
Enriched Content: Concept, Architecture, Implementation,

and Applications

by

Hung-Hsien Chang

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2003

Professor Ken Perlin

c©Hung-Hsien Chang

All Rights Reserved, 2003

ii

Dedication

To my parents, for their extreme patience and supports.

To Ya-Ya, for its “understanding”.

iii

Acknowledgements

It has been a long journey. A page or two of descriptions do not do justice to

the people who have assisted me over the years; however, that is why they call

such thanks an acknowledgement.

For New York University, I thank my advisor Ken Perlin who have given valu-

able guidance at critical moments, over the years he showed me his fun computer

graphics demo and we shared a few child-like geeky moments, and of course not to

mention the influence of his more incurable optimism (I thought I was incurably

optimistic.) My reader committee have been supportive: Alan Siegel who has pa-

tiently and constantly given me advice on both academics and life, Ernest Davis

whose “extreme” encouragement and enthusiasm are crucial while his scrutinizing

my work kept me on my toes. My other two thesis committee members are gener-

ous and understanding, to say the least. Richard Cole, who I believe, is surprised

to see my change, and Dennis Shasha is enduring to my ever changing mind in the

last minute.

I also thank Chee Yap, Ricky Pollack, Ravi Boppana, Dan Melamed, David

Geiger, Ben Goldberg, Bud Mishra, Joe Spencer, late Robert Paige, Arthur Gold-

berg, Jack Schwartz, Eero Simoncelli, Zvi Kedam, Dennis Zorin, Victor Schwartz,

Vasilis Vassalos, and Deborah Weichenberg. All of them have benefited me.

There is no graduate student who could finish his degree without the support

of office administration. At Computer Science: Anina Karmen, Rosemary Amico,

and Don Freda are very helpful. Thank Maria Petagna for many interesting con-

versations. At Mathematics Department: Reeva Goldsmith assists me on Latex.

At Center for Advanced Technology: I thank Madrid Tennant, Kevin Feely, Abren

iv

Agai, and Debbi Baum. At Faculty Technology Center, where I worked while

finishing my degree, I thank Robyn Berland, Vincent Doogan, Richard Malen-

itza, Keith Adams, and Frank Leoprosti from ITS. Special thanks to librarian

Carol Hutchins for many pleasant conversations. At NYU Writing Center: Sally

Stratakis-Allen, Wendy, Nicole Wallack, Susan, Kathy Graber, M.J, Alice Fasano,

Eric, and Tom Kitchen are helpful to improve my writing. without them, my

dissertation would not be descent enough.

For University of California at Santa Barbara: I thank Alan Konheim who

introduced me to the world of secrets: cryptography and was very supportive

at my Berkeley intercampus period, and late Ronald Book for his computational

complexity seminar.

For MIT: I thank Mike Sipser, Silvio Micali, and Marvin Minsky for inspiring

me. Regrettably, I did not follow Marvin’s advice to “stick around” in the media

lab.

At Berkeley: I thank late Eugene Lawler who treated me like an on-campus

student rather than an intercampus student, Richard Karp for his encouragement

and lecture, and Manual Blum, who have generously taken me as his student, for

advice and the unique “learning” experience at Berkeley.

At National Taiwan University: I thank Principal Chen Sun who saw a “pos-

sibility” in me and wrote me a recommendation letter.

Friends are important.

At Berkeley: I thank Vassilis Papavassiliou and Dan Garcia, for their candidate

feedback on whatever I say, at UCSB: Douglas Chang for his friendship and his

help. At New York University: Antti Pihlaja, late Henning Biermann for his ‘high’

v

kindness and friendliness, Basu Saugata, William Casey, and Toto Paxia for endur-

ing my never ending bugging on them. I thank Xiaodong Fu and Fangzhe Chang

for their Window programming advice, Peter Friz for many pleasant lunches and

3 mins mathematics, Mary Elizabeth Liber Benac for her kindness and listening,

Teresa Kochis, Didem, and Jeanea for their candor. Outside the academics: I

thank Paul O’Reily and Danielle Glennon. At home: Kwai-Kwai, Lily-Lily, and

Solina have accompanied me all this time; Chai-Chai and Chun-Chun have forced

me consistently staying upstairs to work. I thank Yukihiro Matsumoto (Matz) for

the scripting language “Ruby”.

This dissertation, for those whose shoulders I stand on, it is my gratitude; for

those who will stand on mine, my honor; for those whose toes I have stepped on

(none, I believe, but if any), my apology; and for those who may have stepped on

mine, my answer.

The journey goes on...

vi

Abstract

Since the debut of the World Wide Web, Web users have been facing the

following problems:

Extended Semantics When we read or study a digital documents, be it a web-

page or not, we often run into contexts in which we have stop to start a

search on these context. It causes interruption and costs time.

Reverse Hyperlink When we visit a web page, we might be curious about what

other hyperlinks point to the visited page. These links would most likely

be of related interests. Can we get the “real time” information about what

other pages are pointing to this page?

Version Control Many of us have been frustrated and even annoyed when the

hyperlink that we follow gives us a “404 not found” or that the retrieved web-

page whose content is entirely different from the one we have bookmarked.

Could we also have access to the past versions even if the hyperlink has been

removed or the content has been changed?

Composition Assistant Writing is not an easy task. We labor to structure a

body of text, sort out ideas, find materials, and digest information. We

wish there is an automated service that can associate the context we have

produced with other contents (on the Web) and bring these web contents to

us for reference.

In this thesis, we provide an unified framework and architecture, named en-

riched content, to resolve the above problems. We apply the architecture and

vii

show how the enriched content can be used in each application. We demonstrate

that this method can be a new way of writing add-on functions for various docu-

ment applications without having to write individual plug-in for each application

or to re-write each application. We also briefly discuss possible future development.

viii

Contents

I Concepts, Architecture, Implementations 1

1 Enriched Content 2

1.1 Problem Scenario . 2

1.2 Reformulating the Quest . 4

1.2.1 Extended Semantics . 4

1.2.2 Bridging the Gaps between Ideas 5

1.2.3 Evolutionary Thought Pathway 6

1.3 Context Unit Type . 7

1.3.1 Text Type . 7

1.3.2 Link Type . 7

1.4 Enriched Content Process . 8

1.5 Motivation and Related Work . 10

1.5.1 Extended Semantics . 11

1.5.2 Reverse Link . 12

1.5.3 Version Control . 12

1.5.4 Composition Assistant . 12

1.5.5 Related Work Comparisons 12

ix

1.6 Contribution . 25

1.6.1 Unified Framework . 25

1.6.2 Adaptability of Text Unit and Necessity of Client Server Model 28

1.6.3 Minimizing Complexity in Process, Version, Data, Re-coding,

and Learning . 28

1.7 Road Map . 31

2 Contextual Computing: a Preliminary Examination 32

2.1 The Characteristics of the Web: Superstructure, Macrocosm, Mi-

crocosm . 33

2.1.1 Superstructure: Size, Shape, and Connectivity 34

2.1.2 Macrocosm: Linkage Semantics and Search 39

2.1.3 Microcosm: Zooming In . 43

2.2 Problems Raised by Sense Ambiguity 43

2.2.1 Many Faces of Meaning: 20 Questions Game 44

2.2.2 Sense Ambiguity and Descriptive Precision 44

2.2.3 Media Type and Searched Database Orientation Matters . . 47

2.2.4 Educate Users for the Correct Use of Search Engines 49

2.3 Context in Hypertext . 49

2.3.1 Knowledge Domain, Role, State of Mind, Environment . . . 50

2.3.2 Context Type: Text and Link 51

3 Architecture 54

3.1 Principle: Build on Existing Standards and Systems 54

3.1.1 Reinventing the Wheel: When Not to Do it 54

3.1.2 Standards? Which to Choose? 55

x

3.2 Cross System . 57

3.2.1 Object Oriented Window System 57

3.2.2 Software Component from Window System 58

3.3 Client-Server . 59

3.3.1 HTTP and CGI . 59

3.3.2 Avoiding Computing Bottlenecks and Network Traffic 60

3.3.3 Enabling Universal Data Availability 60

3.3.4 Providing Continuous Updating of Services 61

3.4 Add-on Module . 62

3.4.1 Lightweight Module . 62

3.4.2 Composite Menu Presentation 63

4 Implementation 64

4.1 Cross System: Text Type . 64

4.1.1 Intercepting Messages: System Hook 65

4.1.2 Re-routing Window Procedure Path 67

4.1.3 Modify Intended Event Behavior: Filtering and Handling . . 68

4.2 Cross System: Link Type . 73

4.2.1 Intercepting Messages: Client-Side Proxy 73

4.2.2 Re-routing Content Path . 76

4.2.3 Modify Content and Link Behavior: Replacement and Codes

Injection . 76

4.3 Client Server: Network Communication - Common Gateway Inter-

face(CGI) Service Request . 77

4.4 Add-on Module . 78

xi

4.4.1 Server Operations: Server Module and Ruby Scripting Lan-

guage . 78

4.4.2 Client Operations: Cross Applications - Dynamic Link Li-

brary (DLL) . 78

4.4.3 Client Menu Presentation: Reuse Browser Component . . . 79

4.5 Other Considerations and Alternatives 79

4.5.1 Cache for Efficiency . 79

4.5.2 Fatter Client . 79

II Applications and Conclusion 81

5 Extended Semantics 82

5.1 Existing Standards: Xlink . 82

5.1.1 Multiple Destinations Hyperlink 82

5.1.2 Xlink . 83

5.2 Cross System: Client Side All Document Applications 83

5.3 Client Server . 84

5.3.1 Network Communication: Common Gateway Interface (CGI)

Service Request . 84

5.3.2 Server Response . 85

5.4 Add-on Module . 85

5.4.1 Server Side: Harvesting and Pruning 85

5.4.2 Client Side: Menu Presentation - Generic, Expert, and 5W1H 92

5.5 Benefits: Semantic Intention: User Chosen Data Source, Private Link 93

5.5.1 Users Choose Data Source 93

xii

5.5.2 Users’ Private Links . 94

6 Obliged Reverse Hyperlink 95

6.1 Cross System: Text Type and Link Type 96

6.2 Client Server: Network Communication - CGI 96

6.3 Add-on Module . 97

6.3.1 Server Side: Server Log Processing 97

6.3.2 Client Side Proxy: Code Injection and Reverse Link Request 98

6.3.3 Client Side: Menu Presentation - Full or Truncated LIFO

Order . 99

6.4 Benefits: Semantic Junction, Aid to Web Design 100

6.4.1 Semantic Junction (Internal and External) 100

6.4.2 Aid to Website Design . 100

7 Version Control 101

7.1 Existing Standards: Concurrent Version System (CVS), Software

Engineering in Practice . 102

7.2 Cross System: Replacing File Related System Commands 103

7.3 Client Server: Network Communication - URL Address 108

7.4 Add-on Module . 108

7.4.1 Server Side: Communicating with CVS 108

7.4.2 Client Side: Menu Presentation - LIFO Chronological Order 109

7.5 Benefits: Preservation, Authenticity, Comparison 109

7.5.1 Links Preservation . 109

7.5.2 Archiving: Maintain Authenticity 110

7.5.3 Content Comparison . 110

xiii

8 Composition Assistant 111

8.1 Cross System: Monitoring Keystrokes of Editor Applications 112

8.1.1 Identifying Editing Application 112

8.1.2 Recording Keystrokes . 113

8.1.3 Context Unit Recognition Process 113

8.1.4 Text Type Recognition . 115

8.1.5 Link Type Recognition . 116

8.1.6 Managing Pasting and Deleting 117

8.1.7 Basic Assistant: Synonyms Listing 117

8.2 Client Server: Network Communication - CGI, Tagged Paragraph . 118

8.3 Add-on Module . 118

8.3.1 Server Side: Batched Search vs. Real Time 118

8.3.2 Client Side: Menu Presentation - Keywords and Links 119

8.4 Benefits: Active Breadth and Depth Expansion 120

9 Conclusion and Near Future Work 121

9.1 Problems All Solved? . 121

9.1.1 Integrating Optical Character Recognition 121

9.1.2 Document Analysis . 121

9.1.3 Higher Level Relevance from Document to Knowledge Web . 122

9.2 Full Contextual Computing . 122

9.2.1 Proactive Turns Autonomous 122

9.2.2 Context Meets Affect . 124

xiv

List of Figures

1.1 Enriched Content Process . 9

2.1 The Form and Shape of the Web 36

4.1 Message Route Diagram . 66

4.2 Text Selection Process . 69

4.3 Copy Shorthand . 70

4.4 Background/Foreground Color Sample 71

4.5 Sentence Boundary Detection . 72

4.6 Categories of Proxy . 74

8.1 Context Unit Recognition Process Diagram 114

8.2 Word Recognition Process Diagram 114

xv

List of Tables

1.1 Extended Semantics 1 . 15

1.2 Extended Semantics 2 . 18

1.3 Reverse Link . 20

1.4 Version Control . 22

1.5 Composition Assistant . 24

2.1 Size of the Web . 35

2.2 Growth Rate of the Web . 35

2.3 Search and Database Type . 47

xvi

Part I

Concepts, Architecture,

Implementations

1

Chapter 1

Enriched Content

1.1 Problem Scenario

Nowadays web browsing has become an integrated part of our perceptual and cog-

nitive processes. We frequently access and acquire new information and knowledge

through the web. Digital documents also play an important role in daily life. Al-

most all documents have digital copies. The following are some scenarios in our

daily digital document experiences. They can be classified as either reading sce-

nario or writing scenario. Extended semantics, reverse link, and version control

are about problems we encounter while reading, and composition assistant is a

problem we encounter while writing.

Extended Semantics When we read or study an article, be it a web page or

a downloaded document for other applications, we often run into contexts

in which we would like to know more. In the past, we could either go to

the library or call an expert. Now, we could launch a search on the Web.

However, we still need to start up a browser, enter a search engine url, type

2

in the query, and wait for the result.

This is cumbersome and sometimes very time consuming. Wouldn’t it be

nice if the system knew what we wanted and looked it up for us? While this

is appealing, the “intelligent” engine that is capable of carrying out this task

doesn’t exist. So what can we do?

Reverse Hyperlink On other occasions, when we visit a web page, we might be

curious about what other hyperlinks point to the visited page or to the page

we are about to visit. These links would most likely be of related interest. In

fact, that is how Google does its ranking and searching. It would be useful

to see, in “real time”, how many hyperlinks point to a page and to be able

to pick from one of the “reverse links” and visit.

Version Control Many of us have been frustrated and even annoyed when the

hyperlink that we follow gives us a “404 not found” or the document whose

version is entirely different from the previous one we have read. Shouldn’t

there be a mechanism that automatically manage websites and make various

versions of their pages available? Shouldn’t a user have the option to choose

from different versions at the point of click?

Composition Assistant Writing is not an easy task. We labor to structure a

body of text, sort out ideas, find materials, and digest information. At the

same time, we look for new angles and insights. If there is a service that can

associate the context we have produced with other contents (on the Web)

and bring them to us, then they can be sources for our inspiration. This

automation can be instrumental to our creative experience.

3

The aforementioned scenarios happen to different users at various times and we

can’t help but ask the question: can these problems be solved? Most importantly,

can we have the same services on all applications, so no matter what authoring

or browsing software we are using, we could have the above functionalities at the

point of click? In other words, could these capabilities be provided within a single

framework?

Enriched content architecture is set to provide an answer for this quest.

1.2 Reformulating the Quest

Dipping deeper into what we have encountered, we reformulate the activities be-

hind the scene and show how enriched content could give new insights and so-

lutions. Our first example, “extended semantics”, is an application of enriched

content.

1.2.1 Extended Semantics

The current content of website is designed by the authors. Usually they have spe-

cific purposes: for an education institution, it will generally describes its faculty,

current research, past projects, courses homepages and more. Most of the web-

sites ignore the user’s needs (intentionally or unintentionally) for other correlated

information.

The needs from users vary by their semantic intention (information seeking in-

tention or media consumption intention). Each individual has a different semantic

network associated with his unique experience. One thing enriched content tries to

do is to add a menu of links for each word or phrase to extend its semantics. Given

4

any word, such as “Graphics”, there are several associations for this word. In the

realm of computer science, we could come up with terminologies like: computer

graphics, computer graphics researchers, computer graphics research centers, com-

puter graphics design, computer graphics designers, computer arts and so forth.

We can have these options as links to other resources so the user could have one

click-drag access. We do this for each word or phrase on the page. Enriched

content will partially automate this process.

Ideally, the choices of menu should rely on the context but current compu-

tational linguistics programs are not intelligent enough to provide a satisfactory

answer yet. Of course, we can increase the closeness of the sought information by

a simple contextual analysis on the sentence where the word and phrase resides.

Then a query is formed and submitted to resources. The resources could be a

manually made database or information extracted from the existing database or

search engine. They also can be constructed and tailored for a specific purpose.

1.2.2 Bridging the Gaps between Ideas

When we are working on a long article, we sometimes have the experience of staring

at the computer screen (the ceiling, or the wall) when nothing is coming out of

our heads. “Writer’s block” it is called. But we also have the experience of not

being able to quickly dictate ideas flying from our minds. The phenomena is as if

there is a “concept dam” that holds our ideas, and then, all of a sudden, it lets

the concepts pour out. For instance, in some situations, we are struck by an idea

that links different elements of concepts together into one single entity.

Presumably, our working mind is constantly seeking connections between what

5

we want and what we know. If more plausible cues can be brought to our atten-

tion, the greater the likelihood that our concept dams will open or that “lightening

ideas” will come forth. These cues act as stepping stones in our creative process.

Cues can come from the content produced thus far. Or it can be an indirect refer-

ence such as a reverse link. Visiting a webpage by following the reverse direction

of a hyperlink may tell us the “cause” of the association; we may discover other

correlated webpages in the neighborhood of the link on the visited page.

Thinking backward is just as important as thinking forward. In terms of view-

ing webpages, traversing backwards on links can be useful to our information gath-

ering.

1.2.3 Evolutionary Thought Pathway

Our thinking is constantly changing without our conscious awareness. Articles and

documents are the snapshots of thoughts at that instant of creation. As thoughts

progressively evolve, we create different articles which could vary in theme, even

if they are about the same subject matter.

As a reader, we do not have the the privilege of peeking into the fascinating

(or hairy) authoring process such as creating, adding, rephrasing, pruning and so

on. We wish to be able to access at least the stabilized versions at each stage.

This would provide us a better understanding of temporal progress along the line

of thought.

Selecting and viewing different versions of the same document helps these ac-

tivities. Enriched content architecture could facilitate this functionality.

6

1.3 Context Unit Type

If we step back and analyze the problem scenarios carefully, then we will find that

we are dealing with content that comes in two types. One is text type; the other

is link type. 1

These are within the analysis of the aforementioned problem scenarios. For

multi-media documents, we may find static pictures, sound clips, and videos. While

images with HTML tags can be annotated, other types of media type in general

do not fall into our consideration. Off line documents with embedded pictures will

have “mark location” problems as we will see in a later chapter.

1.3.1 Text Type

Text type content is text based. For example, a word, such as ‘excellent’, is a

text type. A sentence, sentences, a paragraph, paragraphs, or a full document, are

all text type. Text type comes in plain text format. We do not distinguish the

variation of font, font color, and its size. We treat all text type the same: they are

just text.

1.3.2 Link Type

Link type has two forms. One appears in the text and is usually prefixed by

“http://”, for example, “http://www.cs.nyu.edu”. The other form is what we

encounter on a webpage. It is usually underlined and highlighted with different

color, for example, Computer Science Department of NYU. If we look at

1There are other media type. For instance, video, images, and audio. But these are not in

the scope of our discussion.

7

the source of the HTML, then we can find ‘http://www.cs.nyu.edu’.

1.4 Enriched Content Process

We use extended semantics as an example to illustrate how the enriched content

process is carried out. The reasons of this architecture are explained in Section

3.3. The description reflects the steps taken in the following picture:

(a): Client side:

User is using an application which could be a browser or an editing tool; she sees

an unfamiliar word or phrase that she would like to learn more about. Moving the

mouse over the word, she then clicks over the text. The client side module receives

a click message and gets the target context from the focused application.

(b): Network:

The context data is sent through the network to a pre-assigned server where it is

further analyzed and interpreted.

