
Scheduling for Horizontal Systems:

The VLIW Paradigm in Perspective

Franco Gasperoni

Courant Institute of Mathematical Sciences

New York University

May 1991

A dissertation in the Department of Computer Science Submitted to the Faculty of

the Graduate School of Arts and Sciences in partial ful�llment of the requirements for

the degree of Doctor of Philosophy at New York University.

Approved:

Edmond Schonberg, Research Advisor

c
Franco Gasperoni

All rights reserved 1991

Scheduling for Horizontal Systems:

The VLIW Paradigm in Perspective

Franco Gasperoni

Thesis advisor: Edmond Schonberg

1991

Abstract

This work focuses on automatic extraction of operation level parallelism from programs

originally intended to be sequential. Optimality issues in the framework of very long

instruction word architectures and compilers (VLIW) are investigated. Possible advan-

tages of an idealized dynamic scheduler over a purely static one are also explored. More

speci�cally the model and the results of scheduling theory are extended to account for

cyclicity and branching capabilities present in sequential programs. The existence of in-

herent bottlenecks in the VLIW paradigm is substantiated and the advantage of dynamic

over static scheduling is demonstrated for certain type of loops. A novel technique for

e�cient parallelization of straight line loops is presented. A simple scheduling heuristic

for arbitrary programs is proven to perform between a constant and a logarithmic factor

from appropriately de�ned optimality criteria. Finally we prove the existence of loops

containing branches for which no parallel program can achieve time optimal performance

on VLIWs with unlimited resources. The overall aim of the thesis is to identify the family

of sequential programs for which the VLIW model of parallel computation is viable.

�a Pierre et Nathalie

Acknowledgements

This dissertation originated at NYU and developed during my stay at IBM T.J. Watson

research center. I would like to thank both institutions for their �nancial support.

There are many persons that helped me through the long and sometimes spooky

process of writing a dissertation. First of all I would like to thank my advisors Ed

Schonberg of NYU and Uwe Schwiegelshohn of IBM for their help and suggestions and

for constantly being available to monitor my progress. Along with Ralph Grishman of

NYU, whom I also thank, they had the uneasy task of digesting my theoretical claims.

I would also like to thank Uwe for his friendship and assistance during my stay at IBM

making my experience there a very enriching one. In more than one occasion Uwe helped

me �nalyze some of the ideas appearing in this thesis.

I would like to thank all my friends at NYU in particular John Turek with whom

I spent many long evenings trying to solve the open problem mentioned before theo-

rem 4.6.8. Part of the results in section 4.6 have emerged from the excitement of those

evenings. I am grateful to Kemal Ebcio�glu of IBM for sharing with me his experience

and ideas on VLIWs and to Brion Shimamoto from IBM who helped me understand the

importance of managerial skills in an industrial research environment. I would also like to

thank Bulent Abal�, Hu Chao and Toshio Nakatani all from IBM for helpful discussions.

Finally I am grateful to my parents and my uncle Gian-Carlo for so many things

that I cannot list them here and to my wife Nathalie for her constant love and a�ection

without which I would have never gone through the dissertation adventure.

Contents

1 Introduction 1

1.1 Motivation : 1

1.2 State of the Art in VLIW : 2

1.3 Problems of Current VLIW Techniques : : : : : : : : : : : : : : : : : : : 4

1.4 Contributions : 5

1.5 Dissertation Overview : 9

2 Preliminaries 10

2.1 Mathematical Notions : 10

2.2 Graph Theoretical Concepts and Terminology : : : : : : : : : : : : : : : : 11

3 Task Systems 13

3.1 Preliminaries : 13

3.2 De�nition : 13

3.3 Schedules : 14

3.4 Admissibility : 15

3.5 Approximating Optimality for Finite Task Systems : : : : : : : : : : : : : 16

4 Cyclic Task Systems 17

4.1 Preliminaries : 17

4.2 De�nition : 17

4.3 Dependence Distances and Graphs : 19

4.4 Schedules for Cyclic Systems : 24

4.5 Consistent and Periodic Schedules : 28

4.6 Asymptotic Performance : 32

vii

viii CONTENTS

4.7 Approximating Optimal Asymptotic Performance : : : : : : : : : : : : : : 42

5 Branching Task System 50

5.1 Preliminaries : 50

5.2 Branching Task System : 51

5.3 Machine Model and Branching Schedules : : : : : : : : : : : : : : : : : : 53

5.4 Admissibility : 56

5.5 Performance Criteria : 58

5.6 Performance Limitations and Trade-O�s : : : : : : : : : : : : : : : : : : : 63

5.7 Approximating Optimum Performance : 72

6 Cyclic Branching Task System 86

6.1 Preliminaries : 86

6.2 De�nition : 87

6.3 In�nite and Periodic Schedules : 89

6.4 Asymptotic Performance : 89

6.5 Approximating Optimal Asymptotic Performance : : : : : : : : : : : : : : 94

7 Conclusion 97

List of Figures

3.1 (a) Dependence graph for T . (b) The 3-optimum schedule for T . : : : : : 16

4.1 Dependences of some cyclic system. : 22

4.2 Dependences of some cyclic system. : 33

4.3 Dependences of some cyclic system. For clarity certain operations are not

labeled. : 35

5.1 (a) A branching task system T̂ . (b) A 3-admissible schedule Ĉ for T̂ . : : : 52

5.2 Operation precedences may be execution path dependent. : : : : : : : : : 54

5.3 A fragment of a real life sequential program. : : : : : : : : : : : : : : : : : 57

5.4 (a) Some fragment of a real life sequential program. (b) A semantically

incorrect schedule for the program given in (a). (c) An admissible schedule. 59

5.5 (a) Control
ow graph of T̂ . Squares indicate basic blocks. (b) Control

ow graph of Ĉo. (c) Control
ow graph of Ĉ0
o. : : : : : : : : : : : : : : : 61

5.6 Control Flow graph of T̂ . B indicates a basic block of operations. : : : : : 66

5.7 The numbers �1(m) and �2(m) for some values of m. : : : : : : : : : : : 71

5.8 Chart showing maximum speedup as a function of �. : : : : : : : : : : : : 73

5.9 Control
ow graph of T̂ . : 76

5.10 (a) Control
ow graph of T̂ . (b) A GWF schedule 8-admissible for T̂ when

� = 1. (c) 8-Optimal schedule for T̂ and the isotropic weighting function

when � = 1. : 78

6.1 (a) Core control
ow graph of L̂. (b) Graph representing the dependence

paths between the operations in L̂. Thin edges represent paths of more

than one edge. : 93

ix

x LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation

Vast amounts of serial applications have been written to date. To exploit increases

in computing performance o�ered by parallel processing such applications have to be

rewritten or recompiled with parallelizing compilers.

The �rst approach provides the biggest opportunity for speedup since one can design a

parallel program suited to the architecture at hand. This is not a painless and inexpensive

activity and often involves a thorough knowledge of the target machine idiosyncrasies.

Users resort to this solution when the running time of a program is critical.

Acknowledging a user's reluctance to recode working applications, a great deal of

attention has been devoted to port automatically sequential applications on parallel

machines (parallelizing compilers) [37,7,6]. Parallelizing compilers, however, are not as

e�ective as programmers in their program transformation task. A parallelizing compiler

has to rely on user assertions and/or source code modi�cations to improve the quality

of the code it generates. When users are unable to restructure source programs, part of

the code runs serially. This can potentially imply a poor overall speedup. What makes

automatic program parallelization for conventional SIMD/MIMD architectures di�cult

is the need to extract coarse grained parallelism from existing serial applications.

In 1972 Riseman & Foster inspected traces of sequential programs to determine the

amount of operation level parallelism present. They concluded that such parallelism was

abundant but discarded it on the basis of exponential hardware exploitation costs [51].

In 1984 Nicolau & Fisher repeated the same experiment. Their �nal conclusion, however,

1

2 CHAPTER 1. INTRODUCTION

was that �ne grained parallelism could be exploited e�ectively by a clever combination

of hardware and software, as opposed to the purely hardware approach of Riseman &

Foster [46].

This combination of hardware and software is termed VLIW paradigm. Since their

introduction in the early 80s, VLIWs have gained considerable interest in the academic

and industrial communities.

1.2 State of the Art in VLIW

The archetype VLIW architecture comprises several independent functional units, one

or several register �les and data memory. All machine resources are driven by the same

clock and are connected using some sort of topology. The bits which operate each

unit are gathered in a very long instruction word , whose size can exceed 1,000 bits.

A single instruction stream can therefore initiate several independent operations every

cycle. A central control unit dictates the sequencing of VLIW instructions based on the

conditionals scheduled in the instruction being executed. In �rst approximation VLIW

instructions are similar to horizontal microcode except that they are much longer and

more orthogonal.

VLIWs are hard to program by hand as the number of concurrent activities that

one needs to keep track of is overwhelming. The scheduler is therefore a key component

in every VLIW system. By statically orchestrating resource allocations and data move-

ments, VLIW schedulers transform sequential programs written in high level languages

directly into VLIW instructions.

The simplest VLIW scheduling technique one can think of is local scheduling where

instructions are restricted to contain operations from the same basic block. In addition

to being theoretically unsatisfying, this technique is also poor in practice as the degree

of parallelism which can be extracted by local scheduling is often less than a factor two

[51].

Global scheduling disregards basic block boundaries when rearranging operations.

The �rst true global technique, trace scheduling, was introduced by Fisher in 1979

[20,22,18]. Trace scheduling employs branching probabilities to select the most likely

execution path of a program (the trace). Once a trace has been selected it is compacted

1.2. STATE OF THE ART IN VLIW 3

as if it was a basic block by using some slightly extended local scheduling algorithm. The

scheduling phase may move operations above or below conditional jumps. To preserve

semantic equivalence with the original program, trace scheduling has to insert bookkeep-

ing code in the points where the trace interfaces with the rest of the program. After the

most probable trace has been compacted the next most probable trace is selected and

the process repeats.

As a result of his experience with trace scheduling, Nicolau introduced percolation

scheduling, a new framework for the arbitrary motion of operations within a program

[45,3]. Percolation scheduling relies on four semantic preserving program transformations

in the spirit of [47], that can repeatedly be applied using some high level guidance

rules. The repeated application of such elementary transformations allows operations to

percolate to the beginning of a programwithout introducing any super
uous bookkeeping

code. Superimposed scheduling algorithms such as compact path [3] and greedy compact

[14] assume VLIWs with unbounded resources. The �rst bounded resource scheduling

algorithm relying on percolation scheduling has been devised by Ebcio�glu and Nicolau

[17].

Region scheduling is another recent global scheduling technique developed by Gupta

and So�a [29]. Region scheduling works by evenly redistributing the parallelism avail-

able throughout a program, so that machine resources are always fully utilized. As with

percolation scheduling, parallelism is redistributed through repetitive application of se-

mantic preserving program transformations. The elementary transformations are not

directly de�ned on the
ow graph of a program, but rather on the program dependence

graph, a new intermediate program representation paradigm [19].

The previous global scheduling techniques are concerned with compacting acyclic

code. An inner loop can be parallelized by unrolling its body, to provide su�cient paral-

lelism, and subsequently invoking one of the global scheduling algorithms on the unrolled

body. Depending on the amount of unrolling this approach can be space ine�cient. Fi-

nal code size is an important concern in the case of loops because it can interfere with

good instruction cache performance. To overcome this potential problem a second class

of scheduling algorithms based on the software pipelining concept, has emerged. Loop

pipelining is the software version of hardware pipelining: one tries to start a new itera-

tion before the preceding has completed. Loop pipelining was originally introduced by

4 CHAPTER 1. INTRODUCTION

Kogge to handcode microprogrammed pipelined machines [35], while Cytron and Munshi

& Simons have explored its application to multiprocessors [13,42].

Initial attempts in the VLIW community have focused on pipelining inner loops

without conditional jumps (straight line inner loops). Several such algorithms have been

developed [9,49,58,55]. The most recent results are due to Lam [38], Aiken & Nicolau

[4] and Zaky & Sadayappan [61]. Among these Lam's is the only to have purposely been

designed for �nite resource VLIWs. Lam's algorithm tries to determine some minimal

delay � that needs to be respected between the execution of consecutive iterations.

Operations in the loop are rearranged so that resource and data dependence constraints

are satis�ed when iterations are started every � cycles. If this is not possible, � is

increased by one cycle and the above process is repeated. Aiken and Nicolau's algorithm

unrolls an inner loop a predetermined polynomial amount of times and then greedily

compacts it under the assumption that unlimited resources are available. Such greedy

scheduling ensures the existence of a repetitive pattern that can be used as the basis

for a software pipelined loop. The algorithm �nds time optimal loops for VLIWs with

unlimited resources. The size of the output loop may however be exponential in the

size of the input loop. By formulating the straight line loop pipelining problem as a

linear algebraic problem on some path algebra, Zaky and Sadayappan achieve the same

optimality result as Aiken and Nicolau but the size of the output loop is guaranteed to

be polynomial in the input.

Researchers have also focused their attention on loops containing conditional jumps.

Algorithms such as pipeline scheduling and its o�spring [14,16] and perfect pipelining [5]

are recent algorithms that have explicitly been designed for loops with branches. They

all rely on percolation scheduling to carry out the motion of operations. None of these

algorithms has received wide pragmatic acceptance nor have theoretical performance

bounds been established.

1.3 Problems of Current VLIW Techniques

Despite its interesting results for numerical programs, trace scheduling has some down-

falls. For one thing if branching probabilities are insu�ciently skewed performance can

be meager; furthermore Ellis showed that exponential increase in code size is possible

1.4. CONTRIBUTIONS 5

[18]. Finally because only one trace at a time is considered some bookkeeping code is

super
uous and motion of certain operations can be limited [2].

This last problem is solved in percolation scheduling. Unfortunately algorithms re-

lying on percolation scheduling tend to be slow. This is due to the granularity of its

transformations which force, during code generation, continuous traversals of the source

program control
ow graph. Superimposed scheduling algorithms for unlimited resource

VLIWs meet �nal resource constraints by partitioning and recombining instructions ini-

tially created. Part of the scheduling work is thus undone to accommodate resource

limitations. Ignoring machine capabilities during scheduling not only increases compila-

tion time but may actually yield a VLIW program slower than its sequential counterpart.

Finally extensive code rearrangement is needed, thus requiring unacceptable amounts of

compensation code.

To decrease compilation time, Ebcio�glu and Nicolau have explicitly worked with

bounded resources [17]. The draw-back of their method is the excessive duplication of

computational paths in the presence of mutually blocking operations. This can slow

compilation and cause signi�cant code size increases.

Region scheduling transformations are also elementary. Because they are based on

the program dependence graph, motion of operations in region scheduling should be

faster than in percolation scheduling. Algorithms based on them have however reported

only limited speedups [28].

The trace scheduling e�ort has shown that VLIWs can yield good speedups for nu-

merical programs [18]. However only limited speedups have been reported for programs

which are non-numerical in nature [21,43].

1.4 Contributions

The problems of current VLIW techniques can be summarized as large increase in object

code size, lengthy compilation time and restricted speedup for non-numerical type of

programs. Because of these shortcomings the dissertation investigates whether some of

these limitations are inherent. More in particular the dissertation extends the model and

results of scheduling theory to account for cyclicity and branching capabilities present

in sequential programs [10,25].

6 CHAPTER 1. INTRODUCTION

The work is theoretical in nature in that results put forward are substantiated by

formal proofs rather than benchmarking evidence. For one thing, negative results that

pertain to the computational nature of a model cannot be disproved by an implement

& benchmark approach. Furthermore as accurate benchmark selection is di�cult and

a continuously evolving endeavor, positive results substantiated by implement & bench-

mark may be incorrect. A purely theoretical approach can also be fallacious. Because

reality is often complex and peculiar, formal models are either incomplete or intractable.

Inevitably simplifying assumptions have to be made and there is risk of oversimpli�ca-

tion. Furthermore theoretical results may hide expensive implementation costs. Ideally

theory and practice should complement one another as it is the case in the physical sci-

ences: experiments, in this case implement & benchmarking, should be used to validate

the theoretical model. As such this thesis is only a �rst step in this direction.

The machine model considered comprises m identical processors or functional units

operating synchronously and in parallel. More speci�cally every execution cycle r oper-

ations are dispatched to r di�erent processors (1 � r � m). No preemption is allowed:

once started, an operation has to be executed till its completion. The set of operations

that are being processed in a same cycle is termed an instruction. Within an instruc-

tion conditional branches are arranged to form a decision tree that speci�es what set

of operations should be executed next. This branching model is more general than the

one needed for trace scheduling and adopted in the TRACE machines [12]. It is directly

inspired from the branching paradigms of Karplus & Nicolau and Ebcio�glu [33,15]. The

machine is assumed to be combinatorial that is, an operation can be executed by a pro-

cessor only if the processor is idle. Results very similar to those stated in this work can

be obtained in the case of pipelined processors. Because operations are seen as atomic

entities with no mention of variables, no algebraic manipulations of the input program

are considered. Furthermore constraints in the number of available registers are ignored.

Certainly if the machine is well balanced register availability should not hinder parallel

performance.

To extract �ne grained parallelism the VLIW paradigm advocates the use of static

schedules, i.e. schedules generated at compile time. With the appearance of superscalar

processors such as the Intel i860, Intel 80960CA or the IBM RIOS chip set, dynamic

extraction of �ne grained parallelism is regaining momentum. This concept dates back

1.4. CONTRIBUTIONS 7

to the 1960s where machines like the IBM 360/91 or the CDC 6600 [8,57] provided

hardware mechanisms to exploit operation level parallelism automatically at run time

(dynamic schedules).

Another contribution of this dissertation is the time performance comparison of static

and dynamic schedules. Because in�nite operation lookahead is allowed, the dynamic

schedules introduced are more of a theoretical gadget and are not likely to be generated

by realistic hardware designs. The purpose of this comparison, however, is to show the

gap between what is statically feasible and what is theoretically possible. Whether this

gap can actually be exploited in practice by a dynamic scheduler is beyond the scope of

this work. It is important to remark that the operation ordering which must be preserved

at compile time can be signi�cantly more constraining than at run time. In fact static

schedulers may have to make overwhelming dependence assumptions if excessive aliasing

is present in the sequential program. Indeed only dynamic operation-level parallelism

was measured in program traces by Riseman & Foster and Fisher & Nicolau. To make

a somewhat fair comparison between static and dynamic schedulers it is assumed that

the set of operation dependences is the same. Because dynamic schedules are allowed

in�nite lookahead and static schedules are given the same run-time power as dynamic

ones, static and dynamic schedules di�er only in the presence of loops. In fact loop

schedules generated statically must possess a certain regularity that dynamic ones need

not have. Given this distinction it is shown in chapter 4, section 4.6 that in the presence

of arbitrary dependences dynamic schedules can severely outperform static ones. When

dependences are periodic, however, it is shown in chapter 4, section 4.6 for straight line

loops and chapter 6, section 6.5 for loops with branches, that static schedules are as

good as dynamic ones.

