
Dynamic Impact Analysis:

Analyzing Error Propagation In Program Executions

Tarak Goradia

November 1993

A dissertation in the Department of Computer Science submitted to the faculty

of the Graduate School of Arts and Sciences in partial ful�llment of the

requirements for the degree of Doctor of Philosophy at New York University

Approved:

Prof. Elaine Weyuker

Research Advisor

c
 Copyright 1993

by Tarak Goradia

All Rights Reserved

Acknowledgements

I am grateful to my advisor Prof. Elaine Weyuker for suggesting the validation experi-

ment, for her careful reviews of this work and for patiently listening to the initial ideas

about impact analysis. I am thankful to Prof. Allan Gottlieb and Prof. Ben Goldberg

for their constructive comments on the thesis proposal. I am also thankful to Thomas

Ostrand, Pat Vroom, and Thomas Murphy of Siemens Corporate Research, Inc. for

supporting this research e�ort.

I am indebted to Michael Greenberg for providing the Frame system used for de-

veloping the prototype and for his help in resolving the problems related to Lisp and

the Frame system. I am thankful to Michael Plato� for his advice on system interface

issues, Monica Hutchins for being a good listener during the initial development of the

impact analysis framework, Jean Hartmann for furnishing references from his personal

library, Dilip Soni for technical discussions related to static dependencies, Bill Landi for

his help in determining the correct probability and complexity expressions, Herb Foster

and Maryam Shahraray for their insights into statistics and Amitava Datta for writ-

ing the control monitor program that led to an e�cient use of the available computing

resources for running the experiments.

I thank Leonor Abra��do-Fandi~no, Vivek Agrawal, Thomas Ostrand, and Jean Hart-

mann for their comments on an earlier version of this dissertation. I also thank my

o�cemates Amitava Datta and Steve Masticola for listening to my dumb questions.

iv

Abstract

Test adequacy criteria serve as rules to determine whether a test set adequately tests

a program. The e�ectiveness of a test adequacy criterion is determined by its ability

to detect faults. For a test case to detect a speci�c fault, it should execute the fault,

cause the fault to generate an erroneous state and propagate the error to the output.

Analysis of previously proposed code-based testing strategies suggests that satisfying

the error propagation condition is both important and expensive. The technique of

dynamic impact analysis is proposed for analyzing a program execution and estimating

the error propagation behavior of various potential sources of errors in the execution.

Impact graphs are introduced to provide an infrastructure supporting the analysis. A

program impact graph modi�es the notion of a program dependence graph proposed

in the literature in order to capture some of the subtle impact relationships that exist

in a program. An execution impact graph represents the dynamic impact relationships

that are demonstrated during a program execution. The notion of impact strength is

de�ned as a quantitative measure of the error sensitivity of an impact. A cost-e�ective

algorithm for analyzing impact relationships in an execution and computing the impact

strengths is presented. A research prototype implemented to demonstrate the feasibility

of dynamic impact analysis is brie
y described. The time complexity of dynamic impact

analysis is shown to be linear with respect to the original execution time, and experi-

mental measurements indicate that the constant of proportionality is a small number.

v

The experiments undertaken to validate the computation of impact strengths are pre-

sented. An experience study relating impact strengths to error propagation in faulty

programs is also presented. The empirical results provide evidence indicating a strong

positive correlation between impact strength and error propagation. The results also

emphasize the need for better heuristics to improve the accuracy of the error propaga-

tion estimates. Potential applications of dynamic impact analysis to mutation testing,

syntactic coverage-based testing and dynamic program slicing are discussed.

Contents

Acknowledgements iv

Abstract v

1 Introduction 1

1.1 Problem Overview : 2

1.2 Problem Analysis and Our Solution Approach : : : : : : : : : : : : : : : 3

1.3 Summary of Contributions : 5

1.4 Organization of Dissertation : 6

2 Basic Terms & Concepts 8

2.1 Program Execution State : 8

2.2 Fault Detection : 9

2.3 Flow Graph Model of Program Structure : : : : : : : : : : : : : : : : : 11

2.4 Coincidental Correctness : 12

2.5 Test Oracle : 13

2.6 Undecidability Results about Testing : 13

2.7 Terms Related to Mutation Testing : 14

2.8 Dynamic Program Slicing : 14

vii

3 Problem Discussion 15

3.1 E�ectiveness : 15

3.2 Computational Feasibility : 16

3.3 Code-based Testing Approaches : 16

3.3.1 The Syntactic Coverage-based Approach : : : : : : : : : : : : : : 17

3.3.2 The Fault-based Approach : 19

3.4 Problem Analysis : 23

4 Impact Graphs 29

4.1 Basic Terms & Notations : 30

4.2 Notion of Program Impact : 34

4.3 Program Impact Graph : 36

4.4 Execution Impact Graph : 45

4.5 More Terms & Notation : 47

4.6 Related Work on Program Dependence Graphs : : : : : : : : : : : : : : 51

5 Dynamic Impact Analysis 55

5.1 Introduction : 55

5.2 New Concepts : 57

5.2.1 Acceptable Value Set : 57

5.2.2 Error Set and Error Distribution Function : : : : : : : : : : : : : 57

5.3 Impact Strength : 60

5.3.1 Strength of an Impact arc : 61

5.3.2 Cumulative Impact Strength : 63

5.3.3 Impact on the Observable Program Behavior : : : : : : : : : : : 66

5.3.4 Impact Strength of a Mutation : : : : : : : : : : : : : : : : : : : 67

5.3.5 Combining Impacts of Di�erent Kinds : : : : : : : : : : : : : : : 69

5.3.6 Summarizing Impact Strengths : : : : : : : : : : : : : : : : : : : 70

5.4 Computing Impact Strengths : 71

5.4.1 Algorithm Overview : 71

5.4.2 Computing Strength of an Impact Arc : : : : : : : : : : : : : : : 72

5.4.3 Propagating Impact Strengths : : : : : : : : : : : : : : : : : : : 73

5.4.4 Assimilating Impact Strengths : : : : : : : : : : : : : : : : : : : 74

5.4.5 Other Details and Possible Extensions : : : : : : : : : : : : : : : 74

5.4.6 Complexity Analysis : 76

5.5 Related Work : 81

6 Prototype Implementation 86

6.1 System Overview : 86

6.2 Pragmatic Issues : 90

6.2.1 Computing Error Sets : 90

6.2.2 Selecting Mutations : 93

6.2.3 Handling Library Functions : 93

6.3 Limitations of the Prototype : 95

7 Validation 97

7.1 Validation Approach : 97

7.2 Subject Programs : 100

7.3 Selecting Test Suites : 102

7.4 Experimental Procedure : 102

7.5 Empirical Results : 109

7.5.1 State Error Detection Ratio vs. Entity Instance Impact Strength 109

7.5.2 Mutant Kill Ratio vs. Mutation Impact Strength : : : : : : : : : 115

7.5.3 Examining Bias Due to Speci�c Test Cases : : : : : : : : : : : : 121

7.5.4 Investigating Inaccuracy at Zero Impact Strengths : : : : : : : : 123

7.5.5 Investigating Inaccuracy at High Impact Strengths : : : : : : : : 125

7.5.6 Justifying Non-Boolean Impact Strengths : : : : : : : : : : : : : 127

7.5.7 Feasibility of Dynamic Impact Analysis : : : : : : : : : : : : : : 127

7.5.8 Summary of Results : 128

8 Analyzing Faulty Programs 130

8.1 Selection of Faulty Programs : 131

8.2 Elements of the Analysis : 132

8.2.1 Identifying Incorrect State : 134

8.2.2 Studying Observed Impact Behaviors : : : : : : : : : : : : : : : 135

8.3 Sample Analyses : 138

8.4 Summary and Observations : 150

9 Potential Applications 152

9.1 Mutation Testing : 152

9.2 Syntactic Coverage-based Testing : 154

9.3 Dynamic Program Slicing : 155

10 Conclusion and Future Research Directions 156

A Experimental Data 159

A.1 Subject Programs : 159

A.2 Data Available on Anonymous Ftp-site : : : : : : : : : : : : : : : : : : : 163

B Analyses of Faulty Programs 164

B.1 Incorrect Assignment Expression : 164

B.2 Incorrect Predicate Expression : 170

B.3 Extra or Missing Assignment : 171

B.4 Incorrect or Missing Conditional Processing : : : : : : : : : : : : : : : : 176

B.5 Iteration Errors : 179

B.6 Typographical Errors : 183

B.7 Interface Errors : 189

B.8 Other Errors : 191

Index 204

Bibliography Index 208

List of Figures

4.1 Fragment of a Program Impact Graph : : : : : : : : : : : : : : : : : : : 38

4.2 Fragment of an Execution Impact Graph : : : : : : : : : : : : : : : : : 46

5.1 Strength of an Impact arc : 62

6.1 System Overview : 88

6.2 Examples illustrating the impact-related aspects of library functions : : 94

7.1 Error Detection Behavior of the accounting Program : : : : : : : : : : 106

7.2 Mutant Killing Behavior of the accounting Program : : : : : : : : : : : 107

7.3 Error Detection Behavior of Subject Programs 1-6 : : : : : : : : : : : : 111

7.4 Error Detection Behavior of Subject Programs 7-12 : : : : : : : : : : : : 112

7.5 Error Detection Behavior of Subject Programs 13-18 : : : : : : : : : : : 113

7.6 Error Detection Behavior of Subject Programs 19-24 : : : : : : : : : : : 114

7.7 Error Detection Behavior of Subject Programs 25-26 : : : : : : : : : : : 115

7.8 Mutant Killing Behavior of Subject Programs 1-6 : : : : : : : : : : : : : 116

7.9 Mutant Killing Behavior of Subject Programs 7-12 : : : : : : : : : : : : 117

7.10 Mutant Killing Behavior of Subject Programs 13-18 : : : : : : : : : : : 118

7.11 Mutant Killing Behavior of Subject Programs 19-24 : : : : : : : : : : : 119

7.12 Mutant Killing Behavior of Subject Programs 25-26 : : : : : : : : : : : 120

xii

Chapter 1

Introduction

One of the important problems in software testing is deciding when a program has been

tested \enough". The cost of �xing a bug in a program increases rapidly as the program

passes through the di�erent phases of software development and maintenance. Software

development managers often have to strike a balance between the cost of software testing

during development and the cost of bug �xing during maintenance. They turn to the

software testing research community for providing test adequacy criteria that enable

them to decide whether a software has been adequately tested.

Test adequacy criteria proposed in the literature require the use of information avail-

able at various stages of software development, such as speci�cation, design or coding.

Based on the development stage which provides the information, testing approaches are

categorized as being speci�cation-based, design-based or code-based. Researchers argue

that each approach has its unique advantages and none of these approaches can replace

any of the others [66, 22]. Also, testing strategies using the same approach may di�er

in the nature and amount of information used. For example, in the speci�cation-based

approach, random testing methods use only the input domain speci�cation for selecting

test cases, while the category partition method [55] uses information from the functional

1

2 CHAPTER 1. INTRODUCTION

speci�cation to partition the input domain into equivalence classes and selects test cases

from each of the classes.

The research described in this dissertation focuses on test adequacy criteria using

the code-based testing approach. The primary motivation behind this research was to

address some of the problems related to e�ectiveness and computational feasibility in

previously proposed code-based testing strategies. The former is determined by the

fault detection capability of the associated adequacy criterion. The latter refers to

the feasibility with respect to the processor and memory resources consumed for the

execution and analysis of test cases used by the tester while following the strategy. In

reality, the feasibility of a testing strategy also depends on the human e�ort required

in satisfactorily resolving the undecidable problems associated with the strategy. This

research does not address such feasibility issues related to undecidable problems.

This chapter summarizes the research described in this dissertation. We �rst present

a brief overview of the problem and informally describe our approach. Then we sum-

marize our contributions and describe the organization of this document.

1.1 Problem Overview

The e�ectiveness of a testing strategy is determined by its ability to detect faults. We

use a model of fault detection based on similar models de�ned by Morell [45], Richardson

and Thompson [67] and O�utt [53]. According to this model, for a test case execution

to detect a speci�c fault, it should meet three conditions: the fault execution condition,

which causes the fault to be executed, the error creation condition, which causes the

fault execution to generate an incorrect intermediate state, and the error propagation

condition, which enables the errors in the incorrect intermediate state to propagate

and cause an incorrect output. This model assumes that it is possible to identify an

intermediate state as being incorrect. The errors in an incorrect state refer to the values

1.2. PROBLEM ANALYSIS AND OUR SOLUTION APPROACH 3

associated with the incorrect state variables.1 Test adequacy criteria based on syntactic

coverage do not explicitly enforce the above conditions for any faults. Instead, they hope

that the execution of key syntactic components of a program will lead to the detection of

the faults associated with those components. On the other hand, the adequacy criteria

based on strong mutation analysis [10, 13] require that for each speci�ed fault there be

at least one test case which meets all of the above conditions for detecting that fault.

However, the cost of strong mutation analysis is extremely high. In order to reduce the

cost, weak mutation testing [27] was proposed. It does not require the satisfaction of the

error propagation condition and instead relies on the hope that the error propagation

condition will be satis�ed when the other two conditions are satis�ed. In this thesis, we

investigate the problem of satisfying the error propagation condition.

1.2 Problem Analysis and Our Solution Approach

An error in an incorrect state may fail to propagate to the output of the execution if

each of the computations using the incorrect state either masks the error or does not

a�ect the output. A computation exhibiting the error masking behavior is typically an

implementation of some many-to-one function. Voas and Miller [73] de�ned a metric

called the domain/range ratio (DRR) to estimate the error propagation characteristics

of many-to-one functions. The main drawback of this metric is its static nature. It

fails to account for the fact that di�erent invocations of a function could have di�erent

error propagation characteristics. In order to study the dynamic characteristics of error

propagation, we designed a technique to analyze propagation of errors during program

executions.

Consider an execution T of a program P . A fault in the program may introduce

1The de�nitions of state and state variables can be found in section 2.1. Also, we acknowledge that
the term \error" has several di�erent meanings and refer the reader to section 2.2 for a discussion.

4 CHAPTER 1. INTRODUCTION

errors in several instances of the state variables during the execution. Therefore, each

instance of a state variable can be looked upon as a potential source of error. Let S

be a state in the execution, and x be a potential source of error in that state. Assume

that we are interested in examining the propagation behavior of "(x), a set of plausible

errors for x. We say that an error is plausible if it could occur as a result of a likely fault

in the program. If we randomly choose an error from "(x) and modify the execution T

by introducing the error in x, what is the chance that the error will propagate to the

output of the modi�ed execution? This probability, px, gives a measure of the sensitivity

of the output to "(x), the set of plausible errors for x. When px is high (near 1.0), it

means that the output is very sensitive to an error in x. And when px is low (near 0.0),

it means that the output is very insensitive to an error in x. We can relate this with

the correctness of the value of x as follows.

� If the output is sensitive to an error in x, and if the output is correct, then the

value of x is likely to be correct and any fault that would have caused an error in

x is likely to be absent.

� However, if the output is insensitive to an error in x, we cannot say anything

about the correctness of the value of x.

Note that px may depend on, among other things, the values of some of the variable

instances in the state S. A fault may actually create related errors in two or more

variable instances in the state. Therefore, in order to truly understand the propagation

behavior of errors caused by real faults, one should consider combined error sets for

various groups of state variable instances. However, the number of such groups to be

considered could be as large as the size of the power set of the state variable instances.

Given the magnitude of this problem, we focus only on the simpler problem of computing

the probability px for every possible source of errors x in the execution. There are three

major issues in addressing this simpler problem. First, it is not clear how to identify

1.3. SUMMARY OF CONTRIBUTIONS 5

the set of plausible errors for x. Second, the computation of px could be very expensive.

Third, the number of such x's in an execution could be very large. The framework of

dynamic impact analysis presented in this thesis attempts to address these issues. The

notions of program impact and impact paths are de�ned to capture the di�erent ways

in which a potential source of error can a�ect the output. A pragmatic method for

approximating the sets of plausible errors is described. The notion of impact strength

of x is de�ned as an approximation of the probability px and a cost-e�ective algorithm

is designed to compute the impact strengths of x.

1.3 Summary of Contributions

New Concepts

A program impact graph modi�es the notion of a program dependence graph proposed

in the literature in order to capture some of the subtle impact relationships that exist

in a program. An execution impact graph represents the dynamic impact relationships

that are demonstrated during a program execution. The notion of impact Strength is

de�ned as a quantitative measure of the error sensitivity of an impact. Dynamic impact

analysis is proposed as a cost-e�ective technique to analyze the impact relationships in

an execution and compute the impact strengths.

Prototype Tool

A prototype tool, DIAna, generates the impact graph of a program, carries out the

impact analysis of a program execution and provides an infrastructure for conducting

the validation experiments.

6 CHAPTER 1. INTRODUCTION

Results

Empirical studies provide evidence indicating a strong positive correlation between im-

pact strength and error propagation. The time complexity of dynamic impact analysis

is shown to be linear with respect to the original execution time. Experimental mea-

surements indicate that the impact analysis of an execution is about 2.5 to 14.5 times

slower than the original execution. Mutation testing, syntactic coverage-based testing

and dynamic program slicing are identi�ed as potential applications for dynamic impact

analysis.

1.4 Organization of Dissertation

Chapter 2 describes some of the basic terms and concepts related to software testing

at large. Chapter 3 describes previously proposed code-based testing strategies and

motivates the problem of error propagation. The problem is analyzed and our approach

is outlined. Chapter 4 introduces and describes the notions of a program impact graph

and an execution impact graph which provides the infrastructure needed for carrying

out dynamic impact analysis. A discussion of related work in the area of program

dependence graphs is also presented. Chapter 5 describes the framework of dynamic

impact analysis. It de�nes the notion of impact strength and describes the algorithm

to analyze impact relationships in an execution and compute impact strengths. A dis-

cussion of related work in the areas of execution analyses and error propagation is

presented. Chapter 6 presents an overview of DIAna, a prototype implementation of

dynamic impact analysis. It also discusses major pragmatic issues encountered during

the implementation. Chapter 7 describes the experiments undertaken to validate the

computation of impact strengths and presents the empirical results. The subject pro-

grams used in the experiments are described in Appendix A. An experience study was

1.4. ORGANIZATION OF DISSERTATION 7

undertaken to relate impact strengths to error propagation in the executions of faulty

programs. The study involved analyzing thirty faulty programs. Chapter 8 describes

the study and summarizes the results of the analyses. Details of the analyses are pre-

sented in Appendix B. Chapter 9 discusses potential applications of dynamic impact

analysis to mutation testing, syntactic coverage-based testing and dynamic program

slicing. Chapter 10 presents the conclusion and directions for further research. Two

indices at the end of the dissertation provide ease of cross-referencing.

Chapter 2

Basic Terms & Concepts

This chapter explains some basic terms and concepts in the areas of program represen-

tation, debugging and software testing. The terms and concepts speci�c to our research

are described later in chapters 4 and 5.

2.1 Program Execution State

From the programmer's point of view, at any point of time during execution, the pro-

gram execution state consists of the following:

� Control state, which includes the next operation to be performed,

� Data state, which includes the contents of all storage locations and registers used

by the program,

� Input state, the current position of the read heads on the input �les (or streams)1,

� Output state, the current position of the write heads on the output �les and the

contents of output �les, and

� Resource usage state, the information about execution time, memory usage, etc.

1We will assume that there are �les representing terminal I/O.

8

2.2. FAULT DETECTION 9

For convenience, state variables refer to the atomic units representing the state

information described above and an execution state is said to be composed of instances

of these state variables. The execution history of a program execution refers to the

sequence of transitions from an initial execution state to a �nal execution state.

2.2 Fault Detection

A test case for a program is an input in the domain of the speci�cation. A test set

or test suite is a set of test cases. A failure occurs when a program computes an

incorrect output for a test case [29]. A programming error or a design error is a mental

mistake by a programmer or a designer, respectively.2 A programming error or a design

error may result in a textual problem with the code called a fault [29]. Without the

information about the programming or design error that caused a fault, it is often

di�cult to associate a fault with speci�c text in the program. For example, consider

the following faulty code that prints 1 to N-1 instead of 1 to N.

for(i=1;i<N;i++) print(i);

The fault in the above code may be identi�ed either as a problem with the loop exit

condition (i<N instead of i<=N) or as a combination of two problems: one with loop

initialization (i=1 instead of i=0) and one with the argument to print (i instead of

i+1). Thus, the perception of a fault depends on which correct version of the faulty

code is considered or which programming error is presumed to cause the fault.

When a program fails on a test case, we say that at least one fault is present in the

program. A fault is detected when it causes a failure. In what way does a fault lead to

a failure? Several researchers, including Ostrand and Weyuker [56], Morell [45, 46, 47],

Richardson and Thompson [67, 68], and O�utt [53], have independently investigated

2This is based on the de�nition of error in [29].

10 CHAPTER 2. BASIC TERMS & CONCEPTS

this problem. As mentioned in the introduction, we consider a model of fault detection

which is based on similar models de�ned by Morell, Richardson and Thompson, and

O�utt. According to this model, for a test case execution to detect a speci�c fault, it

should meet three conditions:

� the fault execution condition, which causes the fault to be executed,

� the error creation condition, which causes the fault execution to generate an in-

correct intermediate state, and

� the error propagation condition, which enables the errors in the incorrect inter-

mediate state to propagate and cause an incorrect output.

The errors in the incorrect state refers to the values associated with the incorrect

state variables. We acknowledge that the term error is already overloaded with several

di�erent meanings. For example, in numeric computations, it refers to the di�erence

between the expected and the actual value of a quantity. As mentioned earlier, it also

refers to a mental mistake by a programmer or a designer. Nevertheless, for the lack of

a better alternative, we decided to use the term error to denote an incorrect value in an

execution state.

The primary di�culty in applying this model to real faults is the problem of iden-

tifying the �rst incorrect intermediate state produced by a fault during an execution.

Richardson and Thompson [67] assume the existence of the correct execution, and as-

sess the incorrectness of a state with respect to the corresponding state in the correct

execution. In reality, there may be several correct executions and a program state is

considered correct or not depending on the de�nition of the set of corresponding correct

or acceptable states. Alternatively, a state may be considered incorrect because the val-

ues of the state variables are inconsistent with respect to some implicit state invariants.

Therefore, instead of requiring the correct execution, we assume that it is possible to

identify whether a state is correct or incorrect. As we shall see in section 8.2.1, there

2.3. FLOW GRAPH MODEL OF PROGRAM STRUCTURE 11

are certain kinds of faults for which this assumption does not hold. Nevertheless, given

that this assumption holds for a large variety of faults, and for the lack of a better

alternative, we decided to use the above model of fault detection.

2.3 Flow Graph Model of Program Structure

A program is often represented as a control
ow graph for the purpose of simplifying

various analyses of the program structure. A control
ow graph is a directed graph

G = (V;E), where V is a set of nodes and E is a set of edges. A node vi represents

either a single operation or a basic-block , where a basic-block is a single-entry single-exit

sequence of code that is always executed together. An edge (vi; vj) represents a possible

transfer of control from node vi to node vj . If (vi; vj) 2 E, node vi is a predecessor

of node vj and vj is a successor of vi. Without loss of generality, we assume that G

has a unique node with no predecessor (the source node) and a unique node with no

successor (the sink node). A path from vi to vj is a sequence of nodes starting with vi

and terminating in vj . A test case for the program corresponds to a source to sink path

in G which represents the execution sequence exercised by the test case. A loop-free

path is one in which all nodes are distinct. A simple path is one in which all nodes,

except the �rst and the last, are all distinct [65]. A complete path is one whose initial

node is the source node and �nal node is the sink node.

Assuming that a variable x is bound to a memory location, an occurrence of x in

which a value is stored in the memory location is termed a de�nition of x, and an

occurrence of x in which a value is retrieved from the memory location is termed a use

of x. When the association between variable name x and its memory location is voided

(due to scope exit, language de�nition, etc.), it is termed an unde�nition of x. Note

that after an unde�nition of x, the name x may very well be bound to another memory

location in a di�erent scope, but then it is a \di�erent" x.

12 CHAPTER 2. BASIC TERMS & CONCEPTS

A de�nition-clear path with respect to a variable x is a path such the �rst node on

the path possibly contains a de�nition of x, and any other node on the path does not

de�ne or unde�ne x. A de�nition of x at node vi reaches a node vj if there exists a

path from vi to vj that is de�nition-clear with respect to x. In this case, if node vj

contains a use of x, there is said to be a de�nition-use association between nodes vi

and vj with respect to x. A de�nition-use association is a special case of de�nition-use

chain, de�ned as a sequence of nodes such that each node in the sequence contains a

de�nition which reaches a use in the next node in the sequence, except for the last node

which may or may not contain a de�nition.

2.4 Coincidental Correctness

The phenomenon of coincidental correctness is de�ned di�erently by various researchers.

White, Cohen and Zeil [80, page 103] describe it as \when a speci�c test point follows

an incorrect path, and yet the output variables coincidentally are the same as if the test

point were to follow the correct path". According to Jeng[31], coincidental correctness

occurs when a wrong function is executed, but due to some coincidence, the output is

the same as if it were computed by the correct function. Richardson and Thompson

[68, page 533] give a de�nition similar to that of Jeng: \Coincidental correctness occurs

when no failure is detected even though a fault has been executed".

In this thesis, we are interested in the phenomenon of coincidental correctness as

de�ned by White, Cohen and Zeil. To avoid ambiguity, we will refer to such a phe-

nomenon by saying that the test execution or the result is tolerant to errors in control

paths . The degree of such tolerance may vary depending on the program and the test

case executed.

2.5. TEST ORACLE 13

2.5 Test Oracle

All forms of software testing depend on the availability of an oracle. Given the behavior

of a program during a test run, the oracle determines whether it is correct or not. The

oracle may be a program speci�cation, a table of examples, or simply the programmer's

knowledge of how a program should operate. The observed behavior of the programmay

be available at various levels. Depending on the kinds of program behavior examined by

oracles, Howden [28] classi�es them as: input-output oracles, trace oracles, and interface

oracles. An input-output oracle is capable of determining if the produced output is

correct for that input. The availability of an oracle of this kind is a standard assumption

in almost all of testing. A trace oracle is capable of determining if the produced trace of

pre-speci�ed events represents correct behavior or not. It is often enough to determine

whether a pair of events on an object meet its interface speci�cation or not. An interface

oracle is used for this purpose.

2.6 Undecidability Results about Testing

There are two major undecidable problems that constrain the potential of software

testing. Given two programs with in�nite input domains, there is no algorithm to

decide whether they compute the same function. Also, given a program with in�nite

input domain, there is no algorithm to decide whether there exists an input which causes

a speci�c program component (e.g. statement, branch or path) to be executed. Several

other undecidable problems in testing are directly or indirectly related to these two

problems. If we assume that the input domains are �nite, these problems can be solved

by running the program(s) over all points in the input domain, which is computationally

intractable.

14 CHAPTER 2. BASIC TERMS & CONCEPTS

2.7 Terms Related to Mutation Testing

Let P be the program under test. A single syntactic change to P is called a mutation.

Typically, these mutations represent deletion or substitution of operators, variables,

constants and statements in the program [13, 10]. When a mutation is applied to the

program P , the resulting program P 0 is called a mutant . A mutant P 0 is said to be

killed by a test case if it produces a di�erent output than the program P for the test

case. An equivalent mutant is one that can not be killed by any test case in the domain

of speci�cation of the program.

2.8 Dynamic Program Slicing

Korel and Laski [35] introduced the notion of a dynamic program slice as \an executable

part of a programwhose behavior is identical to that of the original programwith respect

to a subset of variables of interest" during a speci�c execution. Agrawal and Horgan [2]

proposed a simpler notion of a dynamic program slice. They de�ne a dynamic program

slice as \a collection of statements that a�ected the values of variables of interest"

[70, page 108] during a speci�c execution. Computing a dynamic program slice using

either of the above de�nitions requires processing of an execution history backwards and

involves following the data and control dependencies from the operations that a�ect the

values of speci�ed variables. Venkatesh [70] uses the term backward dynamic slice to

refer to both of the above notions of a dynamic slice.

Chapter 3

Problem Discussion

In this chapter, we discuss problems related to the e�ectiveness and computational

feasibility of previously proposed code-based testing strategies. We �rst discuss what we

mean by e�ectiveness and computational feasibility. Then we summarize the two main

code-based testing approaches: the syntactic coverage-based approach and the fault-

based approach. Testing strategies representing each of these approaches are brie
y

described and evaluated. Finally, we analyze the problem and motivate our solution

approach.

3.1 E�ectiveness

Weyuker, Weiss and Hamlet [79, page 4] describe e�ectiveness as follows: \Thus, the

e�ectiveness of a criterion is the extent to which it enables us to uncover all of a pro-

gram's failures. Note that e�ectiveness of a criterion is not linked to how many failures

are found , but rather, to how many remain. Otherwise, the e�ectiveness of a criterion

would depend on how buggy the program was in the �rst place." It is clear from this

description that the e�ectiveness of a testing strategy is determined by its ability to

detect faults.

15

16 CHAPTER 3. PROBLEM DISCUSSION

3.2 Computational Feasibility

The cost of using a testing strategy should ideally take into account the computational

resources and human e�ort consumed in (1) selecting test cases, (2) executing test cases,

(3) validating the output for each of the test cases, and (4) carrying out the adequacy

analysis. A major di�culty arises while evaluating the cost of a testing strategy because,

in most strategies, human testers are involved in test case selection, validation of the

output and in resolving the undecidable problems associated with the adequacy anal-

ysis. There does not exist yet an objective measure for quantifying this human e�ort.

Therefore, we will use only the computational resources used by a testing strategy as a

yardstick for measuring the associated cost. The computational resources consumed in

the last three tasks directly depend on the size of the test suite used. Several studies

[52, 77, 78] use only the size of test suite as a measure of the cost involved in using a test

adequacy criterion. Weiss [75] argues that it is incorrect to assume that each test case

consumes the same amount of resources since the test cases may di�er in the amount of

execution time and the sizes of input and output. Taking this argument into account,

we de�ne the computational resources used by a criterion as the processor and memory

resources consumed for the execution and analysis of the test cases used by the tester

in satisfying the criterion. We will use the term computational feasibility to refer to the

feasibility with respect to the usage of the above mentioned computational resources.

3.3 Code-based Testing Approaches

Most of the research on code-based testing has concentrated on two main approaches:

the syntactic coverage-based approach and the fault-based approach. For each of these

approaches, we brie
y describe the major testing strategies representing the approach

and evaluate the approach with respect to e�ectiveness and computational feasibility.

3.3. CODE-BASED TESTING APPROACHES 17

3.3.1 The Syntactic Coverage-based Approach

Syntactic coverage based strategies make use of the observation that if a certain syn-

tactic component (e.g. a statement, a branch, a de�nition-use association) in a program

is not executed even once, it may contain a potential fault. A program is not consid-

ered adequately tested until certain syntactic components within the code are exercised

(`covered'). Thus, a coverage-based test adequacy criterion speci�es the syntactic com-

ponents in the program that need to be exercised for adequate testing. Typically, a

testing tool monitors the execution of each test case and keeps track of the syntactic

components exercised by the test case and gives feedback to the tester about the compo-

nents yet unexercised. The tester continues to provide more test cases until he/she has

exercised all components speci�ed by the criterion or has determined that the remaining

components are not feasible.

Most of the syntactic components required to be exercised by common coverage-

based strategies are derived from either the control
ow characteristics of the program

or the data
ow characteristics of the program or a combination of the two. Control
ow-

based strategies are relatively simple to understand. The statement coverage criterion

requires that every statement in the program be executed at least once during some

test case execution. This idea is further extended in the branch coverage criterion,

which requires that every branch in the code be taken at least once during some test

case execution. Similarly, the all-paths criterion requires that every possible path in

the program be executed at least once by some test case. However, since a program

with loops can potentially contain an in�nite number of paths, the all-paths criterion is

not practical. Given this practical limitation, several coverage-based testing strategies

propose path selection criteria to limit the number of paths or subpaths to be exercised.

Data
ow-based testing strategies [64, 17, 39, 51, 69] de�ne path selection criteria

18 CHAPTER 3. PROBLEM DISCUSSION

derived primarily from the data
ow characteristics of the program. The syntactic re-

lationships to be exercised in this approach are either de�nition-use chains or simple

paths connecting a variable de�nition to its use. For example, Rapps and Weyuker [64]

propose the All-Uses criterion which requires that every de�nition-use association be

exercised at least once. Ural and Yang [69] propose the All simple OI-paths criterion

which requires exercising simple paths from input variables to the outputs in
uenced

by the input. The rationale is that the association between an input variable and the

output variable that is in
uenced by this input variable is critical and must be examined

during testing.

Coverage-based testing has intuitive appeal for the tester. For adequately testing

a module, it seems necessary that each of its important syntactic components (such as

statements, branches or de�nition-use associations) be exercised. Another advantage of

coverage-based testing is its low cost. Empirical studies [77, 78, 7] demonstrate that

even for the most demanding of the Rapps and Weyuker family of data
ow coverage

criteria [64], the average number of test cases required is fewer than the number of

decision statements in the module.

One of the major drawbacks of coverage-based testing criteria is the lack of direct

evidence concerning their fault detection ability. The requirement of exercising a syn-

tactic component is satis�ed by executing the component during an arbitrary test case

execution. The computation accompanying the execution of that syntactic component

and its impact on the overall program behavior are not considered.

A coverage-based test adequacy criterion relies on static program analysis to generate

the syntactic components that it requires a test set to exercise. Some of these statically

determined syntactic components in the program may not be executable. Determining

whether or not there exists an input which will exercise a given syntactic component

or relationship in the program is sometimes di�cult or impossible. A closely related

3.3. CODE-BASED TESTING APPROACHES 19

problem is that of selecting an input that will cause a speci�c program feature to be

executed. In general, both of these problems are undecidable, and are typically left

for the human tester to solve. These problems are common to all code-based testing

strategies (including the fault-based testing strategies described in the next section) and

adversely a�ect the usability of these strategies. The research reported in this thesis

does not address these problems.

3.3.2 The Fault-based Approach

Fault-based testing strategies concentrate on detecting speci�c faults or classes of faults.

On the one hand, some fault-based testing strategies o�er a guarantee regarding the

absence of speci�c faults, provided certain unrealistic assumptions are satis�ed. Such

strategies usually have very high cost associated with them. For the purpose of this

discussion we refer to them as strong fault-based strategies . On the other hand, in order

to avoid the high cost, some fault-based strategies give up the guarantee regarding the

absence of speci�c faults. We will refer to these strategies as weak fault-based strategies .

Below, we discuss some of the strong and weak fault-based strategies.

Strong fault-based strategies

In this section, we describe three examples of strong fault-based strategies: mutation

analysis [13, 10], symbolic testing [47], and Relay testing [67].