(c): Server side:

The server module studies the request and accompanying data, extracts context,

and formulates queries for web resources. The server launches the queries to various

web resources, requesting relevant information.

(d): Server side:

Numerous webpages and documents are collected as a result of the queries. The

server filters and summarizes qualified feedback, and composes the summary in

8

Internet

Internet

quantum computing

quantum mechanics

teleportation

Unitary matrix

Turing machine

quantum mechanics

teleportation

Unitary matrix

Turing machine

quantum

quantum computing
 quantum computing
(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.1: Enriched Content Process

9

menu format.

(e): Network:

The server passes the menu format containing list of resources to the client side.

(f): Client side:

The client module displays a selection menu on the point of click. The user can

choose items from the menu or simply discard them by clicking the ‘close’ button

on the menu. If she selects an item on the menu, the client module will launch a

browser opening the url address associated with the menu item. Only keywords

are displayed on the menu item; the url address associated with the keywords are

not shown.

This completes the cycle of an enriched content service process.

1.5 Motivation and Related Work

Here is a brief illustrations of related work. A more detailed comparisons with

tables and descriptions are at the end of this section. We can classify the problems

by context unit type. Extended semantics and composition assistant are text

type, reverse link is link type, and version control can be either text type or link

type. Enriched content is related to Web augmentation and open hypermedia.

[Bouvin 00]. One can view enriched content as a way to facilitate and ease the

third-party application integration which is a difficult problem in open hypermedia

[Davis 94, Whitehead 97].

10

1.5.1 Extended Semantics

Our idea for extended semantics is the result of contemplation about what can

be done for users after the visit to the Internet World Exhibit in late 1996. At

that time, our research focus was not on the World Wide Web. This research

started in early 1999, and in the same year, a series of related technologies started

to emerge. In March 1999, 3rdvoice.com, an online annotation service; then gu-

runet.com(now named atomica.com) which is a form of extended semantics, fol-

lowed by flyswat.com, zapper.com, and finally Microsoft Office suite’s smart tag.

From past research, we can also find related work on hyperlinks for digital library

[Adar 95]. There are projects like Haystack [Adar 99] whose goal is to learn from

personal computing history and storage information in order to give better sugges-

tions on urls and related documents. Xerox Parc also has fluid links [Zellweger 98]

which acts like Xlink and it is an inline hypermedia annotation. Fluidlink is also

applied to open hypermdia [Bouvin 02].

Hypertext has long been envisioned by Vannevar Bush (1945) [Bush 45], Dou-

glas Engelbart [Engelbart 84] and Ted Nelson [Nelson 92]. Many ideas have been

thought about but has never been realized. Hypertext implementations exists

before the World Wide Web. Projects such as Hyperties [Shneiderman 88] and

Apple’s hypercard are two examples. There are other hypermedia systems such

as NoteCard, Neptune, KMS, Intermedia, Augment and so on. Consult Halasz

and Schwartz [Halasz 94] or Carr [Carr 94] for lists of reference. However, linking

through a global network is what makes the World Wide Web powerful, as was

realized by Tim Berners-Lee [Berners-Lee 00]. Multiple destination linkings were

proposed long ago but there is no implementations on the browser yet.

11

1.5.2 Reverse Link

Reverse link has been done partially and “locally” as Google started its reverse

link service in late 2000. Even though they have archived the searched sites, it is

a timed archive. In other words, the data is not persistent nor “real time”. An

archived page gets updated every 2+ months but updating also depends on how

“important” (page rank) a page is. Reverse link received new interest at the annual

WWW conference in 1996 and 1999; implementations and suggestions were made

[Pitkow 96, Chakrabarti 99.1].

1.5.3 Version Control

In WWW Conference and Digital library Conference, version control is covered

and exploited [Pettengill 95, Vitali 95, Simmonson 98] . There are version control

management commercial products [Hummingbird, Merant] .

1.5.4 Composition Assistant

Watson system [Budzik 99] and Kenjin [Kenjin] focus on assisting writers. Wat-

son supplements the writers with related documents. Watson works on Microsoft

WORD and displays a list of recommendation in a mini-browser. The recommen-

dation is collected from a list of search engines and news source.

1.5.5 Related Work Comparisons

The comparison tables are constructed in chronological order column by column

with the earliest work first. First column is the label column. Here is an enumer-

ation of what each label means:

12

[Year] The year when the project is shown to the public, or the year the paper is

published.

[Name] The name of the project, or the name of the author(s).

[Applicable software] What software can the service be applied to? For exam-

ple, if the table cell indicates “Emacs” then the service applies only to the

application “Emacs”. “Almost All” means the services are applicable for

almost all document applications. “IE” stands for “Internet Explorer”.

[Activating method] How a user activates the service? “ALT + Left click”

means to press the ALT key and the left mouse button at the same time.

“Change of URL” means changing the URL of a browser either by following a

hyperlink or by the user entering the new URL manually. “Start of program”

means the service starts running when you activate the software (in the

applicable software category).

[Contextual unit] This means the “size” of the context unit. For text, it can be

a word, a sentence, sentences, a paragraph, paragraphs or a full document.

[Context retrieval] How can the context unit (for example, a word) be retrieved

after users activate the service? “API” is Application Programming Inter-

face.

[Contextual analysis] The computation and process that are used to “under-

stand” what exact context a user is pursuing.

[Content delivery] Once the service gathers the extra content (enriched con-

tent), how is it delivered to the user? “Client Sever” will involve network

13

communication while “Local” will not.

[Result presentation] The way the enriched content is displayed. Is it shown

through a menu or a browser?

Extended Semantics: Text Type

We list only works where the client side is more involved. Server based applications,

such as WebWatcher [Armstrong 95] and Balabanovic [Balabanović 95], are not

listed here. There are two tables for extended semantics.

Table 1.1 shows services that work only on specific document applications.

Other hypermedia systems involve no direct Web integration are not considered

here. To see a list of these systems, consult Bouvin [Bouvin 99, Bouvin 00].

Distributed Link Service [Carr 95] is an extension of Microcosm [Fountain 90].

It uses the Web standard protocol to hyperlink selected context with other con-

texts. Links (their source, destination) are stored remotely and they are provided

as a service.

In 1996, Remembrance Agent [Bradley 96] is presented by Bradley Rhodes

from the MIT media lab. It works only in the Emacs environment. The service

starts when a user uses emacs. Emacs supports strong programming tools and

one can use it to change the Emacs environment. It is easy to get a buffer for the

current window and from the cursor location; one can find the strings surrounding

the cursor. Remembrance agent finds useful words by throwing away stop words

2 It then uses these keywords to find matches in the pre-indexed database. The

database includes the corpus of “Boston Globe”, archived e-mails, INSPEC and

2Stop words are words such as “it”, “be”,“with”, and so on.

14

Year 95 96 97 99 00

Name

Distributed

Link Ser-

vice

Remembrance

agent
Leitiza

Index-

Based

Hyperlinks

Margin

notes

Applicable

software
Netscape Emacs Netscape IE Browser

Activating

method

Start of

program

Start of

program

Change of

URL

Start of

program

Change of

URL

Contextual

unit (text)

Manual

selection

Cursor

neighbor-

hood words

Webpage

Webpage or

manually

selected

text

Webpage

Context re-

trieval
Selection String buffer API API Proxy

Contextual

analysis
?

TF, IDF,

database

TF, IDF,

history

Search En-

gine

TF, IDF,

database

Content de-

livery

Client

Server
Local Local Local

Client

Server

Result pre-

sentation
Webpage Subwindows

Multiple

windows
Mini-browser

Frame

within a

page

Table 1.1: Extended Semantics 1

15

the like. The match for relevance is based on a formula using a variation of term

frequency(TF) and inverse document frequency (IDF) [Salton 75, Salton 89]. The

term frequency of a word in a document is the number of times a word occurs in a

document over the total number of words in the document. Take the word “agent”

as an example; if “agent” appears 15 times in a document of 300 words then the TF

of “agent” with respect to this document is 0.05. The inverse document frequency

(IDF) of the word “agent” in a collection of documents is the inverse of the ratio

of the number of documents containing the word “agent” over the total number of

documents in this collection. For example, if we have a collection of 500 documents

where 50 of them containing the word “agent”, then we have 10 (= 1/ 50

500
) as IDF.

Remembrance agent will provide two extra subwindows within the Emacs. One

shows the keywords it has extracted; the other lists the relevant documents from

which users can choose to read. Remembrance agent is named “Remembrance”

because it has saved database (such as archived email) as its memory.

Leitiza [Lieberman 97] is by Henry Liebermann, and it is also from the MIT

media lab. Leitiza works only on Netscape because it uses Netscape’s APIs. It

comes with three windows. The first one is the content browsing window, the

second one shows the webpage under consideration, and the third displays the

actual recommended webpage list. Leitiza does a depth-first search starting from

the currently viewed webpage. It collects and analyzes the pages from this search,

and it scores each collected page. If a page’s score is higher than a recommending

threshold, this page will be shown in the suggested list window. The score of a

page is computed from the TF and IDF. It also has memory about a user’s viewing

history as a reference for relevance matching. Leitzia is also a demonstration where

16

an information agent and interface agent are integrated.

Index-based hyperlink [Hartman 96] can be viewed as a precursor of Xlink. It

defines implicit hyperlink, which resembles the DLS but allows indices. A phrase

can be associated with a group of URL options. It can have indirect indices and

hierarchical indices. Indirect indices are indices whose content is located elsewhere;

hierarchical indices are indices can contain other indices. It removes the duplication

of inserting the same links content when a single term occurs several times in one

document.

Margin notes [Bradley 00] works on all browsers. It shows recommended list

of webpages with keywords in the same window as the webpage. The list is on

the right side of the page. It has changed the layout of the page by adding a new

HTML tag such as <FRAME>. The content from the web server goes through

a proxy where the content is intercepted, analyzed, and further processed. After

the contextual analysis, Margin notes injects new HTML tags and content to add

new information to the original page. It does not change the original feel and look

of the page except by adding a “Margin notes” (thus named) on the page.

Table 1.2 shows services that have more broadly applicable software. Most of

them are proprietary, and there is no way to determine how they do contextual

retrieval. However, from testing the service we can tell the size of the contextual

unit (word, sentence, or paragraph) they are serving. Most of them identify only

a single term. [Finkelstein 01] claims that Zapper “looks around” the words in

the neighborhood of interest, but they do not indicate how it is done and what

the coverage of the “neighborhood” is. They also claim to have a Semantic engine

which performs contextual analysis, but the details of this engine are not clear.

17

Year 99 00 01 01 02

Name
Atomica

(Gurunet)
Flyswat Zapper Smart tag

Enriched

content

Applicable

software
Almost all Almost all? Almost all?

Word, IE,

Outlook,

Excel

Almost all

Activating

method

ALT + Left

click

ALT + Left

click

CTRL +

Right click
Mouse over

ALT + Left

click

Contextual

unit (text)
Single term Single term

Neighboring

words
Single term

Single term,

sentence,

and so on

Context re-

trieval
? ActiveX ? Programmed

Simulated

messang-

ing, Graph-

ics context

Contextual

analysis

Search

engine,

database

Search

engine,

database

Semantic

engine(?)
? Search engine

Content de-

livery

Client

server

Client

server

Client

server

Client

server,

apps.

Client

server

Result pre-

sentation

On spot

mini-

browser

On spot

menu

On spot

menu?

On spot

menu

On spot

mini-

browser

Table 1.2: Extended Semantics 2

18

The response time for this service is not ideal (less than 10 seconds). It indicates

clearly that a good and efficient contextual analysis is difficult.

Smart tag is a Microsoft product; it differs from other services in that the

context availability is programmed. You have to “write codes” for each phrase

and word that you want as a keyword (key-phrase). Further, it does not show

the existence of extra content until user does a mouse over on the word. If the

underneath word has information, then a menu icon will appear above the word.

The user can drag down the menu and select an item for viewing. A common

characteristic of the systems in this table is that they all provide the client-server

model as part of the content delivery method. Enriched Content has a specific

implementation that captures context unit at a designers’ designation.

Reverse Link: Link Type (Table 1.3)

The programs that use reverse links are of two types; those based on search engines

and those based on a specialized server.

A search engine has archived the pages and their links; therefore, it has direct

information about which pages are linked to other pages. A database query will

find the reverse link information directly. Alta Vista and Google are examples of

this group.

In 1996, Pitkow et. al. [Pitkow 96] proposed a new protocol and a server

maintaining the links information. The reason to run an extra server parallel to

the existing web server is for two functions: one is for reverse link information,

and the other is to solve the dangling link problem (hyperlink whose destination

page has been moved or removed). The updated link information is broadcasted

distributedly. Because it is decentralized, it is possible that some of the information

19

Year 96 97 99 00 02

Name
Pitkow et.

al.
Alta Vista

Chakrabarti

et. al
Google

Enriched

Content

Applicable

software
Browser Browser Browser Browser Almost all

Activation

method

Change of

URL

Manual re-

quest

Change of

URL

Manual re-

quest

ALT + Left

Click on

link

Hyperlink

retrieval
Automatic

Submitted

request
Automatic

Submitted

query

Proxy,

Javascript

Links ac-

quisition

Real time,

local
Archived

Real time,

local
Archived

Real time

or archived

Service re-

quirement

Protocol,

extra server
CGI Protocol CGI CGI

Result Pre-

sentation

Separated

Window
Browser

Separated

Window
Browser

Separated

Window

Note
Not imple-

mented

Not operat-

ing now

Real time

not imple-

mented

Table 1.3: Reverse Link

20

may not be spread quickly enough to all servers. The design was proposed but

never realized.

Chakrabarti et. al. [Chakrabarti 99.1] did implement the reverse link function

but only for the archived link information. They also proposed an extended pro-

tocol for accessing the real time reverse link information. In their implementation,

three windows are used. One shows the current page, the second displays the

navigation history, and the third lists reverse links of current by viewed pages.

In enriched content, we will “force” the reverse link information to be provided

even if the web server serving the page does not install the reverse link module.

When there is no reverse link service from a web server, enriched content will

simply resort to the archived information (for example, from Google) and pass it

along to the client.

The main difference between the archived and the real time is the following: in

the archived approach, all reverse links will be shown; if the search crawlers have

indeed crawled all the web pages. In the real time case, the reverse link is only

shown when there is at least one “reference” instance from a browser’s visit. When

a browser follows a link to a page, the server maintaining the page will record the

visit in a log. In other words, page A may be hyperlinking to page B but if this

A-to-B link has never been traversed then it will not be in the “real time” log.

Version Control: Link Type and Text Type (Table 1.4)

We consider a “dangling link” (or broken link) a subproblem of version control;

therefore, papers related to fix a “broken links” [Ingham 96, Creech 96, Pitkow 96]

are not listed here.

Using a software management package to control webpage versions appears

21

Year 95 95 98 02

Name
Pettengill

et. al.

Vitalli et.

al.

Chakrabarti

et. al.

Enriched

content

Applicable

software
Browser Browser Browser

Almost all

apps.

Version

control

mechanism

RCS VTML
Extended

URI
CVS

Service re-

quirement

URI, server

side module

Client side

module

Server side

module

Server side

module

Result

display
Browser Browser Browser

Mini-

browser

Table 1.4: Version Control

as early as 1995 when Pettengill et. al. [Pettengill 95] proposed a solution that

includes a URI 3 implementation with a server-side module. This solution makes

each request for webpage into a CGI request.

Vitalli et. al. [Vitali 95] headed in another direction. They used a markup

language to describe various changes on a document and suggested that the inte-

gration of a software module on the client side could realize this version control

function. Thus development of the client side makes version control possible.

Chakrabarti et. al. [Chakrabarti 99.1] implemented a version of the proposal

by Pettengill et. al. and recommended an extended URI protocol. The soft-

ware demonstration is, however, not “real time” information as it requests its link

information from a search engine archive 4.

3URI: Universal Resource Indicator
4They use DirectHit.com each engine for reverse link information.

22

In Enriched Content, version control can be applied to both link type and text

type when we use the same version management system for documents (text type)

as well as webpages (link type). Applying the version management system to all

documents requires modification on some system commands. If we only want to

manage webpages, then we will only need to install a server-side module, there

is no need for a client-side module or any new protocol. In both webpages and

non-webpage documents enriched content can show not only the current content

in the browsing window, it can also display a list of past versions in a separate

mini-browser. The reader can choose any version from the list and display the past

version on the browsing window.

Composition Assistant: Text Type (Table 1.5)

Remembrance agent works not only on reading mode, it also works on writing

mode. It will look for matched documents using the keywords it has found in the

neighborhood of the cursor.

The Watson project [Budzik 99] was first designed as composition assistant (on

writing) and it is later extended to the Microsoft Internet Explorer (on reading).

Watson uses the API for the WORD and obtains contextual information (full text),

then it runs simple heuristics to weight the importance of words using cues such

as the size of font, color of font, whether or not the words are part of the title,

and so on. Watson then used these gathered weighted words to construct queries

to search the Web. It then gathers and removes duplications from the collected

information. Because it integrates contextual analyses and search functionalities,

we consider it a “Fat Client”. It is expected that as contextual analysis becomes

more sophisticated and search volume surges, consumption of computing resources

23

Year 96 99 01 02

Name
Remembrance

agent
Watson Smart Tag

Enriched

content

Applicable

software
Emacs WORD

WORD,

Excel,

Outlook

All editing apps.

Activate

method

Start of

program

Full document,

manual selected

paragraph

Term

term, sentential,

paragraph, or full

document

Context re-

trieval

String

buffer

MS application

automation

Pre-

programmed

Simulated

messanging

Context

analysis
TF, IDF

Simple

heuristics

Keyword

match

Simple keywords

extraction

Content de-

livery
Local Local

Local,

Client

Server

Client Server

Table 1.5: Composition Assistant

24

and network traffic will increase. These will make this approach less favorable.

Watson analyzes the article produced so far. In order to narrow down to smaller

text units, such as a paragraph, it requires users to select it manually.

Enriched content can focus its context unit at a designated size (term, sentence

and the like.). It delegates the contextual analysis and search analysis processes

mostly to the server side.

1.6 Contribution

The World Wide Web produces a wide channel for information. The problem is

it also opens up chaos of different plug-ins and formats. For every application, its

programmer offers ways to write a plug-in. You see SDK (Software Development

Kits or ‘Standard’ Development Kits) all the time. This is especially serious when

it comes to the browser. Everyone wants to write a plug-in for the browser so it

can work with her application.

Enriched content architecture shows how extended semantics, reverse link, ver-

sion control, and composition assistant can be done in a single framework rather

than designing diverse plug-ins for each application program. This framework/ar-

chitecture can also be applied to different GUI 5 system. By applying enriched

content, we can minimize various complexities in our digital document experience.

1.6.1 Unified Framework

The solutions to the aforementioned problem scenarios are provided under the

same unified framework: uniform contextual information acquisition with respect

5GUI: Graphics User Interface

25

to context type and consistent client-server architecture/methodology for different

GUI systems.

Uniform Treatment for Context Unit Type

Enriched content uses a single mechanism to obtain contextual information (text

type or link type) from the client side. In other words, regardless of the application

we are using, as long as the context unit, text type or link type, remains consistent,

we will deploy the same mechanism to obtain the text context (or link context).

We do not have to write an individual plug-in for each software application from

different vendors to enforce the mechanism.

Consistent Architecture/Methodology for Different Windowing System

Enriched content employs client-server architecture to simplify content delivery

and presentation. The client-server model is not new but given our presentation

and information collecting method, enriched content will get extra benefits such

as lightweight add-on modules, the reuse of contextual analysis, and delivery on

demand, which lowers network traffic. These extra benefits will be described in

later chapters. Uniform treatment on the context unit type, especially text type,

is possible only when we are using a GUI system.

The inspiration of such a unified framework is derived from two ideas: back to

basics and aspect programming.

Back to Basics

Software development has 50+ years of history. Since the PC movement in the 80’s,

many software environments and paradigms have been proposed and built to ease

26

the programming process. Terms like functional, module, imperative, logic, object-

oriented, pattern, and component programming give programmers many leverages

for different tasks. Tools and artifacts are designed to help programmers; software

is implemented on top of layers of packages. Programmers can wander in the forest

of programming paradigms and components: they can grow a tree(program) by

watering it, fertilizing it, trimming it, and shaping it. While general programming

difficulty has been removed, there is another kind of barrier: programmers see the

trees but not the forest.

