Visliu
Responsive Visualization of Points in
Space: Sampling, Clustering, Partitioning

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
Akshay Jain
May 2015

Professor Dennis Shasha, Research Advisor

Dr. Manpreet Singh Katari, Second Reader

© Akshay Jain
All rights reserved, 2015

Acknowledgements

| would like to thank my research advisor, Professor Dennis Shasha, for inspiring this
work and especially for his guidance and patience along the way.

Thanks also to Dr. Manpreet Katari, my second reader for introducing me to Virtual
Plant which brought me in contact with the use of interactive visualization for data analysis
and research.

Finally, | want to thank my parents for their endless support in everything | do.

Table of Contents

Acknowledgements

Interactive visualization
1. Introduction
2. Present state of things
3. Challenges

Pad and children

1. Multiscale Zooming Interfaces
2. Applications

Visliu

1. Motivation
2. User-view

a. Zoom and Pan
b. Operations
c. Configuration
3. Implementation
a. Technology Stack

I.
il
ii.
Iv.
V.
Vi.

javascript

canvas

node.js
Processing
socket.io

Other technologies

b. Architecture Overview

4. Challenges

5. Applications
6. Code and Public access link

Future Work

Bibliography

Interactive visualization

“l tell you and you forget. | show you and you remember. |
involve you and you understand.”
Confucius, 500 BC

“A picture is worth a thousand words. An interface is worth a thousand pictures.”
Ben Shneiderman, 2003

1. Introduction

Humans have a total of 5 senses through which they interact with the world : sound,

sight, touch, smell and taste. Of these, smell and taste are pretty limited in the sense that we
have not yet found any efficient way to communicate using them. Touch is limited by the
requirement of tangible objects in close proximity. Sound and Sight are known to be most
advanced and are a major part of most of our daily activities. Through language we have even
connected them to activate the same areas of the brain using subvocalization. But these two
are still quite different. Sight has multiple orders of magnitude higher ability to process signals
than sound and unsurprisingly has a larger portion of brain dedicated to it than any other
single task.!"

We like to define Interactive Visualization as the field of study which aims to use sight
as a more efficient means for interacting with and understanding the world around us. A key
feature of a good interactive visualization system is that it tries to use cognitive intuition to
convey information.

In this paper we survey some of the major developments in interactive visualization till
now and then combine some of these ideas to build a web system for interactive visualization
of points in space. We also use some ideas of our own that enable a responsive interface
even with sufficiently large dataset sizes.

2. Present state of things

Fueled by continuous developments in hardware technologies and an exponential
increase in data collected, Interactive Visualization technologies have developed a great deal
in the past few decades. Although a lot of effort and time has been spent on developing better
visualization technologies, there is still a long way to go.

Here we are going to look at few of the technologies and systems that have recently
been developed or come into the spotlight for Interactive Visualization on the web.

Base technologies for rendering on the browser:

a. Canvas (HTML5)? : Pretty recent; Natively supported by most browsers, but limited by
the number of elements that can be rendered at a time.

b. SVGP!: More than a decade old; Natively supported by most browsers but limited by
the number of elements that can be rendered at a time. This limit is lower than that of
HTML5.

c. WebGL" : Most recent; Variable and limited support from different browsers. Brings
the power of the client GPU to the browser. Limited by the number of devices having a
GPU and no standard browser support. Chrome and Firefox have a whitelisted list of
GPUs that they allow WebGL to run on.

Libraries/Services for Interactive visualization on the web:

a. Data-Driven Documents® (D3) (2011):
i. Javascript library for DOM manipulation on client side.
i. Uses SVG at the core.
iii. Requires learning HTML, javascript, D3's APl and SVG.
iv. Biggest contribution are the tools that make the connection between data and
graphics easy.

b. Google Charts®® (2010):
i. Google's own visualization tool that is nicely integrated with BigTable and other
Google cloud services.
ii. Lets users create a chart from some data and embed it in a webpage.

c. Highcharts!” (2009):
i. Javascript library for visualizations and animations.

ii. Offers an easy way to create charts and embed them in your web page.
iii. Based on HTML5 Canvas.

d. Three.js® (2010, stable :2015):
i. Javascript library for 3D visualizations using WebGL.
ii. Abstracts the presently messy interface to WebGL.
iii. When it works(browser and client need to support WebGL), provides abilities to
render and interact with a large number of objects at the same time.
iv. User experience varies depending on the GPU and available client resources.

e. Bokeh™ (2013, still in beta):
i. Python Interactive visualization library that targets presentation on browser.
ii. Coding is totally in python.
iii. Istrying to get graphics in the style of D3.js but uses canvas instead of SGV, so
it can render more objects at a time.

f. Datawrapper!'” (2012):
i. Javascript library for creating interactive embeddable charts.
ii. Visualization is created on the server but it provides a set of interactive abilities
which run on the client through its library.

g. Flot!"(2007):
i. A plotting library for jQuery that uses the HTMLS canvas.
ii. Simple and good-looking interactive features, but very limited in functionality.

