(Cl,n1) in Figure 6.9 is 18. Obtaining this cost requires sending

both image and uncompressed text streams over the link (cross(T,n0,n1) and

cross(I,n0,n1)). This would lead to violation of client’s bandwidth require-

ments, but this fact cannot be detected in the PLRG.

The estimate of the cost of a set of propositions by the SLRG is more accurate

126

placed(Cl,n1) INIT

L(ibw(M,n0))=2

L(cpu(n0))=0

L(lbw(n0,n1))=0

L(cpu(n1))=0

0
placeSp(n0)

L(ibw(T,n0))=2

L(ibw(I,n0))=2

8cross(T,n0,n1)
1

1
cross(I,n0,n1)

L(ibw(T,n1))=2

L(ibw(I,n1))=2

placeMr(n1)
8

L(ibw(M,n1))=2placeCl(n1)
1

Figure 6.9:A part of the PLRG for the problem shown on Figure 6.8. The notationL(v)=n

means that the resource variablev has leveln. Numbers above operator nodes

show costs of those operators given the resource levels.Cl stands for Client,Sp

for Splitter, andMr for Merger.

than that obtained directly from the PLRG. For example, the cost of achieving a

singleton set{placed(Cl,n1) } is 19, because the two link crossing operators

cross(T,n0,n1) andcross(I,n0,n1) are now considered in sequence rather

than in parallel.

SLRG can also detect some conflicts that PLRG misses. For example, if both

interface bandwidth and link bandwidth are leveled, it may be possible to detect in the

SLRG the fact that sufficient levels of text and image streams cannot be delivered by

usingcross(T,n0,n1) andcross(I,n0,n1) operators, because both of them

also decrease the level of available link bandwidth.

Figure 6.10 shows the third-level graph for our problem. In this figure, arrows con-

nect operators to propositions they achieve. Propositions of a node include precondi-

tions of the node’s operator (underlined) and unsatisfied preconditions of subsequent

nodes. In the resource maps, dashed lines mark newly added optimistic intervals, and

solid lines show values added as a result of operator execution. For example, at the

node corresponding to execution of thecross(I,n0,n1) operator, the value of

ibw(I,n0) is added to the map to evaluate preconditions of the operator, the value

of ibw(I,n1) is obtained as an effect of the operator execution, and the value of

127

M
ap

 c
om

pu
ta

tio
n

propositions

ibw(T,n1)=[49,70], ibw(I,n1)=[21,30], ibw(I,n0)=[21,30]

ibw(T,n1)=[49,70], ibw(I,n1)=[21,30]

ibw(M,n1)=[70,100]

{L(ibw(T,n1))=2, L(ibw(I,n0))=2}

{L(ibw(M,n1))=2, L(ibw(I,n0))=2}

{L(ibw(T,n1))=2, L(ibw(I,n1))=2}

ibw(T,n1)=[49,70], ibw(I,n1)=[21,30]

{L(ibw(M,n1))=2}

{placed(Cl,n1)}

R
G

 e
xp

an
si

on

GOAL

placeCl(n1)

placeMr(n1)

cross(I,n0,n1)

placeSp(n1)

operatorRG nodes: resource maps

ibw(T,n1)=[49,70], ibw(I,n1)=[21,30]

ibw(M,n1)=[70,100]

important

Figure 6.10:Propagation of resource maps in the MRG. The shown portion of the graph does

not contain a solution. Section 6.3.6 describes how such dead paths are pruned

by Sekitei.

ibw(T,n1) , which is produced by the previous operator and consumed later in the

plan, is unmodified.

6.3.6 Additional pruning

Several additional solution-preserving heuristics are used to prune search based on

mutual exclusion relations between resource levels and repetitions of the logical state.

Important and unimportant propositions. Resource discretization leads to explosion

of the number of propositions in the planning problem. Only part of them needs to be

used in branching.

For example, the operator for placing an Unzip component can use values for

available CPU and bandwidth of the incoming zipped stream. The level of bandwidth

of the zipped stream needs to be achieved, meaning that if the zipped stream is not

already present on the required node with sufficient bandwidth, additional operators,

128

such as placing a Zip component or transferring the zipped stream from another node,

need to be added to the plan. The value of the CPU, on the other hand, needs to

be only checked, and operators that modify the value of the available CPU, such as

placing another component on the same node, need not be considered.

In the CPP, the distinction between the important and unimportant resources is

obvious (only interface properties are important). In traditional metric planning prob-

lems, all resource values are considered unimportant, and branching is performed

based only on Boolean variables. Sekitei 3 requires the compiler module to mark

all propositions as important or unimportant, and uses this information in search (see

Appendix B for the specification of the Compiler interface).

Logical mutexes. In all graphs of Sekitei 3, different levels of the same resource

variable are mutually exclusive. Operators that have preconditions mutex with the

current state, or produce a logically inconsistent state are pruned from the search.

Repetition of logical state. Suppose a new operatorop1 to be added to the plan tail

has a set of important logical preconditionsS1. Suppose there exists another opera-

tor op2 in the same plan tail whose purpose is to achieve the same set of important

propositionsS1, i.e., the intersection of important effects ofop2 with the logical state

of op2’s parent node equalsS1. If the resource map resulting from execution ofop2 is

contained in the optimistic map ofop1, then addingop1 to the plan tail will create a

useless loop, and thus can be pruned from the search.

Consider the example in Figure 6.10. The new operatorplaceSp(n1) to be

added to the plan tail has preconditionL(ibw(M,n1))=2 . OperatorplaceMr(n1)

129

already present in the plan has this proposition as its effect. Comparing the optimistic

map ofplaceSp(n1) with the map resulting from execution ofplaceMr(n1) we

can determine that addingplaceSp(n1) does not improve the resource situation in

any way, and therefore can be pruned.

Permutations of a DAG. Considering sequences of operators has the danger of eval-

uating all permutations corresponding to the same DAG. For example, it does not

matter in our scenario which stream, text or image, is delivered to hostn1 first. We

therefore prune a new node of the MRG if it corresponds to a permutation of another

node already present in the graph (both the states and the plan tails are compared).

6.4 Evaluation

Extending the basic model of the CPP with cost functions and resource levels pursues

two goals: allowing the planner to find solutions in resource constrained situations

(Scenario 1 in Section 6.1) and specifying preferences over plans (Scenario 2). We

decided to achieve this functionality by optimizing a cost function depending on re-

source consumption. Given an approximation of actual resource values by discrete

levels, our algorithm optimizes the minimum cost of the plan instead of the exact

cost. However, in our examples this approximation was sufficient.

The ability of our planner to achieve the desired functionality depends greatly on

the actual specification of levels. Without levels, or with a poor choice of values for

levels, the benefits from additional functionality are lost (however, solutions found

by the planner are still correct). On the other hand, using multiple levels for each

130

resource increases the size of the problem and negatively affects performance of the

planner.

The following experiments show how the choice of levels affects scalability of the

planner and quality of solutions.

6.4.1 Experiment

We tested the planner on the webcast application (Section 2.3.2) with three different

sizes of the network and five different level specifications.

The CPP involves delivering a media stream from the server to the client (see Ap-

pendix A.2.1 for detailed specification of components). Locations of both the server

and the clients are given. The client requires at least 90 units of bandwidth of the

media stream, and the server is capable of producing up to 200 units. The costs of

component placement and link crossing are proportional to the processed/transfered

bandwidth. Such definition of the cost favors application configurations with the min-

imum number of additional components and the minimum bandwidth consumption

along the data path.

The three networks used in our experiments have the following distribution of re-

sources. LAN links of the networks have bandwidth 150 units, WAN links 70 units.

Given the assumed models of resource consumption, the CPU resources on all nodes

are sufficient for placing Splitter and Zip (or Unzip and Merger) components to pro-

cess up to 111 units of the media stream. TheTiny scenario corresponds to the two-

host network shown in Figure 6.8. Given any cost function that favors using less

bandwidth if possible and does not differentiate the cost of component execution on

different hosts, the plan in this case contains 7 actions (the six actions shown on Fig-

131

M0 1 2 3

ZI 4

5
Client

Server

Splitter
Zip Merger

Unzip

M M

Merger

0 1 2 3

ZI 4

5

Server

Client

ZI ZI

ZI
Splitter
Zip Unzip

Figure 6.11: Suboptimal and optimal plans for theSmallnetwork.

ure 6.2 plus the client placement). TheSmallscenario involves a 6-host network. The

shortest plan has 10 actions and cost of 72 (Figure 6.11 top). Since the media stream

is sent over the LAN links, the bandwidth required there is 90 units. The optimal plan

has 13 actions and a cost of 63 (Figure 6.11 bottom). Given the functions used in this

experiment, this plan requires only 27+31.5=58.5 units of bandwidth of LAN links.

Finally, theLarge scenario corresponds to the similar problem in theN99 network

used in the previous chapter. Most of the hosts of this network do not participate in

the plan, but cannot be statically pruned.

Table 6.2 shows the five resource scenarios. Scenario A corresponds to Sekitei 2

(without resource levels). In this scenario, the limited network resources prevent the

planner from finding any plan. Table 6.3 shows experimental results for the other four

scenarios on each of the three network configurations.

132

Scenario Levels of bandwidth of M Levels of link bandwidth
A [0,∞) [0,∞)
B [0, 100), [100,∞) [0,∞)
C [0, 90), [90, 100), [100,∞) [0,∞)
D [0, 30), [30, 70), [70, 90), [90, 100), [100,∞) [0,∞)
E [0, 30), [30, 70), [70, 90), [90, 100), [100,∞) [0, 31), [31, 62), [62,∞)

Table 6.2:Resource level scenarios. Bandwidth levels of interfaces T, I, and Z are proportional

to those of the M stream.

6.4.2 Quality of solution

Even a single cut point 100 introduced in scenario B, which puts an upper bound on

resource consumption, allows the planner to find a solution where only 100 units of

the available stream are processed. However, in theSmallandLarge networks the

found application configuration is suboptimal with respect to the reserved LAN link

bandwidth (Column 4).

To ensure that the found plan is optimal with respect to the user-specified cost

function, the lower bound on the cost function (Column 2 in the table) obtained by the

planner needs to approximate the real cost of the plan as close as possible. The level

specifications of scenarios C, D, and E allow the planner to select the best configura-

tion.

The plans selected in scenarios C, D, and E involve processing 100 units of band-

width of the M stream, which is more than strictly required to satisfy the client’s

requirements. The best quality of a solution would be achieved if the bandwidth of

the media stream is cut at two points exactly around 90. Obtaining such values au-

tomatically requires reversibility of resource functions. Scenario C approximates the

ideal values: It selects the optimal configuration, but requires slightly more resources

133

Q
u

a
lit

y
o

ft
h

e
so

lu
tio

n
W

o
rk

d
o

n
e

b
y

th
e

p
la

n
n

e
r

S
ce

na
rio

lo
w

er
bo

un
d

op
er

at
or

s
re

se
rv

ed
to

ta
l#

of
gr

ap
h

si
ze

s
(t

ot
al

/u
ne

xp
an

de
d)

pl
an

ni
ng

on
co

st
in

pl
an

LA
N

bw
op

er
at

or
s

P
LR

G
S

LR
G

M
R

G
tim

e
(m

s)

1
2

3
4

5
6

7
8

9

T
in

y
B

7
7

N
/A

32
44

/0
24

/2
25

/5
26

1
/7

0

C
42

7
N

/A
46

43
/0

25
/4

26
/8

28
0

/8
0

D
42

7
N

/A
76

43
/0

25
/4

26
/8

37
0

/8
0

E
42

7
N

/A
17

4
65

/0
51

/1
0

39
/1

4
38

0
/8

0

S
m

al
l

B
10

10
10

0
15

2
12

2
/5

41
7

/1
81

34
4

/1
96

81
1

/4
70

C
63

13
65

22
2

18
5

/0
18

8
/8

0
17

8
/7

9
74

1
/3

81

D
63

13
65

36
4

18
5

/0
18

8
/8

0
17

8
/7

9
80

1
/3

40

E
63

13
65

11
72

43
3

/0
28

51
/1

28
2

11
36

/4
10

25
24

/1
69

2

La
rg

e
B

11
11

10
0

25
64

30
10

/3
5

33
05

/2
09

5
17

51
/1

39
0

17
65

5
/1

74
2

C
63

13
65

37
50

30
80

/0
10

46
/7

04
40

4
/2

44
17

50
5

/1
01

1

D
63

13
65

61
44

30
80

/0
10

46
/7

04
40

4
/2

47
19

96
8

/6
10

E
63

13
65

20
71

2
76

80
/0

66
51

8
/4

89
26

39
46

/2
34

4
37

94
4

/1
18

47

Ta
bl

e
6.

3:
S

ca
la

bi
lit

y
ev

al
ua

tio
n

of
S

ek
ite

i3
.

134

than absolutely necessary. To ensure correctness of the solution, the planner decides

to process 100 units of stream bandwidth on the server side (the upper bound of the

chosen interval), which requires 65 units of link bandwidth. The optimal values, as

discussed above, are 90 and 58.5 respectively.

6.4.3 Scalability

Table 6.3 also provides information on scalability of our algorithm. Column 5 gives

the total number of operators evaluated after leveling and using the pruning proce-

dure. The sizes of the three graphs characterize memory requirements of the planner.

