Fault-tolerant Parallel Processing Combining
Linda, Checkpointing, and Transactions

Karpjoo Jeong
January, 1996

A dissertation in the Department of Computer Science submitted to the faculty of the
Graduate School of Arts and Sciences in partial fulfillment of the requirements for the
degree of Doctor of Philosophy at New York University.

Approved:

Professor Dennis Shasha
Research Advisor

ABSTRACT
Fault-tolerant Parallel Processing Combining Linda,

Checkpointing, and Transactions
Karpjoo Jeong

Research Advisor: Professor Dennis Shasha

With the advent of high performance workstations and fast LANs, networks of work-
stations have recently emerged as a promising computing platform for long-running
coarse grain parallel applications. Their advantages are wide availability and cost-
effectiveness, as compared to massively parallel computers. Long-running computation
in the workstation environment, however, requires both fault tolerance and the effective
utilization of idle workstations.

In this dissertation, we present a variant of Linda, called Persistent Linda (PLinda),
that treats these two issues uniformly: specifically, PLinda treats non-idleness as failure.

PLinda provides a combination of checkpointing and transaction support on both
data and program state (an encoding of continuations). The traditional transaction
model is optimized and extended to support robust parallel computation. Treatable
failures include processor and main memory hard and slowdown failures, and network
omission and corruption failures.

The programmer can customize fault tolerance when constructing an application,
trading failure-free performance against recovery time. When creating a PLinda pro-
gram, the programmer can decide on the frequency of transactions and the encoding of
continuations to be saved upon transaction commit. At runtime, the programmer can
decide to suppress certain continuations for better failure-free performance.

PLinda has been applied to corporate bond index statistics computation and biolog-
ical pattern recognition. Typical speedups over conventional sequential programs range
over 15 times for 30 processors.

ii

Acknowledgments

I have been very fortunate to have had Prof. Dennis Shasha as my advisor during my
Ph.D. study. For the last six years, he has not only given me many precious opportunities
for interesting research problems but also taught me how to tackle those problems. I am
extremely grateful to him for helping me out whenever I needed his help.

I would like to give special thanks to friends at Courant for their friendship: Nick
Afshartous, Arash Baratloo, Shih-Hua Chao, Churngwei Chu, Yaw-Tai Lee, Bin Li, Jyh-
Jong Liu, Peter Piatko, Suren Talla, Chih-Chien Tu, Tsong-Li Wang, Roman Yangarber,
Chi Yao, and Peter Wyckoff (in the alphabetical order). I feel grateful to Suren Talla
and Peter Wyckoff for reading my thesis draft and giving me a lot of good comments.
Suren has also made a great deal of contribution to the development of the current
PLinda prototype system. Tsong-Li Wang and I have been working on various projects
together and he has always been a great inspiration to me. Yaw-Tai Lee, Jyh-Jong Liu,
Chih-Chien Tu and Chi Yao have always treated me like one of their Chinese friends.

I would like to give many thanks to friends at the Korean Graduate Students Asso-
ciation, NYU, especially, Jungsup Kim and Jae Woo Kim. I would also like to thank
my two ex-roommates, June-Yub Lee and Joonsoo Choi. They put up with my habit to
work late (often until 3:00am or 4:00am).

Finally, I would like to thank my parents, especially my mother, for their unlimited
and unconditional love and trust. Without them, I could not have made it. There
are two special friends, Jung Woo and Haekyung Kim that I must express my sincere
gratitude. They have given me more than I could expect from any friend.

January, 1996
Karpjoo Jeong

iii

Contents

1 Introduction
1.1 Motivation oL e
1.2 Networked Workstations as a Parallel Computing Platform
1.3 Developing Fault-tolerant Software
1.3.1 Failure Model o o
1.3.2 Program Structuring Paradigms
1.3.3 Fault-tolerant Programming Languages
1.4 Linda 00
1.4.1 Brief Review of Linda
1.4.2 Linda and Fault Tolerance
1.4.3 Linda and Transactions
1.5 Persistent Linda 2.0 oL o
1.6 Outline of the Dissertation

2 Persistent Linda

2.1 Introduction L L
2.2 Transactions and Robust Parallel Computation in the Linda Model
2.3 Transactions in PLinda o oo o
2.4 Fault-tolerant Multiple Tuple Spaces
2.5 Continuation Committing
2.6 Tuple Groups: a namespace management issue
2.7 Process Management L Lo
2.8 Related worko

2.8.1 Fault Tolerance Work on Linda

2.8.2 Programming Languages and Systems Supporting Transactions . .
2.9 Summaryo e e e e e

3 Tunable Execution
3.1 Introduction e
3.2 Motivation e e e e e e e e e
3.3 Commit-consistent Execution
3.4 Message Logging/Replay
3.5 Coordinated Checkpointing
3.6 Correctness Proof

v

10
12
18
22
23
26
27
27
29
30

3.6.1 Proof s
3.7 Related Work o
3.8 Summaryo e e e e e e
4 Using Idle Workstations for Parallel Computation
4.1 Introduction oL
4.2 Finding Idle Workstations and Scheduling Processes
421 TssUes . . . ot e e e
4.2.2 The Current PLinda Design
4.3 Process Resiliency as Process Migration
4.4 PLinda Infrastructure oL o
4.4.1 Major Runtime System Components
4.4.2 Parallel Virtual Machine in PLinda
4.5 Related Worko o
4.6 SUMMATY . . . v o vt e e e e e e e e e
5 Implementation and Experiments
5.1 PLinda Server L L e
5.1.1 Architecture L L
5.1.2 Tuple Space Management
5.1.3 Transactions e
5.1.4 Process Management L oL
5.1.5 Tunable Ixecution of Continuation Committing
5.1.6 Tuple Space Checkpointing
5.2 Daemon Processes e
5.3 Administration Process o oo 0
5.4 Experimentso e e e e
5.4.1 Performance of PLinda primitive operations
5.4.2 Performance of the Three Execution Methods
5.4.3 Biological Pattern Discovery,
5.4.4 Corporate Bond Index Statistics
B.O Summary ... e e e e e
6 Conclusions and Future Work
6.1 Future Work o o
Bibliography

48
48
49
49
50
51
52
52
53
54
55

57
57
58
59
62
63
66
68
68
69
71
71
72
76
80
83

84
86

87

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3

4.1

5.1
5.2
5.3
5.4
5.5
5.6

5.7

5.8

5.9

Execution of A Process as Multiple Transactions 13
Master/Worker Programming Model 15
A Fault Tolerant Worker Process 16
A Master Processo Lo 17
Checkpoint-protected Tuple Space 20
Stable Tuple Space L 21
A Fault Tolerant Master Process 24
Tuple Space Creation and Destruction in PLinda 25
Producer in PLinda oo o 27
Consumer in PLinda oL oo 28
Commit-consistent Execution 0 0L 35
Message Logging and Replay, 37
Coordinated Checkpointing 39
Parallel Virtual Machine in PLinda 54
Server Architecture oL 59
Structure of a Tuple Group L L o 61
Special Tuple Groups for Process Management 66
Algorithm for the PLinda daemon process 69
Performance of failure recovery o oo, 75
Performance results of the PLinda biological pattern discovery program

with seven Sparch™s Lo 78
Performance results of the PLinda biological pattern discovery program

on 30 Sparch’s at AT&T Bell Labs in Whippany 79
Performance of the PLinda Bond Index Statistics Computation Program

with Seven Sparch’™s L L 81
Performance of the PLinda Bond Index Statistics Computation Program

with 45 Machines L L 82

vi

Chapter 1

Introduction

1.1 Motivation

Many scientific and engineering problems from Biology, Physics and other areas require
computing a large number of mostly independent tasks[30, 32, 50, 63, 64]. A typical
example is the analysis of a large (high energy) physics data set[30, 32]. The data set
consists of 10°> — 10® event records which can be analyzed independently. The analysis of
each event record is usually compute-intensive. Regarding these problems, we observe:

o Parallel processing is indispensable due to the enormous amount of computation.

Fortunately, they are coarse grain parallel or embarrassingly parallelizable. That
is, it is straightforward to parallelize them into large seldomly interacting tasks.
Unfortunately, the necessary process interaction is tedious and error-prone if done
manually.

e Fault tolerance is crucial because execution of these applications takes a lot of time
even with parallel computers. The probability of failure grows as execution time
or the number of processors increases. Although a single processor failure is in
fact rare, the possibility of failure cannot be ignored if execution time is on the
order of months or the execution involves a few hundred processors. Without fault
tolerance, a single component failure can cause an entire computation to be lost.

Fortunately, there is a great potential to easily customize lightweight fault tolerance
for these problems. For example, atomic execution of each task is natural for
these problems because each task can be executed independently of other tasks.
Given fault tolerance abstractions such as transactions and reliable storage, we
can maintain the description of all the tasks and all the results collected from
the completed tasks in reliable storage and design processes to execute each task
atomically. In fact, such a scheme has already been demonstrated in fault-tolerant
parallel computing systems such as F'T-Linda[4] and PLinda[38].

o Using workstations connected by LANs or even WANSs, large scale high performance
parallel processing is possible for these problems because computation basically
consists of a large number of mostly independent tasks.

However, it is difficult for the end-user to find workstations which are idle for a
long time. Workstations are only intermittently idle as a rule. A system which can
utilize intermittently idle workstations can make computing on networked worksta-
tions very cost effective. In fact, for sequential or semi-parallel (i.e., multiple tasks
with no inter-dependency) jobs, there are systems[2, 14, 18, 11, 25, 28, 44, 48, 52, 53]
to utilize idle or under-utilize workstations effectively. For parallel computation,
there are also systems[2, 11, 25, 44].

In the last several years, there has been a proliferation of commercial and research
prototype parallel software systems on networks of workstations. Popular systems in-
clude Linda[13], PVM][60, 24], MPI[29] and Express. Unfortunately, few support fault
tolerance or utilization of idle workstations.

Also, there has been a considerable amount of work [37, 51] on fault tolerance in
distributed systems, but most of the work has not addressed the problem of utilizing idle
workstations for parallel computation.

There have been research efforts[2, 14, 18, 11, 25, 48, 53] to develop software systems
to utilize idle workstations and some of them[2, 14, 11, 25] are designed to address fault
tolerance. However, to our knowledge, there is no system to aim at supporting both
parallel processing and fault tolerance together with the utilization of idle workstations.

Addressing the three challenges —parallel processing on non-shared memory ma-
chines, fault tolerance, and effective use of intermittently idle machines — is what this
dissertation describes for the first time. We present a Linda-variant parallel computing
system, called Persistent Linda 2.0 (hereafter, just PLinda), which both supports fault
tolerance and utilizes idle workstations.

1.2 Networked Workstations as a Parallel Computing Plat-
form

Recently, networks of workstations have emerged as a promising parallel computing
platform. Their advantages over massively parallel computers are wide availability and
cost-effectiveness. First, unlike supercomputers installed in a few institutions, these
machines are widely available; many institutions have hundreds of high performance
workstations which are unused most of the time[25, 52]. Second, they are already paid for
and are connected via communication networks; no additional cost is required for parallel
processing. Finally, they can rival supercomputers with their aggregate computing power
and main memory.

However, most machines are private (they are usually sitting on people’s desks and
are supposed to be used by them) and the owners of these workstations are afraid to allow
compute-intensive jobs to be run on their machine for fear of performance degradation
when they do want to use their machine. Therefore, it is crucial to guarantee that
workstations will be used only while they are idle.

To address this issue, various work-stealing systems have been developed[2, 14, 18,
11, 25, 28, 44, 48, 52, 53]. During execution, these systems monitor the idleness status of

workstations and migrate processes from busy or overloaded machines to idle or under-
utilized ones. We will discuss work-stealing systems in detail in Chapter 4.

1.3 Developing Fault-tolerant Software

Developing fault-tolerant software on a distributed network of workstations is a challeng-
ing task for two main reasons. First, any part of the system can fail at any time; in other
words, the fault tolerant software developer must anticipate numerous possible failure
cases. Second, it is often very costly to find a consistent global state in a distributed
system, yet fault tolerance requires such a notion.

To address these problems, various techniques such as failure models and program
structuring paradigms have been developed. In this section, we will describe these tech-
niques and give a review of programming languages designed for constructing fault tol-
erant software (which we call fault-tolerant programming languages).

1.3.1 Failure Model

Failure models are designed to specify the behavior of a component on failure and there-
fore to help the fault-tolerant software developer to reason about the effects of failure on
applications.

Failure models about processors[20] which are commonly used are (from least per-
missive to most permissive):

o Fail-stop. The processor fails by stopping without making any inconsistent state
transitions[55].

o Omission and timing. The processor fails by not responding to an input or by
giving an untimely response, respectively.

e Byzantine. The processor fails in an arbitrary manner.

In general, fault-tolerant software is designed to assure correct behavior in the face
of failures characterized by a failure model. Databases and most fault-tolerant parallel
applications are designed to achieve partial correctness (any completed computation will
have the same effect as a failure-free computation) in the face of fail-stop failures.

1.3.2 Program Structuring Paradigms

Program structuring paradigms provide the programmer with standard ways of writing
programs. There are three common program structuring paradigms for fault-tolerant
software[51]: the object/action model, the restartable action paradigm, and the repli-
cated state machine paradigm.

In the object/action model, an application program consists of objects and actions.
Objects encapsulate critical data in local state and export certain operations to modify
data. Typically, the data is assumed to be long-lived and stored on stable storage.

Actions are threads that execute on objects, and their execution is transactional. That
is, these actions are serializable and recoverable in spite of failure.

In the restartable action paradigm, the runtime system periodically saves the local
states of processes to stable storage. On processor failure, it restarts failed processes on
another processor by recovering their states from stable storage. The checkpointing and
rollback scheme[22] is the most commonly used technique to implement this paradigm.

In the replicated state machine paradigm[57], an application is structured as a set
of services, and each service is implemented as multiple deterministic processes which
are identical. Fach request for a service is broadcast to every process implementing the
service. Each process operates like a state machine which modifies its state variables in
response to commands (i.e., requests) that are received from other state machines or the
environment. In this way, every process has the same state in a failure-free execution.
Upon disagreement, the minority is ignored.

1.3.3 Fault-tolerant Programming Languages

Various fault-tolerant programming languages have been developed to ease the task of
constructing fault-tolerant programs. Examples are Argus[47], Avalon[26], Fault-tolerant
Concurrent C[19], FT-Linda[4], Orca[41] and FT-SR[56],

In general, these fault-tolerant programming languages are distinguished by what
program structuring paradigms they support since they all assume the fail-stop processor
failure model. Argus and Avalon support the object/action model. Reliability and
concurrency control are supported by saving local state to disk and running every object
invocation as a transaction or a nested transaction.

Fault-tolerant Concurrent C[19] and FT-Linda[4] support the replicated state ma-
chine paradigm. The primary extension of fault-tolerant Concurrent C which extends
Concurrent C[33] is a set of primitives for replicating processes. The runtime system
guarantees that all the replicas of a process behave as if they were a single process. FT-
Linda is a fault-tolerant variant of Linda. Rather than using the state machine paradigm
to replicate processes, F'T-Linda uses it to replicate the Linda shared memory.

Programming languages to support the restartable action paradigm usually use mech-
anisms for checkpointing processes to disk and recovering them from the last check-
points on disk. The language runtime system can handle checkpointing and rollback
programmer-transparently. Orca is a language that automatically checkpoints parallel
applications. It uses reliable broadcast to ensure that a globally consistent checkpoint is
taken.

FT-SR is a language designed to support multiple program structuring paradigms. It
provides an ordered multicast mechanism that can be used to implement the replicated
state machine paradigm. Also, the programmer can define variables to be stable; these
variables are stored on disk and survive failure. Using these mechanisms, the programmer
can implement a custom restartable action paradigm.

1.4 Linda

PLinda is a set of extensions to Linda designed to support robust parallel computation.
The primary extension is transactions. In this section, we will give a brief review of the
Linda model and discuss the characteristics of the model which make it suitable for fault
tolerance and transactions.

1.4.1 Brief Review of Linda

Linda is a parallel programming model which is based on virtual shared memory called
tuple space. Processes communicate and synchronize by creating data objects called tu-
ples in the tuple space (this is analogous to sending a message) and retrieving them from
the tuple space associatively (this is analogous to receiving a message) using a relational
database-style pattern matching capability. A tuple contains a sequence of typed data
elements where the data types are basic types such as integers, floats, characters, and
arrays of these.

Linda provides four operations: out for tuple creation, eval for process creation,
in for destructive retrieval and rd for non-destructive retrieval. In the destructive case,
data objects are removed on retrieval. Destructive retrieval is often used for a “point-to-
point” style of communication; in contrast, non-destructive retrieval for a “broadcast”
style of communication.

Here is a summary of the operations:

1. out. Takes a sequence of typed expressions as arguments. It evaluates them,
constructs a tuple from them, and inserts the tuple into tuple space.

2. eval. Like out, eval creates a tuple from its arguments, but a new process is
created to evaluate the arguments. In Linda, this is the only way to create a new
process.

3. in and rd. Take a typed pattern for a tuple as their argument and retrieve a tuple
to match the pattern in an associative manner. A pattern is a series of typed fields;
some are values and others are typed place-holders. A place-holder is prefixed with
a question mark. For example,

("foo', 7f, 71, y).

The first and last fields are values (a constant and a program variable respectively);
the middle two fields are place-holders. On retrieval, place-holders are set to values
in the corresponding fields of the matching tuple, respectively.

This pattern will match any tuple having four fields whose first field is the string
"foo" and the last field is the value of y. If there are multiple matching tuples,
then one of them is randomly selected and retrieved. If no matching tuple is found,
then in and rd block until a matching tuple is inserted. The difference is that in
is destructive (i.e. removes the tuple) while rd is not.

A more detailed description of the Linda model is found in [9, 12, 13, 44, 46].

Linda has several characteristics which make it popular. First, the model is simple.
Accessing tuple space is intuitive and requires only four operations. Second, the model
is flexible. Various styles of process interaction such as synchronous and asynchronous
communication can be easily programmed in this model. Finally, the model is designed
to be combined into existing sequential programming languages. The programmer is not
forced to learn a new parallel programming language.

1.4.2 Linda and Fault Tolerance

Linda’s tuple space model facilitates fault tolerance. Communication and synchroniza-
tion via the tuple space are anonymous. That is, processes do not have to identify each
other for interaction. This property simplifies the replacement of processes by new pro-
cesses, since process ids need not be recovered nor are site ids of any significance. Failed
processes can be recovered on any host. In fact a stable tuple space and knowledge of
the critical portions of the state of the failing process are all that is needed.

1.4.3 Linda and Transactions

Transactions are in particular effective for Linda’s tuple space abstraction because tuple
space is a shared data resource much like a database[34, 6]. Tuple space can be optimized
for transactions independently because it is a separate data storage from process address
spaces. Finally, in tuple space, there is a logical unit of data (which is a tuple) for
manipulation which is independent of a language type system. There are only four
operations to access tuples in tuple space. Therefore, only these operations are required
to be extended for transactions.

1.5 Persistent Linda 2.0

In this section, we give an overview of Persistent Linda 2.0 (PLinda), a Linda-variant
parallel programming system that supports fault tolerance and uses idle workstations
for parallel computation.

PLinda is a set of extensions to Linda. The three major extensions are: lightweight
transactions, continuation committing, and checkpoint-protected tuple space. These ex-
tensions are fault tolerance abstractions through which the programmer can design an
application to be fault tolerant.

The mechanisms allow a programmer to take advantage of the characteristics of a
given application when making it failure-resilient. However, the drawback is additional
programming work. For coarse grain parallel applications which have simple control
structures, the additional programming work is usually negligible [4, 38] and therefore
the customization approach is more appropriate.

In PLinda, the transaction commit mechanism stores data in the volatile tuple space

and is therefore extremely lightweight!. Such a commit mechanism does not guaran-
tee the durability of committed transactions, since the tuple space might fail. Tuple
space is made fault-tolerant by checkpointing it to disk periodically. The frequency of
checkpointing is a runtime tuning parameter.?

Based on lightweight transactions, PLinda supports the following program struc-
turing paradigm. In the paradigm, each process is executed as a sequence of trans-
actions. The transaction and checkpointing mechanisms guarantee that transactions
execute atomically even in the presence of failures. Therefore a process logically fails
only between transactions. Thus, the programmer only has to consider failures between
transactions when making an application failure-resilient.