What we propose is : “back to basics” - the “seed”.

It doesn’t matter what kind of tree it is; it starts from a seed. It doesn’t matter

what type of GUI system it is; it uses event messanging and handling. To make a

better tree within the same GUI, we need to design it at the seed level - change

its DNA so it will grow to what we like it to be. No need to prune, trim, or shape.

For a GUI system, we investigate the message routes we want to create and

alter the message paths in order to add new behaviors to applications. We need

to change the organization of its “seed” level - message paths.

Aspect Programming

From a different perspective, enriched content architecture is like aspect program-

ming [Aspect]. Aspect programming allows you to change or to add behaviors to

a class method before and/or after the method executes its own code. It does so

without physically adding codes to the method definition. Aspect programming

accomplishes this task by determining which classes are going to accept the “ad-

27

vice”, and defining what “advice” is. Just like the aspect programming’s advice,

enriched content architecture intercepts the event message, pre-processes it, and

then passes it to the application. It adds no codes to the original application’s

program but it changes the behavior of applications.

1.6.2 Adaptability of Text Unit and Necessity of Client

Server Model

In the implementation of enriched content, we explicitly describe how to capture

each context type. Because of this particular implementation, we show how it

can be adapted for different text type units (term, phrase, sentence, and so on.).

In this dissertation, we also explain in Section 3.3 why the client-server model is

necessary for contextual computing: the computation and processes through which

the application understands the exact context a user is pursuing.

1.6.3 Minimizing Complexity in Process, Version, Data,

Re-coding, and Learning

By applying enriched content we can minimize various complexities, namely, search

process complexity, documents version complexity, data volume complexity, pro-

gram re-coding complexity, and user learning complexity.

Search Process Complexity

As described in section 1.1, we waste time on laborious process that could be

automated. Moving the mouse to the url entry space, typing in the search engine’s

url, entering in the query string, and waiting for the result. This procedures take

28

unnecessary time. In all three cases there are a series of interruptions to the

working mind.

The process complexity of the above activities should be minimized. By ini-

tiating extended semantics, we could shorten the procedure, minimize working

interruptions, and optimize our time usage.

Version Complexity

Many of us have had the frustrating experience of not being able to find information

we have written down while reading a computer document or webpage. Even if we

do find the note, it might not be the one we were looking for.

This happens to online documents as well. We read an interesting article and

bookmark it. One day, we go back to look it up for reference but it is not there

any more or the page has a different content than the previously visited one. We

have to visit its main homepage and do a search for the page if the website even

provides the search function. If we are lucky, we can find it; other times, we can

not. This problem makes bookmarking seem useless and it means we may have to

save a hard copy locally on our PC instead of bookmarking it. Saving a hard copy

can fill up our local storage very quickly if we are avid online readers and note

takers.

The complexity of versions has plagued online users since the day the WWW

came into existence. In the academic world, this problem is serious when we try

to refer an online paper that is no longer at its assumed location. In the business

world, a missing crucial corporate data hyperlink can cause delays in operation

progress and cost a fortune. By installing version control we can eliminate version

complexity and ensure that hyperlinks are built to last.

29

Data Volume Complexity

If we use a single single word as a query and send it to a search engine, you

are most likely to have a long list of returned results. To narrow down the list

size, we usually add more keywords. In order to add the right keywords, we can

conduct a simple contextual analysis and compose a better string for search engine.

Extended semantics will give us an advantage over the simple search by enabling

us to construct a context-sensitive query in order to obtain a more plausible result.

Multiple versions of the same documents without organized management can

be very confusing. There are times we do need different versions; for example, for

record keeping and comparison. Version control can reduce the data complexity.

Program Re-coding Complexity

As we remove the need to add new codes onto each application to which we want to

provide enriched content, we also eliminate the need to download various plug-in

formats adapted for this function.

User Learning Complexity

Extra content is presented in ways users are used to. For text type content, it

is presented in an on-spot mini-browser; for link type, it is displayed in another

window. There are no surprise elements. There are no visual gadgets that user

have to learn in order to use enriched content. Users do have to remember that the

enriched content is available and that they can click on the word and/or phrases to

get information directly. This habit hopefully will be re-enforced by the brought

benefits.

30

1.7 Road Map

In this chapter we have introduced what enriched content is about, its contri-

bution, and some of its applications. Chapter 2 discusses contextual computing

from the large to the small. In Chapter 3, we will describe the principle and

notions of architecture. Chapter 4 details general implementation issues. From

Chapter 5 through Chapter 8, more refined technicalities are explained for each

application. These chapters end with each application’s benefits and properties.

For demonstrative purpose, we have implemented both extended semantics and

obliged reversed links. Version control, and composition assistant are described in

this thesis but not implemented. Finally in Chapter 9, we succinctly discuss future

work possibilities and trends.

31

Chapter 2

Contextual Computing: a

Preliminary Examination

In order to understand contextual computing on the Web, we will present a pre-

liminary examination of the subject. We will look at the basic construct of the

Web: webpage and website, describe the panoramic view of the Web, and discuss

the following questions: How do modern search engines operate? How do we find

related information? And why is search within context important?

Contextual computing is closely associated with “pervasive computing” or

“ubiquitous computing”. In this thesis we concentrate mainly on the context

in text or hypertext [Lieberman 00]. Contextual computing and its relations with

multiplicities of devices, thus pervasive computing, is not discussed here.

People usually think of the World Wide Web (or the Web) as a database source.

However, while this characterization is accurate, it only captures one facet of the

Web. Unlike a database which usually is a group of data organized in pre-designed

table formats, the Web has links and the interactions between links and networks

32

is dynamic. Links are produced mostly for meaningful association. The Web

contains an array of traditional databases whose information is searchable through

the form submission.

A web site can have many faces. It can act as a portal which is a starting point

to other locations, for instance, Yahoo. It can be a personal website (or webpage)

which features an individual web presence, with information about her; such as

her interests and musings about the world. Private and public organizations can

construct corresponding virtual entities. The Government has websites to tell the

most recent tax and law changes. Museum websites can show their recent exhibit

and display their calendar of events. Universities may showcase their departments

and educational prestige in order to attract prospective students. University de-

partments can have course homepages for classes. Businesses can have intranet for

business processing.

In essence, webpages are usually classified as either hubs or authorities. Hubs

are resource pointers, and authorities are reputed webpages (in their own field/-

topics). A webpage can be both a hub and an authority; it is a matter of degree.

2.1 The Characteristics of the Web: Superstruc-

ture, Macrocosm, Microcosm

In early Web history, there are studies concerning its quantitative growth (number

of pages, sites, and links [Web]). Recent studies focus more on the connectivity, its

usage on searching [Kleinberg 98, Brin 98, Bordoin 01], the size [Oclc 01], the form

and shape of the Web [Kumar 00.1, Kumar 00.2] and how it grows [Barabási 01,

33

Barabási 99].

In this thesis, we define superstructure as the quantitative and qualitative

properties of the Web as a whole. Macrocosm will be about the inter-page (thus

inter-site) relations which are analyzed and used by search engines [Kleinberg 98,

Brin 98]. It was not until recently that researchers started scrutinizing the mi-

crocosm, the page [Chakrabarti 01.2], and its relevance to the global structure.

We will briefly discuss intra document relationships; we believe that much future

research will be moved to this area because microcosm lies at the core of contex-

tual computing. Inevitably, natural language processing will play a key role in

contextual analysis.

2.1.1 Superstructure: Size, Shape, and Connectivity

Size

There is an estimate of the number of websites on the Web [Oclc 01]. In 2001, the

Web had about 8.745 millions websites, which contained 8.443 millions unique IP

address. 1. The total number of webpages is believed to be around 4 to 5 billions

(circa year 2000). From comparing the current growth rate and the one in the mid

and late ’90s, we can see that the growth of the Web certainly has slowed down

(Table 2.1).

Form and Shape

Kumar et. al. [Kumar 00.2, Broder 00] draws a picture for the approximated

Web: it looks like a bowtie (Figure 2.1). There are IN, OUT, and SCC (Strongly

1A website can have multiple different IP addresses.

34

Year No. of Websites No. of Unique Websites Types of Unique Websites

1997 1.570 n/a Public Private Provisional

1998 2.851 2.636 1.457 0.315 0.864

1999 4.882 4.662 2.229 0.790 1.643

2000 7.399 7.128 2.942 1.494 2.692

2001 8.745 8.443 3.119 2.078 3.246

Table 2.1: Size of the Web

(numbers in millions)

Year 1997–2001 1997–1998 1998–1999 1999–2000 2000–2001

Sites 457% 82% 71% 52% 18%

Unique Sites n/a n/a 77% 53% 18%

Public Sites 290% 82% 53% 32% 6%

Table 2.2: Growth Rate of the Web

35

IN OUT

Tubes

SCC

Disconnected compon ents

44 million nodes 44 million nodes

Tendrils
44 million nodes

56 milion nodes

Figure 2.1: The Form and Shape of the Web

IN, OUT each has 44 million nodes. SCC has 56 million nodes, Tendrils has 44

millions nodes, and Disconnected has about 17 millions nodes.

36

Connected Component) parts for this bowtie. A node in IN has directed paths

to the nodes of the SCC and a node in OUT can be reached by some nodes

from SCC. SCC is a component where between any two nodes there is a directed

path. In random graph terminology, SCC is a “giant component,” named after

its interwoven and colossal characteristics. Other parts include Tendrils, Tubes,

and Disconnected Components. A node in Tendrils can reach nodes in IN or can

be reached by nodes in OUT. Tubes are some sparse channels connecting directly

from IN to OUT, and Disconnected Components are simply isolated nodes from

the previous parts. SCC has around 56 millions nodes and Tendrils; IN and OUT

each has around 44 millions nodes, and Disconnected Components have about 17

millions nodes. The pictures are constructed from the webpages they collected in

Oct 1999. It is not the entire Web; however, we expect that the Web carries similar

characteristics.

Connectivity: Power Law (or Zipf’s Law)

Researchers have found out that the Web connectivities follow the power law

[Barabási 01, Barabási 99] or Zipf’s law [Zipf 49]. It uses a model that includes a

‘scale-free’ model which starts from m0 already-existing nodes. At each time step a

new node is introduced; it is connected to m nodes. The probability of connecting

to node i with connectivity ki is

Πi =
ki∑
j kj

Under a large time frame the connectivity distribution follows the equation

P (k) =
2m2

k3

37

The experiment on a limited Web sample shows that the Web follows the

power law, and it does not resemble the random graph Gn,p where n is the size

of the graph and p is the probability of the existence of edge between any two

nodes [Alon 01]2. Given the P (k) = k−γ as the probability of a document with k

incoming (or out going) links, Barabási et. al. found that the “average indegree”

of a node, 3 γin, is around 2.1 while the “average outdegree”, γout, is close to 2.45.

4 An interesting coincidence is that the physical connectivity of the Internet, as

opposed to virtual connectivity between webpages, also follows the power law with

γ = 2.48 [Faloutsos 99].

There is a “copying phenomena” [Kumar 00.2] that web authors tend to copy

a portion of a list from other pages as part of their content. This also contributes

to “the popular gets more popular” phenomena.

Diameter, Fault Tolerance, Vulnerability

A study indicates that the diameter, i.e. the mass majority distance between any

two connected nodes on the Web, is around 19 [Albert 99]. This phenomena is

usually termed as “small world phenomena” 5 because despite the colossal size

of the Web, two nodes are only 19 links away. The power law network exhibits

2Random graph has long been studied for academic interests. It was not designed to model

the Internet.
3“Average indegree” and “outdegree” here are exponents in a power-law distribution, not real

average.
4As experiments are conducted under sampled Web which is not the whole Web, there is a

discrepancy in the estimate of γ [Albert 00, Kumar 00.2] but in all cases, the average indegree is

smaller than the average outdegree
5The original “small world phenomena” experiments were carried out by Milgram for social

networks [Milgram 67, Travers 69] in the 60’s.

38

characteristics such as fault tolerance. Even if a large amount of arbitrary links are

moved away from the network, the general connectivity is not affected much. In

other words, most of the connected components of the graph will still be connected.

But the Web also has vulnerability, due to the power law, there will be a few

‘winner’ nodes with a large number of links. Removing a series of these nodes will

cause the graph to be disconnected or cause the increase of its diameter [Albert 00].

Bharat et. al. [Bharat 98] shows that the “average number” of hyperlinks of a

webpage is around 7.

2.1.2 Macrocosm: Linkage Semantics and Search

We consider the two algorithms using linkage analysis. Kleinberg’s [Kleinberg 98]

and Brin’s [Brin 98] are two main forces behind the modern search engines which

model the Web as a directed graph. In their analysis the eigenvector of the matrix

representing the Web plays a pivotal role in locating useful resources.

Algorithm from Authoring Perspective

Kleinberg’s algorithms of finding hubs and authorities is based on linkage analysis.

If a page (site) has more authority over a topic, then there are hyperlinks pointing

to it. A page is a good hub if it has many hyperlinks pointing to reputed authorities.

The higher the authority of a page, the higher the authority of the pages it points

to. It is a diffusion process. A good hub will point to many reputed authorities.

This definition sounds recursive, and it is. In fact, the computation of the algorithm

itself is recursive, and the claim is that the computation will converge and will

become stable.

39

An outline of the algorithm is as follows: first, the algorithm issues a query

request to a conventional search engine (e.g. Alta Vista, in Kleinberg’s case) and

collects a base set of urls related to the query, then it expands the base set to

include all urls such that every url in the expanded set is either pointing to or

is pointed to by the url(s) in the set. Then it computes the following formula

iteratively until its values do not change significantly any more. The algorithm is

also known as HITS (Hyperlink Induced Text Search).

a(i) =
∑

{j:j−>i} h(j) h(i) =
∑

{j:i−>j} a(j)

where a(i), h(i) are authority and hub value of node i respectively. j → i

indicates that node (page) j has a link to node (page) i. Each page is treated as

a node.

The definition can be seen from an author’s view. A page author has made a

decision to put links on the page; the decision is based on her evaluation of the

links. It is not surprising that the result of the recursive computation is relevant

as it uses many fragmented human intelligences (human intelligent evaluation) to

produce an online consensus. But it is not invincible; webpage author could design

links so it makes the algorithms less reliable. For instance, two densely connected

web sites can increase each other’s hubs and authority values quickly. An improved

algorithm has been proposed [Bharat 98] to fend off this short-coming by evening

out weight on the hub and authority values for links from the same site. Other

than the “malicious” webpage author, the estimated human consensus on link

evaluation is based on the online population, to be more precise, the online author

populations. Words and phrases are written by online authors do not reflect the

general human communication consensus. In online populations you could expect

40

more technology savvy authors. A simple example is that the word “Apple” will

most likely mean the computer company but not the daily fruit we consume. This

issue is addressed in section 2.2.2.

Algorithm from Both Author’s and Reader’s View

Webpages have authors; they have readers as well. Brin and Page [Brin 98] use

this readers concept to design their page rank algorithm which can locate high

quality relevant pages. The cusp of their algorithm resides in how it simulates a

reader’s browsing habit. Here is their assumption: a page has higher rank if the

rank accumulation of pages pointing to it is high, and if a page has a higher rank,

then it will contribute higher value to pages it points to. But a page may point

to many other pages, so a straightforward way of distributing a page’s rank is to

evenly share it among the outgoing hyperlinks. This method is used to compute

a page rank, which is the sum of contributions of incoming pages. PageRank

algorithm also adds a human factor; it assumes a reader may do a random walk

on the Web. Hence there is a probability that the reader will simply visit a page

without following a link. Here is their formula:

PageRank(ni) = d × E(ni) + (1 − d) × (
∑

{j:nj−>ni}

PageRank(nj)

OutDegree(nj)
)

where d is a damping parameter to simulate the random walk. OutDegree(nj)

is the number of hyperlinks of page nj . E is the unit matrix. The division comes

naturally when you think that a page equally distributes its PageRank to its

references, even though contextually, each hyperlink may weigh differently by its

author. In other words, when an author builds a webpage with hyperlinks, she

41

has an evaluation for each link. However, this information is private and cannot

be easily accessed. Therefore, evenly distributing a pages’s rank is a plausible

approximation. Page rank algorithm does use the author’s view in that pages’

links are constructed by authors. One important concept of this algorithm is its

emphasis on the page ranking from a reader’s view.

Comparisons

Page rank can be seen as a global distribution of all the pages. It indicates the

importance of a page purely from linkage analysis. Rank values are computed

before a query is made: they are pre-processed. Google, which uses the page

rank method, matches up the text query from their text index barrels, evaluates

the proximity of matched terms in returned documents, does a rank merge, and

displays the result in descending final rank order. It performs well despite the

“postponed” textual matching. From a practical point of view, it makes sense,

since for each query, there is a linear order of quality which is computable from

statistics. The question is why do other pages reference this page? It must be, or

has a very high probability, that this page contains important information about

the topics it presents. Even if this page may not be the highest ranking of all pages

on the web, it can be the highest ranking for the requested topics.

On the other hand, HIT algorithm initiates the text query at the beginning of

the searching process. It asks a “tradiational” 6 search engine, e.g. Alta Vista,

for a set of pages containing the query term(s). It separates webpages into two

categories: hub and authority. Each page has two values, one for the hub and the

6“Traditional” search engines are search engines that use no linkage analysis. Most of them

use the term frequency and the like. [Salton 89]

42

other for the authority. It is pointed out [Kleinberg 00] that competitive websites

are less likely to link to each other. As HITS has included the hubs in the searching

process, the algorithm will discover competitive webpages even if there is no direct

hyperlink between them.

2.1.3 Microcosm: Zooming In

Webpage is the basic unit of the Web. The search engine’s main purpose is to

“understand” each webpage in order to serve users’ requests. In future when a

user types in a query, e.g. “What is the best java in the world?”, the search

engine will search the previously computed “understanding” of webpages and give

us a list of good resources. So far, researchers have paid very little attention to

the webpages other than processing them for term indexing, term frequency, and

collecting its hyperlinks and anchor texts.

Chakrabarti et. al. [Chakrabarti 01.1, Chakrabarti 01.2] started looking at the

role of a webpage in linkage analysis. Rather than treating a webpage as one single

unit, they break it down as if it is a small web itself and used a modified HITS

algorithm to evaluate both the authority and hubs values.

From our perspective, an effective tool will be a contextual program capable of

understanding human language and therefore, the webpages. This will fall into the

field of natural language processing. Ultimately, when natural language processing

does comprehend human languages fully as a human being would be, then the

Semantic Web’s formal approach will be either an automatic middle process for

the purpose of storage representation and transaction, or it will become obsolete.

43

2.2 Problems Raised by Sense Ambiguity

Research has shown that the average search query by a web user is about 2 ∼ 3

words [Jansen 98]; with short vocabularies, it is hard to ask a search engine to

give us the exact answer we have in mind. In fact, we give limited denotational

information and ask for connotative precision from a search engine.

2.2.1 Many Faces of Meaning: 20 Questions Game

We can start a guessing game with a friend. First, we think out a “thing” (any-

thing): she has to guess what we have in mind by asking us questions, and then

we answer her questions using only one word. We repeat this Q&A until she gets

the answer. It is like playing 20 questions. We may find our answer eventually;

however, human correspondents are much smarter because they can infer and filter

out the possible results.

While 20 questions may be enjoyable during leisure time, Web users are in no

mood to play games when searching for information. Besides, this game is simply

not fair or efficient, even for a human, let alone for a search engine.

2.2.2 Sense Ambiguity and Descriptive Precision

Part of the problem of a search engine’s inability to capture the full spectrum of

a query’s meaning is rooted in the sense ambiguity of human language. We will

discuss some of its aspects in terms of polysenymy, hypernymy and hyponymy,

meronymy, synonymy, troponomy, and entailment.

44

Polysenymy

Polysenymy are words that have multiple meanings. Contextual information is

hard due to linguistic ambiguity. Take the word “character”, for instance, it could

mean an alphabet when we discuss language. It could hint at the trait of a per-

sonality when it comes to psychology. It could imply a role in a play when it is

mentioned in show business, and yet it is commonly associated with the function

that transforms one Abelian group to another when it appears in a commutative

algebra context.