Two shortcomings of current VLIW scheduling techniques are code explosion and

limited speedups achieved for non-numerical type of programs. One of our contributions

is investigating whether pragmatic research e�orts in VLIWs are undermined by inher-

ent bottlenecks. Regarding code explosion none of the algorithms or implementations

presented so far guarantees the absence of awesome increase in code size. Examples of

exponential increases have been demonstrated for each of the individual algorithms but

none is inherent; that is, increases in code size pertain to the nature of the algorithm

used rather than the essence of VLIWs. In chapter 5, section 5.6 we prove the exis-

8 CHAPTER 1. INTRODUCTION

tence of sequential programs for which no algorithm can guarantee good speedups unless

the schedule generated has exponential code size. Thus space and time performance of

VLIW programs seem, in the worst case, to be antagonistic.

All VLIW scheduling algorithms implemented have reported only limited speedups

for programs which are non-numerical in nature [21,43]. In chapter 5, section 5.6 it

is shown that in the absence of pro�ling information or when branching probabilities

are only slightly skewed, conditional jumps inhibit exploitable parallelism, regardless of

whether the extraction process is static or dynamic. More speci�cally it is shown that

if the input program has a high fraction of conditionals on every path and the target

machine can execute m conditional jumps every cycle then only a speedup of roughly

log2m can be achieved. If branching probabilities are skewed then better speedups are

possible. However as the skewing increases the general branching model degenerates into

the trace scheduling model.

In chapter 4, section 4.7 the problem of pipelining straight line loops for �nite resource

VLIWs is tackled. A novel strategy that deletes certain critical edges from the loop

dependence graph is devised. Such edge deletion renders the dependence graph acyclic

and can be executed in O(jV j�jEj) time where jV j and jEj respectively denote the number
of vertices and edges in the loop dependence graph. The transformed dependence graph

can be used to generate a loop schedule that is within a small constant factor of the

optimum.

In chapter 4, sections 4.5 and 4.6, some mathematical properties of periodic and

optimal schedules for straight line loops are explored.

When generating a VLIW instruction, statically or dynamically, it is often the case

that operations from di�erent computational paths may be available for execution. In

the case where available operations cannot all be executed together a selection criterion

must be employed. A simple heuristic is produced in chapter 5, section 5.7 and is proven

to perform between a constant and a logarithmic factor from the optimum, depending

on the skewing of branch probabilities.

Several researchers have posed the problem of optimal parallelization of arbitrary

loops for VLIWs with unlimited resources [4,59]. Chapter 6, section 6.4 shows the

existence of simple loops containing conditional jumps for which there cannot exist static

schedules with time optimal performance on VLIWs with unlimited resources.

1.5. DISSERTATION OVERVIEW 9

1.5 Dissertation Overview

The subdivision of the thesis does not correspond to the above partitioning of research

contributions. We have tried to give a coherent organization by adding increasingly

powerful capabilities to the original model of scheduling theory. After presenting simple

mathematical notions and standard graph theoretical concepts and terminology, chap-

ter 3 introduces task systems, the original model of scheduling theory and our starting

point. In chapter 4 cyclicity is added to the basic task systemmodel (cyclic task systems).

Chapter 5 is independent of chapter 4 and adds conditionals to task systems (branching

task systems). The last chapter depends on chapters 4 and 5. It adds cyclicity to the

model of chapter 5 (cyclic branching task systems).

Chapter 2

Preliminaries

This chapter establishes common terminology for simple mathematical and �nite/in�nite

graph theoretical concepts.

2.1 Mathematical Notions

Let A, B be two sets and f a function mapping A into B. f is said to be injective if for

all a1; a2 2 A, f(a1) = f(a2) implies a1 = a2. f is said to be surjective if for any b 2 B

there exists some a 2 A such that f(a) = b. If f is both surjective and injective then f

is said to be bijective.

Let S be some set. S is said to be countable if and only if there exists an injective

function mapping S into the integers. If S is �nite then jSj denotes its cardinality.

An equivalence relation � de�ned on S is a re
exive (8 x 2 S x � x), symmetric

(8 x; y 2 S x � y implies y � x) and transitive relation (8 x; y; z 2 S x � y and

y � z implies x � z). A partial order v de�ned on S is an irre
exive, anti-symmetric

(8 x; y 2 S x v y implies y 6v x) and transitive relation .

The symbol \log2" denotes the base 2 logarithm and \ln" the base e logarithm. The

symbol \9!" means \there exists one and only one". The symbol ; denotes the empty

set. The term positive number denotes a number strictly greater than 0. For a real

number x, bxc denotes the
oor of x, that is the greatest integer smaller than x and dxe
the ceiling of x, that is the smallest integer greater than x.

10

2.2. GRAPH THEORETICAL CONCEPTS AND TERMINOLOGY 11

2.2 Graph Theoretical Concepts and Terminology

A directed graph or di-graph G, is a pair G = (V;E) where V is a set whose elements

are called vertices and E a subset of V � V whose elements are called edges. If V is

�nite then G is said to be a �nite graph, otherwise G is said to be in�nite.

For e = (u; v) 2 E one says that e goes from u to v. Vertices u and v are respectively

referred to as the tail and head of e. The out-degree (respectively the in-degree) of a

vertex v 2 V is the number of edges in E that have v as their tail (respectively the head).

Two edges are said to be consecutive if the head of the �rst coincides with the tail of

the second.

A path P of G is a not necessarily �nite sequence of consecutive edges. A sub-

sequence of edges in P is called a sub-path of P . Note that every path is a sub-path of

itself. The length of a �nite path is the number of edges it contains. If a vertex v 2 V

is the head or tail of some edge in P , P is said to traverse v. A path P is said to be

simple if no vertex is the head of two edges in P . Given two vertices u and v of G, a

path which �rst traverses u and then v is said to go from u to v. One also says that v

is reachable from u. Vertex u is said to precede or be a predecessor of v (alternatively v

is said to succeed or be a successor of u) if and only if there exists a path from u to v

and no path from v to u. If this path is of length one then u is said to be an immediate

predecessor of v (v is an immediate successor of u). A path going from a vertex to itself

is called a cycle.

If no path in G is a cycle, G is said to be acyclic, otherwise G is cyclic. If there is a

path from any vertex to any other vertex of G, G is said to be strongly connected.

A subgraph H of G is a pair H = (V 0; E0) such that V 0 � V and E0 � V 0�V 0\E. A
subgraph H of G is said to be traversed by a path P if and only if P traverses some of H

vertices. The subgraph induced by a set V 0 � V of vertices is de�ned as (V 0; V 0�V 0\E).
If there exists two subgraphs of G such that the head and tail of every edge in E are

always in the same subgraph then G is said to be disconnected, otherwise G is said to

be connected.

G is single entry if it has exactly one root that is a vertex with in-degree zero. G is

single exit if it has exactly one sink that is a vertex with out-degree zero.

A di-graph G is said to be weighted if each edge e of G is associated with some

12 CHAPTER 2. PRELIMINARIES

number, called the weight of e. Given a path P of G the sum of the weights of the edges

in P is termed the weight of P .

A di-graph T is said to be a rooted tree if T is single entry and every vertex, except

for the root, has in-degree one. The sinks of a tree are also called leaves. A vertex which

is not a leaf is said to be internal. The immediate successors of a non sink vertex v of T

are called the children of v. The height of a �nite tree is the length of the longest path

from the root to a leaf. If T has height h, T is said to have h+ 1 levels. The root of T

is at level 0, the vertices which are l edges away from the root are at level l. A subtree

T 0 of T is a connected subgraph of T such that all the vertices which are reachable from

the root of T 0 in T belong to T 0. A tree where every vertex, except for the leaves, has

out-degree two is called a binary tree. A binary tree is said to be complete or completely

balanced if all the paths from the root to a leaf have the same length.

For concepts and terminology on depth �rst search please refer to [1].

Chapter 3

Task Systems

This chapter presents task systems, the original model of scheduling theory [10,25]. Task

systems are the starting point of our work. One point deserves notice. Task systems are

usually de�ned as �nite entities. In this chapter task systems are allowed to be in�nite.

This will be useful when introducing cyclicity in chapter 4.

3.1 Preliminaries

The existence of some in�nite countable set O whose elements are called operations is

assumed. An operation models some atomic action or task that has to be accomplished.

In this work time is considered as a discrete rather than continuous entity. Time in-

stants will therefore be modeled as positive integers, which are considered to be multiples

of some prede�ned time unit called an execution cycle or simply cycle.

3.2 De�nition

Informally a task system is a collection of several inter-dependent operations all of which

must be executed in order to complete the task system.

De�nition 3.2.1 A task system T , or simply task, is a triple T = (O; �;�) where:

1. O is the operation set of T , a non empty subset of O. Note that O could be in�nite.

2. � is the duration function of T , a function mapping O into the strictly positive

integers. For op 2 O, �(op) is the number of cycles required to execute op.

13

14 CHAPTER 3. TASK SYSTEMS

3. � is the dependence relation of T , a partial order on O. For op; op0 2 O, op � op0

means that op must �nish executing before op0 can start: op0 is said to depend on

op.

The task system T is said to be �nite if and only if its operation set O is �nite. T is

said to be in�nite otherwise.

The partial order � can be represented by a di-graph D with vertex set O. Given

two operations op; op0 2 O, op is an immediate predecessor of op0 in D if and only if

op � op0 and there is no op00 2 O such that op � op00 � op0. D is called the dependence

graph of T . The graph D is in�nite if and only if T is in�nite.

3.3 Schedules

The machine model M(m) considered, 1 � m, comprises m identical processors operat-

ing synchronously and in parallel. The machine M(1) contains an unbounded number

of processors. There is no preemption: once started, an operation has to be executed

without interruption. Furthermore no pipelining is allowed, processors can execute a

single operation at a time: M(m) executes at most m operations every cycle. The set

of operations that are being processed in a same cycle is termed an instruction. More

formally:

De�nition 3.3.1 A m-processor instruction I, or more brie
ym-instruction, is a �nite,

possibly empty, subset of operations (I � O) such that jI j � m. The operations contained

in I are said to be executing in I. If m =1 then I can contain an unbounded but �nite

number of operations.

The notion of machine schedule can now be presented. Informally a schedule for

M(m) is a lay out of the operations as they have to be executed by M(m).

De�nition 3.3.2 A m-processor schedule C = (I1;� � � ;Ii;� � �), or more brie
ym-schedule,

is a countable sequence of m-instructions. The i-th instruction of C (1 � i) is assimi-

lated to the i-th execution cycle of M(m). The starting cycle in C of an operation op is

de�ned as t(op; C) =minfk j 8 1 � i < k op 62 Ii and op 2 Ikg. If C contains in�nitely

3.4. ADMISSIBILITY 15

many instruction the length of C is said to be in�nite, otherwise the number of instruc-

tions in C is called its length and is denoted jCj. When m is understood or unimportant

C is just said to be a schedule.

If C can be executed on M(m) then it can be executed on M(m0) for m � m0. A

m-schedule C is graphically represented by a table with m columns, each representing

a processor, and jCj rows, each representing an instruction. Because all processors

are identical the actual assignment of operations to processors is unimportant. See

�gure 3.1(b) for an example.

In the sequel m denotes the number of available processors. Such number is assumed

to be �nite, unless otherwise stated.

3.4 Admissibility

Given some task system T and the target machine M(m), one would like to formalize

the notion of admissibility, that is the conditions under which a schedule made up of

operations in T and executing on M(m) respects T 's dependences.

De�nition 3.4.1 Let T = (O; �;�) be some task system. Am-schedule C =(I1;� � � ;Ii;� � �)
is said to be m-admissible for T , denoted C

m7�! T , if and only if:

1. The instructions of C solely contain operations in O:

8 i � 1 Ii � O

2. Every op 2 O executes only from cycle t(op; C) to t(op; C) + �(op)� 1 included:

8op 2 O 80 � j < �(op) op 2 It(op;C)+j and 8i � t(op; C)+�(op; C) op 62 Ii

3. No op 2 O starts executing until all operations on which it depends have completed:

8 op; op0 2 O op � op0) t(op; C) + �(op) � t(op0; C)

If T is �nite and C has smallest possible length, C is said to be m-optimum for T .

Let T = (O; �;�) be the task systemwith operations setO =fop1;op2;op3;op4;op5;op6g,
duration function �(op) = 1 for every op 2 O and dependence relation � portrayed in

�gure 3.1(a). Figure 3.1(b) gives the only 3-optimum schedule for T .

16 CHAPTER 3. TASK SYSTEMS

op1 op2

op3 op4 op5

op6

�
��
A
AU
�
��
A
AU

A
AU
�
��

(a)

op1 op2
op3 op4 op5
op6

(b)

Figure 3.1: (a) Dependence graph for T . (b) The 3-optimum schedule for T .

3.5 Approximating Optimality for Finite Task Systems

For any �nite m, the problem of generating an m-optimum schedule for a �nite task

system is NP-complete [41]. If operations are restricted to have the same duration a

polynomial time optimal algorithm for the case m = 2 was presented by Co�man and

Graham [11]. The problem remains open for any �xed m � 3 that is, NP-hardness has

not been proved or disproved [23]. If however m is considered to be a parameter the

problem becomes NP-hard [41].

The algorithm of Co�man and Graham builds on the list scheduling framework. List

scheduling algorithms work as follows. The operations in the task system are implicitly

ordered in a priority list. Instructions are generated by repeatedly scanning and deleting

operations from the priority list. More speci�cally for each free slot in the instruction that

is being built, list scheduling selects the �rst operation in the priority list that is ready

and schedules it in that slot. An operation is said to be ready if all its predecessors in

the dependence graph have �nished executing. Note that for m =1 any list scheduling

algorithm yields optimum schedules. The Co�man-Graham algorithm builds the priority

list according to the structure of the dependence graph. This guarantees a �nal running

time of at most (2 � 2=m) times the optimum for task systems in which operations all

have the same duration [39]. If the priority list is built at random this factor increases to

(2� 1=m) [10]. The NP-hardness proof given by Lenstra and Rinnooy Kan [41] implies

that, unless P = NP, no polynomial time algorithm can approximate m-optimality for

arbitrary m, by less than a factor 4=3.

Chapter 4

Cyclic Task Systems

This chapter models the behavior of a system which must continuously execute a �xed

set of operations. A cyclic task system formalizes the intuitive notion of a straight

line loop. Theoretical work in cyclic scheduling is not novel. The studies of Karp

and Miller, Reiter, Romanovskii are some examples [32,50,52,27]. All previous works,

however, assume periodicity of dependences which this chapter does not.

4.1 Preliminaries

Let Z denote the set of integers. A new value denoted 1 is introduced. This value is by

de�nition greater than any integer: x < 1 for any x 2 Z. Addition and multiplication

are extended to account for 1. For x 2 Z, x +1 = x � 1 = 1. For a; b 2 Z [f1g,
[a; b] denotes the set of integers between a and b: [a; b] = fi 2 Z ja � i � bg. Thus [1;1]

denotes the set of positive integers.

Let S be some set and [a; b] the set previously de�ned, the set product of S and [a; b]

is denoted S[a; b]. An element of such set is designated s[i]: S[a; b] = fs[i] js 2 S and i 2
[a; b]g.

4.2 De�nition

Informally a cyclic system L can be seen as an in�nite sequence of tasks, called iterations.

Iterations share the same operation set O and duration function � but may have di�erent

17

18 CHAPTER 4. CYCLIC TASK SYSTEMS

dependence relations. Operations in one iteration may depend on operations in preceding

iterations.

De�nition 4.2.1 A cyclic task system L, or more brie
y cyclic system, is an in�nite

task system L = (O[1;1]; �;�) such that:

1. O is a �nite set called the core operation set of L. The operation set of L is O[1;1].

For op 2 O, op[i] denotes operation op executed during iteration i. The integer i is

termed the iteration index of op[i].

2. For all op 2 O and i; j 2 [1;1], �(op[i]) = �(op[j]). In the sequel such unique

number is denoted �(op).

3. For all op; op0 2 O and i; j 2 [1;1], op[i] � op0[j] implies i � j.

For any a; b � 1 the function � and the partial order � can trivially be restricted to

O[a; b]. For i � 1 the task system (O[i; i]; �;�) is called the i-th iteration of L and the

task system L(n) = (O[1; n]; �;�) is termed the n-instance of L.

The task system L(n) formalizes the case where L is required to iterate n times in

order to complete.

Consider the cyclic system L0 where each iteration is formed by x consecutive iter-

ations of L, for some x > 1. Intuitively L0 is the same cyclic system as L except that

its granularity has increased by a factor x. Informally one says that L0 is obtained by

unrolling L, x times. The following de�nition makes this notion more precise.

De�nition 4.2.2 Let L = (O[1;1]; �;�) be some cyclic system. For x � 1 the x-

unrolling of L is de�ned to be the cyclic system ux(L) = (Ox[1;1]; �;�x) where:

1. Ox = O[1; x] and Ox[1;1] = fop[i][k] j i 2 [1; x] and k 2 [1;1]g.
2. For op[i]; op0[j] 2 Ox and k1; k2 2 [1;1], op[i][k1] �x op0[j][k2] if and only if

op[i+ x � (k1 � 1)] � op0[j + x � (k2 � 1)].

Note that u1(L) = L and uy (ux(L)) = uy�x(L). Because of point 2 in the previous

de�nition op[i][k] and op[i+ x � (k � 1)] denote the same operation.

4.3. DEPENDENCE DISTANCES AND GRAPHS 19

4.3 Dependence Distances and Graphs

Let L be some cyclic system with core operation set O. Given any two operations

op; op0 2 O it will become important, for the purpose of generating regular schedules, to

identify the most stringent dependence between op and op0. To this purpose the notion

of dependence distance between op and op0 is introduced.

