
Scalable Machine Learning using
Dataflow Graph Analysis

by

Chien-Chin Huang

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

September, 2019

Professor Jinyang Li

© Chien-Chin Huang

All Rights Reserved, 2019

Dedication

To Siao-Ting, Ke-Shiuan, Kitty, and my family.

iii

Abstract

In the past decade, the abundance of computing resources and the growth

of data have boosted the development of machine learning applications. Many

computation frameworks, e.g., Hadoop, Spark, TensorFlow, and PyTorch, have

been proposed and become widely used in the industry. However, programming

large-scale machine learning applications is still challenging and requires the man-

ual efforts of developers to achieve good performance. This thesis discusses two

major issues with the existing frameworks.

First, array is a popular data abstraction for machine learning computation.

When parallelizing arrays to hundreds of CPU machines, it is critical to choose

a good partition strategy to co-locate the computation arrays to reduce network

communication. Unfortunately, existing distributed array frameworks usually

use a fixed partition scheme and requires manually partitioning if another paral-

lel strategy is used, making it less easy to develop a distributed array program.

Secondly, GPU is widely used for a popular branch of machine learning applica-

tions, deep learning. Modern GPU can be orders of magnitude faster than CPU

and becomes an attractive computation resource. However, the limited memory

size of GPU restricts the scale of the DNN models can be run. It is desirable to

iv

ABSTRACT

have a computation framework to allow users to explore deeper and wider DNN

models by leveraging the CPU memory.

Modern machine learning frameworks generally adopt a dataflow-style pro-

gramming paradigm. The dataflow graph of an application exposes valuable in-

formation to optimize the application. In this thesis, we present two techniques

to address the above issues via dataflow graph analysis.

We first design Spartan to help users parallelize distributed arrays on a CPU

cluster. Spartan is a distributed array framework, built on top of a set of higher-

order dataflow operators. Based on the operators, Spartan provides a collection of

Numpy-like array APIs. Developers can choose the built-in array APIs or directly

use the operators to construct machine learning applications. To achieve good

performance for the distributed application, Spartan analyzes the communication

pattern of the dataflow graph captured through the operators and applies a

greedy strategy to find a good partition scheme to minimize the communication

cost.

To support memory-intensive deep learning applications on a single GPU, we

develop SwapAdvisor, a swapping system that automatically swaps temporarily

unused tensors from GPU memory to CPU memory. To minimize the commu-

nication overhead, SwapAdvisor analyzes the dataflow graph of the given DNN

model and uses a custom-designed genetic algorithm to optimize the operator

scheduling and memory allocation. Based on the optimized operator schedule

and memory allocation, SwapAdvisor can determine what and when to swap to

achieve good performance.

v

Table of contents

Dedication iii

Abstract iv

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Evolution of Computation Frameworks for Machine Learning . . 3

1.2 Challenges in Scaling Machine Learning 7

1.3 Automatic Array Partitioning with Spartan 9

1.4 Leveraging CPU Memory with SwapAdvisor for Large DNN Models 11

1.5 Contributions . 12

2 Spartan Design 14

2.1 Overview . 14

2.2 Automatic Tiling Overview . 15

2.2.1 What Affects Good Tiling? 15

vi

TABLE OF CONTENTS

2.2.2 Our Approach and Spartan Overview 18

2.3 Smart Tiling with High-level Operators 20

2.3.1 High-level Operators . 20

2.3.2 Expression Graph Capture 24

2.3.3 Graph-based Tiling Optimizer 26

2.3.4 Additional Tiling Optimizations 31

2.4 Implementation . 32

3 Spartan Evaluation 34

3.1 Experimental Setup . 34

3.2 Tiling . 35

3.3 Scaling . 39

3.4 Comparison with Other Systems 42

4 SwapAdvisor Design 43

4.1 Background . 43

4.2 Challenges and Our Approach . 45

4.3 SwapAdvisor Design . 50

4.3.1 Operator Schedule and Memory Allocation 51

4.3.2 Swap Planning . 53

4.4 Optimization via Genetic Algorithm 56

4.4.1 Algorithm Overview . 58

4.4.2 Creating New Schedules 59

4.4.3 Creating New Memory Allocation 61

vii

TABLE OF CONTENTS

4.5 Implemetation . 65

5 SwapAdvisor Evaluation 66

5.1 Experimental Setup . 67

5.2 Wider and Deeper DNN Models Training 71

5.3 DNN Models Inference Evaluation 73

5.4 The Effectiveness of SwapAdvisor’s Design Choices 77

6 Related Work 79

6.1 Spartan’s Related Work . 79

6.2 SwapAdvisor’s Related Work . 83

7 Conclusion 87

Appendix A NP-Completeness Proof of Tiling Optimizaion 89

Bibliography 96

viii

List of Figures

2.1 Three tiling methods for a two-dimensional array 15

2.2 Two approaches to implement a distributed matrix multiplication . . 16

2.3 Pseudocode of Alternating Least Squares 17

2.4 Overview of Spartan’s architecture 19

2.5 Implementations of add and dot in Spartan 25

2.6 Expression and tiling graphs for Z = X + Y −X · Y in Spartan . . . 26

2.7 Examples to build a tiling graph in Spartan 27

2.8 The maximum connectivity group first algorithm for Spartan 30

3.1 Runtime comparison between Spartan’s smart tiling and the best tiling 35

3.2 The performance of Spartan’s smart tiling 37

3.3 An example that smart tiling gives sub-optimal tiling 38

3.4 Scaling results for fixed input and varied number of workers for Spartan 40

3.5 Scaling input size on local cluster for Spartan 41

3.6 Scaling input size on 128 EC2 instances for Spartan 41

4.1 Different schedules and memory allocation can affect swapping . . . 46

ix

List of Figures

4.2 System overview of SwapAdvisor . 51

4.3 Example swap planning for a simple dataflow graph 55

4.4 Random scheduling and memory allocation for Inception-V4 57

4.5 SwapAdvisor scheduling crossover example 59

4.6 SwapAdvisor memory allocation crossover example 62

5.1 SwapAdvisor’s normalized throughput relative to the ideal 68

5.2 WResNet-152-4 throughput comparison 73

5.3 99 percentile latency versus throughput of SwapAdvisor 74

5.4 SwapAdvisor’s search performance 75

5.5 SwapAdvisor’s search results with different search settings 75

A.1 Example node groups and edge relationship for Spartan’s proof . . . 91

x

List of Tables

3.1 K-Means performance comparison for Spartan 42

5.1 Memory usage and dataflow graph Statistics of DNN models. 71

5.2 ResNet-152 inference time with SwapAdvisor 74

xi

Chapter 1

Introduction

Machine learning, the study of extracting and learning patterns from the data,

has been increasingly popular in the past decade. Many different algorithms

have been introduced and are widely used [1, 2]. One can roughly categorize

the state-of-art machine learning algorithms into two types. The first one is the

algorithms that can learn from structured data and is referred to as traditional

machine learning in this thesis. Another type is the algorithms which adopt

artificial neural networks to learn from unstructured (or unprocessed) data and

is usually referred to as deep learning.

One primary reason for the popularity of machine learning is the arrival of

the so-call “Big Data” era. With the availability of a large amount of useful data,

the accuracy of machine learning applications have been significantly boosted.

In addition, many computation frameworks have been proposed to help scale

machine learning. For example, MapReduce [3] and Spark [4] are two popular

general-purpose distributed data processing frameworks. Based on these general-

1

CHAPTER 1. INTRODUCTION

purpose frameworks, MLBase [5] and Mahout [6] are developed to provide a

higher-level data abstraction (array) and array libraries for machine learning

developers. These frameworks are mainly used for traditional machine learn-

ing. Several specialized array frameworks, e.g., TensorFlow [7], PyTorch [8], and

MXNet [9], are designed to support deep learning development. Despite these

efforts, scaling machine learning applications is still challenging for programmers.

First, traditional machine learning applications generally require an enormous

memory footprint to do the computation due to the vast amount of the input

data. It is common to use a cluster of CPU machines to distribute the arrays to

process the large inputs. One key performance factor when distributing arrays is

to partition the arrays in a way such that computation data is co-located. The

existing machine learning frameworks mostly require users to manually design

a good array partitioning strategy. However, manual array partitioning can be

painful. Ideally, a distributed array framework should support automatic ar-

ray partitioning with minimal user efforts to achieve both ease-of-use and high

performance.

Secondly, the computation of an artificial neural network is extremely heavy

and dense, and has been shown that it is not easy to be managed by CPUs [2].

The arrival of the general-purpose GPU provides a powerful matrix (array) com-

putation resource, boosting the development of deeper artificial neural network

models, also known as deep neural networks (DNN). Unfortunately, GPU mem-

ory size is far less than CPU, restricting the opportunities for developers to

explore various deeper and wider neural network models where the memory re-

2

CHAPTER 1. INTRODUCTION

quirement exceeds a single GPU memory capacity. Consequently, it is desirable

to utilize the CPU memory for running a large deep learning model.

This thesis first presents Spartan, a distributed array framework for paral-

lelizing traditional machine applications with automatic array partitioning. The

second part of the thesis discusses SwapAdvisor, an array swapping framework

for deep learning.

1.1 Evolution of Computation Frameworks for

Machine Learning

The arrival of the “Big Data” era makes it easy to obtain a large amount of

useful data. Additionally, the public availability of large-scale computing clusters

(e.g., Amazon EC2, Google Cloud Engine, and Microsoft Azure) allows people to

parallelize computation with abundant computing resources. However, it is chal-

lenging to manage massive data and powerful hardware without an easy-to-use

and efficient distributed computation framework. Many distributed computation

frameworks have been proposed to ease the burden.

General-purpose distributed computation frameworks: Since the intro-

duction in 2004, MapReduce and its open-source counterpart, Hadoop [10], have

been widely used for distributed data processing. MapReduce provides a dataflow-

style, restricted programming paradigm. The distributed processes in MapRe-

duce do not communicate with each other directly but operate on a set of read-

3

CHAPTER 1. INTRODUCTION

only key-value data collections. Programmers use two functional, data-parallel

operators, “Map” and “Reduce” to process (or transform) the data collections. In-

ternally, MapReduce performs a “Shuffle” operation to redistribute the data by

keys. All the results (intermediate and final) are stored in a distributed system

(e.g., GFS [11] and HDFS [12]) before being reused.

The success of MapReduce (and Hadoop) has inspired many distributed

frameworks to target primitives for key-value collections (e.g., Spark [4], Dryad [13],

Picolo [14], Dandelion [15], and Naiad [16]). Among them, Spark is the most no-

table one.

Spark works upon a set of read-only resilient distributed datasets (RDD),

which reside in the distributed shared memory. The shared RDDs reduce the

need to read from the distributed file system. Spark also adopts lazy evaluation

to delay materializing RDDs until necessary in order to construct a dataflow

graph of the application. Via analyzing the dataflow graph, Spark can optimize

the computation and can further reduce the unnecessary intermediate data.

Distributed array frameworks: The popularity of MapReduce and Spark

comes from the dataflow-style operators, which isolate the computation from

the physical data communication and distribution, allowing users to focus on

processing local data. Unfortunately, the key-value collection representation in

MapReduce and Spark is designed for general usages, too low-level for machine

learning developers.

In the machine learning community, array (or matrix) is the primary data

abstraction as it can be used to represent the mathematical meaning of machine

4

CHAPTER 1. INTRODUCTION

algorithms. Many distributed array frameworks are designed to provide an array-

based programming interface for machine learning users. We can categorize these

existing array frameworks into two types.

The first type of frameworks are based on the general-purpose distributed

frameworks and provide array builtins and abstraction to users. MLBase [5] and

Mahout [6] are two notable libraries, which provide a set of machine learning and

linear algebra algorithms. To leverage the existing distributed frameworks, ML-

Base and Mahout translate the array information to the underlying framework’s

key-value representations. Users can directly use these array builtins to imple-

ment machine learning applications but may have to fall back to the low-level

operators when designing a new algorithm which is not supported.

The second type of frameworks extend and parallelize an existing program-

ming language. Presto (Distributed R) [17] aims to distribute a popular array

programming language, R, with a set of customized data structures (e.q., dis-

tributed array) and APIs (e.q., foreach). Users write machine learning algo-

rithms with the original R syntax but use the extension structures to store the

distributed data and use the extension APIs to iterate the distributed arrays for

computation. Similar to Presto, MadLINQ [18] extends a general programming

language, C#, with a domain-specific language (DSL) to distribute and iterate

arrays. Additionally, MadLINQ is integrated with DryadLINQ [19], a general-

purpose distributed data processing framework. This design allows MadLINQ to

provide a full data pipeline for machine learning developers, from processing the

raw data to learning with the structured data.

5

CHAPTER 1. INTRODUCTION

Deep learning frameworks: Deep learning applications also use array (is re-

ferred to as tensor in the deep learning community) as the main data abstraction.

However, there are several factors which make the discussed array frameworks

less attractive for the deep learning community.

First, the computation of deep learning applications is extremely heavy. Con-

sequently, most users adopt GPU to be the primary computation platform to

speed up the development. Many existing distributed array frameworks aim to

support a cluster of CPU machines and do not support GPU. Furthermore, to

best utilize the GPU computation power while alleviating user programming ef-

forts, several specialized libraries have been developed for deep learning (e.g.,

CUDA [20] and CUDNN [21]). Deep learning users tend to use these APIs as

the underlying computation units.

More importantly, the deep learning community adopts a gradient-descent-

based approach when training a deep learning model [2]. Programmers first

apply the calculus chain rule layer by layer to get the gradient formulas. The

gradient formulas are then converted to expressions of GPU libraries to perform

the actual computation. The process is tedious and error-prone as a deep learning

model can have hundreds of layers [22].

Many deep learning frameworks have been introduced to solve these issues

(e.g., TensorFlow [7], PyTorch [8], and MXNet [9]). In these frameworks, CUDA

and CUDNN are wrapped as the basic computation APIs. When users develop a

deep neural network model, these frameworks construct a dataflow graph made

by the computation APIs. With the dataflow graph capturing the mathematical

6

CHAPTER 1. INTRODUCTION

information of the model, these frameworks apply the chain rule to the dataflow

graph to derive the gradients of the parameters automatically for users (the tech-

nique is referred to as backward-propagation in the deep learning community).

1.2 Challenges in Scaling Machine Learning

Although many computation frameworks have been developed (discussed in

Section 1.1), scaling machine learning applications remains difficult for program-

mers. In this section, we present two main challenges.

Manual array partitioning is painful: When distributing traditional ma-

chine learning programs on a cluster of CPU machines, the open challenge is how

to maximize the locality of access to array data spread out across the memory of

many machines. To improve locality, one needs to both partition arrays smartly

and co-locate computation with data. A good data locality can significantly re-

duce network communication. We refer to this as the “tiling” problem. Tiling is

crucial for performance; programs that optimize for locality can be an order of

magnitude faster than those that don’t.

Existing distributed array frameworks do not adequately address the tiling

problem. Most systems rely on users to manually specify array partitioning.

However, manual tiling can be painful. First, developers usually use the array

builtins provided by a distributed array framework to design machine learning

algorithms. In order to best partition the arrays, developers need to understand

how these arrays are accessed by the builtins. More importantly, a machine

7

CHAPTER 1. INTRODUCTION

learning program usually contains several array expressions, resulting in many

different ways to tile the entire program. Developers needs to explore different

tiling strategies to get excellent performance. Finally, a machine learning ap-

plication may use multidimensional arrays (e.g., 3D images) which have more

ways to partition, resulting in more complicated tiling strategies. Consequently,

manual tiling is tedious and error-prone and should be avoided as possible.

Limited GPU memory size restricts the DNN model size: Deep learning

community adopts stochastic gradient descent (SGD) [2] as the main algorithm

to search the model parameters for a deep neural network (DNN). This design

allows developers to partition the input data into batches and utilize only a

single batch of data per iteration. Nevertheless, as DNN models become deeper

(more layers) and wider (more parameters), the computation of DNNs has been

increasingly dense. As a result, it is still very common to distribute an deep

learning application to multiple GPUs.

Data parallelism is the most popular way to parallelize a DNN model due

to its simplicity. A data parallelized DNN program duplicates the parameter

tensors to all the GPUs, and each GPU runs the same model with a different

portion of the data. As a result, the implementation of a single-GPU DNN model

can be used for a data-parallel environment with minimal modifications.

However, duplicating all the parameters prevents data parallelism from sup-

porting huge DNN models where the size of parameters exceeds a single GPU’s

memory capacity. The parameter sizes of DNN models have doubled roughly

every 2.4 years in the past decade [2] while the GPU memory capacity has only

8

CHAPTER 1. INTRODUCTION

increased by 4× (4GB to 16GB). Consequently, the GPU memory capacity lim-

its the opportunities for the developers to explore much larger DNN models.

CPU memory size is orders of magnitude larger than GPU memory; it is not

uncommon for a CPU machine to have hundreds of gigabytes memory or even

terabytes memory. As a result, it is desirable to leverage CPU memory to scale

DNN models with either a single GPU or multiple GPUs with data parallelism.

We next discuss how to solve these two challenges with Spartan (Section 1.3)

and SwapAdvisor (Section 1.4).

1.3 Automatic Array Partitioning with Spartan

We first propose Spartan to achieve automatic array partitioning (also referred

to as “automatic tiling”) for traditional machine learning. Spartan, a distributed

array framework with smart tiling, provides the popular NumPy [23] array ab-

stractions while achieving scalable, high performance across machines. The key

innovation of Spartan is its automatic tiling mechanism: when distributing an

n-dimensional array across machines, the runtime of Spartan can automatically

decide which axis(es) to cut each array along and to co-locate computation with

data.

A major design of Spartan is the five high-level parallel operators, including

map, fold, filter, scan, and join_update. These high-level operators capture the

parallel patterns of most array programs, and we use them to distribute a myriad

of built-in array functions as well as user programs. A critical difference between

the operators and MapReduce’s (or Spark’s) operators is the semantics of these

9

CHAPTER 1. INTRODUCTION

operators are array-based. The operators work on a set of distributed-arrays,

instead of the lower-level, opaque data collections. The semantics of these high-

level operators lead to well-defined cost profiles. The cost profile of an operator

gives an estimate of the communication cost for each potential tiling strategy

(e.g., row-wised and column-wised) for its inputs. Therefore, it provides crucial

information to enable the runtime to perform automatic tiling. As an example,

the map operator applies a user-defined function element-wise to several input

arrays with the same shape. Thus, this operator achieves the best locality (and

zero communication cost) if all its input arrays are partitioned in the same way.

Otherwise, the cost equals to the size of those input arrays with different tiling.

At runtime, Spartan splits program execution into a series of frontend and

backend steps. On the client machine, the frontend first turns a user program into

an expression graph (dataflow graph) of high-level operators via lazy evaluation.