At each commit, each process saves critical information (usually the contents of a
few variables) about its local state to tuple space. By critical information, we mean a
set of process variables from which we can reconstruct its local state. We call critical
information encoded continuation (continuation, for short)[58] and the saving operation
continuation committing. On failure recovery, the failed process restores a continuation
from tuple space. That is, transactions and continuation committing enable processes to
make progress (i.e., restart from the last commit point) in spite of failure of a client pro-
cess assuming that the tuple space doesn’t fail. If the tuple space fails, then continuation
committing and checkpointing ensures that the execution resumes in a transaction con-
sistent state (i.e. a state of committed transactions that might be reached in a failure-free
execution).

An important advantage of saving encoded continuations instead of process images is
that encoded continuations support the use of heterogeneous machines because continu-
ations which consist of the contents of variables can be made architecture-independent.
By contrast, saving a process image is architecture-dependent.

Besides process failure-resiliency, the PLinda system is designed to utilize idle work-
stations for parallel computation. It monitors the idleness status of workstations and
creates processes on idle ones. When a machine where processes are running becomes
busy, the runtime system considers the machine to have failed and migrates the processes
to an idle machine either immediately or some time later. PLinda migrates a process by
killing it on one machine and recovering it on another using the fault tolerance mecha-
nism.

The contributions of this dissertation are:

e To show how the traditional transaction model can be optimized and extended to
support robust parallel computation efficiently.

e To propose a fault-tolerant programming model by which the programmer can

'In the current PLinda implementation, the performance of transaction commits is usually comparable
to that of the other tuple space access operations such as out and in.

“Database aficionados will note that a volatile tuple space may allow committed data to be lost.
That would be bad for a database, but is acceptable in our case, since long-running parallel applications
require only that the final result be correct, since the programmer never acts on intermediate data. We
ensure the correctness of the final result using checkpointing of the tuple space and critical program
variables as we explain below.

easily make long-running coarse grain parallel applications fault tolerant without
incurring high runtime fault tolerance overhead.

e To develop a process resiliency method which can support heterogeneous computing
environments.

e To show that process resiliency mechanisms can also be used for process migration
for dynamic load balancing.

e To demonstrate the implementation of a parallel programming system that sup-
ports both fault tolerance and utilization of idle workstations using a single efficient
mechanism.

1.6 Outline of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 describes the design
of PLinda in detail. We explain the fault tolerance mechanisms such as transactions, con-
tinuation committing, and checkpoint-protected tuple space, and show how to construct
fault-tolerant applications using these mechanisms.

In Chapter 3, we explain the PLinda tunable execution mechanism. This tuning
feature is aimed at applications where processes have large continuations.

In Chapter 4, we describe how PLinda uses idle workstations for parallel computation.
The issues involved in utilization of idle workstations are idleness detection, process
scheduling and process migration. We discuss them and explain how the PLinda process
resiliency mechanisms can be used for process migration.

In Chapter 5, we explain the implementation of PLinda and present experimental
results. These results show that the current PLinda prototype can execute coarse grain
parallel applications efficiently while supporting fault tolerance and utilizing idle work-
stations.

In Chapter 6, we present concluding remarks and future research directions for
PLinda.

Chapter 2

Persistent Linda

2.1 Introduction

PLinda is a set of extensions to Linda to support robust parallel computation as well as
computing using idle machines (where busy-ness = failure). The three major extensions
are:

o Lightweight transactions. Used to maintain a consistent global state efficiently
regardless of failure.

o Continuation committing. Used to make processes resilient to failure without re-
lying on disk.

o Checkpoint-protected tuple space. A fault-tolerant tuple space based on checkpoint-
ing.

This design requires explicit operations for fault tolerance. We think that we will
be able to address the programming issue via development of high-level programming
toolkits or a Linda-PLinda translator later, but this will be our project’s future work.

The PLinda system model is a collection of loosely coupled processors (no physically
shared memory) communicating over a network (for example, networks of workstations).
PLinda fundamentally assumes the “fail-stop” processor model (i.e., processors fail by
stopping), but can also handle “slowdown” and network failures which do not affect
tuple space. In PLinda (in fact, Linda), processes can not communicate directly with
each other, but only via tuple space. Therefore, timeout can be used to turn slow
processors to failed ones safely by preventing them from accessing tuple space afterwards
(i.e., stopping them from communicating with the other processes). Likewise, network
failures can be handled.

The rest of this chapter is organized as follows. We begin by discussing the issues
concerning the application of transactions to robust parallel computation. Then, we
describe the design of transactions in PLinda. Section 2.4 explains how to make tuple
space failure-resilient in PLinda. Section 2.5 discusses how to extend the transaction
mechanism to make processes resilient to failure. In Sections 2.6 and 2.7, we explain

multiple tuple spaces and process management in PLinda. Section 2.8 compares PLinda
with other fault-tolerant Linda-variant systems and programming languages/systems
that support transactions. Section 2.9 concludes this chapter.

2.2 Transactions and Robust Parallel Computation in the
Linda Model

There are several fault tolerance abstractions for building failure-resilient applications.Among
the popular ones are transactions[6, 34] and ordered atomic broadcast[7, 8, 40, 61].
Transactions have been mostly used for database applications such as bank or airline
reservation applications where reliable management of persistent data is crucial. PLinda
is a research effort to apply the transaction processing technology to a different class of
applications, robust parallel computation. In the design of PLinda we chose transactions
as the primary fault tolerance mechanism for the following reason. Transactions are a
simple but effective abstraction for controlling concurrent access to shared data and
maintaining a consistent state of shared data in the presence of failure[34]. Transactions
are especially effective in the Linda model where the tuple space (shared memory) is the
only mechanism for communication between processes and storage of shared data. For
the same reason, most other fault tolerant work on Linda also supports some similar
mechanism, though with less functionality[3, 4].

In this section, we discuss the issues that are raised when transactions are used for
robust parallel computation. First, we explain transactions in the context of databases!.
Transactions are an abstraction with the following ACID properties:

o Atomicity. Regardless of failure, a transaction executes a series of database ac-
cessing operations in an “all or nothing” manner. That is, the database reflects all
of the updates (in the commit case) or none of them (in the abort case) — there
is no other possibility. This property implies that partial results from aborted
transactions will not affect other transactions.

e Consistency. A transaction produces a consistent result, provided that the trans-
action program is correct and the initial state of the database is consistent.

o [solation (or serializability). The execution of transactions appears as if they were
executed in a serial order. Transactions require concurrency control for this prop-
erty. The most common implementation technique for concurrency control is two
phase locking[6, 34]. For a transaction, two phase locking holds locks on accessed
data items until the transaction commits, and therefore prevents transactions from
accessing uncommitted updates.

o Durability. Committed updates in databases survive failure. Disk is generally used
for stable storage and therefore, the updates made by a transaction are saved to disk

!Transactions are a general abstraction which is not restricted to database applications. However,
since those applications are typical, our explanation is based on that viewpoint.

10

at commit. Thus, this property requires disk writes to be implicit in transaction
commits. Since disk access incurs high access latency, transaction commits are
expensive as compared to in-memory operations.

We examine these properties from the point of view of parallel processing. For robust
parallel computation, our goal is to minimize the amount of lost work on failure but with
only low runtime overhead. Runtime overhead comes mostly from concurrency control
and transaction commit overhead. A second concern is programming overhead when the
programmer explicitly uses transactions to build a fault-tolerant application.

Sometimes, there is a tradeoff between the two. For example, for database applica-
tions, an entire thread execution often encloses a single transaction. On failure, all the
intermediate results are aborted and the entire thread is restarted from scratch; that
is, the whole computation is lost, but data consistency is maintained at little cost in
programming complexity. Fine grain transactions reduce the amount of lost work on
failure. However, if execution of an application consists of a number of transactions,
then transactions can not assure a clean runtime behavior on failure because restarting
the application thread can neither be restarted from scratch nor declared completed. In-
stead, the thread must leave a persistent indication of where it is in the set of transactions
it has executed. In databases, such persistent indications allowing a multi-transaction
thread to resume from failure is known as mini-batching[34]. Unfortunately, any such
technique to make continuations persistent requires additional programming effort or
new higher level abstractions. (PLinda currently offers only low level abstractions as we
will explain later on.)

The serializability property reduces parallelism. For example, if a process is executed
as a single transaction, then it can not communicate to other processes during execu-
tion because its computation results become accessible to other processes only after it
terminates.

Most parallel applications do not need the serializability property. We use concur-
rency control (a weakened form of two phase locking) in order to facilitate a consistent
global state after client failure. In our version of two phase locking, write locks are held
until commit, but read locks are held only while the read occurs (known as degree two
serializability[6, 34] in the database world). The write locks prevent transactions from
accessing updates made by a transaction until the transaction commits. So, a transac-
tion abort affects no others — it’s as if the transaction had never started. Since read
locks do not influence states of other processes, they do not need to be held until the
commit point. Database systems use that only to ensure serializability which we don’t
need.

The durability property requires that updates be written to disk at commit. There-
fore, fine grain transactions incur relatively higher runtime overhead. In order to support
robust parallel computation, tuple space must be fault-tolerant. However, robust paral-
lel computation does not necessarily require intermediate results to survive failure, but
intends to minimize the amount of lost work on failure. That is, it is not necessary that
updates be saved to disk every time a transaction commits.

In summary, when the programmer uses transactions for parallel applications, he or
she can have control over simplicity, the amount of lost work on failure, concurrency,

11

and commit overhead. In PLinda, we hope to give the programmer the ability to tune
this tradeoff in many different ways.

2.3 Transactions in PLinda

In this section, we first explain the design of PLinda transactions, then discuss how they
can be used, and discuss what extensions are needed to make processes failure-resilient.
Throughout this section, we assume that tuple space is fault-tolerant, because PLinda
treats transactions and fault tolerance in tuple space in an orthogonal way. The next
section will discuss fault tolerance in tuple space.

We have designed the transaction mechanism for PLinda in the following way:

o A process is executed as a series of transactions. When a process experiences
failure, the transaction mechanism aborts the currently active transaction of the
process; that is, the failed process does not lose all the computation work. The
resulting global state is as if the process failed immediately after the end of the
last committed transaction.

e A process makes all the intermediate results accessible (i.e., releases all the write
locks) to the other processes at each commit. Thus, processes can communicate
with each other before they terminate.

e Transaction commits result in writes to tuple space, but not to disk. That is, other
processes use the results under the assumption that tuple space and in turn the
results are reliable. Thus, transaction commits require only in-memory operations.
(If tuple space fails, then the commmits of many transactions will have to be
undone; this is fine because the computations we are interested in have no user
interaction until they complete.)

e The degree two variant of strict two-phase locking is used to prevent processes
from accessing intermediate results from uncommitted transactions during runtime.
This is PLinda’s default. When the user wants serializability, he or she can tune
the system to use the full strict two phase locking.

The locking protocols allow the runtime system to abort any transaction of a pro-
cess without affecting the execution of other processes — process-private recovery
of a consistent state. This scheme is well suited to process migration, because a
process can suspend execution (i.e., fail) on one machine and resume on another
independently.

Let’s look at an example in Figure 2.1. In the example, process A is executed
as a sequence of three transactions and process B as a sequence of four transactions.
Process A committed the first transaction whose result has already been used by the
second transaction of process B. Then, process A failed during the second transaction.
Even though process A produced intermediate results in tuple space during the second
transaction, the strict two phase locking or degree two serializability protocol guarantees

12

resume
T

fail._

abort &
respawn

committed transaction

uncommitted transaction

FiGure 2.1: Execution of A Process as Multiple Transactions

13

that the results have not been accessed by process B. Therefore, aborting the second
transaction of process A does not affect process B.

PLinda provides two language constructs to make a piece of code execute as a trans-
action: xstart and xcommit. Xstart begins a new transaction, and xcommit commits
it as shown below:

xstart () ;
arbitraryBlockOfCode

xcommit (tupleSpecification) ;

Here, arbitraryBlockOfCode is a sequence of arbitrary operations except xstart or
xcommit (currently, PLinda does not support nested transactions). The entire arbitrary-
BlockOfCode is guaranteed to execute atomically (i.e., in an “all-or-nothing” fashion). In
addition, the xcommit operation can also create a tuple as specified in tupleSpecification.
The tuple is used for continuation committing which will be explained in Section 2.5.
If the expression tupleSpecification is omitted, then no tuple is created. In addition to
tuple space operations, process creation operations are also treated as updates to tuple
space and therefore transactions govern their effect as well. Since a process can start
and commit a transaction explicitly, it may run multiple transactions.

Let’s look at some examples to explain how transactions are used for robust parallel
computation. The examples are based on the master/worker programming paradigm
that is most often used in Linda. This paradigm consists of a master process and a
pool of identical worker processes that the master spawns. (The workers are identical in
that they execute the same code; they may do so at different speeds.) During execution,
the workers repeatedly grab tasks from a bag of tasks and carry them out. The master
collects results generated by the workers. Figure 2.2 illustrates the programming model.

Figure 2.3 gives skeleton code of a worker process using a transaction in PLinda.
In the example code, the transaction guarantees that each task is executed atomically
in spite of failures. For example, suppose that a worker process fails while performing
a task in a transaction. Then, the transaction will be automatically aborted; all the
updates made for the task including the removal of the task tuple will be undone. Thus,
the transaction mechanism restores a state in which tuple space appears as if the task
had never been started. Another worker that is still functioning will be able to take and
re-execute the task later. In the master/worker programming model, worker processes
normally keep no state. Therefore, the code given in Figure 2.3 is resilient to failure
in the sense that the entire execution can continue and complete correctly in spite of
worker process failure as long as one worker is alive.

Figure 2.4 shows skeleton code for a master process. The master process creates task
tuples in first transaction and then collects results in the next transaction. If the master
process fails during execution of the first transaction, there will be no task tuples in
tuple space after abort. If the master fails during the second transaction, the failure will
not affect the tasks tuples already created in the first transaction, but only the second
transaction will be aborted; all the deleted (in fact, marked as deleted) result tuples

14

worker worker worker | e

produce

task tuple

master

result tuple

O
U
[] process
|

worker

FIGURE 2.2: Master/Worker Programming Model

15

/* worker process */
int worker() {
struct TaskType task;
struct ResultType result;
while(1) {
xstart () ;

/* grab a task */
in("task", ?task);

executeTask(&task, &result);

/* produce a result */
out("result", result);

xcommit () ;
} /* while */

}

FIGURE 2.3: A Fault Tolerant Worker Process

16

/* master process */

int master() {

int idx,numTasks;

struct TaskType tasks[MAX NUM_TASKS];
struct ResultType results[MAX NUM_TASKS];

xstart () ;
readSetting(&numTasks) ;

readTasksFromFile (numTaks, tasks);

for(idx=0; idx<numTasks; ++idx) {
out("task'", tasks[idx]);
}

xcommit () ;
xstart () ;
for(idx=0; idx<numTasks; ++idx) {

in("result", ?results[idx]);
}

writeResultToFile(numTasks, results);
xcommit;

}

FIGURE 2.4: A Master Process

17

become accessible again. That is, transactions ensure that the tuple space is restored to
a state which does not contain any intermediate updates made by aborted transactions.
However, transactions do not restore the local state of the failed process, for example,
the values of local variables such as numTasks or information about where the master
process has failed. In order to recover from failure, the master process needs to preserve
such information regardless of failure.

PLinda processes use transactions in a few different ways:

o Single-transaction processes: Execute an entire process as a single transaction
or simply repeat execution of the same code where each execution is a separate
transaction but there is no inter-transaction dependency. The worker processes
explained above are an example. Transactions make single-transaction processes
resilient to failure.

o Multi-transaction processes: Run multiple transactions within a process. An exam-
ple is the master process shown in Figure 2.4. The transaction mechanism guaran-
tees that processes appear as if they only fail between two consecutive transactions.
On failure of a multi-transaction process, the transaction mechanism restores a con-
sistent state of tuple space, but does not recover the state of the process at failure
point. Continuation committing, to be discussed, does this.

In summary, the transaction mechanism of PLinda is designed to reduce the amount
of lost work on failure and to restore a consistent state of tuple space after failure,
without significant degradation of parallelism or high runtime overhead.

However, the design also raises two issues: reliability in the tuple space and failure-
recovery of a process.

e Unlike database transactions which support reliability for databases, the PLinda
transaction mechanism simply assumes reliability of the tuple space and do not
flush updates to disk at commit.

o If the entire execution of an application is treated as a single transaction, then
the runtime system can automatically re-execute the application from scratch. A
failed multi-transaction process can not be restarted from scratch, because that
may cause committed transactions to be executed again. The process must resume
from the point where the last transaction committed, and therefore will not repeat
execution of the committed transactions.

In the following two sections, we will discuss these two issues.

2.4 Fault-tolerant Multiple Tuple Spaces

As mentioned in the previous section, PLinda treats transactions and reliability of tuple
space in an orthogonal way. In this section, we discuss how to make tuple space failure-
resilient.

18

Failure resiliency requires some form of redundancy, either replication on different
processors connected by a reliable network or replication on different storage media (e.g.,
non-volatile RAM or disk). Due to orthogonality, PLinda can support both approaches
as a tunable feature. Currently, PLinda supports only the latter approach because disks
are better suited to our separate goal of persistence. However, we plan to add the former
approach to the implementation in the future.

PLinda is designed to support two kinds of tuple space:

o Checkpoint-protected tuple space. Unlike most transaction processing systems[6,
34], PLinda replicates the “transaction-consistent” state of tuple space on disk
only periodically called tuple space checkpoint. Transaction commit operations do
not require updates to be written to disk before they are finished. The transaction-
consistent state is one that reflects the updates made by all and only the committed
transactions. Figure 2.5 shows a snapshot of execution using checkpoint-protected
tuple space. If the tuple space fails and recovers, then it will be restored to the last
checkpointed state on disk. However, when a process suffers failure, tuple space
can recover a consistent state by aborting the transaction being executed by the
process, without restoring the last checkpointed state.

The advantages of this design are to allow tuple space to execute transaction com-
mits efficiently and the user to decide the frequency of checkpointing at runtime.
This is our default runtime option and works provided the user cares only about
the final result of the computation, not about any intermediate result.

o Stable tuple space?. All the updates made by a transaction are replicated on disk,
before the transaction commits as in conventional database systems. Therefore,
the latest transaction-consistent state of tuple space is always maintained on disk.
Figure 2.5 illustrates stable tuple space. On recovery after failure, tuple space will
always be restored to the last transaction-consistent state. In this case, updates
made by committed transactions will survive failures of tuple space — durability.

In the case of tuple space failure, checkpoint-protected tuple space may lose consis-
tency with processes. More specifically, a recovered state of tuple space loses the updates
made by the transactions committed between the last checkpoint and the failure point.
In Figure 2.5, states of processes and the checkpointed state of tuple space on disk are
inconsistent, because the checkpointed state does not reflect the updates made by the
third transaction of process A and the second transaction of process B. The transaction
mechanism cannot undo the effect of the committed transactions on running processes
and states of the processes may already reflect the lost transactions.

In this case, the PLinda runtime system forces all the running processes to perform
failure-recovery operations. In PLinda, each process saves local state to tuple space at
each commit and recovers the state saved at the last commit from tuple space on recovery
after failure. The process restores consistency with tuple space on failure recovery.
Failure-recovery of a process will be explained in the next section.

2Stable tuple space has not fully been implemented in the current prototype system

19

checkpoint

process A

rocess B :
— process § D committed transaction

— — D uncommitted transaction
Transaction-consistent
state of tuple space
checkpoint in volatile memory

v
— — Checkpointed state

of tuple space on disk

F1GURE 2.5: Checkpoint-protected Tuple Space

20

process A

process B

commit

v

\—/

committed transaction

uncommitted transaction

Transaction-consistent
state of tuple space
in volatile memory

Transaction-consistent
state of tuple space on disk

F1GURE 2.6: Stable Tuple Space

21

Stable tuple space does not lose updates made by committed transactions as shown in
Figure 2.5, s0 is less expensive than checkpoint-protected tuple space on recovery because
committed transactions are not required to be re-executed. In contrast, checkpoint-
protected tuple space is efficient during normal execution but incurs overhead on recovery
from failure. Since failure is in fact rare, checkpoint-protected tuple space is better suited
to robust parallel computation in which only the final answer is important.