One frequently asked query “Jaguar” (the big cat, starting from [Kleinberg 98]),

when submitted to Google in late 2001 7, returned many results, but we did not

see the pages related to “cat” until the 3rd page. By then, we have gone through

20+ urls including links to “cars” and “car model”, a bridge named “Jaguar”, and

an Atari game device. The first “Jaguar” referring to cat does have a high quality

description of the animal, and it even tells us how to distinguish between Jaguar

and Leopard. It is not surprising given that with the query “character”, we do

not see its relevance with the Abelian group even when we browse through 20+

pages (200 urls) from Google’s returned results. However, when we type “character

Abelian,” we get the correct answer right away.

Hyponymy and Hypernymy

Hyponymy is words representing a special case of some other words; hypernymy

is words representing a generalization of some other words. In one scenario, if a

7Since then, Google has improved the returned results. It is because either the Web has

changed the rank by itself or Google has tuned their rank merging algorithm a bit. We can get

“cat” information on the 2nd page.

45

user wants to know more about cars but she submitted the query “Porsche”, then

search engine will most likely return countless of pages related to “Porsche” rather

than cars. On the other hand, if she wants to know more about “Porsch,” but

she knows nothing except its look, then “car” would be a better start for a query.

However, the success of this generalization approach depends on the existence of

a thorough and organized website/page for the specialized knowledge/information

domain because search engine cannot find non-existent webpages.

Meronymy

Meronymy is words that are part of concepts (objects) represented by other words.

A user may want to search a part of an airplane, for example, the trim tab, but

she knows not much about the structure of the airplane. She can only enter search

for “airplane” or “airplane structure” in the hope that she could find the needed

information.

Synonymy

Synonymy are words that are similar to other words, for instance, “car” and “ve-

hicle.” A user can also make the “mistake” of placing the “wrong” query term

simply because she is not familiar with the jargons of a profession, or she is not

well versed in the natural language (English) used in query. For instance, instead

of searching for “pipe,” she searches for “tube.” Despite the fact that they are

synonyms, they may be used differently in a specific community.

46

Jaguar (cat) Java (coffee) Apple (fruit)

Character

(Abelian

function)

Web 20+ Y 100+ N 70+ Y 200+ N

Image 1st page Y 100+ N 1st page Y n/a n/a

Directory 1st page Y 90+ Y 70+ Y 100+ N

Discussion

Group
100+ N 100+ N 1st page Y 100+ N

Table 2.3: Search and Database Type

Note: Y means “found”, numerical indicates examined URLs. Search conducted

in early 2001.

Troponomy

A user could be searching for “horse galloping,” but if English is her second lan-

guage, then she might enter “horse running.” People do not gallop. Entailment

is another possible confusion, for example, ‘drive’ and ‘ride’ are entailment, so are

‘marry’ and ‘divorce’. There is a action sequence. This confusion would occur

most likely for non-native speakers. WordNet is a good source to detect these

differences [Fellbaum 98], and they may be used in search engines.

2.2.3 Media Type and Searched Database Orientation Mat-

ters

Curiously, if we search “Jaguar” through the image search facility of Google, we

will see 3 cat images in the first 10 pictures. The first page includes images of cars,

cats, and the Atari device. This implies that the search on different media types

47

will make a difference. An inquiry into the “Group” section of Google, yields many

postings on an IBM software named “Jaguar.” A directory search on Google will

return both “car” and “cat” on the first page. See Table 2.3.

As many products or projects are named after objects with no direct semantic

association, you can anticipate similar phenomena. A few other examples would

be terms such as “Java” and “Apple.” In our experiment on Google, we did not see

a true “Apple” (as the one that hit Newton on the head) until 30+ urls had gone

by, and “Java”, the coffee drink did not appear until 50+ urls had been viewed.

Again, we tried image media type. For “Apple” both computer and fruit were

displayed on the first page. With “java”, however, there was no reference to coffee

even we had gone though 200 urls.

A search engine can categorize in advance a few possibilities for a given query

and ask users to pre-select the orientation of the search. Inquirus2 [Glover 99] pro-

vides a preliminary version of this pre-selection. This process mimics the response

from human correspondents. As we have seen in the query word “character,” we

will be swamped with a lot of pages if we do not specify the field we are inter-

ested in. A web search engine will most likely return character functions related to

Abelian groups when it searches under constraints; for instance, one can constrain

the domain to be in mathematics. In the previously suggested Q&A game, the

correct answer “character function on Abelian group” is impossible to gain unless

the answer party has majored in advanced math. We even suspect that unless the

answer party is aware of the questioning party’s mathematical background, it is

highly unlikely she will associate “character” with “Abelian group” quickly despite

her advanced mathematics knowledge.

48

Search engines can also categorize the search results. In the query for “Jaguar,”

it can display category “car,” “game” (Atari), “cat,” and so on as long as there

is sufficient contextual evidence to cluster the resulting urls. One example is to

converge the IP sub-domain. In this case, sales.apple.com and fun.apple.com will

be converged under apple.com. The number of matched results can also determine

if a converging urls process is justified. For example, the result may have a lot of

urls related to “cars” and a few about “cats”; in this case “cats” should stand out

as a different category.

2.2.4 Educate Users for the Correct Use of Search Engines

The previous section describes situations for users’ query. Users not only have

to know what they are looking for, they have to be more precise in forming a

query. A user has to be educated about how to use the current search engine

correctly. This education may not be easy because it is generally expected that

the user interface for search engines is supposed to be smart enough to figure this

out. In future, when the Semantic Web does take off and when many web authors

adopt it as THE standard, then search engines could infer “Porsch” with respect

to “car” as “a − kind − of” or “is − a” predicate. Search engines equipped with

this information could provide a host of options for viewing. For example, the

inquiry “car” could have a list of “consumer report,” “dealer,” “showcase,” “user

group of car,” “how to drive a car,” “moving vehicles department,” and so on. If

a search is requested within the context, then an analysis on context can assist

pin-pointing the exact search purpose for the “car.”

49

2.3 Context in Hypertext

Now we learned that when a program (search engine) is supplied with contextual

information for a query, then it will be easier to correctly locate information. Let

us examine what context there is in hypertext.

2.3.1 Knowledge Domain, Role, State of Mind, Environ-

ment

In Web computing, to truly capture what a user wants, we have to determine

the knowledge domain and profession category of the website or the webpage, the

role of the user in this field, and her state of mind. Personal computing history

can imply trends and traces and it is good to have them. Sometimes, the users’

environment, both physical and computational, has to be taken into consideration.

This is obvious in mobile computing when location matters and the limited devices

display and higher cost for content delivery make presenting relevant information

all the more important. Environmental consideration (such as physical presence

and location) would rely on other inputs (such as GPS 8), which are not in the

scope of this thesis.

The state of mind of users correlating with their roles, i.e. user model, is

frequently omitted from most analysis. A user visiting a news site may not be

just a general news reader; she could be a journalist herself and wants to find out

what competitors are doing, or she could be an employee of the website publisher

who is verifying whether the webpages are working properly. If a user visits a

computational biology website, she could be a beginner who just drops by and want

8Global Position System

50

to know what it is about. In this case, she would be more satisfied with pages of

short and quick descriptive facts accompanied with pictures and diagrams. If she

is a Genomics expert working on SNP 9 identification, then what she wants is more

likely to be the most advanced SNP techniques, updated SNP databases, and recent

news in the community. Even a user visiting a company website may have multiple

purposes, she could be a consumer, a reporter, a potential investor, a competitor,

a provider, or a partner. Many roles are possible, one of the most thorny problem

of website design is how to identify the needs of visitors. Conducting a contextual

analysis is helpful to untie this knot.

The role of a user is crucial, but most contextual analysis does not and can

not put it into consideration. In the previous SNP example, even if the user is a

novice, she can be an experienced scholar, and she would like to have a panoramic

and encyclopedic view of computational biology rather than a simple paragraph

with facts. Regardless of all the possible role variations, when a search query is

supplemented with context, such as the sentence and paragraph the query term

resides, it can narrow down the possible sense orientations.

2.3.2 Context Type: Text and Link

We focus on our context unit type to see what context cues we can acquire from

these two types: text type and link type.

9SNP: Single Nucleotide Polymorphisms is essential in identifying the genetical difference

between individuals.

51

Text Type

In the pre-Web arena, in the pursuit of designing a better electronic text [Dillon 94],

Dillon emphasized “why”, “what”, and “how” a reader reads. They classify nine

categories of texts: (examples within parenthesis are not the original ones)

1. newspaper (New York Times)

2. manual (Mac OS X User Guide)

3. textbook (Introduction to Computational Biology)

4. novel (Harry Potter and the Scroccer’s Stone)

5. journal (Journal of Theoretical Computer Science)

6. catalog (Saks Fifth Avenue Fall Season Sale)

7. conference proceedings (Foundation of Computer Science 2002, IEEE)

8. magazine (Vogue)

9. report (Investment guide for 3G, Yankee’s Group)

We can now add more as we use email frequently:

• private email for personal information exchange/courtesy

• business email for deal negotiations

• knowledge discussions

• business email for information exchange/courtesy

52

There are other documents involving figures, diagrams, and charts such as

construction plans, apparatus designs, or spread sheet. These contexts are much

harder to be explained because they have a lot of localized and case-by-case infor-

mation. Even though each may have a standard format for each industry, we do

not discuss them here.

The Web has liberated all forms of documents and articles to be published by

anyone who has Web access. We will not categorize the webpages using the above

classification. No one has successfully categorized of the Web. However, when a

search is requested with text unit, such as a paragraph, we can gain insight from

the paragraph’s keywords to narrow down the knowledge domain.

Among the criteria, knowledge domain, role, state of mind, and environment, it

is much easier to decide the domain of knowledge and profession of the website or

webpage. It is especially true when the visited website is dedicated to a particular

field, for instance, Health.

Link Type

One major difference between printed text and hypertext is the semantic links that

have been added by authors directly. These links are a good source for clarifying

sense disambiguity. Through these links, we may identify the webpage’s domain

knowledge; for instance, the destination pages may have been classified under the

Yahoo directory, they may reference pages classified by Yahoo or may be referenced

by pages classified by Yahoo. Further, the anchor text of hyperlinks on this page

are good indicators of knowledge domain. These are all good clues about the

orientation of the page context.

For our purposes, we will focus on knowledge domain from context to see if we

53

can fulfill the multiple needs of user’s role in this domain and her state of mind.

We consider text or HTML based input and examine these inputs for contextual

clues.

54

Chapter 3

Architecture

The structure, characteristics, and benefits of the enriched content architecture is

discussed in this chapter. There are three simple notions: cross system, client-

server, and add-on module. One implementation principle: build on existing stan-

dards and systems.

3.1 Principle: Build on Existing Standards and

Systems

3.1.1 Reinventing the Wheel: When Not to Do it

The principle is easy to understand. But why do we choose to do this?

There are already too many systems and protocols, and too much software

around. For each single entity that is used as a mean for communication, there is

a wide variety of standards and formats.

Imagine when we hope to send documents from Windows to a Unix system so

55

that receivers can read it immediately. Or when we want to make TDMA-based

handsets talk to CDMA-based handsets? Not to mention when you want to write

a single program in C language and hope that it will be compiled smoothly in any

operating system.

Observing the pitfalls of existing systems, many software programmers and

architects launch ambitious projects; they want to set a new standard, or establish

a new paradigm completely from the ground up, with the hope that the ‘new

standard’ can replace the currently used system.

This is not likely to happen if it is not an innovation which can stand alone.

A few successful examples in computing history are personal computer and the

browser (or maybe we should say browser-server or the World Wide Web). Both

have innovations. PC provides a small stand-along computing unit and browsers

supply hypertexts via the network. Neither existed prior to their debuts.

Another criticism of starting a new standard is that there are already many

standards set to solve parts of the problems. They work very well in their own

individual domain. These solutions are not well utilized; although they simply

requires a careful design and certain components to integrate them. Much like

a car that is assembled, its parts are made by many different providers. So why

reinvent the wheel when there is already a wheel and many methods to improve

it? The wisdom is to use existing tools and not to reinvent them.

3.1.2 Standards? Which to Choose?

There are standards for practically everything. The original purpose of a standard

is to converge the diversities and make the communication process seamlessly.

56

Standards are made for people to exchange information more easily, but the un-

fortunate effect is that there are many standards even for a single entity. Also,

there is an array of organizations making standards. A short list includes IEEE

(Institute of Electrical and Electronic Engineers), ISO (International Organization

for Standardization), and also ANSI (American National Standards Institute) and

so on. You can multiply each possible standard setting institution in the Unites

States by the number of continents, if not countries, and come up with a modest

estimation of how many organizations there are in the world. Now imagine the

standards they are going to approve and add this to the ‘pseudo’ standards such

as RFC (Request For Comment) documents.

We wish to implement a standard, but which one?

In our definition, the ‘standard’ adopted is one that is most widely used, rather

than the one with a compelling theory or the one with only community verbal

agreement. This constraint will narrow down the scope of coverage. In operating

systems, there are UNIX, Windows, and VxWork [WindRiver] 1 The former two

come with their own GUI environments, X window (Cocoa for Apple Macintosh),

and Windows respectively. VxWork is not ‘visible’ to the general public, but it

is fairly ubiquitous in appliances. It dominates the equipment and appliance op-

erating systems. Despite the fact that we can pick the popular top 3 operating

systems, the majority usage share still differs according to demographics. For op-

erating systems, the academy (especially engineering schools) use UNIX more than

Windows and there are more home and business PCs running Microsoft Windows

1Mac OS X which is a version of BSD UNIX has move Apple Macintosh to UNIX camp.

57

system than any other system. It is well known that there are more UNIX servers

than Windows servers and there are more Window-based PCs than UNIX-based

PCs (Linux, to be exact).

For our purpose, we choose Window client and Unix Server for demonstration,

but our architecture could be applied to other operating systems without much

changes as it is based on the object oriented model properties. For network protocol

we use TCP/IP and for the World Wide Web standards we follow the W3C’s

(World Wide Web Consortium) recommendations.

3.2 Cross System

The World Wide Web presents numerous opportunities for application interpola-

tion as we will be able to download and install through the network any software

we want. Frequently, applications are made to work well with browsers so that

they can be launched within the browser client window. Downloading software is

easy and every developer wants to make their software work with browser. De-

signing a cross system architecture and schema can reduce the laborious process

of integrating every single application with browsers. Through cross-system archi-

tecture, all applications can deploy the same function without the need for specific

modification.

3.2.1 Object Oriented Window System

Modern operating systems running graphics user interface system, such as Solaris,

Linux, Microsoft Window, and Mac OS X, all have their own object oriented

windowing models. Object oriented windowing models involve message sending

58

and handling. Users generate messages by moving or clicking the mouse and

typing. Messages are sent to the window system which dispatches them to the

currently focused application. To enable cross application architecture, we will

select the most common messages that are essential in recognizing hyperlink and

capturing text.

By intercepting the event message sent from the system before it reaches the

designated application, we can change the behavior of the application at the cross

system level. In other words, in the enriched content application, we can have

the same effect on all applications: be it a browser, a text editor, or an e-mail

program and so on. When the mouse is clicked over a text, enriched content will

be activated. Naturally, at locations such as the window caption, the scrollbar,

and the menu, a mouse click should not evoke enriched content.

3.2.2 Software Component from Window System

Applications are written by programmers who have manifold styles and preferences

in their choice of data structures and algorithms over which we have no control. In

order to make capturing text possible, we may have to resort to the internal data

structure containing the text. Fortunately, window systems frequently come with

a default text component that can be used in programming applications. Also,

popular software components may be used in application when programmers do

not want to reproduce the existing component repeatedly. If programmers are

using default text software components that come with hyperlink support, then

recognizing hyperlink and text around the location of the mouse is easier. However,

there are cases where software developers design their own data structures, and we

59

have to decipher messages passed from the system, to ‘trick’ the application and

window systems in order to obtain the text information. These techniques will be

illustrated in Chapter 4.

3.3 Client-Server

In the enriched content, we design a module to show a menu displaying options

for further exploration. This small client module will communicate with the server

module which supplies the content of the menu. This module is small in size; it

is a thin client. The size of the server module is also small, but the size of the

semantic database and context analyzer will vary depending on their sophistication

and purposes. For example, if the context analyzer uses WordNet database then

the size will be at least that of lexicons collected for WordNet.

The client-sever model is not a new idea. The benefits of employing client-server

architecture are freeing client from computational bottlenecks, lowering network

traffic, enabling universal data availability, and providing continuous updating of

the newest contextual service.

3.3.1 HTTP and CGI

HTTP protocol is the de facto standard of transmitting hypertext on the World

Wide Web. It may be cumbersome when it is used for state-changes processes, but

we have a simple query-answer session which the protocol can manage.

CGI (Common Gateway Interface) is the common mechanism for conversing

with the server. CGI is frequently used in passing parameters and their values to

servers in order to get the result from the servers.

60

3.3.2 Avoiding Computing Bottlenecks and Network Traf-

fic

Enriched content utilizes web data resources and requires heavy data mining on

demand. The general client-side devices and the method of accessing networks

such as PCs and dial-in modems will consume computing power and generate high

network traffic that can slow other background processes. Client server architec-

ture designates heavy duty computing operations to the server side and releases

the client from the CPU and network burden, After the server analyzes and filters

Web information, it will send in a much smaller packet of (menu) data to the

client. The user on the client side can decide what action she wants to take upon

receiving the menu display. She can choose to browse one of the recommended

items or completely ignore the menu; in the latter case, the computing power on

client side is saved, and the server can store its analyzed result without wast-

ing its computational efforts. When in future a query with the same contextual

cues recurs, the server can send the menu content directly without repeating the

searching-analyzing-filtering process. On both the client and the server ends, we

have economically utilized the resources.

3.3.3 Enabling Universal Data Availability

Client-server model makes data available online regardless of where we are. The

server acts as a repository for data. The convenience brought by the model is

obvious. For example, extended semantics can keep our profiles containing our

interests and preferences in order to provide more satisfactory recommendations.

If the profiles are on the network, then the servers can identify us upon our login.

61

Servers can provide us more personalized recommendations by consulting with our

profiles.

3.3.4 Providing Continuous Updating of Services

Extended semantics needs to have a precise analysis on the context in question.

2 If the contextual analyzer resides on the server side, then it can be upgraded

whenever a new algorithm is discovered. Suppose we had moved all analytic com-

putations to the client side, then constant upgrading on the contextual analyzer

will be less likely. Users will have to check from time to time to see if there is a new

analyzer and if so, download and install a newer version. By placing contextual

computation to the server end, we benefit by getting the newest contextual analysis

service at all time. Naturally, there are options to install software that periodi-

cally checks if there is new contextual software patch from the server. If there is,

then automatically install the new software patch. We do not take this approach

because contextual analysis is required at understanding the context in interests

on the client side as well as analyzing the information gathered from the network

during the answer-reference assembling time on the server side. Also, to make

enriched content on the client side a real stand-alone application we have to install

the network query-search mechanism to gather from the network the information

needed in answer-reference assembling. Massive network query-search operations

will cause possible CPU exhaustion and network congestion as described in the

previous section. It will also consume more working memory space while still suf-

fer from not getting the newest contextual analysis. We can install contextual

2For our definition, a high quality contextual analysis should answer correctly for the questions

from a human about the context it has analyzed. None will exist, in foreseeable future.

62

analyzer on the client side to reduce the network traffic in the case when a whole

document has to be analyzed; however, the server side will handle the answer-

reference contextual analysis. Therefore, client service architecture is inevitable

and it is more beneficial to use this architecture.

3.4 Add-on Module

The client and server modules are add-ons; they are not replacements for existing

webservers and browsers. The mechanism is built on what has been widely used;

we are not attempting to replace existing Web server, Apache for example, or

browser clients, such as Internet Explorer or Netscape. By adding modules on

both the server and the client side we can fulfill the functional needs. On the

client side, module is added to the window environment. The client side add-on

has to be downloaded once; the server add-on can be integrated into the existing

Web server, or it can run singly as a service.