3. Challenges

With widespread interest in visualization at present, there are tons of new systems and
libraries for visualization but all of them face these challenges and most of them refuse or fail
to address them properly.

a. Data size: With web visualization, this is the biggest bottleneck right now. The browser
even with native canvas support cannot render or manipulate even medium sized
datasets. Some systems overcome this by doing aggregation on the server and
updating client with a static image. Others need you to take care of your aggregation
yourself before rendering your charts. These ways are either hacky or put extra work
on the user that should be the responsibility of the visualization system.

b. Network: For libraries that work with a remote server, all data transfer happens in a
go and slow or unreliable network leads to bad user-experience.

c. Computation power: Most libraries are client side and are limited by the computation
capability of the client in providing responsive interaction on bigger than trivial data
sizes or provide a very limited set of operations.

Pad and children

1. Multiscale Zooming Interfaces:

The ideas behind multiscale zooming interfaces can be traced back to Sutherland’s
Sketchpad system!" developed by him in 1963, but it was not until much later that systems
started using zooming as a primary feature in interactive visualization. “Pad""*!, developed by
Ken Perlin and David Fox at NYU was a big milestone in realizing the possibilities of zooming
interfaces. Pad was followed by multiple systems that took forward the ideas of semantic
zooming and filter lenses to build next level systems that have since evolved to become the
conventions for interactive data visualization and analysis in their respective fields.

Let us first go over what we mean by zooming in the context of visualizations and then
we will briefly look at few of the applications that came out from it.

Let us consider a bunch of 2D objects (marks, icons, etc) displayed on the screen of a
monitor. Now there is no actual depth in this setup but the effect of enlarging or shrinking the
size of objects with a corresponding increase in inter-object distances on pressing a button or
rolling a wheel gives us the illusion of depth. It works very well and uniformly for everyone
because it has a direct correspondence with what we experience in daily life. Because of how
our vision works, we move closer to an object to see it in more detail and move away to take
in the whole view. Since moving closer enlarges an object in our view and moving away
shrinks it, on a stationary 2D display, just the act of enlarging or shrinking something is
perceived in the same way by the brain. Just the enlarging and shrinking of an object without
any changes in its representation is called geometric zooming. Pad introduced semantic
zooming which more closely resembles the actual world. With semantic zooming, each object
has set magnifications at which its representation changes. When you zoom in, more details
are shown while zooming out hides the least important details. A smooth transition or
movement of objects on the screen while zooming or panning is very important here as that
eases the task of keeping track of objects of interest between two representations.

2. Applications :

In this section we will go over a few significant areas where the concepts introduced by

Pad were initially applied. We will also look at a few techniques that came out to complement
or directly as a result of the Pad.

a. Macroscope!'?:

Henry Lieberman, working at the Media Laboratory at MIT came up with
a nice technique that improves on the traditional zoom and pan. Macroscope
introduces multiple translucent layers that show iteratively zoomed out views
from the present scale and thus helps the user to avoid the problem of losing
visual context. Henry points out that multiple zooming and panning operations
might cause the viewer to lose the context from his memory. Macroscope
consists of combining multiple layers of information on a single display, using
translucency, focus and other image processing techniques to visually combine
layers while retaining the integrity of the individual components.

b. Portal Lenses in Pad++'%:

Portals or magic filters were first described in the original Pad paper and
later improved on by Pad++. These basically consist of small windows on the
workspace which can transform the default appearance or behavior of an
object. Along with the capability to communicate with the object during
rendering to change how it appears, these can also filter user events which
pass through it.

Today Portal Lenses can be seen in use everywhere. An android
phone’s screen can be thought of having a landscape lens when a user tilts it to
a horizontal position. The view elements rearrange to fill up the newly updated
dimensions. Google maps with its multiple views of the same location is
another major example. Almost all major document editors (MS word,
OpenOffice, Google Docs) contain these lenses in the form of visual
representations of a table of numbers in the form of different kinds of charts.

c. Network Collaboration!'®! :

Infinite zoomable workspaces have tremendous potential as a long
distance collaborative work tool because it allows multiple users on a network
to work together in the same apparent information space. Different users could
share and view multiple applications while assigning each user a desired
degree of interaction.

d. Device user-interface!':

Zoomable interfaces can be used as an alternative to traditional
windowing systems to view and navigate through large hierarchical databases.

e.

In these systems, searching through the directory structure involves zooming in
and out of the directory tree. Though top operating systems continue to use
windowing systems as their default, zoomable interfaces have started
appearing on touchscreen based mobile system due to a more zoom friendly
hardware interface.