Mutation analysis is based on the competent programmer hypothesis { the assump-

tion that the program, if incorrect, di�ers from a correct program by at most a few

minor faults[12]. The �rst step in mutation analysis is the construction of a collection

of mutants (x2.7) of the program. Given a test set, each test case is run on the live

mutants , those that are not killed by any of the previous test cases. At the end, a mu-

tant remains alive for one of the two reasons: (1) the test data is inadequate or (2) the

20 CHAPTER 3. PROBLEM DISCUSSION

mutant is equivalent to the original program. The adequacy of a test set is measured

by a mutation score representing the ratio of number of mutants killed to the number

of non-equivalent mutants. Determining whether a mutant is equivalent to the original

program is in general an undecidable problem and theoretically limits the usability of

mutation testing. In practice, human testers are frequently able to detect equivalent

mutants. However, when a large number of mutants are involved, this may be very

time consuming and therefore expensive. Another key assumption involved in mutation

analysis is the coupling e�ect hypothesis which \states that a test set that distinguishes

all non-equivalent mutants with simple faults is so sensitive that it will also distinguish

mutants with more complex faults"[54, page 132]. This assumption is needed for the

following reason. When a mutant is killed by a test suite, it means that the test suite is

good at detecting the isolated simple fault represented by the killed mutant. However,

if the fault were present as a part of a complex fault involving several syntactic changes

to the program, it may or may not be detected by the test suite. O�ut [54] provides

experimental evidence suggesting that a test set good at killing a set of mutants con-

taining single mutations is also good at detecting mutants containing double mutations.

No such empirical evidence has been reported for faults not represented by single or

double mutations.

Symbolic testing [46, 47] is an application of Morell's theory on fault-based testing

and is based on symbolic execution [11]. Symbolic execution's ability to model a class

of executions by a single symbolic execution is generalized by providing the ability to

simultaneously execute in�nitely many alternate programs. This is achieved by repre-

senting in�nitely many alternatives by a single symbolic alternative. For example, in

the expression x � y + 3, 3 could be replaced by a symbolic alternative, say F , giving

x � y + F . This transformed expression represents in�nitely many alternatives of the

original expression { one for each constant that can replace F . Typically, a symbolic

3.3. CODE-BASED TESTING APPROACHES 21

alternative represents a class of potential faults (\incorrect constant" in this example).

The original program and the symbolic alternative are symbolically executed on a test

case, and their output expressions are compared. The resulting equation describes those

alternatives that are not distinguished from the original program by this test case. The

symbolic testing techniques described above can be applied to demonstrate the absence

of compound faults, however, at prohibitive cost. Determining the symbolic alternatives

representing a fault class is non-trivial and has not been adequately addressed.

Richardson and Thompson [67] de�ned the Relay model of the process by which a

potential fault in the program results in a failure. Based on this model, they develop

revealing conditions that are necessary and su�cient to guarantee detection for a pre-

speci�ed class of faults. That is, any test case that satis�es these conditions would be

successful in detecting a fault from the speci�ed class, if present. These conditions are

computed using symbolic execution. The Relay model provides a framework not only

for determining what faults have been eliminated, but also for providing the necessary

and su�cient revealing conditions to help test data selection.

The strong fault-based testing strategies typically have better understood fault de-

tection capabilities than coverage-based testing strategies. Each of the above described

strategies rigorously pursue the goal of meeting the fault execution, error creation and

error propagation conditions (x2.2) for speci�c faults. After executing a test set, a strong

fault-based testing strategy can give a guarantee regarding the absence of prespeci�ed

faults under the unrealistic assumption that a prespeci�ed fault does not interact with

other faults in the program. Although speci�c faults are eliminated, nothing can be said

about the classes of faults not modeled by a given fault-based strategy. Moreover, there

is no evidence that all fault classes can be described by a suitable fault classi�cation

scheme such that their absence can be guaranteed by the fault-based approach.

Another major problem with a strong fault-based strategy is its high cost. For

22 CHAPTER 3. PROBLEM DISCUSSION

example, the analysis of a 29 line program using a mutation testing tool (Mothra [12])

generated 1067 mutants, and it took 52 test cases and 22,192 executions to reach a

mutation score of 92%. The applicability of other prominent fault-based strategies such

as symbolic testing and Relay testing depend heavily on the feasibility of symbolic

execution which has a very high cost even for small programs.

Weak fault-based strategies

Hamlet [23] originally proposed the idea of testing a program expression by distinguish-

ing it from a set of alternate expressions. In his approach1, several alternate expressions

are considered for each of the designated expressions. When a designated expression is

encountered during a test case execution, its alternatives are evaluated and compared

with the value of the original expression. Those that evaluate di�erently from the orig-

inal are marked. After all the test data has been executed, the unmarked alternate

expressions are printed by the compiler as warning messages, indicating that either the

test data are inadequate, or equivalent simpler expressions have been found. The idea

of testing a program component by distinguishing it from its alternatives is an important

characteristic of all fault-based testing strategies.

In order to avoid the complexity of mutation testing arising out of independent

executions of a large number of mutants, Howden [27] proposed weak mutation testing

which simpli�es the requirements for killing a mutant. Speci�cally, weak mutation

testing requires that the code containing the mutation be executed at least once and

that at least one such execution yield a di�erent execution state immediately following

the execution than that produced by the unaltered code.

Zeil proposed perturbation testing [81] and the Equate testing strategy [82] which

are similar to Hamlet's compiler-based testing and Howden's weak mutation testing

1Most of our description of Hamlet's approach has been adapted from Morell's description in [46].

3.4. PROBLEM ANALYSIS 23

described above. These strategies proposed by Zeil use di�erent approaches for deter-

mining the alternative expressions. For example, in perturbation testing, the perturbing

functions used to arrive at alternate expressions have some sort of global dependence

on the code since it uses information about the variable names used and types of cal-

culations performed in the entire module.

Each of these strategies rigorously pursue the goal of meeting the fault execution and

error creation conditions for speci�c faults, and rely on the weak mutation hypothesis

for meeting the error propagation condition (x2.2). The weak mutation hypothesis

states that a test case that satis�es the fault execution and error creation conditions

with respect to a speci�c fault will also satisfy the corresponding error propagation

condition [42]. This assumption reduces the cost, but gives up the guarantee regarding

the absence of speci�c faults.

3.4 Problem Analysis

Based on the above evaluation of code-based testing strategies, we make the following

observations.

� The notion of exercising a syntactic component in the coverage-based approach is

weak in that it only requires an arbitrary execution of the syntactic component.

In order to detect potential faults associated with a syntactic component, it is

important that the corresponding error creation and error propagation conditions

are satis�ed as well.

� In their attempt to guarantee the absence of speci�c faults under certain assump-

tions, strong fault-based strategies require that the fault execution, error creation

and error propagation conditions be satis�ed for the speci�ed faults. However,

these strategies are computationally very expensive. In comparison, the weak

24 CHAPTER 3. PROBLEM DISCUSSION

fault-based strategies do not enforce the error propagation condition and their

computational costs are considerably lower than their strong counterparts.

The �rst observation suggests the importance of satisfying the error propagation condi-

tion, and the second observation implies that the cost for guaranteeing the satisfaction

of the error propagation condition may be inherently very high. This motivated us to

examine the problem of error propagation and to design a cost-e�ective technique to

estimate the likelihood of error propagation from various potential sources of errors in

a program execution.

In order to better understand the di�culties involved in satisfying the error prop-

agation condition, we �rst have to understand the reasons for possible failures of error

propagation. An error in a state variable instance may fail to propagate to the output

of the execution if one of the following holds:

� no computation using the erroneous state variable instance a�ects the output, or

� there is at least one computation that uses the erroneous state variable instance

and a�ects the output, however, in all such computations, the error is eventually

masked out.

In the �rst case, we say that the erroneous state does not impact the output or that

the erroneous state has no impact . For example, consider a tax computation program

that incorrectly loads the data about itemized deductions. However, in a speci�c test

scenario, the tester chooses the standard deduction method. Therefore, the incorrect

state variables associated with itemized deductions do not impact the output.

The second case is more interesting, and we discuss it in detail in the following

paragraphs. For simplicity, consider the computation represented by a binary function

f(w; y) that masks a speci�c error in w. Let w0 denote the corresponding erroneous value

of w. The function f is said to mask the error in w if f(w0; y) = f(w; y). Alternatively,

it may be the case that y also has an error. Let y0 denote the erroneous value of y.

3.4. PROBLEM ANALYSIS 25

Then, the errors in w and y are masked if f(w0; y0) = f(w; y).

It is possible that individually, the errors in w and y are not masked, but they are

masked when present together. That is, f(w0; y) 6= f(w; y), f(w; y0) 6= f(w; y), but

f(w0; y0) = f(w; y). In such cases, we say that w0 and y0 are canceling errors . For

example, in w �y, if the values of w and y both have incorrect signs, the result will have

the correct sign. Similarly, in w + y, if the signs of the errors in w and y are di�erent

but with same magnitudes, the result will still be correct.

An error masking function is essentially a many-to-one function. Voas, Miller and

Payne [73, 71, 74] introduced the notions of \internal state collapse" and \implicit

information loss" while referring to the behavior of many-to-one functions and attempted

to quantify these notions by introducing a metric called domain/range ratio (DRR) [73].

\The domain/range ratio (DRR) of a speci�cation is the ratio between the cardinality

of the domain of the speci�cation to the cardinality of the range of the speci�cation.

A DRR is denoted by � : �, where � is the cardinality of the domain and � is the

cardinality of the range" [71, page 238]. A high DRR of a function indicates that the

function is less likely to propagate an error and a low DRR indicates that the function

will readily propagate an error. They acknowledge that the DRR of a function only

\partially suggests" the likelihood of propagating errors to the result of that function

and that it is not clear how to usefully extend the de�nition of DRR for a function

with n-dimensional input space. In the following examples, we illustrate some of the

limitations of the DRR metric while providing more insight into the phenomenon of

error masking.

Example 1

Consider the function string-match that compares two strings and returns true or

false depending on whether the two strings are equal or not. If � is the cardinality

of the set of all strings, the DRR of the string-match function with respect to either

26 CHAPTER 3. PROBLEM DISCUSSION

argument is � : 2, which is clearly very high. This suggests that the likelihood of

propagating an error in an argument would be very low in an implementation of the

string-match function. This is certainly the case when the result of the match is

false since it is less likely that an error in one or both of the argument strings will

make them equal. However, when the result of the match is true, the function is

extremely sensitive to errors in the input strings. This is so, since most errors in two

equal strings will make them unequal. This example suggests that the error sensitivity

of a many-to-one function may be di�erent for di�erent result values.

Example 2

Consider the multiplication operation a � b. Given in�nite integer domains, the DRR

for this operation with respect to a is 1. This indicates that an error in a will always

propagate to the result of the operation. However, in a speci�c instance of the operation,

when b = 0, an error in a does not propagate to the result of the operation. This example

suggests that the error sensitivity of a many-to-one function with respect to a speci�c

argument may depend on the values of other arguments.

Example 3

Consider the relational expression a > b with the result true. Given that a is any

integer, since the cardinality of the range of the expression is 2, it is clear that the DRR

of this operation with respect to a is very high. Hence one should expect very poor

propagation for errors in a. Since the result is true, the positive errors in the value of a

will not propagate to the result. However, depending on the magnitude ja�bj, the true

result can be very sensitive to negative errors in the value of a. This example suggests

that the error sensitivity of a many-to-one function may depend on the nature of errors

under consideration.

3.4. PROBLEM ANALYSIS 27

Example 4

Consider an array reference a[w] used as an operand in some operation. It is straight-

forward to see that the DRR of the indexing operation is 1 since every index refers to a

di�erent array element. Therefore, one would expect that an error in w will be readily

propagated. However, even though each index corresponds to a di�erent array element,

several array elements can have the same value. In such cases, the likelihood of error

propagation could be really small. This example illustrates the possibility of failure of

error propagation in referencing operations such as array indexing or pointer dereferenc-

ing. Such operations are largely ignored in the literature discussing error propagation

[42, 46, 53, 67, 68, 71, 72].

Thus, in a speci�c execution of a function, the propagation of an error in an argument

w to the result r may vary with the types of operations involved in the computation,

the result value r, the values of other arguments, and the type of the error. From

these observations, we argue that in order to better understand the error propagation

behavior in a computation, we ought to consider a dynamic metric rather than a static

metric such as the DRR. Such a dynamic metric should represent, in a speci�c execution,

the likelihood of propagation of errors from the source of error (w) in the computation

to the result of the computation (r). In other words, we want to measure the error

sensitivity of the result r with respect to the source of error w. Generalizing this, in

an execution, we want to measure the error sensitivities of the output of the execution

to several potential sources of errors in the execution. In order to be useful, such a

measurement should be cost-e�ective. The following paragraphs present the high level

issues associated with measuring error sensitivity and introduce our approach.

Consider a speci�c execution T of a program. If W represents the set of potential

sources of errors of interest in T , and r represents the output of T , we want to measure

the error sensitivity of the output r with respect to each w 2 W . We refer to this measure

28 CHAPTER 3. PROBLEM DISCUSSION

as the strength of w's impact on r, or simply the impact strength of w. Let E(w) denote

the set of plausible errors for w with respect to which we want to measure the impact

strength of w. A simple approach for computing the impact strength of w could be as

follows: for every w0 in E(w), run an alternate execution T 0 obtained by substituting w0

for w in T , and examine whether the error propagates to the output. This would yield a

frequency estimate of the desired measure of error sensitivity. There are four potential

problems in this simple approach. First, it is not clear how to determine E(w), the set

of errors for w. Second, in an alternate execution, the error may take an incorrect path

and possibly take much longer than the the original execution or may never terminate.

Third, E(w) could be a very large set and it may be prohibitively expensive to run

alternate executions for each member of E(w). Fourth, since we want to measure the

impact strengths of a large number of potential sources of errors in an execution, this

adds a new dimension to the cost of the analysis.

The framework of dynamic impact analysis presented in this thesis attempts to

address these problems. The notions of program impact and impact paths are de�ned to

capture the di�erent ways in which a potential source of error can a�ect the output. To

avoid the high cost associated with executing alternate control paths, we analyze only

the control path of the execution and de�ne heuristics to estimate the impact due to

avoiding alternate paths. Using this and other cost-saving approximations, an algorithm

is designed to compute the desired impact strengths. We then conduct experiments to

validate the computation of impact strengths and to understand the consequences of

the various approximations.

Chapter 4

Impact Graphs

Our notion of an impact graph has been strongly in
uenced by the need to understand

the roles played by various syntactic entities during program execution and the kinds

of impact they have on the program behavior during the execution. As we shall see in

the following chapter, the notion of impact de�ned here forms the basis for measuring

the quality of impact of various program entities on the output of an execution.

We use C as the reference programming language for describing the impact graphs

and related concepts. We �rst de�ne the notion of a program impact graph which

attempts to capture the static impact relationships among various program entities.

Then we de�ne the notion of an execution impact graph which attempts to capture the

dynamic impact relationships among the instances of various program entities during

execution. This is followed by a description of several terms and notations related to

impact graphs. Finally, we compare the notion of a program impact graph with the

notions of program dependence graphs used in the literature.

29

30 CHAPTER 4. IMPACT GRAPHS

4.1 Basic Terms & Notations

In this section, we present some of the terms and notations used in describing the

program impact graph and the execution impact graph.

A decision predicate is the expression used in a control
ow construct, whose eval-

uation at runtime determines which branch is taken. Each potential branch that can

be taken as a result of a decision predicate evaluation is called a decision branch of

that predicate. A decision arm is the code segment contained in the textual scope of a

decision branch. It is possible that the code segment corresponding to a decision arm

is empty. The decision arms of a decision predicate are siblings of each other.

Unconditional control transfer constructs such as goto, break, continue, function

call and return correspond to speci�c branches in an interprocedural control
ow graph

[59] of a program. Such a branch will be termed an unconditional branch to distinguish

it from a decision branch. Consider the following C statement: if (condition) goto

Label1;. There are three distinct branches here. The conditional predicate in the if

statement corresponds to two decision branches: a true branch and a false branch. The

goto statement corresponds to an unconditional branch.

In the C language, the break statement is used in two distinct contexts: for breaking

out of a loop and for breaking out of the fall-through case statement within a switch

statement. The former use of the break statement will be referred to as a loop exit .

Program Entities and Entity Instances

During impact analysis, we will be investigating the impact relationships among the fol-

lowing program components: variable de�nitions, variable uses, constant uses, decision

predicates, decision arms, function de�nitions, operators and function calls. We will use

the word entity to refer to a syntactic component listed above. As needed, we will add

more program components to this list of entities.

4.1. BASIC TERMS & NOTATIONS 31

During a program execution, an expression may be executed zero or more times and

the various entities contained in the expression may also be \executed" zero or more

times. We will use the term entity instance to refer to an \execution" of an entity. We

illustrate this in the following example.

Program

A = 1;

B = 2;

while (A < 5)

A = A * B;

C = A + 5;

Variable Def/Use Entities

A1

B1

A2

A3, A4, B2

C, A5

Entity Instances

a1

b1

1
a2; 2

a2; 3
a2

1
a3; 1

a4; 1
b2; 2

a3; 2
a4; 2

b2

c; a5

As a convention, we will always use identi�ers beginning with an upper case letter

to specify entity names and identi�ers beginning with a lower case letter to specify

entity instances. As shown in the above example, the various entities corresponding to

the same variable are distinguished using a subscript and the various entity instances

corresponding to the same entity are distinguished using a pre�x-subscript. For example,

1
a4 is the �rst instance of the entity A4, 2

a4 is the second instance of A4, and so on.

When there is no ambiguity, the subscripts are omitted. For example, if P denotes the

predicate entity (A < 5), the three instances of P would be denoted as
1
p,

2
p and

3
p.

Kinds of Operations

Each instruction in an intermediate code representation [5, pages 13-14] of a program

will be referred to as an operation. We will assume that the time for executing an oper-

ation is bounded by a constant. The operations in an intermediate code representation

32 CHAPTER 4. IMPACT GRAPHS

of a C program can be broadly classi�ed into four categories: control transfer opera-

tions, data transfer operations, referencing operations and computation operations. The

computation operations can be further subdivided into address and data computations.

The control transfer operations include the operations involving transfer of control

due to language control constructs such as if, while, do while, switch, goto, break,

continue, function call, return and conditional expression. The data transfer operations

include various forms of assignment operations and implicit data transfer operation such

as copying actuals to formals.

The referencing operations involve accessing a storage location for reading or writing

given the location address. The location address is either implicitly known to the

compiler or is explicitly computed at execution time using speci�c operations provided in

the language. The address computation operations explicitly compute location addresses

at execution time. For example, when a variable is referenced by name, the compiler

implicitly knows its address. In contrast, the dereferencing operators (*, ->) and the

array indexing operator ([]) involve address computation at execution time.1 Each

of these operators involve two operations: an address computation operation and a

referencing operation. A memory allocation routine such as malloc() could also be

looked upon as an address computation operation.

All other operations are grouped together as data computation operations. They

involve manipulation of various kinds of \data", including integer,
oating point and

pointer data. The C language supports pointer arithmetic, whereby a pointer is manip-

ulated like other arithmetic data, with some restrictions. Thus pointer data can take

part in data computation (e.g. pointer p in p = p + 2), and likewise, integer data can

take part in an address computation operation (e.g. index i in a[i]). Therefore, we

will treat both data and address computation operations as computation operations.

1The `.' operator in C may or may not result in address computation at execution time.

4.1. BASIC TERMS & NOTATIONS 33

Note that a single statement might consist of several di�erent categories of operations

de�ned above. For example, consider the following statement:

c = cond ? a[i] * b : p->f ;

Assume that a has been declared as int a[10] and p is a pointer to a structure with f

as a �eld. This statement includes one control transfer operation, two explicit address

computation operations ([] and ->), one data computation operation (*), one data

transfer operation (=) and several referencing operations. Of course, not all of them get

executed when this statement is executed.

Observable Program Behavior and Output

In order to determine whether a program execution meets its speci�cation, the test

oracle \observes" the initial state and a set of one or more partial execution states

from the corresponding execution history. We will refer to such a set as the observable

program behavior . Typically, for an input-output oracle, this set consists of only the

output state at the end of the execution. However, there may be oracles which look

at intermediate execution states as well. Often, resource usage is also examined by the

oracle. Speci�cally, when the execution does not terminate, the oracle may examine the

accumulated execution time to reach its verdict.

Out of the various components of an execution state described above, some compo-

nents can be easily observed externally, while some are relatively di�cult to observe.

For example, the output state can be easily examined, while the complete data state

at a speci�c point in the program is relatively di�cult to examine. For the purpose of

the discussion of impact graphs and dynamic impact analysis, we will assume that the

observable program behavior consists of the following:

� the output state, and

34 CHAPTER 4. IMPACT GRAPHS

� the accumulated execution time, which is the length of the time interval from the

start of the execution to the time of the observation.

For convenience, we will often use the terms output , program behavior or observable

behavior to mean observable program behavior.

4.2 Notion of Program Impact

Our goal is to de�ne a notion of program impact that can be used to describe and

quantify the kind of impact a program entity has on the observable program behavior

in a speci�c execution. The notion of program impact can be looked upon as the inverse

of the notion of program dependence as de�ned in the literature [16, 2, 63]. When a

program entity B depends on entity A, we can say that A impacts B. However, as we

shall show in section 4.6, the various de�nitions of program dependence graphs proposed

in the literature were not suitable for use in dynamic impact analysis. Therefore, we

developed the notion of a program impact graph based on the operand/operator level

program dependence graph suggested by Ferrante, Ottenstein and Warren [16]. In

comparison to such a program dependence graph, the program impact graph represents

detailed data
ow and new kinds of dependencies. The most distinguishing feature of

the program impact graph is the notion of potential control impact which is motivated

below.

In order to get an intuitive understanding of the potential control impact, consider

the following question.

How does a decision arm (the code segment corresponding to a decision

branch) impact the observable program behavior?

A decision arm can impact the observable program behavior in one or more of the

following ways:

4.2. NOTION OF PROGRAM IMPACT 35

1. by executing an observable state-transition event e.g. writing output onto a �le.

2. by modifying the data state (e.g. de�ning a variable), which then impacts the

observable program behavior.

3. by modifying the control state (e.g. executing another control transfer operation),

which then impacts the observable program behavior.

4. by avoiding one or more of the above which could have impacted the observable

program behavior; e.g. avoiding output, avoiding a variable de�nition, avoiding

inde�nite iteration, and avoiding inde�nite recursion.

The �rst item represents direct impact on entities that contribute to the observable

program behavior. For example, arguments of output statements determine the output

produced. In the next two items, the impact of the decision arm on the observable

program behavior is indirectly expressed in terms of the impact of the entities that it

directly impacts. This implies that the notion of program impact is transitive. The last

item represents potential control impact . As an example of such behavior, consider the

following code segment:

Def1(v);

if (p) Def2(v);

Use1(v);

Now consider an execution of the above code in which the false branch of the condi-

tional statement is taken. What role does the conditional statement play in such an

execution? It avoids a state change which would have killed Def1(v). At a later point,

if Use1(v) gives an incorrect value of v, it could be either because Def1(v) was incorrect

or because the predicate p was incorrect. Thus, it is clear that an incorrect value of p

could cause an incorrect value of v at Use1(v) and hence p should be included in the

36 CHAPTER 4. IMPACT GRAPHS

backward dynamic slice (x2.8) with respect to v. However, the backward dynamic slice

[2, 35, 70] computed by following the conventional data and control dependencies among

the executed statements will not contain the predicate p. In the context of fault local-

ization, Korel and Laski [36] introduced the notion of potential in
uence in an attempt

to consider the potential control impact of predicate p on the Use1(v) (see section 4.6

for a discussion). We generalize this notion to include the potential impact of p on the

output state by avoiding an output statement or on the control state by avoiding a loop

exit or a function return. In the program impact graph, we would like to explicitly

represent such potential control impact. In summary, a decision arm can impact the

observable program behavior either by causing a state modi�cation or by avoiding a

state modi�cation.

From the above discussion, the following requirements of program impact graph

become apparent.

The program impact graph should capture the direct and potential impact

relationships that exist among the program entities and it should support

computation of transitive impact relationships.

The following section describes the notion of a program impact graph designed to meet

these requirements.

4.3 Program Impact Graph

A program impact graph is a directed graph with nodes representing the program entities

and the arcs representing direct impact relationships among the entities. The potential

impact relationships, where necessary, are represented as attributes on the nodes. In

order to capture the subtle di�erences among various kinds of impacts, we use additional

attributes. For example, each node has a node kind and each arc has an impact kind .

4.3. PROGRAM IMPACT GRAPH 37

Throughout our description of the program impact graph, we will use the follow-

ing example to illustrate its features. Consider the following conditional expression

statement in a C program:

c = cond ? a[i] * b : p->f ;

Assume that a has been declared as int a[10] and p is a pointer to a structure with

f as a �eld. The basic entities involved in the above expression and their direct impact

relationships are shown in Figure 4.1. The nodes in the �gure have been numbered for

ease of reference. While referring to the �gure, the node numbered i will be referred to

as ni and an arc from node i to node j will be referred to as hni; nji.

Nodes of an Impact Graph

The di�erent kinds of nodes that constitute an impact graph are described below.

� variable de�nition node, represents an assignment to a variable. For example,

n33 represents an assignment to the variable c. The variable de�nition nodes n1

through n6 are not a part of the conditional expression. They represent variable

de�nitions that occur elsewhere in the program.

� variable use node, represents a use of the value stored in a variable. For example,

n18 is a use of an element of the array a and n20 is a use of the variable b.

� constant use node, represents a use of a constant value. e.g. n12, n26.

� temporary de�nition and temporary use nodes, represent the de�nition and imme-

diate use of a temporary variable. The implicit assignment and use of a temporary

is treated like an assignment and use of a regular variable. Usually, temporary

de�nition and use nodes occur in pairs. Hence for pictorial representation, we

represent the pair as a single node. Examples include n16, n21, and n27. However,

Figure 4.1: Fragment of a Program Impact Graph

4.3. PROGRAM IMPACT GRAPH 39

when a temporary variable is conditionally de�ned, as in the conditional expres-

sion of C, we separately represent the de�nition and use nodes of a temporary

variable as illustrated by n22, n29, and n32.

� operator node, represents the operation being performed. This includes both built-

in operators and function calls. For example, n13 and n19 represent the indexing

and multiplication operators respectively.

� decision predicate node, represents the result after evaluating a decision predicate.

For example, n9 represents the result of the predicate in the conditional expression.

� code segment node, represents a source code segment of importance. For example,

in a decision arm is represented as a code segment node (e.g. n10, n11) and so

is a function de�nition. To aid visualization, the diagrammatic representation

of a program impact graph shows a code segment node corresponding to the

code segment C as encapsulating the nodes corresponding to the syntactic entities

within C. The nodes encapsulated by a code segment node N are said to be the

members of N . It is possible for a code segment node to be a member of other

code segment nodes. A node which is a member of code segment node N but

not a member of any member of N is called an immediate member of N . In

other words, a node is an immediate member of the innermost encapsulating code

segment node. For example, nodes n23 through n29 are immediate members of

the code segment node n11.

Representing Specific Program Entities as Nodes

The fragment of program impact graph in Figure 4.1 does not contain examples of all

possible program entities that can be modeled using the kinds of nodes described above.

Below we discuss some interesting situations.

With each function de�nition we associate a code segment node, and if the function

40 CHAPTER 4. IMPACT GRAPHS

returns a value, we associate a unique function result entity represented by a temporary

de�nition node. The return expression entity in a return statement is associated with

a temporary use node or a variable use node, as appropriate.

A function call involves the use of a function reference, which is either a constant

use node or a variable use node depending on whether a function name is used or a

function pointer is used. The actual parameters involved in the call are either variable

use nodes or temporary use nodes. The formal parameters of a function de�nition are

variable de�nition nodes. Also, with each function call, when its return value is used

in some expression, there is a temporary de�nition node and a temporary use node

corresponding to the de�nition of function result and the use of the function return

value.

Library functions with a variable number of arguments are also supported in this

framework. We will defer their discussion until chapter 6.

Focusing mainly on the program entities that in
uence dynamic impact behavior, we

do not currently model the impact due to syntactic entities such as structure de�nitions,

type de�nitions, and C preprocessor constructs.

Arcs of an Impact Graph

The nodes in the impact graph are connected by directed arcs which re
ect the direct

impact relationships among the entities represented by the nodes. We distinguish among

four di�erent kinds of impacts: data impact, reference impact, operator impact and

control impact. Each of these is separately discussed below. (Note that the references

to impact arcs of the kind hni; nji refer to the arc from node ni to node ni in Figure 4.1).

Data Impact

Data impact arcs capture the following impact relationships.

4.3. PROGRAM IMPACT GRAPH 41

� operand-result | connect each of the operands of a computation operation to the

node corresponding to the result of that operation. For example, hn14; n16i and

hn20; n21i are operand-result arcs.

� data transfer | connect the source to the destination in a data transfer op-

eration. This includes the implicit assignment operations to temporary variables

without any explicit source level assignment operator. For example, hn21; n22i and

hn22; n32i represents data transfer operation among temporary variables. These

also represent the data transfer from the actual parameters of a function call to

the formal parameters of the function de�nition or from the function result to the

function return value.

� def-use | connect a variable de�nition node to its use nodes. For example,

hn3; n20i and hn5; n24i are def-use arcs.

A data impact arc from node A to node B signi�es that in an execution, the data

value of an instance of B may directly depend on the data value of an instance of A.

Note that the �rst two items above represent impacts that are local within an operation

while the last item represents def-use arcs which represent interactions among various

computation operations within the program. These def-use arcs represent both intra-

procedural and inter-procedural de�nition-use associations.

Reference Impact

Reference impact arcs connect a node representing a constant or computed location

address value to the node representing the referenced entity. For example, the arc

hn15; n14i models reference impact due to the node n15 representing a constant address

and the arc hn16; n18i models reference impact due to the node n16 representing the

address computed by the indexing operation.

42 CHAPTER 4. IMPACT GRAPHS

Operator Impact

Operator impact arcs connect an operator to the result of an operation involving that

operator. For example, hn19; n21i and hn13; n16i are operator impact arcs.

Control Impact

Control impact is more di�cult to express than data impact, reference impact or op-

erator impact. Recall from the discussion in section 4.2 that a decision arm can have

direct or potential control impact on other program entities. We use control impact

arcs to represent the direct control impact relationships and attributes to represent the

potential control impact relationships.

Control impact arcs represent the following direct impact relationships:

� decision branch | connect a decision predicate node to each of the code segment

nodes corresponding to the decision arms of the decision predicate. For example,

hn9; n10i and hn9; n11i represent decision branches.

� implicit control | implicitly connect a code segment node to the nodes among

its immediate members that represent either data state modi�cation or control

state modi�cation. Examples of such nodes are: function reference node, variable

de�nition node, and decision predicate node.

Additionally, there are cases for which a decision arm computes a value and makes

it available outside the scope of the decision arm. For example, such is the case in

a conditional expression or a short circuit boolean operation. In such cases, the

code segment node corresponding to a decision arm is connected to the temporary

de�nition node representing the value computed in the decision arm. For example,

each of hn10; n22i and hn11; n29i represents the control impact of a decision arm

on the computed value.

4.3. PROGRAM IMPACT GRAPH 43

� function call | connect a function reference node to the code segment node cor-

responding to the called function's de�nition.

In case of decision branches and implicit control, a control impact arc from node

A to node B signi�es that in an execution, B is instantiated only if A is instantiated.

However, this is not true in the case of a function call, since the function de�nition may

be instantiated by several call sites.

Potential Control Impact

Currently, the impact graph attempts to approximate three kinds of potential impact

relationships: avoiding modi�cation of the output state, avoiding modi�cation of the

data state (i.e. avoiding a variable de�nition), and avoiding inde�nite iteration or

recursion.

Each code segment node supports the following attributes:

� controls-exit { a boolean
ag that is true if a loop exit or a return statement will

always be executed when this node is executed and is false otherwise.

� controls-output { a boolean
ag that is true if an output statement will always be

executed when this node is executed and is false otherwise.

� list-of-de�ned-variables { a list of the variables that will always be de�ned when

this node is executed.

The �rst two attributes are easy to compute using simple control
ow analysis. The

last attribute requires complex data
ow analysis. In fact, in the presence of arrays and

pointers, it is not possible to get a precise value for this attribute [59, 60]. Also, it is

possible that all of the variable de�nitions within a code segment are conditional, and

therefore may or may not be executed even if the code segment is executed. These

problems cause approximations in the values of this and other derived attributes.

44 CHAPTER 4. IMPACT GRAPHS

Each decision predicate node also supports the above three attributes, with appro-

priately modi�ed de�nitions. A decision predicate node has the controls-exit/controls-

output attribute true if all of its decision arms has the corresponding attribute true.

Similarly, the list-of-de�ned-variables for a decision predicate node is the intersection of

the corresponding lists from all of its decision arms.

Each code segment node representing a decision arm additionally supports the fol-

lowing attributes:

� potentially-controls-exit { a boolean
ag that is true when all of the sibling decision

arms have the controls-exit attribute true and is false otherwise.

� potentially-controls-output { a boolean
ag that is true when all of the sibling

decision arms have the controls-output attribute true and is false otherwise.

� list-of-potentially-impacted-variables { a list of the variables that will always be

de�ned by each of the sibling decision arms. That is, it is a list of the variables

whose rede�nitions are de�nitely avoided by executing this decision arm.

These attributes attempt to capture the potential impact relationships mentioned

above for various commonly occurring situations. Not all situations can always be

represented using only these attributes. For example, in the switch statement of C, it

is possible to have an empty decision arm for which all the above attributes are either

false or empty lists. In that case, no impact is indicated for the decision arm. More

research is necessary to investigate the impact relationships of code segments which are

not covered by the above attributes.

Current limitations

Currently, we do not model the impact due to the goto statement and the `fall-through'

semantics of the case statements within a switch statement. The implementation

described in Chapter 6 permits these constructs to appear in a program, but does not

attach any impact relationships to them. Also, as mentioned above, we cannot always

4.4. EXECUTION IMPACT GRAPH 45

represent the impact due to a code segment and approximations are introduced due to

inherent inaccuracy in data
ow analysis.

4.4 Execution Impact Graph

As we saw in the previous section, the nodes of a program impact graph correspond

to program entities and the arcs correspond to the (static) direct impact relationships

among these entities. An execution impact graph for a speci�c program execution is

similar to a program impact graph, except that the nodes in the execution impact graph

represent the entity instances that actually occurred during the execution and the arcs

represent the direct impact relationships that were demonstrated during the execution.

For example, Figure 4.2 shows a fragment of the execution impact graph corresponding

to the program impact graph fragment of Figure 4.1.

Observations

� An execution impact graph is always a directed acyclic graph. That is, an entity

instance cannot impact itself directly or indirectly.

� A decision node in the execution impact graph has exactly one control impact arc

emerging from it.

� The arcs correspond to impact relationships that were actually demonstrated dur-

ing the execution. On the other hand, arcs in a program impact graph represent

possible impact relationships.

� Every arc in the execution impact graph has a corresponding arc in the program

impact graph. More than one arc in the execution impact graph may correspond

to the same arc in the program impact graph.

� As we will see in the next section, every node (entity instance) in the execution

impact graph has a value associated with it.

Figure 4.2: Fragment of an Execution Impact Graph

4.5. MORE TERMS & NOTATION 47

4.5 More Terms & Notation

In this section, we describe some more terms and notation related to impact graphs.