For each graph, the table gives the number of generated nodes and the number of

nodes in the A* queue at the moment when a solution is found. Column 9 shows

the total running time of the planner including time spent reading problem files and

constructing operators (the first number); and the portion of this time spent in search

and construction of the graphs (the second number).

As the results show, introduction of resource levels improves both the quality of

the solution and the performance of the algorithm. Although adding resource levels to

the problem specification significantly increases the number of generated operators, it

also permits identification of some resource conflicts at earlier (and cheaper) phases

of the search, which explains the improved performance of Scenario C compared to

Scenario B and in several cases that of scenario D over C.

Adding more levels of interface bandwidth (scenario D) and leveling link band-

width (scenario E) does not always improve the quality of solution, but negatively af-

fects performance of the planner. The good choice of levels depends on requirements

of application components and on the definition of the cost function. In the presence

135

of non-reversible resource functions the choice of levels needs to be performed by

a domain expert, possibly, based on profiling results. Although not demonstrated in

this experiment, we expect that for some problems it might be beneficial to discretize

additional resources such as link bandwidth and node CPU.

6.4.4 Limiting expansion of the PLRG

The main purpose of the PLRG is to identify relevant portions of the search space.

Like the other two graphs of Sekitei 3, PLRG construction uses the bounded bidirec-

tional A* algorithm, and can take advantage of a heuristic estimate of the lower bound

of the cost of proposition to focus the search and bound the size of the graph.

In our implementation, we use the length (the number of links) of the shortest path

to a server as such a lower bound. However, this seems not to be enough.

As column 6 of Table 6.3 shows, in all three of our test cases PLRG expands

to include almost all hosts of the network for all resource levels that may be used

in a solution. This includes all levels that were not pruned during the leveling of

operators and were picked later by the envelope-construction procedure. We tested the

algorithm on a bigger, 600-node network shown in Figure 6.12 and observed similar

results.

The reason for the complete expansion of the network is the large difference be-

tween costs of data transfers and component executions in our evaluation applications.

The bounds on expansion, provided to PLRG by SLRG and MRG, take into account

the cost of components. By the end of the search, SLRG considers nodes with costs

greater than 60 (the cost of the final plan is 63). Recall that the earlier levels of the

envelope hierarchy need to be expanded enough to make a correct choice at the later

136

Figure 6.12:The 600-host network. The locations of the client and the three servers used in

the experiment in Section 6.4.4 are shown.

levels. Therefore, the expansion bound for the PLRG eventually exceeds 60.

As opposed to the SLRG, the PLRG does not detect the fact that some components

may be necessary to build the final plan. Instead, to obtain lower bounds on costs, the

PLRG essentially counts only network hops. The minimum cost of a data transfer in

our example is 1. Therefore, to guarantee optimality, PLRG needs to include all hosts

within 60 hops from the client host, which includes the whole network.

One way of addressing this expansion is by using a hop distance multiplier com-

parable to the cost of component execution. The use of a multiplier in the PLRG is

similar to the idea used in any-time weighted A* search [68]. The effect of the mul-

tiplier is that it biases the search towards direct paths, thus limiting expansion of the

PLRG in the network and improving the planning time. Table 6.4 shows results for

three locations of the server marked in Figure 6.12 and version C of resource levels.

137

S
ce

na
rio

S
ol

ut
io

n
ch

ar
ac

te
ris

tic
s

G
ra

ph
si

ze
s

(t
ot

al
/u

ne
xp

an
de

d)

S
er

ve
r

m
ul

tip
lie

r
co

st
le

ng
th

pl
an

ni
ng

tim
e

P
LR

G
S

LR
G

M
R

G

S
1

0
63

13
26

14
8

/2
58

57
33

27
3

/4
80

1
46

32
/3

79
5

11
76

/8
84

1
63

13
82

82
/4

13
6

32
11

/5
54

57
64

/4
82

0
13

15
/1

00
7

3
63

13
85

22
/4

41
6

35
10

/1
07

1
57

05
/4

79
6

11
48

/8
69

10
63

13
10

51
6

/6
41

0
55

96
/1

56
57

05
/4

79
6

11
48

/8
70

S
2

0
70

15
26

65
8

/2
63

68
33

28
2

/4
80

1
13

40
4

/1
12

88
16

5
/1

49

1
70

15
14

06
1

/9
94

5
84

72
/2

14
9

18
44

8
/1

57
00

21
8

/2
02

3
70

15
15

77
3

/1
16

37
11

07
5

/2
63

8
18

04
6

/1
53

70
21

8
/2

02

10
70

15
16

54
4

/1
24

18
14

11
3

/3
04

7
18

45
6

/1
57

10
21

8
/2

02

S
3

0
77

17
34

29
9

/3
40

09
33

28
2

/4
80

1
33

87
9

/2
79

64
21

0
/1

92

1
77

17
23

43
4

/1
92

98
15

74
7

/3
26

1
44

70
5

/3
75

08
26

7
/2

49

3
77

17
36

24
2

/3
20

96
33

28
2

/4
80

1
44

41
7

/3
72

55
26

7
/2

49

10
77

17
26

16
7

/2
20

11
22

19
6

/4
13

7
44

79
2

/3
75

38
26

7
/2

49

Ta
bl

e
6.

4:
E

ffe
ct

of
ho

p
di

st
an

ce
m

ul
tip

lie
r

on
se

ar
ch

ef
fic

ie
nc

y.

138

Note that the multiplier makes the resulting estimate of the remaining cost no

longer admissible and theoretically can cause loss of optimality. However, in all of our

examples the plans found were exactly the same as in the case of the complete network

expansion. Once again, using multiple phases of the search appears to compensate for

imprecise computations.

6.5 Summary

This chapter concludes our discussion of how the techniquesT1–T6 can be used to

design an efficient planner for the component placement problem without placing

artificial restrictions on the expressiveness of the supported model.

Sekitei efficiently prunes irrelevant parts of the search space and demonstrates

good scalability in the presence of non-reversible numeric functions. In addition, our

planner can perform approximate optimization of resource consumption given a dis-

cretization of continuous resources. Our aim in developing Sekitei was to support

maximum expressiveness of the model. However, our planner makes several assump-

tions.

First, all functions need to be monotonic in the sense described in Section 3.2.1.

This assumption requires that an interval of results is computable given intervals for

parameter values. Most functions can be implemented so as to satisfy this assumption.

Moreover, resource levels can be used to make the function piecewise monotonic.

Second, all functions need to be forward computable. In some cases it is useful to

be able to describe resource behavior of components using equations involving both

input and output parameters. Such functionality can be implemented using general

139

constraints instead of functions. However, such an extension of the model would

prevent us from using envelope hierarchies, which provide the basis for Sekitei’s effi-

ciency.

Third, Sekitei assumes that all numeric values are precise. In practice, measure-

ments are noisy. One would ideally like to accommodate such imprecision, e.g. by

performing sensitivity analysis. We will revisit this issue in Chapter 8.

Finally, the scalability and the optimization power of Sekitei 3 depend on the

choice of resource levels. It is hard to determine good levels automatically, which

means that help of a domain expert may still be required when new component types

are introduced to the system. We believe that it is possible to improve the quality

of solutions produced by Sekitei by using an optimization phase [57, 86] after the

envelope-based pruning. Such a numeric optimization phase would ignore the re-

source discretization, and therefore compensate for the unavoidable imperfections in

the choice of resource levels.

140

Chapter 7

Planning for grids

In the previous chapters we introduced a set of techniques (T1–T6), which provide the

basis for Sekitei — an AI-style planner for solving the component placement problem.

In this chapter we show how the same techniques can be used for solving a different

variety of the application configuration problem — construction and scheduling of

workflows for computational grid applications. We also describe how complex con-

straints can be used to reason about simultaneous reservation of multiple resources

(T7).

Because of the high computational complexity of application configuration, to

achieve good performance, a planner for the ACP needs to take advantage of natural

restrictions of a particular variety of the general problem the planner is designed for.

For example, the component placement problem is characterized by the absence of

the time aspect (all configurations are snapshots) and small number of parallel data

streams. These features allow Sekitei to consider data transfer operations separately

for each link, and to use a per-set resource propagation to achieve good performance

141

on problem instances involving large networks and non-reversible resource functions.

In this chapter we present an algorithm for solving the application configuration

problem in the computational grid setting. Grid applications may involve many (up to

hundreds) sequences of jobs that can be executed in parallel given sufficient resources.

Therefore, a planner for grids needs to reason about sharing of resources both in

network space and physical time. On the other hand, the size of the network is usually

small compared to that of the CPP. Grid applications we consider are computationally

expensive and require specialized hardware (e.g., a supercomputer) for execution.

Therefore, the total number of hosts capable of running components is usually small

(in the tens).

Despite these difference between the CPP and grid planning, the techniques used

for solving the CPP can be used to design a planner for grids, which supports an

expressive problem model and demonstrates high performance.

The rest of this chapter is structured as follows. In section 7.1 we describe our

model for grid applications and the assumptions made by the planner. Section 7.2

describes the GPRS algorithm (Grid Planner with Reservations and Sharing), and

section 7.3 evaluates its performance. Finally, in section 7.4 we review the basic

principles behind our solution.

7.1 Model

A configuration of a grid application is a workflow mapped onto underlying network

resources. The workflow consists of jobs (component instances) that require and pro-

duce files. Jobs can be executed on network hosts, and files can be transferred over

142

network links. Thus, planning for grids is an instance of the general application con-

figuration problem described in Section 3.1.

7.1.1 Network

The network consists of hosts connected by links. Together, hosts and links are re-

ferred to as network resources.

Network resources havelists of propertiesassociated with them, such as the CPU

speed, amount of available memory, link bandwidth. The properties of network re-

sources can change over time. We assume that each property can be represented by a

piecewise constant function.

A network resource can be reserved to perform an action. Such reservation is

specified by the start time, duration, and a list of required property values. An active

reservation may change the values of the required properties, e.g. link bandwidth can

be consumed for the duration of a file transfer. Alternatively, the properties may not

be affected by the reservation, but be required to have specific values, e.g. a link may

be required to be secure. The latter can be viewed as a special case of the former,

therefore, in this chapter we focus on the more general case of consumable properties.

Multiple actions can be performed on a resource in parallel, assuming the under-

lying OS/scheduler provides such functionality. For example, different sets of proces-

sors of a multiprocessor machine can be allocated to different jobs. However, at any

given moment, for each property, the total value required by all active actions cannot

exceed the available value at that moment.

143

7.1.2 Jobs and files

The element of data in grid planning is a file. A file is uniquely identified by its logical

file name (LFN) [19], a network-wide identifier for this file. For each ground LFN, the

size of the file can be computed, perhaps by consulting an external service. There may

be multiple instances (replicas) of the same logical file on different network hosts. The

planner’s decision of which replica to use depends on the structure of the workflow

and on available resources.

A single execution of a component instance in grids is referred to as a job. A job

can be executed on a network host. During execution, the job occupies some portion

of the host resources. Upon job completion, these resources are released.

A job requires a set of logical files and produces a set of logical files. For a job

to be executed on a host, replicas of all required files should be present on the host

before start of the job. Upon job completion, instances of all files produced by the

component become available on the host.

File instances can be transfered between network hosts. The transfer is performed

along a network path chosen by some external entity, e.g. a router. During the trans-

fer, the same value of bandwidth (path bandwidth) is reserved on all network links

participating in the path.

To model sharing of links in network paths, some hosts can be designated as

routers. Routers are unable to perform computation, which is specified by zero avail-

ability of host resources, such as CPU. For example, the network in Figure 7.1 consists

of two clusters, each of which is connected to themain host via a router.

The four end hosts in Figure 7.1 each store a file with size 10 units. As with

144

routers

A B
main

bw=10 bw=10
bw=100bw=5

f1

f2

f3

f4

Time 0

Link Ar

Link Br

1 4 inf2

f1: 5 free 5

f3: 10

f4: 10

free 80
free 100

f2: 5

Figure 7.1:Parallel and sequential reservations of link bandwidth. Transfers of filesf1 and

f2 are scheduled sequentially over low bandwidth linkAr , while transfers of files

f3 andf4 are performed in parallel over a high-bandwidth link.

Sekitei, we assume that the on-demand compiler (T1) module normalizes units of

measurement. All four files need to be delivered to hostmain as soon as possible.

Suppose internal links in both clusters have bandwidth 10 units, the link from the

router A (Ar) to the main host has bandwidth 5 units, and the link from router B (Br)

to the main host has bandwidth 100 units.

The transfer of files from cluster A to the main host is limited by the bandwidth of

the link Ar-main . In our model, two sequential data transfers will be scheduled for

this portion of the network, each involving two links (end host-Ar andAr-main)

and reserving 5 units of bandwidth. The file transfers from cluster B can be done in

parallel, each reserving 10 units of bandwidth of the involved links. Both filesf3 and

f4 can be delivered to the main host within 1 time unit, while transfer of filesf1 and

f2 will take 4 time units all together.

