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Abstract

Medical informatics plays an important role in precision medicine, delivering the right

information to the right person, at the right time. With the introduction and widespread

adoption of electronic medical records, in the United States and world-wide, there is now a

tremendous amount of health data available for analysis.

Electronic record phenotyping refers to the task of determining, from an electronic medical

record entry, a concise descriptor of the patient, comprising of their medical history, current

problems, presentation, etc. In inferring such a phenotype descriptor from the record, a

computer, in a sense, “understands” the relevant parts of the record. These phenotypes can

then be used in downstream applications such as cohort selection for retrospective studies,

real-time clinical decision support, contextual displays, intelligent search, and precise alerting

mechanisms.

We are faced with three main challenges:

First, the unstructured and incomplete nature of the data recorded in the electronic

medical records requires special attention. Relevant information can be missing or written in

an obscure way that the computer does not understand.

Second, the scale of the data makes it important to develop efficient methods at all steps

of the machine learning pipeline, including data collection and labeling, model learning and

inference.

Third, large parts of medicine are well understood by health professionals. How do we

combine the expert knowledge of specialists with the statistical insights from the electronic

medical record?

Probabilistic graphical models such as Bayesian networks provide a useful abstraction for

vi



quantifying uncertainty and describing complex dependencies in data. Although significant

progress has been made over the last decade on approximate inference algorithms and

structure learning from complete data, learning models with incomplete data remains one

of machine learnings most challenging problems. How can we model the effects of latent

variables that are not directly observed?

The first part of the thesis presents two different structural conditions under which learning

with latent variables is computationally tractable. The first is the “anchored” condition,

where every latent variable has at least one child that is not shared by any other parent. The

second is the “singly-coupled” condition, where every latent variable is connected to at least

three children that satisfy conditional independence (possibly after transforming the data).

Variables that satisfy these conditions can be specified by an expert without requiring

that the entire structure or its parameters be specified, allowing for effective use of human

expertise and making room for statistical learning to do some of the heavy lifting. For both

the anchored and singly-coupled conditions, practical algorithms are presented.

The second part of the thesis describes real-life applications using the anchored condition

for electronic phenotyping. A human-in-the-loop learning system and a functioning emergency

informatics system for real-time extraction of important clinical variables are described and

evaluated.

The algorithms and discussion presented here were developed for the purpose of improving

healthcare, but are much more widely applicable, dealing with the very basic questions of

identifiability and learning models with latent variables - a problem that lies at the very

heart of the natural and social sciences.
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Chapter 1

Introduction

1.1 Building a “smart” EMR system

With the introduction and widespread adoption of electronic medical records (EMR),

in the United States and world-wide, there is now a tremendous amount of health data

available for both retrospective and real-time analysis. The challenge now is to make all of

this information useful, delivering the right information to the right person, at the right time.

Electronic medical records can serve as both a source of knowledge discovery, information

delivery, and action. Observational studies now routinely use information extracted from

EMR to define cohorts and measure outcomes (some review articles that document this trend

are Dean et al. (2009); Lau et al. (2011); Lin et al. (2013)) Information is delivered and acted

upon through EMR dashboards. Figure 1.1 shows the custom built emergency department

dashboard at Beth Israel Deaconess Medical Center in Boston, MA. Through this interface,

physicians enter and retrieve data about the patient, order labs and medications, and receive

alerts and notifications.

The “smart” electronic medical record (EMR) system for precision healthcare is not

simply a mechanism to store and retrieve information, rather it is an active participant in
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Figure 1.1: Electronic medical record viewer (dashboard) at Beth Israel Deaconess Medical
Center.

the patient’s care; understanding the patient’s condition and needs in order to facilitate

care. The EMR system does not seek to replace the physician, or even serve as a standalone

informatics consult service (for the drawbacks of this “Greek Oracle” paradigm, see Miller

and Masarie (1990)). Rather, it takes its inputs from the physician, and plays the role of

the helpful assistant, anticipating future needs. Even this assistant role requires a significant

understanding of the data entered into the medical records.

1.1.1 Potential applications

Some examples of tasks that we would expect a smart EMR to be able to help with are

listed here.

• Clinical decision support: Best-practice guidelines abound in medicine, based on an

increasing body of evidence-based-medicine. This body of literature is growing faster

than individual practitioners, even specialists, can keep track of (Glasziou and Haynes,
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2005; Berner and Moss, 2005). An EMR should be able to easily identify patients that

fit guideline classifications and point physicians to relevant documentation.

• Contextual displays: It should be easy to find tests and medications that are relevant

for a given patient. Standard dialog-based navigations can impose a significant cognitive

load and require periods of acclimatization. The contextual displays shown in Figure 1.2

are examples of panels that make it easy to access standardized order sets or document

chief complaints.

• Patient surveillance: The medical record system receives inputs from multiple care

providers and automated inputs from devices. As such, it is the best source to flag

conditions that could indicate danger to a patient. In addition, as the number of

monitoring devices increases, it becomes impossible to manually monitor them at all

times, especially in resources constrained settings such as emergency departments.

• Personalized alerting: The EMR system can pull from multiple data sources to build

alerting conditions that take the context of the patient into account (e.g., historical

baseline values, medications, and procedures). This broad view of the patient can be

used as input for more personalized alerts, potentially suppressing alerts for values that

would cause alerts in a standard patient but are “normal” for this patient (e.g., patients

with chronic hypotension routinely trigger false alarms due to their low blood pressure).

Conversely, it can alert for values that are within the population’s “normal” range, but

indicate a severe condition for this particular patient.

• Search and relevant history discovery: It can be difficult to wade through years

of patient records to find relevant history. In many cases, an in-depth exploration of

the patient’s medical history is simply not feasible for time-constrained physicians.

However, a document or procedure from years ago may significantly impact a physician’s
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Example	uses	of	our	algorithm	

Automa5cally	place	specialized	
order	sets	on	pa*ent	displays	

•  Context-specific	displays	of	
paIent	data	

Our task: 
Determine whether patient 
complained of chest pain, 
or is a psych patient


Figure 1: Screenshots of the system now running at BIDMC hospital on note : 69 y/o M patient
with severe intermittent RUQ pain. Began soon after eating bucket of ice cream and cupcake. Also
is a heavy drinker. Left: the system correctly proposes both ‘RUQ abdominal pain’ and ‘Allergic
reaction’ as possible chief complaints. Right: If the nurse does not see the label they want, they can
start typing and see a list of suggested auto-completes. Again, the four most likely labels describe
‘RUQ abdominal pain’ and ‘Allergic reaction’.

answer, based on the ranking of chief complaints output by the SVM. An example of the interface
is presented in Figure 1 (the patient name is anonymized).

Getting our system to be usable in a practical setting required two further improvements. First,
the initial system took about 5 seconds per note, far longer than the triage nurses’ patience. Using
Python’s shelve package to store the SVM weights as a persistent dictionary brought this time
down to about 200 ms. We also discovered that a small set of patients are taken in without a triage
note, but still need to be assigned a chief complaint. We added the absence of text as a feature for
the SVM, which allowed for a better ranking of chief complaints for the auto-complete interface.

4 Conclusion

In this work, we proposed a system to predict a patient’s chief complaints based on a description of
their state. Applied in a real-world setting, this provides us with a useful classification of patients
which can be used for other tasks, without slowing down the triage process.

While our algorithm already provides results that are good enough to be of use in practice, we hope
to add some new features in the future. One notable direction that would have benefits similar to
those of negation detection is time resolution, and it is an issue we are planning to address next.

Finally, recall that while we built the current system on noisily annotated data, where we had to
manually transform some of the labels, its use will create a much cleaner dataset, which we plan to
use in many downstream applications.

References
[1] D. Aronsky and P. J. Haug. Diagnosing community-acquired pneumonia with a bayesian net-

work. In Proceedings of the AMIA Symposium, page 632, 1998.

[2] W. W. Chapman, W. Bridewell, P. Hanbury, G. F. Cooper, and B. G. Buchanan. A simple
algorithm for identifying negated findings and diseases in discharge summaries. Journal of
biomedical informatics, 34(5):301–310, 2001.
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Figure 1.2: Example of a context-specific displays possible in a smart EMR. Left: an order
set appears for patients who the dashboard recognizes as having “chest pain”. Right: smart
autocomplete of chief complaints described implemented in the dashboard as described
in Jernite et al. (2013a).

understanding of a patient’s current presentation. The ability to easily browse a patient’s

record for relevant past events could significantly reduce missed or delayed diagnoses.

• Cohort selection for real-time or retrospective studies: We would like to be

able to query the medical record system with flexible cohort definitions in order to

facilitate quality assurance and observational studies. For example, Longhurst et al.

(2014) describes a system to allow physicians to run personalized observational studies

“on-the-fly” in order to make maximally informed decisions.

1.1.2 EMR Phenotyping – a useful building block

As a building block towards the smart applications described in the previous section, we

focus on a task known as electronic medical record (EMR) phenotyping. EMR phenotyping

is the task of determining, from an electronic medical record entry, a concise descriptor of
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the patient, comprising of their medical history, current problems, presentation, etc. In

this work, the EMR phenotype consists completely of the answers to yes/no questions (e.g.,

Does the patient have a stroke, Is the patient currently anticoagulated? Is the patient in

septic shock?). In inferring such a phenotype descriptor from the record, a computer, in a

sense, “understands” the medical record. These phenotypes can then be used in downstream

applications listed above.

Earlier work on electronic record phenotyping focused on manual specification of consensus-

based rules (e.g., Newton et al., 2013; Mo et al., 2015; Kho et al., 2011; Overby et al., 2013;

Conway et al., 2011). These methods suffer from issues of portability, due to different

coding and recording standards at different sites (Liu et al., 2012). Structured data such

as problem lists are often incomplete (Wright et al., 2012; Gandhi et al., 2011) and thus

by themselves not reliable for making important clinical decisions. While the development

and adoption of common data models, such as those used by OMOP (Stang et al., 2012)

or PCORnet (Fleurence et al., 2014), can contribute to developing portable rule-based

specifications, they are necessarily built for generalization, preferring to use structured data

elements, and avoiding the use of data elements that are not generally available across sites.

Figure 1.8 shows an example of a consensus-built phenotype definition for autism spectrum

disorders.

Manual rules are difficult to apply to free-text fields, since the number of different ways

of saying the same thing can potentially be very large (Friedman and Elhadad, 2014). While

some work has begun to incorporate the output of natural language processing algorithms as

part of phenotype definitions (Liao et al., 2015), this is not yet the standard approach. In

developing manual rules, we are also limited in the number of variables and cross-interactions

that can be considered at once.

Statistical learning methods from the machine learning community have the potential

to build much more robust, site-specific, and personalized phenotype algorithms that can
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simultaneously consider data elements from a patient’s entire electronic health record. Fig-

ure 1.3 shows an example of a learned phenotyping algorithm to find patients who have

come from a nursing home. These rules can learned on site-specific data, so that they can

understand new (or deprecated) data inputs that are not widely used; and be tailored to

particular demographics (the common conditions in an old age home differ from those in a

nursery, and from Alaska to Puerto Rico).

1.1.3 Difficulty of obtaining gold-standard labels

A difficulty that often arises in training statistical models is that they require labels of

cases and controls with respect to conditions of interest. This task usually often requires

manual labeling through chart review, which requires trained physicians and is extremely

labor intensive. Structured fields in the medical record, like diagnosis codes, or problem lists

are often incomplete or incorrect, and thus cannot be fully trusted (Birman-Deych et al.,

2005; Aronsky et al., 2005; Tieder et al., 2011; Cipparone et al., 2015; Wright et al., 2012;

Gandhi et al., 2011; O’malley et al., 2005).

1.2 Machine learning background

We now turn to some of the tools and concepts that will be useful throughout the thesis.

1.2.1 Probabilistic Graphical Models

Probabilistic graphical models (Koller and Friedman, 2009) such as Bayesian networks

provide a useful abstraction for quantifying uncertainty and describing complex dependencies

in data. They belong to both the world of probability (random variables, distributions, and

statistical complexity), and computer science (graph algorithms, computational complexity).
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Figure 1.3: Example of a phenotype extractor learned to identify patients from nursing homes
(source: Halpern et al. (2014)) The anchors are a small number of phrases manually specified
by a clinical collaborator. The rest of the classifier is learned from medical records. Each
word is associated with a weight. Highly indicative words are displayed.

In a Bayesian network, conditional independences between variables are encoded in a

directed graph. A distribution over variables P (X1, ..., Xn) can be described by a graph G

with nodes corresponding to each of the variables if the distribution factorizes according to

the structure of the graph:

P (X1, ..., Xn) =
∏

i

P (Xi|Pa(Xi;G)), (1.1)

where Pa(Xi;G) are the parents of Xi in the directed graph G. A distribution can then be

described by a graph structure G and a set of conditional probabilities P (Xi|Pa(Xi)). For

graphs with low in-degree or parametrized conditional probabilities, this representation can

be much more compact than the original joint distribution P (X1, ..., Xn). Figure 1.4 shows

some examples of Bayesian networks that have been used in healthcare settings.
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Figure 1.4: Bayesian networks developed for an ICU alarm system (left) and diagnosis liver
diseases (right). Sources: Koller and Friedman (2009); Onisko et al. (1999)

1.2.2 Factor analysis models

Factor analysis models (Bartholomew et al., 2011) attempt to explain all of the statistical

dependence between observations by introducing latent (i.e., unobserved) variables as common

causes. A factor analysis model can be described by a prior distribution of the latent variables,

and a function that describes the conditional distribution of the observations given the latent

variables. The most well-known factor analysis is the linear-Gaussian factor analysis model,

where the prior distribution of the latents is Gaussian and observations are linear combinations

of the latents plus independent Gaussian noise. A key aspect of factor analysis models is

that the observations are conditionally independent when conditioned on the values of the

latent factors. Thus, for a model with m observed variables {X1, ..., Xm} and n latent factors

{Y1, ..., Yn}, the observed distribution is described as:

P (X1, X2, ..., Xm) =
∑

y

P (y)
m∏

j=1

P (Xj|y). (1.2)

We now turn to describe a particular factor analysis model that is historically significant

in its role in artificial intelligence for medical diagnosis. It also highlights many interesting

aspects of latent variable models in general and is used as a running example throughout this

thesis.
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Figure 1.5: A simplified schematic of the QMR-DT network (Miller et al., 1986; Shwe et al.,
1991) structure for medical diagnosis. The full QMR-DT network models the relationships
between 570 diseases and 4075 symptoms.

1.2.3 Bipartite noisy-or Bayesian networks

The QMR-DT network (Miller et al., 1986; Shwe et al., 1991) (Figure 1.5) is a Bayesian

network describing binary random variables corresponding to diseases and findings. The

diseases are considered to be unobserved variables, and findings can either be “present” or

“absent” (“unknown” findings can also be handled within this framework by treating them as

unobserved as well). The model is bipartite, with edges going from diseases to symptoms.

An edge is present from a disease Yi to a symptom Xj if the disease can cause that symptom,

and the conditional distribution of each symptom is modeled by a noisy-or gate:

P (Xj = 0|Y = {y1, ..., yn}) = (1− lj)
n∏

i=1

f yii,j. (1.3)

For computational efficiency of inference, P (Y ) is also generally assumed to be a factorized

distribution of Bernoulli random variables:

P (Y ) =
n∏

i=1

πyii (1− πi)1−yi . (1.4)

Chapter 6 explores other options beyond this fully-factorized setting.

The full joint distribution is then a product of the conditional distributions of the
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symptoms:

P (X, Y ) = P (Y )
m∏

j=1

P (Xj|Y ). (1.5)

Inference in the model corresponds to determining, from the observed symptoms, the

most likely diseases that the patient has.

The generative model of the noisy-or can be described as follows:

First, the parents Y1, ..., Yn, turn on following some distribution (independent Bernoulli

or otherwise). Then, every parent Yi which has a value 1, attempts to “turn on” each of its

children, Xj and fails with a failure probability fi,j which is a parameter for every edge in

the graphical model. Finally, an extra noise process attempts to “turn on” each variable Xj

and fails with probability 1− lj . We then observe Xj as “off” if all of the attempts to turn it

on fail, otherwise it is seen to be on.

Noisy-or networks make the following simplifying assumptions:

• Only the presence of a disease has the ability to make a symptom appear, not its

absence.

• The failure of a symptom to manifest depends only on the presence or absence of

diseases. Symptoms do not cause, or inhibit each other.

• Diseases and symptoms are binary. No notion of severity is captured in these models

(though extensions do exist).

The QMR-DT network and its parameters were elicited from experts and was estimated

to take approximately 20 person-years of researcher time to build the entire network. The

ability to learn the network and its parameters from data would be very useful to ever build

something of a similar magnitude or larger.

Diseases in the QMR-DT network are latent variables. They are never observed directly,

only inferred based on constellations of symptoms.
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1.2.4 Worst-case computational complexity and hardness

The most common way of fitting a model to data is to seek the model that maximizes

the probability of the observed data under the model, called maximum likelihood estimation

(MLE). However, for many interesting models with latent variables, learning and inference

can be shown to be computationally intractable in the worst case. For example, topic

modeling with Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is NP-hard for both

maximum likelihood estimation of its parameters (i.e., learning) (Arora et al., 2012b) and

inference (Sontag and Roy, 2011). Mixtures of Gaussians and Hidden Markov models are

both NP-hard to learn (though inference in both models is tractable). The medical diagnosis

task, which corresponds to inferring the likely diseases for a patient after observing only their

symptoms, is #P-hard (Cooper, 1987) in noisy-or networks like QMR-DT, and maximum

likelihood estimation of parameters in these models is conjectured to be NP-hard as well.

The difficulty comes from the fact that even evaluating the likelihood objective requires

marginalizing over the unknown variables (Equation 1.6 shows this marginalization procedure

for binary latent variables). In the QMR-DT network, this would consist of summing over all

possible states of a binary vector of length 470 (i.e., 2470 possible combinations).

logP (X) = log
∑

y∈{0,1}n
P (X, y). (1.6)

In addition, for the noisy or Bayesian networks described in Section 1.2.3 (and many

other latent variable models as well), the likelihood objective is not concave in its parameters,

making it difficult to optimize with local search methods, even if the objective could be

computed tractably.
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1.2.5 Method of moments learning and identifiability

An alternative method to maximum likelihood learning, called the method of moments,

seeks to find a model that best matches certain low-order moments of the data distribution.

Figure 1.6 shows a schematic of this process, mapping from low order moments to parameters.

The original application of the method dates back to Pearson’s study of Naples crabs (Pearson,

1894) in which he computed the roots of a sixth order polynomial to fit a mixture of two

Gaussians.

While less asymptotically statistically efficient than Fisher’s maximum likelihood esti-

mation technique (Fisher, 1922), the method of moments can yield more computationally

efficient learning algorithms. This computational efficiency comes from a number of fac-

tors. First, unlike many popular likelihood-based methods like Expectation Maximization

(EM) (Dempster et al., 1977), or variational EM (Neal and Hinton, 1998), these methods

avoid costly inference subroutines. They also tend to be highly parallelizable and only read

through the data once to collect sufficient statistics, making them attractive for streaming

or large data. With the availability of large data sets, the option to build computationally

efficient tools at the expense of statistical efficiency is attractive.

Using method-of-moments to recover the original parameters of the data generating distri-

bution presupposes some notion of identifiability (Figure 1.7). That is, that the parameters

of the distribution are recoverable from moments of the distribution. Proving identifiability,

and constructing mappings between moments and the parameters of a generating distribution

for latent variable models has only been accomplished for a few distinct families of mod-

els (Allman et al., 2009; Anandkumar et al., 2013c). The method of moments algorithms

presented in the thesis (Chapters 2,4,6,7) build explicit mappings between low order moments

and parameters of the model to show identifiability, and turn these explicit constructions

into useable learning algorithms. The use of low-order moments is intentional to maintain
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Assignments to model 
parameters Low order moments

Inferring model 
parameters

Induces a distribution

setting prob
fever=0 0.37

high A1C=0 0.21
fatigue=0 0.55
fever=0 &	
fatigue=0

0.18

… …

parameter value
P(flu) 0.15

P(asthma) 0.05
P(diabetes) 0.35

fail:	(flu ->	fever) 0.12
… …

flu asthma diabetes

fever high
A1C

fatigue

Figure 1.6: The method of moments attempts to invert the mapping between moments of
the distributions (e.g., probability of simultaneous negative results) and the parameters of
the model (e.g., a noisy-or parametrization with priors, failures, and leak as described in
Section 1.2.3).

both computational efficiency, since high order moments are computationally expensive to

compute, and statistical efficiency, since estimating higher order moments accurately requires

more data.

1.3 Themes

A number of themes recur throughout the thesis. To avoid excessive repetition, we present

a general discussion of them here and point back to them where relevant.
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Assignments to model 
parameters

Low order moments

O
O
O

O
Identifiable

Non-identifiable

Figure 1.7: Identifiable parameters (X) map to a unique setting of the low orders. Parameters
may be non-identifiable (O) if multiple parameter settings lead to the same low order moments.

1.3.1 Learning from data and expert input

Even the earliest computerized decision support systems recognized the value in learning

from data (Leaper et al., 1972). With the new-found availability of large collections of

electronic medical records, the possibility of learning directly from data is extremely appealing.

However, the data can be modeled in many different ways and expert input is often required

to guide the models to learn the “right” thing. Alternatively, input from an expert can

significantly reduce the complexity of the learning task, requiring fewer samples or less

compute time to learn.

Bayesian networks make a clean distinction between the structure of a network, which

is often specified through domain knowledge, and the parameters of a network, which are

often learned from data. However, when modeling arbitrary features from a medical record

(e.g., unigrams and bigrams from text), it is often very difficult for an expert to specify the

complete structure of the Bayesian network by hand, and structure learning is useful.

Manual labeling of instances (i.e., supervised learning) is also a way for experts to provide

guidance to a learning algorithm, but obtaining these labels can be expensive, and an
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Figure 1.8: An example of a manually specified phenotyping algorithm for autism spectrum
disorders. Source: Lingren (2013)

inefficient use of expert’s time.

1.3.2 Features that make learning tractable

Many of the formal results on computational intractability of maximum likelihood rely on

constructions with some amount of worst-case data. When data is known to be drawn from

distributions that have certain features that make learning easy, the solutions to method-

of-moments algorithms can be shown to coincide with the output of maximum likelihood

estimation (both are consistent estimators), providing a computationally tractable solution.

Two examples of these features that are described in this thesis are anchors and singly-coupled

quartets. By assuming the presence of a structural condition linking one or more observations

to each latent variable, it becomes possible to identify the effect of the latent variable, which

effectively unlocks the parameters of the entire distribution. Interestingly, this effect seems

to only occur when viewing aggregate statistics as in the method-of-moments algorithms.

Incremental likelihood optimizations such as EM do not have an obvious way to exploit these

distributional assumptions, and can still get stuck in local optima even when the underlying
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distribution satisfies these assumptions.

1.3.3 Robustness to model misspecification

With real data, it is rarely true that the true data distribution lies in a parametrized

model family. Ideally, under model-misspecification, we would like that the learned model

still represents the data as best as possible. With maximum likelihood estimation, the learned

model is a projection of the true distribution onto the model family using KL-divergence as a

measure of difference. With method-of-moments, the robustness to model-misspecification can

depend heavily on the particular algorithm. Constrained optimization or projection techniques

have been used to at least ensure that the learned model has feasible parameters (Shaban

et al., 2015; Cohen et al., 2013; Duchi et al., 2008; Knol and ten Berge, 1989).

1.3.4 Assessing utility of a phenotyping system

In this section, we elaborate on some possible use cases of an EMR phenotyping system

to allow for a grounded discussion of the performance characteristics of the learned classifiers,

and to motivate the evaluation frameworks of later chapters. A full assessment of utility

would require a clinical trial with the phenotype estimates driving some health IT application

and the ultimate goal being improved outcomes for patients. In this work, as a first step, we

evaluate the phenotype estimates themselves for potential use cases described below. Other

potential use cases and metrics that are not directly relevant to the evaluations in this thesis

are found in Appendix A.1.

Each of the settings below can be implemented in both real-time or retrospective analyses.

The main difference between these two frameworks is the amount of information that is

available to make decisions.
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1.3.4.1 Closed loop systems: Extremely high PPV

The use case with the highest bar for operating characteristics are uses where the computer

is given the power to take implement an intervention (e.g., change dosing or machine settings)

based on information in the EMR. This type of control requires the most trust in the computer

system’s understanding of the situation. In many situations, the computer’s action could

have negative consequences and thus a high positive predictive value (PPV) is required to

have confidence that the computer’s actions are justified under the circumstances. This type

of use-case is very rare in healthcare today. Closed loop ventilators (Clavieras et al., 2013;

Arnal et al., 2012) and drug-delivery systems (Janda et al., 2011; Hemmerling and Charabti,

2009) are currently undergoing clinical trials, but have not achieved widespread adoption.

1.3.4.2 Interruptive alert triggering: High PPV

One use of phenotype variables is to interrupt physician’s regular work to encourage them

to pay attention to a particular detail or fact. These alerts are useful is there is potentially an

important piece of information that if overlooked could lead to bad outcomes. Examples of

these warnings currently implemented in many hospitals include warnings for shock, allergies,

or drug interactions. These alerts are widely recognized as important, and there is a real need

to implement them effectively, however, they are often plagued with implementation issues

such as alert fatigue, a well-documented phenomenon that alerts with low positive-predictive

value tend to be ignored over time. This phenomenon is particularly present in intensive

care units (ICUs), emergency departments (ED), and surgical settings, since the number of

potential life-threatening conditions are high, and alarms (both true and false) are prevalent.

Alert fatigue is directly related to the positive predictive value (PPV) of a classifier, and

thus the PPV of a proposed classifier is an important quantity to be assessed. Classifiers for

use in interruptive alert triggering can be compared along the axis of recall at high precision,
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setting thresholds so that precision is fixed at 0.75 or 0.9 and asking how many positive cases

can be detected by the classifier.

1.3.4.3 Contextual displays: Moderate PPV or top K suggestions

A second type of alert, that is less interruptive than the alerts described above, is a

conditional display, or passive alert. These alerts appear on a physician screen, sometimes

as highlighting or under sidebars with headings such as “reminders” or “suggested links”.

They can be use to encourage enrollment of patients in relevant clinical pathways, which

have been shown to reduce variations in care and improve outcomes by promoting best

practices (Panella et al., 2003); provide helpful information at the point of care, such as

suggested treatments or dosing for particular conditions; or simply reduce the number of

clicks required to pull up a relevant screen.

Contextual displays incur less risk of alert fatigue, since they do not interrupt the

physician’s work-flow, but they still run the risk of being ignored if they do not meet a

requisite threshold of containing some amount of useful information near the top of the list

(usually sized to contain 3-5 items). Including a “snippet” or other representation of why the

reminder triggered along the reminder, allows the physician to quickly evaluate whether the

display is relevant or not, and quickly act to accept or reject the suggestion.

1.3.4.4 Comparing between methodologies: Area under the ROC or PR curve

Area under the receiver operator characteristic curve (AUC) or precision-recall curve give

a holistic view of a classifier operating over a wide range of characteristics. This can be useful

when comparing between two methodologies to show the advantage of one over the other,

without reference to any particular set of operating characteristics. In settings with high

class imbalance, high values for AUC may not indicate clinical utility, and area under the

precision-recall curve can be more informative (Saito and Rehmsmeier, 2015).
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1.4 Outline and Contributions

Chapters 2 and 3 address the problem of learning models for electronic medical record

phenotyping without gold standard labels (on the difficulty of obtaining gold-standard labels,

see Section 1.1.3).

Chapter 2 presents the Anchor and Learn framework to learn discriminative classifiers to

classify patients as having or not having a particular phenotype, without requiring extensive

manual labeling of cases and controls. We demonstrate the feasibility of this approach by

building 42 publicly available clinical phenotypes, and training each one on a dataset of

200,000 emergency department records. The methodology is validated on 8 clinical state

variables in an emergency department setting, comparing the phenotype extractors learned

with anchors against prospectively gathered gold-standard labels. We demonstrate that

the classifiers perform compare favorably with models learned with fully supervised data or

manual rules. All but one of the learned classifiers are sufficiently reliable for some form of

clinical use.

Chapter 3 presents a likelihood-based approach using anchors to learn factor-analysis

models of phenotypes and general features extracted from the EMR. The likelihood objective

has the advantage of being robust to model misspecification as discussed in Section 1.3.3.

These models can be used to infer the values of unknown phenotypes and determine the most

likely phenotype to explain a set of features. We describe the ungrounded latent variable

problem which occurs when learning with anchors instead of true labels and describe a

semi-supervised objective which is effective at mitigating the problem. We experimentally

validate the learned algorithms against relevant baselines including the independent classifiers

described in Chapter 2 on a clinically relevant inference task and show that a joint model

performs best at ranking most-likely applicable phenotypes, performing nearly as well as

oracle models learned with true labels.
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Chapters 4 and 5 address theoretical problems related to EMR phenotyping which is the

polynomial time learnability of noisy-or factor analysis models used in Chapter 3.

Chapter 4 gives a set of sufficient structural conditions for polynomial learnability based

on singly-coupled tuples and develop a provably correct polynomial-time method-of-moments

algorithm based on these sufficient conditions. We show empirically that the sufficient

conditions for learnability almost hold in the case of the QMR-DT network structure, meaning

that the vast majority of its parameters can be estimated consistently, leaving a small number

of parameters unknown. Compared to variational EM, the method-of-moments algorithm is

both faster for large datasets, and provides consistent parameter estimates in settings where

variational EM does not. We show experimentally that stochastic variational inference (the

method introduced in Chapter 3) is also effective and fast for parameter recovery.

Chapter 5 shows polynomial time learnability for the anchored setting, and develops a

different polynomial time method of moments algorithm for anchored factor analysis. In

the anchored setting, we can relax the assumption of factor independence that appears in

all of the previous chapters, learning models where the distribution of the factors is a tree

structured Bayesian network in polynomial time. Models where the distribution of the factors

is a general Bayesian network can also be recovered, but not provably efficiently.

Chapter 6 assesses the feasibility of using EMR data to learn causal models of diseases

and symptoms as the basis for a knowledge base.

Chapter 7 shows the potential of the concepts described in the previous chapters to apply

broadly in data science, using the anchor assumption to learn topic models. It presents a

provable method of moments algorithm that is also practical to run on real datasets, learning

models that compete with state of the art approximate likelihood approaches and run in a

fraction of the time.

Chapter 8 outlines broad possible directions for future research.
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Chapter 2

Phenotype classifiers learned with

anchors

Acknowledgments This work was joint with Youngduck Choi, Abdul Tlimat, Steve

Horng, and David Sontag. Parts of the work were previously published in: “Using Anchors

to Estimate Clinical State without Labeled Data”. Halpern, Choi, Horng and Sontag. AMIA

2014 and “Electronic medical record phenotyping using the anchor and learn framework”

Halpern, Hong, Choi and Sontag. JAMIA 2016.

2.1 Introduction

Electronic medical record phenotyping is the task of extracting simple facts about a patient

from their electronic medical record, which are suitable to use as input for downstream health-

IT applications (see Section 1.1.2 for a more complete introduction to EMR phenotyping).

These facts serve as a knowledge representation of the individual patient (Figure 2.1), distilling

the entire patient narrative into a form suitable as input for clinical decision support, bringing

personalized evidence-based risk assessments and treatment recommendations to the bedside.
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Figure 2.1: A schematic flow of how diverse clinical observations, both structured and
unstructured, can be distilled into relevant clinical state variables (phenotypes), and used for
applications.

The scalability of all parts of this procedure is of utmost importance. Existing approaches

tend to use manual rule-specification or supervised machine learning techniques. Unfortu-

nately, neither of these approaches scale to a large number of phenotypes nor to large numbers

of institutions.

Manually specified rules can be difficult to build based on consensus of expert physicians

for a number of reasons. First, actionable data in EMRs is often found in unstructured

free-text notes, for which it can be difficult to specify manual rules, due to the natural

variability in free-text.

For supervised machine learning, manual chart review remains the standard approach to

derive gold-standard labels for training, but it is not feasible at scale. Hundreds to thousands

of phenotypes are relevant for implementing existing guidelines and we expect that number

to grow in the future. Data collection differs from hospital-to-hospital, and it is expensive to

label enough instances to train fully supervised classifiers for new site.

Intuition tells us that a perfect labeling is probably not necessary to learn a reasonable

classifier and a scalable method of labeling could be achieved if we were satisfied with imperfect

labels. However, it does not tell us how to design a noisy labeling system to minimize the

impact on the learned classifier. Agarwal et al. (2014) analyze the phenotype problem under
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a noisy-label framework where label-flipping has a fixed probability. However, they assume

from the start that the framework holds, and give no practical guidelines on how to build a

noisy-labeling that satisfies these properties.

In this work, we analyze a different setting, which we believe is easier to achieve. We

propose learning with “anchors”, a semi-supervised method, where experts specify, for each

phenotype variable, at least one observable variable that is uniquely linked to it (more details

in Section 2.2), that can act as an anchor (a type of partially reliable label).

2.1.1 Contributions

This chapter contains the following contributions:

• We formally define the noisy-labeling scheme based on anchors, and link it with previous

results from machine learning on learning with noisy-labels.

• We demonstrate the feasibility of this approach by building 42 clinical phenotypes,

and training each one on a dataset of 200,000 emergency department records. The

42 phenotype definitions are publicly available, allowing others institutions to use

them to train on their own datasets. We also encourage others to reproduce our

anchor-specification pipeline and contribute phenotype definitions which are useful

at their institutions back to the broader community. The larger goal is to build a

publicly available phenotype library, upon which clinical decision support and research

applications can be built.

• The methodology is validated on 8 clinical state variables in an emergency department

setting, comparing the phenotype extractors learned with anchors against prospectively

gathered gold-standard labels. We demonstrate that the classifiers compare favorably

with models learned with fully supervised data or manual rules. All but one of the

learned classifiers are sufficiently reliable for some form of clinical use.
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• The classifiers are described qualitatively to show face validity and we describe the

data that was most useful to us in obtaining the recorded performance at our site.

2.1.2 Related work

Phenotypes based on data in the electronic medical record have been used to identify

adverse drug events (Liu et al., 2013), perform genome-wide association studies (Kullo et al.,

2010; Crosslin et al., 2012; Denny et al., 2010; Kullo et al., 2011; Denny et al., 2011; Kho et al.,

2012), and for other large-scale health research initiatives (Jensen et al., 2012; Wilke et al.,

2011; Richesson et al., 2013, 2014; Shivade et al., 2014). While there has been considerable

success in sharing community-built phenotypes for research purposes, (e.g., the PheKB

knowledge base (Newton et al., 2013)) there has been less work on building phenotypes for

activating clinical decision support in real-time. Phenotypes intended for retrospective studies

often rely heavily on ICD9 and CPT codes, which would typically not be available in time to

be useful for clinical decision support. Recent work also includes input from free text either

in the form of simple queries (Conway et al., 2011), or using more advanced natural language

processing (Liao et al., 2015).

Phenotypes in PheKB are developed manually through a rigorous process, requiring

multiple iterations and eventual physician consensus. The final definitions achieve high

concordance with clinical gold standards, but they are time consuming to build, requiring

many hours of expert time (Newton et al., 2013). In contrast to the manually derived rules

for electronic phenotyping, statistical methods, drawing on established machine learning

techniques, have been used to estimate phenotypes based on inputs from the EMR. Previous

work has shown success in predicting individual phenotype variables from raw data (e.g.

smoking status (Liu et al., 2012; McCormick et al., 2008), rheumatoid arthritis (Carroll

et al., 2011), colorectal cancer (Xu et al., 2011)), but the methodology for developing these
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predictors invariably uses manually labeled cases and controls derived from chart review. As

such, these efforts are limited in scope, focusing on one or two phenotype variables at a time.

In addition, the learned classifiers are institution-specific and often do not generalize well

without modifications (Liu et al., 2012) or local retraining (Liu et al., 2012).

Methodologically, the closest system to our current work uses Silver standard training

sets (Agarwal et al., 2014, 2016), with partially reliable labels, within a machine learning

pipeline which learns to estimate phenotype variables. While our phenotype specification

framework and training methodology in this chapter is similar, our phenotype library and

evaluation focus on phenotypes relevant for real-time clinical decision support, as opposed to

retrospective comparative effectiveness studies.

2.2 Anchor and Learn Framework

We use Y to denote the true phenotype variable, or label, X to denote features, and A to

denote the anchor feature. X̃ denotes all of the features except the anchor. We use uppercase

to denote the name of the random variable (e.g., P (X)), and lowercase to denote the value

of the variable (e.g., P (Y = 1|X = x;w, b) = σ(w · x+ b)).

2.2.1 Choosing phenotypes

Before choosing anchors, the first task is to choose which phenotypes (also called “tags”)

are going to be modeled. In the medical setting, these could be a set of medical conditions

which we want to be able to detect in real time (e.g., fall risk, nursing home, insulin-dependent

diabetes), or it a particular cohort to be studied retrospectively (e.g., patients with drug

induced liver injury). More broadly, this approach could be applied to non-healthcare

settings as well. For example, it has been applied to questions on the Stack Overflow site,

a collaboratively edited question-answer site for computer programmers. The “phenotypes”
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were user-provided tags such as arrays or c++, and the features were drawn from the text

of the questions (See Section 6.5). It has also been applied to restaurant reviews where the

phenotypes are descriptors such of the cuisine, decor, price range, etc. A phenotype can be

any descriptive question that can be phrased as a binary classification task that we would

expect to be able to answer from the data.

2.2.2 Feature extraction

We start with a high dimension feature vector corresponding to each patient instance.

A patient instance can represent a single visit, or multiple visits collapsed over a length of

time. In this example, we will consider a simple high-dimensional binary bag-of-words scheme

where each feature can either be “present” or “absent”.

Continuous features such as lab test values may have a non-linear relationship with the

phenotype variables. Anchors can also be used to learn the optimal bin boundaries to convert

continuous variables to binary indicators. We follow the optimal binning procedure of Fayyad

and Irani (1993) using a decision tree to predict the presence or absence of the anchor

from a single continuous variable. The leaves of the decision tree are then used to bin the

continuous value into binary indicators. This leads to a different set of bin boundaries for each

phenotype prediction problem, as the boundaries are learned specifically to be meaningful for

the individual extraction task.

2.2.3 Choosing anchors

The task of choosing anchors is where the practitioner encodes their knowledge of the

problem. In general, anchors cannot be specified automatically, and require input from

domain experts. In Section 2.2.8, we describe a scheme for generating suggestions for anchors,

after a single anchor has been specified. But these are only suggestions, based on a simple
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heuristic. A domain expert must evaluate whether on not the suggested anchor makes sense.

Some examples of the phenotypes and anchors chosen by a clinical collaborator for use in

Beth Israel Deaconess Medical Center’s emergency department are shown in Table 2.1.

2.2.3.1 Anchor definition

For each phenotype, we then choose one or more anchors to act as surrogate labels.

Anchors are simply features that satisfy the two anchor conditions:

• High Positive Predictive Value: If the anchor is present, that should be highly

indicative that the phenotype is positive. Formally: P (Y = 1|A = 1) ≈ 1 or P (A =

1|Y = 0) ≈ 0.

• Conditional independence: The anchor should only depend on the true phenotype.

Conditioned on knowing the true phenotype, the presence or absence of the anchor

should be a random variable, independent of all other features. Formally: A ⊥ X̃|Y or

P (A|Y, X̃) = P (A|Y ).

The conditional independence condition is the condition that unlikely to hold perfectly

on real data, and does not have a clear test. Even so, in section 2.2.7, we will describe some

checks and heuristics for making sure an anchor is good.

2.2.3.2 More than one anchor

More than one anchor can be specified per condition. The simplest way of handling

multiple anchors is to combine them with an OR operator (i.e., create a new feature called

combined-anchor, which is on if any of the anchors are present). More generally, features

can be combined with any set of logical operations (e.g., AND, OR, NOT) to create a final

anchor. Another method is to learn multiple classifiers, one for each anchor, and then to

combine their results through voting.
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	 Phenotype	 Data	
Source	 Anchors	

Anticoagulated	
(history)	

	

	 790.92	ABNORMAL	COAGULATION	PROFILE	
	 E934.2	ADV	EFF	ANTICOAGULANTS	

	 V58.61	LONG	TERM	USE	ANTIGOAGULANT	
	 Anticoagulants	–	Coumarin	
	 Thrombin	Inhibitor	-	Selective	Direct	&	Reversible	
	 Factor	IX	Preparations	
	 ffp	

Diabetes	(history)	
	 250:DIABETES	MELLITUS	
	 Diabetic	Therapy	

Liver	(history)	

	 571	CHRONIC	LIVER	DISEASE	AND	CIRRHOSIS	
	 572.2	HEPATIC	ENCEPHALOPATHY	
	 cirrhosis	
	 esld	
	 hcv	
	 hep	c	

Allergic	reaction	
(acute)	

	 995.3	-	ALLERGY,	UNSPECIFIED	
	 allergic	reaction	
	 allergic	rxn	

Cholecystitis	
(acute)	

	 574	CHOLELITHIASIS	
	 575.0	ACUTE	CHOLECYSTITIS	

Deep	vein	
thrombosis	
(acute)	

	 453.40	ACUTE	VENOUS	EMBOLISM	AND	THROMBOSIS	OF	
UNSPECIFIED	DEEP	VESSELS	OF	LOWER	EXTREMITY	

	 453.41	ACUTE	VENOUS	EMBOLISM	AND	THROMBOSIS	OF	DEEP	
VESSELS	OF	PROXIMAL	LOWER	EXTREMITY	

Employee	
exposure	(acute)	

	 employee	exposure	
	 needlestick	
	 E920.5	HYPODERMIC	NEEDLE	

Epistaxis	(acute)	 	 784.7	EPISTAXIS	

Laceration	(acute)	 	 lac	
	 laceration	

Suicidal	ideation	
(acute)	

	

	 V62.84	SUICIDAL	IDEATION	
	 si	
	 suicidal	ideation	

Legend:			
	
	
	
	
	

	 Medication	
dispensing	
record	

	 Medication	
history	

	 ICD9	codes	 	 Medical	Text	

Table 2.1: A selection of the 42 phenotypes built as part of this ongoing project. Each
phenotype is defined by its anchors, which can be specified as ICD9 codes, medications
(history or dispensed), or free text. When a large number of anchors are specified, only a
selection are shown. For display, medications are grouped by extended therapeutic class
(ETC).
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If the two anchors are conditionally independent, that also implies the presence of a

singly-coupled triplet that can be used to learn the noise rates of the anchors or other parts

of the model (see Chapter 4). This is the setting described in Steinhardt and Liang (2016)

for estimating the performance of the learned classifier as well. However, in practice, multiple

conditionally independent anchors can be difficult to specify for a particular domain.

2.2.4 Learning a model

We describe a method for learning phenotype estimators based on the learning procedure

outlined in Elkan and Noto (2008) for learning with noisy labels (a derivation is found in

Section 2.2.5). We train models with L2 regularized logistic regression (this can be replaced

with another calibrated classifier like random forests). A logistic regression model seeks a

weight vector w and bias b to minimize:

argmin
w
||w||2 +

∑

n

`(σ(wx(n) + b), y(n)), (2.1)

where x̃(n) is the feature vector associated with the nth training example, y(n) is the

corresponding label, σ is the sigmoid function, and ` is the log-loss.

In the anchor and learn framework, we substitute the anchor(s), A for the true labels, which

are unavailable. We also modify the feature matrix X, to remove the columns corresponding

to the anchors, yielding a censored matrix X̃. Thus the final optimization problem is:

argmin
w
||w||2 +

∑

n

`(σ(wx̃(n) + b), a(n)), (2.2)
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2.2.4.1 Learning a calibration factor

A calibration factor is estimated on a heldout set out anchored patients P as:

C =
1

|P|
∑

p∈P

σ(wx̃(p) + b). (2.3)

This calibration factor is the average likelihood of belonging to the positive class assigned by

the learned model to anchored patients, which are known to be positive because of the high

positive predictive value condition. It is an estimator of P (A = 1|Y = 1), the likelihood of

the anchor turning on, if the true label is on.

2.2.4.2 Test-time procedure

The test time procedure (Equation 2.4) is broken into two sub-cases, depending on whether

an anchor is present or not. If the anchor is present, the prediction is 1, because of the

high positive predictive value condition. If the anchor is absent, we fall back on the learned

classifier, scaled by the calibration coefficient.

P (Y = 1|x) =





1 Anchor = 1

(1−C)
C

exp(wx+ b) Anchor = 0.

(2.4)

To obtain a ranking classifier which does not output calibrated probabilities, it is sufficient

to use wx+ b when Anchor=0, since the scaling factor of (1− C)/C is a positive constant

that applies to all patients equally and the exp function is monotonic.

2.2.5 Derivation

The theory behind our use of anchors in learning is based on Elkan and Noto (2008). Here

we present a short derivation to justify the anchor conditions presented in Section 2.2.3.1,
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and the relationship between classifiers trained on the anchors P (A|X̃) and classifiers trained

on the true labels P (Y |X).

P (A = 1|X̃) = P (A = 1|Y = 1, X̃)P (Y = 1|X̃) (2.5)

+ P (A = 1|Y = 0, X̃)P (Y = 0|X̃)

= P (A = 1|Y = 1, X̃)P (Y = 1|X̃) (2.6)

= P (A = 1|Y = 1)P (Y = 1|X̃) (2.7)

= CP (Y = 1|X̃) (2.8)

The first equation simply introduces a latent variable Y and marginalizes over its value.

The second equation uses the assumption of high positive predictive value (P (A = 1|Y =

0) ≈ 0) to remove the second term in the sum. The third equation uses the conditional

independence assumption to remove X̃ from the conditioning, yielding a constant correction

term C ≡ P (A = 1|Y = 1) such that 1
C
P (A = 1|X̃) is equal to P (Y = 1|X̃).

To incorporate conditioning on A into the predictor (i.e., transform from P (Y = 1|X̃) to

P (Y = 1|X)), we break the prediction into two cases:

P (Y = 1|X) =





1 A=1

(1−C)
C

P (A=1|X̃)

P (A=0|X̃)
otherwise,

where P (A|X̃) is the output of the classifier trained in Section 2.2.4.

The first case comes from the high positive predictive value assumption. The second case

comes from the following derivation:
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P (Y = 1|A = 0, X̃) =
P (A = 0|Y = 1, X̃)P (Y = 1|X̃)

P (A = 0|X̃)

=
P (A = 0|Y = 1)P (Y = 1|X̃)

P (A = 0|X̃)

=
(1− C)

C

P (A = 1|X̃)

P (A = 0|X̃)
.

The first line of the above derivation comes from applying Bayes rule while maintaining

the conditioning on X̃. The second line comes from the conditional independence assumption.

The third line substitutes 1− C ≡ P (A = 0|Y = 1) and 1
C
P (A = 1|X̃) = P (Y = 1|X̃) (from

Equation 2.8). Previous published works (Halpern et al., 2014, 2016) use a slightly different

form of Equation 2.4, which does not explicitly account for the observation A = 0 in the

second case. This procedure does not change the ranking performance of the classifiers, but

does not take advantage of extra information available from observing A at test time.

The correction term C can be estimated by finding a representative population of positive

cases, P , and taking the average prediction of the model (Elkan and Noto, 2008).

P (A = 1|Y = 1) =
1

|P|
∑

p∈P

P (A = 1|x̃(p)). (2.9)

The anchor assumptions allow us to use a set of examples with positive anchors as a

representative set of positively labeled patients.

Many other frameworks for learning with noisy labels exist (e.g., Natarajan et al. (2013);

Platanios et al. (2014); Reed et al. (2014); Sukhbaatar et al. (2014)), and could each be useful

for different settings. Cotraining also has many similarities to the anchor framework (Blum

and Mitchell, 1998), and indeed training with anchors can be seen as one step of a co-training

algorithm where one view is the anchor, and the other view is all other features.
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2.2.6 Implementation Details

We implement the learning in python using scikit-learn and scipy.sparse libraries. X is a

csr-matrix. Every time a new anchor is added or subtracted, we add or subtract a column to

a mask matrix M which is implemented as a dok-matrix. These columns are cached when X

is generated and can be retrieved quickly rather than iterating through the X matrix which

is not in a format suitable for column slicing. When bigrams are specified as an anchor, their

component unigrams are also masked-out for instances that have the bigram. Learning is

then done on the X −M matrix as the masked feature vector, and the logical OR of M ’s

columns as the “label” vector.

2.2.7 Assessing a model

How do we know if we’ve learned a good model? Should we add more anchors? Should

we remove one of the anchors that was previously added?

We can assess whether an anchor truly has high positive predictive value by filtering for

patients with the anchor and manually assessing whether they are truly positive cases. For

example, without inspection, aspirin could mistakenly be taken for an anchor for a patient

having a cardiac etiology to their emergency department visit. It is standard clinical practice

to give aspirin to a patient when a cardiac etiology is suspected. However, aspirin is also

given in patients with a suspected stroke. By reviewing a list of recently anchored patients, a

user can quickly determine how specific an anchor is for the phenotype of interest.

To assess the conditional independence assumption, we look at highly weighted features. If

a feature is highly weighted, it is highly indicative of the anchor, but this may not necessarily

because of the underlying disease. It may also be because the conditional independence

assumption is being broken. Are these highly weighted words often collocated with the

anchor? If so, the correlation may come from linguistic patterns (e.g., n-grams) rather than
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being caused purely by the presence of the disease of interest. In this case, we can mitigate

the violation of conditional independence by censoring words in a fixed window around the

anchor. Do they have another reason to be correlated with the anchor? For example, if the

anchor is a code for a dispensed drug, the feature associated with the name of the drug itself

appearing in a note may be highly weighted. These two are not conditionally independent.

The drug name can be added as an anchor as well, or can be removed as a feature before

relearning.

Both of the anchor conditions will be violated to some extent in real data. We can also

qualitatively assess the learned model by using it to to rank patients (that were held-out

from learning) and look at patients with high rank, but no anchor. These patients are

representative of the patients that the classifier thinks are positive cases. Do they represent

the expected phenotype or has the algorithm learned a different-but-related phenotype, or a

mix of multiple phenotypes?

2.2.8 Anchor suggestions

We incorporate a second form of feedback to the user in the form of “suggested anchors”,

by learning a second logistic regression classifier to predict the anchor, this time with high L1

regularization. This heuristic yields a small number of features that are highly associated

with the anchor, and may have the requisite positive predictive and conditional independence

properties. Whether to include a suggested anchor (e.g., by creating a union of anchors) is

the choice of the modeler. It may help, by detecting more positive cases to learn from and at

test time, but it can also dilute the positive predictive value and conditional independence

conditions. Figure 2.2 shows an example trace of a user adding and subtracting anchors, and

the corresponding changes in performance of a classifier learned using the anchors.
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Figure 2.2: Adding a subtracting anchors: Changes in the area under the receiver operator
curve (AUC) as a physician user adds and subtracts anchors to train a classifier for cardiac
etiology. The blue solid line shows the performance of the learned classifiers. The green
dotted line shows the performance of a naive prediction strategy that simply looks for anchors.
Gold standard labels are obtained from questions asked to physicians at disposition time
(Section 2.3.4).