Web browser!'®!:

Zooming interfaces have also shown the capability of being used as an
alternate browser interface. Instead of having a single page visible at a time,
multiple pages and the links between them are depicted on a large zoomable
information surface. Benefits over the present interface include easily surfing
through session history and moving back and forth. Many browsers including
firefox have already experimented with the idea, but are yet to bring it to the
masses.

f. Multiscale Editing:

Availability of easy and intuitive interfaces to create and edit zoomable
visualizations is an important part of increasing the usage of zoomable
interfaces. “MuSE” "1, developed by George W Furnas and Xiaolong Zhang at
the University of Michigan, addressed a number of challenges in creating
systems for multi-scale editing. While MuSE proposed some nice strategies to
deal with some of the challenges, their solution to problems related to creating
and editing connections between objects at different zoom level and creating
guided tours were pretty complex.

Prezi®® is a modern presentation system which has gained a big user
base in a short time. It uses an infinite zoomable information surface as the
workspace and provides state of the art tools to create and edit animated
guided tours through a rich variety of media objects. It is less powerful than
MuSE in the type and variety of edits that can be made, but it makes-up for that
by making the most used common tasks as intuitive as possible.

g. Techniques for Time-Oriented datal®’':

This paper introduces multiple techniques to visualize and interact with
time-series data. These include a qualitative-quantitative hybrid representation
of time-series data, more intuitive representation of high-frequency data, and
efficient timeline interactions.

Visliu
“Visual Information-Seeking Mantra :Overview first, zoom and filter, then details-on-demand.”
[Shneiderman, 1996]

1. Motivation

After extensive survey of web visualization systems out there, we found that there are

a lot of things in which they fall short. We have created a system which uses a server-client
architecture to enable responsive visualization of points in space for the client using a
combination of clustering, partitioning and sampling along with the learnings from Multiscale
Zoomable Interfaces to produce a nice user-experience that lets users navigate and perform
basic operations on their data. Instead of trying to compete with the professional systems out
there in what they are good at, we have tried to address their most common limitations so as
to explore the boundary of what is possible with the present set of technologies in interactive
visualization.

2. User-view

Visliu consists of a single page that consists of a 1000x1000px canvas element in the

center which we will refer to as ‘workspace’ from this point onwards. It has an operations
menu on the left hand side and an options menu in the header between the title and the the
workspace (Figure 1).

The user first chooses a data file from the drop down menu on the top left of the page.
The input file consists of two tab separated floating point numbers per line. On clicking “Load
Data” button, the ‘top level’ representation of the points gets displayed. Top level
representation consists of two types of objects, points and clusters. While points are rendered
as small circles and represent single data-points from the input data-set, clusters are large
filled squares and represent a large number of points in the small area covered by the filled
square. We will discuss them in more detail in the implementation section.

There is a slider in the header menu to switch between pan and select modes of
interaction. While ‘Select’ mode allows you to select one or multiple objects from the
workspace which can then be operated on by using the options on the left, ‘Pan’ mode lets
you click and drag over the workspace in a zoomed state to explore the neighborhood of the
present view. How to use zoom and pan for data exploration, perform operations and adjust
visualization configuration will be explained next:

Select a data file

cluster_3k_2d_0 v

Load Data

Select one or more pointste |-

perform these cperations

FFFFFF
Delete

Add Points:

Visliu :

Responsive Visualization of Points in Space: Sampling, Clustering, Partitioning

Zoom
Pan/Select n Sensitivity: 10% v Cancel Selection

100 200 300 400 500 600 700 800 200 1opo

oo
koo

oo

%DB
énn
él)ﬂ
él}ﬂ

koo

1000

Figure 1: User-view of the Visliu Web Interface

a. Zoom and Pan

Much of our effort has gone into making zooming and panning work in a way

that is intuitive for the user.

When a data-set it loaded by the user, the server calculates a high-level view

of the whole dataset by clustering points in areas with point-density greater than a
threshold density. The client displays clusters as filled squares on the
workspace(Figure 2).

CRCC I B R R R B R B B R R B R R B R B R R R R R BT T
31K 162K 243K 324K 405K 4BGK SEGK G4TK T2BK BIEK

é?K
éSSK
%SEK
%DQK
%3?K
éﬁdk
%41K

10K

Figure 2: High-level view of a data-set with 3,000 points

The user can use scrolling on a mouse or two-finger vertical swipes on a
modern touchpad to zoom in and out of the view at whichever point they desire.

If the user zooms into a cluster square,the square starts getting larger
accordingly but also starts getting less opaque. The opacity of the square reaches 0 at
4x the initial size of the cluster. This is done so that the details of objects inside the
cluster become clearly visible. A cluster could itself contain more clusters and points.
The size of each cluster is displayed on it.(Figure 3) This is an implementation of the
concept of semantic zooming as defined for Pad++ systems and a key to effective
data exploration in zoom based user interfaces. We will talk more about it in the
implementation section.