These terms will be used in describing the framework for dynamic impact analysis in

chapter 5. A cursory reading of this section should help the reader in understanding the

aspects of an impact graph that are important in dynamic impact analysis. To avoid

the need for frequent cross-referencing, we will give short explanations accompanying

future references to these terms.

P denotes a program or its program impact graph.

�(P) the set of all possible executions fT1; T2; � � �g of the program P .

T denotes a speci�c execution or its execution impact graph.

X; Y upper case letters denote entities within the program P .

x; y lower case letters denote entity instances in the execution T .

E(X; T) or f
1
x;

2
x; � � �g denotes the set of all instances of entityX in the execution T .

E�1(x) denotes the entity corresponding to the entity instance x.

Entity Instance Value

V (x) denotes the value of the entity instance x. Most entity instances have values

associated with them naturally. For example, a variable use instance has

the value of the variable retrieved from the memory, a decision predicate

instance has the value which is used to determine what branch to take, and

so on. However, some entity instances such as a code segment instance

usually do not have any natural values. To ensure uniform treatment of all

entity instances, we de�ne the following values.

48 CHAPTER 4. IMPACT GRAPHS

� is the value used to indicate the existence of entity instances that do not

naturally have an associated value.

� is the value used to indicate a hypothetical absence of an entity instance.

W (X) denotes the set of valid values allowed by the entity X (using the broader

notion of value de�ned above).

Impact Successor and Predecessor Sets

Let y be an entity instance in an execution impact graph T .

Ipred(y) denotes the impact predecessor set of y, and is de�ned as the set of all entity

instances x such that there is an impact arc hx; yi in T .

Isucc(y) denotes the impact successor set of y and is de�ned as the set of all entity

instances z such that there is an impact arc hy; zi in T .

The above two relations are similarly de�ned for an entity Y in a program impact

graph P .

Ipred(Y) denotes the impact predecessor set of Y , and is de�ned as the set of all

entities X such that there is an impact arc hX; Y i in P .

Isucc(Y) denotes the impact successor set of Y and is de�ned as the set of all entities

Z such that there is an impact arc hY; Zi in P .

Impact Paths

Recall that a simple path in a directed graph is one in which all nodes, except possibly

the �rst and last, are distinct [17]. An impact path is a simple path in an impact graph.

Recall that an execution impact graph is a directed acyclic graph, hence all of its paths

are simple.

4.5. MORE TERMS & NOTATION 49

The notion of an impact path should not be confused with the notion of a control

path in a control
ow graph.

Let Paths(i; j) denote the set of impact paths from node i to node j in an impact

graph.

Impact kind attribute

As we described earlier, with each arc in an impact graph, we associate an impact kind

attribute which takes one of the four values: control, data, reference and operator. These

are the four basic impact kinds in our framework. The impact kind of an impact path

is de�ned in terms of the impact kinds of its constituent impact arcs as shown below.

In the following, we use 1+to mean 1 or more and 0+to mean 0 or more.

Impact-kind of an impact path Impact-kinds of constituent impact arcs

data 1+data

control 0+data and 1+control

operator 0+data and 1+operator

reference 0+data and 1+reference

ctrl-ref 0+data and 1+control and 1+reference

op-ctrl 0+data and 1+operator and 1+control

op-ref 0+data and 1+operator and 1+reference

mixed all others

Examples

In Figure 4.2, the impact path from the de�nition of b at n3 to the de�nition of c at n33

is a data impact path. The impact path from the de�nition of i at n2 to the de�nition

of c at n33 is a reference impact path, while that from n13 to n33 is an op-ref impact

path. Similarly, the impact path from the de�nition of cond at n4 to the de�nition of c

at n33 is a control impact path.

50 CHAPTER 4. IMPACT GRAPHS

The set of impact paths from node i to node j, denoted Paths(i; j), can be partitioned

into the subsets Paths(i; j; �), where � 2 fcontrol, data, operator, reference, ctrl-ref,

op-ctrl, op-ref, mixedg, such that all the paths in a subset have the same impact kind.

Observable Nodes

Recall that the observable program behavior consists of the output state and the ac-

cumulated execution time. The accumulated execution time is used by the test oracle

in determining whether the program execution is in an inde�nite iteration or inde�nite

recursion. Given this, an entity instance x in an execution impact graph is observable

in the following cases:

� x's value appears in the output state, or

� x's existence has potential control impact by avoiding an output state modi�ca-

tion, or

� x's existence has control impact by exiting a loop or returning from a function, or

� x's existence has potential control impact by avoiding a loop exit or a function

return.

In the �rst case, x is the argument to an output function such that x's value is reproduced

in the output. The other three cases represent the control impact of a code segment

node, and correspond to the attributes potentially-controls-output, controls-exit and

potentially-controls-exit, respectively. These represent useful roles played by decision

branches. And since the corresponding decision branches may or may not be associated

with data state modi�cations a�ecting observable behavior, it is important to capture

these roles explicitly. However, in each of the three cases, the corresponding event is

not strictly observable. For example, it is likely that even if a loop exit is missed, the

loop may eventually terminate without a�ecting the observable behavior.

4.6. RELATED WORK ON PROGRAM DEPENDENCE GRAPHS 51

An entity node in a program impact graph is observable if during some execution,

one of its instances is observable. For example, the arguments of an output function are

observable.

4.6 Related Work on Program Dependence Graphs

The concept of the program impact graph was developed by modifying the notion of a

program dependence graph in order to clearly represent the impact-relationships that

exist among program entities. In this section, we �rst present a brief overview of the

research work in the area of program dependence graphs. Then we discuss the reasons

why it was necessary to modify the notion of a program dependence graph in order to

support dynamic impact analysis.

A program dependence graph representation of a program is used in several applica-

tions: code optimization, parallelization, debugging and software testing. Dependence

graphs were introduced by Kuck, Muraoka and Chen [38] as an intermediate repre-

sentation suited for performing optimizations. Ferrante, Ottenstein and Warren [16]

introduced the program dependence graph in order to provide a \unifying framework

in which previous work in program optimization may be applied" (page 319). They

describe a program dependence graph in which the nodes are statements and predicate

expressions, and the edges represent program dependencies. They provide suggestions

as to how one could construct a �ne grained program dependence graph in which the

nodes are operators and operands. Each dependence in a program is classi�ed as being

either a control dependence or a data dependence. Data dependencies are further clas-

si�ed as
ow dependence [25], output dependence [37], or antidependence [37]. A
ow

dependence represents a de�nition-use association, an output dependence represents the

sequencing of multiple de�nitions of the same object and an antidependence represents

sequencing between a use and a de�nition of a variable. The data dependencies are

52 CHAPTER 4. IMPACT GRAPHS

further characterized as loop-carried or loop-independent . The former captures the de-

pendencies that arise due to multiple iterations through a loop, while the latter captures

the dependencies that occur because of execution order, regardless of loop iteration.

Horwitz, Prins and Reps [25] evaluated the adequacy of program dependence graphs

for representing programs. They introduced the notion of a def-order dependence [24]. A

def-order dependence establishes a partial order among the de�nitions of a variable that

reach a speci�c use of the variable. In order to de�ne an algorithm for interprocedural

slicing, Horwitz, Reps and Binkley [26] proposed the notion of a system dependence

graph that extends the notion of a program dependence graph to include procedure

calls.

Ottenstein and Ellcey [58] discuss the practical di�culties encountered while imple-

menting a program dependence graph as de�ned in [16] and describe their approach in

resolving those di�culties. They suggest ways to represent array references, procedure

calls, input-output and case statements.

Podgurski and Clarke [62] introduce the notions of weak control dependence and

strong control dependence. \The essential di�erence between weak and strong control

dependence is that weak control dependence re
ects a dependence between an exit

condition of a loop and a statement outside the loop that may be executed after the

loop is exited, while strong control dependence does not" [62, page 968]. They refer to

data and control dependencies as syntactic dependencies and introduce the concept of

semantic dependence. Informally, a program statement s is semantically dependent on

statement s0 if the function computed by s0 a�ects the execution behavior of s in some

execution. The results of their study indicate that although syntactic dependence is a

necessary condition for semantic dependence, it is by no means su�cient. In principle,

we agree with the importance of semantic dependencies advocated by Podgurski and

Clarke. In fact, roughly speaking, the goal of dynamic impact analysis is to examine and

4.6. RELATED WORK ON PROGRAM DEPENDENCE GRAPHS 53

quantify the semantic dependencies between various program entities and the output.

However, the de�nition of semantic dependence proposed in [62] is not concrete enough

for e�ective use in dynamic impact analysis. In particular, it does not specify how to

determine whether a semantic dependence has been demonstrated or not.

The program impact graph proposed in this chapter is conceptually similar to the

�ne grained program dependence graph suggested by Ferranti, Ottenstein and Warren

[16]. This follows since the impact relation can be looked upon as an inverse of the

dependence relation. That is, when an entity B depends on entity A, we can say that

A can potentially have an impact on B. However a program dependence graph was

not considered adequate for providing the infrastructure required to support dynamic

impact analysis. We discuss below the three main reasons for modifying the notion of

a program dependence graph in order to support dynamic impact analysis.

In the program impact graph, besides data and control dependencies, we also rep-

resent reference dependence and operator dependence. For example, in the expression

a[i] + b, the value of i is used in an address computation. An incorrect value of i would

cause an incorrect memory location to be accessed, and depending on the data stored

in that location, the result of the addition would either be correct or incorrect. On the

other hand, if the value of b is incorrect, the result of the addition operation will also be

incorrect. Our experience has been that address computation errors behave di�erently

from data computation errors. Hence it was important to represent address computa-

tions and their impact on the program behavior. Also, in order to capture the e�ect of

operator faults, it was necessary to represent the impact due to an operator.

In a program dependence graph, the
ow dependence edges traditionally represent

data
ow between a de�nition and a use of a variable. In order to understand the impact

of a variable use on the output, we need a more detailed data
ow representation. There-

fore, the program impact graph explicitly represents the data
ow from an operand to the

54 CHAPTER 4. IMPACT GRAPHS

result of an operation or from a function result to the temporary variable representing

a function return value at the call-site, and so on.

Often, a decision branch a�ects program behavior by avoiding a state change. For

example, in an if statement without an else part, the false branch may a�ect the

program behavior by avoiding a variable de�nition. In a program impact graph, we

have the ability to represent the impact due to a decision branch which a�ects program

behavior by avoiding one or more of the following kinds of state-changes: an output,

a variable de�nition, inde�nite iteration, and inde�nite recursion. A program depen-

dence graph does not provide means for representing such impact. Korel and Laski [36]

introduced the notion of a potential in
uence in the context of fault localization. In a

very recent paper, Agrawal, Horgan and Krauser [3] revised this notion to a potential

dependence while de�ning the concept of a relevant slice. According to the revised de�-

nition, \the use of a variable v, at a location, l, in a given execution history is said to be

potentially dependent on an earlier occurrence, p, of a predicate in the execution history

if (1) v is never de�ned between p and l but there exists another path from p to l along

which v is de�ned, and (2) changing the evaluation of p may cause this untraversed

path to be traversed" [3, page 353]. This de�nition considers only the potential impact

of a predicate on the data state. Our notion of potential control impact also includes

the potential impact of a predicate on the output state and the control state.

The reasons mentioned above will become clearer in our use of the program impact

graph while carrying out dynamic impact analysis, as presented in chapter 5.

Chapter 5

Dynamic Impact Analysis

5.1 Introduction

The objective of dynamic impact analysis is to measure the error sensitivity of the

output of an execution to the potential sources of errors in the execution. A transition

from one execution state to another could introduce an error in the execution. Similarly,

an incorrect operand or operator could introduce an error in the execution. Therefore,

we treat all entity instances as potential sources of errors and for each entity instance x,

we would like to estimate the sensitivity of the output to errors in x. Usually, there is no

probabilistic element in error propagation; a speci�c error in x either propagates or does

not propagate to the output. Therefore, when speaking of the sensitivity of the output

to errors in x we are implicitly referring to the probability that an error, randomly

chosen from a set of plausible errors for x, when introduced in x, will propagate to the

output. Clearly, this probability depends on the set of errors for x and the probability

distribution used for randomly choosing an error from the set. So the �rst problem is

to determine the sets of plausible errors for each entity instance in an execution and the

relative importance of the errors in each error set. For the time being, let us assume

55

56 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

that we have this information and we compute the above probability (say px) for the

entity instance x. How should we interpret the value of px? When px is high (near 1.0),

it means that the output is very sensitive to an error in x. When px is low (near 0.0),

it means that the output is very insensitive to an error in x. We can relate this to the

correctness of the value of x as follows.

� If the output is sensitive to an error in x, and if the output is correct, then the

value of x is likely to be correct.

� However, if the output is insensitive to an error in x, we cannot say anything

about the correctness of the value of x.

Thus, if we can compute px for every entity instance x in an execution impact graph,

that would meet our objective of measuring the error sensitivity of the output to po-

tential sources of errors in the execution. However, as discussed in section 3.4, the

computation of these probabilities is extremely expensive. Therefore, we de�ne heuris-

tics to estimate px. The estimate is referred to as the impact strength of x, and it serves

as a measure of the sensitivity of the output to errors in x. In this chapter, we describe

these heuristics and the resulting algorithm for carrying out dynamic impact analysis.

The motivation behind the design of the heuristics was to achieve low computational

complexity, preferably proportional to the complexity of the original execution with a

small constant of proportionality. In order to achieve this complexity goal, we made

several compromises in our design of the framework for dynamic impact analysis. Each

of these compromises are clearly identi�ed throughout this chapter.

5.2. NEW CONCEPTS 57

5.2 New Concepts

5.2.1 Acceptable Value Set

Consider an expected output value v. If v is an integer value, we say that a value v0

is erroneous if v0 6= v. However, in the context of
oating point numbers, when we say

that v0 is erroneous, we mean that v0 is not in the acceptable range of v. To capture this

notion in our formal framework, we de�ne the acceptable value set of entity instance

x, denoted by A(x), as the set of all the values of x that will be acceptable to the test

oracle. In a numeric program, the acceptable value set for an output value may be

speci�ed as fv � �g, where � is the acceptable error. Usually, for entity instances with

integral or enumerated values, A(x) is a singleton set.

5.2.2 Error Set and Error Distribution Function

We are interested in measuring the sensitivity of the output to a set of plausible errors

in an entity instance x. Therefore, we associate the abstract concept of an error set

with each entity instance. Ideally, the error set of x should represent the kinds of

errors possible in x during an execution due to various plausible faults in the program.

However, in the absence of well-accepted fault models for software, we believe that it

is not possible to accurately model this ideal situation and therefore it is necessary to

consider approximate models.

Taking a naive approach, one could de�ne the error set of x independent of the

e�ects of plausible faults as follows.

"(x) = fw j w 62 A(x) ^ w 2 W (E�1(x))g

Recall that E�1(x) is the entity corresponding to x, W (X) is the set of all valid values

allowed by the entity X , and A(x) is the set of acceptable values for x. "(x) is a fault

independent error set since it considers all possible allowable error values for the entity

58 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

instance x. For example, let x be a reference to a variable of type integer with the

value 7. The fault independent error set, "(x) is given by fvjv 6= 7; v 2 Ig, where I is

the set of machine-representable integers.

A problem with this model is that it gives undue importance to error values that are

not plausible for x. In reality, some error values are more likely than others. In order to

model this, one could choose the error sets based on the information about the e�ects

of plausible faults. A fault dependent error set of x, denoted by "(x;F), represents the

alternate values of x that could result when a fault represented by F is present in the

program. Note that "(x;F) � "(x). There are two problems with this approach. First,

there are no well-accepted fault classi�cations for software. Second, even if we were

targeting a well-de�ned fault class F , this approach does not specify how to compute

the e�ect of the faults represented by F on the values of various entity instances in the

program. For example, let x be an entity instance with the value 7. Suppose we were

interested in the class of faults represented by o�-by-one faults. One might be inclined

to de�ne the fault dependent error set for this fault, "(x;F) to be be f6, 8g. However,

this error set does not capture the e�ect of o�-by-one faults at other locations in the

program.

Given these intrinsically di�cult problems, we take a pragmatic approach to ap-

proximate the ideal situation described earlier. Rather than representing all possible

errors in x as a single class of errors, as in the fault independent approach, we consider

di�erent commonly observed error classes. An error in an entity instance x could either

represent an error propagated from elsewhere or be an error caused by a fault directly

associated with x. Presently, we consider three classes of errors to capture the e�ect of a

fault on the value of entity instances immediately a�ected by the fault: delta errors , ar-

bitrary errors and reference errors . The arbitrary errors of x are selected by uniformly

sampling W (X), the set of allowable values for X . The delta errors of x represent errors

5.2. NEW CONCEPTS 59

caused by slight modi�cations to the value of x. The reference errors of x represent

the errors caused by referencing an entity other than X . The details regarding the

actual computation of these errors are deferred until section 6.2.1. In addition to these

three error classes, we also consider the error class representing propagated errors . The

propagated errors of x are those transmitted from x's impact predecessors. Once again,

the details of computation of the propagated errors are deferred until section 6.2.1.

The error sets of x are denoted as "(x; C) where C refers to one of the four error classes:

delta, arbitrary, reference, and propagated.

In order to randomly choose an error from an error set, we need to specify a prob-

ability distribution function over the range of values in the error set. One could use

such a distribution function to de�ne the relative importance of various kinds of error

classes. However, for the purpose of this thesis, we will assume a uniform distribution

unless otherwise speci�ed.

Note that the notion of an error corresponds to an entity instance. This is di�erent

from the notion of a mutant corresponding to an entity. For example, when a variable

reference X is replaced by Y in the program P , it is referred to as creating a mutant.

However, when the value of entity instance x is modi�ed in the execution T , it is referred

to as introducing an error which results in a slightly altered execution T 0.

Compromise: Our de�nition of error sets approximates the ideal situation in which

the error set of x would represent the e�ect of all plausible faults. The classes of errors

considered in the above model do not represent all kinds of errors. For example, one

could consider an error class that represents periodic repetition of the value of x or

one that represents the special values for the type of X . Our position is that the basic

error classes can be re�ned and new error classes can be added once we demonstrate

the usefulness of this approach.

60 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

5.3 Impact Strength

The execution impact graph captures the dynamic impact relationships among various

entity instances that were demonstrated during the execution. Not all impact relation-

ships are alike. Not only do they di�er in the kind of impact, the individual \strength"

of the impact may also vary. Intuitively, x's impact on y is strong if any error in the

value of x is re
ected as an error in the value of y. The impact is weak if an error in

the value of x does not always result in an error in the value of y. Thus, the strength

of x's impact on y should indicate the sensitivity of y to errors in the value of x. In

this section, we formalize this intuitive notion of impact strength for dynamic impact

relationships.

Let T be an execution impact graph and x and y be two entity instances within the

impact graph. As mentioned in the previous section, when speaking of the sensitivity of

y to errors in x, the following two parameters are important: the set of errors for x and

the probability distribution used for randomly choosing an error from the set. Given

these two parameters, we de�ne the strength of x's impact on y as the probability that

an error, randomly chosen from a set of plausible errors for x, when introduced in x,

will propagate to y. However, as mentioned before, the computation of this probability

is extremely expensive, hence we de�ne heuristics to estimate it.

There are various connectivity situations between x and y that need to be investi-

gated:

� there is an impact arc hx; yi and that is the only impact path from x to y, or

� there is only one impact path of length > 1 from x to y, or

� there are multiple impact paths from x to y.

The following subsections deal with each of these situations.

5.3. IMPACT STRENGTH 61

5.3.1 Strength of an Impact arc

Each impact arc can be looked upon as a �lter which may or may not allow an error to

be propagated. Intuitively, an impact arc which propagates all the errors represented

by an error set is said to have a strong impact with respect to that error set. On the

other hand, an impact arc which does not propagate any error represented by an error

set is said to have no impact with respect to that error set. The following de�nitions of

impact strength attempt to capture this intuition.

In a speci�c execution T , consider entity instances x and y and the impact arc

hx; yi connecting them. Recall that V (x) denotes the value of the entity instance x and

"(x; C) denotes the error set of x representing the error class C. By de�nition of "(x; C),

V (x) 62 "(x; C).

Consider a hypothetical situation, in which the value of x is changed from V (x) to

V 0(x) while the values of all other entity instances in the impact predecessor set Ipred(y)

remain unchanged. Assume that the new value of x to cause a change (if any) in the

value of y only via the impact arc hx; yi. That is, if there is another impact path from x

to y, the error is assumed not to propagate via that path. Let V 0(y) be the resulting new

value of y. Recall that A(y) is the acceptable value set of y. The following de�nition of

impact strength applies to this hypothetical situation.

De�nition 1 Given that V 0(x) is randomly chosen from the error set "(x; C), the im-

pact strength of an impact arc hx; yi, denoted by ImpS(hx; yi; C), is de�ned as P [V 0(y) 62

A(y)]. This assumes that the error in V (x) can propagate only along the impact arc

hx; yi.

Thus, the impact strength ImpS(hx; yi; C) represents the probability of transmitting

an error representing the error class C from x to y along the impact arc hx; yi. For an

impact arc contained in computation operations, this impact strength can be computed

62 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

Example:

Consider an addition operation, h + f with result r. Let the error set of + rep-
resenting delta errors be the set of all other binary arithmetic operators of the C
language and the two special operators < and >.a That is, "(+; delta) = f*, -, /, %,
< , >g. Let f.2, .4, .2, .1, .05, .05g be the corresponding error distribution function.b

That is, 0.2 is the probability of incorrectly using * instead of +, 0.4 for using -, and
so forth. In the following table, we compute the impact strength for the impact arc
h+; ri for three di�erent combinations of operand values.

a + b) r Operators resulting in error Impact strength for h+; ri

3 + 0) 3 f*, /,%, >g .55 (:2 + :2 + :1 + :05)
2 + 2) 4 f-, /,%, < , >g .8 (:4 + :2 + :1 + :05 + :05)
3 + 1) 4 f*, -, /,%, < , >g 1.0 (:2 + :4 + :2 + :1 + :05 + :05)

Note how the impact strength varies for various instances of the same operation.

aThe special operators < and > simulate alternate simpli�ed expressions: a < b � a and
a > b � b.

bThis distribution was selected for illustrative purposes only. In our implementation, we use a
uniform distribution.

Figure 5.1: Strength of an Impact arc

5.3. IMPACT STRENGTH 63

by actually executing the operation involving the impact arc for each error in the error

set and obtaining a frequency estimate for the probability. In case the error set is in�nite

or very large, the frequency estimate obtained from a small representative sample of the

error set may su�ce. The example in Figure 5.1 illustrates the computation of the

strength of an impact arc.

Compromise: In order to avoid a combinatorial explosion, the interaction among the

errors in the operands of an operation is not considered in de�ning the strength of an

impact arc. As a consequence, the failure of error propagation due to cancelling errors

(x3.4, page 25) is not accounted for in the impact strength computation.

5.3.2 Cumulative Impact Strength

Now we consider the other two connectivity situations between entity instances x and y.

� there is only one impact path of length > 1 from x to y, or

� there are multiple impact paths from x to y.

Strength of an Impact Path from x to y

Consider, once again, a situation in which the value of x is changed from V (x) to V 0(x).

Assume that the new value of x causes a change (if any) in the value of y only via the

impact path fx; e1; e2; � � � ; em�1; yg. That is, if there is another impact path from x to

y, the error is assumed not to propagate via that path. Let V 0(y) be the resulting new

value of y. The following two de�nitions of impact strength apply to this hypothetical

situation.

De�nition 2 Let p denote the impact path fe0; e1; e2; � � � ; em�1; emg, where e0 = x and

em = y. Given that V 0(x) is randomly chosen from the error set "(x; C), the impact

strength of the impact path p, denoted by ImpS(p; C), is de�ned as P [V 0(y) 62 A(y)].

This assumes that the error in V (x) can propagate only along the impact path p.

64 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

Thus, the impact strength ImpS(p; C) represents the probability of transmitting an

error representing the error class C from x to y along the impact path p. The approach

described for computing the strength of an impact arc could also be used here, but it

is not practical for the following reasons. First, propagating an error along an impact

path may require the execution of an alternate control path. The alternate execution

may take very long or may never terminate. Second, it may not be possible to prevent

the error in x from propagating to y via impact paths other than p. Considering these

problems, we next propose a more practical de�nition which gives an estimate of the

impact strength that satis�es the above de�nition.

De�nition 3 Let p denote the impact path fe0; e1; e2; � � � ; em�1; emg, where e0 = x and

em = y. Given that V 0(x) is chosen from the error set "(x; C), the estimated impact

strength of the impact path p, denoted by EstImpS(p; C), is de�ned as follows.

EstImpS(p; C) = min(ImpS(hx; e1i; C);
m�1

min
i=1

ImpS(hei; ei+1i; propagated))

Informally, this de�nition says that the impact strength of an impact path is limited

by the strength of its weakest constituent arc, where the impact strength of hx; e1i is

computed with respect to the error set "(x; C) while the impact strength of each of

the other arcs is computed with respect to the corresponding error set representing

propagated errors. One could also de�ne the strength of an impact path as the product

of the strengths of the constituent arcs, but that requires the questionable assumption

that the impacts of individual arcs were statistically independent.

Compromise: In order to reduce the computational complexity, the above de�nition

makes several approximations. First, the propagated error set used for computing the

strength of the weakest arc is assumed to proportionately represent the e�ects of the

errors in the original error set "(x; C). Second, it may be the case that the errors prop-

agated by one impact arc result in the errors that are not propagated by a subsequent

5.3. IMPACT STRENGTH 65

impact arc. In such a case, ideally, the combined strength should be zero even though

both impact arcs have non-zero strengths. However, the above de�nition would com-

pute the combined strength as the minimum of the individual impact strengths. Third,

it may be the case that propagating an error results in an impact path di�erent from

that used for computing the impact strength. This is possible when there is a control

or a reference impact arc in the original impact path. As we shall see later, this last

approximation is the primary cause for inaccuracy in the computed impact strengths.

Combining Strengths of Multiple Impact Paths from x to y

We now discuss the general case. Recall that Paths(x; y; �) denotes the set of paths from

entity instance x to entity instance y such that each path has impact kind �, where �

is one of fcontrol, data, operator, reference, ctrl-ref, op-ctrl, op-ref, mixedg.

Consider a situation in which the value of x is changed from V (x) to V 0(x). Assume

that the new value of x causes a change (if any) in the value of y via an impact path in

Paths(x; y; �). Let V 0(y) be the resulting new value of y. The following de�nitions of

impact strength apply to this hypothetical situation.

De�nition 4 Let (x; y) denote a pair of entity instances. Given that V 0(x) is chosen

from the error set "(x; C), the impact strength of x's impact on y via paths with impact

kind �, denoted by ImpS((x; y); C; �), is de�ned as P [V 0(y) 62 A(y)].

Thus, the dynamic impact strength ImpS((x; y); C; �) represents the probability of trans-

mitting an error from x to y along the paths with impact kind �.

Once again, it is not practical to compute the strength of x's impact on y using the

above de�nition for roughly the same reasons mentioned for de�nition 3 computing the

strength of an impact path. Below, we propose a more practical de�nition which gives

an estimate of the impact strength that satis�es the above de�nition.

66 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

De�nition 5 Let (x; y) denote a pair of entity instances. Let Paths(x; y; �) = fp1,

p2, p3, � � �, pmg. Given that V 0(x) is chosen from the error set "(x; C), the esti-

mated impact strength of x's impact on y via paths with impact kind �, denoted by

EstImpS((x; y); C; �), is de�ned as follows.

EstImpS((x; y); C; �) =
m

max
i=1

EstImpS(pi; C)

Informally, the cumulative impact strength of a set of impact paths from x to y is

de�ned as the strength of the most sensitive impact path in the set.

Compromise: In general, one would expect the likelihood of propagating an error

via a set of impact paths to be greater than that via any single impact path from the

set. From this argument, it may seem reasonable to consider the impact paths in a set

as statistically independent and use the appropriate probability rules to combine the

strengths of individual paths to obtain an even greater estimate for the combined impact

strength. However, in our experience, impact paths are rarely independent. Moreover,

the errors propagating along two impact paths may cancel one another. Hence, we

decided to choose the above de�nition as a middle ground between the two opposing

tendencies.

5.3.3 Impact on the Observable Program Behavior

So far we have de�ned the impact strength of an entity instance x on an entity instance y.

We are interested in computing the impact strength of every entity instance in an

execution with respect to the output of the execution. Let O1, O2, etc. denote the

output entities of the program and
j
oi denote the jth instance of the output entity

Oi. We would like to combine the impact strengths of x on individual output entity

instances, to compute the impact strength of x on the entire output. Once again,

we cannot assume that the impacts are statistically independent, hence we choose the

following de�nition:

5.3. IMPACT STRENGTH 67

De�nition 6 Let x denote an entity instance. Let Paths(x; y; �) = fp1, p2, p3, � � �, pmg.

Given that V 0(x) is chosen from the error set "(x; C), the estimated impact strength of

x's impact on y via paths with impact kind �, denoted by EstImpS((x; y); C; �), is de�ned

as follows.

EstImpS(x; C; �) = max
i;j

EstImpS((x;
j
oi); C; �)

Thus, the impact strength of an entity instance x is de�ned as the maximum of the

strengths of its impacts on all of the output entity instances.

Compromise: All of the output entity instances are treated the same by the above

de�nition. In reality, towards the purpose of detecting a failure by observing the output,

some output entities are not as useful as others. For example, in the output of a database

query, a constant header string in the output is less useful for detecting a failure than

the values representing the result of a query. Also, as mentioned during the discussion

on observable nodes (x4.5, page 50), not all of the considered output entity instances

are strictly observable.

5.3.4 Impact Strength of a Mutation

In order to study the applicability of dynamic impact analysis for strong mutation test-

ing [13, 10], we also de�ne the impact strength of a mutation. Recall from section 2.7

that a mutation is a single syntactic change to the program and the resulting alternate

program is called the corresponding mutant. In our framework, we consider only those

mutations that require substitution of one program entity in an operation by an alter-

nate program entity such that the program remains syntactically correct .1 Consider a

mutationM of the entity X in a program. In an execution of the corresponding mutant,

the operation containing M may be executed zero or more times resulting in various

instances of the mutation M . An instance of the mutation is said to be weak-killed
1A program is syntactically correct when it compiles without errors.

68 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

if the result of the original operation is di�erent from that of the altered operation

containing the mutation instance. For example, consider the operation 2 * 2 which

yields the result 4, and the two operator mutations: one replacing *" by \/" and the

other replacing *" by \+". The �rst mutation is marked weak-killed since the altered

operation produces a di�erent result than the original operation. The second mutation

is not weak-killed since the altered and the original operations produce the same result.

For each of the weak-killed mutation instances m, its impact strength is de�ned

as the impact strength of the corresponding original entity instance x. If a mutation

instance is not weak-killed, its impact strength is 0. That is,

EstImpS(m; C; �) =

8><
>:

EstImpS(x; C; �) if m is weak-killed

0 otherwise

Clearly, the impact of the mutation M on the output depends on the impact of the

weak-killed instances of the mutation. Therefore, we need to select an appropriate

function for combining the impact strengths of the weak-killed instances. Once again,

the question is, can we assume statistical independence among the instances of a muta-

tion? The answer is yes for some mutations and no for others. It depends on the nature

and quality of interaction among the di�erent instances of a mutation. Initially, we

did not assume statistical independence and de�ned the impact strength of a mutation

as the maximum of the impact strengths of its weak-killed instances. However, from

preliminary experiments, we found that the likelihood of error propagation gradually in-

creased with the number of weak-killed instances of a mutation. In order to capture this

gradual increase, we modi�ed our decision and used the following method for combining

the impact strengths based on the assumption of statistical independence.

De�nition 7 LetM denote a mutation and
1
m,

2
m, � � �, nm denote the instances of M .

Let si denote EstImpS(im; C; �), the impact strength of mutation instance
i
m. For con-

venience, let s0 = 0. The estimated strength of M 's impact on the output via paths with

5.3. IMPACT STRENGTH 69

impact kind �, denoted by EstImpS(M; C; �), is de�ned as follows.

EstImpS(M; C; �) =
nX

i=1

si

i�1Y
j=0

(1� sj)

The right hand side of the above equation uses the standard rule for computing the com-

bined probability of success, given individual probabilities of success for n independent

trials.

5.3.5 Combining Impacts of Di�erent Kinds

An entity instance x can have di�erent kinds of impact on the output. For example,

in the expression i * a[i-1], the variable i has both data and reference impact on

the result of the expression. The question is: what is the relative importance of the

di�erent kinds of impact? Initially, we did not have a clear answer to this question,

hence we de�ned the combined strength of di�erent kinds of impacts simply by taking

an average, as shown below.

De�nition 8 Let x denote either an entity instance or a mutation. Let EstImpS(x; C; �)

denote the strength of x's impact on the output via paths with impact kind �. Let K(x; y)

denote the set of di�erent impact kinds represented in the impact paths from x to the

output and � denote a member of this set. The estimated average impact strength of x's

impact on the output via all impact paths is de�ned as follows.

EstImpS(x; C) = avg
�

EstImpS(x; C; �)

Later, during our initial validation experiments, we observed that the impact strengths

involving only data impact were much more accurate than those involving control and

reference impacts. Also from our experience, we know that a substantial fraction of

entity instances do not have data impact on the output. Hence we de�ned the following

method for combining di�erent impact kinds so as to give dominance to data impact

when present.

70 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

De�nition 9 Let x denote either an entity instance or a mutation and EstImpS(x; C; �)

denote the strength of x's impact on the output via paths with impact kind �. Let K(x; y)

denote the set of di�erent impact kinds represented in the impact paths from x to the

output and �0 denote a member of K(x; y) � fdatag. The estimated average impact

strength of x's impact on y via all impact paths, EstImpS(x; C), is de�ned as follows.

8>>>>>><
>>>>>>:

avg (EstImpS(x; C; data); avg
�0

EstImpS(x; C; �0)) if K(x; y) � fdatag

EstImpS(x; C; data) if K(x; y) = fdatag

avg
�0

EstImpS(x; C; �0) otherwise

Compromise: In the above de�nition, all impact kinds other than data impact are

treated the same. In theory, one could assign di�erent weights to each of the impact

kinds based on their relative importance in error propagation. However, with our limited

experience with dynamic impact analysis, we could not come up with a justi�able scheme

for assigning such weights. As we gain more experience, we hope to address this issue

in future.

5.3.6 Summarizing Impact Strengths

ImpS(hx; yi; C), the strength of impact arc hx; yi with respect to the error set "(x; C),

represents the probability of transmitting an error representing an error class C along

the impact arc. The presence of the error class parameter C emphasizes the importance

of the choice of error sets while computing impact strengths.

EstImpS(p; C), the estimated strength of the impact path p is de�ned as the mini-

mum of the impact strengths of the arcs constituting the impact path.

EstImpS((x; y); C; �), the cumulative impact strength of a set of paths of impact

kind � from x to y, is de�ned as the strength of the most sensitive impact path in

the set.

5.4. COMPUTING IMPACT STRENGTHS 71

The impact strength of an entity instance x, EstImpS(x; C; �), is de�ned as the

maximum of the strengths of its impacts on all of the output entity instances.

The impact strength of a mutation M , EstImpS(M; C; �), is de�ned in terms of the

impact strengths (si) of its instances as
Pn

i=1 si
Qi�1

j=0(1� sj).