If by contrast, intermediate transaction commits might be important, as in a trans-
action processing monitor application[34], stable tuple space would be more appropriate.

2.5 Continuation Committing

In this section, we discuss how to make processes resilient to failure. There are two
approaches to resilient processes: process replication with atomic broadcast and process
checkpointing. PLinda takes the latter approach for resilient processes because the for-
mer approach requires redundant processors for each process as well as synchronization
which can be too costly for parallel computation.

In order to be failure-resilient, a process needs to replicate sufficient information
about its state to continue executing after failure. One simple approach is to save the
entire process image (i.e., a control stack, state of address space and contents of ma-
chine registers). This approach makes failure-recovery simple (in fact, user-transparent
recovery is possible) because all information is available at that point, but is generally
expensive because the size of a process image is large. Another more complex but less
expensive approach is to save only critical information about the state during normal
execution and to re-construct state from that information on recovery from failure. This
approach requires explicit operations for recovery.

PLinda has adopted the second approach (which we call continuation committing).
This scheme allows the programmer to customize the replication operation in the way
that each process saves only critical data required to resume execution on recovery after
failure. Typically, this includes an indication of which transactions have completed, and
any key data variables.

The continuation committing mechanism is based on the following two operations:

e Xcommit: Allows a process to save local state to tuple space at each commit.
Xcommit can create a tuple in tuple space that reflects local state at that point. If
there is already a tuple created by the previous xcommit, then it is overwritten.
The tuple is only accessible when the xcommit operation is finished; that is, its
transaction is committed. Only the process or its backup processes can access the
tuple using the xrecover operation explained below.

e Xrecover: Retrieves the tuple created by the last committed transaction. It can be
used in the same way as rdp. If there is no tuple created by the xcommit operation,
then it simply returns false. A backup process which takes over the remaining task
of a failed process uses the xrecover operation to restore the state of the failed
process at the last commit point.

22

Using these operations, the programmer designs each process to save information
about local state (in fact, only contents of local variables to be required for failure-
recovery) at each commit and to restore the state saved at the last commit on recovery
from failure.

The example in Figure 2.7 shows how to use these operations. It presents a fault-
tolerant version of the code given in Figure 2.4. In the code, only the underlined oper-
ations are those which are added for continuation committing. How it works is almost
self-explanatory, but we give a brief explanation. For this process, the values of only
two variables transId and numTasks are sufficient to restore local state on recovery and
therefore saved to tuple space at each commit. In order to record where failure happens,
the code assigns a logical identifier of integer type to each transaction and always sets
local variable transId to point to the current transaction. On recovery, this variable
is used to find out where the process fails. Also, variable numTasks is needed because
the first and the second transactions share the variable and failure may happen between
them.

On the failure of a process, the runtime system automatically detects it and respawns
the process again. We call the new process the “backup process.” In PLinda, the
primary process and backup processes run the same executable but are designed to
behave differently. At the beginning of the execution, the code checks if the current
process is a backup process, by calling the xrecover operation. If the process is a
backup one, then the xrecover operation retrieves contents of the local variables saved
by the failed process and returns true; otherwise, the operation simply returns false.

Writing a recoverable process entails inserting operations to skip committed trans-
actions. This is usually simple as illustrated in Figure 2.7. The technique is to set a
local variable to point to the next transaction upon commit. The recovery code simply
locates that transaction.

The advantage of continuation committing is that the programmer can take advan-
tage of characteristics of the application when designing processes to be resilient to
failure. For example, the master process in Figure 2.4 can construct local state from
only two variables transId and numTasks on recovery. In Figure 2.7, the code exploits
the characteristic. Therefore, efficiency and flexibility are advantages of continuation
committing, but additional programming overhead is a drawback.

The scheme is motivated by the fact that many coarse grain parallel applications
which have simple control structures can be easily made fault-tolerant if transactions are
available.

2.6 Tuple Groups: a namespace management issue

In addition to failure-resiliency, PLinda extends the Linda flat tuple space model to
support multiple tuple spaces which are called tuple groups. In Linda, all tuples are
always accessible to every process. So, tuple space access operations from a process may
conflict with those from others by accident if they happen to use the same pattern of
tuples for different purposes. Such cases are likely in practice, especially, in large scale

23

/* master process */
int master() {

int transId = O;

int idx, numTasks;

struct TaskType tasks[MAX NUM_TASKS];
struct ResultType results[MAX NUM_TASKS];

// retrieve state tuple
xrecover(?transId, 7numTasks);

if (transId == 0) {
xstart () ;
readSetting(&numTasks) ;
readTasksFromFile (numTasks, tasks);

for(idx=0; idx<numTasks; ++idx) {
out("task'", tasks[idx]);
}

xcommit (++transId, numTasks);

}

if(transId == 1) {
xstart () ;
for(idx=0; idx<numTasks; ++idx) {
in("result", ?results[idx]);
}

writeResultToFile(numTasks, results);
xcommit (++transId, numTasks);

}

}

FIGURE 2.7: A Fault Tolerant Master Process

24

gid ts_handle;

int ivar;

float fvar;

ts_handle = create_group(''my tuple space");
out[ts_handle] ("sample tuple", 1, 2.5);
in[ts handle] ("sample tuple", 7ivar, 7fvar);
destroy_group(ts_handle);

FicURE 2.8: Tuple Space Creation and Destruction in PLinda

applications which include a large number of components or are developed over a long
period of time.

In PLinda, applications can have multiple tuple spaces. They explicitly create and
destroy tuple spaces using the create_group and destroy_group operations which have
the following form:

create_group (tupleSpace Name)
destroy_group (tupleSpace Handle)

Here, tupleSpaceName is the name of a new tuple space to be created and is sup-
posed to be either a string constant or a variable of string type. The create_group
operation returns a handle to the new tuple space whose data type is called gid. The
destroy_group takes either a gid constant or a variable of gid type.

Tuple spaces can be accessed by only those processes with handles to them; that is,
the tuple space access operations such as out, in, rd, inp and rdp take a tuple space
handle as follows:

operator [tupleSpace Handle] (tupleSpecification)

If the expression [tupleSpaceHandle] is omitted as in Figures 2.3 and 2.4, then the
access operations assume a default tuple space. An example of multiple tuple spaces is
shown in Figure 2.8.

In PLinda, tuple group handles are first-class objects which processes can pass
through tuple space. Thus, a group of processes may communicate privately by making
one of the group members create a tuple group and pass the handle only to the group
members.

25

2.7 Process Management

Chapter 1 explained process management in Linda which is not resilient to failure.
PLinda redesigns it to provide fault tolerance and to facilitate portability. Portabil-
ity is especially important on networks of workstations because they generally consist of
heterogeneous machines and operating systems. Regarding process management, PLinda
differs from Linda in the following ways:

o Different unit of parallelism: an executable file at the OS-level.
e Transactional process creation.
e Automatic failure detection and backup process restart.

First, PLinda uses an OS-level executable file (like a.out generated by the cc com-
piler) as the unit of parallelism; that is, a process is invoked to execute an executable file.
This design allows the runtime system to exploit the process management facility avail-
able in the underlying OS such as UNIX, instead of providing customized mechanisms.
For example, the current implementation invokes a PLinda process using the execl li-
brary function in the UNIX or UNIX-variant OS’s. Therefore, the design facilitates
portability and heterogeneous processing.

Because of the different unit of parallelism PLinda provides two new operations for
process invocation: proc_eval and arg rdp. They have the following forms:

proc_eval (tupleSpecification)
arg_rdp (accessPatternSpecification)

The design is intended to be reminiscent of the Linda eval operation. Like eval in
Linda, the proc_eval operation takes a series of expressions to be converted to a tuple
(which is called argument tuple). However, the first field of an argument tuple must be
the name of an executable file. The proc_eval operation constructs the argument tuple
first, and then creates a process to run the executable file specified in the field.

The new process can retrieve the argument tuple using the arg_rdp operation. The
arg.rdp operation is used exactly in the same way as rdp. However, the argument
tuple is private to the process or its backup processes in case of failure; in other words,
the other processes can not access it. Thus, the spawning and spawned processes can
communicate via the argument safely.

Figures 2.9 and 2.10 give an example showing how to create processes in PLinda.
The example is a “single-producer/multiple-consumer” program consisting of two files:
producer.c and consumer.c. As in Linda, PLinda assumes a predefined name for
the main function which is real main. A producer runs the code in producer.c and
consumers executes the code in consumer.c. In producer.c, the name of the executable
for consumers is assumed to be consumer.

As explained in Section 2.3, the transaction mechanism also governs the effect of
process creation. For example, consider the two proc_eval operations in Figure 2.9.

26

int real_main(int argc, char** argv, char*x env) {

char data[DATA_LEN];
gid ts_handle;

xstart () ;
ts_handle = create_group('channel");
proc_eval("consumer", ts_handle);
proc_eval("consumer", ts_handle);

xcommit(); // after commit, the two consumers can start

while(1) {
xstart () ;
if(readData(data)<0) break;
out[ts_handle] ("data',data);
xcommit () ;

¥
¥

FIGURE 2.9: Producer in PLinda

The processes which they spawn start to run only after the transaction commits (i.e.,
the xcommit operation completes). If the transaction aborts due to failure, then the
newly created processes are aborted automatically.

Finally, the runtime system detects failure of a process, once it starts, and automati-
cally spawns another backup process on failure. The backup process takes over the task
of the failed process. Unlike transparent approaches where the backup process continues
execution transparently, PLinda requires backup processes to take over tasks of their
failed processes explicitly.

2.8 Related work

2.8.1 Fault Tolerance Work on Linda

In [3, 4], Bakken and Schlichting present FT-Linda, a variant of Linda that addresses fault
tolerance. For tuple space reliability, FT-Linda assumes a set of replicated tuple spaces
connected together by an ordered atomic broadcast network. Thus, FT-Linda is better
than PLinda for fault tolerant applications where availability is important. However, the
PLinda checkpoint-protected tuple space can be more efficient during normal execution
(unless there is special hardware support for communication) because it does not require

27

int real_main(int argc, char** argv, char*x env) {

char name[LEN];
gid ts_handle;

// retrieve the argument tuple
arg_rdp(7name, 7ts_handle);

char data[DATA_LEN];
while(1) {
xstart () ;
in[ts_handle] ("data'",?data);
processData(data);
xcommit () ;

¥
¥

FIGURE 2.10: Consumer in PLinda

runtime overhead due to ordered atomic broadcast.

Like PLinda, FT-Linda does not provide transparent process resiliency but allows the
programmer to make processes resilient to failure using a restricted form of transaction
mechanism called atomic guarded statements. Atomic guarded statements can execute
multiple tuple space operations atomically, but do not allow computation between the
operations.

With respect to programming effort, F'T-Linda requires programmers to clean up
intermediate results of failed processes in tuple space and to respawn backup processes
explicitly. In contrast, PLinda cleans up intermediate results of failed processes and
respawns backup processes automatically.

FT-Linda saves local state of a process using Linda tuple space operations, but
PLinda supports separate continuation committing operations for that purpose. In
PLinda, the runtime system optimizes such checkpointing operation.

Power failures are the most frequent kind of hardware failures. They usually cause
all processors to fail. FT-Linda stores everything in volatile storage and loses it in the
event of total failure. However, processes and tuple space can still survive total failure
in PLinda because they rely on persistent storage such as disk. In institutes where all
the machines are rebooted periodically, fault-tolerant long-running parallel applications
also need to rely on disks.

The Piranha system is a Linda variant designed to utilize idle workstations effectively
for parallel computation [44]. In spite of its different objective and no direct concern for

28

fault tolerance, Piranha deals with fault tolerance-related issues, and shows another use
of fault tolerance.

In the Piranha system, worker processes, called Piranha, execute tasks on idle work-
stations. When an idle workstation becomes busy again, the Piranha processes on the
workstation “retreat.” The retreat operation requires the Piranha processes to abort
their current tasks and terminate immediately; thus, retreat has the same effect as fail-
ure. Then, the aborted tasks are re-executed by Piranhas on other idle workstations.
The Piranha model assumes that Piranha processes execute each task atomically in spite
of retreat.

From the point of view of fault tolerance, the current Piranha system has one draw-
back: it requires programmers to clean up intermediate results at retreat. That makes
programming difficult.

Piranha could be enhanced by mechanisms such as PLinda transactions to make the
clean-up of intermediate results automatic. Moreover, such mechanisms would make Pi-
ranha processes resilient to processor failure. In addition, designing stateful Piranha pro-
cesses would also be simpler with mechanisms like continuation committing in PLinda.

Other fault tolerance work has also produced useful ideas. Xu and Liskov proposed
a protocol to replicate tuples and to maintain consistency of replicas, despite processor
failures[66]. [43] discussed the performance and availability issues concerning replication
techniques for tuple space. [17] also presented a protocol to relax the consistency of tuple
space replicas to improve performance. [42] proposed a scheme based on checkpointing
the processes and logging all the tuple space accesses.

2.8.2 Programming Languages and Systems Supporting Transactions

There have been research efforts to develop programming languages and systems to
use transactions as the foundation for constructing distributed applications. They are
Argus[47], Avalon[26], Camelot[26], Clouds[21] and TABS[27].

Argusis a programming language and system to support the implementation and exe-
cution of distributed applications such as mail systems and inventory control systems[47].
The principal mechanism of Argus is guardians which are a special kind of abstract ob-
jects. Guardians encapsulate information within local state and permit it to be accessed
by means of special procedures, called handlers, that can be called from other guardians.
Reliability and concurrency control are supported by saving local state to disk and run-
ning every handler call as a transaction or a nested transaction.

Avalon[26] is a set of linguistic constructs which can be implemented as extensions to
familiar programming languages such as C++, Common Lisp and Ada. The computation
model of Avalon resembles that of Argus. However, Avalon gives the programmer explicit
control over commit and abort operations but Argus does not.

One may use one of these systems for coarse grain parallel applications because they
support parallelism. However, there are several drawbacks against such use. First, they
are explicitly designed for the client-server programming style which is not common for
parallel applications. Parallel application programmers must be forced to use the style.
Second, nested transactions do not require disk writes at commit but increase book-

29

keeping overhead in the runtime system. Top-level transactions are expensive because
updates need to be saved to disk at commit. Finally, even though nested transactions al-
low more concurrency, they are still based on a hierarchical calling structure and prevent
interaction between sibling transactions. In Avalon, locking protocols can be customized,
but such custom locking protocols complicate failure recovery.

In contrast, PLinda allows the computation of any process to be simply divided
into a sequence of separate transactions. Thus, processes can be easily designed to
communicate with each other. Implementation of the runtime system is also relatively
simpler because of the flat transaction model. Checkpoint-protected tuple space makes
transaction commits efficient.

Camelot[26], Clouds[21] and TABS[27] provide distributed transaction facilities as a
set of user libraries or operating system features. Like Avalon and Argus, they are aimed
at distributed applications and have similar drawbacks as Avalon and Argus, when they
are used for parallel computation.

2.9 Summary

In this chapter, we described the design of PLinda. Throughout the design of PLinda, our
research effort has been focused on: (1) studying issues relating transactions to parallel
computation and (2) optimizing and extending transaction mechanisms to address the
issues.

Transactions are designed to support the ACID properties, but it is not necessary to
use all the properties. For example, isolation and durability are not needed for robust
parallel computation. Also, the length of transactions has significant impact on simplic-
ity, the amount of lost work on failure, concurrency and transaction commit overhead.
There is a tradeoff between short and long transactions. Short transactions lose less
work on failure and give greater concurrency, but increase the programming complexity
and commit overhead.

In order to reduce commit overhead, PLinda treats transactions and reliability of
tuple space orthogonally. Transactions do not write to disk on commit, but simply to
the tuple space. This allows efficient transaction commits and minimizes the losses in
case a client processor fails or becomes busy. PLinda makes the tuple space resilient
to failure by using checkpointing. This is called checkpoint-protected tuple space. This
works, but entails relatively high recovery overhead if the tuple space server crashes.

In PLinda, the programmer designs processes to be failure-resilient explicitly, using
the transaction and continuation committing mechanisms. Each process saves enough
information about its state to tuple space at each commit to form its continuation. This
scheme has advantages of efficiency and flexibility as explained in Section 2.5, but requires
explicit operations for fault tolerance. In practice, we usually use a few transactions for
coarse grain parallel applications and therefore the amount of additional programming
overhead is often negligible.

In addition to fault tolerance, PLinda supports multiple tuple spaces to facilitate
tuple management in large-scale parallel applications. Also, PLinda designs the process

30

management to enhance portability. Portability is important for networks of worksta-
tions.

31

Chapter 3

Tunable Execution

3.1 Introduction

In the last chapter, we described how a fault-tolerant application is designed in PLinda.
In this chapter, we discuss how the execution of such an application can be tuned at
runtime. A resilient process is one that can make progress and terminate correctly
regardless of failure during execution. To make a process resilient, it is essential to
replicate state to other processors or disks. Replication constitutes the major overhead
of resilience. The amount of overhead depends on the size of data for replication and
the frequency of replication operations. Also, there is a tradeoff between the frequency
of replication and the amount of work lost on failure.

Recall that PLinda allows the programmer to control the size of data for replication
(i.e., contents of continuation and the shared data) and the frequency of replication
operations (i.e., transaction commit points) when designing fault-tolerant processes. The
only constraint on the programmer is that commits are required for communication: a
process must commit before any of the tuples it has produced can be read by other
processes.

The current design of PLinda allows the user to tune execution of the continuation
committing operations in three ways:

o Commit-consistent execution. A process saves continuation to tuple space at every
commit as specified by the programmer. On failure, the process recovers its state
from the continuation of the last commit, independently of other processes.

This method works well when continuations are small.

o Message logging/replay. A process saves continuation to tuple space only when re-
quested by the runtime system (the frequency is a tuning parameter). However, its
tuple space access operations are recorded during normal execution and replayed to
reconstruct the state at the last commit on failure recovery. On failure, the process
may need to re-execute committed transactions but still can recover independently
of others.

32

This method works well when continuations are large, but tuple space modifications
are small.

e Coordinated checkpointing. Processes do not save continuations to tuple space
independently. Periodically, the runtime system forces all the processes to save
continuations to tuple space and then checkpoints tuple space to disk. On any
failure, tuple space is first restored to the last checkpointed state on disk and
processes recover their states from the restored tuple space. That is, a single
failure leads to massive rollback.

This method is fastest in the failure-free case.

In this chapter, we consider only client side failures for the two reasons. First, pro-
cesses and tuple space are treated orthogonally in PLinda with respect to fault tolerance.
Second, all the three methods handle server failures in the exactly same way: tuple space
is first restored to the checkpoint on disk and then all the processes recover their state
from the restored tuple space.

The rest of this chapter is organized as follows. We start with the motivation for
this tunable approach. Then, Sections 3.3, 3.4 and 3.5 describe the commit-consistent
execution, message logging /replay and coordinated checkpointing methods, respectively.
In Section 3.6, we present correctness proofs for these execution methods. In Section 3.7,
we compare the tunable execution mechanism of PLinda with transparent checkpointing
and rollback-recovery techniques. Finally, we summarize this chapter in Section 3.8.

3.2 Motivation

In this section, we discuss example applications to motivate our tunable approach to the
execution of fault-tolerant processes. We first look at applications which can be executed
efficiently without tuning. Then, we consider those which would require runtime tuning
so as not to suffer severe performance overhead due to continuation committing.

For the first class of applications, we discuss those based on the “master/worker”
programming model. In this model, task descriptions, data and intermediate results are
placed in shared memory or a globally accessible location. Processes (called workers)
read task descriptions and data from shared memory, carry them out, and put results
back into shared memory. Since a task can be executed by any process (processes are
decoupled from tasks and data), a slow process does not become a bottleneck. In other
words, processes on fast machines do more work and those on slow machines do less
thus achieving load balancing. This model is widely used for applications targeted at
networks of workstations where load balancing is crucial for performance.

The PLinda programming PLinda model is well-suited to applications based on the
master/worker model for the following reason. Since processes (i.e., workers) do not
maintain intermediate results in local state, they do not have much critical information
in local state; that is, they have small continuations. Therefore, continuation committing
operations are cheap so the programmer can design processes to execute continuation
committing frequently to reduce the amount of work lost on failure.