It then runs a greedy search algorithm to find a good tiling for each node in the

expression graph to reduce the overall communication cost. Finally, the frontend

gives the tiled expression graph to the backend for execution. The backend creates

distributed arrays according to the assigned tiling and evaluates each operator

by scheduling parallel tasks among a collection of workers.

We have built Spartan to provide similar user interfaces as NumPy. Evalua-

tions on a local cluster and the Amazon EC2 show that Spartan’s tiling algorithm

can automatically find good tiling for arrays and achieve good scalability.

10

CHAPTER 1. INTRODUCTION

1.4 Leveraging CPU Memory with SwapAdvisor

for Large DNN Models

Swapping tensor data between GPU and CPU memory during deep learn-

ing computation is a promising approach to address the GPU memory limita-

tion [24, 25, 26, 27]. Several technological trends make swapping attractive: 1)

CPU memory is much larger and cheaper than GPU memory, 2) modern GPU

hardware can effectively overlap communication with computation, 3) communi-

cation bandwidth between GPU and CPU is sufficiently good now and can be

significantly improved with the arrival of PCIe 5.0 [28] and the wide adoption of

NVLink [26, 29].

Swapping for DNN computation differs from traditional swapping (between

CPU memory and disk) in that the DNN computation structure is usually known

prior to execution, e.g., in the form of a dataflow graph. Such knowledge un-

leashes tremendous opportunity to optimize swapping performance by maximally

overlapping computation and communication. Unfortunately, existing work ei-

ther do not utilize this information (e.g., TensorFlow’s swap extension [30]) or

only use it in a rudimentary way based on manual heuristics [26, 25, 27]. For

example, TFLMS [26] and vDNN [24] swap only activation tensors according to

their topological sort order in the graph. SuperNeurons [25] only swaps data for

convolution operations. As a result, not only do these work support only limited

types of DNNs but they also fail to achieve the full performance potential of

swapping. SwapAdvisor is a general swapping system which can support various

11

CHAPTER 1. INTRODUCTION

kinds of large model training and inference with limited GPU memory. For a

given DNN computation, SwapAdvisor plans for what and when to swap pre-

cisely prior to execution in order to maximize computation and communication

overlap.

A dataflow graph alone is not sufficient for such precise planning, which is

also dependent on how operators are scheduled to execute and how the memory

allocation is done. More importantly, memory allocation and operator scheduling

also critically affect the best achievable swapping performance. SwapAdvisor uses

a custom-designed genetic algorithm to search the space of all memory allocation

and operator schedules so that the final swapping plan represents the result of

joint optimization over operator scheduling, memory allocation and swapping.

SwapAdvisor can also be used for model inference. Inference has a smaller

memory footprint than training. However, to save cost, one may have multiple

models use a single GPU. In this setup, one can use SwapAdvisor to constrain

each model to use only a fraction of the memory as opposed to time share the

entire memory across models.

1.5 Contributions

In this thesis, we explore the opportunity to scale machine learning applica-

tions with minimal manual user efforts via dataflow graph analysis. In particular,

this thesis makes the following contributions:

12

CHAPTER 1. INTRODUCTION

Automatic array tiling for large-scale machine learning: Design and im-

plementation of Spartan, a distributed array framework that provides a smart

tiling algorithm to partition distributed arrays effectively. With a set of carefully

chosen high-level operators, Spartan provides good programmability while still

achieves excellent performance.

Smart swapping to enable deeper and wider DNN models: SwapAdvisor

is the first swapping system that supports various types of large DNN models for

both model training and inference. Given the dataflow graph and memory usage

of a DNN model, SwapAdvisor optimizes both operators and memory allocation

scheduling to obtain a good swapping plan for the model.

The remainder of this thesis is organized as follows. We first present the

design of Spartan in Chapter 2 and evaluate the performance of Spartan with

different machine learning applications in Chapter 3. Chapter 4 details how

SwapAdvisor can derive a good swapping plan by controlling the schedules and

memory allocation. In Chapter 5, we show that SwapAdvisor can achieve good

performance for DNN training and inference with limited GPU memory. Finally,

the related work for Spartan and SwapAdvisor are presented in Chapter 6.

13

Chapter 2

Spartan Design

2.1 Overview

The Spartan system is comprised of many worker machines in a high speed

cluster. Spartan partitions each global array into several tiles (sub-arrays) and

distributes each one to a potentially different worker. We refer to the partition-

ing strategy as tiling. There are several ways to “tile” an array. For example,

Figure 2.1 shows the three tiling choices for a 2D array (aka matrix).

In Spartan, an array is created by loading data from an external storage or

as a result of some computation. Spartan decides the tiling choice for the array

at its creation time. What is a good tiling choice? We consider the best tiling

as one that incurs the minimum communication cost when the array is used in

a computation – workers fetch and write as few remote tiles as possible. In next

section, we examine what affects good tiling and give an overview of Spartan’s

approach to automatic tiling.

14

CHAPTER 2. SPARTAN DESIGN

row-wised tiling column-wised tiling block tiling

Figure 2.1: Three tiling methods for a two-dimensional array.

2.2 Automatic Tiling Overview

2.2.1 What Affects Good Tiling?

Several factors affect the tiling choice for an array. These include how the

computation accesses the array, the runtime information of the array and how

the array is used across the program. Below, we illustrate how each of the factors

affects tiling using concrete examples.

1) The access pattern of an array. Array computation tends to read or

update an array along some particular axis. This access information is crucial

for determining a good tiling. Figure 2.2(a) shows the access pattern of a common

implementation of matrix multiplication (aka dot). When computing X · Y = Z,

this implementation launches p parallel tasks each of which reads X row-wise and

reads the entirety of Y . The task then performs a local dot and sends the result

row-size to create Z. Consequently, it is best to tile both X and Z row-wise (it

does not matter how Y is tiled). Other ways of tiling incur extra communication

cost for fetching X and updating Z.

2) The shape and size of an array. The access pattern of an array often

15

CHAPTER 2. SPARTAN DESIGN

(a)

(b)

read

n

k

k

m m

n.

Worker P

=1 2 P 1 2

1

2

P
read

update

P

 n

k

k

m m

n.

Worker P

=

1
2

read
read

update

1
2

P
1 2 P

P

Figure 2.2: Two ways to implement matrix multiplication X·Y=Z, aka dot oper-
ation. Gray areas denote data read or updated by a single worker. In (a), each
worker reads the entirety of Y across the network and performs local writes. Its
per-worker communication cost is k∗m. In (b), each worker performs local fetches
and sends updates of size n∗m over the network. The per-worker communication
cost is n ∗m.

depends on the array’s shape and size. Therefore, such runtime information

affects the array’s tiling choice. In addition to Figure 2.2(a), there exists an

alternative implementation of dot, shown as Figure 2.2(b). In this alternative

implementation, each of the p parallel tasks reads X column-wise and Y row-wise

to perform a local matrix multiplication and update the entirety of Z. The final

Z is created by aggregating updates from all p tasks. Consequently, it is best to

tile X column-wise and Y row-wise.

16

CHAPTER 2. SPARTAN DESIGN

Whether to use Figure 2.2(a) or Figure 2.2(b) to compute X · Y = Z is a

runtime choice that depends on the array shapes. Suppose X is an n× k matrix

and Y is a k×m matrix. Figure 2.2(a) has a per task communication cost of k∗m.

This is because each task needs to fetch the entire Y across the network and can

be scheduled to co-locate with the tile of X that it intends to read. By contrast,

Figure 2.2(b) has a per task communication cost of n ∗m. This is because each

task needs to send its update of Z over the network and can be scheduled to co-

locate with the tiles of X and Y that it intends to read. Therefore, the best tiling

choice depends on the shape of X. If n > k, the cost of Figure 2.2(a) is lower and

the system computes dot using (a) whose preferred tiling for X is column-wise.

If n < k, the cost of Figure 2.2(b) is lower and the system computes dot using

(b) whose preferred tiling for X is row-wise.

1 func ALS(A) :
2 ’ ’ ’
3 A l t e r n a t i n g Leas t Squares
4 Input : A i s a n*k user - movie r a t i n g matr ix .
5 Output : U and M are f a c t o r mat r i c e s .
6 ’ ’ ’
7 for i from 1 to max_iter
8 U = Calcu la teUser sFactor (A, M)
9 M = Calcu lateMoviesFactor (A, U)
10 endfor
11 return U, M

Figure 2.3: Pseudocode of Alternating Least Squares.

3) How an array is used throughout the program. An array can be read

by multiple expressions. If these expressions access the array differently, we can

17

CHAPTER 2. SPARTAN DESIGN

reduce communication cost by creating multiple tilings for the array. In order

to learn of an array’s usage, the system cannot simply handle one expression at

a time, but must “look ahead” in execution when determining an array’s tiling.

Consider the Alternating Least Squares (ALS) computation shown in Figure 2.3.

ALS solves the collaborative filtering problem by decomposing the given user-

item rating matrix. Consider a movie recommendation system under ALS that

makes use of two parameters: users and movies. In each iteration, ALS calculates

the factor for each user, based on the rating matrix, A, and a movie factor matrix

(line 5 in Figure 2.3). Then, it calculates the factor for each movie based on the

rating matrix, A, and users factor matrix (line 6 in Figure 2.3). Thus, ALS

needs to access A along both row (users) and column (movies) in one single

iteration. If the system decides on A’s tiling by line 8 only, it would tile A row-

wise. Later, at line 9, the system incurs communication cost when reading A

column-wise. This is far from optimal. If we unroll the for loop and look at all

the expressions together, we can see that A is accessed by two expressions several

times (max_iterations). Thus, the best tiling is to duplicate A and tile one along

row and another along column.

2.2.2 Our Approach and Spartan Overview

Like NumPy and other popular array languages, users write applications in

Spartan using a large number of built-in functions and array primitives (e.g.

+,*,dot, mean, etc.). Spartan implements its built-in functions using a small num-

ber of high-level parallel operators. The high-level operators encapsulate common

18

CHAPTER 2. SPARTAN DESIGN

Tile1

array-language
frontend

operator based
expression graph

Worker 1

Tile2

Worker 2

Tile 3

Worker 3

{client
machine

distributed execution
backend

distributed

arrays

capture array expressions
transform to operators

tiling
optimization

Figure 2.4: The layered design of Spartan. The frontend builds an expression
graph and optimizes it. The backend executes the optimized graph on a cluster
of machines. Each worker (3 workers in this figure) owns a portion of the global
array.

parallel patterns and can efficiently express most types of computation. Users

may also directly program using these high-level operators if their computation

cannot be expressed by existing builtins.

Spartan uses a layered approach which splits the execution into frontend

and backend steps, shown in Figure 2.4. The frontend, running on a client

machine, captures user code and turns it into an expression graph whose nodes

correspond to the high-level operators. Next, the frontend runs a tiling optimizer

to determine good tiling for each node in the expression graph. Finally, the

frontend sends the tiled expression graph to the backend. The backend provides

high performance distributed implementations of high-level operators. For each

operator, it schedules a collection of tasks running on many compute machines.

19

CHAPTER 2. SPARTAN DESIGN

The tasks create, fetch and update distributed in-memory arrays based on the

tiling hint determined by the optimizer.

Spartan’s high-level operators and its layered design help collect the necessary

information for automatic tiling. First, by expressing various types of computa-

tion in a small set of high-level operators, the data access pattern is made explicit

for analysis (§2.2.1 (1)). Second, the frontend dynamically captures the expres-

sion graph with runtime information about the shape of input and intermediate

arrays (§2.2.1 (2)). Third, the expression graph represents a large execution

context, thereby allowing the frontend to understand how an array is used by

multiple expressions. This is crucial for good tiling (§2.2.1 (3)).

2.3 Smart Tiling with High-level Operators

This section describes the design of Spartan, focusing on those parts crucial

for automatic tiling. Specifically, we discuss high-level operators (Section 2.3.1),

how Spartan’s frontend turns an array program into a series of expression graphs

(Section 2.3.2), the basic tiling algorithm (Section 2.3.3) and additional optimiza-

tions (Section 2.3.4).

2.3.1 High-level Operators

A high-level operator in Spartan is a parallel computation that can be param-

eterized by some user-defined function 1. The operators are “functional” in nature:

1. The user-defined function must be free of side-effects and deterministic.

20

CHAPTER 2. SPARTAN DESIGN

they take arrays or views of arrays as input and generate a new one without mod-

ifying existing arrays in place. Spartan supports views of arrays like NumPy. A

view is an interface that allows users to manipulate arrays (e.g., swapping axes,

slicing) without copying data. When reading a tile of a view, Spartan translates

the shape and location from the view to those of the underlying array to fetch

data.

High-level operators are crucial to Spartan’s smart tiling, but what operators

should we use? There are two considerations in choosing them. First, each op-

erator should capture a general parallel pattern that can be used to implement

many builtins. Second, each operator should have restricted semantics that cor-

respond to a well-defined cost profile for different ways of tiling its input and

output. This enables the captured expression graph to be analyzed to identify

good tiling choices.

Spartan’s current collection of five high-level operators is the result of many

design iterations based on our experience of building various applications and

builtins. Below, we describe each operator in turn and also discuss its (commu-

nication) cost w.r.t. different tiling choices.

• D=map(fmap, S1, S2, . . .) applies function fmap in parallel tile-wise over in-

put arrays, S1, S2, . . ., and generates output array D with the same shape.

The total cost is zero if all inputs have the same tiling. Otherwise, the cost

is the total size of all input arrays whose tiling differs from S1.

As an example usage of map, Figure 2.5(line 4–7) shows the implementation

of Spartan’s built-in array addition function which simply uses map with

21

CHAPTER 2. SPARTAN DESIGN

fmap as Numpy’s addition function.

• D=filter(fpred, S) creates a view of S that excludes elements that do not

satisfy the given predicate fpred. Alternatively, filter can take a boolean

array in place of fpred. Since filter creates a view without copying actual

data, the cost is zero.

• D=fold(faccum, S, axis) aggregates input array S using the commutative

and associate function faccum along the axis dimension. For example, if

S is a m × n matrix, then folding it along axis=0 creates a vector of n

elements. Spartan performs the underlying folding in parallel using up to

m tasks. The cost of fold is zero if S is tiled along the axis dimension,

otherwise, the cost is S.size.

• D=scan(faccum, S, axis) computes cumulative aggregates using faccum over

the axis dimension of S. Unlike fold, its output D has the same shape as

the input. The cost profile of scan is the same as fold.

• D=join_update(fjoin, faccum, S1, S2, . . . , axis1, axis2, . . . , output_shape) is

more complex than previous operators. This operator treats each input

array Si as a group of tiles along the axisi, The shapes of the input arrays

must satisfy the requirement that they have the same number of tiles along

their respective axisi. Spartan joins each tile among different groups and

applies fjoin in parallel. Function fjoin generates some update to be written

to output D at a specified location. Multiple workers running fjoin may con-

currently update to the same location of D; such conflicts are automatically

resolved by applying faccum.

22

CHAPTER 2. SPARTAN DESIGN

As an example of join_update, consider the matrix multiplication imple-

mentation in Figure 2.2(b), where S1 is a n × k matrix and S2 is a k ×m

matrix. Figure 2.5 (lines 20–22) uses join_update which divides S1 into k

column vectors and S2 into k row vectors. The fjoin (aka dot_udf) is called

in parallel for each column vector of S1 joined with the corresponding row

vector of S2. It performs a local dot product of the joined column and row

to generate an n×m output tile. All updates are aggregated together using

the addition accumulator to create the final output.

A special case of join_update is when some input array Si has axisi = −1.

In this case, the entire array Si will be joined with each tile of other input

arrays. Figure 2.5 (lines 23-25) uses this special case of join_update to

realize the alternative matrix implementation of Figure 2.2(a).

The cost of join_update consists of two parts, 1) the cost to read the input

arrays. 2) the cost of updating the output array. If an input array Si is

partitioned along axisi, the input cost for Si is zero, otherwise, the cost

is Si.size. Since the size and shape of output array created by fjoin is

unknown to Spartan, it assumes a default update cost, D.size.

In addition to the five high-level operators, Spartan also provides several

primitives to create distributed arrays or views of arrays.

• D=newarray(shape, init_method) creates a distributed array with a given

shape. The array can be initialized in several ways, 1) by loading data from

an external storage, 2) by some computation, e.g. random, zeros.

• D=slice(S, region) creates a view over a specified region in array S. The

23

CHAPTER 2. SPARTAN DESIGN

region descriptor specifies the start and end of the sliced region along each

dimension.

• D=swapaxis(S, axis1, axis2) creates a view of array S by swapping the axes

axis1 and axis2. The commonly used built-in transpose function is imple-

mented using this operator. The output view D has a different tiling from

S. For example, if S is a column-tiled matrix, then D = swapaxis(S, 0, 1)

is effectively a row-tiled matrix.

There is no cost for newarray, newarray and swapaxis (the cost of newarray

reading from an external storage is unrelated to tiling).

Based on the high-level operators, Spartan supports 70+ Numpy builtins.

Figure 2.5 shows two implementations of Spartan’s builtins, add and dot.

Although Spartan’s map and fold resemble the “map” and “reduce” primitives

in the MapReduce world [3, 10, 4, 13], they are more restrictive. Spartan only

allows fmap to write a tile in the same location of the output array as its input

tile location and not some arbitrary location. Similarly, fold can only reduce

along some axis as opposed to over arbitrary keys in a key value collection. Such

restriction is necessary for them to have a well-defined cost profile.

2.3.2 Expression Graph Capture

During a user program’s execution, Spartan’s frontend captures array expres-

sions via lazy evaluation and turns them into a series of expression graphs [31, 32].

In an expression graph, each node corresponds to a high-level operator and an

edge from one node to another shows the data dependency between them. Fig-

24

CHAPTER 2. SPARTAN DESIGN

1 import numpy
2 import spartan
3
4 # Spartan ’ s p a r a l l e l imp lementa t ion o f
5 # element - wi se array a dd i t i o n
6 def add (a , b) :
7 return spartan .map(a , b , f_map=numpy . add)
8
9 # User - d e f i n e d f_ jo in f un c t i o n
10 def dot_udf (i npu t_t i l e s) :
11 output_loc = spartan . l o c a t i o n (0 , 0)
12 output_data = numpy . dot (i npu t_t i l e s [0] , i npu t_t i l e s [1])
13 return output_loc , output_data
14
15 # Spartan ’ s p a r a l l e l imp lementa t ion o f
16 # matr ix m u l t i p l i c a t i o n
17 def dot (a , b) :
18 i f a . shape [0] <= a . shape [1] :
19 return spartan . join_update (S=(a , b) , axes =(1 , 0) ,
20 shape = . . .
21 f_jo in=dot_udf ,
22 f_accum=numpy . add)
23 e lse :
24 return spartan . join_update (S=(a , b) , axes =(0 , -1) , . . .)