For an entity instance or a mutation, the strengths of di�erent kinds of impacts on

the output are combined by taking a data dominant average of the impact strengths.

5.4 Computing Impact Strengths

Having de�ned the theoretical framework and rationale behind impact strengths, we

now describe our algorithm for analyzing an execution to compute the strength of the

impact of each entity instance on the observable program behavior. The computational

complexity of the algorithm is also discussed. A prototype implementation of dynamic

impact analysis is described in chapter 6.

5.4.1 Algorithm Overview

The algorithm for carrying out the impact analysis of a speci�c execution has two phases.

In the �rst phase, the program is executed. While executing the program, the

strengths of individual impact arcs are computed, and this information is saved in

an execution trace. Also, the observable entity instances (those that directly a�ected

the observable program behavior) are marked in the trace. Thus, the execution trace

essentially contains the entity instances and the impact strengths of the impact arcs.

In the second phase, the execution trace is processed in reverse. This amounts to

traversing backwards in the execution impact graph ensuring that an entity instance is

reached only after all its impact successors are processed. When an entity instance y is

encountered during this traversal, it is processed as follows.

72 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

if y is observable,

assign 1.0 impact strength to y

else

assimilate all pending impact strengths propagated from y's impact successors

and compute the impact strength of y.

for each impact predecessor x of y,

propagate y's impact strength to x via hx; yi

and append it to the list of pending impact strengths of x.

end for each

end if.

It is important to note that only a small portion of the execution impact graph

needs to be present in the primary random access memory at any point of time during

the algorithm. We will discuss this further while presenting the complexity analysis in

section 5.4.6.

In the above overview of the algorithm, three components need elaboration: comput-

ing the strength of an impact arc, assimilating the pending impact strengths of an entity

instance and propagating the impact strength via the arc hx; yi. These are described in

subsequent sections.

5.4.2 Computing Strength of an Impact Arc

Recall de�nition 1 (page 61) for the impact strength of an impact arc hx; yi.

Given that V 0(x) is randomly chosen from the error set "(x; C), the impact

strength of an impact arc hx; yi, denoted by ImpS(hx; yi; C), is de�ned as

P [V 0(y) 62 A(y)].

In order to estimate this probability, we �rst need the error set "(x; C), the error

5.4. COMPUTING IMPACT STRENGTHS 73

distribution function used for randomly choosing an error from the error set, and the

acceptable value set A(y). Section 6.2.1 discusses how we compute error sets in our

prototype implementation. We use a uniform distribution for choosing an error from

the error set. Also, we use a singleton A(y) with the original value of y as the only

member. In the subsection 5.4.5, we discuss how a non-singleton acceptable value set

can be incorporated in this algorithm.

For operations such as data or control transfer operations, the impact strength is

always 1.0 because any error in x is directly re
ected as an error in y. For computation

operations and referencing operations, we can estimate the above probability by two

alternate approaches. One approach is to select a random sample of alternate values

of x from the error set, perform the operation with each of these alternate values,

count the number of times the resulting value of y has an error, and thus compute a

frequency estimate for the above probability. Another approach is to use a rule-based

scheme. That is, for each operation kind, use a set of rules which examine the operands

and estimate the above probability. In fact, one could use a combination of the two

approaches: use the �rst approach for some kinds of operations and the second approach

for the rest. In our prototype implementation (x6), we used only the �rst approach. An

important point to note is that this estimate should be performed in time bounded by

a constant, as explained in the section 5.4.6 on complexity analysis. Hence, we require

that the size of the sample of alternate values be bounded by a constant.

5.4.3 Propagating Impact Strengths

While back-propagating an impact strength along an impact arc hx; yi, we combine the

strength of the impact arc with the strength of entity instance y by taking the minimum

of the two strengths in accordance with the de�nition 3 on page 64. The impact strength

thus combined represents the impact strength of the set of impact paths from x to the

74 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

output that include the impact arc hx; yi.

5.4.4 Assimilating Impact Strengths

We process an entity instance y when its turn comes while processing the execution

history in reverse. Since the execution impact graph is a directed acyclic graph, this

ensures that all of the impact successors of y have been processed before processing

y and have propagated their strengths to y. So we �rst determine y's strength by

assimilating the various strengths propagated from its impact successors. Conceptually,

this is accomplished by taking the maximum of all of the pending impact strengths at

y in accordance with the de�nition 5 on page 65. Actually, in order to keep a constant

bound on the number of pending impact strengths, assimilation is carried on the
y as

new impact strengths are added to the list of pending impact strengths.

5.4.5 Other Details and Possible Extensions

In order to keep the above description of the algorithm simple, we purposely omitted

the following items: handling of the potential control impact, handling of the impact

kind, and determining the acceptable value set for
oating point values.

Handling of Potential Control Impact

Recall that a code segment node representing a decision arm has three attributes rep-

resenting potential control impact: potentially-controls-exit , potentially-controls-output ,

and list-of-potentially-impacted-variables . When a decision arm instance is encountered

in phase two, before assimilating its pending impact strengths, these attributes are pro-

cessed as follows. If the decision arm potentially controls an exit or potentially controls

an output, an impact strength of 1.0 is added to the list of pending impact strengths. If

the list of potentially impacted variables is non nil, the decision arm could have impacted

5.4. COMPUTING IMPACT STRENGTHS 75

those variables by avoiding their rede�nitions. We capture this impact as follows. Dur-

ing phase one, when a decision arm is instantiated, the nodes corresponding to the last

de�nition of each of the potentially impacted variables are recorded in the trace record

for this decision arm instance. During phase two, our processing strategy ensures that

the decision arm instance will be processed before any such variable de�nition instances.

The pending impact strengths, if any, of each such de�nition instance are added to the

pending impact strengths of the decision arm instance. In order to ensure that the time

for processing the potential control impact on variables is bounded by a constant, it

is important that the number of potentially impacted variables processed per decision

arm be bounded by a �xed constant. Therefore, when the list of potentially impacted

variables is very large, only a �xed size random sample is processed.

Handling Impact kind

When the impact strength of 1.0 is introduced at an observable entity instance in the

second phase of the algorithm, we associate with it an impact kind. If the value of entity

instance appears in the output, the associated impact kind is data, otherwise it is control .

The impact strengths for various impact kinds are propagated in parallel. Recall that

each impact arc has an impact kind attribute. While combining the strength of an

impact arc with a propagated impact strength, the impact kind of the resulting strength

is determined by the rules on page 49 in section 4.5. While processing the pending

impact strengths at an entity instance, the impact strengths of di�erent impact kinds

are assimilated separately. At the end, the strengths of di�erent kinds of impact are

combined by computing the data-dominant average as per the de�nition 9 on page 70.

Determining Acceptable Value Set

The approach of taking a singleton acceptable value set is not always desirable for

oating point values. In fact, the notion of acceptable value set was invented primarily

for taking care of the fact that in numeric programs using
oating point values, usually

76 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

a range of values is acceptable as an output value. In such cases, one would need to

determine the acceptable value set for various entity instances with
oating point values.

Suppose that an output value has a tolerance of ��. This does not necessarily mean

that all intermediate
oating point values in the computation have the same tolerance.

In order to determine the acceptable tolerance at various intermediate points in the

computation we propose two preprocessing phases, phase-i and phase-ii . In phase-i , we

simply execute the program and produce the execution history. In phase-ii , we start

with the output tolerance and propagate it backwards through the entire computation

as follows. Consider a
oating point operation where y is the result of the operation

and x is one of the operands of the operation, such that there is an impact arc hx; yi.

Let @y=@x denote the partial derivative of y with respect to x. Given the acceptable

tolerance �y for y, the acceptable tolerance �x for x is given by �y=(@y=@x). This

would work for all continuous functions. For piecewise continuous functions one would

have to take a one sided partial derivative. This approach is applicable to all
oating

point arithmetic operators in the C language and commonly used mathematical library

functions. However, due to our limited knowledge about numerical programs, we do not

claim that this approach is applicable in general.

5.4.6 Complexity Analysis

In a typical application, the dynamic impact analysis algorithm would be run for every

test case execution of the program. Therefore, its performance is crucial to the feasibility

of the proposed approach. In this section, we analyze the computational complexity of

our algorithm. The notations used in the complexity analysis are given below.

t Number of operations executed during the program execution

n Number of nodes (entity instances) in the execution impact graph T

5.4. COMPUTING IMPACT STRENGTHS 77

e Number of arcs in the execution impact graph T

d Maximum nesting depth of control constructs in the program P

R Maximum number of storage locations used by the program execution at

any point of time during the execution. This includes the variable locations

allocated on stack, heap or global data space, and the locations allocated

for temporaries and function return address.

S Maximum amount of sequential �le storage space required by the program

execution.

Lemma 1 The number of nodes n and the number of arcs e in the execution impact

graph are each O(t).

Proof:

The maximum number of operands in an operation is bounded by a constant. When

an operation is executed, each of its operands is instantiated at most once. Therefore,

the number of entity instances corresponding to each executed operation is bounded by

a constant. Hence n = O(t).

The number of arcs in an execution impact graph can be divided into two classes:

those that are local to an operation and those that connect entity instances across

operations. The maximum number of local impact relationships within an operation

is bounded by a constant. There are only two kinds of arcs that are not local to an

operation: def-use impact arcs and implicit control impact arcs. Since a node can have

at most one incident def-use arc and at most one incident implicit control arc, the

number of such non-local arcs is O(n). Hence e = O(t) +O(n) = O(t). 2

During the second phase of dynamic impact analysis, when an impact arc hx; yi

is processed, the impact strength from y is propagated to x, and the entity instance

78 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

x becomes pending . It will be processed when the operation containing that node is

processed. The following lemma gives an upper bound on the number of such pending

entity instances at any time during the second phase.

Lemma 2 The maximum number of pending entity instances at any time during the

second phase of dynamic impact analysis is O(R), where R is the maximum number of

storage locations used by the program execution at any time during execution.

Proof:

For impact arcs that are local within an operation, the impacting entity instance gets

processed almost immediately after the impacted entity instance. There are only two

kinds of arcs that are not local to an operation: def-use impact arcs and implicit control

impact arcs. When a variable use node is processed, some variable de�nition node

receives the propagated strength from the use node and becomes pending. However,

at any point of time while processing the execution history in reverse, the number of

pending variable de�nition nodes cannot exceed R. When an impact strength is added

to a list of pending strengths, it is actually assimilated into the list, thus ensuring a

constant bound on the size of the list.

Recall that a node is an immediate member of the innermost encapsulating code segment

node and the implicit control impact arc connects a code segment to an immediate

member of that code segment. When an implicit control impact arc is processed, a

code segment node receives the propagated strength from an immediate member and

becomes pending. The number of such pending code segment nodes is bounded by the

expression (current-stack-depth�d). Note that d, the maximum nesting depth of control

constructs, is a small constant. Note also that each stack frame has one return address

location associated with it, which is already included in R. This proves the lemma. 2

The following discussion shows that the dynamic impact analysis algorithm has the

following space-time complexities:

5.4. COMPUTING IMPACT STRENGTHS 79

� time complexity of O(t),

� random-access space complexity of O(R), and

� sequential-access space complexity of O(S) +O(t).

We �rst show how one can compute the impact strength of an impact arc in constant

time and space. Then we show that the algorithm indeed has the above space-time

complexities.

Computing Strength of an Impact arc in Constant Time and Space

The storage requirement for computing the strength of an impact arc consists of the

space for the error set and the space for keeping track of the results of computation.

For an impact arc contained in a computation operation, the calculation of its

strength requires executing the operation as many times as the cardinality of the error

set. In order to ensure that this calculation takes constant time and space, the size of

the error set should be bounded by a constant. Therefore, if the actual error set is very

large or unbounded (e.g. an interval set), we select a constant size random sample from

that set. This approximation may cause inaccuracies in our computation if the sample

does not faithfully represent the entire population, however, it solves the problem of a

potentially unbounded computation.

Space Complexity

During phase one of dynamic impact analysis, there are two main sources of random-

access storage requirements: the space for program variables and the space for comput-

ing impact strengths. The former is clearly O(R). As shown above, the space required

for each computation of impact arc strength is constant and it can be deallocated once

the computation is complete. Thus the random-access space complexity of the �rst

phase is O(R).

80 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

During phase one, the sequential-access storage requirements for saving the execution

history and the strengths of impact arcs is clearly proportional to the number of nodes n

and the number of arcs e in the execution impact graph. From lemma 1, each of these is

O(t). Finally, our algorithm does not a�ect S, the sequential-access storage requirements

of the actual program execution. Thus the sequential-access space complexity of phase

one is O(S) +O(t).

During phase two, there are two main sources of storage requirements: the set of

pending entity instances (those that have received propagated strengths from one or

more of their respective impact successors but are yet unprocessed), and the impact

strength attributes on those entity instances. Lemma 2 shows that the maximum num-

ber of pending entity instances at a give time is bounded by R. With each entity

instance, the maximum number of di�erent kinds of associated strengths is bounded by

the total number of impact kinds, which is a constant (in our framework, we have eight

di�erent impact kinds). Thus, the random-access space complexity of the second phase

is also O(R).

Time Complexity

The time taken for phase one consists of two components: the time for executing the

operations and that for computing the impact strength for every impact arc. The

former is clearly O(t) since each operation takes a constant time. The latter is also

O(t), because from lemma 1, the number of arcs e in the execution impact graph is O(t)

and we have shown that computing the strength for an impact arc takes constant time.

The time taken for phase two is directly proportional to the number of nodes and

edges in the execution impact graph and the number of potential impact attributes

processed in a decision arm. In lemma 1, we have already shown that the number of

nodes and edges is O(t). By ensuring a constant bound on the number of potentially

5.5. RELATED WORK 81

impacted variables processed, the time for processing a decision arm instance is kept

within a constant bound. Thus, the time taken for phase two is also O(t).

5.5 Related Work

In this section, we discuss several research e�orts involving execution analysis that are

related to dynamic impact analysis.

Dynamic Program Slicing

Recall from section 2.8 that computing a dynamic program slice [2, 35] requires pro-

cessing of an execution history backwards and involves following the data and control

dependencies from the operations that a�ect the values of speci�ed variables. A similar

approach is used in the second phase of our algorithm to compute impact strengths. In

our algorithm, we start from the observable entity instances in an execution and follow

the impact arcs in reverse to reach all of the entity instances that had impact on the

output. Thus we traverse the dynamic program slice with respect to the output. Since

our goal is to compute impact strengths, we combine and propagate impact strengths

while traversing the program slice with respect to the output. In section 9.3 we discuss

how impact strengths can be used to compute a more accurate dynamic program slice.

Impact on the Output

Ural and Yang [69] proposed the All simple OI-paths criterion which requires exercising

simple control-
ow paths from input variables to the outputs in
uenced by the input.

They argue that the association between an input variable and an in
uenced output

variable is critical and must be examined during testing. However, no attempt is made

to ascertain dynamically whether an input variable actually has in
uence on the output.

82 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

In a recent paper[14], Duesterwald, Gupta and So�a propose a re�nement of the all-

uses criterion [64]. They consider a de�nition-use association to be exercised only when

some execution of the association has in
uence on at least one output value. Their basic

approach is as follows. Let Gs denote the static (program) dependence graph. During

an execution, a dynamic dependence graph Gd is built such that Gd � Gs. The edges

of the dynamic dependence graph represent the dependencies that were demonstrated

at least once during the execution. An output slice is obtained by starting from the

nodes representing output operations and taking the transitive closure using control

and data dependencies represented in the dynamic dependence graph. The de�nition-

use associations that are represented in the output slice are said to have output in
uence.

This is similar in principle to a sub-goal of dynamic impact analysis, since our algorithm

�nds the entity instances that had some impact on the program output in a speci�c

execution. There are two important di�erences between their approach and ours:

� Their approach detects only the no impact case, while our approach also detects

the cases of zero impact or weak impact. One of the important thrusts of our

research is the notion of impact strength | which attempts to give a quantitative

measure of the impact (or \in
uence"). The validation results described in chap-

ter 7 support our claim that the impact strength re
ects error sensitivity with

respect to the output.

� Since Gd � Gs, the dynamic dependence graph Gd does not distinguish between

di�erent execution instances of a de�nition-use association. As a consequence of

this approximation, their algorithm may incorrectly indicate that an association

has in
uence on the output.

Their approach has the same time complexity as dynamic impact analysis. The space

complexities of the two approaches di�er mainly in the treatment of the execution trace.

In their approach, because of the approximation mentioned above, the execution trace

5.5. RELATED WORK 83

needs to be processed only in the forward direction. Therefore, one could use a bu�er

in primary storage to hold parts of the execution trace before they are processed. In

our approach, we also need to process the trace in reverse to achieve greater accuracy.

Therefore, given limited primary memory, if an execution trace is very large, it will have

to be bu�ered in secondary storage.

Alternate Expression Analysis

In section 5.4.2, we outlined the procedure to compute the strength of an impact arc

which is reminiscent of the idea of testing a program expression by distinguishing it

from a set of alternate expressions originally proposed independently by Hamlet [23]

and Demillo, Lipton and Sayward [13]. Howden [27] used the same technique in his

proposal for weak mutation testing which was designed to reduce the cost of mutation

analysis [13]. Each of these research e�orts has been summarized in section 3.3.2.

Sensitivity Analysis

Voas [72] proposed the technique of sensitivity analysis with the goal of ranking program

locations \based on their ability to impact the program's computation". The term pro-

gram location refers to a program instruction or an operation. From [72], the sensitivity

of a program location l is an estimate of the minimum probability that a fault in l will

result in an output error under a speci�c input distribution. One factor in the compu-

tation of sensitivity is an estimate of the propagation probability { the probability (with

respect to an input distribution) that an error in the data state at a location causes an

output error. On the surface, it appears that the notions of impact strength and prop-

agation probability are identical since they both deal with the probability that an error

is propagated to the output. However, closer inspection reveals that they are di�erent

quantities obtained by di�erent approaches. Voas' propagation probability refers to the

likelihood that an error introduced in that location during execution is propagated to

84 CHAPTER 5. DYNAMIC IMPACT ANALYSIS

the output for a given input distribution. The program is executed for a large number

of inputs to estimate the propagation probability of a single location [72]. When a loca-

tion has a high propagation probability, it means that for most inputs, an error in the

execution of the location will be detected as an output error. In contrast, the impact

strength of an entity instance refers to the likelihood that in a speci�c execution, an

error injected in an entity instance during the execution is propagated to the output.

Using dynamic impact analysis, the impact strengths of all the entity instances in an

execution are estimated in a time proportional to the execution time. It is possible that

a location has a very low propagation probability with respect to an input distribution,

but has a high impact strength for a speci�c input. Thus, based on the propagation

probability with respect to an input distribution, it is possible that a location is said to

have poor testability even though in speci�c test cases the likelihood of propagation is

very high for errors in that location. In contrast, dynamic impact analysis would insist

that an entity is said to have poor testability only when it is not possible to �nd a test

case in which an instance of that entity has high impact strength.

Domain/range Ratio

Voas, Miller and Payne [73, 71, 74] introduced the notions of \internal state collapse"

and \implicit information loss" while referring to the error propagation behavior of

many-to-one functions and attempted to quantify these notions by introducing a metric

called domain/range ratio (DRR) [73]. The DRR metric and the limitations due to its

static nature have been discussed in section 3.4.

Dynamic Error Flow Analysis

Murrill and Morell [50, 48, 49] introduced the technique of dynamic error
ow analysis

(DEFA) for analyzing error propagation on a path by path basis and for identifying the

paths that are more desirable for testing. An execution trace of a presumed correct

5.5. RELATED WORK 85

program is compared with that of a syntactically close faulty program to study the

error creation and propagation behaviors. The objective is to compute various metrics

such as the sizes of erroneous data states, the length of the control path between error

creation and error masking or output error, the error propagation ability of individual

control paths and so on. Although the title and the general objective of this research

e�ort are very similar to ours, the approaches are very di�erent. The impact strength

metric estimates the error sensitivity of an impact path rather than a control path. The

impact paths associated with a speci�c instance of a control path may have signi�cantly

di�erent error sensitivities. Also, the ability of a control path to propagate errors may

depend on the actual data. For these reasons, we investigate error propagation behavior

of speci�c test executions rather than studying the average error propagation behaviors

of several test executions that follow the same control path.

Chapter 6

Prototype Implementation

This chapter presents an overview of DIAna, our prototype implementation. The pro-

totype generates the impact graph of a program, carries out the impact analysis of a

program execution and provides the infrastructure for conducting the validation exper-

iments described in chapter 7. The purpose of this overview is two-fold:

� to describe the capabilities of the prototype that made it possible to carry out the

validation experiments, and

� to demonstrate the feasibility of dynamic impact analysis.

The design of the prototype and the experience gained in developing the prototype

using an object-oriented approach may be of interest to some readers. However, in order

to focus on the primary objective of our research, we shall not discuss these aspects.

6.1 System Overview

The prototype system consists of four major components:

� a front-end,

� a data
ow analyzer,

86

6.1. SYSTEM OVERVIEW 87

� a program representation generator, and

� a
exible program execution environment.

Figure 6.1 gives a logical overview of how these components interact within the

prototype. In the �gure, oval boxes represent computational modules, plain rectangu-

lar boxes/cubes and triangles represent primary memory data structures, and stacked

rectangular boxes represent secondary storage data structures. The arrows in the �g-

ure represent the information
ow within the system. A dotted arrow indicates that

there is an implicit underlying computational component which derives the target data

structure from the source data structure.

Parsing and Dataflow Analysis

The front-end parses the program under test to produce an attributed syntax tree and a

symbol table. The data
ow analysis module processes these and computes de�nition-use

associations.

Generating Program Representation

The program representation generator uses the syntax-tree, symbol-table and def-use

associations to generate an intermediate representation that has three di�erent facets:

� an executable interprocedural control
ow graph (icfg), with nodes representing

individual operations, and arcs describing the control
ow,

� a program impact graph, with nodes representing program entities, and arcs rep-

resenting direct impact relationships, and

� program mutations, representing the syntactic alternatives for selected program

entities such as variable references, constants and operators.

The program representation is implemented as a relational network using the Frame

system [20]. The Frame system supports persistence of a relational network. That is,

Figure 6.1: System Overview

6.1. SYSTEM OVERVIEW 89

the program representation can be saved on the disk and reloaded on demand.

Program Execution Environment

The prototype provides a
exible program execution environment which interprets the

executable interprocedural control
ow graph and permits arbitrary control over pro-

gram execution. It supports four modes of program execution, as described below.

� In the standard mode, the program is executed without any special control.

� In the dynamic impact analysis mode, the program execution is analyzed using

the algorithm described in section 5.4. The �rst phase of the algorithm computes

individual impact strengths and produces an execution trace. The second phase

of the algorithm processes the execution trace in reverse and computes impact

strengths.

� In the state error execution mode, the program is run as in the standard mode,

except that a speci�ed error is injected into an entity instance during the execution.

If the observable program behavior of this slightly altered execution is di�erent

from that of the original execution, then we say that the speci�ed state error is

detected.

During the experiments, state errors are produced as follows. The execution trace

contains information about data state modi�cations. Speci�cally, it contains entity

instances corresponding to variable de�nitions and the data that was written into

the corresponding memory locations. A state error is created by randomly picking

an entity instance (say x) corresponding to a variable de�nition and associating

with it a data error. The data error (say e) is picked randomly from W (X), the

set of allowable values for the entity corresponding to x, with the constraint that

e is not equal to V (x), the value of x in the original execution.

90 CHAPTER 6. PROTOTYPE IMPLEMENTATION

� In the mutant execution mode, a mutant is created by replacing a program entity

by one of its mutations, and the mutant is run as in the standard mode. If the

observable program behavior of this execution is di�erent from that of the original

standard execution, then we say that the mutant is killed (x2.7).

The validation experiments reported in chapter 7 use the computed impact strengths

and the information about the detected state errors and killed mutants. It should be

emphasized that the state error execution mode and the mutant execution mode are

provided only for carrying out validation experiments. These modes are not needed for

performing impact analysis.

Development Environment

The front-end and the data
ow analysis components were implemented using the C lan-

guage as a part of another project at Siemens Corporate Research, Incorporated[61, 59].

We implemented the program representation generator and the execution environment

using the common-lisp object system (CLOS[32]). Together, these two modules amount

to about 16,000 lines of Lisp code. The Frame system developed by Greenberg [20]

provided an excellent environment for implementing and debugging the program repre-

sentation generator. A Sun-IPC workstation was used to develop the prototype.

6.2 Pragmatic Issues

While implementing dynamic impact analysis, several pragmatic issues had to be re-

solved. Below, we brie
y discuss how the prototype addressed these issues.

6.2.1 Computing Error Sets

The choice of an appropriate strategy to determine the error sets for various entity in-

stances was a very important issue while implementing dynamic impact analysis. Recall

6.2. PRAGMATIC ISSUES 91

from section 5.1 that when an entity instance x has high impact strength, it means that

the output is sensitive to the errors in x. Thus the impact strength may vary depending

on what values we include in the error set of x and in the error sets of the nodes along

the impact paths from x to the output. In section 5.2.2, we de�ned the notion of error

set and described our approach for computing it. Speci�cally, we considered four classes

of errors: propagated errors, arbitrary errors, delta errors and reference errors. In the

following paragraphs, we describe the details for actually computing these errors.

Propagated Errors

The propagated errors of x are transmitted from x's impact predecessors. Consider an

operation x y op z, with operands y and z, operator op and the result x. Let V (x)

denote the value of result x. There are three impact arcs associated with this operation,

hz; xi, hop; xi and hy; xi. Given the error sets of y, z and op , we determine the propagated

errors of x as follows. Recall from section 5.4.2 that while computing the impact strength

of the above impact arcs, we repeatedly execute the operation with either an operand

error or an operator error. Every time the result of the computation is di�erent from

V (x), we include the result in the propagated errors of x. In our implementation, this

procedure is generalized to operations with any number of operands.

Arbitrary Errors

The arbitrary errors of x are selected by uniformly sampling W (X), the set of allowable

values for X . If X is of a numeric or the character type, the set of allowable values is

obvious. If the value of x is a pointer, the set of allowable values is taken to be the set

of all locations with the same type as the location referenced by the value of x.

92 CHAPTER 6. PROTOTYPE IMPLEMENTATION

Delta Errors

The delta errors of x represent errors caused by slight modi�cations in the value of x.

The function used to create delta errors depends on the type of x. Let v be the value

of x. For integer v, the set of delta errors is selected by sampling uniformly the set

fv � 1; v � 2g [[bv � 10%c; dv + 10%e]1 For
oating-point v, the set of delta errors is

selected by sampling uniformly the set fv� e
1
; v� e

2
g [[v� 5%; v+ 5%], where e

1
and

e
2
are small
oating-point numbers. For character v, the set of delta errors consists

of the four characters nearest to v in the ordered character set. If the character value

is alphabetic, we also include the character obtained by changing its case from lower

case to upper case or vice versa. For a pointer value v, the set of delta errors is empty

unless the pointer value references an array element (say e). In that case, the set of

delta errors consists of the pointer values that reference the four nearest array element

locations surrounding the array element e.

Reference Errors

The reference errors of x represent the errors caused by referencing a wrong entity

instead of X . Suppose that we have the set of mutations of the variable use entity X .

(Selection of mutations will be discussed in section 6.2.2). Further suppose that the

entity X is instantiated as x at time t during an execution. Then, the set of reference

errors for x is the set of values of the variables corresponding to the mutations of X

at time t. Reference errors of entity instances of constant references and operators are

de�ned in the same way.

The error set of operator entities consists of only reference errors and every instance

of an operator entity has the same error set.

1The notation [a; b] refers to the set of values in the interval from a to b, both inclusive.

6.2. PRAGMATIC ISSUES 93

6.2.2 Selecting Mutations

Recall from section 5.3.4 that a mutation in our framework involves substituting a pro-

gram entity by an alternate entity such that the program remains syntactically correct.

In our prototype, such mutations serve two purposes: for determining reference er-

rors described above and for performing the validation experiments to be described in

chapter 7. The following mutation types were used in the prototype.

� operator mutations | replacing an operator by another operator.

� variable reference mutations | replacing a variable reference by another variable

reference or a constant reference.

� constant reference mutations | replacing a constant reference by another constant

reference or a variable reference.

� structure �eld reference mutations | replacing a structure �eld reference by an-

other structure �eld reference.

While selecting the mutations for an entity X , we �rst determined the set of all

possible applicable mutations such that after replacement, the program will remain

syntactically correct. The mutations for X are determined by sampling the set of all

possible mutations. Note that the mutations are determined at the time of generating

the program representation and are attached as node attributes in the program impact

graph.

6.2.3 Handling Library Functions

There are two issues regarding library functions: representation of library functions

in the program impact graph, and computation of the associated impact strengths.

In order to capture the impact relationships due to calls to library functions, we

94 CHAPTER 6. PROTOTYPE IMPLEMENTATION

Example 1: scanf(format-string, read-item-ptr1, read-item-ptr2, � � �)

Function name: scanf
Return type: integer
Call-speci�c: true

Required Arguments:
arg-name: format-string
arg-type: (pointer char-type)
has-impact-on-side-e�ects: true
kind-of-impact-on-side-e�ects: control impact

Variable Arguments:
arg name: read-item-pointer
is-deref-modi�ed: true

Example 2: printf(format-string, print-item-1, print-item-2, � � �)

Function name: printf
Return type: integer
Call-speci�c: true

Required Arguments:
arg-name: format-string
arg-type: (pointer char-type)
is-deref-output: true

Variable Arguments:
arg name: print-item
is-output: true

Example 3: atof(number-string)

Function name: atof
Return type: double-
oat
Call-speci�c: false

Required Arguments:
arg-name: number-string
arg-type: (pointer char-type)
has-impact-on-result: true
kind-of-impact-on-result: reference impact

Figure 6.2: Examples illustrating the impact-related aspects of library functions

6.3. LIMITATIONS OF THE PROTOTYPE 95

speci�ed the impact-related characteristics of each library function in a machine read-

able form. Figure 6.2 gives a few examples in a human readable form to illustrate how

we speci�ed the impact-related aspects of library functions. Most of the attributes men-

tioned in the �gure are self explanatory. A library function with a variable number of

arguments has the call-speci�c attribute true, indicating that its impact relationships

depend on the call-site. For such a function, we create a separate function entry opera-

tion for each call to the function. With each such function entry operation, we associate

as many formals as the number of actuals in the corresponding call. This enables us to

establish a one-to-one mapping between the actuals and the formals regardless of the

number of arguments.

For the purpose of computing impact strengths, we classify library functions into

two categories: those that have side e�ects and those that do not. While computing

impact strengths of impact arcs associated with library functions that do not have side

e�ects, such as the atof function in �gure 6.2, we treat them the same as the built-in

language operators. On the other hand, for a library function that has side e�ects, such

as the scanf function in �gure 6.2, we assign an impact strength of 1.0 to each impact

arc associated with the function. That is, we assume that any error in the argument of

a call to a libary function with side e�ects will result in an error in at least one of the

side e�ects.

6.3 Limitations of the Prototype

This section summarizes some of the limitations of the current prototype.

� It does not handle function pointers, graphical interfaces and structure initializa-

tions.

96 CHAPTER 6. PROTOTYPE IMPLEMENTATION

� It uses an abstract memory model in which all variable locations are in the heap.

Arrays and pointer arithmetic are logically supported, however, the program call

stack is not viewed as an array. Therefore programs that use the call stack as an

array cannot be handled.

� The prototype is extravagant in its use of space, and so is the Frame system that

implements the program representation. Also, the entire program representation

is required to be resident in the addressable virtual memory. Hence the size of the

program that can be processed by the prototype was limited by the available swap

space which has to be shared with the Common lisp environment. Therefore, we

have not yet attempted to process subject programs with more than 750 lines.

Chapter 7

Validation

This chapter describes the experiments undertaken to validate the computation of im-

pact strengths and presents the results of the experiments. We �rst describe the val-

idation approach emphasizing the goals of this empirical study. We then describe the

characteristics of the subject programs chosen for the study and the method used in

selecting test suites for the subject programs. This is followed by a detailed description

of the experimental procedure applied to each subject program. A majority of this

chapter is devoted to presenting and discussing the results of these experiments.

7.1 Validation Approach

Our goal is to examine whether the impact strengths computed by dynamic impact

analysis re
ect the error sensitivity with respect to the output. Speci�cally, we want to

answer the following questions.

1. What is the relationship between the impact strength of an entity instance x in

an execution and the likelihood that an error in the value of x will propagate to

the output? The answer to this question will indicate the accuracy with which the

97

98 CHAPTER 7. VALIDATION

impact strength of an entity instance x in the original execution predicts the like-

lihood of error propagation in a slightly altered execution created by introducing

an error in x.

2. What is the relationship between the impact strength of a mutation M in a test

case execution and the likelihood that the corresponding mutant will be killed by

that test case? The answer to this question will indicate the accuracy with which

the impact strength of a mutation in a test case execution of the original program

predicts the likelihood of the test case killing the corresponding mutant.

In order to answer the �rst question, we need to design an experiment that examines

the relationship between the impact strength of an entity instance x and the observed

propagation of an error in x. One di�culty in designing such an experiment is that the

impact strength is a continuous variable in the range [0.0,1.0] while the observed error

detection is a boolean variable. Therefore it is unclear how to quantitatively study their

relationship. One could create an almost continuous variable corresponding to error

detection by considering the frequency of success of error detection among the members

of a random set of errors in x. However, this approach is not feasible because often

the set of all possible error values of an entity instance is very small. For example, a

boolean predicate instance p has only two values, one correct and one incorrect, and

hence the size of an error set of p cannot be greater than 1.

Similarly, in order to answer the second question, we need to design an experiment

that examines the relationship between the impact strength of a mutation M in a test

case and the observation whether the test case kills the mutant corresponding to M .

Once again, the former is a continuous variable and the latter is a boolean variable and

it is unclear how to quantitatively study their relationship.

Given this problem, we take a pragmatic approach for creating an almost continuous

variable from a set of observations corresponding to the boolean variable as outlined

7.1. VALIDATION APPROACH 99

below. The actual experimental procedure is described in section 7.4.

In the �rst experiment, we are interested in the accuracy with which the impact

strength of an entity instance predicts the propagation of error in that entity instance.

To answer this question for a given subject program, we use the following method. First,

we take a very large sample of entity instances randomly chosen from several di�erent

test case executions of the program. Consider an entity instance x in this sample. Let

T be the corresponding test case execution and s be the impact strength of x obtained

by analyzing T . We randomly choose an error for x and run an alternate execution T 0

obtained by introducing the error in x while running T . The boolean variable p records

whether the error is detected at the output or not (1 if detected, 0 otherwise). This

gives us a data point (s; d) where s is the impact strength and d is the corresponding

boolean value for the error detection. This is repeated for each entity instance in the

sample so as to obtain a large number of data points like (s; d). Then we consider all n

data points that have the same impact strength s. Let m out of the n data points have

error detection as 1. If n is large enough, the error detection ratio m=n is statistically

signi�cant1 and indicates the likelihood of error propagation among entity instances

with impact strength s. And since the error detection ratio m=n is a (reasonably)

continuous variable, we could now study the relationship between m=n and s.