3.4.1 Lightweight Module

Because add on modules are built on top of the existing system and standards,

they tend to be small in size and consume little memory space. They usually

communicate through a limited number of channels with the existing system so

the interactions do not complicate the normal processes. Since it is lightweight,

the design is simplified.

63

3.4.2 Composite Menu Presentation

On the client side, we have a menu presentation module which handles the display

of menu items. The menu presentation module knows nothing about the meaning

of the menu items provided to them. The module simply renders and displays

to users the content. In other words, regardless of applications and sources of

data providers (extended semantics, reverse link, composition assistant, or version

control), the menu presentation module will show whatever are sent from the

server. If the server has multiple services, they will be organized at the server end.

The client side do not have to be concerned with anything other than presenting

the menu. New services can be added without taking the client side operations

into account. For example, at the beginning of enriched content service, server

can provide only one service such like extended semantics. But later, when server

installs a new module such as obliged reversed hyperlink, there is no need to inform

or change the client side module. The arrangement of the menu context is made

on the server side; the client side will simply display the menu.

64

Chapter 4

Implementation

The process for accomplishing enriched content include: intercepting events, re-

routing window procedures, filtering out and handling intended messages, net-

work communications, server operations, and menu presentations. Interception

of events, re-routing window procedures, and filtering out and handling intended

messages will be presented here. From Chapter 5 to Chapter 8, we will detail net-

work communication, server operations, and menu preparation and presentations

for each application separately.

4.1 Cross System: Text Type

We show how to make the enriched content work for all document applications

across the system level. When document applications have an open object model

(or component model) that expose its methods and properties, then it can let us

tap into the document format structure and make use of it. When there is no open

document architecture available or the exposed interfaces are limited, we have to

65

resort to the most common feature of any document application and invent new

methods in order to capture the text or hyperlink around the point of the mouse

click. Simulated selection is one method we use.

4.1.1 Intercepting Messages: System Hook

We first use the Windows system for illustration since most clients are PCs, and

Windows is the most used operating system for PCs. An immediate idea for the

method of intercepting events would be to list out all currently running processes

and applications and to find out their respective handles. When a mouse click

event occurs, we will identify the window application on focus and intercept the

message sent to it.

4.1 is the diagram for a message life cycle. We show how the text capture can be

done. When a user clicks on the mouse at a location or presses a key, it generates

a message via SendMessage() or PostMessage() to the operating system. The

message arrives at the system message queue, and the system will determine where

it will be sent for further interpretation. The message is then delegated to a specific

thread or process queue where it will be waiting for WnProc to retrieve it, as shown

in (a) of Figure 4.1.

The enriched content program will set up a hook function SetWindowsHookEx(int

nFilterType, HOOKPROC hkprc, HINSTANCE hMod, DWARD dwThreadID) to the

system so it can inspect each message passed to the system. Specifically we can set

the hook so it will only inspect the generated mouse messages by selecting option

WH MOUSE at the nFilterType. hkprc will be replaced by the name of the procedure

(e.g, HookedMouseHandler) which has operations we want the system to carry out

66

Hardware Event

System Message Queue

System Dispatcher

Thread Message Queue

Message Loop

WndProc()

Message Sent From

Other Thread

SendMessage()

(To Another Thread)

PostMessage()

TranslateMessage()

SendMessage()

Other Threads

PostMessage()

Other Threads

PostMessage()

SetWindowsHookEx

Hardware Event

System Message Queue

System Dispatcher

Thread Message Queue

Message Loop

WndProc()

Message Sent From

Other Thread SendMessage()

(To Another Thread)

PostMessage()

TranslateMessage()

SendMessage()

Other Threads

PostMessage()

Other Threads

PostMessage()

Hooked Mouse Handler

(a)

(b)

Figure 4.1: Message Route Diagram

67

before the message is passed to the WndProc. When a mouse hook is installed, all

the messages produced by the mouse will first be sent to the HookedMouseHandler.

See (b) of Figure 4.1.

We will describe what HookedMouseHandler does with the message in the fol-

lowing sections. To have a clean exit from the enriched content program, we have

to call UnhookWindowsHookEx when terminating the enriched content program.

4.1.2 Re-routing Window Procedure Path

Each windows application comes with a window procedure loop responding to var-

ious event messages. The window procedure is part of a pointer data structure;

we can save the current address of this pointer and redirect the window procedure

to our program address. In this way, any event message would be sent to our pro-

gram first for preprocessing and then be passed to the previously saved procedure

address to finish its journey.

SetWindowsHookEx() can establish the aforementioned requirement. In our

installation, HookedMouseHandler carries out the operations to capture the text

underneath the mouse. The technique we are deploying is “mouse action simula-

tion.” The inspiration is from our observation of users’ behavior. How does a user

usually tell the program what part of the text she want? She selects it. First she

moves the mouse to the starting point of the desired text, clicks the mouse button,

drags the mouse to the ending point of the desired text, and releases the mouse

button. The text chosen will be highlighted. HookedMouseHandler will simulate

exactly what the user does and deceive the application to believe that the user has

done it.

68

4.1.3 Modify Intended Event Behavior: Filtering and Han-

dling

When an event is sent from the Windows system to an application, it will call

the application’s window procedure and then pass parameters and data to that

procedure. As we have replaced the original procedure with ours, our procedure

will be carried out for processing the parameters and data. Upon receiving a mouse

click event, which contains its location information, our program can determine if

the mouse is over a text. If so, it can obtain the segment of text around the mouse

location.

Mouse Action Simulation

We will use capturing a text line as an example. The generalization for capturing

a paragraph and whole document can be followed similarly. Note that we only

manage the “document application” whose main function is to view and edit doc-

uments. Applications of other kinds, such as for illustration and the like, are not

considered “document application” here.

Upon a mouse action, HookedMouseHandler will examine if the message is a

WM LBUTTONDOWN and if a meta key (either a ALT or CTRL key) has been pressed at

the same time. If it is the case, then the handler will obtain the beginning and

ending boundary position of the line text described later in this section. It sends

a series of messages simulating that the user moves the mouse to the beginning of

the text boundary, left button clicks the mouse, drags the mouse to the end of the

text boundary and releases the mouse button. The simulation is carried out by

PostMessage calls. PostMessage will put messages into a queue.

69

Figure 4.2: Text Selection Process

70

Figure 4.3: Copy Shorthand

Keystroke Simulation: when CTRL is the meta key

As we are dealing with only “document application,” we know every document

application comes with standard text handling functions, such as select-all, cut,

copy, paste, delete, and so on. These functions all come with their shorthands.

In Windows, the shorthands can be managed by the “keyboard accelerator.” For

example, CTRL-C is the shorthand for copy function, and CTRL-V is the shorthand

for paste function. The shorthands have become part of the GUI program culture

and are prevailing on almost all GUI applications.

We can capture the selected text by sending the focused application a character

message ‘C’. Since the CTRL has been pressed already, this combined keystrokes

become CTRL-C and will be translated into a COPY action. The captured text will

be in the clipboard then.

Detecting Text Boundary

To enable enriched content application to detect the boundary of text, we need to

find out what consists of a boundary. It is clear that document applications will not

71

Sampling

Figure 4.4: Background/Foreground Color Sample

have a mosaic-like background, and most likely the background color is monotonic

and so is the font color. We can sample pixels around the neighborhood of the

mouse click, count the pixels, sort the counts, and take the color with the highest

count as the background color, and the color with the second highest count as

the font color. We need to gradually enlarge the sampling area, and if the choices

of colors persists, then we have high confidence that we have chosen the right

background and font colors.

Once we acquire the font and background color, we can tentatively find out

the approximate line height by sweeping a horizontal line segment vertically. By

examining the color variation sampled from the sweeping segment, we can tell the

location of a text boundary. When the sweeping segment goes across the margin of

the text, the segment pixels will only contain a background color without any font

color pigment. From this, we know it has just crossed the boundary. Using this

method, we can detect the height of the line text, which may be higher than the

local font height sampling since capitals may occur in a line. We then can sweep left

and right with a vertical segment of text height to detect left and right boundaries

using the same argument. Now we have a rectangular box area containing the line

text. Enriched content needs only to know the upper left and bottom right corner

coordinates of the box containing the text. These two coordinates are passed to

72

We use sampling method.

We use sampling method.

Figure 4.5: Sentence Boundary Detection

the HookedMouseHandler. HookedMouseHandler will simulate the mouse move to

the left boundary and then drag it to the right boundary to complete a selection

simulation.

The detection of the paragraph boundary will be similar. After finding the text

height, we can estimate the distance between text lines. When the sweeping line

exceeds the between-lines distance, we can expect there is a new paragraph. Once

a paragraph’s first line and last line are found, we can locate its upper left and

bottom right boundary. We need only the paragraph’s approximate coordinates

of the upper left and bottom right. There are minor points that we have to take

care of. For example, the paragraph’s shape may not be rectangular and it may be

intersected with a picture. However, as we will force the “copy” function to output

text only, we need not worry about including images that will not be included.

One might ask, why not simply deploy a OCR (optical character recognition)

program. It is true that OCR will serve the purpose of detecting characters directly

but it has the shortcoming of not being able to obtain the full text whose most

parts are not visible to the window client area. OCR’s approach is at best a screen

scraper, and it is pretty a straight forward solution at first sight but an inadequate

one. A very good OCR can, however, detect any character on the screen, but

we are interested in document applications, in other words, information oriented

73

applications. A screen scraper is not what we want. Further, OCR are prone to

errors when the text fonts vary in a document.

To obtain the whole document, we simply simulate the keystroke CTRL-A short-

hand which stands for “select all” and this will select the whole document whether

or not they are all in the window client viewing area. This is not achievable with

an OCR application. OCR can be used as a helper application for enriched content

when it encounters documents that are represented as images, i.e documents are

scanned as images.

4.2 Cross System: Link Type

4.2.1 Intercepting Messages: Client-Side Proxy

We first classify different types of proxy and give reasons of why we choose client-

side proxy as an ideal implementation approach.

Categories of Proxies

In the Web, proxy server is a module that stands in between the webpage server and

the requesting client (browser). Proxy servers have multiple functions: they filter

the incoming and outgoing messages and content to ensure security and privacy;

and they cache content locally for a faster delivery in future when a repeated

request is issued. In general, there are three types of proxy:

[Wide-Are-Network (WAN) Proxy] WAN proxy is a proxy server on the global

network; a client needs to issue requests through public networks in order to

reach the WAN proxy. A WAN proxy are physically located in a different

74

(a) Internet Internet

WAN Proxy

(b) Internet

LAN Proxy

(c) Internet

Client-Side Proxy

Figure 4.6: Categories of Proxy

75

place from the clients.

[Local-Area-Network (LAN) Proxy] LAN proxy is also a server on the net-

work. The main difference between a WAN proxy and a LAN proxy in that

LAN is on a local network and usually the clients are not physically too far

away from the proxy server; they can be in the same building. LAN proxy

are used mostly in corporations as a way to set up their firewall 1 in order

to protect their corporate servers. WAN and LAN proxies have one thing in

common; they serve more than one client.

[Client-Side Proxy] Client-side proxy, on the other hand, serves locally and has

only one client: the machine where client-side proxy resides. The delay in

communication between the client-side proxy and the client is minimal; it is

a local messanging which is no different from inter-process communication.

In fact, UNIX operating system uses the same protocol for process commu-

nication. Unlike WAN and LAN proxies, client-side proxy’s request-response

limitation on network is inherited from the original network capacity. WAN

and LAN, however, have to include their responses capabilities. When facing

with massive requests, WAN and LAN proxies may be overloaded. The main

purpose of the proxy used in our demonstration is to change the behavior;

therefore, the caching function is not implemented.

Why Client-Side Proxy?

We picked client-side proxy as the implementation choice for several reasons: the

first reason is that it avoids network overload. The network traffic will be localized;

1Firewall is a mechanism to filter and reject unwanted messages.

76

the message packets issued for communication are restricted within a single local

machine unlike a remote proxy, which may be burdened with massive requests

if it serves too many clients. The second reason is for programming. Modifying

a browser so it will use a proxy server involves only changing its configuration.

Changing configuration requires overwriting entry in configuration files, which is a

much more simpler task than programming plug-ins for different browsers. Besides,

we need to write only once for one configuration overwriting module in one cross

platform language, such as Ruby or Java, and use it in other operating systems as

long as the same browser is available. In plug-in programming, however, one first

has to write a more complicated code calling browser’s APIs and to re-write the

same code just to make it native to a different operating system. The third reason

is financial: it costs to buy a proxy server.

4.2.2 Re-routing Content Path

Once the client-side proxy is established, all the messaging and content between

the client and the server will first go through the proxy. Enriched content can filter

out intended messages, much as we have done in the section 4.1, and handle the

messages according to our designed behavior. We can also change the content sent

from the server before it reaches the client.

4.2.3 Modify Content and Link Behavior: Replacement

and Codes Injection

Enriched content can modify the content (of messages) sent between the client

and Web server. Modification can be done by either replacement or injection.

77

Enriched content can replace the unwanted segments with blanks, or replace it

with desired content. It can also inject new segments of content or codes into the

original content. Obliged reverse link application in Chapter 6 will show a list of

reverse link URLs in a mini-window. This mini-window will be generated from the

injected code into the original content. Enriched content can inject a segment of

JavaScript code. When the browser receives and executes this code, the browser

will spawn a new mini-window, if it has not already been spawned, and within

that window another JavaScript will make a request to the client-proxy for reverse

link information. Client-proxy serves not only as a proxy but also as a content

enhancer. In future, client-proxy will be the places where contextual agents can

interact with each other (Section 9.2.1).

4.3 Client Server: Network Communication - Com-

mon Gateway Interface(CGI) Service Request

After the client side obtains the words and phrases and their residing sentence,

the client issues a network request to the server for data service. For network

communications, we use existing standard HTTP and if necessary HTTPS which

is a secure channel protocol. HTTP is based on TCP/IP which is the standard for

Internet network protocol. Could we just use TCP/IP and not HTTP? Yes, but

we do not think there is a need to invent another transaction protocol just for this

purpose. No need to reinvent the wheel here.

Common Gateway Interface (CGI) is a well defined interface for requesting

service. The network communication design will be based on CGI, using the POST

78

or the GET method for accessing menu and content. In future, the request for

data service may be in the form of Web Service (SOAP, WSDL), which is an

emerging W3C standard.

4.4 Add-on Module

4.4.1 Server Operations: Server Module and Ruby Script-

ing Language

The server module will identify the requirement, process it, and send back the

result in menu format. Each application will have its own server operations and

they are illustrated in individual chapters. We use Ruby [Ruby] scripting language

as the programming language. Ruby is an object-oriented scripting language that

come with class libraries in network, GUI, and server [mod ruby]. It has cleaner

syntax when compared with other scripting languages, such as Perl or Python.

4.4.2 Client Operations: Cross Applications - Dynamic

Link Library (DLL)

Client module includes a message detection and message re-routing functions that

can diverge the message destination temporarily so the client module can obtain

textual information. This has been described previously in Section 4.1. Text cap-

turing module on the client side is written in dynamic link library (DLL). DLL

can be loaded dynamically into any running process; it can use the same mem-

ory spaces (and name spaces) of the process without causing memory violation.

System hooks are implemented as DLL.

79

4.4.3 Client Menu Presentation: Reuse Browser Compo-

nent

When the program receives menu content, it parses out menu items and visually

displays them to users. The enriched content menu will show up right at the

point of the mouse click. Menu presentation source format is based on HTML.

We can fully utilize the render engine provided by the browser component without

duplicating the effort. Each application will have distinct menu items, and they

will be explained in later chapters.

4.5 Other Considerations and Alternatives

4.5.1 Cache for Efficiency

One thing all web users have in common is that they do not want to wait. Of

course, a local cache storing previously requested results would help to present a

menu more promptly. On the server side, we could also cache on the search query

results indexed by the contextual cues and sort them according to their query rate.

The overall retrieval time for repeated contextual queries will be saved. This is a

technical possibility; we will not implement it.

4.5.2 Fatter Client

Many of the tasks performed by the server can be executed on the client side.

The degree of independence from server operations relies on the add-on module

designers. Contextual analysis and process to search for reference can be done

locally on the client side without making requests to a server. Integrating the

80

server functions with the client side will increase the add-on module program size,

and it will become a fat client program rather than a thin client program. We can

have a independent fat client unit; however, if we want to access and share data

which we have saved through the network, then using a server module is necessary.

Again, fatter client design is mentioned as a technical possibility, and it is not

implemented.

Given the generalities of the architecture and process, a wide range of applica-

tions can be spawned.

81

Part II

Applications and Conclusion

82

Chapter 5

Extended Semantics

Extended semantics, obliged reverse link, composition assistant, and version con-

trol are four applications of enriched content. In each application we need a dif-

ferent content menu and sometimes we have to identify the properties of a text to

see if it is part of a hyperlink. The preparation of each menu will be described in

individual sections.

5.1 Existing Standards: Xlink

5.1.1 Multiple Destinations Hyperlink

Currently each hyperlink has only one destination, if many destinations are rele-

vant, the author must create a separate link for each reference. There are many

situations where multiple destination hyperlinks are useful. For instance, we need

them for the purpose of comparison and contrast. For example, for news we could

have CNN.com, ABCNews.com, and NYTimes.com. For entertainment, we can

have Mickey mouse, Pokemen, or Simpsons. We can use multi-destinations hy-

83

perlinks when we need evidence for an argument, specific details, or quotations if

there is more than one origin.

The need for the multi-destinations link is abundant. The purpose of hyperlinks

is about the association of information. This association is more like a map than a

single threaded line. Hyperdocument such as webpage has many hyperlinks. When

a webpage itself is considered as a single entity, its links would be the associations.

The necessity of the multi-destinations link is most evident as we are already using

one of its alternative: the option <SELECT> tag in HTML.

5.1.2 Xlink

The Xlink standard from W3C will provide more than one option to a hyperlink and

it is up to the browser designer to determine how the feature will be implemented.

In future, we expect there will be more links having multiple destinations.

However, if an author tries to ’hyperlink’ a lot of phrases in a webpage, the size

of the webpage will grow significantly. Xlink does provide a method to point to

the menu resources that contain menu items. Even if the links only point to menu

resources, the page size will still increase dramatically if there are many reference

links.

5.2 Cross System: Client Side All Document Ap-

plications

Extended semantics focuses on text contextuality. Capturing text is explained in

the Section 4.1. There are cases when we may run into problem. When users are

84

using the PDF viewer or other document viewing program whose text selection is

not set as default.

5.3 Client Server

5.3.1 Network Communication: Common Gateway Inter-

face (CGI) Service Request

In enriched content we are dealing with two types of text: plain text and hypertext,

specifically, hyperlink.

For plain text, we want to capture text so we can analyze them. The text

content will be sent through the network via HTTP protocol. Enriched content

program can issue a GET request

http://www.server.org/cgi-bin/enriched content.cgi?text=INTERESTED TEXT

and the server will respond. server.org is the domain name of the server.

extended semantics.cgi is the CGI interface for the extended semantics.

INTERESTED TEXT is the text users are interested in. For example, it can be “The

Nobel Price laureate for Physics in year 2003”.

For hyperlink, enriched content program can issue a GET request as well

http://www.server.org/cgi-bin/enriched content.cgi?link=INTERESTED URL

where interested url can be any URL, for example,

http://www.pbs.org/programs. The prefix “http://” can be dropped off; it

relies on the communication design.

85

5.3.2 Server Response

In essence, server response will be in HTML format; it can be tailored in XML

for more specific usage. In our demonstration, we are mainly concerned with the

display of the information. We do not deal with the problem of enabling the

client to use the server response. Obviously, with XML client can conduct more

sophisticated manipulation on data formatted in XML.

5.4 Add-on Module

5.4.1 Server Side: Harvesting and Pruning

There are two main processes on the server side: harvesting process and prun-

ing. Harvesting manages the construction of plausible query terms and query

submission to the Web. Pruning process manages collecting and summarizing the

returned results from the Web. We use the returned result from Google as an

example and show how we can apply simple lessons that we learned from Chapter

2 on Contextual Computing.

Harvesting: Query Terms Construction

Servers can run a simple contextual analysis on the sentence received from the

client side, extract, and construct a series of queries. One example of simple

contextual analysis is to throw away stop words such as “it”, “they”, “is”, “a”,

and “the” which play a lesser role in providing essential information. A group of

combinatorial queries could be composed easily.