Figure 2.5: Implementations of add and dot in Spartan.

ure 2.6(a) shows an example expression graph. Expression graphs are acyclic

because Spartan’s high-level operators create immutable arrays.

The frontend stops growing an expression graph only when forced: this occurs

in a few situations: (1) when a variable is used to determine the control flow, (2)

when a variable is used for program output, (3) when a user explicitly requests

evaluation. The use of lazy evaluation leads to an implicit form of loop unrolling:

as long as there is no data dependent control flow, expression graph will continue

25

CHAPTER 2. SPARTAN DESIGN

(X) (Y)

newarray(X) newarray(Y)

map(+)
join_update

(dot)

map(-)

(+)

(-)

(dot)

(a) (b)

Figure 2.6: The expression graph and its corresponding tiling graph for Z =
X + Y −X · Y .

growing until pre-configured limits.

2.3.3 Graph-based Tiling Optimizer

Spartan supports “rectangular” tiles: an n-dimensional array can be parti-

tioned along any one dimension (e.g. row-wise, column-wise), or partitioned

along two or more dimensions (e.g. block-wise tiling). Some existing work [33]

explored other possible shapes that are more efficient for its applications.

Given an expression graph of high-level operators, the goal of the tiling op-

timizer is to choose a tiling for each operator node to minimize the overall cost.

This optimization problem is NP-Complete(we show the proof in Appendix A).

It is also not practical to find the best tiling via brute force since the expression

26

CHAPTER 2. SPARTAN DESIGN

}

}

Read

Cost

Update

Cost

Input arrays generated

by other operators} {

D = map(‘+’, S1, S2) D = join_update(‘dot’, S=(S1, S2), axes=(1, 0), output_shape=shape))

(a) (b)

0 0 0 0S1.size

S
1
.s

iz
e

S2.si
ze

0 0

00

shape * p shape * p

n1:

n2:n1:

n2:

a2:a1:

S1 S2 S1 S2

row

tiling

column

tiling

S1.size S2.size

Figure 2.7: Two examples of building the tiling graph. (a) A plus expression,
(S1 + S2), implemented by map operator (b) A dot expression, dot(S1, S2),
implemented by join_update operator.

graph can be very large. Therefore, we propose a graph-based approximation

algorithm to identify a good tiling quickly.

The algorithm works in two stages. First, it constructs a tiling graph based

on the expression graph and the cost profile of each operator. Next, it uses a

greedy strategy to search for a low cost tiling combination.

1) Constructing the tiling graph. The goal of the tiling graph is to expose

the tiling choices and cost in the expression graph. For each operator in the

expression graph, the optimizer transforms it into a node group, i.e. a cluster

of several tiling nodes, each representing a specific choice to tile the operator’s

output or intermediate steps. The weight of each edge that connects two tiling

nodes represents the underlying cost if the two operators are tiled according to

the tiling nodes.

Figure 2.7 shows how a map operator, corresponding to D = S1+S2, is trans-

formed. To keep the figure simple, we assume that all arrays are two dimensional

27

CHAPTER 2. SPARTAN DESIGN

with two tiling choices: row-based or column-based. And all dotted lines rep-

resent zero edge weights. As Figure 2.7 shows, the map operator becomes two

nodes in the tiling graph, each representing a different way to tile its output D.

Similarly, each of the map operator’s input arrays S1 and S2 (which are likely

outputs from the previous operators) also correspond to two nodes. For map,

there is a well-defined way to label the weights among nodes, as illustrated in

Figure 2.7. For example, if S2 is tiled column-wise and D is tiled row-wise, the

weight between the corresponding two nodes is S2.size because workers have to

read S2 across the network to perform the map. fold and scan are treated sim-

ilarly as map, but with edge weights labeled according to their own tiling cost

profiles.

Next, we discuss the transformation of join_update. For this operator, we use

some intermediate tiling nodes (a1, a2 . . . in Figure 2.7(b)) to represent the reading

cost during the join. A placeholder node is used to represent the join stage. We

use another set of tiling nodes (n1, n2 in Figure 2.7(b)) to capture the update

cost to the output array. Unfortunately, Spartan can not know the precise update

cost of join_update without executing the user-defined fjoin function. Thus, we

provide a default update cost according to the common update cost pattern

observed in the applications implemented by join_update. If join_update is

performed within a loop, the optimizer can adjust the edge cost of the tiling

graph according to the actual cost observed during the previous execution of the

join_update.

Figure 2.7(b) shows the tiling graph used for the matrix multiplication func-

28

CHAPTER 2. SPARTAN DESIGN

tion implemented in join_update. This implementation corresponds to the data

access pattern shown in Figure 2.2(b). As shown in Figure 2.5, the join axes for

the first and second arrays are column and row respectively. The edge weight for

Si is 0 if it matches the join axis and is Si.size otherwise. The cost is Si.size is

because each worker needs to update the entirety of the result matrix. The edge

weights for n1 and n2 are both p ∗ output_shape.

Figure 2.6 gives an example showing a specific array execution (Z = X+Y −

X ·Y)) and its corresponding expression graph and tiling graph. We omitted the

details of other edge weights to keep the graph readable.

2) Searching for a good tiling. Deciding a tiling choice for an operator corre-

sponds to picking one node among the corresponding node group in the underly-

ing tiling graph and different combinations of tiling nodes pose different costs. As

a result, the next step for the tiling optimizer is to analyze the tiling graph and

find a combination of tiling choices that minimizes the overall cost. The tiling

optimizer adopts a greedy search algorithm. The heuristic is to decide the tiling

for the node group with the maximum connectivity first. Here, connectivity of a

node group is the number of its adjacent node groups. When deciding a tiling for

a node group X, the algorithm chooses the one resulting in the minimum cost for

X. Why does this heuristic work? The cost of a tiling for an operator depends

on the tiling choices of its adjacent operators. Thus, an operator with more adja-

cent operators has a higher impact on overall cost. Consequently, the algorithm

should first minimize the cost of node groups with higher connectivity2.

2. Another natural heuristic is to search the node group with largest array size first. Unfor-
tunately, this algorithm does not perform well according to our experiments.

29

CHAPTER 2. SPARTAN DESIGN

1 func FindCost (NodeGroup G, TileNode T)
2 # Find the c o s t f o r t i l i n g node T o f G
3 co s t = 0
4 foreach NodeGroup g in G. connectedGroups () :
5 i f IsView (g , G) :
6 co s t += FindCost (g , g . viewTileNode (T))
7 e lse :
8 edgeCost = INFINITY
9 foreach Edge e in g <-> T
10 edgeCost = min(edgeCost , e . c o s t)
11 endfor
12 co s t += edgeCost
13 endif
14 endfor
15 return co s t
16
17 func FindTi l ing (Til ingGraph G)
18 # Find good t i l i n g f o r eve ry ope ra t o r in G.
19 GroupList = SortGroupByConnectivity (G)
20 foreach NodeGroup x in GroupList
21 minCost = INFINITY
22 goodTi l ing = NONE
23 foreach TileNode y in x
24 co s t = FindCost (x , y)
25 i f co s t < minCost :
26 minCost = cos t
27 goodTi l ing = y
28 endif
29 endfor
30 x . chosenTi l ing = goodTi l ing
31 # Other Group can on ly connect to goodT i l i n g .
32 x . removeAllConnectedEdgesExcept (goodTi l ing)
33 endfor
34 return G

Figure 2.8: The maximum connectivity group first algorithm to find good tiling
based on the tiling graph.

30

CHAPTER 2. SPARTAN DESIGN

Figure 2.8 shows the pseudo code for the tiling algorithm. Given a tiling

graph G, the algorithm processes node groups in the order of edge connectivity

(Line 19–20). For each node group (x in Line 20), the algorithm calculates the

cost of each tiling node and chooses the tiling node with the minimum cost (Line

23–29). After deciding the good tiling (x.chosenT iling in Line 30) for node group

x, the algorithm removes all edges connected to all other tiling nodes (Line 32).

This implies that the algorithm can’t freely choose tiling for adjacent node groups

of x any more – it must consider the chosen tiling of x.

FindCost obtains the cost of a tiling node (T in Line 1) by calculating the

sum of the minimum edge weight between each adjacent node group and T (Line

4–14). If the adjacent node group is a view operator such as swapaxis, its tiling

node will be decided by T . To get accurate cost affected by T , the algorithm

should also consider the adjacent node groups for its view operators. As a result,

FindCost recursively finds the cost of the view node group (Line 5–6). The result

corresponds to the best possible cost for tiling node T .

The complexity of the tiling algorithm is O(E ∗N) where E is the number of

edges in the tiling graph and N is the number of node groups. It is not guaranteed

to find the optimal tiling. However, we find that the greedy strategy works well

in practice (Section 3.2).

2.3.4 Additional Tiling Optimizations

Duplication of arrays. As the ALS example in Fig 2.3 shows, some arrays may

be accessed along different axes several times. To reduce communication, Spartan

31

CHAPTER 2. SPARTAN DESIGN

supports duplication of arrays and tiles each replica along different dimensions.

To support duplication in the tiling optimizer, we add a “duplication tile“ node

to each node group in the underlying tiling graph. As duplication of arrays

increases memory consumption. Spartan allows users to specify the memory

budget for duplicating arrays to limit memory usage. Whenever the optimizer

chooses to “duplicate tile“ which causes an operator’s output to be duplicated,

it deducts from the memory budget. The optimizer will not choose duplication

tiling without enough memory budget.

2.4 Implementation

Since NumPy is wildly popular in machine learning and scientific computing,

our implementation goal is to replicate the “feel” of NumPy as much as possible.

Our prototype currently supports 70+ most commonly used Numpy builtins.

The Spartan frontend, written in Python, captures expression graph and

performs tiling optimization (Section 2.3). The Spartan backend, consists of one

designated master and many worker processes on a cluster of machines. Below,

we provide more details on the major backend components:

Execution engine. The backend provides efficient implementations of all

high-level operators. Given an expression graph, the master is responsible for

coordinating the execution of one node (a high-level operator) at a time. To

execute a node, the master first creates an output array with the given tiling

hint and then schedules a set of tasks to run user-defined parameter functions in

parallel according to the data locality. Locality here means the task is executed

32

CHAPTER 2. SPARTAN DESIGN

on the worker that stores its input source tile. If the node corresponds to a

join_update, scan or fold, the backend also associates a user-defined accumulator

function with the output array to aggregate updates from multiple workers.

User-defined parameter functions are written in Python NumPy and process

one tile instead of one element at a time. Like MatLab, NumPy relies on high

performance C-based linear algebra libraries like BLAS [34] or LAPACK [35]. As

a result, the local execution of parameter functions in each worker is efficient.

Distributed, tiled arrays. Each distributed array is partitioned into a set

of tiles according to its tiling hint and stored in workers’ memory. To create

an array, the master assigns each of its tile to a worker (e.g. in a round-robin

fashion) and distributes the tile-to-worker mapping to all workers so everybody

can access remote tiles without consulting the master. If two arrays of the same

shape have identical hints, the master ensures that tiles corresponding to the

same region in both arrays are co-located in the memory of the same worker.

Fault tolerance. To recover from worker failure in the middle of a long

computation, the backend checkpoints in-memory arrays to durable storage. Our

implementation currently adopts the simplest design: after finishing an entire

operator, the master periodically instructs all workers to save their tiles and also

saves its own state.

33

Chapter 3

Spartan Evaluation

In this chapter, we measured the performance of our smart tiling algorithm.

We also evaluated the scalability of applications and compared against other

open-source distributed array frameworks.

3.1 Experimental Setup

We evaluated the performance of Spartan on both our local cluster as well

as Amazon EC2. The local cluster is a heterogeneous setup consisting of eleven

machines: 6 machines have 8-core AMD Opterons with 16GB of RAM, and 5

machines have 4-core Intel Xeons with 8GB of RAM. The machines are connected

by gigabit Ethernet. For the EC2 experiments, we use 128 spot instances of

the older generation m2.xlarge. Each of these instances has 17.1GB memory

and 2 virtual CPUs. The network performance is rated as “moderate”, which is

approximately 300Mbps according to our measurements.

34

CHAPTER 3. SPARTAN EVALUATION

Ch
ol
es
ky AL
S

Fu
zz
y
k-
m
ea

ns

K-
m
ea

ns PC
A

SS
VD QR CG

Lo
gi
st
ic
re
g.

Lin
ea

r r
eg

.

Applications

0

200

400

600

800

1000

1200

Ru
nn

in
g
Ti
m
e

(s
ec

on
ds

)

Spartan tiling
Best tiling

Figure 3.1: Running time comparison between the smart tiling and the best tiling
for 10 applications.

Unless otherwise mentioned, we ran multiple worker processes on each ma-

chine, one associated with each CPU core. We use 12 applications as our bench-

marks. They include algorithms from machine learning, data mining and com-

putational finance.

3.2 Tiling

Smart Tiling Evaluation for Applications: We compared the running time

of applications with the tiling generated by smart tiling against the best tiling –

the tiling that incurs the minimum communication cost. The best tiling can be

pre-calculated by using a brute-force algorithm to traverse the expression graph

35

CHAPTER 3. SPARTAN EVALUATION

and search the minimum communication cost among all possible tiling choices.

The experiment runs on 128 EC2 instances. Figure 3.1 only shows 10 applications

because the computational finance ones operate on one-dimensional arrays which

can only be tiled along one axis. For applications which are not perfectly scalable

such as ALS and Cholesky, we set the sample sizes up to 10 million. For others,

the sample sizes are up to 1 billion due to the memory limitation.

These applications show various kinds of tiling patterns. First, many ap-

plications contain expressions or operators that require runtime shape and axis

information to best tile matrices, e.g. dot and join_update. Smart tiling ana-

lyzes the runtime information and gives the best tiling for the applications such

as row-wise tiling for Regression and block tiling for Cholesky decomposition.

Second, some program flows pass the intermediate matrices to expressions that

change the view of tiling, e.g. swapaxis. Smart tiling identifies the best tiling

through the global view of computation. Example applications include SSVD and

PCA. Finally, some applications, like ALS, access matrices along different axes

several times. As described in Section 2.2.1, the best tiling for these applications

is duplication tiling.

Figure 3.1 shows that Spartan’s smart tiling is able to give the best tiling and

improve the performance for all applications. Note that the application running

time of the best tiling and Spartan’s smart tiling are not the same; sometimes

Spartan’s smart tiling even outperforms the best tiling. The difference is caused

by the instability of Amazon EC2. Spartan’s optimizer makes the same choices

as the best tiling for all applications.

36

CHAPTER 3. SPARTAN EVALUATION

0 20 40 60 80 100
Experiment Index

0

2

4

6

8

10

Ne
tw
or
k
Tr
an
sm

iss
io
ns
 (G

B) Best Tiling
Spartan Tiling (differing
results shown)

Figure 3.2: Network transmission cost comparison between smart tiling and the
best tiling for 100 randomly generated programs. Sorted by network transmission
for readability only (array sizes are randomly chosen from a set and there is no
relation between experiment index and network transmission).

A bad tiling can result in huge network transmission. For instance, if the

tiling of the input arrays for logistic regression is partitioning along the smaller

dimension, workers need to remotely fetch the matrix which is more than 512GB

in the evaluation (4GB network transmission per instance in one iteration which

result in approximately an extra 110 seconds in our environment). Another

interesting example is ALS. Simply row-wise or column-wise tiling can result

in 40% performance degradation compared to duplication tiling. Moreover, the

running speed of smart tiling is fast. For example, the brute-force algorithm

needs more than 500 seconds to analyze a 14-operators ALS while Spartan’s

smart tiling derives the same result in 0.06 seconds.

Smart Tiling Evaluation for Randomly Generated Programs: Although

smart tiling gives the best tiling for applications we implemented, there is no guar-

37

CHAPTER 3. SPARTAN EVALUATION

antee that smart tiling performs well for various kinds of applications. Therefore,

we examined the performance of smart tiling for randomly generated programs.

Each array dimension is randomly chosen from 128K to 512K. These programs

contain various numbers and types of operators Spartan has supported. The

number of operators per program ranges from 2 to 15.

Figure 3.2 shows the network transmission cost of 100 randomly generated

programs with the tiling given by smart tiling and the best tiling. The result

shows that Spartan’s smart tiling can give the best tiling for most programs. It

is also fast compared to the brute-force algorithm. For all programs, smart tiling

needs less than 0.1 seconds while the brute-force algorithm spends 1900 seconds

when the program contains 15 operators.

1 def sub_optimal_case_pattern (SIZE) :
2 A = expr . rand ((SIZE , SIZE))
3 B = expr . rand ((SIZE , SIZE))
4 C = A + B
5 D = expr . transpose (A) + expr . transpose (B)
6 E = C + D

Figure 3.3: An example that Spartan’s smart tiling gives sub-optimal tiling.

Figure 3.3 shows the pattern residing in those programs that smart tiling

gives sub-optimal tiling. The best tiling for Figure 3.3 is to tile D column-wise

and other operators row-wise. However, smart tiling inspects the tiling cost for C

first and then for D because of the maximum connectivity. It finds that row-wise

tiling costs zero for both operators. Therefore, smart tiling partitions both C and

D row-wise and thus gives sub-optimal tiling due to the conflict views (caused

38

CHAPTER 3. SPARTAN EVALUATION

by transpose) of C and D.

Although smart tiling cannot give the best tiling for these programs, this

sub-optimal case rarely happens. Smart tiling produces a conflict view only

when a program exhibits two patterns simultaneously: 1) Two operators have

different views of tiling from the same input arrays. 2) Both operators have

more connectivity than their input arrays. As Figure 3.2 shows, only 5 out of

100 random generated programs satisfy both requirements. For three of them, the

best tiling needs zero network transmission while the smart tiling needs around

0.01 GB network transmission. The number is not large because these expressions

include fold which reduces the size of matrices. For the other two instances, the

best tiling requires 1.3 GB but the smart tiling consumes 1.9GB and 2.6GB

respectively.

3.3 Scaling

We evaluated the scalability of all applications in two ways. First, the appli-

cations use fixed-size inputs and run across a varying number of workers. Second,

the applications use inputs whose sizes are scaled linearly with the number of

workers. All results are normalized by the 8 workers baseline cluster size to show

the relative savings (comparing with 1 worker is not fair because there is no

communication for only 1 worker). All inputs are synthetic data.