In the second experiment, we are interested in the accuracy with which the impact

strength of a mutation in a test case predicts the killing of the corresponding mutant

by the test case. To answer this question for a given program, we use a strategy similar

to the one used in the �rst experiment. We consider the impact strengths of all of the

generated mutations of the program obtained by analyzing di�erent test case executions.

Let M be a mutation with impact strength s in the execution of a speci�c test case T .

The test case T is run on the mutant corresponding to M and the boolean variable k

1If n is small, slight statistical variations in the value of m can result in large variations in the ratio
m=n. Typically, n >= 30 is considered large enough.

100 CHAPTER 7. VALIDATION

records whether the mutant is killed or not (1 if killed, 0 otherwise). This gives us a data

point (s; k). This is repeated for every (mutation, test case) combination, so as to obtain

a large number of data points like (s; k). As in the �rst experiment, we compute the

ratio m=n. In this case, m=n denotes the mutant kill ratio and indicates the likelihood

of killing the mutants corresponding to the mutations with impact strength s. We then

study the relationship between m=n and s.

The actual experimental procedure based on the above approach is described in

section 7.4. The experimental procedure was performed separately for each of the

subject programs described below.

7.2 Subject Programs

The choice of subject programs is always a di�cult issue in conducting an experi-

ment in software engineering primarily due to the lack of a set of benchmark programs

representative of the universe of programs. The choice was made more di�cult for us

because of the following considerations.

� The experimental procedure executes a program thousands of times. Therefore,

the average execution time of the subject program could not be larger than one

minute.

� As mentioned in section 6.3, our prototype cannot handle large programs. Also,

the prototype does not support graphical user interfaces, function pointers, and

the array view of the call-stack.

Within these constraints, we tried our best to select programs representing diverse ap-

plication domains such as as database processing, numeric algorithms, string processing,

accounting, graph algorithms, statistical computation etc. We also attempted to ensure

that the subject programs represented the various aspects of computer programming

7.2. SUBJECT PROGRAMS 101

Ref. Program Lines of Code (#Operators Test Suite
No. Name (excl. blanks + #Operands)� Size

(alphabetic order) & comments)

29 to 556 86 to 2381 12 to 51

1 accounting 200 2255 50
2 aggregate-db-reln 556 2117 13
3 altitude-separation 124 448 50
4 bank-promotion 150 765 50
5 biconnectivity 157 406 50
6 binary-search 39 176 34
7 chi-square-test 218 1010 37
8 depth-�rst-search 121 388 50
9 determinant 52 670 50
10 eval-expr 69 200 48
11 func-zero 117 642 17
12 info-measure 217 574 37
13 join-db-reln 503 2282 12
14 keywords 79 427 17
15 list-ops 173 671 51
16 mortgage 49 207 41
17 pattern-replace 513 2381 25
18 poly-calculus 89 339 50
19 prio-schedule 285 986 50
20 select-db-reln 516 2294 21
21 square-root 36 167 38
22 strong-connectivity 151 654 50
23 tax-form 133 908 50
24 triangle-type 57 239 39
25 word-count 52 262 15
26 x power y 29 86 35

� This metric called program length was de�ned by Halstead[21].

Table 7.1: Subject Programs

102 CHAPTER 7. VALIDATION

such as the nature of computation (iterative, recursive, or simple), data structuring

facility (basic types, arrays, structures, or pointers), allocation of variables (heap or

stack) and input method (command line, �le or interactive). Table 7.1 gives the names

and reference numbers for each of the 26 subject programs used in the study. In addi-

tion, the table gives the test suite size and two metrics of program size for each subject

program. Appendix A gives relevant information about each of the programs and refers

the reader to an anonymous ftp site for the source code of the programs.

7.3 Selecting Test Suites

For 19 subject programs, test suites were generated in the following way. We used

a test speci�cation language (TSL [55, 6]) to specify the choices for input variables

of the program. An attempt was made to cover the functional speci�cation of the

program, error situations and some extreme values for the input variables. The TSL-

tool then generated a test suite from the test speci�cation. From this test suite, we

removed duplicate test cases to yield the test suite that was used in the experiments.

For the remaining 7 programs, the TSL language was not powerful enough to capture

the dependencies among the inputs. Hence for these programs, test cases were hand

generated following the same guidelines mentioned above. The source of the programs

and the test suites are made available at an anonymous ftp site (see appendix A).

7.4 Experimental Procedure

This section describes the experimental procedure in detail. The procedure takes two

inputs: a program and a test suite for the program. In the following description of the

procedure, the accounting program and the corresponding test suite are used for the

purpose of illustration. The steps involved in the procedure are described below.

7.4. EXPERIMENTAL PROCEDURE 103

Step 1: Generating Program Representation

The internal program representation is generated for the subject program. This includes

generating the interprocedural control
ow graph, the program impact graph and pro-

gram mutations. The program mutations are selected as described in section 6.2.2.

For the accounting program, there were a total of 549 mutations including 122 oper-

ator reference mutations, 136 constant reference mutations and 291 variable reference

mutations.

Step 2: Executing and Killing Mutants

First, the program is run in the standard execution mode for each test case in the test

suite and the output is saved. Then the program is run in the mutant execution mode

for each (mutation, test case) combination. For each mutant execution, the output is

compared with the output of the standard execution. If the outputs are di�erent, the

mutation is marked strong-killed for that test case. For each test case, the information

about which mutations are strong-killed by that test case is saved in a database. For

the accounting program, each of the 34 test cases were run on each of the 549 mutants,

totaling to 18,666 executions.

Step 3: Carrying out Dynamic Impact Analysis

The program is now run in the dynamic impact analysis mode for each test case in the

test suite. During the �rst phase of the algorithm, besides computing and recording the

impact strengths of individual impact arcs, we also record the following information in

the execution trace:

� weak-killed mutations (see x5.3.4),

� entity instances corresponding to data state modi�cations and the data values

stored in the modi�ed locations.

104 CHAPTER 7. VALIDATION

During the second phase of the algorithm, the impact strengths are computed for all

of the entity instances and mutations. The impact strengths of weak-killed mutations

and the entity instances corresponding to data state modi�cations are recorded in a

database.

Also, the total cpu time for executing the test suite in the dynamic impact analysis

mode is compared with the total cpu time for running the test cases in the standard ex-

ecution mode. We repeated the time measurement several times to ensure that the vari-

ation in the timings was not signi�cant (typically less than 10%). For the accounting

program, on an average, a test execution with dynamic impact analysis was about 6

times slower than that without any analysis. Section 7.5.7 gives similar performance

data for all of the subject programs.

Step 4: Generating, Executing and Detecting State Errors

The execution trace produced in the previous step contains a list of data state modi�ca-

tions, the associated data values, and the computed impact strengths for the associated

entity instances. From this information, we generate state errors as described in section

6.1 on page 89. The number of state errors generated for a given test case depends,

in part, on the length of the test case execution and the number of variable de�nition

nodes in the execution impact graph. For the accounting program, a total of 9,984

state errors were generated for the 50 test case executions, varying from 68 to 520 per

execution. For each state error, we run the test case in the state error execution mode

and check whether the error is detected as an output error. The impact strength of the

associated entity instance and a
ag indicating whether the state error was detected are

recorded in the database.

7.4. EXPERIMENTAL PROCEDURE 105

Step 5: Plotting State Error Detection Ratio vs. Impact Strength

As mentioned above, in the database, for each test case execution, we keep information

about the impact strengths of the entity instances associated with the state errors and

whether or not the state errors were detected as output errors.

In order that enough data points with di�erent impact strength values are con-

sidered, we merge the information from all test cases in the test suite and process it

collectively. Later, we will provide evidence that the ability of a test case to detect state

errors did not in
uence the results.

The impact strengths of the entity instances associated with state errors are grouped

into six intervals: [0:0; 0:0], (0:0; 0:2], (0:2; 0:4], (0:4; 0:6], (0:6; 0:8] and (0:8; 1:0]. For each in-

terval, the state error detection ratio is computed as follows. Let n be the total number

of data points in the interval. Out of these, let m be the number of data points for which

the associated state errors are detected. Then m=n is the state error detection ratio.

As mentioned before, this ratio is meaningful only when n is large enough (n � 30).

The state error detection ratio for an impact strength interval represents the likelihood

of error propagation among entity instances with impact strength in that interval. The

state error detection ratio is plotted against the mid-point of the corresponding impact

strength interval as shown in Figure 7.1. If the number of data points in an impact

strength interval is less than 30, the corresponding point is not plotted. For complete-

ness, the actual values of m (#DataPts) and n (#Detected) for each interval are also

displayed below the x-axis. The graph is annotated with the name of the program and

the value of linear correlation2 between the state error detection ratio and the entity

instance impact strength. In section 7.5.1, we will present similar graphs for all of the

subject programs and discuss their behavior.

2Linear correlation [44] is one way of measuring the degree of association between two variables. It
has no bearing on the discrepancy between the expected and the observed relationships.

106 CHAPTER 7. VALIDATION

O O

O O

O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
3554 72 375 208 393 4341#DataPts

 51 1 36 18 80 1875#Detected

(1)

accounting

corr. : 0.91

Figure 7.1: Error Detection Behavior of the accounting Program

Step 6: Plotting Mutant Kill Ratio vs. Impact Strength

In the database, for each test case, we keep information about the impact strengths of

the mutations and
ags indicating whether the mutations are weak- and strong-killed by

the test case. For a mutation to be strong-killed, it is necessary that it is weak-killed and

the corresponding error propagation condition is satis�ed. Therefore, for the purpose

of validating impact strength computations, there is no point in considering mutations

that are not weak-killed.

Once again, in order that there are enough data points with di�erent impact strength

values, we merge the information from all the test cases in the test suite and process it

collectively. Later, we will provide evidence that the ability of a test case to kill mutants

did not in
uence the results.

The impact strengths of the weak-killed mutations are grouped into six intervals:

[0:0; 0:0], (0:0; 0:2], (0:2; 0:4], (0:4; 0:6], (0:6; 0:8] and (0:8; 1:0]. For each interval, the mutant

kill ratio is computed as follows. If n is the total number of data points in the interval

and m is the number of data points in the interval for which the associated mutations

7.4. EXPERIMENTAL PROCEDURE 107

are strong-killed, then m=n is the mutant kill ratio. As mentioned before, this ratio

is meaningful only when n is large enough (n � 30). The mutant kill ratio for an

impact strength interval represents the likelihood of killing the mutants corresponding

to the mutations with impact strengths in that interval. The mutant kill ratio is plotted

against the mid-point of the corresponding impact strength interval as shown in Figure

7.2. If the number of data points in an impact strength interval is less than 30, the

O

O

O

O
O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
3262 54 116 149 243 6200#DataPts

 36 7 30 61 112 4880#Killed

(1)

accounting

corr. : 0.98

Figure 7.2: Mutant Killing Behavior of the accounting Program

corresponding point is not plotted. For completeness, the actual values ofm (#DataPts)

and n (#Killed) for each interval are also displayed below the x-axis. The graph is

annotated with the name of the program and the value of linear correlation between the

mutant kill ratio and the mutation impact strength. In section 7.5.2, we will present

similar graphs for all of the subject programs and discuss their behavior.

Step 7: Examining Bias Due to Specific Test Cases

It is conceivable that a few test cases that are good at detecting a large number of state

errors may bias the results obtained in step 5. In order to examine whether such a bias is

108 CHAPTER 7. VALIDATION

present or not, we carry out the following statistical analysis for each program. The test

suite of the program is sorted by the number of state errors detected by each test case

and the test cases are ranked by their ability to detect state errors. Then we separately

perform step 5 on the top third and the bottom third subsets of the sorted test suite.

For each subset, this gives a vector of state error detection ratios. The length of such a

vector is six corresponding to the six impact strength intervals. The two vectors of error

detection ratios are then compared using the paired t-test[8]3 with the null hypothesis

being that the true mean of the observed di�erences between the corresponding values in

the two vectors is zero. Two outputs of the t-test are recorded: the sample mean of the

di�erences and the p-value which is the probability that di�erences equal to or greater

than those observed would occur given that the true mean is 0.0. For the accounting

program, the vector of state error detection ratios is [.0139, .0143, .0853, .0912, .1981,

.4380] for the top third test cases and is [.0148, .0137, .0975, .0853, .2063, .4289] for the

bottom third test cases. The sample mean of the di�erences between these vectors is

-0.00095 and the p-value is 0.7859. An interpretation of these and similar numbers for

other subject programs is presented in section 7.5.3.

A similar procedure is followed to study the bias (if any) introduced in the results

obtained in step 6 by a few test cases that are good at killing a large number of mutants.

For the accounting program, the vector of mutant kill ratios is [.0124, .1290, .2846, .3727,

.5102, .7904] for the top third test cases and is [.0103, NA4, .2000, .4271, .4553, .8121] for

the bottom third test cases. From the t-test, we obtain 0.0131 as the sample mean of

the di�erences between the corresponding values in the two vectors and 0.6312 as the

p-value. Once again, an interpretation of these numbers is presented in section 7.5.3.

3One of the key assumptions while performing a paired t-test is that the di�erences come from a
parent distribution which is normal . In our experiment, we have no way of verifying that assumption.
However, Box, Hunter and Hunter [8] show that the shape of the parent distribution is less important
as long as the random sampling model is appropriate.

4An NA value in this context implies that there were not enough data points to compute the mutant
kill ratio in that impact strength interval.

7.5. EMPIRICAL RESULTS 109

Caveat

Occasionally, during a mutant execution or a state error execution, the subject program

\crashes" due to a runtime error such as a segmentation fault or a bus error in a

Unix environment. Besides the conventional runtime errors in a typical C programming

environment, our execution environment detected two additional runtime errors: access

of uninitialized locations and out of bound array references.5 Technically, a runtime

error should be considered as the output. However, in the current framework of dynamic

impact analysis we de�ne output entities as those entities that participate in calls to

prede�ned output procedures. The operators in a program that may cause runtime

errors are not considered as output entities. Therefore it is inappropriate to relate

impact strengths with occurrences of runtime errors. Hence, the mutants and state

errors that resulted in runtime errors were omitted from the experimental data.

7.5 Empirical Results

In this section, we report the results of the empirical study in which the experimental

procedure described in section 7.4 was applied to each of the 26 subject programs. A

summary of the results is presented at the end of this section.

7.5.1 State Error DetectionRatio vs. Entity Instance Impact Strength

Figures 7.3 through 7.7 illustrate the relationship between the impact strength of the

entity instance associated with a state error and the state error detection ratio, which

represents the likelihood of propagating the state error to the output. Each plot is

annotated with the corresponding subject program name and the linear correlation

measure. For ease of reference, the plots are presented in the alphabetic order of program

5In our previous work [19], access of uninitialized locations and out of bound array references were
not treated as runtime errors.

110 CHAPTER 7. VALIDATION

names. We make the following observations from these plots.

Strong positive correlation

There is a strong positive correlation (0.86 to 1.0) between the the impact strength of

an entity instance and the corresponding state error detection ratio. Usually, the state

error detection ratio increases with the impact strength. An impact strength closer to

0.0 implies smaller chances of state error detection and an impact strength closer to

1.0 implies greater chances of state error detection. This supports our claim that the

impact strength of an entity instance re
ects the sensitivity of the output to errors in

the entity instance.

Variety in impact strength distributions

Usually, the number of data points in the highest impact strength interval is the largest.

This is to be expected, since typically most entity instances in an execution would have

signi�cant impact on the output of the program. However, it is encouraging to observe

that there is quite a variety in the distributions of impact strengths. Signi�cant numbers

of data points are found in each of the impact strength intervals for subject programs

using complex logic such as pattern-replace and chi-square-test. On the other

hand, in subject programs using simple computations such as mortgage and x power y,

very few entity instances have low impact strengths. Section 7.5.6 explains how this

variety of impact strength distributions justify the computation of impact strengths.

Inaccuracy at zero impact strength

Ideally, we would expect the state error detection ratio to be 0.0 when the impact

strength is zero. However, for 15 out of the 26 subject programs, the state error detection

ratio at zero impact strength is a small non-zero value, varying from 0.00077 (list-ops)

to 0.059 (chi-square-test). That is, in spite of having zero or no impact, the state

errors in a very small fraction of the entity instances got detected. An investigation of

7.5. EMPIRICAL RESULTS 111

O O
O O

O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
3554 72 375 208 393 4341#DataPts

 51 1 36 18 80 1875#Detected

(1)

accounting

corr. : 0.91

O

O

O
O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
3613 0 88 26 59 1891#DataPts

 9 0 25 11 25 924#Detected

(2)

aggregate-db-reln

corr. : 0.97

O
O

O
O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 229 0 29 30 38 3494#DataPts

 0 0 0 2 9 1125#Detected

(3)

altitude-separation

corr. : 0.93

O

O

O O
O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
2191 100 1947 86 148 2632#DataPts

 0 10 389 18 41 1531#Detected

(4)

bank-promotion

corr. : 0.93

O

O

O
O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
2407 15 513 296 2204 6630#DataPts

 77 3 148 136 1168 3787#Detected

(5)

biconnectivity

corr. : 0.97

O

O
O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 0 0 0 235 175 1035#DataPts

 0 0 0 57 67 472#Detected

(6)

binary-search

corr. : 0.98

Figure 7.3: Error Detection Behavior of Subject Programs 1-6

112 CHAPTER 7. VALIDATION

O

O

O

O
O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 489 63 192 853 2353 7165#DataPts

 29 20 99 595 1790 5732#Detected

(7)

chi-square-test

corr. : 0.94

O
O O

O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 897 24 585 236 228 7613#DataPts

 0 3 52 23 36 3648#Detected

(8)

depth-first-search

corr. : 0.86

O
O

O

O O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
1497 91 86 331 637 4703#DataPts

 30 6 29 156 295 2787#Detected

(9)

determinant

corr. : 0.95

O O

O

O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 789 100 124 17 71 3662#DataPts

 0 0 37 0 32 3365#Detected

(10)

eval-expr

corr. : 0.96

O
O O

O
O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 115 147 321 764 933 3523#DataPts

 0 9 13 95 180 1547#Detected

(11)

func-zero

corr. : 0.91

O

O O
O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 340 9 6 765 2688 6600#DataPts

 10 1 2 580 2113 5601#Detected

(12)

info-measure

corr. : 0.94

Figure 7.4: Error Detection Behavior of Subject Programs 7-12

7.5. EMPIRICAL RESULTS 113

O O

O

O O
O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
2978 156 225 62 172 2280#DataPts

 82 7 54 22 62 1021#Detected

(13)

join-db-reln

corr. : 0.96

O

O

O
O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 235 0 13 297 686 2382#DataPts

 0 0 1 44 287 1199#Detected

(14)

keywords

corr. : 0.95

O O

O
O

O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
1291 70 1732 39 48 2727#DataPts

 1 2 271 8 13 1361#Detected

(15)

list-ops

corr. : 0.97

O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 61 10 2 0 0 908#DataPts

 0 0 0 0 0 809#Detected

(16)

mortgage

corr. : 1

O
O

O

O O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
1667 355 880 722 1480 5074#DataPts

 160 62 259 440 874 3804#Detected

(17)

pattern-replace

corr. : 0.97

O O
O

O

O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 201 104 351 169 132 4065#DataPts

 3 0 28 23 46 3058#Detected

(18)

poly-calculus

corr. : 0.91

Figure 7.5: Error Detection Behavior of Subject Programs 13-18

114 CHAPTER 7. VALIDATION

O O
O O

O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
2560 68 359 204 360 4859#DataPts

 11 0 22 8 59 1481#Detected

(19)

prio-schedule

corr. : 0.91

O
O

O O
O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
5690 142 309 85 160 2989#DataPts

 32 13 117 32 74 1582#Detected

(20)

select-db-reln

corr. : 0.94

O

O

O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 384 3300 0 48 22 963#DataPts

 5 1052 0 24 12 848#Detected

(21)

square-root

corr. : 0.97

O
O

O

O
O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
1834 51 762 950 2055 5370#DataPts

 70 5 117 243 614 2513#Detected

(22)

strong-connectivity

corr. : 0.98

O
O

O
O

O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 404 226 529 649 571 5506#DataPts

 0 18 122 176 260 3764#Detected

(23)

tax-form

corr. : 0.98

O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 20 0 0 81 27 1087#DataPts

 0 0 0 26 10 668#Detected

(24)

triangle-type

corr. : 1

Figure 7.6: Error Detection Behavior of Subject Programs 19-24

7.5. EMPIRICAL RESULTS 115

O

O

O

O

O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 248 7 300 129 79 2013#DataPts

 0 0 53 49 50 1693#Detected

(25)

word-count

corr. : 0.99
O

S
ta

te
 E

rr
or

 D
et

ec
tio

n
R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 21 0 0 0 0 934#DataPts

 2 0 0 0 0 690#Detected

(26)

x_power_y

corr. : NA

Figure 7.7: Error Detection Behavior of Subject Programs 25-26

this behavior is presented in section 7.5.4.

Inaccuracy at high impact strength

The highest state error detection ratio varies with the subject programs. Speci�cally,

at the highest impact strength interval (0.8,1.0], the state error detection ratio varies

from 0.33 (altitude-separation) to 0.92 (eval-expr). We investigated this behavior

further and the �ndings are reported in section 7.5.5.

7.5.2 Mutant Kill Ratio vs. Mutation Impact Strength

Figures 7.8 through 7.12 illustrate the relationship between the impact strength of

a mutation and the mutant kill ratio, which represents the likelihood of killing the

corresponding mutant. Each graph is annotated with the corresponding subject program

name and the linear correlation measure. For ease of reference, the plots are presented

in the alphabetic order of program names. We make the following observations from

these plots.

116 CHAPTER 7. VALIDATION

O

O

O

O
O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
3262 54 116 149 243 6200#DataPts

 36 7 30 61 112 4880#Killed

(1)

accounting

corr. : 0.98

O

O O

O O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
2199 5 174 102 76 2281#DataPts

 148 5 55 33 48 1462#Killed

(2)

aggregate-db-reln

corr. : 0.96

O

O
O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
1844 0 0 257 989 3539#DataPts

 10 0 0 30 168 1220#Killed

(3)

altitude-separation

corr. : 0.94

O

O

O O

O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
3157 138 2813 299 466 3972#DataPts

 87 19 707 72 194 2404#Killed

(4)

bank-promotion

corr. : 0.97

O
O

O O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 3548 15 514 749 2052 12862#DataPts

 248 0 69 295 854 9203#Killed

(5)

biconnectivity

corr. : 0.95

O

O

O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 133 0 0 105 720 2257#DataPts

 4 0 0 20 279 1523#Killed

(6)

binary-search

corr. : 0.93

Figure 7.8: Mutant Killing Behavior of Subject Programs 1-6

7.5. EMPIRICAL RESULTS 117

O
O

O

O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 660 0 178 52 211 12910#DataPts

 8 0 11 26 173 12301#Killed

(7)

chi-square-test

corr. : 0.96

O

O
O O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 973 0 83 228 372 7296#DataPts

 15 0 25 89 152 5779#Killed

(8)

depth-first-search

corr. : 0.95

O

O

O O
O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 556 26 180 185 499 5132#DataPts

 35 9 74 132 373 4091#Killed

(9)

determinant

corr. : 0.95

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 5 0 0 2 1 1198#DataPts

 0 0 0 0 0 1155#Killed

(10)

eval-expr

corr. : NA

O

O
O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 32 0 4 374 1423 6995#DataPts

 0 0 0 78 390 4163#Killed

(11)

func-zero

corr. : 0.93

O
O

O

O
O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 554 21 175 38 327 13553#DataPts

 24 3 18 18 287 12924#Killed

(12)

info-measure

corr. : 0.95

Figure 7.9: Mutant Killing Behavior of Subject Programs 7-12

118 CHAPTER 7. VALIDATION

O

O

O
O O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
2564 40 520 158 115 3528#DataPts

 50 6 164 61 47 2092#Killed

(13)

join-db-reln

corr. : 0.97

O

O
O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 306 1 2 117 254 2720#DataPts

 20 1 2 54 133 1690#Killed

(14)

keywords

corr. : 0.99

O

O
O

O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
1138 1 579 333 101 3017#DataPts

 9 0 99 44 24 1778#Killed

(15)

list-ops

corr. : 0.88

O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 139 0 0 0 4 2313#DataPts

 0 0 0 0 0 2253#Killed

(16)

mortgage

corr. : 1

O
O

O O

O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 1518 414 616 445 800 10113#DataPts

 74 52 230 170 478 7433#Killed

(17)

pattern-replace

corr. : 0.98

O O

O

O
O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 138 45 162 39 61 3665#DataPts

 0 0 49 17 31 3100#Killed

(18)

poly-calculus

corr. : 0.98

Figure 7.10: Mutant Killing Behavior of Subject Programs 13-18

7.5. EMPIRICAL RESULTS 119

O
O O O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
1816 21 46 98 290 4817#DataPts

 43 0 5 12 41 2253#Killed

(19)

prio-schedule

corr. : 0.83

O

O

O

O
O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
3967 276 1293 255 258 4408#DataPts

 172 49 383 113 127 2425#Killed

(20)

select-db-reln

corr. : 0.97

O

O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 351 0 0 90 0 4047#DataPts

 0 0 0 65 0 3413#Killed

(21)

square-root

corr. : 0.95

O

O O

O
O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 2370 0 110 415 1804 12719#DataPts

 106 0 27 114 1044 8437#Killed

(22)

strong-connectivity

corr. : 0.97

O

O

O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 9293 0 0 1881 4808 11175#DataPts

 142 0 0 669 2490 8866#Killed

(23)

tax-form

corr. : 0.99

O

O

O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 32 0 0 276 105 2053#DataPts

 0 0 0 66 36 1360#Killed

(24)

triangle-type

corr. : 0.95

Figure 7.11: Mutant Killing Behavior of Subject Programs 19-24

120 CHAPTER 7. VALIDATION

O

O O

O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 337 0 0 31 31 1885#DataPts

 0 0 0 14 15 1767#Killed

(25)

word-count

corr. : 0.96 O

M
ut

an
t K

ill
 R

at
io

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ImpStr
 12 0 0 0 0 1063#DataPts

 0 0 0 0 0 844#Killed

(26)

x_power_y

corr. : NA

Figure 7.12: Mutant Killing Behavior of Subject Programs 25-26

Strong positive correlation

There is a strong positive correlation (0.88 to 1.0) between the impact strength of a

mutation in a test case and the corresponding mutant kill ratio. Usually, the mutant

kill ratio increases with the impact strength. An impact strength closer to 0.0 implies

smaller chances of killing the mutant and an impact strength closer to 1.0 implies greater

chances of killing the mutant. This supports our claim that the impact strength of a

mutation in a test case re
ects the likelihood that the corresponding mutant will be

killed by the test case.

Variety in impact strength distributions

Usually, the number of mutations in the highest impact strength interval is the largest.

This is to be expected, since typically a large number of mutations are associated with

program entities that always have strong impact the output. However, it is encouraging

to observe that there is quite a variety in the distributions of impact strengths. Signi�-

cant numbers of data points are found in each of the impact strength intervals for subject

programs using complex logic such as pattern-replace and bank-promotion. On the

other hand, in subject programs using simple computations such as eval-expr and

7.5. EMPIRICAL RESULTS 121

x power y, very few mutations have low impact strengths. Section 7.5.6 explains how

the variety of impact strength distributions justify the computation of impact strengths

as non-boolean values.

Inaccuracy at zero impact strength

Ideally, we would expect the mutant kill ratio to be 0.0 when the impact strength is

zero. However, for 18 out of the 26 subject programs, the mutant kill ratio at zero

impact strength is a small non-zero value, varying from 0.0079 (list-ops) to 0.0699

(bi-connectivity). That is, in spite of having zero or no impact, for a very small

fraction of the mutations, the corresponding mutants were killed. An investigation of

this behavior is presented in in section 7.5.4.

Inaccuracy at high impact strength

The highest mutant kill ratio varies with the subject programs. Speci�cally, at the

highest impact strength interval, the mutant kill ratio varies from 0.34 (altitude-

-separation) to 0.97 (mortgage). We investigated this behavior further and the �ndings

are reported in section 7.5.5.

7.5.3 Examining Bias Due to Speci�c Test Cases

As explained in the experimental procedure (Step 7, page 107), we performed a sta-

tistical analysis on the experimental results to study whether or not speci�c test cases

good at detecting errors or at killing mutants had any signi�cant in
uence on the re-

sults. Below we report and interpret the results of this statistical analysis for both the

experiments.

As mentioned in the experimental procedure, we used the paired t-test to compare

the state error detection vectors of the top third and bottom third of the test cases

ranked by their ability to detect state errors. For the accounting program, the mean of

the di�erences between the corresponding elements of the vectors was -0.00095. Being a

122 CHAPTER 7. VALIDATION

small negative value, this indicates that in this experiment, on an average, the test cases

good at detecting state errors had a slightly poorer rate of error propagation. For the 26

subject programs, the mean of the di�erences varied from -0.2 to 0.2. It was negative

for 12 programs, and positive for 14 programs. The p-value obtained from the t-test

quanti�es the statistical signi�cance of the observed di�erences. It is the probability

that di�erences equal to or greater than those observed would occur given that the true

mean is 0.0. For example, in the accounting program, the p-value was 0.78 indicating

a 78% likelihood that the observed di�erences between the two behaviors would have

occurred merely by chance. Due to the lack of su�cient number of observations, the

p-value could not be computed for three programs: x power y, triangle-type and

mortgage. For the other 23 programs, the p-value varied from 0.15 to 0.99. Given such

non-negligible p-values6, we conclude that the observed di�erences were not statistically

signi�cant. Even if the observed di�erences were signi�cant, it is clear from the mean

of di�erences that the propagation of a speci�c error in a test case does not depend on

the overall ability of the test case to detect state errors.

Similarly, for the second experiment, we used the paired t-test to compare the mutant

kill ratio vectors of the top third and bottom third of the test cases ranked by their ability

to kill mutants. For the accounting program, the mean of the di�erences between the

corresponding elements of the vectors was 0.0131. Being a small positive value, this

indicates that in this experiment, on the average, the test cases good at killing mutants

had a slightly better rate of error propagation. For the 26 subject programs, it varied

from -0.24 to 0.13. The mean of the di�erences was negative for 17 programs, and positive

for 9 programs. For the accounting program, the p-value was 0.63 indicating a 63%

likelihood that the observed di�erences between the two behaviors would have occurred

merely by chance. Due to the lack of su�cient number of observations, the p-value

6Statisticians typically consider p-values less than .05 as negligible.

7.5. EMPIRICAL RESULTS 123

could not be computed for three programs: x power y, eval-expr and mortgage. For

the other 23 programs, the p-value varied from 0.10 to 0.98. Once again, given such

non-negligible p-values, we conclude that the observed di�erences were not statistically

signi�cant.

The above statistical results indicate that a few test cases good at detecting state

errors or at killing mutants did not bias the results in any signi�cant way.

7.5.4 Investigating Inaccuracy at Zero Impact Strengths

Assuming that our de�nition of impact correctly models reality, one would expect that if

an entity instance has zero or no impact on the output, an error in that entity instance

would not propagate to the output. However, as observed above, for a very small

fraction of entity instances with zero or no impact, the corresponding error propagated

to the output. In order to investigate this behavior, we randomly chose from di�erent

programs a set of 50 data points demonstrating this behavior and analyzed them in

detail. Each of these data points shared a common impact behavior as described below.

Let T be the execution, x be the entity instance and e be the state error corresponding

to one such data point. We found that there was an impact path from x to the output

on which a reference impact arc lead to the de�nition of a memory location (say loc).

In the execution T , the memory location loc had zero or no impact on the output, and

correspondingly the entity instance x had zero or no impact. However, in an altered

execution where the error e was introduced in the value of x, the error lead to the

de�nition of memory location loc0 instead of loc. The location loc0 had impact on the

output of T , therefore the error in loc0 propagated to the output of the altered execution.

Thus, even though loc has no or zero impact on the output, the error e can propagate to

the output by incorrectly de�ning loc0 instead of loc. For example, consider an impact

path p from a de�nition of i to the output. Let p contain a de�nition of a[i]. In

124 CHAPTER 7. VALIDATION

a speci�c execution, if the value of i is 2, the location a[2] gets de�ned, which does

not impact the output of that execution. However, if we alter the execution such that

the value of i is 1, the location a[1] gets de�ned which impacts the output and thus

propagates the error.

Similar investigation was carried out for the mutation experiment as well. We ana-

lyzed a sample of 50 data points where the associated mutations had zero or no impact

but the corresponding mutants were detected. Each of the data points, without excep-

tion, shared the common impact behavior described above.

The results of this investigation points out a de�ciency in our handling of the refer-

ence impact. Although, the reference impact is given special treatment while computing

impact strengths during the forward pass, no such special treatment is given during the

backward pass. As described in section 5.4.3, all impact kinds are treated uniformly

while back-propagating impact strengths during the second phase of the algorithm.

While traversing backwards along the impact arc hx; yi, the impact strength of x is

computed as a function of the impact strengths of y and the impact arc hx; yi, irre-

spective of the kind of impact. If y represents a de�nition of some memory location,

and hx; yi is a reference impact arc, the impact strength of x should also depend on

the impact strengths of the alternate memory locations which would be de�ned if the

errors of x propagated to y. It is not clear to us how to quantitatively account for the

dependency of the impact strength of x on the impact strengths of the alternate memory

locations. Speci�cally, we need to come up with a heuristic to estimate the likelihood of

propagation of the error of incorrectly de�ning a location loc0 instead of loc. We hope

to pursue this issue in a follow up research.

7.5. EMPIRICAL RESULTS 125

7.5.5 Investigating Inaccuracy at High Impact Strengths

Ideally, when the impact strength of an entity instance x is in the highest interval

(0.8,1.0], we would expect that the state error detection ratio is also in the range (0.8,1.0]

since most errors in x should propagate to the output. However, it is clear from the above

observations that this is generally not the case. Often, the observed error propagation is

lower than that predicted by the impact strength. This can be explained by the various

compromises made in order to reduce the computational complexity of dynamic impact

analysis. However, we also observed that the observed error propagation varied signif-

icantly across programs. In programs such as mortgage, word-count and eval-expr,

high error detection ratios of 0.89, 0.92 and 0.84 are observed for the (0.8,1.0] impact

strength interval. On the other hand, in programs such as altitude-separation,

func-zero and keywords, moderate error detection ratios of 0.32, 0.44 and 0.50 are

observed for the (0.8,1.0] impact strength interval. This wide variation in the observed

error detection at high impact strengths inspired us to probe further and identify the

program characteristics primarily responsible for this variety.

We examined a set of 175 data points in which the error did not propagate in spite

of 1.0 impact strength. In over 92% of these, the observed discrepancy between the

impact strength and the error detection ratio was attributed to program components

that are tolerant to errors in control paths. That is, the result produced by an execution

of a program component remains correct in spite of an incorrect control path during

execution. For example, consider the program func-zero. It computes the zero of

a function in a given interval by using an iterative procedure that terminates when a

speci�c convergence criterion is satis�ed. At the end of each iteration, it obtains the

next approximation by adding the value of new-step to the previous approximation.