Currently we do not model temporary storage of files, i.e. once a file is transfered

to a host or is created as a result of a job execution, the file is always available on that

host. The amount of necessary storage is defined by the computation, which is limited

145

by host and network resources. The current implementation of the planner assumes

that a host will have enough space to store all data products of the computation, and

that created files will be available on the hosts until completion of the workflow.1

7.1.3 Metrics

A grid planning problem is specified by a network; a set of job types, each specified

by input and output files and resource property requirements; the initial availability of

files on network hosts; and a goal specified as a pair of a ground LFN and a host. The

goal of the planner is to construct an executable workflow that will make the required

file available on the required host as soon as possible.

To construct the fastest workflow, it may be necessary to decide how to obtain each

of the intermediate files. In the example shown in Figure 7.2, the goal is to obtain a

small fileResult on host 3.Result can be computed in 1 time unit given two files

pA andpB, each of size 100. Each of these files can be computed in 2 time units from

files rA andrB respectively. All four files,pA, pB, rA , andrB , are present in the

network.

Given the available link bandwidth shown in Figure 7.2, the optimal strategy is

to transferpA from the remote host and recomputepB using therB file. Note that,

if the execution of the component producing the final result is co-located with the

recomputation ofpB, the time used to transferpA overlaps with the computation of

pB. Usually it is possible to overlap computation and communication.2

In the above example, finding an optimal solution requires trading off computation
1In the current implementation, there is a Boolean flag that specifies that a host does not have any storage.
2Our model permits modeling of reservation of host resources for data transmission/reception.

146

pA

bw=100 bw=10bw=100bw=100

rA rB pB

21 3 4 5

Time 0

Link 1−2

Link 2−3

Link 3−4

Host 4

1 2 3 3.1 inf

A

A

A

CB

D

Figure 7.2:Trade-off between computation and communication. Because of the low band-

width of link 4-5, an optimum configuration requires transferring filepA and re-

computing filepB. The actions of the plan are:A transferpA over path 1-2-3-4;

B recomputepB on host 4;C computeResult on host 4;D deliver the result to

host 3.

and data transmission, thus changing the structure of the workflow. This additional

degree of flexibility distinguishes the grid planning variety of the ACP from traditional

scheduling. In addition, when the underlying grid infrastructure supports explicit

reservations, the planner needs to take into account time-varying resource availability,

which makes the problem even harder.

7.1.4 Compiler module

Similar to Sekitei, GPRS employs the on-demand compilation technique (T1) to keep

the planner independent of the framework and uses an envelope graph (T3) to obtain

lower bounds on the completion time of parts of the workflow.

For construction of the envelope graph, the compiler needs to be able to create a

graph node for the goal, determine if a particular data node is present in the initial

state, and return a list of operator nodes that can achieve a given data node.

147

A grid-specific implementation of the compiler is aware of data transfers and job

executions, but makes no assumptions about the job resource requirements and names

of the required and produced files.

Depending on a particular application, a user needs to create one or more classes

for jobs (components) and file types. Each file type should be able to compute file

size for a given instance of the logical file. Each component type should be able to

construct a job node given a host and a desired data product, or return an error if the

host does not satisfy the component’s requirements.

Using the on-demand compilation technique (T1) in this way allows us to use

GPRS for applications with complex logical structure, such as that of the Montage

application described in Section 2.3.3, without making any additional assumptions in

the planner.

7.1.5 Implementation details

The Java implementation of GPRS used in this chapter for illustration and evaluation

makes several additional assumptions about the problem.

First, property lists are limited to one property only (CPU for hosts and bandwidth

for links). This limitation is imposed by the current implementation of the compiler

module, and not by the algorithm.

Second, numeric resources are assumed to be released upon completion of an

operator. In practice, some resources, such as quotas, are strictly consumable. The

algorithm can be easily extended to support such resources.

Third, for the purpose of evaluating GPRS, the duration of a file transfer is com-

puted as the file size divided by the path bandwidth. This computation is represented

148

as a separate procedure (constraint), and a more accurate model can be used where

available.

Finally, the current implementation of the planner optimizes the completion time

of the computation (makespan). Extension of GPRS to support more general metrics

is a topic for future research.

7.2 Algorithm

At a high level, the algorithm performs critical path scheduling using an envelope

graph similar to the per-proposition LRG of Sekitei 3 to bound exploration of the

search space and obtain lower bounds on duration of computation.

7.2.1 Constructing the envelope graph

The envelope graph contains information about possible ways of achieving ground

propositions. For clarity, we will use grid terminology in the presentation of the algo-

rithm, even though the algorithm is not limited to grid planning. In the grid case, the

ground propositions of the envelope graph correspond to availability of file instances

on network hosts.

The graph has two types of nodes.OR nodescorrespond to propositions (files).

AND nodescorrespond to operators (job executions and data transfers). For each OR

nodeno, support of no is a set of AND nodes corresponding to operators that can

achieve the proposition of the nodeno. For each AND nodena, support ofna is a set

of OR nodes corresponding to preconditions of the operator of nodena.

GPRS optimizes the makespan (total duration) of computation. Therefore, the

149

costof a node is defined as the earliest completion time (ECT) for a job and earliest

availability time for a file. In the rest of this section we use the termcostto refer to

the ECT.

The algorithm admits arbitrary monotonically non-decreasing functions for com-

bining costs (ECTs) of the support nodes to compute the cost (ECT) of the supported

(sink) node. To support such generality, we create separatevariableswithin each node

describing time points and durations (Figure 7.3). These variables are connected by

the means of functions referred to asconstraints. Constraints are used topropagate

changes of values of variables during envelope construction and solution extraction.

Variables of envelope nodes, resources, artificial variables, and constraint connecting

them form aconstraint network. In the current implementation, the cost of an OR

node is the minimum of the costs of supporting AND nodes, and the cost of an AND

node is computed using areservation constraint(RC) described in Section 7.2.3.

During the graph expansion, leaves of the graph are OR nodes. The cost of a leaf

node is assumed to be zero. After a leaf node is expanded by creating or reusing AND

nodes for all operators that can possibly achieve the corresponding proposition, a new

estimate of the cost of the OR node is computed.

The cost combining functions may be represented as constraints that use external

variables, such as resources, in addition to the costs of support nodes. Because the

leaf costs are zero and the cost combining functions are non-decreasing, at any given

moment during graph expansion, the estimated costs of nodes are lower bounds on

the actual costs. A constraint propagation engine discussed below is used to obtain

tight bounds of node costs.

150

Constraint network

ECT

R1 Rn

RC Max

ECT

ECT

Min
ECT

ECT

AND node

AND node

OR node

AND node
OR node

EST

. . .

Envelope graph

Figure 7.3:GPRS envelope and constraint network. Earliest completion time variables (ECT)

of the envelope nodes, artificial variables, such as Earliest Start Time (EST), re-

sources (R1 to Rn), and constraints form a constraint network for the envelope

graph. Dotted lines connect the ECT variables to the nodes they belong to.

7.2.2 Constraint propagation

To ensure good performance, we require that constraints propagate values only in

one direction (compare to the forward computability of functions in Sekitei, Sec-

tion 3.2.1). A constraint may use several variables as sources, but all variables whose

value the constraint can change should belong to the same node, referred to as the

sink of the constraint. We also require that each variable is affected by at most one

constraint. Artificial variables may be created if necessary to enforce the latter restric-

tion.

During constraint propagation, every constraint whose source variable has changed

since the previous quiescent state is recomputed. This operation can result in chang-

ing values of variables of the sink node. Constraint propagation is performed until

151

A B

The goal is to have a copy of filef on host
A. No job can produce the file, and the file
is not available anywhere in the network, so
the problem has no solution. Expanding the
leaf nodef@Bcreates an infinite cycle in the
envelope graph.

f@Bf@A

B−>A

A−>B

goal

Figure 7.4: Envelope graph with an infinite loop

there is no more change, i.e. until a new quiescent state is reached.

To minimize thrashing during constraint propagation, the constraints are sorted by

the decreasing distance of the changed source variable from the goal node. This is

similar to propagation of cost updates in Sekitei.

Similar to PLRG and SLRG of Sekitei 3, the envelope graph of GPRS can contain

loops. Remember that costs of nodes are lower bounds. Therefore, expansion of the

leaf node, which increases the cost estimate of that node, may cause infinite loops

in constraint propagation along graph cycles (see Figure 7.4 for an example). To

avoid this, before expansion, the costs of all nodes reachable from the leaf node being

expanded are set to infinity. Subsequent constraint propagation can only decrease the

bounds, when possible. In case of an infinite loop, such as the one shown in Figure 7.4,

the lower bounds of costs of unreachable nodes will remain infinity, and the constraint

propagation will terminate after checking each node only once.

7.2.3 Reservation constraint

Completion of actions (job executions and data transfers) in grid planning depends

on availability of required files, availability of network resources, and duration of the

152

earliest availability time=75

path
constraint

15 25 55 110

reservation

completion time = 85

path bw = 5
Link B

10 20 50 100
Link A

duration
constraint

size=50
File duration = 10

gang

10 10

55

Figure 7.5: Implementation of the reservation constraint.

action. We represent this dependency using areservation constraint. A reservation

constraint has as sources the earliest start time and a set of resources (hosts or links).

The earliest start time can be an artificial variable linked by a maximum constraint to

earliest availability times of all required files (see Figure 7.3). A reservation constraint

also has a list of the values of properties of the resources required by the action.

The GPRS planning algorithm can support different implementations of the reser-

vation constraint. In the current implementation, the duration of an action depends

only on the set of resources and not on the start time of the action, so for the purposes

of the reservation constraint it can be considered constant. This allows us to imple-

ment a reservation constraint as three separate constraints connected using artificial

variables, such as path bandwidth and duration of reservation. Figure 7.5 shows such

an aggregate reservation constraint of a two-link network path for a file transfer.

Each of the network resources keeps a profile of property values as a piecewise

constant function of time. Using this profile, a resource can compute the earliest

153

time after a given moment when the given set of property values (produced by the

path constraint) is available for the given length of time (produced by the duration

constraint). The gang reservation constraint uses this facility to compute the earliest

time whenall resources are available. Gang reservation is important, for example, for

scheduling data transfers over a multi-link network path.

The reservation constraint affects the completion time of an action. Note that

because of the varying resource availability, the completion time of the action may be

greater than the sum of the start time and duration.

7.2.4 Limiting transfer sequences

In Sekitei, where a snapshot application configuration is constructed, each network

link is considered separately. This means that for each network host only its imme-

diate neighbors are considered as possible targets for data transfers. This property

allows Sekitei to perform graph expansion for networks with large numbers of hosts.

In GPRS, several links may participate in a single data transfer. This means that

for a given network host every other host in the network may be considered as a target

for a transfer. This can cause explosion of the number of data transfer operations

and reservation constraints. In addition, loops consisting of multiple data transfer

operations will be created, which significantly slows down constraint propagation.

However, the following observation provides a basis for a solution to this issue.

Since in our model we do not explicitly consider temporary storage of data, sequences

of data transfers are unnecessary. If a file can be transfered from host A to host B and

then, without any intermediate computation, from host B to host C, then this file can

be transfered directly from host A to host C (along the path A-B-C or some other path

154

Merger

produced

transferred

merged

file transfer

job execution

INIT
file transfer

job execution

Figure 7.6:The relationship between three types of file nodes and types of actions.Merger is

an artificial action used to connect file nodes of different types.

connecting the end hosts). We can exploit this feature by creating three different types

of file nodes:merged, produced, andtransfered (Figure 7.6).

A merged node has as support a single node of a special type that combines a

produced file node and a transfered file node. A data transfer action always produces

a transfered node and requires a produced node. A job node requires a merged node

and produces a produced one. Files initially available in the network correspond to

produced file nodes.

Although this modification triples the number of file nodes in the graph, it prevents

the planner from considering sequences of data transfers by requiring interleaving

transfers with computation. This in turn reduces the number of cycles in the graph,

achieves significant (more than an order of magnitude) speedup on large problems,

and improves scalability of the algorithm with respect to the network size. Note that

this optimization is local to the grid compiler and has no effect on the design of the

core planning algorithm.

155

7.2.5 Critical path scheduler

The envelope graph is expanded until thebest tree, defined recursively using the

cheapest support node for each OR node and all nodes for each AND node, has all its

leaves true in the initial state.

The envelope graph is optimistic, because it does not take into account interactions

between different branches of the application DAG.3 Therefore, the best tree of the

envelope graph does not necessarily represent a valid solution.

To construct a valid solution, we use critical path scheduling for the final plan

extraction phase of the GPRS algorithm. Acritical path is a path in the best tree

leading from the root (the goal node) to a leaf, which chooses the most expensive

support node for each AND node.

The plannercommitsnodes of the critical path starting from the leaf. Committing

a node involves making all resource reservations belonging to the node permanent.

Such commitment of reservations is possible as long as the constraint network is qui-

escent.

As a result of committing resource reservations, the property value profiles of

the involved network resources may change, which may affect other reservation con-

straints that involve the same resources, and, via constraint propagation, completion

times of various nodes of the envelope graph. The change of completion value of the

graph nodes may change the portion of the graph considered to be the best tree and

therefore result in further expansion of the envelope graph.

The current implementation of GPRS does not support backtracking. Once a node
3Although, as we discuss in section 7.4, this can be changed.

156

is committed, the commitment cannot be revoked. Because the envelope graph is

optimistic, such a non-backtracking nature of the solution extraction phase may result

in suboptimal solutions. Moreover, the non-backtracking algorithm is incomplete and

may fail to find a solution in the presence of budget restrictions (quotas on resource

usage and/or deadlines).