De�nition 4.3.1 Let L be some cyclic system with core operation set O. For all op; op0 2
O the dependence distance from op to op0, denoted d(op; op0), is de�ned as:

d(op; op0) = minfd j 8 i � 1 9 k � i op[k] � op0[k + d]g

where the minimum of the empty set is equal to 1 by de�nition. Furthermore if

8 op; op0 2 O 8 i � 1 op[i] � op0[i+ d(op; op0)]

one says that L is recurrent or has recurrent dependences.

The idea behind d(op; op0) is to disregard dependences that do not repeat in�nitely

many times, as these do not pertain to the repetitive nature of cyclic systems. Informally

this means that when building a schedule C for L, these non repeating dependences can

be accounted for in an irregular schedule preceding C. Indeed one can show that:

Property 4.3.1 For any cyclic system L = (O[1;1]; �;�) there exists a positive integer
n0 such that

8 op; op0 2 O 8 i � n0 8 d < d(op; op0) op[i] 6� op0[i+ d]

Proof: Let op; op0 2 O. Because of the de�nition of d(op; op0) there must exist a positive

integer n(op; op0) such that

8 i � n(op; op0) 8 d < d(op; op0) op[i] 6� op0[i+ d]

or else d(op; op0) < d(op; op0). By letting n0 be the greatest of all the n(op; op0) the

desired result is obtained. 2

20 CHAPTER 4. CYCLIC TASK SYSTEMS

Throughout the remainder of this work one can assume, without loss of gen-

erality, that for every cyclic system L the n0 of property 4.3.1 is 1. In

fact if this is not the case one can split L into the �nite task system L(n0 � 1) =

(O[1; n0� 1]; �;�) and the cyclic system (O[n0;1]; �;�) and treat each separately.

Because dependence distances are a worst case estimate of L's dependences, it could
be that L is recurrent while for every x > 1, ux(L) is not.

Example 4.3.1 Let L's core operation set be fop; op0g and de�ne the dependence rela-

tion of L as:

8 i � 1 op[i] � op0[i] and op[i] � op0[i+ �(i)]

where � is a some function randomly mapping i into f0; 1g. L is clearly recurrent while

for all x > 1, ux(L) is not.

The converse is also true, namely u2(L) could have recurrent dependences while L
does not. For instance

Example 4.3.2 Let L's core operation set be fop; op0g and de�ne the dependence rela-

tion of L as:

8 i � 1 op[2 � i] � op0[2 � i]

Despite the fact that recurrence is not preserved by unrolling it is possible to show

the following property.

Property 4.3.2 Let L be a cyclic system with recurrent dependences and core operation

set O. Then

8 op; op0; op00 2 O d(op; op0) � d(op; op00) + d(op00; op0)

Proof: Because dependences are recurrent for any i � 1 it must be that op[i] � op00[i+

d(op; op00)] � op0[i+ d(op; op00) + d(op00; op0)] which implies the above result. 2

The above result is what allows dependences of a recurrent cyclic system to be viewed

as a weighted graph. A formal account of this remark will be given in theorem 4.3.3.

Simple counter examples show that the above proposition does not generalize to arbitrary

cyclic systems.

4.3. DEPENDENCE DISTANCES AND GRAPHS 21

Example 4.3.3 Let L's core operation set be fop; op0g and de�ne the dependence rela-

tion of L as:

8 i � 1 op[2 � i] � op0[2 � i] and op0[2 � (i� 1) + 1] � op[2 � i+ 1]

From the dependences it follows that d(op; op0) = 0, d(op0; op) = 2 and d(op; op) = 1.

Clearly d(op; op) 6� d(op; op0) + d(op0; op).

For some x � 1, let us now consider the x-unrolling of an arbitrary cyclic system L.
There are a factor x2 more dependence distances in ux(L) than in L. In fact there is a

dependence distance dx(op[i]; op0[j]) (i; j 2 [1; x]) for each copy of op; op0 in ux(L):

dx(op[i]; op0[j]) = minfd j 8 l � 0 9 k � l op[i+ k � x] � op0[j + (k + d) � x]g

Some software pipelining algorithms developed for VLIWs assume dependence distances

to be 0, 1 or 1. If the input loop does not exhibit such behavior, unrolling is invoked

to decrease dependence distances. The following theorem relates dependence distances

of a cyclic system L to those of ux(L). If O is L's core operation set, the theorem

states that at least x � jOj of the x2 � jOj2 dependence distances must decrease but not all
x2 � jOj2 dependence distances need to. Interestingly theorem 4.3.2 will show that this

is the strongest possible result. The signi�cance of these two theorems is that unrolling

does not systematically guarantee smaller dependence distances. Consequently a loop

pipelining algorithm must explicitly account for dependence distances greater than 1.

Theorem 4.3.1 Let L be some cyclic system, O its core operation set and x some

strictly positive integer. Then

1. 8 op; op0 2 O 8 i; j 2 [1; x]

�
d(op; op0)

x

�
� dx(op[i]; op0[j])

2. 8 op; op0 2 O 9 i; j 2 [1; x] dx(op[i]; op[j]0) �
�
d(op; op0)

x

�

Proof: By contradiction. Let Ox be the core operation set of ux(L). Assume that

dx(op[i]; op0[j]) < bd(op; op0)=xc for some op[i]; op0[j] 2 Ox. Since for any l � 0 there is

some k � l such that op[i+ k � x] � op0[j + k � x+ dx(op[i]; op0[j]) � x] it must be that

d(op; op0) � dx(op[i]; op0[j])�x+j�i� (bd(op; op0)=xc�1)�x+(x�1) = bd(op; op0)=xc�x�1

22 CHAPTER 4. CYCLIC TASK SYSTEMS

a contradiction.

Now assume that there exist two operations op; op0 2 O such that for every i; j 2 [1; x],

dx(op[i]; op0[j]) > dd(op; op0)=xe. This implies that

9 l � 0 8 k > l 8 d 2 [0; dd(op; op0)=xe] [op[i+ k � x] 6� op0[j + k � x+ d � x]

and therefore

d(op; op0) > dd(op; op0)=xe � x � d(op; op0)

a contradiction. 2

As it has been previously mentioned the second claim of theorem 4.3.1 is the strongest

one can state. In fact

Theorem 4.3.2 There exists a cyclic system L with core operation set fopg such that:

8 x � 1 9 t 2 [1; x] 1 < dx(opt; opt) <1

Proof: Let L = (O[1;1]; �;�) where O = fopg, the duration function � is unimportant

and � is such that

8 i � 0 8 j � 0 op[2i + j � 2i+1] � op[2i + (j + 1) � 2i+1]

These dependences are portrayed in �gure 4.1.

op[1] op[2] op[3] op[4] op[5] op[6] op[7] op[8] op[9] op[10] op[11] op[12] op[13] op[14]
� � � � � � � � � � � � � �
��
��

��
��

��
��

��
��

��
��

��
��

��
��HHHHj

HHHHj
HHHHj

HHHHj
HHHHj

HHHHj��
��
��
�

��
��
��
�

��
��
��
�HHHHHHHj

HHHHHHHj

HHHHHHHj��
��
��
��
��
��
�HHHHHHHHHHHHHj��

��
��
��

��
��
�

��
��
��
�

Figure 4.1: Dependences of some cyclic system.

Let x � 1 and 2t the biggest power of two which divides x, that is x = �2t and � is

odd. It is shown that dx(op2t; op2t) = 2. For obvious reasons dx(op2t; op2t) � 1. Assume

that dx(op2t; op2t) = 1. Then

9 k � 1 op[2t � (1 + k � �)] � op[2t � (1 + (k + 1) � �)]

4.3. DEPENDENCE DISTANCES AND GRAPHS 23

In turn this implies that

9 i; j � 0 9 q � 1 2i � (1 + 2j) = 2t � (1 + k � �)
2i � (1 + 2 � (j + q)) = 2t � (1 + (k + 1) � �)

However because � is odd the above two equations cannot be simultaneously satis�ed,

leading to a contradiction. Thus dx(op2t; op2t) � 2. Finally because

8k � 0 op[2t+2�k �x] = op[2t+k ���2t+1] � op[2t+(k ��+�)�2t+1] = op[2t+2�k �x+2�x]

it must be that dx(op2t; op2t) � 2. 2

Dependence distances of a cyclic system L can be portrayed by a weighted dependence

graph D whose vertex set is the core operation set of L. D has an edge e from op to op0

if and only if for all op00, d(op; op0) < d(op; op00) + d(op00; op0). The weight of e is set to

d(op; op0). The weight of a �nite path Q in D is denoted d(Q).

Because of property 4.3.2, if L has recurrent dependences, D provides a faithful

characterization of the most stringent dependences. In fact

Theorem 4.3.3 Let L = (O[1;1]; �;�) be a recurrent cyclic system and D the depen-

dence graph of L. Let Q be a path in D from op to op0. Then

8 i � 1 op[i] � op0[i+ d(Q)]

Conversely if op[i] � op0[j] for some op[i]; op0[j] 2 O[1;1] then there exists a path Q in

D which goes from op to op0 and is such that d(Q) � j � i.

Proof: Let op; op0 2 O and Q = (op = op1; op2; � � � ; opq = op0) a path from op to

op0 in D. Because L is recurrent, for any i � 1

op1[i] � op2[i+ d(op1; op2)] � � � � � opq[i+ d(op1; op2) + � � �+ d(opq�1; opq)]

and therefore op[i] � op0[i+ d(Q)].

Conversely assume op[i] � op0[j] for some op[i]; op0[j] 2 O[1;1]. Because L has

recurrent dependences it must be that d(op; op0) � j � i. To prove the second claim

it is su�cient to show the existence of a path Q in D going from op to op0 and such

24 CHAPTER 4. CYCLIC TASK SYSTEMS

that d(Q) = d(op; op0). If there exists no op00 2 O such that d(op; op00) + d(op00; op0) �
d(op; op0) <1 then by de�nition there is an edge from op to op0 whose weight is d(op; op0).

Otherwise by property 4.3.2 one must have d(op; op00) + d(op00; op0) = d(op; op0). When

the above reasoning is repeated inductively one obtains:

d(op1; op2) + d(op2; op3) + � � �+ d(opq�2; opq�1) + d(opq�1; opq) = d(op; op0)

where op1 = op, opq = op0 and for 1 < j < k � q no two opj , opk are equal for otherwise

d(opj�1; opk) = d(opj�1; opj) + � � �+ d(opk�1; opk)

= d(opj�1; opj) + d(opj ; opk)

= d(opj�1; opk) + d(opk; opk) if opj = opk

Since d(opk; opk) is by de�nition always strictly positive, the last equation is a contra-

diction. As the opj for 1 < j � q are all distinct and there can be at most jOj such
operations one cannot repeat the inductive step inde�nitely and a point is reached where

8 1 < j � q 8 op00 2 O d(opj�1; opj) < d(opj�1; op
00) + d(op00; opj)

Thus there exists an edge in D from opj�1 to opj with weight d(opj�1; opj). By letting

Q = (op = op1; � � � ; opq = op0) the desired result is obtained. 2

The previous claim allows the reconstruction of the dependence function d of a re-

current cyclic system from its dependence graph. In fact let op and op0 be two vertices

in this graph, then d(op; op0) is the distance of the shortest path from op to op0, or 1 if

no such path exists.

Dependence graphs of recurrent cyclic systems will play an important role in the

coming sections. The strong components of these dependence graphs will be of special

importance.

4.4 Schedules for Cyclic Systems

Let L be some cyclic system. If one knew in advance how many iterations of L will

need to be executed, then a �nite schedule for just that number of iterations could be

explicitly generated. This is the best situation one could hope for and will be the starting

point.

4.4. SCHEDULES FOR CYCLIC SYSTEMS 25

De�nition 4.4.1 Let L be some cyclic system and C a set of �nite length m-schedules.

C is said to be m-admissible for L, denoted C m7�! L, if and only if for all n � 1 there

exists exactly one m-schedule C 2 C such that C is m-admissible for L(n), that is:

8 n � 1 9! C 2 C C
m7�! L(n)

Such unique schedule is denoted C(n).

If L has recurrent dependences any su�ciently long schedule C 2 C must possess

some interesting properties. For instance C must contain blocks of instructions where

each strong component in L's dependence graph repeats exactly an integral number of

times. The notion of integral repetition of a strong component is �rst formally de�ned

and the claim is then proven.

De�nition 4.4.2 Let L be a cyclic system, SC a strong component in L's dependence
graph, C a schedule and I1; I2 two instructions in C. SC is said to repeat an integral

number of times in C between I1 and I2 if and only if there exists an integer k � 0

such that every op in SC executes for k � �(op) cycles between I1 and I2, I1 included I2

excluded.

Property 4.4.1 Let L = (O[1;1]; �;�) be a cyclic system with recurrent dependences,

C an m-admissible schedule for L(n), for some n � 1, and W a subset of C's instruc-

tions. There exists a constant c such that if jW j > c then there exist I1; I2 2 W for which

every strong component in L's dependence graph repeats an integral number of times in

C between I1 and I2.

Proof: Let s =
P

op2O �(op). For each instruction I of C de�ne the function �(I)

which maps I into a vector of s non-negative integers. There are �(op) components in

�(I) associated with an operation op 2 O, each corresponding to a particular execution

cycle of op. The component of �(I) associated with the i-th execution cycle of op is

denoted �(I)(op; i). It represents the number of instructions in C occurring before I

where the ith cycle of op is executing.

Let dmax = maxfd(op; op0) j op; op0 2 O; d(op; op0) < 1g and � = 1 + 2 �
max(m; dmax). Clearly for every I 2 C:

�(I)(op; 1)� � � � � �(I)(op; �(op))

26 CHAPTER 4. CYCLIC TASK SYSTEMS

Furthermore because C is an m-schedule

�(I)(op; �(op))� �(I)(op; 1)�m

and therefore for any i; j 2 [1; �(op)]

j�(I)(op; i)� �(I)(op; j)j � m < �=2

Let SC be a strong component in L's dependence graph and op , op0 any two distinct

operations in SC. Then

�(I)(op; �(op))� �(I)(op0; 1)� d(op; op0) and �(I)(op0; �(op0)) � �(I)(op; 1)� d(op; op)

and consequently for any i and j such that i 2 [1; �(op)] and j 2 [1; �(op0)]

j�(I)(op; i)� �(I)(op0; j)j < �=2

Let �mod(I) be the vector also of size s where each component is equal to the cor-

responding component in �(I) modulo �. There are at most �s di�erent vector values

for �mod(I). Thus if jW j > �s two di�erent instructions I1 and I2 in W must verify

�mod(I1) = �mod(I2). Without loss of generality assume that I1 comes before I2 in C.

Because �mod(I1) = �mod(I2) it must be that

8 op 2 O 8 i 2 [1; �(op)] 9 ki(op) � 0 �(I2)(op; i)� �(I1)(op; i) = ki(op) � �

Thus for every strong component SC in L's dependence graph

8 op; op0 2 SC 8 i 2 [1; �(op)] 8 j 2 [1; �(op0)]

jki(op)� kj(op0)j � � � j�(I2)(op; i)� �(I2)(op; j)j+ j�(I1)(op; i)� �(I1)(op; j)j
< �

and therefore ki(op) = kj(op0). Consequently

9 k � 0 8op 2 SC 8 i 2 [1; �(op)] �(I2)(op; i)� �(I1)(op; i) = k � �

this implies that every operation in SC is executed for k �� � �(op) cycles between I1 and
I2. 2

4.4. SCHEDULES FOR CYCLIC SYSTEMS 27

When generating VLIW instructions, statically or dynamically, it is often the case

that several operations may be available for execution in a same instruction. In the case

where available operations cannot all be executed together a selection criterion must

be employed. For cyclic systems this selection is further complicated by that one may

discriminate between op[i] and op[i+ k]. In the case of cyclic systems with recurrent de-

pendences it is shown that performance is not a�ected if op[i] is systematically preferred

to op[i+ k]. This is not always the case for cyclic systems with arbitrary dependences.

Property 4.4.2 Let L be some recurrent cyclic system with core operation set O and

let C be an m-admissible schedule for some n-instance, L(n) of L. Then there exists a

schedule C0 m7�! L(n) which is equal to C if iteration indices are disregarded and C0 is

such that

8 op 2 O 8 i 2 [1; n� 1] t(op[i]; C0) � t(op[i+ 1]; C0)

Proof: C0 is constructed from C. Let C = (I1; � � � ; Ic) then C0 = (I 01; � � � ; I 0c) where I 0j
(1 � j � c) comprises the same operations as Ij except for their iteration indices which

may be di�erent. The iteration indices of the operations in C0 are assigned sequentially,

that is for each op 2 O the �rst occurrence of op is assigned index 1, the second index 2,

etc.

Clearly C0 satis�es the stated requirements. It remains to show that C0 m7�! L(n).
Assume this is not the case. Then there must exist two operations op[i]; op0[j] 2 O[1; n]

such that

op[i] � op0[j] and t(op0[j]; C0)� �(op) < t(op[i]; C0)

Because L is recurrent it must be that i � j�d(op; op0). Furthermore since C
m7�! L(n):

8 k 2 [1; n� d(op; op0)]) t(op[k]; C) + �(op) � t(op0[k + d(op; op0)]; C)

For k = j�d(op; op0) the previous inequality implies that there are at least j�d(op; op0) �
i instances of operations op executing on or before cycle t(op0[j]; C0)��(op) and therefore
every instance of op which starts executing strictly after cycle t(op0[j]; C0)� �(op) must

have an index strictly greater than i. This is in contradiction with the fact op[i] has

iteration index i. Thus C
m7�! L(n) implies that C0 m7�! L(n) and the proof is complete.

2

28 CHAPTER 4. CYCLIC TASK SYSTEMS

4.5 Consistent and Periodic Schedules

An m-admissible set of schedules for some cyclic system can contain very disparate

elements. In practice, however, no man made scheduler is likely to generate completely

irregular schedules. This section introduces a family of schedules, called consistent,

whose purpose is to approximate the behavior of a dynamic scheduler. Informally a

set of schedules C is consistent if for every n � 1, C(n + 1) is identical to C(n) when
operations in iteration n+ 1 are disregarded.