If the value of new-step has an error, the algorithm may still produce the same result

by increasing or decreasing the number of iterations. As another example, consider the

126 CHAPTER 7. VALIDATION

altitude-separation program. It essentially implements a logic formula consisting

of relational and boolean expressions which examines 12 input variables describing the

state of a
ight and determines whether to keep the same course or move upwards or

downwards. An error in the evaluation of a part of the formula may cause a di�erent

control path through the program, but may still produce the correct output. In both

these examples, the restoration of a correct state may occur long after the �rst incorrect

state was introduced. In order to keep the analysis cost low, our heuristic (for approx-

imating the likelihood of error propagation by following an incorrect branch) does not

fully analyze such program components that are tolerant to errors in control paths.

An iteration implementing a many-to-one function is a good example of program

components tolerant to errors in control paths. In an e�ort to capture the importance

of the role played by a loop exit in a computation, our heuristic associates 1.0 impact

strength with a loop exit. The rationale is that, usually, if a loop exit is not taken

either it causes an inde�nite iteration or creates an easily detectable incorrect state.

We indeed observed these scenarios a large number of times, which justi�es the use

of this heuristic. However, it is also possible that even if the loop exit is incorrectly

not taken, the loop may terminate at a later time without producing any detectable

incorrect state. As an example, consider a program component that uses a loop to

implement the �nd operation on a set. While searching for a speci�c element absent

from the set, the iteration can tolerate most errors in the values of the elements or the

predicate governing the loop exit. This is because it is unlikely that such an error will

change the value of a member to match the value of the element being searched. As

another example, consider a string-match function that uses a loop to compare two

strings for equality. While comparing two strings that di�er in several characters, the

implementation is very tolerant to errors in exiting the loop. It is very likely that the

loop eventually terminates with a correct result after an incorrectly missed loop exit.

7.5. EMPIRICAL RESULTS 127

Thus, an incorrectly missed loop exit does not always cause a detectable incorrect state.

Therefore, instead of assigning 1.0 impact strength to a loop exit, the heuristic should

somehow estimate the likelihood of causing a detectable incorrect state by incorrectly

missing the loop exit.

As discussed in section 3.4, program components that implement many-to-one func-

tions are often tolerant to errors in control paths. Clearly, the heuristic has been only

partially successful in dealing with such components and therefore needs improvement.

Designing better heuristics and approaches to handle program components tolerant to

errors in control paths is a topic for further research.

7.5.6 Justifying Non-Boolean Impact Strengths

One may argue that the e�ort in computing impact strengths at such a �ne granularity

is unnecessary and propose the following relatively simple alternative for computing

boolean impact values. Instead of computing impact strengths, one could determine

whether entity instances have impact or not by merely following the impact paths in

reverse. In comparison, dynamic impact analysis assigns a numeric strength to all

entity instances that have impact. The extra cost of computing the impact strengths is

justi�ed only if there is a sizable number of entity instances that have impact strengths

less than 1.0. The wide variations in the distributions of impact strengths as seen in

�gures 7.3 through 7.12 provide su�cient evidence to justify the computation of non-

boolean impact strengths.

7.5.7 Feasibility of Dynamic Impact Analysis

We showed in section 5.4.6 that the time complexity of the impact analysis of an exe-

cution is linear in the execution time. In a claim of linear time complexity, the number

of key importance to practitioners is the constant of proportionality, which in this case

128 CHAPTER 7. VALIDATION

is referred to as the slowdown. As mentioned in section 7.4, for each program, the cpu

time for executing the test suite in the dynamic impact analysis mode was compared

with the cpu time for running the test suite in the standard execution mode. We re-

peated these runs several times and veri�ed that the variations from one measurement

to another were within 10%. For the 26 subject programs, the slowdown varied from

2.5 to 14.35 with an average of 6.3. Thus the processing overhead of dynamic impact

analysis is very reasonable.

We would have liked to measure the space overhead of dynamic impact analysis.

However, since the prototype was implemented in CLOS (Common Lisp Object System)

which uses garbage collection, it was not clear how to reliably measure the additional

space requirements due to dynamic impact analysis.

7.5.8 Summary of Results

The validation experiments reported in this chapter provide strong evidence in support

of the following main results.

1. There is strong positive correlation between the impact strength of an entity in-

stance in an execution and the likelihood that an error in that entity instance

would propagate to the output.

2. There is strong positive correlation between the impact strength of a mutation

in a test case and the likelihood that the test case would kill the corresponding

mutant.

Using statistical analyses, we con�rmed that the above two results were not biased by

the test cases good at detecting state errors or at killing mutants.

The wide variety of impact strength distributions justi�es the computation of impact

strength as a non-boolean value.

7.5. EMPIRICAL RESULTS 129

On the average, the dynamic impact analysis of an execution took only 6.3 times

longer than the original execution. This, along with the above results, indicates that we

have been fairly successful in our goal of designing a cost-e�ective technique to estimate

error propagation. The following observations indicate the parts of the technique that

need improvement.

1. An 1.0 impact strength does not always guarantee error propagation. The presence

of program components tolerant to errors in control paths limit the ability of

impact strength to predict error propagation in slightly altered executions or fault

detection in program mutants. The heuristic for estimating error propagation due

to an incorrect branch has been only partially e�ective and hence it needs to be

improved.

2. A zero or no impact does not always guarantee the absence of error propagation.

Occasionally, the error of incorrectly de�ning a memory location loc0 instead of

loc may propagate even though the correct loc has no or zero impact. In order

to produce better accuracy in such situations, the treatment of reference impact

needs to be further re�ned.

Chapter 8

Analyzing Faulty Programs

In the validation experiments reported in chapter 7, we computed impact strengths by

analyzing executions of correct programs. Then we examined whether or not the impact

strengths accurately predicted error propagation in slightly altered executions or fault

detection in program mutants. In this chapter, we report an experience study in which

the impact strengths are computed by analyzing executions of faulty programs. The

impact strengths are then related to the observed error propagation in those executions.

The major motivations for undertaking this study were as follows:

� to investigate any problems in applying the creation/propagation model of fault

detection to a variety of realistic faults,

� to relate the computed impact strengths and the observed error propagation in

executions of faulty programs, and

� to better understand the consequences of the approximations made in computing

impact strengths.

First, the process of selecting the faulty programs is described. This is followed by

a high level description of the study and descriptions of the elements of our analysis of

a faulty program. In particular, the problems in identifying an incorrect state and the

130

8.1. SELECTION OF FAULTY PROGRAMS 131

methods used for studying impact behaviors are described in detail. Sample analyses of

the faulty programs are presented next, followed by a summary of the results and our

conclusions from this study..

8.1 Selection of Faulty Programs

In order to serve the goals of this study, it was important to consider a variety of realistic

faults in the context of several di�erent application domains. Given that there are no

widely-accepted classi�cations and statistics about faults introduced while developing

C programs, it seemed futile to even attempt to de�ne a set of representative fault

categories. Instead, we studied several research attempts at fault classi�cation [57, 34,

18, 43] and selected the following fault categories from those that seemed pervasive in

the development of C software.

� Incorrect Predicate Expression

� Extra or Missing Conditional Processing

� Incorrect Assignment Expression

� Extra or Missing Assignments

� Faults Related to Iterations

� Faults due to Typographical Errors

� Faults due to Interface Errors

� Faults due to Sequencing Errors

The above list of fault categories should be looked upon as an incomplete set of possibly

overlapping fault categories. Some very important fault categories are absent from the

above list. In particular, we could not consider faults that cause memory trashing

and runtime exceptions primarily due to the limitations of our prototype environment.

132 CHAPTER 8. ANALYZING FAULTY PROGRAMS

Also, we did not consider faults related to memory management, since we believe that

they fall outside the scope of dynamic impact analysis. Note that the fault categories

enumerated above are interrelated and a fault may often belong to several categories. We

also acknowledge that a fault can be classi�ed di�erently based on di�erent viewpoints.

With the goal of representing each of the above fault categories at least once, we

attempted to seed faults in the subject programs used for the validation experiments.

The following criteria were used to seed faults:

� the fault should be plausible,

� the fault should not be detectable by all test cases that execute the fault, and

� the fault should not be detectable by a straightforward syntactic analysis.

As a result of this e�ort, we produced 30 faulty programs derived from 13 base programs.

Relevant details about the faulty programs are included along with their analyses. The

source code for these faulty programs is available from an anonymous ftp site (see

appendix A).

8.2 Elements of the Analysis

The goals of analyzing a faulty program were to apply the creation/propagation model

of fault detection to the program, to relate computed impact strengths and the ob-

served error propagation in executions of the faulty program, and to better understand

the consequences of the approximations made while computing impact strengths. The

following tasks were performed for each faulty program to realize these goals.

Understanding the Program: In order to understand a fault and its behavior, some

knowledge about the program containing the fault was necessary. In particular, the

input/output speci�cation and the overall structure of the program were carefully

studied.

8.2. ELEMENTS OF THE ANALYSIS 133

Understanding the Fault: An attempt was made to apply the creation/propagation

model of fault detection to the fault in the context of the entire program. The

conditions necessary to execute the fault, to create an incorrect state and to prop-

agate the error in the incorrect state to the output were determined. For 4 out of

the 30 subject programs, identifying the incorrect state components was subject

to the interpretation of what \correct" meant in the speci�c context. For these

four programs, the incorrect behavior was characterized by the fact that one or

more state components were inadvertently ignored. This issue is discussed later

in section 8.2.1. The entity instances responsible for either the incorrect state or

the ignored state components were identi�ed. For brevity, these are referred to as

the a�ected entity instances .

Generating Test Cases: For the 26 programs where incorrect state(s) could be clearly

identi�ed, in order to study error propagation and the associated impact behavior,

test cases were generated to satisfy the fault execution and error creation condi-

tions. The goal of this task was to produce at least 10 test cases that detected the

fault and at least 10 test cases that satis�ed the fault execution and error creation

conditions but did not detect the fault. Probes were inserted into the execution

environment to verify that the fault execution and error creations conditions were

satis�ed. For most faulty programs, TSL [55] test scripts were used to generate

the test cases. For some programs, the TSL language was not powerful enough

to capture the dependencies among inputs. Hence for these programs, test cases

were generated manually. These test cases are available along with the source

code of the faulty programs at an anonymous ftp site (see appendix A).

Examining Impact Behavior: For each of the above 26 programs, dynamic impact

analysis was carried out for each of the test case executions of the faulty program.

Probes were inserted in the execution environment to record the computed impact

134 CHAPTER 8. ANALYZING FAULTY PROGRAMS

strengths of the a�ected entity instances. These recorded strengths are referred to

as themonitored impact strengths . The impact behaviors of the detecting and non-

detecting test cases were compared and classi�ed using the methods describe�d in

section 8.2.2. For each of the remaining 4 programs, the ignored state components

were associated with violation of one or more impact requirements.

8.2.1 Identifying Incorrect State

As mentioned in section 2.2, identifying the incorrect state is often a problem while ap-

plying the creation/propagation model of fault detection to real faults. In the literature

[67, 72], an incorrect state usually refers to one or more of the following: an incorrect

value held by a variable in the data state, an incorrect program counter value (possibly

due to an incorrect branch) or an incorrect input state component. For example,

consider an iteration with the requirement that the DFS procedure should be called for

the �rst n elements of an array. There is no ordering requirement for these n calls to

DFS. Four di�erent versions of a for loop implementing the iteration are shown below.

Faulty Version

for(i=1;i<n;i++)

DFS(a[i]);

Correct Version1

for(i=0;i<n;i++)

DFS(a[i]);

Correct Version2

for(i=1;i<=n;i++)

DFS(a[i%n]);

Correct Version3

for(i=1;i<=n;i++)

DFS(a[i-1]);

The �rst version is faulty and the other three versions are correct. With respect to

the execution of the correct version1, the execution state of the faulty program becomes

incorrect after the initialization of loop index i to 1 instead of 0. With respect to

the execution of the correct version2, the execution state becomes incorrect just before

accessing the array element a[1] instead of a[0]. And with respect to the correct

version3, the state becomes incorrect after executing the loop exit condition for the last

8.2. ELEMENTS OF THE ANALYSIS 135

time. Thus, it is di�cult to identify an incorrect state or determine the �rst incorrect

state in the execution of the faulty version. The only invariant across the three correct

versions is that they satisfy the requirement of calling the DFS procedure for each of the

�rst n elements of the array. In the incorrect version, DFS is not invoked for a[0]. In

this situation, instead of identifying the �rst incorrect state, it may be more appropriate

to characterize the incorrect behavior by saying that \a[0] is inadvertently ignored".

8.2.2 Studying Observed Impact Behaviors

Recall that the a�ected entity instances are either those responsible for the incorrect

state or those associated with inadvertently ignored state components. In 26 out of the

30 faulty programs, the incorrect state was characterized as the a�ected entity instances

having incorrect values. As mentioned earlier, for these 26 programs, dynamic impact

analysis was carried out on test cases that satis�ed the fault execution and error creation

conditions. In a subject program, if the incorrect state was characterized as the a�ected

entity instances having incorrect values, whether such a test case detected a fault or not

depended solely on the propagation of errors in the a�ected entity instances. Therefore,

in order to relate error propagation with impact strengths, the impact behaviors of the

detecting and non-detecting test cases were compared to identify the important impact

characteristics that di�erentiated the two sets of test cases. The comparison was based

on the kind and strength of impact of the a�ected entity instances and the output entities

on which they had impact. In the remaining 4 programs, the incorrect behavior was

characterized by the fact that the a�ected entity instances were inadvertently ignored.

In each of these programs, the presence of a fault could be inferred simply by comparing

the observed impact relationships against the expected impact relationships. Both of

these situations are discussed below.

136 CHAPTER 8. ANALYZING FAULTY PROGRAMS

Comparing Impact Characteristics

The impact behaviors of the a�ected entity instances di�ered across test cases in one

or more of the following: impact kinds, impacted output entities and impact strengths.

Based on our experience, we expected the strength of a data impact to be more

reliable than that for a control or a reference impact. Hence, when present, the data

impact strength was used as the key discriminating feature between the detecting and

non-detecting test cases. In case of the analyses where data impact was absent or

insigni�cant, we examined the average impact strength (see de�nition 8 on page 69) as

the discriminating feature.

For detecting failures by observing the output, some output entities are not as useful

as others. For example, in the output of a database query, a constant header string in

the output is less useful for detecting a failure as the values representing the result of

a query. Therefore, in such cases we measured the strengths of impact of the a�ected

entity instances on speci�c output entities.

Recall that the monitored impact strengths refer to the strengths of impact of the

a�ected entity instances on speci�c output entities. In our analysis, we provide the

following visual aid for comparing the monitored impact strengths in the detecting and

non-detecting test cases.

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

The line in the center represents the scale of impact strength from 0.0 to 1.0. The thin

horizontal line above the scale indicate the range of the monitored impact strengths

for the detecting test cases and the associated vertical bar indicates the corresponding

average impact strength. Similarly, the thin horizontal line and the vertical bar below

the scale indicate the range and average of the monitored impact strengths for the

8.2. ELEMENTS OF THE ANALYSIS 137

non-detecting test cases. For the purpose of this graphical representation, no impact is

treated as zero impact. In 26 out of the 30 faulty programs, where the incorrect states

were characterized as the a�ected entity instances having incorrect values, the impact

characteristics of the detecting and non-detecting test cases were compared using this

method. Four main types of representative behaviors were observed. Each of them is

described with the help of a representative example in section 8.3. Complete analyses

of all of the programs are presented in appendix B.

Examining Violation of Dynamic Impact Requirements

Jackson [30] proposed a technique (Aspect) for de�ning the required dependencies in

a functional module and statically analyzing the module to see if the computed static

dependencies conform to the required dependencies. A fault is detected when the com-

puted dependencies obtained from analysis do not agree with the required dependencies.

In our analyses, we observed that dynamic impact requirements could be de�ned and

used more or less the same way. Recall from our earlier discussion (x8.2.1) that an

incorrect behavior may be characterized by the fact that a data state component or an

input state component is inadvertently ignored. When such a component is an array el-

ement or a part of a recursive data structure, it is usually not possible to perform static

analysis to accurately determine that the component is ignored on all control paths.

However, dynamic impact analysis can accurately determine whether a component is

ignored or not in a speci�c execution. For example, consider the computation of the

average of the elements of an array. In this case, one dynamic impact requirement is

that all elements of the array should impact the resulting average. Depending on the

nature of the iteration that computes the average, it may or may not be possible to

statically verify that all elements of the array will take part in computing the average.

However, using dynamic impact analysis, it is straightforward to determine whether or

138 CHAPTER 8. ANALYZING FAULTY PROGRAMS

not all array elements had data impact on the result. If this dynamic impact require-

ment is not satis�ed in a test execution, we can be certain that a fault is present in the

program even if the output is correct.

In 4 out of the 30 faulty programs, the incorrect behavior was characterized by

the fact that the a�ected entity instances were inadvertently ignored. In each of these

programs, the presence of the fault results in violation of a dynamic impact requirement.

This is illustrated by a representative example in section 8.3. Complete analyses of all

of the subject programs are presented in appendix B.

8.3 Sample Analyses

Five sample analyses are presented in this section which are representative of the thirty

analyses presented in appendix B. The �rst four sample analyses represent the following

behaviors while comparing the averages and ranges of the monitored impact strengths

between the detecting and the non-detecting test cases:

� signi�cant separation between the averages, no overlap between the ranges,

� signi�cant separation between the averages, slight overlap between the ranges,

� signi�cant overlap between the ranges at low impact strengths, and

� signi�cant overlap between the ranges at high impact strengths.

The �fth sample analysis represents the case when a fault is detected by examining the

dynamic impact relationships.

The format used for presenting the analyses is described below followed by the sample

analyses. At the end of each sample analysis, the observed behavior is characterized

and similar observed behaviors of other faulty programs are summarized.

8.3. SAMPLE ANALYSES 139

Presentation Format

Each analysis is presented using the following format.

FAULT n: Title Describing the Fault

The fault number n is used for the ease of cross-reference.

Application: Name of the Application. Refers to one of the applications described in

section A.1.

Context: phrase describing the module containing the fault. Describes relevant context

information for understanding the fault.

Fault Description: is a concise description of the fault with respect to the context

presented above.

Fault Execution Condition: is the condition necessary for the fault to be executed.

Error Creation Condition: is the condition necessary for an execution of the fault to

produce an incorrect state. This assumes that the fault execution conditions are

satis�ed.

Incorrect State: is a terse description of the incorrect state(s).

Error Propagation Condition: is the condition necessary for the error in the incorrect

state to propagate to the output. This assumes that the fault execution and error

creation conditions are satis�ed. Often, these conditions are too complex to state

in a few lines. In such cases, a high level description or a typical scenario is

presented.

Impact Analysis: presents the results of the impact analysis of the detecting and non-

detecting test cases. For 26 programs, the impact strengths of the a�ected entity

instances are compared between the detecting and non-detecting test cases. For

140 CHAPTER 8. ANALYZING FAULTY PROGRAMS

4 programs, dynamic impact requirements are examined and shown how they can

be used for fault detection.

Notations and Conventions

While referring to variables from the faulty programs, we took the liberty of renaming

them for better readability. And for better formatting, we use a - (dash) instead of the

usual (underscore) used for separating words of an identi�er in the C language.

Defi(v) denotes a de�nition of variable v, where i is used as an identi�er to distinguish

the de�nition from other de�nitions of v. Similarly, Usei(v) denotes a use of variable v

and Defi-Usej(v) denotes a def-use association from Defi(v) to Usej(v).

Example Illustrating Signi�cant Separation, No Overlap

FAULT 17: Interacting loop initialization and loop exit faults

Application: Database Processing.

Context: performing a join of two relations. A new relation Q is created as a join of

relations R1 and R2 by performing the following two sequences of steps.

1. First, the headers of R1 are copied onto Q using a for loop. The index of

the array �lled so far is remembered outside the loop, and used in another

for loop to copy the headers of R2.

2. A similar sequence is repeated for adding the attribute values for each joined

tuple.

Fault Description: In the second for loop (in both sequences), the loop index goes

from 1 � � �n rather than 0 � � �n� 1. As a result, the relation Q has an extra empty

attribute column between the attributes of R1 and R2.

Fault Execution Condition: A join operation is performed on two non-empty relations.

8.3. SAMPLE ANALYSES 141

Error Creation Condition: is always satis�ed.

Incorrect State: The resulting relation Q has an extra empty attribute column with a

blank header and default values.

Error Propagation Condition: A database query is made whose result is sensitive to

the values of all attributes of a relation is applied to the result relation Q (or a

derivative of Q containing the incorrect empty attribute column). If a query uses

speci�c named attributes, the empty attribute column will go undetected.

Impact Analysis: The data impact strength of the extra empty attribute is computed

as the maximum of the data impact strengths of its blank header and any of the

attribute values. The variation in this strength is shown below.

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the extra attribute had impact strength 1.0, while for

the non-detecting test cases, the extra attribute had no impact.

Fault 17 represents the impact behavior of a group of 15 faulty programs. The monitored

impact strengths in the detecting test cases are clearly higher than those in the non-

detecting test cases. There is a signi�cant separation between the impact strength

averages and the impact strength ranges do not overlap. The impact strength variations

for the other 14 faulty programs are summarized below.

Impact strength variation for faults 1, 3, 4, 12, 15, 20, 23, 26, and 27 :

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

142 CHAPTER 8. ANALYZING FAULTY PROGRAMS

Impact strength variation for faults 8 and 18:

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

Impact strength variation for fault 2:

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

Impact strength variation for fault 6:

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

Impact strength variation for fault 21:

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

Example Illustrating Signi�cant Separation, Slight Overlap

FAULT 14: Extra if statement

Application: Tax Computation.

Context: itemized deductions. If the itemized deduction is greater than the standard

deduction, the global variable excess-deduction holds the di�erence.

Fault Description: The assignment to excess-deduction is executed only if the tax-

able income is less than 70% of the adjusted gross income.

Fault Execution Condition: Input data is valid.

8.3. SAMPLE ANALYSES 143

Error Creation Condition: The itemized deduction is greater than the standard de-

duction but the taxable income is not less than 70% of adjusted gross income.

Incorrect State: The value of excess-deduction is incorrect.

Error Propagation Condition: The incorrect value of excess-deduction is used in the

computation of alternate minimum tax, and the error propagates to the �nal tax

either directly or indirectly by rendering the minimum tax regulation inapplicable.

Impact Analysis: The variation in the impact strength of excess-deduction is shown

below.

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the impact strengths were .84, .67, .5, .5, .67, .75,

.84, .92, .75, and .5; and those for the non-detecting test cases were .33, .33, .33,

.17, .33, .5, .17, .26, .5, and .2.

Fault 14 represents the impact behavior of a group of 3 faulty programs. The monitored

impact strengths in the detecting test cases are generally higher than and occasionally

equal to those in the non-detecting test cases. That is, over a narrow range of impact

strengths, both detecting and non-detecting test cases are present. This interval of

overlap is at the lower end of the range of impact strengths in the detecting test cases

and at the upper end of the range of impact strengths in the non-detecting test cases.

For example, in the above sample analysis, three detecting and two non-detecting test

cases have impact strength 0.5. All other detecting test cases have impact strength

greater than 0.5 and all other non-detecting test cases have impact strength lower than

0.5. As expected, at 0.5 impact strength, error-propagation occurs in some test cases

but not in others. The impact strength variations for the other 2 faulty programs are

summarized below.

144 CHAPTER 8. ANALYZING FAULTY PROGRAMS

Impact strength variation for fault 10:

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

Impact strength variation for fault 22:

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

Example Illustrating Signi�cant Overlap at Low Impact Strengths

FAULT 28: Incorrect argument

Application: Market Research.

Context: processing account recommendation. In order to determine the account type

most appropriate for the customer, among other things, the number of transactions

(num-transactions) executed by the customer is required as an argument.

Fault Description: The number of overdraft transactions is passed instead of the num-

ber of transactions.

Fault Execution Condition: is always satis�ed.

Error Creation Condition: All transactions are not overdraft transactions.

Incorrect State: The num-transactions argument has an incorrect value.

Error Propagation Condition: The customer has not paid high overdraft fees or high

transaction fees, the number of transactions is greater than 10 and the number of

overdraft transactions is less than 5.

Impact Analysis: The variation in the impact strength of the incorrect num-transactions

argument is shown below.

8.3. SAMPLE ANALYSES 145

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the impact strengths were 0.5, .34, 0.5, .34, .34, .34,

.33, .5, .33, and .33. For the non-detecting test cases, the impact strengths in

nine cases were .17, .28, .5, .26, .28, 0.0, .17, .26, and .33, and in one case the

num-transactions argument had no impact.

Fault 28 represents the impact behavior of a group of 2 faulty programs. In this case, the

a�ected entity instances generally have low to medium impact strengths in all test cases.

As expected, in some test executions the error is propagated resulting in fault detection

and in some test cases the error is not propagated. Therefore, there is a considerable

overlap between the ranges of impact strengths of the detecting and non-detecting test

cases. The impact strength comparison for the other faulty program is summarized

below.

Impact strength variation for fault 24:

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

Example Illustrating Signi�cant Overlap at High Impact Strengths

FAULT 25: Incorrect return value semantics

Application: String Processing (pattern matching and substitution.

Context: processing escape sequence. When the escape character @ is the last character

in the input regular expression or the replacement text, it is to be treated as

a regular character. The procedure processing escape sequences is expected to

correctly implement such a situation and return the @ character.

146 CHAPTER 8. ANALYZING FAULTY PROGRAMS

Fault Description: When the @ is the last character in the input regular expression or

the replacement text, the procedure processing escape sequences returns a null

character instead of the @ character.

Fault Execution Condition: At least one @ character is present in either the input reg-

ular expression or the replacement text.

Error Creation Condition: An @ character is present as the last character in the input

regular expression or the replacement text.

Incorrect State: The return value of the procedure processing escape sequences is in-

correct in the above case. The incorrectly returned null character prematurely

terminates the internal representation of either the input regular expression or

the replacement text.

Error Propagation Condition: If the regular expression is incorrect, the error is propa-

gated when there is an incorrect match or incorrect mismatch. If the replacement

text is incorrect, the error is propagated when there is a match followed by the

corresponding substitution.

Impact Analysis: The variation in the impact strength of the incorrect return value is

shown below.

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the impact strengths were 1.0. For eight of the non-

detecting test cases, the incorrect return value had no impact. However, in the

remaining two non-detecting test cases, there was at least one character sequence

in the subject that matched the pattern only upto the @ character. Therefore, the

incorrect state had impact on the false outcome of the match. As we mentioned

before (section 7.5.5), when the expected outcome of a string matching function is

8.3. SAMPLE ANALYSES 147

false, it is tolerant to errors in the control paths or in the strings being compared.

Fault 25 represents the impact behavior of a group of 5 faulty programs. The monitored

impact strengths of the a�ected entity instances are unusually high for one or more of

the non-detecting test cases. For 3 out of these 5 programs, this was associated with

speci�c program components that are tolerant to errors in control paths. With each such

behavior, we identify and describe the speci�c reasons for the observed error tolerance.

For the other two programs, this behavior was caused due to the limitations of our

prototype. In these cases, we identify and report the speci�c limitation of our prototype

responsible for this behavior. The impact strength variations and the reasons for the

observed high impact strength in some of the non-detecting test cases are summarized

below for the other 4 faulty programs.

Impact strength variation for fault 11 :

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

For this program computing the strongly connected components (SCCs) of a directed

graph, unusually high monitored impact strengths were observed for 3 out of the 50 non-

detecting test cases. In each of these three test cases, every node of the directed input

graph (with n nodes) had an outdegree of either (n� 1) or 0. When the input digraph

has such a property, the scc algorithm is very tolerant to the errors in control paths

caused by the fault in this program.

Impact strength variation for fault 30:

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

148 CHAPTER 8. ANALYZING FAULTY PROGRAMS

In this faulty program, while loading the input graph, the start and end nodes of

the �rst edge are read incorrectly. In all of the non-detecting test cases, the �rst edge

was of the form (0; n). In such a situation, the fault causes an inversion of the edge

from (0; n) to (n; 0), which is a no-operation for an undirected graph. Therefore, even

though this error a�ects the control paths of the execution, the �nal output remains the

same.

Impact strength variation for fault 5:

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

For this fault, all of the non-detecting test cases with 1.0 impact strength involved

precision loss. Our prototype currently uses a di�erent precision
oating point arith-

metic than that supported by the system C library and hence the impact strengths

computed did not accurately re
ect the loss of precision.

Impact strength variation for fault 19:

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

For this program, out of the 23 non-detecting test cases, in 4 test cases the moni-

tored impact strength was 1.0. Out of these, 3 test cases involved loss of precision. As

mentioned above, due to the limitations of our prototype, the computation of impact

strengths does not accurately re
ect the loss of precision. In one test case, error can-

cellation occurred when integrating a polynomial Q from point v to v. That is, in an

operation Q(v)� Q(v), an error in a coe�cient of Q got canceled.

8.3. SAMPLE ANALYSES 149

Example Illustrating Violation of Dynamic Impact Requirements

FAULT 7: Incorrect Predicate

Application: Graph Algorithms.

Context: performing the depth �rst search. In order to perform the depth �rst search,

a high level while loop scans through all the nodes in the graph to ensure that

every node is visited at least once.

Fault Description: Instead of the correct expression (++last-new-node < num-nodes),

the incorrect expression (last-new-node++ < num-nodes - 1) is used as the

predicate of the while loop. As a result, node 0 is ignored in this high level

scan.

Fault Execution Condition: is always satis�ed.

Error Creation Condition: The graph is non-empty.

Incorrect Behavior: Node 0 is ignored in the high level scan.

Error Propagation Condition: There are no edges incident on node 0. (If node 0 was

connected to at least one other node, it will be reached in the depth �rst search

and the fault will not be detected).

Impact Analysis: A dynamic impact requirement of the depth-�rst-search algorithm is

that, for valid input graphs, all nodes of the graph should impact the result. For

the detecting test cases, node 0 did not impact the output, hence this requirement

was violated. For the non-detecting test cases, this requirement was satis�ed.

Fault 7 represents the impact behavior of a group of 4 faulty programs. In these pro-

grams, the incorrect state is characterized as one or more ignored state components

and the entity instances associated with the ignored components do not have impact on

the output. In such cases, the violation of a dynamic impact requirement indicates the

150 CHAPTER 8. ANALYZING FAULTY PROGRAMS

presence of a fault. Using fault 7 as an example, we illustrated above how examining

impact requirements can be used to detect the presence of faults. Similar analyses for

the other three faults (9, 13 and 16) are presented in appendix B.

8.4 Summary and Observations

In 23 out of the 30 faulty programs analyzed, the impact characteristics were closely

related to error propagation.

� In 18 programs, the monitored impact strengths in the detecting test cases were

generally higher than those in the non-detecting test cases. There was signi�cant

separation between the average impact strengths of the two sets. Out of these 18,

in 15 cases, there was no overlap between the ranges of the impact strengths in

the two sets, while in 3 cases, there was very slight overlap.

� In 4 programs, the incorrect state was characterized as one or more ignored state

components. In these faulty programs, it was shown how examining dynamic

impact requirements can be used to detect the presence of faults.

� In one faulty program, there were no detecting test cases. That is, the error in the

incorrect state did not propagate to the output for any test case. As expected,

the a�ected entity instances did not impact the output in any of the test cases.

In 2 out of the 30 faulty programs, the monitored impact strengths were generally

low to medium for all test cases and there was considerable overlap between the ranges

of impact strengths for the detecting and non-detecting test cases. Thus the impact

strengths correctly predicted the small likelihood of error propagation.

In the remaining 5 faulty programs, the monitored impact strengths were unusually

high for one or more of the non-detecting test cases. For 3 out of these 5 programs, this

behavior was associated with speci�c program components tolerant to errors in control

8.4. SUMMARY AND OBSERVATIONS 151

paths. For the other 2 programs, this behavior was caused due to a speci�c limitation of

our prototype. The prototype uses a di�erent precision
oating point arithmetic than

that supported by the system C library and hence the impact strengths computed did

not accurately re
ect the loss of precision.

In all of the programs, there was only one test case demonstrating the failure of error

propagation due to canceling errors (two or more errors interacting in an operation to

cancel each other).

We acknowledge that since this is a small scale study of only 30 faults, it is not

appropriate to generalize from its results. Nevertheless, we list below our interpretations

of the results of this study.

� While applying the error creation/propagation model to a realistic fault, one often

faces the di�culty of identifying the incorrect state caused by the fault. Occasion-

ally, instead of identifying the �rst incorrect state caused by the execution of a

fault, we found it more useful to characterize the incorrect behavior by identifying

the state components ignored in the faulty execution.

� If a program execution is sensitive to errors in control paths, impact strengths

computed by analyzing the execution are very good indicators of error propagation

in that execution.

� In programs involving
oating point computations, error propagation often fails

due to the loss of precision.

� It is plausible that there may not exist a test case in which at least one instance of

a program entity Y has high impact on the output. This implies that the output

of the program is very insensitive to Y . Therefore, faults leading to an incorrect

value of Y cannot be detected easily. In order to validate the parts of the program

computing Y , it may be necessary for the tester to probe internal states that are

sensitive to Y .

Chapter 9

Potential Applications

This chapter describes potential applications of dynamic impact analysis. We �rst

describe how dynamic impact analysis can be applied to code-based testing strategies

and discuss some of the issues involved. We then brie
y describe the application of

dynamic impact analysis for computing a dynamic program slice.

9.1 Mutation Testing

Using dynamic impact analysis, weak mutation testing [27] can become a formidable

competitor to strong mutation testing. In order to save the cost of strong mutation

testing, the weak mutation approach [27] does not require the satisfaction of the error

propagation condition and instead relies on the weak mutation hypothesis , which states

that the error propagation condition will be satis�ed when the fault execution and the

error creation conditions are satis�ed. Our experience has shown that this hypothesis is

not based on any sound intuition or expectation of reality. In a study reported by Marick

[41], the weak mutation hypothesis was true only half the time even in the context of

individual procedures. Also, the results of the mutant killing experiment reported in

chapter 7 provide strong evidence against the weak mutation hypothesis. In order to

152

9.1. MUTATION TESTING 153

relax this assumption, dynamic impact analysis can be used to assure that mutations

are exercised with a high probability of satisfying the error propagation condition. The

validation results reported in this thesis indicate that, in general, the higher the impact

strength associated with a weak-killed mutant in a test case, the greater the chances of

that mutant being strong-killed in that execution.

Interestingly, dynamic impact analysis can also be used to reduce the cost of strong

mutation analysis [13]. One of the factors contributing to the cost is the practice of

executing a test case on all remaining live mutants. Test case executions that do

not kill mutants are wasteful. In order to reduce the number of wasteful executions,

Duncan and Robson [15] proposed an ordering scheme which orders the test cases and

mutants based on the control
ow and the types of mutants. In a recent paper, Weiss

and Fleyshgakker [76] proposed a serial algorithm for strong mutation analysis which

ensures that a (test case, mutant) pair is executed only if the corresponding mutation

is weak-killed by the test case. The mutation impact strengths computed by dynamic

impact analysis provides useful information which can be used to avoid executions in

which a weak-killed mutation has a very low probability of a�ecting the output. The

validation results indicate that, given the weak-killed mutations with di�erent impact

strengths during a test case execution, the test case is more likely to kill those with higher

strengths than those with lower strengths. In order to minimize wasteful executions, one

can exploit this observation to design the order in which the (test case, mutant) pairs are

executed. For example, it makes sense to run a test case �rst on the live mutants that

have impact strength 1.0 or near 1.0 for that test case. Most of these mutants should

get killed by the test case unless their impact was via program components tolerant to

errors in control paths. Similarly, there is little point in running a test case on mutants

that have no impact or zero impact on the output of that test case. Further research is

necessary to determine how to use the intermediate values of impact strength and the

154 CHAPTER 9. POTENTIAL APPLICATIONS

impact kind information in minimizing wasteful executions.

