
Supporting a Flexible Parallel Programming

Model on a Network of Non-Dedicated

Workstations

by

Shih-Chen Huang

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2000

Approved:

Zvi M. Kedem

c© Shih-Chen Huang

All Rights Reserved, 2000

To my parents and my wife

iii

Acknowledgements

I would like to express my deepest gratitude to my advisor, Professor Zvi Kedem,

for his guidance, support, and encouragement over these years. After leaving school

for four years, he helped me to finish my study and made this dissertation possible.

I am especially indebted to Arash Baratloo who brought to my attention the

starvation problem in my system. His insights and suggestions have greatly im-

proved the content and clarity of this dissertation.

Special thanks to my committee members, Benjamin Goldberg and Ernest

Davis, for giving me many helpful suggestions.

I awe many thanks to my colleagues at AT&T, especially to Wang Tsai and

T.C. Yu. Without their encouragement, I will not have the courage and strength

to come back to school and finish my study.

This work is dedicated to my family, for their love. I would like to thank my

parents and my sister for their unconditional support over the past ten years, both

financially and morally. I am much obliged to my dear wife for her understanding

iv

and encouragement during these years. I would also like to take this opportunity to

thank her for taking good care of our lovely kids. I would love to share everything

with her in my life.

v

Preface

A network of non-dedicated workstations can provide computational resources at

minimal or no additional cost. If harnessed properly, the combined computational

power of these otherwise “wasted” resources can outperform even mainframe com-

puters. Performing demanding computations on a network of non-dedicated work-

stations efficiently has previously been studied, but inadequate handling of the

unpredictable behavior of the environment and possible failures resulted in limited

success only.

This dissertation presents a shared memory software system for executing pro-

grams with nested parallelism and synchronization on a network of non-dedicated

workstations. The programming model exhibits a very convenient and natural

programming style and is especially suitable for computations whose complexity

and parallelism emerges only during their execution, such as in divide and con-

quer problems. To both support and take advantage of the flexibility inherent in

the programming model, an architecture that distributes both the shared memory

vi

management and the computation is developed. This architecture removes bottle-

necks inherent in centralization, thus enhancing scalability and dependability. By

adapting available resource dynamically and coping with unpredictable machine

slowdowns and failures, the system also supports dynamic load balancing, and

fault tolerance—both transparently to the programmer.

vii

Contents

Dedication Page iii

Acknowledgements iv

Preface vi

List of Figures xii

1 Introduction 1

1.1 Challenges . 2

1.2 Features . 4

1.3 Contributions . 7

1.4 Outline of the Dissertation . 8

2 Key Concepts and Techniques 10

2.1 Network of Non-dedicated Workstations 11

viii

2.2 Abstract Execution Model . 12

2.3 Nested Parallelism . 13

2.4 Nested Two-phase Idempotent Execution Strategy 14

2.5 Prioritized Eager Scheduling . 16

2.6 Synchronization . 19

2.7 Randomized Computing . 20

3 Programmer’s Model 23

3.1 Syntax and Semantics . 24

3.1.1 Expressing Parallelism . 24

3.1.2 Types of Variables . 27

3.1.3 Expressing Synchronization 28

3.2 Memory Coherence . 30

3.2.1 Shared Memory Access . 30

3.2.2 Synchronized Memory Access 31

3.3 A Sample Program . 32

4 System Architecture 35

4.1 Execution Strategy . 35

4.2 Architecture Overview . 39

4.3 Execution Management . 41

ix

4.4 Memory Management . 45

4.5 Synchronization Management . 49

5 Fault-tolerant Computing 60

5.1 Types of Failures . 61

5.2 Fault-tolerant User Jobs . 63

5.3 Fault-tolerant Memory Manager . 64

5.4 Fault-tolerant Coordinator . 65

5.5 Fault-tolerant Synchronization Manager 68

6 Experiment Results 71

6.1 Performance Characteristics . 72

6.2 Ray Trace . 78

6.3 Quicksort . 83

6.4 Experiments Conclusion . 86

7 Related Research 88

7.1 Relevant Fields of Study . 88

7.1.1 Parallel Programming Languages 89

7.1.2 Parallel Computing in a Distributed Environment 92

7.1.3 Memory Coherence Models of the Shared Memory 95

7.1.4 Fault-tolerant Computing 97

x

7.2 Relevant Systems . 98

7.2.1 CC++ . 98

7.2.2 Dome . 99

7.2.3 Calypso . 100

7.2.4 Chime . 103

8 Conclusions 106

Bibliography 109

xi

List of Figures

2.1 Abstract parallel machine versus actual execution environment . . . 12

3.1 A sample program employing nested parallelism 25

3.2 A quicksort program . 33

4.1 Components in the system . 40

4.2 Execution snapshots . 43

4.3 Accessing shared memory . 46

4.4 Creating child tasks and serving shared memory 47

4.5 Synchronization snapshots . 51

4.6 A program that could cause starvation 56

6.1 Create 1000 jobs using different number of parallel blocks 74

6.2 Time to create 1000 jobs . 75

6.3 Ray trace using PVM . 80

6.4 Ray trace using our system . 81

xii

6.5 Ray trace using Calypso . 82

6.6 Quicksort experiments . 85

xiii

Chapter 1

Introduction

There are many benefits for using workstations (including personal computers)

over mainframes or specialized parallel computers for computationally demanding

parallel applications. Workstations are widely available, much more cost effective,

and easier to maintain. However, networking many workstations together does

not give users the computational power equivalent to mainframe computers unless

the parallel programs can be executed on the network efficiently, utilizing all the

available resources. It is especially advantageous to use distributed, non-dedicated

workstations that are shared by different users, since these workstations can pro-

vide computational resources at minimal or no additional cost. Non-dedicated

machines are shared by different users whom may run local applications. A typical

example is the workstations used in business or university environment where they

1

spend a lot of time idling or running non-CPU intensive tasks like web browsing.

The combined computational power of these otherwise wasted resources can out-

perform mainframe computers if they are harnessed properly. This observation

leads us to search for a way of doing demanding computations on top of a network

of non-dedicated workstations efficiently. Research with similar goal has previously

been undertaken, but with limited success. We plan to advance the state of the

art in this area.

1.1 Challenges

There are many challenges in designing an efficient system on top of a network of

non-dedicated workstations. A critical difficulty is that the execution environment

is often unreliable and unpredictable. The environment is often asynchronous,

failure prone, and have a dynamically changing computing environment, as we

explain next.

• The environment is asynchronous: The network often consists of machines

with varying configurations. Even workstation of the same model may have

different performance characteristics since they may have different amount of

RAM, different CPU speed, and different disk/virtual memory size. There-

fore, workstations perform at different effective speeds.

2

• The environment is failure prone: The execution environment is vulnerable to

failures. Non-dedicated workstations are subject to being turned off, discon-

nected from the network, or run out of resources since other users have access

to the workstations. A collection of networked workstations used by people

in a building is a typical example of a local area network of non-dedicated

workstations. In such environment, the individual user of each workstation

may start his/her local computation and cause failure of the global paral-

lel application. The system must ensure that withdrawal of some individual

machines from the parallel computation will not cause the entire program to

abort. The computation should quickly re-adjust itself.

• The environment changes dynamically: The non-dedicated nature of the sys-

tem allows workstations to be shared by other users, who may claim the

computational resources of the workstations at any time. This results in

an unpredictable, dynamically changing environment, in which the resources

available to our system varies from time to time. This encompasses the en-

vironment that is asynchronous and failure prone, since the availability of

the resources causes machines to execute programs in our system at different

effective speed and to become intermittently available to the system. Hence,

the system must adapt to the continuously changing environment to utilize

all available resources.

3

Beside the challenges of the execution environment, the programming model

also needs to be considered. Many of the programming models for distributed

platform require the programmers to take care of many tedious details when writing

distributed programs, including messaging, data and computation distribution,

process control, fault handling, etc. These tasks make the user programs difficult to

construct and very complex. A well-designed programming system should provide

a simple yet flexible parallel programming models, hiding many details that reflect

the underlying execution environment. Failures and dynamic load balancing should

be handled transparently by the runtime execution system. More importantly,

this programming model must be feature rich. Synchronization and structured

parallelism with nested jobs that allows any jobs to create additional parallel jobs

should be included.

1.2 Features

Our goal is to provide programmers a flexible, easy-to-use parallel programming

model and a high performance execution environment that can carry out parallel

programs written for such model over a network of non-dedicated workstations.

To achieve this goal, our system must be dependable, efficient, and be able to the

adapt to the dynamically changing environment.

The features of our system is summarized below:

4

• Simple, easy-to-understand parallel programming model We augmented

C/C++ language with simple parallel constructs to make the parallelization

of a sequential program easy. The parallel programming model uses virtual

shared memory to hide the actual memory structure of the underlying envi-

ronment, adds few simple keywords to construct and to control structured

parallelization, and includes some advanced features like nested parallelism

and synchronization.

• Separation of logical parallelism from physical execution environment Our

system provides an ideal parallel machine for the programmers to write their

program on. Such ideal machine has unlimited number of processors, a glob-

ally shared memory, and never fails. In reality, the targeted environment is a

collection of non-dedicated workstations with limited computational resource

and prone to failure. Our system bridges the gap between the ideal machine

and the actual execution environment transparently and efficiently, and does

it without modification of the underlying operating system.

• Nested parallelism Nested parallelism allows programs to explore additional

parallelism within a parallel block. Such parallelism allows very natural and

convenient programming style and is especially suitable for computations

whose complexity and parallelism emerge during their execution, like parallel

quicksort where the pivot position cannot be determined in advance. Our sys-

5

tem supports nested parallelism with arbitrary parallelism depth by explicit

definition and/or by recursion.

• Synchronization Our system provides two types of synchronization, implicit

barrier synchronization at the end of each parallel block, and explicit locking

mechanism specified by the programmers. Synchronization is a convenient

vehicle for parallel jobs to exchange data and to control the execution se-

quences. We provide simple lock/unlock construct for users to guard the

critical section.

• Dynamic load balancing Our system dynamically distributes the work of a

parallel program over a network of asynchronous workstations. Although

these workstations have different computational resources available as we

stated earlier, the system can utilize all available resources to achieve high

performance. The unique prioritized eager scheduling algorithm allows us to

find available resources and to distribute dynamically created parallel jobs

efficiently.

• Adaptability Our system is able to adapt the dynamically changing computa-

tional environment in a network of non-dedicated workstations. Workstations

can be added to or removed from the system during the execution of a parallel

program. Slow machines or workstations with little computational resources

6

do not become the performance bottleneck.

• Fault tolerance The execution of user programs are resilient to failures in our

system. The system allows all but one machines to fail while maintaining

a correct computation of the user program. Fault-tolerant features are an

integral part of our system, without additional fault detection and recov-

ery mechanisms like checking points and roll back. These is no additional

overhead if no failures actually occurred.

1.3 Contributions

Our work is a continuation of research reported in [29, 20, 4, 39, 37, 35, 36, 38, 40].

We developed several unique features in our system:

• Novel techniques to handle nested parallelism and synchronization Several

new techniques are developed in our system in order to cope with nested

parallelism. These techniques include nested two-phase idempotent execution

strategy and prioritized eager scheduling algorithms. We also developed a

locking mechanism in a fault-tolerant system without using traditional check

pointing and roll back techniques. Duplicated copies of lock requests are

allowed, and techniques are developed to detect and solve duplicate lock

problems, including variable versioning and request sequence.

7

• Well-distributed execution environment We developed a novel technique that

allows user jobs to turn into memory management servers while they are

waiting for their children jobs to finish. Hence the execution environment

in the computational and memory management functionality is almost fully

distributed. The result is high degree of scalability, more flexible and adaptive

load balancing, and higher degree of fault masking. Although scheduling and

synchronization services are centralized, they provide essential functions that

are not computational intensive and have low network traffic.

• Fault-tolerant services Beside failure masking of the user programs, we devel-

oped fault tolerant techniques for each of our system modules Unlike some

systems where all the essential system functions reside on a single machine

and cannot fail, our system modules can reside on any machines and tolerate

failures. Recovery of the failed modules is automatic and invisible to the

users.

We provide a detailed comparison to related research in Section 7.2.

1.4 Outline of the Dissertation

This dissertation presents the features, design, implementation, and experimental

results of our system. It is organized as follows:

8

Chapter 2 describes the key concepts and techniques used of this research.

Chapter 3 introduces the programming model, i.e. the syntax and semantics

used to express parallelism. An example program, with the step-by-step par-

allelization of the sequential quicksort algorithm, is included at the end of this

chapter.

Chapter 4 discusses the system architecture. In particular, the various man-

agement functions and execution strategies are described in detail.

Chapter 5 introduces the failure model and fault tolerant techniques to mask

failures in various system components.

Chapter 6 presents the experimental results.

Chapter 7 describes several aspects of parallel computing and distributed sys-

tems related to the system.

Chapter 8 summarizes our work.

9

Chapter 2

Key Concepts and Techniques

In this chapter, we will discuss the key concepts and techniques used in our system.

Some of these concepts and techniques were developed in previous research [29,

20, 4, 39, 37, 35, 36, 38, 40], including the abstract execution model, two-phase

idempotent execution strategy, and eager scheduling. However, the introduction of

the new features in our system like nested parallelism and synchronization make

these techniques inadequate. We will present both the original ideas and the

improved techniques used in our system when we encounter them in the following

sections.

10

2.1 Network of Non-dedicated Workstations

We concisely restate the properties of the target platform due to its importance

to our design. A network of non-dedicated workstations is a set of workstations

connected by a network. We assume that the workstations are homogeneous in

terms of machine code compatibility and operating system, i.e. they can all execute

program codes generated for a specific target, like the Intel x86 family machines

running Linux. These workstations, although homogeneous in machine code and

operating system, may have different configurations for each machine like CPU

speed and memory size. Hence they are not uniform in processing speed.

Non-dedicated workstations are shared by different users. Users of these ma-

chines may run various applications ranging from text editor to complex math-

ematical calculation. Sharing workstations with other user applications causes

the workstations to be only partially or transiently available to our system. Fur-

thermore, these machines may become totally unavailable when being turned off,

disconnected from the network, run out of resources, or other mishaps. Hence,

network of non-dedicated workstations is an unpredictable, dynamically changing

environment where the load, resources, and availability of each workstation vary

from time to time.

11

2.2 Abstract Execution Model

We provide an abstract parallel machine with shared memory to the programmer,

so the users are not concerned with message passing, data and execution distribu-

tion, machine failures, and the configuration of the system. The actual execution

environment, a network of distributed non-dedicated workstation, is different from

the abstract parallel machine, as illustrated in figure 2.1. This abstract execu-

tion model separates the actual execution environment of the parallel program

from the parallel machine presented to the programmer. In fact, programs written

for shared memory parallel machine is expected to be executed on a distributed

platform.