De�nition 4.5.1 Let L be a cyclic system with core operation set O and let C be a set

of schedules. C is said to be consistent for L if and only if C m7�! L and:

8 n1; n2 � 1 8 op[i] 2 O[1;min(n1; n2)] t(op[i]; C(n1)) = t(op[i]; C(n2))

Thus a set of schedules C is consistent if and only if the cycle in which an operation

op[i] of L starts executing, is the same in all of C's schedules containing op[i]. The

following theorem characterizes consistent schedules.

Theorem 4.5.1 Let L be a cyclic system with core operation set O and C m7�! L a set

of schedules. For m < 1, C is consistent if and only if there exists a unique in�nite

length m-schedule C1 such that:

8 op[i] 2 O[1;1] 8 n � i t(op[i]; C(n)) = t(op[i]; C1)

Proof: If an in�nite schedule C1 verifying the above claim exists, C is per force consis-

tent.

Conversely suppose that C is consistent and let C1 = (I1; � � �) be the in�nite schedule
where

8 k � 1 Ik = fop[i] j 0 � k � t(op[i]; C(i))< �(op)g

Because C is consistent jIkj � m, furthermore it is clear that for all op[i] 2 O[1;1] and

n � i, t(op[i]; C(n)) = t(op[i]; C1). The uniqueness of C1 stems from this last equality.

2

4.5. CONSISTENT AND PERIODIC SCHEDULES 29

The previous theorem shows that for m < 1 any consistent set of schedules for a

cyclic system L can be viewed as an in�nite length schedule C1. Conversely let C1

be an in�nite length schedule which is m-admissible for L. It is easy to extract from

C1 a consistent set of schedules for L. This shows that for m < 1 consistent sets

of schedules and in�nite length schedules portray the same concept and will, in the

succeeding sections, be regarded as being the same.

In addition to consistency, another desirable property that a set of statically generated

schedules should possess is regularity, that is the ability to generate all schedules in the

set from a �x core schedule. A more stringent condition, periodicity, is therefore grafted

onto consistency to model schedules generated by a static schedulers.

De�nition 4.5.2 Let O be some �nite set of operations and C an in�nite length schedule

containing only operations in O[1;1]. C is said to be periodic if and only if there exist

two integers l � 1 and � � 1 such that:

8 op 2 O 8 i � 0 t(op[1 + i]; C) = t(op[1 + i mod l]; C) + � �
�
i

l

�

The numbers l and � are respectively called the unfolding and initiation interval of C.
Let L be some cyclic system with core operation set O. If C is m-admissible for L one

says that C is (l; �)-periodic for L.

The unfolding of a periodic schedule is closely related to the notion of unrolling of a

cyclic system.

Property 4.5.1 Let L be some cyclic system and C an in�nite length schedule. C is

(l; �)-periodic for L if and only if C is (1; �)-periodic for ul(L).

Proof: C is (1; �)-periodic for ul(L) if and only if

8 op[a] 2 Ol 8 k � 0 t(op[a][1 + k]; C) = t(op[a][1]; C)+ � � k

replacing op[a][k] by op[a+ (k � 1) � l] yields

8 op 2 O 8 a 2 [1; l] 8 k � 0 t(op[a+ k � l]; C) = t(op[a]; C) + � � k

which shows that C is (l; �)-periodic if and only if C is (1; �)-periodic for ul(L) for L. 2

30 CHAPTER 4. CYCLIC TASK SYSTEMS

A (l; �)-periodic schedule C for L, is perfectly determined by � and the starting cycles

of operations in O[1; l]. It should therefore be possible to characterize the admissibility

of C for L solely in terms of �, l and t(op[i]; C) for each op[i] 2 O[1; l]. Indeed Lam's

software pipelining algorithm [38] is based on the following result:

Theorem 4.5.2 Let L be a cyclic system and C an in�nite periodic m-schedule. C is

(l; �)-periodic for L if and only if:

8 op[i]; op0[j] 2 O[1; l] t(op0[j]; C)� t(op[i]; C)� �(op)� dl(op[i]; op0[j]) � �

Note that for dl(op[i]; op0[j]) =1 the constraint reads t(op0[j]; C)� t(op[i]; C) � �(op)�
1 � � which is by de�nition always true.

Proof: Suppose that C is (l; �)-periodic for L but

9 op[i]; op0[j] 2 O[1; l] t(op0[j]; C) + dl(op[i]; op0[j]) � � < t(op[i]; C) + �(op)

For convenience denote dl(op[i]; op0[j]) by dlij . Because of the de�nition of dlij

9 k � 0 op[i+ k � l] � op0[j + k � l + dlij � l]

This implies that t(op[i+k � l]; C)+�(op)� t(op0[j+k � l+dlij � l]; C). Because C is periodic

one can write

t(op[i]; C)+ k � �+ �(op) � t(op0[j]; C)+ (k + dlij) � �

which is in contradiction with t(op0[j]; C)+ dlij � � < t(op[i]; C) + �(op).

Conversely let C be a periodic schedule with unfolding l and initiation interval �.

Then for all op[i]; op0[j] 2 O[1; l] and positive integers k, k0, where k � k0

t(op[i]; C)+�(op)� t(op0[j]; C)+dlij ��) t(op[i+k �l]; C)+�(op)� t(op0[j+(k0+dlij)�l]; C)

Because the positive integer n0 of property 4.3.1 can be assumed to be 1 without any

loss in generality

8 q; q0 � 0 op[i+ q � l] � op[j + q0 � l]) q + dlij � q0

and consequently C is admissible for L. 2

4.5. CONSISTENT AND PERIODIC SCHEDULES 31

Periodicity captures the intuitive notion of schedules which are expressible in the

form of loops. Before proving this result one needs to introduce concatenation, a simple

operation that can be applied to m-schedules.

De�nition 4.5.3 Let C = (I1; � � � ; IjCj) and C0 = (I 01; � � �) be two m-schedules such that

C is of �nite length. The concatenation of C and C0 is the m-schedule C�C0 whose �rst

jCj instructions coincide with those of C and the remaining instructions coincide with

those of C0: C � C0 = (I1; � � � ; IjCj; I 01; � � �). Schedule C is said to be a pre�x of C � C0.

The operation � is associative and parentheses can therefore be omitted when con-

catenating more than two schedules. Let (Bi)i�1 be an in�nite sequence of �nite length

schedules. Then
J

i�1Bi denotes the unique in�nite length schedule B1 such that for

any k � 1, (
Jk

i�1Bi) is a pre�x of B1.

After the following technical de�nition the theorem characterizing periodic schedules

is given.

De�nition 4.5.4 Let I be some instruction and k some integer. I(k) denotes the in-

struction in which every operation op[j] in I, where j can be negative, has been deleted if

j+ k � 1 or replaced by op[j+ k� 1] if j+ k > 1. Let S be some schedule. S(k) denotes

the schedule where each instruction I in S has been replaced by I(k).

Theorem 4.5.3 Let L be some cyclic system and C m7�! L an in�nite length schedule.

Then C is (l; �)-periodic for L if and only if there exists an m-schedule B, called the body

of C, such that jBj = l � � and

C =
1K
j=0

B(1 + l � j)

Proof: Because of property 4.5.1 one can assume, without any loss in generality, that

l = 1. Let L = (O[1;1]; �;�). Suppose there exists a m-schedule B such that B1 =J1
j=1B(j)

m7�! L. Then for every operation op 2 O, there exists some integer kop � 1

such that op[1] starts executing in B(kop. Let top be the cycle in B(kop) where op[kop]

starts executing. Then

8 i � 0 t(op[1 + i]; B1) = (top + kop � jBj) + i � jBj

32 CHAPTER 4. CYCLIC TASK SYSTEMS

and consequently t(op[1 + i]; B1) = t(op[1]; B1) + i � jBj. Thus B1 is (1; jBj)-periodic.
Conversely let C be a (1; �)-periodic schedule for L. Let B = (I1; � � � ; I�) where:

a 2 [1; �] Ia =

�
op

�
1�

�
t(op[1]; C)

�

�� ���� 0 � a� (1 + t(op[1]; C) mod �) < �(op)

�

Because for all t � 0, Ia(t) = fop[k] 2 O[1;1] j t(op[k]; C)� a+ t �� < t(op[k]; C)+�(op)g
it is clear that jIaj � m and that

C = (I1(1); . . . ; I�(1); I1(2); . . . ; I�(2); � � �) =
1K
j=1

B(j)

2

4.6 Asymptotic Performance

Given a cyclic system L and a set of schedules C m7�! L, the duration of a particular

n-instance of L in C is given by jC(n)j. It is quite possible that the set of schedules C
yields optimum performance for some instances of L but not for all. If C(n) is optimum
for every n � 1 then one says that C is m-optimum for L. In general optimum sets

of schedules do not possess the consistency and regularity introduced in the previous

section.

Theorem 4.6.1 There exists a cyclic system L such that for all unrolling x � 1, num-

ber of processors 1 < m < 1 and consistent schedule Cx m7�! ux(L) there are in�nitely

many n-instances of ux(L) for which Cx(n) is not m-optimum.

Proof: Let L = (O[1;1]; �;�) where O = fopg, �(op) = 1 and � is such that

8 i � 0 8 j 2 [1; 2i � 1] op[2i + j] � op[2i + j + 1]

These dependences are portrayed in �gure 4.2.

For m � 2 and x � 1 let Cxopt denote the m-optimum set of schedules for ux(L).
Clearly

8 i � 0 jC1opt(2i+1)j = 2i

u1(L)(2i+1) contains a dependence chain of 2i cycles, thus jC1opt(2i+1)j � 2i. Furthermore

jC1opt(2i+1)j � 2i for one can schedule op[1] through op[2i] sequentially in the �rst 2i

4.6. ASYMPTOTIC PERFORMANCE 33

op[1] op[2] op[3] op[4] op[5] op[6] op[7] op[8] op[9] op[10] op[11] op[12] op[13] op[14] op[15] op[16]
� � � � � � � � � � � � � � � �

- - - - - - - - - - -

Figure 4.2: Dependences of some cyclic system.

cycles and operations op[2i + 1] through op[2i+1] also sequentially in the �rst 2i cycles.

Consequently

8 i � 0

�����Cxopt
 $

2i+1

x

%!����� � 2i

Let Cx be a consistent m-schedule for ux(L) and 2k the smallest power of two such that

all operations scheduled in the �rst x cycles of Cx have iteration index less than 2k. Then

for i � k �����Cx
 $

2i+1

x

%!����� � x+

$
2i

x

%
� x > 2i �

�����Cxopt
 $

2i+1

x

%!�����
As the above inequality holds for any i � k there are in�nitely many n-instances of ux(L)
for which Cx(n) is not m-optimum. 2

Despite this negative result one can show the existence of consistent schedules which

are only a constant factor away from the m-optimum.

Theorem 4.6.2 Let L be some cyclic system and Copt an m-optimum set of schedules

for L. Then there exists a consistent schedule C for L such that:

8 n � 1
jC(n)j
jCopt(n)j � 2� 1

m

Proof: Let L = (O[1;1]; �;�) and C a consistent schedule for L produced by a list

scheduling algorithm where for all op; op0 2 O and i � 1, op[i] is given priority over

op0[i + 1]. More precisely let Ik be the k-th instruction of C, for k � 1. Then Ik+1

contains the operations scheduled in Ik which have not completed their execution in Ik

and as many unscheduled operations as resource constraints permit. These unscheduled

operations are randomly selected except for the fact that their iteration indices are chosen

to be as little as possible. Because for all n � 1 operations in O[1; n] are given priority

34 CHAPTER 4. CYCLIC TASK SYSTEMS

over operations in O[n+ 1;1], C(n) is a list schedule, that is if for some k � 1 jIkj < m

then every operation scheduled after Ik must depend on some operation scheduled in Ik.

Thus Graham's theorem that every list schedule is within 2 � 1=m of an m-optimum

holds [10]. 2

The previous result does not generalize to periodic schedules. Intuitively this is

because m-optimum sets of schedules can be very disparate whereas periodic schedules

are not. What more it can be shown that cyclic systems exist for which any periodic

schedule is almost a factorm away from the optimum. Thus in the presence of arbitrary

dependences dynamic schedules can, in theory, severely outperform static ones.

Theorem 4.6.3 There exists a cyclic system L with m-optimum set of schedules Copt
such that for all 1 < m and periodic schedule C m7�! L:

lim
n!1

jC(n)j
jCopt(n)j = m

Proof: Let (vk)k�1 be the sequence of numbers where v1 = 1 and for all i � 1:

v2i = 1 + 2i + v2i�1
v2i+1 = i+ v2i

The cyclic system L has core operation set fopg, duration function � , where �(op) = 1

and dependence relation � where

8 j 2 [v2i; v2i+1 � 1] op[j] � op[j + 1]

The dependences are portrayed in �gure 4.3. The dependence distances are as follows:

8 x � 1 8 i; j 2 [1; x] dx(op[i]; op[j]) =

(
0 if i < j

1 otherwise

Because of theorem 4.5.2 the body of every periodic schedule C for L must be sequential

and thus for all n � 1 jC(n)j = n. Let Copt be an m-optimum set of schedules for L.
Then

jCopt(n)j �

8>><
>>:
l
2i+1

m

m
+ i � i+1

2 if v2i � n � v2i+1 for some i

l
2i+1

m

m
+ i � i�12 if v2i�1 < n < v2i for some i

Thus jCoptj � n=m+o(n), where o(n) designates a function such that limn!1 o(n)=n = 0.

2

4.6. ASYMPTOTIC PERFORMANCE 35

op[1]

op[4]

op[5]

op[10]

op[11]

op[12]

op[21]

op[22]

op[23]

op[24]

� �

� � � �

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

?

?

?

?

?

?

Figure 4.3: Dependences of some cyclic system. For clarity certain operations are not
labeled.

36 CHAPTER 4. CYCLIC TASK SYSTEMS

The previous negative results are based on the fact that dependences can be quite

irregular. It is therefore natural to investigate the performance of periodic schedules

when dependences are recurrent. The notion of asymptotic performance will play a key

role in this investigation.

De�nition 4.6.1 Let L be a cyclic system and C m7�! L a set of schedules. The asymp-

totic performance of C for L, denoted �(C;L) is de�ned as limn!1 jC(n)j=n if such limit

exists. If there exists no C0 m7�! L with smaller asymptotic performance, C is said to be

an asymptotic m-optimum for L.

For all practical purposes asymptotic performance characterizes m-optimum set of

schedules when dependences are recurrent.

Theorem 4.6.4 Let L be a cyclic system with recurrent dependences. Then every m-

optimum set of schedules for L is also asymptotically m-optimum for L. Conversely let
C be an asymptotically m-optimum set of schedules for L then for every arbitrarily small

positive real � there exists a constant n� such that

8 n � n�
jC(n)j
jCopt(n)j � 1 + �

Proof: Let Copt be an m-optimum set of schedules for L. Because dependences are

recurrent

8 n; k � 1 jCopt(n+ k)j � jCopt(n)j+ jCopt(k)j
for if one poses C1 = Copt(n) and C2 = Copt(k), then schedule C1 � C2(n + 1) is

an m-admissible schedule for L(n + k). This inequality implies that the set Aopt =

fjCopt(n)j=njn � 1g has a single accumulation point. A real number a is an accumulation

point of Aopt if and only if

8 � > 0 8 n � 0 9 n0 � n

���� jCopt(n0)jn0
� a

���� < �

Because Aopt is both lower and upper bounded, Aopt has at least one accumulation point.

Suppose it has two: a1 and a2 > a1. Then for all � there exists an arbitrarily big integer

n and an integer n0 > n arbitrarily bigger than n such that:

jCopt(n)j � (a1 + �) � n and (a2 � �) � n0 � jCopt(n0)j

4.6. ASYMPTOTIC PERFORMANCE 37

Let n0 = k � n+ c, where 0 � c < n. Then

(a2 � �) � k � n � jCopt(n0)j � k � jCopt(n)j+ jCopt(c)j
� (k + 1) � n � (a1 + �)

this yields

a2 � a1 � a1
k

+ � � 2 � k + 1

k

As k can be chosen arbitrarily big and � arbitrarily small one obtains a contradiction.

Thus Aopt has a single accumulation point a. Furthermore

8 n � 1 a � jCopt(n)j
n

for otherwise there would exists an n � 1 such that the set f jCopt(k � n)j=k � n j k �
1g�Aopt would have an accumulation point di�erent than a since

jCopt(k � n)j
k � n � jCopt(n)j

n
< a

The �nal step in proving that limn!1 jCopt(n)j=n exists is to show

8 � > 0 9 n� � 1 8 n0 > n�

���� jCopt(n)jn
� a

���� < �

For all k; n � 1 and c 2 [0; n� 1] one can write

a � jCopt(k � n+ c)j
k � n + c

� jCopt(n)j
n + c

k

+
jCopt(c)j
k � n + c

� jCopt(n)j
n

+
jCopt(n)j

k

Because a is the accumulation point n can be chosen such that

jCopt(n)j
n

< a+
�

2

Since k is independent of n, there exists a k� such that

jCopt(n)j
k

<
�

2

Thus

a � jCopt(k � n + c)j
k � n+ c

� a+ �

38 CHAPTER 4. CYCLIC TASK SYSTEMS

Because every number n0 � n can be written in the form k�n+c, by letting n� = (k�+1)�n
the desired result is obtained. Consequently �(Copt;L) = limn!1 jCopt(n)j=n is de�ned

and furthermore such asymptotic performance must be optimum for an m processor

machine.

Conversely let C be an asymptotically m-optimum set of schedules for L and �0 an

arbitrarily small positive real. Then there exists an n�0 � 1 such that for all n � n�0���� jCopt(n)jn
� jC(n)j

n

���� �
���� jCopt(n)jn

��(Copt;L)
����+

���� jC(n)jn
��(Copt;L)

���� < 2 � �0

Thus ����� jC(n)jjCopt(n)j � 1

����� < n

jCopt(n)j � 2 � �
0 � 2 �m � �0

by letting �0 < �=(2 �m) one obtains the desired result. 2

Because of its regularity, the asymptotic performance of a periodic schedule is always

de�ned and can be expressed in terms of its unfolding and initiation interval.