33

However, the master/worker programming model is not suitable for applications
where tasks need a lot of input data and produce a lot of result data. A typical exam-
ple is the class of scientific applications which solve partial differential equations. They
usually update large matrices continuously during computation. For these applications,
a programming technique called data partitioning (also called domain decomposition) is
often used. This programming technique reduces data movement (i.e., communication)
among processes by designing an application to distribute data into the local state of
processes at the beginning and to perform computation and to maintain intermediate
results as locally as possible.

Since the intermediate results in local state must survive failure, they must be in-
cluded in continuations which are thus required to be large. Therefore, continuation
committing is very expensive for these processes. Since continuations are required only
on failure and failure is in fact rare, it makes sense to perform continuation committing
less frequently for better runtime performance although this increases failure recovery
overhead. In PLinda, the runtime tuning capability allows such tradeoffs. Also, such ap-
proach is effective in situations where idle machines are utilized for parallel computation
and non-idleness (which is treated as failure) is rare, for example, during off-duty hours.

In summary, PLinda allows the programmer to reduce the size of data for continua-
tion committing by including only critical information in continuations when designing a
fault-tolerant application. If processes have small continuations, this scheme allows effi-
cient execution of continuation committing. However, continuation committing becomes
expensive for applications where processes have large continuations. For these applica-
tions, PLinda provides the tunable execution mechanism which allows the end-user to
trade frequency of continuation committing against failure recovery overhead.

3.3 Commit-consistent Execution

In the commit-consistent execution method, each process’s continuation is saved to tuple
space at each commit as specified in the code. That is, the method is consistent with
the programmer’s viewpoint.

This execution method is most effective for applications where processes have small
continuations. Applications based on the master/worker programming model are typical
examples.

Figure 3.1 illustrates this execution method. The figure shows how a multi-transaction
process recovers from failure. The process is executed as a series of transactions; 7; and
C; denote the ¢-th transaction and continuation at the commit of the i-th transaction,
respectively. C}; is saved to tuple space at the commit of 7T;. In the figure, the pro-
cess experiences failure during transaction Ty — physical failure. Then, the transaction
mechanism aborts all the intermediate work of T;. After the abort, the state of execution
appears as if the process failed after T5 and before Ty — logical failure. On recovery
from failure, the process recovers continuation C's from tuple space and restarts from the
beginning of transaction Tjy.

34

Process P

FAILURE

logical physical

T1 T2
1 C2 C3 . _____]
| abort
commit continuation
C3| continuation

roll back

T3 C3 T4

- — - =

Tuple Space

skip the committed transactions

FIGure 3.1: Commit-consistent Execution

35

3.4 Message Logging/Replay

In PLinda, fault-tolerant processes are designed to perform continuation committing at
each commit. However, the message logging/replay method allows these processes to
avoid executing a continuation committing operation at each commit. This implies that
processes may have to re-execute transactions committed since the latest continuation
committing operation on failure recovery. In other words, failure recovery overhead is
traded for better runtime performance.

In this method, processes can still recover from failure independently of other pro-
cesses as in commit-consistent execution, but message logging (i.e., recording execution
of tuple retrieval operations such as in and rd) is required during normal execution.
Therefore, this method is well-suited to applications where processes have large contin-
uation, but access tuple space rarely.

In this method, a process’s continuation is saved to tuple space only periodically but
the continuation at the last commit is reconstructed, instead of being retrieved from tuple
space, on failure recovery. Reconstruction of continuation is based on message logging
and replay techniques which are similar to work by Strom and Yemini[59]. Specifically,
the method is as follows:

e Periodic continuation committing and continuous message logging.

1. A process performs a continuation committing operation on tuple space only
when the runtime system explicitly requests it. (How frequently that occurs
is a tuning parameter.) That is, although the semantics of the operations is
that they occur at each commit point, the system will not implement them
that way.

2. For a running process, the tuple space server (the process which manages
tuple space at runtime) maintains the history of the committed input tuple
space operations (i.e., the in and rd operations) executed by the process since
the last continuation commit. Thus, for each input tuple retrieval operation
(in, rd), the history contains information about which tuple is accessed and
its value. As we said above, these input operations carry much less data than
the continuation committing operations in the applications we know about.

3. Once a process saves its private state to tuple space (i.e., performs the contin-
uation committing operation), the history discards all the process’s previous
input tuple space operations. It begins to collect these again starting with
the transaction following the continuation committing operation.

o Rollback and Replay

1. If a process fails and recovers, then it first restores the latest saved private
state and resumes execution from that state. However, the continuation at
the last commit is reconstructed replaying the history as explained below.

2. In the history, out and eval operations are ignored, because the tuple space
has already reflected their execution.

36

FAILURE
logical physical
I

I
T1 T2 T3 | T4
Process P | =
c3'l. .
, abort
commit continuation log log

roll back replay

C3

Backup P - - - =Cl
@ T2 T3 T4

skip the committed transaction

FIGURE 3.2: Message Logging and Replay

3. For rd and in operations, the history is replayed.

Figure 3.2 illustrates the message logging and replay method. The figure shows how
the message logging/reply method executes and recovers the same multi-transaction
process shown in Figure 3.1. In the figure, the process saves continuation (7 to tuple
space when it commits transaction Ty. After that, the process does not perform the
continuation committing operations for transactions Ty and T5. Instead, the runtime
system records the tuple space operations for T3 and T5. The process experiences failure
during transaction Ty. On recovery from failure, the process recovers state C'; from tuple
space and reconstructs state C's by replaying the recorded operations for T, and T5. The
process resumes normal execution from C.

The PLinda message logging /replay method is similar to work by Strom and Yemini[59].
However, their and our techniques differ in several ways. First, the PLinda message
logging /replay method is based on the transaction mechanism. Therefore, transaction
processing overhead (mainly lock management in PLinda) is implicit in PLinda. Sec-
ond, disk access is not required in PLinda. Finally, the PLinda message logging/replay
method allows processes to save local state and recover from failure independently of
other processes; by contrast, Strom and Yemini’s techniques need to perform depen-
dency tracking on recovery from failure and to roll back other processes (i.e., cascaded

37

rollbacks).

3.5 Coordinated Checkpointing

The message logging /replay method is efficient for applications in which processes have
large continuations (e.g., processes based on data partitioning) but communicate (i.e.,
access tuple space) rarely. However, if processes communicate frequently, continuous
message logging overhead may offset the performance gain due to the avoidance of saving
continuation at each commit.

For such applications, PLinda supports the coordinated checkpointing method!. In
this execution method, a process does not save its continuation to tuple space at each
commit, and message logging is not performed during normal execution. Instead, the
runtime system takes a global snapshot and saves it to disk periodically. This method
is reminiscent of work by Koo and Tueg[45]. Specifically, this execution method is as
follows:

1. As in message logging/replay, a process performs continuation committing only
when the runtime system explicitly requests it. Instead, the process makes a local
copy of continuation at each commit and keeps it until the next commit. Mainte-
nance of a local copy is required because a continuation can be requested at any
point.

2. Periodically, the tuple space server broadcasts a continuation committing request
to every process — activation of coordinated checkpointing. Unlike transparent co-
ordinated checkpointing which makes the entire system quiescent, the tuple space
server still allows tuple space access and process creation operations but blocks
transaction commit requests until the coordinated checkpointing operation is fin-
ished. Transaction commit requests need to be blocked in order to take a snapshot
of a transaction-consistent global state.

3. Once the tuple space server receives continuations from all the processes, it saves
a transaction-consistent state of the tuple space including those continuations to
disk — termination of coordinated checkpointing.

4. Fach transaction-consistent snapshot forms a recovery line. If a process or tuple
space fails, then all the processes and the tuple space roll backs to the latest
transaction-consistent snapshot from disk.

Figure 3.3 illustrates the coordinated checkpointing method. In the figure, processes
only make local copies of continuation at each commit. Coordinated checkpointing is
activated when processes 1, process 2, and process 3 are executing transactions 7}, T2

'We do not aim at fine grain parallel applications but we believe PLinda can perform adequately
on those applications which have a modest amount of communication. Regardless of fault toler-
ance, fine grain parallel applications do not perform well on networks of workstations because of slow
communication.

38

CHECKPOINT ROLLBACK

- - - -
- ~

\L// \\\ I

I N

1 1 1 1 [

T T .7 |

Process 1 : 1 : 1 3\: 1 ‘ 1 :

Cl Cz _ 'T C4 |

2 2 2 "
I/
Process 2 — 1 : L o1 Vo>

C |
|

Process 3 ¥

TUPLE SPACE

FI1GURE 3.3: Coordinated Checkpointing

39

and T3, respectively. Then, they save local copies of continuation made at the last
commits to tuple space and the state of tuple space is checkpointed to disk.

Process 2 fails later and the failure forces all the processes and tuple space to restore
their states from the last checkpointed state on disk. That is, failure recovery is expensive
in this method.

3.6 Correctness Proof

In Chapter 2 and this chapter, we presented the PLinda fault tolerance scheme which
consists of the fault tolerance mechanisms, programming techniques for constructing a
fault-tolerant application and the three execution methods. In this section, we prove the
correctness of the fault tolerance scheme.

Our proof strategy is as follows. We first formalize the properties of a fault tolerant
PLinda program that is built according to the fault tolerance scheme. Based on the
properties, we then prove inductively that for a completed execution of a fault tolerant
PLinda program P, there is some equivalent possible execution of the Linda program L
where L is obtained from P by removing statements aimed at fault tolerance. We call
L the Linda Kernel of P.

We assume that an execution of a PLinda program may experience two types of
failures: tuple space failure and process failure. Both of these are clean fail-stop failures.
When the tuple space fails, the tuple space in virtual memory is corrupted but any
checkpoints to secondary storage (which can be mirrored) are not disturbed. A process
failure is the death of a process (though slowdowns may be treated as process death by
the runtime system.)

We present a series of definitions leading to the correctness proof.

Definition 1 For a process, a local state is defined to be the entire process image (i.e.,
the control stack and the data and code segments) at a certain point.

Definition 2 For a local state of a process, an encoded continuation (for short, a con-
tinuation) is defined to be the contents of a set of local variables from which the local
state can be re-constructed.

In Chapter 2, we showed a way to define an encoded continuation. Since a local state can
be re-constructed from the corresponding continuation, we use them interchangeably in
this proof.

Definition 3 A state of tuple space consists of tuples and all the processes’ latest con-
tinuations. Tuples may be locked. For a process, the continuation is not necessarily the
one at the last commit.

Definition 4 A PLinda transaction is abortable if it accesses only local variables, un-
locked tuples, tuple space variables locked by that transaction, or read-only files.

The PLinda transaction mechanism can guarantee that no other transaction can access
the updates or processes created by an aborted transaction.

40

Definition 5 A multi-transaction process is defined as follows:

1.

2.

The execution is composed of a sequence of abortable transactions, Ty — Ty —
- — T,, for some n.

The execution makes a series of local state transitions, sg — $1 — - -+ — 8, where
so 1s the initial local state and s; is the local state at the commit of transaction
T; forv=1,---.n. The commit of transaction Ti consists of unlocking any tuples
that Ti modified and may consist of storing the continuation encoding the process
state in tuple space at the end of Ti.

Definition 6 A PLinda process is time-independent if its output values and assignments
to its local variables depend only on the values it reads from the tuple space and read-only
files and on the initial setting of its program variables.

For a time-independent process, delays do not influence behavior.

Definition 7 A PLinda process is defined to be Failure Tolerance-structured (for short,
FT-structured) if it is designed as follows:

1.

2.

The process is time-independent.
The process is a multi-transaction process.

The process saves a continuation C,, to tuple space at the commit of each transac-
tion T, for some n.

If the process fails while executing a transaction Ty1q, it restarts from the beginning
of Try1 by restoring a continuation C'y, from tuple space.

Note that this definition specifies how to design an FT-structured process, but, as we will
see, the execution of the process may differ if the message logging/replay or coordinated
checkpointing methods are used at runtime.

Definition 8 A computation is output-only if:

1.

2.

The computation reads input data from read-only files or tuple space.

Commits are atomic. That is, no two commits overlap in time.?

Upon termination of the computation, all the processes terminate and all the trans-
actions are committed.

The computation stores the final results in tuple space.

The end-user observes the only final results in tuple space as opposed to interme-
diate results or local variables.

In general, we need only that the execution is equivalent to this condition.

41

An output-only process may redo some of its transactions provided this repeated work
does not affect its final outcome.

Definition 9 An entire PLinda program is defined to be FT-structured if it is output-
only and all the processes are FT-structured.

In Section 2.5, we explained how to design a process to be FT-structured using
transaction and continuation committing statements.

Definition 10 For an execution of an FT-structured PLinda program, a system state
consists of all the committed tuples in the tuple space and all the processes’ continuations
(or, local states) at the last commit points. The final state contains only committed tuples
because all the processes terminate upon termination of the computation.

Note that by this definition, executing a transaction doesn’t change the system state
(since local variable changes are ignored). Since the commit operation atomically changes
both the tuple space and the last continuation of a process, all normal state changes occur
at commit points.

Definition 11 A failure-free system state is one that is reachable in a failure-free exe-
cution.

Definition 12 Suppose two output-only PLinda (or Linda) executions start from the
same failure-free system state S. They are defined to be equivalent if they terminate
with the same final system state S’.

3.6.1 Proof

We consider operations or events in the execution of an FT-structured PLinda program.
The execution consists of tuple space access or process creation operations (e.g., in, rd,
out, proc_eval), transaction-start, transaction-commit, checkpoint-begin, checkpointing
operations, checkpoint-end, process failure-occur, process recovery operations, process
recovery-complete, and tuple space failure/checkpoint recovery.

Since transaction-start, tuple space access or process creation operations of some
transation T are not observed by other processes until transaction 7" commits, we ignore
them and consider only transaction commit.

We create a total order of these events based on their order in time. (If two are
concurrent, then order them in either way.) We call this the event schedule.

For the sake of clarity, we describe rules of the checkpointing operation and the
execution methods. We first consider the checkpointing operation. Recall that the
checkpointing operation writes the tuple space to secondary storage media, e.g., disks.

1. The checkpointing operation is activated only when previous failures are fully re-
covered.

2. All the processes save their continuations at the last commits to tuple space before
the checkpointing operation starts.

42

. No process is allowed to commit transactions during checkpointing.

. The initial checkpoint is empty. If the execution recovers a system state from the
initial checkpoint, then it restarts from scratch.

. The checkpointed state on disk is not corrupted even if a failure occurs during
checkpointing. Dual checkpoints (the latest and the next latest checkpoints) are
maintained; checksums and last update times are used to find the latest valid
checkpoint on failure recovery.

We now consider the execution methods.

1. Commit-consistent execution method. This method executes the continuation com-

mitting operation at each commit. That is, tuple space always contains the con-
tinuation at the last commit for each process.

If a process fails while executing the (k+1)-th transaction Tj1q, the method restarts
the process from the beginning of T;4q1 by restoring the continuation C} at the
commit of the k-th transaction from tuple space.

. Message logging/replay. This method suppresses normal continuation commit-
ting operations. However, the tuple space server logs tuple space operations for
each process since the last checkpoint; each process maintains a local copy of the
continuation at the last commit. Further, all the processes saves local copies of
continuations to tuple space at each checkpoint.

If a process fails while executing the (k+1)-th transaction Ty41, the process may
restores a continuation C; from tuple space for i < k. By replaying the execution
history of the process (but omitting writes the process made to tuple space), the
method guarantees that the process recovers C; without affecting the execution of
other processes.

. Coordinated checkpointing method. As in the message logging /replay, this method
suppresses the continuation committing operations, and every process maintains a
local copy of the continuation at the last commit and saves the latest copy to tuple
space at each checkpoint. However, the tuple space server does not log tuple space
operations.

If a process fails, the tuple space server is restored to the checkpointed state on
disk and all the processes recover their states from the restored tuple space.

We now construct a correctness proof using the definitions given above.

Lemma 1 For a terminating execution F of an FT-Structured PLinda program P that
has suffered no failures and begins in a failure-free initial state, there is some equivalent
execution of its Linda kernel L.

Proof. During F, the operations aimed at fault tolerance (i.e., transactions, continua-

tion committing, and tuple space checkpointing) only delay other Linda or Linda-variant

43

operations by locking. They also generate data (continuations or checkpoints) which are
never read as long as there is no failure.

However, the Linda model does not specify how long a tuple access operation takes
or what tuple it retrieves. Thus, delays due to locking could happen in a failure-free
execution of the Linda kernel. Since F has not experienced any failure, continuation
committing and checkpointing operations do not affect other Linda operations on which
the final system state (or, output) depends. Hence, there is some equivalent execution

of L for F.

Theorem 2 For a terminating execution E of an FT-Structured PLinda program P
beginning in a failure-free state, there is some equivalent execution of its Linda kernel.

Proof. We first show that the final system state of £ is failure-free (i.e., reachable
by a failure-free execution). That is, F is a possible result of a failure-free execution F’.
We prove this by induction on the event schedule.

1. Suppose that the event schedule of E has n events, the system state reached after
the i-th event is 9; for 1 < ¢ < n, and Sy is the initial state. We proceed by
induction.

2. Base case. By definition, the initial system state Sq is failure-free.

3. Inductive case: By event. Suppose that §; is failure-free for 1 < ¢ < k. Then, we
show that Sy1; is failure-free. Let the (k+1)-th event be:

(a) Transaction-commit, This commit operation transforms the system state Sy
into another system state Siyq1. Since Sy is failure-free and F does not ex-
perience failure between the k-th and (k+1)-th events, Sk4q could arise in a
failure-free execution.

(b) Checkpoint-begin or checkpointing operations. During checkpointing, the sys-
tem state is not changed and the checkpointing operations do not affect the
system state or corrupt the latest checkpointed state on disk even if a failure
occurs. Therefore, Si1q1 = S and so Si4q is failure-free.

(¢) Checkpoint-end. The current system state is saved to disk, but not changed.
Therefore, Sp41 = Sk and so S4q is failure-free.

(d) Tuple space failure/checkpoint recovery. On tuple space failure, the entire ex-
ecution stops and F is rolled back to the system state 5; at the last checkpoint-
end event where 7 < k. By inductive assumption, .5; is failure-free. Sois Sg41.

(e) Process failure-occur, process recovery operations or process recovery-complete
under the commit-consistent execution and message logging/replay methods.
Suppose that process p in F fails while executing the (i+1)-th transaction.

i. Commit-consistent execution method. The (i+1)-th transaction is aborted
and p restarts from the beginning of the (i+1)-th transaction. Since p
is FT-structured, no other process can read the values written by the

44

aborted transaction. The net effect is as if p is delayed between the -
th and (i+1)-th transactions. Therefore, the failure recovery does not
affect the execution of other processes or the system state. Therefore,
St41 = Sk and so Sp4q is failure-free.

ii. Message logging/replay method. Failure recovery is handled in a similar
way as in the commit-consistent execution method. In the message log-
ging/replay method, the operations in the history log are also replayed.
This replaying operation does not affect the execution of other processes
or the system state. Therefore, S;41 = Si and so Sgyq is failure-free.

(f) Process failure-occur, process recovery operations or process recovery-complete
under the coordinated checkpointing method. F is rolled back to the state .5;
at the last checkpoint-end event where ¢ < k. Thus, S;4+1 = 5;. By inductive
assumption, S; is failure-free. So is Sg41.

Hence, 5; is failure-free (i.e., reachable by a failure-free execution) for ¢ = 1,---,n.
That is, the final system state (i.e., output) of E is always reachable by a failure-free
execution E’. E and E’ are equivalent.

By Lemma 1, there is some execution £ of the Linda kernel which is equivalent to
E’. Therefore, Ey, is equivalent to F.

3.7 Related Work

There has been a considerable amount of work done on checkpointing and rollback-
recover techniques for distributed systems whose execution mechanisms are similar to
the PLinda mechanism. In this section, we will only review the most closely related
work. See [22] for a comprehensive survey.

Among various approaches to making parallel/distributed systems failure-resilient,
backward error recovery is the most general and commonly used[37]. Backward error
recovery is the only known mechanism that can tolerate faults which were unexpected at
system design time[54, 37]. For example, the approach can make arbitrary distributed
programs fault-tolerant in a programmer-transparent manner. The technique used in
backward error recovery is checkpointing and rollback.

Checkpointing techniques have been widely used for database systems to make re-
covery fast[6, 34] Since database applications do not require process resiliency, those
techniques don’t recover process state. However, they ensure that committed transac-
tions are serialized and never lost. They must do so because the user can see results
of committed transactions immediately and expect them to survive failure. In contrast,
PLinda supports process resiliency, but allows committed transactions to be lost for
better runtime performance.