CPU CPU

Mem

CPU

Mem

CPU

Mem

CPU
CPU

Shared Memory

Network

Actual Execution Enviroment

Non-dedicated workstations

Abstract Parallel Machine

Figure 2.1: Abstract parallel machine versus actual execution environment

We consider a parallel program as a collection of sequential jobs. Each job

is an abstract execution unit specified by the programmer. Task is the physical

execution module that executes a single job. A job can be executed multiple

times (by several tasks) and produces the correct result, thanks to the idempotent

execution strategy described in section 2.4. The benefit of separating jobs and

12

tasks is that abstract jobs never fail, even though the corresponding tasks are

subject to failure.

2.3 Nested Parallelism

The fundamental execution construct is a sequential job that can create a set

of concurrently running “sub-jobs” during the execution. A sub-jobs is actually

another sequential job, which itself is capable of creating sub-sub-jobs, and so

on. This kind of parallel execution mechanism is referred to as nested parallelism.

Besides being a programming abstraction, nested parallelism is useful for effective

management at runtime. For instance, the following criteria can be used to manage

jobs dynamically and transparently:

• intermediate computation results

• availability of resources acquired dynamically from a distributed environment

Nested parallelism may also be presented in “parent and child” relationships

among concurrently running sequential jobs. At any point of its execution, a

sequential job can initiate a set of concurrently running jobs, referred to as children

of the parent job that initiates them. In general, a parent job needs the results

of its children jobs to resume its execution. Thus, a parent job waits while its

children are running.

13

When the children start running, they “inherit” the state of the shared memory

“known” by the parent job since they are sub-jobs of the parent job. During the

execution, children jobs only modify their “local copy” of the shared variables. In

addition, certain synchronization operation can also take place that allows instant

access to synchronized variables. When all children finish execution, their updates

are applied to the state of the memory of the parent, thus “reporting” to the parent

the results of the computation “assigned” to them. Then, the parent resumes

running again. The computation terminates when there are no running or waiting

jobs.

2.4 Nested Two-phase Idempotent Execution Strategy

An action is idempotent if the result of multiple execution is the same as being

executed once. For example, a function that returns the nth prime number, is

idempotent. We use idempotent in a related sense that multiple partial execution

of an action can coexist as long as one of the execution finishes.

Two-phase Idempotent Execution Strategy (TIES) [6] allows multiple, possible

partial execution of a job to produce the same result as if the job was executed

exactly once. TIES divides execution into two phases: the execution phase and

the update phase. In the execution phase, a job is executed with its updates to the

shared memory saved in an update buffer. There may be several tasks working on

14

the same job in this phase, however, only one copy of the updates is kept at the

end of the job execution. The result of other tasks running the same job, which

may be different, is ignored. The shared memory is read-only during this phase

and no updates are applied to it. After all jobs finish the execution phase, the

update phase begins. During the update phase, the buffered updates created in

the execution phase are applied to the shared memory. The shared memory is

write-only during this phase. Each phase in TIES is idempotent since the input

and output sets are disjoint. The overall execution using TIES is idempotent if the

executions of the two phases do not overlap, i.e., barrier synchronization is used

in each phase.

The introduction of nested parallelism creates a new challenge to the two-

phase idempotent execution. A job may create additional children jobs during the

execution phase. The execution of the parent job becomes non-idempotent if these

children jobs update shared memory. To solve this problem, we introduce Nested

Two-phase Idempotent Execution Strategy (NTIES) to handle nested idempotent

execution. NTIES works the same way as TIES in that it divides execution into

two idempotent phases, however the scope is different. In a non-nested parallel

execution, all parallel jobs running at the same instance are siblings within the

same parallel block. For nested parallel execution, jobs running at the same time

may come from different parallel blocks, so the idempotent strategy applied to each

15

parallel blocks individually, with barrier synchronization among sibling jobs only.

That is, each time a parent job creates a new set of children jobs, the two-phase

execution strategy is applied to the set of children jobs.

Nested two-phase execution is not idempotent since the children jobs’ update

phase is executed within parent job’s execution phase, and this update phase writes

data to the shared memory. To solve this problem, the children jobs do not update

the shared memory pages directly when they enter the update phase. Instead,

their updates are stored to the parent’s update buffer and treated as part of the

parent updates in the execution phase. These updates will be applied to the

shared memory after the parent job enters the update phase. The execution of a

parent job is idempotent because all shared memory updates of its children jobs

are integrated with its execution result without immediate update to the shared

memory.

2.5 Prioritized Eager Scheduling

Eager scheduling algorithm [6] is similar to the workstation/job style scheduling

algorithms used in PVM [23], MPI [27], and Linda [13]. These algorithms assign

jobs that require services to available workstations in the system dynamically. The

unique feature of eager scheduling algorithm is that it schedules a job eagerly to

multiple available workstations when the system has more available workstations

16

than jobs. Eager scheduling algorithm and TIES work together to allow a system

to mask machine failure and slowdown gracefully. Transient and slow machines

can be used effectively, and the system can integrate newly available machines into

the running environment easily.

The eager scheduling algorithm is not well suited for nested parallel programs

because it does not handle the dynamic job creation very well. Non-nested parallel

execution has only one level of parallelism. At the beginning of a parallel block,

the number of jobs to be created in the entire system is known and fixed until the

end of the parallel block. Available workstations are divided evenly among the

jobs, with each machine running one task at a time. For example, if there are two

jobs and six available workstations, then each job will have three tasks working

for it. In contrast, nested parallel execution allows additional children jobs to be

created during the execution of a parallel block so the number of jobs in the system

varies. New jobs are created and destroyed dynamically when some children jobs

create additional nested parallel jobs.

To handle the scheduling properly, we include the notion of priority for each

task in our system. Priority is used to decide which task to create or suspend during

execution. Tasks with lowest priority will be suspended when the system runs out

of resources, or when a task with higher priority enters the system. Assigning

priority to tasks allows the scheduling algorithm to use available workstations

17

more effectively. When a new job is added to the system, the scheduling algorithm

creates a new task with highest priority and assigns it to the workstation running

the lowest priority task. The workstation suspends the low priority task and start

running the higher priority task. Additional tasks executing the same job are

created one-by-one with decreasing priority. That is, the first task executing a job

in the system is given to priority one. The second task is created with priority two,

so on so forth. The scheduling algorithm continues to create new tasks and suspend

low priority tasks aggressively until the newly created task has lower priority than

all the running tasks.

To illustrate the scheduling algorithm, let’s look at an example. In an under-

load system with four workstations and only one job, the scheduling algorithm

creates four tasks executing the job, one for each workstation. These tasks are

assigned with priority one to four as described above. Later on when another job

is introduced into the system, two tasks executing the new job will be created.

The old tasks with priority three and four will be suspended to yield to the new

tasks with priority one and two. As the result, the system divides the available

machines evenly between the two jobs.

18

2.6 Synchronization

Synchronization in our system is limited to variables associated with the synchro-

nization instead of the entire shared memory. That is, only variables associated

with synchronization are up to date after a synchronization request. Synchroniz-

ing the entire share memory requires taking a snapshot of the system, which is

very expensive and especially difficult in our system since updates to the shared

memory are not applied to the shared memory directly.

The two-phase idempotent execution defers the updates to the shared memory

during the execution to the update phase. However, synchronized operations re-

quire the synchronized variables to be updated immediately so that different jobs

can communicate with each other. That is, even if both jobs are in execution phase,

the updates to the synchronized variables of one job must be made available to the

other job after synchronization. In order to preserve the idempotent characteristic

of the execution, the system have to maintain several versions of the synchronized

variables. In particular, the before and after images of the synchronized variables

are saved for each critical section. Further execution of the same job will refer to

the before image of the synchronized variable to maintain the correct execution.

The separation of abstract jobs and physical tasks in our system introduces

additional problems with synchronization. Mutual exclusion and synchronization

semantics are defined in terms of jobs at the user level, but there may be several

19

tasks executing a job in the system. Hence, we have to redefine the synchronization

operation for tasks. For example, if a task gets the lock, all tasks executing the

same job own the lock. Tasks executing the same job will be able to enter the

critical section without being blocked. The lock is considered released after any

one of these task release the lock. Thus, other jobs may acquire the same lock

while some of the tasks are still in critical section. We claim this is the correct

behavior since the outcome of the critical section is already known at this point;

all further execution of the same job can be safely ignored. The detail discussion

of synchronization operation in terms of tasks is given in section 4.5.

Despite all the complexities, extending the idempotent execution to allow ex-

plicit synchronization introduces desirable properties. The synchronization be-

comes non-blocking since the abstract jobs will never fail (although the actual

running tasks may). The system will never be blocked due to failures of jobs that

hold locks, as instances of jobs will be initialized automatically to mask the slow

or failed tasks.

2.7 Randomized Computing

Randomization is a very powerful algorithmic technique. Unfortunately, random-

ness cause many problems for idempotent executions in a nested parallel environ-

ment.

20

Randomized programs can be executed in an idempotent fashion, as long as

the system maintains the “exactly once” semantic. Due to the randomness effect,

tasks executing the same job may produce different results. The system achieves

exactly once semantic by killing all tasks but one that completes.

Nested parallelism increases the difficulty in handling randomness. Children

tasks are valid only if the parent task that spawns them is non-faulty since each

parent task may be in different state when it reached parallel block. The children

tasks will have to be killed once their parent task failed since the computation

result may not be repeatable.

The situation is even worse when the number of jobs to create depends on the

current state of execution. For example, a job may decide to create hundreds of

children jobs or no jobs at all depending on some random variables. Furthermore,

each of the children jobs may decide to create more jobs randomly. Hence, one

execution of the job creates hundreds of jobs while other execution of the same

job creates no children jobs at all. The system will perform poorly in such case as

hundreds of potentially useless jobs are running, consuming precious resources.

It is also problematic to execute synchronization operations in programs employ

randomization. Task failures may cause domino effect and force the system to

restart many non-faulty tasks since the execution results may not be repeatable.

For example, if task T2 acquires a lock after task T1 released it, then T2 becomes

21

reliant on T1. Task T2 will be abandoned if T1 fails because different execution will

yield different result, so the state of T1 cannot be reconstructed. This makes the

system unreliable since a failure may cause the entire program to restart.

Due to these reasons, the support of the randomization in our system is lim-

ited. The only randomized programs allowed are these without nested parallelism

and synchronization. The ray-tracing program in our experiments uses random

numbers and fits in this category.

22

Chapter 3

Programmer’s Model

To ease the work of application programmers, an abstract execution model of a

virtual shared memory parallel machine is provided. This virtual machine supports

globally shared memory and has an unlimited number of non-failing sequential

processors. These processors do not operate in lockstep, instead, they can be

synchronized by a variant of a barrier construct or locking. A programmer is not

concerned with issues like fault tolerance, load balancing, etc. Programs with

rich parallel constructs written for such an “ideal” machine could be executed

dependably on any unreliable distributed platform.

In this chapter, the programmer’s view of the system will be discussed. How-

ever, the actual execution environment which is invisible to programmers, is quite

different from the programmer’s view and will be discussed in detail in Chapter 4.

23

3.1 Syntax and Semantics

Our formal syntax extends that of Calypso [6] and supports the functionality which

is similar to that of the “parallel part” of CC++. (See related work in Section 7).

We found it more convenient to use a somewhat different syntax, but this is not

of inherent importance.

We start with C++ and augment it with new keywords like parbegin, parend,

and routine to express parallelism. The keyword shared is added to identify the

shared variables. Additional keywords are included for synchronization purposes:

sync t, lock, unlock, and assoc. We will describe these keywords in turn.

3.1.1 Expressing Parallelism

A compound statement bracketed by parbegin/parend declares a set of con-

current sequential jobs. This statement can be invoked “inside” another parbe-

gin/parend statement to provide nested parallelism.

Each parbegin/parend statement brackets a sequence of routine statements.

Each routine statement is a sequential program fragment resembling a procedure

with one positive integer parameter. During the execution, each routine will create

several children jobs, with their number specified by the parameter. Each such job

will have two parameters passed to it: width, the number of jobs created by this

routine; and id, the “serial number” among these jobs. The default width is

24

one, so routine and routine[1] are equivalent. Id starts with zero and ends with

width − 1. The statement parbegin routine[S1]; routine[S2]; . . .; routine[Sn];

parend creates j new jobs, where j =
∑n

i=1 Si. The parent job that reaches

the parbegin/parend block is suspended after creating the children jobs. The

execution resumes from the point immediately following parend after all the j

children jobs are terminated.

?

?

?

? ? ?

?

?

? ?

J1

J1

J1

J2

J2

J3

J4 J5 J6

J7 J8

1: main(){ // job J1
2: ... // sequential statements
3: parbegin
4: routine[1] { // job J2
5: int m=3; ... // sequential statements
6: parbegin
7: routine[m](int w, int i) { //J4, J5, J6
8: ... // sequential statements
9: }
10: parend;
11: ... // sequential statements
12: }
13: routine[1] { ... } // job J3
14: parend;
15: ... // sequential statements
16: parbegin
17: routine[1] { ... } // job J7
18: routine[1] { ... } // job J8
19: parend;
20: ... } // sequential statements

Figure 3.1: A sample program employing nested parallelism

For example, consider Fig 3.1. The program on the right defines the jobs shown

in the graph on the left. The horizontal bars indicate the parbegin or parend

statement, while the vertical lines indicate the jobs. This is the programmer’s

25

view of the execution—the actual execution will be very different, as we describe

in Chapter 4.

The execution starts with a single sequential job, J1. In lines 4 and 13, two

concurrent children of J1, namely J2 and J3 each with its own execution code, are

initiated. Job J1 waits while the children jobs are running. In job J2, additional

concurrent jobs are initiated inside its parallel block. At line 7, the routine[m]

statement initiates three jobs (m = 3), with identical execution code, but different

parameters are passed to them. Thus, jobs J4, J5, and J6 are passed the value

of 3 as the total number of “siblings,” and get their serial number as 1, 2, and

3, respectively. After all of J4, J5, and J6 complete at line 10, job J2 resumes its

execution at line 11. Similarly, job J1 resumes execution at line 15 after its children

J2 and J3 are completed at line 14. Subsequently, it initiates jobs J7 and J8, etc.

The routine statement has a parameter, like “m” above, which can be an

arbitrary expression computed at runtime. Its value could depend on, for instance,

the complexity of the problem that job J2 needs to accomplish (large problem

may benefit from more concurrent jobs to complete), and on the availability of

computational resources.

26

3.1.2 Types of Variables

There are three types of variables that can hold user data, namely globally shared

variables, synchronization variables, and non-shared variables. Variables declared

in the program are non-shared variables by default. Non-shared variables are only

visible to the job that defines them and cannot be accessed by other jobs.