Theorem 4.6.5 Let L be a cyclic system and C a (l; �)-periodic schedule for L. Then

�(C;L) = �

l

Proof: Because C is (l; �)-periodic

8 i � 0 jC(i+ 1)j = jC(1+ i mod l)j+ � �
�
i

l

�

Thus
�

l
�
�
i� i mod l

i+ 1

�
� jC(i+ 1)j

i+ 1
� �

l
�
�

i

i+ 1

�
+
jC(1 + i mod l)j

i+ 1

As i tends toward in�nity both the upper and the lower bounds of jC(i+1)j=(i+1) tend

towards �=l and this proves the claim. 2

Theorem 4.6.3 showed that performance of periodic schedules can be poor if the cyclic

system at hand has irregular dependences. The next result proves that for recurrent

cyclic systems there exist periodic schedules which can come arbitrarily close to the

asymptotic optimum. Hence when dependences are recurrent static schedules can be as

good as dynamic ones.

4.6. ASYMPTOTIC PERFORMANCE 39

Theorem 4.6.6 Let L be a recurrent cyclic system and Copt a set of m-optimum sched-

ules for L. Then for every arbitrarily small � > 0 there exists a periodic schedule C for

L such that:

�(C;L)��(Copt;L) < �

Proof: Let � be some positive real. Then there exists a positive l such that���� jCopt(l)jl
��(Copt;L)

���� < �

Let B = Copt(l). Because dependences are recurrent B1 =
J1

j=0B(1+ j � l) is a periodic
schedule and is m-admissible for L. Furthermore theorem 4.6.5 has shown that the

asymptotic performance of B1 is jBj=l = jCopt(l)j=l. 2

Because periodic schedules can yield almost asymptotically optimum performance for

recurrent cyclic systems it is natural to wonder whether there exists a periodic schedule

which achieves m-optimum asymptotic performance. This question can be answered

a�rmatively in the restricted case where the dependence graph of a recurrent cyclic

system is strongly connected.

Theorem 4.6.7 Let L be a recurrent cyclic system. If L's dependence graph is strongly

connected for every positive m there exists an asymptotically m-optimum schedule which

is periodic.

Proof: Let Copt an m-optimum set of schedules for L, � some positive real and l� the

smallest positive integer such that

�(Copt;L) � jCopt(l�)j
l�

� �(Copt;L) + �

Let O be the core operation set of L. Because of property 4.4.2 one can assume that for

all �

8 op 2 O 8 i 2 [1; l� � 1] t(op[i]; Copt(l�)) � t(op[i+ 1]; Copt(l�))

If l� is bounded for all � then

9 l � 1
jCopt(l)j

l
= �(Copt;L)

40 CHAPTER 4. CYCLIC TASK SYSTEMS

by letting B = Copt(l), as in the proof of the previous theorem, B1 =
J1

j=0B(1 + j � l)
is a periodic schedule for L with asymptotically m-optimum performance.

Let X be any consecutive block of Copt(l�)'s instructions. If l� is unbounded, jX j
can be arbitrarily big. Theorem 4.4.1 shows the existence of a constant c such that

if jX j = c + 1 then there exist I1; I2 2 X such that every strong component in L0s
dependence graph repeats an integral number of times between I1 and I2. Let H , Y , T

be three schedules built of consecutive Copt(l�)'s instructions as follows. H comprises the

instructions up to but not including I1, Y the instruction from I1 included to I2 excluded

and T the remaining instructions: Copt(l�) = H � Y �T . Because L's dependence graph
is strongly connected Y and Y contains an integral number of strong components, L's
dependence graph must be schedules k times, for some positive integer k, in Y . Thus

the schedule H � T (�k) is m-admissible for L(l� � k). Since l� was chosen to be the

smallest integer such that

�(Copt;L) � jCopt(l�)j
l�

� �(Copt;L) + �

one must have
jCopt(l�)j

l�
� jH � T (�k)j

l� � k

and consequently
jY j
k
� jH � Y � T j

l�

As the length of Y is bounded by the constant c there are only �nitely many possible Y .

Thus there must exist an epsilon for which

jY j
k
� �(Copt;L)

Let y be the biggest of the iteration indices in Y of any operation all of whose incoming

edges in L's dependence graph have non zero distance. Let B be the schedule equal

to Y except for the iteration indices of the operations in Y which are decremented by

y � 1. Because Y contains the dependence graph of L exactly k times and because

dependences are recurrent, the in�nite schedule B1 =
J1

j=0B(1 + j � l) is a periodic

schedule m-admissible for L. Its asymptotic performance is jY j=k � �(Copt;L), thus
B1 must be asymptotically m-optimum for L. 2

4.6. ASYMPTOTIC PERFORMANCE 41

In an attempt to characterize recurrent cyclic systems for which asymptotically op-

timum periodic schedules exist, a result characterizing such cyclic systems is presented.

The general problem of whether there exists an asymptotically optimum periodic sched-

ule for every cyclic system with recurrent dependences remains open.

Theorem 4.6.8 Let L be a cyclic system with recurrent dependences. Then there ex-

ists an asymptotically m-optimum periodic schedule for L if and only if there exists an

asymptotically m-optimum set of schedules for L where the maximum time delay between

the execution of any two operations in a same iteration is bounded.

Proof: For every periodic schedule the maximum delay between the execution of any

two operations in a same iteration is clearly bounded. Thus if a periodic schedule is

asymptotically m-optimum for L then there exists an asymptotically m-optimum set

of schedules for L where the maximum time delay between the execution of any two

operations in a same iteration is bounded.

Conversely let O be the core operation set of L and suppose the existence of an

asymptotically m-optimum set of schedules C for L for which there exists a positive

integer c such that

8op; op0 2 O 8 i � 1 8 n � i jt(op[i]; C(n))� t(op0[i]; C(n))j< c

Due to property 4.4.2 it can be assumed that

8 op 2 O 8 i � 1 t(op[i]; C)� t(op[i+ 1]; C)

Let �max = maxop2O �(op) and consider the recurrent cyclic system Lc which has same

the operation set and duration function as L but whose dependence graph is obtained

from L's by adding an edge with distance m � (c + �max) between any two operations

in O. Let op; op0 2 O. Because for all i � 1 op0[i] must start executing in C at least c

cycles after op[i] does, operation op[i+m � (c + �max)] cannot be executed before op0[i]

is completed, thus the additional dependences added in Lc are respected in C and C is

m-admissible for Lc. Because Lc dependences are more stringent then those of L, any
m-admissible set of schedules for Lc is alsom-admissible for L. Thus Lc and L have same

optimum asymptotic performance. Because Lc's dependence graph is strongly connected
one can apply the previous theorem to Lc and obtain the desired result. 2

42 CHAPTER 4. CYCLIC TASK SYSTEMS

4.7 Approximating Optimal Asymptotic Performance

The goal of this section is to generate, in polynomial time, a periodic schedule which is

within a small constant factor of the asymptotic m-optimum of any cyclic system with

recurrent dependences. The overall strategy adopted is to transform the dependence

graph D of a cyclic system into an acyclic dependence graph D0 with less dependence

edges and then invoke an acyclic scheduling algorithm on D0 to construct the body of

the periodic schedule. The dependence graph D0 is obtained by deleting edges from D.

The di�cult part when deleting edges is to shorten the dependence paths in D as much

as possible while preserving semantic correctness of any scheduling algorithm operating

on D0. The following result introduces the strategy for deleting edges and proves its

correctness.

Theorem 4.7.1 Let L = (O[1;1]; �;�) be a recurrent cyclic system and T = (O; �;�0)

an acyclic task system where the dependence graph D0 associated with �0 is obtained

from L's dependence graph D by deleting between one and d(Q) edges from every simple

cycle Q of D and deleting all the edges which are not part of any cycle of D. Let B an

m-admissible schedule for T and for op; op0 2 O let b(op; op0) = 1 if op0 starts executing

in B before op terminates and b(op; op0) = 0 otherwise. Then there exists a function �

mapping O into [�1; 1] such that the following indexing constraint is met

8 op; op0 2 O �(op)� �(op0) � b(op; op0)� d(op; op0)

and � is computable in a time linear in the size of D. Furthermore let B� be the schedule

where every operation op in B is replaced by op[�(op)]. Then B1
� =

J1
j=1B�(j) is a

periodic schedule m-admissible for L.

Proof: The existence of a function � satisfying the indexing constraint is shown by

a constructive argument. Theorem 4.3.3 has shown that for recurrent cyclic systems

dependence distances can be viewed as dependence graphs. More precisely given two

operations op; op0 2 O it was proved that d(op; op0) = d(Q), where Q is the shortest path

in the weighted graph D from op to op0. This property will be employed throughout the

proof.

4.7. APPROXIMATING OPTIMAL ASYMPTOTIC PERFORMANCE 43

Let E be the edge set of D and Eb � E the back edges of some depth �rst search of

D. For op0 2 O let predb(op
0) = fop 2 O j (op; op0) 2 E � Ebg. The indexing function �

is de�ned as follows

�(op0) =

8<
: 1 if predb(op) = ;

min
op2predb(op0)

�(op) + d(op; op0)� b(op; op0) otherwise

Because the subgraph (O;E � Eb) of D is acyclic the function � is well de�ned. The

function � can easily be computed in O(jOj+jEj) time by performing a depth �rst search

on D initiated at any one of its vertices to construct Eb, and then traversing the graph

(O;E�Eb) in topological order computing �(op) when all operations in predb(op) have

been visited. The function � may map an operation into an integer greater than 1. To

ensure that � maps O into [�1; 1] let �M = maxop2O �(op). Then for all op 2 O, �(op)

is decremented by �M � 1.

It remains to prove that � satis�es the indexing constraint. Let op; op0 2 O. If no

path exists in D from op to op0 then d(op; op0) = 1 and the indexing constraint is true

by de�nition. Otherwise let Q = ((op; op1); � � � ; (opq; op0)) be the shortest path from op

to op0 in D. Suppose that the indexing constraint is satis�ed for any two operations

connected by an edge in D. Then let op0 = op and opq+1 = op0 then

�(op)� �(op0) =
qX
i=0

�(opi)� �(opi+1)

�
qX
i=0

b(opi; opi+1)| {z }
�b(op;op0)

�
qX
i=0

d(opi; opi+1)| {z }
= d(op; op0)

by theorem 4.3.3

Thus to show that the indexing constraint holds for any two operations, it su�ces to

prove that it holds for any two operations connected by an edge in D.

Let e = (op; op0) be an edge in D. If e 2 E � Eb then �(op) � �(op0) � b(op; op0) �
d(op; op0) by de�nition.

If e 2 Eb then e is a back edge. Thus there exists at least one simple cycle Q

containing e but no other back edges. Let

b(Q) =
X

(op1;op2)2Q

b(op1; op2)

44 CHAPTER 4. CYCLIC TASK SYSTEMS

Because at most d(Q) edges have been deleted from Q there are at most d(Q) operations

in Q that do not comply with Q's dependences in B. Thus

0 � b(Q)� d(Q)

Let P = Q� e be the path obtained from Q by removing edge e = (op; op0). By purely

algebraic manipulation one can writeX
(op1;op2)2Q

(�(op1)� �(op2)) = �(op)� �(op0) +
X

(op1;op2)2P

(�(op1)� �(op2)) = 0

thus

�(op)� �(op0) � b(Q)� d(Q)�
X

(op1;op2)2P

(�(op1)� �(op2))

�
0
@b(Q)� X

(op1;op2)2P

b(op1; op2)

1
A

| {z }
=b(op;op0)

�
0
@d(Q)� X

(op1;op2)2P

d(op1; op2)

1
A

| {z }
=d(op;op0)

Thus the function � satis�es the indexing constraint for all op; op0 2 O.

For the second part of the claim let op; op0 2 O. If t(op; B) + �(op) � t(op0; B) then

b(op; op0) = 0 by de�nition and

t(op0[1]; B1
�)� t(op[1]; B1

�) � �(op) + jBj � (�(op)� �(op0))| {z }
��d(op;op0)

If t(op; B) + �(op) > t(op0; B) then b(op; op0) = 1 and

t(op0[1]; B1
�)� t(op[1]; B1

�) � (�(op)� jBj) + jBj � (�(op)� �(op0))| {z }
�1�d(op;op0)

In both cases since jBj = jB�j

t(op0[1]; B1
�)� t(op[1]; B1

�) � �(op)� jB�j � d(op; op0)

which by virtue of theorem 4.5.2 shows that B1
� satis�es L's dependence constraints. 2

The previous result shows that if L's dependence graph D is acyclic then D0 is edge-

less. Thus any list schedule B generated from D0 will guarantee good asymptotic perfor-

mance for B1
� . When D contains a cycle Q comprising edges (op1; op2); . . . ; (opq; op1),

theorem 4.3.3 shows that

8 i � 1 op1[i] � op2[i+ d(op1; op2)] � � � � � op1[i+ d(Q)]

4.7. APPROXIMATING OPTIMAL ASYMPTOTIC PERFORMANCE 45

If for a path P comprising edges (op01; op
0
2); . . . ; (op

0
p; op

0
p+1) one denotes

�(P) =
pX

j=1

�(op0j)

then the above set of precedence relations shows that at most d(Q) iterations can be

executed every �(Q) cycles. Let KD denote the critical cycle of D, that is the cycle in

D such that
�(KD)

d(KD)
= max

Q cycle

of D

�(Q)

d(Q)

Let �D denote the above critical ratio. Then for every m-optimum set of schedules Copt
for L

�D � �(Copt;L)
Let �max = maxop2O �(op) and KD0 the critical path of D0, that is the path for which

�(KD0) is maximum. Because the length of schedule B is lower bounded by �(KD0)

good asymptotic performance cannot be guaranteed if �(KD0) is much bigger than �D.

Fortunately it is possible to devise an algorithm that deletes edges from D in polynomial

time and guarantees that

�(KD0) < d�De
The algorithm is given below.

Algorithm 4.7.1

Input: A recurrent cyclic system L = (O[1;1]; �;�) with dependence graph D =

(O;E).

Output: An acyclic task system T = (O; �;�0) with dependence graph D0 such that

D0 is obtained from D by deleting all the edges which are not part of any cycle in

D and by deleting between one and d(Q) edges from every simple cycle Q of D.

Furthermore let �D be the critical ratio of D and KD0 the critical path of D0 then

�(KD0) < d�De

Method: Find the strong components of D in O(jOj + jEj) by employing any of the

standard algorithms [56,54]. Delete the edges which are not part of any strong

component. For each strong component G = (OG; EG) of D do the following:

46 CHAPTER 4. CYCLIC TASK SYSTEMS

1. Compute the critical cycle KG of G and the critical ratio �G = �(KG)=d(KG).

To �nd the critical cycle proceed as follows. Replace each operation op 2
OG by a chain of �(op) operations op1; . . . ; op�(op) each of duration 1. The

dependence distance of each edge in the chain is set to zero. Apply Karp's

minimum cycle mean algorithm [31] on the transformed graph. This step

takes O(�max � jOGj � jEGj+ �2max � jOGj) time.

2. For each edge e = (op; op0) 2 EG set w(e) = �(op)� d�Ge � d(e). Select any

operation ops in OG and compute the longest path with respect to w from ops

to every operation op 2 OG. Denote such longest path �(op). Because KG is

the critical cycle all cycles in the graph G weighted with �w are non-negative.

Therefore one can invoke any of the shortest path algorithms, such as Ford's

[40], on G weighted with �w. This step takes O(jOGj � jEGj) time.

3. An edge e = (op; op0) 2 EG is deleted from G if and only if

�(op0) mod d�Ge < �(op) mod d�Ge + �(op)

This step takes O(jEGj) time.

The overall algorithm requires O(jOj � jEj) time if �max is a �xed constant.

The next result proves the correctness of the above algorithm.

Theorem 4.7.2 The dependence graph D0 generated by algorithm 4.7.1 is such that

every cycle Q of D gets deleted between one and d(Q) edges. Furthermore let KD be the

critical cycle of D and KD0 the critical path of D0 then

�(KD0) <

�
�(KD)

d(KD)

�

Proof: It su�ces to show that the above claim holds in the case D has a single strongly

connected component G. Let G, KG, � and d�Ge as de�ned in algorithm 4.7.1 and let

Q = (e1; � � � ; eq) where ei = (opi; op1+imodq), for i � 1, be a cycle in G. Suppose that no

edge is deleted from Q. Then

8 i 2 [1; q] �(opi) mod d�Ge+ �(opi) � �(op1+imodq) mod d�Ge

4.7. APPROXIMATING OPTIMAL ASYMPTOTIC PERFORMANCE 47

Thus �(op1) mod d�Ge+ �(Q) � �(op1) mod d�Ge, a contradiction.

Suppose that �(Q)=d(Q) = d�Ge. Then

8 i 2 [1; q] �(op1+imodq) = �(opi) + w(ei)

= �(opi) + �(opi)� d�Ge � d(ei)

In fact

8 i 2 [1; q] �(op1+imodq) � �(opi) + �(opi)� d�Ge � d(ei)

If one of the above inequalities was strict one would have

�(Q)� d�Ge � d(Q) < 0

which contradicts our initial assumption �(Q)=d(Q) = d�Ge. Thus if op1 ! opi denotes

the subpath of Q from op1 to opi one can write

�(opi) = �(op1) + �(op1 ! opi)� d�Ge � d(op1; opi)

and consequently the condition for cutting edge ei becomes

(�(op1) + �(op1 ! opi)+ �(opi)) mod d�Ge < (�(op1) + �(op1 ! opi)) mod d�Ge+ �(opi)

thus if �
�(op1 ! opi) + �(opi)

d�Ge
�
>

�
�(op1 ! opi)

d�Ge
�

then an edge has necessarily been cut. Therefore at most�
�(op1 ! opq)

d�Ge
�
=

�
d(Q) � d�Ge � �(opq)

d�Ge
�
� d(Q)

edges are cut.

If �(Q)=d(Q) < d�Ge then one can write

8 i 2 [1; q] �(op1+imodq) = �(opi) + �(opi)� d�Ge � d(ei) + a(ei)

for some a(ei) � 0. If one poses �(op1 ! opi) = �(op1 ! opi) + a(op1 ! opi) then the

condition for cutting edge ei becomes

(�(op1) + �(op1 ! opi) + �(opi)) mod d�Ge <
(�(op1) + �(op1 ! opi)) mod d�Ge+ �(opi)

48 CHAPTER 4. CYCLIC TASK SYSTEMS

Since �(opi) � �(opi) the condition

(�(op1)+�(op1 ! opi)+�(opi)) mod d�Ge < (�(op1)+�(op1 ! opi)) mod d�Ge+�(opi)

deletes more edges from Q then does algorithm 4.7.1. Now by employing exactly the

same reasoning in the case �(Q)=d(Q) = d�Ge one can show that this last condition

deletes at most d(Q).