There are two common and general approaches to checkpointing and rollback recov-
ery in distributed systems: coordinated checkpointing and message logging/replay. In
coordinated checkpointing, (also called synchronous or distributed checkpointing), all
processes stop at checkpoint time, synchronize to agree on a consistent global state and

45

write their states to disks[45, 41] together. If a process fails, then all the processes usually
roll back to the last checkpoint.

In message logging/replay[59, 39], also called independent checkpointing, processes
save local state to disk independently of one another. They also record all the inter-
process messages in message logs and periodically save the log to disk. On process failure,
the rollback-recovery scheme restarts the failed process from the previous checkpoint
(which may not be consistent with the states of the other processes) and replays the
messages in the same order to restore the process back to a consistent state. Therefore,
the processes must be deterministic; that is, given the same input, they should produce
the same output. In spite of message logging, this technique may still lose messages
during rollback-recovery because the message log is only periodically saved to disk. In
this case, the rollback-recovery scheme forces all the other processes depending on the
those messages to roll back to previous checkpoints.

Coordinated checkpointing aims at low runtime overhead during normal execution.
It makes the entire system quiescent during checkpoint, and a single failure requires the
entire system to roll back to the last checkpoint®. In contrast, message logging/replay
incurs low rollback-recovery overhead and aims at reducing the amount of lost work on
failure. However, the algorithms are relatively more complicated and entail more runtime
overhead due to message logging.

PLinda offers a flexible recovery mechanism that can be partly tuned at runtime.
This allows PLinda to be usd for a variety of parallel applications.

Drawbacks are that it requires programming work for fault tolerance and that it
incurs transaction processing overhead during normal execution. As explained in Chap-
ter 2, PLinda supports lightweight transactions which do not cause high runtime overhead
to coarse grain parallel applications. For coarse grain parallel applications the additional
programming work is often negligible.

3.8 Summary

In this chapter, we described the tunable execution mechanism of PLinda for resilient
processes. We gave the motivation for our tunable approach to execution: an execution
model needs to be flexible in order to to deal with different application characteristics.

The message logging/replay and coordinated checkpointing methods are similar to
work by work by Koo and Tueg[45] and Strom and Yemini[59], respectively. Their tech-
niques are aimed either at supporting efficient normal execution or at avoiding massive
rollback on failure, not both. In contrast, PLinda allows the end-user to choose one of
three execution methods for an application at runtime, depending on application char-
acteristics. Table 3.1 shows a comparison of the three execution methods..

*There are dependency tracking techniques that may reduce the number of processes to rollback.

46

Commit-consistent execution

Only uncommitted transactions

Continuation committing at each commit

Yes

R Q| N[

With small continuations

Message logging /replay

Both uncommitted and committed transactions
Periodic continuation committing but continuous message logging

Yes

= QO N |

With large continuations but rare access to tuple space

Coordinated checkpointing

The entire system rolls back to the Jast checkpoint

Only periodic continuation committing

No

W QO N[

With large continuations and a modest amount of access to tuple space

1: Work lost on failure

2: Overhead during normal execution
3: Independent failure recovery

4: Suitable Applications

TABLE 3.1: Comparison of the Three Execution Methods

47

Chapter 4

Using Idle Workstations for
Parallel Computation

4.1 Introduction

The increasing availability of powerful networked workstations has resulted in high per-
formance distributed computing systems. Typically such networks of workstations are
principally used to support individual users connected by email, but can also be used
as distributed parallel systems attempting to solve large scientific or engineering prob-
lems. Thus, there is a large potential for these underutilized machines to run parallel
applications. Any system which attempts to use underutilized machines on a network
for sequential /parallel computation must address three issues:

Idleness detection.

Scheduling.
e Process migration from machines when they become busy.
e Process migration to machines when they become idle.

There has been a considerable amount of research done on how to utilize idle or
under-utilized workstations connected by a network([2, 14, 18, 11, 25, 28, 44, 48, 52, 53].
In that work various systems were developed to address the above issues. We call them
“work-stealing” systems.

Among them, there are systems[2, 11, 25, 44] which support parallel computation,
but few support both fault tolerance and idle workstation utilization. However, it is
crucial to provide all three facilities for long-running parallel applications on networks of
workstations: parallelism for computation instensive tasks, fault tolerance for both hard
and performance failures, and idle workstation utilization for cost effectiveness.

For idleness detection and scheduling we do not intend to re-invent techniques for
PLinda. Instead, we take advantage of various techniques already developed by other
work-stealing systems|[2, 14, 18, 11, 25, 28, 44, 48, 52, 53]. The process migration issue is

48

addressed by treating “busy” machines (i.e., those which are being used by their owners)
as failed; that is, owner activity is handled as failure. More specifically, we migrate
processes from busy machines to idle ones by killing the processes on busy machines and
recovering them on idle machines by the existing PLinda fault tolerance mechanisms.

This chapter is organized as follows. In Section 4.2, we describe the issues involved
in workstation idleness detection and process scheduling, and explain how the current
PLinda design addresses those issues. Section 4.3 presents the rationales and advantages
of using the PLinda fault tolerance mechanisms for process migration. In Section 4.4,
we explain how the current PLinda infrastructure is designed to utilize idle machines.
Related work is reviewed in Section 4.5. In Section 4.6, we conclude this chapter with a
summary.

4.2 Finding Idle Workstations and Scheduling Processes

We first discuss the issues involved in detecting whether a machine is idle or busy and
how to do scheduling. Then, we describe how the current design of PLinda addresses
them.

4.2.1 Issues

Intuitively, a machine is defined to be busy when the owner is using it; otherwise it is
idle. Unfortunately, it is not simple to determine whether an owner is using his or her
machine at any given instant. Constant polling might be used but incurs significant
overhead. For this reason, work-stealing systems have devised idleness criteria which the
runtime system can use to detect the idleness of a machine without polling. Common
idleness criteria are:

o Keyboard, mouse and console idle times.
e Load average.

o The number of users logged on.

e Remote-login-session idle time.

Besides these, there are other criteria such as time of day which are used relatively less
often. See [44] for a comprehensive description about idleness criteria.

There have been several studies to find effective settings for idleness criteria[44, 53].
Kaminsky reported that the Piranha project team had run large production applications
on a volunteered pool of over 60 workstations and only one machine was withdrawn from
the pool. The idleness criteria used in those experiments were that the keyboard, mouse
and remote logins had to be idle for five minutes and the one, five and ten minute load
averages had to be below 0.4, 0.3 and 0.1, respectively. Other experimental results have
also shown the effectiveness of similar idleness criteria[53].

Also, there have been various studies to measure how often workstations are idle[44,
52]. They found that machines are idle most of the time. For example, Mutka and Livny

49

found that 70%-80% of machines are idle weekends and that 50% were idle even at peak
times[52]. Kaminsky reported that 86%, 94%, and 75% were idle on average, at night,
and during the daytime, respectively. Also, we have conducted a one week experiment
with 19 machines at the NYU computer science department. Our results showed that
86%, 92%, and 60% were idle on average, at night, and during the daytime, respectively.

We will now discuss process scheduling issues. A scheduler may be either centralized
or decentralized. The advantage of a centralized scheduler is that it is simple and easy to
implement because there is only one scheduler process which maintains any necessary in-
formation. A centralized scheduler works efficiently for small and medium scale systems.
For these reasons, most systems designed to utilize idle workstations employ centralized
schedulers. However, a centralized scheduler generally has a scalability problem; that is,
the scheduler becomes a bottleneck as the numbers of processes and processors increase.

In contrast, a distributed scheduler, which by definition consists of multiple processes,
does not cause a single process to be a bottleneck. But the scheduler processes must
achieve agreement on resource allocation. Such agreement is both difficult to implement
and expensive at runtime due to required communication and synchronization costs.

There are also hybrid approaches to scheduling. Market systems[18, 44, 49, 62] are an
example. These systems apply the idea of economic bidding to the scheduling problem.
Each machine bids autonomously and a single broker process collects the bids. The
broker assigns tasks to machines based on their bids.

Regarding scheduling parallel applications over networks of workstations, another
important issue is supporting multiple applications. Since many users share networks of
workstations, there are likely to be multiple parallel applications running concurrently.
Therefore, scheduling multiple parallel applications is crucial to effectively utilizing idle
workstations. Also, both throughput and turnaround time can benefit because most
parallel applications do not exibit linear speedup; that is, they are more efficient on a
smaller number of processors[44]. A commonly used scheme is to partition processors
and to assign partitions to applications. For example, processors can be evenly divided
or each processor can select an application randomly.

Scheduling processes over distributed computing systems is still an important re-
search issue and idleness criteria need more study to determine how to use idle times
of machines more effectively and to satisfy cautious owners. We expect that there will
be more work on these issues. For PLinda, we do not intend to re-invent techniques
for detecting idle machines and scheduling processes over those machines. Instead, we
intend to use the techniques which are already developed and have proven to be effective.

4.2.2 The Current PLinda Design

In the current implementation of PLinda, we are using keyboard, mouse and console idle
times for idleness criteria. The implementation is based on a centralized scheduler and
supports multiple applications. How the scheduler works will be explained in detail in
Section 4.4.

50

4.3 Process Resiliency as Process Migration

In this section, we discuss process migration in PLinda. We first explain two seemingly
orthogonal but similar ideas: process migration for utilization of idle machines and
process failure-resiliency. Then, we show how process failure-resiliency can be used
efficiently for process migration in PLinda. We also explain why process resiliency has
not been previously used for process migration. We conclude this section by discussing
the need for fault-tolerance in an environment that utilizes idle machines and the merits
of our method for process migration over prevalent methods.

Process migration and process failure-resiliency are designed for different purposes.
Process resiliency for parallel computation aims at enabling processes to continue and
finish computation correctly even though some of them experience failure during execu-
tion. In contrast, process migration is intended to move processes from overloaded or
busy machines or to under-utilized or idle machines.

In spite of different motivations, the two techniques require the same functionality
— moving processes from one machine to another during execution. Therefore, process
resiliency can theoretically be used for process migration. That is, we can treat process
migration as failure recovery by killing a process on the machine that has become over-
loaded and allowing the fault-tolerance mechanisms to restart the process on another
machine. In fact, process resiliency performs process migration under a more difficult
condition — unexpected failure.

Heretofore, process resiliency has not been used for process migration for a number
of reasons. First, a process usually has to lose a lot of work on failure recovery (or,
migration). Most techniques for process resiliency entail periodic checkpoints of process
images to disk. On failure recovery, processes roll back to the last checkpoint on disk[22].
In general, checkpoints are taken infrequently for runtime efficiency and therefore, failure
recovery causes a lot of work to be lost. Process migration for load balancing reasons
may occur frequently and therefore a lot of work should not be lost on migration.

In addition to losing a lot of work on failure, failure recovery usually requires not only
failed processes but also live processes to roll back to previous checkpoints. For example,
techniques for coordinated checkpointing[45] require massive rollback on failure, and
those for message logging/replay may also require cascading rollbacks on failure.

In contrast to other fault tolerance methods the following features of the PLinda
commit-consistent fault tolerance execution method make it suitable for process migra-
tion on networks of heterogeneous workstations.

e Independent continuation committing and rollback-recovery. Each process can per-
form continuation committing and rollback-recovery operations independently of
other processes. This allows a process to migrate without affecting other processes.

o Lightweight mechanisms. Continuation committing and rollback recovery save only
a few process variables to tuple space at commit and retrieve them on recov-
ery. These operations are efficient because they do not require disk access or
re-execution of committed transactions.

51

o Heterogeneous processing'. Continuation committing and rollback recovery are
based only on process variables which are architecture-independent. This allows
processes to migrate among heterogeneous machines.

In addition to supporting both process migration and failure-resiliency, the fault
tolerance mechanism based technique has another merit. As explained earlier, a typical
way to utilize workstations is to use them for parallel computation when they are idle.
In this case, a work-stealing system must immediately retreat processes from a machine
when the owner resumes working on the machine. On retreat, process migration facilities
first prepare for migration (e.g., save process images) and then move processes to another
machine. Thus, retreat is slow. In contrast, PLinda treats owner activity as failure and
immediately destroys processes on the machine. Thus, retreat is fast. Therefore, parallel
computation with the PLinda process migration facility will not disturb the owners of
private workstations.

In summary, PLinda is one of very few systems to support fault tolerance and uti-
lization of workstations for long-running coarse grain parallel applications. The user
can run long-running parallel applications without fear of processor failure during the
long period of execution or disturbing owners of private workstations. Also, using a
single mechanism for fault tolerance and process migration allows simplicity in system
implementation and quick retreat on owner activity.

4.4 PLinda Infrastructure

The PLinda infrastructure is designed to allow the user to use networks of workstations
as a parallel virtual machine which both supports fault tolerance and utilizes only idle
workstations. The parallel virtual machine reconfigures itself automatically as the status
of each processor changes (e.g., a process fails or becomes busy or idle).

4.4.1 Major Runtime System Components

The prototype PLinda system is based on the client-server architecture model. In the
PLinda system, application processes are clients and the runtime kernel is the server.
The current runtime system consists of three major components:

e Daemon processes. The runtime system runs a daemon on each workstation. Using
idleness criteria explained in Section 4.2, the daemon monitors the idleness status
of the local host machine and informs the server of status changes to the machine.
Also, it manages processes on the machine; that is, it invokes application processes
upon request from the server and kills them as soon as the machine becomes busy.
While the owner of a machine is working, the daemon intermittently checks the
status of the machine and sleeps the rest of the time so as not to disturb him or

her.

!The current system runs on only Sun Sparc workstations, but other ports are underway and should
be easy.

52

o The server?. The server manages tuple space and schedules client processes. The
scheduler in the server is designed to meet the following criteria:

— Allow multiple applications. As explained in Section 2.4, applications do not
affect one another due to multiple tuple spaces.

— When processes outnumber physical processors, multiple processes should be
spawned on each machine.

— Rely on the OS kernel to schedule processes running on each machine. As
explained in Section 2.7, PLinda processes are, in fact, processes at the OS
level. Therefore, once multiple processes are spawned on a workstation, the
OS kernel on the machine automatically schedules them.

— The number of PLinda processes on each machine should be used as the
measure of the workload for that machine.

e Administration process. The administration process allows the PLinda user to
observe and control runtime behaviors during execution. Also, the user can add or
delete workstations to the parallel virtual machine at any time.

4.4.2 Parallel Virtual Machine in PLinda

The current PLinda prototype allows the user to use networks of workstations as one
fault-tolerant parallel virtual machine whose processors are only idle workstations. How-
ever, the current implementation assumes that the user runs the server and administra-
tion processes on machines dedicated to the parallel application. That is, the server and
administration processes are not migrated during execution.

In the prototype system, such a virtual machine is implemented as follows:

1. Processor pool. The parallel virtual machine consists of a pool of processors which
are running or failed. Idle workstations are treated as running processors and busy
or failed workstations are treated as failed processors. Only running processors
participate in computation.

2. Registering a processor. Using the administration process, the user can register a
workstation in the PLinda runtime system at any point. This causes the adminis-
tration process to create a daemon on the workstation.

3. Process creation. If the server needs to create a client process, it selects one of the
running processors which executes the smallest number of processes (i.e., a least
loaded one), and spawns the client process there.

4. Process migration. When a running processor becomes failed (because of either
owner activity or a real processor failure), its daemon or the failure immediately
destroys all the running client processes on the machine. Then, the server is either
informed of the simulated failure or it detects the real failure.

2The current implementation is based on a single server.

53

Workstation owner

PLinda process

D Owner’s process

PLinda process

user

Administration
process

PLinda daemon

Tuple space

O
D Process

Idle workstation

Checkpointed b : :
tuple space © Busy workstation :

FIGURE 4.1: Parallel Virtual Machine in PLinda

5. Load balancing. Periodically, the server performs load balancing. It migrates pro-
cesses from overloaded processors to less loaded ones. Since process migration is
relatively expensive, load balancing is performed only periodically. The frequency
is a tuning parameter.

Figure 4.1 illustrates the virtual machine. In the figure, there are three workstations
A, B, and C in the processor pool. There is one daemon running on each machine. A
and C are idle and being used for parallel computation by the runtime system. B is
being used by its owner. However, the daemon on B is still monitoring if B is idle, and
when the owner is away from B, it will inform the server.

4.5 Related Work

In this section we will give a brief overview of the vast amount of recent research on
process migration which is aimed at harnessing the power of underutilized worksta-
tions. These systems can be classified by their target applications into two categories:

54

sequential /semi-parallel and parallel.

The sequential systems[48, 18] offload sequential jobs (i.e., jobs that do not have in-
ternal parallelism) from overloaded machines to under-utilized or idle ones. Since these
systems are only intended for sequential jobs, they are not applicable to parallel appli-
cation users. There are also systems that are aimed at those semi-parallel applications
which consist of only independent tasks (no inter-task communication)[16, 62, 65, 67].
The sequential/semi-parallel systems usually support fault tolerance using transparent
checkpointing and rollback recovery techniques, but this scheme does not readily support
the use of heterogeneous workstations.

In contrast to the sequential/semi-parallel systems, PLinda supports fault tolerance
and the utilization of idle processors for arbitrary parallel applications on networks of
heterogeneous workstations. Also, because the programmer can customize fault tolerance
based on application characteristics, PLinda is an efficient and convenient way to execute
semi-parallel applications.

The parallel systems which intend to utilize idle workstations for parallel applications[2,
11, 21, 25, 44] either depend on support from the underlying operating systems or as-
sume restricted programming models or characteristics about the applications they are
intended for. Few of them can tolerate failure during parallel computation.

Among those systems, Piranha[44] is a Linda-variant system aimed at utilizing idle
workstations. The current design of the PLinda idleness detection mechanisms is inspired
by ideas proposed by Piranha.

4.6 Summary

In this chapter, we discussed how to utilize idle workstations for parallel computation
in PLinda. Throughout our discussion, we considered three issues: idleness detection,
process scheduling and process migration.

In the design of PLinda, we do not attempt to study techniques for idleness detection
and process scheduling, but intend to take advantage of those already developed by other
work-stealing systems. In Section 4.2, we discussed process scheduling and idleness
detection and how the current PLinda design addresses those issues.

A novel feature of PLinda is to treat process migration and process failure-resiliency
uniformly. More specifically, we use the fault tolerance mechanisms to migrate processes
from busy machines to idle ones by treating owner activity as processor failure. The
fault tolerance mechanisms can be used for process migration because they are light-
weight and allow a process to save its state and recover from failure independently of
other processes. That is, a process can be migrated efficiently and independently, using
the fault tolerance mechanisms. Also, since the PLinda fault tolerance mechanisms
can be designed to support heterogeneous processing, processes can be migrated over
heterogeneous machines.

There are two principal advantages to using the same mechanism for fault tolerance
as for process migration:

1. it is simpler

55

2. it allows for an entirely general design of migratable processes, since migration can
occur as an instantaneous failure.

56

Chapter 5

Implementation and Experiments

In this chapter, we explain the implementation of the PLinda prototype and present
performance results. The PLinda prototype system is based on the client-server archi-
tecture model. In the current implementation, application processes are clients and the
runtime kernel is the server. The server is not yet distributed.

The prototype is built on UNIX and TCP/IP using C++. The implementation
consists of four major components: the server program, the daemon program, the ad-
ministration program, and the client library.

There is a vast amount of literature about the implementation of tuple space and
transaction processing systems[9, 6, 12, 34, 46]. In the design of the PLinda runtime
system, we have focused on how to incorporate existing implementation techniques for
transactions into those for tuple space. Throughout this chapter, we therefore concen-
trate on presenting implementation strategies rather than describing implementation
details.

This chapter is organized as follows. In Section 5.1, we explain the implementation of
the PLinda server by describing the architecture, tuple space management, transactions,
process management, tunable execution of continuation committing, and tuple space
checkpointing.

In the following sections, implementations of the PLinda daemon and the admin-
istration tools are discussed, respectively. Then, we present performance results from
experiments in Section 5.4. Finally, we summarize this chapter in Section 5.5.

5.1 PLinda Server

The current PLinda client-server prototype uses a single server and many application
processes being clients.
The server performs the following functions:

¢ Manage tuple space. The server provides transactional tuple space access and
process creation.

o Manage processes. The server schedules processes and also detects failure and

57

5.1.1

recovers failed processes. As explained in Chapter 4, the server treats non-idleness
as failure.