The shared variables are declared only once in the program via the keyword

shared:

shared variable-declaration

Shared variables can be accessed by all jobs in the system during run-time. How-

ever, the updates to the shared variables do not propagate to other jobs until the

end of a parallel block. We will describe the precise semantics of the globally

shared variables later when the memory coherence model is introduced.

In addition to shared variables, there are also synchronization variables to con-

trol the execution sequence and to provide communication between jobs. The

synchronization variables are declared using keyword sync t:

sync t variable-declaration

The synchronization variables are used to guard mutually exclusive critical sec-

tions. Multiple critical sections guarded by different synchronization variables can

proceed in parallel while each synchronization variable allows only one critical

section to be executed at any time.

27

3.1.3 Expressing Synchronization

Synchronization provides another way to control the execution as well as commu-

nication between the jobs. In our system, a compound statement bracketed by a

pair of lock/unlock defines a synchronization block:

lock synchronization variables

critical section

unlock

There can be only one synchronization block executing at any point in time for

each synchronization variable. Synchronization blocks can be nested but should be

done carefully as it may introduce deadlock easily. Parallel statements like parbe-

gin/parend inside a synchronization block should be avoided since this introduces

a new set of problems. The following questions have to be answered: should the

children jobs inherit the lock? What happens when the children jobs try to access

the shared variable associated with the synchronization variable? In our system,

if there are parallel blocks inside the synchronization block, then all the children

jobs can access the shared variables associated with the lock. However, they do

not own the lock and they cannot acquire or release the lock.

Each synchronization variable is associated with one or more shared variables.

As we will see later in this section, we use entry consistency memory coherence

model, which requires all shared variables that require synchronization to be as-

28

sociated with a synchronization variable. Associating shared variables with a syn-

chronization variable is done by using the assoc() routine:

assoc(synchronization variable, shared variables ...)

The associating shared variable cannot be a pointer, but it can be an array element

like A[0]. A shared variable can associate with only one synchronization variable.

A synchronization variable can associate with many shared variables by invoking

the assoc() routine multiple times. Once the synchronization variable is used in

a critical section, the association between the synchronization variable and the

associated shared variables cannot change.

By associating shared variables to synchronization variables, the associated

shared variables are always synchronized inside the critical section. The current

value of associated shared variables are acquired from the system during the lock

operation. Unlock operation writes the updated variables back to the system. Ac-

cessing associated shared variables outside the synchronization block is prohibited.

Synchronization blocks with different lock variables can co-exist at the same

time since they do not operate on the same shared variables. For example, if there

are two different jobs entering synchronization block, one with synchronization

variable a and the other with synchronization variable b, then both jobs can enter

synchronization blocks since they will access different associated shared variables

without any conflict. In contrast, if both jobs want to enter synchronization block

29

with synchronization variable c, then one of them will be blocked.

3.2 Memory Coherence

A job can have access to the parameters passed to it, its own local variables, and the

variables declared as shared. A popular model for memory coherence is the release

consistency model [14], in which the global shared memory is not “continuously

updated,” but the updates are applied only at specific, well-defined points in time

during the execution. Our memory access model is similar to release consistency in

that the shared memory is acquired at the beginning of a job execution and released

at the end. Detailed description of the popular memory consistency models is given

in section 7.1.3.

Explicit Synchronization operations use a different memory consistency model,

similar to the entry consistency model [10]. Shared variables that need to be

synchronized have to be specified explicitly. Only shared variables associated with

synchronization variables are synchronized inside a critical section.

3.2.1 Shared Memory Access

We think of a job as “working for” its parent and thus being “encompassed” by

it. Broadly speaking, the acquire/release operations by each job are done at the

beginning and the end of its execution and with respect to the state of the memory

30

of its parent. Thus, when a job is started, it obtains the state of the shared memory

which is known to its parent job. Referring back to Fig. 3.1, job J4 sees the updates

to the shared memory as applied by the (waiting) job J2, but J3 does not see these

updates.

During the execution of a job, the updates to the shared memory will be stored

locally. When all the children jobs complete their execution, the changes they

make to the shared memory are then applied to the shared memory as seen by their

parent. The parent then resumes its execution and updates to the grandparent

(if any) will be passed only after the parent completes. For updates, we have

selected the Common Concurrent-Read-Concurrent-Write semantics. This means

that shared variables can be read and written by all the sibling jobs at the same

time, however all the updates to the shared variable must be the same when they

are reported to the parent. Also, the updates to the shared variables are not

synchronized between sibling jobs without explicit synchronization operations.

3.2.2 Synchronized Memory Access

Shared memory accesses cannot be used for process communication or synchro-

nization between jobs since the shared variable updates are made available to the

parent after the job is done. In order to provide immediate data communication,

the system allows shared variables to be associated with synchronization variables.

31

The shared variables that are tied to a synchronization variable are synchronized

inside the critical section guarded by the corresponding synchronization variable.

Shared variables are synchronized only if they are inside a critical section that is

guarded by their associated synchronization variable.

3.3 A Sample Program

Figure 3.2 shows the source code of a parallel quicksort program. Several sequential

subroutines used by the program are not shown in the figure. The subroutine

findPivot() finds the pivot value and the partition() routine actually partitions the

problem according to the pivot.

To transform a sequential quicksort program into a parallel program in our

system, variables to be shared globally are chosen first. Since access to the shared

variables may be expensive in a distributed system, the number of shared variables

should be kept minimal. In quicksort, the only variable that needs to be shared is

the problem/solution array.

By adding parbegin/parend around the recursive function calls, the two sub-

problems are solved in parallel. These jobs are independent since each subproblem

takes a portion of the array without overlap. No explicit synchronizations are

required.

This example also shows how to pass additional arguments to the children jobs.

32

const int MaxSize = 160000; // problem size
const int BubbleThreshold = 1000; // solve using Bubblesort
shared {

int A[MaxSize];
int arg[4];

};

void bubblesort(start, end); // sort the problem using bubble sort
int findPivot(int, int, int); // select a pivot element
int partition(int, int, int); // divide A[] according to pivot
void quicksort(int start, int end)
{

if (end - start) < BubbleThreshold) {
bubblesort(start, end); return;

}
// partition the list and sort
int pivotPoint = findPivot(start, end, (start+end)/2);
int k = partition(start, end, pivotPoint);
// store function arguments for children in a shared array
arg[0] = start;
arg[1] = k - 1;
arg[2] = k + 1;
arg[3] = end;

parbegin
routine[2](int width, int id) { // run 2 routine in parallel

quicksort(arg[id*2], arg[id*2 + 1]);
}

parend;

arg[0] = arg[1] = arg[2] = arg[3] = 0; // reset argument array
}

}

// main program invoke quicksort after filling up the problem array
main() {

... // fill up the problem array
quicksort{0, MaxSize - 1);

}

Figure 3.2: A quicksort program

33

The routine function provides the parallelization width and id for each child. To

pass arguments to the children, the parent job prepares a shared array with the

arguments. The children jobs take the arguments from the array according to their

id’s. Since the parallelism is nested, this shared argument array can be used in the

subsequent calls to grandchildren and all the descendants. The children jobs reset

the argument arrays after use.

34

Chapter 4

System Architecture

We designed and implemented a software execution environment supporting the

programming and the abstract parallel execution model described in Chapter 3.

As for the underlying platform we chose a network of non-dedicated workstations.

To achieve dependable high performance, the features of our architecture include:

scalability, dynamic load balancing, and fault tolerance. The architecture of our

system is introduced next, emphasizing how it supports these goals.

4.1 Execution Strategy

The features will be supported by dynamically distributing all the work among the

available machines, replicating some of the work as appropriate. In our architec-

ture:

35

1. no machine will be (greatly) overloaded compared to other machines, thus

supporting scalability and load balancing

2. a machine will be able to do work already started by another machine, thus

supporting load balancing and fault tolerance.

We hasten to add that, as we see later, for a specific function, high-level schedul-

ing among available machines we have one dedicated coordinating module. How-

ever, as we will also see, it has little work to do and therefore it is not a bottleneck.

Also, its state can be reconstructed in case of its failure and thus fault tolerance

is maintained.

We start with a sketch of the execution of some specific program. The system

will view it as a set of jobs, with some dynamically maintained subset of them

executing at any time.

As described in Chapter 2, thanks to the idempotent execution strategy, a

job can have several identical executing copies in the system, while maintaining

exactly-once semantics. We referred to each of such copy as a task.

By extending the parent/child relation among jobs, we can define a parent/child

relationship among tasks. We will say that

T1 is a parent of T2 if and only if T1 is a copy of J1, T2 is a copy of J2, and

J1 is the parent of J2.

36

Note, that a task can have more than one parent. For instance, if J1 is the parent

of J2, T1 and T ′
1 are copies of J1, T2 is a copy of J2, then both T1 and T ′

1 are parents

of T2.

In the following, it is useful to consult Fig. 3.1 on page 25. Assume first that

there is no nested parallelism and there is only one task T1 executing the “main”

job J1. Assume that T1 spawns children tasks T2 and T3. Both should inherit

the state of the shared memory of T1 when they are spawned. When the children

start executing, they do not know the state of the shared memory and will rely on

their parent T1 who has a complete set of shared variables to provide it to them.

Whenever a child task touches a shared page for the first time, the system requests

and obtains this page from the parent. The child executes on its local copy, and at

the end of the computation returns the changes to the parent. The parent accepts

the results of the first completed task for each job and then merges all the updates

once the execution of all the children is completed. This exploits basic mechanisms

employed in running non-nested parallel programs. However, nested parallelism

makes the situation more complex than in a non-nested parallelism.

First, in a non-nested parallel program there is only one parent task and only

one level of parallelism and thus the (single, system-wide) parent task always has

a complete master set of values for all shared of variables. (The parent was the

main task, which started with some, maybe system default, values for all shared

37

variables.) In a nested parallel program, a child task could also be a parent task

for other tasks. Task T2, for instance, may need to supply data to its own child,

task T4, but T4 may need data not used by T2. Thus T2 may not be able to serve

the needs of its child directly.

Second, in nested parallel programs multiple copies of a parent task may exist.

Suppose that T1 spawns two copies T2 and T ′
2 (of J2). It is possible that T2 also

spawns copies of its children, that is T4, T5, and T6. T2 could service the memory

requests of T4. But, another case is possible too. Suppose T ′
2 also spawns children

copies T ′
4 , T ′

5, and T ′
6. Now, both T2 and T ′

2 are parents of all of T4, T ′
4, T5, T ′

5,

T6, and T ′
6. At the time T2 and T ′

2 spawn their children, the state of the shared

memory is identical in both, as they are running identical jobs. (However, jobs

must be deterministic, as we discussed in Section 2.7.) Therefore, each of them

can serve any subset of T4, . . . , T ′
6, enhancing scalability and fault tolerance, as

the shared memory needed may be distributed on several machines. This extra

flexibility benefits performance too. For instance, if T2 and T4 run on the same

machine and T ′
2 and T5 run on another machine, it may be appropriate for T2 to

serve the memory requests of T4, and for T ′
2 to serve the memory requests of T5.

This richness in structure adds to the complexity of the design but makes

the execution more flexible, and increases scalability, load balancing, and fault

tolerance.

38

4.2 Architecture Overview

The system is divided into two parts, the set of user tasks to be executed and the

management services that support the execution of these tasks. The management

services include memory management , execution management, and lock manage-

ment . Similar to the execution of the underlying application program, the memory

management and execution management are distributed. In contrast, lock man-

agement is centralized to improve performance. The lock management provides

synchronization and is discussed in Section 4.5.

Memory management services have logical structure, supporting the execution

of a specific program, are shown in Fig. 4.1. They are responsible for handling

shared memory requests of the tasks while maintaining a coherent view of the

distributed shared memory. The memory managers are not bound to machines,

instead they are created according to the dynamic evolving nested parallel program

structure. That is, there may be zero or many memory managers in one machine,

but there is at least one memory manager for each set of children jobs.

Execution management has physical structure, supporting the specific set of

networked machines participating in the computation. Each execution manager

is bound to a machine, managing the progress of tasks running on local machine

as well as cooperating with other machines to support load balancing and fault

tolerance.

39

In general, a task that was started but not finished, is either running, waiting

(for completion of its children execution), or suspended (to allow a task of higher

priority to execute, with the suspended task “resurrected,” if for instance, its

completion is needed to mask faults). While it is waiting, a task becomes a memory

manager for its children tasks, but in fact no children need to be assigned to it for

servicing requests.

Memory
Manager

Memory
Manager

Memory
Manager

Manager

OS

Task

Machine 1 Machine 2 Machine 3

Execution
Manager

OS

Execution
Manager

OS

Task

Execution

Task

Data communication

Task

Control communication

Running Task Suspended/Waiting Task

Figure 4.1: Components in the system

Fig. 4.1 shows the relationships between the tasks and the management services.

Each circle in the figure represents a user process in the machines. The dotted

circles represent tasks that are currently waiting or suspended. Waiting tasks

become the memory managers for their children tasks. Each task is associated

to exactly one memory manager. There is a process on each machine running as

40

execution managers. Lock manager is missing from this picture, since there is only

one lock manager in the system and it is only associated with tasks that require

synchronization services.

4.3 Execution Management

The execution management services provide scheduling and execution controls in

the system. Even though they are computationally non-intensive, they do provide

a critical service.

There is a local execution management service, the execution manager, running

on each workstation. The execution manager is responsible for controlling the tasks

running on the local machine such as creating new tasks, deleting obsolete tasks,

and suspending and resuming tasks.

One of these execution managers, the coordinating execution manager or the

coordinator, maintains the overall information of all execution managers and makes

global scheduling decisions based on the information. If the coordinator fails, the

global information can be collected from all of the remaining execution managers

to form a new coordinator, as long as there is at least one non-faulty workstation.

Our scheduling policy attempts to allocate resources fairly to the tasks so that

the computation proceeds fast. At any time, there is at most one task running (as

opposed to waiting or suspended) on each machine. In an underloaded system in

41

which there are more available machines than jobs, more than one copy of a task

may be spawned to take the advantage of the underutilized machines. To decide

which task should be running and on which machine, we utilize natural heuristics.

Each task is assigned a priority—the lower priority, the more likely the task will

be suspended in the presence of competing demands. The priority is lowered if

there are several tasks executing a specific job, as it is sufficient that only one task

completes. For tasks of the same priority, the task that is currently running will

not be interrupted by a new one. Besides priority, other aspects of the scheduling

strategy are considered in our system. For example, as we will see, we try to

schedule the parent and one of its children tasks on the same machine to minimize

network traffic.