The user can click and drag the mouse over the canvas to do panning across
the information space in a zoomed state.

@ [y g 81K® 162K , 24K 324K 405K 486K 566K B4TK 728K 808K
-]
5 = -
E * ¢
e . - - .
N . -
B - L . ® .
z L
77K - . .
- L] -
= o o *
:o o - L] L L]
g & * L] = -
5 . - o
PEEK . =
P .
L] - - ~ L -
L]
P . '
232K
I * .
- - .
B .
5 & .
L] - - (]
- L])
300K | @ .
g O . -
F -
"y L] L] - -
: a -
BaTK - -
N s °®
N o
gk

541K

519K

BOEK

773K

Figure 3: Visliu workspace with 3 levels of clusters seen. Outermost level is already
transparent, next level is partially transparent but is already displaying its internal
objects, Innermost level is still opaque and will display its constituent points on further
zoom.

Visliu also provides an option of changing the zoom sensitivity in the header
menu which lets the user change the rate at which the view zooms in or out depending
on their hardware and preference. This is also helpful as a user might want to zoom in
pretty slowly for dense datasets or when he is trying to find patterns in the data-set
and fast when he knows the subset of the data he wants to zoom look at. The zoom

sensitivity varies from 10% to 100% which indicates the percentage by which the
distances between points scale up or down with a single step of mouse wheel or
touchpad event.

Another feature that helps the user keep track of where they are with respect to
the overall data is the grey colored dynamic axis lining the top and left side of the
workspace(Figure 3). This is superimposed on top of a static axis which ranges from
the respective minimum and maximum values of the two dimensions in the dataset.
The translucent grey coloring shrinks and enlarges with the zoom level and moves
left/right or up/down depending on the center of the present view in the zoomed state.
We have found this quite helpful in our experiments on exploring and operating on
data-sets with Visliu.

b. Operations

The system has multiple operations that can be performed on selected subsets

of data. These are: translation, recoloring, point deletion and point addition. The first
step to performing an operation is to switch to Select mode by clicking on the
Pan/Select switch in the header menu of the page. Once it is in select mode, the user
can use mousedown and drag actions on the workspace to select an arbitrary subset
of points. A translucent blue area appears during mouse drag to indicate the points
that are going to get selected if user leaves the mouse button at that instant. Multiple
click and drags add to the present selected point set. This allows the user to select an
arbitrary set of points to perform an operation on. As soon as a subset is selected, the
operations listed below the Load Data button which were disabled before get activated
and can be used:

1. Translate : Consists of two input fields, x and y. The selected points get
shifted in the present view by these values on clicking the Translate
button.

2. Change Color: Clicking on the change color textbox displays a full color
pallet. Clicking on any color in the pallet changes the color of the
selected points to that.

3. Delete Points: Clicking the “Delete” button removes the selected points
from the workspace.

4. Add Points: Consists of a text-area that can be given space separated
values, two in each line. Clicking on the “Add” button adds these points
to the visualization.

c. Configuration

Due to the variety to possible point distributions in 2D space, there is no single
optimal configuration to display them all. Also, there are user-preferences on point
sizes, cluster sizes, etc. To address these, we have made some global server
configurations available to the user to view and adjust according to their needs or
preferences. Here is the list of modifiable configurations(Figure 4):

e Default point color (default : Red)

e Default cluster color (default : Red)

e Threshold Point Density for clustering (default : 50 points per 20px side
square)

e Maximum clusters per level (default : 100)

Change Global Configuration

Default cluster color FADODO

Default point color EEEEISEE

Threshold Point Density 10

Maximum Clusters Per Level 100

Figure 4: Menu to change global Configuration of the Visualization in Visliu

3. Implementation

a. Technology Stack
i. javascript:

Javascript is the language of the web. Though it has been ridden with
problems and controversies for the major part of the time it has been around, in
the last few years it has gained a pretty large following. At present, with major
improvements in javascript interpreters, it runs pretty fast and has a sea of
libraries available online which do everything from replacing all ‘x’s in a string to
‘y’s, to simulating the linux kernel in the browser, to providing all the tools to
make online 3D massively multiplayer role-playing games.

We use javascript both for the front-end as well as the back-end. This
provides us with the ability to use the same code for data operations on both
the client and the server for automatic load distribution.

i canvas:

The canvas element is a part of the HTML5 specification by the world
wide web consortium and is supported by all major browsers right now. The
canvas allows for dynamic, scriptable rendering of 2D shapes and bitmap
images. It updates a built-in bitmap and does not have a built-in scene graph as
SVG does. Therefore, Canvas is considered as a lower level APl on which
something like SVG can be built. This also makes Canvas more powerful in
terms of number of objects it can create and manipulate simultaneously
compared with SVG.