It remains to show �(P) < d�Ge for every path P of D0. Let P comprise edges

(op1; op2), . . ., (opp; opp+1) and suppose that d�Ge � �(P). Then

8 i 2 [1; p] �(opi) mod d�Ge+ �(opi) � �(opi+1) mod d�Ge

and therefore

d�Ge � �(op1) mod d�Ge + �(P) � �(opp+1) mod d�Ge

a contradiction. 2

The last result of this chapter bounds the asymptotic performance of the scheduling

algorithm which combines the results of theorems 4.7.1 and 4.7.2.

Theorem 4.7.3 Let L be a recurrent cyclic system with core operation set O and Copt
an m-optimum set of schedules for L. Let D0, B and B1

� denote the same entities as

in theorem 4.7.1 and �max = maxop2O �(op). If the dependence graph D0 is generated by

algorithm 4.7.1 and the schedule B is produced by a list scheduling algorithm then

�(B1
� ;L)

�(Copt;L) � (2� 1

m
) � (�max� 1) + d�(Copt;L)e

�(Copt;L)

Proof: The asymptotic performance �(B1
� ;L) is simply jBj. Let O be L's core opera-

tion set. The asymptotic performance �(Copt;L) is clearly bounded by the duration of

operations in O and the number of available processors m:

1

m
�
X
op2O

�(op) � �(Copt;L)

Furthermore consider the constraint imposed by L's dependence graph D on the schedul-

ing of operations. Every cycle Q in D forces the asymptotic performance �(Copt;L) to
be at least �(Q)=d(Q), thus if KD denotes the critical cycle of D

�(KD)

d(KD)
� �(Copt;L)

4.7. APPROXIMATING OPTIMAL ASYMPTOTIC PERFORMANCE 49

Let _I1; _I2; . . . ; _Ic respectively be the �rst, second, . . ., last instruction in B containing

less than m operations and let KD0 the critical path of D0. Because B is generated by a

list scheduling algorithm there must exist a dependence path P in D0 dependence graph

such that c � �(P) + �max. Thus the critical path of D0 is such that c � �(KD0) + �max.

Because D0 was constructed by algorithm 4.7.1 it must be that

c � �(KD0) + �max < �max +

�
�(KD)

d(KD)

�

Thus

m � jBj �
X
op2O

�(op) + (m� 1) � c

� m ��(Copt;L) + (m� 1) � ((�max� 1) + d�(Copt;L)e)

Finally

jBj
�(Copt;L) � 1 +

m� 1

m
� (�max � 1) + d�(Copt;L)e

�(Copt;L)
� (2� 1

m
) � (�max � 1) + d�(Copt;L)e

�(Copt;L)
2

Note that if L's core operation set contains few operations or if some operation

requires long execution time then the bound on optimum asymptotic performance may

be poor. To improve it it su�ces to operate on ux(L) for some su�ciently large x > 1.

By coupling theorem 4.7.1 with algorithm 4.7.1 it is therefore possible to construct

in polynomial time a periodic schedule with close to optimum asymptotic performance.

Chapter 5

Branching Task System

This chapter extends the task system model of chapter 3 by adding conditionals. A

branching task system formalizes the intuitive notion of an acyclic program containing

branches. In order to avoid confusion between the tasks and schedules of chapter 3 and

those of this chapter, one quali�es the �rst as \straight line". Furthermore all branching

entities will be hatted (̂) whereas straight line entities will not.

5.1 Preliminaries

A control
ow graph is a single entry, single exit possibly in�nite di-graph G such that

no vertex has out-degree greater than two and the entry has out-degree one. The entry

of a control
ow graph is denoted � and the exit �.

A basic block of G is a single entry single exit subgraph of G with maximal number

of vertices such that each vertex has in-degree and out-degree one, except may be for the

entry, which can have in-degree greater than one and the exit which can have out-degree

greater than one.

Let G be an acyclic, possibly in�nite, control
ow graph. A path P in G is perfectly

determined by the vertices that it traverses. In fact for any subset of G's vertices there

exists at most one path which traverses exactly those vertices. Thus if G is an acyclic

control
ow graph one can consider every path P to be a set of vertices instead of being

a sequence of edges.

50

5.2. BRANCHING TASK SYSTEM 51

5.2 Branching Task System

The tasking model of chapter 3 is extended by introducing conditionals, that is operations

whose outcome determines the next set of operations to execute.

De�nition 5.2.1 A branching task system, or more brie
y branching task, T̂ is a quadru-

ple T̂ = (O; �;G;�) where:

1. O, the operation set of T̂ , is a non empty set of operations. Note that O could be

in�nite in which case T̂ is said to be in�nite.

2. � , the duration function of T̂ , is a function mapping O into [1;1]. Like for straight

line task systems, � speci�es the number of cycles required to execute each operation

in O.

3. G, the control
ow graph of T̂ , is an acyclic control
ow graph with vertex set

O [f�; �g. Operations with an out-degree of two are called conditionals. For

simplicity it is assumed that the duration �(cj) of a conditional cj is 1 cycle. A

path from the entry � to the exit � is called an execution path of T̂ . The set of all

such execution paths is denoted Path(T̂). For op 2 O, Path(op; T̂) denotes the set

of execution paths traversing op.

4. � = f�P gP2Path(T̂) is the set of dependence relations of L. For each execution

path P 2 Path(T̂), �P is a partial order on P compatible with its linear ordering,

that is for any op; op0 2 P , op �P op0 only if op precedes op0 in P .

For every P 2 Path(T̂) the function � can trivially be restricted to the operations in P .

The triple T̂ (P) = (P; �;�P) is a straight line task system called the restriction of T̂ to

P .

An example of a branching task system T̂ is given in �gure 5.1(a).

The limitation on the duration of conditionals was imposed for the sake of formalism

simplicity. The results stated in the following sections are una�ected should condition-

als require several cycles to complete. In practice several horizontal systems [15,12,30]

require that multicycle tests such as

if a = b then goto L1

52 CHAPTER 5. BRANCHING TASK SYSTEM

�

?op1

?op2

op3 op4

op5

op6 op7

�

control
ow graph of T̂

�
��	
@
@@R

�
��	

@
@@R

�
��	
@
@@R

�
��	

@
@@R

�(op1) = � � �= �(op7) = 1

P4 : � op1 op2 op4 op5 op7 �
P3 : � op1 op2 op4 op5 op6 �
P2 : � op1 op2 op3 op5 op7 �
P1 : � op1 op2 op3 op5 op6 �

Path(T̂) = fP1; P2; P3; P4g

� = f�P1 ;�P2 ;�P3 ;�P4g

�P4 : op1 �P4 op2; op1 �P4 op5

�P3 : op1 �P3 op2; op1 �P3 op5
�P2 : op1 �P2 op2; op1 �P2 op5; op3 �P2 op7

�P1 : op1 �P1 op2; op1 �P1 op5; op3 �P1 op6

(a)

I1
op1 op4 op6

?

�

I2
op2 op5 op5

I3
op3

I4
op6

I5
op3

I6
op7

�

?

?

?

�����������)

�
�

�
�	

@
@
@
@@

PPPPPPPPPPP

@
@
@
@R

�
�

�
��	HHHHHHHHHHHj

�
�
�
�
�

�
�

�
�
�
�	

decision tree in I2

op2

op5 op5

I3 I5 I6 �

�
�	
@
@R

�
��
A
AU

�
��
A
AU

(b)

Figure 5.1: (a) A branching task system T̂ . (b) A 3-admissible schedule Ĉ for T̂ .

5.3. MACHINE MODEL AND BRANCHING SCHEDULES 53

be separated in two operations:

cc := a = b
if cc then goto L1

so that the actual branching can be executed by the hardware in a single cycle.

The last point in de�nition 5.2.1 requires some explanation and justi�cation. For

a given execution path P the partial order �P models the
ow of values among P 's

operations, should this path be taken at run time (
ow dependences [36]). De�nition 5.2.1

allows for operations op, op0 and execution paths P , Q to verify op �P op0 and op 6�Q op0

even though P and Q may share the same subpath from op to op0. Such situation is

possible in computer programs where aliasing is permitted. Consider for instance the

two programs given in �gure 5.2. Each one has two execution paths P and Q. In both

programs operation a(i):= � � � must precede operation � � � := a(j) on execution path P

but not Q.

In practice, however, state of the art memory disambiguators are not able to pin point

such di�erences in
ow dependences, although some can in the special context of trace

scheduling [44,18]. Usually worst case assumptions are made. In the above example � � �
:= a(j) would be considered to depend on a(i):= � � � on all execution paths. The next

de�nition models such state of a�airs.

De�nition 5.2.2 Let T̂ = (O; �;G; f�PgP2Path(T̂)) be a branching task system. The

dependence relations of T̂ are said to be memoryless if and only if for all P;Q 2 Path(T̂)

with some common subpath R one has:

8op; op0 2 R op �Q op0 if and only if op �P op0

Intuitively a dependence between two operations op and op0 is memoryless if it is inde-

pendent of the particular path by which op is reached or by which op0 is left. Memoryless

dependences will be needed in section 5.7.

5.3 Machine Model and Branching Schedules

To allow execution of conditional operations, the machine model of chapter 3 is extended

by permitting instructions to form a graph. Within an instruction conditionals are

arranged to form a decision tree that speci�es what instructions should be executed

next. Conceptually one introduces the notion of a branching m-instruction.

54 CHAPTER 5. BRANCHING TASK SYSTEM

if (cc) f { { cj
i = j; { { op1

g
else f

i = j + 1; { { op2
g;
a(i) = � � �; { { op3
� � � = a(j); { { op4

Execution paths:

P = fcj; op1; op3; op4g
Q = fcj; op2; op3; op4g

(a)

a(i) = � � �; { { op1
� � � = a(j); { { op2
cc = (i == j); { { op3
if (cc) f { { cj
� � �; { { op4

g
else f
� � �; { { op5

g

Execution paths:

P = fop1; op2; op3; cj; op4g
Q = fop1; op2; op3; cj; op5g

(b)

Figure 5.2: Operation precedences may be execution path dependent.

5.3. MACHINE MODEL AND BRANCHING SCHEDULES 55

De�nition 5.3.1 A branching m-instruction Î is a �nite rooted tree with at most m

vertices. If m = 1 then Î can contain an unbounded but �nite number of vertices. For

notational simplicity Î will also denote the set of its vertices. Every vertex v 2 Î is

associated with some operation op(v). The operations associated with the vertices of Î

are said to be executing in Î.

The notion of straight line schedule put forth in section 3.3 is adapted to allow for

conditional operations. This is achieved by coupling a straight line schedule with a

control
ow graph and introducing the notion of instruction covering.

De�nition 5.3.2 Let G be a possibly in�nite di-graph and Î a set of branching m-

instructions. Î is said to cover G or to be an m-instruction covering of G if and only

if:

1. Every Î 2 Î is a subgraph of G.

2. Every vertex of G belongs to a unique Î 2 Î.
3. Let Î; Î 0 2 Î. If an edge e in G goes from a vertex u 2 Î to a vertex v 2 Î 0 then

either v is the entry of Î 0 or Î = Î 0 and e is an edge of Î.

De�nition 5.3.3 A branching m-schedule Ĉ is a pair Ĉ = (G; Î) where G is a control

ow graph and Î is an m-instruction covering of G. The code size of Ĉ is the cardinality

of G's vertex set. A path from the entry to the exit of G is called an execution path of

Ĉ. For notational simplicity Ĉ will also denote the vertex set of its control
ow graph G

and the m-instruction covering Î. For each vertex v 2 Ĉ, Path(v; Ĉ) denotes the set of

execution paths traversing v.

A branching m-instruction Î is portrayed as a straight line m-instruction I where

each slot contains one of the operations executing in Î . If an operation op is associated

with k 2 [1; m] vertices of Î then op occupies k slots in I . If the decision tree in Î is non

trivial, that is it contains out-degree two vertices, the actual tree is given next to I . A

branching m-schedule Ĉ is portrayed as a graph where each node represents a branching

m-instruction. See �gure 5.1(b).

The machine model previously introduced is directly inspired from the branching

paradigms of Karplus & Nicolau and Ebcio�glu [34,15].

56 CHAPTER 5. BRANCHING TASK SYSTEM

5.4 Admissibility

Given some branching task system T̂ and the target machine M(m), one would like to

extend the notion of m-admissibility introduced in section 3.4.

De�nition 5.4.1 Let T̂ be some branching task system. A branching m-schedule Ĉ is

said to be m-admissible for T̂ , denoted Ĉ
m7�! T̂ , if and only if the following constraints

are met:

Branching: A vertex v of Ĉ is of out-degree two if and only if op(v) is a conditional

of T̂ . Furthermore there exists a bijective function mapping the execution paths of

T̂ into those of Ĉ. In the sequel the execution paths of T̂ and those of Ĉ will be

identi�ed. Thus for each vertex v 2 Ĉ, Path(v; Ĉ) � Path(T̂).

Semantic: For each vertex v 2 Ĉ there exists a set

Use(v; T̂) � Path(v; Ĉ) \ Path(op(v); T̂)

denoting the execution paths for which op(v) is useful in Ĉ, such that:

dependence: For each P 2 Path(T̂) de�ne Ĉ(P) to be the straight line m-

schedule whose i-th instruction, i � 1, contains operation op(v) if and only

if vertex v belongs to the i-th branching instruction traversed by P in Ĉ and

P 2 Use(v; T̂). The straight line schedule Ĉ(P) is called the restriction of Ĉ

to P . The dependence constraint requires that:

8 P 2 Path(T̂) Ĉ(P)
m7�! T̂ (P)

ow of values: Let v; v0 two vertices in Ĉ for which there exists a path P in

Use(v; T̂) \ Use(v0; T̂) such that op(v) �P op(v0). Then the
ow of values

constraint requires that:

8 P 0 2 Path(v; Ĉ) \ Use(v0; Ĉ) P 0 2 Path(op(v); T̂)

If for v 2 Ĉ, Use(v; T̂) 6= Path(v; Ĉ), op(v) is said to be speculatively executed in Ĉ.

An example of a 3-admissible branching schedule for the branching task of �g-

ure 5.1(a) is given in 5.1(b).

5.4. ADMISSIBILITY 57

The branching constraint has very strong implications on the scheduling of condi-

tionals. In fact the existence of a bijection between the execution paths of T̂ and Ĉ

entails that no conditional of T̂ can be executed speculatively in Ĉ. The reason for

this constraint is illustrated in the program of �gure 5.3. Assume that b is at the end

...
if (a>b) f

d = c div a;
if (d>2) f
...
g

g
...

Figure 5.3: A fragment of a real life sequential program.

of a long chain of dependences whereas the values of c and a are readily available. A

scheduler may decide to execute operations d=c div a and if (d>2) before if (a>b). If

the value of a is zero d will be unde�ned. An exception should be raised only after test

if (a>b) has taken the true branch. Thus if no special hardware mechanisms are provided

d=c div a and if (d>2) cannot be speculatively executed. Such hardware mechanisms

are relatively inexpensive to implement for simple operations and are often provided in

VLIW machines [12,15]. However hardware mechanisms to circumvent the problem of

branching on unde�ned conditions are more expensive and no current design incorporates

such feature.

The purpose of the semantic constraint of de�nition 5.4.1 is to ensure that correct

ow of values occurs in branching schedule Ĉ. It may appear strange to speak about

values when operations are seen as purely atomic entities. However if the partial orders

of T̂ are interpreted as
ow dependences, not only does the dependence constraint ensure

that
ow dependences are respected in each execution path of Ĉ but the
ow of values

constraint enforces that no operation in Ĉ receives the \wrong value". More speci�cally

if

9 v; v0 2 Ĉ 9 P 2 Use(v; T̂) \ Use(v0; T̂) op(v) �P op(v0)

58 CHAPTER 5. BRANCHING TASK SYSTEM

that is there exists
ow of values along execution path P from a vertex v to a vertex

v0 then for every other execution path P 0 traversing both v and v0 either v0 is not

useful in P 0, that is P 0 62 Use(v0; T̂), or P 0 must also traverse operation op(v) in T̂ .

The following example illustrates the
ow of values constraint. Consider the program

fragment of �gure 5.4(a). Let P1 be the execution path following the true branch of test

if (!a) and P2 the execution path following the false branch. Consider the schedule of

�gure 5.4(b) and let v, v0 denote respectively the vertices with which operations x=f(k)

and z=g(x) are associated. Clearly Use(v; T̂) = fP1g and if there is only one copy of

operation z=g(x) one must have Use(v0; T̂) = fP1; P2g. However path P2 traverses v

whereas it does not traverse operation x=f(k) in the original program so the schedule

of �gure 5.4(b) is semantically incorrect. Consider schedule 5.4(c) and let v, v0 and v00

denote respectively the vertices with which operations x'=f(k) z=g(x') and z=g(x) are

associated. By having Use(v; T̂) = fP1g, Use(v0; T̂) = fP1g and Use(v00; T̂) = fP2g it

is easily seen that de�nition 5.4.1 accepts schedule 5.4(c) as an admissible schedule for

the branching task in 5.4(a). Note that renaming is implicit in the model and is always

possible if su�cient registers are available.

5.5 Performance Criteria

Depending on the outcome of the conditionals contained in a branching task system

T̂ , the actual path followed during execution varies. Consequently an m-admissible

branching schedule for T̂ may require di�erent completion times for di�erent executions.

It may therefore be that for two execution paths P1, P2 and two m-admissible branching

schedules Ĉ, Ĉ0 for T̂ , jĈ(P1)j < jĈ0(P1)j and jĈ(P2)j > jĈ0(P2)j. Because of this

phenomenon performance is initially de�ned as a relative measure, that is a partial

order.

De�nition 5.5.1 Let T̂ be a branching task system and Ĉ, Ĉ0 two m-admissible branch-

ing schedules for T̂ . Ĉ is said to have better performance than Ĉ0 if and only if:

8 P 2 Path(T̂) jĈ(P)j � jĈ 0(P)j and 9 P0 2 Path(T̂) jĈ(P0)j < jĈ0(P0)j

Furthermore Ĉ is said to be a branching m-optimum for T̂ if and only if there exists no

branching schedule with better performance than Ĉ.