Consider the example in Fig. 4.2, which presents a possible execution scenario

for the program in Fig. 3.1, p. 25 on a network of six available workstations 1

through 6. Each of the machine is running an execution manager before the pro-

gram starts. In our discussion we comment briefly on issues related to fault toler-

ance and load balancing.

Snapshot 1. The program starts with a single job J1 running as task T1 on

Machine 1. (In general there could be several tasks for J1 also—we do not discuss

this here.) Since there is only one machine involved in the execution, the execution

manager in machine one is the coordinator.

42

Exec Man

T1

T1

T1

T1

T3

T3

T6

Exec Man

Exec Man

Exec Man

Exec ManExec ManExec ManExec ManExec Man

Exec Man

Exec Man

T2

T2

T2

T6

T6

Exec Man

Exec Man

Exec Man

5T

T3

T3

Exec Man

Exec Man

Exec Man

T2

T2

T2

T4

T4

Exec Man

Exec Man

Exec Man

5T

5T

T3

T3

Exec Man

Exec Man

Exec Man

T2

T2

T2

T4

Exec Man

Exec Man

J1

3J2J

JJJ4 5 6

2

1

J

J

Snapshot 3

Snapshot 2

Snapshot 4

Machine 6 Machine 5 Machine 4 Machine 3 Machine 2 Machine 1

Running Task

Suspended Task

Memory Manager

Execution Manager

Coordinating Execution Manager

Exec Man

Snapshot 1

Figure 4.2: Execution snapshots

Snapshot 2. When T1 reaches the first parallel block, two children jobs are

created. At this point, T1 turns in a memory manager to provide access to shared

memory for the all children tasks (which will be discussed in detail later) and is

not computationally intensive, so the machine becomes available again to utilize

resources effectively. The system spawns three tasks for each children job to take

advantage of all the six available machines. A priority is set for each task according

to the order they are assigned. The first task of a job has higher priority than later

43

tasks of the same job. Note that up to two copies of each of T2 and T3 can fail

without affecting the computation at this point. In fact, if say, all three copies of

T2 fail, the system can spawn another copy of T2, possibly suspending a copy of

T3—we do not elaborate on this here.

Snapshot 3. One of the T2 tasks (the one on Machine 6) reaches a parallel block

and spawns three new jobs. Again, machine 6 becomes available as T2 turns into

memory manager and a task T6 is created on this machine. The system spawns

task T4 and T5 and suspends task T2 on Machine 4 and T3 on Machine 3 to make

room for the new tasks since these tasks have lower priority than the newly created

tasks.

Snapshot 4. One of the T3 tasks (on Machine 1) completes its execution and

reports its updates to T1. The other copies of T3 are removed from the system

as the result. Also at this point the second copy of T2 on Machine 2 reaches

its parallel block and turns into a memory manager. Now there are three free

machines. Another copy of T4, T5 and T6 is spawned to take advantage of the

three available machines. After one copy of each of T4, T5, and T6 completes, both

copies of T2 end their parallel block and continue executing.

44

4.4 Memory Management

We now turn our attention to the memory management service, which provides

distributed shared memory facility to the system.

The memory management service handles shared memory requests to provide

a layer of distributed shared memory to the application program. Each task is

assigned to a memory manager when it is started. A task is usually assigned to the

memory manager that spawns it, but other factors may be taken into consideration

like the location of the memory manager. The execution manager assigns memory

managers to tasks.

When a task tries to access the shared memory, the access activates an interrupt

procedure which sends a shared memory request to the memory manager for the

page. As the shared page returns, the data is stored in the local memory and

all subsequent access will refer to the cached data. Fig. 4.3 provides an example

of the shared memory accessing. In this figure, read x and write z operate on

locally cached shared memory while read y operation causes the system to send a

shared memory request to the memory manager. Once a task is done, all the dirty

pages will be collected and the updates to the shared memory will be sent to the

memory manager. Memory manager will buffer those updates and apply to the

shared memory after all the children of the task are done. A copy of the shared

memory updates is also sent to the local execution manager when a task is done.

45

write z

read y

Work Done
Memory Updates

Shared
Memory
Request

Memory Manager

read x

Shared Memory Cache

untouched page shared memory cache page shared memory updated page

Figure 4.3: Accessing shared memory

This copy of updates is preserved to help late parent tasks, so they do not have to

spawn an additional task but use the saved updates directly.

We turn now to the discussion of the dynamically evolving hierarchical memory

management structure which reflects the program execution structure. A memory

manager is actually a parent task who is waiting for its children tasks to finish.

Instead of waiting passively, a parent task switches to a memory management

routine when it reaches a parallel block. The behavior of the memory manager is

depicted in Fig. 4.4.

A memory manager may serve all its children tasks or none at all, since it is

possible to have more than one memory manager per job. In fact, any parent

memory manager can satisfy the read shared memory request since all parent

46

Memory Manager
Routine

Manager

Parent
Memory

parend

parbegin

routine
routine

memory updates

Thread 1

execution
manager

routine

shared memory cache pageuntouched page shared memory updated page

Cached Shared Memory
Thread 3Thread 4 Thread 2

Figure 4.4: Creating child tasks and serving shared memory

memory managers contain the same data. However, all parent memory manager

must be notified when updating the shared memory. In Fig. 4.1 on page 40, we see

three machines in which three memory managers are running. Dashed lines connect

a memory manager to the tasks or other memory managers that it is servicing.

One memory manager in Machine 2 serves tasks in Machine 2, Machine 3, and also

“being its parent” services the memory manager in Machine 1. Memory manager

in Machine 1 serves a task in Machine 1. One memory manager in Machine 2 is not

serving any tasks. Let’s look at the example in Fig. 4.2 on page 43. At snapshot

4, the second copy of T2 on Machine 2 reaches its parallel block. It turns into a

memory manager. There are two copies of T2 both running as memory manager

at this point, therefore the system can assign either one of the memory managers

47

to the children tasks T4. In fact, the children tasks are always assigned to the

memory manager residing on the same machine to reduce overhead. Thus, task

T4 on machine 2 will be assigned to the memory manager on the same machine.

When one of the T4 tasks completes, its updates are sent to both of the relevant

T2 managers (in case one of them fails later during the execution). After one copy

of each of T4, T5, and T6 completes, the parallel block is ended, the state of the

memory of T2 is updated, and both copies of T2 can continue executing.

The memory management routine provides memory management functionality

using locally cached shared memory. That is, a memory manager always tries

to satisfy a shared memory request by going through its local cache first. If the

memory requested is not available locally, a shared memory request is sent to

the parent task of the memory manager. The chain of requests goes as far up

as necessary. Note that the first task reached that has the page, in fact has the

correct value for the page.

To summarize the role of memory managers, each memory manager serves the

shared memory requests of the children tasks assigned to it. If a child task requests

a page that the manager cached locally, it is sent to the child. If the manager does

not have the page, the memory manager asks its own memory manager for the

page. After the page is received, it is cached and sent to the requesting task.

Once a task completes, its updates are returned to its memory manager. When all

48

children tasks of a parent task are done, the updates are applied and the parent

task resumes its execution.

4.5 Synchronization Management

Synchronization in a parallel program serves two purposes, to control the exe-

cution sequence and to exchange synchronized data. To provide synchronization

functions, there is a synchronization manager in the system. The synchronization

manager is responsible for serving synchronization requests and maintaining all

synchronization variables and the variables associated with them. For efficiency

consideration, the synchronization manager is centralized but requires no dedicated

machines. That is, there is only one copy of synchronization manager running in

the system in any given time, residing in one of the machines. A new synchro-

nization manager will be created when the synchronization manager fails, using

similar fault tolerant techniques employed in the coordinating execution manager.

The fault tolerant aspects will be discussed in Chapter 5.

Once a task reaches a critical section, it notifies the execution manager with

a synchronization request. The execution manager knows the location of the syn-

chronization manager and forwards the request. On a scenario where the syn-

chronization request is granted, the synchronization manager will send back the

synchronized data that is associated with the synchronization variable. The data is

49

cached locally for the subsequent reference inside the critical section. When the ex-

ecution reaches the end of the critical section, all the updated variables associated

with the synchronization variable are sent back to synchronization manager.

If the lock is not available at the time of the request, the execution manager

will suspend the task and move on to other available tasks. Once the lock becomes

available, the execution manager holding the suspended task is notified. The exe-

cution manager will resurrect the task and schedule it for execution as the system

resource becomes available.

Fig. 4.5 shows a possible execution scenario for synchronization. Here we only

look at a portion of the system, say machines 1 through 4, running jobs 6 to 9 in

parallel in the middle of some program execution. These jobs may be created by a

single parent job, or they may be created by different jobs at different time – we do

not elaborate on this since it makes no difference from the synchronization point

of view. The coordinator and memory managers are left out in this description to

simplify the example.

Snapshot 1. Task T6 executing job J6 reaches a critical section. T6 sends a

synchronization request to the local execution manager, which forwards the request

to synchronization manager on Machine 1. The synchronization manager grants

the request since no one else is holding the lock. It returns the values of shared

variables a, b, c that are associated with synchronization variable X. As task T6

50

S

S

S

S

S

Exec Man

Exec Man Exec Man Exec Man

Exec Man Exec Man

Exec Man Exec Man Exec Man

Exec Man Exec Man Exec Man

Exec Man

Exec Man

Exec Man

T9 8T

J6 J9

Exec Man

Running Task

Suspended Task

Synchronization Manager

Execution Manager

Snapshot 2

Snapshot 1

Snapshot 4

Machine 2 Machine 1

T6 T7 T8 T9

T6 T7 T8 T9

T6

T9

T7 T9 T8T6 T9

T7

a b c

a b c

a b c

T9

i j

J7 8J

a b c

Machine 4 Machine 3

Exec Man

Snapshot 3

unlock(Y)

read j

read i

lock(Y)

lock(X)

read c

lock(X)

read a

read b

write c

unlock(X)

Figure 4.5: Synchronization snapshots

enters the critical section, it references to the local copy of variables a, b, c.

Snapshot 2. As task T7 executing job J7 reaches the critical section, it sends to

the execution manager a synchronization request for lock X. The execution man-

ager forwards the request to synchronization manager, and gets a blocked message

as a result, since the lock is owned by T6 at this point. The execution manager

suspends task T7 and asks the coordinator (not shown) for another task to execute.

51

The coordinator “happens” to schedule another copy of T9 on machine 3.

Snapshot 3. Another task, T8, executing job J8, reaches a critical section. It

requires the lock Y which is available at the moment. The synchronization manager

grants the request and returns the data of shared variables i, j which are associated

with the synchronization variable Y . Sometime later task T8 finishes the execution

of the critical section and releases the lock. The updated variables are sent back

to synchronization manager.

Snapshot 4. Task T6 reaches the end of the critical section. It notifies the

synchronization manager with the updated shared variables. Lock X becomes

available again and the synchronization manager sends a notice to the execution

manager of T7. The execution manager decides to resurrect T7 and puts T9 to

sleep since T7 has higher priority. Now T7 resumes its execution inside the critical

section.

A synchronization block guarded by lock/unlock statements ensures that two

different jobs cannot enter the critical section at the same time. However, a job

can be executed by several tasks in our system. Thus, a lock is owned by a group

of tasks executing the same job, while tasks executing other jobs are excluded. In

order to refer to individual requests, we number all synchronization requests a job

invoked successfully during the execution. When a task T1 executing job J1 enters

a critical section after a successful request, all other synchronization requests from

52

other job are blocked. Another task T2 executing the same job can enter the critical

section without blocking when it makes the same request. Once task T1 finishes

and leaves the critical section, the lock is released. At this point, other jobs may

request the lock and enter the critical section successfully even though task T2 may

still be inside the critical section. Our system property requires that T1 and T2

behave the same, as discussed in Section 2.7. Hence, the computation results of

T2 inside the critical section are ignored.

Tasks and synchronization requests have the following relationship:

request Each synchronization request of a job occurs logically once, while multiple

copies of the same request may be generated by several tasks executing the job.

Even though several tasks executing the same job makes the same request,

the system treats them as one request which occurred when the first request

is received.

acquire If a task successfully acquires a lock in its lock request i, all tasks executing

the same job are considered having acquired the lock for lock request i.

Once a task acquires a lock, subsequent requests by the other tasks executing

the same job will be granted immediately. For example, suppose task T1 and

T2 executing job J1 are running on different machines. When T1 successfully

acquires a lock in its ith synchronization request, all tasks executing job J1

are considered having acquired the lock for the ith synchronization request at

53

this point. When task T2 makes its ith synchronization request, the request

will be granted regardless the current state of the lock. In fact, T1 may have

already finished the execution of the critical section and released the lock.

Thus, the content of the shared variables associated with the synchronization

variable may have been modified by now. In order to allow all tasks executing

the same job to see the same set of value, the system remembers the state of

the variables before the modification.

release When a task releases a lock for lock request i, the lock is considered released

immediately (for lock request i) regardless the state of the other tasks of the

same job.

A task may think it is holding the lock while other tasks of the same job

have released the lock. At this point, other jobs may request the lock and

enter into the critical section. Mutual exclusion is guaranteed by maintaining

versions of the variables and ignoring the late updates.

Our synchronization manager uses request sequence and variable versioning to

support the behavior described above. Request sequence is a list of synchronization

requests that maintain the history of invocations. Each synchronization request

can be uniquely identified by the job and request numbers. The request sequence

is essential to ensure that multiple tasks of a job will all reference to the same

invocation for the same request. For example, task T1 may have reached synchro-

54

nization request i while another task T2, executing the same job, is just started.

All the subsequent synchronization requests 1, ..., i for task T2 will refer to the

history. Variable versioning is used keep multiple versions of shared variables that

are updated in different synchronization requests. The correct version of variables

are returned according to the history in the request sequence. New version and

new entry in the request sequence are created when a new request is received. Late

updates to the variables are ignored for the repeated request.

Starvation problem

There are programs that always terminate if the execution platform has an un-

bounded number of machines and never fail (we will call this an ideal platform),

but may not finish while running on a finite number of realistic machines in our

system.

Consider the program in Fig. 4.6 where job J1 waits for the associated shared

variable m to be set to zero in a while loop, and job J2 sets m to zero. Reading

and writing m is guarded by a pair of lock/unlock operations so the variable is

up-to-date. This program will never terminate in an execution environment where

there is only one machine, and job J1 is executed first. Job J1 will be busy waiting

for m to be set to zero in a loop and job J2 will starve. This is due to the fact

that our system executes at most one task per machine at any time, and does not

55

... // beginning of the program skipped
sync_t a;
shared int m=1;
assoc(a, m); // associate shared memory m with a

parbegin
routine { // job J1

int n=1;
while (n) {
lock(a); n=m; unlock(a);

}
}

routine { // job J2
lock(a); m=0; unlock(a);

}
parend
... // remaining of the program skipped

Figure 4.6: A program that could cause starvation

preempt running tasks. Running multiple preemptive tasks on a machine at the

same time could hurt the overall performance in our system because we schedule

redundant tasks on available machines. Therefore, if we run two tasks on one

machine at the same time in a system with two machine and two jobs, the other

machine may do the same. The system could take twice the time to finish since it

runs twice as many tasks at the same time.