Visliu’s workspace consists of a 1000x1000 px canvas element.
iii. node.js:

Node.js is an open source, cross-platform runtime environment for
server-side and networking applications. It provides an event-driven
architecture and a non-blocking 1/0 API that optimizes an application's
throughput and scalability. Node.js uses the Google V8 JavaScript engine to
execute code, and a large percentage of the basic modules are written in
JavaScript.

http://en.wikipedia.org/wiki/HTML_element
http://en.wikipedia.org/wiki/HTML5
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)
http://en.wikipedia.org/wiki/Bitmap
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Runtime_system
http://en.wikipedia.org/wiki/Event-driven_architecture
http://en.wikipedia.org/wiki/Event-driven_architecture
http://en.wikipedia.org/wiki/Non-blocking_I/O
http://en.wikipedia.org/wiki/V8_(JavaScript_engine)

We use node.js for two reasons. Firstly it lets us use javascript on the
server-side, secondly, the event-driven architecture and the non-blocking 1/0
API suits our requirements quite well.

iv. Processing.js:

Processing is a programming language which was designed to create
and manipulate visualizations, images, and interactive content. It has been
used for a long time by researchers and practitioners alike to create interactive
visualizations. Processing.js is a javascript port of this language. It basically
uses canvas and javascript in the background to provide an APl identical to the
original Processing language.

We felt this API to be preferable for designing and manipulating our
visualization system. We do not however use the event handling API of this
library as that was not performing as expected in our experiments.

V. socket.io:

This is a javascript framework that enables real-time bi-directional
event-based communication. It uses websockets internally which are radically
more efficient than AJAX for client server communication. The WebSocket
Protocol is an independent TCP-based protocol. Its only relationship to HTTP is
that it's handshake is interpreted by HTTP servers as an Upgrade request. The
WebSocket protocol was standardized by the IETF as RFC 6455 in 2011, and
the WebSocket APl in Web IDL is being standardized by the W3C.

Socket.io contributes in a major way in making our system functional by
making constant server-client communication faster and easy to implement and
manage.

vi. Other technologies

We use Bootstrap for giving a better look to buttons and text fields. Jade

templating language is used to create the dynamic webpage on the backend.
Heroku’s cloud hosting service is used to host the app for public access.

http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/Handshaking
http://en.wikipedia.org/wiki/HTTP/1.1_Upgrade_header
http://tools.ietf.org/html/rfc6455
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Web_IDL

b. Architecture Overview

Figure 5 lists the important design components of Visliu. Figure 6, 7, 8,
9, 10, 11 and 12 go into the details of each of these components and explain
how they function.

Important
variables ' Client (indexjade, test.js)

Render
Visualization

Server (www, VisObject.js, props.js, cluster2dpoints.js)

Figure 5. Major components of Visliu’s design

Important
Variables

state: zoom: Present zoom amount
xDisp: Displacement along x-axis
yDisp: Displacement along y-axis
levelsOnClient: List of zoom levels with
object details on the client

paramObject: Default point color
Default cluster color
Minimum Points to create cluster
Maximum number of clusters

coordRanges: Maximum and Minimum values
for x and y in the data-set. These are used for
visualization axis and mapping between view
and data values.

data: Two dimensional list containing views for
different zoom levels.

fileSelected: Name of the presently loaded file.

presentX, presentY: present location of the
mouse cursor relative to the workspace.

selectedData: Indices of selected data
points

specialColors: Indices and color of points
colored different from the default.

Figure 6: Description of important variables on client

Render
Visualization

function viz(processing)

setup: Set size = [width + 2"margin, height +2 "margin]

» Set framerate = 20

draw (called framerate times per second):
—
Draw and label x and y axis.

Shade axis using state to show the present view position in the
larger context.

lterate over first floor(stafe.zoom) lists in data:
If object is not marked as deleted:

Calculate x and vy position of the object using state

Use the object.size, selectecdData, specialColors and
paramQbject variables to render the object as a point or
cluster with appropriate attributes.

If the user is in the process of selecting data, create a
translucent blue box using the mouse position.

Viz is initialized on the 1000x1000 canvas using processing.js to start rendering.

Figure 7: Overview of Visualization rendering loop on the client

Render Page

Elements

Instm&ioq; to use
Visliu, Crea}*'.“ef‘d-\!..!sing
Bootstrap’s Popgiiet_\
plugin. Shows a text-
box containing
instruction on click.

*

Shows a menu to
change global
visualization
configuration. Created
using Bootstrap’s Modal
and form plugins.