Support fault tolerance mechanisms. The server provides mechanisms for transac-
tions, continuation committing and tuple space checkpointing.

Manage workstations. The server runs one daemon process on each workstation to
monitor idleness.

Architecture

The architecture of the PLinda server is designed in an object-oriented style. In the
program for the server, runtime resources (e.g., processors, client processes and tuple

groups) and fault tolerance abstractions (e.g., transactions and checkpointing) are rep-
resented as C++ classes. That is, these classes define the runtime behaviors of these
resources and abstractions. The main C++ classes are:

Scheduler. In the server, one Scheduler object is created and it schedules all the
tasks. The tasks include servicing client requests (e.g., tuple space access, process
creation and transaction operations), checkpointing tuple space and communicat-
ing with clients.

CheckpointManager. One CheckpointManager object is created at runtime. This
saves tuple space to disk periodically and on failure recovery, restores the check-
pointed state from disk.

ClientProcess. The server maintains one ClientProcess object for each execut-
ing client process. Each ClientProcess object services requests (e.g., tuple space
access) from its corresponding real process. A workstation may have several real
processes.

DaemonProcess. Like ClientProcess objects, the server creates one DaemonProcess
object for each real PLinda daemon process. FEach PLinda daemon process is re-
sponsible for one workstation.

Transaction. The server maintains one Transaction object for each active trans-
action. A Transaction object keeps track of tuple space access operations by
maintaining lock information about accessed tuples. It also performs the commit
or abort operation for the transaction.

TupleGroup. The server has one TupleGroup object for each tuple group. A
TupleGroup object manages tuples for its tuple group. It also saves the state to
disk when requested by the CheckpointManager object.

ServerCommLink and ClientCommLink. Fvery client process and daemon process
are required to set up a connection at the beginning of their execution. FEach
connection consists of two objects: a ServerCommLink object on the server side

58

Q TCPIP (O """" Q 7 %

ClientCommLink | ServerCommLink |

Client

PLinda Server

FIGURE 5.1: Server Architecture

and a ClientCommLink object on the client or daemon process side. These objects
hide all details about communication from the other objects.

Figure 5.1 shows the architecture of the server.

5.1.2 Tuple Space Management

In PLinda, the tuple space storage mechanism is required both to manage tuples and to
cooperate with transaction mechanisms. Unlike common storage management systems
for transactions which are usually aimed at efficient and reliable manipulation of data on
disk, the current PLinda storage management for tuple space is focused on in-memory
data for the following reasons. First, in the current prototype, it is assumed that tuple
space is used for communication and coordination among processes, but not for manage-
ment of a large amount of data. Thus, the entire tuple space is designed to reside in the
address space of the server. Second, the server does not access disk except for periodic
tuple space checkpointing and rare recovery from tuple space failure.

The current implementation of tuple space management is designed as follows. The
server loads the entire tuple space at the beginning of an execution or on recovery from
tuple space failure and manipulates it inside virtual memory throughout the execution.
Therefore, there is no buffer (cache) management intended for efficient access to data on

59

disk. The server uses the memory management facility (i.e., new and delete)supported
by the C4++ language library to allocate memory space for tuples. This design allows for
efficient tuple manipulation of the PLinda operations except during tuple space check-
pointing and recovery. For tuple space checkpointing and recovery, this design requires
the flattening operation (i.e., converting tuples from an in-memory format to a byte
stream without pointers) at each checkpoint and the inflating operation (i.e., the reverse
operation of flattening) on recovery.

In PLinda, tuple space is partitioned into tuple groups. The server maintains a
TupleGroup object for each tuple group. A TupleGroup object (which we will call a
tuple group unless clarification is needed) manages tuples as follows:

1. Tuple Group Partitioning. The tuple group partitions the tuples according to their
patterns and maintains a linked list whose nodes point to each tuple pattern. (We
call the list the tuple pattern list.) A pattern is a sequence of types t1,%2,-- -, tn.
A tuple has a pattern P if the number of fields in the tuple equals the number of
types in the pattern and every field ¢ in the tuple is of type ¢t where ¢ is the i-th
type in the pattern.

2. Data Structures. The tuple group also maintains both a linked list (called a tuple
list) and a hash table (called a tuple hash table) to manage the tuples in the same
tuple pattern. It currently uses the first field of the tuple for hashing.

3. Tuple Creation. For a tuple creation request, the tuple group first searches for
a node in the tuple pattern list which represents the pattern of the tuple to be
created. If the tuple group fails to find such a node, then it creates a new node
in the tuple pattern list which represents the pattern of the new tuple. The tuple
group inserts the tuple (more precisely, the pointer to the tuple) into the tuple list
and tuple hash table.

4. Tuple Retrieval.

(a) Searching. Yor a tuple retrieval request, the tuple group first searches for
the corresponding node in the linked list of tuple patterns. If the request
has a constant value in the first field, the tuple group uses hashing to find a
matching tuple; otherwise, it uses sequential scanning.

(b) Lock compatibility checking. When the tuple group matches a tuple retrieval
request by finding an existing tuple, it checks lock compatibility. If there is
a conflicting lock on the tuple, then the tuple group considers the matching
operation to have failed. In the next subsection, lock management will be
discussed in more detail.

(¢) Blocking. The tuple group blocks tuple retrieval requests which fail to find
matching tuples. It maintains a linked list for blocked requests. It checks
blocked requests in this list whenever it creates a tuple.

Figure 5.2 shows the storage structure of a TupleGroup object.

60

tuple pattern list
tuple hash table

(char-arr, int, ...) (float, int, ...)

‘blocked request list ‘

("data’, int, ...)

F1GURE 5.2: Structure of a Tuple Group

61

In the current implementation, we use the GNU C++4 class library for data structures
such as linked lists and hash tables. To maintain portability, all the interfaces with the
class library are encapsulated inside a few wrapper classes so that the GNU class library-
dependent code can be easily replaced.

5.1.3 Transactions

The traditional transaction model is designed to support concurrency control and reli-
ability. As explained in Section 2.3, the PLinda transaction mechanism provides only
concurrency control for maintaining a consistent state of the tuple space in spite of
process failure. For reliability of the tuple space, checkpointing is used.

For each transaction, the server maintains a Transaction object. This object man-
ages all the locking information for concurrency control and carries out the commit and
abort operations.

In the current prototype, we use a variant of two phase locking (2PL)[6, 34] for
concurrency control. In 2PL, transactions first obtain locks on data items and then
access them. Also, transactions release locks only when they commit. That is, for each
transaction, there are two phases: the first phase in which locks are obtained, and the
second phase where all the locks are released (technically, this is known as strict two
phase locking, but is the form normally used). When a transaction attempts to access
a data item already locked by another transaction, the transaction is blocked until the
other transaction commits and releases the lock on the data item.

The standard 2PL scheme is not well-suited to the Linda model for two reasons. First,
in Linda, a tuple retrieval operation (rd or in) is blocked when there is no matching
tuple; that is, this blocking happens regardless of transactions. Thus, if the standard
2PL is added to the Linda model, then there are two cases for blocking: in the presence
of a locked matching tuple and in the absence of a matching tuple.

Second, 2PL may decrease concurrency more than necessary. For example, suppose
that when a process attempts to retrieve a tuple, all the matching tuples are locked.
In this case, both 2PL and the Linda model block the process. However, 2PL blocks
the process on the lock of one of the matching tuples and therefore releases the process
only when the transaction that holds the lock commits. That is, 2PL does not release
the process when a new matching tuple is inserted later. In contrast, the Linda model
releases the blocked process immediately when a new matching tuple is added. In Linda
applications, such a case is common.

In the current PLinda prototype, 2PL is modified as follows.

1. There are three lock types: rd, in and out. The rd lock corresponds to the read
(or, shared) lock in 2PL and the in and out to the write (or, exclusive) lock. Thus,
rd locks are compatible with one another, but in and out locks conflict with any
other locks.

2. As in standard 2PL, tuple retrieval operations in a transaction search for tuples
which are not locked or whose locks are compatible. However, while searching,

62

these operations do not block on locks; that is, they skip data items which have
conflicting locks.

3. As explained in Subsection 5.1.2, retrieval operations block only when there is no
matching tuple available. However, they are released immediately when a matching
tuple which has no lock or a compatible lock is added.

4. Transactions by default release rd locks immediately after access — degree 2 se-
rializability. However, the server can be tuned to support full serializability (the
standard 2PL) where read locks are released after the transaction commits.

Each Transaction object maintains three linked lists for locks: one for rd operations,
another for in operations, and the third for out operations. We call them the rd list,
the in list and the out list, respectively.

In the current server, transaction commits and aborts are executed as follows:

1. Commit. The corresponding Transaction object unlocks the tuples pointed to by
the rd and out lists and deletes the tuples pointed to by the in list.

2. Abort. The corresponding Transaction object unlocks the tuples pointed to by
the rd and in lists and deletes the tuples pointed to by the out list.

In both cases, the Transaction object is removed after the commit or abort operation

is finished.

5.1.4 Process Management

One of the features that distinguishes PLinda from Linda and other parallel/distributed
programming models is transactional process management. In PLinda, transactions
govern process management almost in the same way as tuple space access. For example,
processes created inside a transaction start to execute only after the transaction commits
and if the transaction is aborted because of failure, these process are automatically
destroyed. In the case of tuple space failure, the server loses all the updates made by
the transactions committed after the last checkpoint. Thus processes created by these
lost transactions must also be destroyed.

Special Tuple Groups for Process Management

The PLinda server maintains three special tuple groups for process management. They
store tuples which are generated by execution of proc_eval operations. Execution of
a proc_eval operation creates two tuples: the argument tuple and the identity tuple.
The argument tuple is constructed by evaluating a series of expressions passed to the
operation. The first field of an argument tuple must be the name of an executable
file. The identity tuple contains identity information about the process to be created
by the proc_eval operation. The information contains: (1) a system-assigned process
identifier, (2) the file name of the executable to be run, (3) the user-interactive mode,

63

and (4) the number of times that the process has been re-spawned/spawned (which we
call the creation attempt counter).

In the current server, a process (e.g., a master process) can be user-interactive. For
such a process, an xterm window is created and the user can communicate with the
process via the window. In addition, the server maintains information about how many
times the process has been re-spawned so far.

The three special groups for process management are:

o Arg group. This group stores argument tuples. The arg_rdp operation accesses
this group.

e Eval group. This group stores identity tuples for those processes which will be
created or re-spawned due to failure.

e Proc_group. This group stores identity tuples for those processes which are run-
ning.

At tuple space checkpoint, these tuple groups are saved to disk and therefore, infor-
mation about processes survive failure. How this information is used will be explained
in the rest of this subsection.

Process Creation

In the server, process creation consists of the following steps:

1. Fzecution of the proc_eval operation. A process executes a proc_eval operation
inside a transaction. The execution of the operation inserts an argument tuple in
the arg_group tuple group and an identity tuple in the eval_group tuple group.
These tuple creation operations are executed in the context of the current trans-
action. Thus, other transactions cannot access them until the current transaction
commits. If the transaction is aborted due to failure, then these tuples will be
automatically destroyed.

2. Dispatching. The Scheduler object always waits for an identity tuple in the
eval _group tuple group by using the in operation. Once an identity tuple is
retrieved, the object increments the creation attempt counter in the tuple and in-
serts the tuple into the proc_group tuple group. The object executes this pair of
operations as a single transaction. That is, the object starts a transaction, exe-
cutes an in operation on eval_group, executes an out operation on proc_eval and
commits the transaction. The transaction mechanism guarantees that the object
always retrieves a committed identity tuple from eval_group. Once an identity
tuple is retrieved, the Scheduler object schedules the process.

3. Scheduling The Scheduler object chooses a workstation having the smallest num-
ber of processes at that point (in fact, selects the corresponding DaemonProcess
object). Then the Scheduler object asks the daemon process on the workstation
to spawn a process as specified in the original proc_eval operation.

64

For a new process, the Scheduler object also creates a ClientProcess object.
The Scheduler object finds this information by examining the creation attempt
counter.

4. Process Spawning. On a process creation request, the daemon process uses the
execl UNIX library function to spawn the process. At this point, the daemon
process gives the process information about how to connect to the server using
command line arguments.

Failure Detection and Recovery

The PLinda runtime system is designed to handle both processor failure (more specifi-
cally, fail-stop failure) due to hardware faults and fail-stop process failure due to software
faults. The runtime system uses both failure notification from the underlying TCP /TP
communication system and a custom timeout scheme to detect failure. For a failed
process (processor failure is treated as failure of all the processes on the failed proces-
sor), the runtime system moves the identity tuple of the process from proc_group to
eval_group so that its backup process (which will resume from the last continuation)
can be re-spawned.

Failures due to software bugs are either permanent or transient. For example, a
server process may crash because its request queue overflows due to an abrupt burst of
requests from client processes. This kind of a software bug is considered as a transient
fault because the fault (i.e., queue overflow) that caused the failure disappears when the
server is restarted. In contrast, re-execution of processes that failed due to arithmetic
exceptions results in permanent failure. Transient software faults are, by nature, difficult
to detect and production quality software may suffer such faults. Therefore, it is desirable
to recover processes that fail due to transient software faults and PLinda does so.

One implication is that the runtime system may, however, attempt to recover a
process indefinitely often, if the process fails because of a permanent software fault. For
this reason, the current prototype maintains the creation attempt counter in the identity
tuple for each process. If a process fails more than a predefined number of times, then the
runtime system concludes that the process has a permanent software fault, and aborts
the entire execution.

To detect both process and processor failures, the server uses two schemes. First,
the server uses failure notification from the underlying TCP/IP communication system
to detect client process failure. In the current implementation, the server and clients
communicate via TCP/IP. TCP/IP is a connection-oriented (or, point-to-point) com-
munication protocol. If one end among a pair of processes which communicate via
TCP/IP fails, the TCP/IP communication system detects it immediately and notifies
the process at the other end.

In addition, the server uses a custom timeout scheme which is independent of TCP /TP.
In this scheme, the server periodically checks if all the client processes are alive (which
is called failure checkup). The server keeps track of interaction with each process and
sends a ping message to those which have not communicated with the server since the

65

argument tuple

e ARG_GROUP

spawn

LT TN

identity tuple \/ identity tuple

failure-cleanup
EVAL_GROUP PROC_GROUP

F1GURE 5.3: Special Tuple Groups for Process Management

last failure checkup point. Those processes which are sent a ping message but do not
reply within a timeout are treated as failed.
On failure, a process is recovered as follows:

1. The corresponding ClientProcess object aborts the currently active transaction,
if any.

2. The identity tuple for the failed process is moved from the proc_group to the
eval_group tuple group. At this time, the counter of spawning operations is in-
cremented. All these tuple moving operations are executed as a transaction.

3. The ClientProcess object records this failure.

4. The Scheduler object moves the identity tuple from the eval_group to proc_group
tuple group and respawns the process.

Figure 5.3 shows how the three tuple groups are used for process management.

5.1.5 Tunable Execution of Continuation Committing

In PLinda, failure-resilient processes are designed to save continuations to tuple space
at each commit — continuation committing. On failure, they recover the continuations
saved at the last commit. Execution of continuation committing can be tuned to reduce
runtime overhead for processes which have large continuations, but such tuning incurs
more failure recovery overhead. The current runtime system supports three execution
methods: commit-consistent, message logging/replay and coordinated checkpointing.
The message logging/replay and coordinated checkpointing methods are aimed at ap-
plications in which processes have large continuations. In Chapter 3, we explained the
design of these three execution methods in detail.

66

In the current design, the continuation committing operation is internally imple-
mented as a tuple creation operation. However, the continuation committing operation
differs from the regular tuple creation operation (i.e., out) as follows. First, the con-
tinuation committing operation generates a special tuple (which is called a continuation
tuple) that is private to the process and its backup processes and accessed by only the
xrecover operation. Second, there is only one continuation tuple for each process. Fach
time a continuation committing operation is executed, the previous continuation tuple
is removed and a new one is inserted. Third, execution of continuation committing can
be suppressed to achieve better runtime performance, at the cost of increased failure
recovery overhead.

In the current server, the tunable execution mechanism for continuation committing
is implemented as follows:

1. The server informs each process of the current execution method when the process
first communicates with the server.

2. In the commit-consistent execution method, the xcommit operation always sends
a continuation tuple to the server, together with a commit request.

In the other two execution methods, the xcommit operation stores the tuple in
the local address space and sends only the commit request. The server explicitly
requests client processes to send a local copy of the last continuations when required
(e.g., at checkpoint).

3. In the server, each ClientProcess object maintains a continuation tuple for the
corresponding client process. The object saves a continuation tuple either in the
virtual memory address space or on disk, depending on the size of the tuple. That
is, execution of continuation committing requires disk access for a large continua-
tion.

4. In the coordinated checkpointing method, the server asks all the processes to flush
the last continuations when checkpointing tuple space.

5. In the message logging/replay method, each ClientProcess object maintains a log,
called an event history, which contains records about tuple space access operations
for the corresponding client process. Whenever the ClientProcess object receives
a continuation, it removes all the records in the event history.

To prevent an event history from growing too big, its size is limited. When the
event history for a client process grows bigger than the limit, the server requests
the client process to send its last continuation.

In the message logging/replay method, the server asks all the client processes to
flush the last continuations when checkpointing tuple space. Alternatively, the
server could save event histories to disk at checkpoint, but currently, we use the
former method because it is already available for the coordinated checkpointing
method.

67

5.1.6 Tuple Space Checkpointing

In PLinda, checkpointing is used to make tuple space fault-tolerant. Tuple space is saved
to disk periodically and on failure, restored to the last checkpointed state. The server is
designed to ensure:

e A transaction-consistent snapshot is taken. A transaction-consistent snapshot re-
flects only and all of the updates made by the transactions committed at a specific
point in time.

e The checkpointing operation itself is fault-tolerant.

Since tuple space is accessed transactionally, the tuples accessed by uncommitted
transactions are locked. As mentioned above, there are three types of locks: rd, in and
out. In PLinda, only committed tuples can be accessed by in or rd. Therefore, tuples
which are rd-locked or in-locked are those which are generated by committed transactions
but accessed by uncommitted transactions. By contrast, those which are out-locked are
created by uncommitted transactions. Thus, a transaction-consistent snapshot consists
of the tuples which are unlocked, rd-locked, or in-locked. The snapshot also includes the
continuation tuple for each process. In both the message logging/replay and coordinated
checkpointing methods, the server ensures that all the processes flush their continuations
saved at the last commit before a snapshot is taken. Since continuation committing is a
part of the commit operation, continuation tuples are always unlocked.

The server can fail while checkpointing tuple space. If a single copy of a snapshot
is maintained and a new snapshot is overwritten on an old one, then server failure may
corrupt the single copy. Therefore, the current server maintains two snapshots: the
latest and the penultimate. Each snapshot has a header which is written to disk at
the end of checkpointing; that is, the successful write of a header guarantees that the
snapshot is correctly written to disk. The header contains information about system-
assigned identifiers such as the last assigned process identifier. It also includes a checksum
information both at the beginning and the end to be used for validity check on failure
recovery.

On recovery from failure, the server first examines the checksum information in the
headers of both snapshots to check whether they are corrupted, and compares the last
update times to find out which one is the latest. Then, the server recovers the state from
the latest valid snapshot. Once tuple space is recovered, the server (more specifically,
the Scheduler object) moves all the identity tuples from the proc_group to eval_group
tuple group. The server then resumes normal execution. All the processes whose identity
tuples are now in the eval_group tuple group are automatically re-spawned.

5.2 Daemon Processes

The PLinda runtime system runs one daemon process on each workstation. Each daemon
process monitors the idleness of its local host workstation and manages processes on the
host. Process management includes starting processes and killing them when the owner
resumes using the local host.

68

int interval = INTERVAL_IN NONIDLENESS;

while(1) {

/* check if the local host is idle */

if (check_idleness()) {

/* the local host is idle */

if(interval == INTERVAL_IN_NONIDLENESS) {

/* the host was busy */
interval = INTERVAL_IN_IDLENESS;
inform_server (IDLE);

}

} else {
/* the local host is busy */
if(interval == INTERVAL_IN_IDLENESS) {
/* the host was idle */
interval = INTERVAL_IN_NONIDLENESS;
kill clients();
inform_server (BUSY) ;

¥
¥

/* wait for a request from the server or becomes inactive */
wait _for server request(interval);

FIGURE 5.4: Algorithm for the PLinda daemon process

Each daemon executes an infinite loop which is shown in Figure 5.4. First, it checks
if the local host is idle. Currently, the idle times of the keyboard, the mouse, and the
console are checked. The daemon informs the server of only changes to the idleness of
the local host. When an idle machine becomes busy, the daemon process immediately
kills all the client processes and informs the server of that.