Fixed input size. Figure 3.4 shows the running time of 12 applications on

the local cluster. The number of workers used in the experiments increases from

8 to 64. The dotted lines corresponding to 1
2
, 1

4
or 1

8
ratio represent the ideal

39

CHAPTER 3. SPARTAN EVALUATION

AL
S

Lin
ea

r r
eg

.
Lo

gi
st

ic
re

g.
k-

m
ea

ns
Fu

zz
y

k-
m

ea
ns

St
oc

ha
st

ic
SV

D
PC

A
QR

 d
ec

om
po

se CG
Ch

ol
es

ky
Bl

ac
k-

sh
ol

es
Pr

ed
ict

 p
ric

e

AL
S

Lin
ea

r r
eg

.
Lo

gi
st

ic
re

g.
k-

m
ea

ns
Fu

zz
y

k-
m

ea
ns

St
oc

ha
st

ic
SV

D
PC

A
QR

 d
ec

om
po

se CG
Ch

ol
es

ky
Bl

ac
k-

sh
ol

es
Pr

ed
ict

 p
ric

e

AL
S

Lin
ea

r r
eg

.
Lo

gi
st

ic
re

g.
k-

m
ea

ns
Fu

zz
y

k-
m

ea
ns

St
oc

ha
st

ic
SV

D
PC

A
QR

 d
ec

om
po

se CG
Ch

ol
es

ky
Bl

ac
k-

sh
ol

es
Pr

ed
ict

 p
ric

e

16 workers 32 workers 64 workers

0.0

0.1

0.2

0.3

0.4

0.5

0.6
No

rm
al

ize
d

Ru
nn

in
g

Ti
m

e

Figure 3.4: Fixed input size, varying number of workers. Normalized running
time is calculated by dividing 8 worker running time on local cluster.

scaling for 16, 32, and 64 workers.

The evaluation shows that the running time of many applications achieves

perfect scaling. Some of them do not scale well due to the inefficiencies of the

underlying algorithms. CG has many dependent folds that reduce to one value on

one worker. Cholesky also has many dependent steps: the parallelism available

in each step grows and shrinks, thus Cholesky cannot always utilize all workers.

Scaling input size. Figure 3.5 shows the performance for 16 and 64 workers.

Ideal scaling corresponds to a flat line of 1.0.To examine the scalability on a

larger-scale system, we ran the experiment on EC2. Figure 3.6 illustrates the

experiment running up to 256 workers. The result is similar to that of Figure 3.5

except for ALS. There are three matrices in ALS, rating matrix, sample matrix

and item matrix. While Spartan’s smart tiling can reduce the reading cost of

rating matrix by duplication, ALS still needs to randomly fetch sample matrix

and item matrix in each iteration and results in large communication. Thus, ALS

is not scalable for large-scale datasets.

40

CHAPTER 3. SPARTAN EVALUATION

AL
S

Lin
ea
r r
eg
.

Lo
gi
st
ic
re
g.

k-
m
ea
ns

Fu
zz
y
k-
m
ea
ns

St
oc
ha
st
ic
SV

D
PC

A
QR

 d
ec
om

po
se CG

Ch
ol
es
ky

Bl
ac
k-
sh
ol
es

Pr
ed
ict
 p
ric
e

AL
S

Lin
ea
r r
eg
.

Lo
gi
st
ic
re
g.

k-
m
ea
ns

Fu
zz
y
k-
m
ea
ns

St
oc
ha
st
ic
SV

D
PC

A
QR

 d
ec
om

po
se CG

Ch
ol
es
ky

Bl
ac
k-
sh
ol
es

Pr
ed
ict
 p
ric
e

16 workers 64 workers

0.0

0.5

1.0

1.5

No
rm

al
ize

d
Ru

nn
in
g
Ti
m
e

Figure 3.5: Scaling input size on local cluster.

AL
S

Lin
ea
r r
eg
.

Lo
gi
st
ic
re
g.

k-
m
ea
ns

Fu
zz
y
k-
m
ea
ns

St
oc
ha
st
ic
SV
D

PC
A

QR
 d
ec
om
po
se CG

Ch
ol
es
ky

Bl
ac
k-
sh
ol
es

Pr
ed
ict
 p
ric
e

AL
S

Lin
ea
r r
eg
.

Lo
gi
st
ic
re
g.

k-
m
ea
ns

Fu
zz
y
k-
m
ea
ns

St
oc
ha
st
ic
SV
D

PC
A

QR
 d
ec
om
po
se CG

Ch
ol
es
ky

Bl
ac
k-
sh
ol
es

Pr
ed
ict
 p
ric
e

64 workers 256 workers

0.0

0.5

1.0

1.5

No
rm
al
ize
d
Ru
nn
in
g
Ti
m
e

Figure 3.6: Scaling input size on 128 EC2 instances.

41

CHAPTER 3. SPARTAN EVALUATION

Running Time (seconds) Sample Size
Spartan 523.95s 1 billion
Presto 882.47s 1 billion
SciDB 2573.83s 10 million

Table 3.1: K-Means performance comparison with Presto and SciDB on 128
instances EC2. The dataset for Spartan and Presto contains 1 billion points, 50
dimensions and 128 centers. The dataset for SciDB contains 10 million points.

3.4 Comparison with Other Systems

We compared the performance of Spartan’s k-means with the implementation

of Presto (also called Distributed R) and SciDB. The synthetic dataset contains 1

billion samples with 50 dimensions and 128 centers for Presto and Spartan while

only 10 million samples for SciDB.

Table 3.1 shows that the performance of Spartan is 1.7x faster than Presto.

Though both Spartan and Presto partition the arrays row-wise which is the best

tiling, Presto requires users to explicitly assign the tiling while Spartan needs

no user hints. Thus, the performance difference of Spartan and Presto comes

from the backend library and implementation. We have verified this by running

k-means only on a single worker.

Unlike Spartan and Presto, SciDB is not an in-memory distributed system and

thus has much slower performance. The basic partition unit in SciDB is a chunk.

It is important for SciDB to select the correct chunk size to reduce disk I/O.

However, in Spartan, we focus on how to reduce the network communication.

42

Chapter 4

SwapAdvisor Design

In this chapter, we first present the necessary backgroud of swapping tensors

for DNN models (Section 4.1). Section 4.2 justifies the design choices for Swa-

pAdvisor. We detail the system design and search algorithm of SwapAdvisor in

Section 4.3 and 4.4. Section 4.5 discusses the implementation of SwapAdvisor.

4.1 Background

DNN training and inference are usually done on a GPU, which is attached

to a host CPU via a high-performance bus, e.g., PCIe and NVLink. GPU uses

different memory technology with higher bandwidth but limited capacity, e.g.

16GB on the NVIDIA V100. By contrast, it is common for CPUs to be equipped

with hundreds of gigabytes of memory. Therefore, it is attractive to swap data

between GPU and CPU memory, in order to support training and inference that

otherwise would have been impossible given the GPU memory constraint.

43

CHAPTER 4. SWAPADVISOR DESIGN

Modern DNNs have evolved to consist of up to hundreds of layers, which are

usually composed together in a sophisticated non-linear topology. Programming

frameworks such as TensorFlow/MXNet express DNN computation as a dataflow

graph of tensor operators. DNN’s memory consumption falls into 3 categories:

1. Model parameters. In DNN training, parameters are updated at the end of

an iteration and used by the next iteration. Parameter tensors are propor-

tional to a DNN model’s ”depth” (the number of layers) and ”width” (the

size of a layer). For large models, these dominate the memory use.

2. Intermediate results. These include activation, gradient and error tensors,

of which the latter two are only present in training but not in inference.

3. Scratch space. Certain operator’s implementation (e.g. convolution) re-

quires scratch space, up to one gigabyte. Scratch space is a small fraction

of total memory use.

Existing work use manual heuristics based on the memory usage patterns of

different categories. For example, prior work do not swap parameters1, but only

swap activation to the CPU [26, 24]. Without parameter swapping, prior work

cannot support DNNs whose parameters do not fit in the GPU memory. Fur-

thermore, designs based on manual heuristics miss opportunities for performance

improvements as modern DNN dataflow graphs are too complex for analysis by

humans.

SwapAdvisor is a general swapping mechanism in which any tensor can be

swapped in/out under memory pressure. More importantly, we aim to move

1. The only exception being SuperNeuron [25] which swaps convolution but not other types
of parameters.

44

CHAPTER 4. SWAPADVISOR DESIGN

away from manual heuristics and to automatically optimize for the best swapping

plan given an arbitrarily complex dataflow graph. We focus the discussion on

swapping for a single GPU, but our design can be used in a multi-GPU training

setup which replicates the model on different GPUs using data parallelism.

4.2 Challenges and Our Approach

A good swapping plan should overlap communication and computation as

much as possible. The opportunities for overlapping come from swapping out

a (temporarily) unused tensor to make room for swapping in an out-of-memory

tensor before the latter is required for operator execution. We aim to maximize

such overlapping by carefully planning for what and when to swap with the help

of the dataflow graph.

Prior work attempt to find a good swapping plan heuristically based on the

dataflow graph structure alone [24, 26, 25]. However, this is not enough. In

particular, we argue that there are two critical factors affecting swap planning:

• Memory allocation. DNN computation uses a wide range of tensor sizes,

from a few KB to hundreds of MB. To improve speed and reduce internal

fragmentation, frameworks such as MXNet use a memory pool which pre-

allocates a number of fixed-size tensor objects in various size classes. As a

result, swapping happens not just when the GPU memory is full, but when

there is no free object in a particular size class. Therefore, how to configure

the memory pool for allocation can critically affect swapping performance.

45

CHAPTER 4. SWAPADVISOR DESIGN

Conv1

Conv2

Conv3

Conv4

Data

Concat

A1

W1

W2A0

A2

A3

W3

W4

A4

A5

t7

Swapout

Memory Usage

Time

Computation

Swapin

A0A1A2W2W3A0W1 A1A2A3A4W4A0A2A3W3W4A0A1W1W2 A1A2A4A5

A3 A2A1 A0

A1W1 W2 W4W3

ConcatConv4Conv3Conv2Conv1Data

t6t5t4t3t2t1

(b) Schedule the left branch first. Allocate five memory objects, each is 2MB.

(d) Schedule the right branch first. Allocate nine memoryobjects, one is 2MB and others are 1MB each.

: operator

Ax : activation tensor

Wx : parameter tensor

(c) Schedule the right branch first. Allocate five memory objects, each is 2MB.

t7

A0A1A4A5

A0

Concat

Swapout

Memory Usage

Time

Computation

Swapin

A0A2A3W3W4A0W2 A0A2A3A4W1A0A2A3A4W4A0A2W2W3 A0A1A3A4W1

A2 A3A2

W1W2 W3 W4

Conv1Conv4Conv3Conv2Data

t6t5t4t3t2t1

t7

Swapout

Memory Usage

Time

Computation

Swapin

A0A2A3W3W4A0W2 A0A1A2A3A4W1A0A2A3A4W1W4A0A2W2W3 A0A1A3A4

A2 A3A2

W2 W3 W1W4

ConcatConv1Conv4Conv3Conv2Data

t6t5t4t3t2t1

(a) The partial dataflow graph of a model. All tensors are 1MB, except for A2 and A5 which are 2MB.

The GPU memory is 10MB.

(e) Schedule the left branch first. Allocate nine memory objects, one is 2MB and others are 1MB each.

A3

Concat

A1A3A4A5

t7

Swapout

Memory Usage

Time

Computation

Swapin

A0A1A2W2W3A0W1 A1A2A3A4W4A0A2A3W3W4A0A1W1W2 A1A2A3A4

A2 A2A0

W1 W2 W4W3

Conv4Conv3Conv2Conv1Data

t6t5t4t3t2t1

Figure 4.1: Different schedules and memory allocation can affect swapping.

46

CHAPTER 4. SWAPADVISOR DESIGN

• Operator scheduling. Modern DNNs have complex dataflow graphs as the

layers no longer form a chain, but contain branches, joins and unrolled

loops. As a result, there are many different potential schedules for executing

operators. The order of execution can profoundly affects the memory usage

and thus the performance of swapping.

Example. We use an example to show how memory allocation and scheduling

affect swapping. The example is based on a portion of the dataflow graph of a

toy neural network, as illustrated in Figure 4.1(a). For simplicity, the dataflow

graph only shows the forward propagation and omits the backward part. This

branching structure is common in modern CNNs [36, 37].

In Figure 4.1(a), blue rounded rectangles represent operators and small yellow

rectangles represent tensors. A tensor is labelled as Ax (activation tensor) or Wx

(parameter tensor). Suppose all tensors are 1MB, except for A2 and A5, which are

2MB (because A2, A5 are used to join two paths). Thus, the memory consumption

is 12MB2. Suppose the GPU’s memory capacity is 10MB, and it takes one unit

of time to execute an operator or to transmit 1MB data between GPU and CPU.

A parameter tensor is initially in the CPU memory and must be swapped into

GPU memory before being used. We can swap out a parameter tensor without

copying it to CPU memory as it is not changed during the forward pass. By

contrast, there is no need to swap in an activation tensor (because it’s created

by operators) but it must be copied to CPU memory upon swap-out because it

2. We do not consider memory reuse in the example as the partial dataflow graph does not
include the backward pass which forbids many reuse cases

47

CHAPTER 4. SWAPADVISOR DESIGN

is needed in the backward pass.

There are many ways to allocate memory and schedule execution for Fig-

ure 4.1(a). We show 2 example schedules: left-first executes operators on the

left branch first, and right-first executes the right branch first. We show 2 exam-

ple memory allocations: coarse-grained allocates 5 memory objects of 2MB each,

and fine-grained allocates 8 memory objects of 1MB each and 1 object of 2MB.

Together, there are 4 combinations of schedule/allocation and we show the best

swapping plan under each combination, in Figures 4.1(b) to (e). As GPU-CPU

communication is duplex and concurrent with GPU execution, each table’s top

3 rows give the timeline of actions for GPU computation, swap-in (from CPU to

GPU), and swap-out (from GPU to CPU) respectively. The last table row shows

the tensor objects that are currently resident in the GPU memory.

Let’s contrast Figure 4.1(c) and (d) to see why memory allocation affects swap

planning. Both (c) and (d) have the same right-first scheduling. However the

total execution time of (c) is one unit time longer than that of (d). Specifically,

in Figure 4.1(c), GPU sits idle in time slot t5 while operator Conv1 waits for its

parameter W1 to be swapped in. It’s not possible to swap in W1 earlier because

the coarse-grained memory pool of five 2MB objects is full at time t4. One

cannot swap out any of the 5 GPU-resident objects earlier: A3,W4 and A4 are

input/output tensors needed by the currently running operator Conv4, while A0

is needed as input for the next operator Conv1. A2 is being swapped out but

the communication takes two units of time due to its larger size. Figure 4.1 uses

a fine-grained memory pool with eight 1MB objects and one 2MB object. As a

48

CHAPTER 4. SWAPADVISOR DESIGN

result, it can swap in W1 needed by operator Conv1 one unit time earlier, at t4,

because there is still space in the memory pool.

We contrast Figure 4.1(d) and (e) to see why scheduling affects swap planning.

Both (d) and (e) use the same fine-grained memory pool. However, Figure 4.1(e)

takes one unit of time longer than (d) because of its left-first schedule. In Fig-

ure 4.1(e), GPU is idle for the time slot t6 as operator Concat waits for 2MB

tensor A2 to complete swapping in order to make room for its 2MB output A5.

It is not possible to swap out A2 any time earlier as it is the input of operator

Conv3 which executes at time t4. By contrast, Figure 4.1(d)’s right-first schedule

is able to execute Conv3 earlier at t3, thereby allowing A2 to be swapped out

earlier.

Our approach. Since memory allocation and operator scheduling critically af-

fect swapping performance, we derive a swapping plan (aka which tensors to swap

in/out and when) assuming a given dataflow graph as well as a corresponding

memory allocation scheme and an operator schedule (Section 2.3). Specifically,

the swap plan optimizes computation and communication overlapping by swap-

ping out tensors not needed for the longest time in the future and prefetching

previously-swapped out tensor as early as possible.

We search the space of possible memory allocations and operator schedules to

find a combination with the best swapping performance. Instead of using manual

heuristics to constraint and guide the search, we adopt genetic algorithm [38,

39, 40] to search for a good combination of memory allocation and operator

scheduling. Genetic algorithms have been used for many NP-hard combinatorial

49

CHAPTER 4. SWAPADVISOR DESIGN

problems [41, 42] and have been applied for scheduling in parallel systems [43].

To enable effective exploration of a vast search space, we must be able to quickly

evaluate the overall performance (i.e. end-to-end execution time) of a swap plan

under any combination of memory allocation/scheduling. We found it too slow

to perform the actual execution on real frameworks. Therefore, we estimate the

performance by running the swap plan under a dataflow engine simulator. The

simulator uses measured computation time for each operator as well as GPU-

CPU communication bandwidth so that it can estimate the execution time of a

dataflow graph under a given scheduling, memory allocation, and swap plan. The

running time of our simulator on a CPU core is orders of magnitude faster than

that of actual execution, reducing the search time for a model to less an hour.

The simulator enables SwapAdvisor’s genetic algorithm to directly optimize the

end-to-end execution time.

4.3 SwapAdvisor Design

Overview. Figure 4.2 gives the architecture of SwapAdvisor, which is inte-

grated with an existing DNN framework (MXNet in our implementation). Given

a dataflow graph, SwapAdvisor picks any legitimate schedule and memory alloca-

tion based on the graph as initial values, and passes them to the swap planner to

determine what tensors to swap in/out and when. The result of the swap plan-

ner is an augmented dataflow graph which includes extra swap-in and swap-out

operators and additional control flow edges. The additional edges are there to

ensure the final execution order adheres to the given schedule and the planner’s

50

CHAPTER 4. SWAPADVISOR DESIGN

Scheduler

Memory

Allocator

Swap

Planner
Simulator

Sample

Selector

SwapAdvisor

Dataflow
MXNet

Figure 4.2: System overview of SwapAdvisor

timing of swaps.

For optimization, the augmented graph is passed to SwapAdvisor’s dataflow

simulator to estimate the overall execution time. The genetic algorithm-based

search measures the performance of many memory allocation/schedule combi-

nations, and proposes new allocation/schedule candidates for the swap planner.

Once a swap plan has been sufficiently optimized, the final augmented dataflow

graph is given to the framework for actual execution.

This section describes swap planner’s inputs (Section 4.3.1) and explain how

the planner maximizes performance given a specific schedule and memory allo-

cation (Section 4.3.2). A later section (Section 4.4) discusses genetic algorithm-

based optimization.

4.3.1 Operator Schedule and Memory Allocation

In addition to the dataflow graph, the swap planner takes as input an operator

schedule and memory allocation.

51

CHAPTER 4. SWAPADVISOR DESIGN

Operator schedule. Given an acyclic dataflow graph G, an operator schedule

is any topological sort ordering of nodes in G. When using a single GPU, the

framework can issue operators to the GPU according to the schedule to keep the

GPU busy. Indeed, frameworks such as MXNet commonly perform topological

sort to schedule operators.