This problem could also occur in a system with multiple available machines.

For example, if there are four available machines and five jobs, J1 to J5, in the

system. Let J1 through J4 run the busy waiting loop described above, each with

56

a different lock variable. Job J5 resets the variables associated with these lock

variables to zero. If the four available machines happen to run jobs J1 through J4,

then no one will run job J5 and the program will not terminate. It is also possible

that there are five available machines initially, but the one that executes J5 fails;

and then the same problem occurs.

We will only consider programs that terminate on an ideal platform in the

following discussion. We will say that an execution of a program on a realistic

platform reached a starvation point if the execution will never terminate. We

show how to modify the system so that no execution will ever reach a starvation

point. We detect “suspect” tasks that, without intervention, it is possible that a

system has reached a starvation point. The system suspends the task and runs

other tasks. To ensure that tasks will not starve, we lower the priority of that task.

Following is an example of how the system prevents the execution from reaching

a starvation point on a single machine. For now let us assume the system can detect

suspect tasks that may cause the system to reach a starvation point. We consider

again the program in Fig. 4.6. Suppose a task t1 is created and executed first on

this machine. The system finds that t1 is suspect, so it suspends t1 and lower its

priority. As the result, the other task t2 starts to run. Task t2 will either finish

its execution or will enter busy waiting loop that cause others to starve. If task t2

finishes its execution, other tasks of equal priority will start and eventually all tasks

57

will have a chance to run. It is also possible that task t2 may cause the system to

reach a starvation point. In that case, the system suspends and lowers the priority

of t2 as it did to t1, and other tasks will be able to make progress. When all tasks

of higher priority have either finished or suspended, task t1 resumes. If t1 is still

suspect when it resumes, the system will suspend it again and lower its priority

even further. Eventually t1 becomes a task with lowest priority in the system. At

this point, the condition t1 is waiting for should be satisfied since all other tasks

have been executed. Hence, the system will progress and all tasks will be able to

execute without starvation.

The situation is more complicated for a system with multiple available ma-

chines. It is possible that multiple copies of job J1 in Fig 4.6 are running on

several machines, while all machines running copies of job J2 have failed. The

same solution, suspending and lowering priority of the suspect tasks, works for

this situation as well. Copies of J1 will be suspended with lower priority and

eventually copies of J2 will be executed.

Detecting suspect tasks that may cause the system to reach a starvation point

is the key to the solution. We employ a simple detecting scheme that makes tasks

suspect after they make a large number of lock requests. This will guarantee that

all tasks that will cause the system to reach a starvation point are detected. False

alarms will not impact to the correctness of the execution, but will increase the

58

system overhead. However, the overhead is small comparing with the time required

to satisfy a large number of lock requests.

59

Chapter 5

Fault-tolerant Computing

One of the goals of our system is to provide a fault-tolerant computing environment

transparent to the users. In our system design, we paid special attention to fault-

tolerant aspects of all modules. To achieve highly dependable computing, the

ultimate goal is to handle machine failures gracefully with no single point of failure.

We will first describe the types of failures tolerated in our system and then

discuss the fault-tolerant aspect of each module in turn. The fault-tolerant features

of all the components except centralized managers are implemented in the current

version.

60

5.1 Types of Failures

In this section, we state our assumptions about the types of failure that can be

tolerated by the system. Failures can be categorized in many ways. Based on to

the behavior of the faulty components, Cristian et al. [18] classifies failures into

four categories:

Crash fault causes a component to halt or lose its internal state.

Omission fault causes a component not to respond to some inputs.

Timing fault causes a component to respond either too early or too late.

Byzantine fault causes a component to behave in a totally arbitrary manner. A

component could act maliciously if a Byzantine fault occurs.

Various components could fail in a system, including processors, memories,

storage devices, and networking equipments. In a distributed environment, com-

ponent failures can be categorized as node failure or communication failure. Node

failures include arbitrary component failures within a machine that cause the ma-

chine to behave incorrectly. Communication failures include failures caused by the

networking components like corrupted messages and lost connections.

61

Node Failures

Our system tolerates crash faults of up to n − 1 machines from n given machines.

A failed machine may recover and restart from a predefined state. Byzantine faults

are not tolerated in our system; however, it is possible to detect arbitrary faults

using multiple processors as described in [52].

Omission and timing faults are more relevant to communication failures.

Communication Failures

Our system tolerates crash faults in networking communication system by assum-

ing that the message is either delivered correctly or is not delivered at all. Omission

and timing faults are detected using time-out, which cause the originating task to

re-send the messages. Byzantine faults are not tolerated.

Communication failures may lead to network partitioning where the network

failed in a manner that the remaining machines are partitioned into groups. Ma-

chines in each group can communicate with each other, but cannot communicate

with the machines in other groups. When network partitioning occurs, a group of

machines lose contact with machines in other groups; so other machines in other

partitions become unavailable to them. In our system, machines in each partition

will attempt to recover by creating new coordinators and synchronization managers

for the partition if none available. Therefore, each group of machines become a

62

self-sustained system if possible. The system running on a partitioned network

turns into several independent systems, all running the same computation.

5.2 Fault-tolerant User Jobs

Execution of the user jobs is always fail free due to the separation of abstract jobs

and physical tasks as described in Section 2.2. Failure of tasks are masked by run-

ning additional tasks executing the same job. However, starting additional tasks

must be done carefully to avoid unnecessary overhead in a nested parallel envi-

ronment. A job J1 may create many children jobs during its execution, and some

of these children jobs may have already finished before additional tasks executing

J1 started. Restarting a job should not cause its children jobs to be restarted or

a chain reaction may occur since each child job is capable of creating more jobs,

and restarting children jobs may cause all the descendant jobs to be restarted.

Our system avoids this chain reaction by associating the restarted jobs with their

children jobs that are running. For children jobs that are already done, the execu-

tion results (shared memory updates) of the children tasks are stored in the local

machine they ran. Tasks executing a restarted job (or late tasks) use these results

instead of starting another copy of the children jobs.

Task failures occurring while children tasks are running present another kind of

problems. During the children tasks execution, the parent task becomes memory

63

manager which serves shared memory for its children tasks. In the next section,

we discuss how to mask memory manager failures.

5.3 Fault-tolerant Memory Manager

When a memory manager fails, its children tasks will be blocked when they request

memory services provided by the failed memory manager. If there are multiple

copies of the same memory manager running in the system, the children tasks

redirect all their memory requests to other copies of the memory manager that

are available. However, if no memory managers for the tasks are available, these

children tasks can not continue their execution.

The fault-tolerant policy for the memory managers is similar to tasks, which is

to start additional copies of the job. After the task has been restarted and reached

the same parallel block where it failed, it became the memory manager and all its

blocked children tasks can resume their execution.

Since children tasks may themselves be parents of their children tasks, a failed

memory manager may cause all its descendants to be blocked. Thus, a memory

manager may be unable to respond to memory requests due to the ancestor failures

instead of its own. The system must restart only the failed memory manager but

not all related memory managers.

In our implementation, we construct an orphan list that keeps track of blocked

64

tasks due to their ancestor memory manager failures. When a memory manager is

revived, all its blocked descendants will become available according to the orphan

list. To identify the memory manager that failed, the highest level of ancestor that

failed in the orphan list is reported.

5.4 Fault-tolerant Coordinator

Coordinating execution manager (coordinator) has a centralized function of

scheduling tasks globally among all machines. Failures of centralized managers

usually lead to the failure of the entire system. In order to handle machine failures

gracefully, centralized manager must tolerate failures so the system can continue

to make progress with available machines.

The basic idea for tolerating centralized manager failures is to keep enough

information in each machine so that the system can reconstruct the state of the

manager when it fails. However, complete replication of the manager’s data on each

machine is expensive since storing and synchronizing the data across the network

increases the traffic and storages. To minimize the data stored in each machine, the

following scenario is examined. When there is only one machine left in the system,

this machine have to re-execute all tasks that failed. However, it should not re-

execute any of the tasks done locally. Thus, the machine stores enough information

to validate its local computation, so no redundant computation is required upon

65

failure. If more than one machine is available, then information stored in available

machines are collected to reconstruct a global image of the state of the system if

possible.

A fault-tolerant coordinator must be able to run on any available machines

since the coordinator is an execution manager with global information, we can

promote any available execution manager to replace a faulty coordinator. In order

for the system to continue making progress, this new coordinator must have global

information of all the tasks and all available execution managers. This global

information can be reconstructed by collecting data from all available machines.

Local data stored in each machine includes the execution history, the tasks created,

and the computation results of executed tasks. This information is enough to

validate the local computation so that the tasks running locally do not need to be

re-executed if the coordinator fails. It may still be necessary to restart the tasks

running on the failed machines. For example, in a system with two machines and

the works are distributed evenly among the two, our system can guarantee that no

more than half of the work is lost if any one of the two machine fails. The system

can recover from such failure by restarting some of the failed tasks, which is no

more than half of the total work.

Upon coordinator failure, some execution managers will detect the failure as

the requests to the coordinator get rejected. These managers will send out vot-

66

ing messages to execution managers on all machines to choose a new coordina-

tor. The voting mechanism can be implemented using an algorithm similar to the

three-phase atomic broadcasting algorithm [11] to determine the ordering of the

messages. The first execution manager that sends out the voting message becomes

the new coordinator.

Once the new coordinator is elected, all available execution managers will send

their local copy of progress tables to the new coordinator. The progress table

contains a list of tasks executed in the system, and it includes the progress of

each task, execution history which contains tasks execution on each machines,

parent/child relationship, memory managers for each task, and sometimes the

execution result of a task. Local progress table and global progress table have

identical format except the local one only contains the tasks executed locally,

while the global progress table have all the tasks executed in the system. The new

coordinator reconstructs the global progress table and a list of available managers

according to the information collected. The new global progress table may not be

complete, as some of the tasks running on the faulty machines may be missing.

Restarting the appropriate tasks (when necessary) will generate the missing data.

67

5.5 Fault-tolerant Synchronization Manager

Synchronization manager provides a centralized service, which faces the same prob-

lem as the coordinator when failed. To tolerate the synchronization manager fail-

ure, we employ a similar method used in Coordinator. That is, to elect a new

synchronization manager upon failure, and to reconstruct the state of the new

manager with information available at hand.

In order for this strategy to work, the information stored in the synchroniza-

tion manager must be replicated and distributed through out the system. However,

different from coordinator, there is no local synchronization manager on each ma-

chine. The system has to rely on the execution manager resides on each machine

to store extra data. Furthermore, a complete history of synchronization requests

with correct order must be remembered since the exact order of synchronization

requests must be maintained for the program to run correctly. Data collection and

management for synchronization manager are also more complex than the case of

the coordinator.

To manage the synchronization data efficiently, each machine stores only

enough data sufficient to continue making progress even if all other machines

fail. Minimizing the data stored on each machine is essential since the time and

bandwidth required for moving data across the network depends on the volume

of the data. Broadcasting the information every time synchronization manager

68

receives a request can be very costly.

Each machine maintains a complete synchronization invocation history and a

version of shared variables associated with each synchronization request invoked

locally. The synchronization sequence maintained in each machine is complete but

may not be the latest, since we are only interested in history upon failure. Any

synchronization invocation beyond local task’s latest synchronization request can

be ignored since it will not affect local computation.

Storing versions of shared variable associated with each synchronization re-

quest is necessary for the system to repeat the execution of the tasks inside the

synchronization sequence. For example, suppose task t1 invoked lock(x) before

task t2 makes the same request. When t2 starts, invoking lock(x) will return the

associated variables that t1 modified. Without them, restarting a failed task may

cause non-faulty tasks to restart and create domino effects since the execution of a

synchronization request relys on the result of previous invocation. Thus, the syn-

chronization manager sends the latest synchronization sequence and the current

version of the associated variables to the requesting machine upon a successful

synchronization request.

The system gathers the synchronization data on local machines upon failure,

including the synchronization invocation sequence and versions of the associated

variables. The latest synchronization invocation sequence is used by the new man-

69

ager, together with the versions of associated variables collected from the available

machines. Some of the versions of the associated variables may be missing since

each machine only maintains the versions that is related the its synchronization

requests. These missing states can be generated, if necessary, by restarting the

invoking tasks again. Note that these re-executed tasks are either failed tasks

or completed tasks executed on a failed machine. Thus, it is possible to cause a

completed task to be re-executed when restarting a faulty job. However, tasks

executed on non-faulty machines will not be restarted.

70

Chapter 6

Experiment Results

The goals of our experiments are to investigate the performance characteristics of

our system, to compare the performance of our system with other systems, and to

measure the performance benefit of a nested parallel program over a non-nested

one.

A number of parallel programs have been implemented in our system. Further-

more, programs developed in Calypso can be executed in our system with little

or no modification since the programming syntax and semantics of our system

are very close to Calypso system as described in Section 7.2.3. This enlarged the

number and variety of programs available to our system. An important task of the

experiments is to examine how much additional performance penalty our system

incurs compared with Calypso.

71

Granularity of a problem exerts a big influence on the performance of our sys-

tem. We will discuss the effects of granularity in detail in the ray trace experiments

in Section 6.2.

Quicksort is a recursive sorting algorithm that is well suited for nested paral-

lelism. We created two version of the parallel program to measure the performance

benefits of nested parallelism. The experiment is described in Section 6.3.

Our experiments were conducted on 8 identical machines, each with 200 MHz

Pentium Pro processor and 64 megabytes of memory. These machines are con-

nected with 100 Mbps Ethernet in an isolated local area network. All time mea-

surements are done using “wall clock,” which calculates the actual time using

gettimeofday() system calls instead of CPU utilization times. The elapsed time

does not include the time required to set up our system on each machine (i.e.

rsh() calls to create execution manager), but it does include the start up time

for parallel tasks. Speedup of a parallel program is calculated by comparing the

result of a parallel program with the sequential version of the algorithm, and not

by comparing it with a parallel program running on a single machine.

6.1 Performance Characteristics

The first set of experiments measures the overhead of the system by measuring

the time required to create a parallel job, to access a remote shared memory page,

72

and to perform synchronized operations.

Task Creation

To calculate the cost of task creation, the first thing we did is to create jobs with

no operation. However, the underlying operating system optimized the fork()

system call so that creating a dummy process only adds an entry to the process

table without actually allocating and copying the resources, so the job creation time

cannot be measured correctly. Therefore, we measure the job execution time where

a job reads and updates a shared memory location. The overhead is measured by

creating this job 1000 times on single machine, using a for loop which contains

a single job inside a parallel block. It takes about 40 ms to process a job, which

includes suspending the parent task, scheduling and forking a new child process,

reading/writing a shared memory location, and resuming the parent task.