9.2 Syntactic Coverage-based Testing

Recall that a typical syntactic coverage-based testing strategy speci�es a set of syntactic

components in the program that need to be exercised by a test suite for adequate testing.

The requirement of exercising a syntactic component is satis�ed if it is executed at least

once by some test case in the test suite. This causes the problem that if the execution

of the syntactic component did not a�ect the output, then the faults exercised by

executing the component can go undetected. To avoid this problem, we can modify

the requirements as follows: a component is considered exercised when it is executed

at least once with non-zero impact strength. This will disqualify component executions

that had either no impact or zero impact. Duesterwald, Gupta and So�a propose

an approximate solution to disqualify component executions that had no impact. As

discussed in section 5.5, our approach is more accurate in disqualifying component

executions with no impact and additionally we also disqualify components with zero

impact. The results from chapter 7 indicate that it is not uncommon to have a sizable

number of components with zero impact.

We can take this approach one step further and require that the exercised compo-

nents have high impact strength. This extension involves two problems. First, it is

not straightforward to quantify high impact strength in a program independent way.

The other problem has to do with helping the tester in satisfying the impact strength

requirements. More research is needed in order to come up with heuristics to solve these

two problems. We believe that the fault detection capability of a syntactic coverage-

based testing strategy will improve by imposing the impact strength requirements. We

hope to substantiate this claim in subsequent research.

9.3. DYNAMIC PROGRAM SLICING 155

9.3 Dynamic Program Slicing

In our framework, computing a dynamic program slice (x2.8, [2, 35]) would require

processing the execution trace in reverse order and computing a transitive closure with

respect to the impact predecessor relation starting at the entity instances corresponding

to de�nitions of speci�ed variables. One can obtain a smaller and more accurate slice

if, while computing the transitive closure, the search is pruned when impact arcs with

zero impact strength are encountered. While conducting the experiments described in

chapter 7, we observed that a sizable number of impact arcs have zero impact strength.

Chapter 10

Conclusion and Future Research

Directions

In this dissertation, the technique of dynamic impact analysis was proposed for analyzing

error propagation in program executions. The notions of a program impact graph and

an execution impact graph were introduced to provide the infrastructure necessary for

supporting dynamic impact analysis. The notion of impact strength was de�ned as a

quantitative measure of the error sensitivity of an impact. A cost-e�ective algorithm

to analyze impact relationships in an execution and compute the impact strengths was

presented. A prototype implementation that demonstrates the feasibility of dynamic

impact analysis was outlined. The experiments conducted to validate the computation

of impact strengths were described. An experience study undertaken to relate impact

strengths to error propagation in executions of faulty programs was described. Finally,

potential applications of dynamic impact analysis in the areas of mutation testing,

syntactic coverage-based testing and dynamic program slicing were discussed.

The empirical results provide evidence indicating a strong positive correlation be-

tween impact strength and error propagation. The time complexity of dynamic impact

156

157

analysis is shown to be linear with respect to the original execution time, and experi-

mental measurements indicate that the constant of proportionality is a small number

ranging from 2.5 to 14.5. Together, these results indicate that we have been fairly suc-

cessful in our goal of designing a cost-e�ective technique to estimate error propagation.

However, in order to reap the potential bene�ts of the technique, the accuracy of the

estimate needs to be improved signi�cantly. In particular, better heuristics are needed

for handling reference impact and program components tolerant to errors in control

paths. The most important research issues emerging out of this dissertation are listed

below.

� A heuristic to estimate in a cost-e�ective way, the potential control impact of a

decision branch due to the fact that it avoided certain state changes.

The usefulness of dynamic impact analysis can be signi�cantly enhanced by de-

signing such a cost-e�ective heuristic. A related issue is the detection and handling

of program components that are tolerant to errors in control paths. As demon-

strated in the results, such program components cause overestimation of error

propagation.

� An assignment of weights to di�erent kinds of impacts based on their relative

importance in error propagation.

It is possible that such weights may depend on the kind of computation being

performed by the program. It would be interesting and useful to study the joint

correlation between error propagation, impact strength and impact kind.

� A heuristic to estimate in a cost-e�ective way the likelihood of propagation of the

error of incorrectly de�ning a location loc0 instead of loc.

This requires an in depth study of the reference impact in di�erent programming

contexts. In a sense, the results of our experiments strongly agree with our decision

158 CHAPTER 10. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

to treat the reference impact separately from the data impact.

� Re�nement of the notion of an error set and the proposed error classes.

For better accuracy, it may be necessary to re�ne the notion of an error set and

add new application speci�c error classes. On a related topic, the sensitivity of

impact strength to speci�c error classes needs to be empirically evaluated.

� An algorithm should be designed to determine the order in which the (test case,

mutant) pairs should be evaluated in strong mutation testing, based on the impact

strengths of corresponding mutations.

We believe that rather than running a test case on all live mutants or running

a live mutant for all available test cases, it may be more productive to schedule

the running of the (test case, mutant) pairs based on the impact strength of the

corresponding mutation in that test case.

Some of the other related research issues are: alternate ways of propagating and as-

similating impact strengths, techniques to compute most of the impact information

statically so as to minimize the dynamic overhead, algorithms to partially process very

large execution traces, and approaches to model the impact of the goto statement.

The results and ideas presented in this thesis have already inspired several research

e�orts in other software testing topics. For example, we are examining the possibility

of using impact strengths to select the best test case among those with almost identical

syntactic coverage. If successful, this would greatly help the problem of removing re-

dundant test cases from a large test suite. In another endeavor, the concept of impact

strength is being evaluated for use in generating error sensitive test cases. We hope

that the research e�ort described in this dissertation continues to inspire new ideas in

software debugging, testing and maintenance.

Appendix A

Experimental Data

We �rst describe the 26 subject programs used in the validation experiments (Chap-

ter 7). This is followed by instructions for accessing the experimental data from an

anonymous ftp site.

A.1 Subject Programs

The 26 subject programs used in the validation experiments are brie
y described below

grouped by the applications. Along with a brief description for each program, informa-

tion is provided about the source from where the program was obtained.

Accounting: The accounting program was derived from a basic home accounting

application available as a public domain software on a personal computer. It sup-

ports deposits, expenses by categories, monthly payments, and monthly interest

accrual on the account balance. A simple query interface supports inquiries about

the balance, and various expense categories.

159

160 APPENDIX A. EXPERIMENTAL DATA

Aircraft Control: Leveson et al. [40] describe a formal speci�cation technique that

uses a modi�ed statechart notation to specify TCAS II, an aircraft collision avoid-

ance system. The altitude-separationprogram is a C translation of the selected

functionality from the above speci�cation. It essentially implements a logic for-

mula consisting of relational and boolean expressions which examines 12 input

variables describing the state of a
ight and determines whether to keep the same

course or move upwards or downwards.

Calculus: The poly-calculus program is a set of functions supporting integration

and di�erentiation of polynomials. The program takes an input polynomial P

and based on the operation requested, either di�erentiates P at a speci�ed point

or integrates it over a speci�ed interval. It was developed as an undergraduate

class assignment.

Compilers: The eval-expr program implements a small recursive decent parser for

parsing arithmetic expressions with constant operands and evaluates the expres-

sion. The program was implemented as an undergraduate course assignment.

Database Processing: The three programs aggregate-db-reln, join-db-reln and

select-db-reln were derived from a relational database program developed as

a graduate class project. It supports loading relations into memory, indexing

the relations for e�ciency, performing join, select or aggregate operations on the

relations to create new relations, and printing the relations. The operations and

queries are issued using a simple ascii interface.

Graph Algorithms: The three programs depth-first-search, bi-connectivity and

strong-connectivity implement a set of functions supporting graph algorithms

based on the depth-�rst-search. They are C translations of algorithms presented

in an algorithms book [4]. These support loading of directed or undirected graphs,

carrying out depth �rst search while printing the nodes in a depth �rst order and

A.1. SUBJECT PROGRAMS 161

computing bi-connected or strongly-connected components.

Investment-related Computation: The mortgage program was derived from a pub-

lic domain spreadsheet software running on Unix. It implements a set of investment-

related functions and supports computing monthly payment for a mortgage, the

future value of an investment and the present value of a future dollar amount.

Market Research: The bank-promotion program classi�es individuals based on some

information about their �nancial status. It takes as input the information about a

bank's customer and the vital statistics about his account to determine the target

groups that he/she belongs to for various sales promotions. We developed this

program based on the information from a management consultant of a bank.

Numeric Algorithms: The three programs func-zero, square-root and determinant

represent the numeric processing domain. The func-zero program takes a func-

tion and an interval and attempts to �nd a point in the interval where the function

value is zero. It is a public domain program available on netlib (anonymous ftp

sites netlibornl.gov or research.att.com). The square-root program computes

the square root of a
oating point number with the requested precision. It is a

C translation of the program used by Rapps and Weyuker [64], which in turn

was translated from the Wensleysqroot program used by Boyer, Elspas and Levitt

[9]. The determinant program is a C translation of the revised version of the

algorithm 44 in the Collected Algorithms from CACM [1]. It computes the deter-

minant of a square matrix of
oating point numbers.

Operating System: The prio-schedule program is a driver for testing the process

scheduling scheme implemented in a small operating system used for teaching

an undergraduate class. The program implements priority scheduling with three

priorities low, medium and high. A sequence of input commands specify the events

relevant to process scheduling such as process entry, blocking, unblocking, priority

162 APPENDIX A. EXPERIMENTAL DATA

update, time slot expiration, and process exit.

Other Programs: The list-ops program is a driver for testing the insert, delete and

�nd operations in a module implementing doubly linked lists. It was implemented

as an undergraduate class assignment. The binary-search program is a toy pro-

gram implementing binary search in a small array. It was derived from an example

program used by Bob Horgan of AT&T Bell Laboratories in a research discussion

about data
ow testing. The x power y program is a toy program computing XY

for integer values of X and Y . It is a C translation of the program used by Rapps

and Weyuker [65]. The triangle-type program classi�es an input triangle as

equilateral, isosceles, scalene or not a triangle. It is a C translation of a similar

program distributed with the Mothra mutation testing tool [12].

Statistics: The two programs chi-square-test and info-measure represent the do-

main of statistical computations. The chi-square-test program implements the

Pearson's chi-square test for a 2-way contingency table. The info-measure pro-

gram computes Kullback's information measure for a 2-way contingency table.

Both programs were obtained from netlib (accessible via email to netlib@ornl.gov

or from the anonymous ftp site research.att.com).

String Processing: The word-count, keywords and pattern-replace programs rep-

resented the string processing domain. The word-count program counts the num-

ber of lines, characters in each input �le, determines the maximum number of

columns used and the maximum print width needed for printing the �le without

truncation or wrap-around. It was developed by Marcus Yoo of Siemens Corpo-

rate Research, Inc. The keywords program matches tokens in the input stream

with a set of keywords and outputs the frequency of occurrence of each keyword.

This program was obtained from a friend with no information about its primary

author. The pattern-replace program takes a pattern in the form of a regular

A.2. DATA AVAILABLE ON ANONYMOUS FTP-SITE 163

expression, matches the pattern on input text and replaces the matched text with

the replacement text. This program was a C translation of the pascal program

used by Weyuker [78]. The pascal program was derived from a suite of programs

by Kernighan and Plauger [33].

Tax Computation: The tax-form program implements a simpli�ed 1040 tax form.

It validates the input data and computes the tax, taking into account the itemized

deductions, IRA deduction, and alternate minimum tax regulation. It was derived

from a public domain application on personal computers.

A.2 Data Available on Anonymous Ftp-site

At the anonymous ftp site cs.nyu.edu, the �le tarak.tar.Z in the /pub/theses directory

contains the following:

1. a postscript version of this thesis,

2. the source code for all of the 26 programs and the associated test suites used in

the validation experiments reported in chapter 7, and

3. the source code for all of the 30 faulty programs and the associated test cases used

in the experience study reported in chapter 8.

Appendix B

Analyses of Faulty Programs

As mentioned in chapter 8, thirty faulty programs were analyzed using the procedure

outlined in section 8.2. These analyses are presented here. The format and the notations

used for the presentation were described section 8.3. The analyses are grouped according

to the major fault category represented by the fault in the program.

B.1 Incorrect Assignment Expression

FAULT 1: Missing part of an expression

Application: Tax Computation.

Context: alternate minimum tax computation. If the computed tax is less than the

overall alternate minimum tax, then the �nal tax is computed by applying the alt-

-min-tax-rate to the sum of non-taxable-interest and excess-deductions.

Fault Description: The alt-min-tax-rate is applied only to the the the non-taxable-

-interest.

Fault Execution Condition: Input data is valid and the computed tax is less than the

overall alternate minimum tax.

164

B.1. INCORRECT ASSIGNMENT EXPRESSION 165

Error Creation Condition: The value of excess-deductions is non-zero.

Incorrect State: The tax (Def1(x)) computed by applying the alt-min-tax-rate is

incorrect.

Error Propagation Condition: The erroneous tax value is not superseded by the overall

alternate minimum tax.

Impact Analysis: The variation in the data impact strength of Def1(x) is shown be-

low.

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the impact strengths of Def1(x) were 1.0, while for

the non-detecting test cases, Def1(x) had either no impact or zero impact. It

was interesting to observe that a $0.001 change in the value of mortgage interest

deduction was su�cient to change a non-detecting test case to a detecting test

case. And correspondingly, the impact strength of Def1(x) changed from fno data

impact, 0.5 control impactg for the non-detecting test case to f1.0 data impact,

1.0 control impactg for the detecting test case.

FAULT 2: Extra term introducing 1% error in the value of an operand

Application: Calculus.

Context: performing integration. First, an inde�nite integral Q is obtained by inte-

grating the input polynomial P . The required �nite integral is evaluated over the

interval (from-x, to-x] by computing Q(from-x)�Q(to-x).

Fault Description: While calling the polynomial evaluation routine on from-x, the

actual argument was 1.01 * from-x. (This was a real fault found in the program.

It was probably left behind after debugging or testing).

166 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

Fault Execution Condition: The input polynomial is valid and the integration opera-

tion is performed.

Error Creation Condition: The value of from-x is non-zero.

Incorrect State: The formal argument x of the second polynomial evaluation has a 1%

error.

Error Propagation Condition: The error propagates through several interacting impact

paths during the second evaluation ofQ and the subtraction Q(from-x)�Q(to-x).

Impact Analysis: The variation in the impact strength of x in the second polynomial

evaluation is shown below.

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the impact strengths of x were 1.0. For the non-

detecting test cases, the impact strengths were .24, 0.1, .35, .29, 0.1, .26, .13, .29,

.32, and .33.

FAULT 3: Missing part of an expression, incorrect in speci�c context

Application: Accounting.

Context: monthly interest computation. The variable last-balance keeps track of the

account balance at the start of a month and balance keeps track of the current bal-

ance. Let x denote the variable last-balance. At the end of every month, inter-

est is computed by applying the interest rate to the average of last-balance and

balance. During initialization, last-balance is set to initial balance (Def1(x)).

After all monthly processing is complete, last-balance is set to the current bal-

ance (Def2(x)).

B.1. INCORRECT ASSIGNMENT EXPRESSION 167

Fault Description: During the monthly interest computation, the interest rate is ap-

plied to last-balance (Use1(x)) rather than the average of last-balance and

balance.

Fault Execution Condition: At least one end-of-month command is processed. De-

pending on whether it is a �rst month or not it results in the execution of either

Def1-Use1(x) or Def2-Use1(x).

Error Creation Condition: The variables last-balance and balance have di�erent

values at the end of a month.

Incorrect State: An incorrect amount participates in the interest computation.

Error Propagation Condition: The interest rate is non-zero and a report inquiry is

made to check the balance after an incorrect state.

Impact Analysis: The error propagation condition is satis�ed i� one or both of the

two def-use associations (Def1-Use1(x) or Def2-Use1(x)) have data impact on the

output. The variation in the maximum of the data impact strengths of these

def-use associations is shown below.

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, at least one of the two def-use associations had impact

strength 1.0 and for the non-detecting test cases, both du-associations had either

no impact or zero impact.

FAULT 4: Incomplete Update

Application: Accounting.

Context: fee for monthly transactions. As per a new requirement, a fee should be charged

for monthly transactions. In the procedure updating monthly transactions, there

168 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

are two places where the amount (x) of the transaction is updated: once when a

new monthly transaction is added (Def1(x)) and once when the amount of a pre-

vious monthly transaction is changed (Def2(x)). Both places should be updated

to take care of this new requirement.

Fault Description: The transaction fee is added to the assignment expression comput-

ing transaction amount at Def1(x) but not at Def2(x).

Fault Execution Condition: A monthly transaction is added and then modi�ed, exe-

cuting the incorrect expression at Def2(x).

Error Creation Condition: is always satis�ed.

Incorrect State: The amount of a monthly transaction is incorrect.

Error Propagation Condition: A monthly transaction containing an incorrect amount

is executed at least once, thus a�ecting the balance. The resulting balance is

checked by a report inquiry.

Impact Analysis: The variation in the maximum of the data impact strengths of various

instances of Def2(x) is shown below.

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, at least one instance of Def2(x) had impact strength

1.0, while for the non-detecting test cases, the instances of Def2(x) had either no

impact or zero impact.

FAULT 5: O�-by-one fault in a
oating point expression

Application: Investment-related Computation.

B.1. INCORRECT ASSIGNMENT EXPRESSION 169

Context: future value computation. If r is the periodic interest rate, n is the number

of periods and P is the present value of an investment, then P � ((1 + r)n � 1)=r

gives the future value of the investment.

Fault Description: The expression P � ((1+ r)n)=r is used instead of the above expres-

sion.

Fault Execution Condition: The future value function is invoked.

Error Creation Condition: is always satis�ed.

Incorrect State: The entity instance x representing the value multiplied with P has an

incorrect value.

Error Propagation Condition: The incorrect value propagates through the multiplica-

tion and division operations. That is, initial investment P and the periodic rate

r should be non-zero, and (1 + r)n should not be such that due to precision loss

one of the following is true.

� (1 + r)n ' (1 + r)n � 1 or

� P � (1 + r)n ' P � ((1 + r)n � 1) or

� P � ((1 + r)n � 1)=r ' P � ((1 + r)n)=r.

Impact Analysis: The variation in the impact strength of x, the entity instance repre-

senting the incorrect value multiplied with P , is shown below.

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the impact strength of x was 1.0. There were two

kinds of non-detecting test cases: those that did not involve precision loss and

those that did. In the former kind, the impact strength of x was always 0.0.

In the latter kind, the impact strengths were usually 1.0. The main reason for

170 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

this anomalous behavior is that our prototype currently uses a di�erent precision

oating point arithmetic than that supported by the system C library and hence

the impact strengths computed did not accurately re
ect the loss of precision.

B.2 Incorrect Predicate Expression

FAULT 6: Missing part of a compound predicate

Application: Market Research.

Context: analyzing account balance status. In order to determine that an account has a

strong-balance status, three parameters are examined: avg-monthly-balance,

avg-annual-balance and avg-monthly-deposit. The account is assigned a

strong-balance status when a compound criterion consisting of �ve relational

sub-expressions and four boolean operators is true.

Fault Description: One of the relational sub-expression and the associated boolean

operator is missing from the compound criterion. As a result, a strong-balance

status will be incorrectly assigned when the average monthly and annual balances

satisfy the criterion but the average monthly deposit does not satisfy the criterion.

Fault Execution Condition: is always satis�ed.

Error Creation Condition: The average annual balance is in the interval (1000, 1500],

the average monthly balance is in the interval (1500, 200], and the average monthly

deposit is less than 3000.

Incorrect State: The variable account-status has the incorrect value strong-balance

rather than average-balance.

Error Propagation Condition: This error will propagate to the output if one or more

of the following holds:

B.3. EXTRA OR MISSING ASSIGNMENT 171

� The account-status is one of the several parameters that determine the

recommended account type. The values of the other parameters is such that

this error causes an incorrect recommended account type to be computed.

� The account-status is one of the several parameters that determine whether

the customer should be sent a CD o�er. The values of the other parameters

is such that this error causes a CD o�er to be sent.

Impact Analysis: The variation in the impact strength of account-status is shown

below.

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the impact strengths were .34, .33, .51, 1.0, .33, .53,

.33, .34, .63, and 1.0. For three of the non-detecting test cases, the impact strength

was 0.25 while for the remaining seven test cases, account-status had no impact.

FAULT 7: Incorrect Predicate

The analysis for this fault has been already described in section 8.3 on page 149.

B.3 Extra or Missing Assignment

FAULT 8: Extra Assignment Statement

Application: String Processing (pattern matching and substitution).

Context: processing replacement text. The replacement text is converted to an internal

representation after processing escape characters and the & special character. The

variable loop-index keeps track of the progress of the while loop implementing

the conversion and is incremented for every iteration.

172 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

Fault Description: An extra assignment statement in the loop causes loop-index to

be incremented twice after processing the & special character.

Fault Execution Condition: An & character is present in the replacement text.

Error Creation Condition: is always satis�ed.

Incorrect State: The internal representation of the replacement text is incorrect. The

sequence of characters in the internal representation after the & character is er-

roneous. Let x denote the array element corresponding to the beginning of the

incorrect part of the internal representation.

Error Propagation Condition: At least one character sequence in the subject text matches

the speci�ed pattern. Thus, the incorrect replacement text is printed on the out-

put at least once. (Also, there is a possibility of an out of bound array reference

causing runtime error).

Impact Analysis: In two test cases with & as the last character in the replacement text,

the program accessed uninitialized memory and caused runtime error. Currently,

our prototype does not carry out impact analysis with respect to output caused

by runtime errors, so these two test cases were removed from the test suite.

The variation in the impact strength of x is shown below for the rest of the test

suite.

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the impact strength of x was 1.0, while for the non-

detecting test cases, x had no impact.

FAULT 9: Missing Assignment

Application: Operating System.

B.3. EXTRA OR MISSING ASSIGNMENT 173

Context: unblocking a process. After unblocking a process from the blocked queue, it

should be placed at the end of its priority queue.

Fault Description: The statement extracting the priority �eld from a process-control-

block and assigning it to a local variable prio is missing. So the default value of

prio is used and the process is placed in the low priority queue.

Fault Execution Condition: A process is removed from the blocked queue.

Error Creation Condition: The priority of an unblocked process is other than low.

Incorrect Behavior: The process is placed in a wrong priority queue.

Error Propagation Condition: There are several scenarios in which the error that a

process A in the wrong priority queue can lead to an incorrect output. One such

scenario is described here. There is at least one process B at a priority less than

or equal to the priority of A, either present in the priority queues when A is

unblocked, or coming in into the system after A is unblocked. The priority of A is

not updated after unblocking and the process B �nishes before A (while A should

have �nished �rst as per the test speci�cation).

Impact Analysis: Let A denote a process which is placed in the wrong priority queue

due to the fault. There were three kinds of detecting test cases:

� the process id of A was expected to appear in the output and it appears in

the wrong order, or

� the process id of A was not expected to appear in the output but it appears,

or

� the process id ofA was expected to appear in the output but does not appear.

In the detecting test cases of the �rst kind, the dynamic impact requirement is

satis�ed and the process id of A has data impact strength 1.0. In each of the other

kinds of detecting test cases, the dynamic impact requirement was violated.

174 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

There were two kinds of non-detecting test cases:

� the process id of A was not expected to appear in the output and it did not

appear, or

� The process id of A was expected to appear in the output and it appears in

the correct order.

In the �rst kind, the dynamic impact requirement is satis�ed and the impact

strength is 0.0. The second kind of non-detecting test cases impact requirement

is satis�ed, but the impact strength was non-zero because the test cases exhibited

tolerance to errors in control paths. In these test cases, no processes were present

or introduced between the correct and incorrect places of A in the priority queue,

so A �nished in the correct order in spite of the incorrect placement.

FAULT 10: Missing Assignment

Application: Calculus.

Context: performing integration. When the integration operation is speci�ed, both

from-x and to-x are supplied as command line arguments. An inde�nite integral

Q is obtained by integrating the input polynomial P . The required �nite integral

is evaluated over the interval (from-x, to-x] by computing Q(from-x)�Q(to-x).

Fault Description: The statement extracting the from-x value from command line ar-

guments is missing. Therefore, from-x has the default value 0.

Fault Execution Condition: The integration operation is speci�ed.

Error Creation Condition: The speci�ed value of from-x is non-zero.

Incorrect State: The value of from-x is incorrect.

Error Propagation Condition: The incorrect value of from-x propagates through the

polynomial evaluations and subtraction.

B.3. EXTRA OR MISSING ASSIGNMENT 175

Impact Analysis: The variation in the impact strength of from-x is shown below.

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the impact strengths of from-x were 1.0, 1.0, 1.0, 0.5,

0.5, 1.0, 1.0, 1.0, .86, and 0.5, and those for the non-detecting test cases were 0.0,

.33, .35, .53, .33, .42, 0.0, 0.3, .32, and 0.0.

FAULT 11: Missing Assignment

Application: Graph Algorithms.

Context: �nding strongly connected components (SCCs). When an scc is found, the

nodes of an scc are popped from the stack and for each of these nodes, the

on-stack �eld is assigned the value false.

Fault Description: The statement assigning the false value to on-stack is missing.

Fault Execution Condition: The input graph is non-empty.

Error Creation Condition: is always satis�ed.

Incorrect State: The on-stack �eld is incorrectly true for a node already processed

as a member of an scc.

Error Propagation Condition: The incorrect on-stack �eld of a node from a processed

scc prevents the detection of at least one more scc.

Impact Analysis: The variation in the impact strength of the incorrect state(s) repre-

sented by the on-stack �eld is shown below.

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

176 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

There were 10 detecting test cases and 40 non-detecting test cases. For the detect-

ing test cases, the impact strengths of the incorrect state(s) were were 0.31, 0.4,

0.25, 0.37, 0.31, 0.31, 0.33, 0.27, 0.31, and 0.37. In 37 out of the 40 non-detecting

test cases, the incorrect state(s) had no impact. However, in the remaining 3 test

cases, the impact strengths were 0.94, 0.82 and .82. In each of these test cases,

every node of the directed input graph (with n nodes) had an outdegree of either

(n� 1) or 0. When the input digraph has such a property, the scc algorithm pro-

duces the correct result even when some of the on-stack �elds incorrectly have

the true value.

B.4 Incorrect or Missing Conditional Processing

FAULT 12: Missing error checking

Application: Tax Computation.

Context: input data validation. The input data such as the �ling status, earned in-

comes, paid taxes and quali�ed deductions are to be validated against obvious

data entry errors such as negative values or out of bound values.

Fault Description: Error checking for the quali�ed mortgage-interest deduction is

absent.

Fault Execution Condition: is always satis�ed.

Error Creation Condition: The input value of mortgage-interest is inadvertently

negative due to a data entry error. (If it were intentionally negative, the tester

would expect an error report and thus detect this fault).

Incorrect State: Since the data validation is missing, compute-tax will be called when

the global variable mortgage-interest has a negative value.

B.4. INCORRECT OR MISSING CONDITIONAL PROCESSING 177

Error Propagation Condition: The error will be detected when the person's net taxable

income is above the minimum income bracket and itemized deduction is preferred

over standard deduction.

Impact Analysis: The variation in the data impact strength of mortgage-interest is

shown below.

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the data impact strengths of mortgage-interest

were 1.0 and for the non-detecting test cases, mortgage-interest had no data

impact.

FAULT 13: Misplaced case statement

Application: Database Processing.

Context: determining the maximum value of an attribute in a relation. The max oper-

ation is a special case of a generic aggregate function applied to the values of an

attribute in a relation. Based on the speci�c operation requested, the generic func-

tion performs an appropriate operation on the current aggregate-value and the

next attr-value to yield the next aggregate-value. Starting with an identity

element of the operation, this is repeated for all values of the attribute..

Fault Description: In the generic function, the case statement for processing the max

function is misplaced. Instead of returning the maximum of the aggregate-value

and attr-value, it returns the attr-value.

Fault Execution Condition: The max function is invoked.

Error Creation Condition: The sequence of attribute values is not monotonically in-

creasing.

178 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

Incorrect Behavior: The attribute values of all but the last tuple are ignored while

computing the maximum.

Error Propagation Condition: The last element in the sequence of attribute values is

not equal to the maximum of the sequence and the result of the max operation is

queried.

Impact Analysis: A dynamic impact requirement for computing the aggregate of an

attribute in a relation is that all of the attribute values should have impact on the

result. However, due to this fault, the attribute value of only the last tuple impacts

the output in all test cases, thus violating the dynamic impact requirement.

FAULT 14: Extra if statement

The analysis for this fault has been already described in section 8.3 on page 142.

FAULT 15: Missing conditional processing

Context: monthly deposit transactions. A fee is charged for monthly payment transac-

tions but not for deposit transactions. This fee is added to the amount of monthly

transaction at Def1(x). This amount gets used (Use1(x)) as an actual parameter

for a call to the routine processing monthly transaction. The corresponding formal

argument y gets de�ned (Def1(y)) and then used either for a deposit transaction

(Use1(y)) or for a payment transaction (Use2(y)).

Fault Description: While adding a transaction for the �rst time, the fee is added to

the transaction amount at Def1(x) without checking whether the transaction is a

payment transaction. So the amount on a monthly deposit will be incorrect.

Fault Execution Condition: A monthly transaction is added for the �rst time.

Error Creation Condition: The added monthly transaction is a deposit transaction.

B.5. ITERATION ERRORS 179

Incorrect State: The amount of a monthly deposit transaction is incorrect.

Error Propagation Condition: The incorrect amount of a monthly deposit transaction

is not modi�ed by a subsequent change-monthly command. The monthly trans-

action containing the incorrect amount is executed at least once, thus a�ecting

the balance. The resulting balance is checked by a report inquiry.

Impact Analysis: The data transfer from Def1(x) to Use1(y) represents the execution

of a monthly deposit transaction. The variation in the maximum of the impact

strengths of the instances of Def1(x) associated with this data transfer are shown

below.

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the impact strength was 1.0 for the instances of

Def1(x) that participated in the above data transfer, while for the non-detecting

test cases, such instances had either no impact or zero impact.

B.5 Iteration Errors

FAULT 16: Incorrect Loop Exit

Application: Database Processing.

Context: computing an aggregate function. In order to apply a generic aggregate func-

tion to an attribute of a relation, a while loop iterates over all of the tuples.

Fault Description: The exit condition is (p->next != NULL) instead of (p != NULL).

As a result, the last tuple is not processed.

Fault Execution Condition: An aggregate function is invoked and the relation has at

least one tuple.

180 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

Error Creation Condition: is always satis�ed.

Incorrect Behavior: The attribute value of the last tuple is ignored in computing the

aggregate function.

Error Propagation Condition: Ignoring the last attribute value produces an incorrect

aggregate value and the result is examined by an inquiry.

Impact Analysis: A dynamic impact requirement for computing the aggregate of an

attribute is that the values of that attribute in all of the tuples of the relation

should have impact on the result. However, due to the fault, the attribute value

of the last tuple does not impact the output in all test cases, thus violating the

dynamic impact requirement.

FAULT 17: Interacting loop initialization and loop exit faults

The analysis for this fault has been already described in section 8.3 on page 140.

FAULT 18: Duplicate expression for loop progress

Application: Database Processing.

Context: performing a select operation on a relation. A new relation Q is created by

selecting tuples from a relation R. The selection is carried out using the following

two steps. First, the headers are copied from R to Q using a for loop. Then a

while loop iterates over all tuples of R, invoking another for loop for copying the

attributes of each selected tuple.

Fault Description: In the �rst for loop copying the headers, the expression i++ ensur-

ing loop progress is present twice { once in the loop header and once at the end

of the loop. As a result, starting with 0, only even numbered headers of R are

copied onto Q. The odd numbered headers have the default blank names in Q.

B.5. ITERATION ERRORS 181

Fault Execution Condition: A select operation is performed on a relation.

Error Creation Condition: The relation has more than one attributes.

Incorrect State: The odd numbered attribute names are blank in the resulting relation.

Error Propagation Condition: There are two alternate propagation conditions.

� A database query prints out the attribute names of the result relation Q (or

a derivative of Q with at least one incorrect attribute).

� A query is made using one or more of the missing attribute names and the

expected output is non-empty.

Impact Analysis: The variation in the maximum of the impact strengths of the blank

attribute names is shown below.

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, at least one of the blank attribute names had 1.0

impact strength. For the non-detecting test cases, all of the blank attribute names

had no impact.

FAULT 19: Incorrect Loop Initialization

Application: Calculus.

Context: reading polynomial coe�cients. The coe�cients of the input polynomial are

read in a loop. For computing the derivative of a polynomial, the constant coef-

�cient is not signi�cant. For computing the integral of a polynomial P over an

interval, the constant coe�cient of the inde�nite integral of P is not signi�cant,

however, the constant coe�cient of P is signi�cant.

182 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

Fault Description: The loop initialization is designed to ignore the constant coe�cient

of the input polynomial P .

Fault Execution Condition: The polynomial is valid.

Error Creation Condition: The constant coe�cient of the input polynomial is non-

zero.

Incorrect State: The constant coe�cient (denoted by C) in the internal representation

of the input polynomial is incorrect.

Error Propagation Condition: The integration operation is requested. The constant

coe�cient C of the input polynomial becomes the coe�cient of x1 in the polyno-

mial Q resulting after integration. The error in that coe�cient propagates to at

least one of the two evaluations of the polynomial Q.

Impact Analysis: The variation in the impact strength of C is shown below for 36 test

cases.

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

For each of the 12 detecting test cases, the impact strength of C was 1.0. Out of

the 23 non-detecting test cases in 19 test cases, C had no impact. In one test case,

C had 1.0 impact but error cancellation occurred when integrating a polynomial

from point v to v. That is, in an operation Q(v)�Q(v), an error in a coe�cient of

Q gets canceled. In three test cases, there was loss of precision at the end of the

computation. As mentioned before while analyzing fault 5, due to the limitations

of our prototype, the computation of impact strengths does not accurately re
ect

the loss of precision.

B.6. TYPOGRAPHICAL ERRORS 183

B.6 Typographical Errors

FAULT 20: Missing else token

Application: String Processing (counting lines and characters).

Context: processing a newline character. A newline character is processed di�erently

than other characters. The true part of an if statement processes a newline

character and the else part processes all other characters.

Fault Description: The else token is missing for the if statement. As a result, a new-

line character is also processed as a regular character. This incorrectly increments

the num-columns and print-width counters.

Fault Execution Condition: A newline character is present in the input.

Error Creation Condition: is always satis�ed.

Incorrect State: The num-columns and print-width values are o� by one for all but

the �rst line.