2.2.9 Code available

Code is available to review records and learn anchored phenotype models at http:

//clinicalml.org. Figure 2.3 shows a screenshot of the original anchor learning tool. A

more modern, web-based version is under development and will be released on the same site.
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Figure 2.3: A screenshot of the anchor elicitation tool using deidentified patient information.
Conditional highlighting emphasizes the presence of previously specified anchors in a note so
that the physician can determine quickly whether its usage is as expected.

2.3 Evaluation: Phenotype estimation in the emergency

department

2.3.1 Study Design

We conducted a retrospective observational study to build and test a collection of clinical

state variable predictors. The study was approved by the institutional review board at Beth

Israel Deaconess Medical Center in Boston, MA.

2.3.2 Setting and Selection of Participants

The study was performed in a 55,000 visits/year trauma center and tertiary academic

teaching hospital. All consecutive ED patients between 2008 and 2013 were included. Each

record represents a single patient visit. No patients were excluded, leading to a total of

273,174 records of emergency department patient visits.

36



	
	 Representation	 Dimension	
Age	 Binned	by	decade	 11	
Sex	 M/F	 2	
Medication	History	 Indicators	by	Medication	Generic	

Sequence	Number	(GSN)	
1,947	

Medication	
Dispensing	Record	

279	

Triage	Vitals	 Binned	by	decision	tree	 77	
Lab	results	 2,805	
Triage	Assessment	 Binary	bag-of-words	 7,073	
MD	Comments	 8,909	

Table 2.2: Features used to build binary patient description vectors

2.3.3 Data Collection and Preparation

As input for classification tasks, we build a patient feature vector with binary features

by concatenating 8 smaller sparse feature vectors built from the data sources described in

Table 2.2.

Medication history refers to the medications the patient was taking prior to the ED

visit as documented on the patient’s medication reconciliation form. Medication Dispensing

Record is documented on the hospital Omnicell and Pyxis Medication dispensing systems.

Triage assessment refers to the free text nursing assessment documented by the nurse at

triage. Generic sequence numbers (GSN) are associated with medications using the First

Data Bank Drug database. MD Comments refers to the free text scratch space used to track

a patient’s course that is updated in real-time. All of these data elements were recorded

electronically at the same time that the data was collected.

The free text fields, Triage Assessment and MD Comments, were preprocessed with simple

bigram and negation detection before being represented as a binary bag-of-words. A more

detailed description of the text processing is available in Appendix B.2.2. Features that

appear in fewer than 50 patient records are discarded, leaving a final concatenated feature

vector with 21,103 dimensions.
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Phenotype	 Disposition	Question	 N	 	Pos	

Cardiac	-	acute	 In	the	workup	of	this	patient,	was	a	cardiac	
etiology	suspected?	 17,258	 0.068	

Infection	–	acute	
Do	you	think	this	patient	has	an	infection?	
(Suspected	or	proven	viral,	fungal,	protozoal	
or	bacterial	infection)	

62,589	 0.213	

Pneumonia	–	acute	 Do	you	think	this	patient	has	pneumonia?	 9,934	 0.073	
Septic	Shock	-	acute	 Is	the	patient	in	septic	shock?	 6,867	 0.020	

Nursing	home	–	
history	

Is	the	patient	from	a	nursing	home	or	similar	
facility?	(Interpret	as	if	you	would	be	giving	
broad	spectrum	antibiotics)	

36,256	
	 0.045	

Anticoagulated	-	
history	

Prior	to	this	visit,	was	the	patient	on	
anticoagulation?	(Excluding	antiplatelet	
agents	like	aspirin	or	Plavix)	

1,082	 0.047	

Cancer	-	history	
Does	the	patient	have	an	active	malignancy?	
(Malignancy	not	in	remission;	and	recent	
enough	to	change	clinical	thinking)	

4,091	 0.042	

Immunosuppressed	-	
history	

Is	the	patient	currently	
immunocompromised?	 12,857	 0.040	

	

Table 2.3: Phenotype variables used for evaluation. The text in the Disposition Question
column was shown to physicians at the end of patient disposition. The parenthetical text
was shown if physicians selected a click-through option for additional information. N gives
the number of labels collected while Pos gives the fraction of positively labeled cases.

2.3.4 Gold-standard Phenotype Labels

We evaluate the phenotype learning framework using 8 phenotype variables relevant in

the emergency department. For evaluation we prospectively collected gold-standard labels.

Physicians were prompted upon patient disposition to provide gold-standard responses to

questions from a rotating pool of research questions used in the emergency department. The

phenotypes for which gold-standard labels were collected are listed in Table 2.3 They include

both acute conditions such as whether a cardiac etiology is suspected for this patient visit,

and historical phenotypes such as whether a patient is immunosuppressed. Responses were

recorded on a Likert scale from 1-5. We take 4 and 5 to be positive and everything else to be

negative.
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2.3.5 Anchor elicitation and phenotype choices

A single emergency physician specified anchors for phenotypes using the custom interactive

anchor elicitation tool described in Section 2.2.9.

The initial 42 phenotypes selected for this pilot study were chosen because of their

relevance in the emergency department. Broadly, they fall into six different categories and

use cases. Phenotypes for which gold-standard labels are available are italicized.

Change clinical thinking: Some phenotypes change baselines and normal values for

lab results and vital signs. Others put the patient at heightened risk for complications. In

both cases, they are important to the clinician’s thinking and can lead to errors in diagnosis

if missed. These phenotypes include: active malignancy, immunosuppressed, nursing home,

alcoholic, liver damage.

Avoiding medical errors: Certain populations require special attention to avoid

causing them further harm during their hospital stay. These phenotypes include: anti-

coagulated, immunosuppressed, deep vein thrombosis, HIV positive, syncope, and suicidal

ideation.

Emergent conditions: Some conditions require immediate attention, and the faster

they are noticed and treated, the better. These phenotypes include: septic shock, aller-

gic reaction, intracranial hemorrhage, cerebrovascular accident, severe sepsis, small bowel

obstruction, motor vehicle accident, bicycle accident, epistaxis, gastrointestinal bleed.

Diagnostic support: Some phenotypes are common, but require attention to rule

out dangerous etiologies. Examples of these phenotypes are: abdominal pain, headache, and

back pain.

Require specialist attention: Some conditions require the attention of a specialist

outside of the emergency department. These phenotypes can be used to proactively alert

staff to schedule consults early. These phenotypes include: cardiac etiology, psychiatry, sexual
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assault.

Clinical pathways / Standardized order sets: Our clinical collaborators are in the

process of building standardized treatment paths or order sets for a wide range of phenotypes.

These phenotypes include: infection, hematuria, chest pain, cellulitis, pneumonia, urinary

tract infection, congestive heart failure, asthma/COPD, diabetes, gastroenteritis, cholecystitis,

pancreatitis, ankle fracture, employee exposure, kidney stone, and laceration.

2.3.6 Phenotype Evaluation

Area under the receiver-operator curve (AUC) and precision-recall curves were evaluated

using the prospectively gathered gold-standard labels. When evaluating the supervised

method, 10-fold cross-validation was performed to allow for testing on the full set of gold-

standard labeled patients. Standard errors in AUC for anchor-based learning are evaluated

using 100 bootstrap samples from the test set. Standard errors in AUC in the supervised

method are calculated across the folds of the 10-fold cross-validation.

2.3.7 Real-time Setting

To evaluate the effectiveness of phenotype prediction in a real-time setting, we performed

a retrospective analysis of patient records applying our phenotyping algorithms to snapshots

of the patient records as they appeared at 0, 30, 60, 120, 180, and 360 minutes after arrival

to the emergency department, as well as at the time of disposition from the emergency

department. We compare phenotype extraction using classifiers learned using the “Anchor

and Learn” framework (Section 2.2) with 200,000 patients against fully supervised classifiers

trained using 5000 patients labeled using the gold-standard data. Within the Anchor and

Learn framework, patients with a positive anchor all receive an equal score of 1. We first

break ties by counting the number of distinct anchors present in the patient’s record, then by
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the output of the learned classifier. Both the anchor-based classifiers and the gold-standard

classifiers are trained for each time step independently, using only the data available up to

that time, yielding 7 different classifiers for each method. In the discussion (Section 2.5.4),

we discuss a different approach to dealing with data changes over time, that involves learning

a different classifier for each possible pattern of data “missingness”.

AUC gives a sense of how the classifiers perform over a range of thresholds and is useful

to compare different methods of learning the classifiers. To determine utility for real-life

usage, we also compute precision-recall curves for the anchor-based classifiers.

2.3.8 Performance Breakdown by Data Type

To better understand the contributions of different data types in the EMR, we trained

classifiers using only subsets of the EMR data types. In all cases, we allow all of the classifiers

to use age, sex, and triage vitals, and then measure performance using AUC at disposition

time with classifiers that additionally use medication history, medication dispensing record,

lab results, triage text, and MD comments. We also look at classifiers that use all structured

data (medication history + medication dispensing record + labs) and all free text data

(triage text + MD comments), and finally compare to the classifiers that use all of the above

mentioned data types.

2.4 Results

2.4.1 Building a Phenotype Library

We built phenotypes of immediate relevance in the emergency department (Section 2.3.5).

Each phenotype is defined by a small number of anchors (Table 2.1), which are used to learn

logistic regression classifiers as described in Section 2.2. Highly weighted terms learned by the
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classifiers are shown in Table 2.4. Building each phenotype took approximately 10 minutes of

physician time spent using the anchor elicitation interface. The full list of phenotypes and their

definitions is available on github: https://github.com/clinicalml/clinical-anchors.

Table 2.5 shows the precision and recall of the anchors for the eight phenotypes that were

evaluated. Unlike the real-time evaluations in the remainder of this section, these results

show the characteristics of the anchors retrospectively, as they were used for training. As

such, these results include diagnosis codes, which cannot be used for real-time phenotype

estimation. The precision values are all less than one, partly because it is difficult to specify

anchors with perfect positive predictive value, but also because the gold standard clinical

evaluation occasionally missed positive cases.

2.4.2 Phenotype Evaluation in Real-time Setting

For all of but one of the phenotypes (nursing home), the Anchor & Learn framework

outperforms supervised training on a set of manually collected gold-standard labels and a

naive strategy of simply searching for the anchors.

Figure 2.4 shows a comparison between the three methods for learning phenotypes as

a function of time. Some conditions are easier to detect than others, with highly acute

conditions like pneumonia and septic shock reaching AUC values above 0.95. For 5 out

of 8 phenotypes, the manual rules method has an AUC below AUC=0.8 from arrival to

disposition.

Changes to a patient’s EMR happen multiple times over the course of a patient visit and

different pieces of information become available at different times. Medication reconciliation

usually happens in the first 30 minutes of a visit and lab results tend to become available

between 1.5 hours to 2 hours after patient arrival. However, there are a significant number

of updates to these fields that occur after that peak time. MD comments and dispensed
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Phenotype	 Data	
source	 Observed	Feature	 Weight	

Diabetes	(history)	
	

	 dm	 2.97	
	 Blood	glucose	testing		 2.92	
	 dm2	 2.23	
	 GLUCOSE	(>266.5)	 2.1	
	 MetFORMIN	(Glucophage)	 1.98	
	 iddm	 1.87	
	 GLUCOSE	(198.5-266.5)	 1.8	
	 dmii	 1.72	
	 diabetes	 1.56	
	 Fingerstick	lancets	 1.47	
	 diabetic	 1.42	
	 Blood	glucose	testing	 1.25	
	 diabetic	 1.22	
	 hypoglycemia	 1.22	
	 iddm	 1.19	
	 bs	 1.16	
	 Insulin	HumaLOG	 1.16	
	 GLUCOSE	(175.5-198.5)	 1.13	
	 Tricor	 1.1	
	 dm1	 1.1	

Employee	
exposure	

	

	 needle	 1.9	
	 Pain(<0.05)	 1.47	
	 LaMIVudine-Zidovudine	(Combivir)	 1.41	
	 or	 1.36	
	 stuck	 1.13	
	 exposure	 1.06	
	 neg:bleeding	 1	
	 washed	 0.98	
	 went	 0.96	
	 Temp	(98.98-99.21)	 0.95	
	 cath	 0.94	
	 epi	 0.93	
	 glove	 0.91	
	 dirty	 0.81	
	 sq	 0.8	
	 thumb	 0.77	
	 patient	 0.77	
	 needle	 0.73	
	 Heart	Rate	(61.5-66.5)	 0.72	

	 id	 0.72	

Allergic	reaction	
	

	 DiphenhydrAMINE	 1.43	
	 benadryl	 1.13	
	 MethylPREDNISolone	Sodium	Succ	 1.09	
	 DiphenhydrAMINE	 1.05	
	 Famotidine	 0.89	
	 benadryl	 0.88	
	 neg:hives	 0.86	
	 throat	 0.79	
	 PredniSONE	 0.73	
	 itching	 0.72	
	 neg:sob	 0.71	
	 swelling	 0.7	
	 neg:rash	 0.66	
	 Famotidine	(PO)	 0.63	
	 iv	 0.63	
	 allergy	 0.58	
	 feeling	 0.52	
	 ate	 0.52	
	 hives	 0.51	
	 rash	 0.51	

Legend:	
	
		
	
	
	
	
	
	
	

MD	
comments	

Medication	
History	

Medication	
Dispensing	
Record	

Triage	
assessment	

Lab	results		Triage	vitals	

Table 2.4: Top 20 weighted terms in the classifiers for three of the learned phenotypes. These
classifiers are learned using medical records as they appear at time of disposition from the
emergency department.
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Figure 2.4: Comparison of performance of phenotypes learned with 200,000 unlabeled patients
using the semi-supervised anchor based method, and phenotypes learned with supervised
classification using 5,000 gold standard labels. Error bars indicate 2 * standard error.
“Insufficient labels” means that we did not have enough labeled patients to train the fully
supervised baseline. “Rules < 80” means that the rules baseline was consistently below 80 so
it does not appear in these plots.
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Table 2.5: Precision and recall of the anchors used for training (includes diagnosis codes).

Phenotype Precision Recall
Cardiac - Acute 0.55 0.36
Infection - Acute 0.70 0.74
Pneumonia - Acute 0.86 0.67
Septic Shock - Acute 0.53 0.5
Nursing Home - History 0.68 0.22
Anticoagulated - History 0.54 0.73
Cancer - History 0.41 0.78
Immunosuppressed - History 0.22 0.77

Figure 2.5: Changes to patient records over time. The time of every change to the patient
record is recorded (measured in minutes from arrival) and a non-parametric kernel density
estimator is used to plot the distribution of times at which changes occur.

medications are constantly being updated. The median visit is about 5 hours in length.

Figure 2.5 shows the distribution of when changes occur in the EMR, accumulated over

20,000 patient visits.

At the beginning of the patient’s visit, phenotype decisions are dominated by the triage

time information from age, vitals and triage note. As time progresses, MD comments, labs

and dispensed medications become more important in determining the patient’s phenotype.

Figure 2.6 shows features picked up by the learned classifiers as time progresses, using

the pneumonia phenotype as an example. The stacked bars show the relative influence of

each data type on classification (see Appendix B.2.5 for details of influence measure). For

the pneumonia phenotype, the least important factor is the medication history; for other

phenotypes, such as anticoagulation, it is much more prominent. The text on Figure 2.6
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Figure 2.6: Influence and highly changing features for the pneumonia phenotype extractor as
a function of time.

shows features whose weights have significantly increased, with the position on the x-axis

indicating approximately when they start becoming important for prediction.

2.4.3 Precision-recall operating characteristics

Figure 2.7 shows the precision-recall curves calculated for the classifiers learned at triage

time, 1 hour after triage, and disposition. We report recall values at PPV (positive predictive

value) of 0.75 and 0.5 because these are reasonable PPV values for alerts and conditional

displays respectively. The precision-recall of the manual rules system (i.e., ordering by number

of distinct anchors present in the record) is denoted by a circle.

At triage time, acute conditions such as general infection and pneumonia can be detected

at PPV=0.75 with a recall of 0.32 and 0.11 respectively. At PPV=0.5, we can achieve recall

of: Pneumonia 0.48; cardiac etiology 0.47; septic shock 0.20. Simple heuristics like counting

distinct anchors do not work well on their own in this setting, since at triage time, the anchors,

which generally consist of structured data such as medications or diagnosis codes, are not

available.

After one hour, general infection with a PPV=0.75 has a recall of 0.35 (compare to rules:

PPV=0.71, recall=0.05). Using PPV=0.5 for the other acute phenotypes, the recall values

rise to: Pneumonia 0.55; cardiac etiology 0.48; septic shock 0.35.

At disposition time, medication and text anchors are often present in the patient note,
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Figure 2.7: Precision-recall curves calculated for each of the phenotypes at triage time, 1
hour after triage, and disposition. Circles indicate operating characteristics achievable by
thresholding on the number of anchors present.
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making the rules-based classifiers fairly effective. One notable exception is the pneumonia

phenotype which is based exclusively on anchors from diagnosis codes, which are not populated

in the patient record until later. Even so, the learned classifiers can be used to increase

recall in the general infection phenotype at disposition time from 0.5 to 0.7 without reducing

precision below 0.7. Similarly, for cardiac etiology, the classifiers can be used to move the

operating characteristic from (PPV=0.58, Recall=0.34) to (PPV=0.5, Recall=0.67).

After one hour, historical conditions become relevant for decision making. With a positive

predictive value of 0.5, recall values are: nursing home 0.37 (compare to rules: PPV=0.68,

recall=0.15), cancer 0.70 (compare to rules: PPV=0.5, recall=0.5), anticoagulated 0.57 (not

that different from rules: PPV=0.58, recall=0.5). The immunosuppressed phenotype has

very low recall with precision of 0.5 (recall=0.04) and therefore would likely not be put

into use without further improvement. One factor which likely contributed to the poor

performance of the immunosuppressed classifier was the low positive predictive value of its

anchors (Table 2.5). This may have been due to a difference between the intent of the clinician

who specified the anchors to include anyone who was at risk of being immunosuppressed,

and the understanding of the labeling physicians who were asked at disposition time “is the

patient currently immunocompromised”, which could have been interpreted more restrictively.

2.4.4 Performance Breakdown by Data Type

For phenotypes based on patient history (Immunosuppressed, Nursing home, Anticoag-

ulated, and Cancer), medication history is the most important structured data type, and

structured data is more important than free text for all but the cancer phenotype.

For phenotypes that represent acute problems (Infection, Pneumonia, Cardiac etiology,

and Septic shock), the medication dispensing record is the most useful data type among the

structured records, and free text tends to be more informative than structured data. Septic
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shock is an exception, where the medication dispensing record is more informative than the

free text.

For all phenotypes, combining free text and structured data was more informative than

either of the two on its own.

Figure 2.8 shows change in AUC from baseline as a function of the data types used for

classification. The baseline uses only age, sex and vital signs.

2.5 Discussion

2.5.1 Utility of the learned classifiers

Based on the uses discussed in Section 1.3.4, we can use precision-recall curves (Figure 2.7)

to assess the potential utility of each of the models for alerts, reminders and displays. The

gold-standard label collection process for these experiments does not provide a complete

labeling for any patient (see Section 2.3.4), so we do not consider inter-phenotype ranking

measures like top-5 phenotype suggestions. These are evaluated using a different set of

gold-standard labels in Chapter 3.

The infection and pneumonia classifiers have reasonable recall at PPV=0.75 at triage time

(0.32 and 0.11 respectively), and improve as the visit progresses, suggesting that these could

be useful for non-interruptive reminders and alerts without too much fear of alarm fatigue.

Cardiac etiology and septic shock are acute conditions. With a PPV=0.5 at triage time,

we can use them for contextual display changes, such as displaying standardized order sets

on the side-bar to make navigation easier, but since they are incorrect almost half the time,

actively bringing alerts to the clinician’s attention would not be recommended. Similarly,

the phenotypes related to patient history such as anticoagulated, nursing home, and active

malignancy could be used after an hour in the ED, when much of the decision-making and

49



Med Pyx Lab Strct Tri MD Txt All

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆
 A

U
C

 (
b
a
se

=
0

.7
5

) Structured Text

Immunosuppressed - History

Med Pyx Lab Strct Tri MD Txt All

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆
 A

U
C

 (
b
a
se

=
0

.6
6

) Structured Text

Infection - Acute

Med Pyx Lab Strct Tri MD Txt All

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆
 A

U
C

 (
b
a
se

=
0

.8
3

) Structured Text

Nursinghome - History

Med Pyx Lab Strct Tri MD Txt All

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆
 A

U
C

 (
b
a
se

=
0

.8
2

) Structured Text

Pneumonia - Acute

Med Pyx Lab Strct Tri MD Txt All

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆
 A

U
C

 (
b
a
se

=
0

.7
9

) Structured Text

Anticoagulated - History

Med Pyx Lab Strct Tri MD Txt All

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆
 A

U
C

 (
b
a
se

=
0

.7
5

) Structured Text

Cardiac - Acute

Med Pyx Lab Strct Tri MD Txt All

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆
 A

U
C

 (
b
a
se

=
0

.7
5

) Structured Text

Cancer - History

Med Pyx Lab Strct Tri MD Txt All

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆
 A

U
C

 (
b
a
se

=
0

.9
2

) Structured Text

Septicshock - Acute

Figure 2.8: Additive change in AUC from baseline for phenotype extraction as a function
of the features used. The baseline phenotype extraction uses only features from Age, Sex
and Triage vitals and its value is indicated for each phenotype on the y-axis label. Blue
bars indicate structured data while red bars indicate free-text data. Hatched lines represent
a combination of features. A star is placed below the single feature that has the highest
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Txt All Text (Tri + MD)
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planning for the patient occurs.

Compared to simply searching for the anchors themselves, the learned classifiers provide

value in the early parts of the patient visit when anchors may not yet be present in the

patient record (this is especially relevant when the anchors come from diagnosis codes which

are generally not filled in until after the patient leaves the emergency department).

This assessment of overall utility, even at the single site under consideration, is limited

by two factors. First, these analyses are retrospective, and more experimentation with live

implementations would be required to understand whether these alerts and display changes

actually provide value to clinicians, either by reducing missed conditions or streamlining

workflows, and whether they lead to improved outcomes. The binary evaluation does not

take into account the possibility that a phenotype may represent a relevant consideration in

clinical decision making, even though it is eventually ruled out.

A second limitation is that for each patient, the gold-standard labels are obtained from

a single physician at disposition time and different physicians contributed labels over time.

While we believe this method is more reliable than using administrative codes such as ICD9

diagnosis codes, we do not have a measure of inter-rater agreement to determine the accuracy

of the labels. A measure of inter-rater agreement and modeling individual effects of the

labeling physician, could help determine the accuracies of the reported values of PPV, which

we suspect are actually higher than reported here.

2.5.2 Effectively using unstructured data

The classifiers presented in Table 4 use both structured and unstructured data to determine

whether the patient has the phenotype, and generalize beyond the initial anchors input by the

physician in Table 3. For example, the classifiers learn to look for appropriate medications

used to treat for allergic reaction (e.g. steroids like prednisone and methylprednisolone,
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and antihistamines like diphenhydramine and famotidine). They also naturally pick up on

variations of free text and statistical synonyms without having to specify this information

manually. For example, in the classifier for diabetes, we see dm, dm2, dmii, or in the classifier

for cholecystitis (not shown in Table 4) we see both surg and surgery.

The classifier for employee exposure makes heavy use of textual terms, each of which

are not strongly indicative on their own, but often appear together in the narrative used to

determine the risk of HIV and hepatitis transmission after an employee exposure, including

the location (thumb), circumstance (operating room, cath), mechanism of injury (needle),

barriers (glove), and decontamination (washed).

Important structured data tends to be repeated in the MD comments, so using only free

text, without structured data beyond demographics and triage vitals, tends to perform well.

One important exception to that trend is determining whether a patient is anticoagulated,

which represents an important piece of background information regarding the patient, but

may not be pertinent to the patient’s current illness. Nursing home is better detected from

the triage note, as it is often included in the triage assessment and then dropped in the MD

comments if it is deemed irrelevant for the patient’s current problem.

2.5.3 Temporal aspects of the classifiers

The plots in Figure 2.4 show that classification becomes more accurate as the patient visit

progresses, which makes sense since more informative features become available. The more

general phenotypes like infection and cardiac etiology show the least improvement over the

course of the visit, as they are often clear from the patient’s initial complaint and presentation.

In fact, we find that the single most important data type in determining cardiac etiology is the

free text written at triage. More specific diagnoses, like pneumonia, become increasingly easy

to determine as the visit continues. The progression of classification performance generally
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mirrors when significant data items become available. For example, determining whether

a patient is on anticoagulation therapy improves dramatically 30-60 minutes after triage,

corresponding to the times when medication history and lab results become available, as seen

in Figure 2.5.

The gaps between our method and supervised training in Figure 2.4 are larger towards

the beginning of the visit when there is less information available. By learning weights in a

statistical classifier and using a large amount of data, we allow for evidence to accumulate (for

example swelling is indicative of allergic reaction, but can occur for many reasons), making a

continuous-valued prediction based on the accumulated evidence rather than making decisions

based on individual words or phrases in the note. This advantage is more pronounced towards

the beginning of the patient’s visit, when there are fewer obvious cues to pick up on. Clinical

decision support is most useful early in a patient’s emergency department course, when timely

interventions can change clinical trajectories and before critical decisions are made. The

performance improvement between our method and supervised training is therefore critical

to our intended use case of real-time clinical decision support.

2.5.4 Alternative methods of handling missing data

In Section 2.3.7 we describe how we use different classifiers, each trained for a different

time step to handle the temporal aspect of how data becomes available in a patient record.

This method could potentially perform poorly for patients who follow a different time course

than the standard patient, either having their data populated more rapidly or more slowly.

Another possible method is to train classifiers on subsets of the data, for example, only

triage information and medications, but not labs. That way, depending on the missingness

pattern of the patient record, we can use the appropriate classifier to estimate phenotype

variables. Figure 2.9 shows how classifiers trained specifically on subsets of the data perform
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better than classifiers trained on all the data when data is artificially dropped from the

feature vector to simulate the scenario where data is not yet available. For example, for the

nursing home phenotype, a subset classifier trained only on triage note information achieves

an AUC of 0.884, while a classifier trained on all of the data only has an AUC of 0.829

when only the triage note is available. The different paths through the trellis are different

possible courses that a patient could take; some patients have their labs populated before

their medications, and others vice versa.

One drawback to this method is that it assumes that each data type is filled in all at once.

In fact, some laboratory results are much faster than others (e.g., arterial blood gas can be

measured at the bedside, while bacterial cultures can take days to grow). Similarly, the MD

comments field is a free text space where physicians continuously update the patient’s course.

This can be edited multiple times in a visit, so the notion of being missing or present does

not fully apply (before a physician has seen the patient at all, it does make sense to consider

it missing).

2.5.5 Statistical models – interpretability and failure modes

The statistical model sometimes puts high weight on features that might not at first be

intuitive. For example, the negation of hives is indicative of allergic reaction. Although this is

counter-intuitive from a clinical perspective, this does make sense from statistical perspective

because physicians are only likely to document the absence of certain findings when it is

pertinent to a particular condition. In medicine, these terms are known as pertinent negatives

and often matter as much as pertinent positives.

Nursing home is well detected by structured data, particularly by the patient’s medication

history (see Figure 2.8) since patients from nursing homes are more likely to have very long

and detailed medication lists. This is partly because nursing homes, and other assisted
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care settings keep their residents’ complete medication lists on file, and send their file along

when the patient is brought to the hospital. This is another example of a cue picked up by

statistical learning, but which would be difficult to specify a priori as a manual rule.

While these examples of counter-intuitive or unexpected features contribute to the strong

performance of the statistical classifiers over manual rules, they can also lead to odd failure

modes. For example, neglecting to document a negative symptom may lead to a missed

phenotype, or over-documentation of irrelevant symptoms may confuse the classifiers and

cause them to falsely report a phenotype that is not correct. Alternatively, a nursing home

that does not export detailed medication lists, may not be recognized.

2.6 Conclusions

Every patient has a unique history and presentation that must be considered in providing

treatment. Currently, that information is captured in the electronic medical record in a form

that is difficult to use in applications such as clinical decision support. As our collective

understanding of medicine becomes more precise, we would like to represent all of the

information in the EMR, including both structured and unstructured data in a fine-grained

manner that can be used to provide personalized recommendations and clinical decision

support.

We demonstrate a scalable method of building data-driven phenotypes with a small

amount of manual input from domain experts in the form of anchor variables that can be

shared widely between institutions. The phenotypes are then implemented as classifiers that

can be statistically learned from large amounts of clinical data in each institution. We show

that phenotypes learned in this way are comparable to phenotypes learned with manually

identified cases and controls for use in a real-time setting, and allow us to easily scale our

collection of phenotypes, building an initial library of 42 phenotypes with help from a single
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clinical collaborator as a proof of concept. Of the eight phenotypes evaluated against a

gold-standard, two predictors (general infection and pneumonia) show promise for real-time

alerting, and five more (Cardiac etiology, septic shock, anticoagulated, nursing home, and

active malignancy), show promise for conditional displays.

2.7 Next steps and open questions

In this work, we only consider data from a single hospital, and even though we were

able to specify 42 phenotypes, we were only able to quantitatively evaluate 8 of them. The

quantitative assessment relied on questions asked to physicians at disposition time, and have

not been compared to a gold-standard manual chart review to determine their reliability.

The classifier performance was evaluated retrospectively and disconnected from a particular

health IT application. A natural next step would be to evaluate the real life impact of these

applications on clinical care.

Data came from a single hospital emergency department, and testing portability of

phenotype definitions is a clear next step. In our framework, phenotypes are defined only

by anchor variables and then classifiers are learned on each institution’s data independently.

We expect this method will allow each institution to learn classifiers that are appropriate to

their patient population and local linguistic features.

We compare to simple rule-based classifiers (i.e., searching for the anchor), and show that

the anchor-and-learn framework is more effective (Figures 2.4 and 2.7). We do not explicitly

compare to other manually defined phenotypes built with community consensus and repetitive

refinement such as those in eMerge (Newton et al., 2013) or OMOP (http://omop.org/HOI).

Two phenotypes (type II diabetes and myocardial infarction) learned with noisy-labels were

compared against previously validated rule-based definitions in Agarwal et al. (2016), and

showed comparable performance, but further comparisons are warranted. Many of the
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validated rule-based definitions use diagnosis codes as part of the definition, which is useful

for retrospective cohort selection, but is not available in real-time. Anchors can be useful for

quickly developing new phenotypes or adapting them to incorporate new settings where more

or fewer data types are available. When a well-established rule-based definition is available,

should we train new classifiers or fall back on the established rules? Do established rules

from eMerge and OMOP make good anchors?

We show how to learn phenotypes using a small amount of input from domain experts

in the form of anchor variables. However, as these phenotypes are put to use driving IT

applications, they can be automatically refined through usage, either explicitly by correcting

predictions made by the algorithm, or by taking actions like enrolling a patient in a care

pathway or using a standardized order set that implies agreement or disagreement with the

model’s predictions.

Emergency department time scales are relatively short; other settings, such as intensive

care units or longitudinal studies have much longer time scales. In this work, we assumed

the patient’s phenotype stayed constant over the course of the visit (the median ED visit is

shorter than 5 hours from triage to disposition). Incorporating the evolution of the patient’s

phenotype over time requires more attention. Naively, each time-step (e.g., hour, visit) can

be modeled as an independent phenotype prediction problem, but it is not obvious how to

provide labels or label surrogates such as anchors for each time step. Which data become

“stale” or irrelevant and at what time scales? How does one reliably determine quantities such

as time of onset, or time of recovery? Henry et al. (2015) use a definition of time of onset

in training a classifier to detect sepsis and septic shock, but many phenotypes do not have

standard definitions for their time of onset.

Systematically understanding the failure modes of these classifiers is an important step to

designing safe systems. How can these models be queried and tested to determine the edge

cases in which they fail? Challenging physicians to “Beat the machine” (Attenberg et al.,
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2015) by designing challenging queries or finding difficult patients is one route to discovering

these edge cases. A related question relates to the human factors aspects of these systems.

While the phenotype classifiers are still imperfect, but behave well on common presentations,

what are appropriate displays and interfaces that allow the EMR system to help the clinicians

perform their jobs? How do we build trust in the system to the point where it is useful

without allowing users to become overly reliant on these systems which may miss the rare or

atypical presentations?

Using highly expressive classifiers such as deep neural networks allows the models to

“overfit” to the anchors, taking advantage of violations in the conditional independence

assumption to predict the anchor directly, possibly doing a poor job at predicting the true

phenotype label. Simple classifiers have less capacity to take advantage of these violations,

but are limited in their expressive power. How do we use high capacity classifiers, while

protecting against this overfitting phenomenon? Multiple anchors can be used to regularize

the learned classifier. For example, we could train classifiers on each anchor while enforcing

that the classifier’s parameters or predictions be close to each other.

What are the minimal requirements to be a good anchor? Conditional independence is a

strong assumption; are their weaker assumptions that can achieve the same goal? One avenue

for exploration is a comparison to co-training (Blum and Mitchell, 1998), which was initially

formulated as requiring independent classifiers, but that requirement was later weakened

in Balcan et al. (2004). Learning with anchors can be seen as a co-training setting where the

two views are the anchor and all other features. This view could be fruitful in analyzing the

anchor learning setting in a different light.

How can anchors be used to create application-specific patient similarity metrics or latent

representations? A global similarity metric is difficult to create or even define, because for

each query, one can ask “similar with respect to what?” A large collection of phenotypes,

which a physician manually chooses to include or exclude from the similarity metric, could
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be a latent space on which to project patients. Unlike fully unsupervised similarity metrics,

the latent space would be interpretable since each dimension corresponds directly to a known

phenotype. More generally, the ability to quickly build interpretable latent spaces could be a

useful cross-disciplinary data science tool.
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Chapter 3

Semi-supervised learning of joint

probabilistic models

Acknowledgments This work was joint with Steve Horng and David Sontag. This

work was previously published in “Clinical Tagging with Joint Probabilistic Models” Halpern,

Horng and Sontag. Machine Learning for Healthcare 2016.

3.1 Introduction

Clinical decision support systems aim to relay clinically relevant information while the

patient is being treated. The relevant information can vary and can include recommendations

of standardized pathways of care (Panella et al., 2003), evidence-based guidelines, and

warnings about allergies and other contraindicated medications. The most effective systems

are those that can understand the patient’s electronic medical record as it is being populated.

By harnessing information that is entered as part of the clinician’s regular workflow, these

systems do not add additional work or cognitive burden and can seamlessly integrate into

clinical care.
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While the field of machine learning has shown tremendous success learning to recognize

patterns from large collections of labeled examples, one issue that arises repeatedly when

applying machine learning to medical applications is the difficulty and cost of obtaining

accurate labels for training. In this work, we focus on the so-called “anchored” setting, where

gold-standard labels are difficult to obtain, but noisy versions of these labels can be easily

extracted from clinical text using simple rules (Halpern et al., 2014; Agarwal et al., 2016).

These rules (called anchors) are then used as surrogate labels in standard machine learning

pipelines, with appropriate adjustments to account for noise (Natarajan et al., 2013; Elkan

and Noto, 2008). Anchors need to be specified manually by experts, but are much easier

than labeling large numbers of patients with manual chart abstraction.

Previous work with anchors (Halpern et al., 2016) (described in Chapter 2) showed that

they can be used to build a large number of individual classifiers to identify a range of

clinical conditions, but did not address the joint modeling of these conditions. Without a

joint generative model, we implicitly assume when applying the phenotype classifiers that

phenotypes are conditionally independent given the patient feature descriptor, and that the

feature descriptor was always complete. Both of these assumptions are unrealistic. First,

patient records are filled in over time (as discussed in the previous chapter) and thus certain

fields may be missing at the time of inference. Second, confirming one phenotype may make

a second much less likely, as in the case of two competing hypotheses to explain an abnormal

finding.

Using anchors instead of the true labels means leaving the true labels as unobserved or

latent variables. This introduces modeling complexities (for a more detailed introduction, see

Section 1.2.4), how do we model variables that are never observed in the data? Approaches that

maximize likelihood of the data (marginalizing over the latent variables) are computationally

expensive to perform exactly, and may suffer from “ungrounded” latent variables, where

the latent variable is introduced to model a particular phenotype, but models something
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completely different.

In this work, we present a method of training joint probabilistic models with anchors

using an approximation (variational lower bound) to maximum likelihood optimization. A

semi-supervised term is added to the objective to ground the latent variables and ensure they

model the phenotypes for which they are introduced.

Experimentally, we show that the semi-supervised term is necessary and effective to

avoid the ungrounded latent variable problem. We evaluate joint models against individual

classifiers in a clinical condition tagging task, specifically in answering the question “what else

might the patient have?”. This type of query is useful to combat search satisfaction errors,

as described later on. It also serves as an example of a general inference query that could be

posed to an interactive system that allows for phenotypes to be confirmed or rejected during

use.

3.1.1 Contributions

This chapter contains the following contributions:

• We generalize the definition of anchors from Chapter 2 to be a purely structural

condition.

• We introduce a factor-analysis approach to model phenotypes and observed features,

along with a learning algorithm that optimizes a variational lower-bound to the likeli-

hood.

• We describe the ungrounded latent variable problem which occurs when learning with

anchors instead of true labels and describe a semi-supervised objective which is effective

in mitigating the problem.

• We experimentally validate the learned algorithms against relevant baselines including
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the independent classifiers described in Chapter 2 on a clinically relevant inference task

and show that a joint model performs best at ranking most-likely applicable phenotypes,

performing nearly as well as oracle models learned with true labels. Whereas Chapter 2

focused on evaluating each phenotype predictor in isolation, here we explicitly evaluate

the phenotypes against each other.

3.2 Anchored factor analysis

We model conditions and observations as a bipartite Bayesian network. In the following

sections, we will describe the structure of the model and methods for learning its parameters.

Throughout, we will follow the convention that random variables are denoted by uppercase

letters (e.g., Yi) and their values indicated by lowercase variables (yi ∈ {0, 1}).

3.2.1 Anchor assumption

We assume the anchors are corrupted versions of the true labels and that the corruption

process obeys a conditional independence constraint: The state of the anchor depends only

on the true label. Specifically, conditioned on the true label, it is independent of all other

observations. The anchors must contain some information about the true label. Let Ai be

the anchor for Yi, we assume that P (Ai|Yi = 0) 6= P (Ai|Yi = 1).

Learning independent classifiers using anchors (Halpern et al., 2014, 2016) (Described

in Chapter 2) additionally required an assumption of high positive predictive value (the

corruption process does not produce false positive cases), which we do not require here.

Instead we will require that that the class-conditional noise rates of the corruption process

are known.

This is a strict generalization of the earlier setting, since Elkan and Noto (2008) show

how to estimate the corruption rates under the assumption of high positive predictive value.
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Y1	 Y2	 Y3	 Y4	 Y5	

Anticoagulated	 Diabetes	 Pneumonia	Immunosuppressed	 Cardiac etiology	

A1	 A2	 A3	 A4	 A5	

Insulin 	
In medications	

Heart failure 	
Diagnosis code	

Coumarin	
In medications	

“immunocompromised”  
In clinical notes �
(past or present)	

Pneumonia 
Diagnosis code 

for this visit 	

Conditions


Observations


Figure 3.1: The joint probabilistic model used for clinical tagging is a bipartite graph involving
conditions and observations, like QMR-DT (Shwe et al., 1991) with one or more anchor (red
outline) for each condition (only one anchor per condition is shown in the illustration). Other
observations (black outline) can have multiple parents. The anchors from Halpern et al.
(2016) are available on github: https://github.com/clinicalml/clinical-anchors

3.2.2 Model structure and parametrization

We use a graphical model patterned after the historical QMR-DT network, originally

designed for medical diagnosis (Shwe et al., 1991) (see Figure 3.1; more on the QMR-DT

network is found in Section 1.2.3). The Bayesian network consists entirely of binary random

variables, which are partitioned into diseases (or phenotypes) (Y1, ..., Yn) and observations

(X1, ..., Xm). The model is bipartite with directed edges from diseases to observations.

The diseases are assumed to be marginally independent with individual prior probabilities,

denoted as πi:

P (Y = {y1, ..., yn}) =
n∏

i=1

πyii (1− πi)1−yi . (3.1)

The conditional probabilities of the observations (given the state of the diseases), are

parametrized with a “noisy-or” distribution (Equation 3.2) (Shwe et al., 1991; Pearl, 1988):

P (Xj = 0|Y = {y1, ..., yn}) = (1− lj)
n∏

i=1

f yii,j, (3.2)

where the parameters fi,j are referred to as failure probabilities and lj is the leak probability.

The network can be viewed as a generative model. For each new patient, each disease Yi
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independently turns on with probability πi. Each disease which is on tries to turn on each of

its children, Xj , but fails with probability fi,j . An additional “noise” parent is always on and

fails to turn on its children with probability (1− lj).

Rather than naively treat the anchors (which are unreliable labels) as telling us which

diseases are present, we treat the conditions as latent variables and treat the anchors as

observations. The anchor assumption places a structural constraint on the graphical model.

Specifically, each anchor Ai must have only one parent which is Yi.

Treating the conditions as latent variables makes learning the parameters of the model

computationally difficult. When the variables are all observed, maximum likelihood estimation

of the parameters is a concave optimization problem that can be solved efficiently. However,

when the conditions are unobserved, the problem is no longer concave and optimization

procedures can get stuck in local minima, even when the anchor assumption holds true.

A second problem is the ungrounded latent variable problem in which a latent variable,

introduced specifically to model one phenotype, takes on a completely new meaning in order

to increase the likelihood objective.

In the following sections, we describe the ungrounded latent variable problem in more detail,

and then describe a semi-supervised likelihood-based objective and an effective initialization

that allow us to learn models with good correspondence between the latent variables and the

desired phenotype variables. Inference in these models can then be used for joint phenotype

estimation.

3.3 Ungrounded latent variables

In unsupervised learning of latent variable models, we have little control over the in-

terpretation of a particular latent variable, and interpretations are generally assigned in a

post-hoc manner to each latent variable. In this chapter, anchors are used to ground each
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latent variable to a certain meaning, particularly by constraining the space of models so that

each anchor only has a single parent, its associated latent variable.

In this section, we show experimentally that maximizing the likelihood of the observations

directly leads to poor performance on an inference task (the last-tag prediction described

later on in Section 3.5.1). This maximization is a non-concave problem due to the latent

variables, and marginalizing the latent variables to compute the likelihood is computationally

difficult. However, we can use a generalized EM procedure (Dempster et al., 1977) (more

detail in Appendix C.9).

We initialize the parameters using the Anchored Discrete Factor Analysis Tree (ADFA-

Tree) method (described in Chapter 6), and run EM to determine whether additional steps

of likelihood optimization can improve beyond the solutions found with ADFA-Tree. The

particular initialization is unimportant here, only that it is a reasonable initialization. The

somewhat surprising result is that as the likelihood of the data increases, the ability of the

model to predict the last applicable phenotype for a patient decreases (See figure 3.2. Data

likelihood for the figure is estimated with importance sampling. The proposal distribution is

a product distribution using marginals inferred with Gibbs sampling.)

Examining the learned model reveals one cause of this mismatch between the likelihood

objective and the phenotype prediction task. One of the latent variables, which was introduced

to model the “headache” phenotype, takes on a completely different meaning as optimization

progresses. We do not believe this is a feature of the particular learning algorithm (similar

results have been obtained using gradient based optimization of a variational bound instead

of EM), but rather a feature of the likelihood objective itself. The likelihood objective

is improved by using the latent variable associated with the headache anchor to model

negation scopes, an output of our feature processing pipeline, which is not associated with

any particular phenotype. Even though the model “pays” the price of not being able to

model the headache anchor well, the loss from that is offset by the gains of modeling the

67



0.4

0.5

0.6

0.7

A
cc

u
ra

cy

Emergency

1 5 10 15 20
EM steps

153000

152000

151000

150000

149000

H
e
ld

o
u
t 

lo
g
lik

e
lih

o
o
d

Before optimization anchor:headache, complains
of, head, nausea, today, de-
nies, acetaminophen, neck pain,
neg:changes, neg:vision

After 9 EM steps anchor:headache, neg:imaging,
neg:ed, neg:course, neg:labs,
neg:consults, neg:initial vitals,
neg:trigger, neg:chest pain,
neg:interventions

Figure 3.2: (Top) Effect of pure likelihood-based optimization on accuracy on a tag. A
likelihood optimization procedure is initialized with the parameters of the anchor-based
method-of-moments learning algorithm (ADFA-tree; described in Chapter 6). As the likeli-
hood optimization progresses, accuracy at predicting phenotypes degrades. (Bottom) The
latent variable associated with the “headache” anchor changes meaning over the course of
optimization.

negation scopes.

We call this problem the ungrounded latent variable problem. Simply adding anchors is

not sufficient to ensure that latent variables take on the meaning intended by the modeler.

This problem could possibly be avoided by adding new latent variables with no anchors and

hoping that they model all of the extraneous factors, leaving the anchored latent variables

to model their intended phenotypes, but there is no guarantee that the optimization would

proceed in that direction.
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3.4 Semi-supervised training

3.4.1 Semi-supervised objective

Exact inference in the QMR-DT model is known to be NP-hard, even if there is an anchor

for every condition. The typical approach maximizing likelihood in the presence of latent

variables, Expectation Maximization (EM), is computationally challenging because at each

step one has to use an approximate inference algorithm such as Markov chain Monte Carlo

to approximate the necessary expectations.

Instead, we follow Mnih and Gregor (2014) in formulating a variational lower bound on

the likelihood function using a recognition model. We start with the standard Evidence

Lower BOund (ELBO), which holds true for any distribution, q(Y |X):

L(θ, q) ≡ Ey∼q [logP (X, y; θ)− log q(y|X)] ≤ logP (X). (3.3)

In mean field variational inference, q is chosen to be a fully factorized distribution. In

this work, we restrict q to be the output of a parametrized model, with parameters φ. The

parametrized distribution q(y|X;φ) is referred to as a recognition model and its function is to

perform approximate inference in the network. The bound is tightest as q(Y |X) approaches

P (Y |X; θ), that is, as it approximates inference in the generative model. As learning proceeds,

the recognition model learns to compile inference.

In our work we use a simple recognition model that performs logistic regression to

approximate the posterior of each condition independently:

q(y|x;φ) =
∏

i

(
yiσ(φi · x) + (1− yi)(1− σ(φi · x))

)
, (3.4)

where σ is the sigmoid function, σ(x) = 1
1+e−x and x is padded with a 1 to allow for a bias term.
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In contrast with mean-field inference, where q is optimized for every data point separately,

here we train a single model, allowing us to amortize the cost of inference over many data

points. Methods to take gradients with respect to θ and φ and optimize with stochastic

gradient ascent are described in detail in Mnih and Gregor (2014). Our hyperparameter

settings are described in Appendix C.2. Using this algorithm enabled us to learn orders of

magnitude faster than EM, with comparable results in terms of likelihood objective obtained.

However, we found that without adding an additional term to the objective, the anchor

constraints (i.e., each anchor only has a single, specified parent) were not sufficient to make

sure that the latent variables took on their intended meanings. Specifically, we observed that

as the held-out likelihood of the observations improved, the predictive quality of the models

got worse (measured using the heldout tag prediction task of Section 3.5.1). Upon inspecting

the model, we found that drift occurred: the latent variables took on new meanings and lost

their original grounding.

Inspired by recent work on semi-supervised learning with deep generative models (Kingma

et al., 2014), our solution is to add a supervised term to the objective that encourages the

recognition model to additionally predict the presence or absence of the anchors, ensuring

that the meaning of the latent variable is tightly tied to the anchor. The prediction cannot

use the anchors themselves, so we form a new censored vector, x̃, which is a copy of x but has

the values of the anchors set to a constant 0. We also introduce an additional bias term φ′0 to

allow the prediction of the anchors and the labels to differ from each other. The supervised

term has the form:

R(φ, φ′0) = −`(σ(φ · x̃+ φ′0), a), (3.5)

where `(·, ·) is log loss and a is the vector of anchors. The final objective is thus:

maximize L(θ, φ) + λR(φ, φ′0), (3.6)
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where λ > 0 is a hyperparameter specifying the trade-off between these two terms in the

objective, and although we wrote Eq. 3.6 for a single data point, the actual objective we

optimize is the sum of this over all the data points. A more detailed version of the objective

is found in Appendix C.3.

At test time, we discard the recognition model, qφ, which was used to train the parameters

of the generative bipartite Bayesian network, but cannot support queries with conditioning on

some of the clinical variables, and use the joint probabilistic model, P (X, Y ; θ), for inference.

Inference in the joint model does not have an efficient closed form solution, but can be

approximated with Gibbs sampling.

The supervised term is similar to the “Anchor and Learn” objective described in the

previous chapter (Section 2.2), as it is trained to predict the anchor given all other features.

The additional bias term, φ′0, serves as a calibration term which is learned simultaneously. An

important difference is that here these classifiers are being used in the recognition network,

to perform approximate inference, but algorithm’s output is the generative model described

in Section 3.2.

3.4.2 Model initialization

In order to initialize the model, we use the anchors to get a rough estimate of the failure

probabilities for each of the observations. If we observed the latent clinical conditions (the Y

variables), we could use a simple moments-based estimator using empirical counts to estimate

the failure probabilities (Equation 3.7).

f̂i,j =
P̂ (Xj = 0|Yi = 1)

P̂ (Xj = 0|Yi = 0)
. (3.7)

The estimator f̂i,j is then clipped to lie between [0,1]. The consistency of the method

is not affected by this clipping, since if sufficient data were drawn from the model, the
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estimator would naturally lie in that range and clipping would not be necessary. Once all the

failure probabilities are estimated, the leak probabilities can be estimated to account for the

difference between the true observed counts and those predicted by the model (Appendix C.4).

Since the clinical conditions are generally unobserved, we estimate these conditional

probabilities using empirical counts assuming that the anchors (which are noisy versions of

the labels) are Y , and then perform a denoising step to estimate the conditional probabilities

as though the true labels were observed. Specifically, in Section 3.2.1 we assumed that the

label corruption process was independent of all other observed variables. This leads to the

following equation:

P (Xj|Ai) = P (Yi = 1|Ai)P (Xj|Yi = 1) + P (Yi = 0|Ai)P (Xj|Yi = 0) (3.8)

The left-hand side of this equation is a quantity that only involves observed variables

(Xj, Ai) and can be estimated from empirical counts. The right-hand side uses the noise

rates of the corruption process P (Yi|Ai) and the conditional probabilities that we care about,

P (Xj|Yi). If we assume that the noise rates of the corruption process are known, then we can

form four independent linear equations with four unknowns and solve the following matrix

equation:

~P (Xj|Ai) = R~P (Xj|Yi), (3.9)

where ~P (Xj|Ai) is a column vector with four entries, one for each setting of (Xj, Ai) in {0, 1}2.