86

Example 1 “. . . U.S. Marines and Afghan opposition groups were preparing Sun-

day for a possible final assault on the remaining Taliban stronghold of Kandahar,

with the number of U.S attack and support helicopters on the ground nearly dou-

bling overnight. . . . ”

Quote from CNN.com Dec 2, 2001 Posted: 3:24 PM EST

We have a set of words : “U.S.”, “Marines”, “Afghan”, “opposition”, “assault”,

“remaining”, “Taliban”, “stronghold”, “Kandahar”, and “helicopters”.

Search combinations can be:

• “U.S Marines” + “Afghan”

• “Afghan opposition” + “Taliban stronghold Kandahar”

• “U.S” + “helicopters”

• . . .

A simple rule of thumbs is to combine any word starting with a capital with

other words and preferably sequentially in the order they appear. The first three

searches all generate related results from Google.

In future a more thorough NLP will make the requests more precise, and we

can obtain more accurate information. Further more, we can identify the url of the

webpage currently visited and the title of the page from the browser, then we can

obtain webpage category from portal (Yahoo) and this will add to the contextual

understanding. It is conceivable that the more queries is imposed on the search

engine, the fewer results will be returned. Results may be fewer but they are more

precise. We include the word(s) in the close vicinity of mouse click and use 2 ∼

87

3 terms combination as query terms. What follows are possible aspects for query

submissions. We show what to do with three different types of databases.

[Generic Search Engine (Google) and Encyclopedia (Brittanica)] Sending

the query string will work as we have shown in the previous examples. Longer

query terms may be applied for generic search engine; however, it is too re-

strictive if we want to match multiples terms in encyclopedia site.

[Dictionary (Merriam Webster)] Combinatorial patterns might not help much

here as the purpose is to understand a single word or phrase (adjacent words).

We may incorporate synonyms, antonyms, hypernyms, and meronyms using

database such as WordNet.

[5W1H (What, Why, Who, When, Where, and How)] One of the ideal search

is to find information and knowledge in all five aspects of questioning. We

can have a naive formation for a query: add “How” with a verb shown in

the context and add “What”, “Where”, “Who” and “Why” with a noun or

with a complete sentence. “Who” and “Where” are likely to be combined

with words starting with a capital letter which is possibly the beginning of

a personal or geographical name. “Who” could be submitted to The Hidden

Web [Kautz 97].

Pruning: Merging and Collapsing Similar Results

We will search Google using its four categories: Web, Group, Directory, and Im-

ages. And we prune the results by the following methods:

[Directory] Directory classifies different webpages into hierarchical categories.

We can compare two subdirectories names to determine if they are of related

88

topics. For instance, if we use the hierarchy as a guide and merge the pages

when their top two hierarchy is identical then we have the following result

when searching the word “Apple” on Google. 1 The number in front of the

listing is the original order from Google. The format of the listing is “ num-

ber : page title: category: URL.”

Categories:

Computers > Companies > Product Support > Apple

Computers > Systems > Apple

The first two categories are shown by the Google directly. The merging

method will collapse the following two pages:

6:www.apple-history.com:Computers > Systems > Apple:

www.apple-history.com/

1:Apple:Computers > Systems > Apple > Macintosh:www.apple.com

There are other pages not shown here. These pages are all under

Computers > Systems category.

3:The Apple Store (US):Computers > Hardware > Retailers > Mac:

store.apple.com

9:The Apple Collection, Desktop Pictures, Mac Links, Bookstore and

... :Computers > Graphics > Clip Art > Apple Logos:

1Search conducted in Aug, 2002. Only English pages are listed here.

89

www.theapplecollection.com

However, merging the top two subcategories will leave the above two pages

standing out independently. We consider mering the top most category as

an unreliable approach; otherwise, these two will also be collapsed into the

previous category. The benefits of merging is obvious:

7:Newton’s Apple:Category:Kids and Teens > Entertainment > Television

> Educational > Science:www.ktca.org/newtons/

15:Fiona Apple:Category:Arts > Music > Bands and Artists > A > Apple,

Fiona:www.fiona-apple.com

16:Apple Vacations - America’s Favorite Vacation Company:Recreation >

Travel > Travel Agents:www.applevacations.com/

17:Apple Seeds Homepage for Inspirational Quotations, Motivation:

Science > Social Sciences > Psychology > Self-Help > Motivation

18:Washington State Apple Commission:Business > Industries >

Food and Related Products > Fruit and Vegetables > Associations:

www.bestapples.com/

The merging method can quickly list out several well-known concepts about

“Apple” which include the apple that hits Newton, the apple that we eat,

and the musician Fiona Apple. And some lesser related concepts: a travelling

agency, and self-help quotation page. Merging the same top domain name is

also plausible but it may be unreliable as there are many pages in AOL.com

which are not really about the company AOL. The same reasoning can be

applied to webpages under the same internet service provider. Merged pages

90

can be further grouped together by their titles. We also find out that the

directory listing from Google is mostly extracted from the Google’s search

result with the same listing order as long as the page has been classified in

Google’s directory. The pages that are not classified will not be listed in the

directory search.

[Discussion Group] For discussion group posting, we focus mainly on the group

category. For “Apple” on Google’s discussion group, we can find out the

following for the top 20 posting sorted by Google’s relevance metrics:

1:comp.sys.apple2:Apple II Csa2 FAQs: Users’ Groups, Part 22/25

5:comp.sys.apple2.marketplace:FS Lots of Apple Manuals

13:comp.sys.apple2:Apple][font

17:comp.sys.apple2:Mac stuff for Apple II stuff - Swap comments?

20:comp.sys.apple2.marketplace:FS/T- Apple][items and more...

Other groups under comp.sys are comp.sys.apple, comp.sys.mac.forsale,

comp.sys.mac, comp.sys.mac.advocacy and two more under comp is

comp.lang.java.gui, comp.publish.prepress. We also have the apple

that is related to fruits (or food).

7:rec.food.recipes:Simpson and Vail Spiced Apple Tea and

Metropolitan Apple:rec.food.drink.tea

12:rec.food.recipes:Apple Cakes (5) Collection

Issues related to Microsoft and Apple are discussed in the social section,

91

and one posting related to the relation of the method of growing an apple to

the environment.

8:soc.org.nonprofit:Microsoft deal hurts Apple in education market:

soc.org.nonprofit

19:soc.org.nonprofit:Apple cringes at Microsoft school deal

14:sci.environment:Organic Apple Growing Is Best Thursday

We can also use the overlapping on subject titles to guess the relation be-

tween two postings. If two subject titles have more than two none-stop-words

repetition, then chances are that they are about the same topic and can be

merged.

[Web] As we have discovered that the directory listing is the extraction from the

Web search, we will list only the result that are not classified by the Google’s

directory search. We will merge the webpages whose suffix domain name are

identical. For instance, store.apple.com and www.info.apple.com will be

merged.

[Images] There is less linguistic clue we can use in images search so we can simply

list out the first return page of Google’s image search.

92

5.4.2 Client Side: Menu Presentation - Generic, Expert,

and 5W1H

We briefly describe the process of obtaining menu content for each different re-

sources.

Menu Presentation: Generic Search Engines (Google) and Encyclopedia

The menu presentation layout will follow the Directory, which classifies possible

senses of a word (phrase), Discussion Group, which will uncover mostly discussed

issues, Web, which will list important pages related to the search query, and Images.

Encyclopedia search will list out the domain knowledge as a category.

Menu Presentation: Dictionary

Presentation for dictionary database is just the display of the result. We may parse

and remove the possible advertisement and other decorative parts of a webpage

and re-arrange the visual effect.

Menu Presentation: 5W1H

This menu presentation is for a strong and competent Natural Language Query

search engines. The “Why” menu listing will be the answer passed back by the

request for “Why” + Query String. “What”, “Who”, “Where”, “When”, and

“How” are proceeded analogously.

We are particularly fond of the 5W1H method as it covers general questioning

methods. For instance, querying “Computer Graphics”, we could supply “Who”

with the organization ACM SIGGRAPH or computer scientists who work in this

93

field, “How” and “What” with a class homepage, “When” with the date of confer-

ence, “Why” with a list of graphics applications such as CAD and animation, and

“Where” with a list of graduate schools that have “Computer Graphics” program.

These are all possible if a large ontologies resource is available. It could be the

index list of the Encyclopedia of Britannica. From one index and a well designed

(but not perfect) natural language processing, we can provide the aforementioned

result. However, there are possible ambiguities among 5W1H. One of the problems

the program has to solve is how to distinguish between “Who” and “What”. For

example, the program has to distinguish the URL of an organization and the URL

of a class homepage. A search verification from Yahoo directory on “organization”

is one solution.

5.5 Benefits: Semantic Intention: User Chosen

Data Source, Private Link

5.5.1 Users Choose Data Source

Users can choose the query database source according to their own personal inter-

ests and their mind. In fact, one can turn a “serious” website, CNN for instance,

into a fun one by choosing the semantic data source from Disney (if they had one).

All the reference on mouse could go to “Mickey”.

There is ongoing work and initiative for the Semantic Web. In future, when

a vast amount of ontologies sites are available and nomenclature and semantic

interpretation are defined and standardized, users can choose among these services

to obtain more accurate results. Of course, at that time extended semantics will be

94

adapted to the standard. The key is that user can choose her data service provider

according to what she considers appropriate.

5.5.2 Users’ Private Links

Each user has his own personal way of organizing the world. Just as an extend

semantics server can suggest meaning extensions, we can supply our own semantics.

Instead of using the data from the server, we can link words and phrases to the

association that we design. For example, the word “sports”, can be linked to a

sport center website. When we click on the “sports”, extended semantics will bring

us directly to the preassigned website. Or we can have our own list of menu on

“sports”, then extended semantics will present our own menu on “sports” and we

click on the “‘sports”.

On implementation we can have several considerations: extended semantics

needs to first check if there is a local definition on the client side, does the definition

have a single or multiple items? and whether we have pre-set to inquire extended

semantics even when there is local definition. Naturally, extended semantics needs

to keep a client side library storing individual data definitions. These personalized

semantics can also be stored on the server and can be made accessible from login-

password session through the network.

95

Chapter 6

Obliged Reverse Hyperlink

Hyperlinks can only be followed forward. In current browsers, there is no way to

go from a page P to a pages that link to P.

By applying enriched content, we can partially resolve this limitation. We can

keep track of all the links that have been followed (referral links) and maintain a

statistics of the traffic. We then have a real time visitor data that can be used

for real time reversed links. However, we will keep only the most recently active

referral links which have the highest number of references. This is reasonable; just

imagine Yahoo, how many reverse links Yahoo homepage has? Certainly we want

to economize the data storage and its current state.

We use the word “obliged” because before the software module that enables

reverse link become widely installed, “real time” referral links will not be available

for most websites. However, as Google’s 1 facilities provides archived reverse links

functionality; we can use its service as a temporary substitute and enforce the

reverse link function.

1Alta Vista also provides reversed links.

96

6.1 Cross System: Text Type and Link Type

Recognizing hypertext across document application is accomplished through iden-

tifying “http://” prefix in texts. Enriched content module will carry this process

indiscriminately for all document applications.

Enriched content will set the browser configuration so the browser will commu-

nicate through the client-proxy as described in section 4.2. The URL requested by

the browser will be intercepted and be incorporated into the injected codes. The

original content with the injected code will then be sent to the browser.

6.2 Client Server: Network Communication - CGI

The client sends url to the server to requests a real time menu. If the server has

not installed the reverse link module, it will respond to client with “service not

found” and client can issue another request to the reversed link server (client side

proxy). When reversed link server receives the reversed link request, it will redirect

the request to Google and then preprocess the returned result before sending back

to the requesting client.

The communication between client, reversed link server, and reversed link

archive server are all conducted through CGI. Suppose the user click on the URL

http://www.cs.nyu.edu/index.html, the client will first issue

http://www.cs.nyu.edu/cgi-bin/reversed link.cgi?url=/index.html and re-

quest www.cs.nyu.edu server to send over the reversed link menu. If www.cs.nyu.edu

does not have reversed link service installed, then the client will receive the error

message. When the client receive this error message, it will issue

97

http://www.server.org/cgi-bin/reversed link.cgi?q=www.cs.nyu.edu to the

pre-assigned reversed link server www.server.org. www.server.org will look up

the reversed link from the Google and pass the information to the client. Of course,

client can look it up from the Google directly but in this case it will also need to

add summarizing and formatting menu item on the client side.

6.3 Add-on Module

6.3.1 Server Side: Server Log Processing

Server operations involve pre-processing server log data as well as periodically

updating its reverse link index. Server module pairs referring pages with referred

pages; it sorts referring pages for each referred page. This information will be used

in reverse link menu presentation. We want to concentrate on “real time” reverse

link. Because there may be a couple hundred thousands of references. But we

only care about the most recent ones only since reference links on referring pages

that haven’t been followed for long period of time (months) are unreliable and this

implies the importance of the links are weak. However, module designers could

optionally choose to keep the last access time from an unique domain name or an

unique referrer page even if these links haven’t been followed for a long while.

In order to obtain referrer’s page, we need to enable the log entry. In Apache

server file, httpd.conf we need to remove the # sign in front of the following two

lines. The first is server log format line:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%Referer\" \"%User-Agent\"" combined

98

%h represents hostname, %u represents user name (if available), %t is for time

stamp, %r is the request method and file, %>s is the protocol number, %b is the

number of bytes transmitted. What we want is “%Referer” entry. And the second

is log location specification line.

CustomLog /home/hubert/WWW/logs/access log common

A typical log entry will look like the following:

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache pb.gif HTTP/1.0"

200 2326 "http://www.example.com/start.html" "Mozilla/4.08 [en] (Win98; I

;Nav)"

The log entries can be stored in a separate database. A simple separator

program. will be able to parse each log entry into log array which can be used for

updating log database. We can write a module such that for every request issued

to the server, the server will deliver the page, update the log file and database.

This will keep the referrer information real time.

6.3.2 Client Side Proxy: Code Injection and Reverse Link

Request

Client side proxy will inject a small segment of code so when the browser processes

the code, it will spawn a mini-browser containing codes that will issue reverse

link information. This request can go through client side proxy which will issue

99

request for the browser. If the Web server serving the page have reverse link

information, then it will be passed to the client proxy which will then pass the

same information to the browser. If the Web server serving the page does not

have reverse link information, then the client proxy request will be denied. Upon

receiving the denial protocol, client proxy will issue reverse link request to Google

which has archived reversed link information. Client proxy will take this archived

information, reformat to the pre-designed layout and then pass it to the browser.

6.3.3 Client Side: Menu Presentation - Full or Truncated

LIFO Order

Reverse links can be displayed in several fashions. One way is in reverse time order.

Another is to compress a day’s (or a week’s) references into one block and show

each referring pages only once, even if it contains more references. Each number of

references for each referring page can be appended as an indicator of its referential

strength. The details of a reference can be expanded when users do a mouse-over

on it. Of course, when the compressing time frame is customizable by users, the

resulting information will be more insightful.

Still a third method is to exhibit the referring pages alphabetically together

with its referencing times. To avoid displaying excessive references we can limit

the length of the listing; however, we will give options to extend them on demand.

100

6.4 Benefits: Semantic Junction, Aid to Web

Design

6.4.1 Semantic Junction (Internal and External)

A reverse link can show the link’s semantic junction on the Web: where the Web

link path is coming from and where it is going to. From the reversed link informa-

tion, we can estimate its relationship within its hosted website. Moreover, it also

reveals its popularity, usefulness, and possibly the duration of each visit.

A precise reverse link can be employed by Xpath when a document are made

from XML. Xpath, or more precisely Xpointer, points to the exact location of

reference, not just the web page address. Reversely, server log can show the precise

source of reference origin under the Document Object Model. Indicating the exact

reference locations signifies the real semantic junction

6.4.2 Aid to Website Design

Using reverse links and the analysis of their semantic junctions, we can see the

points of interest from the Web usage perspectives. Most site analysis programs

will show only the website authors’ view and ignore the true web users’ habits.

Because the reference shows true strength of the relationship from actual users’

points of view (links that are followed), which might differ from the original de-

sign intent, this will help the website designers and architects to determine what

elements should be moved, reinforced, edited, linked, or removed. Web site design

has been heading in the direction of being more adaptive and user-customizable;

semantic junction analysis can be an effective tool for a successful Web design.

101

Chapter 7

Version Control

Many websites update their pages periodically 1 and they often relocate or remove

their webpages without notifying their faithful readers appropriate. Not surpris-

ingly, this happens even to the websites of reputed media corporations. It is a

nuisance to run into the case when a previously bookmarked page has become a

broken link, and we have to look around, above, or below (in terms of hierarchy)

the website in order to locate needed information. Try to bookmark a section in

an online news website and you will understand what this means.

A solid website should be responsible for all its publications and maintain an

archive. There are some projects for archiving the whole web [Kahle 97]; those

projects are too ambitious and bound to be disappointing due to the period of

time to update, and the limit of storage and processing time. Versioning and

archiving is best performed by each individual website itself. For websites that do

not have a version control module installed; however, the archive project could be

a compensation.

1Version Control is only described and not implemented

102

Some websites solve the versioning issue by providing a link to its own “archive”

page which contains all previous versions or by providing a “search” button which

allows users to search all its past records. A search, however, may lead to other

pages containing the same term. We can improve this in a more logical manner.

We should be able to click a link and ask for a specific version; we should not have

to go through the search process in order to select what is the exact page we are

looking for.

With enriched content architecture and designed modules installed, a plethora

of documents can be re-viewed and re-used. Readers can select from a list of

versions and choose the one they would like to access. They can also compare

versions of documents. Literature usage is maximized; readers are benefited.

7.1 Existing Standards: Concurrent Version Sys-

tem (CVS), Software Engineering in Practice

The software community has long been troubled by development cycles, project

coordination, and version management. The chaos and bugs produced by lacking

the proper software environment are daunting, and the more delays in fixing a

problem, the more complex the problem will become. Retracting previous changes

in order to identify a bug origin or to adapt to newly changed software requirements

necessitates the need for an organized schema.

Software engineering practitioners have implemented various software version

management tools such as RCS (Revision Control System), SCCS (Source Code

Control System), and CVS (Concurrent Version System). These programs are

103

developed in order to coordinate team programming projects. One of their main

functions is version control that allows utilities to show the difference between two

versions of a software package and to retrieve the previously committed version if

requested.

CVS, especially, is more popular in the software community. It does not dictate

the programming language you are using, so its function is sufficiently general.

We can use it for the purpose of general file control. Or we could perceive this

differently. We can view natural language as a programming language. While

articles, reports, and books are written by natural language, we can think of them

as “programs” “coded” in natural language. In this respect, CVS can be used for

version control on “natural language program”.

7.2 Cross System: Replacing File Related Sys-

tem Commands

Version control implementation can be done as described in Chapter 5 on obliged

reverse link where the client side proxy could issue request for versions on the

server, if the server does not have the versioning service, then the proxy can request

from the archives we have mentioned prior. As the mechanism is the same, we

describe here what need to be done on the server side.

Version control requires document management software which is usually not

installed in operating systems. Document management software needs to record

when a file is created, modified, removed, renamed, or relocated. In this section, we

use the UNIX system as an example, to show how we can incorporate an existing

104

software version management package to manage document versioning. The same

principle can be used in other operating systems that support CVS.

In order to make version control automated, we need to replace the system

command (in the UNIX server). We can do so either by aliasing commands or

using wrapper programs to substitute original commands. For example, “rm” and

“mv” should be replaced. “rm” is used for deleting files or for deleting files and

subdirectories recursively when it is used with “-r” option. System administrators

can replace original “rm” with a simple script. The script first checks if the ar-

gument filename resides under the webpage directory. If so, it will issue a CVS

command to update information on the file, then execute the real “rm” command

to remove the file. The same procedure can be used for “mv”. Similar steps can be

taken on standard editing tools such as “ed”, “vi”, “vim”, “emacs”, and “Xedit”.