On the other hand, the non-backtracking solution extraction phase is fast. More-

over, the use of the envelope graph during the solution extraction phase allows the

planner to make continuous adjustments to the best tree including rescheduling ac-

tions and replacing whole subtrees. This flexibility usually leads to good quality of

solutions, and appears to compensate in practice for the theoretical incompleteness of

the algorithm.

In the next section we present a detailed evaluation of performance of GPRS. In

section 7.4 we discuss some ways of improving the quality of solutions.

7.3 Evaluation

In this section we evaluate the ability of the GPRS to handle the expressiveness of

the model of grid applications with explicit resource reservations and sharing, the

scalability of the planner with respect to the network and application size, and the

quality of solutions produced by the planner.

7.3.1 Handling expressiveness

A planner for computational grids with explicit reservations needs to reason about re-

source sharing in physical time and network space. This includes sharing of numeric

157

resources between jobs and data transfers running in parallel. The planner also needs

to reason about action durations and start and completion times in the presence of

time-varying resource availability. Finally, the planner needs to be able to select dif-

ferent options, such as file replicas or component types capable of producing a given

data product, and trade off computation and communication so as to minimize the

total duration of computation. To check if GPRS can correctly handle the expres-

siveness of the model, we ran the following experiment, which exercises the features

listed above.

The abstract structure of the application derived from Montage-like workflows is

shown in Figure 7.7. The application consists of three jobs (components), organized

in two levels. Each of the two jobs of the first level requires three input files, produces

two output files, and takes 100 time units to complete. The third job requires four files

and produces one file in 40 time units. The size of filesa, b, c , d, ande is 500 units.

Files f , g, k , andq are 100 units each. The final result filer has size 1000. Note

that filec is required by two components, and filek can be produced by two different

components. In the latter case the semantics is that the filek will contain exactly the

same data regardless of which of the two jobs produced it.

The network structure for our problem is shown in Figure 7.8. Replicas of several

files are available on different network hosts as shown in the figure. The bandwidth of

the links connecting storage nodes to the storage router is at most 5; the bandwidth of

all other links is at most 10 units. We assume that only hostComputer can perform

computation.

We further assume that the availability of theComputer host and the availability

of the linkStorageL between the mainRouter and the storage routerStorageR

158

compC

a

b

d

c

e

k

g

q

f

r

size 500 size 100 size 1000

compA

compB

Figure 7.7:Abstract structure of a grid application. Circles represent files, and rectangles jobs.

a b c d e

Computer

Storage1

Storage2

StorageR

Client

Router

StorageL1

StorageL2

StorageL
ClientL

ComputerL

a c e k q

b d f g q

Figure 7.8:Network structure. Link names and shown in italics. Availability of file replicas is

shown in normal font next to the hosts. Width of the lines corresponds to the link

bandwidth. The dashed line shows the link, whose availability varies over time.

159

Computer

ClientL

ComputerL

StorageL

StorageL1

StorageL2

0 50 100 120 250 350300 450 1000 infTime

1 1

5

1

10 10

10

10

1

5

Figure 7.9: Resource availability. Numbers in the bars show the amount of the resources.

vary with time due to reservations from other ongoing computations. The availability

windows for network resources are shown in Figure 7.9.

The goal of this problem is to obtain ther file on hostClient as quickly as

possible.

The plan found by GPRS is shown in Figure 7.10. This plan has the optimum

duration given the resource availability. Note that because of the limited availability

of both computational and link resources, the planner decided to recompute two of the

intermediate data products and fetch the other two from where they are stored. The

replica of fileq is chosen so that the transfers of filesg andq can be done in parallel.

The planner also correctly handles multiple reservations and sharing of resources

(Figure 7.11). For example, transfer of fileg fromStorage2 toComputer requires

simultaneous reservation of bandwidth of three links. Two of these links (StorageL

andComputerL) are used for transfer of fileq from Storage1 at the same time.

160

q@Computer

10050

3: Tr
150100

1: Tr
500

4: CompA
150 250

250
5: Tr

270

7: CompC
300 340

8: Tr
440340

250
6: Tr

270

a@Client

b@Client

c@Client

g@Storage2

a@Computer

b@Computer

c@Computer

f@Computer

r@Computer r@Client

g@Computer

k@Computer

q@Storage1

2: Tr

Figure 7.10:The final plan. File nodes describing availability of a file replica on a host are

shown in normal font. Actions are shown in bold and preceded by a sequence

number. The numbers above each action node are the start and end time of that

action. The start time of an action depends on the earliest availability of the

required files and on the resource availability.

150
340

Time
270

Computer

ClientL

ComputerL

StorageL

StorageL1

StorageL2

0 50 100 250 350300 450 1000 inf
120 440

7:CompC

1:Tr2:Tr 3:Tr

3:Tr2:Tr 10

1

5

5

10

10

5:Tr

1:Tr 8:Tr

8:Tr
6:Tr5:Tr

5:Tr 6:Tr

6:Tr

4:CompA

Figure 7.11:Resource reservations by actions. Multiple resources may be simultaneously

used by a single action, and several actions can concurrently use the same re-

sources (e.g. linkStorageL).

161

cluster router

���
�

computing node

central router

Figure 7.12: Synthetic network used in performance evaluation.

7.3.2 Performance

To evaluate the scalability of the planner we used synthetic applications and networks.

Figure 7.12 shows the network used in our experiments. This network consists

of C clusters each containingN computational hosts and one router, which connects

the cluster to the central master router. Hosts within a cluster are fully connected.

Bandwidth of intra-cluster links is 10 units, the bandwidth between cluster routers

and the central router is 30 units. In total, the network contains(N +1)×C +1 hosts,

of whichN × C can perform computation.

Figure 7.13 shows the application kernel used in the experiments. The structure of

this kernel is modeled after existing grid applications such as Montage [6]. This ap-

plication kernel is parameterized, which allows us to analyze scalability of the planner

with respect to different properties of the application.

The application consists ofS segments limited by the splitting and merging com-

ponents. The portion of the segment between these components containsW parallel

execution sequences, each consisting ofH processing jobs. An instance of this appli-

162

T
im

e

���
�

���
�

H
 le

ve
ls

 o
f c

om
po

ne
nt

s

Se
gm

en
t

To previous segment

1 2 W

Aggregated file

Merger job

Processing job

Ordinary file

Splitter job

Figure 7.13: Application kernel.

parameter value
Size of intermediate file 10
Size of merged file 100
Execution time of merger 30
Execution time of splitter 30
Execution time of processing job 10

Table 7.1: Parameters of synthetic application.

cation contains(H×W +2)×S jobs and((H+1)×W +1)×S files. The splitting and

merging components serve as synchronization and data aggregation points. Table 7.1

shows the application parameters used in our study.

In our experiments, we varied values ofC, N , S, H, andW . In all cases, the

goal is to achieve availability of the merged file of the top-most segment on the first

computational host of the first cluster. Initially, all intermediate files of the first level

of the first segment are available in the network. These initial files are distributed

163

0

100

200

300

400

500

600

0 20 40 60

Number of computing hosts

Pl
an

ni
ng

 ti
m

e
(s

)

Figure 7.14: Scalability of GPRS wrt the network size.

sequentially to all computing nodes of the network. Appendix D gives an example of

a generated problem.

Scalability with the network size

To evaluate scalability of GPRS with respect to the size of the network, we run the

planner for a set of networks with parametersC ∈ {1..9}, N ∈ {2..9} using the

kernel application withS = 1, H = 3, W = 5. Figures 7.14 shows planning time as

a function of the number of computing hosts in the network. As can be seen from the

figure, the planning time grows fast. This can be explained by the fact that, to support

gang reservations of network links, the planner considers all hosts of the network as

targets for file transfers. The number of hosts contributes to the branching factor of

the search space. The fact that the algorithm still scales to networks of considerable

size can be explained by the pruning power of the envelope graph.

164

0

100

200

300

400

500

0 100 200 300 400 500

Width of the workflow

Pl
an

ni
ng

 ti
m

e
(s

)

Figure 7.15: Scalability of GPRS wrt the width of the workflow.

Scalability with the width of workflow

Grid workflows are usually characterized by relative small depth of the workflow

DAG, but large number of parallel processing sequences. To assess the scalability of

GPRS with respect to such applications, we tested our planner on the synthetic prob-

lem described above with the value ofW in the interval{2..500}. Other parameters

of the model were as follows:C = 2, N = 2, S = 1, H = 3. As Figure 7.15 shows,

GPRS can scale to large instances of Montage-like applications.

Scalability with the depth of workflow

Finally, we evaluated scalability of GPRS with respect to the depth of the workflow.

Figure 7.16 shows the planning time as the function of the number of segments and

the number of processing stages within a segment. Parameters of the experiments are

{C = 2, N = 2, S = 1, W = 5, H = 2..100} and{C = 2, N = 2, S = 1..36, W =

5, H = 1}.

165

0

100

200

300

400

500

600

0 100 200 300 400 500

Number of files

Pl
an

ni
ng

 ti
m

e
(s

)
Segments

Levels

Figure 7.16: Scalability of GPRS wrt the depth of the workflow.

As the results demonstrate, the planning time grows more than quadratically with

the depth of the workflow. This can be explained by the fact that in the current imple-

mentation a complete constraint propagation is performed after every action choice

during the solution extraction phase. The complexity of this propagation is close to

linear with respect to the width of the workflow, but grows faster with respect to the

depth of the workflow. We expect that a different (lazy) implementation of constraint

propagation would lead to significant speedup of the algorithm. Note, however, that

grid workflows tend to have few stages, and therefore scalability of the planner with

respect to the depth of the workflow is less important than that with the number of

parallel execution sequences.

It is noteworthy that, despite the use of the same techniques, the scalability char-

acteristics of GPRS are reverse of those of Sekitei, which scales well with the network

size, but assumes few parallel streams in the application DAG. This fact demonstrates

that the techniques are not limited to a particular feature of the problem specification,

and can be used to design planners for different domains.

166

Host A0

file2_1file2_2

merger

merged file

file2_1

file1_1file1_2
transfer transfer

file1_2file1_1

pjob2 pjob1

transfer

Host A1

Figure 7.17:Sub-optimal plan generated by GPRS. The planner first commits the critical path

(processing of the second file), and then schedules the rest using the remaining

resources. This results in two unnecessary file transfer operations.

7.3.3 Solution quality

Due to the use of the critical path scheduler with commitments for plan extraction, the

plans found by GPRS are suboptimal. For example, Figure 7.17 illustrates the plan

produced by GPRS for the problem with{C = 1, N = 2, S = 1, W = 2, H = 1}.

Appendix D gives the complete specification of this problem instance.

The solution shown in the figure contains two file transfers more than the optimal

solution. The cause of such sub-optimality is the use of the critical-path scheduler.

In the presented example, the scheduler made a greedy decision about scheduling the

longest path of the workflow first, and then had to schedule the rest of the workflow

using the remaining resources. In Section 7.4 we discuss possible approaches to ad-

dress this greediness issue.

Despite possible sub-optimality, GPRS still performs good load balancing. The

167

scheduling problem is NP-hard, so it is problematic to find an exact optimum for

problems with reasonable size. However, it is easy to check optimality of the solution

in some special cases.

To assess the quality of solutions, we asked the planner to find a configuration

of the kernel application described above with one segment with one job level of

width 300 for a network with 2 clusters with 4 computing hosts each. We set the

link bandwidths to a very high value, so that delays introduced by data transfers are

negligible.

This application contains the total of 301 jobs, which can be executed on any of

the 8 computing hosts. GPRS assigned 38 jobs to each of the hosts of the B cluster, 39

jobs to three hosts of A cluster (A1,A2, and A3), and 40 jobs to host A0. Since A0 is

the host where the final answer was requested, the job assignment is indeed optimal.

The load-balancing effect can be explained by the fact that all decisions made by

the scheduler are immediately taken into account by the envelope graph. The envelope

is built over all possible execution sequences, and at any moment chooses the best way

to achieve every subgoal given the current set of resource reservations.

7.4 Summary

The techniques used in Sekitei to achieve good pruning and search guidance in large-

scale problems with numeric interactions between actions are applicable in other do-

mains as well and can yield similar improvements.

In this chapter we have presented GPRS — a planner for grid applications. Grid

planning is a variety of the general application configuration problem, whose proper-

168

ties are very different from those of the component placement problem discussed in

previous chapters. Grid planning is characterized by relatively small network sizes,

but large (wide) application graphs and the need to reason about resource sharing in

physical time in addition to network space.

We have shown that, despite the differences in the problem structure, the same

techniques that allowed our planner for the CPP achieve good performance without

sacrificing expressiveness of the model can be used as a basis for creating a grid

planner.

GPRS uses a per-file envelope graph (T3) to derive heuristics used by the critical

path scheduler. This graph is very similar to the per-proposition logical regression

graph of Sekitei 3. Both employ the regression-progression (T2) technique, which

allows on-the-fly discovery of the relevant portion of the problem specification by ac-

cessing external services using a compiler module (T1). The numeric values, e.g. the

availability times, are propagated forward, which allows the planner to admit complex

numeric constraints (T7).