R is a 4× 4 matrix encoding the noise rates of the corruption process. Explicit constructions

of these terms are given in Appendix C.5.

We could simply invert the noise matrix R to solve ~P (Xj|Yi) = R−1 ~P (Xj|Ai), however, it

would not be guaranteed that the solution would give a valid probability (i.e., non-negative

and sum-to-one conditions) for ~P (Xj|Yi). Instead, we explicitly solve the optimization
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problem with simplex constraints to minimize a KL-divergence measure between a proposed

distribution ~P (Xj|Yi) and the denoised version of the empirical counts P (Xj|Ai):

~P (Xj|Yi) = argmin
~p∈∆

DKL

(
~P (Xj|Ai)

∣∣∣
∣∣∣R~p
)

(3.10)

The optimization is convex and we solve it with exponentiated gradient descent (Kivinen

and Warmuth, 1995). The cleaned distribution, ~P (Xj|Yi), obtained from solving Equation 3.10

is then substituted into the failure probability estimator in Equation 3.7 to obtain estimates

of the failure and leak probabilities (regarding the leak probabilities, see Appendix C.4).

This whole procedure can be shown to be a consistent estimator, meaning that if the model

assumptions hold (i.e., of conditional independence), this will converge to the true probabilities

as the amount of data goes to infinity.

A more advanced version of this initialization is described in Chapter 6. In this chapter, we

also do not use the additional constraints to provide robust recovery described in Section 6.3.2,

though they could be applied directly in this setting. The model used in this chapter assumes

a product-distribution for the prior probability of the phenotypes (i.e., independent Bernoulli

variables). As such, there is no need for the subtracting off or conditioning procedures

described in Section 6.4.2.

The model for P (Y ) could be made more expressive. The optimization procedure described

in Section 3.4.1 makes no assumption of the independence of latent variables, so there is no

technical barrier to applying it to a model with a structured model for P (Y ) (e.g., the tree

structured Bayesian networks described in Chapter 6, an auto-regressive prior (Larochelle

and Murray, 2011), etc.), though finding a good local optimum may be more difficult with

more parameters.
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Algorithm 1 Parameter estimation algorithm

1: (Precondition) Identify anchors
2: Obtain cleaned moment estimates using anchors (Eq. 3.10)
3: Initialize θ0 using method of moments (Eq. 3.7).
4: Initialize φ0 randomly
5: NVIL optimization (Mnih and Gregor, 2014) of Eq. 3.6.
6: Discard φ and use joint model parametrized by θ.

3.4.3 Complete algorithm

The full parameter estimation algorithm is summarized in Algorithm 1.

3.4.4 Model selection

We do not assume that we have any ground truth labels to do model selection, so we

use a stopping criteria based on heldout anchor prediction. We hold out 1000 patients from

the train set as a validate set to determine the stopping criteria. For each patient in the

validate set, we censor one positive anchor that appears in the record and all of the negative

anchors, and perform inference with the joint model P (X, Y ; θ) to determine which anchor is

missing. Inference for the final anchor is performed with Gibbs sampling to obtain marginals

for the tags, and then the likelihood of each anchor is computed as a function of the marginal

likelihood of its parent tag (details in Appendix C.6). This model selection criterion mimics

the heldout-tag prediction task described in Section 3.5.1 used in the evaluation, but uses

anchors instead of the true labels. Other stopping criteria using anchors could be developed

depending on the intended use.

3.5 Evaluation framework

In this section, we describe the evaluation task and experimental framework used to assess

the joint modeling of phenotypes.
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3.5.1 Heldout phenotype prediction task

We test the ability of our model to perform inference with conditioning by presenting it

with a heldout phenotype prediction task. Conditioning occurs naturally in clinical practice

when the physician is given the ability to confirm or reject phenotypes suggested by the EMR

system. A phenotype “tagging” system is currently implemented at Beth Israel Deaconess

Medical Center’s emergency department’s electronic medical record system. Physicians,

during their ordinary clinical workflow, are presented with possible phenotypes for each

patient as part of their dashboard view (see figure 3.3). Accepting or rejecting a phenotype

updates recommendations through inference. Accepted phenotypes initiate changes to the

physician’s display, for example, displaying standardized order sets, enrollment in clinical

pathways, or other preprogrammed responses.

In the held out phenotype prediction task, the model is presented with a patient record

and all but one of the phenotypes that apply for that record. The task is to predict the

final phenotype that applies for this patient. We record the accuracy of each model (i.e.,

the proportion of times it chooses the correct phenotype to fill in), top-5 performance (i.e.,

proportion of times the correct phenotype appears in the top 5 predictions) and the mean-

reciprocal rank of the correct prediction (MRR). Since this task is choosing the best last

phenotype, we do not need to perform approximate inference. Instead we evaluate the

likelihood of the data with each possible final phenotype and perform the normalization,

which corresponds to exact inference (Appendix C.7).

The held out phenotype prediction task is clinically relevant in that can be used to combat

a recognized cognitive bias known as “search satisfaction error” (Groopman and Prichard,

2007). This cognitive bias, a failing of the Occam’s razor heuristic, is the tendency to overlook

additional conditions once a single unifying diagnosis is found. This is particularly dangerous

when a more serious diagnosis is overlooked because a unifying diagnosis was discovered first.
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Figure 3.3: Tagging system within an electronic medical record.

For example, a patient with signs of a severe infection may be diagnosed with urinary tract

infection and treated with antibiotics, while missing a second diagnosis of pneumonia. The

delay in treatment of the pneumonia could be potentially dangerous to the patient. Another

example is a patient with a kidney stone, whose co-existing urinary tract infection was missed.

Although kidney stones generally resolve on their own, patients who also have a concurrent

urinary tract infection require immediate intervention. Clinical decision support systems

can mitigate this cognitive bias by suggesting additional diagnoses that may explain a set

of symptoms. We simulate this problem by randomly removing a phenotype, and trying to

recover it using the model. This could correspond to a situation where the physician has

confirmed one diagnosis and the model attempts to suggest a likely second diagnosis that

would go along with the first. Since the model performs inference, this could potentially be

very different from the next most likely phenotype if the model received no confirmation of

the first phenotype.

3.5.2 Phenotypes

We chose to model 23 phenotypes relevant to the emergency department. These are a subset

of the phenotypes modeled in Halpern et al. (2016), chosen to have anchors which include

both ICD9 billing codes and another form of observation (either free text or medication).

The anchors are taken directly1 from Halpern et al. (2016). To simulate the anchor setting

while still having labels for evaluation, we use the ICD9 codes to represent an unobserved

“ground truth” for the purposes of this study and other data from the EMR (i.e., medications

1Available on github: https://github.com/clinicalml/clinical-anchors
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Phenotypes
abdominal pain acute alcohol acute allergic reaction acute
asthma-copd acute back pain acute cellulitis acute
cva acute epistaxis acute fall acute
gi bleed acute headache acute hematuria acute
intracranial hemorrhage acute kidney stone acute vehicle collision acute
pneumonia acute severe sepsis acute sexual assault acute
suicidal ideation acute syncope acute uti acute
liver history hiv history

Table 3.1: The full list of phenotypes included in the model. Acute conditions relate to the patient’s
current condition. History refers to the patient’s history.

and free text entries) are used for observations. While ICD9 codes are generally unreliable

for establishing gold-standard phenotypes (e.g., Cipparone et al., 2015; Tieder et al., 2011;

Birman-Deych et al., 2005; Aronsky et al., 2005), we consider them reliable enough to assess

relative performance of different methods which are trained using anchors. Table 3.1 gives

the full list of phenotypes that were modeled.

3.5.3 Cohort selection

The study was performed in a 55,000-visit/year level 1 trauma center and tertiary academic

teaching hospital. All consecutive emergency department (ED) patients between 2008 and

2013 were included. Records were de-identified and personal health information was removed

before beginning the analysis. Each record represents a single patient visit, leading to a total

of 273,174 records of emergency department patient visits. The study was approved by the

hospital’s institutional review board.

We focus on patients with at least two of the modeled phenotypes so that it is possible to

identify one condition and ask “what else might the patient have?” After filtering for patients

with at least two of the modeled conditions, we were left with 16,268 patients. Of these

patients, 11,000 were designated for training and 5,000 for testing. The final 268 patients

77



Field Representation
Age Binned to nearest decade
Sex M / F
Chief Complaint Free text
Triage Assessment Free text
MD comments Free text
Medication history GSN codes
Dispensed medications GSN codes
Billing codes ICD9 codes

Table 3.2: Features extracted . Billing codes were extracted to perform the evaluation, but were
not used to create the patient feature vector.

were not used.

3.5.4 Data extraction and feature selection

For each visit, we extracted data from the fields listed in Table 3.2 to build a binary

bag-of-words representation for every patient. Full details of the free-text processing pipeline

including negation and bigram detection can be found in Appendix C.1. For each condition,

we create an anchor token which appears if any of the condition’s anchors appears in the

note. Terms that appear in more than 50% of the patient records are removed as stopwords,

and the most common 1000 terms are kept. Any anchors that were filtered out in this step

are added back in, yielding a final feature vector with 1003 binary indicators.

3.5.5 Baselines

We compare against 3 different baselines. Since our proposed method assumes access to

the correct failure and leak parameters for the anchors, we provide that information to all of

the baselines for fairness.

1. Naive labels – treats the anchors as true labels and learns a noisy-or model with

maximum likelihood estimation. In the final model, we “edit” the failure and leak
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parameters of the anchors to set them to the correct values.

2. Noise tolerant classifiers – We use the method presented in Natarajan et al. (2013)

to learn noise-tolerant classifiers (explicitly providing the algorithm with the noise

rates). In experiments we found that this method was more effective than the method

of Elkan and Noto (2008), so we present this baseline to compare to the individual

classifiers learned in Halpern et al. (2014). The method of Natarajan et al. (2013) does

not explicitly describe how to predict when anchors are observed in the record. In

this case, we simply predict the noise rate of the anchor, which we found to be more

effective than ignoring the special status of the anchor.

3. Oracle MLE – An upper bound on performance which uses the true labels to learn a

a noisy-or model with maximum likelihood estimation. This is impractical in practice,

but gives us a sense of how close to optimal we are performing using our noisy labels.

3.6 Results

Table 3.3 presents our method compared with the baselines presented in Section 3.5.5.

‘Noisy-or init’ refers to the moments-based estimator described in Section 3.4.2, whereas

‘Noisy-or final’ refers to the results after the semi-supervised learning algorithm described in

Section 3.4.1. The results here use a λ parameter of 10. Other details of the hyperparameters

are in Appendix C.2.

The noisy-or model significantly outperforms the noise-tolerant classifiers and the naive

labeling baselines. Our performance comes close to the optimal maximum likelihood perfor-

mance, suggesting that even though we don’t use the true labels in training, we are still able

to recover a model which is similar to the one we would learn if we had access to the true

labels. The method of moments initialization is helpful. Using random initialization, we do
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Model Accuracy Top 5 MRR
Noise tolerant classifiers 0.54 0.86 0.67
Naive Labels 0.61 0.85 0.71
Noisy-or init 0.64 0.91 0.76
Noisy-or final 0.68 0.92 0.79
Noisy-or oracle MLE 0.71 0.93 0.81

Table 3.3: Results for last-tag prediction. Performance measures are Accuracy, Top-5 (correct
tag within the top 5) and MRR (mean reciprocal rank). Noisy-or init uses the model with
the θ0 parameters. Noisy-or final shows the result after likelihood optimization.

Tag Top weighted terms
abdominal pain pain, Ondansetron, nausea, days

alcohol male, sober, ed, admits, found, denies
asthma albuterol sulfate, sob, Methylprednisolone, cough

fall s/p fall, fall, fell, neg:loc, neg:head
hematuria infection, male, urology, urine, flank pain

HIV+ male, Truvada, cd4, age:40-50, Ritonavir
collision car, neg:loc, age:20-30, hit, neck, driver

Table 3.4: Highly weighted (low failure probability) words learned by the noisy-or model after
likelihood optimization. Words marked neg: are within a negation scope. Some shortforms
are present in the text (ed: emergency department, sob: shortness of breath, loc: loss of
consciousness, s/p: status post).

not beat the naive labels baseline. Table 3.4 shows the highly weighted words learned by

our model. All of the noisy-or models learn similar sets of highly weighted words, the main

differences between the models are in the exact settings of the parameters which affect the

inference procedure to choose the correct last tag.

3.7 Next steps and open questions

There are a number of limitations to this study. First, we used the ED ICD-9-CM

discharge diagnoses which may have misclassified patients. Patients may have been suspected

of having one diagnosis in the ED and ultimately may have had an alternative diagnosis.

As such, we can only assess relative performance of the various models, but cannot draw

80



conclusions about absolute accuracy.

This study occurred at a single institution with a custom built ED information system.

These results might not generalize to other systems that may not be modified to support

complete electronic capture of clinical data and customized decision support. While we

internally validated the results, external validation is warranted. It will be interesting to

discover whether the same algorithm may be applied to another institution, or whether

reliable machine learning requires first training on local clinical data.

Our held-out tag prediction task is a synthetic task intended to simulate real clinical

scenarios where some, but not all conditions are known about a patient. The evaluation is

performed using retrospective data. Further study would be needed to confirm these results

in real clinical practice.

We depend on estimates of the parameters of the corruption process to perform the

method-of-moments initialization in Section 3.4.2. This is a potential weakness of the

algorithm, though we are careful to consider baselines which can make use of the same

information. In this work we do not address how those parameters could be obtained and

rely on oracle estimates of these parameters. However, we expect that even by labeling a

small number of examples we could obtain good enough estimates of these parameters to

serve for the initialization. This question appears again in Chapter 6 and is discussed in more

detail in Section 8.1.1.

Diseases are not truly statistically independent of one another, despite our modeling

them as such in this chapter. As mentioned at the end of Section 3.4.2, the semi-supervised

objective applies equally to arbitrary prior distributions of the phenotypes. More elaborate

method-of-moment estimation techniques, such as those described in Chapter 6 can be used

together with anchors to learn the joint distribution of the conditions, even when they are

never observed in the data.

The feature set used in the experiments is fairly small (1000 features) and was chosen
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with a naive feature selection process. The result is that some rarer but highly informative

words were likely excluded. The feature set could be scaled up. Including more features may

require regularization in the generative network to ensure that rare features do not have undo

influence on inference tasks. Another factor for consideration would be whether violations

of the factor analysis assumptions (observations are conditionally independent given the

phenotypes) would accumulate and degrade the inference results as the feature set grows

larger.

The semi-supervised objective is a heuristic, meant to approximate P (anchor|x̃) using

the variational distribution. Are there ways of optimizing the this term more directly?

In our experiments we found that randomly initialized models did not outperform the

independent classifiers baseline while those initialized with method-of-moments achieved

the best performance (results not shown). Under what conditions can we learn effective

models starting from random initialization? What is the role of method-of-moments or other

initialization schemes in learning with recognition models?

In this work we use a very simple recognition model: independent logistic regression

classifiers. Inference could be better approximated using a multilayer or deep neural network,

though the variance in the gradients would need to be controlled. Would a better approxima-

tion of inference improve the learned models? More generally, can deep recognition models

be a useful tool for learning shallow graphical models (e.g., factor analysis or topic models)

using a recognition model for approximate inference?

It is important to note that the oracle results described in Section 3.5.5 are oracle results

for models within the model family of the anchored factor analysis models. Independent

logistic regression classifiers (one for each phenotype), actually perform better at the held-out

tag prediction task when provided with oracle access to the true values for the tags while

training. Oracle logistic regression classifiers have accuracy of 0.78 for the held out (compare

with 0.71 for oracle result in Table 3.3). Other, more expressive, fully supervised classifiers or
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generative models could potentially do even better. Thus, the comparison with oracle results

is to show what we can learn with anchors instead of fully labeled data within a single model

family, not to give an absolute upper limit on the possible performance on the task, which

could be higher.
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Chapter 4

Learning noisy-or networks with

singly-coupled observations

Acknowledgments: The work on learning with unknown structure was done jointly

with Yacine Jernite and David Sontag. Thanks to Rong Ge, Ankur Moitra and Sanjeev

Arora for helpful discussions. Thanks to Tomas Singliar for providing his code for variational

learning of noisy-or. The QMR Knowledge Base is provided by University of Pittsburgh

through the efforts of Frances Connell, Randolph A. Miller, and Gregory F. Cooper. Parts

of this chapter were previously published in: “Unsupervised learning of noisy-or Bayesian

networks. Halpern & Sontag. UAI 2013; “Discovering hidden variables in noisy-or networks

using quartet tests” Jernite, Halpern & Sontag. NIPS 2013.

4.1 Introduction

Chapter 3 used anchors to learn a joint generative model patterned after the historical

Quick Medical Reference - Decision Theoretic (QMR-DT) model (Miller et al., 1986; Shwe

et al., 1991). In this chapter we address the theoretical question of the polynomial learnability
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of this family of Bayesian networks (bipartite noisy-or factor analysis models), using a different

structural condition known as singly-coupled tuples.

We approach this analysis disconnected from any particular EMR phenotyping task,

though we note that this family of probabilistic models is interesting because it has been

used historically for medical diagnosis, which is closely related to phenotyping, and was used

in Chapter 3 in a practical EMR phenotyping system.

This analysis is complementary to the anchor-based approach. Some networks do not

have anchors for every latent variable, but do have singly-coupled tuples and vice versa.

Unlike anchors, which need to be identified by experts, and have their noise rates determined

through an auxiliary process, singly-coupled tuples do not require manual specification on the

part of experts, though expert knowledge can be used to improve both the computational

and statistical efficiency of the learning procedure.

The original QMR-DT network was designed to model the diagnostic reasoning relevant

in the practice of internal medicine, included the relationships between 570 diseases and

4075 symptoms. Its parameters and structure were specified by hand in a labor intensive

process that was estimated to take over 20 years of researcher time, eliciting probabilities

from experts and trusted textual sources such as journal articles (Shwe et al., 1991).

A natural question is whether it is possible to learn this type of network directly from

clinical data. The desirability of learning models for diagnosis directly from data was already

demonstrated in early work on computerized diagnosis models (Leaper et al., 1972), but

obtaining large-scale collections of medical records in a format suitable for computerized

analysis was not feasible until the recent widespread adoption of electronic medical records.

A second barrier to learning directly from data is the completeness of the medical record,

and particularly in the diagnoses. When diagnoses are completely observed, learning the

parameters of the network through maximum likelihood estimation is a concave optimization

problem which can be solved efficiently using standard gradient-based methods (Appendix D.2).
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However, many hospital visits are resolved without a conclusive list of diagnoses. The

diagnosis codes or problem list items recorded in the electronic medical record should not be

assumed to be complete, or fully reliable (Wright et al., 2012; Gandhi et al., 2011; O’malley

et al., 2005; Birman-Deych et al., 2005; Tieder et al., 2011). When the diagnoses are not

observed (latent variable setting), maximum likelihood estimation of the parameters is a

non-concave optimization and is conjectured to be worst-case NP-hard. This transition from

computational tractability of the maximum likelihood problem to worst-case intractability

when latent variables are introduced is a common phenomenon which is discussed in the

Introduction (Section 1.2.4).

This chapter addresses the following theoretical question regarding the QMR-DT network

and similarly structured diagnosis networks: Can the parameters and structure of a diagnosis

network be consistently estimated (to arbitrary accuracy) in polynomial time from observations

of symptoms, but not diseases?

The main tool used in this chapter to prove polynomial learnability is the method-of-

moments, pioneered by Pearson (Pearson, 1894). This method is discussed in more detail

in Section 1.2.5. This method works with aggregate statistics of the dataset, and avoids

performing (approximate) inference on individual data instances as is common in likelihood-

based methods (e.g., variational EM (Šingliar and Hauskrecht, 2006) or the stochastic

variational gradient ascent method described in Chapter 3).

The analyses presented in this chapter rely on the structural features of individual networks

(i.e., the presence of singly-coupled tuples). For this purpose, the historical QMR-DT network

will serve as an example of a real-life network that we would like to be able to learn. Unlike

previous chapters which analyzed algorithms on real datasets, the main contributions of this

chapter are theoretical and the experiments are performed on simulated datasets based on

the real QMR-DT network.
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4.1.1 Contributions

The chapter is divided into two sub-sections. The first addresses the question of parameter

learning when structure is known (e.g., learning the parameters of the QMR-DT network

after the structure had been specified). The second additionally addresses the question of

structure learning. For each setting, we make the following contributions:

• We give a set of sufficient structural conditions for polynomial learnability based on

singly-coupled tuples.

• We develop a provably correct polynomial-time method-of-moments algorithm based

on these sufficient conditions.

• We show empirically that the sufficient conditions for learnability almost hold in the case

of the QMR-DT network structure, meaning that the vast majority of its parameters

can be estimated consistently, leaving a small number of parameters unknown.

• We compare against a variational EM approach, and show that the method-of-moments

algorithm is both faster for large datasets, and provides consistent parameter estimates

in settings where variational EM does not.

• We introduce a stochastic variational inference algorithm that is also shown to be very

fast and effective for learning similar models.

4.2 Singly-coupled tuples in noisy-or diagnosis networks

The analyses in this chapter apply to noisy-or diagnosis networks with singly-coupled

tuples. We first define these terms and some notation, and identify a key property of singly-

coupled triplets. We will use the terminology of diseases and findings from the QMR-DT
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Diseases

Symptoms

Figure 4.1: The QMR-DT network is a Bayesian network for medical diagnosis. Latent
diseases are connected to observed symptoms through noisy-or edges.

network, but these models could be more generally applied to EMR phenotyping or more

general factor analysis.

4.2.1 Noisy-or diagnosis networks

The probabilistic graphical model for noisy-or diagnosis network is defined as follows:

G is a bipartite graph between diseases Y1, ..., Ym and observed findings X1, ..., Xn. Con-

ditional probabilities in the graph are parametrized as “noisy-or” gates (Pearl, 1988; Henrion,

1989):

P (Xj = 0|Y ) = (1− lj)
∏

i∈Pa(Xj)

f yii,j, (4.1)

where the parameters fi,j are referred to as failure probabilities and lj are leak probabilities.

More information about the noisy-or conditional probability distribution can be found in the

Introduction (Section 1.2.3). Diseases are marginally independent Bernoulli random variables:

P (Y = {y1, ..., ym}) =
∏

i

πyii (1− πi)1−yi . (4.2)
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Figure 4.2: Examples of singly and non-singly coupled triplets. (a,b) are singly coupled. (c,d)
are not singly coupled as they violate conditions 1 and 2 respectively.

4.2.2 Singly-coupled tuples

The main structural property that plays a key role in our learning algorithms is singly-

coupled tuples.

Definition 1. Singly-coupled tuple: A k-tuple of findings (X1, ..., Xk) is singly-coupled in a

bipartite noisy-or network G if the following conditions hold:

1. There is one parent that is common to all k findings.

2. There is no second parent that is shared by any pair of findings.

Examples of singly and non-singly coupled triplets are shown in Figure 4.2. Unlike

anchors which are linked by an edge to a single-latent variable, singly coupled tuples are

d-separated (Pearl, 1988) by a single latent variable. Both structural properties have the

effect that they link an unknown latent variable (e.g., a disease) to observed variables in a

way that allows us to uncover properties of the latent variable from the observed variables.

4.2.3 Parameter recovery with singly-coupled triplets

Singly-coupled triplets are interesting because of their connection to three-view mixture

models and canonical tensor decompositions. We begin by introducing the canonical tensor

decomposition and how it can be used to solve for parameters in the three-view mixture
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P(a,b,c)	=		P(X=0)P(a,b,c|X=0)	 	+		P(X=1)P(a,b,c|X=1)	

Canonical	tensor	decomposition	

X

A B C

3-view	mixture	model

Figure 4.3: The distribution of observations from a three view mixture model with a binary
hidden state Y can be decomposed into two rank-1 tensors.

model. Finally, we will show a simple reduction from parameter learning in mixture models

to singly-coupled triplets.

4.2.3.1 Canonical tensor decomposition and its relationship with mixture mod-

els

The canonical tensor decomposition, similar to the SVD for matrices, attempts to write a

tensor as a linear combination of rank-1 tensors. For example, for a 3-dimensional tensor T ,

the canonical decomposition is:

T =
K∑

i=1

λiui ⊗ vi ⊗ wi, (4.3)

where u, v, w are vectors. The minimal K for which this decomposition is possible is known

as the tensor-rank T .

Mixture models have a similar form (Figure 4.3). For example, a three-view mixture

model with discrete variables A,B,C and with a hidden class variable Y , taking K states, is

written as:

P (A,B,C) =
K∑

i=1

P (Y = i)P (A|Y = i)⊗ P (B|Y = i)⊗ P (C|Y = i). (4.4)
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We see then that solving the canonical decomposition with simplex constraints (i.e.,

finding λ, u, v, w ∈ ∆ for a given T ) corresponds to finding the components of a mixture

model. In general, finding the minimal rank canonical decomposition is computationally

intractable, and is not necessarily unique, but in settings where a 2× 2× 2 tensor is known to

be a joint distribution corresponding to a 2-state mixture model (i.e., A,B,C, Y are all binary

random variables), a unique decomposition exists and can be calculated efficiently (Lazarsfeld,

1950; Berge, 1991). The algorithm is presented in Algorithm 2.

4.2.3.2 Mixture models components and noisy-or parameters

From recovered mixture model components, it is easy to estimate the noisy-or parameters

of the model. Equations 4.5-4.8 show how to do that.

πi = γ (4.5)

fY,A =
P (A = 0|Y = 1)

P (A = 0|Y = 0)
(4.6)

fY,B =
P (B = 0|Y = 1)

P (B = 0|Y = 0)
(4.7)

fY,C =
P (C = 0|Y = 1)

P (C = 0|Y = 0)
. (4.8)

4.2.3.3 Singly-coupled triplets and mixture models

The final step in learning the parameters of singly-coupled triplets is to notice that

singly-coupled triplets are marginally mixture models, where the hidden state variable is

the coupling latent variable. The parameters associated with the other latent variables can

simply be treated as part of the leak variable and thus do not change the estimate of the

failure probabilities. Said differently, for any singly-coupled triplet, there exists an equivalent
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Algorithm 2 Binary Tensor Decomposition

Input: Tensor T of size 2× 2× 2.
Output: Two rank-1 tensors such that γT1 + (1− γ)T2 = T .

1: Matrix X1 = T(0,·,·)
2: Matrix X2 = T(1,·,·)
3: Y2 = X2X

−1
1

4: λ1, λ2 = roots(λ2 − Tr(Y2)λ+ Det(Y2))
5: ~u1~v

T
1 = (λ1 − λ2)−1(X2 − λ2X1)

6: ~u2~v
T
2 = −(λ1 − λ2)−1(X2 − λ1X1)

7: Decompose* ~u1~v
T
1 , ~u2~v

T
2 into ~u1, ~u2, ~v1, ~v2.

8: ~l1 =
(
1 λ1

)T
, ~l2 =

(
1 λ2

)T

9: T1 = ~u1 ⊗ ~v1 ⊗~l1, T2 = ~u2 ⊗ ~v2 ⊗~l2
10: if T1(0, 0, 0) > T2(0, 0, 0) then
11: Swap T1, T2

12: end if
13: γ =

∑
i,j,k T1

14: normalize T1 = T1

|T1| , T2 = T2

|T2|

*To decompose the 2 × 2 matrix ~u~vT into vectors ~u and ~v, set ~vT to the top row and

~uT =
(

1
(~u~vT )(2,2)

(~u~vT )(1,2)

)
.

–Notation T = ~u⊗ ~v ⊗~l means that T(i,j,k) = uivjlk. |T | =
∑

i,j,k |Ti,j,k|.

mixture model, where all of the parents other than the coupling parent have been marginalized

out. The failure probabilities associated with that mixture model are the same as the failure

probabilities associated with the original singly-coupled triplet.

4.2.3.4 Triplet moments are necessary

It is natural to ask whether a similar unique decomposition could be achieve by looking at

pairs of observations rather than triplets. It turns out that pairwise moments are insufficient for

identifiability, that is, there are multiple parameter settings that give rise to indistinguishable

pairwise moments. This insufficiency of pairwise moments has been noted already in Chang

(1996) and appears in detail with an example in Appendix G of Anandkumar et al. (2012c).

Without identifiability, we cannot hope to consistently recover parameters from pairwise

moments alone.
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4.3 Parameter recovery – known structure

The previous section gives us the tools to learn the noisy-or parameters associated with

variables in singly-coupled triplets. However, not all of the edges in a network are part of

singly-coupled triplets. For example, the QMR-DT network has 45,470 edges, but only 34,972

of the edges can be learned directly from singly-coupled triplets without additional steps.

In this section, we outline three main steps that can be performed when learning the

parameters of a diagnosis network, and show how to combine them to learn almost all of

the parameters in the QMR-DT network. Combined, these steps can be used to give a

constructive proof of both identifiability and polynomial time learnability.

4.3.1 Step 1: Parameter learning from singly-coupled triplets

As described in the previous section (Section 4.2.2), we can learn the failure parameters

and prior probabilities associated with edges that are part of a singly-coupled triplet.

4.3.2 Step 2: Extending a parent

Once a singly-coupled triplet is found, it can be used to learn all the parameters related

to the coupling parent. If two children (A,B) are a singly-coupled pair1 (with parent Yi), and

the prior probability of their parent is known, then we can determine the failure probability

between the parent and any other observation Xj. Computing the conditional pointwise

mutual information (CPMI) between A,B conditioned on Xj allows us to find the failure

probability of fi,j . The extending step thus allows us to learn parameters of all of the children

of Yi after finding one singly-coupled triplet. The intuition is as follows: conditioning on

Xj = 0 lowers the likelihood of Yi = 1, which in turn changes the mutual information between

1if (A,B,C) is a singly-coupled triplet with parent Yi then (A,B) is a singly coupled pair with the same
parent.
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A and B. The exact amount of change depends on the strength of the edges between Yi and

A,B and Xj. Since the parameters relating Yi to A,B have been previously estimated, we

can solve for the relationship with Xj.

First we define the pointwise mutual information (PMI) and then its conditional form:

CPMI(A,B) =
P (A,B)

P (A)P (B)
. (4.9)

CPMI(A,B|Xj) =
P (A,B|Xj)

P (A|Xj)P (B|Xj)
. (4.10)

Equations 4.11 and 4.12 show how conditional pointwise information can be used to

determine πi|X = P (Yi = 1|Xj = 0).

CPMI(A,B|Xj) =
(1− πi|Xj

+ πi|Xj
fi,Afi,B)

(1− πi|Xj
+ πi|Xj

fi,A)(1− πi|Xj
+ πi|Xj

fi,B)
(4.11)

All the parameters in this equation other than πi|Xj
have already been estimated since A,B

belong to a singly-coupled tuple. We can then solve for πi|Xj
as a root of a quadratic equation

(Derived in Appendix D.1.2).

πi|Xj
= Roots(f(x)) (4.12)
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where f(x) has the form:

f(x) = CPMI(A,B|X)(1− fi,A)(1− fi,B)x2

+ (CPMI(A,B|X)(fi,A + fi,B − 2)− (fi,Afi,B − 1))x

+ CPMI(A,B|X)− 1

There remains ambiguity over which root to pick, as f(x) can potentially have two real

roots. However, we show that one of the roots is always above 0.5 (see Appendix D.1.4). As

long as we assume that the true priors are below 0.5, the true value remains identifiable. The

final step is to use πi|Xj
to estimate fi,j (Derived in Appendix D.1.3).

fi,j =
(1− πi)
πi

πi|Xj

(1− πi|Xj
)

(4.13)

4.3.3 Step 3: Subtracting-off parents

Once all of the parameters associated with a latent variable Yi are estimated (i.e.,

its prior probability πi, and the failure probabilities to all of its children, fi,·, Yi can be

effectively removed from the network, potentially uncovering more singly-coupled triplets.

The subtracting-off step is based on the observation that the moments of observations in

a noisy-or network have a form in which each latent parent’s contribution can be isolated.

After transforming the moments to that form, it is possible to subtract off the influence of

parents whose parameters are known, leaving the observations as though that parent was not

part of the network at all.

In order to understand the mechanisms of subtracting off, it is important to distinguish

between two different representations of a distribution, which we call the tensor moment and

the negative moments.
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Definition 2. (Tensor moment) The tensor moment of observations X is the expectation of

the outer product of indicator vectors:

Ex
[
⊗j∈X exj

]
,

where e0 = [1, 0] and e1 = [0, 1].

Definition 3. (Negative moments) The negative moments of observations X is the expectation

that subsets of X are observed to be off simultaneously.

{Ex [1[S = 0]]}∀S⊂X .

For a tuple X with three variables, the tensor moment is a 2× 2× 2 tensor, while the

negative moments are a set of 7 values in the unit interval.

The subtracting step operates on negative moments. Let X be a set of observed variables

and let X denote the event where all members of X are observed to be off (i.e., X = 0).

Equation 4.14 gives the probability in terms of the model parameters Heckerman (1990).

P (X ) =
∏

i

(
1− πi + πi

∏

j∈X

fi,j

)
(4.14)

We call each of the parents’ terms its influence and use the notation I(Yi → X ) to denote

the influence of Yi on observations X .

I(Yi → X ) =

(
1− πi + πi

∏

j∈X

fi,j

)
(4.15)

Notably, for a parent Yi whose prior πi and whose failure probabilities fi,· have previously

been estimated, its influence can simply be divided out of Equation 4.14.

The subtracting-off step operates on negative moments, but the decomposition to recover
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P (0, b, c)

Figure 4.4: Transforming between tensor moments and negative moments

parameters from singly-coupled triplets requires tensor moments. This is not problematic

since a tensor moment can be transformed to negative moments through marginalization and

negative moments can be transformed to a tensor moment through the inclusion-exclusion

formula. Since these moments are bounded in size (tuples in this chapter do not exceed

quartets) none of these transformations are computationally expensive. To perform a

subtracting-off step, we transform the tensor moment to a negative moment, subtract-off the

relevant parents, and then transform back to tensor moment form (Figure 4.4).

4.3.4 Step 4: Repeat

Subtracting off a latent variable can uncover new singly-coupled triplets. We can then

repeat Steps 1-3 in a loop until there are no more singly-coupled triplets to learn (Figure 4.5).

At this point the algorithm terminates. There may still be some unlearned parameters, but

the parameters that are learned in this process are consistently estimated. Algorithm 3

presents the complete learning procedure for learning with known structure. If the algorithm

succeeds in learning all of the parameters of a network, then its parameters are learnable in

polynomial time. Note whether a network is fully learnable or not can be determined from

the network structure (by running Algorithm 3 without performing the parameter learning
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Figure 4.5: An example network to be learned. In the first step, we identify A,B,C as a
singly-coupled triplet, coupled by X and learn its parameters. In the second step, we use the
extend step to learn the edges from X to its other children (D,E, F ). In the third step, we
remove X from the network, using the subtracting off step to remove its influence from low
order moments. After subtracting off, Y has a singly coupled triplet (C,D, F ) and then we
repeat the cycle again.

step).

4.3.5 Algorithmic analysis

In this section we show that the termination of Algorithm 3 with no unlearned parameters

after a fixed number of iterations implies polynomial time learnability. The number of

iterations before termination is the depth of the network.

4.3.5.1 Computational complexity

We can run the algorithm on the graph structure first to determine which moments need

to be obtained from the data.

The outer loop of Algorithm 3 can be run at most n times, and each time it may have to
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Algorithm 3 Known structure

Input: Graph structure G, samples from the graph S
1: while There are parents that can be learned do
2: for Yi ∈ Conditions do
3: if Yi has a singly-coupled triplet, t then
4: Find blocking parents of t with respect to Yi, and subtract them off.
5: Learn parameters of Yi → t
6: Extend Yi
7: Schedule Yi for removal
8: end if
9: end for

10: Remove all learned parents from G
11: end while

*Blocking parents of a triplet with respect to Yi are parents (other than Yi) that appear in
the original graph and link to at least two members of the triplet.

search over O(m3) triplets to find a singly-coupled triplet. Extending the parent could involve

iterating over m more children. Once a parent is learned, its influence can be subtracted off

from each triplet containing its children, potentially adding another m3 operations.

The complexity of this part is then: O(nm3).

Let N be the number of samples required to reach the desired accuracy. Reading the data

requires at most O(Nmn) updates to triplet moment counters since every edge requires only

one singly-coupled triplet to estimate its parameters.

Thus, the final computational complexity is O(nm3 +Nmn).

4.3.5.2 Statistical complexity

Finally, we show that the number of samples required to learn the parameters of the

network to arbitrary accuracy scales polynomially. Theorem 1 formalizes the consistency and

finite sample complexity of the learning procedure as a function of the depth and bounds on

the parameters and marginals of the model.

Theorem 1 (Learning with known structure). Suppose a network with n latent parents and m
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observed variables is triplet-learnable at depth d. Let M0 be the minimum marginal probability

of an observation being off and let πmax ≤ 0.5, πmin be bounds on the prior probabilities, fmax,

fmin be bounds on the failures and lmax be an upper bound on the leak parameters. The

additive error on any of the parameters, ε is bounded with probability 1− δ by:

ε(N) = O







nM6
0

√
ln(2m

δ
)

f 18
min(1− fmax)6l28

maxπ
13
min

1√
N




2d

 (4.16)

The proof to Theorem 1 is found in Appendix D.5. Algorithm 3 is a polynomial time

algorithm that can achieve arbitrary accuracy in recovering the parameters of the network,

thus it forms a constructive proof of polynomial time learnability for noisy-or networks with

fixed depth.

4.4 Structure learning – discovering latent variables

Section 4.3 assumes that the complete structure of the Bayesian network is available and

that all that remains to be learned are the parameters. This may be a reasonable setting for

diagnosis networks where the latent variables are diseases and the observations are symptoms,

since the relationships between diseases and symptoms (i.e., can disease A cause symptom

B) are fairly well known. However, for more general EMR phenotyping tasks, where the

phenotypes may be more broadly defined and the observations can be general features derived

from unstructured fields of the EMR (e.g., unigrams or bigrams), it is much harder to specify

the full graph structure connecting phenotypes and features.

In order to apply the algorithm described in Section 4.3 to the more general setting where

the structure is not known in advance, the key step is to identify singly-coupled observations

directly from data. We describe two methods of identifying singly-coupled observations from

quartets, and use them to build a structure learning algorithm. The definitions of triplet
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Figure 4.6: Two networks with the same moments matrix using parameters: pX = 0.2,
pX = 0.3, pZ = 0.37. fX = (0.1, 0.2, 0.3), fY = (0.6, 0.4, 0.5), fZ = (0.28, 0.23, 0.33). One
is singly-coupled, the other is not. High precision values for these parameters are given in
Appendix D.9,

learnability, and depth of a network from Section 4.3 transfer directly to the quartet setting

as well. As in the previous section, the algorithms are presented as though perfect data is

available (infinite data drawn from a distribution within the model family). The statistical

complexity presented in Section 4.4.2 accounts for the noise introduced by observing a finite

amount of data. Proofs of the correctness of the tests and the theorems in this section can

be found in Appendix D.6 .

4.4.1 Identifying singly-coupled tuples

Although the parameters of a singly-coupled triplet can be identified from its data

distribution, a non-intuitive result is that deciding whether a triplet is singly-coupled from

data is not possible. Figure 4.6 gives an example of two networks that cannot be distinguished

and Appendix D.9 gives more detailed information. One way to understand this non-

identifiability is through the result of Kruskal (1989) that even though the maximal rank

of a 2× 2× 2 tensor is 3, the set of rank-2 tensors has non-zero volume, and in fact most

2× 2× 2 tensors have a rank-2 decomposition.

While singly-coupled triplets are not identifiable from data, it turns out that singly-coupled

quartets are. Two methods are available to determine whether a quartet is singly coupled: a

rank test, and a coherence test.
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Figure 4.7: Schematic of the unfolded rank test. Samples are used to form a 2× 2× 2× 2
tensor, which is unfolded to perform the unfolded rank test.

4.4.1.1 Rank test

The rank test consists of two sub-tests.

The first sub-test, compares pointwise information (PMI(A,B) see Equation 4.9) and

pointwise mutual information (CPMI(A,B,C) see Equation 4.9) for all ordered triplets (A,B,C)

(line 2 of Algorithm 4). If the CPMI is lower than the PMI for all ordered triplets (A,B,C),

there is at least one joint parent that is common to all of the members of the quartet.

The second, unfolded rank test checks whether the unfolded rank is less than or equal to

2. If it is, the quartet has no more than one parent (line 6 of Algorithm 4). This process is

illustrated in Figure 4.7.

A positive result from both sub-tests implies that the quartet is singly-coupled and a

negative result implies that it is not, giving a reliable method for testing whether a quartet is

singly-coupled. Lemma 1 gives the formal properties of the rank test and its pseudocode is

presented in Algorithm 4.

Lemma 1 (Rank test). For an ε-rank-testable model, let (A,B,C,D) be a quartet of observed

variables. The following two conditions hold iff (A,B,C,D) is a singly-coupled quartet:

1. The third eigenvalue of all 4× 4 unfoldings of the 2× 2× 2× 2 tensor moment is less

than ε

2. For all ordered triplets {A′, B′, C ′} ⊂ {A,B,C,D}, CPMI(A′, B′|C ′) ≤ PMI(A′, B′).

102



Algorithm 4 Rank Test

Input: quartet (a, b, c, d), thresholds τe, τr
for triplet (x, y, z) in (a, b, c, d) do

Test CPMI(x, y) ≤ PMI(x, y|z)− τe
end for
Ta,b,c,d = fourth order tensor moment of (a, b, c, d)
for unfolded matrices Mi of Ta,b,c,d do

Test third eigenvalue of Mi ≤ τr
end for
if all tests pass then

Return True
else

Return False
end if

The unfolded rank test allows us to determine whether a candidate quartet is singly

coupled by testing that the third eigenvalues of the unfolded matrices are strictly greater than

0. However, for the algorithm to be practical with finite data, we need a slightly stronger

formalization of the property, which we call ε-rank-testability:

Definition 4. We say that a model is ε-rank-testable if for any quartet {a, b, c, d} that share

a parent Yi and are not singly-coupled, the unfolded rank test gives a value greater than ε.

Rank testability holds for all but a very small number of parameter settings. For randomly

drawn parameters, with probability one there is an ε such that the model is ε-rank-testable

(since the determinant of the unfolded matrices is a polynomial function of the parameters

of the model, its roots form a zero measure set). This remains true even if all of the failure

probabilities are constrained to be equal.

Even though rank testability holds with probability 1, that does not give much information

on the more practical notion of ε-rank. Figure 4.8, however provides an approximation of

the probability density function of the third eigenvalue of the moments matrix of a noisy-or

network whose parameters are drawn from a uniform distribution.
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Figure 4.8: Probability distribution of the third eigenvalue for a quartet with coupling
parents, when all parameters are drawn uniformly at random. Blue: two parents, same
failure probabilities. Green: three parents, same failure probabilities. Red: two parents,
different failure probabilities. Black: three parents, different failure probabilities. This plot
illustrates that rank testability only gets easier for random parameters compared to the
uniform parameter setting used in the experiments.

4.4.1.2 Coherence test

The coherence test checks whether the fourth-order tensor moment could have come

from a singly-coupled quartet by breaking the quartet down into triplets and learning the

parameters as though the triplets are singly coupled. The parameters from each triplet are

then combined to build a model that contains all four children, and checks whether the

observed fourth-order tensor moment matches the moment predicted by the model to within

a tight tolerance ε. Similar to the rank test, this test returns true if and only if the quartet is

singly coupled. Lemma 2 gives the formal properties of the coherence test and its pseudocode

is presented in Algorithm 5.

Lemma 2 (Coherence test). For an ε-rank-testable model and a quartet of observed variables,

(A,B,C,D). Let TR represent the reconstructed fourth-order tensor moment and T the
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Algorithm 5 Coherence Test

Input: quartet (a, b, c, d), threshold τ
for T in {Ta,b,c, Ta,b,d, Ta,c,d, Tb,c,d} do

Estimate failures, priors and noise from T
end for
θ = Average multiple estimates for each parameter
Tθ = p(a, b, c, d; θ)
Ta,b,c,d = fourth order tensor moment of (a, b, c, d)
return |Ta,b,c,d − Tθ|∞ ≤ τ

empirical fourth order tensor moment, we have:

||TR − T ||∞ >
( ε

8

)4

iff (A,B,C,D) are singly coupled. (4.17)

This can be proved using a result on eigenvalue perturbation from Elsner (1985) for an

unfolding of the moments’ tensor.

4.4.2 Algorithm and analysis

The complete structure learning algorithm is similar to the algorithm developed in the

previous section for the known-structure setting (Algorithm 3), but replaces the structural

test for singly-coupled triplets with an empirical test for singly coupled quartets.

Computational complexity Algorithm 6 runs in O(n2m5 +Nm4). This is markedly

higher than the O(nm3 + Nmn) complexity of the known-structure setting, particularly

because every fourth order tensor moment is formed, requiring O(Nm4) data accesses. This

complexity can be reduced in practice by only considering quartets whose constituent triplets

have high conditional pointwise mutual information (i.e., pass the second sub-test of the rank

test in Section 4.4.1.1), though the worst-case analysis is unchanged.
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Algorithm 6 Structure learning

1: Parents = ∅
2: while There are parents that can be learned do
3: for quartet q in X do
4: T = fourth order tensor moment
5: Subtract off learned parents from T
6: if q is singly-coupled* then
7: Learn parameters Ynew → q
8: Extend Ynew

9: Parents = Parents ∪ Ynew

10: end if
11: end for
12: end while

*Testing whether a quartet is singly-coupled can be done with the Rank test (Alg. 4) or the
Coherence test (Alg. 5) on the tensor moment T .

Statistical complexity Theorem 2 formalizes the statistical complexity of the struc-

ture learning algorithm described in this section (Proof in Appendix D.6 ).

Theorem 2 (Learning with unknown structure). Suppose a network with n latent variables

and m observed variables is quartet-learnable at depth d and is ζ-rank-testable. Let M0 be the

minimum marginal probability of an observation being off; πmax ≤ 0.5, πmin be bounds on the

prior probabilities; fmax, and fmin be bounds on the failures and lmax be an upper bound on

the leak probabilities. Its structure can be learned with probability (1− δ) with NS samples,

where:

NS = O
(( nM6

0

f 18
min(1− fmax)6l28

maxp
13
min

)2d

×max
( 1

ζ8
,

1

l8maxp
2
min(1− fmax)8

)
ln
(2m

δ

))
(4.18)

Corollary 1 (Parameter error). For the network described in Theorem 2 and N samples

where N ≥ NS, the parameter error in the learned network is bounded with high probability
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by:

ε(N) = O


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2d

 (4.19)

Corollary 1 is a direct application of Theorem 1 with the number of samples required to

learn the structure from Theorem 2.

4.5 Experiments

In this section, we compare the method of moments algorithms for learning with known-

structure and unknown structure against the variational baselines on synthetic data. We

analyze the structure of the QMR-DT network to determine whether it is learnable with

triplets and quartets, and show empirically that many of its parameters can be accurately

recovered with a reasonable amount of data.

4.5.1 Parameter recovery in simple networks

We test the method described in Section 4.3 at recovering the parameters of a simple

network. Samples are drawn from 64 different networks with the structure shown in Figure 4.9,

the simplest structure which requires the subtracting-off step described in Section 4.3.3. Each

network instance has failure and prior probabilities drawn uniformly at random between

[0.2, 0.8]. Leak probabilities are all set to lj = 0.01. We compare against exact and variational

EM. Figure 4.10 shows the L1 parameter error of the different methods after convergence

and a timing comparison between our method-of-moments algorithm and the variational EM

algorithms. Exact EM requires exact inference which is intractable for all but the simplest

networks.

Even in the simple network setting, variational EM is not a consistent estimator. Even

with a large number of samples, its L1 error in parameter estimation does not go below a
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X4X2 X3X0 X1

Figure 4.9: Simple network used in synthetic experiments. To learn, first estimate the
parameters of Y0 using the singly-coupled triplet {X0, X1, X2}, then learn Y1 whose children
are singly-coupled after subtracting off Y0.

naive strategy of estimating 0.5 for every parameter. Variational EM performs variational

inference as an inner-loop of learning, making it scale slowly with the size of the dataset. The

method of moments algorithm reads in the whole dataset once, but then works on aggregate

statistics, making the dependence on the size of the dataset less pronounced.

4.5.2 Learning with unknown structure – synthetic images

We test the method described in Section 4.4 at recovering the latent structure of a dataset

on a synthetic image dataset from Šingliar and Hauskrecht (2006). Each pixel in an 8× 8

image patch is an observed binary variable. Each latent variable connects to the pixels in a

different pattern. Figure 4.11 shows the patterns that were used and representative samples

from the model. Each source was given a 0.25 prior probability, all edges were given a failure

probability of 0.2 and a leak probability of 0.01. The structure learning task is to recover the

sources from their noisy combinations.

The resulting network is quartet learnable, and requires subtracting-off in order to learn

the first and final sources in Figure 4.11.
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Figure 4.10: (left) Parameter error (L1) for the simple network as a function of number of
samples. The uniform strategy estimates 0.5 for every failure probability. (right) comparison
of running time between variational learning and method of moments.
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Figure 4.11: (Top row) Synthetic image “sources”. The first and last sources (rhombus and
filled square) cannot be learned without subtracting off the other sources. (Bottom row)
Samples drawn from the network.

Since evaluating the likelihood of noisy-or networks is computationally intractable, we

use the error in pairwise mutual information (Equation 4.9) to determine hyperparameters

(i.e. rank test or coherence test and the values of the thresholds).

Figures 4.12 shows the recovered sources as a function of the number of samples. For

comparison, we also show (Figure 4.13) the sources learned by variational EM (Šingliar and

Hauskrecht, 2006) and variational stochastic gradient ascent with a recognition model from

Chapter 3 (Figure 4.14). The stochastic gradient ascent method is used here without the

semi-supervised objective described in Chapter 3 as that objective is specific to the anchored

setting. Both of the baseline models require that the number of sources be set in advance, so

we learn separate models with 8, 12, and 16 sources.

With 1000 samples, the method of moments is able to perfectly recover the structure of

the sources in approximately 4 minutes using 8 processes on AMD-based Dell R815 machine

with 64 cores and 256GB RAM. The 6 sources that are learned without subtracting off are

already discovered with 500 samples. The variational EM approach is not able to perfectly

recover the sources, even with 10000 samples and 8 random restarts, giving each restart one

hour to run. The stochastic variational gradient ascent approach is surprisingly effective,

learning to recover the sources with only 200 samples and 8 random restarts, giving each

restart only 5 minutes to run. Providing the stochastic variational gradient ascent method

with extra sources during learning (the third setting in Figure 4.14) is essential to its good

performance, allowing the model to avoid poor local optima; the final learned model uses the

correct number of sources (additional sources have priors very close to 0 by the end of the
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Figure 4.12: Recovery of the synthetic images using the proposed quartet test method for
structure learning and parameter estimation. Each row represents sources learned from a
different number of sources. The shaded box underneath each source represents the prior
probability that the model assigns to that source.

optimization procedure).