The simplest way is to check whether a file has changed after executing editing

commands. If it has been changed, then the system will update the information

by issuing proper CVS commands. Note that the change of commands behavior

only occurs when the argument files are within the webpage directory. But the

process can be used for overall documents version control within a system. Here

is a possible implementation:

[rm] “rm” is used for deleting file(s). We use a single file as an example. “rm”

can be replaced by

original rm FILENAME

cvs remove FILENAME

cvs commit −m ‘ ‘ d e l e t e FILENAME’ ’ FILENAME

105

cvs release

where original rm is the original “rm” program, and FILENAME is the

name of the file to be deleted. “-m” and the string immediately following

it is the comment for this modification. This comment will be recorded in

the change log for the file. Removal of multiple files are carried out one

at a time. The modified command has to recognize that there are multiple

arguments. If the “-r” option is used by the “rm” then the above script has

to be executed recursively through the subdirectories if the argument is a

directory.

[mv] “mv” is used to rename a file or a directory.

original mv FILENAME 1 FILENAME 2

cvs remove FILENAME 1

cvs commit −m ‘ ‘ rename FILENAME 1 FILENAME 2’ ’

cvs add FILENAME 2

cvs commit −m ‘ ‘ c r e a t e FILENAME 2’ ’

cvs release

FILENAME 2 can be a full path or relative path for the file. For example, it

can be “/home/hubert/new directory/new name.tex”. Script has to adjust

the CVS’s naming convention.

[editor programs] There are programs to edit documents. System administra-

tors have to write wrapper programs for them. Let’s take “vi” as an example.

106

cvs checkout FILENAME

original vi FILENAME

cvs add FILENAME

cvs commit −m ‘ ‘ modif ied ’ ’ FILENAME

cvs release

First, the script checks out the current version of FILENAME for the user. A

user will edit the FILENAME during the “original vi FILENAME” session.

After the editing session, the script will automatically commit the changes

to the file source depository and record the change to the log file . In terms

of user’s experience, there is no difference between using the original “vi”

command and using the modified “vi” command. The same process should

be placed on “emacs,” “vim,” “Xedit,” and any other editing programs.

[ftp] ftp is file transferring program that will send files through the network. It can

either generate new files or overwrite the existing files. System administrators

can write script wrapping the original ftp program by monitoring the user’s

command and modify the ftp changes on files just as we did in previous mv,

vi examples.

[shell redirection] In UNIX system, users can redirect the data stream to create

a file directly. For example, echo hello > hello file will create a file

“hello file” with “hello” in its content. Again, system administrator can

write a super-shell to wrap the original shell. Whenever user create (by “>”)

or modify files (by appending “>>”), the supershell will consult CVS first.

It should take care only the command line scripting. However, it is possible

107

that an experienced scripting user can use script to generate and modify files.

This will make the supershell solution less desirable.

An alternative for the system administrators is to write a corn or at script

to periodically (daily) execute a walk on the system to find and manage the

newly generated or modified files. It can examine the log of the CVS to

avoid repeated updating efforts. Using this scheme, we can eliminate writing

individual wrapper program for editing applications. Traversing on the file

system to find modified can be done at a more local scale. For example,

whenever a user finishes her editing session, the system can traverse on her

current working directory and her home directory to update any changes.

Because CVS handles cross site (IP address) versioning commands; the version

control function can be applied to cross sites files migration. It requires, however,

the installation of the version control modules on both sites. When FILENAME 2 is

an URL indicating the new location of the webpage FILENAME 1, modified “mv”

can be executed as follows:

original mv FILENAME 1 FILENAME 2

cvs remove FILENAME 1

cvs commit −m ‘ ‘ rename FILENAME 1 FILENAME 2’ ’

cvs release

When Web server consults the CVS’s change-log, the server module will dis-

cover FILENAME 2 in the comment “rename FILENAME 1 FILENAME 2” is an URL

and will pass the redirection directive as a response.

There are other system calls that involve modifying files, for instance, “unlink”

108

and “rename” are two of them. Because these are used for programming purposes,

there is no need to change them.

7.3 Client Server: Network Communication - URL

Address

We write a server module and attach it to a web server. For any web access request,

web server will first run a CVS consulting procedure. The request for the webpage

remains the same. There is no change on the client side or URLs.

7.4 Add-on Module

7.4.1 Server Side: Communicating with CVS

When a server receives a page request, it consults with CVS. CVS will list in

chronological order when the requested file was changed. This information is re-

formatted for menu presentation by a script. If there is only one version, the server

will signal back to the enriched content client, and the content will be delivered. If

the current file cannot be found, CVS still can get the previous version. Of course,

if all efforts are in vain, then the message “404 file not found” has to be issued.

The message could be “404 file not found after DATE” where DATE is the starting

date for the version control service.

109

7.4.2 Client Side: Menu Presentation - LIFO Chronologi-

cal Order

There are two windows for the version control. One is the content window, which

is the browser; the other is the version window, which is a mini-window.

The content window shows the chosen document content; the version window

has a list of different versions of this document. The user can select and view them

on the content window.

When the browser issues a webpage, the server will first consult the CVS. The

server module collects historical information from CVS’s response, sorts it in LIFO

(last in, first out) chronological order, and transforms it for menu presentation. It

can be ordered in other ways: FIFO (first in, first out) or sorted by size. If the

requested file was edited by a group of people, then it can be sorted by authors.

Different sorting combinations can be implemented such that users select them on

the client side’s version window.

7.5 Benefits: Preservation, Authenticity, Com-

parison

7.5.1 Links Preservation

One of the advantages of version control is to maintain hyperlink validity and

webpage availability. If a client browser requests a link that leads to a relocated

document, then the Web server will detect it and will issue a CVS command,

obtain the current location of the older version, and deliver the content. If a

110

browser request a page which has several past versions, then each version will be

listed in the version-window so users can select and view them on the content

window.

7.5.2 Archiving: Maintain Authenticity

Reference authenticity is assured if the version control module is installed. With

version control, it is easy to find out what has been said in which article by whom

and when.

7.5.3 Content Comparison

When doing research, we might want to compare between two hypotheses. We

might also want to compare earlier and later work from the same author. Version

control can assist with document comparison. Functions, such as “diff”, which

compares the difference between two documents, can be added. We can add other

functions to compare structured XML documents.

111

Chapter 8

Composition Assistant

Composition assistant 1 is a phantom agent that works in the background and

assists writers by suggesting URLs that are related to their writing topics. The

agent first recognizes the writing application in use; it monitors the keystrokes

and the text around the cursor for hints. After gathering clues on target topics,

the agent seeks out information on the Web and filters the sought information for

recommendations.

Goodware vs. Badware

Monitoring keystrokes of users has been used by software vendors to create user

defined macros and by software companies to evaluate their product usability.

Monitoring keystrokes is an old trick of hackers and crackers. On the other hand,

we can use it to help writers. It could be used for good or evil purposes.

1This application is described but not implemented.

112

Text Context Unit

Composition agent will seek relevant URL webpage on the Web. We can only

provide reference as a webpage now. In future we can reference a paragraph or

a sentence through Xpointer. The reference webpage is selected by an algorithm

which consults the context requested by users. The context unit can be a sentence,

a paragraph, or the article produced so far. As the information will be transmitted

via network, the rule of thumb of unit size is the shorter, the better. Since an article

is being produced while the composition assistant is running, context information

is accumulated in small size packets on the server side, gradually.

8.1 Cross System: Monitoring Keystrokes of Ed-

itor Applications

8.1.1 Identifying Editing Application

Not all document applications can edit content. We have to be recognized when

this is the case. It is a convention for editing applications to show a caret when the

application is ready to receive editing operations. 2. For Windows applications,

you can see the “I” shape blinking at the location where the mouse was last clicked.

Enriched content program can detect the existence of the caret. ShowCaret(HWND

hwnd) can give the last window that displayed the caret and this window can be

compared with currently focused application window. If they are identical, then

we know the application has editing capacity. Otherwise, it does not.

2Internet Explorer can show a caret as well whenever a webpage has a form submission entry.

Also, the browser may show the caret at the URL input box.

113

8.1.2 Recording Keystrokes

Once enriched content identifies that the current application in focus is an edit-

ing application, it will start to record the keystrokes. When we set the system

hook SetWindowsHookEx we can place not just mouse hook but also keystroke

hook. By setting WH KEYBOARD at nFilterType and HookedKeystrokeHandler

at hkprc of the function call SetWindowsHookEx(int nFilterType, HOOKPROC

hkprc, HINSTANCE hMod, DWORD dwThreadID), we effectively pass the keystrokes

information first to the HookedKeystrokeHandler(int nCode, WPARAM wParam,

LPARAM lParam). HookedKeystrokeHandler will receive every key that has been

pressed through the wParam parameter. We can use an array to save all the typed

keys. User can pre-determine the size of the context unit, and the enriched content

will record the context unit accordingly.

8.1.3 Context Unit Recognition Process

The general process for context unit is illustrated as Figure 8.1. Whenever the

user presses a key, the program will identify if it is a “terminal token”. If it is not

a terminal token, then the typed character will be appended into a string buffer.

If it is a terminal token, then the saved string buffer will be copied to a new string

buffer. The old string buffer will be cleared and become empty; the new string

buffer will be put into the communication queue. And this process starts all over

with a fresh string buffer waiting for the user to key in characters. The string

buffer will save non-terminal-token characters only. Terminal tokens do not need

to be a single character. Enriched content will continue sending the queued string

buffers to the server until the queue is empty. Strings will be accumulated and

114

Yes

append to buffer
copy buffer

queue copy

empty buffer

terminate token?

terminate token?

Yes

No

Input

InputNo

Figure 8.1: Context Unit Recognition Process Diagram

append to buffer
copy buffer

queue copy

empty buffer

Yes

No

Input

InputNo

Input =? <space>

or input =? <tab>

Input =? <return>

Input =?<space>

or input =? <tab>

Input =? <return>

Yes

Figure 8.2: Word Recognition Process Diagram

115

re-assembled at the server end.

8.1.4 Text Type Recognition

We first examine how we handle the text type whose unit can be a word, a sentence,

a paragraph, or the article produced so far.

Word

Let us take a word as text context unit, then we have Figure 8.2. We use “empty

space” as a terminal token. Empty space can be created by a single space “\s”, a

tab “\t”, a new line “\n” or a carriage return “<RETURN>”. The string buffer will

save any character until it runs into any of the above tokens.

Sentence

Recognizing a sentence is a much harder problem but we can have an ad hoc

recognizer which uses period (“.”), question (“?”), and exclamation mark (“!”) as

terminal tokens. We can guess that a new sentence has begun when these tokens

are followed with blank space(s) and a capital letter, which is usually the indication

of the beginning of a sentence.

When a user decides to change its editing location by scrolling the viewing

window and choosing a location, we can use a mouse hook to trap the mouse click.

Whenever there is a new mouse click, we will assume the user has relocated to a

new sentential position. The new location can be identified by searching forward

and backward for terminal tokens. In between the found forward and backward

terminal tokens will be the current sentence. We have to take care of the case

116

where a “period” is used in abbreviations. An abbreviation has the characteristics

that each letter is capitalized (most of the time) and each letter is followed with a

period.

Paragraph

More than one “<RETURN>” can be regarded as a starting signal of a new para-

graph. <RETURN> can be used as a terminal token. When a user relocates the

caret location, we can use the paragraph boundary detection method mentioned

in Section 4.1.3 to locate the current edited paragraph. A <RETURN> followed by a

tab can be a possible beginning of a paragraph.

Article Produced so Far

A user may start to use the composition assistant when she has written some

material. We can still collect the whole document on the server end. A simulation

on the keystroke of “SELECT ALL” and “COPY” will copy the whole document to

the clipboard. Enriched content will take the content from the clipboard and send

it to the server over the network. In case the content size is too big, it can send

the content by packets rather than in one bundle.

8.1.5 Link Type Recognition

Link form in text context is very simple to recognize. Hyperlink always shows up

with the prefix “http://”. We can use this as a cue for the hyperlinks and whenever

the program retrieves a string copy from the queue, first it will examine if it is a

link type and if so, it will process the context as a link type.

117

8.1.6 Managing Pasting and Deleting

To handle users’ selecting and deleting operations, enriched content program can

detect each WM COMMAND using the hook with WH CALLWINPROCRET option, which

will execute enriched content’s special codes after the WM COMMAND finished its pro-

cessing. Enriched content can therefore re-evaluate the sentence at the current

caret location after the execution of the detected WM COMMAND. This will manage

the changes made by text pasting and deleting since both pasting and deleting

operations are performed through the menu selection (or accelerator short hand.)

and both operations will issue WM COMMAND messages.

8.1.7 Basic Assistant: Synonyms Listing

Here is an example where we use a word as the context unit. A simple and yet

useful composition assistant is a synonym lister. Whenever a new word is typed

in by the user, the assistant program will list out all the synonyms of the word.

In a composition course, we are frequently asked to find out all the synonyms for

an article we have composed. Now, this process can be completely automated.

Right on the computer screen, you have a group of words from which you can

choose the most appropriate one. Of course, we can reduce the network traffic of

requesting synonyms by calling a local application if a local thesaurus is available.

For hyperlinks, we can regard “related” webpages as synonyms. For example, if

the webpage requested by the link is listed under Yahoo directory, then all the rest

of webpages under the same directory can be regarded as synonymous (related)

webpages.

118

8.2 Client Server: Network Communication - CGI,

Tagged Paragraph

As the service can be accessed through the network, there may be more than one

user using the service. Since all context units are sent to the server to be re-

assembled, there may be confusion about which text segment belongs to which

user. We need to distinguish each user and her editing document by a tagging

method. We tag the context unit with the user’s ID (email address), the title of

the currently edited document, and a time stamp.

http://www.server.org/cgi-bin/comp assist.cgi?q=context of paragraph

&t=title of document&id=hubert@cs.nyu.edu

In this way, the service can collect correctly the text segments of each user and

the editing history of the user can be profiled. Users’ editing profiles help maintain

consistency on suggesting relevant URLs and avoid confusion among the ownership

of articles when a user changes her editing document.

8.3 Add-on Module

8.3.1 Server Side: Batched Search vs. Real Time

When a word is the context unit, searching the Web can be performed word by

word. However, when a paragraph is the context unit, we have two processing

methods. The first method is to analyze and extract a finished paragraph, sum

up a list of searching criteria, and look them up from the Web. The second one is

to extract on the fly whenever a user types in a new word. The drawback of the

119

second method is constant network traffic.

We can use the simple query composition method used again in the extended se-

mantics. We can have a more sophisticated algorithm to summarize the paragraph

or the whole document produced so far, and use the summary as cues to search

the Web. The same summarization algorithm can be used for organizing feedback

from the Web in order to respond to the user. Of course, the ideal program will be

an efficient and truly intelligent algorithm that “understands” 3 human language.

8.3.2 Client Side: Menu Presentation - Keywords and Links

The window displaying suggested reference will be floating independently along

side the application, as there is no fixed point of interest on a mouse click. The

caret is also constantly moving as a user types. In the synonym assistant, a simple

presentation will suffice: each keyword is accompanied with a set of synonyms.

Keywords can be listed on the leftmost side of the window, and synonyms can be

indented to the right. Clicking any one of the synonyms will bring the Webster

dictionary’s definition in another window whose size can be customized to save

screen space.

3Here, “understand” is interpreted whether a program can answer question related to whatever

has been provided as input. This statement, however, is vague and perhaps too generalized.

120

8.4 Benefits: Active Breadth and Depth Expan-

sion

Suggestions from composition assistant can expand the width and depth of a

writer’s view, as the resources recommended are from other perspectives. The

topic may have been written from a different angle and purpose. Suggested re-

sources may have more citations which a writer can incorporate into her work.

This process stimulates a writer to correlate her work with resources; it provokes

a writer to elaborate more on her material. Composition assistant helps to keep

active writing staying active.

121

Chapter 9

Conclusion and Near Future Work

9.1 Problems All Solved?

9.1.1 Integrating Optical Character Recognition

Though enriched content can solve many of the document application problems, we

still need to integrate the optical character recognition software as many documents

come in the text image format and not in digital character format. There are

programs that are made for viewing purpose only, for instance, Ghostview. You

can not select and copy the presented text in Ghostview.

9.1.2 Document Analysis

In extended semantics, illustrating, explaining, and associating words and phrases

help but if a program knows the true context for which our words and phrases

are meant, then it could pinpoint more accurate data that is crucial for us. This

requires layout, syntactic, semantic, and rhetoric analysis of the document. The

122

effectiveness of recommended relevant information relies on the depth of under-

standing.

9.1.3 Higher Level Relevance from Document to Knowl-

edge Web

Once the program has a better understanding of a document, it could read between

the pages(and lines), generate a higher level abstraction of themes and topics, and

drill down into details. From these analysis, it can synthesize a search criteria and

locate other semantically close pages and sites and recommend them to users. It

could also fill in the gaps of comprehension by offering a lower level or higher level

of context. For example, it could give us an introduction to or an expertise level

content. In some sense, Amazon’s recommendations and Google’s search are using

the similar scheme, their recommendations are the result of statistically analyzing

massive user data. The program eventually would construct on the fly a map of

‘customized’ knowledge with pages from the Web when the user request with a

specific context.

9.2 Full Contextual Computing

9.2.1 Proactive Turns Autonomous

Evidently, enriched content is a proactive approach to help us to extend our “mean-

ing domain”. A conventional search is passive; an enriched content search is

proactive. Studies have been done on automatically generate hypertext from text

[Green 97][Allan 95]. The crucial point to successfully automatically produce hy-

123

perlinks is a program that can truly (or at least with high probability) understand

context. So far, none exists.

Eventually, the next generation of enriched content would be agents working to-

gether to weave a new semantic web by composing a complete article or generating

a solution from users’ hints and Web’s resources.

From Reference to Inference

From our perspective, only when a program could answer any query in regards to

the context could it be considered a true contextual analyzer.

An agent would become more active by inferring for users some of the con-

sequences given the contextual data from documents. As it is a true contextual

analyzer, it could conditionally ask itself questions and answer them by drawing

conclusions from collected resources. Agents would evolve from functioning in

referencing capacity to functioning in an inferencing capacity.

Data is Program, Active Agent Document

Each agent program could act independently as a freelancing agent taking contex-

tual queries one at a time and act on them. On the other hand, a webpage author

could attach an agent for each document she has produced. These document agents

will comprehend the given content and communicate with other requesting agents.

Agents will talk to each other, access, and exchange needed knowledge. This saves

time, network traffic, and storage as each agent has pre-processed its own data and

understands its own mission.

By attaching a contextual agent, a document becomes “active”. Each digital

book, article, and report is itself a “program”. Data becomes a program; document

124

becomes an agent.

Turing Test, Post Contextual Computing

Active agent document could continuously process on its own, it could initially get

web resources and answer postulated questions raised by other views (documents,

agents). It will interpret the “world” as it sees it from its own given document(s)

and acquired knowledge. Making conclusions and concessions, collecting more

facts, and collaborating to generate knowledge, agents will evolve and eventually

are capable of passing Turing test. [Turing 50] 1

9.2.2 Context Meets Affect

What we really desire is a fully integrated intelligent system that understands what

we want and possibly before we are even consciously aware of our inclination. There

is no limit for the program being empatic and not only that, it is best if a program

has clues about our state of mind, intention, and emotion. This later effort is

more related to affective computing. Scientists have long included “emotion” as

one motivating element of intelligence. True intelligence would, and should include

emotion as part of its ingrident.

1The Turing test was suggested by Alan Turing, the founder of computation theory. It states

that when a machine can converse through teletext with a human being without being suspected

as a machine, then it has the equivalent “intelligence” of a human. We think, however, the true

test should include perceptual capability. The tester should show the machine a cartoon and

ask what is funny or not funny about it. When the program could pass this test, it would be

considered to have human “intelligence”. Sense without sensation does not make sense.

125

Bibliography

CACM Communication of ACM

CHI Conference on Human Factors and Computing Systems

CIKM Confernece on Information and Knowledge Management

FOCS Symposium on Foundation of Computer Science

IJCAI International Joint Conference of Artificial Intelligence

IUI International Conference on Intelligent User Interface

SIGIR Conference on Research and Development in Information

Retrieval

SODA Symposium on Discrete Algorithm

UIST User Interface Software and Technology

WWW International Conference on World Wide Web

[Adar 99] E. Adar, D. Karger, L. Stein. Haystack: Per-user information en-

vironment. Proceedings of the 1999 Conference on Information and

Knowledge Management, CIKM, 1999.