A daemon waits for requests from the server when its host is idle, or becomes inactive
when the host is busy. In both cases, the daemon uses the UNIX select system function
which can time out.

Figure 5.4 shows the algorithm for the PLinda daemon process.

5.3 Administration Process

The administration process provides the user with tools for:

69

Adding or deleting workstations.

Monitoring the idleness of workstations.

Monitoring execution behaviors of processes.

Displaying execution traces of processes after the entire execution is finished.

Controlling the runtime behaviors of the server.

The administration process is implemented in C++ and tcl/tkl.

The user gives the administration process the list of all the host names when he
or she starts the process. Currently, the administration process is designed to look
for host names in a file named plinda.hosts from the working directory. However,
the administration process does not invoke daemons on these machines until the user
explicitly requests it. Once the administration process loads the file, the user can add
machines listed in the file to parallel computation or delete them at any time. When
the user adds a machine, the administration process first registers it in the server and
then spawns a daemon process on the machine. However, the machine joins parallel
computation only when the machine is idle. The daemon monitors the idleness of the
machine and informs the server. If the user asks the administration process to delete
a machine, then the administration process forwards the request to the server and the
server sends a termination request to the daemon process on the machine. The daemon
process kills all the processes running on the machine and terminates.

For each process, the administration process currently displays the execution status
(e.g., running or blocked) and the last communication point (more specifically, the source
code file name and the line number) where the process interacted with the server. To
collect information about file names and line numbers, C macro variables __FILE__ and
__LINE__ are used in the PLinda client library. At compile time, C or C++4 compilers
automatically translate these variables into the corresponding source file name and the
line number of the location where these variables appear. The user can monitor the
execution progress of processes using this information.

Using the administration process, the user can make client processes generate exe-
cution trace files at the end and display them. For each process, the execution trace file
contains information about when and which PLinda operations the process executed,
and how long each operation was blocked. Displaying execution trace files for processes
graphically, the user can easily locate a performance bottleneck. In the current imple-
mentation of this facility, we assume that client processes and the administration process
can access the same disk.

The user can control the runtime behaviors of the server using the administration
process. For example, he or she can tune the frequency of tuple space checkpointing
or the minimum idle time for idleness criteria. Also, he or she can choose an execution
method for continuation committing.

In the current design, the administration process interacts with only the server. It
forwards user commands to the server, obtains information from the server and display

!The administration process is developed with the help of Suren.

70

information graphically. To reduce communication with the server, the administration
process could be designed to communicate with client and daemon processes directly.
However, since the administration process obtains information from the server only in-
termittently (the frequency is a tuning parameter) and the server already maintains all
the necessary information, we have chosen the current design decision.

5.4 Experiments

In this section, we present some performance results using the current PLinda prototype
system. The objectives of our experiments are: (1) to measure the performance of tuple
space operations and the execution and failure recovery mechanisms. (2) to test the
effectiveness of these operations and mechanisms in real applications.

What we have done so far is preliminary as the PLinda group is continually trying
to improve performance.

5.4.1 Performance of PLinda primitive operations

We examine the performance of four operations: in, rd, out, and xcommit. These
operations were chosen because they represent four major operations in the PLinda
system: destructive and non-destructive tuple retrieval, tuple creation and transaction
commit. In the current implementation, all the other operations (e.g., proc_eval as tuple
creation) are internally implemented as one or as a combination of these operations.

To measure the performance of in, rd and out, we used a simple process that creates
or retrieves tuples in tuple space. The process works as follows:

1. Begin a transaction and start a timer.

2. Create (i.e., call out) or retrieve (i.e., call in or rd) 1000 tuples. The size of each
tuple is 1000 bytes. The tuples contains only one character array field and the
overhead due to matching is minimal.

3. Stop the timer and commit the transaction.

We ran the process and the server on different machines. For each operation, we have
run this code several times. Their average execution times are shown in Table 5.1. There
is a significant performance difference between rd and in. We are currently investigating
what caused the difference in the implementation.

To measure the performance of xcommit, we used another simple process designed as
follows:

1. Start a transaction.
2. Retrieve ten tuples of 100,000 bytes using in.
3. Create ten tuples of 100,000 bytes using out.

4. Start a timer, commit the transaction, and stop the timer.

71

Operation | Performance
out 7.26

in 9.56

rd 4.86
xcommit 3.10

TABLE 5.1: Performance of PLinda primitive operations. Time is given in milliseconds. The
test process and the server were run on Sparc2 and Sparch, respectively.

In order to collect reliable data, we have run this code many times. In the code, the
transaction is designed to retrieve only ten tuples and add ten tuples since PLinda appli-
cations usually executes a small number of tuple space access operations in a transaction.
However, those tuples have a rather large size (i.e., 100,000 bytes). The performance
result is shown in Table 5.1. As the table shows, xcommit outperforms the three tuple
space access operations.

5.4.2 Performance of the Three Execution Methods

In this subsection, we present the performance of the three execution methods: commit-
consistent execution, message logging/replay and coordinated checkpointing. We first
show their performance during normal execution. We then compare the failure recovery
performance of the commit-consistent execution and message logging/replay methods.

In the current implementation, the server recovery from a checkpoint requires human
intervention (explicit re-invocation of the server). That is, tuple space failure and process
failure in the coordinated checkpointing method require human assistance. Therefore,
we do not discuss the performance of server recovery.

In the experiments whose results are presented in this subsection, we examined the
effects of continuation committing, message logging and the amount of work lost on
failure with respect to runtime and failure recovery performance

We have designed a simple test program where we can easily change the size of a
continuation (i.e., continuation committing overhead) and the number of tuple space
access operations inside a transaction (i.e., message logging overhead). The program is
based on the master/worker programming model and designed as follows:

o At the beginning of each execution, the user specifies four parameters:

1. Number of tasks.

2. Size of a continuation.

3. Number of tuple space access operations per task.
4

. Size of data tuples.

It is assumed that all the tasks are identical, all the workers have the same size of
continuations, and all the data tuples have the same size.

o Master process.

1. Starts the first transaction.

2. Spawns eight workers and creates task tuples in tuple space.

72

3. Commits the transaction. (After this commit, these workers start to run.)
4. Starts a timer and starts the second transaction.
5. Collects results from workers.

6. Commits the transaction and stops the timer.
o Each worker repeatedly executes the following code:

1. Starts a transaction.

2. Grabs a task tuple and performs one million floating point multiplication
operations.

3. Retrieve (rd) a certain number (input parameter) of data tuples.
4. Inserts a result tuple.

5. Commits the transaction with a continuation whose size is an input parameter.

We have experimented with six different settings shown in Table 5.2. The first three
settings 1 through 3 are intended to compare the runtime performance of the three
methods with respect to the size of a continuation. The last three settings 4 through
6 are designed to examine the runtime performance with respect to message logging
overhead. The performance results are presented in Table ??. In all executions, tuple
space is checkpointed every 100 seconds.

In Setting 1, where processes have small continuations and the overhead due to
message logging is minimal, the three methods showed similar performance results.

In Setting 2, where processes have medium size continuations but message logging
overhead overhead is still minimal, the commit-consistent execution method became
slower because of continuation committing overhead, but the message logging/replay
and coordinated checkpointing methods have similar performance to that of Setting 1.

In Setting 3, where processes have large continuations, the commit-consistent exe-
cution method shows a lot worse performance than the other two methods. Since the
coordinated checkpointing method does not incur any runtime overhead, it showed the
best performance in this setting.

In Settings 4 and 5, where processes have large continuations but message logging
overhead is small or modest, the message logging /replay and coordinated checkpointing
methods have similar performance. However, in Setting 6 where processes have a large
continuation and also suffer a lot of message logging overhead, the commit-consistent
execution method outperformed the message logging execution method.

In all the settings, the coordinated checkpointing method had the best performance
because it does not incur any overhead due to continuation committing (except check-
pointing) or message logging.

We now compare the performance of the failure recovery of the commit-consistent
execution and message logging/replay methods. Recall a failure here can mean that a
client workstation becomes non-idle, causing PLinda to retreat so failure performance is
a significant factor. To measure the failure recovery overhead as accurately as possible,
We experimented with one process. This process performs one hundred transactions.

73

setting no. | # of tasks | continuation size | # of rd’s per task [tuple size
1 1,000 1,000 0 0
2 1,000 100,000 0 0
3 100 1,000,000 0 0
1 100 1,000,000 100 10
5 100 1,000,000 100 1,000
6 100 1,000,000 1,000 1,000

setting | commit-consistent | message logging | coordinated

1 197.83 200.87 196.50

2 250.40 204.58 199.26

3 201.76 33.81 36.59

4 207.80 48.79 47.44

5 216.43 58.66 45.46

6 361.78 389.53 213.75

TABLE 5.2: Performance results with the three execution methods. Time is given in seconds.
For each execution, one master and eight worker processes were used. These workers ran on
eight Sparc stations (two Sparc Classic’s, four Sparc2’s and two Sparch’s) and the master and
the PLinda server on the same Sparch machine. Tuple space 1s checkpointed every 100 seconds.

Each transaction consists of one in operation, one million floating point multiplication
operations, and one out operation. The size of the worker’s continuation is set to 10,000
bytes. We ran the experiment many times and killed the worker up to three times for
each execution. Tuple space is checkpointed every 100 seconds (60 - 80 transactions were
executed in 100 seconds). When the 20th, 40th and 60th transactions were finished,
we decided whether to kill the process. On failure, the runtime system immediately
recovered the process.

The experimental result is presented in Figure 5.5. When there was no failure,
the commit-consistent execution and message logging/replay methods showed almost
the same performance. This is an expected result because the process has a small
continuation and there is no overhead due to message logging.

However, the two methods showed different performance results when the process ex-
perienced failure. In the case of the commit-consistent execution method, the overhead
due to process failure is negligible. For example, execution times when failure occurred
once were about a couple of seconds slower than failure-free executions. For more fail-
ures, execution times increased only by a few seconds. This result is possible because
on failure, the runtime system is immediately informed of the failure by the TCP/IP
communication system and re-spawns another backup process. This implies that the
PLinda failure recovery mechanism is viable for process migration for idle workstation
utilization unless the idleness status of workstations changes too frequently. In our ex-
perience, workstations usually stay idle for a sufficiently long time (e.g, at least, a few
minutes) once they become idle[44].

For the message logging/replay method, we observed a significant increase in exe-
cution time when we increased the number of worker process failures. The reason for
such increase is that the worker process lost the previous committed work on failure and
repeated it after recovery.

74

500 T T

commit-consistent execution ——""
450 message logging/replay.-<+--- 7]

+

400 | i
350 | A -
300 -

250 B e =

Execution time

200 |

150 =

100 .

50 =

o | |
0 1 2 3
Number of worker process failures

FI1GURE 5.5: Performance of failure recovery. One process was used. The process ran on one
Sparch and the server on another Sparch. Tuple space is checkpointed every 100 seconds.

75

5.4.3 Biological Pattern Discovery

In this subsection, we present the results of our experiment to apply PLinda to a data
mining application. We parallelized a sequential biological pattern discovery program[63]
using PLinda. These types of data mining applications[1, 23, 35] are interesting because
they are compute-intensive and they are usually coarse grain parallel problems.;

First, we explain the problem and the sequential approach. We then describe our
parallel approach and show the performance results.

Biological pattern discovery is the problem of finding various patterns in protein
databases where proteins are represented as sequences of letters (hereafter, just sequences)[31].
Interesting patterns are usually those which appear frequently in sequences in the database.
Among the various algorithms in the field, we have parallelized the work presented in
[63] where the problem is defined as follows:

e Database D. A set of sequences.

e Patterns. The pattern has the form *X1*X2*... where X1 and X2 denote subse-
quences (called segments in [63]) and * represents a variable length “dont-care”
(VLDC). A VLDC can match zero or more letters. The length of a pattern is
defined to be the number of the non-VLDC letters.

e Distance metric. The distance between two sequences is defined to be the minimum
editing cost (with free substitution for VLDCs) needed to making them identical.

e Query. The user looks for a pattern of interest by giving the following form of a
query:

1. The minimum length of the pattern.
2. The allowed distance.

3. The minimum number of sequences in D which match the pattern within the
allowed distance.

e Answer. The patterns which satisfy the requirements specified in the query.

The sequential algorithm consists of two phases: generating candidate patterns and
evaluating these patterns with respect to the database.

Candidate patterns are formed by finding all promising segments (i.e., those which
have a chance to appear in patterns of interest) and combining them. To facilitate finding
segments, this algorithm uses a generalized suffix tree[36] (GST) constructed from a
small sample of sequences (the size of the sample depends on the requirement for result
accuracy). In GST, the edges are labeled with character strings and the concatenation
of the edge labels on the path from the root to a leaf with an index ¢ is a suffix of the
¢ — th string. Thus, each suffix of a string is represented by a leaf. Candidate patterns
are all possible combinations of promising segments.

Once candidate patterns are obtained, the rest of the computation is to evaluate
them with respect to the database. In order to reduce the amount of computation (the

76

complexity of the comparing operation of a pattern P and a sequence S is O(|P| x |5])),
candidate patterns are first ranked from highest to lowest according to the occurrence
numbers on the sample with respect to the allowed distance. Only the most likely
candidate patterns are evaluated on the database.

In this algorithm, the evaluation of patterns with respect the database is most
compute-intensive and easy to parallelize because each pattern can be evaluated in-
dependently. Our parallel approach? is as follows:

1. Use the master/worker programming model.
2. The master.

(a) Manages the GST.

(b) First transaction: creates worker processes and generates and distributes can-
didate patterns.

(c) Second transaction: collects results from workers.
3. Worker processes.

(a) Have a local copy of the database.

(b) Evaluate candidate patterns on the database. The evaluation may cause the
candidate to be discarded or may introduce new candidates Each evaluation
is performed as a separate transaction.

We have experimented with this PLinda biological pattern discovery program on
seven Sparch’s at the NYU Computer Science Department. The master and the server
ran on the same Sparch station and each worker on a separate machine. We experimented
with up to six workers. The database consists of 18 protein sequences and 4169 patterns
were evaluated.

Some experimental results are shown in Figure 5.6. The performance of the PLinda
program with one and two workers was slower than that of the sequential program.
However, the PLinda program with four and six workers outperformed the sequential
program. In the PLinda executions with only one worker, the message logging/replay
and coordinated checkpointing methods outperformed the commit-consistent execution
method because the overhead due to 4169 continuation committing operations in the
tuple space server also affects the performance of the single worker directly. However,
with two or more workers, all of the execution methods showed similar performance.

In Table 5.3, we present the performance of the PLinda biological pattern discovery
program in the presence of failure. We did not remove workstations from computation,
but killed a worker which the runtime system immediately recovered. The table shows
that the failure recovery operation takes only a couple of seconds.

There are ongoing experiments with 100 Sparch’s and 50 Sparc2’s at AT&T Bell Labs
in Whippany. Some preliminary results are shown in Figure 5.7. The database consists
of 47 protein sequences and 16544 patterns were evaluated.

?The PLinda program is implemented by Bin Li. He can be contacted by email (binli@cs.nyu.edu).

7

500 T T T T

commit-consistent execution ——
450 message logging/replay -+--]
coordinated checkpointing -5--
400 - sequential execution -

350 L
300

250

Execution time

200

150

100

50 =

o | | | |
1 2 3 4 5 6
Number of Worker Processses

FI1GURE 5.6: Performance results of the PLinda biological pattern discovery program with seven
Sparch’s. Timeis given in seconds. Tuple space is checkpointed every 100 seconds. The sequential
code took 165 seconds for the same query and database.

of failures | commit-consistent execution
0 89.313
1 89.716
2 90.819
3 92.118

TABLE 5.3: Failure recovery performance of the PLinda biological pattern discovery program
with seven Sparch’s. Only the commit-consistent execution method was tested. Time is given

in seconds. Six workers were used. The master and the server ran on the same workstation and
each worker ran on a different workstation.

78

I I I I
10006 commit-consistent execution —<— |
’ ideal speedup -+-
800 |
Q
£
c 600 |
9
5
O
(O]
X
w 400
200 |
o | | | |
5 10 15 20 25 30
Number of Worker Processses

FiGURE 5.7: Performance results of the PLinda biological pattern discovery program on 30
Sparch’s at AT&T Bell Labs in Whippany. Tuple space was checkpointed every 100 seconds.
Only the commit-consistent execution method was used. The sequential code took 2355 seconds
for the same query and database.

79

5.4.4 Corporate Bond Index Statistics

In this subsection, we show the performance of the PLinda system on a compute-intensive
financial application. The problem is to compute characteristics of the market-weighted
averages of the collection of securities grouped by criteria (i.e., indices). Specifically,
the Option-Adjusted-Spread (OAS) and the embedded option value of a bond are cal-
culated and the market-weighted average of the resulting OAS and option values are
computed[10].

We parallelized a sequential program implemented by Dmitri Krakovsky® at New
York University. The program uses a binomial tree option pricing model[10] for the OAS
and the option values of bonds. The program consists of three phases:

1. Input the observed and analyzed market data.
2. Calculate the value of the OAS for each bond in the index.
3. Compute the market-weighted average of the resulting OAS and option values.

See [10, 5] for details.
We parallelized the second phase because the computation in the second phase is
most compute-intensive and each bond can be analyzed independently of other bonds.
Since this problem is easily parallelizable, parallelizing the sequential code using
PLinda was straightforward and took only a few hours. The PLinda program is designed
as follows:

1. Uses the master/worker programming model.
2. The master is responsible for the first and last phases.
3. The computation on each bond is treated as a task.

Figure 5.8 shows performance results obtained from experiments with seven Sparch’s.
In this experiment, 50 security bonds were analyzed. The three execution methods
showed similar performance results and there is no significant performance difference
even when the fault tolerance mechanisms are disabled. The current implementation is
designed to disable all the fault tolerance mechanisms. In this case, the client library
completely ignores transaction operations and the tuple space server treats each tuple
space operation as a separate transaction. In this way, their updates are immediately
accessible.

Figure 5.9 shows the performance results obtained from experiments with 45 Sparc
stations (three Sparcl0’s, three Sparch’s, 18 Sparc2’s and 21 Sparcl’s). In this ex-
periment, 400 security bonds were analyzed. There were only negligible performance
differences (below 10 seconds) between executions with the fault tolerance mechanisms
enabled and those with the mechanisms disabled.

®He can be contacted by email (m-dk0027@cs.nyu.edu).

80

400 T T , ,
no fault tolerance —<—
commit-consistent execution -+-
350 - message logging/replay -2--]
B\ coordinated checkpointing -
S T T T T T T T T T T T T T T T T T sequentialexecution ===
300
o 250
1=
c
S 200
=}
O
()
x
W 150
100
50 - _
0 1 1 1 1

1 2 3 4 5 6
Number of Processsors

FIGURE b.8: Performance of the PLinda Bond Index Statistics Computation Program with
Seven Sparch’s. The master and the server ran on the same machine and each worker ran on a
different machine. Tuple space is checkpointed every 100 seconds.

81

1200 y T T T T T T |

commit-consistent execution ——
no fault tolerance -+--

1000

800

600 |-

Execution time

400

200

o | | | | | | |
5 10 15 20 25 30 35 40 45
Number of Processsors

FIGURE 5.9: Performance of the PLinda Bond Index Statistics Computation Program with 45
Machines

82

5.5 Summary

In this chapter, we examined the implementation and performance of the current PLinda
prototype system in an attempt to elucidate the performance tradeoffs offered by our
three commitment mechanisms.

The implementation consists of four major components: the server program, the
daemon program, the administration program, and the client library. In Section 5.1,
we described the implementation of the PLinda server: the architecture, tuple space
management, transactions, process management, and the execution methods. The tu-
ple space management implementation ensures the efficiency of in-memory operations
rather than that of the manipulation of persistent data on disk. In PLinda, transaction
commits are designed to be lightweight in that they do not require disk access. However,
committed updates may be lost upon tuple space failure. Checkpointing is used to make
tuple space reliable. The transaction and checkpointing mechanisms are coordinated to
maintain a consistent state in spite of tuple space failure.