4.5.3 Learnability of QMR-DT

In this section we assess how much of the QMR-DT network could we learn in the

parameter learning setting where the structure is known, and the structure learning setting

where it is not known in advance. Table 4.1 describes the triplet and quartet learnability of

the QMR-DT network using the algorithms from Section 4.3 and 4.4.

Approximately 95% of the parameters in the known structure setting and 87% in the

unknown structure setting can be learned without any subtracting off at all. The surprising

result is that almost all of the QMR-DT network can be learned using singly coupled triplets

or quartets, suggesting that the sufficient conditions for learnability described in Sections 4.3

and 4.4 include a non-trivial set of networks. The 122 edges that cannot be learned in the

known structure setting (marked as depth=inf in Table 4.1) belong to two diseases in the
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Figure 4.13: Recovery of the synthetic images using variational EM with 8 random restarts
and allowing for 8, 12, and 16 sources. Each row represents sources learned from a different
number of sources. The shaded box underneath each source represents the prior probability
that the model assigns to that source. None of the runs in the last row with 8 sources
(N=10000) finished in the allotted 1 hour time limit.
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Figure 4.14: Recovery of the synthetic images using variational stochastic gradient ascent
with 8 random restarts and allowing for 8, 12, and 16 sources. Each row represents sources
learned from a different number of sources. The shaded box underneath each source represents
the prior probability that the model assigns to that source. Training was run for 5 minutes.
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triplets (known structure) quartets (unknown structure)

depth diseases processed edges learned diseases discovered edges learned

0 527 43,139 469 39,522
1 39 2,109 82 4,875
2 2 100 13 789
3 0 0 2 86

inf 2 122 4 198

Table 4.1: Learnability of the QMR-DT network. Diseases and edges learned at lower depth
are learned with higher precision.

QMR-DT network, each with 62 children symptoms, that so densely overlap that 61 of the

children are shared between the two diseases (DX134 and DX472 of the anonymized QMR-DT

network). In the unknown structure setting, where quartets are required instead of triplets,

all but four of the diseases can be discovered and their parameters learned.

4.5.4 Empirical statistical complexity

To show the empirical statistical complexity of the learning procedure, we plot the error

in the failure probabilities estimated in the known structure setting, as a function of the

number of samples, and stratified by the depth at which the parameters are learned. Samples

are drawn from the anonymized QMR-DT network using the parameter settings described

in Morris (2001). Figure 4.15 shows the results.

The sample complexity bounds are quite loose as most of the parameters (i.e., those learned

without subtracting off) can be estimated to within 0.05 of the correct failure probability

using 1 million synthetic samples. This is a reasonable scale for a large collection of medical

records. For comparison, the emergency department dataset from Beth Israel Deaconess

Medical Center (Chapters 2 and 3) has at least 200,000 patient visits collected over five

years. The edges learned at a higher depth do show a loss in accuracy, as expected from the

effects of the subtracting off step, but they become increasingly more accurate as the amount
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Figure 4.15: Mean parameter error (L1) in the failure estimates of the QMR-DT network
as a function of the number of synthetic samples to learn from. Each line represents edges
learned at a different depth (defined in Section 4.3.5).

of data increases.

4.6 Related work

Tensor decompositions have been used for proving global identifiability and learning in

latent variable models (Lazarsfeld, 1950; Chang, 1996; Allman et al., 2009; Anandkumar

et al., 2014b). The orthogonal tensor decompositions that are used to recover parameters in a

variety of latent variable models where the low order moments have a multi-linear form (e.g.,

Anandkumar et al., 2012b,c, 2013a,b, 2014a,b) do not apply to noisy-or networks. Instead of

using a single decomposition to determine all of the parameters at once, we find small parts

of the network whose parameters can be learned through tensor decomposition and build up

a collection of parameters until we cannot learn anymore.

For binary data, tetrachoric correlations can be used to reduce the learning problem to

the traditional linear-Gaussian setting (Christoffersson, 1975). Martin and VanLehn (1995)
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greedily introduce latent factors that cover the dependencies on which they are most certain

as a method to learn noisy-or factor analysis models. Kearns and Mansour (1998) describe a

family of noisy-or networks that are learnable from data in polynomial time, but are limited

to networks where the prior probabilities of each latent variable are equal, the in-degree of

every observation is bounded by a constant, and the failure probabilities come from a finite

set that can be enumerated. Exact inference in noisy-or networks is NP-hard (Cooper, 1987).

Šingliar and Hauskrecht (2006) uses noisy-or networks for exploratory factor analysis using

the variational approximation to inference from Jaakkola and Jordan (1999) within EM, but

it does not have consistency guarantees and is susceptible to finding poor local optima. This

approach is used as a baseline in Section 4.5. Wood et al. (2006) and Courville et al. (2009)

use Markov chain Monte Carlo approaches to parameter estimation, but these methods do not

provide consistency guarantees for parameter recovery. In contrast, the method-of-moments

approach is both consistent and globally optimizable.

Previous work has used structural signatures similar to the singly-coupled quartet setting

for structure learning of Bayesian networks. Elidan et al. (2001) uses semi-cliques to infer the

presence of latent variables in a heuristic manner. Silva et al. (2006) gives quartet conditions

under which the presence of a latent variable can be determined in linear models. Pearl

and Tarsi (1986) and Ishteva et al. (2013) use similar fourth order tests to learn latent tree

structures. Chaganty and Liang (2014) use singly-coupled triplets to recover parameters in

more general graphs, but do not address the question of structure learning.

Steinhardt and Liang (2016) use the singly-coupled triplet assumption for unsupervised risk

estimation to determine the performance characteristics of a classifier on a new distribution

where the singly-coupled condition is assumed to hold.
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4.7 Conclusions

We develop new polynomial time algorithms with provable guarantees for parameter and

structure learning in noisy-or diagnosis networks that depend on singly-coupled triplets or

quartets. We demonstrate the speed and accuracy of the parameter and structure estimates

on synthetic data. The new method outperforms variational EM and is comparable to the

stochastic variational gradient ascent method described in Chapter 3 for parameters that

can be learned without using the subtracting off step. The subtracting off step severely

reduces the statistical efficiency of the method, but real-life networks like the QMR-DT

network (Shwe et al., 1991) only require a small number of subtraction steps to learn almost

all of the parameters of the model.

4.8 Next steps and open questions

The method-of-moments approach is exciting in that it can provide provable polyno-

mial time algorithms with provable guarantees, though many open questions remain for

consideration.

4.8.1 Necessary conditions for learnability

The learning algorithms presented in this chapter present sufficient conditions for learn-

ability, but do not address the polynomial time learnability of networks that do not have

singly-coupled triplets (or quartets).

One avenue of exploration is understanding the identifiability of networks that are not

triplet or quartet learnable. If a network is not identifiable, then it is impossible to recover

its parameters uniquely from data. If it is identifiable, then there is hope that a polynomial

time recovery algorithm exists. Testing global identifiability is difficult, but Hsu et al. (2012)
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Figure 4.16: (left) Empirical identifiability for n×m complete bipartite graphs. The values
in the cells reflect the order of moments required to obtain identifiability. -1 denotes that
model is unidentifiable no matter what order of moments are used. (right) Identifiability in
random graphs with 2 parents and 6 children as a function of the edge likelihood, p. The
singly-coupled method uses Algorithm 3 to test identifiability.

describes the Check-Identifiability routine to check the weaker local identifiability of a network

given its structure. We next present some results using that routine to show that there is

still a gap between what we know how to learn and what we know is non-identifiable:

Fully-connect bipartite graphs Figure 4.16 shows the order of moments required

for local identifiability on fully connected n ×m bipartite graphs. Although there are no

singly-coupled tuples in a fully connected graph, many of them are locally identifiable from

low-order moments, suggesting that other efficient learning algorithms could exist.

Random graphs Figure 4.16 shows the results of the Check-Identifiability routine,

and tests learnability with singly-coupled triplets on 2× 6 bipartite random graphs where

each edge is present or absent with likelihood p. The Check-Identifiability routine finds

local identifiability even in dense graphs, whereas the singly-coupled triplets works only in

mid-range levels of sparsity, as singly-coupled triplets do not occur if the graph is too sparse

or too dense.

Can polynomial-time learning algorithms (e.g., up to label switching) be formulated for

all models which are identifiable?
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4.8.2 Similar analyses of other parametrizations

Noisy-or is similar to single-layer sigmoid belief networks, with a small difference in the

normalization. This difference makes the subtracting-off step difficult, but the rest of the

analysis can be applied to single-layer sigmoid networks as well. Extending to deep networks

is more challenging. Similar learning approaches has been applied to latent tree models (Pearl

and Tarsi, 1986; Anandkumar et al., 2011; Ishteva et al., 2013) but finding ways to apply to

deep networks with higher connectivity is an open problem.

For linear Gaussian models, finding singly coupled quartets from data (Silva et al., 2006),

learning with singly-coupled triplets and subtracting-off (from the covariance matrix) all

apply. The extending step is more difficult to formulate with continuous variables.

4.8.3 Learnability for likelihood-based approaches

Can the singly-coupled conditions tell us anything about the learnability of models using

likelihood-based optimization? Are models that have singly-coupled tuples inherently “easy”

to learn, even for likelihood-based methods? We find that variational stochastic gradient

ascent with a recognition model is able to perfectly recover the structure and parameters

in the synthetic image dataset (Section 4.5.2), but variational EM is not. Both approaches

optimize a non-concave objective, but stochastic gradient ascent has more ability to get

out of shallow local optima. Can we characterize the local optima of the objective when

singly-coupled tuples are present to show that these networks are easier to learn?

4.8.4 Subtracting off and dependence on depth

The subtracting-off procedure introduces parameter error that compounds exponentially

in the depth. Is there another way of estimating these parameters while controlling the

parameter error that comes from the subtracting off step? Similar to the previous question,
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we can ask if this dependence on depth fundamental is and whether the networks that require

many subtracting-off steps are hard to learn? Or, is this specific to the particular algorithm

that we chose?

4.8.5 Synthesizing multiple parameter estimates

Each failure probability may be estimatable from multiple singly-coupled triplets. What

is the best way to combine those parameter estimates? Naive averaging and bootstrapping

confidence intervals give a small improvement over random choice, but there may be better

ways of performing the tensor decompositions jointly to obtain better parameter estimates

all around.

4.8.6 Robustness to model error and applications to real data

The presentation of this chapter relies on the assumption that the data is drawn from the

model family (or very close to it, so that the error due to misspecification is close to statistical

error). What happens when the data is drawn from real distributions which are more complex

than the parametric form? Ensuring robustness of method-of-moments algorithms is a general

open question. Recent works have considered constrained optimization and projection as

a general technique for increasing robustness (e.g., Shaban et al., 2015; Cohen et al., 2013;

Duchi et al., 2008; Lee et al., 2015; Halpern et al., 2015; Arora et al., 2013). In this work,

each tensor decomposition is solved disjointly and it is not obvious where and how to apply

meaningful constraints or projections.

4.8.6.1 Discovering new phenotypes

Most of the work in this thesis assumes that there is a pre-existing collection of phenotypes

of interest. This makes sense in some specialties (e.g., cardiology) where the set of phenotypes
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are well understood . In other specialties (e.g., psychiatry), there is still active debate about

the definitions of disorder phenotypes. For infectious diseases, there is always the potential

that a new disease could arise through mutation or changing environmental factors.

The structure learning algorithm in this chapter raises the possibility of discovering

new phenotypes. This could be done by first subtracting off the effects of already known

phenotypes, and then learning from the residual distribution. The ability to discover new

phenotypes could contribute towards our understanding of medicine, and serve as an early

detection system for disease outbreaks. More broadly, the structure learning algorithm could

be a new data science tool for performing factor analysis with discrete data.
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Chapter 5

Learning a health knowledge graph

from electronic medical records

Acknowledgments This work was joint with Maya Rotmensch, Abdul Tlimat, Steve

Horng, and David Sontag. Thanks to Google for providing their health knowledge graph for

the evaluation.

5.1 Introduction

Automated tools to support medical diagnostic reasoning are used by patients seeking

information about their symptoms (Gann, 2011; Paparrizos et al., 2016; Tang and Ng, 2006;

White and Horvitz, 2009), as well as by clinicians when faced with a difficult case or to avoid

prematurely focusing on a small number of potential diagnoses (Groopman and Prichard,

2007). Considerable effort has been put into building diagnostic reasoning systems and

encoding relevant information into accurate knowledge bases (Barnett et al., 1987; Bisson

et al., 2014; Lally et al., 2014; Ramnarayan et al., 2004; Shwe et al., 1991). These models

showed significant success in improving didactic practices (Miller and Masarie Jr, 1989; Warner
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et al., 1988), assisting with diagnosis (Barnett et al., 1987; Bisson et al., 2014; Ramnarayan

et al., 2004; Van Melle, 1978; Miller, 1994), and at times even outperforming experienced

doctors (De Dombal et al., 1972).

Previous chapters of this thesis focused on building models using general features from

electronic medical records including free text features, medications and lab results. In those

chapters, the inference task was emphasized, and the learned features were associated with

medical conditions, but not necessarily caused by them. For example, the models in Chapter 3

(Table 3.4) list the following features as relevant: “albuterol sulfate” for asthma (a treatment);

“sober” for alcoholism (relevant history); “urology” for hematuria (specialty). While these

associated features are helpful for inference in the setting where they are learned (i.e., in

hospital with trained professionals taking history and writing notes), they are not able to

provide information in more abstract settings like self triage from a list of symptoms or

providing information about a disease.

In this chapter, we present a scalable method for learning knowledge bases from electronic

medical record (EMR) data. We address the question: “Can EMRs serve as a source

for discovering generalizable medical knowledge?” by attempting to uncover scientifically

meaningful, causal relationships between diseases and symptoms. The discovered relationships

are formally assessed by comparing them with the opinions of domain experts in both a

specialist (emergency department) and generalist setting.

Historically, the knowledge bases used by diagnostic reasoning systems were specified

manually, requiring tremendous amounts of expert time and effort. For example, it was

estimated that about twenty person-years were spent building the Internist-1/QMR knowledge

base for internal medicine (Shwe et al., 1991). However, the manual specification made these

models extremely brittle and difficult to adapt to new diseases or clinical settings. Automatic

compilation of a graph relating diseases to the symptoms that they cause has the potential to

significantly speed up the development of such diagnosis tools. Moreover, such graphs would
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provide value in and of themselves. For example, given that general-purpose web-search

engines are among the most commonly consulted sources for medical information (White and

Horvitz, 2009; Hider et al., 2009), health panels such as those provided by Google using their

health knowledge graph (Pinchin, 2016; Ramaswami, 2016) have a tremendous potential for

impact.

Previous work considered the use of natural language processing to find relationships

between diseases and symptoms from unstructured or semi-structured data. For example,

IBMs WatsonPaths and the symptom checker Isabel made use of medical textbooks, journals,

and trusted web content (Lally et al., 2014; Ramnarayan et al., 2004). However, the

electronic medical record, which has become increasingly prevalent in the United States and

worldwide (Charles et al., 2013), is still underutilized.

EMR data is more difficult to interpret than textbooks, journals, and web content for

four main reasons: First, the text of physician and nursing notes is less formal than that

of traditional textbooks, making it difficult to consistently identify disease and symptom

mentions. Second, textbooks and journals often present simplified cases that relay only the

most typical symptoms for didactic purposes. In contrast, EMRs present real patients with

all of the comorbidities, confounding factors, and nuances that make them individuals. Third,

unlike textbooks that state the relationships between diseases and symptoms in a declarative

manner, the associations between diseases and symptoms in the EMR are statistical, making

it is easy to confuse correlation with causation. Finally, how observations are recorded in the

EMR is filtered through the decision-making process of highly trained nurses and physicians.

Information deemed irrelevant may be omitted or not pursued, leading to information missing

not at random (Weiskopf et al., 2013).

Despite EMR data being more difficult to work with for the reasons described above, it has

the advantage of being closer to the actual practice of medicine than the idealized and curated

information presented in textbooks and journals. For example, learning from EMRs provides
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the opportunity to discover new relationships that were previously unrecognized. Additionally,

we can learn specialized graphs with different granularity for different specialties or settings

by simply learning models from the records of patients from that setting. Finally, learning

a causal graph relating diseases to symptoms from EMRs is the first step toward learning

models that perform diagnostic inference directly from the real data that is continuously

being generated from the healthcare system.

5.1.1 Related work

In recent work, Finlayson et al. (2014) quantify the relatedness of 1 million concepts by

computing their co-occurrence infree-text notes in the EMR, releasing a graph of medicine.

Sondhi et al. (2012) measure the distance between mentions of two concepts within a clinical

note for determination of edge-strength in the resulting graph. Goodwin and Harabagiu

(2013) use natural language processing to incorporate the belief state of the physician for

assertions in the medical record, which is complementary to and could be used together with

our approach. Importantly, whereas the aforementioned works consider purely associative

relations between medical concepts and evaluate on auxiliary tasks such as information

retrieval, our focus is on deriving a causal graph relating diseases to symptoms and we directly

evaluate the learned relationships against the opinions of domain experts.

5.1.2 Contributions

The contributions of this chapter are as follows:

• We present simple methods for automatically deriving a causal graph relating diseases

to the symptoms that they cause from EMR data.

• We apply the method to a corpus of emergency department records comprising over

270,000 patient visits and evaluate the graph structure directly, comparing it with
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the Google health knowledge graph and through manual review by physicians. We

conclude that many of the relationships learned from the electronic medical record are

scientifically valid.

• With respect to generalization from one domain to the other, we document some of

the challenges that arise in translating between the acute care (emergency department)

and generalist (Google health knowledge graph) settings.

5.2 Constructing a knowledge graph

Learning the knowledge graph consists of three main steps. First, positive disease and

symptom mentions were extracted from structured data and unstructured text (detailed in

‘Data collection and preparation’). Second, statistical models relating diseases and symptoms

were learned. Third, the learned statistical models were translated into knowledge graphs.

The overall procedure is summarized in Figure 5.1.

5.2.1 Parameter estimation

We considered three statistical models: logistic regression (LR), naive Bayes (NB) and a

Bayesian network modeling diseases and symptoms with noisy or gates (noisy or). Logistic

regression, which is widely used for binary classification, was chosen as an example of a

well-established machine learning classifier with interpretable parameters that is frequently

used for modeling binary outcomes (Hastie et al., 2009). Naive Bayes was chosen as it

provides a baseline of what can be inferred from simple pairwise co-occurrences (Murphy,

2012). Noisy or was chosen as an example of a probabilistic model that jointly models

diseases and symptoms; similar models have successfully been used in medical diagnosis

applications (Shwe et al., 1991; Miller et al., 1982).

126



M
od

el
 t

h
e 

d
at

a

N
oi

sy
 O

r

S
u

gg
es

t 
ed

ge
s

C
re

at
e 

a 
K

n
ow

le
d

ge
 G

ra
p

h

...

N
ai

ve
 B

ay
es

D
is

ea
se

 | 
S

ym
p

to
m

 | 
W

ei
gh

t
O

va
ri

an
 C

an
ce

r 
| F

lu
id

 in
 th

e 
ab

do
m

en
 | 

1.
45

6
O

va
ri

an
 C

an
ce

r 
| B

ow
el

 o
bs

tr
uc

ti
on

 | 
0.

99
6

O
va

ri
an

 C
an

ce
r 

| C
on

st
ip

at
io

n 
| 0

.7
22

O
va

ri
an

 C
an

ce
r 

| F
ev

er
 | 

 0
.5

92
 ..

.
O

va
ri

an
 C

an
ce

r,
  |

 V
om

it
in

g 
|  

0.
27

3
--

--
--

--
--

--
--

--
--

--
- (

th
re

sh
ol

d)
O

va
ri

an
 C

an
ce

r 
| C

ra
m

pi
ng

 | 
 0

.1
94

O
va

ri
an

 C
an

ce
r 

| I
nf

ec
ti

on
 | 

 0
.1

79
...

...

...

V
om

it
in

g
W

ea
kn

es
s

Fl
ui

d 
in

 
A

bd
om

en
 

...

...

...

V
om

it
in

g
Fa

ti
gu

e
B

ow
el

 
O

bs
tr

uc
ti

on
...

G
as

tr
o-

pa
re

si
s

D
is

ea
se

 | 
S

ym
p

to
m

 | 
W

ei
gh

t
O

va
ri

an
 C

an
ce

r 
| B

ow
el

 o
bs

tr
uc

ti
on

 | 
2.

49
2

O
va

ri
an

 C
an

ce
r 

| F
lu

id
 in

 th
e 

ab
do

m
en

 | 
2.

24
6

O
va

ri
an

 C
an

ce
r 

| P
el

vi
c 

pa
in

 | 
1.

64
3

... O
va

ri
an

 C
an

ce
r 

| F
at

ig
ue

 | 
0.

89
4

O
va

ri
an

 C
an

ce
r 

| V
om

it
in

g 
| 0

.8
67

--
--

--
--

--
--

--
--

--
--

- (
th

re
sh

ol
d)

O
va

ri
an

 C
an

ce
r 

| F
ev

er
 | 

0.
79

3
O

va
ri

an
 C

an
ce

r 
| N

au
se

a 
| 0

.7
65

... D
is

ea
se

 | 
S

ym
p

to
m

 | 
W

ei
gh

t
O

va
ri

an
 C

an
ce

r 
| p

ai
n 

| 0
.2

86
O

va
ri

an
 C

an
ce

r 
| N

au
se

a 
| 0

.1
78

O
va

ri
an

 C
an

ce
r 

| A
bd

om
in

al
 p

ai
n 

| 0
.1

47
O

va
ri

an
 C

an
ce

r 
| V

om
it

in
g 

| 0
.1

06
... O

va
ri

an
 C

an
ce

r,
  |

 D
is

co
m

fo
rt

 | 
0.

03
1

--
--

--
--

--
--

--
--

--
--

- (
th

re
sh

ol
d)

O
va

ri
an

 C
an

ce
r,

  |
 s

ho
rt

ne
ss

 o
f b

re
at

h 
| 0

.0
29

O
va

ri
an

 C
an

ce
r,

  |
 b

ow
el

 o
bs

tr
uc

ti
on

 | 
0.

02
8

...

Concepts

Pa
ti

en
ts

G
as

tr
o-

pa
re

si
s

G
as

tr
o-

pa
re

si
s

O
va

ri
an

 
C

an
ce

r

O
va

ri
an

 
C

an
ce

r

...

V
om

it
in

g
C

on
st

ip
at

io
n

Pa
in

...

O
va

ri
an

 
C

an
ce

r
G

as
tr

o-
pa

re
si

s

D
is

ea
se

S
ym

p
to

m
s

L
og

is
ti

c 
R

eg
re

ss
io

n

D
is

ea
se

S
ym

p
to

m
s

D
is

ea
se

s

S
ym

p
to

m
s

F
ig

u
re

5.
1:

W
or

k
fl
ow

of
m

o
d
el

in
g

th
e

re
la

ti
on

sh
ip

b
et

w
ee

n
d
is

ea
se

s
an

d
sy

m
p
to

m
s

an
d

k
n
ow

le
d
ge

gr
ap

h
co

n
st

ru
ct

io
n
,

fo
r

ea
ch

of
ou

r
3

m
o
d
el

s
(n

ai
ve

B
ay

es
,

lo
gi

st
ic

re
gr

es
si

on
an

d
n
oi

sy
or

).

127



Parameters for all three models were learned using maximum likelihood estimation. For

logistic regression and naive Bayes, a model was learned separately for each disease. For noisy

or, all the parameters were learned jointly. L1 regularization was used for logistic regression

both to prevent overfitting and to encourage sparsity, desirable because we expect most

diseases to cause a small number of symptoms (Razavian et al., 2015). Laplacian smoothing

was used to prevent overfitting for naive Bayes. For both, the values of the hyper-parameters

were chosen separately for each disease via a 3-fold cross-validation.

5.2.2 From statistical models to knowledge graphs

For each model, we construct an importance measure to determine whether an edge should

be included between symptom and disease. The importance measures denote each model’s

relative confidence that an edge exists between a pair of nodes. We then sort symptoms for

each disease by the importance measure.

Logistic regression: The importance measure for logistic regression was taken to be:

ImptLR = max{bi,j, 0}, (5.1)

where bi,j is the weight associated with symptom j in the logistic regression model fit to

predict disease i. In other words, if the appearance of a symptom made a disease more likely,

then we believed that a corresponding edge exists in the graph. Note that in our setting it is

sensible to compare weights between features since all of our variables are binary.

Naive Bayes: The importance measure for naive Bayes was taken to be:

ImptNB = logP (Xj = 1|Yi = 1)− logP (Xj = 1|Yi = 0), (5.2)

where is Xj the binary variable denoting the presence of symptom j and Yi is the binary
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variable denoting the presence of disease i. In words, if the appearance of disease makes the

observation of symptom more likely, we have higher confidence that an edge exists.

For both naive Bayes and logistic regression, we enforced a minimum of 5 co-occurrences

for any disease-symptom pair for any suggested edge as a de-noising measure.

Noisy or: The noisy or conditional distribution is parametrized by failure probabilities

(for more information on noisy or conditional distributions, see Section 1.2.3). Let n be

the number of diseases and m be the number of symptoms. Each disease Yi that is present

turns on each of its children symptoms indexed by Xj, but fails with probability fi,j. A leak

probability lj represents the probability of a symptom being on even if all diseases are off.

Thus the probability of a symptom being present is:

P (Xj = 1|y1, ..., yn) = 1− (1− lj)
n∏

i=1

f yii,j. (5.3)

We took the importance measure to be:

ImptNO = 1− fi,j. (5.4)

The higher the failure probability, the less likely it is for the symptom to be a child of

the disease. Importantly, by optimizing the conditional probability, we make no assumptions

about the prior distribution of diseases P (Y1, ..., Yn).

5.2.3 A causal interpretation of the learned models

Pearl introduced the notion of the do conditioning operator to formalize causal reasoning.

Unlike the standard conditioning operator, the do operator sets a variable to a particular

value in a way that does not affect its causal parents (for more information, see Pearl (2009)).

If we assume the graphical structure denoted in Figure 5.2, then the do operator can be
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Y1

X1

Y2

U

Figure 5.2: Causal graph of diseases and symptoms. Diseases (Y1, Y2) can cause symptoms
(only one symptom, X1, shown here), and can have a high dimensional set of common parents
U (risk factors such as age) which make the diseases non-independent. Diseases and symptoms
are observed.

related to the conditioning operator according to Equation 5.5 (derived in Appendix E.1):

P (X1| do(Y1 = y1)) = Ey2∼P (Y2)P (X1|y1, y2) (5.5)

The failure probability of noisy or (used in the importance measure, Equation 5.4) can be

interpreted as a ratio of do operators. It tells us how the likelihood of a symptom being off

changes as a disease is turned from on to off. Let Y−1 denote all of the diseases other than Y1.

P (Xj = 0| do(Y1 = 1))

P (Xj = 0| do(Y1 = 0))
=
EY−1P (Xj = 0|Y1 = 1, Y−1)

EY−1P (Xj = 0|Y1 = 0, Y−1)

=
EY−1f1

∏n
i=2 f

yi
i,j

EY−11
∏n

i=2 f
yi
i,j

=
f1

1

EY−1

∏n
i=2 f

yi
i,j

EY−1

∏n
i=2 f

yi
i,j

= f1,j.

The first line comes from Equation 5.5, and the second line substitutes the noisy or

parametrization. The third and fourth line are algebraic manipulations. The derivation

assumes that data is consistent with a noisy or model and that the noisy-or model can be
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consistently estimated by a maximum likelihood estimator (i.e., no unobserved diseases), but

crucially makes no assumptions about P (Y ).

In contrast, the naive Bayes estimator can only be made to correspond to a do operator if

all of the diseases are independent.

P (Xj| do(Y1 = 1))

P (Xj| do(Y1 = 0))
=
Ey−1∼P (Y−1)P (Xj|Y1 = 1, y−1)

Ey−1∼P (Y−1)P (Xj|Y1 = 0, y−1)

=

∑
y−1

P (y−1)P (Xj, Y1 = 1, y−1)/P (Y1 = 1, y−1)
∑

y−1
P (y−1)P (Xj, Y1 = 0, y−1)/P (Y1 = 0, y−1))

=

∑
y−1

P (y−1)P (Xj, Y1 = 1, y−1)/P (Y1 = 1)P (y−1)
∑

y−1
P (y−1)P (Xj, Y1 = 0, y−1)/P (Y1 = 0)P (y−1)

=

∑
y−1

P (Xj, y−1|Y1 = 1)
∑

y−1
P (Xj, y−1|Y1 = 0)

=
P (Xj|Y1 = 1)

P (Xj|Y1 = 0)

Where the first equality comes from Equation 5.5 and the second line expands out the

conditioning operator and the expectation. The third line uses the independence assumption.

The next lines follow algebraically. The result,
P (Xj |Y1=1)

P (Xj |Y1=0)
, is the value used in the importance

measure for naive Bayes (Equation 5.2) using Xj = 1.

The objective of logistic regression does not relate to a do operation on a disease.

Even though the failure probability in a noisy or model is related to a causal quantity,

it may not be the best quantity for characterizing the relationship between a disease and

a symptom because it relates to the change in likelihood of a disease being absent due to

an intervention (turning “on” a disease), and not the change in likelihood of a disease being

present. The naive Bayes model works for either value of Xj , but makes the assumption that

diseases are independent (as mentioned above).

131



5.3 Experimental methods

In this section, we describe a study undertaken to assess the ability of each of the models

described in the previous section to extract meaningful causal relationships between diseases

and symptoms from electronic medical records.

5.3.1 Study design

We conducted a retrospective observational study using previously collected data from

electronic medical records to construct a knowledge graph relating symptoms to diseases. We

evaluated our candidate knowledge graphs against a gold-standard knowledge graph provided

by Google (Google health knowledge graph) and the expert opinion of physicians. The study

was approved by the hospital’s institutional review board.

5.3.2 Setting and selection of participants

The study was performed using data from a 55 000-visit/year trauma center and tertiary

academic teaching hospital. All consecutive emergency department (ED) patients between

2008 and 2013 were included. Each record represents a single patient visit. No patients were

excluded, leading to a total of 273 174 records of emergency department patient visits.

5.3.3 Data collection and preparation

5.3.3.1 Concept extraction from electronic medical record

We extracted positive mentions of diseases and symptoms (concepts) from structured

and unstructured data. Structured data consisted of ICD-9 (International Classification of

Diseases) diagnosis codes. Unstructured data consisted of chief complaint, Triage Assessment,

Nursing Notes, and MD comments. Triage Assessment refers to the free-text nursing
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assessment documented at triage. Medical Doctor (MD) Comments and Nursing notes refer to

the free-text scratch space used by physicians and nurses respectively to track a patient’s course.

Free text fields were de-identified using PhysioNet’s deid software package (Neamatullah

et al., 2008; Goldberger et al., 2000).

The set of diseases and symptoms considered were chosen from the Google health knowledge

graph (described below) to establish a basis for later comparison. We used string-matching to

search for concepts via their common names, aliases or acronyms, where aliases and acronyms

were obtained both from the Google health knowledge graph as well as from the Unified

Medical Language System (UMLS) for diseases where the mapping was known. Similarly, if

a link to an ICD-9 code was provided, we searched for that code in the record’s structured

administrative data. A modified version of NegEx was used to find negation scopes in the

clinical text (Chapman et al., 2001; Jernite et al., 2013a). Mentions that occur within a

negation scope were not counted. Figure 5.3 illustrates the data extraction and processing

pipeline.

5.3.3.2 Google health knowledge graph

We used a subset of Google’s health knowledge graph as of August 2015 for which we

had sufficient support in our data. We defined sufficient support for a disease as having at

least 100 positive mentions and for a symptom as having at least 10 positive mentions. This

resulted in 156 diseases and 491 symptoms. The graph is comprised of medical concepts

(diseases and symptoms) as nodes and disease-symptom relations as edges.

A small number of concepts in the Google health knowledge graph are classified as both a

disease and a symptom (e.g., ‘Type II diabetes’ is a disease, but also a symptom of ‘Polycystic

Ovarian Cancer’). In these cases, we designated these concepts as diseases only.
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5.3.4 Evaluation and analysis

We compare our learned graphs against two different gold standards using precision-recall

graphs to evaluate quality.

5.3.4.1 Automatic evaluation: Comparison to the Google health knowledge

graph

In the automatic evaluation, we assess the performance of our models against a binary

target (either the suggested edge is present in the Google health knowledge graph or it is

not). While we believe the edges present in the knowledge graph are correct, we do not

assume that they are exhaustive. Therefore, the automatic evaluation allows us to efficiently

compare between the models considered, but likely underestimates precision, marking edges

as false-positives even though they are actually correct, just missing from the Google graph.

The symptom ‘pain’ was removed from this evaluation because it was overly general and

inconsistently used in the Google graph.

5.3.4.2 Manual evaluation: Evaluation by physicians

To address the issue of the Google graph incompleteness, we also evaluate the graphs

against physicians’ expert opinion. Given that the set of potential disease-symptom edges

is large, it is impractical to ask evaluators to label all possible edges. Therefore, we use a

procedure in which the top N results from each model are pooled together and rated by

clinical evaluators. The edges outside the pooled results are considered irrelevant. This

method, termed ‘pooling’, is frequently used in information retrieval settings (Jones, 1975).

For a given disease, the top two models from the automated evaluation, as well as the

industry-provided graph contributed to the pool of edges to be evaluated by the physicians.

Each model suggests up to K+10 symptoms, where K is the number of symptoms present in
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Figure 5.4: User interface for evaluation by physicians. The left column shows the list of
diseases from which clinicians select a disease to be tagged. When a disease is selected,
the upper panel provides a more detailed description of the selected disease. The middle
column shows the symptoms that have yet to be tagged and hover over functionality provides
a detailed symptom definition. The rightmost column shows the 4 categories into which
symptoms can be sorted.

the knowledge graph for that disease. The 10 additional symptoms are introduced to allow

for the possibility of the true graph being denser than the Google health knowledge graph.

To evaluate the graphs, physicians rated the suggested edges according to the statement

“disease A causes symptom B” using the 4-point scale: ‘always happens’, ‘sometimes happens’,

‘rarely happens’ or ‘never happens’. A user interface was built to facilitate easy rating

(Figure 5.4). For the evaluation itself, physician responses were binarized by grouping results

from the ‘always’, ‘sometimes’ and ‘rarely’ categories into the positive category, leaving the

‘never’ tag to be negative.
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Distribution of concepts-matched per patient record 

Figure 5.5: Distribution of number of diseases and symptoms per patient record.

5.3.4.3 Statistical methodology

While the pooling method is overly optimistic in its evaluation of recall, it provides a

reliable measure of precision and the set of omitted elements does not unjustly bias one method

over another. To determine whether the differences in model precision were statistically

significant, we use a Wilcoxon signed rank test (Zobel, 1998).

To determine inter-rater agreement, 15 diseases were rated by a second physician. We

use the Spearman rho correlation to measure inter-rater agreement and calculate confidence

intervals using bootstrapping.

5.4 Results

Figure 5.5 shows the distribution of the number of identified diseases and symptoms across

medical records. We observe that the distributions are positively skewed across age groups

and that a substantial fraction of older patients (40+) have two or more diseases identified

per record.
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After concepts were extracted, we constructed a knowledge graph from each model by

either choosing an importance threshold or by allowing each model to suggest a constant

number of edges per diseases. Table 5.1 shows the top symptoms suggested by each model for

Middle Ear Infection. The table shows that logistic regression is not well calibrated for the

task of constructing a knowledge graph, suggesting three irrelevant symptoms in its top ten

suggestions. In this example, noisy or and naive Bayes both perform similarly well. Table 5.2

shows the top symptoms for Gallstones.

The same trend is observed when evaluating precision-recall graphs across all available

diseases. Figure 5.6(a) shows the Precision-Recall curve resulting from the automatic

evaluation. Here too logistic regression falls short in performance. Figure 5.6(b) shows

the Precision-Recall results for the clinical evaluation. The computed inter-rater agreement

measure (mean = 0.7448, std = 0.0297) shows considerable agreement between evaluators.

Additionally, we observe that both noisy or and naive Bayes have lower recall and higher

precision in the clinical evaluation than suggested by the automatic evaluation. The lower

recall exhibited by our models, coupled with the observation that both models surpass the

recall of the Google graph in the clinical evaluation, suggests that the Google graph is not

exhaustive.

The same trend is observed when evaluating precision-recall graphs across all available

diseases. Figure 5.6(a) shows the Precision-Recall curve resulting from the automatic

evaluation. Here too logistic regression falls short in performance. For instance, for a recall

of 0.5, noisy or, naive Bayes and logistic regression achieve a precision of 0.23, 0.18 and

0.13, respectively. Figure 4(b) shows the Precision-Recall results for the clinical evaluation.

The computed inter-rater agreement measure (mean = 0.74, std = 0.03) shows considerable

agreement between evaluators. Additionally, we observe that both noisy or and naive Bayes

have lower recall and higher precision in the clinical evaluation than suggested by the

automatic evaluation. For a recall of 0.5, noisy or and naive Bayes achieve a precision of
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Top edge suggestions for 'Middle Ear Infection' 

Ranking 
(importance 

score) 
Logistic 

regression model 
Naive Bayes 

model Noisy or model 

Frequency 
(Google health 

knowledge 
graph buckets) 

Google health 
knowledge graph 

1 Ear pain *** 
Inflammation 
of ear *** Ear pain *** Always 

Inflammation 
of ear *** 

2 
Teeth 
chattering  Ear pain *** 

Inflammation 
of ear *** Frequent 

Ringing in the 
ears ** 

3 Red face * Exudate *** Sore throat ** Frequent Headache ** 

4 
Inflammation 
of ear *** Ache *** Coughing * Frequent Nausea * 

5 Itchy eyes ** 
Nasal 
congestion * Fever ** Frequent Crying ** 

6 Irritability ** Sore throat ** 
Nasal 
congestion * Frequent Fever ** 

7 Anger * Runny nose * Pain *** Frequent 
Nasal 
congestion * 

8 Red rashes  Coughing * Ache *** Frequent Ear pain *** 

9 Sleepiness ** 
Sensitivity to 
light * Chills ** Frequent 

Loss of 
appetite ** 

10 
Facial 
paralysis  Fever ** Headache ** Frequent Vertigo * 

 

Table 5.1: Top edge suggestions by models for a randomly chosen disease (Middle Ear
Infection). The number of shown edges corresponds to the number of edges in the Google
health knowledge graph. For logistic regression, naive Bayes, and noisy or, the suggestions are
ordered by their relative importance score. For the Google health knowledge graph, the edges
are sorted according to two broad buckets of edge frequency that are provided in the graph.
The stars associated with each edge represent the expected frequency for which “disease A
causes symptom B” as rated by physicians. [*** = always happens, ** = sometimes happens,
* = rarely happens, = never happens]
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Top edge suggestions for 'Gallstones' 

Ranking 
(importance 

score) 
Logistic regression 

Model 
Naive Bayes 

Model Noisy or Model 

Frequency 
(Google health 

knowledge 
graph buckets) 

Google health 
knowledge graph 

1 

Abdominal 
cramping from 
Gallstones *** 

Abdominal 
cramping from 
Gallstones *** Pain *** Frequent Back pain ** 

2 
Pain in upper-
right abdomen *** 

Pain in upper-
right abdomen *** Nausea *** Frequent 

Pain between 
shoulder 
blades  

3 
Yellow skin and 
eyes ** 

Upper 
abdominal 
pain *** 

Abdominal 
pain *** Frequent Severe pain *** 

4 Pain *** Dark urine * 
Pain in upper 
abdomen *** Frequent Mild pain ** 

5 
Pain in upper 
abdomen *** 

Yellow skin 
and eyes ** Vomiting *** Frequent Night pain  

6 Dark urine * 
Pain in upper 
abdomen *** Chills * Frequent 

Abdominal 
discomfort *** 

7 
Upper 
abdominal pain *** 

Intermittent 
abdominal 
pain *** Tenderness *** Frequent Nausea *** 

8 Dry skin  Belching  

Abdominal 
cramping 
from 
Gallstones *** Frequent Side pain * 

9 Sleepiness * 

Discomfort in 
upper 
abdomen *** 

Yellow skin 
and eyes ** Frequent 

Pain in upper-
right 
abdomen *** 

10 Abdominal pain *** 
Abdominal 
pain *** 

Pain in upper-
right abdomen *** Frequent Flatulence  

11 
Restless legs 
syndrome  

Intermittent 
pain *** Diarrhea * Frequent Indigestion * 

12 Side pain * 

Swollen veins 
in the lower 
esophagus  Fever ** Frequent Vomiting *** 

13 Regurgitation  
Fluid in the 
abdomen  Flank pain * Frequent 

Abdominal 
cramping 
from 
Gallstones *** 

 

Table 5.2: Top edge suggestions by models for the disease “Gallstones”. The number of
shown edges corresponds to the number of edges in the Google health knowledge graph. For
logistic regression, naive Bayes, and noisy or, the suggestions are ordered by their relative
importance score. For the Google health knowledge graph, the edges are sorted according to
two broad buckets of edge frequency that are provided in the graph. The stars associated
with each edge represent the expected frequency for which “disease A causes symptom B” as
rated by physicians. [*** = always happens, ** = sometimes happens, * = rarely happens,
= never happens]
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0.85 and 0.8, respectively. The lower recall exhibited by our models (Figure 5.6(b)), coupled

with the observation that both models surpass the recall of the Google graph in the clinical

evaluation, suggests that the Google graph may be incomplete.

In both evaluation frameworks presented in Figure 5.6, noisy or outperforms naive Bayes.

The Wilcoxon signed rank test determined that the differences in precision were statistically

significant for both evaluation frameworks (p ≤ 0.01).

Table 5.3 shows a subset of the knowledge graph constructed by noisy or, our best

performing model. The number of edges included was chosen to match the number presented

to clinical evaluators.

5.5 Discussion

5.5.1 Differences between the evaluation methods

There were a number of differences between the edges suggested by the learned models and

marked correct by the clinical evaluators and those contained in the Google health knowledge

graph. The Google health knowledge graph was designed to provide useful information to

web-users, which explains some of the differences between it and the emergency department

setting where the data was collected.

5.5.1.1 Google health knowledge graph not exhaustive

The Google health knowledge graph omits ‘Exudate’, ‘Ache’ and ‘Sore throat’ for the

disease ‘Middle Ear Infection’, despite them being labeled as relevant by both clinical

evaluators (Table 5.1). Similarly, the symptoms ‘Tenderness’ and ‘Intermittent pain’ are

not listed in the Google graph’s symptoms for the disease ‘Gallstones’ (Table 5.2). These

symptoms were suggested by our learning algorithms, illustrating the potential for an EMR
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Examples of Edge Suggestions for Noisy or 
Diseases Suggested edges 

Aphasia 

problems with coordination (0.318), weakness (0.181), confusion (0.106), mental 
confusion (0.088), slurred speech (0.074), numbness (0.071), headache (0.049), seizures 
(0.045), weakness of one side of the body (0.042), difficulty speaking (0.034), blurred 
vision (0.018), malnutrition (0.017) 

Appendicitis 

pain (0.881), nausea (0.401), abdominal pain (0.361), tenderness (0.163), chills (0.152), 
diarrhea (0.124), vomiting (0.118), fever (0.096), loss of appetite (0.068), lower abdominal 
pain (0.040), cramping (0.037), constipation (0.036), discomfort (0.033), cyst (0.030), pain 
in right lower abdomen (0.029), sharp pain (0.023), pain during urination (0.022), pain in 
upper abdomen (0.020), pelvic pain (0.017), flank pain (0.016), vaginal discharge (0.013), 
abdominal discomfort (0.013), dull pain (0.012), infection (0.011) 

Bed bug bite 

skin rash (0.329), itching (0.173), anxiety (0.048), infection (0.029), sadness (0.026), 
depression (0.026), red spots (0.018), skin irritation (0.018), sweating (0.016), eye pain 
(0.015), lesion (0.012), substance abuse (0.011), hallucination (0.009), swollen feet 
(0.009), skin lesion (0.009), brief visual or sensory abnormality (0.009) 

Bell's palsy 

numbness (0.308), weakness (0.198), headache (0.134), facial paralysis (0.071), ear pain 
(0.052), slurred speech (0.051), paralysis (0.046), facial pain (0.040), neck pain (0.038), 
facial swelling (0.037), tongue numbness (0.031), asymmetry (0.026), blurred vision 
(0.024), drooping of upper eyelid (0.020), lesion (0.019), malnutrition (0.019), difficulty 
swallowing (0.018), double vision (0.016) 

Carpal tunnel 
syndrome 

numbness (0.175), pain (0.167), hand pain (0.094), weakness (0.083), arm pain (0.071), 
wrist pain (0.060), swelling (0.054), hand numbness (0.041), redness (0.030), pins and 
needles (0.024), shoulder pain (0.024), vertigo (0.020), hand swelling (0.016), neck pain 
(0.016), infection (0.014), depression (0.011), sadness (0.011), anxiety (0.011), chronic 
back pain (0.010), back pain (0.010), malnutrition (0.010), severe pain (0.008), 
unsteadiness (0.008), dry skin (0.008) 

Ectopic pregnancy 

pain (0.537), bleeding (0.204), vaginal bleeding (0.181), abdominal pain (0.167), cramping 
(0.155), spotting (0.154), nausea (0.104), cyst (0.067), tenderness (0.055), lower abdominal 
pain (0.048), pelvic pain (0.040), diarrhea (0.031), vaginal discharge (0.023), discomfort 
(0.020), vomiting (0.016), back pain (0.015), vaginal pain (0.014), lightheadedness (0.011) 

Kidney stone 

pain (0.608), flank pain (0.495), nausea (0.232), blood in urine (0.141), pain during 
urination (0.084), vomiting (0.083), chills (0.067), abdominal pain (0.065), back pain 
(0.050), tenderness (0.040), discomfort (0.019), groin pain (0.018), severe pain (0.013), 
fever (0.012), testicle pain (0.011), frequent urge to urinate (0.011), lower abdominal pain 
(0.011), dark urine (0.011), urinary retention (0.011), sharp pain (0.010), cyst (0.010), pain 
in lower abdomen (0.010), diarrhea (0.009), constipation (0.008), infection (0.007), pelvic 
pain (0.007), side pain (0.004), dull pain (0.004) 

Retinal detachment 

vision loss (0.125), blurred vision (0.065), headache (0.057), neck pain (0.041), eye pain 
(0.039), dehydration (0.024), difficulty walking (0.023), itching (0.020), discomfort 
(0.018), unequal pupils (0.017), watery diarrhea (0.015), bone loss (0.015), partial loss of 
vision (0.014), ear pain (0.013), fast heart rate (0.012), slow bodily movement (0.009), low 
oxygen in the body (0.009), vision disorder (0.009), elevated alkaline phosphatase (0.009), 
seeing spots (0.009), abnormality walking (0.009), malnutrition (0.009) 

 

Table 5.3: Subset of the knowledge graph learned using the noisy or model. For each disease
we show the full list of edges along with their corresponding importance score in parentheses.
Symptoms are ordered according to importance scores.
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data-driven approach to uncover relevant symptoms.

5.5.1.2 Patient appropriate language

Another class of differences between the Google health knowledge graph and the physician

evaluation involves use of precise language. For example, the Google’s graph contains an

edge from ‘Gallstones’ to ‘Pain between shoulder blades’. While this is technically not the

precise location of gallstone pain, it is a description that a patient may use.

5.5.1.3 Severity Misalignment

A third class of differences between the Google graph and those learned by our models and

approved by the clinical evaluators are edges that express a heightened severity. For instance,

for the disease ‘Gallstones’ (Table 5.2), the clinical collaborators approved ‘Abdominal Pain’,

while the Google graph contains ‘Abdominal Discomfort’. Similarly, our models suggest

‘Diarrhea’ in place of the more mild ‘Indigestion’.

Our model’s selection of more severe presentations of edges suggests that the graph is

organically tailored towards the emergency department data setting.

Another indication of the differences in severity between the two settings appears in the

expected frequency of diseases, as listed in the Google health knowledge graph for the ‘adult’

age bracket, compared to the observed count of diseases for that age bracket as found in our

data (Figure 5.7). Both ‘Multiple Sclerosis’ and ‘Crohn’s Disease’ appear very frequently

in the emergency department data even though they are listed as ‘Rare’ in the Google

health knowledge graph. Conversely, ‘Vaginitis, ‘Plantar Wart’ and ‘Nail Fungus’ appear

very infrequently in the emergency department data, even though they are as listed as ‘Very

Frequent’ according to the Google health knowledge graph. This selection bias towards higher

acuity conditions and presentations leads to structural differences between our constructed

graphs and the Google health knowledge graph, and suggests that there may not be a single
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graph that generalizes across all settings. Our methodology provides a way of automatically

adapting a knowledge graph by training on patient records from the relevant setting.

5.5.2 Analysis of model errors

We look the most common symptoms that are wrongly suggested by each model to

determine if there are certain characteristic errors that the learning algorithms make.

5.5.2.1 Noisy or: general symptoms

The noisy or model tends to rank general symptoms highly, such as ‘Pain’, ‘Weakness’,

‘Lethargy’, ‘Sadness’ and ‘Infection’. For example, in Table 5.2 we see that for disease

‘Gallstones’, noisy or suggests ‘Pain’, ‘Nausea’ and ‘Abdominal Pain’ before the more specific

symptom ‘Abdominal Cramping from Gallstones’. While these edge suggestions are not nec-

essarily incorrect, they are substantially less informative than their more specific counterparts.

This trend is not shared by the naive Bayes and logistic regression models.

5.5.2.2 Naive Bayes & logistic regression: Correlated symptoms

Both naive Bayes and logistic regression wrongly suggest ‘Bone Loss’, ‘Lethargy’ and

‘Confusion’ as likely symptoms for diseases that are common in elderly patients. For example,

‘Bone Loss’ is weighted highly for diseases such as ‘Shingles’ and ‘Hiatal Hernia’. ‘Lethargy’

is weighted highly for ‘Thyroid cancer’, ‘Myasthenia Gravis’ and ‘Neutropenia’. These

incorrect edges are likely being suggested because old age is a confounding factor that

correlates a number of disease with each other. The problem of disambiguating correlation

and causation is partly avoided using the noisy or model, which has a causal interpretation

(Section 5.2.3). This is particularly relevant since many patients have multiple diseases

simultaneously (Figure 5.5).
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Crohn’s Disease

Multiple 
Sclerosis

Nail Fungus

Plantar Wart

Vaginitis 

Figure 5.7: Comparison of disease frequency for the ‘adult’ age bracket (40-60 years old).
The y-axis shows the number of identified diseases in the emergency department data. The
x-axis records the expected frequency of diseases according to the Google health knowledge
graph for the ‘adult’ age bracket. The points highlighted demonstrate instances of frequency
misalignment due to the differences in populations considered.
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5.6 Conclusions

We find that it is possible to construct a high quality health knowledge graph directly

from electronic medical records. The high precision displayed by the noisy or model with

a precision of 0.85 for the max recall of 0.6 suggests that a two-step process would be well

suited for the construction of the knowledge graph, in which a clinician reviews and rejects

some of the edges suggested by the model. Using the results of the clinical evaluation, we

can infer that if a filtering step were added to the pipeline, for a recall of 60%, physicians

would have to discard fewer than 2 out of 10 suggested edges. This “clean up” phase is also

used in other approaches for constructing knowledge bases; since text mining and natural

language processing are typically imperfect (Ford et al., 2016; Ramaswami, 2016; Ferrucci

and Brown, 2011).