Error Propagation Condition: Any line except the �rst line has the maximum number

of columns or maximum print width.

Impact Analysis: The variation in the maximum of the data impact strengths of the in-

correct entity instances of num-columns and print-width is shown below.

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

For detecting test cases, at least one of the incorrect instances had data impact on

the output with strength 1.0. For non-detecting test cases, none of the incorrect

incorrect had data impact on the output.

184 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

FAULT 21: Misplaced brace, Incorrect scope of an assignment

Application: String Processing (pattern matching and substitution).

Context: creating internal representation for the input pattern. The input pattern (a

regular expression) is converted into an internal representation. The variable

cur-pat-index keeps track of the current index into the pattern and the variable

last-pat-index keeps track of the last index before processing the current sub-

expression. After processing every sub-expression, last-pat-index should be

updated.

Fault Description: Due to a misplaced brace, last-pat-index gets updated only after

processing a non-special literal character in the input pattern.

Fault Execution Condition: The input regular expression is valid and it contains at

least one of the special characters (e.g. ?,*,[, etc.)

Error Creation Condition: is always satis�ed.

Incorrect State: The value of last-pat-index is incorrect just after each execution of

the fault.

Error Propagation Condition: An incorrect pattern representation is generated when

a special character is followed by a closure operator, and the special character is

not % , $ or *. For this incorrect pattern representation to cause an output error,

either the pattern incorrectly matches some text, or the pattern incorrectly does

not match some text, or the program goes into an inde�nite loop.

Impact Analysis: In this case, impact of last-pat-index on the output entity (replace-

-char) corresponding to the replacement text was the main feature that distin-

guished the detecting test cases from the non-detecting test cases as shown be-

low.

B.6. TYPOGRAPHICAL ERRORS 185

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the impact strengths of last-pat-index were .47,

.51, .75, .52, .67, .31, .48, .61, .38, and .41, while for the non-detecting test cases,

last-pat-index had no impact on replace-char. Out of the 10 non-detecting

test cases, in six of them, the incorrect state had absolutely no impact on the

output; in two of them, the incorrect state had strong impact on loop-exits; and

in one test case, the incorrect state had strong impact on the output entities

corresponding to printing of unmatched original text. Thus, considering impact

on all output entities, in three out of ten test cases, due to error-tolerance, the

error did not propagate in spite of strong impact.

FAULT 22: Operator Reference Fault

Application: Market Research.

Context: determining strong balance status. Based on certain criteria, an account is

classi�ed as having strong-balance, weak-balance or average-balance. One

of the sub-criterion for determining average-balance is that avg-monthly-debit

should be greater than 95% of the avg-monthly-deposit.

Fault Description: The sub-criterion is mistyped with a < instead of a >.

Fault Execution Condition: The criteria for strong-balance are not satis�ed, and

avg-monthly-bal > 500 or avg-annual-bal > 400.

Error Creation Condition: The avg-monthly-debit is not equal to 95% of the avg-

-monthly-deposit.

Incorrect State: The value of the predicate is incorrect, and hence incorrect branch

is taken and as an immediate e�ect, the value of variable account-status is

186 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

incorrect. Depending on the error, the value is either average-balance (Def1(x))

or weak-balance (Def2(x)), while it should have been the other.

Error Propagation Condition: The incorrect value of the account-status a�ects the

output by causing one or more of the following:

� incorrect computation of the recommended account type as overdraft protec-

tion type, or

� incorrectly issuing or not issuing the �rst home loan promotion or home

equity loan

Impact Analysis: The variation in the maximum of the impact strengths of the incor-

rect instances of account-status is shown below.

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the impact strengths were 0.26, 0.33, 0.25, 0.33,

0.33, 0.33, 0.33, 0.4, 0.25, and 0.4. For two of the non-detecting test cases the

incorrect instances had no impact while for the remaining eight test cases, the

impact strengths were 0.25.

FAULT 23: Variable Reference Fault

Application: Database Processing.

Context: loading a relation. While loading a relation from a �le, the program �rst

reads the name of the relation, number and names of the attributes, and then

reads the rows of attribute values until the end-of-�le is reached. While reading

the rows of attribute values, there are two read (scanf) calls: one to check the

end-of-�le condition while getting the value of the �rst attribute, and the other to

read the remaining attribute values in a loop.

B.6. TYPOGRAPHICAL ERRORS 187

Fault Description: In the �rst read(scanf) call, instead of passing the address of value,

the address of svalue is passed. Due to this fault, the �rst attribute of a loaded

relation has incorrect values for all tuples.

Fault Execution Condition: A non-empty relation is loaded from a �le.

Error Creation Condition: The following unusual conditions do not hold: the value

of the �rst attribute in the �rst row is 0.0, and for i > 1, the value of the �rst

attribute in row i is the value of the last attribute in row i� 1.

Incorrect State: Some of the values for �rst attribute of the loaded relation are incor-

rect.

Error Propagation Condition: One or more of the incorrect �rst attribute values take

part in subsequent database operations and produce an incorrect output.

Impact Analysis: The variation in the maximum of the data impact strengths of the

incorrect attribute values is shown below.

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, at least one of the incorrect attribute values had data

impact on the output with strength 1.0. For the non-detecting test cases, none

of the incorrect attribute values had data impact on the output. However, for

some of the non-detecting test cases, one or more incorrect attributes had control

impact on loop-exits with impact strengths ranging from 0.19 to 1.0.

FAULT 24: Constant Reference Fault

Application: Market Research.

Context: classifying account balance status. Based on certain criteria, an account is

classi�ed as having strong-balance, weak-balance or average-balance. One of

188 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

the sub-criterion for determining strong-balance is that avg-annual-bal should

be greater than 1000.0.

Fault Description: The sub-criterion is mistyped with the constant 1100.0 instead of

1000.0.

Fault Execution Condition: The value of avg-monthly-bal is greater than 1500.0 and

either avg-monthly-bal is less than 2000.0 or avg-annual-bal is less than 1500.0.

Error Creation Condition: The value of avg-monthly-bal is between 1000.0 and 1100.0.

Incorrect State: The false branch is incorrectly taken, so account-status has the value

average-balance. This value is incorrect only if the remaining sub-criterion for

strong-balance is true.

Error Propagation Condition: The avg-monthly-deposit is greater than 3000 and the

incorrect value of account-status a�ects the output by causing one or more of

the following:

� computation of an incorrect recommended account type, or

� incorrectly determining eligibility for a �rst home loan or a home equity loan.

Impact Analysis: The variation in the impact strength of the incorrect instance of

account-status is shown below.

0.0Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, the impact strengths were .28, .29, .26, .25, .33, .26,

.25, .25, .26, and .25, and for the non-detecting test cases, the impact strengths

were .25, .32, .17, .28, .25, .17, .28, .29, .29, and .29. As expected, when impact

strengths are low, the error does not always propagate.

B.7. INTERFACE ERRORS 189

B.7 Interface Errors

FAULT 25: Incorrect return value semantics

The analysis for this fault has been already described in section 8.3 on page 145.

FAULT 26: Incorrect order of arguments

Application: Accounting.

Context: processing transactions on demand. The main procedure calls the routine for

processing transaction with three parameters: command (whether payment or de-

posit), expense category and the amount of the transaction.

Fault Description: The command and category parameters are interchanged at the

call-site. Since both parameters have the same type, compiler does not complain.

Fault Execution Condition: An on-demand payment transaction is requested.

Error Creation Condition: The integer values of command and category are di�erent.

Incorrect State: Depending on the value of category, the transaction will either do

nothing or incorrectly update the balance (say X). In either case, the expense-

-category (say Y) which should have been updated is left untouched. Thus, the

error creation condition ensures that Y is not modi�ed, and (optionally) X gets

updated.

Error Propagation Condition: The incorrect state propagates to the output when the

previous de�nition of Y participates in a computation whose results are examined

by a report query. In addition, if variable X is incorrectly updated, then the

incorrect state is also propagated when X participates in a computation whose

results are examined by a report query.

190 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

Impact Analysis: The variation in the maximum of the impact strengths of the in-

correct value of Y and the incorrect value of X (when present) is shown be-

low.

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

For detecting test cases, one or more of the following were observed:

� previous de�nition of Y has impact strength 1.0, or

� some variable X is corrupted and that de�nition of X has impact strength

1.0.

For non-detecting test cases, both of the following were observed:

� previous de�nition of Y has either no impact or zero impact, or

� if variable X is corrupted, the corresponding de�nition of X has either no

impact or zero impact.

FAULT 27: Failure to update a global variable

Application: Accounting.

Context: book-keeping at the end of a month. The procedure processing the end-of-month

is required to update the global variable last-balance.

Fault Description: The procedure processing the end-of-month command does not

update last-balance assuming that a higher level procedure will carry out the

update.

Fault Execution Condition: At least one end-of-month command is executed.

Error Creation Condition: For one or more months, the balance at the end of the

month is di�erent from that at the end of the previous month.

B.8. OTHER ERRORS 191

Incorrect State: The global variable last-balance has an incorrect value.

Error Propagation Condition: At least one more end-of-month command is processed

after the incorrect state. The interest rate is non-zero, and a balance inquiry is

made.

Impact Analysis: The variation in the maximum of the data impact strengths of the

incorrect values of last-balance is shown below.

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

For the detecting test cases, at least one of the incorrect value of last-balance

had impact strength 1.0, while for the non-detecting test cases, the incorrect values

of last-balance had either no impact or zero impact.

FAULT 28: Incorrect argument

The analysis for this fault has been already described in section 8.3 on page 144.

B.8 Other Errors

FAULT 29: Sequencing fault

Application: Database Processing.

Context: performing select operation on a relation. While adding selected tuples to the

resulting relation, a counter keeps track of the number of tuples added so far.

Fault Description: The statement incrementing the counter is placed after, rather

than within, the conditional statement adding a tuple to the resulting relation.

As a result, the counter value is incorrect.

192 APPENDIX B. ANALYSES OF FAULTY PROGRAMS

Error Creation Condition: There is at least one tuple not selected from the original

relation.

Incorrect State: The counter value is incorrect.

Error Propagation Condition: The incorrect counter value is used to update (Def1(x))

the num-tuples �eld in the resulting relation. Although, the num-tuples �eld is

used in several computations, it is not possible for a test case to execute the def-use

association from Def1(x) to any such use. Hence, the error cannot be propagated.

Impact Analysis: As expected, there were no detecting test cases. For the non-detecting

test cases, the incorrect counter value had no impact on the output.

FAULT 30: Incorrect read format

Application: Graph Algorithms (bi-connected components).

Context: reading an undirected graph. The input undirected graph is presented as a

sequence of node pairs representing the edges of the graph.

Fault Description: While restructuring a loop using cut and paste edit operations,

several faults were created. The initial call to scanf is intended to read both the

nodes of the �rst edge, but due to an incorrect read format string only one node

will be read. The loop initialization, which should have been deleted, contains

a scanf call for reading the �rst node. Each of these individual faults is easily

detectable, but the resulting complex fault is harder to detect. As a result of the

complex fault, instead of inserting the �rst edge e (from node m to node n) from

the input, an incorrect edge between node 0 and node n is inserted in the graph.

Fault Execution Condition: The input graph is non-empty.

Error Creation Condition: The �rst edge e of the input graph is not a self-loop at

node 0.

B.8. OTHER ERRORS 193

Incorrect State: While loading the input graph, the start and end nodes of the �rst

edge are read incorrectly.

Error Propagation Condition: The computation of a binary connected component (bcc)

in the program is always a�ected by the �rst edge (whether correct or incorrect).

However, if the correct edge was (0,n), the incorrect edge will be (n,0), still giving

the same undirected graph. This is a good example of an incorrect state which

is not really incorrect for the problem being solved. In such cases, the error in

internal state will not propagate to the output. Thus, the error will be detected

only if the start node of the �rst edge is not 0.

Impact Analysis: The data impact strengths of the entity instances corresponding to

the incorrect edge were more or less the same for the detecting and the non-

detecting test cases as shown below.

0.0Data Imp Str 1.0

Detecting Tc

Non-detecting Tc

This is so, since all edges of the graph including the �rst edge always has impact

on the computed bi-connected components. In all of the non-detecting test cases,

the �rst edge was of the form (0; n), and the fault caused a simple inversion of

the �rst edge to (n; 0), which is a no-operation for an undirected graph. This is

a good example, where an incorrect state for the program is not really incorrect

for the problem being solved by the program. Due to speci�c representation of

the undirected graph, such an incorrect state a�ects the control paths but not the

output.

Bibliography

[1] ACM. Collected Algorithms from ACM, volume 1. Association for Computing

Machinery, Inc., New York, 1980.

[2] Hiralal Agrawal and Joseph R. Horgan. Dynamic Program Slicing. In Proc. ACM

SIGPLAN Conf. Programming Language Design and Implementation, pages 246{

256, White Plains, New York, June 1990.

[3] Hiralal Agrawal, Joseph R. Horgan, E. W. Krauser, and S. L. London. Incremental

Regression Testing. In Proc. IEEE Conf. on Software Maintenance, pages 348{357,

White Plains, New York, Sept. 1993.

[4] Aho, Hopcroft, and Ullman. The Design and Analysis of Computer Algorithms.

Addison-Wesley, 1974.

[5] Alfred Aho, Ravi Sethi, and Je�rey Ullman. Compilers, Principles, Techniques,

and Tools. Addison-Wesley, 1988.

[6] Marc J. Balcer, William M. Hasling, and Thomas J. Ostrand. Automatic Gener-

ation of Test Scripts from Formal Test Speci�cations. In Proc. ACM SIGSOFT

Third Workshop on Software Testing, Analysis and Veri�cation, pages 210{218,

KeyWest-Florida, Dec. 1989.

194

BIBLIOGRAPHY 195

[7] James M. Bieman and Janet L. Schultz. Estimating the Number of Test Cases

Required to Satisfy the All-du-paths Testing Criterion. In Proc. ACM SIGSOFT

Third Workshop on Software Testing, Analysis and Veri�cation, pages 179{186,

KeyWest-Florida, Dec. 1989.

[8] G.E.P. Box, W.G. Hunter, and J.S. Hunter. Statistics for Experimenters. John

Wiley & Sons, 1978.

[9] R.S. Boyer, B.E. Elspas, and K.N. Levitt. SELECT{A Formal System for Testing

and Debugging. In Proc. of the Intl. Conf. on Reliable Software, Los Angeles, April

1975.

[10] Timothy A. Budd. Mutation Analysis: Ideas, Examples, Problems and Prospects.

In B. Chandrasekaran and S. Radicchi, editors, Computer Program Testing, pages

129{148. North-Holland Publishing Company, 1981.

[11] Lori A. Clarke and Debra J. Richardson. Symbolic Evaluation Methods { Im-

plementations and Applications. In B. Chandrasekaran and S. Radicchi, editors,

Computer Program Testing, pages 65{101. North-Holland Publishing Company,

1981.

[12] R. A. Demillo, D. S. Guindi, W. M. McCracken, A. J. O�utt, and K. N. King. An

Extended Overview of the Mothra Software Testing Environment. In Proc. ACM

SIGSOFT Second Workshop on Software Testing, Analysis and Veri�cation, pages

142{151, Ban�-Canada, 1988.

[13] R. A. Demillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help

for the practising programmer. Computer, 11(4):34{41, April 1978.

196 BIBLIOGRAPHY

[14] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou So�a. Rigorous Data Flow Test-

ing through Output In
uences. In Proc. 2nd Irvine Software Symposium (ISS'92),

pages 131{145, Irvine, CA, March 1992.

[15] I.M.M. Duncan and D. J. Robson. Ordered Mutation Testing. ACM SIGSOFT

Software Engineering Notes, 15(2):29{30, Apr 1990.

[16] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program Dependence

Graph and Its Use in Optimization. ACM Transactions on Programming Languages

and Systems, pages 319{349, July 1987.

[17] Phyllis G. Frankl and Elaine J. Weyuker. An Applicable Family of Data Flow

Testing Criteria. IEEE Transactions on Software Engineering, 14(10):1483{1498,

Oct. 1988.

[18] Tom Gilb. Software Metrics. Studentlitteratur (Sweden), 1976.

[19] Tarak Goradia. Dynamic Impact Analysis: A Cost-e�etive Technique to Enforce

Error-propagation. In Proc. ACM SIGSOFT International Symposium on Software

Testing and Analysis, pages 171{181, Cambridge, Massachusetts, June 1993.

[20] Michael Greenberg. The Frame System. Technical report, Siemens Corporate

Research, Inc., March 1990.

[21] M.H. Halstead. Elements of Software Science. New York: Elsevier North-Holland,

1977.

[22] Richard Hamlet. Theoretical Comparison of Testing Methods. In Proc. ACM

SIGSOFT Third Workshop on Software Testing, Analysis and Veri�cation, pages

28{36, KeyWest-Florida, Dec. 1989.

BIBLIOGRAPHY 197

[23] Richard G. Hamlet. Testing Programs with the Aid of a Compiler. IEEE Trans-

actions on Software Engineering, SE-3(4):279{290, July 1977.

[24] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating Non-interfering Ver-

sions of Programs. Technical Report 690, Computer Science Dept., University of

Wisconsin, March 1987.

[25] Susan Horwitz, Jan Prins, and Thomas Reps. On the Adequacy of Program De-

pendence Graphs For Representing Programs. Technical Report 699, Computer

Science Dept., University of Wisconsin, June 1987.

[26] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural Slicing Using

Dependence Graphs. In Proc. ACM SIGPLAN Conf. Programming Language De-

sign and Implementation, pages 35{46, Atlanta, Georgia, June 1988.

[27] William A. Howden. Weak Mutation Testing and Completeness of Test Sets. IEEE

Transactions on Software Engineering, SE-8(4):371{379, July 1982.

[28] William E. Howden. A Functional Approach to Program Testing and Analysis.

IEEE Transactions on Software Engineering, SE-12(10):997{1005, Oct. 1986.

[29] IEEE. Standard Glossary of Software Engineering Terminology,. In IEEE Standard

729-1983. IEEE, 1983.

[30] Daniel Jackson. Abstract Analysis with Aspect. In Proc. ACM SIGSOFT Inter-

national Symposium on Software Testing and Analysis, pages 19{27, Cambridge,

Massachusetts, June 1993.

[31] BingChiang Jeng. A New Approach to Domain Testing. PhD thesis, New York

University, June 1990.

[32] Guy L. Steele Jr. Common Lisp. Digital Press, 2nd edition, 1990.

198 BIBLIOGRAPHY

[33] B. W. Kernighan and P. J. Plauger. Software Tools in Pascal. Addison-Wesley,

1981.

[34] Donald Knuth. The Errors of TEX. Software Practice & Experience, Jul 1989.

[35] Bogdan Korel and Janusz Laski. Dynamic Program Slicing. In Information Process-

ing Letters 29, pages 155{163. Elsevier Science Publishers B.V. (North-Holland),

October 1988.

[36] Bogdan Korel and Janusz Laski. Algorithmic Software Fault Localization. In Proc.

the Twenty Fourth Annual Hawaii International Conf. on System Sciences, pages

246{252, 1991.

[37] D. J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe. Dependence

Graphs and Compiler Optimizations. In Proc. ACM SIGPLAN Conf. Programming

Language Design and Implementation, pages 207{218, Williamsburg, Virginia, Jan

1981.

[38] D.J. Kuck, Y. Muraoka, and S.C.Chen. On the number of operations simultane-

ously executable in FORTRAN-like programs and their resulting speed-up. IEEE

Transaction on Computers, C-21:1293{1310, Dec 1972.

[39] Janusz W. Laski and Bogdan Korel. A Data Flow Oriented Program Testing

Strategy. IEEE Transactions on Software Engineering, SE-9(3):347{354,May 1983.

[40] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. Requirements Spec-

i�cation for Process-Control Systems. Technical report, University of California,

Irvine, Nov 1992.

[41] Brian Marick. Two Experiments in Software Testing. Technical Report UIUCDCS-

R-90-1644, University of Illinois, 1990.

BIBLIOGRAPHY 199

[42] Brian Marick. The Weak Mutation Hypothesis. In Proc. ACM SIGSOFT Fourth

Workshop on Software Testing, Analysis and Veri�cation, 1991.

[43] Brian Marick. A Question Catalog for Code Inspections. Testing Foundations,

Chapaign, Illinois, June 1992.

[44] Edward W. Minium. Statistical Reasoning in Psychology and Education. John

Wiley & Sons, 2nd edition, 1978.

[45] Larry J. Morell. A Theory of Error-Based Testing. Technical report, Dept. of

Computer Science, TR-1395, 1984.

[46] Larry J. Morell. Theoretical Insights into Fault-Based Testing. In Proc. ACM

SIGSOFT Second Workshop on Software Testing, Analysis and Veri�cation, pages

45{62, Ban�-Canada, 1988.

[47] Larry J. Morell. A Theory of Fault-Based Testing. IEEE Transactions on Software

Engineering, 16(8):844{857, August 1990.

[48] Larry J. Morell and Branson Murrill. Error Flow Testing. In Proc. of the 8th Int'l

Conf. on Testing Computer Software, pages 105{121, Washington D.C., 1990.

[49] Larry J. Morell and Branson Murrill. Semantic Metrics through Error Flow Anal-

ysis. J. Systems Software, 20(3):253{265, Mar 1993.

[50] Branson W. Murrill. Error Flow in Computer Programs. PhD thesis, The College

Of William and Mary in Virginia, 1991.

[51] Simeon C. Ntafos. On Required Element Testing. IEEE Transactions on Software

Engineering, SE-10(6):795{803, Nov. 1984.

[52] Simeon C. Ntafos. A Comparison of Some Structural Testing Strategies. IEEE

Transactions on Software Engineering, 14(6):868{874, June 1988.

200 BIBLIOGRAPHY

[53] A. J. O�utt. Automatic Test Data Generation. PhD thesis, Dept. of Information

and Computer Science, Georgia Institute of Technology, 1988.

[54] A. J. O�utt. The Coupling E�ect: Fact of Fiction? In Proc. ACM SIGSOFT

Third Workshop on Software Testing, Analysis and Veri�cation, pages 131{140,

KeyWest-Florida, Dec. 1989.

[55] Thomas J. Ostrand and Marc J. Balcer. The Category-Partition Method for Spec-

ifying and Generating Functional Tests. Communications of the ACM, 31(6):676{

686, June 1988.

[56] Thomas J. Ostrand and Elaine J. Weyuker. Error-based Program Testing. In Proc.

Conf. on Information Sciences and Systems, Baltimore, March 1979.

[57] Thomas J. Ostrand and Elaine J. Weyuker. Collecting and Categorizing Software

Error Data in an Industrial Environment. The Journal of Systems and Sofware,

4:289{300, 1984.

[58] Karl J. Ottenstein and Steven J. Ellcey. Experience Compiling Fortran to Program

Dependence Graphs. Software Practice & Experience, Jan 1992.

[59] Hemant Pande, Barbara Ryder, and William Landi. Interprocedural Def-Use Asso-

ciations in C Programs. In Proc. ACM SIGSOFT Symposium on Testing, Analysis

and Veri�cation, pages 139{154, Victoria, British Columbia, Oct. 1991.

[60] Hemant Pande, Barbara Ryder, and William Landi. Interprocedural Reaching

De�nitions in the Presence of Single Level Pointers. IEEE Transactions on Software

Engineering, 1993. Accepted for publication.

[61] Michael Plato�, Michael Wagner, and Joseph Camaratta. An Integrated Program

Representation and Toolkit for the Maintenance of C Programs. In Proceedings of

BIBLIOGRAPHY 201

the Conference on Software Maintenance. IEEE Computer Society Press, October

1991.

[62] Andy Podgurski and Lori A. Clarke. The Implications of Program Dependences

for Software Testing, Debugging and Maintenance. In Proc. ACM SIGSOFT Third

Workshop on Software Testing, Analysis and Veri�cation, pages 168{178, KeyWest-

Florida, Dec. 1989.

[63] Andy Podgurski and Lori A. Clarke. A Formal Model of Program Dependences

and Its Implications for Software Testing, Debugging and Maintenance. IEEE

Transactions on Software Engineering, 16(9):965{979, Sept. 1990.

[64] Sandra Rapps and Elaine J. Weyuker. Data Flow Analysis Techniques for Pro-

gram Test Data Selection. In Proc. Sixth International Conference on Software

Engineering, pages 272{278, Tokyo-Japan, Sept. 1982.

[65] Sandra Rapps and Elaine J. Weyuker. Selecting Software Test Data Using Data

Flow Information. IEEE Transactions on Software Engineering, SE-11(4):367{375,

April 1985.

[66] Debra J. Richardson, Owen O'Malley, and Cindy Tittle. Approaches to

Speci�cation-Based Testing. In Proc. ACM SIGSOFT Third Workshop on Software

Testing, Analysis and Veri�cation, pages 86{96, KeyWest-Florida, Dec. 1989.

[67] Debra J. Richardson and Margaret C. Thompson. The RELAY Model of Error

Detection and its Application. In Proc. ACM SIGSOFT Second Workshop on

Software Testing, Analysis and Veri�cation, pages 223{230, Ban�-Canada, 1988.

[68] Debra J. Richardson and Margaret C. Thompson. An Analysis of Test Data Selec-

tion Criteria Using the RELAY Model of Fault Detection. IEEE Transactions on

Software Engineering, 19(6):533{553, Jun 1993.

202 BIBLIOGRAPHY

[69] Hasan Ural and Bo Yang. A Structural Test Selection Criterion. Information

Processing Letters, 28(3):157{163, July 1988.

[70] G. A. Ventkatesh. The Semantic Approach to Program Slicing. In Proc. ACM

SIGPLAN Conf. Programming Language Design and Implementation, pages 107{

119, Toronto, June 1991.

[71] Je�rey M. Voas. Factors That A�ect Software Testability. In Proc. Ninth Paci�c

Northwest Software Quality Conference, 1991.

[72] Je�rey M. Voas. PIE: A Dynamic Failure-Based Technique. IEEE Transactions

on Software Engineering, 18(8):717{727, Aug. 1992.

[73] Je�rey M. Voas and Keith Miller. Improving Software Reliability by Estimating

the Fault Hiding Ability of a Program Before it is Written. In Proc. of the 9th

Software Reliability Symposium, Colarado Springs, May 1991.

[74] Je�rey M. Voas and Je�ery E. Payne. Designing Programs that are Less Likely to

Hide Faults. J. Systems Software, 20(1):93{101, Jan 1993.

[75] Stewart N. Weiss. What to Compare When Comparing Test Data Adequacy Cri-

teria. ACM SIGSOFT Software Engg. Notes, 14(6):42{49, Oct. 1989.

[76] Stewart N. Weiss and Vladimir N. Fleyshgakker. Improved Serial Algorithms for

Mutation Analysis. In Proc. ACM SIGSOFT International Symposium on Software

Testing and Analysis, pages 149{158, Cambridge, Massachusetts, June 1993.

[77] Elaine J. Weyuker. An Empirical Study of the Complexity of Data Flow Test-

ing. In Proc. ACM SIGSOFT Second Workshop on Software Testing, Analysis and

Veri�cation, pages 188{195, July 1988.

BIBLIOGRAPHY 203

[78] Elaine J. Weyuker. The Cost of Data Flow Testing: an Empirical Study. IEEE

Transactions on Software Engineering, 16(2):121{128, Feb. 1990.

[79] Elaine J. Weyuker, Stewart N. Weiss, and Richard Hamlet. Comparison of Program

Testing Strategies. In Proc. ACM SIGSOFT Fourth Workshop on Software Testing,

Analysis and Veri�cation, 1991.

[80] Lee J. White, Edward I. Cohen, and Steven J. Zeil. A Domain Strategy for Com-

puter Program Testing. In B. Chandrasekaran and S. Radicchi, editors, Computer

Program Testing, pages 103{113. North-Holland Publishing Company, 1981.

[81] Steven J. Zeil. Testing for Perturbations of Program Statements. IEEE Transac-

tions on Software Engineering, SE-9(3):335{346, May 1983.

[82] Steven J. Zeil. Equate Testing Strategy. In Proc. ACM SIGSOFT Workshop on

Software Testing, Analysis and Veri�cation, pages 142{152, Ban�-Canada, 1986.

Index

E(X; T), instances of X , 47

E�1(x), entity corresponding x, 47

Ipred(Y), 48

Ipred(y), impact predecessors, 48

Isucc(Y), 48

Isucc(y), impact successors, 48

R, random-access storage reqmts, 77

S, sequential-access storage reqmts, 77

V (x), value of x, 47

W (X), valid values of X , 48

X; Y , entities, 47

A(x), acceptable value set, 57

"(x), error set, 57

"(x; C), error set, 59

"(x;F), error set, 58

C, error class, 59

Paths(i; j; �), 50

Paths(i; j), impact path-set, 49

�, 48

�, 48

d, control nesting depth, 77

e, number of arcs in T , 76

n, number of nodes in T , 76

t, number of executed operations, 76

x; y, entity instances, 47

�(P), 47

P , program, prog impact graph, 47

T , execution, exec impact graph, 47

acceptable value set, A(x), 57

accumulated execution time, 34

address computation, 32

a�ected entity instances, 133

all-paths, 17

arbitrary errors, 58, 91

backward dynamic slice, 14

basic-block, 11

branch coverage, 17

canceling errors, 25

code segment, 39

competent programmer hypothesis, 19

complete path, 11

204

INDEX 205

computation, 32

computational feasibility, 16

constant use, 37

control
ow graph, 11

control impact, 42

control nesting depth, d, 77

control transfer, 32

controls-exit, 43

controls-output, 43

coupling e�ect hypothesis, 20

ctrl-ref impact, 49

data computation, 32

data impact, 40

data transfer, 32

data transfer impact arc, 41

decision arm, 30

decision branch, 30

decision predicate, 30

def-use impact arc, 41

de�nition of x, 11

de�nition-clear path, 12

de�nition-use association, 12

de�nition-use chain, 12

delta errors, 58, 92

design error, 9

detected, 9

direct impact, 35

entities, X; Y , 47

entity corresponding x, E�1(x), 47

entity instances, x; y, 47

equivalent mutant, 14

error creation condition, 2, 10

error propagation condition, 2, 10

error set, 57

errors, 2, 10

execution history, 9

execution, exec impact graph, T , 47

failure, 9

fault, 9

fault execution condition, 2, 10

function call, 43

function de�nition, 39

function reference, 40

function result, 40

function return value, 40

immediate member, 39

impact kind, 49

impact path, 48

impact path-set, Paths(i; j), 49

impact predecessors, Ipred(y), 48

impact strength, 56

206 INDEX

impact successors, Isucc(y), 48

implicit control, 42

instances of X , E(X; T), 47

killed mutant, 14

list-of-de�ned-variables, 43

list-of-potentially-impacted-variables, 44

live mutants, 19

loop exit, 30

loop-free path, 11

mixed impact, 49

monitored impact strengths, 134

mutant, 14

mutant kill ratio, 106

mutation, 14

number of arcs in T , e, 76

number of executed operations, t, 76

number of nodes in T , n, 76

observable behavior, 34

observable program behavior, 33

op-ctrl impact, 49

op-ref impact, 49

operand-result impact arc, 41

operation, 31

operator, 39

operator impact, 42

output, 34

path, 11

pending, 78

plausible errors, 4

potential dependence, 54

potential in
uence, 54

potential control impact, 35

potentially-controls-exit, 44

potentially-controls-output, 44

program behavior, 34

program dependence, 34

program impact, 34

program, prog impact graph, P , 47

programming error, 9

propagated errors, 59, 91

random-access storage reqmts, R, 77

reaches, 12

reference errors, 59, 92

reference impact, 41

referencing, 32

relevant slice, 54

return expression, 40

sequential-access storage reqmts, S, 77

siblings, 30

INDEX 207

simple path, 11

sink node, 11

source node, 11

state error detection ratio, 105

state variables, 9

statement coverage, 17

strong fault-based strategies, 19

strong-killed, 103

syntactically correct, 67

temporary de�nition, 37

temporary use, 37

test case, 9

test set, 9

test suite, 9

unconditional branch, 30

unde�nition of x, 11

use of x, 11

valid values of X , W (X), 48

value of x, V (x), 47

variable de�nition, 37

variable use, 37

weak fault-based strategies, 19

weak-killed, 67

Bibliography Index

[1] ACM80, 161

[2] AgrHor90, 14, 34, 36, 81, 155

[3] AgrHorKra93, 54

[4] AhoHopUll74, 160

[5] AhoSetUll88, 31

[6] BalHasOst89, 102

[7] BieSch89, 18

[8] BoxHunHun78, 108

[9] BoyElsLev75, 161

[10] Bud81, 3, 14, 19, 67

[11] ClaRic81, 20

[12] DemGuiMcC88, 19, 22, 162

[13] DemLipSay78, 3, 14, 19, 67, 83, 153

[14] DueGupSof92, 82

[15] DunRob90, 153

[16] FerOttWar87, 34, 51{53

[17] FraWey88, 17, 48

[18] Gil76, 131

[19] Gor93, 109

[20] Gre90, 87, 90

[21] Hal77, 101

[23] Ham77, 22, 83

[22] Ham89, 1

[24] HorPriRep87b, 52

[25] HorPriRep87, 51, 52

[26] HorRepBin88, 52

[27] How82, 3, 22, 83, 152

[28] How86, 13

[29] IEE83, 9

[30] Jac93, 137

[31] Jen90, 12

[33] KerPla81, 163

[34] Knu89, 131

[35] KorLas88b, 14, 36, 81, 155

[36] KorLas91, 36, 54

[37] KucKuh81, 51

[38] KucMurChe72, 51

[39] LasKor83, 17

[40] Lev92, 160

[41] Mar90, 152

[42] Mar91b, 23, 27

[43] Mar92b, 131

208

BIBLIOGRAPHY INDEX 209

[44] Min78, 105

[45] Mor84, 2, 9

[46] Mor88, 9, 20, 22, 27

[47] Mor90, 9, 19, 20

[48] MorMur90, 84

[49] MorMur93, 84

[50] Mur91, 84

[51] Nta84, 17

[52] Nta88, 16

[53] O�88, 2, 9, 27

[54] O�89, 20

[55] OstBal88, 1, 102, 133

[56] OstWey79, 9

[57] OstWey84, 131

[58] OttEll92, 52

[59] PanRydLan91, 30, 43, 90

[60] PanRydLan93, 43

[61] PlaWagCam91, 90

[62] PodCla89, 52, 53

[63] PodCla90, 34

[64] RapWey82, 17, 18, 82, 161

[65] RapWey85, 11, 162

[66] RicOmaTit89, 1

[67] RicTho88, 2, 9, 10, 19, 21, 27, 134

[68] RicTho93, 9, 12, 27

[32] Ste90, 90

[69] UraYan88, 17, 18, 81

[70] Ven91, 14, 36

[71] Voa91, 25, 27, 84

[72] Voa92, 27, 83, 84, 134

[73] VoaMil91, 3, 25, 84

[74] VoaPay93, 25, 84

[75] Wei89, 16

[76] WeiFle93, 153

[77] Wey88, 16, 18

[78] Wey90, 16, 18, 163

[79] WeyWeiHam91, 15

[80] WhiCohZei81, 12

[81] Zei83, 22

[82] Zei86, 22