[Adar 95] Eytan Adar, Jeremy Hylton. On-the-fly Hyperlink Creation for Page

Images. ACM Proceedings of Digital Libraries ’95, 1995.

126

[Albert 99] Réka Albert, Hawoong Jeong, Albert-László Barabási. Diameter of

the World-Wide Web, Nature 401, pp. 130-131, 1999.

[Albert 00] Réka Albert, Hawoong Jeong, Albert-László Barabási. Error and At-

tack Tolerance of Complext Networks. Nature, July 2000, pp. 378-

381.

[Allan 95] James Allan. Automatic Hypertext Construction. PhD thesis, Cor-

nell University, 1995.

[Alon 01] Noga Alon, Joe Spencer. Probabilistic Method, 2nd edition 2001,

Pritence Hall.

[Armstrong 95] Robert Armstrong, Dayne Freitag, Thorsten Joachims and Tom

Mitchell. WebWatcher: A Learning Apprentice for the World Wide

Web. AAAI Spring Symposium on Information Gathering. Mar.

1995.

[Aspect] Aspect programming: http://aosd.net

[Baecker 00] Ron Baecker, Sasha Jovicic, Joanna McGrenere, Gale Moore, Re-

ducing the Gap Between What Users Know and What They Need

to Know. Conference on Universal Usability, 2000, pp.17-23.

[Balabanović 95] Marko Balabanovic, Yoav Shoham. Learning Information Re-

trieval Agents: Experiments with Autoamted Web Browsing. AAAI

Spring Symposium on Information Gathering, Mar. 1995.

[Barabási 99] Albert-László Barabási, Réka Albert. Emergence of Scaling in Ran-

dom Networks. Science, Vol. 286, 15 October 1999, pp. 509-512.

127

[Barabási 01] Albert-László Barabási. The Physics of the Web.

http://www.physicsweb.org/article/world/14/7/09

[Bharat 98] Krishna Bharat, Monika R. Henzinger. Improved Algorithms for

Topic Distillation in a Hyperlinked Environment. SIGIR ’98, pp.104-

111.

[Bharat 98] Krishna Bharat, Andre Broder. A Technique for Measuring the Rel-

ative Size and Overlap of Public Web Search Engine, WWW7, 1998.

[Broder 00] A.Z. Broder, S.R. Kumar, F. Maghoul, P. Raghavan, S. Rajagoplan,

R. Stata, A. Tomkins, and J. Wiener. Graph Structure in the Web:

Experiements and Models, WWW9, 2000.

[Bordoin 01] Allan Borodin, Gareth O. Roberts, Jeffrey S. Rosenthal, Panayiots

Tsaparas. Finding Authorities and Hubs From Link Structure on the

World Wide Web. WWW10, May 2001, pp.415-429.

[Botafogo 91] Rodrigo A. Botafogo, Ben Shneiderman. Identifying Aggregates in

Hypertex Structure. Hypertext ’91, Dec. 1991, pp. 63-74

[Bouvin 99] Niels Olof Bouvin. Unifying Strategies for Web Augmentation. Hy-

pertext 99, pp.91-100.

[Bouvin 00] Niels Olof Bouvin. Augmenting the Web through Open Hypermedia.

Ph.D. Thesis, Nov. 2000, University of Aarhus, Demark.

[Bouvin 02] Niels Olof Bouvin, Polle T. Zellweger, Kaj Grønbæk, Jock D.

Mackinlay. Fluid Annotations Through Open Hypermedia: Usingand

Extending Emerging Web Standards. WWW 11, May 2002.

128

[Bradley 96] Bradley Rhodes, Thad Starner. The Remembrance Agent: A Con-

tinuously Running Information Retrieval System, First International

Conference on the Practical Application of Intelligetn Agents and

Multi-Agent Technology (PAAM 96), pp.486-495.

[Bradley 00] Bradley Rhodes. Margin Notes: Building a Contextually Aware As-

sociative Memory, IUI ’00, pp.219-224.

[Brin 98] Sergey Brin, Lawrence Page. The Anatomy of a Large-Scale Hyper-

textual Web Search Engine. WWW7, 1998.

[Budzik 99] Jay Budzik, Kristian Hammond. Watson: Anticipating and Contex-

tualizing Informaiton Needs. Proceedgins of the Sixty-second Annual

Meeting of the American Society for Informaiton Science, 1999.

[Bush 45] Vannevar Bush. As We May Think. Atlantic Monthly, 76,1, July

1945, pp.76-82.

[Carr 94] Leslie Carr. PhD Thesis, Department of Electronics and Computer

Science, University of Southampton, UK. 1994.

[Carr 95] Leslie Carr, David De Roure, Wendy Hall, Gary Hill. The Distributed

Link Service: A Tool for Publishers, Authors, and Readers. WWW4,

1995.

[Chakrabarti 99.1] Soumen Chakrabarti, David A. Gibson, Kevin S. McCurley.

Surfing the Web Backwards. WWW8, 1999.

[Chakrabarti 99.2] Soumen Chakrabarti, Byron E. Dom, David Gibson, Jon Klein-

berg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, An-

129

drew Tomkins. Mining the Link Structure of the World Wide Web.

IEEE Computer, 1999.

[Chakrabarti 01.1] Soumen Chakrabarti. Integrating the Document Object Model

with Hyperlinks for Enhanced Topic Distillation and Information

extraction, WWW10, May 2001, pp. 211-220.

[Chakrabarti 01.2] Soumen Chakrabarti, Mukul Joshi, Vivek Tawde. Enhanced

Topic Distillation using Text, Markup Tags, and Hyperlinks. SIGIR

’01, 2001.

[Creech 96] Michael L. Creech. Author-oriented Link Management. WWW5,

May 6-10, 1996.

[Cutting 92] Douglas R. Cutting, David R. Karger, Jan O. Pedersen, John W.

Tukey. Scatter/Gather: A Cluster-based Approach to Browsing

Large Document Collections. SIGIR ’92, pp. 318-329.

[CVS] http://www.cbbrowne.com/info/textversion.html

[Davis 94] H.C.Davis, S. Knight, W. Hall. Light Hypermedia Link Services:

A study of Third Party Integration. Proceedings of the European

Conference on Hypermedia Technology (ECHT 1994), Sept. 1994.

pp.41-50.

[Davis 98] Hugh C. Davis. Referential Integrity of Links in Open Hypermedia

Systems. Hypertext 98, Jun 1998, pp. 207-216.

[Dean] Jeffrey Dean, Monika R. Henzinger. Finding Related Pages in the

World Wide Web.

130

[Denoue 00] S. Denoue, L. Vignollet. An Annotation Tool for Web Browsers

and its Applications to Information Retrieval. RIAO2000, Apr. 2000.

http://www.univ-savoie.fr/labos/syscom/Laurent.Denou/publications/riao2000.pdf

[Dillon 94] Andrew Dillon. Designing Usable Electronic Text. 1994.

[Engelbart 84] Douglas Engelbart. Authorship provisions in AUGMENT. Proc.

IEEE CompCon Conference, 1984, pp.465-472.

[Faloutsos 99] Faloutsos, M. Faloutsos, P Faloutsos, C. On Power-Law Relation-

ships of the Internet Topology, ACM SIGCOMM ’99. Computing

Communication Review 29, 1999, pp. 251-264.

[Fellbaum 98] Christiane Fellbaum ed. WordNet: an Electronic Lexical Database.

MIT Press, 1998.

[Finkelstein 01] Leve Finkelstein, Evgeniy Gabrillovich, Yossi Matias,

Ehud Rivlin, Zach Solan, Gadi Wolfman, Eytan Ruppin. Plac-

ing Search in Context: The Concept Revisited. WWW10, 2001,

pp.406-414.

[Fountain 90] A. Fountain, W. Hall, I. Health, H. Davis. Microcosm: an Open

Model With Dynamic Linking. Proceedings of the European Confer-

ence on Hypertext, INRIA, France, Nov. 90. pp.298-311.

[Gibson 98] David Gibson, Jon Kleinberg, Prabhakar Raghavan. Inferring Web

Communities from Link Topology. HyperText 98, pp.225-234.

131

[Glover 01] Eric J. Glover, Steve Lawrence, Michael D. Gordon,

William P.Birmingham, C. Lee Giles. We Search - Your Way.

CACM, 2001, Dec.

[Gong 01] Yihong Gong, Xin Liu. Generic Text Summarization Using Relevance

Measure and Latent Semantic Analysis, SIGIR ’01, pp. 19-25.

[Google] Google, http://www.google.com

[Green 97] Stephen J. Green. Automatically Generating Hypertext by Com-

puting Semantic Similarity. Ph.D. Thesis, Oct 1997, University of

Toronto.

[Halasz 94] Frank Halasz, Mayer Schwartz. The Dexter Hypertext Reference

Model, CACM Feb, ’94, pp.31-39.

[Hartman 96] John H. Hartman, Todd A. Proebsting, Rajesh Sundaram. Index-

Based Hyperlinks. WWW5, 1996.

[Hearst 93] Marti A. Hearst, Christian Plaunt. Subtopic Structuring for Full-

Length Document Access. SIGIR 1993.

[Hofmann 00] Thomas Hofman. Learning Probabilistic Models of the Web.

[Hummingbird] Hummingbird corp. http://www.hummingbird.com

[Ingham 96] David Ingham, Steve Caughey, Mark Little. Fixing the “Broken-

Link” Problem: The W3Object Approach. WWW6, May 6-10, 1996.

[iMarkup 00] iMarkup http://www.imarkup.com, 2000.

132

[Jansen 98]]. J. Jansen, A. Spink, J. Bateman, and T. Saracevic. Real life infor-

mation retrieval: A study of user queries on the web. SIGIR Forum,

32 (1), pp.5-17, 1998.

[Jones 00] Richard M. Jones. Introduction to MFC Programming with Visual

C++, 2000, Prentice Hall PTR.

[Joy 00] Bill Joy. “Why the future doesn’t need us”, April 2002, Wired mag-

azine.

[Kahle 97] B. Kahle. Preserving the Internet. Scientific American, 276: March

1997, pp.82-83.

[Kahan 01] Jose Kahan, Marja-Riitta Koivunen. Annotea: An Open RDF Infras-

tructure for Shared Web Annotations. WWW10, 2001, pp.623-632.

[Kautz 97] Henry Kautz, Bart Selman, and Mehul Shah. The Hidden Web. AI

magazine, Summer 1997, pp.27-35.

[Kenjin] http://www.kenjin.com

[Kleinberg 98] Jon M. Kleinberg. Authoritative Sources in a Hyperlinked Environ-

ment. SODA, 1998, pp.668-677.

[Kleinberg 00] Jon M. Kleinberg. Hubs, Authorities, and Communities. ACM

Computing Surveys, Vol. 31, No. 4es, Dec 1999.

[Kumar 00.1] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D Sivaku-

mar, Andrew Tomkins, Eli Upfal. Stochastic Models for the Web

Graph. FOCS 2000.

133

[Kumar 00.2] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivaku-

mar, Andrew S. Tomkins, Eli Upfal. The Web as a Graph. Sympo-

sium of Principle of Database, pp.1-10, 2000.

[Kurzweil 99] Ray Kurzweil. The Age of Spiritual Machines. 1999, Penguin Books.

[Glover 99] Eric J. Glover, Steve Lawrence, William P. Brimingham, C. Lee

Giles. Architecture of a Metasearch Engine that Supports User In-

formation Needs. CIKM 99, pp.210-216.

[Berners-Lee 00] Tim Berners-Lee. Weaving the Web, 2000.

[Lamport 86] Leslie Lamport. LateX, Addison-Wesley Publishing Company, 1986.

[Lassila 99] O. Lassila, R.R. Swick (eds.). Resource Description Frame-

work(RDF) Modeland Syntax Specification. Recommendation,

W3C, Feb. 1999.

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222

[Lempel 00] Ronny Lempel, Shlomo Moran. The Stochastic Approach for Link-

Structure Analysis (SALSA) and the TKC Effect. WWW9, 2000.

[Lieberman 97] Henry Lieberman. Autonomous Interface Agents. CHI 97, pp. 196-

176.

[Lieberman 00] Henry Lieberman, Ted Selker. Computer Systems That Adapt To,

and Learn From, Context. IBM, System Journal, 2000, V.39, No.

3&4, pp.617-631.

[Maes 94] Pattie Maes, Agents that Reduce Work and Information Overload.

CACM, July 1994, V.37, No.7, pp.31-40.

134

[Maglio 00] Paul P. Maglio, Rob Barrett, Christopher S. Campbell, Ted Selker.

SUITOR: An Attentive Information System. IUI 00, pp. 169-176.

[Marais 97] Hannes Marais, Krishna Bharat .Suppporting Cooperative and Per-

sonal Surfing with a Destkop Assistant. UIST 97, pp.129-138.

[Marcus 93] Aaron Marcus. Human Communications Issues in Advanced UIs.

CACM, April 1993, Vol. 36, No.4.

[Merant] Merant corp. http://www.merant.com

[Milgram 67] S. Milgram. The Small World Problem. Psychology Today 1, 61,

1967.

[mod ruby] Ruby module for Apache server. http://www.modruby.net

[Moore 65] Gorden E. Moore. Cramming More Components onto Integrated Cir-

cuits. Electronics, Apr. 19, 1965.

[Mosaic 93] NCSA Mosaic Documentation. Group Annotations in NCSA Mosaic,

1993.

http://archive.ncsa.uiuc.edu/SDG/Software/XMosaic/Annotations/overview.html

http://www.ncsa.uiuc.edu/SDG/Sfotware/Mosaic/Docs/group-

annotations.html

[Ng 01.1] Andrew Y. Ng, Alice X. Zheng, Michael I. Jordan. Stable Algorithms

for Link Analysis. SIGIR ’01, pp. 258-266.

[Ng 01.2] Andrew Y. Ng, Alice X. Zheng, Michael I. Jordan. Link Analysis

Eigenvetors and Stability. IJCAI ’01.

135

[Nelson 92] Theodor Holm Nelson. Literary Machines 91.1, 1992.

[Oclc 01] http://wcp.oclc.org/stats/size.html

[Oetiker 01] Tobias Oetiker. The Not So Short Introduction to LaTeX 2e.

http://www.ctan.org

[Page 98] Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd.

The PageRank Citation Ranking: Bringing Order to the Web.

http://www-db.stanford.edu/ backrub/pageranksub.ps

[Penrose 91] Roger Penrose. The Emperor’s New Mind: Concerning Computers,

Mind, and the Laws of Physics, Penguin, Jan 1991.

[Pettengill 95] R. Pettengill, G. Arango. Four Lessons Learned from Managing

World Wide Web Digital Libraries. Digital Libraries ’95 : The Second

Annual Conference on the Theory and Prctice of Digital Libraries,

Jun 1995, pp. 177-180.

[Petzold 99] Charles Petzold. Programming Windows, Fifth edition, Microsoft

Press, 1999.

[Phelps 98] Thomas Arthur Phelps. Multivalent Documents: Anytime, Any-

where, Any Type, Every Way User-Improvable Digital Documents

and Systems. Ph.D. Thesis, Department of Computer Science, Uni-

versity of California, Berkeley, 1998.

[Pirolli 96] Peter Pirolli, James Pitkow, Ramana Rao. Silk from Sow’s Ear: Ex-

tracting Usable Structures from the Web. CHI

136

[Pitkow 97] James Pitkow, Peter Pirolli. Life, Death, and Lawfulness on the Elec-

tronic Frontier. CHI 97, pp. 383-390.

[Pitkow 96] James E. Pitkow, R. Kip Jones. Supporting the Web: A Distributed

Hyperlink Database System. WWW5, 1996.

http://www.image.fr/Multimedia/www5cd/www396/overview.htm

[Reckdahl 97] Keith Reckdahl. Using Imported Graphics in LaTeX 2e.

[Rissanen 89] J. Rissanen. Stochastic Complexity in Statistical Inquiry, World Sci-

entific Series in Computers Science, Vol. 15, World Scientific, Singa-

pore, 1989.

[Rafiei 00] Davood Rafiei, Alberto O. Mendelzon. What is this Page Known for?

Computing Web Page Reputations. WWW9, 2000, pp. 823-835.

[Rafiei 01] Alberto O. Mendelzon, Davood Rafiei. What do the Neightours

Think? ComputignWeb Page Reputation.

[Robertson 93] George G. Robertson, Stuart K. Card, Jock D. Mackinlay, Infor-

mation Visualization Using 3D Interactive Animation. CACM, April

1993, V.36, No.4, pp.57-71.

[Röscheisen 95] Martin Röscheisen, Christian Mogensen, Terry Winograd. Beyond

Browsing: Shared Comments, SOAPs, Trails, and On-line Commu-

nities. WWW4, 1995.

[Ruby] Ruby Scripting Language: http://www.ruby-lang.org

[Salton 75] Gerard Salton. A Theory of Indexing, regional Conference Series in

Applied Mathematics, SIAM, 1975.

137

[Salton 89] Gerard Salton. Automatic Text Processing, Addison-Wesley, 1989.

[Satyanarayanan] M. Satyanarayanan. Pervasive Computing: Visionand Chal-

lenges. IEEE Computer?

[Semantic] Semantic Web. http://www.w3.org/2001/sw

[Shneiderman 88] Ben Shneiderman (Editor). Hypertext on Hypertext, Hyperties

disk with 1M byte data and graphics incorporating. CACM, July

1988.

[Shneiderman 00] Ben Shneiderman. Universal Usability. CACM, May 2000,

Vol.43, No.5, pp.84-91.

[Silber 00] H. Gregory Silber, Kathleen F. McCoy. Efficient Text Summarization

Using Lexical Chains. IUI 2000, pp.252-255.

[Simon 96] Richard Simon. Win 32 programing, API Biblle, Waite Group Press,

1996.

[Simmonson 98] J. Simmonson, D. Berlean, X. Zhang, M. Xie, and H. Vo. Version

Augmented URI’s for Refernece Permanence via an Apache Module

Design. WWW7, April 1998, pp.337-345.

[Third 99] Third Voice, 1999. http://www.thirdvoice.com

[Thomas 01] Programming Ruby: The Pragmatic Programmer’s Guide, 2001,

Addison-Wesley.

[Travers 69] J. Travers and S. Milgram. An Experimental Study of the Small

World Problem. Socimetry 32, 425, 1969.

138

[Turing 50] Alan Turing. Computing Machinery and Intelligence, Mind, 59(236)

pp.433-460, 1950.

[Vitali 95] F. Vitali, D.G. Durand. Using Versioning to Provide Colaboration

on the WWW. WWW4, Dec 1995, pp.37-50.

[Web] http://www.mit.edu/people/mkgray/net/web-growth-

summary.html

[Whitehead 97] E.J. Whitehead Jr. An Architectural Model for Application Inte-

gration in Open Hypermedia Environment. ACM Hypertext Confer-

ence, Apr. 1997. pp. 1-12.

[Whitehead 98] E.J. Whitehead Jr., M. Wiggins. WEBDAV: IETF Standard for

Collaborative Authoring on the Web. IEEE Internet Computing,

2(5), 1998, pp.34-40.

[WindRiver] WindRiver corp. http://www.windriver.com/products/html/os.html

http://www.windriver.com

[Wood 00] L. Wood et al. (eds.) Document Object Model (DOM) Level 2 Spec-

ification Ver. 1.0. CR, W3C, Mar 2000.

http://www.w3.org/TR/2000/CR-DOM-Level-2-20000307

[Xdrive] Xdrive. http://www.xdrive.com

[Yee 98] K.-P. Yee. CritLink. Better Hyperlinks for the WWW. Submitted to

Hypertext ’98, Apr. 1998.

http://crit.org/

http://crit.org/˜ping/ht98.html

139

[Zellweger 98] Polle T. Zellweger, Bay-Wei Chang, Jock D. Macinlay. Fluid Links

for Infomred and Incremental Link Transitions. Hyptertext ’98, Jun.

1998, pp. 50-57.

[Zipf 49] Zipf, H. Human Behavior and the Principle of Least Effort, 1949,

Addison-Wesley, Cambridge, MA.

140