5.5. PERFORMANCE CRITERIA 59

if (!a) f
x=f(k);
...

g
else f

...
g
z=g(x);

(a)

?

?

?

Q
Q
Q
Q
QQs

�
�

�
�
��+

Q
Q
Q
Q
QQs

�
�
�
�

��+
x=f(k)

if (!a)

z=g(x) � � � � �

� � � � �

� � � � � � � � �� � � � � � � � �

� � � � �

(b)

?

?

?

Q
Q
Q
Q
QQs

�
�
�
�
��+

Q
Q
Q
Q
QQs

�
�
�
�
��+

x'=f(k)

if (!a)

z=g(x)z=g(x')

� � � � �

� � � � �

� � � � �� � � � �

� � � � � � � � �

(c)

Figure 5.4: (a) Some fragment of a real life sequential program. (b) A semantically
incorrect schedule for the program given in (a). (c) An admissible schedule.

60 CHAPTER 5. BRANCHING TASK SYSTEM

For M(1) and M(1) any execution path P of a branching task system T̂ takes the

same amount of time to complete in all branching optima for T̂ . ForM(1) this time is

the length of the longest dependence chain in T̂(P). In general however, 1 < m <1, an

execution path of T̂ may require disparate running times in di�erent branching optima.

Furthermore the number of such paths and the di�erence in speeds can be signi�cant.

Theorem 5.5.1 There exists a branching task system T̂ and two branching m-optima

Ĉo, Ĉ
0
o for T̂ such that:

m

4
<

1

jPath(T̂)j �
X

P2Path(T̂)

jĈo(P)j
jĈ0

o(P)j

Proof: Consider the branching task T̂ = (O; �; f�PgP2Path(T̂); G) where:
1. O = fcj1; op11; � � � ; op1m�1; � � � ; cjmopm1; � � � ; opmm�1g.
2. For all op 2 O, �(op) = 1.

3. The control
ow graph G is given in �gure 5.5(a). For 1 � i � m, basic block Bi

contains conditional cji whereas basic block B
0
i contains operation opi1; � � � ; opim�1.

4. The precedence relations f�P gP2Path(T̂) are all empty.

The set Path(T̂) = fP1; � � � ; Pm+1g.
The control
ow graphs of m-optima Ĉo and Ĉ0

o are given in 5.5(b) and 5.5(c) re-

spectively. In Ĉo basic block Ci, 1 � i � m, contains a single instruction comprising

operations cj1; opi1; � � � ; opim�1. As in Ĉo, all basic blocks of Ĉ0
o also contain a single

instruction. For 1 � i � m, the instruction in C0
i contains operations opi1; � � � ; opim�1,

whereas the instruction in C0
0 comprises conditionals cj1; � � � ; cjm. For 1 � i � m,

Ĉo(Pi) = i and Ĉ0
o(Pi) = 2, whereas Ĉo(Pm+1) = m and Ĉ0

o(Pm+1) = 1. Thus

1

jPath(T̂)j �
X

P2Path(T̂)

jĈo(P)j
jĈ0

o(P)j
=

1

m+ 1
�

m+

mX
i=1

i

2

!
>
m

4

2

Because for 1 < m < 1 branching optima may require quite di�erent completion

times for the same execution path, global performance measures have to be superimposed

to the partial order de�ned in 5.5.1. To this purpose the notion of weighting function is

introduced.

5.5. PERFORMANCE CRITERIA 61

�

?
B1

B0
1

B2

B0
2

Bm

B0
m

� path P1

� path P2

� path Pm

�path Pm+1

�

HHHHj

������������

�

HHHHj

�

HHHHj

?

?

?

(a)

�

?
C1

C2

Cm

�

�

�
�

�

HHHHj

������������

�

HHHHj

�

HHHHj

(b)

�

?
C0
0

C0
m C0

1

�

�
�
�
�
�
@
@
@
@
@R

�
�
�
��

@
@
@
@R

A
A
A
AU

�
�
�
�	

(c)

Figure 5.5: (a) Control
ow graph of T̂ . Squares indicate basic blocks. (b) Control
ow
graph of Ĉo. (c) Control
ow graph of Ĉ0

o.

62 CHAPTER 5. BRANCHING TASK SYSTEM

De�nition 5.5.2 Let T̂ be a branching task and G its control
ow graph. A function w

mapping Path(T̂) into the non-negative reals is called a weighting function for T̂ if and

only if: X
P2Path(T̂)

w(P) = 1

If there exists a function $ mapping the edges of G into the non-negative reals such that:

8 P = (e1; e2; � � � ; ek) 2 Path(T̂) w(P) =
kY
i=1

$(ei)

one says that the weighting function w is markovian or has the Markov property. For

every real � � 1, a markovian weighting function is said to be �-skewed, or have a

skew factor of �, if and only if for every vertex of G with two outgoing edges e1 and e2,

$(e1) = � �$(e2). A 1-skewed weighting function is also called isotropic.

It is easy to show that the weighting function of any branching schedule whose control

ow graph minus � is a tree is markovian. In general, however, this is not the case.

Weighting functions are used in de�ning global performance measures.

De�nition 5.5.3 Let T̂ be a branching task, w a weighting function for T̂ and Ĉ
m7�! T̂

a branching schedule. The weighted average running time of Ĉ, denoted w(Ĉ), is de�ned

as:

w(Ĉ) =
X

P2Path(T̂)

w(P) � jĈ(P)j

If T̂ is �nite then w is always de�ned, otherwise it need not be. Ĉ is said to bem-optimum

for w, or w-optimum, if and only if w(Ĉ) converges and there exists no Ĉ0 m7�! T̂ such

that w(Ĉ0) < w(Ĉ).

If none of the weights of the execution paths of a branching task system T̂ is zero, an

m-admissible schedule for T̂ which is optimum for w must also be a branching optimum.

Usually weights are taken to be path probabilities. In practice, however, accurate

execution probabilities might not be easy to obtain because of the amount of pro�l-

ing information that needs to be collected. In fact simple branch probabilities, i.e. the

probability that a conditional will take the true or false branch, are insu�cient as path

5.6. PERFORMANCE LIMITATIONS AND TRADE-OFFS 63

probabilities do not necessarily possess the Markov property. When no pro�ling informa-

tion is available the weighting function can solely be based on the structural properties

of the execution paths such as their sequential length or their optimum length on the

target machine.

It is possible to express the weighted average running time of a branching schedule

in a di�erent form than that of de�nition 5.5.3. This form will be quite useful in the

proofs of theorems to follow.

Property 5.5.1 Let T̂ be a branching task, w a weighting function for T̂ , Ĉ
m7�! T̂ a

branching schedule and Î an instruction of Ĉ. If one de�nes the weight of Î, denoted

w(Î), as the sum of the weights of the execution paths traversing Î then

w(Ĉ) =
X
Î2Ĉ

w(Î)

Proof: Let v
Î
denote the root of branching instruction Î 2 Ĉ. Then

w(Ĉ) =
X

P2Path(T̂)

w(P) � jĈ(P)j

=
X

P2Path(T̂)

w(P)
X

Î2Ĉ(P)

1

=
X
Î2Ĉ

X
P2Path(vÎ ;Ĉ)

w(P)

=
X
Î2Ĉ

w(Î)

2

5.6 Performance Limitations and Trade-O�s

This section establishes a series of negative results concerning w-optimum branching

schedules. The �rst of such results is the existence of branching tasks for which space

performance has to be sacri�ced in order to obtain even the more modest speedups.

More speci�cally exponential code size is necessary to obtain speedups as little as two.

Thus for branching tasks time and space performance can be antipodal.

64 CHAPTER 5. BRANCHING TASK SYSTEM

Theorem 5.6.1 For every real � � 1 there exists a branching task T̂ with arbitrarily

big operation set O such that for every �-skewed weighting function w, m-optimum for

w Ĉopt and branching schedule Ĉ
m7�! T̂ with code size polynomial in jOj, one has:

m� 1 <
w(Ĉ)

w(Ĉopt)

Proof: Let T̂ = (O; �; f�PgP2Path(T̂); G) where

1. O = fcj1; opt1; opf1 ; � � � ; cjn; optn; opfng[
m[
j=1

fopj1; � � � ; opjq; ~opj1; � � � ; ~opjng

where n and q = n2 are two positive integers and m denotes as usual the number

of available processors.

2. For all op 2 O, �(op) = 1.

3. The control
ow graph G is given in �gure 5.6. Basic block B contains operations

m[
j=1

fopj1; � � � ; opjq; ~opj1; � � � ; ~opjng

4. The precedence relations f�g
P2Path(T̂) are as follows:

8 i 2 [1; n� 1] 8 P 2 Path(opti ; T̂) cji �P opti �P cji+1

8 P 2 Path(opfi ; T̂) cji �P opfi �P cji+1

8 j 2 [1; m] 8 P 2 Path(optn; T̂) cjn �P optn �P opji

8 P 2 Path(opfn; T̂) cjn �P opfn �P opj1

8 j 2 [1; m] 8 P 2 Path(T̂) opj1 �P opj2 �P � � � �P opjq

8 i 2 [1; n] 8 j 2 [1; m� 1] opjq �P ~opji if P 2 Path(opti; T̂)

~opji �P opj+1
1 if P 2 Path(opfi ; T̂)

Consider two distinct execution paths P1; P2 2 Path(T̂). Because P1 6= P2 there exists

at least one i 2 [1; n] such that P1 2 Path(opti; T̂) and P2 2 Path(opfi ; T̂). If P1 and P2

where to share the same schedule for basic block B then such schedule would have to be

sequential since

8 j 2 [1; m� 1] opjq �P1 ~opji �P2 op
j+1
1

5.6. PERFORMANCE LIMITATIONS AND TRADE-OFFS 65

Thus if one disregards the exit node �, the control
ow graph of an m-optimum Copt for
w must be a tree, furthermore

2 � n + q � w(Copt) � 2 � n+ (q + n)

Let C be an m-admissible schedule for T̂ with code size polynomial in jOj = 3 � n +m �
(n+ q) = 3 � n +m � (n + n2), since q = n2. Let Pa be the set of execution paths which

do not share the schedule for basic block B with any other path. Clearly jPaj must be
polynomial in n. Let d be the degree of such polynomial, then there exists a constant

k � 1 such that

8n � 1 wa =
X
P2Pa

w(P) �
�

�

� + 1

�n
� k � nd

Because for all � � 1

lim
n!1

�
�

� + 1

�n
� nd = 0

by selecting a su�ciently large n, the weight wa can be made as small as one desires.

The ratio of w(Ĉ) and w(Ĉopt) can be expressed as a function of wa. More precisely

w(Ĉ)

w(Ĉopt)
� wa � (2 � n + q) + (1� wa) � (2 � n +m � q)

2 � n+ (q + n)

� 2 + (1� wa) �m � n+ wa � n
3 + n

since q = n2

> m� 1 for a su�ciently large n

2

The above result shows that in the worst case space performance has to be sacri-

�ced even for the more modest speedups. The next negative result concerns the time

performance of optimum schedules. The optimum weighted average execution time of a

branching task system is clearly limited by dependences. It is not immediately apparent,

however, that conditionals may equally inhibit parallel execution. Indeed one can show

that only logarithmic speedups can be achieved when the weighting function is slightly

skewed and conditionals are abundant. This result is based on the following theorem.

Theorem 5.6.2 Let T̂ (n) be a branching task system such that all of its execution paths

contain at least n � 1 conditionals. Let w be a �-skewed weighting function for T̂(n) and

66 CHAPTER 5. BRANCHING TASK SYSTEM

�

�

�

�

�

�

�

�

�

�

�

�

B

�

optn opfn

cjn

opt2 opf2

cj2

cj3

opt1 opf1

cj1

�

?

?

�
�
�	

�
�
�	

�
�
�	

�
�
�	

�
�
�	

�
�
�	

@
@
@R

@
@
@R
@
@
@R

@
@
@R

@
@
@R

@
@
@R

��
�

Figure 5.6: Control Flow graph of T̂ . B indicates a basic block of operations.

5.6. PERFORMANCE LIMITATIONS AND TRADE-OFFS 67

Ĉopt(n)
m7�! T̂ (n) an m-optimum for w. For m � 3 let �1(m) and �2(m) respectively

denote the roots of the following two equations

xdlog2(m+1)e � x� 1 = 0 xm�1 � (x+ 1)m�2 = 0

Then:

w(Ĉopt(n))

n
� a(�) where a(�) =

8>><
>>:

1
dlog2(m+1)e if � 2 [1; �1(m)]

(�+1)m�1

(�+1)m��m if � 2 [�2(m);1]

The numbers �1(m) and �2(m) are tabulated in �gure 5.7 for some values of m.

Proof: In the following proof all weighting functions are assumed to be �-skewed. Fur-

thermore these functions are all denoted by w although they refer to di�erent branching

tasks.

Consider the new task system T̂t(n) whose control
ow graph minus the exit is a

completely balanced binary tree of height n and each operation, except for the leaves of

the binary tree, is a conditional. There are no dependences between the operations of

T̂t(n). Let Ctopt(n) be an m-optimum for T̂t(n) and w. Because the computational model

employed requires branching instructions to be trees it is clear that

w(Ctopt(n)) � w(Copt(n))

Furthermore for i; j � 1 let Ctopt(i + j), Ctopt(i) and Ctopt(j) be respectively m-optimum

schedules for T̂t(i+ j), T̂t(i) and T̂t(j), and the �-skewed weighting function w. Then

8 i; j � 1 w(Ctopt(i+ j)) � w(Ctopt(i)) + w(Ctopt(j))

for one can construct an m-admissible schedule for T̂t(i + j) with weighted average

execution time equal to w(Ctopt(i))+w(Ctopt(j)) by having every incoming edge of Ctopt(i)'s
exit point to a copy of Ctopt(j). Thus the same type of proof employed in chapter 4

theorem 4.6.4 can be adopted here to show the existence of a constant a(�) such that

8 n � 1 a(�) � w(Ctopt(n))
n

and lim
n!1

w(Ctopt(n))
n

= a(�)

Because w(Ctopt(n)) � w(Copt(n)) the above shows that

a(�) � w(Copt(n))
n

68 CHAPTER 5. BRANCHING TASK SYSTEM

Let Î be the �rst instruction in Ctopt(n), that is the instruction just after the entry

node � of Ctopt(n). For i � 1 let fÎ i1; � � � ; Î ipg denote the instructions in Ctopt(n) immediately

following Î such that exactly i conditionals need to be traversed in Î from its root to

reach the root of an Î ij . Finally let wi be the sum of the weights of the Î ij , 1 � j � p:

wi =
pX

j=1

w(Î ij)

Note that
Pm

i=1wi = 1. Because the weighting function w of T̂t(n) is �-skewed if

w(Ctopt(n)) is denoted by tn one can write:

tn = 1 +
mX
i=1

witn�i

For a theoretical treatment and the common terminology revolving around such recur-

rence equations see for instance [26,48,24]. If one sets w0 = �1, the characteristic

equation of the above linear recurrence is:

mX
i=0

wm�i � zi = 0

Let �1; . . . ; �r be the roots of the above characteristic equation and d1; . . . ; dr their

multiplicities. The general theory of linear recurrences dictates that tn has the form:

tn =
rX
i=1

di�1X
j=0

kij � nj � �ni

where kij is some unknown constant. Because limn!1 tn=n = a(�) it must be that

tn = a(�) � n + k + o(1), where k is some constant and o(1) denotes a function which

tends towards 0 as n tends towards in�nity. By using this equation in conjunction with

the recurrence equation, a(�) can be expressed in terms of the wi:

1 + a(�) �
mX
i=1

wi � (�i) = 0

To compute the smallest possible value of a(�) it su�ces to maximize

W (Î) =
mX
i=1

wi � i

5.6. PERFORMANCE LIMITATIONS AND TRADE-OFFS 69

Consider once more instruction Î, the �rst instruction in Ctopt(n). W (Î) cannot be

maximum unless the greatest weight �rst condition is satis�ed, that is for all conditional

cj executing in Î and for all instruction Î 0 immediately following Î in Ctopt(n) one has

w(cj) � w(Î 0) where w(cj) =
X

P2Path(cj;T̂t(n))

w(P)

In fact let cj be the conditional in Î with smallest w(cj) and let Î 0 be the instruction

immediately following Î with the greatest w(Î 0). Clearly both branches of cj point

to operations scheduled outside of Î . Let r and p respectively denote the number of

conditionals that need to be traversed in Î from Î 's root to cj and from Î 's root to the

root of Î 0. If w(Î 0) > w(cj), the root of Î 0 cannot be reached from cj. Consider the

instruction Înew which includes the root of Î 0 and excludes cj and is otherwise equal to

Î . Then

W (Înew) = W (Î) + [�p �w(Î 0) + (p+ 1) � w(Î 0)] + [�(r + 1) �w(cj) + r � w(cj)]
= w(Î 0)� w(cj)

Thus if w(cj) < w(Î 0), W (Î) cannot be maximum.

Consider now the two limit cases where the greatest weight �rst condition is satis�ed

and Î is either a single path or every level of Î is complete except may be for the last.

This last case is analyzed �rst. For Î to satisfy the greatest weight �rst condition and

have every level completely �lled except may be for the last, it is su�cient that�
�

1 + �

�dlog2(m+1)e

�
�

1

1 + �

�dlog2(m+1)e�1

since dlog2(m + 1)e � 1 is the height of a binary tree where each level, except may be

the last one, is complete. Thus if �1(m) denotes the root of the equation

xdlog2(m+1)e � x� 1 = 0

it is su�cient that � 2 [1; �1(m)]. If the last level of Î is allowed to be complete, even

though Î may contain more then m operations, one can only increase the value of W (Î).

In this case the only non zero wi is wdlog2(m+1)e and therefore

W (Î) = dlog2(m+ 1)e �
dlog2(m+1)eX

i=0

dlog2(m+ 1)e

i

!
� �i

(1 + �)dlog2(m+1)e| {z }
=wdlog2(m+1)e

70 CHAPTER 5. BRANCHING TASK SYSTEM

which implies a(�) = 1=dlog2(m+ 1)e since wdlog2(m+1)e = 1.