This method of automatically constructing knowledge graphs allows us to create graphs

from EMRs in any number of domains quickly and without any prior knowledge. We believe

that the most promising avenues for future research include incorporating more elaborate

concept extraction algorithms into our pipeline and experimenting with other methods of

measuring causal effects that do not assume a parametric form.

In addition to creating new knowledge graphs, such automated algorithms can be used to

augment and maintain existing knowledge graphs. For example, they can be run regularly on

current EMR data with existing knowledge graphs to suggest new edges over time that were

not previously known. They can also be used to calibrate a knowledge base created for one

setting to an entirely different setting.
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5.7 Next steps and open questions

5.7.1 Improved concept extraction

The precision and recall obtained by our constructed knowledge graphs show that reason-

able results can be obtained even with a rudimentary concept extraction pipeline. Nonetheless,

because of the simplicity of the pipeline, at times we do not have coverage for concepts, despite

them being present in the emergency department data. 34% of the symptoms associated with

the subset of diseases that came from the Google health knowledge graph did not reach the

required threshold of 10 positive mentions and were dropped due to insufficient support. One

example is the symptom ‘Bull’s Eye Rash’ for disease ‘Lyme Disease’. Because of the varying

ways in which the symptom is recorded and punctuated (for example: “bullseye”, “bullseye

rash”, “bull eye”, “bull’s eye”, etc.), we record it fewer than 10 times. A more elaborate

concept extraction pipeline would increase our coverage and improve the subsequent graph.

While our pipeline does not require any prior knowledge of the target area of application,

it does require a base set of concepts to evaluate as potential nodes in the graph. For

evaluation purposes, we used the concepts from the Google health knowledge graph. For

alternate uses, any set of concepts, such as UMLS, would be appropriate. Nonetheless, it is

important to recognize that our task was made simpler by working with a set of concepts

clearly delineated into ‘diseases’ and ‘symptoms’ and for which every symptom is relevant to

at least one disease.

5.7.2 Relaxing modeling assumptions

Neither noisy or nor our baseline models allow for edges to exist between the symptom

nodes. It may be reasonable to allow symptoms to cause other symptoms as well, creating a

softer classification into symptoms and diseases. An example where a softer classification
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might be useful is in the previously mentioned ‘Type II diabetes’, which is a symptom

of ‘Polycystic Ovarian Cancer’, but may itself cause other symptoms such as ‘Fatigue’ or

‘Frequent Urination’. Future research might benefit from investigating models that do not

assume symptom conditional independence in order to capture this complexity.

All the models we have applied to the problem of knowledge graph construction are

parametric and therefore restricted by their parametric form (e.g., noisy or conditional

distributions). It might be useful to look into models that are not constrained by this form,

particularly in order to have a closer match with the causal interpretation presented in

Section 5.2.3.

5.7.3 Extending/refining existing graphs

In Section 5.5.1, we note some of the differences between the acute care and general

web-search settings. Does having a good model of one setting make it easier to learn in the

other setting? So far, we have only used the Google health knowledge graph for evaluation,

but it could also be used as a seed for learning a model for the acute care setting. We could

use it as a prior on the graph structure, to help learn the relevant relationships for diseases

and symptoms that are rare in our data.

Alternatively, if seeded with an incomplete graph from experts, we could try to fill in

the relevant edges using matrix completion methods (Koren et al., 2009) using the medical

records as side information.

5.7.4 Combining declarative and statistical knowledge sources

How can we fruitfully combine information from textbooks, journals and web-content

with data from electronic medical records or web search logs? One direction would be to use

the trusted data sources to establish the structure of the model and then use the data to
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learn parameters. Building a shared vocabulary of concepts to map between how concepts are

expressed in textbooks and in medical records would be a first important step, and existing

medical vocabularies would be useful for this, but are not complete. Another approach would

be to jointly learn models for both knowledge sources with a shared latent space (Tucker,

1958).

5.7.5 Applying the learned models for inference

In this work, we only evaluate the structure of the derived knowledge base. A natural

next step would be to evaluate the learned knowledge base for symptom checking (Semigran

et al., 2015), clinical decision support, or information retrieval. For structure learning, a

surprising result of this work was that treating the noisy concept extractions as ground truth

label extractions, rather than introducing latent variables for the true underlying condition

of the patient, was good enough to learn reasonable models. For the inference task, we have

seen in Chapter 3 that explicitly modeling anchors, rather than treating them naively as

true labels does lead to improved performance on the held out tag inference task (Table 3.3).

Determining when it is worthwhile to introduce latent variables, with all the difficulty in

optimization involved, and when it is better to ignore the noise in the labels, is still an open

question.

Do causal models make more sensible errors in diagnosis? One of the drawbacks of the

statistical models discussed in Section 2.5.5 was the possibility of mistakes that are very

different from those that a human would make. This relates broadly to the question of

interpretability in machine learning models (Lipton, 2016) and formulating performance

metrics that go beyond measuring prediction accuracy. Comparing the mistakes made by a

model that explicitly models the causal relations between diseases and symptoms to more

general prediction models could be a useful step towards building safer and more trustworthy
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machine learning models for healthcare.

5.7.6 Beyond diseases and symptoms

We studied symptoms and diseases whose causal relations are fairly well understood. A

possible extension would be to use the noisy or model to find side effects of medications or

procedures. In some cases, it may be possible to separate the symptoms of the disease itself

and effects of the treatment temporally, but it may not always be possible, especially for

chronic, progressive conditions. Other methods, such as comparing similar patients who have

opted for different treatment paths, would be required to separate those effects.

A similar modeling framework could be more broadly useful outside of medicine, for

example, modeling mechanical failures in aviation, automobile or industry settings from case

reports.
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Chapter 6

Correlated factors in anchored factor

analysis

Acknowledgments This work was joint with Steve Horng and David Sontag.

6.1 Introduction

The factor analysis models considered in Chapters 3 and 4 make the simplifying assump-

tion that the factors were marginally independent. Without further assumptions, allowing

dependencies between the factors naturally introduces non-identifiabilities into the modeling

process, making it difficult to interpret the learned parameters. In this chapter, we show that

the anchor assumption is sufficient to learn factor analysis models with arbitrarily complex

prior distributions of the factors.

Much of this work depends on material previously presented in Chapter 3 with adjustments

to allow for dependencies between the factors. We will link to the material there, and reproduce

it as necessary for completeness in this chapter.

Estimating models involving latent variables is computationally challenging (See Sec-
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tion 1.2.4). However, another source of computational complexity arises when we model the

distribution of the factors themselves with a Bayesian network. Even with fully-observed data,

structure learning in Bayesian networks is NP-hard (Chickering, 1996). Unlike Chapter 4,

where we were able to give a provable algorithm with polynomial run time, in this chapter

we reduce the problem of learning the structure of the latent variables to that of structure

learning with fully observed data, which, despite being NP-hard in the worst case, is a

well-studied problem for which practical algorithms exist for many real-world problems.

The algorithm consists of three main parts: First, we use anchors to recover moments

involving the latent variables. Then, we use the recovered moments to learn a Bayesian

network to describe the distribution of the latent variables. Finally, we learn conditional

distributions of the observations given the latent variables. The algorithm is graphically

displayed in Figure 6.1.

6.1.1 Contributions

1. We present an algorithm for recovery of moments involving latent variables using

anchors, and derive a method-of-moments algorithm for noisy-or factor analysis using

the recovered moments.

2. The presented algorithm is a constructive proof of identifiability, even for models with

arbitrarily complex latent distributions. When the latent distribution is a tree-structured

Bayesian network, we show how to learn the model in polynomial time.

3. We experimentally validate the method of moments algorithm against relevant baselines

(including the independent classifiers described in Chapter 2) on a clinically relevant

inference task, and demonstrate that modeling the correlations between phenotypes

improves predictions.
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4. We show that the modeling procedure can be applied beyond the healthcare setting by

applying it to modeling tags in a collection of user-contributed programming questions

(stack overflow dataset). A simple heuristic is sufficient to specify reasonable anchors in

this setting.

5. We develop a robust version of the moment recovery algorithm, based on constrained

optimization using marginal polytope constraints or relaxations thereof. We show

empirically that the robust recovery procedure is more effective at recovering the

distribution of the tags in the stack overflow dataset.

6.2 Model definition: Anchored factor analysis

We study the factor analysis setting (see Section 1.2.2), where factors and observations are

modeled as a Bayesian network, with directed edges from the factors to the observations, and

potentially between factors as well. In this section, we describe the model under consideration.

The following two sections present a method for structure and parameter learning for this

model.

We use a model similar to that used in Chapter 3. The Bayesian network consists entirely

of binary random variables, which are partitioned into factors (Y1, ..., Yn) and observations

(X1, ..., Xm).

Unlike the presentation in Chapter 3, the factors are not assumed to be marginally

independent with individual prior probabilities. Instead, we parametrize them with an

arbitrary Bayesian network G(Y ):

P (Y ) =
n∏

i=1

P (yi|Pa(Yi;G(Y ))), (6.1)

where Pa(Yi;G(Y )) refers to the parents of Yi in the graph G(Y ). The complexity of
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P (Y ) can be controlled by constraining the complexity (e.g., maximum in degree) of G(Y ).

The probabilities of the observations conditioned on the factors are parametrized with a

“noisy-or” distribution (Equation 6.2) (Shwe et al., 1991; Pearl, 1988):

P (Xj = 0|Y = {y1, ..., ym}) = (1− lj)
m∏

i=1

f yii,j, (6.2)

where the parameters fi,j are referred to as failure probabilities and lj is the leak probability

(see Section 1.2.3).

The model is anchored in that every factor Yi, has an associated anchor observation

Ai ∈ X. As in Section 3.2.1, we assume the anchors depend only on their respective parent

factors (structurally, anchors only have a single parent). When conditioning on its parent, an

anchor becomes independent of all other observations (by d-separation). Additionally, we

assume that the edge between a latent variable and its anchor is not vacuous. Particularly, Ai

is not independent of Yi. The right panel of Figure 6.1 shows an example model. X0, ..., X3

are anchors for the latent variables Y0, ..., Y3.

6.3 Recovering moments of latent variables

In this section, we present a method of recovering moments of latent variables using

moments of anchors, which are fully observed. The presentation here is similar to that in

Section 3.4.2, though slightly more general to allow for the more general setting in this

chapter.

6.3.1 Naive moment recovery

An anchor is independent of all other observed variables when conditioning on its parent

(Section 6.2). This implies a particular relationship between the moments involving latent
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variables and the moments involving their anchors. For a set of latent variables, Z ⊂ Y , and

their associated anchors, AZ , the relationship described in Equation 6.3 holds:

P (AZ) =
∑

z

P (Z = z)

|Z|∏

i=1

P (Ai|zi). (6.3)

The left-hand side of this equation is a quantity that only involves observed variables and

can be estimated from empirical counts. The right-hand side uses the conditional distributions

of the anchors, P (Ai|Zi), and the moments of the latent variables, P (Z = z). When the

conditional distributions of the anchors are known (discussed in Section 8.1.1), we can solve

the following matrix equation:

µAZ
= RZµZ , (6.4)

where µAZ
is a vectorized form of P (AZ), with 2|Z| entries, one for each setting of AZ in

{0, 1}|Z|. RZ is a 2|Z| × 2|Z| matrix encoding the conditional distributions of the anchors

(Appendix F.1 describes the construction of the RZ matrix) and µZ is the vectorized form of

P (Z).

We could simply invert the noise matrix RZ to solve for µZ as in Equation 6.5 (RZ is

invertible, see Appendix F.1), however without infinite data, it would not be guaranteed

that the solution for µZ would be a valid probability distribution (i.e., non-negative and

sum-to-one).

µZ = R−1
Z µAZ

(6.5)

Instead, we explicitly solve the constrained optimization over the simplex to minimize a

divergence measure between a proposed distribution ~P (Xj|Yi) and the denoised version of

the empirical counts P (Xj|Ai) (Equation 6.6):
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µZ = argmin
~p∈∆

D (µAZ
||RZ~p) . (6.6)

Chaganty and Liang (2014) show the consistency of this estimator using both L2 distance

and KL divergence for D. The consistency of the estimator means that the marginals

recovered from empirical estimates, µ̂Z will converge to the true values, µZ , assuming that

the anchor assumption is correct.

6.3.2 Robust moment recovery

The method for moment recovery, described above, recovers each marginal distribution

(i.e., for each set of variables Z) independently. When learning models, we often want

to recover many marginal distributions for use within a learning algorithm. Consider, for

example, the case of learning a tree-structured distribution on the latent variables. The

Chow-Liu algorithm (Chow and Liu, 1968) is an efficient algorithm for maximum likelihood

learning in tree structured Bayesian networks, which requires pairwise marginals for every

pair of variables Yi, Yj as input. We could solve
(
n
2

)
independent optimization problems of the

form given in Eq. 6.6, resulting in a set of estimates, µ̂ij , for input to the algorithm. However,

we would not be taking full advantage of the joint nature of the problem.

Our key insight is that the true pairwise marginal vector, µ ≡ {µij : i, j ∈ Y }, consists of

marginalizations of a single distribution, P (Y ). As such, there are additional constraints that

it must satisfy. For example, using the notation µij(yi, yj) to mean the marginal distribution

of Yi, Yj evaluated at the setting (yi, yj), the local consistency constraints must hold:

∑

yi

µij(yi, yj) =
∑

yk

µjk(yj, yk) ∀i, j, k ∈ Y and yj. (6.7)
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More generally, µ must lie in the marginal polytope, M, consisting of the space of all

possible marginal distribution vectors that can arise from any distribution (Wainwright

and Jordan, 2008). The local consistency constraints form an outer bound to the marginal

polytope (called the local consistency polytope) since there exist vectors µ which satisfy the

local consistency constraints and are not in the marginal polytope, but not vice versa.

Optimizing over the marginal polytope is NP-hard, but its outer bounds have been studied

extensively in the context of inference in probabilistic graphical models. Maximum a posteriori

(MAP) inference corresponds to optimizing a linear objective over the marginal polytope, and

computing the log-partition function can be shown to be equivalent to optimizing a non-linear

objective over the marginal polytope (Wainwright and Jordan, 2008). Approximate inference

algorithms optimize over outer or inner bounds to the marginal polytope. Belief propagation

and tree-reweighted sum product optimize over the local consistency constraints. Other

bounds, such as the cycle relaxation (Sontag and Jaakkola, 2007) or a semidefinite outer

bound (Torr, 2003; Peng et al., 2012) have also been used for approximate inference.

Solving for moment recovery jointly with consistency constraints, we obtain the following

optimization problem for robust recovery of the true moments of the latent variables from

observations of the anchors:

µ = argmin
µ′∈P

∑

Z⊆Y :|Z|≤K

DKL (µAZ
||RZµ

′
Z) , (6.8)

where K is the size of the moments needed within the structure learning algorithm (e.g., K = 2

for a tree-structured distribution (Chow and Liu, 1968)) and P denotes the marginal polytope

or a relaxation thereof. Note that Equation 6.8 is very similar to its non-robust counterpart,

Equation 6.6. The main difference is in the constraints under which the optimization problem

is solved. In fact, the approach of solving multiple independent moment recovery problems

using Equation 6.6, described when introducing the robust recovery algorithm, corresponds
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to an outer bound on the marginal polytope constraints (consisting only of non-negative and

sum-to-one constraints), looser than the polytope formed by the local consistency constraints

of Equation 6.7.

We use the conditional gradient, or Frank-Wolfe (Frank and Wolfe, 1956), method to

minimize (6.8). Frank-Wolfe solves this convex optimization problem by repeatedly solving

linear programs over P . When P corresponds to the local consistency constraints or the cycle

relaxation (Sontag and Jaakkola, 2007), these linear programs can be solved using off-the-shelf

linear programming solvers (e.g., Gurobi Optimization, 2014). Alternatively, when there are

sufficiently few variables, one can optimize over the marginal polytope itself. For this, we use

the observation of Belanger et al. (2013) that optimizing a linear function over the marginal

polytope can be performed by solving an integer linear program with local consistency

constraints. In the experiments section we show that constrained optimization improves

the robustness of the moment-recovery step compared to unconstrained optimization and

that using increasingly tight approximations of the marginal polytope within the conditional

gradient procedure yields increasingly improved results.

Constrained optimization has been used previously to improve the robustness of method-

of-moments results (Shaban et al., 2015). Our work differs in that the constrained space

naturally coincides with the marginal polytope, which allows us to leverage the Frank-Wolfe

algorithm for interior-point optimization and relaxations of the marginal polytope that have

been studied in the context of variational inference.

6.4 Method of moments learning

In this section, we describe a method of moments algorithm that takes the recovered

marginals from Section 6.3 as inputs. We take a two step approach. First, the distribution

P (Y ) is estimated, then it is used to estimate conditionals P (X|Y ). The final joint model,
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P (X, Y ) is simply a product of the two distributions.

6.4.1 Learning P (Y )

Structure learning background: Approaches for Bayesian network structure learn-

ing typically follow two basic strategies: they either search over structures G that maximize

the likelihood of the observed data (score-based methods), or they test for conditional inde-

pendencies and use these to constrain the space of possible structures. A popular scoring

function is the BIC score (Lam and Bacchus, 1994; Heckerman et al., 1995):

BIC(G) =
m∑

i=1

NÎ(Yi;YPa(i))−NĤ(Yi)− log(N)2|Pa(i)|,

where N is the number of samples and Î , Ĥ are the empirical mutual information and

entropy respectively. Pa(i) denotes the parents of node i in graph G. The last term is a

complexity penalty that biases toward structures with fewer parameters. Once the optimal

graph structure is determined, the conditional probabilities, θ, that parametrize the Bayesian

network are estimated from the empirical counts for a maximum likelihood estimate.

BIC is known to be consistent, meaning that if the data is drawn from a distribution

which has the same conditional independencies as a graph G∗, once there is sufficient data

optimizing the BIC score will recover G∗ (up to Markov equivalency). In general, finding

a maximum scoring Bayesian network structure is NP-hard (Chickering, 1996). However,

approaches such as integer linear programming (Jaakkola et al., 2010; Cussens and Bartlett,

2013), branch-and-bound (Fan et al., 2014), and greedy hill-climbing (Teyssier and Koller,

2005) can be remarkably effective at finding globally optimal or near-optimal solutions.

Restricting the search to tree-structures, we can find the highest-scoring network efficiently

using a maximum spanning tree algorithm (Chow and Liu, 1968).

A different approach is to use conditional independence tests. Under the assumption that
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every variable has at most k neighbors, these can be used to give polynomial time algorithms

for structure learning (Pearl and Verma, 1991; Spirtes et al., 2001), which are also provably

consistent.

Our algorithm: We utilize the fact that both score-based and conditional independence

based structure learning algorithms can be run using derived statistics rather than the raw

data. Suppose P (Y ) is a Bayesian network with maximum in-degree of k. Then, to estimate

the mutual information Î and entropy Ĥ needed to evaluate the BIC score for all possible

such graphs, we only need to estimate all moments of size at most k + 1. For example,

to search over tree-structured Bayesian networks (Chow and Liu, 1968), we would need to

estimate P (Yi, Yj) for every i, j as mentioned in Section 6.3.2.

Theorem 3 formalizes the consistency properties of our algorithm.

Theorem 3. Let G(Y) be the graph structure of a Bayesian network describing the probability

distribution, P (Y ), of the latent variables in an anchored discrete factor analysis model. Using

the low-order moments recovered in Equation 6.6 in a structure learning algorithm which is

consistent for fully-observed data, is a consistent structural estimator. That is, as the number

of samples, N →∞, the structure recovered ,G ′(Y ), is Markov equivalent to G(Y ).

The consistency of the algorithm follows from the consistency of the moment recovery

process, which was shown by Chaganty and Liang (2014), combined with a consistent

structural estimator.

6.4.2 Learning factor loadings, P (X|Y )

In the previous section, we showed how to learn a Bayesian network for P (Y ). Now we

turn to estimating the conditional distributions in the model, P (X|Y ). We use G(Y ) to

denote the Bayesian network structure.

To properly estimate a failure probability, fi,j, from low order moments, we need to
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Yi#

Xj#

Latent variable 

Observed variable 

Indirect effect A Indirect effect B 

Direct effect of Yi on Xj 

A B 

Xj 

Yi 

Figure 6.2: Yi has a direct effect on the distribution of Xj as well as indirect effects that pass
through its two neighbors. Correction factors are introduced to cancel the indirect effects through
each neighbor, leaving only the direct effect which is modeled with the parameter fi,j .

separate the direct effect of Yi in turning on Xj and all other indirect effects. An example

of an indirect effect is that conditioning on Yi = 1 changes the likelihood of another latent

variable Yi′ being on, which in turn affects Xj. Figure 6.2 shows direct and indirect effects.

Estimation using Markov blanket conditioning: The first method of separating

direct and indirect effects uses the entire Markov blanket of each latent variable. Denote

the Markov blanket of Yi in G(Y ) as Bi ⊂ Y . For any setting of Bi = b, the following is a

consistent estimator of fi,j:

f̂ blanketi,j =
P̂ (Xj = 0|Yi = 1, b)

P̂ (Xj = 0|Yi = 0, b)
, (6.9)

as shown in Appendix F.2. The simplest application of this estimator is in models where the

latent variables are assumed to be independent, where the Markov blanket is empty and the

estimator is simply:

f̂directi,j =
P̂ (Xj = 0|Yi = 1)

P̂ (Xj = 0|Yi = 0)
. (6.10)
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This is the setting described in Chapters 3 and 4.

Unfortunately, for general graphs, in order to estimate these moments, we have to form

moments that are of the same order as the Markov blanket of each latent variable which

can potentially be quite large, even in simple tree models, giving poor computational and

statistical efficiency.

Improved estimation for tree-structured models: When G(Y ) is a tree, it is possible

to carefully construct correction factors that correct for indirect effects while only requiring

conditioning on two latent variables at a time. Without loss of generality, the tree can be

seen as rooted at any variable Yi. Let Ni denote the children of Yi in G(Y ). When calculating

f treei,j , we introduce one correction factor, ci,j,k, for each child Yk. The correction factors ci,j,k

have the form:

ci,j,k =

∑
yk∈{0,1} P̂ (yk|Yi = 1)P̂ (Xj = 0|Yi = 0, yk)

P̂ (Xj = 0|Yi = 0)
. (6.11)

See Appendix F.3. Each factor represents the effect of the entire subtree rooted at Yk on Xj.

This procedure is depicted in Figure 6.2, where the subtrees to be subtracted off are labeled

A and B.

Correcting for all of the neighbors gives the following estimator:

f̂ treei,j =

(∏

k∈Ni

1

ci,j,k

)
P̂ (Xj = 0|Yi = 1)

P̂ (Xj = 0|Yi = 0)
, (6.12)

where the required conditional probabilities can be estimated from the low-order moments

recovered with the methods in Section 6.3. An intuitive explanation is that the numerator of

Equation 6.11 estimates the effect of Yk as though Yi is on, but leaves all other neighbors to

behave as though Yi is off. The other neighbors are canceled by the denominator and only

the effect that flows through Yk remains. Once this effect is isolated, it can be canceled out

in Equation 6.12. This canceling procedure is different from conditioning (Equation 6.9) and

164



G(Y ) Complexity of learning G(Y ) Factor loadings

independent None f̂direct (Eq. 6.10)

tree Chow-Liu: O(n2) f̂ tree (Eq. 6.12)

degree-K Indep tests: O(n2
∑K

i=1

(
n
i

)
2K) f̂ blanket (Eq. 6.9)

indegree-K Score-based: NP-hard worst case f̂ blanket (Eq. 6.9)

Table 6.1: Complexity of learning different model classes. After performing the moment-
transformations (Section 6.3), the complexity of learning the models with latent variables is
no harder than learning with fully observed moments.

the two can be used in conjunction to learn parameters in more complicated graphs.

For the correction factors to be defined, we require that it is possible to condition on

(yi = 0, yk = {0, 1}), so we require that for all pairs of latent variables, Yi, Yk, P (Yk|Yi) is not

deterministic.

Once all other parameters are learned, the leak parameters can be estimated to correct

the marginal probabilities of the observations (Appendix F.4).

6.4.3 Putting it all together

The full learned model is a product of the latent distribution P (Y ), which is described

by an arbitrary Bayesian network G(Y ; θ) and the factor loadings which are described by

noisy-or link functions. The computational complexity of learning the model depends on the

choice of constraints for the Bayesian network, G(Y ). Table 6.1 outlines the different classes

of models that can be learned and the associated computational complexities. The robust

recovery procedure (Section 6.3.2) introduces additional computational complexity, but it

is not included in the table since even the naive recovery procedure provides consistency.

Despite the high computational complexity for some of the settings outlined in Table 6.1,

the models are all identifiable from moments that are bounded in size by the largest Markov

blanket plus two.
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6.5 Model evaluation

We perform an empirical study of our learning algorithm using two real-world multi-tag

datasets, testing its ability to model observations using correlated factors.

In all of our experiments, we provide the algorithms and baselines with the empirical

conditional probabilities of the anchors. Other methods of estimating these values exist

(discussed in Section 8.1.1), but here we use the ground truth values for these noise rates in

order to focus on the errors that arise from modeling error and finite data samples. Even

though we constrain the moments to be valid using relaxations of the marginal polytope

constraints, the learned parameters (using Equations 6.9, 6.10 or 6.12) may be out of valid

ranges. We clip failures to be within [0,0.99] and the leak parameters to lie between [0.01, 1].

Details on the optimization procedures and parameters used can be found in Appendix F.6.

6.5.1 Emergency Dataset

The emergency department dataset was previously described in Chapter 3. It consists

of a corpus of medical records, collected over 5 years in the emergency department of a

Level I trauma center and tertiary teaching hospital in a major city. Features consist of

binary indicators from processed medical text and medication records. Patients are filtered

to exclude patients with fewer than two of the specified conditions, leaving 16,268 patients.

Details of the processing and a selection of the physician-specified anchors can be found in

Section 3.5.1.

6.5.2 Stack Overflow Dataset

To demonstrate the broad usefulness of this method beyond the clinical phenotyping

setting and to provide a reproducible basis for comparisons with future work, we also evaluate

our methods on a large publicly available dataset using questions from Stack Overflow, a
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popular collaboratively edited question and answer site for programmers1. We model the

user provided tags for each question with latent variables.

We use the 50 most popular tags from the dataset. The dataset initially contains 5 million

questions. After filtering for questions that contain at least two from the 50 most popular

tags, we are left with 695,170 questions. Models are trained on 500,000 questions and tested

on a heldout set of 5000 questions. The remaining questions are left unused for future model

development and testing.

The observed vocabulary consists of the 1000 most common tokens in the questions, using

a different vocabulary for the question header and body. Each question is described by a

binary bag-of-words feature vector, denoting whether or not each word in the vocabulary

occurs in the question text.

A simple heuristic rule is used to define anchor variables: for each tag, the text of the tag

appearing in the header of the question is used as an anchor. For example, for the tag unix,

the anchor is a binary feature indicating whether the header of the text contains the word

“unix”.

6.5.3 Qualitative evaluation – Face validity of models

Prior distribution of tags P (Y ): In this section we evaluate the quality of the

learned representations of the latent variables, P (Y ). This task in interesting in its own

right in settings where we care about understanding the interactions of the latent variables

themselves for the purposes of knowledge discovery and understanding. Figure 6.3 shows a

tree-structured graphical model learned to represent the distribution of the 23 latent variables

in the Emergency dataset as well as small sub-graphs from a more complex model.

In the tree-structured model, highly correlated conditions are linked by an edge. For

1http://blog.stackoverflow.com/category/cc-wiki-dump/. This data was also used in a Kaggle
competition: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction
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example, asthma and allergic reactions, or alcohol and suicidal ideation. This is significant,

since the model learning procedure learns only using anchors and without access to the

underlying conditions. The insert shows subgraphs from a model learned with two parents

per variable. This allows for more complex structures. For example: being HIV positive

makes the patient more at risk for developing infections, such as cellulitis and pneumonia.

Either one of these is capable of causing septic shock in a patient. The v-structure between

cellulitis, septic shock, and pneumonia expresses the explaining away relationship: knowing

that a patient has septic shock raises the likelihood of cellulitis or pneumonia. Once one

of those possible parents is discovered (e.g., the patient is known to have cellulitis), the

septic shock is explained away and the the probability of having pneumonia is reduced. In

the second example relationship, both asthma and urinary tract infections are associated

with allergic reactions (asthma and allergic reactions are closely related and many allergic

reactions in hospital occur in response to antibiotics administered for infections), but asthma

and urinary tract infections are negatively correlated with each other since either one is

sufficient to explain away the patient’s visit to the emergency department.

Complete tree structured models for both datasets, as well as graphs with maximum in

degree of two are found in Appendices F.7.1 and F.7.2.

Factor loadings P (X|Y ): Table 6.2 shows a selection of learned factor loadings on the

Stack Overflow dataset, learned using the tree-structured estimation procedure described in

Section 6.4.2. The rest of the learned factors for both Stack Overflow and the Emergency

datasets are found in the Appendix F.7.3. The highly weighted terms for each of the tags

make sense, for example, the mysql tag has observations related to database queries and the

xml tag relates to document parsing.

The factors learned for the Emergency dataset are very similar to those learned in Chapter 3

(Table 3.4). One notable difference is the relationship between the factor “hematuria” and the

observation of the word infection. In the models learned in Chapter 3, infection is a highly
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Stack Overflow
Tag Top weighted terms
osx osx, i’m, running, i’ve, install, installed, os, code

image image, code, size, upload, html, save, picture, width
mysql mysql, query, rows, row, id, 1, tables, join
xml xml, parse, document, read, data, string
linux linux, running, command, machine, system, server
query query, table, a, result, results, queries, tables, return
regex regex, match, expression, regular, pattern, i’m

Emergency
Tag Top weighted terms

abdominal pain pain, Ondansetron, nausea, neg:fevers
alcohol male, sober, admits, found, drink
asthma albuterol sulfate, sob, Methylprednisolone
stroke age:80-90, admit, patient, head, ekg:

hematuria male, urine, urology, blood, foley
HIV+ male, Truvada, cd4, age:40-50, Ritonavir

collision car, neg:loc, age:20-30, hit, neck

Table 6.2: Top weighted words for factors in the Stack Overflow and Emergency. Words
marked neg: are within a negation scope.

weighted for hematuria. In this chapter, where we model the correlations between factors

instead of assuming independence, we see instead a positive association between the factors

hematuria and urinary tract infection (Figure 6.3). Urinary tract infection is then highly

associated with “infection” (not shown) and hematuria’s association is explained through its

association with the urinary tract infection factor.

6.5.4 Quantitative evaluation – Held-out tag prediction

We test the ability of our learned models to perform inference by presenting it with the

held out tag prediction task, previously described in Section 3.5.1. For this task, we use learn

a tree-structure for G(Y ) using the naive moment estimation, as we did not find that robust

moment estimation helped in this task.
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6.5.4.1 Baselines

We compare to the following relevant baselines and oracle results.

Noise tolerant discriminative training: We compare to the noise-tolerant learning

procedure of Natarajan et al. (2013) using independent binary classifiers, trained using logistic

regression with reweighted samples as described in their paper. This is a more recent and

general algorithm than that of Elkan and Noto (2008) described in Section 2.2 (does not

assume high positive predictive value of the anchors). To ensure a fair comparison with

our learning algorithm, which is provided with the anchor noise rates, we also provide the

baselines with the exact values for the noise rates. Since the learning approach of Natarajan

et al. (2013) is not designed to use the noisy labels (anchors) at prediction time, we consider

two variants: one ignores the anchors at test time, the other predicts only according to the

noise rates of the anchors (ignoring all other observations), if the anchor is present. We report

the best of the two baselines.

Imputation: We also compare to an imputation-based learning method, which learns

a maximum likelihood model from the same model family as our learned model (using a tree

distribution for the latent variables) from the fully imputed data. We use a single sample

from the independent binary baseline classifiers (Natarajan et al., 2013) to impute the values

of the latent variables.

Oracle comparisons: We compare to two different oracle implementations to decon-

volve different sources of error. The first, Oracle MoM, uses a method-of-moments approach

to learning the joint model (as described in Sections 6.4.1 and 6.4.2), but uses oracle access

to the marginal distributions that include latent variables (i.e. does not incur any error when

recovering these distributions using the method described in Section 6.3). The second oracle

method Oracle ML, uses a maximum likelihood approach to learning the joint models with

full access to the latent variables for every instance (i.e., learning as though all data is fully
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observed). Comparing the gap between oracle ML and oracle MoM shows the loss in model

quality that comes from choosing a method-of-moments approach over a maximum likelihood

approach.

6.5.4.2 Results

Figure 6.4 shows the improvement over baseline on the heldout tag prediction task for

the stack overflow and emergency datasets. We observe that learning the factor analysis

model does indeed help with prediction in both tasks and we believe that this is because

the independent classifiers in the baseline cannot take advantage of the correlation structure

between latent variables. In the Stack Overflow corpus, we see that there is a clear advantage

to learning a structured representation of the latent variables as the performance of the

tree structured discrete factor analysis model outperforms the oracle bounds of a model

with independent variables. In both datasets, the oracle results show that using method-of-

moments for parameter learning is not a big source of disadvantage compared to maximum

likelihood estimation. The gap between the method of moments and maximum likelihood

oracle results are smaller in the tree structured models than in the independent models.

6.5.5 Robustness to model error

In practice, the anchors that we specify are never perfect anchors, i.e., they don’t fully

satisfy the conditional independence conditions. In this section, we test whether enforcing

marginal or local polytope constraints (see Section 6.3.2) during the moment recovery process

provides moment estimates that are more robust to imperfect anchors, improving the overall

quality of the learned models.

We evaluate on the stack overflow dataset, which is a real world datatset in which we

expect to have some anchors which violate conditional independence. We also generate a
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Oracle ML
Natarajan et al
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AFA (indep)
AFA (tree)

Figure 6.4: Average accuracy on the last-tag prediction task for 5K held-out instances for
Emergency and Stack Overflow datasets. Anchored Factor Analysis (AFA) models are learned
using a tree structured model for the latent variables and an independent model. Dotted
lines are oracle results from the same model family.

synthetic corpus patterned after the stack overflow dataset by first training a model on

the stack overflow dataset using method of moments (enforcing that the learned model has

anchors), and then generating data from that model.

The weakest constraint we consider is using independent simplex constraints (naive

moment recovery). In addition, we evaluate models learned with moments recovered using

local consistency constraints, described in Equation 6.7 and the marginal polytope constraints

described in Section 6.3.2. We use the moments recovered using each outer bound on

the marginal polytope to learn a tree structured Bayesian network, and then evaluate the

likelihood of the true tags from a held out set of data under the learned model.
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Figure 6.5 shows the held-out likelihood of the tags according to tree models learned

from moments recovered with increasingly tight approximations to the marginal polytope

constraints on the Stack Overflow corpora. The tighter constraints learn higher quality

models. This effect persists even in the large sample regime, suggesting that the residual gaps

between the methods are due to sensitivity to model error. The oracle held-out likelihood on

the real data set (using a model learned with oracle access to the true tags at training time)

is -7.9 nats and on the synthetic dataset. -8.05 nats. Additionally, for the synthetic dataset,

and the gap between models learned with tighter or looser approximations to the marginal

polytope disappears.

6.5.5.1 Computational cost of robustness

Solving with tighter constraints does increase running time. For example, learning a

model for Stack Overflow with 50 latent variables requires 30 seconds using the simplex

constraints (trivially parallelized over 16 processes), 519 seconds for the local polytope and

6,073 seconds for the marginal polytope. Unlike EM-based procedures for learning models

with latent variables which iterate over training samples in an inner loop, the running time of

these method-of-moments approaches depends on the number of samples only when loading

the data for the first time.

6.6 Discussion

6.6.1 Interpreting oracle results

As mentioned in section 3.7, it is important to note that the oracle results in this chapter

are oracle results for models within the model family of the anchored factor analysis models.

Independent logistic regression classifiers (one for each latent factor), actually perform better
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Stack overflow - Real Stack	overflow	-	Synthe1c	

Figure 6.5: (Left) Per document held-out likelihood of learned tree structured models on
Stack Overflow using held-out sets of 10K documents, each marker represents a different
random train/test sample for the data. Solid lines represent the average of 8 runs. Different
lines represent successively tight outer bounds to the marginal polytope constraints. (Right)
When the Stack Overflow data is replaced by synthetic data drawn from a learned model,
the difference between the constraints is much less pronounced.

at the held-out tag prediction task when provided with oracle access to the true values for

the tags while training. Oracle logistic regression classifiers have accuracy of 0.78 for the

emergency dataset (compare with 0.74 for oracle ML tree structured AFA) and 0.61 for stack

overflow (compare to 0.58 with oracle ML tree structured AFA), and other, more expressive,

fully supervised classifiers or generative models could potentially do even better. Thus, the

comparison with oracle results is to show what we can learn with anchors instead of fully

labeled data within a single model family, not to give an absolute upper limit on the possible

performance on the task, which could be higher.

6.6.2 Advantage of using structured latent variables

Using structured latent variables can be useful in at least two different ways.

First, introducing the structure on the latent variables can a boost in performance on the

held out tag prediction task, as the model can use the conditioning on some of the tags to help

infer the last tag. For the emergency dataset, we see that this gain is small, possibly because

after conditioning on the observations, the marginal information gain from conditioning on
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the known tags is fairly small.

A second advantage to introducing the latent structure is that it can reduce the amount of

misspecification. This is particularly relevant for the method-of-moments learning algorithm,

which assumes the model family from the outset, and thus can be sensitive to model

misspecification. In Figure 6.4, the gap between the method of moments oracle result and

the maximum likelihood oracle result is reduced when the tree structured distribution for the

latent variables is introduced. Thus, adding structured latent variables can then be useful for

learning with method of moments.

Using a more complex graph structure for the latent variables (e.g., in degree ≤ 2),

introduces more error in the moment recovery step (requires recovery of moments of 3

latent variables rather than 2), and thus did not provide performance improvements in

our experiments. Balancing between introducing more expressive models to reduce model

misspecification, and the corresponding increases in sample complexity is currently performed

empirically.

6.6.3 Method of moments provides grounding

Anchors can be introduced to ensure that a latent variable reliably represents a real-

world concept of interest. In our experiments, we found that this anchoring was ineffective

within a likelihood-based learning framework without introducing additional terms to the

objective (the “ungrounded anchor” problem described in Section 3.3). This problem was not

observed when learning was completely within the method of moments framework. In these

experiments, we use the same emergency dataset as that used in Section 3.3. The method of

moments approach, which estimates every parameter using the anchors, provides a measure

of grounding in a way that the likelihood approach does not.
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6.6.4 Trading robustness and computational complexity

Improperly specified anchors can adversely affect a method-of-moments algorithm. We

see this in the result that none of the models learned on real data in Figure 6.5 achieve the

oracle value for held out likelihood at -7.9 nats whereas in the synthetic setting (where all

of the anchors perfectly obey the conditional independence assumption), all of the different

methods achieve the oracle value of -8.05 nats. Enforcing marginal polytope constraints

can increase robustness to model error at the expense of adding computational complexity

(Section 6.5.5.1). This computational complexity can be controlled by using outer bounds on

the marginal polytope, trading off robustness with running time. Interestingly, we don’t see

improvements in the low-sample regime. Statistical complexity in the synthetic setting does

not seem to be improved by constrained optimization.

6.7 Conclusions

Learning interpretable models with latent variables is a difficult task. In this chapter we

present a fast and expressive method that allows us to learn models with complex interactions

between the latent variables. The user specified anchors provide identifiability to the model

and ground the latent variables providing interpretability, as shown in Section 6.5.3. On two

different real-world datasets, we show that our method is able to find correlations between

latent variables that are useful for inferring a held out tag, and outperform competitive

baseline procedures at this task (Section 6.5.4). Enforcing marginal polytope constraints is

useful for improving robustness to model error (Section 6.5.5), a technique we believe can be

more widely applied. Anchors have an interesting property that they make the structure and

parameter estimation with latent variables as easy as learning with fully observed data for

method-of-moments algorithms that require low order moments. In contrast, likelihood-based

learning remains equally hard, even with anchors, motivating approximations such as the
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variational approximation used in Chapter 3.

6.8 Next steps and open questions

In this section we outline potential directions for future research.

6.8.1 Conditional distributions of anchors

Similar to the work in Chapter 3, a clear next step would be experimenting with methods

of estimating the conditional distributions of the anchors, and determining the sensitivity of

all of the steps of the algorithm presented here to that additional source of noise.

6.8.2 Likelihood objective

A natural next step would be to apply a refinement procedure based on the semi-supervised

objective described in Chapter 3. As we note in that chapter, the semi-supervised objective

can be applied to models with complex distributions over the latent factors.

6.8.3 Scientific dataset exploration

The method described in this chapter is exciting because it can be used to discover

meaningful interactions between latent variables. So far we have applied it to two real-world

tasks for evaluation, but we have not applied it more broadly with the express purpose of

learning something about the underlying datasets. A natural application would be in modeling

diseases and symptoms as in Chapter 5 and using the correlated diseases to understand

comorbidity structures. So far, a limiting factor has been the requirement of determining

the conditional distributions of the anchors in real datasets, which has held us back from
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applying this method immediately in that setting, using the condition term extractions as

anchors for the conditions themselves.

6.8.4 Subtracting off and conditioning

In Section 6.4.2, we note that the parameter estimation procedure of Equation 6.9 (which

uses conditioning) and the cancellation procedure of Equation 6.12 are different and can be

used together to learn more complicated graphs. Each method introduces error. Conditioning

segments the dataset, reducing the statistical efficiency of learning; cancellation relies on the

accurate estimates of the parameters from a previous step (similar to the subtracting off

procedure in Section 4.3.3). Conditioning can be used to isolate sub-graphs that are locally

tree-like, and then allow for the use of the cancellation procedure in those graphs. Given a

graph structure for P (Y ), determining how to use the two methods together optimally is an

open question.

The cancellation procedure of Equation 6.12 is limited to the setting of tree structured

latent variables and noisy-or conditional distributions. General methods for estimating direct

effects (such as Pearl’s back door procedure (Pearl, 2009)), could be useful for building

canceling procedures that do not require tree structures, or that work for distributions beyond

noisy-or.

6.8.5 Understanding robust moment recovery

A number of method of moments algorithms use constrained optimization or projection

to improve robustness of the method and avoid returning solutions that do not correspond to

valid models (Shaban et al., 2015; Cohen et al., 2013; Duchi et al., 2008; Lee et al., 2015).

However, a theoretical characterization of when this works is still missing. Are there certain

types of errors that are better corrected by applying constraints? For example, is there a
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difference between a setting where a small number of anchors violate the anchor definition

grossly compared to all of the anchors violating slightly, and which setting would benefit more

from constrained optimization? As mentioned in Section 6.6.4, error due to finite samples

(statistical noise) does not seem to be improved by constraints in the synthetic setting, but

more investigation is warranted.
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Chapter 7

Topic modeling with anchors

Acknowledgments This work was joint with Sanjeev Arora, Rong Ge, David Mimno,

Ankur Moitra, David Sontag, Yichen Wu, Michael Zhu. Additional thanks to Anantha Ravi

Kiran for followup work. This work was previously published as “A Practical Algorithm for

Topic Modeling with Provable Guarantees” Arora, Ge, Halpern, Mimno, Moitra, Sontag, Wu

and Zhu. ICML 2013.

7.1 Introduction

This chapter describes a method-of-moments approach to learning topic models using

an “anchor” assumption, very similar to the assumptions that appear in Chapters 2, 3 and

6. While not directly related to electronic medical records or the phenotyping task, the

purpose of this chapter is to show that the anchor assumption is broadly useful in learning

latent variable models, and to highlight some of the characteristics of a method-of-moments

algorithm that successfully learns from real data.

In the remainder of this section, we give some background on the probabilistic topic

modeling task and list the contributions of the chapter.
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7.1.1 Probabilistic topic models

Probabilistic topic modeling is a popular method that learns thematic structure from

large document collections without human supervision (Blei, 2012). Text has never been

more important to how we communicate, or more easily available. But the massive text

streams that are available today far outstrip anyone’s ability to read. Topic models are a

vital tool for helping to navigate big text data, if we can train them quickly and reliably.

In probabilistic topic modeling we represent each document in a collection as a combination

of words from various topics. Topics are shared across all documents, but each document has

its own unique proportions specifying how much of each topic is present in that document.

For example, a news article about legislation relating to retirement accounts might combine a

topic related to politics and a topic related to personal finance. Other articles might exhibit

other combinations, such as politics and military conflict, or personal finance and computer

software.

The topics themselves are probability distributions over words. Like topics across docu-

ments, each word in the vocabulary is shared across all topics, but each topic has its own

unique proportion of these words. A word like account may appear with high probability in

several topics: it could refer to a financial product (a bank account) or a story (a fictional

account). Less ambiguous terms, like 401k (a US retirement account), might have significant

probability only in one topic.

To extract topics from a large collection of documents, we posit a generative model that

describes an imaginary process by which topics could generate documents (see Figure 7.1).

We can then work backwards to find the topics that are most likely to have produced a

specific set of documents. Each of the K topics consists of a different categorical distribution

over words, A1, ..., AK . To create each document, its topic proportions Wd are drawn from a

distribution τ . Then, for each token i in the document, a topic zi ∈ {1, . . . , K} is sampled
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For d from 1..M :
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• For i from 1...D:

– Sample zi ⇠Wd

– Sample wi ⇠ Azi

Figure 7.1: The generative model used in topic modeling.

from Wd, the topic-proportions of that document. A word is then chosen randomly from that

topic’s distribution over words, wi ∼ Azi . This formulation is very general and includes the

most widely used probabilistic topic model, Latent Dirichlet Allocation (LDA) (Blei et al.,

2003), where τ is a Dirichlet distribution, as well as subsequent extensions such as Correlated

Topic Models (Blei and Lafferty, 2007), where τ is a logistic Normal distribution, or Pachinko

Allocation (Li and McCallum, 2007) where τ is a Bayesian network.

Even though this generative process is an unrealistic account of how documents are really

created, it retains the important qualities of the model. Documents can be about many topics,

and topics are shared between different documents in the corpus. This probabilistic approach

has been used to uncover meaningful topics that have proven to be useful summarizations in

a broad range of applications.

7.1.2 Challenges of learning probabilistic topic models

The challenges faced in learning probabilistic topic models are similar to those faced when

learning noisy-or factor analysis models (Section 1.2.4).

The traditional method of learning probabilistic topic models is by maximum likelihood

estimation, where we seek a set of K topics, {A1, ..., AK}, that maximize the likelihood of the

entire collection being generated by the procedure described above. This learning problem
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of recovering the broad topics present in the collection is distinct from determining which

topics are present in each document, often referred to as the inference task.

Maximum likelihood estimation is an extremely difficult optimization problem because

the likelihood objective is non-convex, with many local maxima. Optimizing non-convex

functions is notoriously difficult, and standard local-search based techniques like Expectation-

Maximization (Dempster et al., 1977) or gradient ascent can only guarantee convergence to a

local maximum, which may be much worse in terms of the objective value than the global

optimum of the objective function. To make matters worse, even evaluating the likelihood

function is intractable due to the presence of latent variables, namely the topic proportions of

each document, Wd, and the topic assignments of each word, zi. To evaluate the likelihood of

a single document requires integrating over all possible topic-proportions, a high-dimensional

integral with no closed form, as well as summing over an exponential number of possible

topic assignments for the words in the document. Inference in even the simplest of topic

models, LDA, is known to be NP-hard (Sontag and Roy, 2011).

Previous work in topic modeling solve approximate versions of the maximum likelihood

problem. For example, the variational-EM approach (Blei et al., 2003; Hoffman et al., 2013)

maximizes an objective that lower bounds the likelihood objective, but cannot guarantee

that the solution is close to the optimum of the likelihood objective itself. The Markov Chain

Monte Carlo (MCMC) approach (Griffiths and Steyvers, 2004) uses Markov chains constructed

to generate samples from the posterior distribution of the parameters conditioned on the

observed collection of documents, but suffers from well-known drawbacks: It is difficult to

assess convergence, and the resulting samples are not guaranteed to be close to the maximum

likelihood solution. These approximations to the maximum likelihood objective are, in a

sense, necessary, since recent work has shown that even for the simple LDA model, finding

the maximum likelihood solution is NP-hard, even if there are only two topics (Arora et al.,

2012b).
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These approximations tend to be slow in practice, because they contain an inner loop

in which they perform an approximation to inference, determining which topics are likely

present in each document in the collection. Thus, we seek a principled new approach that

can circumvent both the hardness of maximum likelihood learning and inference.

Previous work on learning topic models with anchors by Arora et al. (2012b) is theoretically

important in that it shows polynomial recoverability, but it is not practical. Its run-time

is polynomial, but prohibitively large. Worse, as we show in the Experiments section, it is

sensitive to violations of the modeling assumptions, learning poor quality topics when run on

real-world data collections.

7.1.3 Contributions

The contribution of this chapter are as follows:

• We present a faster and more robust version of the provable method of moments

algorithm for learning anchored topic models with arbitrary topic distributions originally

presented in (Arora et al., 2012b).

• We show that models fit to real-world data sets nearly satisfy the anchor assumption.

When run on data generated from these models, our algorithm is robust to these small

violations of the anchor assumption, performing parameter recovery as well as a state

of the art approach.

• We demonstrate that the new algorithm competes with state of the art approximate

likelihood approaches on real data while running in a fraction of the time.
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7.2 Anchor words

The correctness of our algorithm relies on an assumption that topics are separable, that

is, that they can be reliably distinguished from one another via anchor words.

Anchor words, in the context of topic models, are specialized words that are specific to a

single topic. For example, if the word 401k occurs in a document then it is a strong indicator

that the document is at least partially about personal finance. Natural language contains

many of these unambiguous words, and thus the anchor word assumption is reasonable in

many text-processing applications. Formally, a word is an anchor for topic k, if it has non-zero

probability of being generated by topic k, and zero probability of being generated by any

other topic. This is similar to the anchor definition from Chapter 2, applied to topic models.

If each topic in the topic model has at least one anchor word, we can provably recover

the parameters of the model by solving an inverse problem constrained by the pairwise word

co-occurrence counts, which are second order moments of the distribution.