“
“
™y Configuration

Visliu :

Responsive Visualization of Points in Space: Sampling, Clustering, Partitioning

Zoom

/ﬁ m Pan/Select Sensiivity 10% -
Select a data file PO o T R L L U R TR TTTTT TTTTT [.
162K 243K 224K ADSK ABEK 28K B09K
cluster_3k_dd (v =1 =
= o e
:.-"""-o.
Load Data . Bo e
-
F ° : PR 5 8 ° T
Select One or more F A . .
points 1o pE!f.’C‘.I‘ﬂ': these -
operations
. Header menu.
Created using
Bootstrap’s form
= plugin. Contains
option to control
ange zoom, pan and select
il
OFFT3 behavior.
. .
e ®
Add Paints:
(U -

Options menu. Created
using Bootstrap form
plugin and JScolor plugin.
Contains options to load
and manipulate data in
the workspace.

Workspace! Consists of a
1000x1000 px HTMLS
canvas element.
Rendering done with
Processing.js plugin’s API.

Figure 8: Description of various elements on the page and how were they

made.

Event-Handling

Special Events:

1. Mouse Move over workspace: Event captured to update presentX

and presentY variables.
Mouse down over workspace: Event captured to start area
selection in Select mode and change state.xDisp and stote. yDisp in
Pan mode.
Mouse up over workspace: Event captured to select points in
select mode and to stop panning in Pan mode.
Mouse Wheel/Touchpad: Event captured to update the stote
variable accordingly.
Key Presses:

a. A, 5, W, Z: Pan left, right, up and down

b. E, D: Zoom in and out.

Ul elements:

1. Instructions: Shows a popover containing the instructions to
interact with the client.
Configuration: Shows a modal over the page with present global
configurations which can be changed by entering new values and
clicking Save Changes.
Load Data: Sends a message to the server with the selected file-
name.
Translate: Mowves the selected points on the workspace by the
values entered in the " translation’ and 'y translation’ input fields.
Change Color input box: Shows a color pallet. Selecting a color and
clicking outside the pallet changes the color of selected points.
Delate: Marks the selected points as deleted and removes them
from the workspace.
Add: Creates new points on the workspace using the values
entered in the input box.
Pan/Select switch: Switches mode between Pan and Select by
changing the Special event function bindings.

. Zoom Sensitivity: Changes the amount of zooming per zoom event.
10. Cancel Selection: Resets the point selection.

Figure 9: Description of various user-events that trigger functions on the client

Client - Server
Communication

Various messages are sent by the client to the server aver weh sockets
using socket.io during the visualization process:

1. ‘getDataFiles’: Sent during page-load to get the list of data files
present on the server.

‘selectedDataFile’: Sent with the selected file-name when user
clicks on Load Data button.

‘getParameters’: Sent to ask the server for present values of
server configuration parameters.

‘updateParameters’: Sent with the paramObject to ask the server
for a new view with the updated configuration. Triggered when
the user clicks on "Save Changes’ in the Configuration madal.
‘state’: Sent every 5 seconds to the server with the present state

object.

Various messages are received from the server on the client over weh

sockets and trigger various function calls:

1. ‘dataFiles’: On receiving the ‘getDataFiles’ message, the server

uses node’s file system library to read the contents of the data
directory and sends them over to the client with the ‘dataFiles’
tag.

‘parameters’: On receiving the ‘getParameters’ message, the
server collects and sends the corresponding props object’s
attributes with the ‘parameters’ tag.

‘InitData’: On receiving the ‘selectedDataFile’ message from the
client, the server loads the file data, does clustering to generate
the top-level view and sends it to the client with ‘InitData’ tag.
‘newData’: Using the state variable sent by the client every 5
seconds, server keeps checking if the client is missing any level-
data it might nead in near future. If it determines that some data is
needed, it does clustering on the appropriate subset of data and
sends it over with the ‘newData’ tag.

Figure 10: Details of messages passed between the server and client and their function.

Objects and State

props.js:

This module exports a single object, props. Props consists of all the configurable
attributes of the view and clustering:

"paintColor': 'FADDOQ" : default point color
'clusterColor': 'FAQOD00": default cluster color

'maxCentroidsPerView': 100: number of centroids initially created with k-
means

'clusteringScaledRadius": 20: used to check density of points around a
centroid

'clusteringNumOfPointsThreshold’: 50 : number of points needed to form a
cluster

VisObject.js:

This module defines VisPoint and VisCluster objects, which are used as template for
object creation:

VisPoint: VisCluster
%' 0.0, "« 0.0, % coordinate

'v': 0.0, 'w': 0.0, y coordinate

id": 0, id": 0, Object id

‘attributes”: {}, ‘attributes”: {}, Additional object attributes
'size": 1 'size': 2 Number of points in object
'ILevelldList': [0, 1], List of point ids in cluster

level": 1, Zoom level of the cluster

Figure 11: Description of the Props and VisObject modules on the server.

cluster2dpoints.js:

This module takes care of background processing. It exports 3 functions,
getAllData, cluster2dpoints, and getView which are called from www.