In fact, our implementation allows for adding new types of constraints, which may

involve multiple variables. As an example, we use a gang reservation constraints to

simultaneously reserve multiple links constituting a network path for a data trans-

fer. Using a similar mechanism for early identification of resource conflicts between

different branches of the same workflow is an attractive research direction. While

creation of a per-set graph similar to the second-level graph of Sekitei 3 may be too

expensive due to the large width of the grid workflows, specialized constraints may

provide significant pruning and improve both performance of the planner and the qual-

ity of the solutions.

169

Expansion of the envelope graph is naturally bounded (T3) by the delays along

each of the paths. As the bounds change in the course of constraint propagation after

the plan extraction phase commits some reservations, parts of the envelope graph may

be further expanded. This allows GPRS to identify good candidate actions without

performing exhaustive search.

The suboptimality of solutions found by the current implementation of GPRS is

due to the use of a critical path scheduler. A more advanced plan extraction algorithm

can significantly improve the quality of the solutions. For example, Cesta et al [18]

show that profile-based local search schedulers perform very well when used together

the planning graph based planners.

170

Chapter 8

Conclusions and future work

This thesis has introduced techniques for constructing efficient algorithms for solving

the application configuration problem with expressive models. We also identified the

kinds of information a description of components and environment needs to provide

to enable automated reasoning.

Because of the computational complexity of the problem (see Section 3.3.3), to

achieve good performance, it is imperative to take advantage of the natural restric-

tions of the particular variety of the ACP being solved. In this thesis we presented

algorithms for two such varieties. Both algorithms use the techniques enumerated

in Section 1.3. In Section 8.1 we summarize our insights on when and how these

techniques should be applied to design planners for new domains.

The objective of our work was to provide tools for automated configuration of

applications. The models assumed by our algorithms are, necessarily, an approxima-

tion of the real behavior of the underlying system. In Section 8.2 we present several

extensions that could be incorporated in these models.

171

Our aim in this thesis was to test the limits of applicability of exact search tech-

niques given the unique challenges of the application configuration problem: large

scale open worlds, complex (numeric) dependencies between choices, and the need

to optimize the quality of the solution in the presence of non-reversible functions.

The work described in this thesis allows one to significantly improve performance

and scalability of AI-based planners on the ACP. That said, such improvements alone

may be insufficient to solve realistic problems. Other techniques, in addition to exact

search, may be useful for construction of production-quality real-world systems, and

are discussed in Section 8.3.

8.1 How to design planners for the ACP

Given the undecidability of the general formulation of the application configuration

problem, it is unreasonable to expect that a single algorithm will achieve good perfor-

mance on all varieties of this problem. However, techniques described in this thesis

are applicable across a wide range of problems. In this section we summarize the

basic principles for design of algorithms for the ACP that we discovered based on our

experience with Sekitei and GPRS.

8.1.1 Algorithm

How to hide problem details, such as units of measurement, from the planner? Use the

on-demand compilation technique (T1). The compiler and decompiler are very simple

interfaces, easy to implement for a new framework. They allow to hide semantics of

the problem and communication with external services from the planner, thus making

172

the search algorithm domain-independent.

How to deal with large problem specifications and non-reversible functions? Use regression-

progression combination (T2). The ACP is usually characterized by a small goal spec-

ification and large world state. The regression part of the search algorithm ensures that

only relevant portions of the search space are explored, while the progression part al-

lows the algorithm to use non-reversible functions for pruning. The progression part

also propagates cost estimates, thus efficiently guiding the combined search towards

good solutions.

How to get pruning for numeric functions? Use envelope graphs (T3). An envelope

is a data structure that aggregates information about reachable world state. Envelopes

are (relatively) cheap to compute. The main purpose of envelopes is to identify re-

source conflicts. By doing so, envelopes help prune the search space and may lead to

significant, sometimes exponential, speedup.

How to trade off pruning effectiveness with computational requirements? Use several

envelope graphs organized in a hierarchy (T4). Levels of such a hierarchy communi-

cate with each other by passing (i) relevant operators and data, and (ii) expansion

bounds. Using envelopes of different granularity at different levels of the hierar-

chy makes it possible to simultaneously achieve scalability of the cheapest of the

envelopes and the pruning power of the most expensive one.

How to avoid exhaustive search over the network topology? Use weighted distance as

the heuristic in the coarsest envelope graph. Although, in theory, it may cause loss

173

of strict optimality, usually it does not, while significantly limiting expansion of the

graph.

How to cut loops in And-Or graph expansion? Push infinity (the maximum possible

value) through the graph before expanding a leaf node. In case of decreasing cost

functions, use the minimum possible value instead. This technique helps to avoid

long cycles of propagation and significantly improves performance of the algorithm.

How to encode preferences over feasible plans?Use cost functions depending on the

numeric parameters (T5). Defining such functions for each operator allows the plan-

ner to make local choices, and using a global cost function permits the planner to find

a globally optimal configuration.

How to optimize resource consumption if functions are non-reversible? Use resource

discretization (T6). Although this technique does not guarantee strict optimality, it

helps to significantly improve the quality of solutions without incurring large compu-

tational overhead.

How to encode dependencies between parts of application, which are not limited to a

single object? For complex dependencies, such as gang reservations of resources,

use general constraints (T7). Requiring these constraints to propagate only in one

direction helps to design efficient algorithms for constraint propagation.

How to schedule propagation of updates? In general, cycles in constraint propagation

are unavoidable. However, if all constraints affect a single node and can be computed

174

in one direction, using the lower bound on the distance of the sink node from the goal

to sort constraints leads to significant performance improvements.

8.1.2 Modeling

How to select objects in an ACP? First, all entities we may need to control need to be

represented by objects of the model. This includes components and hosts.

Second, parts of entities may be useful even if we cannot control them directly.

For example, in Sekitei, to facilitate reasoning about sharing of network resources

between concurrent streams, it is useful to model individual links even though we

cannot control them directly.

Finally, data also needs to be represented as objects. We use data items to com-

municate information about component compatibility. This approach permits great

flexibility in specifying application structures, but requires data to be treated as first-

class objects.

How to model dependencies so that algorithms are efficient?Make sure all functions

are easily computable in one, usually forward, direction. This applies to constraints

also.

Second, make sure dependencies affect only one object. This condition helps

to organize efficient propagation of dependencies. More general dependencies, e.g.

those represented by equations, also can be modeled, but at the expense of degrading

performance.

175

How to discretize resources? Cut close to important constants. Make sure that cuts

affect cost bounds, so that the cost-based pruning keeps graphs from explosion.

8.2 Model extensions

In this thesis we investigated design of exact algorithms for planning problems with

complex numeric dependencies between operators. Considering the model used in

our study in the context of real applications, several extensions can be suggested.

First, we assumed that the semantics of data is captured by the data type. In

practice, determining local compatibility of data types may be a hard problem [15].

The two properties of the ACP — large open worlds and non-reversible nature of

functions — are also applicable to the ACP with semantic dependencies, e.g. web

service composition. Evaluation of our techniques on such applications is a topic for

future work.

Second, in this thesis we assume that the data provided by the service descriptions

is complete and precise. Network measurements are inherently noisy. Moreover,

resource values, such as available link bandwidth, constantly fluctuate. It would be

desirable to support such imprecise data in the model. One possible approach worth

investigating is to use distribution functions instead of intervals. An issue related to

supporting imprecise knowledge is the sensitivity analysis of the plans produced.

In large worlds, such as the Internet, it is infeasible to monitor values of all vari-

ables. Therefore, it is desirable that, in addition to the configuration, the planner

outputs a set of variables that can affect feasibility and/or optimality of the current

plan. Note that some of these variables may not be currently used by the configura-

176

tion. For example, it may be useful to monitor the status of a currently busy network

path if a better configuration can be obtained when that path becomes available.

In many systems, it is not reasonable to assume that complete information is avail-

able for a fully automated system. For example, in web-service composition, many

dependencies are still represented in human-readable but informal comments. In such

situations, a mixed initiative system may be a good solution [61]. The role of the

planner in such systems is to check dependencies and make suggestions, leaving the

final decision to the human expert.

All examples used to illustrate our algorithms involved constructing an application

configuration from scratch. In practice, it is often necessary to fix an existing config-

uration when it becomes infeasible or no longer satisfies client requirements due to

a change in resource availability. By defining operators for component migration (in

addition to initial deployment), the algorithms presented in this work can be extended

to apply to application configuration repair as well. However, it is not clear how to

trade off repair effort and the quality of the resulting configuration in a cost function.

Recall that our algorithms require a single function to incorporate all optimization

metrics.

8.3 Algorithm improvements

Both algorithms described in this thesis are centralized planners based on the idea of

planning graphs.

For large-scale deployments it is desirable to have multiple planners communicat-

ing with each other as agents. This way, authority of each planner may be limited

177

to a single administrative domain, thus limiting the need to expose information about

the state of the domain. Each planner constructs an optimal solution for some set of

clients. Communication between cooperative planners would allow them to achieve

a global optimum, thus improving overall performance of the system. For example, a

planner for a newly added client can ask its peer to change a configuration created by

that planner to enable sharing of parts of the application configurations between sev-

eral clients. Such sharing may lead to locally suboptimal configurations, but improve

overall performance of the system.

The performance of the planner and the quality of produced solutions can be

improved even in the centralized case. Earlier (Section 2.2.3) we mentioned that

compilation-based planners provide natural support for optimization, but cannot cope

with large search spaces. The envelope hierarchy described in this thesis provides

efficient pruning of large search spaces. Using compilation into an optimization prob-

lem in additionto the envelope hierarchy may significantly improve the quality of the

solution.

The techniques developed in this thesis target domain-independent planners. Wilkins

and desJardins [93] suggest that domain-independent planners may not be the right so-

lution for real world applications. For example, HTN-based planners [21, 27, 74] can

incorporate domain knowledge, which allows them to exceed scalability of domain-

independent algorithms by orders of magnitude. Using machine-learning techniques

together with a planner, domain-dependent or independent, one can further improve

performance of the algorithm without sacrificing flexibility of the system [94].

The two presented planners — Sekitei and GPRS — represent two extremes in us-

ing the heuristic information provided by the envelope graph(s). Sekitei performs

178

search for a strictly optimal solution with respect to the given model. GPRS, to

achieve good performance, never backtracks on committed decisions. A better way to

use heuristics may be the limited discrepancy search [91], which combines efficiency

(given a high-quality heuristic) with completeness. LDS can also be used as an any-

time algorithm, which may be very helpful in the presence of real-time constraints.

Another alternative for organizing the plan extraction phase is local search [40,

39, 80]. Local search is in general suboptimal, but empirically results in high-quality

solutions and is quite efficient.

8.4 Conclusion

In this thesis we demonstrated that AI planning can be used to design algorithms for

the application configuration problem that achieve good performance without sacri-

ficing expressiveness of the model. We hope that the presented work will contribute

to development of adaptive systems and models for describing component-based dis-

tributed applications.

It is interesting to notice that several other planning domains share the features

of the application configuration problem. In particular, in the aerospace and logistics

domains the choice of actions is often driven by the numerical rather than logical

part. For example, it is not (logically) necessary to refuel unless you are running

(numerically) out of gas. The techniques developed in this thesis are applicable in

such domains as well.

179

Appendix A

Performance of metric planners on

the CPP

A.1 Performance evaluation for existing planners

We evaluated performance of the following three planners on two examples of the

application configuration problem: Sapa 1.02 (April 2004), Metric-FF (2002), LPG-

td (June 2004). All reported measurements were taken on a 1.2GHz Pentium III with

512M of RAM. Sapa is implemented in Java, Metric-FF and LPG-td in C.

Sapa and LPG were among the top performers at the two recent International

Planning Competitions [50] (2002 and 2004). Sapa [24] performs forward search

using a heuristic derived from solving a relaxed problem. The relaxation involves

ignoring numeric effects. However, some numeric information is later incorporated

to update the heuristic estimates. LPG [40, 39] performs local search with restarts.

Metric-FF [49] is a metric variant of FF [48], one of the fastest planners currently

180

available. Metric-FF admits only linear functions, and uses numeric parts of action

specifications to derive heuristics.

None of these planners is guaranteed to find optimal plans.

A.1.1 Webcast application

The CPP does not have the time aspect, so it is compiled into a planning problem with

unit action duration (see Section 3.2.3). The PDDL files for the domain and problem

specifications for the webcast application are provided in Section A.2.

Metric-FF failed to solve the webcast problem. Two operators,placeZp and

placeUn completely undo effects of each other, both logical and numeric. This

causes a loop in one of the internal data structures of FF, and the planner exits with an

error message. In the rest of this section we describe performance of Sapa and LPG-td

on the webcast problem.

Both Sapa and LPG easily solved the problem instance with a direct connection

between two hosts. However, resource-constrained instances of the problem, in which

additional components are required to satisfy the client’s requirements, were challeng-

ing for both planners.

In the domain file shown in Section A.2.1 we used four link crossing operators

with disjoint preconditions to avoid using conditional effects. In all our examples,

among these four operators onlycross2 is used in the plan. The presence of the

other threecross operators negatively affects performance of the planners, because

these operators create logical loops in possible configurations, which can be pruned

only based on numeric information.