Rather than optimizing generative likelihood, we consider the problem of finding topics

that match the second-order moments, i.e. pairwise co-occurrence counts of words observed

in the collection. For a vocabulary of size V , the expectation of the pairwise co-occurrence

counts can be written as a V × V matrix:

Q = AEτ [WW T ]AT , (7.1)

where A is a V × K matrix whose columns are topic distributions, and W is a K ×M

stochastic matrix whose columns are the topic proportions, Wd, for each document in the

collection. W is unknown and stochastically generated: we can never expect to exactly

recover it. However, if every topic has at least one anchor word, then Equation 7.1 is a

separable nonnegative matrix factorization problem. Donoho and Stodden (2003) initially
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showed that the separability criteria was sufficient to guarantee a unique solution for A and

R = Eτ [WW T ]. Arora et al. (2012a) gave a polynomial time recovery algorithm. Thus, the

anchor-word assumption gives a fruitful direction to explore for polynomial time topic-model

learning.

7.3 The anchor words algorithm

7.3.1 From probability to geometry

Separable topic models have various important probabilistic and geometric properties.

These properties will form the foundation for our algorithm for identifying anchor words and

then using those anchor words to recover the parameters of the topic model. We will work

with simple statistics measuring how often various pairs of words co-occur in a document.

We begin with a matrix Q whose entries represent co-occurrence probabilities: Consider

a pair of words drawn randomly (without replacement) from a document. The words are

denoted as (w1, w2) ∈ [V ]2 and their respective latent topic assignments are denoted as

(z1, z2) ∈ [K]2. Q is of dimension V × V and each element Qi,j is equal to P(w1 = i, w2 = j).

If we renormalize the rows of Q so that the rows sum to one, we obtain a matrix Q̄ containing

conditional probabilities, so that Q̄i,j = P(w2 = j|w1 = i). It is important to emphasize that

we can estimate the entries of both Q and Q̄ from our data, but in our analysis we will need

to bound how the error in our estimates contributes to errors in our inferred topic model.

We will defer this complication for the time being, and assume that our estimates are exact.

It is useful to consider this data geometrically. We can view the rows of Q̄ as points in a

simplex embedded in a V -dimensional space, where each dimension corresponds to a word in

the vocabulary. In particular, each point is nonnegative and its entries sum to one. We will

call a row of Q̄ an anchor row if it corresponds to an anchor word. A simplified illustration of
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Figure 7.2: The rows of Q are vectors in V -dimensions, and their convex hull is a K-simplex
whose vertices are anchor rows. Here Qi = 1

2
Qπ(k) + 1

2
Qπ(k′) and this implies that the posterior

distribution P (z1 = ∗|w1 = i) assigns 1
2

to z1 = k and 1
2

to z1 = k′ and zero to every other
topic.

anchor and non-anchor points is shown in Figure 7.2. The key insight behind our algorithm

is:

Lemma 3. Each row of Q̄ is a convex combination of the anchor rows.

Thus we can say much more about the rows of Q̄. Not only do they belong to the simplex in

V -dimensions, but their convex hull itself is a K-simplex where each vertex is an anchor row.

This is the geometric property we will exploit when we design a simple, greedy algorithm

for identifying the anchor words. Our proof of this lemma will be through elementary

manipulations on various conditional probabilities.

Let us consider the following simplified setting. We will use the notation π(k) to denote

an anchor word for topic k. Then the definition of an anchor word gives us:

P (z1 = k′|w1 = π(k)) =





1 k′ = k

0 else

This follows because when an anchor word is observed, there is only one topic that could

188



have generated it! Moreover let Q̄i denote the ith row of Q̄. Then Q̄i = P (w2 = ∗|w1 = i). It

follows that

Q̄π(k) = P (w2 = ∗|w1 = π(k)) = P (w2 = ∗|z1 = k)

And finally we can write

Q̄i =
∑

k′

P (w2 = ∗|w1 = i, z1 = k′)P (z1 = k′|w1 = i)

=
∑

k′

P (w2 = ∗|w1 = π(k′))P (z1 = k′|w1 = i)

This formula explicitly represents Q̄i as a convex combination of the anchor rows, but

moreover we see that the convex combination is given by the conditional probabilities

P (z1 = k′|w1 = i) of which topic generated word w1 = i. Thus our strategy is to find the

anchor rows, and then solve a low-dimensional convex program to represent every non-anchor

row as a convex combination of the anchor rows to find P (z1 = k′|w1 = i). From there, we

can use Bayes’ rule to compute P (w1 = i|z1 = k′) which are exactly the parameters (except

for the hyperparameters) of our topic model.

7.3.2 Finding anchors

A simple, greedy algorithm called FindAnchors (Algorithm 7) provably finds the first K

anchor words. More precisely, given the matrix Q defined in the previous subsection, it finds

the anchor rows. A graphical illustration of the algorithm is shown in Figure 7.3. However

what is important about this algorithm is its behavior in the presence of noise, when we are

given an estimate of Q instead. In that setting, it can be shown that FindAnchors recovers

near anchor words — i.e. words whose row in Q is close in `1 distance to some anchor word.

We need these latter types of guarantees to quantify how much data we need to get estimates

that are provable close to the true parameters of the topic model.
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Algorithm 7 FindAnchors

Input: Q̄
Output: Anchor indices Π

1: Π = ∅
2: for k = 1 TO K do
3: Π = Π ∪ argmaxi dist(Q̄i, span({Q̄j}j∈Π))
4: end for
5: for k = 1 TO K do
6: π(k) = argmaxi dist(Q̄i, span({Q̄j}j∈Π\π(k)))
7: end for
8: Return Π

Notation: span(S) denotes the subspace spanned by the points in the set S. The Euclidean distance

between a point, x, and a subspace, span(S), denoted as dist(x, span(S)) is mins∈span(S) ||x − s||.
When S = ∅, span(S) contains only the 0 vector.

The algorithm starts with a set that contains the point farthest from the origin. Then

it iteratively add points that maximize distance from the span of the previously collected

points. This procedure can also be seen as iteratively growing the simplex, adding vertices

that greedily maximize the enclosed volume. While the general problem of choosing K rows

of a matrix Q̄ to maximize the enclosed volume is NP-hard, it becomes easy when the points

are known to lie in a simplex and the vertices of the simplex are themselves among the input

points.

For the purpose of improving the noise tolerance, we add a second “clean up” stage

that iteratively removes each vertex and adds back the point farthest from the span of the

remaining vertices. While this additional round of cleanup has been previously suggested as

a heuristic to improve quality, here we show that it also improves the theoretical guarantees

of the algorithm.

Finally, the running time of this algorithm can be further improved by using random

projection. Randomly projecting a collection of vectors in high dimensions onto a random

low-dimensional subspace is well-known to approximately preserve the pairwise distance

190



Algorithm 8 Recover-Topics (L2)

Input: Word co-occurrence matrix Q, Anchor indices Π = {π(1), ..., π(K)}, Word probabili-
ties pw.

Output: Topic model parameters: A, R
1: Q̄ = row normalized Q
2: for i = 1, ..., V do
3: Solve Ci = argminCi∈∆K−1 ||Q̄i − CT

i Q̄Π||2
4: end for
5: C = [C1, .., CV ]T

6: A′ = diag(pw)C
7: A = column normalized A′

8: R = A+QAT+

9:

10: return A, R

A+denotesthepseudoinverseofA.

between each pair of vectors. And since our algorithm iteratively finds the farthest point

from a subspace, its behavior is preserved after a random projection. This refinement of the

algorithm allows it to work with low-dimensional points, and improves its efficiency. The

final running time is Õ(V 2 + V K/ε2).

7.3.3 Topic recovery

Here we give an algorithm called Recover-Topics to provably recover the word-topic

distribution when given the anchor words. The algorithm exploits the probabilistic and

geometric properties of separable topic models, which we outlined earlier. Recall that every

row of Q̄ can be written as a convex combination of the anchor rows. Moreover, the mixing

weights are exactly the probabilities P(z1|w1).

The algorithm solves the convex optimization problem of finding a vector of coefficients,

Ci ∈ ∆K−1, that minimize dist(Q̄i, C
T
i Q̄Π), where Q̄Π denotes the matrix containing only

the anchor rows of Q̄. This is a minimization problem that can be solved effectively using

the Exponentiated Gradient algorithm (Kivinen and Warmuth, 1995). The resulting matrix

191



	
  	
  1.	
  

4.	
  3.	
  

2.	
  

Figure 7.3: The first three steps of FindAnchors consist of finding a starting point furthest
from the origin, finding the furthest point from the initial point, and finding the furthest
point from the line defined by the first two points.

C = [C1, ..., CV ]T , can be interpreted as containing conditional probabilities of the topic

assignments conditioned on an observed word, Ci,j = P(z1 = j|w1 = i).

Recovering the mixing weights is not quite enough, but in conjunction with an estimate

of P(w1 = i), which can be obtained from simple word counts, we can recover the elements of

the A matrix through Bayes’ rule (this calculation is performed in matrix form on lines 6
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and 7 of Recover-Topics):

P(w1 = i|z1 = k) =
P(z1 = k|w1 = i) P(w1 = i)∑
i′ P(z1 = k|w1 = i′)p(w1 = i′)

.

Once the A matrix is recovered, it yields enough information to recover the topic-topic

covariance matrix R = E[W TW ] along with it. Recall from Equation 7.1 that the second-order

co-occurrence probability matrix Q, can be written as: Q = ARAT . Thus we can recover R

by computing R = A+QAT+, where A+ denotes the pseudoinverse of A.

In the special case of the LDA model, we can additionally recover the Dirichlet hyperpa-

rameters. Recall that in implementing Bayes’ rule, we compute for k ∈ [K], the denominator
∑

i′ P(z1 = k|w1 = i′)p(w1 = i′) = P(zk) (this is done implicitly when normalizing the

columns of A′ in Algorithm 8), which gives us, up to a constant scaling, the Dirichlet hyper-

parameters. This scaling constant can be recovered from the R matrix as described in Arora

et al. (2012b), but in practice we find it better to choose this single parameter using a grid

search to maximize the likelihood of the data.

Different variants of this algorithm consider different distance functions dist(Q̄i, C
T
i Q̄Π)

to quantify the reconstruction loss. Using the squared Euclidean distance has the attractive

property that the minimization on line 3 of Recover-Topics can be “kernelized”, making

the running time of each iteration of exponentiated gradient independent of the vocabulary

size, V .

The objective can be re-written in kernelized form as:

||Q̄i − CT
i Q̄Π||2 = CT

i (Q̄ΠQ̄
T
Π)Ci − 2Ci(Q̄ΠQ̄

T
i ) + ||Q̄i||2,

where Q̄ΠQ̄
T
Π is K×K and can be computed once and used for all words, and Q̄ΠQ̄

T
i is K× 1

and can be computed once prior to running the exponentiated gradient algorithm for word i
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and ||Q̄i||2 is constant with respect to the optimization over Ci and can be ignored.

Solving the minimization problem with a tolerance of ε2 requires K logK/ε2 iterations

of the Exponentiated Gradient (Kivinen and Warmuth, 1995) algorithm. The running

time of Recover-Topics is Õ(V 2K + V K3/ε2) and the for-loop which constitutes the main

computational bottleneck can be trivially parallelized.

7.3.4 Theoretical guarantees

Here we state rigorous guarantees on the sample complexity and running time of our

algorithm. When we are given a finite set of samples, our empirical statistics — which we

denote by Q̃ — will be a good, but imperfect approximation to Q̄. In order to bound how

many samples we need to obtain some target accuracy in recovering the true parameters of

the topic model, we need to track the various sources of error through our algorithm.

Moreover, we need that certain parameters are bounded in reasonable ranges to guarantee

that the inverse problem we are trying to solve is well-posed. Recall that the existence of

anchors implies that we are trying to solve a separable non-negative matrix factorization

problem. We characterize the separability of the problem as follows:

Definition 5. The word-topic matrix A is p-separable for p > 0 if for each topic k, there is

some word i such that Ai,k ≥ p and Ai,k′ = 0 for k′ 6= k.

If p is too small, then anchor words rarely occur and cannot help us in learning the

parameters of our model. We will require a lower bound on p, and the sample complexity

of our algorithm will depend on 1/p. The running time will depend on 1/p as well, since

we have to read in enough data points to see each anchor at least once. We will also need

a second measure γ that we will use to denote the smallest singular value of R. When γ is

too small, the problem of recovering A and R from Q = ARAT becomes unstable. Note that

this measure also implies that a topic should not appear with a low probability since for any
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topic i, it can be shown that γ ≤ P (z = i).

When the problem is well-behaved with respect to these two measures, our algorithm

achieves the following guarantee:

Theorem 4. There is a polynomial time algorithm that learns the parameters of a topic

model if the number of documents is at least

M = max

{
O

(
log V ·K6

ε2p6γ6D

)
, O

(
logK ·K4

γ4

)}
,

where p and γ are the two non-degeneracy measures defined above and D ≥ 2 is the length

of the shortest document. The algorithm learns the word-topic matrix A and the topic-topic

covariance matrix R up to additive error ε.

To prove this theorem, we show that the FindAnchors algorithm successfully recovers

near-anchor words, and the Recover-Topics algorithm accurately estimates the desired

parameters given near-anchor words.

Before stating the guarantee for FindAnchors algorithm, we first introduce the following

notion of α-covering.

Definition 6. Consider a simplex P , with vertices {v1, ..., vK}. A point x is said to α-cover

a vertex vk if whenever x is written as a convex-combination of the vertices, x =
∑K

k′=1 ck′vk′,

then ck ≥ 1− α. A set of points α-covers the vertices if each vertex is α-covered by a point in

the set.

Clearly, we would like the anchor points to be α-covered by the set of near-anchors found

by FindAnchors algorithm.

Let δ be the largest perturbation between the rows of Q̄ and Q̃, maxi ||Q̄i − Q̃i|| ≤ δ.

Lemma 4 connects the indices found by FindAnchors and the true anchors.
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Lemma 4. If δ < (γp)3/20K, FindAnchors acting on the perturbed matrix Q̃, will output

indices Π̃ such that {Q̄π̃(1), ..., Q̄π̃(K))} O(δ/γp)-covers the true anchor rows {Q̄π(1), ..., Q̄π(K)}.

Next we show the Recover-Topics algorithm is robust to perturbations in the vertices

and the internal points, making it possible to bound the error in the reconstruction coefficients

in Lemma 5.

Lemma 5. When Recover-Topics is provided with the perturbed matrix Q̃ and perturbed

anchors which O(δ/γp)-cover the true anchors, the element-wise error on the returned matrix

A is less than O(δK/γ3p2).

Combining these two lemmas, and standard concentration bounds for the empirical

correlation matrix Q̂, we get the guarantees in the main Theorem 4.

7.4 Experimental Results

The proposed method in this chapter, anchor finding followed by convex optimization

for topic recovery, is both faster than standard probabilistic approaches and more robust

to violations of model assumptions than previous provable approaches. We compare two

parameter recovery methods and a standard, probabilistically motivated algorithm. The

first method is a simple matrix inversion presented in Arora et al. (2012b), which we call

Recover. This inversion method is theoretically optimal, but fails in practice. The second

is the constrained recovery method using a squared `2 loss, which we call RecoverL2 as

shorthand for Recover-Topics (L2). As a comparison, we also consider a state-of-the-art

Gibbs sampling implementation (McCallum, 2002). We would like an algorithm to be fast,

accurate, and robust to noisy data. We find that the anchor-based algorithm is substantially

faster than the standard algorithm, especially for large corpora. To evaluate accuracy we test
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the algorithms on semi-synthetic data (with known topic distributions) and real documents.

In addition, we measure the effect of different sources of error and model mismatch.

7.4.1 Methodology

We train models on two synthetic data sets to evaluate performance when model assump-

tions are correct, and on real documents to evaluate real-world performance. To ensure that

synthetic documents resemble the dimensionality and sparsity characteristics of real data, we

generate semi-synthetic corpora. For each real corpus, we train a model using Gibbs sampling

and then generate new documents using the parameters of that model (these parameters are

not guaranteed to be separable; we found that about 80% of topics fitted by Gibbs sampling

had anchor words).

We use two real-world data sets, a large corpus of New York Times articles (295k

documents, vocabulary size 15k, mean document length 298) and a small corpus of NIPS

abstracts (1100 documents, vocabulary size 2500, mean length 68). Vocabularies were pruned

with document frequency cutoffs. We generate semi-synthetic corpora of various sizes from

models trained with K = 100 from NY Times and NIPS, with document lengths set to 300

and 70, respectively, and with document-topic distributions drawn from a Dirichlet with

symmetric hyperparameters 0.03.

For the first stage of the algorithm, anchor word recovery, we use the FindAnchors

algorithm in all cases. The original linear programming-based anchor word finding method

presented with Recover in (Arora et al., 2012b) is too slow to be comparable. For Gibbs

sampling we obtain the word-topic distributions by averaging over 10 saved states, each

separated by 100 iterations, after 1000 burn-in iterations.

We use a variety of metrics to evaluate the learned models. For the semi-synthetic

corpora, we compute the reconstruction error between the true word-topic distributions

197



and the learned distributions. In particular, given a learned matrix Â and the true matrix

A, we use bipartite matching to align topics, and then evaluate the `1 distance between

each pair of topics. When true parameters are not available, a standard evaluation for topic

models is to compute held-out probability, the probability of previously unseen documents

under the learned model. This computation is intractable in general, but there are reliable

approximations (Wallach et al., 2009; Buntine, 2009).

Topic models are useful because they provide interpretable latent dimensions. We can

evaluate the semantic quality of individual topics using a metric called Coherence (Mimno

et al., 2011). This metric has been shown to correlate well with human judgments of topic

quality. If we perfectly reconstruct topics, all the high-probability words in a topic should

co-occur frequently, otherwise, the model may be mixing unrelated concepts. Given a set of

words W , coherence is

Coherence(W) =
∑

w1,w2∈W

log
D(w1, w2) + ε

D(w2)
, (7.2)

where D(w) and D(w1, w2) are the number of documents with at least one instance of w, and

of w1 and w2, respectively. We set ε = 0.01 to avoid taking the log of zero for words that

never co-occur (Stevens et al., 2012). Coherence measures the quality of individual topics,

but does not measure redundancy, so we measure inter-topic similarity. For each topic,

we gather the set of the N most probable words. We then count how many of those words do

not appear in any other topic’s set of N most probable words. For these experiments we use

N = 20. Some overlap is expected due to semantic ambiguity, but lower numbers of unique

words indicate less useful models.
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Figure 7.4: Training time on synthetic NIPS documents.

7.4.2 Efficiency

Both the Recover and RecoverL2 algorithms, in Python, are faster than a heavily

optimized Gibbs sampling implementation in Java (Yao et al., 2009). Fig. 7.4 shows the

time to train models on synthetic corpora on a single machine. Gibbs sampling is linear in

the corpus size. RecoverL2 is also linear (ρ = 0.79), but only varies from 33 to 50 seconds.

Estimating Q is linear, but takes only 7 seconds for the largest corpus. FindAnchors takes

less than 6 seconds for all corpora.

7.4.3 Semi-synthetic documents

The new algorithms have good `1 reconstruction error on semi-synthetic documents,

especially for larger corpora. Results for semi-synthetic corpora drawn from topics trained

on NY Times articles are shown in Fig. 7.5 (top) for corpus sizes ranging from 50k to

2M synthetic documents. In addition, we report results for the Recover and RecoverL2

algorithms on “infinite data,” that is, the true Q matrix from the model used to generate

the documents. Error bars show variation between topics. Recover performs poorly in all

but the noiseless, infinite data setting. Gibbs sampling has the lowest `1 on smaller corpora.

However, for the larger corpora the new RecoverL2 algorithm have the lowest `1 error and

199



0.0

0.5

1.0

1.5

2.0

50000 100000 150000 200000 250000 300000 400000 500000 1000000 2000000 Infinite
Documents

L1
.e

rr
or

Algorithm

Gibbs

Recover

RecoverL2

SynthNYT, L1 error

0.0

0.5

1.0

1.5

2.0

2000 4000 6000 8000 10000 20000 40000 60000 80000 100000 Infinite
Documents

L1
.e

rr
or

Algorithm

Gibbs

Recover

RecoverL2

SynthNIPS, L1 error

Figure 7.5: `1 error for learning semi-synthetic LDA models with K = 100 topics (top: based
on NY Times, bottom: based on NIPS abstracts). The horizontal lines indicate the `1 error
of K uniform distributions.

smaller variance (running sampling longer may reduce MCMC error further). Results for

semi-synthetic corpora drawn from NIPS topics are shown in Fig. 7.5 (bottom), and are

similar.

Effect of separability. Notice that in Fig. 7.5, Recover does not achieve zero `1 error

even with noiseless “infinite” data. Here we show that this is due to lack of separability,

and that the new recovery algorithms are more robust to violations of the separability

assumption. In our semi-synthetic corpora, documents are generated from an LDA model,

but the topic-word distributions are learned from data and may not satisfy the anchor words

assumption. We now add a synthetic anchor word to each topic that is, by construction,
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Figure 7.6: When we add artificial anchor words before generating synthetic documents, `1

error goes to zero for Recover and close to zero for RecoverL2.

unique to that topic. We assign the synthetic anchor word a probability equal to the most

probable word in the original topic. This causes the distribution to sum to greater than 1.0,

so we renormalize. Results are shown in Fig. 7.6. The `1 error goes to zero for Recover, and

close to zero for RecoverL2 (not zero because we do not solve to perfect optimality).

Effect of correlation. The theoretical guarantees of the new algorithms apply even if

topics are correlated. To test the empirical performance in the presence of correlation, we

generated new synthetic corpora from the same K = 100 model trained on NY Times articles.

Instead of a symmetric Dirichlet distribution, we use a logistic Normal distribution with a

block-structured covariance matrix. We partition topics into 10 groups. For each pair of topics

in a group, we add a non-zero off-diagonal element (ρ) to the covariance matrix. This block

structure is not necessarily realistic, but shows the effect of correlation. Results for ρ = 0.05

and 0.1 are shown in Fig. 7.7. Recover performs much worse with correlated topics than

with LDA-generated corpora (c.f. Fig. 7.5). The other three algorithms, especially Gibbs

sampling, are more robust to correlation. Performance consistently degrades as correlation

increases. For the recovery algorithms this is due to a decrease in γ, the condition number

of the R matrix. With infinite data, `1 error is equal to the `1 error in the uncorrelated
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Figure 7.7: `1 error increases as we increase topic correlation (top: ρ = 0.05, bottom:
ρ = 0.1). Based on the NY Times semi-synthetic model with 100 topics.

202



synthetic corpus (non-zero because of violations of the separability assumption).

7.4.4 Real documents

The new algorithms produce comparable quantitative and qualitative results on real

data. Fig. 7.8 shows three metrics for both corpora. Error bars show the distribution of

log probabilities across held-out documents (top panel) and coherence and unique words

across topics (center and bottom panels). Held-out sets are 230 documents for NIPS and

59k for NY Times. For the small NIPS corpus we average over 5 non-overlapping train/test

splits. The matrix inversion step in Recover fails for the NIPS corpus so we modify the

procedure to use pseudoinverse. This modification is described in Appendix G.4.2. In both

corpora, Recover produces noticeably worse held-out log probability per token than the other

algorithms. Gibbs sampling produces the best average held-out probability (p < 0.0001 under

a paired t-test), but the difference is within the range of variability between documents. We

tried several methods for estimating hyperparameters, but the observed differences did not

change the relative performance of algorithms. Gibbs sampling has worse coherence than the

other algorithms, but produces more unique words per topic. These patterns are consistent

with semi-synthetic results for similarly sized corpora (Appendix G.3).

For each NY Times topic learned by RecoverL2 we find the closest Gibbs topic by `1

distance. The closest, median, and farthest topic pairs are shown in Table 7.1. We observe that

when there is a difference, recover-based topics tend to have more specific words (Anaheim

Angels vs. pitch).
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Figure 7.8: Held-out probability (per token) is similar for RecoverL2 and Gibbs sampling.
RecoverL2 has better coherence, but fewer unique terms in the top N = 20 words than Gibbs.
(Up is better for all three metrics.)

Table 7.1: Example topic pairs from NY Times (closest `1), anchor words in bold. The UCI
NY Times corpus includes named-entity annotations, indicated by the zzz prefix. All 100
topics are shown in Appendix G.3.1.

RecoverL2 run inning game hit season zzz anaheim angel
Gibbs run inning hit game ball pitch

RecoverL2 father family zzz elian boy court zzz miami
Gibbs zzz cuba zzz miami cuban zzz elian boy protest

RecoverL2 file sport read internet email zzz los angeles
Gibbs web site com www mail zzz internet
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7.5 Discussion

7.5.1 Computational efficiency

Computational efficiency is of utmost importance for learning and using topic models

from big data. The run-time of the anchor-word learning algorithm is nearly independent of

the number of documents on which it is run.

With sampling and EM approaches, more data means more work. In our setting, the

number of samples only shows up because you have to read in the data, but aside from that

dependence, more samples do not increase run time. This confirms with intuition, more

samples should be a good thing, it should not make the problem harder!

Many aspects of the anchor-word learning algorithm can also be trivially parallelized.

Construction of the input matrix Q requires summing over separate matrices derived from

each individual document, so data need not be co-located on one server, and data can be

imported in parallel. Anchor finding using the Gram-Schmidt process is sequential, but within

each iteration, the projection step for each row of Q̄ can be trivially parallelized. Finally, the

recovery step consists of a separate constrained linear regression for each non-anchor word,

which again can be trivially parallelized.

Since this initial work, exciting advances have been made in stochastic variational inference

for learning topic models (Hoffman et al., 2013; Mnih and Gregor, 2014) which can also

learn very effectively and quickly on large data sets. Thus, the speed comparisons should be

understood to be against a weaker baseline than current state of the art.

7.5.2 Related work

Similar problems have been studied extensively under the name of hyperspectral unmixing,

where the separability or anchored assumption is called the “pure pixel” assumption. With
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this assumption, the VCA (Nascimento and Dias, 2004) algorithm is very similar to the

algorithm we propose here, without the cleanup phase. The N-FINDR (Gomez et al., 2007)

algorithm tries to greedily maximize the volume of a simplex by doing iterations like the

clean-up phase in our algorithm. Recently, such ideas have also been applied to the problem

of non-negative matrix factorization (Thurau et al., 2010; Kumar et al., 2012). Our approach

differs from Kumar et al. (2012) in that we use slightly different geometric interpretations

(simplex vs. cones), and because our heuristic is (exactly) equivalent to greedily maximizing

volume.

Anchor words are not the only assumption that allow for polynomial time learning of topic

models. Anandkumar et al. (2012a) also present a provable algorithm for topic modeling based

on third-order moments and tensor decomposition that does not require anchor words, but,

unlike the algorithm of Arora et al., assumes that topics are not correlated. Although standard

topic models like LDA (Blei et al., 2003) assume that topic proportions in a document are

uncorrelated, there is strong evidence that topics are dependent (Blei and Lafferty, 2007; Li

and McCallum, 2007): economics and politics are more likely to co-occur than economics and

cooking.

Since its publication, the AnchorWords algorithm has been extended in a number of

directions. Roberts et al. (2014) find that using an anchor-based model as an initialization

for a probabilistic algorithm reduces variability and improves model fit. The success of the

algorithm depends on finding high quality anchor words efficiently, but finding good anchors

requires finding an optimal low-dimensional convex hull in a high-dimensional space. Ding

et al. (2014) present an anchor finding algorithm that can be parallelized across multiple

servers.

Unfortunately, finding anchor words that differ from the greedy Gram-Schmidt orthogonal-

ization has proven difficult, but several promising approaches have been developed. Zhou et al.

(2014) find anchors by repeated random projections of the word cooccurrence matrix into the
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positive quadrant of a plane. For each projection, it is then simple to find the two extreme

vectors. Words whose projection is often an extreme vector are likely to be good anchor

words. Lee and Mimno (2014) replace random projections with a single heavy-tailed t-SNE

projection that does not preserve pairwise `2 distances, but preserves local distances, allowing

points to spread out in the projected space. When used with two- or three-dimensional t-SNE

projections, this space is both visualizable and a convex hull with vertices corresponding to

anchor words can be found analytically. Lee et al. (2015) projects the coocurrence matrix to

be low-rank and doubly non-negative (both are features of the cooccurrence matrix generated

under ideal circumstances) and show how that learns more robust topics from small and

noisy data.

There has also been some work on improving the topic recovery step. Nguyen et al. (2014)

adds regularization to smooth the estimated topic-word distributions, resulting in improved

interpretability.

7.5.2.1 Topic models and noisy-or factor analysis

Topic modeling bears some similarity to noisy-or factor analysis models, which appear in

many other chapters of this thesis, with the main difference being in the type of data being

modeled. The observed variables in a topic model are counts and the latent variables are

probability vectors (i.e., non-zero and sum-to-one), rather than binary. The interpretations

of the latent space are different as well. The latent variables in a topic model represent the

proportion of a document that is related to a specific topic, whereas the variables in a noisy-or

factor analysis model refer to whether a factor is active or not.

In Chapter 6 we address the setting where the latent variables in a non-independent. The

latent variables in a topic model cannot be independent, since they must sum-to-one, but the

LDA model uses a Dirichlet prior which is close to independent (samples from a Dirichlet

can be generated by sampling independent gamma random variables and normalizing). An
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interesting feature of the algorithm described in this chapter is that it can provably recover

the word-topic matrix no matter how complex the prior distribution of the topics is, but it

does not provide an explicit construction of the distribution Wd ∼ τ . Rather, it provides

only the pairwise moments of τ in the form of the R matrix. In contrast, the algorithm in

Chapter 6 explicitly recovers a Bayesian network to describe the prior distribution of the

factors.

Unlike the anchored noisy-or factor analysis work, where anchors are specified by domain

experts, in the topic modeling setting, we are able to find anchors directly from the data by

searching for extreme points in word-word co-occurrence space (Section 7.3.2). A similar

geometric characterization of anchors in the noisy-or setting has not yet been found. Topic

modeling bears some similarity to noisy-or factor analysis models, which appear in many

other chapters of this thesis, with the main difference being in the type of data being modeled.

The observed variables in a topic model are counts and the latent variables are probability

vectors (i.e., non-zero and sum-to-one), rather than binary. The interpretations of the latent

space are different as well. The latent variables in a topic model represent the proportion

of a document that is related to a specific topic, whereas the variables in a noisy-or factor

analysis model refer to whether a factor is active or not.

In Chapter 6 we address the setting where the latent variables are non-independent. The

latent variables in a topic model cannot be independent, since they must sum-to-one, but the

LDA model uses a Dirichlet prior which is close to independent (samples from a Dirichlet

can be generated by sampling independent gamma random variables and normalizing). An

interesting feature of the algorithm described in this chapter is that it can provably recover

the word-topic matrix no matter how complex the prior distribution of the topics is, but

it does not provide an explicit construction of the distribution Wd ∼ τ . Rather it provides

only the pairwise moments of τ in the form of the R matrix. In contrast, the algorithm in

Chapter 6 explicitly recovers a Bayesian network to describe the prior distribution of the

208



factors.

Unlike the anchored noisy-or factor analysis work, where anchors are specified by domain

experts, in the topic modeling setting, we are able to find anchors directly from the data by

searching for extreme points in word-word co-occurrence space (Section 7.3.2). A similar

geometric characterization of anchors in the noisy-or setting has not been developed.

7.6 Conclusions

We present a new algorithm for topic modeling, inspired by (Arora et al., 2012b), which

is efficient and simple to implement yet maintains provable guarantees. The running time of

this algorithm is effectively independent of the size of the corpus. Empirical results suggest

that the sample complexity of the algorithm is somewhat greater than MCMC but it provides

comparable results in a fraction of the time.

7.7 Next steps and open questions

In this section, we outline some possible next steps and open questions.

As discussed in the related work section, new methods of finding anchors could be useful

in building interpretable topics. The current algorithm requires thresholds to ensure that rare

words are not included as anchors (e.g., excluding words that do not appear in more than 100

documents from being anchors), even though they are likely to lie at extreme points due to

their high variance. Adding a notion of certainty in the “location” of an anchor could naturally

alleviate this problem. Another approach to finding anchors interprets the Gram-Schmidt

algorithm as greedily maximizing the enclosed volume. Rather than maximizing the enclosed

volume, we could attempt to minimize the distance from all other words to the convex hull

of the anchors.

209



A general problem with method-of-moments algorithms is how to constrain their solutions

to lie in the feasible space. In this work, we apply constraints to ensure that the A matrix is

feasible, leaving the R matrix unconstrained, and leaving open the possibility that there may

be no matrix R such that ARAT = Q. This decision stemmed from an intuitive determination

that the A matrix was somehow the more important part of the topic modeling process.

When tradeoffs between obtaining valid parameters and violating moment constraints apply,

is there a principled way of choosing between them?

Recovering an explicit representation of the topic distribution τ is important to be able

to sample from the model. For latent Dirichlet allocation, there is a method to derive the

Dirichlet parameters from the R matrix, but for general correlated topic models we do not

have such a method. Fitting an expressive distribution (e.g., mixture of Dirichlets or deep

generative models (Salakhutdinov, 2009)) to maximize likelihood or a moment matching

objective while holding the word-topic distributions (i.e., the A matrix) fixed could be an

interesting direction for further work.

The continued development of method of moments algorithms that are useful for general

data-science tasks can allow us to effectively analyze large datasets that are being created at

unprecedented scale.
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Chapter 8

Closing

In this section, we return to the central theme of electronic medical record phenotyping,

outline the contributions made in this dissertation, and the open questions that remain.

As motivated in the introduction, health IT systems play an important role in making

personalized medicine a reality, from providing reliable data for analyses and knowledge

discovery to bringing relevant evidence-based guidelines to the bedside. A particularly difficult

problem when applying machine learning to this task is finding gold standard labels to train

classifiers. In this work, we explored semi-supervised methods based on structural features of

the data distribution, which remove the need for manual labeling.

In this work, we worked closely with physicians from Beth Israel Deaconess Medical

Center and focused on real-time phenotype prediction for use in the emergency department.

Other work has focused on using anchors for research and knowledge discovery. For example,

Agarwal et al. (2016) evaluate a method similar to that described in Chapter 2 for cohort

selection in retrospective observational studies.
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8.1 Looking forward

We envision a future where a large collection of phenotypes are widely available within

EMR systems, forming a middleware layer upon which smart health IT applications can

be built. Many EMR systems already handle manual rules involving simple queries and

branching logic. For example: If the patient has a listed allergy within their structured allergy

list, then mark the allergen with a warning on all order sets. We would like to see phenotype

definitions widely available to be used in a similar way: If the stroke phenotype is positive

with probability above 80%, display stroke guidelines on the physician dashboard.

Some short and long term steps towards this goal are listed here.

8.1.1 Determining conditional distributions of anchors

In both Chapters 3 and 6, we assume that the conditional distributions are known. We

do so to highlight other aspects of the algorithm, assuming that it will be possible to obtain

reasonable estimates for these values. In order to deploy these joint models in practice,

we need to be able to estimate the conditional distributions. A number of approaches are

possible. Singly coupled triplets (described in Chapter 4) or more general tensor decomposition

methods can be used to estimate conditional probabilities of the anchors (Anandkumar et al.,

2012c; Halpern and Sontag, 2013; Steinhardt and Liang, 2016). Platanios et al. (2014)

presents a method of estimating conditional probabilities or noise rates based on learning

the parameters of a simple graphical model. For anchors with high positive predictive value,

the calibration step of Elkan and Noto (2008) (described in Chapter 2.2.4.1) provides an

estimate of the conditional distribution. Scott et al. (2013) use maximal source separation to

determine mixture proportions and label noise rates in a noisy label setting. A clear next

step is to determine whether any of these methods provide sufficiently good estimates for

the conditional distributions of the anchors to build models that outperform independent
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classifiers. Another approach would be to use a small amount of manual labeling only for the

purpose of determining the conditional observations. This could be made easier by building

good user interfaces (possibly integrated into the physician’s workflow), and investigating

non-uniform sampling techniques to reduce the number of queries required (Sawade et al.,

2010).

8.1.2 Generalizability

We have publicly released a collection of anchors for 42 different phenotypes1. A natural

next step would be to partner with other institutions and determine whether the anchors

that we have specified can be used to train phenotype estimators for use at their institutions.

This may require further linking to publicly available standardized ontologies (we use First

Databank’s Enhanced Therapeutic Classification to group medications) to make sure that

the anchors can be found at their institution as well.

Another important dimension for generalizability is testing whether the initial anchors

specified for the emergency department also work for intensive care units, floor, outpatient,

or psychiatric settings. Anchors based on interventions may be specific to a particular setting

(e.g., some interventions can only take place in intensive care units), but we would expect

that the text-based and medication history anchors should transfer across settings.

8.1.3 Clinical evaluations

As a middleware level, the utility of the phenotypes is ultimately measured within a

particular health IT application in clinical terms such as reduction of preventable errors,

improved compliance with clinical guidelines, and most importantly, improved patient out-

comes. An initial clinical trial could include a single phenotype that is linked to an emergency

1Available on github: https://github.com/clinicalml/clinical-anchors
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department clinical pathway (for example, hematuria or pneumonia). We can compare rates

of correct enrollment and implementation of the pathway using reminders that trigger based

on simple rules versus a reminder that triggers using simple logic from a phenotype estimator.

A next step would be to use phenotype estimators to suggest enrollment in all of the clinical

pathways within an institution and monitor outcomes.

Moving beyond clinical pathways, a longitudinal electronic medical record that has every

patient encounter annotated with relevant phenotype variables would be easier to search and

summarize, improving communication between healthcare providers and with patients.

As a long term goal, entire hospital IT systems could use phenotypes as a representation for

all of their functions, including estimating staffing needs, scheduling consults, auto-populating

records, displaying clinical decision support, managing followup care, monitoring population

health, and supporting research projects.

8.1.4 Continuous learning and evaluation

The algorithms presented in this dissertation are batch algorithms, run on a large collection

of historical data to build a single model for deployment. Ideally, the model would be able to

learn continuously, based on new patient records, but also on explicit feedback and usage

patterns. In addition to improving predictions, this feedback could be useful to monitor a

system in continuous use in order to understand whether it makes systematic errors and

taking steps (e.g., adding or removing anchors) to correct that. Feedback could also be

actively solicited. Manual chart review is a laborious process, but if the computer system

can ask a small number of relevant questions in real time as part of a physician’s regular

workflow, we expect that it would be easier to obtain high quality labeled examples. This

was the guiding principle behind the “disposition question” framework used to collect gold

standard labels in Chapter 2, though that system asked its questions on a fixed rotation,
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rather than choosing more smartly.

Another avenue for improvement through continued interaction is in the inference task. By

asking a small number of questions, the computer could reduce uncertainty in its estimates of

phenotype variables for an individual patient, in order to facilitate more accurate personalized

care.

8.2 Open questions

8.2.1 Improved machine learning approaches

How should we learn models with latent variables? The method of moments offers a class

of objectives that provide consistent parameter estimation and are more computationally

tractable than the likelihood objective in the worst case. However, there may be other

practical algorithms based on likelihood or approximations for both learning and inference

in phenotyping models. Chapter 3 gives one approach to likelihood optimization, based on

recent work by Mnih and Gregor (2014) on building deep generative models. We use a simple

recognition model (independent logistic regression). Using a simple recognition model limits

the possible tightness of the variational lower bound. However, adding complexity to the

recognition model (e.g., using a multilayer neural network) could increase the non-concavity

of the objective, making it harder to optimize in practice. In addition, controlling the variance

in the gradients within the stochastic gradient ascent procedure is challenging. While Mnih

and Gregor (2014) offer some tricks that worked in our setting, the problem is not fully

solved. A surprising result in Section 4.5.2 is that noisy-or networks trained with stochastic

variational inference using a recognition network succeeds in recovering the sources in the

synthetic image data set (when provided with enough extra sources). Are there conditions

under which we can prove that stochastic variational inference will succeed at parameter
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recovery? How do these conditions relate to the structural conditions that make for tractable

methods of moments algorithms (e.g., anchors or singly coupled quartets).

Within method of moments algorithms, there is still an open question of which moments

are the most relevant and how to design algorithms that are robust to model misspecification.

8.2.2 Human computer interaction

Electronic phenotypes are another form of information, derived and synthesized from

the patient’s medical record. How is this information best presented to the physician

to be maximally useful at the point of care? Is it important to be able to present the

system’s reasoning behind its phenotype estimations? What are effective ways of presenting

a computer’s thought process and what other factors are important to build trust in the

system?

How do smart EMR systems integrate into medical culture? Physicians spend an increas-

ingly large part of their work hours on documentation and other non-clinical related tasks.

An EMR that makes workflows faster and more integrated could help reduce the amount

of time spent on documentation and make more time for patient care, and would likely be

welcomed. However, physicians rightly understand the high stakes involved in their jobs, and

take the life and well-being of their patients very seriously. As such, they would likely be

very hesitant to put too much trust in the outputs of a computer system that they do not

fully understand. How do these factors balance with each other? And what are the factors

for successful institutional adoption of smart EMR systems?

8.3 Conclusion

Electronic medical record phenotyping has the potential to transform health IT systems,

making them smarter and more effective. We have made progress on building scalable machine
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learning algorithms that can learn to estimate patient phenotypes in acute care settings,

even in the absence of gold standard phenotyping labels. Next steps include testing the

generalization of these methods in other institutions and settings, and their overall impact on

patient outcomes. We look forward to a future where electronic medical record systems are

smarter, providing physicians with relevant information and options to provide personalized

care to their patients.
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Appendix A

Appendix to Introduction

A.1 Assessing utility for more use cases

A.1.1 Search functionality: top K suggestions

An application with similar operating requirements to contextual displays are record-

search capabilities, which could be used within a single patient record (searching over patient

history) or across patients. Here the relevant metric would be determining whether relevant

patients or notes appear near or at the top of the list (top K suggestions).

A.1.2 Screening tools: Sensitivity or Specificity

Screening tools can be designed to operate with high recall or specificity. High specificity

screens are desired when a highly accurate test exists, but is expensive, invasive, or otherwise

resource intensive to apply. In this setting, we may require a particular recall threshold

(to avoid positive cases from being missed), and then evaluate classifiers based on their

specificity. If there is a limited number of accurate tests that can be performed per day, then

the specificity is fixed and classifiers can be compared by their sensitivity.
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A.1.3 Scheduling and staffing: Calibration / weighted accuracy

Phenotypes can be used for prospective scheduling or staffing, for example of nursing

staff, floor or ICU beds, or specialty consult services. For this use, it is less important to

predict the need correctly for each individual patient, but rather to determine the need over

an aggregation of an entire patient population (may be a small setting, such as a single

emergency department or physician practice, or over a large population health setting). False

positives may be more or less costly than false negatives, and thus each implementation

would have to assess relevant weightings to determine a meaningful weighted accuracy.

A.1.4 Personalized treatment recommendations and decision mak-

ing: Calibration

In order to make informed decisions and act on them, it is not only important for classifiers

to have high accuracy, they also have to be properly calibrated. For example, if a decision-

making tool reports a 30% chance of complication from a particular surgery, the physician

and patient need to be able to trust the reported value in order to make a properly informed

decision.

A.1.5 Scientific research: fixed specificity

For scientific research (e.g., comparative efficacy studies, genome wide association studies

(GWAS), adverse effect reporting, drug repurposing), medical records are often mined for

associations which are then followed up with controlled experiments for confirmation. This is

similar to the screening tools setting with a fixed budget for followup, and we would like to

increase the number of true positives or recall in this setting.
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Appendix B

Appendix to Electronic Phenotyping

with Anchors

B.1 Anchor Explorer – a human in the loop learning

system

In practice, specifying anchors can be challenging. In order to specify anchors, one must

have sufficient domain knowledge to evaluate whether a variable fits the definition of an

anchor. To ease the process of eliciting anchors from domain experts, we built an interactive

interface to allow domain experts to specify anchor variables and visualize the resulting model

learned with those anchors. Figure B.1 shows a screenshot of the tool being used to specify

anchors to identify HIV positive patients.

The interface is a general tool for specifying anchors and viewing the learned classifier.

A user can add latent variables and specify anchors for them. After adding an anchor, the

user can, in real time, update the learned model and view a ranked list of patients at the

bottom of the screen. The ranking is generated according to the predicted likelihood of the
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latent variable being positive according to the model built with the current set of anchors.

For each patient, a short summary is presented for easy viewing, and selected patients can

be viewed in more detail in the middle pane. Patients can be filtered according to three

different criteria: view only patients with anchors (to judge whether the anchors are catching

the correct subset of patients), view patients that have the most recently added anchor (to

judge the incremental effect) and view patients without anchors (looking at a ranked list of

these patients provides an idea of how well the learning algorithm has generalized beyond

simply looking for patients that have the anchors).

After learning a model, the tool additionally suggests new anchors by showing the

observations ranked by weights of a linear classifier learned with a penalty on the L1 norm

of the weight vector. The L1 penalty encourages the learned classifier to use a minimal

number of variables, effectively selecting highly informative observations. The user then uses

clinical judgment to decide whether or not each suggestion would make a good anchor, e.g.

by including the new observation and seeing the incremental effect on the ranking, or by

viewing the newly anchored patients. The result is a simplified active learning workflow with

a human-in-the-loop.

The ranking and filtering mechanisms provide feedback to the user, giving information

about whether the model is being built reasonably or not. Users can sometimes specify

anchors that are highly correlated for a specific latent variable, but not very specific. For

example, at first glance, aspirin could mistakenly be taken for an anchor for a patient having

a cardiac etiology to their ED visit. It is standard clinical practice to give aspirin to a

patient when a cardiac etiology is suspected. However, aspirin is also given in patients with

a suspected stroke. By reviewing a list of recently anchored patients, a user can quickly

determine how specific an anchor is for a latent variable.

Anchors can be specified as words or phrases, and they are interpreted as queries on the

free text portions of the medical record. Additionally, the interface allows for incorporation
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of anchors according to standardized hierarchical ontologies. For example, medications are

grouped by families according to First Databank’s Enhanced Therapeutic Classification

(ETC) hierarchy, and diagnosis codes are grouped according to the ICD9 hierarchy. For these

hierarchical structures, including a parent as an anchor automatically adds all of its children

as well.

In addition to specifying anchors, the tool is useful for performing fast interactive cohort

selection, allowing the user to quickly learn classifiers to find members of a target population

using the anchor approach. The learned classifiers can be exported as well for use in real-time

decision applications. The tool is freely available for download at http://clincalml.org/.

Figure B.1: A screenshot of the anchor elicitation tool using deidentified patient information.
Conditional highlighting emphasizes the presence of previously specified anchors in a note so
that the physician can determine quickly whether its usage is as expected.
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B.2 Detailed methods

B.2.1 Building a phenotype library

The interactive tool uses a subset of the patients to make response times short after

adding each anchor, in which the classifiers must be re-learned. For this step, 20,000 patients,

selected randomly from the full patient population, were used. The final classifiers were then

trained offline, using 200,000 patients from the population, chosen randomly from the full

patient population after excluding patients for whom gold standard labels were available.

B.2.2 Text preprocessing

Deidentified free text was preprocessed using a modified version of NegEx (Chapman

et al., 2001; Jernite et al., 2013a) and negated words were replaced by a new token (i.e. if

the token “fever” was within the scope of a negation, it was transformed to a new token,

“negfever”). A second step of preprocessing collected 1,500 significant bigrams and appended

them to the text (i.e. the phrase “chest pain” was augmented to be “chest pain chest pain”

with a new token “chest pain” representing the bigram).

The conditional independence assumption is difficult to guarantee in natural language

data because language creates correlations between words and terms that are stronger than

can be explained by underlying clinical conditions. To partially correct for this when learning

with anchors, we censor a window of 3 words before and after an anchor to ensure that we are

not simply learning local sentence structure rather than the underlying phenotypes. When

the anchor is a bigram, this has the effect of ensuring that the individual components of the

bigram (e.g. chest and pain for chest pain) do not get undo weight.
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B.2.3 Machine Learning

Logistic regression classifiers were trained using Scikit-learn (Pedregosa et al., 2011) using

L2 regularization and 4-fold cross validation to choose appropriate regularization constants.

The constants for C were chosen from (10−6, 10−5, ... 105). Intercept scaling was set to 100.

Supervised classifiers were evaluated with 4-fold cross-validation, thus the labeled examples

were divided into 4 equal parts. A supervised classifier was trained using 5000 examples from

one part and then tested on the remaining 3/4ths of the labeled data. This was repeated

for all four folds and we report the min and max values. Error bars on AUC values in were

computed with bootstrap sampling from the test set.

B.2.4 Phenotype Evaluation

For the anchor-based approach, ties between patients who both have anchors present

were broken as follows: (a) patients with more anchors are ranked above patients with fewer

anchors, (b) if both patients have the same number of anchors, the patient with the higher

score given by the logistic regression classifier is ranked higher.

B.2.5 Measuring Influence

To illustrate how the classifiers change over time, we calculate a relative influence measure

as follows: For every patient and every data type, we first compute an unnormalized influence

score by taking the sum of weights associated with positive observations in that data type.

The influence of a data type on a patient prediction is then computed by taking the absolute

values of the unnormalized influence scores and dividing by the total, so that all of the values

are non-negative and sum to one. The influence of a data type on predictions in an entire

patient population is computed as the average influence of the data type on predictions for

each of the patients. In addition to influence, at each time step, we identify the positive
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features which have the largest gain in weight since the previous time step.
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Appendix C

Appendix to Clinical Tagging with

Joint Probabilistic Models

C.1 Text processing

We apply negation detection to the free-text section using “negex” rules (Chapman et al.,

2001) with some manual adaptations appropriate for Emergency department notes (Jernite

et al., 2013a), and replace common bigrams with a single token (e.g. “chest pain” is replaced

by “chest pain”. the patient record). Negated terms are then added as additional vocabulary

words.

The following words are indicators of the beginning of a negation: no, not, denies,

without, non, unable.

The token - is treated as a special negation word whose scope only includes the word

that follows it.

The following tokens stop a negation: . ; [ - newline + but and pt except reports

alert complains has states secondary per did aox3.
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C.2 Parameter settings for learning with Neural Vari-

ational Inference and Learning (Mnih and Gregor,

2014)

We use the signal-centering and normalization described in the paper as well as input-

dependent baselines. The input dependent baselines use a two-layer neural network with 100

hidden units and tanh activations. Learning rate is set to 0.0001. 10 samples are used to

estimate each gradient. When θ is initialized with method of moments, we have 50 epochs of

“burn-in” where θ is held fixed and only φ is optimized. The learning rate of θ is set to 1/5th

of that of φ. π parameters and the failure probabilities of the anchors are initialized using

the estimated noise rates and never optimized. The code is implemented in Torch and and

RMSprop is used for optimization. Failure probabilities in θ are mapped using a sigmoid

function (i.e., fi,j = σ(θi,j)) to allow for continuous optimization over an unbounded space.