GetAllData: This function takes the raw input file data as the argument,
creates a VisObject for each data point and returns the list.

cluster2dpoints: This is the main function for cluster calculation. It takes a
list of VisObjects, a props object and the zoom level as arguments and

returns a list with clustered objects using the following steps:

1. Call getCentroidList on the VisOhbjects to get
props.maxCentroidsPerView number of k-means centroids.
Call getNextLevelData with the VisObject list, centroidLlist and the
zoom level to get the clustered object list.
a. This methed first creates 2 new lists from the VisObject list
and centroidlist by scaling to the view.
The scaled centroids are snapped to the nearest grid-
points where the grid is defined as a mesh with cell side =
maxClusterRadius.
With these scaled and snapped centroids, the count of
data-points within maxClusteringRadius distance of the
centroid is calculated. If this is greater than the threshold
for clustering, the centroid is added to the result list.
d. The un-clustered points are later added to the result list.

getView: This function takes a list of VisObjects, does scaling according to
the zoom level, creates another list of objects from this which is suitable to

be zent to the client and returns that.

Figure 12: Description of the data processing done on the server to create the views.

4. Challenges

Here we will list down a few of the challenges we faced during the
design and implementation of Visliu.

a. Smooth zooming : Changing the view in coarse steps was easy since the
view only needs to be updated to the next level step determined by the server.
To achieve smooth transition, we had to implement an update on points for
every scroll event received from the client. The state object with a high enough
refresh frame rate of the workspace made this possible. Though the scrolling
works nicely on using a mouse with a scroll wheel, due to the variation in the
touchpad hardware on different machines, the zoom speed is not consistent
across browsers or machines. We have tried to make-up for that partially by
providing an option for zoom sensitivity in the header options, a truly consistent
zooming experience cannot be achieved without some kind of support from the
browser to get a normalized scroll amount value which seems to be missing at
the moment.

b. Clustering : We tried multiple clustering methods to create clusters for the

visualization and there was always a trade-off between speed and quality.
Since Visliu is an interactive system, we could not give up on speed much in
favor of better quality. In the end, we came up with our own clustering method
which uses a combination of k-means, grid alignment and threshold point
density to get good clusters on our test data-sets without giving up on the ability
of the system to calculate these in near real-time in response to user actions.
Pre-calculating nearby clustering levels and keeping them cached on the client
also goes a long way in hiding this computation.

c. Network Communication : Initially with ajax for client-server communication,
the network communication was the major bottleneck to a responsive
visualization system. Ajax is not just slow, but hard to manage. With some
research we came across the recently developed websocket protocol which still
runs on TCP but removes the large overhead from AJAX. Visliu now uses
websockets though socket.io library.

d. Javascript and asynchronous function calls : Javascript was a blessing in
the sense that it was fast enough for what we wanted to do and worked both on
the client as well as the server, but the non-blocking I/O model of node created
a lot of transient errors during the development which were pretty hard to
debug.

5. Applications

While Visliu was started with an aim to explore the capabilities and challenges of
interactive visualization on the web and without any particular application in mind, along the
way we have discovered multiple areas and occasions on which it can be used: medical
reports, financial data, as an educational tool, sensor data, and 2D simulation data.

One application that stands out is for pre-analysis of experiment results : Many
experiments and research projects generate two-dimensional data as intermediate or final
results which need to be analyzed multiple times for manually tuning and improving the
experiment. Visliu can be used as a quick way to inspect these results both in the larger
context as well as to find patterns in specific parts of the results.

With automatic clustering, Visliu has the capability to let the user work with much
larger datasets than normally supported by web visualization systems. Though locally
installed visualization software like Tableau®? still hold the edge in terms of being able to use
all of a system’s resources with native code to create a wide-variety of pretty complex
visualizations, with a few powerful servers and a fast network, Visliu could compete with
locally installed visualization softwares on low power client machines like tablets, and
ultra-thin notebooks that are gaining popularity over more-powerful but bulky machines. The
ability to visualize and interact with point-space data can be provided to everyone in an
organization or even freely online.

6. Code and Public access link

The code for Visliu is publicly available at :
https://github.com/shaqal/visel

The working app has been hosted with Heroku on an Amazon server at:
https://immense-atoll-3270.herokuapp.com

https://github.com/shaqal/visel
https://immense-atoll-3270.herokuapp.com/

Future Work

While the system works right now, it is not really production ready. Here are a few

improvements that can be made to it to get it to work at full potential:

1.