NVIDIA’s recent GPUs support multiple “streams”. SwapAdvisor uses 3

streams: one for performing GPU execution, one for swapping out tensors to

the CPU, and one for swapping in tensors from the CPU. Since GPU-CPU com-

munication is duplex, all three streams can proceed concurrently when used in

this manner. By contrast, if one is to use multiple streams for computation, those

streams cannot execute simultaneously if there is not enough GPU compute re-

source for parallel execution. We have observed no performance benefits in using

more than one stream for computation for all the DNN models that we’ve tested.

This observation is also shared by others [24].

Memory allocation. We need to configure the memory pool and specify mem-

ory allocation for a given dataflow graph. The memory pool consists of a number

of different size-classes each of which is assigned a certain number of fixed-size

tensor objects. Given a dataflow graph G which contains the sizes of all in-

put/output tensors needed by each operator, a memory allocation scheme can

be defined by specifying two things: 1) the mapping from each tensor size in G

to some size class supported by the memory pool. 2) the set of supported size

classes as well as the number of tensor objects assigned to each class. As an

example, the coarse-grained allocation scheme in Figure 4.1(b)(c) has only one

52

CHAPTER 4. SWAPADVISOR DESIGN

size-class (2MB) with 5 objects, and maps each 1MB or 2MB tensor to the 2MB

size-class. The fine-grained scheme in Figure 4.1(d)(e) has two size-classes (1MB

and 2MB) with 8 and 1 objects respectively, and maps each 1MB tensor to the

1MB size-class and each 2MB tensor to the 2MB size-class.

4.3.2 Swap Planning

The swap planner is given the dataflow graph as well as a valid operator

schedule and memory allocation scheme. Its job is to find the swap plan with the

best performance under the given schedule/allocation combination. In particular

the swap planner decides: 1) which memory-resident tensors to swap out under

memory pressure, 2) when to perform swap-in or swap-out.

Which tensors to swap out? At the high level, the swap planner uses Belady’s

strategy [44] to pick the tensor that will not be needed for the longest time in

the future to swap out. Seeing into the future is possible as the planner is given

the schedule. Belady’s strategy is optimal for cache replacement and also works

well in our context as it gives the planner sufficient time to swap the tensor

back before its next use. Concretely, the planner scans each operator according

to the order in the schedule and keeps track of the set of input/output tensor

objects that become resident in memory as a result of executing the sequence

of operators. Upon encountering memory pressure when adding a tensor of size

s (i.e. there is no free object in size-class of s), the planner chooses the tensor

from the same size-class as s to swap out. If there are multiple candidates, the

53

CHAPTER 4. SWAPADVISOR DESIGN

planner chooses one that will be used in the furthest future.

There is a caveat when using Belady’s strategy in our setting. Suppose tensor

Ti–which is last used by operator opi–is chosen to make room for tensor Tj, an

input tensor to the current operator opj. Thus, the earliest time Ti can be

swapped out is when opi finishes. If operators opi and opj are too close in time in

the schedule, there is little time to swap in Tj before it’s needed by operator opj
as its memory space is not available until after Ti is swapped out. As a remedy,

when choosing a candidate tensor to swap out, the planner picks among those

who are most recently used at least a threshold of time ago.

DNN training is iterative, but the swap planner is given the dataflow graph

for a single iteration only. At the end of each iteration, all tensors other than the

parameter tensors can be discarded. However, to ensure that the same swap plan

can be used across many iterations, we must ensure that the set of parameter

tensors in the GPU memory at the end of an iteration is the same as in the

beginning. To achieve this, we perform a double-pass, i.e. scan the schedule

to plan for swapping twice. In the first pass, we assume no parameter tensors

are in the GPU memory, and must be swapped in before their first usage. At

the end of the first pass, a subset of parameter tensors become residents in the

memory, which we refer to as the initial resident parameters. We then do a

second pass assuming the initial resident parameters are present in memory in

the beginning of the schedule. In the second pass, if there is additional memory

pressure that did not happen in the first pass, we remove a parameter tensor from

the set of initial residents to resolve the pressure. The final swap plan’s initial

54

CHAPTER 4. SWAPADVISOR DESIGN

Compute:

Swap-in:

Swap-out:
Op1

Op2

Op3

W2

W3

W1

A1

A2

A3

Op1 Op2 Op3

GPU-memory
residency:

W1A1 W1A1W2 A2 W3A1A2 A3

W1 W2 W3

W1 W2

swap decision:
 W1->W3, W2->A3

(a) (b)

Figure 4.3: Example swap planning for a simple dataflow graph. All tensors have
unit size and total GPU memory is 4 units.

GPU-resident parameters do not include those removed in the second pass.

When to swap in and out? Our previously discussed selection strategy has

determined pairs of tensors to swap-out and swap-in if necessary in order to

execute each operator according to the schedule. To maximize computation and

communication overlap, we want to complete a pair of swap-out and swap-in as

early as possible in order not to block the execution of the corresponding operator

in the schedule. However, we must also ensure that the timing of swap-in/out is

safe.

We illustrate how the planner controls swap timing using an example 3-node

dataflow graph (Figure 4.3(a)) and the schedule op1, op2, op3 (Figure 4.3(b)). For

simplicity, we assume all tensors in the example are 1 unit in size and the total

GPU memory size is 4 units. In order to execute op1, we must swap in the

55

CHAPTER 4. SWAPADVISOR DESIGN

parameter tensor W1, thus the planner adds a new dataflow node for swapping

in W1 which is to be run on the GPU stream dedicated for swap-ins. Similarly a

swap-in node for W2 is added. We note that there is sufficient memory to hold

the input/output tensors of both op1 and op2. However, in order to run op3, we

need room to swap in W3 and to allocate space for A3. The planner chooses W1

to make room for W3 (referred to as W1 → W3) and chooses W2 to make room

for A3 (referred to as W2 → A3). Let’s consider the case of W1 → W3 first. The

planner adds two dataflow nodes W1(swap-out) and W3(swap-in). A control flow

edge from W3(swap-in) to op3 is added to ensure that operator execution starts

only after W3 is in GPU memory. An edge from W1(swap-out) to W3(swap-in)

is added to ensure that swap-in starts only when the memory becomes available

upon the completion of the corresponding swap-out. Additionally, an edge from

op1 to W1(swap-out) is included as W1 cannot be removed from the memory

until op1 has finished using it. The case of W2 → A3 is similar, except that

the planner does not need to add a swap-in node for A3 because it is created

by the operator. The resulting augmented dataflow graph can be passed to the

framework’s dataflow engine for execution.

4.4 Optimization via Genetic Algorithm

With the design of Section 4.3, one can randomly generate a combination of

schedule and memory allocation for the swap planner to find a good swapping

scheme. But, how good it is if we randomly create the schedule and memory

allocation? Figure 4.4 shows the results of using random samples. For the first

56

CHAPTER 4. SWAPADVISOR DESIGN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Experiment number

3.8

4.0

4.2

4.4

4.6

Ru
nn

in
g

tim
e(

se
co

nd
s)

 /
Ite

ra
tio

n

Random scheduling
Random memory allocation

Figure 4.4: Random scheduling and memory allocation for Inception-V4 with
wide scale 4 and batch size 32.

half of the experiments, we use fixed memory allocation and randomly permute

the schedule. The second half of the experiments are with a fixed schedule and

different randomly generated memory allocation. The best and worst samples

in the figure have up to 30% performance difference. The result enforces our

discussion in Section 4.2 that we should also optimize the schedule and memory

allocation.

In this section, we discuss how to adopt the genetic algorithm to find a good

schedule and memory allocation. For the model demonstrated in Figure 4.4,

SwapAdvisor manages to find a result with 50% performance improvement than

the best result shown in Figure 4.4.

57

CHAPTER 4. SWAPADVISOR DESIGN

4.4.1 Algorithm Overview

Genetic algorithm (GA) aims to evolve and improve an entire population

of individuals via the nature-inspired mechanisms such as crossover, mutation,

and selection [38, 39, 40]. In SwapAdvisor, an individual’s chromosome consists

of two components: an operator schedule and a memory allocation. The first

generation of individuals are created randomly and the size of the population is

decided by a hyper-parameter, Np.

To create a new generation of individuals, we perform crossover and muta-

tion on the chromosomes of the current generation. A crossover takes a pair

of parent chromosomes and produces new individuals by combining the features

from parents so that children can inherit “good” characteristics (probabilistically)

from the parents. In SwapAdvisor, each crossover generates two new schedules

and two memory allocation, thereby resulting in 4 children. We then perform

mutation on the children which is essential for GA to escape the local minimum

and avoid premature convergence [38, 39, 40]. The resulting mutated children are

given to the swap planner to generate the augmented dataflow graph with swap-

ping nodes. We use a custom-built dataflow simulator to execute the augmented

graph and obtain the execution time, which is used to measure the quality of an

individual. Finally, the GA selects Np individuals among the current population

to survive to the next generation.

Selection methodology How to select individuals to survive is crucial in GA.

If we choose only the best individuals to survive, the population can lose diversity

58

CHAPTER 4. SWAPADVISOR DESIGN

1 2 345

12 3 4 5 1 2 5

2 3 4

3 4

1 5

SCH1

SCH2

SCHC1

SCHC2

Figure 4.5: Cross over SCH1 and SCH2 for a toy dataflow graph. There are five
nodes in the dataflow graph.

and converges prematurely.

SwapAdvisor’s selection takes into account the quality of an individual to

determine the probability of its survival. Suppose an individual’s execution time

is t, we define its normalized execution time as tnorm = (TBest − t)/TBest, where

TBest is the best time among all individuals seen so far. The survival probability

of an individual is decided by the softmax function.

Probi =
etnormi∑S
j=1 e

tnormj

for i = 1 . . . S (4.1)

In the equation, S is the population size before selection (usually larger than Np).

We use the softmax-based selection because our experiments show that it reaches

more stable results compared to the popular tournament selection [38, 39, 40].

4.4.2 Creating New Schedules

Encoding As a schedule is a topological ordering of the dataflow graph (G), it

is natural to encode a schedule as a list, SCH, where each element in SCH is a

59

CHAPTER 4. SWAPADVISOR DESIGN

node id in G.

Crossover We borrow the idea from [43] to create two child schedules. by

crossing over two parent schedules, SCH1 and SCH2. We explain via an example,

shown in Figure 4.5. First, a crossover point, CR, is chosen randomly. In the

example, CR = 3. To create child SCHC1, the crossover takes a slice of SCH2

(SCH2[1 . . . CR] = [2, 3, 4]) to be the first part of SCHC1. The nodes not in the

SCHC1 are filled in according to their order in SCH1. In the example, nodes 1

and 5 are not in SCHC1 = [2, 3, 4], thus we fill them in the remaining slots of

SCH1, in that order. SCHC2 can be created via the same approach but with

different parts from SCH1 and SCH2, as shown in the bottom of Figure 4.5. The

algorithm guarantees SCHC1 and SCHC2 are the topological ordering of G [43].

Mutation A simple way to mutate a schedule is to change a node’s position in

the list randomly as long as the result remains a topological ordering [43]. How-

ever, we have empirically observed that GA works better if we mutate multiple

nodes in one mutation (e.g., more than 2x performance improvement for RNNs).

SwapAdvisor’s mutation algorithm mimics a dataflow scheduler. It maintains

a ready set, containing all the nodes which are ready to run (all the predecessor

nodes are executed). The core function of the mutation algorithm is to choose

a node from the ready set based on following two conditions. First, with a

probability P, a mutation happens. In such a case, the algorithm randomly

chooses a node from the ready set. Otherwise, the algorithm selects the node from

the ready set which is executed earliest in the original schedule (not mutated).

60

CHAPTER 4. SWAPADVISOR DESIGN

A chosen node is viewed as “executed”. The algorithm terminates when all the

nodes are “executed”. The mutation algorithm generates a new schedule which

mostly follows the input schedule but with some nodes scheduled differently.

4.4.3 Creating New Memory Allocation

Encoding The memory allocation controls how to map each size to a size class

and how many objects to assign to each size class. Although it’s natural to use

a hash map to map tensor sizes to size classes, doing so loses the relative size

information between different tensor sizes, making it more difficult to do efficient

crossover. We use two lists, CLS and CNT , to represent the tensor size-class

mapping.

Let TS be the sorted list of unique tensor sizes observed in the dataflow graph.

CLS is a list with the same length as TS, and the ith item in CLS (CLS[i]) is a

positive integer representing the size-class for tensors with size TS[i]. Thus, the

number of the size-classes is Max(CLS). CNT is a list representing the number

of tensor objects allocated for each size-class. Consequently, the length of CNT

is Max(CLS). As an example, the dataflow graph of Figure 4.1 has only two

different tensor sizes, thus TS = [1MB, 2MB]. The coarse-grained allocation

with five 2MB objects corresponds to CLS = [0, 0], indicating that both 1MB

and 2MB sizes are mapped to the same size-class with id 1 and object size is

2MB. CNT = [5] contains the number of objects assigned to each size class from

id = 0...Max(CLS).

The number of potential CLS lists is O(NN) where N is the number of unique

61

CHAPTER 4. SWAPADVISOR DESIGN

1 1 11

1 2 2 2 1 1

1 2

2

1

2

1

4

8 1

41

 repair

22

 average

1 4

 repair

11

4

8 4

1

CNT2

CNT1

CLS1

CLS2

CLSC1

CLSC2

CLSC1(repaired)

CLSC2(repaired)

CNTEXTC1

CNTEXTC2

CNTC1 CNTC1(repaired)

CNTC2 CNTC2(repaired)

1 2 2 2

3 2

(a)

(b)

8 4

4 4 1 1

Figure 4.6: Cross over (CLS1, CNT1) and (CLS2, CNT2) for a toy dataflow graph.
There are four different sizes of tensors, 1MB, 2MB, 3MB, and 4MB. Assume the
GPU memory is 12MB.

tensor sizes [45]. Such a gigantic search space can seriously cripple the perfor-

mance of GA. We prune the search space by imposing the restriction that CLS

must be a monotonically increasing sequence and each CLS[i] is equal to or one

greater than CLS[i − 1]. The intuition is that the allocation is more efficient

when consecutive sizes are mapped to the same or adjacent size classes. This

restriction cuts down the search space from O(NN) to O(2N).

Crossover We first explain how to cross over two CLS using an example, shown

in Figure 4.6. There are two CLS before crossover (CLS1 and CLS2) and four

62

CHAPTER 4. SWAPADVISOR DESIGN

different tensor sizes: 1MB, 2MB, 3MB and 4MB. CLS1 = [1, 1, 1, 1] means that

all four tensor sizes belong to the same size-class, 4MB, and CNT1 = [4] indicates

that there are four 4MB tensor objects allocated. CLS2 = [1, 2, 2, 2] means that

there are two size-classes, 1MB and 4MB. There are eight 1MB tensor objects

and one 4MB tensor object as CNT2 is [8, 1].

The crossover randomly picks a crossover point, CR to partition the parent

lists, CLS1 and CLS2. The first child size-class mapping CLSC1 is made by

concatenating CLS2[1 . . . CR] and CLS1[CR + 1 . . . N]. The second child size-

classes mapping CLSC2 is made by concatenating CLS1[1 . . . CR] and CLS2[CR+

1 . . . N]. Figure 4.6(a) shows the crossover for CLS. In the figure, CR is 2 and the

results, are CLSC1 ([1, 2, 1, 1]) and CLSC2 ([1, 1, 2, 2]). Note that CLSC1 is not

monotonically increasing. Thus, we repair it to ensure the new size-class mapping

is still valid. Our repair increases the elements in a problematic CLS by the

minimal amount so that the resulting sequence becomes valid. In Figure 4.6(a),

we would increase the 3rd and 4th elements of CLSC1 by 1, so that the repaired

CLSC1 becomes [1, 2, 2, 2].

The same crossover scheme cannot be directly used for CNT as its length

depends on the content of the corresponding CLS. As a result, we extend a

CNT to an extended CNTEXT which has the same length as CLS (and TS).

CNT captures how many tensor objects are allocated for each size-class, while

CNTEXT indicates how many tensor objects can be used for each tensor size.

For example, in Figure 4.6, CLS2 is [1, 2, 2, 2] which means 1MB belongs 1MB

size-class and 2MB, 3MB, and 4MB belong to 4MB size-class. CNT2 is [8, 1]

63

CHAPTER 4. SWAPADVISOR DESIGN

and CNTEXT2 can then be viewed as [8, 1, 1, 1]. CNTEXT1 is [4, 4, 4, 4]. We

apply the same technique to cross over the extended CNT . Figure 4.6(b) shows

the resulting extended CNT s for child1 and child2. For example, CNTEXTC1
is

[8, 1, 4, 4] and the last three element belong to the same size-class (according to

CLSC1). We average all the elements in the same size class to get the count for

that size-class. Thus the resulting CNTC1 is [8, 3].

Similar to CLS, a new CNT may need to be repaired. For example, CNTC1

is invalid, as the memory consumption is 20MB (8 ∗ 1 + 3 ∗ 4), exceeding the

12MB memory capacity. We repair a CNT by decreasing each element inverse-

proportionally to the element’s corresponding size-class. For example, the origi-

nal CNTC1 is [8, 3] and the repaired CNTC1 is [4, 2], as the first size-class is 1MB

and the second size-class is 4MB.

Mutation Similar to the scheduling mutation, we mutate more than one ele-

ment in CLS (and CNT). An element is mutated with the probability of P

To mutate the ith element in CLS, we can either increase it by 1 or decrease

it by 1. If CLS[i] equals to CLS[i−1], we can increase CLS[i] by 1 as decreasing

it breaks the monotonic increasing feature. If CLS[i] equals to CLS[i − 1] + 1,

we decrease CLS[i] by 1. Note that, all the elements after the ith element also

need to be increased or decreased to maintain the monotonic increasing feature.

To mutate an element in CNT , we use a Gaussian distribution with the

original value as the mean. With Gaussian distribution, the mutated value is

close to the original value most of the time but can have a large variation with

a small chance. The mutated CNT and CLS can exceed the memory limit. We

64

CHAPTER 4. SWAPADVISOR DESIGN

use the same methodology as crossover to repair them.

4.5 Implemetation

SwapAdvisor is implemented based on MXNet 1.2. The genetic algorithm

components and simulator are written in Python (4.5K LoC). We use a paral-

lel implementation of the genetic algorithm – each process performs crossover,

mutation, and simulation of a portion of the samples on a CPU core.

The augmented dataflow graph generated by SwapAdvisor is feed to MXNet.

We modify MXNet’s scheduler to ensure all swap-in operations and swap-out op-

erations are executed in two separated GPU streams other than the computation

stream. A new memory allocator is implemented in order to make MXNet to

follow the memory allocation results from SwapAdvisor. The total modification

of MXNet is 1.5K LoC.