We experimented with different values of L2 regularization (weight decay) in the recognition

model, in the range {0,0.1, 0.01, 0.001} and chose the value that gave the best heldout-anchor

performance. Parameters of φ are initialized uniformly at random between [-0.1, 0.1].

C.3 Semi-supervised objective details

In this appendix, we expand the objective which was written in compressed notation in

Section 3.4.1.

The parameters to be optimized are:

• θ ∈ [0, 1]n×m+n+m: Parameters of the generative model, consisting of n × m failure

probabilities (fi,j), n prior probabilities (πi), and m leak probabilities (lj).

• φ ∈ Rn×(m+1): Parameters of n independent logistic regression models, one for each tag.
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• φ′0 ∈ Rn: Additional bias terms that are introduced to account for the difference

between the predictions of the recognition model, which predicts the tags, and the

desired semi-supervised objective which predicts the anchors.

For the a single data point, x is the binary feature vector. In practice, we center the

inputs to the q model (the P model cannot support centering since the generative model is

defined for binary variables) and pad with a single 1 to allow for a bias term. x is a centered

and padded copy of x. x̃ is a copy of x, with the values of the anchors set to 0. a is a vector

containing the binary values of the anchors from x.

The likelihood of the generative model is then:

P (x, y; θ) ≡
(

n∏

i=1

πyii (1− πi)1−yi

)
m∏

j=1

(
xj

(
1− (1− lj)

∏

i

f yii,j

)
+ (1− xj)(1− lj)

n∏

i=1

f yii,j

)
(C.1)

The recognition model consists of n independent logistic regression models.

q(y|x;φ) =
n∏

i=1

(yiσ(φi · x) + (1− yi)(1− σ(φi · x))) , (C.2)

where σ is the sigmoid function, σ(x) = 1
1+e−x .

Let λ > 0 be a hyperparameter specifying the trade-off between the lower bound on the

likelihood and the semi-supervised objective term. The final objective, for a collection of N

patient records, indexed by p, is to maximize:

N∑

p=1

(
Ey∼q(y|x(p))

[
logP (x(p), y; θ)− log q(y|x(p))

]
+

λ

n∑

i=1

[
a

(p)
i log σ(φi · x̃(p) + φ′0i) + (1− a(p)

i ) log(1− σ(φi · x̃(p) + φ′0i))
])
. (C.3)
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C.4 Leak probabilities

Leak probabilities are calculated to account for the difference between the actual observed

counts and those predicted by the model. If all of the failure probabilities are known, then

the marginal probability of an observation predicted by the model can be calculated with the

Quickscore equation (Heckerman, 1990).

P (Xj = 0) = (1− lj)
n∏

i=1

(1− πi + πifi,j). (C.4)

Thus, we can solve:

l̂j = 1− P̂ (Xj = 0)
∏n

i=1(1− πi + πif̂i,j)
. (C.5)

This assumes that we have estimates for πi, but that is no different from assuming that

we have estimates of the noise rates P (Yi|Ai), since πi =
∑

ai
P (ai)P (Yi = 1|ai), where P (ai)

can be estimated from counts.
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C.5 Explicit matrix version of Equation 3.9

~P (Xj |Ai) =




P (Xj = 0|Ai = 0)

P (Xj = 0|Ai = 1)

P (Xj = 1|Ai = 0)

P (Xj = 1|Ai = 1)




(C.6)

R =




P (Ai = 0|Yi = 0) P (Ai = 0|Yi = 1) 0 0

P (Ai = 1|Yi = 0) P (Ai = 1|Yi = 0) 0

0 0 P (Ai = 0|Yi = 0) P (Ai = 0|Yi = 1)

0 0 P (Ai = 1|Yi = 0) P (Ai = 1|Yi = 0)



(C.7)

~P (Xj |Yi) =




P (Xj = 0|Yi = 0)

P (Xj = 0|Yi = 1)

P (Xj = 1|Yi = 0)

P (Xj = 1|Yi = 1)



. (C.8)

C.6 Held out anchor inference

To perform the held out anchor inference (described in Section 3.4.4), we use the fact

that conditioned on some feature vector X ′ (in this case, some of the anchors are held out so
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it is not the full vector X), we have:

P (Ai|X ′) =
∑

yi∈{0,1}

P (yi|X ′)P (Ai|Yi = yi, X
′)

=
∑

yi∈{0,1}

P (yi|X ′)P (Ai|Yi = yi).

We assume that the corruption rate, P (Ai|Yi), is known, and estimate P (yi|X ′) with Gibbs

sampling.

C.7 Held out tag inference

Exact inference is possible in the held out tag prediction task. For a single data point, we

have a feature vector X. Assume without loss of generality that the first k tags known to be

positive, y1 = ... = yk = 1 and the final n− k tags are unknown. Let U refer to the unknown

tags.

Of the unknown tags, we know that by the design of the task, only one is on and the rest

are off. We can condition on the sum of all of the Y variables being k + 1, and we know that

U has to be an indicator vector (i.e., one index on and the rest off).

We would like to calculate the likelihood that Ui = 1 (i.e., the ith unknown tag is on).

Let U−i be all of the unknown tags other than Ui. The likelihood is calculated as follows:
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P (Ui = 1|X, Y1:k = 1,
∑

y = k + 1) = P (Ui = 1, U−1 = 0|X, Y1:k = 1,
∑

y = k + 1)

=
P (X,Ui = 1, U−1 = 0, Y1:k = 1,

∑
y = k + 1)

P (X, Y1:k = 1|∑ y = k + 1)

=
P (X,Ui = 1, U−1 = 0, Y1:k = 1,

∑
y = k + 1)∑

u∈|U | P (X, Y1:k = 1, u|∑ y = k + 1)
.

The first equality uses the fact that U is an indicator vector. The second equality is from

the definition of conditioning. The third line marginalizes over unknown values of u in the

denominator. Note that the final line uses only complete likelihoods, so each term can be

calculated efficiently using Equation C.1. The sum in the denominator is over the set of

indicator vectors of size n− k, so it can be computed efficiently as well.

C.8 Optimization course

In Section 3.4.1 we discuss how the likelihood objective is not aligned with the held

out tag prediction task. Figure C.1 shows that the semi-supervised objective remedies this

situation, displaying how the likelihood objective and heldout tag predictions improve from

the initialization baseline as optimization on the semi-supervised objective is run.

C.9 Monte Carlo EM

When running EM, we optimize the variational lower bound on the data likelihood:

logP (X; θ) ≥ L(q, θ) = Ey∼q [logP (x, y; θ)− logP (y)]
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Figure C.1: Improvement of the likelihood-based objective (left) and heldout tag (right)
as optimization progresses for different values of L2 regularization (weight decay) in the
recognition model. The model chosen by the model selection procedure (Section 3.4.4) is
marked with a large red dot. The first 50 epochs are a burn-in period where only the
recognition model changes.

The EM algorithm optimizes this bound with a coordinate ascent, alternating between E-steps

which improve q and M-steps which improve θ. Usually both the E-step and M-steps are

maximization steps, but incomplete M-steps which only improve θ in every M-step also leads

to monotonic improvement of log(P (X; θ) with every step. In this section, we describe a

variant of Monte Carlo EM which is useful for this model using Gibbs sampling to approximate

the E-step and a custom M-step which is guaranteed to improve the variational lower bound

at every step. We hold the distribution P (Y) fixed and only optimize the failure and leak

probabilities. For these purposes, the leak probabilities can be treated as simply failure

probabilities of an extra latent variable whose value is always 1.

C.9.0.1 Outer E-step

For the E-step, we use the Gibbs sampling procedure described in 4.3 of Wang et al.

(2014).
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Algorithm 9 Alternative generative model with auxiliary A variables.

Y ∼ P (Y )
for j in 1..m do

Aj ∼ P (Aj = k|Y )
Xj = Aj ≤ n

end for

P (Aj = k|Y ) =

{
(1− fk,j)

∏k−1
i=0 f

yi
i,j k ≤ n

1−∏k−1
i=0 f

yi
i,j k = n+ 1

C.9.0.2 Outer M-step

The M-step consists of a coordinate step guaranteed to improve θ for a fixed q. P (x, y; θ)

is a fully observed model, but optimizing θ has no closed form. Instead we introduce m

auxiliary variables A ∈ [0, n+ 1]m, and adopt the generative model described in Algorithm 9

which equivalently describes the fully-observed noisy-or model (i.e.
∑

a P (X, Y, a; θ) =

Pnoisy or(X, Y ; θ)). In this new expanded model, we can perform a single E-M step with

respect to the latent variable A in closed form.

inner E-step:

P (Aj = k|Xj, Y ) =





1 Xj = 0 ∩ k = n+ 1

0 Xj = 0 ∩ k 6= n+ 1

0 Xj = 1 ∩ k = n+ 1

0 Xj = 1 ∩ k ≤ n ∩ Yk = 0

∝∏k−1
i=0 f

yi
i,j(1− fk,j) Xj = 1 ∩ k ≤ n ∩ Yk = 1

(C.9)

inner M-step:

fi,j = 1− count(Aj = i)

count(Aj ≤ i)
(C.10)
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Appendix D

Appendix to Parameter Learning in

Diagnosis Networks

D.1 Derivations

D.1.1 Noisy-or parameters from tensor decompositions

Here we derive the estimators of the noisy-or parameters used in Equations 4.5-4.8.

P (a = 0|Yi = 1)

P (a = 0|Yi = 0)
=
fi,a
∏

k∈−i(1− pk + pkfk,a)∏
k∈−i(1− pk + pkfk,a)

= fi,a.

Similarly for b,c.

D.1.2 Estimating πi|Xj
as the root of a quadratic equation

For notational simplicity, we rewrite Equation 4.11 with the following name substitutions:

Z ≡ CPMI(A,B|Xj), x ≡ πi|Xj
.
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Z =
(1− x+ xfi,Afi,B)

(1− x+ xfi,A)(1− x+ xfi,B)

0 =
(1− x+ xfi,Afi,B)

(1− x+ xfi,A)(1− x+ xfi,B)
− Z

0 = (1− x+ xfi,Afi,B)− Z(1− x+ xfi,A)(1− x+ xfi,B)

0 = (1− x+ xfi,Afi,B)− Z(1− 2x+ x2 + x2fi,Afi,B + xfi,B − x2fi,B + xfi,A − x2fi,A)

0 = −Z(fi,Afi,B − fi,A − fi,B + 1)x2 + (−1 + fi,Afi,B)− Z(−2 + fi,B + fi,A)x+ 1− Z

0 = Z(1− fi,A)(1− fi,B)x2 + (Z(−2 + fi,B + fi,A)− (fi,Afi,B − 1))x+ (Z − 1)

Solving for the roots of the right hand side gives the value of πi|Xj
.

D.1.3 Estimating fi,j when πi|Xj
is known

We start with the definition of πi|Xj
:

πi|Xj
= P (Yi = 1|Xj = 0) (D.1)

πi|Xj
=
P (Yi = 1, Xj = 0)

P (Xj = 0))
(D.2)

πi|Xj
=
πfi,j

∏
i′ 6=i(1− π′i + π′ifi′,j))∏

i′(1− π′i + π′ifi′,j))
(D.3)

πi|Xj
=

πfi,j
(1− πi + πifi,j)

. (D.4)

Rearranging, we get:

fi,j =
(1− πi)
πi

πi|Xj

(1− πi|Xj
)
,
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as in Equation 4.13.

D.1.4 Identifiability of πi|X

Recall, we have πi|X as the roots of an quadratic:

πi|X = Roots(f(x)) (D.5)

where f(x) has the form:

f(x) = CPMI(A,B|X)(1− fi,A)(1− fi,B)x2

+ (CPMI(A,B|X)(fi,A + fi,B − 2)− (fi,Afi,B − 1))x

+ CPMI(A,B|X)− 1

Substituting for CPMI using Equation 4.11, performing some tedious algebraic simplifica-

tion, and solving for the critical point of the function, we get:

f ′(x) = 0→ x =
1

2

(1− π2
i|X(1− fi,Afi,B)

(1− πi|X(1− fi,Afi,B)
≥ 0.5 (D.6)

Where the ≥ comes from the fact that πi|X , fi,A, fi,B all lie in [0, 1]. Since f is quadratic, its

roots must lie on either side of its critical point, thus one of the roots is at or above 0.5.

The last step is to show that πi ≤ 0.5 implies that πi|X ≤ 0.5.
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We show that πi|X ≤ πi,

πi|X = P (Yi = 1|X = 0) =
P (X = 0|Yi = 1)P (Y = 1)

P (X = 0)

=
P (X = 0|Yi = 1)

P (X = 0)
πi

=
fi
∏

i′ 6=i(1− πi′ + πi′fi′)∏
i′(1− πi′ + πi′fi′)

πi

=
fi

1− πi + πifi
πi ≤ πi,

which completes the proof.

D.2 Parameter estimation in noisy networks – fully ob-

served setting

Proposition 1. Maximum likelihood estimation of noisy-or parameters is concave in the log

of the failure probabilities in the fully observed setting.

Proof. Let θi,j = log fi,j, we will do the optimization in the θ parameters. fi,j is constrained

to lie in [0, 1], therefore θi,j ∈ (−∞, 0).

The optimization has the form:

argmax
θ≤0

f(θ) (D.7)

We now show that f(θ) is jointly-concave in θ.
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f(θ) =
∑

n

logP (X
(n)
j |Y (n); θ)

=
∑

n

1[Xj = 0] log
∏

i

f yii,j + 1[Xj = 1] log(1−
∏

i

f yii,j)

=
∑

n

1[Xj = 0]
∑

i

yiθi,j + 1[Xj = 1] log(1− exp
∑

i

yiθi,j)

The first term is linear in θi, and therefore concave.

The second term takes a bit more work:

gn(θ) = 1[Xj = 1] log(1− exp
∑

i

yiθi,j)

1. (1− exp
∑

i yiθi,j) is concave (since exp is convex) and non-negative (since θ ≤ 0).

2. Every concave function that is nonnegative on its domain is log-concave.

3. Therefore 1[Xj = 1] log(1− log
∑

i exp yiθi,j) is concave.

The sum of two concave functions is concave. Therefore f(θ) is concave.

D.3 Hardness results

D.3.1 Exact inference in quartet-learnable networks NP-hard

Quartet-learnable networks The networks that can be learned in polynomial time

using the algorithm from Jernite et al. (2013b) must have failure probabilities bounded away

from 0 and 1 by a constant and singly-coupled quartets for every latent variable.
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Reduction from #2SATX #2SATX (also referred to as #MONOTONE-2SAT) is a

variant of 2SAT variant with clauses C = {c1...cn} and variables V = {v1...vm}. In #2SATX,

every clause cj is a disjunction of 2 non-negated variables from V. The decision problem

2SATX is trivial. Since none of the variables are negated, the problem is trivially satisfiable

by setting all of the variables to True. However, the #2SATX problem asks to count the

number of satisfying assignments and is known to be #P hard (Provan and Ball, 1983).

It has previously been shown that #2SATX can be reduced to exact inference in a bipartite

noisy-or network (B2NOI) with failure probabilities of 0.

(#2SATX ⊂ B2NOI (Cooper, 1987)) Construct a bipartite graph with one latent parent

for every variable in V and one observation for every clause in C. Place a directed edge

from vi to cj if variable i appears in clause j. Set all the prior probabilities to 0.5 and

all failure probabilities to 0. The number of satisfying assignments can be computed as

2mP (C1 = 1, C2 = 1, ...Cn = 1).

Here we show that exact inference in a quartet-learnable bipartite noisy-or network

(B2QNOI) is similarly hard.

(#2SATX ⊂ B2QNOI) Construct a bipartite graph with one latent parent for every

variable in V and one observation for every clause in C. Place a directed edge from vi to

cj if variable i appears in clause j. Additionally, add 3 new children observations for every

variable in V to ensure that the network is strongly quartet learnable. These variables will

not be included in the inference query, but they ensure that the network satisfies the quartet

learnable property1. Set all the prior probabilities to 1/2.

In a satisfying assignment, some of the clauses may be double-satisfied (both parents

on) or singly-satisfied (one parent on). Given a satisfying assignment with k singly-satisfied

clauses and n− k double-satisfied clauses, if the failure probabilities in the noisy-or network

1If you want to make sure that all “observed” variables appear in the inference query, you can set the
failures for the three anchor variables to be 1/2 and the set the prior probabilities to 8/9. After conditioning
on the anchor variables being off, the prior probabilities become 1/2 and the rest of the problem is unchanged.
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are all equal to f , then the probability that all of the observed variables corresponding to the

clauses are “on” is:

P (C1 = 1, C2 = 1, ...Cn = 1|# singly satisfied = k) = (1− f)k(1− f 2)n−k (D.8)

Let αk be the number of satisfying assignments with k singly-satisfied clauses.

P (C1 = 1, C2 = 1, ...Cn = 1; f) = 2−m
n∑

k=0

αk(1− f)k(1− f 2)n−k (D.9)

We can evaluate P (C1 = 1, C2 = 1, ...Cn = 1; f) at n+ 1 different values of f and solve

for α0...αn with matrix inversion. The sum
∑n

k=0 αk is the number of satisfying assignments,

which completes the reduction. This does not require that f be close to 0 or 1 and in fact

applies even if we restrict ourselves to networks where all the priors are the same and all

the failures are drawn from a finite set as the networks that are learnable by the method

of Kearns and Mansour (1998).

D.4 Preliminary results

Throughout the sample complexity proofs, we will need to be able to bound the error on

a fraction and on the roots of a polynomial given the uncertainty on their terms. Lemmas 6

and 7 respectively give such bounds.

Lemma 6. Let ã ∈ [a − η, a + η] and b̃ ∈ [b − ε, b + ε]. If β < b − ε and a + η < A, then

ã
b̃
∈ [a

b
− ( A

β2 ε+ 1
β
η), a

b
+ ( A

β2 ε+ 1
β
η]

Lemma 7. Let P (X) = aX2 + bX + c and ∆ = b2 − 4ac. Let (x1, x2) be the roots of

P , and suppose (ã, b̃, c̃) are estimates of (a, b, c) with an error bounded by ε. Suppose

∃d, 0 < d < ∆ and ∃k > 0,−k < (x̃1, x̃2) < k. Then the error on (x1, x2) is bounded by

241



|(x1, x2)− (x̃1, x̃2)| ≤ 2(1+k+k2)√
d

ε.

Proof of Lemma 6. We have,

a

b+ ε
− η

b− ε ≤
ã

b̃
≤ a

b− ε +
η

b− ε
a

b
− aε

b(b+ ε)
− η

b− ε ≤
ã

b̃
≤ a

b
+

aε

b(b− ε) +
η

b− ε
a

b
− (

aε

b(b− ε) +
η

b− ε) ≤
ã

b̃
≤ a

b
+ (

aε

b(b− ε) +
η

b− ε)

a

b
− (

Aε

β2
+
η

β
) ≤ ã

b̃
≤ a

b
+ (

Aε

βs
+
η

β
)

Proof of Lemma 7. Let K = 1 + k + k2, then P (x̃1)−Kε < P̃ (x̃1) = 0 < P (x̃1) +Kε,

hence the estimated x̃1 is between the roots of P − Kε and P + Kε. Moreover, since
√

1 + x ∈ (1, 1 + x):

b+
√
b2 − 4a(c+Kε)

2a
=
b+
√

∆
√

1− 4aK
∆
ε

2a
≥ b+

√
∆

2a
− 2K√

∆
ε

b+
√
b2 − 4a(c−Kε)

2a
=
b+
√

∆
√

1 + 4aK
∆
ε

2a
≤ b+

√
∆

2a
+

2K√
∆
ε

Hence x1 − 2K√
∆
ε ≤ x̃1 ≤ x1 + 2K√

∆
ε. Similarly, x2 − 2K√

∆
ε ≤ x̃2 ≤ x2 + 2K√

∆
ε.

D.5 Sample complexity of learning with known struc-

ture

The parameter learning algorithm failure probabilities using tensor decomposition and

extending steps. Hence we need to know the sensitivity of the algorithm to errors in either of

these steps.
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Lemma 8. (Parameter error from decomposition) If the error on the moments is bounded

by ε, then the error on the parameters we obtain from the tensor decomposition of third order

moments is bounded by 5000×1050ε
f18
minp

12
minl

24
max(1−fmax)3 .

Proof is in Section D.7.1.

Lemma 9. (Parameter error from extending step) If the moments and parameters are known

to within an error of ε, the error on the failure probability we obtain from the extending step

is bounded by 11648ε
(1−fmax)3n4

minpmin
.

Proof is in Section D.7.2.

Before introducing the subtraction step, Lemma 10 gives a bound on the parameter error.

Lemma 10. (Parameter error at depth 0) After N samples, the additive error on any of the

parameters at depth 0 ε0(N) is bounded with probability 1− δ by:

ε0(N) ≤
5000× 1050× 11648×

√
ln(2m

δ
)

f 18
min(1− fmax)6l28

maxp
13
min

1√
N
. (D.10)

Proof is in Section D.7.3.

The subtraction step introduces a multiplicative error with every subtraction. Let M0 be

a lower bound on the likelihood of an observation being off.

Lemma 11. (Error propagation from subtraction) If the additive error on the negative

moments of an observed quartet C and on the parameters of the l latent variables (X1, ..., Xl),

which we want to remove from C is bounded by ε, then the error on the subtracted-off moments

is bounded by M6
0 × 6(l + 2)ε.

Proof is in Section D.7.4.
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The final sample complexity of the parameter learning procedure is then given by Theo-

rem 1.

Theorem 1 (Learning with known structure). Suppose a network with n latent parents and m

observed variables is triplet-learnable at depth d. Let M0 be the minimum marginal probability

of an observation being off and let πmax ≤ 0.5, πmin be bounds on the prior probabilities, fmax,

fmin be bounds on the failures and lmax be an upper bound on the leak parameters. The

additive error on any of the parameters, ε is bounded with probability 1− δ by:

ε(N) = O







nM6
0

√
ln(2m

δ
)

f 18
min(1− fmax)6l28

maxπ
13
min

1√
N




2d

 (4.16)

The proof comes from applying Lemmas D.7.3 and D.7.4 to bound the multiplicative

error propagation which each round of the algorithm.

D.6 Sample complexity of learning with unknown struc-

ture

Learning with unknown structure adds the additional complexity of ensuring that the

quartet tests are all correct. Lemma 12 described the conditions under which the rank test

succeeds, and Lemma 13 gives the conditions under which the extending step succeeds.

Lemma 12. (Rank test) If the model is (ζ)-rank-testable and the estimation error on the

fourth order moments of (a, b, c, d) is bounded by ε ≤ ζ4/216, then the magnitude of the third

eigenvalue of every 4 × 4 unfolding of joint distribution is smaller than ζ/2 if and only if

(a, b, c, d) is singly coupled.

Proof in Section D.7.5.
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Lemma 13. (Extending test) If the maximum estimation error ε on all of the moments up

to third order is such that 1040ε < l4maxpmin(1− f 4
max, (a,b,c) share a parent if and only if:

PMI(a, b)− CPMI(a, b|x) ≥ pmin(1− f 3
max)(1− f 2

max)

40
(D.11)

Proof in Section D.7.6.

Lemma 14 gives the conditions under which the structure learning procedure succeeds for

the subnetwork learnable at depth 0.

Lemma 14. (Structure learning at depth 0) If a network with m observed variables is strongly

quartet-learnable and ζ-rank-testable, then its structure can be learned with probability (1− δ)

with polynomial number of samples NS:

NS = 3 max(
4× 232

ζ8
,

3× 10402

l8maxp
2
min(1− fmax)8

) ln(
2m

δ
)

Proof in Section D.7.7.

Theorem 2 (Learning with unknown structure). Suppose a network with n latent variables

and m observed variables is quartet-learnable at depth d and is ζ-rank-testable. Let M0 be the

minimum marginal probability of an observation being off; πmax ≤ 0.5, πmin be bounds on the

prior probabilities; fmax, and fmin be bounds on the failures and lmax be an upper bound on

the leak probabilities. Its structure can be learned with probability (1− δ) with NS samples,

where:

NS = O
(( nM6

0

f 18
min(1− fmax)6l28

maxp
13
min

)2d

×max
( 1

ζ8
,

1

l8maxp
2
min(1− fmax)8

)
ln
(2m

δ

))
(4.18)

Proof comes from applying the error propagation bound introduced by the subtracting

step (Lemma 11) to the accuracy required for correct structure learning given by Lemma 14.
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D.7 Proofs

D.7.1 Proof of Lemma 8

We seek a bound on the errors of fX,u and pX for a triplet (u, v, w) singly coupled

by latent variable X as a function of ε. Assume that matrices X1 = P (v, w, u = 0) and

X2 = P (v, w, u = 1) are known to some element-wise error ε. Let Y2 = X2X
−1
1 and let

(λ1, λ2) be the eigenvalues of Y2.

From Algorithm 2 (and Equations 4.5-4.8) we have that:

fX,u =
1 + λ1

1 + λ2

.

We first bound the error on X−1
1 . If X1 =



a b

c d


, then we have X−1

1 = 1
ad−bc



d −b

−c a


.

Moreover, (ad − bc) = pX(1 − pX)fX,u(1 − fX,v)(1 − fX,w)n2
1n2n3 ≥ f 3

minp
2
minl

4
max, so if

ε <
f3
minp

2
minl

4
max

2
, we get using lemma 6 with A = 1, β =

f3
minp

2
minl

4
max

2
that the element-wise

error on X−1
1 is at most 25ε

f6
minp

4
minl

8
max

. Hence the error on the terms of Y2 is bounded by

6×25ε
f6
minp

4
minl

8
max

.

(λ1, λ2) are the roots of the polynomial P (X) = X2 − Tr(Y2)X + Det(Y2) and ∆ =

|λ1 − λ2|2 > (1− fmax)2. Moreover, Det(Y2) = λ1λ2 > 0, so:

− 2

f 3
minp

2
minl

4
max

< − 2

ad− bc < −|Tr(Y2)| < (λ1, λ2) < |Tr(Y2)| < 2

ad− bc <
2

f 3
minp

2
minl

4
max

Hence, according to Lemma 7, the error on the eigenvalues of Y2 is bounded by 1050ε
f12
minp

8
minl

16
max(1−fmax)

.
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Furthermore, we have n1 = λ1

1+λ1
, hence 1+λ1 = 1

1−n > 1, hence if η = 1050ε
f12
minp

8
minl

16
max(1−fmax)

< 1
2
,

the error on fX,u is bounded by:

η

1 + λ1 − η
+

(1 + λ2)η

(1 + λ1)(1 + λ1 − η)
≤ 2(1 + fmax)η =

2100(1 + fmax)ε

f 12
minp

8
minl

16
max(1− fmax)

Let us now bound the error on the parameter pX . According to Equation 4.5, we have:

pX =
1 + λ2

λ2 − λ1

× 1T (X2 − λ1X1)1 .

We showed that the error on λ1 and λ2 is bounded by η. Moreover, for ε ≤ f12
minp

8
minl

16
max(1−fmax)

8400
,

we can apply lemma 6 with A = 3
f3
minp

2
minl

4
max

and β = 1−fmax

4
to bound the error on 1+λ2

λ2−λ1
by

e1 = 100
f3
minp

2
minl

4
max(1−fmax)2 . Since the error on the individual terms of X1 and X2 is bounded

by ε << η, we can also coarsely bound the error on 1T (X2 − λ1X1)1 by e2 = 16× 2× η.

Given our upper bound on (λ1, λ2) and lower bound on λ2 − λ1, we also have 1+λ2

λ2−λ1
≤

m1 = 12
f3
minp

2
minl

4
max(1−fmax)

, and 1T (X2− λ1X1)1 ≤ m2 = 48
f3
minp

2
minl

4
max

. Hence, the error on pX

is bounded by:

e1 ×m2 + e2 ×m1 + e1 × e2 ≤
5000× 1050ε

f 18
minp

12
minl

24
max(1− fmax)3

.
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D.7.2 Proof of Lemma 9

As stated in the proof of Lemma 13, if the moments are known with error ε <
n2
min

4
,

R is known to within 52ε
l4max

. The error on the coefficients of Q(X) is then bounded by

7 × 52ε
l4max

. Moreover, we know that one root is smaller than 1
2

and that the other is bigger

than 1

1+
√
fA,afA,b

, hence
√

∆
R(fA,a−1)(fA,b−1)

> 1

1+
√
fA,afA,b

− 1
2
> (1 − fmax), which implies that

∆ > (1 − fmax)
6R2

min > (1 − fmax)
6. We can then use lemma 7 with k = 1 to show

that the error on the roots of Q(X) is bounded by 7×4×52ε
(1−fmax)3l4max

. Additionally assuming

ε < pmin/2 and using lemma 6 with A = 1/2, β = 1/2, the error on fA,x is then bounded by

1−pA
pA

2×4×1456ε
(1−fmax)3l4max

< 11648ε
(1−fmax)3l4maxpmin

.

D.7.3 Proof of Lemma 10

Using a Chernoff bound we have that the error in the empirical moments obtained from

N samples is less than
√

ln(2m
δ

) 1√
N

with probability 1− δ. We combine the multiplicative

factors on the error introduced by the tensor decomposition (Lemma 8) and during the

extension step (Lemma 9) to achieve the stated result.

D.7.4 Proof of Lemma 11

We have pmin < pX < 1
2

and fmin < fc ∀c ∈ C, so for ε <
pminf

4
min

6
, (1−p̃X+p̃X

∏
c∈C f̃X,c) >

(1−pX +pX
∏

c∈C fX,u)−6ε > 1
2
. Moreover, if the error on (1−pX +pX

∏
c∈C fX,c) is bounded

by 6ε, then the error on
∏l

j=1 (1− pXj
+ pXj

∏
c∈C fXj ,c) is bounded by 6(l + 1)ε for ε small

enough (ε < 1
3l2(1+ε)l

), and
∏l

j=1 (1− p̃Xj
+ p̃Xj

∏
c∈C f̃Xj ,c) > M

|
0C|. Since the negative

moment NC < 1, using Lemma 6, we then get that the error on the adjusted moment, Ñ ′C, is

bounded by M2
0 |C| × 6(l + 2)ε. l is bounded by the total number of parents, n, and |C| is

bounded by 3.
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D.7.5 Proof of Lemma 12

Proof. Let M be the 4× 4 matrix representing the joint distribution of aggregated variables

(a, b) and (c, d). Let S be the set of parents shared between two or more of those, and

∀X ∈ S,∀u ∈ {a, b, c, d}, let fX,u be the failure probability of the edge from X to u, and let

nu be the probability that u is not activated by parents outside of S.

∀S ⊂ S,∀u ∈ {a, b, c, d}, let eS,u = nu
∏

X∈S fX,u. eS,u is the marginal probability of u

being off given that nodes in S are on and nodes in S \ S are off. We then have:

M =
∑

S⊂S

(
∏

X∈S

pX
∏

Y ∈S\S

(1− pY ))qSr
T
S

With:

US =




eS,aeS,b

eS,a(1− eS,b)

(1− eS,a)eS,b
(1− eS,a)(1− eS,b)



, VS =




eS,ceS,d

eS,c(1− eS,d)

(1− eS,c)eS,d
(1− eS,c)(1− eS,d)




In particular, this means that if {a, b, c, d} only share one parent, the rank of M is at

most two (sum of two rank one matrices).

Conversely, if |S| > 1, M is the sum of at least 4 rank 1 matrices, and its elements are

polynomial expressions in the parameters of the model. The determinant itself is then a

polynomial function of the parameters of the model P (nu, pX , fX,u;∀u ∈ {a, b, c, d}, X ∈ S).

Hence, if P 6≡ 0, the set of its roots has measure 0. Table D.1 gives two examples of parameter

settings showing that P 6≡ 0. For other structures, notice that these can also serve as examples

by setting pU = 0 for additional parents.
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U pU fU,a fU,b fU,c fU,d

X 0.2 0.2 0.4 0.6 1

Y 0.3 1 0.2 0.4 0.6

U pU fU,a fU,b fU,c fU,d

X 0.2 0.2 0.4 0.6 0.8

Y 0.3 1 0.2 0.4 1

Table D.1: Two settings where the determinant of the moments matrix is non zero Left:
Det(θ1) = 5.33× 10−7. Right: Det(θ2) = 4.95× 10−7

D.7.6 Proof of Lemma 13

Proof. Indeed, we have:

P (ā, b̄)

P (ā)P (b̄)
− P (ā, b̄|x̄)

P (ā|x̄)P (b̄|x̄)
= gfA,a,fA,b

(pA)− gfA,a,fA,b
(pA|x̄)

Moreover:

pA − pA|x̄ = pA(1− fA.x
1− pA + pAfA.x

)

≥ 1

2
pmin(1− fmax)

And, for p ≤ 1
2
:

∂gfA,a,fA,b
(p)

∂p
=

(1− fA,a)(1− fA,b)((1− fA,afA,b)p2 − 2p+ 1)

(1− p(1− fA,a))2(1− p(1− fA,b))2

≥ (1− fmax)2(1− f 2
max)

8

Hence:

P (ā, b̄)

P (ā)P (b̄)
− P (ā, b̄|x̄)

P (ā|x̄)P (b̄|x̄)
>
pmin(1− fmax)3(1− f 2

max)

8
.
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Suppose the estimation error on all of the probabilities is bounded by ε < l2max

4
, then

the error on P (ā)P (b̄) is bounded by 3ε. We have P (ā)P (b̄) > l2max and P (ā, b̄) ≤ 1, thus

according to lemma 6 using A = 1, β = n2
min/4, the estimation error on P (ā,b̄)

P (ā)P (b̄)
− P (ā,b̄|x̄)

P (ā|x̄)P (b̄|x̄)

is bounded by 2× ( 48
l4max

ε+ 4
l2max

) ≤ 104
l4max

ε = η.

Hence, if ε ≤ l4maxpmin(1−fmax)3(1−f2
max)

104×10
, η ≤ pmin(1−fmax)3(1−f2

max)
10

, which proves the lemma.

D.7.7 Proof of Lemma 14

Proof. According to Lemmas 1 and 13, we need to bound the error on fourth-order moments

by η4 and on the third-order moments by η3 respectively. Using a Chernoff bound we get

that after N samples:

• if N ≥ 3
η2

4
ln(2m4

δ
), then the error on a fourth-order moment is smaller than η4 with

probability (1− δ
m4 ), hence the maximum error on the fourth-order moments is bounded

by η4 with probability at least (1− δ).

• Similarly, if N ≥ 3
η2

3
ln(2m3

δ
), then the maximum error on the third-order moments is

bounded by η3 with probability at least (1− δ).

Taking the maximum of these numbers of samples, we find that with probability at least

(1− δ), all our structure tests are correct.

D.8 Empirically testing local identifiability

Section 4.3 describes an constructive proof of identifiability for a limited family of networks.

However, it leaves open the possibility that there are networks outside of that family that are

still identifiable and some may even be identifiable from low-order moments.
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An empirical test for identifiability is described in Hsu et al. (2012). The Check-identifiability

routine works by constructing the Jacobian matrix Ji,j = δfj/δθi where fj is the jth observed

moment and θi is the ith parameter of the model and evaluating it at a random parameter

setting θ0. If the rank of the matrix is equal to the number of parameters, then the model

is locally identifiable for all but a zero-measure set of parameter settings. This local iden-

tifiability test can be used to rule out identifiability of certain structures since the lack of

local identifiability implies the lack of global identifiability as well. A stronger result that

holds if the moments can be expressed as polynomial expressions of the parameters, as they

can in the noisy-or setting (Equation 4.14). In that case, local identifiability implies that the

number of observationally equivalent models is finite.

Theorem 5 formally describes the properties of the check-identifiability routine.

Theorem 5. (Check-Identifiability (Hsu et al., 2012)) Assume the parameter space Θ is

a non-empty open connected subset of [0 − 1]n; and the observed moments µ : Rn → Rm,

with respect to the observation function φ is a polynomial map. Then with probability 1,

Check-identifiability returns “yes” iff the model family is locally identifiable from φ. Moreover,

if it returns “yes”, then there exists E ⊂ Θ of measure 0 such that the model family with

parameter space Θ \ E is identifiable from φ.

The proof is found in appendix A of Hsu et al. (2012).

D.9 Non identifiability of singly-coupled triplets

Finding the latent structure of a network is an especially interesting problem. Not all

network structures are identifiable. Indeed, by applying the tensor decomposition method

to a triplet that shares two parents, we can often find one parent that would explain the

moments just as well. Figure D.1 gives an example of such a network. The parameters are

the following:
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Y

a b c

X

a b c

Z

=
?

Figure D.1: Two networks with the same moments matrix using parameters: pX = 0.2,
pX = 0.3, pZ = 0.37. fX = (0.1, 0.2, 0.3), fY = (0.6, 0.4, 0.5), fZ = (0.28, 0.23, 0.33). One is
singly-coupled, the other is not.

original values

p = [0.20000000000000001, 0.29999999999999999]

f = [[0.10000000000000001, 0.20000000000000001, 0.29999999999999999],

[0.59999999999999998, 0.40000000000000002, 0.5]]

n = [0.94999999999999996, 0.94999999999999996, 0.94999999999999996]

new

p = 0.369002801906

f = [0.27471379503828641, 0.22833778992716067, 0.3253928941874199]

n = [0.93603297899373428, 0.91486319364631141, 0.92461657113192608]

original_D [[[ 0.50557963 0.05459129]

[ 0.06907822 0.05627086]]

[[ 0.05137117 0.04281791]

[ 0.06842098 0.15186994]]]

new_D [[[ 0.50557963 0.05459129]
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[ 0.06907822 0.05627086]]

[[ 0.05137117 0.04281791]

[ 0.06842098 0.15186994]]]

difference = 3.46944695195e-17

D.10 Simulation experiments

Just how confusable are singly-coupled triplets with other networks? The following two

simulation experiments explore this question. A 2× 2× 2 probability tensor can be tested to

see whether it is consistent with a singly-coupled triplet by decomposing the triplet as in

Algorithm 2 and extracting the parameters with Equations 4.5-4.8. If the parameters lie in

the unit interval then the distribution is consistent with a singly-coupled triplet.

Dirichlet samples: 2× 2× 2 tensors are drawn i.i.d from a Dirichlet distribution with

α = 1 (i.e., uniformly from the simplex) and tested to see whether they are consistent with a

distribution induced by singly-coupled triplets.

Noisy-or network samples: Parameters of noisy-or networks are drawn uniformly

from the unit interval for networks with 3 children and 1-5 parents and the resulting

distribution is tested to see whether it is consistent with a distribution induced by singly-

coupled triplets.

The results of the simulation are recorded in Table D.2. The implication is that even though

general distributions are not often consistent with singly-coupled triplets, distributions drawn

from noisy-or networks with any number of parents are. This is not surprising. Variables

drawn from a noisy-or network cannot be negatively correlated with each other, so no

distribution with negatively correlated variables can be perfectly consistent with a noisy-or
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Table D.2: Results of a simulation experiment. 10,000 samples were drawn and tested whether
they are consistent with a distribution from singly-coupled triplets.

Experiment proportion valid
Dirichlet 0.022
Noisy-or 1 1
Noisy-or 2 0.973
Noisy-or 3 0.9803
Noisy-or 4 0.9897
Noisy-or 5 0.995

network. However, once samples are drawn from the family of noisy-or networks, it is very

easy to confuse a non-singly coupled triplet with one that is.

D.11 Learning with Singly-coupled triplets and the Ex-

pansion property of Anandkumar et al. (2013c)

It is natural to compare the graph expansion property for identifiability in Anandkumar

et al. (2013c) with the graph properties that make a network learnable from singly-coupled

triplets. It turns out that neither property implies the other.

D.11.1 Expansion property

The expansion property for bipartite graphs G(V1,V2) with edges from V1 to V2 is as

follows:

Definition 7. (Expansion (Anandkumar et al., 2013c)) For any subset S ⊂ V1 with |S| ≥ 2,

we have |N(S)| ≥ |S|+ dmax where N(S) are the neighbors of S, and dmax is the maximal

degree of any node in V1.

An additional requirement mentioned in Anandkumar et al. (2013c) is that there are at

least 3× more observed children than parents.
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Y2Y1Y0

X6 X7X4 X5X2 X3X0 X1 X8

Figure D.2: A network that satisfies the expansion property but has no singly-coupled triplets.

Y3Y2Y1Y0

X6 X7X4 X5X2 X3X0 X1 X8 X9

...

...

Figure D.3: A network that is learnable with singly-coupled triplets but does not satisfy the
expansion property.

D.11.2 Expansion property does not imply learnable with singly-

coupled triplets

The graph in Figure D.2 satisfies the expansion property but has no singly coupled triplets.

In this network, each parent connects to 6 children, so dmax = 6. Any two parents connect to

9 children, so they satisfy N(S) = 9 ≥ 2 + dmax = 8. All 3 parents connect to 9 children, so

they satisfy N(S) = 9 ≥ 3 + dmax = 9. There are 3 parents and 9 children, so the ratio of

parents-to-children satisfies the assumptions of Anandkumar et al. (2013c).

D.11.3 Singly-coupled triplets does not imply Expansion

The graph in Figure D.3 is learnable with singly-coupled triplets but does not satisfy the

expansion property since the last latent variable Yn has degree m (i.e., connects to all of the

observations). Since dmax = m it is impossible to satisfy the expansion property, but it is

learnable as described in Section 4.3.3.
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Appendix E

Appendix to Learning a Health

Knowledge Graph from Electronic

Medical Records

E.1 Derivation of equation 5.5

Figure E.1 shows the causal structure assumed in Equation 5.5. The do operator performs

“surgery” in the graphical model (Figure E.2), removing the edge from U to Y1 and setting

Y1 = y1. That leads to the following derivation for Equation 5.5:

Y1

X1

Y2

U

Figure E.1: The causal graph of diseases and symptoms. Diseases (Y1, Y2) can cause symptoms
(only one symptom, X1, shown here), and can have a high dimensional set of common parents
U (risk factors such as age) which make the diseases non-independent. Diseases and symptoms
are observed.
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y1

X1

Y2

U

Figure E.2: The causal graph from Figure E.1 after intervening (do), setting Y1 = y1.

P (X1| do(Y1 = y1)) =
∑

u,y2

P (u, y2, X1|y1)

=
∑

y2

P (y2, X1|y1)

=
∑

y2

P (y2|y1)P (X1|y1, y2)

=
∑

y2

P (y2)P (X1|y1, y2)

= Ey2∼P (Y2)P (X1|y1, y2).

The equality P (Y2|Y1) = P (Y2) (moving from the third to fourth line of the derivation)

comes from the independence statements encoded in the graph after applying the do operator

(Figure E.2).
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Appendix F

Appendix to Anchored Factor

Analysis

F.1 R matrix is full rank

In this section we show that the matrix R is invertible by showing that its component

blocks RZ are all invertible.

R is block-diagonal, so its determinant is equal to the product of the determinants of the

blocks and will be non-zero as long as all of the blocks have non-zero determinants.

Each block, RZ is a Kronecker product of conditional distributions: RZ = ⊗|Z|k=1P (Ak|Zk),

so its determinant will be non-zero as long as each of the 2 × 2 matrices, P (Ak|Zk), have

non-zero determinants.

P (Ak|Zk) has a non-zero determinant as long as P (Ak|Yk = 0) 6= P (Ak|Yk = 1) which is

assumed in the definition of anchored latent variable models since Ak 6⊥ Yk.

Thus, the determinant of the Kronecker product is also non-zero, and the R matrix is full

rank.
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P (W1,W2, Xj) =P (Yi = 0)P (W1|Yi = 0)P (W2|Yi = 0)P (Xj|Yi = 0)

+ P (Yi = 1)P (W1|Yi = 1)P (W2|Yi = 1)P (Xj|Yi = 1) (F.1)

This decomposition can be computed efficiently (Berge, 1991), and the conditional probabilities

can be recovered.

F.2 Estimating failures with Markov blanket condition-

ing

The Markov Blanket estimator from Section 6.4.2 follows from the noisy-or parametrization

of the model. Here we show that the estimator from Equation 6.9 is indeed a consistent

estimator. We start with the estimator:

f blanketi,j =
P (Xj = 0|Yi = 1, B = b)

P (Xj = 0|Yi = 0, B = b)
,

Breaking the numerator and denominator of the RHS. Let C = B ∪ Yi represent the

conditioned variables and U = Y \ C be the unconditioned variables. For the numerator, we

have:

P (Xj = 0|Yi = 1, B = b) = (1− lj)fi,j
∏

i′∈B

f
yi′
i′,j

(∑

yU

P (yU |Yi = 1, B = b)
∏

k∈U

f ykk,j

)

= fi,j
∏

i′∈B

f
yi′
i′,j

(∑

yU

P (yU |B = b)
∏

k∈U

f ykk,j

)
. (F.2)
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Similarly, for the denominator:

P (Xj = 0|Yi = 0, B = b) = (1− lj)
∏

i′∈B

f
yi′
i′,j

(∑

yU

P (yU |Yi = 0, B = b)
∏

k∈U

f ykk,j

)

=
∏

i′∈B

f
yi′
i′,j

(∑

yU

P (yU |B = b)
∏

k∈U

f ykk,j

)
. (F.3)

The second lines follow from the Markov blanket property. Thus, the ratio is equal to fi,j .

As the number of samples approaches infinity, the empirical estimates, P̂ (Xj = 0|Yi = 0, B =

b) and P̂ (Xj = 0|Yi = 1, B = b), respectively approach the values of the true probabilities,

and thus the estimator is consistent, provided that, P (Xj = 0|Yi = 0, B = b) > 0.

F.3 Estimating correction coefficients serially in trees

In this section we derive the correction terms for estimating the failure probabilities fi,j

in tree models described in Section 6.4.2 (Equation 6.12). While the directionality of the tree

is not important, for the derivation it is easier notationally to consider a rooted tree (so that

we can refer to specific subtrees), and without loss of generality, when estimating the failure

term fi,j, we can consider the tree as rooted at Yi.

We introduce the notation PT (Yi)(e) to denote the likelihood of an event e in the graphical

model where all nodes but Yi and its non-descendants are removed (i.e., all that remains is

the subtree rooted at Yi), and where we exclude the leak probabilities (so that they are not

double counted).

Conditioning on the variable Yi taking the value yi, the likelihood of Xj = 0 can be shown
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to be of the form:

P (Xj = 0|yi) = (1− lj)PT (Yi)(Xj = 0|yi)

= (1− lj)f yii,j
∏

k∈child(Yi)

∑

yk

P (yk|yi)PT (Yk)(Xj = 0|yk). (F.4)

Correction terms are defined as

ci,j,k =

∑
yk
P (yk|y(1)

i )PT (Yk)(Xj = 0|yk)
∑

yk
P (yk|y(0)

i )PT (Yk)(Xj = 0|yk)
. (F.5)

Using Equation F.4, it is easy to see that:

P (Xj = 0|y(1)
i )

P (Xj = 0|y(0)
i )

∏

k∈child(Yi)

1

ci,j,k
= fi,j. (F.6)

It remains to be shown that ci,j,k can be estimated from low order moments as in

Equation 6.11, i.e.

ci,j,k =

∑
yk
P (yk|y(1)

i )P (x
(0)
j |y(0)

i , yk)

P (x
(0)
j |y(0)

i )
. (F.7)

We can expand P (x
(0)
j |y(0)

i , yk) as follows:
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P (x
(0)
j |y(0)

i , yk)

= (1− lj)f ykk,j
∏

k′∈child(Yi)\k

∑

yk′

P (yk′ |y(0)
i , yk)PT (Yk′ )

(Xj = 0|yk′)

×
∏

k′∈child(Yk)

∑

yk′

P (yk′ |y(0)
i , yk)PT (Yk′ )

(Xj = 0|yk′)

= (1− lj)f ykk,j
∏

k′∈child(Yi)\k

∑

yk′

P (yk′ |y(0)
i )PT (Yk′ )

(Xj = 0|yk′)

×
∏

k′∈child(Yk)

∑

yk′

P (yk′ |yk)PT (Yk′ )
(Xj = 0|yk′), (F.8)

where the second equality comes from the conditional independence properties that condi-

tioning on (Yi, Yk) makes children of Yk independent of Yi and children of Yi (other than Yk)

independent of Yk.

We now substitute Eq. F.8 into Eq. F.7 and treat the numerator (num) and denominator

(denom) separately:

num = (1− lj)
∑

yk

P (yk|y(1)
i )f ykk,j

∏

k′∈child(Yk)

∑

yk′

P (yk′ |yk)PT (Yk′ )
(Xj = 0|yk′)

×
∏

k′∈child(Yi)\k

∑

yk′

P (yk′|y(0)
i )PT (Yi′ )

(Xj = 0|y(0)
i ) (F.9)

The product over children of Yi does not depend on yk and can be pulled out of the sum.
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num = (1− lj)
∏

k′∈child(Yi)\k

∑

yk′

P (yk′ |y(0)
i )PT (Yi′ )

(Xj = 0|y(0)
i )

×
∑

yk

P (yk|y(1)
i )f ykk,j

∏

k′∈child(Yk)

∑

yk′

P (yk′ |yk)PT (Yk′ )
(Xj = 0|yk′)

= (1− lj)
∏

k′∈child(Yi)\k

∑

yk′

P (yk′ |y(0)
i )PT (Yi′ )

(Xj = 0|y(0)
i )

×
∑

yk

P (yk|y(1)
i )PT (Yk)(Xj = 0|yk) (F.10)

Expanding the denominator using Equation F.4:

denom = P (x
(0)
j |y(0)

i ) = (1− lj)
∏

k′∈child(Yi)

∑

y′k

P (yk′ |y(0)
i )PT (Yk′ )

(Xj = 0|yk′) (F.11)

Canceling the leak term and the product over all children of Yi except for Yk from both

the numerator and denominator, we are left with:

num

denom
=

∑
yk
P (yk|y(1)

i )PT (Yk)(Xj = 0|yk)
∑

yk
P (yk|y(0)

i )PT (Yk)(Xj = 0|yk)

as desired.

F.4 Estimating leak parameters

Leak parameters can be estimated by comparing the empirical estimate of P̂ (x
(0)
j ) to the

one predicted by the model without leak, denoted as P−lj(x
(0)
j ).

lj = 1−
P−lj(x

(0)
j )

P̂ (x
(0)
j )

. (F.12)

264



If the latent variables are independent, the Quickscore algorithm (Heckerman, 1990) gives

an efficient method of computing marginal probabilities:

P−lj(x
(0)
j ) =

∏

i

(
P (y

(0)
i ) + P (y

(1)
i )fi,j

)
. (F.13)

For trees, this value can be computed efficiently using belief propagation and in more

complex models it can be estimated by forward sampling.

F.5 Dataset preparation

In this section we provide additional details about the preparation of the two real-world

datasets used in the experimental results.