Parallel Clustering with MPI: While Visliu works with a maximum of around 20k
points right now, which is already more than most web visualization systems can
handle, the biggest bottleneck is the single thread clustering with javascript on the
node server that gets too slow above 20k points to be made-up for by our level
caching strategy. If we could offload the clustering to a program implemented in C with
MPI, it can utilize all the cores of the server or even multiple servers to get Visliu
working with much larger datasets. The MPI program can keep using our clustering
strategy or use a more compute intensive, but better hierarchical clustering strategy.

Rendering with a variable frame-rate: Visliu does a lot of processing on the client
and although browsers are more powerful now than they have ever been, freeing up
load on the client machine allows for faster response times to user-events and an
overall better user experience. Frame-rates can be adjusted using the user interaction
history for the last few minutes.

User-defined Operations: We expect future use of Visliu in two forms. First is for just
a visual inspection of the data to detect patterns and derive insights. Second is to
actually perform operations on the data to experiment and try to reach some kind of a
goal. With the few basic operations Visliu provides right now, it falls short of its full
potential for the second kind of use. Adding the ability for the user to define their own
operations by providing them with the basic constructs to define these operations will
make Visliu pretty useful for the second kind of use-case.

Input-files: Adding the ability for Visliu to take input files from Cloud-storage services
like S3, Dropbox and BigTable will add a great deal to the usability of the system.

Bibliography

[1] David Marr, 2010. Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information. Edition. The MIT Press.

[2] Canvas API - Web API Interfaces | MDN. 2015. Available at:
https://developer.mozilla.org/en-US/docs/Web/APIl/Canvas_API.

[3] SVG | MDN. 2015. Available at:https://developer.mozilla.org/en-US/docs/Web/SVG.
[4] WebGL | MDN. 2015. Available at:https://developer.mozilla.org/en-US/docs/Web/WebGL.

[5] D3.js - Data-Driven Documents. 2015. Available at: http://d3js.org/. .

[6] Google Charts - Google Developers. 2015. Available at:
https://developers.google.com/chart/.

[7] Highcharts. 2015. Available at: http://www.highcharts.com/.
[8] three.js - Javascript 3D library. 2015. Available at: http://threejs.org/.

[9] Bokeh. 2015. Available at:http://bokeh.pydata.org/en/latest/.

[10] Datawrapper. 2015. Available at:https://datawrapper.de/.

[11] Flot: Attractive JavaScript plotting for jQuery. 2015. Available at:
http://www flotcharts.org/.

[12] Lieberman, H, (1994). A multi-scale, multi-layer, translucent virtual space : Information
Visualization. In IEEE Conference. San Juan, Puerto Rico, 27 August. USA: The Printing
House. 124-131.

[13] Perlin, K and Fox, D (1993). Pad: an alternative approach to the computer interface.. In
Computer graphics and interactive techniques . Anaheim, CA, USA, 1 September. New York:
ACM New York, NY. 57-64.

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/SVG
https://developer.mozilla.org/en-US/docs/Web/WebGL
http://d3js.org/
https://developers.google.com/chart/
http://www.highcharts.com/
http://threejs.org/
http://bokeh.pydata.org/en/latest/
https://datawrapper.de/
http://www.flotcharts.org/

[14] Sutherland, lvan E. "Sketch pad a man-machine graphical communication system."
Proceedings of the SHARE design automation workshop 1 Jan. 1964: 6.329-6.346.

[15] Bederson, B, 1996. Pad++: A zoomable graphical sketchpad for exploring alternate
interface physics.. Journal of Visual Languages & Computing, 32, 3.

[16] Welz, G, 1995. Zooming Through Information Space on PAD++. Peripheral Visions, 1, 8.

[17] Bederson, B, Stead, L & Hollan, J 1994. ‘Pad++: Advances in multiscale interfaces.’ In
Conference companion on Human factors in computing systems. Boston, MA, USA, 28 April.
New York: ACM New York, NY, USA, pp.315-316.

[18] Bederson, Benjamin B et al. "Zooming web browser." Electronic Imaging: Science &
Technology 25 Mar. 1996: 260-271.

[19] Furnas, George W, and Xiaolong Zhang 1998 'MuSE: a multiscale editor',Proceedings of
the 11th annual ACM symposium on User interface software and technology, 1(1), pp.
107-116..

[20] Prezi - Presentation Software. 2015. Available at: http://www.prezi.com/.

[21] Bade, R, Schlechtweg, S and Miksch, S (2004). Connecting time-oriented data and
information to a coherent interactive visualization. In SIGCHI Conference on Human Factors
in Computing Systems. Vienna, Austria, 25 April. New York: ACM New York, NY, USA .
105-112.

[22] Business Intelligence and Analytics | Tableau Software. 2015. Available
at:http://www.tableau.com/.

http://www.prezi.com/
http://www.tableau.com/