65

Chapter 5

SwapAdvisor Evaluation

In this chapter, we evaluate the performance of SwapAdvisor. The followings

are the highlights of our results:

• SwapAdvisor can achieve 53%-99% of the training throughput of the ideal

baseline with infinite GPUmemory when training various large DNNs. Swa-

pAdvisor outperforms the online swapping baseline up to 80× for RNNs and

2.5× for CNNs.

• When being used for model inference, SwapAdvisor reduces the serving

latency up to 4× compared to the baseline which time-shares the GPU

memory.

• SwapAdvisor’s joint optimization improves the training throughput with

swapping from 20% to 1100% compared to only searching memory alloca-

tion or only searching scheduling.

66

CHAPTER 5. SWAPADVISOR EVALUATION

5.1 Experimental Setup

Testbeds We run SwapAdvisor on an EC2 c5d.18xlarge instance with 72 vir-

tual CPU cores and 144GB memory. The results of SwapAdvisor are executed

on an EC2 p3.2xlarge GPU instance. The p3.2xlarge instance has one NVIDIA

V100 GPU with 16GB GPU memory and 8 virtual CPU cores with 61GB CPU

memory. The PCIe bandwidth between the CPU and GPU is 12GB/s unidirec-

tional and 20GB/s bidirectional. For experiments with more than 61GB memory

consumption, we use a p3.8xlarge instance with 244 GB CPU memory but utilize

only a GPU.

Genetic algorithm parameters All parameters of the genetic algorithm are

determined empirically. The sample size is set to 144 to allow evenly distributing

search tasks to the 72 CPU cores. The effectiveness of the mutation probability

varies with different DNN models. However, 10% is a good start search point for

our evaluation. Although it is possible to get a better result with a longer search

time, SwapAdvisor can find good results for all of our evaluated DNN models in

30 mintues. Thus, we set 30 minutes to be the search time limit. If the search

converge earler (no improvement for more than 5 minutes), we terminate the

search to save the computation resources.

Evaluated DNN models ResNet [22] is one of the most popular CNNs. A

ResNet contains several residual blocks; a residual block has several convolution

operators. The activation of a residual block is combined with activation from

67

CHAPTER 5. SWAPADVISOR EVALUATION

B=128 B=2560.00
0.25
0.50
0.75
1.00 14.5 14.7

0.53 1.07

12.2
11.2

Ideal ODSwap SwapAdv

(a) RNN-8-8K
B=64 B=1280.00

0.25
0.50
0.75
1.00 7.97 10.9

0.64 1.18

6.04 8.81

Ideal ODSwap SwapAdv

(b) BRNN-4-8K

B=16 B=32 B=640.00
0.25
0.50
0.75
1.00 3.85 4.07 4.21

2.90
3.34 3.49

3.56 3.85 4.07

Ideal ODSwap SwapAdv

(c) WResNet-152-10
B=16 B=32 B=640.00

0.25
0.50
0.75
1.00 12.7 13.8 14.2

10.4
9.97

6.25

12.5 13.6

10.0

Ideal ODSwap SwapAdv

(d) Inception-4

B=16 B=32 B=640.00
0.25
0.50
0.75
1.00 7.06 8.82 9.46

2.40 2.66 2.38

5.95

5.30
5.02

Ideal ODSwap SwapAdv

(e) NasNet-25

Figure 5.1: Normalized throughput relative to the ideal performance. Each group
of bar represents one batch size. The number on each bar shows the absolute
throughput in samples/sec. X axis shows the different batch sizes.

68

CHAPTER 5. SWAPADVISOR EVALUATION

the previous block to form the final output. We use ResNet-152, a 152 layers

ResNet, for the inference experiments. Wide ResNet [46] is a widened version of

ResNet. The channel size of convolution operators are multiplied by a wide scale.

Due to the large memory consumption, the original work applies wide ResNet on

small images (32x32) dataset CIFAR-10 instead of ImageNet (224x224) which is

used by ResNet. In our training experiments, the input images are the same size

as ImageNet. We denote a wide ResNet model as WResNet-152-X, a 152-layers

wide ResNet with X wide scale.

Inception-V4 [36] is another popular CNN model. An Inception-V4 model

contains several types of inception cells; an inception cell has many branches of

convolution and the activation tensors of all the branches are concatenated to

form the final output. We enlarge the model by adding a wide scale parameter

similar to WResNet. We use the notation Inception-X to denote an Inception-V4

model with wide scale X.

Unlike manually designed ResNet and Inception-V4, NasNet [37] is crafted

by a deep reinforcement learning search. Thus, the model structure of NasNet

is more irregular. A NasNet model consists of a chain of Reduction and Normal

cells, with residual connection (same as ResNet) between consecutive cells. A

Reduction or Normal cell is like an inception cell but with different branch struc-

tures. The Normal cells are repeated by 3R times. In the original design, the

max R is 7. In our experiments, we train NasNet-25, a NasNet with R = 25.

RNN [47] is a DNN for training sequence input (e.g., text). A layer of RNN

consists of a list LSTM cells where the input of a cell is the corresponding element

69

CHAPTER 5. SWAPADVISOR EVALUATION

in the sequence (e.g., character). Bidirectional-RNN (BRNN) [48] is a variation

of RNN. A hidden layer in BRNN contains two sub-layers. The input for the

first sub-layer is the original sequence, and the input for the second sub-layer is

the reversed sequence. The activation tensors of the two layers are concatenated

to form the final activation. Each sub-layer has its own parameters. We use the

notations RNN-L-XK (BRNN-L-XK) to denote a RNN with L layers and the

parameter size of a layer is XK.

Baselines We compare SwapAdvisor with two baselines. The first one is the

ideal baseline, denoted as ideal. For the ideal baseline, we assume the GPU

memory is infinite. We implement the ideal baseline by directly reusing the GPU

memory without considering computation correctness. The performance of ideal

is the best a swapping system can achieve.

The second baseline is an online swapping system, On-Demand swap, de-

noted as ODSwap. ODSwap swaps out GPU memory when the GPU memory is

insufficient to run the next node. It chooses the tensor to swap out using LRU

algorithm. There is a separate prefetch thread that runs concurrently with the

execution thread. The prefetch thread decides which tensor to prefetch based

on the topology of the dataflow graph. Unlike SwapAdvisor, ODSwap does not

control the scheduling; it is just an extension to MXNet’s memory management.

MXNet’s memory management does not support dynamic memory allocation.

We implement a memory allocator (based on the buddy algorithm) to allow

ODSwap to dynamically allocate memory. The design choices require no search

decisions like SwapAdvisor does.

70

CHAPTER 5. SWAPADVISOR EVALUATION

5.2 Wider and Deeper DNN Models Training

Table 5.1 shows the statistics of the models evaluated in this section. Each

row shows the memory usage, number of operators, and number of different

tensor sizes. The batch size for a model is the largest one in Figure 5.1.

RNN performance Figure 5.1a and 5.1b show the throughput for RNN-8-

8K and BRNN-4-8K. SwapAdvisor achieves 70-80% of the ideal performance for

RNN and BRNN, while the throughput of ODSwap is only less than 1% of ideal.

For RNN and BRNN, the parameter tensors are shared by the LSTM cells in the

same layer. Thus, a schedule which executes LSTM cells from different layers

results in terrible swapping performance as the system has to prepare memory

for different large parameters. Unfortunately, randomly generating a topological

ordering almost always results in such a schedule, as is MXNet’s default schedule.

Thus ODSwap has poor performance. SwapAdvisor is able to find a swap-friendly

schedule through genetic algorithm.

Model MemUsage OPs TensorSizes
WResNet-152-10 180GB 882 26
Inception-4 71GB 830 64
NasNet-25 193GB 5533 65
RNN-8-8K 118GB 8594 7
BRNN-4-8K 99GB 9034 9

Table 5.1: Statistics of DNN models. The batch size for CNN models is 64, is
256 for RNN, and is 128 for BRNN.

71

CHAPTER 5. SWAPADVISOR EVALUATION

CNN performance Figure 5.1c - 5.1e show the throughput for WResNet-152-

10, Inception-4, and NasNet-25. Table 5.1 shows that WResNet-152-10 uses as-

tonishingly 180GB memory, but both SwapAdvisor and ODSwap perform well;

SwapAdvisor achieves 95% of the ideal performance, and ODSwap achieves 80%

of ideal. WResNet-152-10 has only 26 different tensor sizes, making it less dif-

ficult to do the memory allocation. More importantly, unlike RNN/BRNN, the

topology of the dataflow graph of WResNet more resembles to a line – only a

jump link for a residual block. Thus, the scheduling choice may affect little to

the final results.

On the other hand, Inception-4 and NasNet-25 have more than 60 different

tensor sizes, making it harder to do memory management. The topology of the

dataflow graph for Inception-V4 and NasNet is also more complicated as dis-

cussed in Sec 5.1. SwapAdvisor achieves 20% - 150% performance improvement

compared to ODSwap.

Note that, for Inception-4 and NasNet-25, SwapAdvisor can achieve 80% per-

formance of the ideal baseline, when the batch size is 16. However, SwapAdvisor

cannot achieve more than 65% of the ideal performance when the batch size is 64.

Both Inception-4 and NasNet-25 have many large activation tensors (>500MB)

when the batch size is 64. Together with large number of tensor sizes (> 60),

it can be difficult for SwapAdvisor to search a good pool configuration to mini-

mize swapping overhead. NasNet-25 also has more than 9000 nodes in the graph,

making it hard to schedule. As a result, SwapAdvisor achieves only 53% of the

ideal baseline for NasNet-25 with batch size 64.

72

CHAPTER 5. SWAPADVISOR EVALUATION

B=16 B=32 B=640

5

10

15 14.2 15.0 15.214.0 14.3
11.5

3.72 4.34 4.74

SwapAdv ODSwap TFLMS

Figure 5.2: WResNet-152-4 throughput comparison

Comparing with TFLMS. We also compare SwapAdvisor and ODSwap with

TFLMS [26], an swapping extension to TensorFlow. Unfortunately, TFLMS can-

not support models in Figure 5.1. We evaluate WResNet-152-4 as this is the

largest executable one for TFLMS. Figure 5.2 shows that for all three batch

sizes, SwapAdvisor is at least 3X better than TFLMS, while ODSwap is at least

2X better than TFLMS. TFLMS performs poorly due to not swapping out pa-

rameter tensors (which are large in WResNet-152-4). The design reduces the

GPU memory capacity to store activation tensors and causes more swapping of

activation tensors.

5.3 DNN Models Inference Evaluation

DNN model inference uses far less GPU memory than training a model as

there is no back-propagation. However, SwapAdvisor is still useful for model

inference in several cases.

Table 5.2 shows how SwapAdvisor can reduce the memory requirement for

73

CHAPTER 5. SWAPADVISOR EVALUATION

MemSize/Batch 1 16 32 64
64MB 0.024s N/A N/A N/A
128MB 0.022s 0.077s N/A N/A
192MB 0.018s 0.044s N/A N/A
256MB 0.017s 0.043s 0.130s N/A
320MB 0.017s 0.042s 0.073s N/A
512MB 0.017s 0.040s 0.067s 0.238s
640MB 0.017s 0.040s 0.067s 0.123s
1024MB 0.017s 0.040s 0.067s 0.121s

Table 5.2: ResNet-152 inference time with different batch sizes and GPU memory
sizes.

0 100 200 300 400 500 600
Throughput (task/s)

0
200
400
600
800

1000

La
te

nc
y

(m
s)

not_shared
time_shared(16)
time_shared(4)
swapadv(16)
swapadv(4)

Figure 5.3: 99 percentile latency versus throughput for serving multiple ResNet-
152 models.

ResNet-152 with different batch sizes. In the table, each cells is the running

time of one inference iteration with the corresponding available GPU memory

size. ”N/A” means SwapAdvisor cannot run the inference job with such a small

memory capacity. The running time with a bold font means swapping is required

to run the job (memory is not enough). The running time with an italic font

means that the running time is close to the performance using full 16GB memory

74

CHAPTER 5. SWAPADVISOR EVALUATION

0 500 1000 15000
70

140
210
280

best average worst

(a) RNN-8-8K

0 500 1000 15002
3
4
5
6

best average worst

(b) Inception-4
0 500 1000 15002

3
4
5
6

best average worst

(c) Inception-4 (w/o restricted size-class
mapping)

Figure 5.4: The search result versus search time. X axis is the search time and
Y axis is the running time (seconds/iteration).

RNN-8-8K Incetpion-40

5

10

15
12.2

13.6

0.77

12.7

6.93

11.5

SwapAdv w/o scheduling w/o mem alloc

Figure 5.5: Throughput for SwapAdvisor with different search settings for RNN
and Inception-V4.

75

CHAPTER 5. SWAPADVISOR EVALUATION

capacity (< 1% performance difference).

An interesting experiment is when the batch size is 1. Batch size 1 is rarely

used for training or inference on a cluster, but it is not uncommon to be used for

inference on a mobile device. Table 5.2 demonstrates SwapAdvisor can reduce

the memory usage for batch size 1 to as few as 64MB with 40% running time

overhead or to 192MB with only 6% overhead. SwapAdvisor can help to fit

a DNN model to a resource-limited GPU. Though the communication speed

between GPU and CPU on a mobile device is slower than that on an EC2 GPU

instance, V100 GPU is also much faster than a mobile GPU. Consequently, the

actual swapping overhead on a mobile device can be different from what Table 5.2

shows. Nevertheless, the result still poses a potential use case for SwapAdvisor

Another use case for SwapAdvisor is to time-share the GPU resource among

different DNN inferences. In the setting, a GPU machine time-shares the compu-

tation and memory among models. What if we only time-share GPU computation

but partition the GPU memory and distribute the GPU memory to the models?

Since the split GPU memory capacity may be too small for a DNN model, we

apply SwapAdvisor so that all the models can fit on the partitioned memory.

We consider time-sharing GPU memory as the baseline and compare the

latency of clients. In the evaluation, there are multiple ResNet-152 on the GPU,

each has its own trained parameters. We assume that the client arrival rate

follows a Poisson distribution and randomly assign batches of clients to different

models. Figure 5.3 shows the 99 percentile latency versus the throughput of the

GPU machine. The number after a legend denotes how many models are run on

76

CHAPTER 5. SWAPADVISOR EVALUATION

the GPU. The figure also shows the latency for serving only one model on the

GPU, denoted as “not_shared”.

We can see that the 99 percentile latency of SwapAdvisor is at most 2× slower

than “not_shared” when the throughput is less than 400 for both 4 and 16 models.

On the other hand, the latency of “time_shared” is 8x slower than “not_shared”

with 16 models when the throughput is 300. It may not be a wise decision to

serve several ResNet-152 on a GPU when the throughput is larger 400 as the

latency dramatically increases for both SwapAdvisor and “time_shared”.

The main benefit of SwapAdvisor is that it overlaps the memory copy with

the computation. On the other hand, the baseline has to swap in the parame-

ter tensors for the next model after the current model execution. It is possible

for “time_shared” to prefetch the parameters for the next model if the system

can predict which model to execute next. With such a task scheduler, the base-

line may outperforms SwapAdvisor. However, SwapAdvisor can still be used to

mitigate the potential overhead when the task scheduler predicts incorrectly.

5.4 The Effectiveness of SwapAdvisor’s Design

Choices

The effectiveness of scheduling and memory allocation We would like

to see the importance to optimize both scheduling and memory allocation. Fig-

ure 5.4 shows that it is very important for a RNN model to search a swap-friendly

schedule. Without searching a good schedule, SwapAdvisor can only achieve 7%

77

CHAPTER 5. SWAPADVISOR EVALUATION

of the performance with the full search. On the other hand, Figure 5.5 shows

that the memory allocation affects the performance of Inception-V4 more than

the scheduling. Without searching schedules, SwapAdvisor can still achieve 93%

performance of the full search. Figure 5.5 demonstrates that it is important to

optimize both scheduling and memory allocation for swapping as the effectiveness

of the two components vary from model to model.

SwapAdvisor’s genetic algorithm performance Figure 5.4 shows the search

performance of the genetic algorithm. In the figures, there are three lines, repre-

senting the best, average, and worst simulated time of all the alive samples (144

samples) at the moment. The first generation of sample is randomly generated.

The genetic algorithm can generally find a good solution within 100 seconds, as

both the average and the best simulated time converge quickly within the first

100 seconds. However, the difference between the worst (or the average) result

and the best result shows that the population still maintains diversities, allowing

the genetic algorithm to gradually optimizes the sample in the remaining time.

Both Figure 5.4b and Figure 5.4c show the search for Inception-4, but Fig-

ure 5.4c assumes that if the tensor size mapping is unrestricted. We can see that

all of the best, average, and worst result in Figure 5.4c are worse than Figure 5.4b,

proving that the restricted search space helps SwapAdvisor to find better results.

The effectiveness of the restricted search space is universal to all the evaluated

models.

78

Chapter 6

Related Work

6.1 Spartan’s Related Work

There is much prior work in the area of distributed array framework design

and optimization.

Compiler-assisted data distribution. Prior work in this space proposes static,

compile-time techniques for analysis. The first set of techniques focuses on par-

titioning [33] and the latter set on data co-location [49, 50, 51]. Prior work also

has examined nested loops with affine array subscript patterns, using different

structures (vector [33], matrix [52] or reference [53]) to model memory access

patterns or polyhedral model [54] to perform localization analysis. Since static

analysis deals poorly with ambiguities in source code [55], recent work proposes

profile-guided methods [56] and memory-tracing [57] to capture memory access

patterns. Simpler approaches focus on examining stencil code [57, 58, 59, 60, 61].

Spartan simplifies analysis significantly since high-level operator access patterns

79

CHAPTER 6. RELATED WORK

are well-defined. For example, the map operator accesses elements in the same

position across array pairs, together.

Access patterns can be used to find a distribution of data that minimizes com-

munication cost [33, 62, 63, 64, 65]. All approaches construct a weighted graph

that captures possible layouts. Although searching the optimal solution is NP-

Complete [66, 67, 68, 69], heuristics perform well in practice [69, 50]. Spartan also

constructs a weight graph where finding a solution is NP-Complete (appendix A).

Our heuristic is able to almost always find an optimal solution in practice. More-

over, prior work presents language-specific solutions that rely on compile-time

analysis. Spartan avoids the analysis by introducing high-level operators with

known tiling costs. Spartan uses lazy evaluation to obtain runtime information.

Parallel vector languages. ZPL [70], SISAL [71], NESL [72] and MatLab*P [73]

share a common goal with Spartan. These languages expose distributed arrays

and vector primitives and some provide a few core operators for parallel oper-

ations. Unlike Spartan, ZPL does not allow arbitrary indexing of distributed

arrays and does not allow parallelization of indexable arrays. NESL relies on a

PRAM model which assumes that a shared, distributed region of memory can be

accessed with low latency. Spartan makes no such assumption. SISAL provides

an explicit tiled model for arrays [74], however does not consider tiling strategies.