In Section 5.2 and 5.3, we explained the implementation of the daemon and ad-
ministration processes. The daemon process monitors the idleness of workstations and
manages processes on local workstations. The administration process allows the user to
observe and control the runtime behaviors of the PLinda system and applications.

In Section 5.4, we presented the performance of the PLinda prototype system. We
first showed the performance of PLinda primitive operations and the three execution
methods, and some results from experiments to apply PLinda to two real coarse grain
parallel problems: biological pattern discovery and corporate bond index statistics com-
putation. The comparative results suggest the possibility of a tuning tool that can switch
from one commit method to another.

Experimental data show that the xcommit operation outperformed the tuple space
access operations such as in, rd and out. In the commit-consistent execution method,
the recovery of a failed process (more specifically, only the process failed but its processor
is still operating, therefore the runtime system is immediately informed of the failure)
took only a couple of seconds.

In Subsections 5.4.3 and 5.4.4, we described the performance of the PLinda system
on two real applications. We presented performance results which we obtained from
experiments with up to 45 machines.

83

Chapter 6

Conclusions and Future Work

Scientists and engineers increasingly use computers to solve problems that require an
enormous amount of computation and therefore make parallel processing desirable or
indispensable. Among those problems, many problems can be considered as coarse grain
parallel or embarrassingly parallelizable; that is, they are easy to parallelize in large
mutually independent chunks of computation. As a result of the recent proliferation
of parallel software systems[15], we should therefore see those scientists benefit from
parallel processing in solving coarse grain parallel problems. Unfortunately, the reality
is not the case.

The goal of the PLinda project is to allow “poor” scientists (who have no easy access
to parallel computers and can not afford buying them) to use widely available networked
workstations as a parallel computing platform for solving their coarse grain parallel
problems. In this dissertation, we have argued that two problems must be solved for this
to be the case: (1) utilization of intermittently idle workstations for parallel computation
(2) support for fault tolerance.

We have presented a Linda-variant parallel computing system, called Persistent Linda
2.0 (PLinda). PLinda is designed to offer: parallel processing on non-shared memory
machines, fault tolerance, and the effective use of intermittently idle machines.

PLinda consists of a few extensions to Linda. Three major fault tolerance extensions
are lightweight transactions, continuation committing, and checkpoint-protected tuple
space. The programmer designs an application to be fault-tolerant using these mecha-
nisms. The PLinda runtime system is designed to run processes on only idle machines
and to treat non-idleness as failure. That is, when an owner comes back to his or her
machine, the runtime system immediately “kills” processes on the machine and recovers
them on idle machines by using the fault tolerance mechanisms.

In the PLinda project, our major research focus has been on how to incorporate
transactions into the Linda model without entailing high runtime overhead or compli-
cating the model. Unlike other fault tolerance work[3, 4] on Linda which attempts to use
only some limited form of transactions and therefore complicates the Linda programming
paradigm, we have sought to integrate the full functionality of transactions into Linda.

When transactions are used for parallel computation, an immediate concern is trans-
action commit overhead (i.e., disk writes implicit in transaction commits). In order to

84

reduce commit overhead, PLinda treats transactions and the reliability of tuple space
orthogonally. Transactions do not write to disk on commit, but simply to the tuple
space in volatile memory. This allows efficient transaction commits. In Section 5.4, we
showed experimental results in which the performance of the PLinda commit operation,
xcommit, is comparable to that of tuple space access operations such as out, in and rd
in the current PLinda prototype system. (Actually, xcommit is less expensive.)

This lightweight transaction may lose committed data when tuple space fails (either
the supporting computer or its volatile memory). PLinda recovers from tuple space
failures by using checkpointing (whose frequency is a tuning parameter). This yields what
we call checkpoint-protected tuple space. The transaction and checkpointing mechanisms
are coordinated to guarantee the correctness of the final result. This is sufficient, since
scientists who program long-running parallel computations don’t care about intermediate
results, only about the final results. Lost transactions, therefore, are acceptable if the
final result is correct.

We have proposed a simple programming model for constructing a fault-tolerant ap-
plication and extended transactions as a programming construct for the model. In the
model, the programmer designs each process to be executed as a series of transactions.
The transaction mechanism guarantees the atomic execution of each transaction; that
is, the programmer can assume that processes logically fail only between consecutive
transactions. In order to enable a process to recover its local state after failure, the
programmer must specify a set of variables to be saved at each commit point that are
sufficient to encode the process’s continuation (we call these variables the encoded contin-
uation). Each commit then saves all modified tuples as well as the encoded continuation.
On recovery from failure, the process can resume from the last commit point by restoring
the information.

Thus, this programming model allows the programmer to design lightweight custom
fault tolerance for an application by taking advantage of characteristics of the application
— copying only critical information about local state to tuple space in volatile memory
at each commit. (In contrast, systems[22] that support transparent fault tolerance save
entire process images to disk.) Experimental results from real coarse grain parallel ap-
plications show that the performance differences between executions with fault tolerance
mechanisms activated and those with the mechanisms disabled are not significant (the
difference is in fact negligible for the corporate bond index statistics computation appli-
cation).

In addition to low runtime overhead, another important advantage of this scheme over
transparent approaches[22] to fault tolerance is to support robust parallel computation
on heterogeneous machines. Continuation committing and failure recovery are based
only on process variables which are architecture-independent.

In this dissertation, we have further extended this PLinda fault tolerance scheme to
support process migration for the utilization of idle workstations. The PLinda system
is designed to treat non-idleness as failure; that is, process migration is implemented as
forced failure on busy machines and recovery on idle machines.

This approach works well for two reasons. First, each process can perform contin-
uation committing and rollback-recovery operations independently of other processes.

85

This allows a process to migrate without affecting other processes. Second, the PLinda
fault tolerance mechanisms are lightweight. Continuation committing and failure recov-
ery save only a few process variables to tuple space at commit and retrieve them on
recovery. These operations are efficient because they do not require disk access nor re-
execution of committed transactions. Fxperimental results show that recovering a failed
process usually takes only about a couple of seconds.

In summary, PLinda addresses three challenging issues — parallel processing, fault
tolerance, and utilization of idle workstations — by a few extensions to Linda which are
surprisingly simple when the complexity of these issues is considered. The current PLinda
prototype system has shown promising performance for various experiments including
two real coarse grain parallel applications.

6.1 Future Work

Like most other ongoing research projects, PLinda has both various potentials and issues
for further improvements and future work.

First, we will plan to assist the programmer with high-level programming toolkits
or a Linda-PLinda compiler. In the current design, the correctness of a fault-tolerant
application completely relies on the programmer. Although designing a fault-tolerant
application in PLinda is usually straightforward for coarse grain parallel applications (the
major target application class of PLinda), we think that such programming is potentially
error-prone.

Our future work includes an automatic tuning method for deciding which commit
method to use depending on the probability of workstation business and the size of
checkpoints.

Second, a drawback of the current PLinda design is that recovery from server failure
is costly; the tuple space server is restored to the checkpointed state on disk and all
the client processes have to roll back. Expensive failure recovery for such failures is
currently acceptable because the servers run on dedicated machines so server failures are
real failures (as opposed to non-idleness) and therefore rare.

If we want to use our idle machine strategy for servers, one possible method is to
replicate the server over idle machines using the replicated state machine paradigm[57].
In this method, client processes communicate with the server replicas via atomic ordered
broadcast. When a machine where a server replica is running becomes busy or fails, the
replica is destroyed. Then, a new server replica is spawned on an idle machine and
recovers state from another replica.

The advantages of this approach are that the server can be migrated and also, client
processes do not have to roll back due to server failure unless all the replicas fail at the
same time. The disadvantage is that additional communication overhead due to atomic
ordered broadcast must be paid for every tuple space access.

Third, an important research issue which still remains open in the PLinda project
is scalability. That is, how can we extend PLinda to handle thousands of workstations
spread over Internet for long-running coarse grain parallel applications? Certainly, long-
running coarse grain parallel applications provide a great deal of potential for such

86

grand scale parallel computing because computation can be divided into numerous but
independent tasks.

In the current PLinda system, the single server becomes a performance bottleneck
even before one hundred of workstations are used. One intuitive approach to scalability
is to distribute the server. This will increase the performance of the tuple space access
operations such as out, in and rd. However, a distributed server will increase overhead
due to transaction processing (e.g., two phase commit). Moreover, it will complicate
checkpointing tuple space and replicating server processes.

If we aim at building a large scale parallel computing platform for long-running coarse
grain parallel applications, another interesting approach to scalability is to use a server
manager to control multiple independent PLinda servers of the current design. By “inde-
pendent” we mean that there are no conflicting accesses to tuples at the different servers
(e.g. the servers share read-only data and produce write-once tuples). To support long-
running coarse grain parallel applications, such a server manager would spawn servers
at various widely distributed sites, assigns tasks to the servers, and collect results when
all the servers finishes their tasks. This would introduce a second level of server. This
scheme is viable for long-running coarse grain parallel applications where computation
can first be divided into independent and still-large subcomputations and then these
subcomputations can further be divided into a large number of independent tasks.

87

Bibliography

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pages 207-216, May 1993.

[2] Yeshayahu Artsy and Raphael Finkel. Designing a process migration facility: The
Charlotte experience. IEFE Computer, pages 47-56, September 1989.

[3] D. E. Bakken and R. D. Schlichting. Tolerating failures in the bag-of-tasks pro-
gramming paradigm. In Proceedings of the Twenty-First International Symposium
on Fault-Tolerant Computing, pages 248-255, June 1991.

[4] D. E. Bakken and R. D. Schlichting. Supporting fault tolerant parallel programming
in Linda. IEFFE Transactions on Parallel and Distributed Systems, 1994.

[6] Arash Baratloo, Partha Dasgupta, Zvi M. Kedem, and Dmitri Krakovsky. Calypso
goes to wall street: A case study. In Proceedings of the Third International Confer-
ence on Artifictal Intelligence Applications on Wall Street, June 1995.

[6] P.A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley Publishing Company, 1987.

[7] K. P. Birman. The process group approach to reliable distributed computing. Tech-
nical report, Cornell University, July 1991.

[8] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony in distributed systems.
ACM Operating Systems Review, 21(5):123-138, November 1987.

[9] R. Bjornson. Linda on Distributed Memory Multiprocessors. PhD thesis, Yale
University, Department of Computer Science, 1992.

[10] F. Black, E. Derman, and W. Toy. One-factor model of interest rates and its
application to treasury bond options. Financial Analysts Journal, pages 33-39,
January-February 90.

[11] Clemens H. Cap and Volker Strumpen. Efficient parallel computing in distributed
workstation environments. Parallel Computing, 19:1221-1234, 1993.

[12] N. Carriero. Implementing Tuple Space Machines. PhD thesis, Yale University,
Department of Computer Science, 1987.

[13] N. Carriero and D. Gelernter. How to Write Parallel Programs: A First Course.
MIT Press, 1990.

88

[14]

[15]
[16]

[17]

J.S. Chase, F.G. Amador, E.D. Lazowska, H.M. Levy, and R.J. Littlefield. The

Amber system: Parallel programming on a network of multiprocessors. In Proceed-
ings of the 12th ACM Symposium on Operating Systems Principles, pages 147158,
December 1989.

D. Cheng. A survey of parallel programming languages and tools. Technical Report
RND-93-005, NASA Ames Research Center, 1993.

David Cheriton. The V distributed system. Communication of the ACM, pages
314-333, March 1988.

S. Chiba, K. Kato, and T. Masuda. Exploiting a weak consistency to implement
distributed tuple space. In Proceedings of the 12th International Conference on
Distributed Computing Systems, pages 416-423, June 1992.

Henry Clark and Bruce McMillin. DAWGS—a distributed computer server utilizing
idle workstations. Journal of Parallel and Distributed Computing, 14:175-186, 1992.

R. F. Cmelik, N. H. Gehani, and W. D. Roome. Fault tolerant concurrent C: A
tool for writing fault tolerant distributed programs. In Proceedings of the Ninteenth
International Symposium on Fault-Tolerant Computing, pages 55—61, June 1988.

F. Cristian. Understanding fault-tolerant distributed systems. Communications of
the ACM, 34(2):56-78, February 1991.

P. Dasgupta, R.J. LeBlanc, M. Ahamad, and U. Ramachandran. The Clouds dis-
tributed operating system. IFEE Computer, pages 34-44, November 1991.

Geert Deconinck, Johan Vounckx, Rudi Cuyvers, and Rudy Lauwereins. Survey
of checkpointing and rollback techniques. Technical Report 03.1.8 and 03.1.12,
ESAT-ACCA Laboratory, Katholieke Universiteit Leuven, June 1993.

V. Dhar and A. Tuzhilin. Abstract-driven pattern discovery in databases. IFEF
Transactions on Knowledge and Data Engineering, 5(6):926-938, December 1993.

J. Dongarra, G. A. Geist, R. Mancheck, and V. S. Sunderam. Integrated PVM
framework supports heterogeneous network computing. Computers in Physics,
7(2):166-175, 1993.

Fred Douglis and John Ousterhout. Transparent process migration: Design alterna-
tives and the Sprite implementation. Software-Practice and Fxperience, 21(8):757—
785, August 1991.

Jeffrey L. Eppinger, Lily B. Mummert, and Alfred Z. Spector, editors. Camelot and
Avalon: A Distributed Transaction Facility. Morgan Kaufmann Publishers, Inc.,
1991.

A. 7. Spector et al. Support for distributed transactions in the TABS prototype.
IFEFE Transactions on Software Engineering, SE-11(6):520-530, 1985.

R. Felderman, E. Schooler, and L. Klienrock. The Benevolent Bandit Laboratory:
A testbed for distributed algorithms. IEEE Journal on Selected Areas in Commu-
nications, 7(2), February 1989.

The MPI Forum. MPI: A message passing interface. In Proceedings of Supercom-
puting ’93, pages 878-883. IEEE Computer Society Press, November 1993.

89

[30] Geoffrey C. Fox, Roy D. Williams, and Paul C. Messina. Parallel Computing Works
! Morgan Kaufmann, 1994.

[31] K.A. Frenkel. The human genome project and informatics. Communications of the
ACM, 34(11):41-51, November 1991.

[32] 1. Gaines and T. Nash. Use of new computer technologies in elementary particle
physics. Ann. Rev. of Nucl. Part. Sci., 37, 1987.

[33] N. H. Gehani and W. D. Roome. Concurrent C. Software—Practice and Experience,
16(9):821-844, 86.

[34] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[35] J. Han, Y. Cai, and N. Cercone. Knowledge discovery in databases: An attribute-

oriented approach. In Proceedings of the 18th International Conference on Very
Large Data Bases, pages 547-559, August 1992.

[36] L. C. K. Hui. Combinatorial Pattern Matching, Lecture Notes in Computer Science,
volume 644, chapter Color Set Size Problem with Applications to String Matching,
pages 230-243. Springer-Verlag, 1992.

[37] Pankaj Jalote. Fault Tolerance in Distributed Systems. Prentice Hall, 1994.

[38] K. Jeong and D. Shasha. PLinda 2.0: A transactional/checkpointing approach to
fault tolerant Linda. In Proceedings of the 13th Symposium on Reliable Distributed
Systems, pages 96-105, 1994.

[39] David B. Johnson. Distributed System Fault Tolerance Using Message Logging and
Checkpointing. PhD thesis, Rice University, 1989.

[40] T. A. Joseph and K. P. Birman. Reliable Broadcast Protocols. In Sape Mullender,
editor, Distributed Systems, chapter 14., pages 293-318. ACM Press, 1989.

[41] M. Frans Kaashoek, Raymond Michiels, Henri E. Bal, and Andrew S. Tanenbaum.
Transparent fault-tolerant in parallel Orca programs. In Proceedings of the USENIX

Symposium on Fzperiences with Distributed and Multiprocessor Systems, March
1992.

[42] S. Kambhatla. Recovery with limited replay: Fault-tolerant processes in Linda.
Technical Report CS/E 90-019, Oregon Graduate Institute, February 1990.

[43] S. Kambhatla. Replication issues for a distributed and highly available Linda tu-
ple space. Master’s thesis, Department of Computer Science, Oregon Graduate
Institute, 1991.

[44] D. Kaminsky. Adaptive Parallelism with Piranha. PhD thesis, Yale University,
Department of Computer Science, 1994.

[45] R. Koo and S. Toueg. Checkpointing and rollback recovery for distributed systems.
IFEFE Transactions on Software Engineering, SE-13(1):23-31, 1987.

[46] J. Leichter. Shared Tuple Memories: Shared Memories, Buses and LAN’s-Linda
Implementation Across the Spectrum of Connectivity. PhD thesis, Yale University,
Department of Computer Science, 1989.

90

[47]

[48]

[49]

[56]

[57]
[58]
[59]
[60]
[61]

[62]

B. Liskov. Distributed programming in Argus. Communication of the ACM,
31(3):300-312, March 1988.

M. Litzkow, M. Livny, and M.W. Mutka. Condor—a hunter of idle workstations. In
Proceedings of the 8th International Conference on Distributed Computing Systems,
June 1988.

T.W. Malone, R.E. Fikes, K.R. Grant, and M.T. Howard. Enterprise: A Market-like
Task Scheduler for Distributed Computing Environments. Elsevier Science Publish-
ers, 1988.

Timothy G. Mattson, editor. Parallel Computing in Computational Chemistry. ACS
Symposium Series 592. American Chemical Society, 1995.

Shivakant Mishra and Richard D. Schlichting. Abstractions for constructing de-
pendable distributed systems. Technical Report TR 92-19, University of Arizona,
Department of Computer Science, 1992.

M.W. Mutka and M. Livny. Profiling workstations’ available capacity for remote

execution. In Performance 87, pages 529-544. Elsevier Science Publishers B.V.,
1988.

D.A. Nichols. Using idle workstations in a shared computing environment. ACM
Operating Systems Review, 21(5), 1987.

James Steven Plank. FEfficient Checkpointing on MIMD Architectures. PhD thesis,
Princeton University, June 1993.

R. D. Schlichting and F. B. Schneider. Fail-stop processors: An approach to design-
ing fault tolerant computing systems. ACM Transactions on Computing Systems,
1(3):222-238, August 1983.

Richard D. Schlichting and Vicraj T. Thomas. FT-SR: A programming language
for constructing fault-tolerant distributed systems. Technical Report TR 92-31,
University of Arizona, Department of Computer Science, 1992.

Fred B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299-319, December 1990.

Kenneth Slonneger and Barry L. Kurtz. Formal Syntax and Semantics of Program-
ming Languages. Addison Wesley, 1995.

R. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM Trans-
actions on Computer Systems, 3(3):204-226, August 1985.

V.S. Sunderam. PVM: A framework for parallel distributed computing. Concur-
rency: Practice and Frperience, 2(4):315-339, December 1990.

Robbert van Renesse, K. P. Birman, R. Cooper, B. Glade, and P. Stephenson.
Reliable Multicast between Microkernels. Cornell University, 1992.

C.A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, and W.5. Stornetta.
Spawn: A distributed computational economy. IEFE Transactions on Software
FEngineering, 18(2):103-117, February 1992.

91

[63]

[66]

[67]

J. T. L. Wang, G.-W. Chirn, T. G. Marr, B. A. Shapiro, D. Shasha, and K. Zhang.
Combinatorial pattern discovery for scientific data: Some preliminary results. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 115-125, May 1994.

J. T. L. Wang, T. G. Marr, D. Shasha, B. A. Shapiro, and G.-W. Chirn. Discovering
active motifs in sets of related protein sequences and using them for classification.
Nucleic Acids Research, 22(14):2769-2775, August 1994.

Jingwen Wang, Songnian Zhou, Khalid Ahmed, and Weihong Long. LSBATCH: A
distributed load sharing batch system. Technical Report CSRI-286, University of
Toronto, April 1993.

A. Xu and B. Liskov. A design for a fault-tolerant, distributed implemenation of
Linda. In Proceedings of the Ninteenth International Symposium on Fault-Tolerant
Computing, pages 199-206, June 1989.

Songnian Zhou, Jingwen Wang, Xiaohu Zheng, and Pierre Delisle. Utopia: A load

sharing facility for large, heterogeneous distributed computer systems. Technical
Report CSRI-257, University of Toronto, April 1992.

92