Creating 1000 jobs sequentially, as described above, is more expensive than cre-

ating 1000 parallel jobs all at once (i.e. in one routine[1000] statement), since

the cost of suspending and resuming the parent tasks is repeated 1000 times in

the sequential case. By comparing sequential and parallel job creation, we can

better understand the overhead of processing a parallel block. Creating 1000 jobs

in parallel takes about 20 seconds, about half the time compared with sequential

job creation. This shows that processing parallel block alone, without considering

73

user jobs, takes less than 20 ms. This is calculated by subtracting the time re-

quired to process one parallel blocks from the time required to process 1000 parallel

block, divide by 999. The actual cost for processing each parallel block is lower

since running many jobs in parallel better utilizes the available resource in the

system than running them sequentially. Processing a parallel block includes sus-

pending/resuming parent tasks, creating new progress table entries, and applying

children updates.

??????? ???

?

?
..

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......� ...

?

?

?
..

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......� ...

?????? ?

?

?

1000
iterations

100 1000
jobsiterations

Figure 6.1: Create 1000 jobs using different number of parallel blocks

In addition to the two extreme cases, we also perform experiments with a

mixture of parallel jobs and parallel blocks, as shown in Fig. 6.1. The result is

shown in Fig. 6.2. In this experiment, the cost for creating a parallel job averaging

20 ms, and the cost for processing a parallel block is also around 20 ms. The

overall execution time is equal to the cost of creating all parallel jobs plus the cost

of processing all parallel blocks. For example, the overhead of creating 1000 jobs

in 100 parallel blocks is 2 s more than creating 1000 parallel jobs in one parallel

74

block, since additional (100 × 0.02) s are used to process the 100 parallel blocks.

0

10

20

30

40

1/1000 10/100 100/10 1000/1

Iterations/Tasks per iteration

T
i
m
e

1 Machine

2 Machines

4 Machines

8 Machines

Figure 6.2: Time to create 1000 jobs

The network latency needs to be measured when multiple machines are used in

the experiments. We run the same experiment on 2, 4, and 8 machines to see the

speedup as functions of number of machines. In Fig. 6.2, we see that the speed

up is not very good since the granularity of the task is too small. In fact, since

the size of the tasks is so small, the coordinator machine has a 4 to 1 advantage

over other machines. That is, since the scheduling and memory requests are served

locally, the coordinator can finish roughly four tasks while the other machines get

their assignments over the network, request one remote shared page, and return

the updated shared memory.

75

The cost of nested parallelism is also measured in a similar fashion. At first

we create 1000 nested tasks, with a task creating one child task and the child

task creating a grandchild task, and so on. The system runs out of resources as

the result since 1000 nested tasks create 999 memory managers, which creates

thousands of sockets. After reducing the number of tasks to 100, we found the

cost to create a nested parallel task is about 109 ms. This cost includes the 40 ms

task creation time we measured previously and the additional time required for a

task to become a memory manager and to create a listening socket.

Shared Memory Access

To measure the overhead of shared memory access, we create a job that access

1000 shared memory pages. The time for accessing 1000 pages is 576 ms when

both parent and children jobs are on the same machine. This cost includes trap-

ping memory accesses, sending and receiving messages through the sockets, and

handling memory requests. When parent and child jobs are on different machine,

the cost increases to 0.792 ms per page due to the network latency.

Synchronization Operation

The overhead of processing critical sections is measured by using methods similar to

measuring memory access. A job that loops through a critical section one thousand

times is created. The critical section contains a single statement that increases the

76

associated variable. It takes an average of 1.3ms to go through each critical section,

which includes two synchronization operations: a lock and an unlock.

It is more expensive to process synchronization operations when several tasks

compete to enter critical sections guarded by the same lock. In the next experi-

ment, we use two machines running two tasks where each task runs through 1000

critical sections, all guarded by the same lock. The executions of the critical sec-

tions are interleaved between the two tasks since the synchronization manager

grants the lock in the order the requests are received. For example, when task T1

enters the critical section, task T2 waits for the lock. When T1 leaves the critical

section, T2 enters the critical section and T1 begins to wait for the lock.

The tasks waiting for the lock are suspended in our system, to allow others

to utilize the resource. When a task is waiting for a lock, the system schedules

and executes other available tasks. As the result, each machine runs a copy of

both tasks in the experiment with two tasks and two machines, so we have a

total of four tasks running on the two machines. Synchronization manager detects

duplicate lock requests and handles them properly.

Each task takes approximately 7.0s to finish, which is much longer than the time

required by a single task. Since the time spent outside critical section is so short,

the tasks always have to wait when they try to enter a critical section. Extra

messages for suspending and resuming the waiting tasks and context switching

77

between tasks also increase the overhead.

Adding more machines does not increase the speed, since the critical sections

are executed in sequence. Furthermore, duplicate requests increase when machines

are added to the system. In our experiment with four machines and two tasks,

the number of total lock requests increase to nearly 8000. As the number of

machines doubles from the previous experiment, the number of requests doubles

also. Various mechanisms have been employed in our system to reduce the impact

of duplicate requests. For example, the unlock operation is ignored when other

tasks executing the same job already released the lock at the time of the lock

operation. The time required to finish all tasks is 8.8s for four machines and two

tasks.

6.2 Ray Trace

Ray trace is an application that renders three-dimensional scenes. The program

simulates the reflection and diffusion of light by shooting light rays from the view

point into the scene. The color and brightness of each pixel is calculated according

to the trace of the rays.

Parallelization of ray trace program is done by dividing the pixels in the image

into sets and trace these sets in parallel. The granularity of the problem is con-

trolled by number of pixels in each set. These sets of pixels are independent from

78

each other and can be executed in isolation without synchronizations. The ray

trace program implemented in our system spawns all the sets at once. Therefore,

it contains only one parallel block with no nested parallelism.

The ray trace program we used in this experiment is a parallel version of the

sequential ray trace program developed by George Kyriazis at PRI. The paral-

lelization of this program is implemented in the Calypso project and we use this

program in our system without modification. The ray trace program reads a scene

file that describes the ambient setting and objects in the image, including the pa-

rameters of the properties. The only objects allowed in this program are spheres

and squares. The ray trace program constructs an image according to the scene

file. The scene we use in this experiment contains 36 spheres and produces an

image of 512 by 512 pixels.

We compare our performance for executing the parallel ray trace program with

two other systems, Calypso, and PVM. The experiment calculates the speedup

with 1 to 512 jobs running on 1 to 8 machines.

All three systems did poorly when there is only one job per machine in the

system. When the granularity is very coarse, the slowest job dominates the per-

formance of the system since there are not enough jobs to balance the load.

Fig. 6.3 shows the result of PVM system. PVM works best when there are

just enough jobs to work with, say 4 to 8 jobs per machine. When the number

79

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

4
0

1

2

3

4

5

6

7

8

Speedup

Tasks

Machines

1 1.001 0.996 0.995 0.988 0.973 0.946 0.892 0.803 0.670 0.502

2 1.409 1.973 1.922 1.926 1.870 1.787 1.608 1.339 1.004

4 1.973 2.661 3.730 3.746 3.563 3.203 2.678 2.007

8 2.663 5.073 7.292 7.030 6.378 5.349 4.013

1 2 4 8 16 32 64 128 256 512

Figure 6.3: Ray trace using PVM

of jobs increases, the overhead of job management starts to affect on the system

performance and shows a noticeable drop of speedup.

With all the features of adaptive parallelism, load balancing, and fault tolerance

added, the performance of our system is comparable with the others. In Fig. 6.4,

we see that our system has a similar performance characteristic to PVM system.

That is, the speedup of our system decreases as the number of jobs increases. This

is largely due to the overhead required to create new jobs and to load the shared

80

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

4
0

1

2

3

4

5

6

7

8

Speedup

Tasks

Machines

1 0.991 0.988 0.985 0.978 0.964 0.938 0.896 0.821 0.776 0.698

2 1.398 1.960 1.954 1.919 1.871 1.834 1.712 1.633 1.342

4 1.958 2.648 3.221 3.600 3.571 3.635 3.248 2.668

8 2.686 5.171 5.860 6.839 6.830 6.286 5.392

1 2 4 8 16 32 64 128 256 512

Figure 6.4: Ray trace using our system

memory for each job. However, our system has better performance than PVM

when the granularity is fine.

In Fig. 6.5, Calypso system shows a uniform speedups with respect to various

granularities of the problem. This is largely due to its caching mechanism that

allows later tasks to fetch shared memory cached by earlier tasks instead of sending

expensive memory requests. There is also a bunching technique that ties several

jobs together and schedules them as one to reduce scheduling overhead. Our system

81

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1

4
0

1

2

3

4

5

6

7

8

Speedup

Tasks

Machines

1 0.981 0.983 0.982 0.982 0.981 0.979 0.977 0.981 0.981 0.980

2 1.384 1.383 1.383 1.770 1.684 1.887 1.874 1.929 1.941

4 1.944 1.724 2.194 2.951 3.560 3.714 3.858 3.856

8 2.635 3.497 4.700 6.754 7.268 7.490 7.664

1 2 4 8 16 32 64 128 256 512

Figure 6.5: Ray trace using Calypso

does not implement caching and bunching mechanism due to the dynamically

changing nature of nested parallelism, as described in Section 7.2.3. An interesting

behavior of the Calypso system is that it does not perform as well as others when

the granularity of the problem is coarse, like two jobs per machine. Improper

bunching of imbalanced jobs may be the cause of the performance drop.

82

6.3 Quicksort

Quicksort is a very efficient algorithm for sorting a large number of elements.

It is a recursive algorithm that repeatedly divides a problem into two smaller

subproblems with a pivot. The way pivot is chosen is described later. All values

in one of the subproblem are no larger than the pivot and the other subproblem

contains all values that are no smaller than the pivot. The subproblems are further

partitioned in the consequent steps until it cannot be partitioned further, i.e. when

size of the subproblem is two or less. Parallelization of this algorithm is done by

converting recursive function invocations into nested parallel jobs. Each job divides

the subproblem into two and creates two new sub-jobs to be solved in parallel. The

recursive partitioning algorithm fits well in the nested parallel structure.

All the data are stored in a globally shared array with in place data exchange.

Since each subproblem takes a portion of the array without overlapping with others,

all the sibling tasks are independent. No explicit synchronizations are required in

this algorithm. The parallelization process of the quicksort program is discussed

in detail in Section 3.3.

Two optimizations are applied to the standard quicksort program in our exper-

iment. Bubblesort is used to sort small subproblems, and median-of-three (begin,

end, and middle points) is used to find the pivot point. To control the granularity

of the task size, parallel threshold is used. Sequential quicksort is used whenever

83

the size of a subproblem is smaller than the threshold.

To compare the nested parallel algorithm with non-nested one, we wrote an-

other version of quicksort that does not incorporate nested-parallelism. This ver-

sion of algorithm solves the problem in rounds of subproblems with the subprob-

lems stored in a shared task array for each round. During each round of execution,

all tasks in the shared task array are executed in parallel. However, instead of

recursively creating new tasks, each parallel task divides the problem into two and

puts the two subproblems in the shared task array. At the end of each round,

the sets of new subproblems are collected from the task array for the next round

of execution. The bubblesort, median-of-three, and parallel threshold are also

implemented in this version of quicksort to make it comparable with the nested

version.

We run the nested version of the quicksort using our system, and compare the

result with the non-nested quicksort running on our system and Calypso. The

result is shown in Fig. 6.6.

Unlike ray trace experiment, this experiment shows a poor overall speedup for

all systems. The reason for poor speedup is because the optimal speedup of the

parallel quicksort is not linear. For an array of n elements, it takes n−1 comparison

to divide the array into two. It takes at least log(p) iterations to produce enough

threads for p processors. In [48], an upper bound of approximately 3.5 for

84

1
2

4
8

nested

non-nested

Calypso

0

1

2

3

4

5

Speedup

Machine

nested 0.85 1.59 2.62 4.17

non-nested 0.74 1.25 1.63 1.88

Calypso 0.93 1.29 1.56 1.80

1 2 4 8

Figure 6.6: Quicksort experiments

the optimal speedup for fine-grained Quicksort execution utilizing 5 processors of

a parallel multiprocessor was theoretically derived. This was also confirmed by

experiments on Cm* [49, 21]. Similar behavior was also observed in [9].

Comparing nested parallel quicksort with non-nested one, the nested version

shows a much better speedup. This is largely due to the more parallelized execution

style in the nested parallel quicksort. In the non-nested version of quicksort, jobs

need to wait for other sibling jobs of the same round to be finished before the new

85

set of subproblems can be processed in next round. Dividing jobs into rounds limit

the amount of parallelism that can be achieved.

Other factors that contribute to the better performance of the nested parallel

quicksort include distributed memory manager and data locality. The memory

managers are distributed across the system because each job becomes a memory

manager after it creates two new jobs; hence reduce data contention and network

“hot spot” in the system.

The quicksort algorithm has a data locality property since each of the sub-

problems works on a subset of problem array which the parent job has worked on.

By scheduling children tasks on the same machine of their memory manager, the

inter-machine communication overhead can be reduced.

6.4 Experiments Conclusion

In this chapter, we showed that our system has a comparable performance with

other systems. Although our system has higher overhead than some other systems

like PVM and Calypso, our system is more flexible and rich in features. Our system

did especially well on a nested parallel program. In the quicksort experiment, we

saw that an algorithm that is suited for nested parallel paradigm is not only easier

to program, but also runs faster than the non-nested version.

Our system is sensitive to problem size and granularities. The overhead of the

86

system becomes noticeable for a small problem that can be solved in seconds. Sim-

ilarly, fine granularity jobs are also not suitable for our system since the overhead

to create each job becomes expensive compared with the time required to execute

the job.

87

Chapter 7

Related Research

Software environments for high performance parallel computing on networked ma-

chines is an ongoing area of research. We review only the related research that

is most relevant to our work. We will stress the criteria of programming ease,

scalability, and dependability. Dependability encompasses the ability to handle the

realistic needs of imperfect platforms, including load balancing and fault tolerance.

7.1 Relevant Fields of Study

Our research is related to various fields including parallel programming languages,

parallel processing in distributed environment, and fault-tolerant computing.

88

7.1.1 Parallel Programming Languages

There are several ways to express parallelism in a programming language: creating

a new language that is suitable for parallel programming, augmenting existing

sequential language using explicit parallel constructs and library calls, and using

the sequential language by exploiting implicit parallelism.