We ran both planners with three variations of the domain file. The first one, called

181

oneCross includes only one link crossing operatorcross2 . The twoCross do-

main includescross1 andcross2 operators. Finally,allCross uses all four

link crossing operators.

Further, to make the task easier, we assign CPU resources to hosts so that to limit

the total number of possible configurations. The optimal plan requires 27 units of

CPU on the server host, 36 units on the client host, and does not use resources of any

intermediate hosts. In our problem files, the available CPU values are set to 30, 40,

and 0 respectively.

Sapa easily solved the 2-host problem withoneCross (less than 1 second search

time). On twoCross and allCross domains the search took 8 and 9 seconds

respectively. The answers found for these domains were suboptimal.

For the 6-host problem, Sapa found a solution for theoneCross domain in 10

minutes. On thetwoCross domain, no solution was found in 20 minutes.

The reason for this performance is that Sapa’s heuristics are based on logical

reachability. For the webcast problem these heuristics fail, so Sapa falls back to

exhaustive search and considers all possible application configurations that can be

designed given available network resources. Given the tight CPU amounts in our

problem specification, this approach can find solutions for small instances. However,

if we increase the value of available host CPU, even the 2-host problem becomes

unsolvable for Sapa.

On the 2-host problem, LPG-td (speedconfiguration) found an optimal solution

for theoneCross andtwoCross domains in under a second. For theallCross

domain the search took 1.35 seconds.

On the 6-host network, an optimum plan for theoneCross domain was found in

182

217 seconds. For thetwoCross domain, LPG did not leave theComputing mutex...

stage for more than 20 minutes and was terminated. The source code for LPG is not

yet available, so it is hard to determine the reason for such behavior.

A.1.2 Grid application

We also tested the planners on a simple grid application that involved a sequence of

components combining together groups of four files. In total, the problem involved

9 files, 2 component instances, and 2 network hosts. The bandwidth of the link con-

necting the hosts allows multiple simultaneous file transfers.

This ACP can be compiled into a planning problem with durative actions. Metric-

FF does not support this model. Sapa found a correct plan in 17 minutes. However it

scheduled all data transfers sequentially, so that the final plan had suboptimal duration.

LPG reported an internal error in reachability analysis.

A.2 PDDL specification of the ACP for webcast application

A.2.1 Webcast domain file

(define (domain Webcast)
(:requirements :strips :typing :fluents)
(:types component node interface)
(:constants M T I Z - interface Cl Sp Mr Zp Un - component)
(:predicates (av ?i - interface ?n - node)

(link ?n1 ?n2 - node)
(placed ?c - component ?n - node))

(:functions (lbw ?n1 ?n2 - node)
(cpu ?n - node)
(ibw ?i - interface ?n - node)
(cost))

(:action placeCl
:parameters (?n - node)
:precondition (and (av M ?n) (>= (ibw M ?n) 91) (>= (cpu ?n) 9))

183

:effect (and (placed Cl ?n)
;; The following line is needed for SAPA to avoid
;; LP_Utility.getResProfile: rhs is
;; NOT subsumed by lhs.
(increase (ibw M ?n) 0)
(decrease (cpu ?n) 9) (increase (cost) 1))

)
(:action placeSp

:parameters (?n - node)
:precondition (and (av M ?n) (>= (cpu ?n) (/ (ibw M ?n) 5)))
:effect (and (placed Sp ?n)

(av T ?n) (av I ?n)
(assign (ibw T ?n) (/ (* (ibw M ?n) 7) 10))
(assign (ibw I ?n) (/ (* (ibw M ?n) 3) 10))
(increase (ibw M ?n) 0)
(decrease (cpu ?n) (/ (ibw M ?n) 5))
(increase (cost) (+ 1 (/ (ibw M ?n) 10))))

)
(:action placeMr

:parameters (?n - node)
:precondition (and (av T ?n) (av I ?n)

(>= (cpu ?n) (/ (+ (ibw T ?n) (ibw I ?n)) 5)))
:effect (and (placed Mr ?n) (av M ?n)

(assign (ibw M ?n) (+ (ibw T ?n) (ibw I ?n)))
(increase (ibw T ?n) 0) (increase (ibw I ?n) 0)
(decrease (cpu ?n) (/ (+ (ibw T ?n) (ibw I ?n)) 5))
(increase (cost)(+ 1(/(+ (ibw T ?n)(ibw I ?n))10))))

)
(:action placeZp

:parameters (?n - node)
:precondition (and (av T ?n) (>= (cpu ?n) (/ (ibw T ?n) 10)))
:effect (and (placed Zp ?n) (av Z ?n)

(assign (ibw Z ?n) (/ (ibw T ?n) 2))
(increase (ibw T ?n) 0)
(decrease (cpu ?n) (/ (ibw T ?n) 10))
(increase (cost) (+ 1 (/ (ibw T ?n) 10))))

)
(:action placeUn

:parameters (?n - node)
:precondition (and (av Z ?n) (>= (cpu ?n) (/ (ibw Z ?n) 5)))
:effect (and (placed Un ?n) (av T ?n)

(assign (ibw T ?n) (* (ibw Z ?n) 2))
(increase (ibw Z ?n) 0)
(decrease (cpu ?n) (/ (ibw Z ?n) 5))
(increase (cost) (+ 1 (/ (ibw Z ?n) 5))))

)

184

(:action cross1
:parameters (?i - interface ?from ?to - node)
:precondition (and (av ?i ?from) (link ?from ?to)

(> (ibw ?i ?from) (lbw ?from ?to))
(> (lbw ?from ?to) 0))

:effect (and (av ?i ?to)
(assign (ibw ?i ?to) (lbw ?from ?to))
(increase (ibw ?i ?from) 0)
(assign (lbw ?from ?to) 0)
(increase (cost) (+ 1 (/ (ibw ?i ?from) 10))))

)
(:action cross2

:parameters (?i - interface ?from ?to - node)
:precondition (and (av ?i ?from) (link ?from ?to)

(<= (ibw ?i ?from) (lbw ?from ?to)))
:effect (and (av ?i ?to)

(assign (ibw ?i ?to) (ibw ?i ?from))
(increase (ibw ?i ?from) 0)
(decrease (lbw ?from ?to) (ibw ?i ?from))
(increase (cost) (+ 1 (/ (ibw ?i ?from) 10))))

)
(:action crossBack1

:parameters (?i - interface ?from ?to - node)
:precondition (and (av ?i ?from) (link ?to ?from)

(> (ibw ?i ?from) (lbw ?to ?from))
(> (lbw ?from ?to) 0))

:effect (and (av ?i ?to)
(assign (ibw ?i ?to) (lbw ?to ?from))
(increase (ibw ?i ?from) 0)
(decrease (lbw ?to ?from) (lbw ?to ?from))
(increase (cost) (+ 1 (/ (ibw ?i ?from) 10))))

)
(:action crossBack2

:parameters (?i - interface ?from ?to - node)
:precondition (and (av ?i ?from) (link ?to ?from)

(<= (ibw ?i ?from) (lbw ?to ?from)))
:effect (and (av ?i ?to)

(assign (ibw ?i ?to) (ibw ?i ?from))
(increase (ibw ?i ?from) 0)
(decrease (lbw ?to ?from) (ibw ?i ?from))
(increase (cost) (+ 1 (/ (ibw ?i ?from) 10))))

)
)

185

A.2.2 Webcast problem file

;; Achieving the goal requires splitting the stream and
;; compressing the text portion
(define (problem Webcast6n)

(:domain Webcast)
(:objects n0 n1 n2 n3 n4 n5 - node)
(:init

;; network topology
(link n0 n1) (link n1 n2) (link n2 n3) (link n3 n4)
(link n3 n5) (link n4 n5)

;; network resources
(= (lbw n0 n1) 100)
(= (lbw n1 n2) 100) (= (lbw n2 n3) 70)
(= (lbw n3 n4) 100) (= (lbw n3 n5) 100) (= (lbw n4 n5) 100)
(= (cpu n0) 30) (= (cpu n1) 0) (= (cpu n2) 0) (= (cpu n3) 0)
(= (cpu n4) 0) (= (cpu n5) 40)

;; Initially M is available on n0
(av M n0) (= (ibw M n0) 100)

;; The cost is incremented by every action
(= (cost) 0)

;; To complete specification of the initial state
(= (ibw M n1) 0) (= (ibw M n2) 0)
(= (ibw M n3) 0) (= (ibw M n4) 0) (= (ibw M n5) 0)
(= (ibw T n0) 0) (= (ibw T n1) 0) (= (ibw T n2) 0)
(= (ibw T n3) 0) (= (ibw T n4) 0) (= (ibw T n5) 0)
(= (ibw Z n0) 0) (= (ibw Z n1) 0) (= (ibw Z n2) 0)
(= (ibw Z n3) 0) (= (ibw Z n4) 0) (= (ibw Z n5) 0)
(= (ibw I n0) 0) (= (ibw I n1) 0) (= (ibw I n2) 0)
(= (ibw I n3) 0) (= (ibw I n4) 0) (= (ibw I n5) 0)

)
(:goal (and (placed Cl n5)))
(:metric minimize (cost))

)

A.3 PDDL specification of the ACP for a grid application

A.3.1 Grid domain file

(define (domain GridsTree4)

186

(:requirements :strips :typing :fluents)
(:types component host file)
(:predicates (av ?f - file ?h - host)

(link ?n1 ?n2 - host)
(childA ?p ?c - file) (childB ?p ?c - file)
(childC ?p ?c - file) (childD ?p ?c - file))

(:functions (lbw ?n1 ?n2 - host)
(size ?file - file)
(hasCpu ?host - host)
(cost))

(:durative-action Recompute
:parameters (?host - host ?product ?ca ?cb ?cc ?cd - file)
:duration (= ?duration (/ (size ?product) 2))
:condition (and

;; Dependencies
(over all (childA ?product ?ca))
(over all (childB ?product ?cb))
(over all (childC ?product ?cc))
(over all (childD ?product ?cd))

;; Have all the files
(at start (av ?ca ?host)) (at start (av ?cb ?host))
(at start (av ?cc ?host)) (at start (av ?cd ?host))

;; Have enough CPU. Everything is piecewise constant, so
;; checking in the beginning should be enough
(at start (>= (hasCpu ?host) (/ (size ?product) 5))))

:effect (and
(at end (av ?product ?host))
(at start (decrease (hasCpu ?host)

(/ (size ?product) 5)))
(at end (increase (hasCpu ?host)

(/ (size ?product) 5)))
(at end (increase (cost) (/ (size ?product) 5))))

)

;; Links and bandwidth are specified with
;;(smaller host id) -> (bigger host id)
;; To allow transfers in both ways, we have 2 actions
(:durative-action transferForward

:parameters (?file - file ?from ?to - host)
;; Duration should depend on the available bandwidth, but to
;; keep everything linear we will divide size by a constant

:duration (= ?duration (/ (size ?file) 10))
:condition (and (at start (av ?file ?from))

(over all (link ?from ?to))

187

;; same constant as in duration denominator
(at start (> (lbw ?from ?to) 10)))

:effect (and (at end (av ?file ?to))
;; same constant as in duration denominator
(at start (decrease (lbw ?from ?to) 10))
(at end (increase (lbw ?from ?to) 10))
(at end (increase (cost) (/ (size ?file) 10))))

)
(:durative-action transferBackward

:parameters (?file - file ?from ?to - host)
;; Duration should depend on the available bandwidth, but to
;; keep everything linear we will divide size by a constant
:duration (= ?duration (/ (size ?file) 10))
:condition (and (at start (av ?file ?from))

(over all (link ?to ?from))
;; same constant as in duration denominator
(at start (> (lbw ?to ?from) 10)))

:effect (and (at end (av ?file ?to))
;; same constant as in duration denominator
(at start (decrease (lbw ?to ?from) 10))
(at end (increase (lbw ?to ?from) 10))
(at end (increase (cost) (/ (size ?file) 20))))

)
)

A.3.2 Grid problem file

(define (problem GT4_Problem2)
(:domain GridsTree4)
(:objects host1 host2 - host

Total A B C D Da Db Dc Dd - file)
(:init

(at 0.1 (av A host1)) (at 0.1 (av B host1))
(at 0.1 (av C host1))
(at 0.1 (av Da host1)) (at 0.1 (av Db host1))
(at 0.1 (av Dc host1)) (at 0.1 (av Dd host1))

(= (size A) 40) (= (size B) 40) (= (size C) 40) (= (size D) 40)
(= (size Da) 10) (= (size Db) 10)
(= (size Dc) 10) (= (size Dd) 10)
(= (size Total) 160)

(childA Total A) (childB Total B)
(childC Total C) (childD Total D)
(childA D Da) (childB D Db) (childC D Dc) (childD D Dd)

188

(link host1 host2) (= (lbw host1 host2) 100)
(= (hasCPU host1) 0) (= (hasCPU host2) 100)

(= (cost) 0)
)
(:goal (av Total host1)))

)

189

Appendix B

Compiler interface for the Sekitei

planner

This appendix contains the Compiler interface used by the Sekitei 3 planner (Chap-

ter 6). The purpose of the compiler module is to hide communication with external

services and semantics of the framework actions from the planning algorithm. All

communication between the planner and the compiler is carried using ground vari-

ables and operators.