Distributed programming frameworks. Most distributed frameworks target

primitives for key-value collections (e.g. MapReduce [3], Dryad [13], Piccolo [14],

Spark [4], Ciel [75], Dandelion [15] and Naiad [16]). Some provide graph-centric

primitives (e.g. GraphLab [76] and Pregel [77]). While one can encode arrays

80

CHAPTER 6. RELATED WORK

as key-value collections or graphs, doing so is much less efficient than Spartan’s

tile-based backend. Nevertheless, Spartan borrows many ideas from these sys-

tems, such as dataflow graphs, fault tolerance and load balancing. It is possible

to implement Spartan’s backend by augmenting an in-memory framework, such

as Spark or Piccolo. However, we built our own prototype to allow for better

integration with NumPy.

FlumeJava [31] provides programmers with a set of high-level operators. Its

operators are transformed into MapReduce’s [3] dataflow functions. FlumeJava

is targeted at key-value collections instead of arrays. FlumeJava’s operators look

similar to Spartan’s, but their underlying semantics are specific to key-value

collections instead of arrays. Moreover, FlumeJava does not explicitly optimize

for data locality because it is not designed for in-memory computation.

Relational queries are a natural layer on top of key-value centric distributed

execution frameworks, as seen in systems like DryadLINQ [19], Shark [78], Dan-

delion [15] and Dremel [79]. Several efforts attempt to build an array interfaces

on these. MadLINQ [18] adds support for distributed arrays and array-style

computation to the dataflow model of DryadLINQ [19]. SciHadoop [80] is a

plug-in for Hadoop to process array-formatted data. Google’s R extensions [81],

Presto [17] and SparkR [82] extend the R language to support distributed arrays.

Julia [83] is a newly developed dynamic language designed for high performance

and scientific computing. Julia provides primitives for users to parallel loops and

distribute arrays. These extensions and languages rely on users to specify a tiling

for each array, which burdens users with making non-trivial optimization that

81

CHAPTER 6. RELATED WORK

require deep familiarity which each operation and its data.

Distributed array libraries. Optimized, distributed linear algebra libraries,

like LAPACK [35], ScaLAPACK [84], Elemental [85] Global Arrays Toolkit [86]

and Petsc [87, 88] expose APIs specifically designed for large matrix operations.

They focus on providing highly optimized implementations of specific operations.

However, their speed depends on correct partitioning of arrays and their pro-

gramming model is difficult to extend.

Global Address Spaces. Systems such as Unified Parallel C [89] and co-array

Fortran [90] provide a global distributed address space for sharing arrays. They

can be used to implement the backend for distributed array libraries. They do

not directly provide a fully functional distributed array language.

Specialized application frameworks. There are a number of frameworks

specifically targeted for distributed machine learning (e.g. MLBase [5], Apache

Mahout [6], and Theano [91], for GPUs). Unlike these, Spartan targets a much

wider audience and thus must address the complete set of challenges, including

support for a number built-ins, minimizing the number of temporary copies and

optimizing for locality.

Array Databases and Query Languages SciDB [92] and RasDaMan [93] are

distributed databases with n-dimensional data storage and an array query lan-

guage inspired by SQL. These represent the database community’s answer to

big numerical computation. The query language is flexible, but as the designers

of SciDB have seen, application programmers often prefer expressing problems

in more comprehensive array languages. SciDB-R is an attempt to win over R

82

CHAPTER 6. RELATED WORK

programmers by letting R scripts access data in SciDB and use SciDB to execute

some R commands. SciDB’s partition strategy is optimized for disk utilization.

In contrast, Spartan focuses on in-memory data.

6.2 SwapAdvisor’s Related Work

Swapping for DNN Existing swapping systems rely on manual insights to

determine what to swap. vDNN [24] swaps out all activation tensors or swap all

convolution tensors only. TFLMS [26] also only swaps activation. [27] uses the

length of the critical path for an activation tensor and its loss-function node as

the heuristic to decide what activation tensors to swap out. [30] is an on-demand

swapping mechanism for TensorFlow. Its heuristic is to swap out tensors from

the previous iterations to the host memory, a strategy that only works for RNNs.

None of the work above swaps parameters, hence cannot support a large

model. SuperNeurons [25] adopts a different approach; it combines swapping with

recomputation. However, SuperNeurons restricts the swapping to convolution

operators. The decision forbids SuperNeurons from supporting an RNN model

with large parameters. By constrast, SwapAdvisor can support various kinds of

deeper and wider DNN models.

Alternative approaches to overcome GPU memory limit There exist ap-

proaches that do not rely on swapping to reduce memory consumption. The first

direction includes computing with lower-precision floating-point numbers [94, 95],

quantization, and parameters compression [96, 97, 98, 99, 100, 101]. [102] ob-

83

CHAPTER 6. RELATED WORK

serves the similarities among the activation tensors for CNN inferences and pro-

poses to reuse the activation tensors to speedup the performance and to reduce

memory consumption. These techniques either affect the model accuracy or re-

quire heavily hyper-parameter tuning while swapping does affect the results.

Another approach is recomputation. Recomputation utilizes the fact that

an activation tensor can be recomputed. As a result, [103, 104, 105] deallocate

activation tensors after their last usage in the forward-propagation and later re-

compute the activation tensors when they are needed. Although recomputation

can be used for deeper models and large input data, it fails to support wider

models where large parameter tensors occupy the memory and cannot be recom-

puted.

Finally, training DNN models with multiple GPUs is an active research. The

most popular way to parallelize a DNN model is data parallelism [106, 107, 108].

With data parallelism, each GPU gets a portion of the input data and full pa-

rameters of the model. Thus, the input tensor and activation tensors are sliced

and distributed to GPUs, effectively reducing the memory consumption of each

GPU. While easy to use, data parallelism duplicates the full parameters on each

GPU, limiting the largest parameter size the model can have. Contrary to data

parallelism, model parallelism partitions both activation tensors and parameter

tensors [109, 110]. However, applying model parallelism for a model requires

significant engineering work. [111, 112, 113] propose to automate the model

parallelism and reduce the communication with dataflow graph analysis.

84

CHAPTER 6. RELATED WORK

Multiple DNN inferences on a GPU TensorRT [114] leverages GPU streams

to run multiple model inferences concurrently. NVIDIA MPS [115] also supports

concurrent GPU tasks, but the tasks are not limited to DNN inference. Both

TensorRT and MPS requires users to partition the GPU memory for tasks. Swa-

pAdvisor can help both systems to alleviate the memory pressure. Salus [116]

aims to support fine-grained GPU sharing among DNN tasks. Salus allocates

a shared memory space to store activation tensors and scratch space for all the

models as these memory consumption can be dropped directly after the last usage

in an iteration. It assumes parameter tensors are in the GPU memory, and thus

can borrow SwapAdvisor’s technique to support even more(and larger) models

on a GPU.

Genetic algorithm for computer systems Genetic algorithm has been used

to schedule tasks on parallel or distributed systems [117, 118, 43, 119, 120, 121].

SwapAdvisor borrows several ideas from the existing work, e.g., how to cross

over schedules. However, the setting of SwapAdvisor is different. The existing

work is designed for a multi-cores or multi-machines system where a task can be

scheduled on a different core or machine. On the other hand, all of the compu-

tation tasks in SwapAdvisor are executed on the same GPU. Consequently, only

the execution order matters for SwapAdvisor, resulting in a different crossover

and mutation.

Some research discuss applying genetic algorithm to allocate data objects in

a heterogeneous memory system [122, 123]. The work uses the genetic algorithm

to decide how to allocate data objects on different memory types (e.g., SRAM

85

CHAPTER 6. RELATED WORK

and DRAM). On the other hand, the memory allocation of SwapAdvisor also

decides how many memory pools before allocating memory objects for a pool.

86

Chapter 7

Conclusion

In this thesis, we demonstrated two systems to help program large-scale ma-

chine learning and deep learning programs. Both designs leverage the informa-

tion exposed by the application’s dataflow graphs to control how the program to

execute in order to improve the overall performance.

Spartan is a distributed array framework designed for traditional machine

learning applications with a smart tiling algorithm to partition distributed arrays

effectively. A set of carefully chosen high-level operators expose well-defined

communication cost and simplify the tiling process. User array code is captured

by the frontend and turned into an expression graph whose nodes correspond

to these high-level operators. With the expression graph, our smart tiling can

estimate the communication cost across expressions and find good tilings for all

the expressions.

SwapAdvisor is designed to enable DNN training and inference with limited

GPU memory size. SwapAdvisor achieves the good performance via optimiz-

87

CHAPTER 7. CONCLUSION

ing three dimensions of a program, scheduling, memory allocation, and swap

planning. To simultaneously optimize scheduling and memory allocation, Swa-

pAdvisor adopts the genetic algorithm to search a good combination. For a

given schedule and memory allocation, SwapAdvisor’s swap planner is able to

determine what and when tensors to swap to maximize the overlapping of the

computation and communication.

88

Appendix A

NP-Completeness Proof of Tiling

Optimizaion

This chapter proves that the general tiling optimization is an NP-Complete

problem.

Problem Definition: To simplify the proof, we first, consider only newarray,

map and swapaxis operators. The general case is discussed in the last part of

the proof. This problem contains several operators in a program and each one

can be the input of others. The first step is to build an expression graph for this

problem as shown in Section 2.3.3. Next is to convert the expression graph to

the tiling graph. We define a tiling graph as following:

1. A node group represents an operator and contains several partition nodes.

2. If an operator A is an input of an operator B in the expression graph, there

89

APPENDIX A. NP-COMPLETENESS PROOF OF TILING OPTIMIZAION

are some edges between node group A and group B in the tiling graph. How

node group A connects to node group B depends on the type of operator

B.

3. The cost of an edge A.tilingI → B.tilingK is the network transmission cost

to do operator B when A is tiled as tilingI and B is tiled as tilingK .

Figure A.1 shows three operators that will be used in the proof. There are

two kinds of tilings, row and column, for each operator. There is no input for

a newarray. As for map, there is at least one input array. The tiling nodes of

an input node group are fully connected to the tiling nodes of map. If two tiling

nodes represent the same tilings, there is no cost for the edge between them.

Otherwise, the cost is the size of the array, N . The last operator is swapaxis.

There is one input array for swapaxis and each tiling node of the input array

connects to the tiling node of swapaxis representing the swapped tiling. The

cost for both edges are zero.

The problem is to choose a unique tiling node for each node group without

conflict and achieve the minimum overall cost (summation of cost of all edges

adjacent to two chosen tiling nodes). Conflict means that if there are edges

between node group A and node group B, the chosen nodes must bear the same

relationship. For example, if the chosen tiling node for the input of swapaxis

means row tiling, the chosen tiling node for swapaxis can only be column tiling

to avoid conflict.

Instead of directly proving the problem, we prove the corresponding verify

problem which is to find out if there is a choice with the cost less than or equal

90

APPENDIX A. NP-COMPLETENESS PROOF OF TILING OPTIMIZAION

= ||

= ||

= ||

= ||

= ||

newarray

map

swapaxis

…..

Node Group

Input Node Group

N Cost Edge

Zero Cost Edge

Figure A.1: Three node groups and edge relationship with their input(s).

to K where K is an integer. We denote the verify problem as TILING(K).

NP Proof: To show that TILING is in NP, we need to prove that a given

choice can be verified in polynomial time. Suppose N is the number of node

groups. Given a solution, we can verify the solution by adding up the cost for

all edges connected to each chosen tiling node. There are at most N − 1 edges

connected to a tiling node and N chosen tiling nodes, we can get the total cost

in O(n2). Therefore, TILING(K) is in NP.

NP-Completeness Proof: To show TILING(K) is NP-Complete, we prove

that NAE− 3SAT (N) can be reduced to TILING(K). NAE− 3SAT is similar

to 3SAT except that each clause must have at least one true and one false.

Therefore, it rules out TTT and FFF while 3SAT only excludes FFF .

Assume that there are N literals and M clauses in the given question. M is

91

APPENDIX A. NP-COMPLETENESS PROOF OF TILING OPTIMIZAION

polynomial toN . We prove thatNAE−3SAT (N) can be reduced to TILING(K)

where K = M ∗ 2.

1. Construction Function, C(I) :

a) For C(I), True is viewed as row tiling and false is viewed as column

tiling.

b) Each literal in NAE− 3SAT is an array in TILING(K). A negation

literal is viewed as a swapaxis of the original array.

c) For each clause ci = (L1 ∨ L2 ∨ L3), C(I) creates six expressions:

E1 = map(swapaxis(L1, 0, 1), L2)

E2 = map(swapaxis(L1, 0, 1), L3)

E3 = map(swapaxis(L2, 0, 1), L1)

E4 = map(swapaxis(L2, 0, 1), L3)

E5 = map(swapaxis(L3, 0, 1), L1)

E6 = map(swapaxis(L3, 0, 1), L2)

For a negation literal, L, swapaxis(L) represent the original array.

92

APPENDIX A. NP-COMPLETENESS PROOF OF TILING OPTIMIZAION

For example, C(I) creates six expressions for cj = (¬L1 ∨ L2 ∨ L3):

E1 = map(L1, L2)

E2 = map(L1, L3)

E3 = map(swapaxis(L2, 0, 1), swapaxis(L1, 0, 1))

E4 = map(swapaxis(L2, 0, 1), L3)

E5 = map(swapaxis(L3, 0, 1), swapaxis(L1, 0, 1))

E6 = map(swapaxis(L3, 0, 1), L2)

For explanation purpose, we call the six expressions created by C(I)

a clause group.

d) After converting all clauses to clause groups, C(I) create a cost graph

according to the definition. Without loss of generality, we assume that

the array size is 1. Therefore, the cost for an edge is either 0 or 1.

For a clause group, if three literal have the same symbols, true or false,

the minimum cost is 6. For example, if three literals are all true or all

false for ci = (L1 ∨ L2 ∨ L3), the two inputs for each map of the clause

group must have different tilings because of swapaxis. Thus the cost for

map node group can only be 1. Since there are six maps for a clause group,

the minimum cost is 6.

For other cases, the minimum cost of a clause group is 2. For example, if

L1 is the only true for ci = (L1 ∨ L2 ∨ L3), only the input tilings of maps

for E4 and E6 are different. Since all maps are not referenced by other

93

APPENDIX A. NP-COMPLETENESS PROOF OF TILING OPTIMIZAION

operators, we can freely choose their tilings based only on the input tilings.

Thus the cost for this case is 2. Other combinations are just symmetries of

the above case and have the same cost.

The time complexity for C(I) is O(N2).

2. C(B) belongs to TILING(K) if B belongs to TILING(K) :

If S is a solution for B, every clause in S has at least one true and one

false. This implies that at least one row tiling input and column tiling

input for each clause group of C(S). Therefore, the cost for C(S) is M ∗ 2

which is equal to K.

3. B belongs to NAE − 3AT if C(B) belongs to TILING(K) :

If S is a solution for C(B), there are at least one row tiling and one column

tiling for each clause group. In other words, if one clause group has all row

tiling inputs or all column tiling inputs, the total cost for the tiling graph

will be at least 2 ∗ (M − 1) + 6 > K. As a result, no clause group has all

row tiling or column tiling input. Therefore, S is a solution for B.

Step 2 and step 3 prove that NAE − 3SAT can be reduced to TILING(K).

General Graph: The previous proof only considers the tiling graph with Array,

map and swapaxis. However, we argue that even though the tiling graph contains

more different operators, it is still an NP-Complete problem to find out the

solution. For any TILING(K) which contains only the three operators, we add

some other operators and expression which are independent from the original

ones. Thus the new tiling graph contains two sub tiling graphs, the original tiling

94

APPENDIX A. NP-COMPLETENESS PROOF OF TILING OPTIMIZAION

graph and the tiling graph representing the newly added operators. Moreover,

two sub tiling graphs are not connected. Thus, to solve new TILING(K ′) must

first solve the TILING(K) which is NP-Complete. Thus, we can also reduce

TILING(K) to the general graph.

95

Bibliography

[1] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT
Press, 2012.

[2] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553), 2015.

[3] Jeff Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. In Symposium on Operating System Design and Implemen-
tation (OSDI), 2004.

[4] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: cluster computing with working sets. In Proceedings
of the 2nd USENIX conference on Hot topics in cloud computing, 2010.

[5] Evan R. Sparks, Ameet Talwalkar, Virginia Smith, Jey Kottalama, Xing-
hao Pan, Joseph Gonzaleza, Michael Franklin, Michael Jordana, and
Tim Kraskab. MLI: An API for distributed machine learning. In
arXiv:1310.5426, 2013.

[6] Mahout: Scalable machine learning and data mining, 2012. http://mahout.
apache.org.

[7] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. Tensorflow: A system for large-scale machine learning. In

96

http://mahout.apache.org
http://mahout.apache.org

BIBLIOGRAPHY

12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), 2016.

[8] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff Work-
shop, 2017.

[9] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A
flexible and efficient machine learning library for heterogeneous distributed
systems. arXiv preprint arXiv:1512.01274, 2015.

[10] Apache hadoop. http://hadoop.apache.org.

[11] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file
system. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP), Bolton Landing, NY, 2003.

[12] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Proceedings of the 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), MSST’10,
Washington, DC, USA, 2010. IEEE Computer Society.

[13] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: Distributed data-parallel programs from sequential building blocks.
In European Conference on Computer Systems (EuroSys), 2007.

[14] Russell Power and Jinyang Li. Piccolo: Building fast, distributed programs
with partitioned tables. In Symposium on Operating System Design and
Implementation (OSDI), 2010.

[15] Christopher J Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and
Dennis Fetterly. Dandelion: a compiler and runtime for heterogeneous

97

http://hadoop.apache.org

BIBLIOGRAPHY

systems. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP), 2013.

[16] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martin Abadi. Naiad: a timely dataflow system. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles
(OSDI), 2013.

[17] Shivaram Venkataraman, Erik Bodzsar, Indrajit Roy, Alvin AuYoung, and
Robert S. Schreiber. Presto: distributed machine learning and graph pro-
cessing with sparse matrices. In Proceedings of the 8th ACM European
Conference on Computer Systems (Eurosys), 2013.

[18] Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen, Yuan Yu,
Thomas Moscibroda, and Zheng Zhang. MadLINQ: large-scale distributed
matrix computation for the cloud. In Proceedings of the 7th ACM European
Conference on Computer Systems (EuroSys), 2012.

[19] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level language. In
Symposium on Operating System Design and Implementation (OSDI), 2008.

[20] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable
parallel programming with cuda. Queue, 6(2), March 2008.

[21] NVIDIA. cudnn: Gpu accelerated deep learning.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[23] T Oliphant et al. NumPy, a Python library for numerical computations.