Creating new parallel languages requires a considerable effort in designing the

language syntax and semantics. It is also more difficult for the programmers since

they have to learn another programming language.

Exploiting implicit parallelism of a language is often used in a functional or

logical language like lisp or prolog. The execution of programs in these languages

consists of reduction and expression evaluation, which can often be processed in

parallel. Automatically finding implicit parallelism using a compiler in procedural

language like C often results in a parallelism that is very small in granularity.

Such parallelism may be very useful for multiprocessor machines, but too costly

to implement in a distributed environment.

Augmenting existing sequential language with parallel constructs/library calls

has several benefits. First of all, since the sequential language is well understood,

the system designers can concentrate on the parallel features of the language. It

is also easier for the programmers to learn. Secondly, instead of implementing

a compiler, a pre-processor is often used to translate the parallel constructs into

89

control structures and library calls, which reduces the design effort of the system.

The preprocessor can be omitted completely if the augmentation of the language

is done using library calls or classes only. Our system uses this approach and is

based on C/C++.

There are a number of parallel programming languages based on C/C++. The

general goals are to provide an easy path for users to migrate their work from

C/C++, and to alleviate the frustrations of parallel programming by adding a few

extra keywords or classes to the already well understood language. The approaches

to parallelize C/C++ can be divided into two categories: data-parallel and task-

parallel extensions.

Data-parallel extensions of C/C++ such as pC++[12] describe parallelism in

SPMD (Single Program Multiple Data) model. Multiple threads of processes ex-

ecute the same program in parallel on different set of data. The drawback of

this type of languages is that expressing concurrency is less flexible, and porting

sequential programs to efficient data parallel programs often require significant

reorganization and rewriting of the original program.

Task-parallel extensions extend C/C++ with new keywords, objects, and li-

brary functions, to express concurrency. Systems in this category includes Com-

positional C++(CC++)[15], ICC++[16], and Charm++[34]. These keywords can

be roughly divided into parallel block and parallel loops.

90

Language constructs that define parallel blocks can be found in number of

parallel programming notations. For example, our parbegin/parend notion is

equivalent to the use of cobegin/coend in CSP[28], par{} in CC++ and conc{}

in ICC++. Statements inside the parallel block are executed in parallel, and the

statements are usually independent to one another. ICC++ is an exception that

its conc block allows mixtures of dependent and independent statements inside a

block where statement dependency is based on local data dependence. Independent

statements are executed in parallel while the part that depends on others are

executed in sequence. This usually result in a small granularity of parallelism, as

each statement inside the block might be a single instruction.

In addition to the structured parallel block, CC++ allows unstructured par-

allelism using spawn. The spawn statement acts like UNIX fork and creates a

parallel task that has no relation to other tasks. It is up to the user to coordinate

the spawned task with the rest of the program.

Parallel loops are often implemented by unrolling the loops into parallel tasks.

Iterations of the loop body are executed in parallel with a local copy of the loop

control variables. CC++ implements parallel for loop with the parfor (;;) {}

syntax. The statements inside the parfor block are executed sequentially, while

the loop is executed in parallel. We think this syntax is misleading since the

programmer will often think the statements in parfor are executed in parallel,

91

as of par block. ICC++ allows various kind of looping structure, including conc

for, conc while, and conc do while. This is achieved by unfolding the loop

dynamically into conc blocks, with local variables renamed for each iteration. Our

system does not provide explicit parallel loop structures, however, our routine[]

statement inside a parallel block allows the user to easily create parallel loops.

7.1.2 Parallel Computing in a Distributed Environment

Parallel computing in a distributed environment can be divided into three cate-

gories according to the communication model: message passing, remote procedure

calls (RPC), and distributed shared memory.

Message passing systems provide messaging services for the tasks to exchange

information. Accessing remote data requires composing and decomposing messages

to be sent with explicit primitives like IN/OUT or send/recv. Examples of message

passing systems include PVM[53] and Orca[33].

Message passing systems can be efficiently implemented across the network as

they resemble the underlying communication mechanism. The users have con-

trols over the messages being sent across the network. However, programming

and debugging on these systems are hard and tedious. Porting from sequential

program to message passing systems is often difficult. Support of fault tolerance

is often limited or is an add-on feature in these systems [44], which increases the

92

programming difficulty.

In addition to the basic primitives like send/recv, remote procedure calls [46]

and distributed objects (i.e. CORBA [8]) are built on top of message passing to

provide a more convenient means of communication between tasks. The program-

mers can concentrate on dividing the functions of a program across the network

since they are relieved from message composition and data marshaling. Beside user

convenience and additional layer of abstraction to communication, the pitfalls of

these type of systems is very similar to message passing systems. Programming in

these systems is still difficult as the users have to specify the interface of the remote

procedures or objects, and to create proxy functions on both ends that actually

send messages across the network. Fault tolerance features on these systems are

still limited. RPC systems includes GLU[31] and Concert/C [3].

In contrast to message passing and RPC systems, distributed shared mem-

ory (DSM) systems provide a shared view of the memory and hide the detail of

data distribution by offering a virtual global address space across loosely coupled

machines. Parallel tasks communicate with each other through the distributed

shared memory. A parallel program running on a parallel machine can be easily

converted into a distributed application running over networked workstations with

distributed shared memory. Notable systems that built software distributed shared

memory include IVY[45], Clouds [19], Munin [14, 9], Midway [10], TreadMarks [1],

93

and Quarks [42]. High cost of distributed synchronization and lack of fault-tolerant

support are the disadvantage of these systems.

A system with similar DSM concepts but with a different approach is Linda[13].

It provides a globally shared space using (database like) tuple space. The tuple

space is a virtually shared collection of tuples, and a tuple is a sequence of typed

values like ("hello", "world"). Tasks communicate with each other using the

tuples. Accessing the tuple space requires special primitives like in/out/rd to

insert, remove, and read the tuples from the tuple space. Linda is not as easy to

program as distributed shared memory systems since it requires explicit primitives

to manage the tuple space and it also requires marshaling and unmarshaling data

in a tuple. It also suffers some drawbacks of the DSM system like higher communi-

cation cost and lack of fault-tolerant support. Several variant of Linda has emerged

to address load balancing and fault-tolerant issues. Piranha [24] is built on top of

Linda that dynamically balances system load across available machines. Piranha,

like the fish, aggressively harnesses idle machine’s resources during program ex-

ecution. However, it does not handle failures. Extensions to handle failures are

implemented in FT-Linda [5] and PLinda [32].

94

7.1.3 Memory Coherence Models of the Shared Memory

Memory consistency is an important aspect in shared memory systems that deal

with the question: what is the correct results when multiple tasks read and write

to the same memory location.

Maintaining coherent shared memory often increases the overhead in dis-

tributed shared memory systems. Therefore, most of the distributed shared

memory systems do not implement strict or sequential consistency [43]. Instead,

weaker memory consistency model are used to achieve high performance.

Following is a list of some popular memory consistency models, in the order of

decreasing strictness.

Strict Consistency Requires any read operation of a memory location to return

the latest write. A global clock is used to define the order of each operation.

This is the same behavior as the single processor system.

Sequential Consistency Lamport defined sequential consistency as: Result of

any execution is the same as if the operations of all processors were executed

in some total order, and the operations of each individual processor appear

in this sequence in the order specified by its program [43]. In other words,

the order of execution is total ordering and each processor executes in the

order specified by the program. Sequential consistency is the same as strict

consistency, but no notion of global clock.

95

Processor Consistency The total ordering is relaxed in processor consis-

tency [26] so that read operation can ignore the concurrent write operation.

It requires all previous read operation to be performed before a read is

allowed, and all previous read/write operation to be performed before a

write operation.

Weak Consistency Synchronization operations is distinguished from ordinary

memory access in weak consistency [22]. Synchronization operations are

strongly ordered (i.e. total order) while memory access has a weaker ordered.

All data access must be performed prior to the execution of subsequent syn-

chronization operation.

Release Consistency The weak consistency is further relaxed by categorizing

synchronization operations into release and acquire in release consistency [25].

The acquire and release operation acts very similar to read and write oper-

ation in processor consistency model. The acquire operation, like read in

processor consistency, requires all preceding acquire operations to be per-

formed before it is allowed to perform. The release operation requires all

proceeding operations to be performed before it is allowed to execute.

Entry Consistency Weak and release consistency requires all data access to be

performed before the subsequent synchronization operation. Entry consis-

96

tency [10] relaxes this constraint and allows data to be associated with syn-

chronization variables. Only the associated shared variables are guaranteed

to be up-to-date at the synchronization point.

The first page-based distributed shared memory systems, IVY, implements se-

quential consistency. Munin was the first distributed shared memory system to

use release consistency. It implements multiple memory consistency protocols in-

cluding sequential and release consistency. Entry consistency is first introduced in

Midway system. Other relaxed memory consistency, like the lazy release consis-

tency [41] used in TreadMark and the scope consistency [30], has no direct relation

to our system and is not discussed.

7.1.4 Fault-tolerant Computing

Fault-tolerant systems can be categorized according to their approach to handle

failures: systems that are designed to handle failures as their first priority, and

systems that provide fault tolerance as an add-on feature. The first type of systems

are represented by ISIS[11], which provides reliable and ordered multicast messages

among process groups to mask network asynchrony and to detect failures. The

users are responsible for handling the failure once detected. The system incurs

high overhead to maintain reliable and ordered messages, with or without failures.

Other type of systems address fault tolerance separately and provide as an

97

add-on feature. Fault-tolerant techniques includes check-pointing, replication, and

migration. Systems that provides fault tolerance features with these techniques

are CIRCUS[17], LOCUS[47], Clouds[19], Fail-safe PVM [44], PLinda [32], and

FT-Linda [5]. These systems often provide fault tolerance features independent to

other system functions and require user intervention when failures are present.

Calypso [6], Chime [51], and our system, belong to a different group in which

load balancing and fault tolerance are naturally supported by the software archi-

tecture itself. There is no extra cost for handling failures.

7.2 Relevant Systems

7.2.1 CC++

CC++ [15] addresses task parallelism at a high level and is close to our program-

ming model. CC++ divides the C++ extension into two parts, constructs for

parallel machines, and constructs for distributed environments. The syntax for

parallel programming uses parallel blocks and loops to express parallelism, while

processor objects are used to represent the underlying machine in the distributed

environment. In our system we do not employ such a dichotomy—the same pro-

gram could run both on parallel and distributed platforms. To emphasize the

closeness between our programming language and that of CC++ we provide a

brief comparative discussion.

98

Both systems handle static, dynamic, and nested parallelism. In CC++, static

and dynamic parallelism is typified by the par{} and by parfor(;;) statement,

respectively. In our system, we use the parbegin/parend block to express both

dynamic and static parallelism. Inside the parallel block, only routine statements

are allowed to increase readability. The effect of parallel for loop can be achieved

by using the width and id arguments in the routine statement.

Implementations of CC++ (e.g. as in HPC++) do not support fault tolerance,

or automatic load balancing as we do.

7.2.2 Dome

Dome [7, 2] is based on C++, and supports data parallelism. It is relevant to

our work as it provides load balancing. Dome provides a library of classes and

runs on top of PVM. During the execution, when an object of an existing class is

instantiated it is partitioned among the available machines, each computing part

of the result. During the computation the system estimates the availability of

the machines participating in the computation by keeping track of how fast they

computed their assigned tasks. If some machines seem tardy, some of the work

originally assigned to them may be migrated to (presumably) faster machines.

Fault tolerance is provided by using a dedicated layer based on standard techniques,

completely independent to load balancing.

99

There are several differences between our approach and that of Dome. In Dome,

tailor-made classes must be written to enable load balancing, requiring specialized

effort for the development of new applications, including additional programming

complexity, testing, and debugging. Also, the initial performance results indicate

that less available machines can hold back fully available machines. For instance,

according to [7, 2] an experiment was conducted to evaluate load balancing. When

one slow machine is added to a set of fast machines, the overall speed dropped

significantly. In contrast, in our system, when a slow machine was added to a set

of fast machines, the overall speed increased.

7.2.3 Calypso

Calypso system [6] has the same root as our system, which is based on the tech-

niques of two-phase idempotent execution strategy (TIES) and eager scheduling

[4, 39, 37, 35, 36, 38, 40]. Our system and Calypso use similar parallel constructs,

and Calypso programs can be executed by our system with little or no modifica-

tions.

The fundamental difference between our system and Calypso is the ability to

handle nested parallelism and synchronization. In contrast to our system, Calypso

does not do nested parallelism and synchronization. In the following, we com-

pare the difference in programming syntax and implementation between the two

100

systems.

Calypso allows pre-processing and post-processing of a routine statement.

That is, programmers can specify routine[][&pre, &post]() statement, and the

pre() function will be executed before entering the routine, likewise, the post()

will be invoked after leaving the routine function. Our system does not imple-

ment this feature. However, we allow nested parallelism and synchronization in

our system. Explicit nested parallelism like having parbegin/parend within a

routine statement and implicit nested parallelism like embedding parallel block

inside a recursive function (as we seen in quicksort example, p. 32) are allowed.

Additional parallel constructs and library calls for synchronization are added, like

lock/unlock, sync t and assoc.

In order to support nested parallelism and synchronization, our system uses

heavyweight processes to process tasks. That is, new processes are forked when

executing tasks. Heavyweight process allows us to suspend a task for synchro-

nization, or to convert waiting parent tasks to become memory manager, which

strengthened the fault-tolerant and load-balancing capability in nested parallel

programs. Memory managers are distributed across the network and can toler-

ate failures as the result. In contrast, Calypso uses one process on each machine,

called “worker process,” to handle all tasks. This is possible since there is at most

one task running on each machine, and the tasks will not be suspended as in our

101

system.

Several performance optimization techniques are developed in Calypso, includ-

ing caching and bunching. Caching technique keeps a copy of the shared memory

pages previously used in local machines. New tasks arrive with page validation

information, and the previously cached shared memory pages are reused if valid.

Hence, read only pages are fetched only once for each machine. Our system does

not implement caching technique mentioned above since we do not have a central-

ized memory manager to handle page validation, and we use heavy weight processes

instead of reusing the same worker process.

Bunching schedules a set of tasks (a bunch) to a machine at once. The bunch

size is calculated based on the number of remaining tasks and the number of cur-

rently available machines. Bunching is an effective technique in reducing scheduling

overhead for problem with small granularity. However, it may not be as effective in

a nested parallel environment since the tasks are more dynamic. Tasks can be sus-

pended, or new ones can be created dynamically in a nested parallel environment.

We did not implement bunching in our system.

We proposed a way to tolerate failures of the centralized managers, which is

not available in Calypso.

102

7.2.4 Chime

Chime[51, 50] has the same goal as our system, namely, to allow reliable distributed

computation with nested parallelism and synchronization capabilities on a network

of workstations.