/**
* The interface for on-demand compilation of framework specific
* CPP into Sekitei. To be implemented by a framework
* @author T.Kichkaylo
*/

public interface Compiler {
/**

* Framework specific initializer.
* @param frameworkProblem a framework specific pointer
* to the problem. For example, a String name of a directory.
* @throws Exception various parsing and IO exceptions
*/

void init(Object frameworkProblem) throws Exception;

190

/**
* Produces a ground String variable name.
* Used in @link{sekitei.formula.VariableExpression}.
* @param thing some framework specific thing, for example,
* a String or a parameterized variable name
* @return ground variable name
*/

String makeName(Object thing);
/**

* Gets ground logical goal state
* @return set of LevelVar for ground propositions that
* should be true in the goal state
*/

HashSet getGoalState();
/**

* @param Name of a ground proposition
* @return LevelVar for the initial level of the proposition
*/

LevelVar getInitialLevel(String prop);
/**

* Gets a set of all LeveledOperators that achieve
* the given proposition
* @param prop a ground proposition that needs to be achieved
* @return ArrayList of ground @link{LevedOperator}s
* that achieve the given proposition
*/

ArrayList opsAchieveProp(LevelVar prop);
/**

* Gets the value of a resource variable in the initial state
* @param thing a ground resource variable
* (e.g. VariableExpression)
* @return the value of this variable or <code>null</code>
*/

Constant getInitialValue(Object thing);
/**

* Gets the optimistic value of a resource variable
* @param thing a ground resource variable
* (e.g. VariableExpression)
* @return the value of this variable
*/

Constant getOptimisticValue(Object thing);
/**

* Compiler-specific estimate of the minimum cost of
* achieving a proposition.
* This is used as an admissible estimate in {@link PropLRG}.
* For example, this method can be used to "seed the path"

191

* in {@link PSFCompiler}.
* @param prop the proposition
* @return lower bound on cost, 0 being the safe bet
*/

int getLowerBoundOnCost(LevelVar prop);
/**

* Determine degradability/upgradability of a variable using an
* operator instance as a helper.
* @param var some representation of the variable
* (e.g. VariableExpression)
* @param lop LeveledOperator being considered, as a helper
* @return -1/0/1/2 (degradable/exact/upgradable/neither)
*/

int getXgradable(Object var, LeveledOperator lop);
}

192

Appendix C

Component descriptions for PSF

webcast application

This appendix contains specifications of the components of the webcast application in

the format native to the Partitionable Services Framework. The component descrip-

tions specify execution preconditions and effects. This specification of the webcast

application was used for evaluation of the Sekitei 2 algorithm (Section 5.4).

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?>
<ListComponents>
<Component>

<Name>Client</Name>
<Linkages>

<Requires>
<Interface><InterfaceName>Media</InterfaceName></Interface>

</Requires>
</Linkages>
<Conditions>

<Expression>(Node.CPU > 9)</Expression>
<Expression>(Media.BW > 80)</Expression>
<Expression>(Media.LowRes = True)</Expression>

</Conditions>
<Effects>

193

<FloatAssignment>Node.CPU:=(Node.CPU - 9)</FloatAssignment>
</Effects>

</Component>

<Component>
<Name>Merger</Name>
<Linkages>

<Implements>
<Interface><InterfaceName>Media</InterfaceName></Interface>

</Implements>
<Requires>

<Interface><InterfaceName>Text</InterfaceName></Interface>
<Interface><InterfaceName>Image</InterfaceName></Interface>

</Requires>
</Linkages>
<Conditions>

<Expression>(Node.CPU > 7)</Expression>
<Expression>(Image.LowRes = True)</Expression>

</Conditions>
<Effects>

<FloatAssignment>Node.CPU:=(Node.CPU - 7)</FloatAssignment>
<FloatAssignment>Media.BW:=(Text.BW + Image.BW)</FloatAssignment>
<FloatAssignment>Media.LowRes:=True</FloatAssignment>

</Effects>
</Component>

<Component>
<Name>Unzip</Name>
<Linkages>

<Implements>
<Interface><InterfaceName>Text</InterfaceName></Interface>

</Implements>
<Requires>

<Interface><InterfaceName>Zip</InterfaceName></Interface>
</Requires>

</Linkages>
<Conditions>

<Expression>(Node.CPU > 2)</Expression>
</Conditions>
<Effects>

<FloatAssignment>Node.CPU:=(Node.CPU - 2)</FloatAssignment>
<FloatAssignment>Text.BW:=(Zip.BW * 2)</FloatAssignment>

</Effects>
</Component>

<Component>

194

<Name>Zip</Name>
<Linkages>

<Implements>
<Interface><InterfaceName>Zip</InterfaceName></Interface>

</Implements>
<Requires>

<Interface><InterfaceName>Text</InterfaceName></Interface>
</Requires>

</Linkages>
<Conditions>

<Expression>(Node.CPU > 4)</Expression>
</Conditions>
<Effects>

<FloatAssignment>Node.CPU := (Node.CPU - 4)</FloatAssignment>
<FloatAssignment>Zip.BW := (Text.BW * 0.5)</FloatAssignment>

</Effects>
</Component>

<Component>
<Name>Splitter</Name>
<Linkages>

<Implements>
<Interface><InterfaceName>Text</InterfaceName></Interface>
<Interface><InterfaceName>Image</InterfaceName></Interface>

</Implements>
<Requires>

<Interface><InterfaceName>Media</InterfaceName></Interface>
</Requires>

</Linkages>
<Conditions>

<Expression>(Node.CPU > 7)</Expression>
</Conditions>
<Effects>

<FloatAssignment>Node.CPU := (Node.CPU - 7)</FloatAssignment>
<FloatAssignment>Text.BW := (Media.BW * 0.8)</FloatAssignment>
<FloatAssignment>Image.BW := (Media.BW * 0.2)</FloatAssignment>
<FloatAssignment>Image.LowRes := (Media.LowRes)</FloatAssignment>

</Effects>
</Component>

<Component>
<Name>Cleaner</Name>
<Linkages>

<Implements>
<Interface><InterfaceName>Image</InterfaceName></Interface>

</Implements>

195

<Requires>
<Interface><InterfaceName>Image</InterfaceName></Interface>

</Requires>
</Linkages>
<Conditions><Expression>(Node.CPU > 1)</Expression></Conditions>
<Effects>

<FloatAssignment>Node.CPU := (Node.CPU - 1)</FloatAssignment>
<FloatAssignment>Image.LowRes := True</FloatAssignment>

</Effects>
</Component>

</ListComponents>

196

Appendix D

Grid application test

This appendix provides the complete specification of the synthetic application used for

evaluation of the GPRS algorithm (Chapter 7). The instance shown has the following

parameters:C = 1, N = 2, S = 1, W = 2, H = 1.

TheApplicationsection contains the names of Java classes implementing problem-

specific component and file types. The content of the XML tags describing compo-

nents and file instances (Componentand GroundFile), containing problem-specific

initialization information, is passed to the constructors of the dynamically loaded

classes.

The problem-specific component and file types are required to implement a simple

interface, and can be considered a part of the on-demand compiler (T1) for GPRS.

TheNetworksection describes properties of the nodes and links using piecewise-

constant functions (slots). TheData section specifies the initial availability of files

on hosts; and theGoal section contains the file-host pair representing the goal of the

workflow to be constructed.

197

<GridProblem>

<Application>
<Component id="merger"

classname="rootpackage.grids.kernel.KernelMerger"
time="40" width="2" height="1" />

<Component id="splitter"
classname="rootpackage.grids.kernel.KernelSplitter"
time="30" width="2" />

<Component id="processor"
classname="rootpackage.grids.kernel.KernelProcessor"
time="10" height="1" />

<GroundFile id="middle"
classname="rootpackage.grids.kernel.KernelFileMiddle"
size="10"/>

<GroundFile id="merged"
classname="rootpackage.grids.kernel.KernelFileMerged"
size="100"/>

</Application>

<Network>
<Node id="Center">

<Slot start="0" end="inf" value="0"/>
</Node>
<Node id="rtA">

<Slot start="0" end="inf" value="0"/>
</Node>
<Node id="A0">

<Slot start="0" end="inf" value="1"/>
</Node>
<Node id="A1">

<Slot start="0" end="inf" value="1"/>
</Node>

<Link id="lrA" from="rtA" to="Center">
<Slot start="0" end="inf" value="30"/>

</Link>
<Link id="lrA0" from="rtA" to="A0">

<Slot start="0" end="inf" value="10"/>
</Link>
<Link id="lA0-1" from="A0" to="A1">

<Slot start="0" end="inf" value="10"/>
</Link>
<Link id="lrA1" from="rtA" to="A1">

<Slot start="0" end="inf" value="10"/>
</Link>

198

</Network>

<Data>
<DataItem>

<GroundFile type="middle" segment="1" level="1" offset="1"/>
<Node ref="A0" />

</DataItem>
<DataItem>

<GroundFile type="middle" segment="1" level="1" offset="2"/>
<Node ref="A1" />

</DataItem>
</Data>

<Goal>
<GroundFile type="merged" segment="1"/>
<Node ref="A0" />

</Goal>
</GridProblem>

199

Bibliography

[1] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman,

S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke. Secure, efficient data trans-

port and replica management for high-performance data-intensive computing.

In Proc. of IEEE Mass Storage Conference, 2001.

[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Lud-

wig, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web

services agreement specification (WS-Agreement) version 1.1.

http://www.gridforum.org/Meetings/GGF11/Documents/draft-ggf-graap-

agreement.pdf, 2004.

[3] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. McIlraith,

S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng. DAML-S:

Semantic markup for web services. InProc. of International Semantic Web

Working Symposium (SWWS), 2001.

[4] F. Bacchus and Y. W. Teh. Making forward chaining relevant. InProc. of

International Conference on AI Planning and Scheduling (AIPS), 1998.

200

[5] T. Bedrax-Weiss, C. McGann, and S. Ramakrishnan. Formalizing resources for

planning. InProc. of ICAPS’03 Workshop on PDDL, 2003.

[6] G. B. Berriman, J. C. Good, A. C. Laity, A. Bergou, J. Jacob, D. S. Katz,

E. Deelman, C. Kesselman, G. Singh, M.-H. Su, and R. Williams. Montage:

A grid enabled image mosaic service for the national virtual observatory. In

Proc. of Astronomical Data Analysis Software and Systems (ADASS) Confer-

ence, 2003.

[7] S. Binato, W. Hery, D. Loewenstern, and M. Resende. A GRASP for job shop

scheduling. In P. Hansen and C.C. Ribeiro, editors,Essays and surveys on

metaheuristics. Kluwer Academic Publishers, 2001.

[8] A. Blum and M. Furst. Fast planning through planning graph analysis.Artificial

Intelligence, 90(1-2):281–300, 1997.

[9] J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal, G. Mehta, and

K. Vahi. The role of planning in grid computing. InProc. of International

Conference on Automated Planning and Scheduling (ICAPS), 2003.

[10] J. Blythe, Y. Gil, and E. Deelman. Coordinating workflows in shared grid

environments. InProc. of ICAPS’04 Workshop on Planning and Scheduling

for Web and Grid Services, 2004.

[11] B. Bonet and H. Geffner. Planning as heuristic search: New results. InProc.

of European Conference on Planning (ECP), 1999.

[12] F. Bustamante and K. Schwan. Active Streams: An approach to adaptive dis-

201

tributed systems. InProc. of Workshop on Hot Topics in Operating Systems

(HotOS), 2001.

[13] T. Bylander. Complexity results for planning. InProc. of International Joint

Conference on Artificial Intelligence (IJCAI), 1991.

[14] T. Bylander. An average case analysis of planning. InProc. of National Con-

ference on Artificial Intelligence (AAAI), 1993.

[15] D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in

expressive description logics. In A. Robinson and A. Voronkov, editors,Hand-

book of Automated Reasoning, pages 1581–1634. Elsevier Science Publishers,

2001.

[16] K. Calvert, M. Doar, and E. Zegura. Modeling Internet topology.IEEE Com-

munications Magazine, 35(6):160–163, June 1997.

[17] A. Cesta, A. Oddi, and S. Smith. A constraint-based method for project

scheduling with time windows.Journal of Heuristics, 8(1), 2002.

[18] A. Cesta, F. Pecora, and R. Rasconi. Biasing the structure of scheduling prob-

lems through classical planners. InProc. of ICAPS Workshop on Integrating

Planning into Scheduling (WIPIS), 2004.

[19] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, C. Kesselman,

P. Kunszt, M. Ripeanu, K. Stockinger, and B. Tierney. Giggle: A framework

for constructing scalable replica location services. InProc. of IEEE Supercom-

puting, 2002.

202

[20] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data

grid: Towards an architecture for the distributed management and analysis of

large scientific datasets.Journal of Network and Computer Applications, 2001.

[21] K. Currie and A. Tate. O-Plan: the open planning architecture.Artificial Intel-

ligence, 52:49–86, 1991.

[22] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz. An architecture

for a secure service discovery service. InProc. of International Conference on

Mobile Computing and Networking (MobiCom), 1999.

[23] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks.Artificial

Intelligence, 49:61–95, 1991.

[24] M. Do and S. Kambhampati. Sapa: A scalable multi-objective metric temporal

planner.Journal of Artificial Intelligence Research, 2003.