Emergency: The emergency dataset consists of the following fields from patients’ medical

records: Current medications (medication reconciliation) and Administered medications

(pyxis records) mapped to GSN (generic sequence number) codes; Free text concatenation of

chief complaint, triage assessment and MD comments; age binned by decade; sex; and

administrative ICD9 billing codes (used to establish ground truth but not visible during

learning or testing). We apply negation detection to the free-text section using “negex” rules

(Chapman et al., 2001) with some manual adaptations appropriate for Emergency department

notes (Jernite et al., 2013a), and replace common bigrams with a single token (e.g. “chest

pain” is replaced by “chest pain”. We reduce the dataset from 273,174 patients to 16,268 by

filtering all patients that have fewer than 2 of the manually specified conditions. We filter

words to remove those that appear in more than 50% of the dataset and take the 1000 most

common words after that filtering. Table F.1 lists the concepts that are used and a selection

of their anchors specified by a physician research collaborator. In the feature vector, anchors

are replaced by a single feature which represents a union of the anchors (i.e. whether any of

265



the anchors appear in the patient record).

Stack Overflow: Questions were initially filtered to remove all questions that do not

have at least two of the 200 most popular tags. We filter words to remove those that appear

in more than 50% of the dataset and take the 1000 most common words after that filtering.

Tag names that contain multiple words are treated as N-grams that are replaced by a single

token in the text.

F.6 Detailed methods

F.6.1 Regularization

We found it useful to introduce an additional regularization parameter to Equation 6.8

that encourages the recovered marginals to be be close to independent unless there is strong

evidence otherwise.

µ∗Y = argmin
µ∈M

DKL (µA, Rµ) + λDKL (µindep, µ) , (F.14)

Where µindep is a marginal vector constructed using the single-variable marginals in an

independent distribution.

For recovery of marginals under local consistency and marginal polytope constraints, we

use the the conditional gradient algorithm, as discussed in section 6.3.2, using a tolerance

of 0.005 for the duality gap (as described in Jaggi (2013)) as a stopping criterion for Stack

Overflow and 0.01 for medical records. When using simplex constraints, we use the more

appropriate Exponentiated Gradient algorithm (Kivinen and Warmuth, 1995) for each

marginal independently. We use a regularization parameter of λ = 0.01 to learn P (Y) and

λ = 0.1 to learn P (X|Y). The moments required to learn P (X|Y) are recovered using only

simplex constraints.
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Algorithm 10 Moment recovery (cond. gradient)

Minimize f(µ) = DKL(µA, Rµ) s.t. µ ∈M
1: initialize µ0 ∈M (e.g. uniform)
2: for k = 0, 1, . . . ,M do
3: s← argmins′∈M〈s′,∇f(µk)〉
4: Compute search direction: d← s− µk
5: Determine stepsize, γ ∈ [0, 1]
6: Move in descent direction: µk+1 ← µk + γdk

7: end for

Linear programs in the conditional gradient algorithm are solved using Gurobi (Gurobi Op-

timization, 2014) and integer linear programs are solved using Toulbar2 (Sanchez et al., 2008).

For structure learning we use the gobnilp package (Cussens and Bartlett, 2013) with a BIC

score objective, though we note that any exact or approximate structure learner that takes a

decomposable score as input could be used equally well.

F.6.2 Conditional gradient algorithm for moment recovery

Algorithm 10 describes the conditional gradient (Frank and Wolfe, 1956) algorithm that

was use for moment recovery. Line 3 minimizes a linear objective over a compact convex set.

In our setting, this is the marginal polytope or its relaxations. To minimize a linear objective

over a compact convex set, it suffices to search over the vertices of the set. For the marginal

polytope, these correspond to the integral vertices of the local consistency polytope. Thus,

this step can be solved as an integer linear program with local consistency constraints.

We use a “fully corrective” variant of the conditional gradient procedure. If the minimiza-

tion of line 3 returns a vertex that has previously been used, we perform an additional step,

moving to the point that minimizes the objective over convex combinations of all previously

seen vertices.
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F.6.3 Monte Carlo EM

When running EM, we optimize the variational lower bound on the data likelihood:

logP (X; θ) ≥ L(q, θ) = Ey∼q [logP (x, y; θ)− logP (y)]

The EM algorithm optimizes this bound with a coordinate ascent, alternating between E-steps

which improve q and M-steps which improve θ. Usually both the E-step and M-steps are

maximization steps, but incomplete M-steps which only improve θ in every M-step also leads

to monotonic improvement of log(P (X; θ) with every step. In this section, we describe a

variant of Monte Carlo EM which is useful for this model using Gibbs sampling to approximate

the E-step and a custom M-step which is guaranteed to improve the variational lower bound

at every step. We hold the distribution P (Y) fixed and only optimize the failure and leak

probabilities. For these purposes, the leak probabilities can be treated as simply failure

probabilities of an extra latent variable whose value is always 1.

F.6.3.1 Outer E-step

For the E-step, we use the Gibbs sampling procedure described in 4.3 of Wang et al.

(2014).

F.6.3.2 Outer M-step

The M-step consists of a coordinate step guaranteed to improve θ for a fixed q. P (x, y; θ)

is a fully observed model, but optimizing θ has no closed form. Instead we introduce m

auxiliary variables A ∈ [0, n+ 1]m, and adopt the generative model described in Algorithm 11

which equivalently describes the fully-observed noisy-or model (i.e.
∑

a P (X, Y, a; θ) =

Pnoisy or(X, Y ; θ)). In this new expanded model, we can perform a single E-M step with

respect to the latent variable A in closed form.
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Algorithm 11 Alternative generative model with auxiliary A variables.

Y ∼ P (Y )
for j in 1..m do

Aj ∼ P (Aj = k|Y )
Xj = Aj ≤ n

end for

P (Aj = k|Y ) =

{
(1− fk,j)

∏k−1
i=0 f

yi
i,j k ≤ n

1−∏k−1
i=0 f

yi
i,j k = n+ 1

inner E-step:

P (Aj = k|Xj, Y ) =





1 Xj = 0 ∩ k = n+ 1

0 Xj = 0 ∩ k 6= n+ 1

0 Xj = 1 ∩ k = n+ 1

0 Xj = 1 ∩ k ≤ n ∩ Yk = 0

∝∏k−1
i=0 f

yi
i,j(1− fk,j) Xj = 1 ∩ k ≤ n ∩ Yk = 1

(F.15)

inner M-step:

fi,j = 1− count(Aj = i)

count(Aj ≤ i)
(F.16)

F.7 Learned models

F.7.1 Tree models

Figures F.1 and F.2 show models learned using second order recovered moments to learn

maximal scoring tree structured models. Tables F.1 and F.2 show the factor loadings learned

for these tree-structured models.
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F.7.2 Bounded in-degree models

Figures F.3 and F.4 show models learned using third order recovered moments to learn

maximal scoring graphs with bounded in-degree of two.

F.7.3 Factor loadings

Table F.1: Learned medical concepts. For each concept we display the top 10 weighted
factors and one supplied anchor.

Latent variable name Top weights anchors

abdominal pain pain, dispensed:ondansetron, nausea,

neg:fevers, dispensed:morphine sulfate,

vomiting, days, dispensed:hydromorphone

(dilaudid), neg:vomiting

abdominal pain

alcohol sex:m, sober, admits, found, drink, dis-

pensed:thiamine, dispensed:folic acid, dis-

pensed:diazepam, dispensed:multivitamins,

dispensed:multivitamins

etoh

allergic reaction disposition, initial vitals, pending, consults,

interventions, trigger, imaging, ed, diagnosis,

pain

allergy

asthma-copd med-history:albuterol sulfate, sob, dis-

pensed:methylprednisolone sodium succ,

cough, nebs, med-history:spiriva with

handihaler, home, days, dyspnea

asthma
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back pain pain, neg:or, neg:pain, back, denies, lower

back, dispensed:oxycodone-acetaminophen,

neg:of, low back, neg:bowel

back pain

cellulitis ed, admit, swelling, imaging, diagnosis, days,

consults, iv, leg, interventions

cellulitis

stroke age 80, admit, patient, head, ekg, weakness,

ed, ct head, neuro, htn

stroke

epistaxis nose, bleeding, blood, neg:bleeding, ekg,

neg:with, ed, bleed, consults, today

epistaxis

fall pain, denies, neg:pain, p fall, neg:or, ed, imag-

ing, consults, interventions, neg:loc

fell down

gastrointestinal bleed blood, dispensed:pantoprazole sodium, hct,

gi, stool, admit, rectal, today, dis-

pensed:lidocaine jelly 2% (urojet),

gi bleed

headache head, nausea, today, neg:or, denies, neg:pain,

days, dispensed:acetaminophen, pain, neck

pain

headache

hematuria sex:m, urine, urology, blood, foley, neg:pain,

days, neg:fevers, dysuria, bladder

hematuria

hiv+ sex:m, med-history:truvada, cd, age 40, med-

history:ritonavir, days, pcp, cough, fever, de-

nies

hiv

intracranial hemorrhage osh, ct, fall, age 80, found, head ct, transfer,

sex:m, repeat, small

ich
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kidney stone pain, flank pain, dispensed:ondansetron, dis-

pensed:ketorolac, stone, nausea, urology, ct,

dispensed:morphine sulfate

kidney stone

liver failure (history) sex:m, liver, age 50, med-history:lactulose,

admit, ed, med-history:folic acid,

med-history:furosemide, med-

history:multivitamin, med-history:lasix

cirrhosis

motor vehicle collision car, neg:loc, age 20, hit, neck, neg:head,

driver, mph, neg:airbag, front

mvc

pneumonia cxr, admit, sex:m, cough, ed, fever, diagnosis,

ekg, med-historyicine, admit med-historyicine

pna

severe sepsis dispensed:fentanyl citrate, found, icu, osh,

vanc, age 80, imaging, consults, interventions,

lactate

severe sepsis

sexual assault patient, dispensed:ondansetron odt, evalua-

tion, ceftriaxone, man, eval, age 30, home,

plan, flagyl

sane nurse

suicidal ideation depression, neg:hi, denies, states, neg:si, plan,

dispensed:lorazepam, eval, age 40, section

si

sycnope ekg, neg:pain, fall, head, fell, denies, neg:cp,

ed, neg:of, loc

syncope

urinary tract infection ed, imaging, consults, interventions, diagno-

sis, ua, cipro, admit, pending, disposition

uti
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Table F.2: Learned concepts from Stack Overflow. For each concept we display the top
weighted factors and one supplied anchor. Note that in the Stack Overflow dataset we use a
simple rule to provide a single anchor for every latent variable.

Latent variable name Top weights anchors

osx osx, i’m, running, i’ve, install, installed, os,

code, managed, existing

osx

ruby-on-rails-3 parsing, executed, web-application, don’t,

numbers, developed, resources, dynamic,

named, rest

ruby-on-rails-3

image image, code, size, upload, html, save, picture,

width, page, display

image

mysql mysql, query, rows, row, id, 1, tables, join,

insert, column

mysql

web-services web, service, web-services, client, java, ser-

vices, things, sharepoint, don’t, true

web-services

objective-c objective-c, i’m, code, don’t, xcode, dynamic,

syntax, including, follow, trouble

objective-c

linux linux, running, command, machine, system,

server, directory, install, php, servers

linux

query query, table, a, result, results, queries, tables,

return, returns, select

query

regex regex, match, expression, regular, pattern,

i’m, replace, characters, html, extract

regex

php php, server, array, send, data, i’m, database,

output, website, user

php
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java java, string, program, client, xml, read, code,

existing, send, environment

java

ruby-on-rails ruby-on-rails, rails, i’m, database, user, con-

troller, page, ruby, model, code

ruby-on-rails

asp.net asp.net, asp.net-mvc-3, controller, site, web-

site, database, control, ajax, jquery, action

asp.net

sql-server sql-server, query, tsql, sql, sql-server-2005,

server, stored, procedure, rows, columns

sql-server

forms form, forms, page, code, data, html, jquery,

user, button, submit

forms

python python, i’m, a, program, string, list, module,

output, don’t, write

python

json json, string, response, data, php, parse, code,

format, ajax, javascript

json

html html, tags, tag, page, website, code, links,

show, webpage, text

html

iphone iphone, app, view, device, sqlite, api, video,

uitableview, images, ios5

iphone

performance performance, time, data, question, takes,

slow, faster, run, seconds, running

performance

android android, code, xml, java, activity, device, app,

phone, screen, android-layout

android

multithreading thread, multithreading, code, threads, appli-

cation, method, data, main, run, managed

multithreading
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xcode xcode, project, build, app, 4, version, i’ve,

running, debug, target

xcode

css css, page, css3, jquery, style, javascript,

chrome, works, width, browser

css

jquery jquery, html, works, plugin, javascript, jquery-

ui, css, jquery-ajax, elements, link

jquery

string string, a, strings, array, characters, output,

convert, json, character, split

string

c# c#, function, code, methods, event, excel,

click, written, program, call

c

javascript javascript, jquery, js, script, works, ajax, php,

button, browser, code

javascript

ios ios, iphone, app, ios5, device, i’m, ipad, 5,

user, screen

ios

linq linq, linq-to-sql, code, class, c#, error, xml,

expression, property, collection

linq

xml xml, parse, document, read, data, string,

node, output, format, tag

xml

ajax ajax, code, javascript, jquery-ajax, works,

call, response, user, request, html

ajax

facebook facebook, users, login, api, app, sdk, post,

php, id, link

facebook

html5 html5, html, browser, chrome, css, support,

image, browsers, works, android

html5
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sql sql, table, database, query, data, tsql, tables,

statement, column, sql-server

sql

wpf wpf, control, window, property, binding, a,

bind, controls, ui, items

wpf

asp.net-mvc code, existing, browsers, query, faster, issues,

row, flash, environment, program

asp.net-mvc

ruby ruby, i’m, rails, running, string, install, in-

stalled, array, feed, executed

ruby

ipad ipad, works, fine, screen, ios, page, device,

problem, safari, app

ipad

c c, program, a, write, c+, library, compile,

string, array, functions

c

database database, a, table, user, db, code, sql, data,

store, created

database

arrays arrays, i’m, 2, data, dynamic, results, saved,

row, 0, finally

arrays

vb.net vb.net, string, project, work, database, code,

developed, results, rest, existing

vb.net

.net .net, framework, i’ve, windows, executed,

managed, valid, don’t, developed, existing

.net

eclipse eclipse, project, build, installed, plugin, de-

bug, running, folder, version, projects

eclipse

c++ c++, c+, code, i’m, managed, find, access,

application, implementation, writing

c++
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windows windows, windows-7, a, running, winapi, c#,

machine, run, application, window

windows

winforms winforms, control, user, i’m, windows, a, .net,

controls, forms, don’t

winforms

cocoa-touch a, i’m, cocoa-touch, code, dynamic, results,

follow, row, send, environment

cocoa-touch

sql-server-2008 sql-server-2008, sql-server, sql, query, tsql,

stored, 1, procedure, developed, resources

sql-server-2008
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abdominal pain

epistaxis

fall

gastrointestinal bleed

intracranial hemorrhage

liver failure (history)

motor vehicle collision

suicidal ideation

sycnope

alcohol

cellulitis

headache

kidney stone

urinary tract infection

allergic reaction

sexual assault

asthma-copd

back pain

severe sepsis

stroke

hematuria

HIV+

pneumonia

Figure F.3: Bounded in-degree model (≤ 2)learned for Emergency data. Red and green
edges represent positive and negative correlations between the variables, respectively.
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ajax

javascriptjson

android

eclipse
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arrays
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ruby-on-rails
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Figure F.4: Bounded in-degree model (≤ 2) learned for Stack Overflow data. Red and green
edges represent positive and negative correlations between the variables, respectively.
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Appendix G

Appendix to Topic modeling with

anchors

G.1 Proof for anchor-words finding algorithm

Recall that the correctness of the algorithm depends on the following Lemma:

Lemma 15. The point dj found by the algorithm must be δ = O(ε/γ2) close to some vertex

vi. In particular, the corresponding aj O(ε/γ2)-covers vi.

In order to prove this Lemma, we first show that even if previously found vertices are only

δ close to some vertices, there is still another vertex that is far from the span of previously

found vertices.

Lemma 16. Suppose all previously found vertices are O(ε/γ2) close to distinct vertices, there

is a vertex vi whose distance from span(S) is at least γ/2.

In order to prove Lemma 16, we use a volume argument. First we show that the volume

of a robust simplex cannot change by too much when the vertices are perturbed.
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(a) (b)

(c) (d)

Figure G.1: Illustration of the Algorithm

Lemma 17. Suppose {v1, v2, ..., vK} are the vertices of a γ-robust simplex S. Let S ′ be

a simplex with vertices {v′1, v′2, ..., v′K}, each of the vertices v′i is a perturbation of vi and

‖v′i − vi‖2 ≤ δ. When 10
√
Kδ < γ the volume of the two simplices satisfy

vol(S)(1− 2δ/γ)K−1 ≤ vol(S ′) ≤ vol(S)(1 + 4δ/γ)K−1.

Proof. As the volume of a simplex is proportional to the determinant of a matrix whose

columns are the edges of the simplex, we first show the following perturbation bound for

determinant.

Claim 1. Let A, E be K × K matrices, the smallest eigenvalue of A is at least γ, the

Frobenius norm ‖E‖F ≤
√
Kδ, when γ > 5

√
Kδ we have

det(A+ E)/ det(A) ≥ (1− δ/γ)K .

Proof. Since det(AB) = det(A) det(B), we can multiply both A and A+ E by A−1. Hence

det(A+ E)/ det(A) = det(I + A−1E).
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The Frobenius norm of A−1E is bounded by

∥∥A−1E
∥∥
F
≤
∥∥A−1

∥∥
2
‖E‖F ≤

√
Kδ/γ.

Let the eigenvalues of A−1E be λ1, λ2, ..., λK , then by definition of Frobenius Norm
∑K

i=1 λ
2
i ≤ ‖A−1E‖2

F ≤ Kδ2/γ2.

The eigenvalues of I + A−1E are just 1 + λ1, 1 + λ2, ..., 1 + λK , and the determinant

det(I + A−1E) =
∏K

i=1(1 + λi). Hence it suffices to show

min
K∏

i=1

(1 + λi) ≥ (1− δ/γ)K when
K∑

i=1

λ2
i ≤ Kδ2/γ2.

To do this we apply Lagrangian method and show the minimum is only obtained when

all λi’s are equal. The optimal value must be obtained at a local optimum of

K∏

i=1

(1 + λi) + C
K∑

i=1

λ2
i .

Taking partial derivatives with respect to λi’s, we get the equations −λi(1 + λi) =

−∏K
i=1(1 + λi)/2C (here using

√
Kδ/γ is small so 1 + λi > 1/2 > 0). The right hand side is

a constant, so each λi must be one of the two solutions of this equation. However, only one

of the solution is larger than 1/2, therefore all the λi’s are equal.

For the lower bound, we can project the perturbed subspace to the K − 1 dimensional

space. Such a projection cannot increase the volume and the perturbation distances only

get smaller. Therefore we can apply the claim directly, the columns of A are just vi+1 − v1

for i = 1, 2, ..., K − 1; columns of E are just v′i+1 − vi+1 − (v′1 − v1). The smallest eigenvalue

of A is at least γ because the polytope is γ robust, which is equivalent to saying after

orthogonalization each column still has length at least γ. The Frobenius norm of E is at
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most 2
√
K − 1δ. We get the lower bound directly by applying the claim.

For the upper bound, swap the two sets S and S ′ and use the argument for the lower

bound. The only thing we need to show is that the smallest eigenvalue of the matrix generated

by points in S ′ is still at least γ/2. This follows from Wedin’s TheoremWedin (1972) and the

fact that ‖E‖ ≤ ‖E‖F ≤
√
Kδ ≤ γ/2.

Now we are ready to prove Lemma 16.

Proof. The first case is for the first step of the algorithm, when we try to find the farthest

point to the origin. Here essentially S = {~0}. For any two vertices v1, v2, since the simplex is

γ robust, the distance between v1 and v2 is at least γ. Which means dis(~0, v1)+dis(~0, v2) ≥ γ,

one of them must be at least γ/2.

For the later steps, recall that S contains vertices of a perturbed simplex. Let S ′ be

the set of original vertices corresponding to the perturbed vertices in S. Let v be any

vertex in {v1, v2, ..., vK} which is not in S. Now we know the distance between v and S is

equal to vol(S ∪ {v})/(|S| − 1)vol(S). On the other hand, we know vol(S ′ ∪ {v})/(|S ′| −

1)vol(S ′) ≥ γ. Using Lemma 17 to bound the ratio between the two pairs vol(S)/vol(S ′) and

vol(S ∪ {v})/vol(S ′ ∪ {v}), we get

dis(v, S) ≥ (1− 4ε′/γ)2|S|−2γ > γ/2

when γ > 20Kε′.

Lemma 15 is based on the following observation: in a simplex the point with largest `2 is

always a vertex. Even if two vertices have the same norm if they are not close to each other

the vertices on the edge connecting them will have significantly lower norm.

Proof. (Lemma 15)
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Since dj is the point found by the algorithm, let us consider the point aj before perturbation.

The point aj is inside the simplex, therefore we can write aj as a convex combination of the

vertices:

aj =
K∑

t=1

ctvt

Let vt be the vertex with largest coefficient ct. Let ∆ be the largest distance from some

vertex to the space spanned by points in S (∆ = maxl dis(vl, span(S)). By Lemma 16 we

know ∆ > γ/2. Also notice that we are not assuming dis(vt, span(S)) = ∆.

Now we rewrite aj as ctvt + (1− ct)w, where w is a vector in the convex hull of vertices

other than vt.

Observe that aj must be far from span(S), because dj is the farthest point found by the

algorithm. Indeed

dis(aj, span(S)) ≥ dis(dj, span(S))− ε

≥ dis(vl, span(S))− 2ε ≥ ∆− 2ε.

The second inequality is because there must be some point dl that correspond to the

farthest vertex vl and have dis(dl, span(S)) ≥ ∆ − ε. Thus as dj is the farthest point

dis(dj, span(S)) ≥ dis(dl, span(S)) ≥ ∆− ε.

The point aj is on the segment connecting vt and w, the distance between aj and span(S)

is not much smaller than that of vt and w. Following the intuition in `2 norm when vt and w

are far we would expect aj to be very close to either vt or w. Since ct ≥ 1/K it cannot be

really close to w, so it must be really close to vt. We formalize this intuition by the following

calculation (see Figure G.2):
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0 Δ 
vt 

w 
Δ 

γ/4 
Δ-2ε 

Figure G.2: Proof of Lemma 15, after projecting to the orthogonal subspace of span(S).

Project everything to the orthogonal subspace of span(S) (points in span(S) are now at

the origin). After projection distance to span(S) is just the `2 norm of a vector. Without

loss of generality we assume ‖vt‖2 = ‖w‖2 = ∆ because these two have length at most ∆,

and extending these two vectors to have length ∆ can only increase the length of dj.

The point vt must be far from w by applying Lemma 16: consider the set of vertices

V ′ = {vi : vi does not correspond to any point in S and i 6= t}. The set V ′ ∪ S satisfy the

assumptions in Lemma 16 so there must be one vertex that is far from span(V ′ ∪ S), and it

can only be vt. Therefore even after projecting to orthogonal subspace of span(S), vt is still

far from any convex combination of V ′. The vertices that are not in V ′ all have very small

norm after projecting to orthogonal subspace (at most δ0) so we know the distance of vt and

w is at least γ/2− δ0 > γ/4.

Now the problem becomes a two dimensional calculation. When ct is fixed the length of

aj is strictly increasing when the distance of vt and w decrease, so we assume the distance is

γ/4. Simple calculation (using essentially just Pythagorean theorem) shows

ct(1− ct) ≤
ε

∆−
√

∆2 − γ2/16
.

The right hand side is largest when ∆ = 2 (since the vectors are in unit ball) and

the maximum value is O(ε/γ2). When this value is smaller than 1/K, we must have
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1− ct ≤ O(ε/γ2). Thus ct ≥ 1−O(ε/γ2) and δ ≤ (1− ct) + ε ≤ O(ε/γ2).

The cleanup phase tries to find the farthest point to a subset of K − 1 vertices, and use

that point as the K-th vertex. This will improve the result because when we have K − 1

points close to K − 1 vertices, only one of the vertices can be far from their span. Therefore

the farthest point must be close to the only remaining vertex. Another way of viewing this is

that the algorithm is trying to greedily maximize the volume of the simplex, which makes

sense because the larger the volume is, the more words/documents the final LDA model can

explain.

The following lemma makes the intuitions rigorous and shows how cleanup improves the

guarantee of Lemma 15.

Lemma 18. Suppose |S| = K − 1 and each point in S is δ = O(ε/γ2) < γ/20K close to

distinct vertices vi’s, the farthest point found by the algorithm is dj, then the corresponding

aj O(ε/γ)-covers the remaining vertex.

Proof. We still look at the original point aj and express it as
∑K

t=1 ctvt. Without loss of

generality let v1 be the vertex that does not correspond to anything in S. By Lemma 16

v1 is γ/2 far from span(S). On the other hand all other vertices are at least γ/20r close to

span(S). We know the distance dis(aj, span(S)) ≥ dis(v1, span(S))− 2ε, this cannot be true

unless c1 ≥ 1−O(ε/γ).

These lemmas directly lead to the following theorem:

Theorem 6. FastAnchorWords algorithm runs in time Õ(V 2 + V K/ε2) and outputs a subset

of {d1, ..., dV } of size K that O(ε/γ)-covers the vertices provided that 20Kε/γ2 < γ.

Proof. In the first phase of the algorithm, do induction using Lemma 15. When 20Kε/γ2 < γ

Lemma 15 shows that we find a set of points that O(ε/γ2)-covers the vertices. Now Lemma 18

shows after cleanup phase the points are refined to O(ε/γ)-cover the vertices.
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G.2 Proof for Nonnegative Recover Procedure

In order to show RecoverL2 learns the parameters even when the rows of Q̄ are perturbed,

we need the following lemma that shows when columns of Q̄ are close to the expectation, the

posteriors c computed by the algorithm is also close to the true value.

Lemma 19. For a γ robust simplex S with vertices {v1, v2, ..., vK}, let v be a point in the

simplex that can be represented as a convex combination v =
∑K

i=1 civi. If the vertices of S are

perturbed to S ′ = {..., v′i, ...} where ‖v′i − vi‖ ≤ δ1 and v is perturbed to v′ where ‖v − v′‖ ≤ δ2.

Let v∗ be the point in conv{S ′} that is closest to v′, and v∗ =
∑K

i=1 c
′
ivi, when 10

√
Kδ1 ≤ γ

for all i ∈ [K] |ci − c′i| ≤ 4(δ1 + δ2)/γ.

Proof. Consider the point u =
∑K

i=1 civ
′
i, by triangle inequality: ‖u− v‖ ≤∑K

i=1 ci ‖vi − v′i‖ ≤

δ1. Hence ‖u− v′‖ ≤ ‖u− v‖+ ‖v − v′‖ ≤ δ1 + δ2, and u is in S ′. The point v∗ is the point

in conv{S ′} that is closest to v′, so ‖v∗ − v′‖ ≤ δ1 + δ2 and ‖v∗ − u‖ ≤ 2(δ1 + δ2).

Then we need to show when a point (u) moves a small distance, its representation also

changes by a small amount. Intuitively this is true because S is γ robust. By Lemma 16

when 10
√
Kδ1 < γ, the simplex S ′ is also γ/2 robust. For any i, let Proji(v

∗) and Proji(u)

be the projections of v∗ and u in the orthogonal subspace of span(S ′\v′i), then

|ci − c′i| = ‖Proji(v∗)− Proji(u)‖ /dis(vi, span(S ′\v′i))

≤ 4(δ1 + δ2)/γ

and this completes the proof.

With this lemma it is not hard to show that RecoverL2 has polynomial sample complexity.

Theorem 7. When the number of documents M is at least

max{O(aK3 log V/D(γp)6ε), O((aK)3 log V/Dε3(γp)4)}
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our algorithm using the conjunction of FastAnchorWords and RecoverL2 learns the A matrix

with entry-wise error at most ε.

Proof. (sketch) We can assume without loss of generality that each word occurs with proba-

bility at least ε/4aK and furthermore that if M is at least 50 log V/Dε2Q then the empirical

matrix Q̃ is entry-wise within an additive εQ to the true Q = 1
M

∑M
d=1 AWdW

T
d A

T see Arora

et al. (2012b) for the details. Also, the K anchor rows of Q̄ form a simplex that is γp robust.

The error in each column of Q̄ can be at most δ2 = εQ
√

4aK/ε. By Theorem 6 when

20Kδ2/(γp)
2 < γp (which is satisfied when M = O(aK3 log V/D(γp)6ε)) , the anchor words

found are δ1 = O(δ2/(γp)) close to the true anchor words. Hence by Lemma 19 every entry

of C has error at most O(δ2/(γp)
2).

With such number of documents, all the word probabilities p(w = i) are estimated more

accurately than the entries of Ci,j, so we omit their perturbations here for simplicity. When

we apply the Bayes rule, we know Ai,k = Ci,kp(w = i)/p(z = k), where p(z = k) is αk which

is lower bounded by 1/aK. The numerator and denominator are all related to entries of C

with positive coefficients sum up to at most 1. Therefore the errors δnum and δdenom are at

most the error of a single entry of C, which is bounded by O(δ2/(γp)
2). Applying Taylor’s

Expansion to (p(z = k, w = i) + δnum)/(αk + δdenom), the error on entries of A is at most

O(aKδ2/(γp)
2). When εQ ≤ O((γp)2ε1.5/(aK)1.5), we have O(aKδ2/(γp)

2) ≤ ε, and get the

desired accuracy of A. The number of document required is M = O((aK)3 log V/Dε3(γp)4).

The sample complexity for R can then be bounded using matrix perturbation theory.

For RecoverKL, we observe that the dimension and minimum values of vi’s are all bounded

by polynomials of ε, a, r (see Section 3.5 Reducing Dictionary Size of Arora et al. (2012b)).

In this case, when distance δ is small enough, we know the KL-divergence is both upper and

lowerbounded by some polynomial factor times `2 norm squared.
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Lemma 20. When all values in the vectors {v′i} are at least l = ε2/20a2r2, if u is one of v′i,

and v is in the convex hull of perturbed vertices {v′1, v′2, ..., v′K}, ‖u− v‖ ≤ ε2/100a2r2, then

DKL(u‖v) ≤ 2‖u− v‖2/l.

Proof. Let si = ui − vi, apply Taylor’s expansion on log(vi + si)/vi, we know in the range of

parameters si + s2
i /2vi ≤ log(vi + si)/vi ≤ si + 2s2

i /vi.

Adding this up, using the fact
∑
si =

∑
ui −

∑
vi = 0, we know the KL-divergence is

bounded by

DKL(u‖v) ≤ 2
∑

s2
i /vi ≤ 2‖u− v‖2/l.

On the other hand, by Pinsker’s inequality, we know DKL(u‖v) ≥ 2|u− v|21 ≥ 2‖u− v‖2.

Using these two bounds we can easily prove a replacement for Lemma 19.

Lemma 21. For a γ robust simplex S with vertices {v1, v2, ..., vK}, let v be a point in the

simplex that can be represented as a convex combination v =
∑K

i=1 civi. If the vertices of

S are perturbed to S ′ = {..., v′i, ...} where ‖v′i − vi‖ ≤ δ1 and v is perturbed to v′ where

‖v − v′‖ ≤ δ2. Further assume all entries of v′ and v′i are at least l = ε2/20a2r2. Let

vKL be the point in conv{S ′} that has smallest DKL(v′‖vKL), and vKL =
∑K

i=1 c
′
ivi, when

10
√
Kδ1 ≤ γ, (δ1 + δ2) < l/5, for all i ∈ [K] |ci − c′i| ≤ 4(δ1 + δ2)/γ

√
l.

Proof. Let v∗ be the closest point (in `2 distance) of v′ in conv{S ′}. By proof of Lemma 19

we know ‖v∗ − v′‖ ≤ δ1 + δ2. Hence by Lemma 20 DKL(v′‖v∗) ≤ 2(δ1 + δ2)2/l.

Since vKL is the point with smallest divergence, we know in particular DKL(v′‖vKL) ≤

2(δ1 + δ2)
2/l. On the other hand, by Pinkser’s inequality DKL(v′‖vKL) ≥ 2‖v′ − vKL‖2,

therefore we know ‖v′ − vKL‖ ≤ (δ1 + δ2)/
√
l.
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Now we follow the proof of Lemma 19 and define u =
∑K

i=1 civ
′
i, then we know ‖u−vKL‖ ≤

‖u − v′‖ + ‖v′ − vKL‖ ≤ 2(δ1 + δ2)/
√
l, and similar to Lemma 19 we know |ci − c′i| ≤

4(δ1 + δ2)/γ
√
l.

We can simply replace Lemma 19 with this Lemma and get provable guarantee of

RecoverKL. However, the argument here is not tight (in particular it gives worse bound than

`2).

G.3 Empirical results

This section contains plots for `1, held-out probability, coherence, and uniqueness for

all semi-synthetic data sets. Up is better for all metrics except `1 error. The advantage

of the non-negative recovery methods over the original Recover method on the real data

is consistent with the results observed on the semi-synthetic data. For example, one can

compare the mean log likelihood on real NY Times data from Figure 5 of the main paper

(100 topics; 236k docs) with the semi-synthetic NY Times data shown in Figure 3 of the

supplementary materials (100 topics; 250k docs). The values for the real data are [Recover:

-8.42, RecoverL2: -8.16, Gibbs -7.93] and for semi-synthetic are [Recover: -8.23, RecoverL2:

-8.08, Gibbs: -8.076].

G.3.1 Sample Topics

Tables G.1, G.2, and G.3 show 100 topics trained on real NY Times articles using the

RecoverL2 algorithm. Each topic is followed by the most similar topic (measured by `1

distance) from a model trained on the same documents with Gibbs sampling. When the

anchor word is among the top six words by probability it is highlighted in bold. Note that

the anchor word is frequently not the most prominent word.
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RecoverL2 run inning game hit season zzz anaheim angel

Gibbs run inning hit game ball pitch

RecoverL2 king goal game team games season

Gibbs point game team play season games

RecoverL2 yard game play season team touchdown

Gibbs yard game season team play quarterback

RecoverL2 point game team season games play

Gibbs point game team play season games

RecoverL2 zzz laker point zzz kobe bryant zzz o neal game team

Gibbs point game team play season games

RecoverL2 point game team season player zzz clipper

Gibbs point game team season play zzz usc

RecoverL2 ballot election court votes vote zzz al gore

Gibbs election ballot zzz florida zzz al gore votes vote

RecoverL2 game zzz usc team play point season

Gibbs point game team season play zzz usc

RecoverL2 company billion companies percent million stock

Gibbs company million percent billion analyst deal

RecoverL2 car race team season driver point

Gibbs race car driver racing zzz nascar team

RecoverL2 zzz dodger season run inning right game

Gibbs season team baseball game player yankees

RecoverL2 palestinian zzz israeli zzz israel official attack zzz palestinian

Gibbs palestinian zzz israeli zzz israel attack zzz palestinian zzz yasser arafat

RecoverL2 zzz tiger wood shot round player par play

Gibbs zzz tiger wood shot golf tour round player

RecoverL2 percent stock market companies fund quarter

Gibbs percent economy market stock economic growth

RecoverL2 zzz al gore zzz bill bradley campaign president zzz george bush vice

Gibbs zzz al gore zzz george bush campaign presidential republican

zzz john mccain

RecoverL2 zzz george bush zzz john mccain campaign republican zzz republican

voter

Gibbs zzz al gore zzz george bush campaign presidential republican

zzz john mccain

RecoverL2 net team season point player zzz jason kidd

Gibbs point game team play season games

RecoverL2 yankees run team season inning hit

Gibbs season team baseball game player yankees

RecoverL2 zzz al gore zzz george bush percent president campaign zzz bush

Gibbs zzz al gore zzz george bush campaign presidential republican

zzz john mccain

RecoverL2 zzz enron company firm zzz arthur andersen companies lawyer

Gibbs zzz enron company firm accounting zzz arthur andersen financial

RecoverL2 team play game yard season player

Gibbs yard game season team play quarterback

RecoverL2 film movie show director play character

Gibbs film movie character play minutes hour

RecoverL2 zzz taliban zzz afghanistan official zzz u s government military

Gibbs zzz taliban zzz afghanistan zzz pakistan afghan zzz india government

RecoverL2 palestinian zzz israel israeli peace zzz yasser arafat leader
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Gibbs palestinian zzz israel peace israeli zzz yasser arafat leader

RecoverL2 point team game shot play zzz celtic

Gibbs point game team play season games

RecoverL2 zzz bush zzz mccain campaign republican tax zzz republican

Gibbs zzz al gore zzz george bush campaign presidential republican

zzz john mccain

RecoverL2 zzz met run team game hit season

Gibbs season team baseball game player yankees

RecoverL2 team game season play games win

Gibbs team coach game player season football

RecoverL2 government war zzz slobodan milosevic official court president

Gibbs government war country rebel leader military

RecoverL2 game set player zzz pete sampras play won

Gibbs player game match team soccer play

RecoverL2 zzz al gore campaign zzz bradley president democratic zzz clinton

Gibbs zzz al gore zzz george bush campaign presidential republican

zzz john mccain

RecoverL2 team zzz knick player season point play

Gibbs point game team play season games

RecoverL2 com web www information sport question

Gibbs palm beach com statesman daily american

Table G.1: Example topic pairs from NY Times sorted by `1 distance, anchor words in bold.

RecoverL2 season team game coach play school

Gibbs team coach game player season football

RecoverL2 air shower rain wind storm front

Gibbs water fish weather storm wind air

RecoverL2 book film beginitalic enditalic look movie

Gibbs film movie character play minutes hour

RecoverL2 zzz al gore campaign election zzz george bush zzz florida president

Gibbs zzz al gore zzz george bush campaign presidential republican

zzz john mccain

RecoverL2 race won horse zzz kentucky derby win winner

Gibbs horse race horses winner won zzz kentucky derby

RecoverL2 company companies zzz at percent business stock

Gibbs company companies business industry firm market

RecoverL2 company million companies percent business customer

Gibbs company companies business industry firm market

RecoverL2 team coach season player jet job

Gibbs team player million season contract agent

RecoverL2 season team game play player zzz cowboy

Gibbs yard game season team play quarterback

RecoverL2 zzz pakistan zzz india official group attack zzz united states

Gibbs zzz taliban zzz afghanistan zzz pakistan afghan zzz india government

RecoverL2 show network night television zzz nbc program

Gibbs film movie character play minutes hour

RecoverL2 com information question zzz eastern commentary daily

Gibbs com question information zzz eastern daily commentary

RecoverL2 power plant company percent million energy

Gibbs oil power energy gas prices plant
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RecoverL2 cell stem research zzz bush human patient

Gibbs cell research human scientist stem genes

RecoverL2 zzz governor bush zzz al gore campaign tax president plan

Gibbs zzz al gore zzz george bush campaign presidential republican

zzz john mccain

RecoverL2 cup minutes add tablespoon water oil

Gibbs cup minutes add tablespoon teaspoon oil

RecoverL2 family home book right com children

Gibbs film movie character play minutes hour

RecoverL2 zzz china chinese zzz united states zzz taiwan official government

Gibbs zzz china chinese zzz beijing zzz taiwan government official

RecoverL2 death court law case lawyer zzz texas

Gibbs trial death prison case lawyer prosecutor

RecoverL2 company percent million sales business companies

Gibbs company companies business industry firm market

RecoverL2 dog jump show quick brown fox

Gibbs film movie character play minutes hour

RecoverL2 shark play team attack water game

Gibbs film movie character play minutes hour

RecoverL2 anthrax official mail letter worker attack

Gibbs anthrax official letter mail nuclear chemical

RecoverL2 president zzz clinton zzz white house zzz bush official zzz bill clinton

Gibbs zzz bush zzz george bush president administration zzz white house

zzz dick cheney

RecoverL2 father family zzz elian boy court zzz miami

Gibbs zzz cuba zzz miami cuban zzz elian boy protest

RecoverL2 oil prices percent million market zzz united states

Gibbs oil power energy gas prices plant

RecoverL2 zzz microsoft company computer system window software

Gibbs zzz microsoft company companies cable zzz at zzz internet

RecoverL2 government election zzz mexico political zzz vicente fox president

Gibbs election political campaign zzz party democratic voter

RecoverL2 fight zzz mike tyson round right million champion

Gibbs fight zzz mike tyson ring fighter champion round

RecoverL2 right law president zzz george bush zzz senate zzz john ashcroft

Gibbs election political campaign zzz party democratic voter

RecoverL2 com home look found show www

Gibbs film movie character play minutes hour

RecoverL2 car driver race zzz dale earnhardt racing zzz nascar

Gibbs night hour room hand told morning

RecoverL2 book women family called author woman

Gibbs film movie character play minutes hour

Table G.2: Example topic pairs from NY Times sorted by `1 distance, anchor words in bold.

RecoverL2 tax bill zzz senate billion plan zzz bush

Gibbs bill zzz senate zzz congress zzz house legislation zzz white house

RecoverL2 company francisco san com food home

Gibbs palm beach com statesman daily american

RecoverL2 team player season game zzz john rocker right
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Gibbs season team baseball game player yankees

RecoverL2 zzz bush official zzz united states zzz u s president zzz north korea

Gibbs zzz united states weapon zzz iraq nuclear zzz russia zzz bush

RecoverL2 zzz russian zzz russia official military war attack

Gibbs government war country rebel leader military

RecoverL2 wine wines percent zzz new york com show

Gibbs film movie character play minutes hour

RecoverL2 police zzz ray lewis player team case told

Gibbs police officer gun crime shooting shot

RecoverL2 government group political tax leader money

Gibbs government war country rebel leader military

RecoverL2 percent company million airline flight deal

Gibbs flight airport passenger airline security airlines

RecoverL2 book ages children school boy web

Gibbs book author writer word writing read

RecoverL2 corp group president energy company member

Gibbs palm beach com statesman daily american

RecoverL2 team tour zzz lance armstrong won race win

Gibbs zzz olympic games medal gold team sport

RecoverL2 priest church official abuse bishop sexual

Gibbs church religious priest zzz god religion bishop

RecoverL2 human drug company companies million scientist

Gibbs scientist light science planet called space

RecoverL2 music zzz napster company song com web

Gibbs palm beach com statesman daily american

RecoverL2 death government case federal official zzz timothy mcveigh

Gibbs trial death prison case lawyer prosecutor

RecoverL2 million shares offering public company initial

Gibbs company million percent billion analyst deal

RecoverL2 buy panelist thought flavor product ounces

Gibbs food restaurant chef dinner eat meal

RecoverL2 school student program teacher public children

Gibbs school student teacher children test education

RecoverL2 security official government airport federal bill

Gibbs flight airport passenger airline security airlines

RecoverL2 company member credit card money mean

Gibbs zzz enron company firm accounting zzz arthur andersen financial

RecoverL2 million percent bond tax debt bill

Gibbs million program billion money government federal

RecoverL2 million company zzz new york business art percent

Gibbs art artist painting museum show collection

RecoverL2 percent million number official group black

Gibbs palm beach com statesman daily american

RecoverL2 company tires million car zzz ford percent

Gibbs company companies business industry firm market

RecoverL2 article zzz new york misstated company percent com

Gibbs palm beach com statesman daily american

RecoverL2 company million percent companies government official

Gibbs company companies business industry firm market

RecoverL2 official million train car system plan

Gibbs million program billion money government federal

RecoverL2 test student school look percent system
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Gibbs patient doctor cancer medical hospital surgery

RecoverL2 con una mas dice las anos

Gibbs fax syndicate article com information con

RecoverL2 por con una mas millones como

Gibbs fax syndicate article com information con

RecoverL2 las como zzz latin trade articulo telefono fax

Gibbs fax syndicate article com information con

RecoverL2 los con articulos telefono representantes zzz america latina

Gibbs fax syndicate article com information con

RecoverL2 file sport read internet email zzz los angeles

Gibbs web site com www mail zzz internet

Table G.3: Example topic pairs from NY Times sorted by `1 distance, anchor words in bold.

G.4 Algorithmic details

G.4.1 Generating Q matrix

For each document, let Hd be the vector in RV such that the i-th entry is the number

of times word i appears in document d, nd be the length of the document and Wd be the

topic vector chosen according to Dirichlet distribution when the documents are generated.

Conditioned on Wd’s, our algorithms require the expectation of Q to be 1
M

∑M
d=1AWdW

T
d A

T .

In order to achieve this, similar to Anandkumar et al. (2012a), let the normalized vector

H̃d = Hd√
nd(nd−1)

and diagonal matrix Ĥd =
Diag(Hd)

nd(nd−1)
. Compute the matrix

H̃dH̃
T
d − Ĥd =

1

nd(nd − 1)

∑

i 6=j,i,j∈[nd]

ezd,ie
T
zd,j
.

Here zd,i is the i-th word of document d, and ei ∈ RV is the basis vector. From the generative

model, the expectation of all terms ezd,ie
T
zd,j

are equal to AWdW
T
d A

T , hence by linearity of

expectation we know E[H̃dH̃
T
d − Ĥd] = AWdW

T
d A

T .

If we collect all the column vectors H̃d to form a large sparse matrix H̃, and compute

the sum of all Ĥd to get the diagonal matrix Ĥ, we know Q = H̃H̃T − Ĥ has the desired
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Figure G.3: Results for a semi-synthetic model generated from a model trained on NY Times
articles with K = 100.
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Figure G.4: Results for a semi-synthetic model generated from a model trained on NY Times
articles with K = 100, with a synthetic anchor word added to each topic.

expectation. The running time of this step is O(MD2) where D2 is the expectation of the

length of the document squared.

G.4.2 Applying recover to small datasets

The original Recover algorithm from Arora et al. (2012b) can fail on small datasets if

the QS,S matrix which holds the anchor-anchor co-occurrence counts is rank deficient due

to sparsity. When Recover fails, we use a modified version of the algorithm, solving for ~z
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Figure G.5: Results for a semi-synthetic model generated from a model trained on NY Times
articles with K = 100, with moderate correlation between topics.
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Figure G.6: Results for a semi-synthetic model generated from a model trained on NY Times
articles with K = 100, with stronger correlation between topics.

by finding a least squares solution to QS,S~z = ~pS and solving for AT with a pseudoinverse:

AT = (QS,SDiag(~z))†QT
S). This procedure can return an A matrix in which some columns

contain all 0s. In that case we replace columns of 0s with a uniform distribution over the

vocabulary words, 1
V

1.

Negative values also often occur in the A matrix returned by the original Recover method.

To project back onto the simplex, we clip all negative values to 0 and normalize the columns

before evaluating the learned model.
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Figure G.7: Results for a semi-synthetic model generated from a model trained on NIPS
papers with K = 100. For D ∈ {2000, 6000, 8000}, Recover produces log probabilities of −∞
for some held-out documents.

G.4.3 Exponentiated gradient algorithm

The optimization problem that arises in RecoverKL and RecoverL2 has the following

form:

min
~x
d(Q̄T

i , Q̄S~x)

subject to: ~x ≥ 0 and
K∑

i=1

xi = 1,

where d(·, ·) is a Bregman divergence (in particular it is squared Euclidean distance for

RecoverL2 and KL divergence for RecoverKL), ~x is a column vector of size K, S is the set

of K anchor indices, Q̄i is a row vector of size V , and Q̄S is the K × V matrix formed by

stacking the rows of Q̄ corresponding to the indices in S.

This is a convex optimization problem with simplex constraints, which can be solved

with the Exponentiated Gradient algorithm Kivinen and Warmuth (1995), described in

Algorithm 12. The Exponentiated Gradient algorithm iteratively generates values of ~x which

are feasible and converge to the optimal value ~x∗. In our experiments we show results using
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Algorithm 12 Exponentiated Gradient

Input: Matrix Q̄S, vector Q̄i
T

, divergence measure d(·, ·), tolerance parameter ε
Output: non-negative normalized vector ~x close to ~x∗, the minimizer of d(Q̄T

i , Q̄S~x))
~x0 ← 1

K
1

t← 0
Converged ← False
while not Converged do

t← t+ 1
~gt = ∇~xd(Q̄T

i , Q̄S~x)
∣∣
~xt−1

Choose a step size ηt
~xt ← ~xt−1e

−ηt~gt (Gradient step)
~xt ← ~x

|~xt|1 (Projection onto the simplex)

µt ← −min
(
∇~xd(Q̄T

i , Q̄S~x)
∣∣
~xt

)

~λt ← ∇~xd(Q̄T
i , Q̄S~x)

∣∣
~xt

+ µt1

Converged ← ~λTt ~xt < ε
end while

return xt

both squared Euclidean distance and KL divergence for the divergence measure.

To determine whether the algorithm has converged, we test whether the KKT conditions

(which are sufficient for optimality in this problem) hold to within some tolerance, ε. In our

experiments ε varies between 10−6 and 10−9 depending on the data set.

The KKT conditions for our constrained minimization problem are:

1. Stationarity: ∇~xd(Q̄T
i , Q̄S~x)− ~λ+ µ1 = 0.

2. Primal Feasibility: ~x ≥ 0,
∑K

i=1 xi = 1.

3. Dual Feasibility: λi ≥ 0 for i ∈ {1, 2, ..., K}.

4. Complementary Slackness: λixi = 0 for i ∈ {1, 2, ..., K}.

We define the following approximation to Condition 4:

4′. ε-Complementary Slackness: 0 ≤ ~λT~x < ε.
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Let ~xt be the tth value generated by Exponentiated Gradient. ~xt is ε-optimal if there exist

~λ and µ such that Conditions 1-3 and 4′ are satisfied.

We initialize ~x0 = 1
K

1 and Exponentiated Gradient preserves primal feasibility, so ~xt

satisfies Condition 2. The following ~λt and µt minimize ~λTt ~xt while satisfying conditions 1

and 3:

µt = −min
(
∇~xd(Q̄T

i , Q̄S~x)
∣∣
~xt

)

~λt = ∇~xd(Q̄T
i , Q̄S~x)

∣∣
~xt

+ µt1.

The algorithm converges when Condition 4′ is satisfied (i.e. ~λTt ~xt < ε).

~λTt ~xt can also be understood as the gap between an upper and lower bound on the

objective. To see this, note that the Lagrangian function is:

L(~x,~λ, µ) = d(Q̄T
i , Q̄S~x)− ~λT~x+ µ(~xT1− 1),

The first term in the Lagrangian is exactly the primal objective, and (~xt
T1− 1) is zero at

every iteration. Since the Lagrangian lower bounds the objective, ~λTt ~xt is the value of the

gap. Strong duality holds for this problem, so at optimality, this gap is 0. Testing that the

gap is less than ε is an approximate optimality test.

Stepsizes at each iteration are chosen with a line search to find an ηt that satisfies the

Wolfe and Armijo conditions (For details, see Nocedal and Wright (2006)).

The running time of RecoverL2 is the time of solving V small (K × K) quadratic

programs. When using Exponentiated Gradient to solve the quadratic program, each word

requires O(KV ) time for preprocessing and O(K2) per iteration. The total running time

is O(KV 2 +K2V T ) where T is the average number of iterations. The value of T is about

100− 1000 depending on data sets.
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