The difference between the two systems is the approach towards handling nested

parallelism. Instead of dealing with jobs creating children jobs directly, Chime

breaks a job with parallel blocks into several sub-jobs that contain sequential in-

structions only. For example, a job that contains one parallel block is broken into

two: one contains the function before the parallel block, and the other contains

the remaining of the function after the parallel block. When a sub-job running the

first part of the job reached the parallel block, the sub-job is terminated with the

current execution environment saved in the system. After all the children jobs of

the parallel block are finished, a new sub-job is initiated to resume the execution

the remaining job.

The system must have the ability to stop and resume a job in the middle of

the execution in order to use this approach. Furthermore, job migration must be

enabled to tolerate machine failures, so that sub-jobs can be executed on a different

machine when the machine that executed the previous part of the job failed.

The relationship of between jobs is stored in a dependency graph. The sys-

tem uses this dependency graph to maintain the parent/child and job/sub-jobs

103

relations. In contrast, our system maintains the parent/child dependency in the

execution itself by having the parent job to wait for children jobs.

A similar strategy of splitting jobs is used to handle synchronization in Chime.

When a synchronization request is encountered, the job is terminated with all the

shared memory updates applied and the execution environment saved. A new job

is created to resume the execution after the synchronization request is fulfilled.

This approach works with the original two-phase idempotent execution strat-

egy and eager scheduling (see Section 2.4) without modification, since the nested

structures are flattened out. However, the correctness of the computation depends

on strict concurrent read exclusive write (CREW) semantic, since jobs must have

independent input and output set in order for jobs in the same parallel block not

to interfere with each other. No jobs can access an address location while the oth-

ers may be writing to it. Thus, a variable updated by a job cannot be referenced

by any of the sibling jobs or their descendants. For example, suppose a job J1

creates J2 and J3, then any of the children jobs of J2 will not be able to access the

memory location if J3 or its descendants may modify it. Comparing with Chime,

our system allows common concurrent read concurrent write (CRCW-common)

semantic such that several tasks can read and write to the same address location

at the same time as long as the updates are the same at the end of the parallel

block. The value retrieved from the location is the data before the jobs begins,

104

and the value written takes effect after all jobs in the parallel block are done.

The obvious drawback of Chime’s approach is that the system needs to store

the intermediate results and execution environment for all sub-jobs, which may

require lots of space and bandwidth to handle the data.

Other significant difference between the two systems includes:

• Chime add several additional parallel constructs, including parallel for loop,

and dynamic shared memory allocation shmalloc().

• Chime allows local variables with scoping rules to be shared as well. It grows

a centralized cactus stack to store the variables.

• Chime uses the synchronization model defined in CC++, where each syn-

chronization variable can only be set once. Reading synchronization variables

that are not set will cause the thread to wait, and writing to synchronization

variables that are already set will cause the thread to abort.

• Chime stores everything (including the program context, shared memory, cac-

tus stack, synchronization information) on a single manager, which is prone

to failures and may become a hot spot of the network.

• Chime is implemented on windows NT operating system, while ours is devel-

oped under UNIX environment. Therefore, there is no performance compar-

ison between the two systems.

105

Chapter 8

Conclusions

The computational resources are usually not fully utilized in a network of non-

dedicated workstations. The computing power in these machines, if harnessed

properly, can be used toward computing resource demanding parallel programs

at little or no additional cost. However, the unpredictable nature of the non-

dedicated network and workstations makes it difficult to executing parallel pro-

grams efficiently. Systems must adapt to the continuously changing environment

and make appropriate adjustments, without user intervention. A common problem

with most systems is that key functions like fault tolerance, load balancing, and

shared memory service, are implemented independently with each other, at differ-

ent layers or as add-on features. Fault tolerance, for instance, is implemented by

a layer utilizing conventional techniques at a significant cost penalty in many sys-

106

tems. Slow machines often dominate the overall performance when load balancing

is not well integrated into the system, since the faster machines need to wait for

the slower ones to finish. Lack of integrated services often results in poor perfor-

mance, less fault-tolerant, and not scalable. In contrast, load balancing and fault

tolerance are naturally supported by the software architecture itself in our system.

The fault tolerance features are provided with no significant performance impact.

Furthermore, slow machine does not hold back the faster machines as others do.

Extremely slow machines and failed machines are often indistinguishable, and we

handle it uniformly in our system.

The programming model of our system provides a flexible, easy to use interface

for the users to implement high performance parallel algorithms. We provide the

users a fail-free ideal machine to work with, while hiding the actual execution envi-

ronment. Users are not concerned with the underlying data and work distribution,

nor do they handle machine or network failures, so they can concentrate on the

problem itself instead of the execution environment.

Our system provides a rich programming model, especially for computations

whose complexity emerges only during the execution. Nested parallelism is imple-

mented to allow dynamic creation of addition parallelism. Novel techniques like

nested two-phase idempotent execution strategy and prioritized eager scheduling

algorithm are developed to handle the dynamically evolving parallelism.

107

Explicit synchronization allows the programmers to control the parallel exe-

cution as well as to exchange data between jobs. Our model provides a locking

mechanism for the users to manage critical sections easily.

One special feature of our system is the uniform treatment of the memory

management service and the user tasks. In general, a task either computes or

serves as a memory manager. Therefore, memory management services, like the

parallel tasks, are distributed in our system. Scalability, load balancing, and fault

tolerance are enhanced as the result.

We pay special attention to the fault-tolerant capability of all the components

when designing our system. A special fault-tolerant mechanism is proposed to

handle the failure of the centralized services, including the global scheduling and

synchronization services.

Our system has a comparable performance as other systems like Calypso and

PVM for coarse-grain problems. Our system is well suited for problems with dy-

namically evolving parallelism. With the nested parallel capability, nested parallel

programs are easier to implement and run faster in our system than non-nested

systems like Calypso.

108

Bibliography

[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and

W. Zwaenepoel. Treadmarks: Shared memory computing on networks of worksta-

tions. IEEE Computer, 1996.

[2] J. Árrabe, A. Beguilin, B. Lowekamp, E. Seligman, M. Starkey, and P. Stephan.

Dome: Parallel programming in a heterogenous multi-user environment. Technical

report, CMU, April 1995.

[3] J. Auerbach, A. Goldberg, A. Gopal, M. Kennedy, and J. Russell. Concert/C:

A language for distributed programming. In Proceedings of the USENIX Winter

Conference, 1994.

[4] Y. Aumann, Z. M. Kedem, K. V. Palem, and M. O. Rabin. Highly efficient asyn-

chronous execution of large-grained parallel programs. In Proceedings of the IEEE

Symposium on Foundations of Computer Science, pages 271–280, 1993.

[5] D. Bakken and R. Schlichting. Supporting fault-tolerant parallel programming in

Linda. Technical Report TR93-18, The University of Arizona, 1993.

[6] A. Baratloo, P. Dasgupta, and Z. M. Kedem. Calypso: A novel software system

for fault-tolerant parallel processing on distributed platforms. In Proceedings of the

5th IEEE International Symposium on High Performance Distributed Computing,

pages 122–129, 1995.

109

[7] A. Beguilin, E. Seligman, and M. Starkey. Dome: Distributed object migration

environment. Technical report, CMU, May 1994.

[8] R. Ben-Natan. Corba. McGraw-Hill, 1995.

[9] John K. Bennett, John B. Carter, and Willy Zwaenepoel. Adaptive software cache

management for distributed shared memory architectures. In Proceedings of the

International Symposium on Computer Architecture, pages 125–134, 1990.

[10] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The midway

distributed shared memory system. In COMPCON, pages 528–537, 1993.

[11] K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures.

ACM Transactions of Computer Systems, 5(1), February 1987.

[12] F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony, and B. Mohr.

Implementing a parallel C++ runtime system for scalable parallel systems. In

Proceedings of the IEEE Supercomputing, pages 588–597, November 1993.

[13] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,

32(4):444–458, 1989.

[14] John B. Carter. Efficient Distributed Shared Memory Based On Multi-Protocal

Release Consistency. PhD thesis, Computer Science Department, Rice University,

1993.

[15] K. M. Chandy and C. Kesselman. CC++: A declarative concurrent object-oriented

programming notation. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research

Directions in Concurrent Object Oriented Programming. MIT Press, 1993.

[16] A. A. Chien, U. S. Reddy, J. Plevyak, and J. Dolby. ICC++ – a C++ dialect for

high performance parallel computing. Technical report, Department of Computer

Science,University of Illinois, July 1995.

110

[17] E. Cooper. Replicated distributed programs. In Proceedings of the 10th ACM

Symposium on Operating System Principles, 1985.

[18] F. Cristian, H. Aghili, and R. Strong. Clock synchronization in the presence of

omissions and performance faults, and processor joins. In Proceedings of the 16th

International Symposium on Fault Tolerant Computing Systems, June 1986.

[19] P. Dasgupta, R. J. LeBlanc Jr., M. Ahamad, and U. Ramachandran. The Clouds

distributed operating system. IEEE Computer, 1990.

[20] P. Dasgupta, Z. M. Kedem, and M. O. Rabin. Parallel processing on networks

of workstations: A fault-tolerant, high performance approach. In Proceedings of

the 15th IEEE International Conference on Distributed Computing Systems, pages

467–474, 1995.

[21] J. Deminet. Experience with multiprocesor algorithms. IEEE Transactions on

Computers, 31(4), April 1982.

[22] M. Dubois and C. Scheurich. Memory access dependencies in shared-memory mul-

tiprocessors. IEEE Transactions on Software Engineering, June 1990.

[23] A Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM: Parallel Virtual Machine - a users’ guide and tutorial for networked parallel

computing. The MIT Press, 1994.

[24] David Gelernter, Marc Jourdenais, and David Kaminsky. Piranha scheduling:

Strategies and their implementation. Technical report, Department of Computer

Science, Yale University, 1993.

[25] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.

Memory consistency and event ordering in scalable shared-memory multiproces-

sors. In Proceedings of the 17th International Symposium on Computer Architecture,

1990.

111

[26] J. R. Goodman. Cache consistency and sequential consistency. Technical Report 61,

SCI Committee, 1989.

[27] W. Gropp, E. Lusk, and A. Skjellum. Using MPI : Portable Parallel Programming

with the Message-Passing Interface. The MIT Press, 1994.

[28] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,

21(8):666–677, August 1978.

[29] S.-C. Huang and Z. M. Kedem. Supporting a exible parallel programming model on

a network of workstations. In Proceedings of the 16th IEEE International Conference

on Distributed Computing Systems, 1996.

[30] L. Iftode, J. Singh, and K. Li. Scope consistency: A bridge between release con-

sistency and entry consistency. In Proceedings of the ACM Symposium on Parallel

Algorithms and Architectures, 1996.

[31] R. Jagannathan and A. A. Faustini. GLU: A hybrid language for parallel ap-

plications programming. Technical Report Technical Report SRI-CSL-92-13, SRI

International, 1992.

[32] K. Jeong and Dennis Shasha. Plinda 2.0: A transactional/checkpointing approach

to fault tolerant Linda. In Proceedings of the 13th Symposium on Reliable Distributed

Systems, 1994.

[33] M. Kaashoek, R. Michiels, H. Bal, and A. Tanenbaum. Transparent fault-tolerance

in parallel Orca programs. In Symposium on Experiences with Distributed and

Microprocessor Systems, 1992.

[34] Laxmikant V. Kale and Sanjeev Krishnan. CHARM++: A portable concurrent

object oriented system based on C++. In OOPSLA Proceedings, pages 91–108,

1993.

112

[35] Z. M. Kedem. Methods for handling faults and asynchrony in parallel computations.

In DARPA Software Technology Conference, pages 189–193, 1992.

[36] Z. M. Kedem and K. V. Palem. Transformations for the automatic derivation

of resilient parallel programs. In IEEE Workshop on Fault-Tolerant Parallel and

Distributed Systems, pages 15–25, 1992.

[37] Z. M. Kedem, K. V. Palem, M. O. Rabin, and A. Raghunathan. Efficient program

transformations for resilient parallel computation via randomization. In Proceedings

of the ACM Symposium on Theory of Computing, pages 306–317, 1992.

[38] Z. M. Kedem, K. V. Palem, A. Raghunathan, and P. G. Spirakis. Combining

tentative and definite executions for dependable parallel computing. In Proceedings

of the ACM Symposium on Theory of Computing, pages 381–390, 1991.

[39] Z. M. Kedem, K. V. Palem, A. Raghunathan, and P. G. Spirakis. Resilient parallel

computing on unreliable parallel machines. In A. Gibbons and P. Spirakis, editors,

Lectures on Parallel Computation. Cambridge University Press, 1993.

[40] Z. M. Kedem, K. V. Palem, and P. G. Spirakis. Efficient robust parallel compu-

tations. In Proceedings of the ACM Symposium on Theory of Computing, pages

138–148, 1990.

[41] P. Keleher. Lazy Release Consistency for Distributed Shared Memory. PhD thesis,

Rice University, January 1995.

[42] D. Khandekar. Quarks: Distributed shared memory as a building block for complex

parallel and distributed systems. Master’s thesis, Department of Computer Science,

The University of Utah, March 1996.

[43] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, July 1978.

113

[44] J. Leon, A. Fisher, and P. Steenkiste. Fail-safe pvm: A portable package for dis-

tributed programming with transparent recovery. Technical Report CMU-CS-93-

124, CMU, 1993.

[45] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM

Transactions of Computer Systems, 7, 1989.

[46] B. J. Nelson. Remote Procedure Call. PhD thesis, Computer Science Department,

Carnegie Mellon University, 1981.

[47] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel. LO-

CUS: A network transparent, high reliability distributed system. Operating Systems

Review, 15(5), December 1981.

[48] M. J. Quinn. Designing Efficient Algorithms for Parallel Computers. McGraw-Hill,

1987.

[49] L. Raskin. Performance evaluation of multiple processor systems. PhD thesis,

Carnegie-Mellon University, August 1978.

[50] S. Sardesai. Chime: A Versatile Distributed Parallel Processing Environment. PhD

thesis, Arizona State University, July 1997.

[51] S. Sardesai, D. McLaughlin, and P. Dasgupta. Distributed cactus stacks: Runtime

stack-sharing support for distributed parallel programs. In the International Con-

ference on Parallel and Distributed Processing Techniques and Applications, 1998.

[52] R. D. Schlichting and F.B. Schneider. Fail stop processors: An approach to designing

fault-tolerant computing systems. ACM Transactions of Computer Systems, 1(3),

August 1983.

[53] V. Sunderam, G. Geist, J. Dongarra, and R. Manchek. The PVM concurrent com-

puting system: evolution, experiences, and trends. Parallel Computing, 20:531–545,

1994.

114