[25] M. B. Do and S. Kambhampati. Solving planning-graph by compiling it into

CSP. InProc. of International Conference on AI Planning and Scheduling

(AIPS), 2000.

[26] S. Edelkamp and J. Hoffmann. PDDL2.2: The language for the classical part

of the 4th international planning competition. Technical report, University of

Freiburg, 2003.

[27] K. Erol, J. Hendler, and D. Nau. UMCP: A sound and complete procedure for

hierarchical task-network planning. InProc. of International Conference on AI

Planning and Scheduling (AIPS), pages 249–254, 1994.

203

[28] K. Erol, D. Nau, and V. Subrahmanian. Complexity, decidability and undecid-

ability results for domain-independent planning: A detailed analysis. Technical

Report CS-TR-2797, University of Maryland, 1991.

[29] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An

approach to planning with incomplete information. InProc. International Con-

ference on the Principles of Knowledge Representation and Reasoning (KR),

1992.

[30] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.

Intl. Journal of Supercomputer Applications and High Performance Comput-

ing, 11(2):115–128, 1997.

[31] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A dis-

tributed resource management architecture that supports advance reservations

and coallocation. InProc. of International Workshop on Quality of Service

(IWQoS), 1999.

[32] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An

open grid services architecture for distributed systems integration. Open Grid

Service Infrastructure WG, Global Grid Forum, 2002.

[33] I. Foster, A. Roy, and V. Sander. A quality of service architecture that com-

bines resource reservation and application adaptation. InProc. of International

Workshop on Quality of Service (IWQoS), 2000.

[34] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A virtual data system

204

for representing, querying, and automating data derivation. InProc. of Confer-

ence on Scientific and Statistical Database Management (SSDBM), 2002.

[35] M. Fox and D. Long. PDDL2.1: An extension to PDDL for modelling time

and metric resources. Technical report, University of Durham, 2001.

[36] J. Frank and E. Kurklu. SOFIA’s choice: Scheduling observations for an air-

borne observatory. InProc. of International Conference on Automated Plan-

ning and Scheduling (ICAPS), 2003.

[37] X. Fu and V. Karamcheti. Planning for network-aware paths. InProc. of IFIP

International Conference on Distributed Applications and Interoperable Sys-

tems (DAIS), 2003.

[38] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS: Composable, Adap-

tive Network Services infrastructure. InProc. of USENIX Symposium on Inter-

net Technologies and Systems (USITS), March 2001.

[39] A. Gerevini, A. Saetti, and I. Serina. Planning in PDDL2.2 domains with LPG-

TD. In International Planning Competition (in conjunction with ICAPS-04),

abstract booklet of the competing planners, 2004.

[40] A. Gerevini and I. Serina. LPG: a planner based on local search for planning

graphs. InProc. of International Conference on AI Planning and Scheduling

(AIPS), 2002.

[41] M. Ghallab and H. Laruelle. Representation and control in IxTeT, a temporal

planner. InProc. of International Conference on AI Planning and Scheduling

(AIPS), 1994.

205

[42] K. Golden. Leap before you look: Information gathering in the PUCCINI

planner. InProc. of International Conference on AI Planning and Scheduling

(AIPS), 1998.

[43] P. Goldsack, J. Guijarro, A. Lain, G. Mecheneau, P. Murray, and P. Toft. Smart-

Frog: Configuration and automatic ignition of distributed applications. Tech-

nical report, HP, 2003.

[44] S. Gribble, M. Welsh, R. von Behren, E. Brewer, D. Culler, N. Borisov, S. Cz-

erwinski, R. Gummadi, J. Hill, A. Joseph, R. Katz, Z. M. Mao, S. Ross, and

B. Zhao. The Ninja architecture for robust Internet-scale systems and services.

Computer Networks, 35(4):473–497, 2001.

[45] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths.IEEE Transactions on Systems Science

and Cybernetics, SSC-4(2), 1968.

[46] P. Haslum and H. Geffner. Heuristic planning with time and resources. InProc.

of IJCAI-01 Workshop on Planning with Resources, 2001.

[47] M. Helmert. Decidability and undecidability results for planning with numer-

ical state variables. InProc. of International Conference on AI Planning and

Scheduling (AIPS), 2002.

[48] J. Hoffmann. A heuristic for domain independent planning and its use in an

enforced hill-climbing algorithm. InProc. of the 12th International Symposium

on Methodologies for Intelligent Systems (ISMIS-00), 2000.

206

[49] J. Hoffmann. Extending FF to numerical state variables. InProc. of European

Conference on Artificial Intelligence (ECAI), 2002.

[50] International planning competition. http://ls5-www.cs.uni-dortmund.de/

[51] A.-A. Ivan, J. Harman, M. Allen, and V. Karamcheti. Partitionable services:

A framework for seamlessly adapting distributed applications to heteroge-

nous environments. InProc. of the IEEE International Symposium on High-

Performance Distributed Computing (HPDC), 2002.

[52] The Jini architecture specification. http://www.sun.com/jini/specs/jini12.pdf.

[53] A. Jónsson and J. Frank. A framework for dynamic constraint reasoning using

procedural constraints. InProc. of European Conference on Artificial Intelli-

gence (ECAI), 2000.

[54] A. Jónsson, P. Morris, N. Muscettola, and K. Rajan. Planning in interplane-

tary space: Theory and practice. InProc. of International Conference on AI

Planning and Scheduling (AIPS), 2000.

[55] H. Kautz and B. Selman. Planning as satisfiability. InProc. of European Con-

ference on Artificial Intelligence (ECAI), 1992.

[56] H. Kautz and B. Selman. BLACKBOX: A new approach to the application of

theorem proving to problem solving. InProc. of AIPS-98 Workshop Planning

as Combinatorial Search, 1998.

[57] H. Kautz and J. Walser. Integer optimization models of AI planning problems.

Knowledge Engineering Review, 15(1):101–117, 2000.

207

[58] T. Kichkaylo. Timeless planning and the component placement problem. In

Proc. of ICAPS’04 Workshop on Planning and Scheduling for Web and Grid

Services, 2004.

[59] T. Kichkaylo and A. Ivan. Network EDitor.

http://www.cs.nyu.edu/pdsg/projects/partitionable-services/ned/ned.htm,

2002.

[60] T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained component deployment

in wide-area networks using AI planning techniques. InProc. of International

Parallel and Distributed Processing Symposium (IPDPS), 2003.

[61] J. Kim and J. Blythe. Supporting plan authoring and analysis. InProc. of

International Conference on Intelligent User Interfaces (IUI), 2003.

[62] J. Koehler. Planning under resource constraints. InProc. of European Confer-

ence on Artificial Intelligence (ECAI), 1998.

[63] J. Koehler and J. Hoffmann. Handling of inertia in a planning system. Technical

Report 122, Albert-Ludwigs-University, 1999.

[64] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending planning

graphs to an ADL subset. InProc. of European Conference on Planning (ECP),

1997.

[65] R. Korf. Depth-first iterative deepening: An optimal admissible tree search.

Artificial Intelligence, 1985.

208

[66] R. Korf. Divide-and-conquer bidirectional search: First results. InProc. of

International Joint Conference on Artificial Intelligence (IJCAI), 1999.

[67] P. Laborie. Algorithms for propagating resource constraints in AI planning

and scheduling: Existing approaches and new results.Artificial Intelligence,

143(2):151–188, 2003.

[68] M. Likhachev, G. Gordon, , and S. Thrun. ARA*: Anytime A* with prov-

able bounds on sub-optimality. InProc. of Advances in Neural Information

Processing Systems (NIPS), 2003.

[69] J. Lopez and D. O’Hallaron. Evaluation of a resource selection mechanism for

complex network services. InProc. of the IEEE International Symposium on

High-Performance Distributed Computing (HPDC), 2001.

[70] J. MacLaren, R. Sakellariou, K. Krishnakumar, J. Garibaldi, and D. Ouelhadj.

Towards service level agreement based scheduling on the grid. InProc. of

ICAPS’04 Workshop on Planning and Scheduling for Web and Grid Services,

2004.

[71] D. V. McDermott. Using regression-match graphs to control search in planning.

Artificial Intelligence, 109(1-2):111–159, 1999.

[72] D. V. McDermott. Estimated-regression planning for interactions with web

services. InProc. of International Conference on AI Planning and Scheduling

(AIPS), 2002.

[73] N. Muscettola. Computing the envelope for stepwise-constant resource allo-

209

cations. InProc. of International Conference on Principles and Practice of

Constraint Programming (CP), 2002.

[74] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, and F. Yaman.

SHOP2: An HTN planning system.Journal of Artificial Intelligence Research,

20:379–404, 2003.

[75] X. Nguyen and S. Kambhampati. Reviving partial order planning. InProc. of

International Joint Conference on Artificial Intelligence (IJCAI), 2001.

[76] Object Management Group. CORBA Component Model.http://www.omg.org/,

2003.

[77] E. P. D. Pednault. ADL: Exploring the middle ground between STRIPS and

the situation calculus. InProc. International Conference on the Principles of

Knowledge Representation and Reasoning (KR), 1989.

[78] J. Penberthy and D. Weld. Temporal planning with continuous change. InProc.

of National Conference on Artificial Intelligence (AAAI), 1994.

[79] J. S. Penberthy and D. Weld. UCPOP: A sound, complete, partial order planner

for ADL. In Proc. International Conference on the Principles of Knowledge

Representation and Reasoning (KR), 1992.

[80] G. Rabideau, B. Engelhardt, and S. Chien. Using generic preferences to in-

crementally improve plan quality. InProc. of International Conference on AI

Planning and Scheduling (AIPS), 2000.

210

[81] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource

management for high throughput computing. InProc. of the IEEE International

Symposium on High-Performance Distributed Computing (HPDC), 1998.

[82] R. Raman, M. Livny, and M. Solomon. Policy driven heterogeneous resource

co-allocation with gangmatching. InProc. of the IEEE International Sympo-

sium on High-Performance Distributed Computing (HPDC), 2003.

[83] I. Refanidis and I. Vlahavas. Heuristic planning with resources. InProc. of

European Conference on Artificial Intelligence (ECAI), 2000.

[84] P. Reiher, R. Guy, M. Yarvis, and A. Rudenko. Automated planning for open

architectures. InProc. of International Conference on Open Architectures and

Network Programming (OPENARCH), 2000.

[85] S. Russell. Efficient memory-bounded search methods. InProc. of European

Conference on Artificial Intelligence (ECAI), 1992.

[86] J. Shin and E. Davis. Continuous time in a SAT-based planner. InProc. of

National Conference on Artificial Intelligence (AAAI), 2004.

[87] D. Smith, J. Frank, and A. Jónsson. Bridging the gap between planning and

scheduling.Knowledge Engineering Review, 15(1), 2000.

[88] B. Srivastava. Realplan: Decoupling causal and resource reasoning in planning.

In Proc. of National Conference on Artificial Intelligence (AAAI), 2000.

[89] H. Tangmunarunkit, S. Decker, and C. Kesselman. Ontology-based resource

matching in the Grid - the Grid meets the Semantic Web. InProc. of the First

211

Workshop on Semantics in Peer-to-Peer and Grid Computing, Budapest, Hun-

gary, 2003.

[90] D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. InGrid Com-

puting: Making the Global Infrastructure a Reality. John Wiley & Sons Inc.,

2002.

[91] M. Ginsberg W. Harvey. Limited discrepancy search. InProc. of International

Joint Conference on Artificial Intelligence (IJCAI), 1995.

[92] Z. Wang and D. Garland. Task-driven computing. Technical Report CMU-CS-

00-154, School of Computer Science, Carnegie Mellon University, 2000.

[93] D. Wilkins and M. desJardins. A call for knowledge-based planning. InProc. of

AIPS Workshop on Analysing and Exploiting Domain Knowledge for Efficient

Planning, 2000.

[94] E. Winner and M. Veloso. Automatically acquiring planning templates from

example plans. InProc. of the AIPS-2002 Workshop on Exploring Real-World

Planning, 2002.

[95] S. Wolfman and D. Weld. Combining linear programming and satisfiability

solving for resource planning.Knowledge Engineering Review, 2001.

[96] R. Wolski. Forecasting network performance to support dynamic scheduling

using the network weather service. InProc. of the IEEE International Sympo-

sium on High-Performance Distributed Computing (HPDC), 1997.

[97] Web Service Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.

212

[98] M. Yarvis, P. Reiher, and G. Popek. Conductor: A framework for distributed

adaptation. InProc. of Workshop on Hot Topics in Operating Systems (HotOS),

1999.

[99] H. Younes and R. Simmons. On the role of ground actions in refinement plan-

ning. In Proc. of International Conference on AI Planning and Scheduling

(AIPS), 2002.

[100] A. Zaremski and J. Wing. Specification matching of software components.

ACM Transactions on Software Engineering and Methodology, 6(4):333–369,

1997.

[101] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an internetwork. In

Proc. of IEEE Infocom, volume 2, pages 594–602, 1996.

[102] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A new

resource ReSerVation Protocol.IEEE Network, 1993.

[103] D. Zhou and K. Schwan. Eager Handlers - communication optimization in

Java-based distributed applications with reconfigurable fine-grained code mi-

gration. InProc. of 3rd Intl. Workshop on Java for Parallel and Distributed

Computing, 2001.

213