[24] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and
Stephen W Keckler. vdnn: Virtualized deep neural networks for scalable,

98

BIBLIOGRAPHY

memory-efficient neural network design. In The 49th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Press, 2016.

[25] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon
Song, Zenglin Xu, and Tim Kraska. Superneurons: Dynamic gpu memory
management for training deep neural networks. In Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’18, 2018.

[26] Tung D Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya. Tflms:
Large model support in tensorflow by graph rewriting. arXiv preprint
arXiv:1807.02037, 2018.

[27] Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang Gu. Training
deeper models by gpu memory optimization on tensorflow. In Machine
Learning Systems Workshop (LearningSys) in NIPS, 2017.

[28] PCI-SIG. Pci express base specification revision 5.0, 2019.

[29] NVIDIA. Nvidia nvlink high-speed interconnect, 2019.

[30] Yuan Yu, Martín Abadi, Paul Barham, Eugene Brevdo, Mike Burrows,
Andy Davis, Jeff Dean, Sanjay Ghemawat, Tim Harley, Peter Hawkins,
et al. Dynamic control flow in large-scale machine learning. In Proceedings
of the Thirteenth EuroSys Conference. ACM, 2018.

[31] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams,
Robert R. Henry, Robert Bradshaw, and Nathan Weizenbaum. Flume-
java: Easy, efficient data-parallel pipelines. In PLDI - ACM SIGPLAN
2010, 2010.

[32] Dataflow program graphs. IEEE Computer, 15, 1982.

[33] David E Hudak and Santosh G Abraham. Compiler techniques for data
partitioning of sequentially iterated parallel loops. In ACM SIGARCH
Computer Architecture News, volume 18. ACM, 1990.

99

BIBLIOGRAPHY

[34] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T. Krogh.
Basic linear algebra subprograms for fortran usage. ACM Transactions on
Mathematical Software (TOMS), 5(3), 1979.

[35] Edward Anderson, Zhaojun Bai, J Dongarra, A Greenbaum, A McKen-
ney, Jeremy Du Croz, S Hammerling, J Demmel, C Bischof, and Danny
Sorensen. LAPACK: A portable linear algebra library for high-performance
computers. In Proceedings of the 1990 ACM/IEEE conference on Supercom-
puting. IEEE Computer Society Press, 1990.

[36] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A
Alemi. Inception-v4, inception-resnet and the impact of residual connec-
tions on learning. In Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[37] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning
transferable architectures for scalable image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[38] Lawrence Davis. Handbook of genetic algorithms. 1991.

[39] David E Goldberg and John H Holland. Genetic algorithms and machine
learning. Machine learning, 3(2), 1988.

[40] John Henry Holland et al. Adaptation in natural and artificial systems:
an introductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[41] Kim-Fung Man, Kit Sang Tang, and Sam Kwong. Genetic algorithms: con-
cepts and designs. Springer Science & Business Media, 2001.

[42] Colin Reeves and Jonathan E Rowe. Genetic algorithms: principles and
perspectives: a guide to GA theory, volume 20. Springer Science & Business
Media, 2002.

100

BIBLIOGRAPHY

[43] Oliver Sinnen. Task scheduling for parallel systems, volume 60. John Wiley
& Sons, 2007.

[44] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Syst. J., 5(2), June 1966.

[45] Eric W. Weisstein. Bell number. From MathWorld–A Wolfram Web Re-
source.

[46] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv
preprint arXiv:1605.07146, 2016.

[47] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral Computation, 9(8), 1997.

[48] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing, 45(11), 1997.

[49] Kathleen Knobe, Joan D Lukas, and Guy L Steele Jr. Data optimization:
Allocation of arrays to reduce communication on simd machines. Journal
of Parallel and Distributed Computing, 8(2), 1990.

[50] Michael Philippsen. Automatic alignment of array data and processes to
reduce communication time on DMPPs, volume 30. ACM, 1995.

[51] Igor Z Milosavljevic and Marwan A Jabri. Automatic array alignment
in parallel matlab scripts. In Parallel Processing, 1999. 13th International
and 10th Symposium on Parallel and Distributed Processing, 1999. 1999
IPPS/SPDP. Proceedings. IEEE, 1999.

[52] J Ramanujam and P Sadayappan. Compile-time techniques for data distri-
bution in distributed memory machines. Parallel and Distributed Systems,
IEEE Transactions on, 2(4), 1991.

[53] Y-J Ju and H Dietz. Reduction of cache coherence overhead by compiler
data layout and loop transformation. In Languages and Compilers for Par-
allel Computing. Springer, 1992.

101

BIBLIOGRAPHY

[54] Qingda Lu, Christophe Alias, Uday Bondhugula, Thomas Henretty, Sri-
ram Krishnamoorthy, Jagannathan Ramanujam, Atanas Rountev, Pon-
nuswamy Sadayappan, Yongjian Chen, Haibo Lin, et al. Data layout
transformation for enhancing data locality on nuca chip multiprocessors.
In Parallel Architectures and Compilation Techniques, 2009. PACT’09. 18th
International Conference on. IEEE, 2009.

[55] Paul Anderson. Software engineering technology the use and limitations of
static-analysis tools to improve software quality, 2008.

[56] Michael Chu, Rajiv Ravindran, and Scott Mahlke. Data access partitioning
for fine-grain parallelism on multicore architectures. In Microarchitecture,
2007. MICRO 2007. 40th Annual IEEE/ACM International Symposium on.
IEEE, 2007.

[57] Eunjung Park, Christos Kartsaklis, Tomislav Janjusic, and John Cavazos.
Trace-driven memory access pattern recognition in computational kernels.
In Proceedings of the Second Workshop on Optimizing Stencil Computations.
ACM, 2014.

[58] Jiahua He, Allan E Snavely, Rob F Van der Wijngaart, and Michael A
Frumkin. Automatic recognition of performance idioms in scientific appli-
cations. In Parallel & Distributed Processing Symposium (IPDPS), 2011
IEEE International. IEEE, 2011.

[59] Christos Kartsaklis Oscar Hernandez. Open64-based regular stencil shape
recognition in hercules. 2013.

[60] Christoph W Kessler. Pattern-driven automatic parallelization. Scientific
Programming, 5(3), 1996.

[61] Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J Ra-
manujam, and P Sadayappan. Data layout transformation for stencil com-
putations on short-vector simd architectures. In Compiler Construction.
Springer, 2011.

102

BIBLIOGRAPHY

[62] J Ramanujam and P Sadayappan. A methodology for parallelizing pro-
grams for multicomputers and complex memory multiprocessors. In Pro-
ceedings of the 1989 ACM/IEEE conference on Supercomputing. ACM, 1989.

[63] David Bau, Induprakas Kodukula, Vladimir Kotlyar, Keshav Pingali, and
Paul Stodghill. Solving alignment using elementary linear algebra. In
Languages and Compilers for Parallel Computing. Springer, 1995.

[64] ERIKH D’HOLLANDER. Partitioning and labeling of index sets in do
loops with constant dependence vectors. In 1989 International Conference
on Parallel Processing, University Park, PA, 1989.

[65] Chua-Huang Huang and Ponnuswamy Sadayappan. Communication-free
hyperplane partitioning of nested loops. Journal of Parallel and Distributed
Computing, 19(2), 1993.

[66] Ken Kennedy and Ulrich Kremer. Automatic data layout for distributed-
memory machines. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 20(4), 1998.

[67] Ulrich Kremer. Np-completeness of dynamic remapping. In Proceedings
of the Fourth Workshop on Compilers for Parallel Computers, Delft, The
Netherlands, 1993.

[68] Jingke Li and Marina Chen. Index domain alignment: Minimizing cost of
cross-referencing between distributed arrays. In Frontiers of Massively Par-
allel Computation, 1990. Proceedings., 3rd Symposium on the. IEEE, 1990.

[69] Jingke Li and Marina Chen. The data alignment phase in compiling pro-
grams for distributed-memory machines. Journal of parallel and distributed
computing, 13(2), 1991.

[70] Calvin Lin and Lawrence Snyder. ZPL: An array sublanguage. In Languages
and Compilers for Parallel Computing. Springer, 1994.

103

BIBLIOGRAPHY

[71] J McGraw, S Skedzielewski, S Allan, Rob Oldehoeft, John Glauert,
C Kirkham, B Noyce, and R Thomas. SISAL: streams and iteration in
a single assignment language. Language Reference Manual. 1985.

[72] Guy E Blelloch. NESL: A nested data-parallel language.(version 3.1). Tech-
nical report, DTIC Document, 1995.

[73] Ron Choy, Alan Edelman, and Cleve Moler Of. Parallel matlab: Doing it
right. Proceedings of the IEEE, 93, 2005.

[74] J-L Gaudiot, Wim Bohm, Walid Najjar, Tom DeBoni, John Feo, and
Patrick Miller. The sisal model of functional programming and its imple-
mentation. In Parallel Algorithms/Architecture Synthesis, 1997. Proceedings.
Second Aizu International Symposium. IEEE, 1997.

[75] Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith,
Anil Madhavapeddy, and Steven Hand. Ciel: a universal execution engine
for distributed data-flow computing. NSDI, 2011.

[76] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph Hellerstein. Graphlab: A new parallel framework
for machine learning. In Conference on Uncertainty in Artificial Intelligence
(UAI), 2012.

[77] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for
large-scale graph processing. In SIGMOD ’10: Proceedings of the 2010
international conference on Management of data, New York, NY, USA, 2010.

[78] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Shark: Sql and rich analytics at scale. In SIGMOD,
2013.

[79] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Matt Tolton, and Theo Vassilakis. Dremel: Interactive anal-
ysis of web-scale datasets. In VLDB, 2010.

104

BIBLIOGRAPHY

[80] Joe B. Buck, Noah Watkins, Jeff LeFevre, Kleoni Ioannidou, Carlos
Maltzahn, Neoklis Polyzotis, and Scott Brandt. Scihadoop: array-based
query processing in hadoop. In Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis,
2011.

[81] Murray Stokely, Farzan Rohani, and Eric Tassone. Large-scale parallel
statistical forecasting computations in r. In JSM Proceedings, Section on
Physical and Engineering Sciences, Alexandria, VA, 2011.

[82] Sparkr: R frontend for spark. http://amplab-extras.github.io/SparkR-pkg.

[83] Julia language. http://julialang.org.

[84] Jaeyoung Choi, Jack J Dongarra, Roldan Pozo, and David WWalker. Scala-
pack: A scalable linear algebra library for distributed memory concurrent
computers. In Frontiers of Massively Parallel Computation, 1992., Fourth
Symposium on the. IEEE, 1992.

[85] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond,
and Nichols A. Romero. Elemental: A new framework for distributed
memory dense matrix computations. ACM Trans. Math. Softw., 39(2), feb
2013.

[86] Jaroslaw Nieplocha, Robert J Harrison, and Richard J Littlefield. Global
arrays: A nonuniform memory access programming model for high-
performance computers. The Journal of Supercomputing, 10(2), 1996.

[87] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Pe-
ter Brune, Kris Buschelman, Victor Eijkhout, William D. Gropp, Di-
nesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Karl Rupp,
Barry F. Smith, and Hong Zhang. PETSc users manual. Technical report,
Argonne National Laboratory, 2014.

105

http://amplab-extras.github.io/SparkR-pkg
http://julialang.org

BIBLIOGRAPHY

[88] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F.
Smith. Efficient management of parallelism in object oriented numerical
software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors,
Modern Software Tools in Scientific Computing. Birkhäuser Press, 1997.

[89] UPC Consortium. UPC language specifications, v1.2. Technical report,
Lawrence Berkeley National Lab, 2005.

[90] Robert W. Numrich and John Reid. Co-array fortran for parallel program-
ming. SIGPLAN Fortran Forum, 17, 1998.

[91] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Raz-
van Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley,
and Yoshua Bengio. Theano: a CPU and GPU math expression compiler.
In Proceedings of the Python for Scientific Computing Conference (SciPy),
2010.

[92] Michael Stonebraker, Paul Brown, Jacek Becla, and D Zhang. Scidb: A
new dbms for science and other applications with complex analytics. 2013.

[93] Peter Baumann, Andreas Dehmel, Paula Furtado, Roland Ritsch, and Nor-
bert Widmann. The multidimensional database system RasDaMan. In
ACM SIGMOD Record, volume 27. ACM, 1998.

[94] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In Interna-
tional Conference on Machine Learning, 2015.

[95] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, Na-
talie Enright Jerger, and Andreas Moshovos. Proteus: Exploiting numerical
precision variability in deep neural networks. In Proceedings of the 2016
International Conference on Supercomputing. ACM, 2016.

[96] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binarycon-
nect: Training deep neural networks with binary weights during propaga-
tions. In Advances in Neural Information Processing Systems, 2015.

106

BIBLIOGRAPHY

[97] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compress-
ing deep convolutional networks using vector quantization. arXiv preprint
arXiv:1412.6115, 2014.

[98] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. Eie: efficient inference engine on com-
pressed deep neural network. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2016.

[99] Song Han, Huizi Mao, and William J Dally. Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and huffman
coding. arXiv preprint arXiv:1510.00149, 2015.

[100] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights
and connections for efficient neural network. In Advances in Neural Infor-
mation Processing Systems, 2015.

[101] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. In Advances in Neural Informa-
tion Processing Systems, 2016.

[102] Lin Ning and Xipeng Shen. Deep reuse: streamline cnn inference on the
fly via coarse-grained computation reuse. In Proceedings of the ACM Inter-
national Conference on Supercomputing. ACM, 2019.

[103] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training
deep nets with sublinear memory cost. arXiv preprint arXiv:1604.06174,
2016.

[104] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex
Graves. Memory-efficient backpropagation through time. In Advances in
Neural Information Processing Systems, 2016.

[105] James Martens and Ilya Sutskever. Training deep and recurrent networks
with hessian-free optimization. In Neural Networks: Tricks of the Trade.
Springer, 2012.

107

BIBLIOGRAPHY

[106] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee,
Abhimanu Kumar, Jinliang Wei, Wei Dai, Gregory R Ganger, Phillip B
Gibbons, et al. Exploiting bounded staleness to speed up big data analytics.
In 2014 USENIX Annual Technical Conference (USENIX ATC 14), 2014.

[107] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling
distributed machine learning with the parameter server. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14),
2014.

[108] Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Henggang Cui, Gregory R
Ganger, Phillip B Gibbons, Garth A Gibson, and Eric P Xing. Managed
communication and consistency for fast data-parallel iterative analytics. In
Proceedings of the Sixth ACM Symposium on Cloud Computing. ACM, 2015.

[109] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large
scale distributed deep networks. In Advances in Neural Information Pro-
cessing Systems, 2012.

[110] Alex Krizhevsky. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997, 2014.

[111] Zhihao Jia, Sina Lin, Charles R Qi, and Alex Aiken. Exploring hidden
dimensions in parallelizing convolutional neural networks. In International
Conference on Machine Learning, 2018.

[112] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model par-
allelism for deep neural networks. arXiv preprint arXiv:1807.05358, 2018.

[113] Minjie Wang, Chien-chin Huang, and Jinyang Li. Supporting very large
models using automatic dataflow graph partitioning. In Proceedings of the
Fourteenth EuroSys Conference 2019. ACM, 2019.

108

BIBLIOGRAPHY

[114] NVIDIA. Nvidia tensorrt, 2018.

[115] NVIDIA. Cuda multi-process service, 2019.

[116] Peifeng Yu and Mosharaf Chowdhury. Salus: Fine-grained gpu sharing
primitives for deep learning applications. arXiv preprint arXiv:1902.04610,
2019.

[117] Edwin SH Hou, Nirwan Ansari, and Hong Ren. A genetic algorithm for
multiprocessor scheduling. IEEE Transactions on Parallel and Distributed
Systems, 5(2), 1994.

[118] Harmel Singh and Abdou Youssef. Mapping and scheduling heterogeneous
task graphs using genetic algorithms. In 5th IEEE Heterogeneous Computing
Workshop (HCW’96), 1996.

[119] Lee Wang, Howard Jay Siegel, Vwani P Roychowdhury, and Anthony A
Maciejewski. Task matching and scheduling in heterogeneous computing
environments using a genetic-algorithm-based approach. Journal of Parallel
and Distributed Computing, 47(1), 1997.

[120] Sung-Ho Woo, Sung-Bong Yang, Shin-Dug Kim, and Tack-Don Han. Task
scheduling in distributed computing systems with a genetic algorithm. In
Proceedings High Performance Computing on the Information Superhighway.
HPC Asia’97. IEEE, 1997.

[121] Annie S Wu, Han Yu, Shiyuan Jin, K-C Lin, and Guy Schiavone. An
incremental genetic algorithm approach to multiprocessor scheduling. IEEE
Transactions on Parallel and Distributed Systems, 15(9), 2004.

[122] Keke Gai, Meikang Qiu, and Hui Zhao. Cost-aware multimedia data alloca-
tion for heterogeneous memory using genetic algorithm in cloud computing.
IEEE Transactions on Cloud Computing, 2016.

[123] Meikang Qiu, Zhi Chen, Jianwei Niu, Ziliang Zong, Gang Quan, Xiao Qin,
and Laurence T Yang. Data allocation for hybrid memory with genetic

109

BIBLIOGRAPHY

algorithm. IEEE Transactions on Emerging Topics in Computing, 3(4),
2015.

110

	Dedication
	Abstract
	List of Figures
	List of Tables
	Introduction
	Evolution of Computation Frameworks for Machine Learning
	Challenges in Scaling Machine Learning
	Automatic Array Partitioning with Spartan
	Leveraging CPU Memory with SwapAdvisor for Large DNN Models
	Contributions

	Spartan Design
	Overview
	Automatic Tiling Overview
	What Affects Good Tiling?
	Our Approach and Spartan Overview

	Smart Tiling with High-level Operators
	High-level Operators
	Expression Graph Capture
	Graph-based Tiling Optimizer
	Additional Tiling Optimizations

	Implementation

	Spartan Evaluation
	Experimental Setup
	Tiling
	Scaling
	Comparison with Other Systems

	SwapAdvisor Design
	Background
	Challenges and Our Approach
	SwapAdvisor Design
	Operator Schedule and Memory Allocation
	Swap Planning

	Optimization via Genetic Algorithm
	Algorithm Overview
	Creating New Schedules
	Creating New Memory Allocation

	Implemetation

	SwapAdvisor Evaluation
	Experimental Setup
	Wider and Deeper DNN Models Training
	DNN Models Inference Evaluation
	The Effectiveness of SwapAdvisor's Design Choices

	Related Work
	Spartan's Related Work
	SwapAdvisor's Related Work

	Conclusion
	NP-Completeness Proof of Tiling Optimizaion
	Bibliography