Consider now the case where Î is a path with m nodes. Then the greatest weight

�rst condition is satis�ed only if�
�

1 + �

�m�1
�
�

1

1 + �

�

that is if �2(m) denotes the root of the equation

xm�1 � (x+ 1)m�2 = 0

then � 2 [�2(m);1]. When Î is a path containing m operations all of the weights

w1; � � � ; wm+1 are non zero, and W (Î) is

W (Î) = m �
�

�

�+ 1

�m
+

m�1X
l=0

(l+ 1) � 1

�+ 1
�
�

�

�+ 1

�l

By posing �=(�+ 1) = x and employing the following equalities

m�1X
l=0

(l+ 1) � xl =

m�1X
l=0

xl+1

!0

=

�
x � 1� xm

1� x

�0

=
m � xm+1 � (m+ 1) � xm + 1

(x� 1)2

one obtains

W (Î) =
(�+ 1)m � �m

(�+ 1)m�1

and therefore

a(�) =
(�+ 1)m�1

(� + 1)m � �m

2

It would be interesting to give a closed formula for a(�) in the case � 2 [�1(m); �2(m)].

Such computation involves generalized binomial series Bt(z), where

Bt(z) =
1X
k=0

t � k + 1

k

!
1

t � k + 1
� zk

Unfortunately generalized binomial series cannot, in general, be expressed in closed form

[24].

5.6. PERFORMANCE LIMITATIONS AND TRADE-OFFS 71

m �1(m) �2(m)

4 1.62 2.1
8 1.32 3.9
16 1.22 6.8
32 1.17 11.9
64 1.14 20.2

Figure 5.7: The numbers �1(m) and �2(m) for some values of m.

Thus if the weighting function is isotropic or close to, theorem 5.6.2 shows that

only limited speedups can be achieved for branching tasks having a high fraction of

conditionals.

Corollary 5.6.1 Let T̂ (n) be a branching task system where each execution path con-

tains at least n � 1 conditionals and at most f � n operations, for a real f � 1. Let w

be a �-skewed weighting function for T̂ (n), Ĉseq(n) a branching 1-optimum for T̂ and

Ĉopt(n)
m7�! T̂ an m-optimum for w. Then:

w(Ĉseq(n))

w(Ĉopt(n))
� f � s(�) where s(�) =

8><
>:
dlog2(m+ 1)e if � 2 [1; �1(m)]

(�+1)m��m

(�+1)m�1 if � 2 [�2(m);1]

Proof: This result can easily be obtained by combining theorem 5.6.2 with the fact that

w(Ĉseq(n)) � f � n

2

The above result shows that the machine model is ine�ective when the weighting

function is isotropic or almost so, and there is a high number of conditionals on every

path. Fortunately, when the weighting function is skewed, conditionals do not inhibit

parallelism as the next result shows.

Corollary 5.6.2 Let T̂ (n) be a dependenceless branching task system whose control
ow

graph minus the exit is a completely balanced binary tree of height n and each operation,

except for the leaves of the binary tree, is a conditional. Let w be a �-skewed weighting

72 CHAPTER 5. BRANCHING TASK SYSTEM

function for T̂ (n) and Ĉ(n)
m7�! T̂ (n) a trace scheduling schedule, that is an m-schedule

where every branching instruction is restricted to be a path. If the greatest weight con-

straint is respected in C(n), that is for any two instructions Î; Î 0 2 Ĉ(n) where Î 0 is

reachable from Î, no operation in Î has a weight less than the weight of Î 0, then:

w(Ĉ(n))

n
=

(�+ 1)m�1

(�+ 1)m � �m

Furthermore

lim
�!1

(�+ 1)m�1

(�+ 1)m � �m
=

1

m

Proof: The �rst claim was proved in the proof of theorem 5.6.2 in the case where instruc-

tions where restricted to be paths. The second result is a straightforward consequence

of the fact that when �!1, (1 + 1=�)m � 1 +m=�. 2

The results of the last two corollaries are pictured in �gure 5.8. The chart gives

the best possible speedup for a branch intensive program as a function of �, the skew

factor of the weighting function. For � close to 1 the speedup of the general model

is logarithmic, whereas the speedup of the trace scheduling model, as employed in the

TRACE machines [12], is only two. However as � increases the speedup tends to m

and the general model degenerates into the trace scheduling model when � � �2(m).

Consequently if the applications that are targeted exhibit a skew factor close to or greater

than �2(m) then a simple trace scheduling model su�ces for extracting parallelism. The

factor �2(m) increases as m, the number of resources of the machine, increases. On the

other hand if applications are branch intensive and the weighting function is isotropic

or no runtime information can be gathered, then additional increases in the machine

parallelism will only bring logarithmic improvements in the speedup.

5.7 Approximating Optimum Performance

As section 3.5 of chapter 3 has pointed out the problem of generating optimum schedules

for straight line tasks is either open when operations have the same duration, or com-

putationally hard (NP-complete). The approach used for straight line tasks is to adopt

heuristics that are within a constant factor from the optimum.

5.7. APPROXIMATING OPTIMUM PERFORMANCE 73

6

-
�

speedup

m

(�2(m)+1)m��2(m)m

(�2(m)+1)m�1

dlog2(m+ 1)e

2

1 �2(m)

use
general
model

� -
use

trace scheduling
model

� -

�
�
�
�
� �
� �
� �
� � �

� � � �
� � � � �

� � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � �

�
�
��
���

���
��

� � � � speedup for
trace scheduling model

���� speedup for
general model

Figure 5.8: Chart showing maximum speedup as a function of �.

74 CHAPTER 5. BRANCHING TASK SYSTEM

When conditionals are allowed simple basic block compaction, i.e. generating an

independent schedule for each basic block of a branching task, can theoretically yield

arbitrarily poor performance. Several studies have shown that this is also the case in

practice [51,46]. The goal of this section is to bound the weighted average running time

performance of a simple scheduling heuristic based solely on the weighting function and

not on the structure of the underlying dependence relations. More precisely Graham's

result on the performance of list scheduling algorithms for straight line tasks [10] will be

extended to branching tasks. A new heuristic called greatest weight �rst, or GWF, gen-

eralizes the list scheduling approach to allow for conditionals. The bound on optimality

guaranteed by GWF algorithms is constant if the weighting function is skewed and is

logarithmic in m in the worst case.

When generating instructions for branching or straight line schedules, it is often the

case that several operations are available for execution in the same cycle. In the case

where such operations cannot all be executed together a selection criterion must be em-

ployed. For straight line tasks a random choice guarantees a bound of 2� 1=m from the

optimum. When conditionals are present the selection should not be completely random

as available operations may belong to di�erent computational paths with disparate ex-

ecution weights. The obvious generalization of the random heuristic is to give priority

to operations belonging to the execution paths with greatest weight. Such heuristic is

termed greatest weight �rst or GWF.

De�nition 5.7.1 Let T̂ be a branching task, w a weighting function for T̂ , Ĉ
m7�! T̂ a

branching schedule and v a vertex in some instruction Î of Ĉ. The weight of v and the

smallest weight of Î, respectively denoted w(v) and wmin(Î) are de�ned as

w(v) =
X

P2Use(v;T̂)

w(P) wmin(Î) =

(
0 if jÎj < m
min

v2Î w(v) otherwise

Ĉ is said to be a GWF schedule if and only if for every instruction Î 2 Ĉn and every

Ĉ0 m7�! T̂ there exists no Î 0 2 Ĉ0 which is traversed by the same execution paths as Î,

is such that wmin(Î) < wmin(Î
0) and the instructions in Ĉ0 from the entry up to Î 0 are

exactly the same as those in Ĉ from the entry up to Î.

GWF schedules may yield arbitrarily poor performance if the duration of operations

is not bounded by some small integer.

5.7. APPROXIMATING OPTIMUM PERFORMANCE 75

Theorem 5.7.1 For every m � 2 there exists a branching task T̂ where operations

require at most m cycles to complete and there exists a weighting function w for T̂ such

that if Ĉopt denotes a m-optimum for T̂ and w then every GWF schedule Ĉ
m7�! T̂ is

such that

m� 1 <
w(Ĉ)

w(Ĉopt)

Proof: Let T̂ = (O; �; f�PgP2Path(T̂); G) where

1. O = O1 [O2 where O1 = fop0; op11; � � �opm1 ;� � � ; op1k; � � �opmk ;cjg and
O2 = f �op1; �op2;� � � ; �opk(m�1)g, for some integer k greater than 1.

2. 8 op 2 O1, �(op) = 1 and 8 op 2 O2, �(op) = m.

3. The control
ow graph G is given in �gure 5.9. Basic block B1 contains operations

in O1. Operation cj is the conditional in B1. Basic block B2 contains operations

in O2.

4. The dependence relations f�P gP2Path(T̂) are as follows:

8P 2 Path(T̂) 8i1; i2; � � � ik 2 [1; m] op0 �P opi11 �P opi22 �P � � � �P opikk �P cj

Let P1 the execution path of T̂ traversing B1 but not B2 and P2 the execution path

traversing B2. The weighting function w is such that w(P1) = 1� � and w(P2) = � for

some real � between zero and one. It is clear that for any m-optimal schedule Ĉopt for

T̂ and w one has w(Ĉopt) � (k + 2) + k �m � �. However, any GWF schedule for T̂ is

forced to schedule op0 in the �rst instruction along with m � 1 operations from basic

block B2. As these operations take m cycles to execute, operations op11; � � � ; opm1 have

to be executed sequentially in cycles 2; � � � ; m+ 1 respectively. In cycle m + 1 no other

operation opji , for i 2 [2; k] and j 2 [1; m] can be executed and consequently the GWF

rule requires that m� 1 other operations from basic block B2 be started in cycle m+ 1.

This process repeats for every set of operations op1i ; � � � ; opmi . Thus the weighted average

execution time of every GWF schedule Ĉ
m7�! T̂ is at least k �m cycles. Thus

w(Ĉ)

w(Ĉopt)
� k �m

(1 +m � �) � k + 2
> m� 1 for su�ciently large k and small �

2

76 CHAPTER 5. BRANCHING TASK SYSTEM

B1

B2

�

�

�
�	

@
@R?

?

Figure 5.9: Control
ow graph of T̂ .

When operations require a single execution cycle to complete, the problem illustrated

in the proof of theorem 5.7.1 disappears. However, even in this event GWF schedules

are not necessarily optimal. Two fundamental errors can take place when choosing

operations to schedule. The �rst error can occur when two or more operations from the

same basic block could be executing in a same slot of an instruction. In this case the

GWF heuristic su�ers from the same problem as list scheduling, namely the selection

is random and consequently critical operations may be delayed. The second error is

a generalization of the previous one to the case where tasks contain conditionals. If

two operations op1, op2 not lying on a common path are ready for scheduling, GWF

systematically selects the one with highest weight, say op1, whereas their weights might

be close and op2 could be a critical operation for the execution paths containing it. These

two errors are illustrated in the following example.

Example 5.7.1 Consider the branching task T̂ whose control
ow graph is given in

�gure 5.10(a). The weighting function w is assumed to be isotropic and operations

to take one cycle. Let � be some positive integer. Basic block B1 contains a 24 � �
independent operations (denoted �), 8 � � operations (denoted �) forming a dependence

chain of 8 � � cycles and a conditional depending on the � operations. Basic blocks B2

and B3 each contain a conditional. Basic blocks B4; . . . ; B7 each contain 8 � � operations
(respectively denoted �; ?; �; �) each forming a dependence chain of 8�� cycles. In addition
B4 contains 56 � � independent operations (denoted
). Figure 5.10(b) shows a possible

5.7. APPROXIMATING OPTIMUM PERFORMANCE 77

GWF schedule Ĉ 8-admissible for T̂ . Figure 5.10(c) shows an 8-optimal schedule Ĉopt for

T̂ and the isotropic weighting function w. The ratio w(Ĉ)=w(Ĉopt)= (19 ��+O(1))=((8+
7=4) � � +O(1)) which tends to 1.95 as � grows to in�nity.

Although not optimal it is possible to bound the performance of GWF schedules.

Before demonstrating this result two lemmas needs to be established.

Lemma 5.7.1 Let (ai)1�i�n and (bi)1�i�n two sequences of n � 1 positive numbers.

Then Pn
i=1 aiPn
i=1 bi

� max
i2[1;n]

ai
bi

Proof: Trivially true for n = 1. For n = 2 assume without loss of generality that

a1=b1 < a2=b2. Then one can write

a1 + a2
b1 + b2

=
a1 � b2 + a2 � b2
(b1 + b2) � b2 � (b1 + b2) � a2

(b1 + b2) � b2 =
a2
b2

and the lemma also holds for n = 2. Assume that the lemma is true for some k (2 � k <

n), because of the previous inequality and the inductive assumptionPk+1
i=1 aiPk+1
i=1 bi

� max

 Pk
i=1 aiPk
i=1 bi

;
ak+1

bk+1

!
� max

max
i2[1;k]

ai
bi

;
ak+1

bk+1

!
= max

i2[1;k+1]

ai
bi

and consequently the lemma also holds for k + 1. 2

Lemma 5.7.2 Let T be a binary tree and $ a weight function which maps every edge

of T into a non-negative real and is such that the sum of the weights of the edges sharing

the same tail is 1. For a vertex x of T the weight of x, w(x), is de�ned as 1 if x is T 's
root and is otherwise the product of the weights of the edges from T 's root to x. Assume
that k vertices x1; � � � ; xk of T are marked. For every marked vertex xi, i 2 [1; k] de�ne

w0(xi) as the maximum of the weights of the marked vertices reachable from xi. De�ne

the weight of marking x1; � � � ; xk as

w(x1; � � � ; xk) =
kX
i=1

w(xi)� w0(xi)

then for all marking x1; � � � ; xk one has

w(x1; � � � ; xk) � 1 +
1

2
� dlog2 ke

78 CHAPTER 5. BRANCHING TASK SYSTEM

�

?
B1

B2 B3

B4 B5 B6 B7

�

������

HHHHHj

�
��	
@
@@R

�
��	
@
@@R

Q
Q
Q
Q
Q
Q
QQs

A
A
A
A
AU

�
�
�
�
��

�
�
�
�
�

�
��+

(a)

�

?

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

?
?
?
?
?
?
?
?

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

conditionals

�������

Q
Q
Q
Q
Q
Qs?

J
J
J
J
J
JJ
�
�
�
�
�
�
�
��

@
@
@
@
@
@
�
�
�
�
�
�
�
�/
�

(c)

�

?

��������
��������
��������

�
�
�
�
�
�
�
�

conditionals

�
�
�
�
�
�
�
�

?
?
?
?
?
?
?
?

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

 9

"
"
"
"

"�

b
b
b
b
bj

``````````````z̀

```````````````9

bb
b
b
bj

""
"
"
"�

 z
�

(b)

Figure 5.10: (a) Control
ow graph of T̂ . (b) A GWF schedule 8-admissible for T̂ when
� = 1. (c) 8-Optimal schedule for T̂ and the isotropic weighting function when � = 1.

5.7. APPROXIMATING OPTIMUM PERFORMANCE 79

Furthermore if the weighting function $ is alpha-skewed for some � � 1 then

w(x1; � � � ; xk) � 1 +
1

�+ 1
� dlog2 ke

Proof: Let T = (V;E) and for all internal vertex x 2 V assume that the left children

of x has a weight greater or equal to the weight of x's right child. Let x; y 2 V be two

marked nodes. If y is an ancestor of x and no marked node lies in the path from y

to x then y is called an immediate marked ancestor of x and x an immediate marked

descendent of y. A marked node x is said to be killed if its contribution in w(x1; � � � ; xk),
that is w(x) is cancelled by w0(y), where y is the immediate marked ancestor of x. In

the case where y has two immediate marked descendents with same maximum weight it

is assumed that the leftmost immediate marked descendent is killed. A marked node is

said to be useful if it is not killed. Let U denote the set of useful nodes. Then

w(x1; � � � ; xk) =
X
xi2U

w(xi)

If nodes and edges are added to T one can only increase the weight of the optimum

marking. Thus it can be assumed, without any loss of generality, that T is a completely

balanced binary tree. Consider a marking where the root of T and all the right children

of the nodes in levels 0 through dlog2 ke are useful. Call such marking a k-right useful

marking. It is readily seen that the maximum weight of a k-right useful marking is at

most

1 +
1

2
dlog2 ke

if the weighting function $ is arbitrary, and is exactly

1 +
1

�+ 1
dlog2 ke

if the weighting function $ is �-skewed.

To establish the lemma it su�ces to show the existence of an injection f from the

useful nodes of a marking M = (x1; � � � ; xk) to the useful nodes of a k-right useful

marking R such that

xi is useful in M) w(xi) � w(f(xi))

80 CHAPTER 5. BRANCHING TASK SYSTEM

This claim will be shown by induction on h, the height of T .
If h = 0, T is a single node and the claim is trivially true. Assume that h > 0. If

the root r of T is useful in M then map the root into itself: f(r) = r. If no node on

the path from T 's root to its leftmost leaf, called path L, is useful in M then one can

safely invoke the inductive hypothesis on each of the subtrees rooted at the right child

of every node on path L. If the root of T is not useful in M and path L contains a node

x useful in M then map x into T 's root: f(x) = r. Again the inductive hypothesis can

be invoked on the subtree rooted at x and the subtrees rooted at the right child of every

node in the path from T 's root down to but not including x.

The remaining case is when T 's root is useful in M and L contains a useful node.

One proceeds as follows. Let x be the useful node in L which is closest to T 's root. Find
a the closest ancestor of x which is in M . Find the node x0 6= x which is reachable from

a, is in M and has greatest weight among the nodes in M reachable from a. Such node

x0 must exist for otherwise x could not be useful in M . It is also clear that x0 cannot be

on the path from a to x due to the choice of a and that x0 is not useful in M . Let P be

the path from a to x0 included. Then no node in P apart from a and x0 belongs to M .

Let z be the node in P closest to x0 which is useful in R. Such node exists for P must

take at least one right branch. Map x into z: f(x) = z. Note that w(x) � w(x0) � w(z)

and that z could be x0. Before employing the inductive hypothesis one needs to modify

R as follows. Every node z0 6= z which is in P and is useful in R is deleted from R

and is replaced by the �rst leftmost descendent which is not in P . Because every node

deleted in R is replaced by a node with lesser weight the inductive hypothesis will not

be violated. Now the inductive hypothesis can be invoked on the subtree rooted at x,

the subtrees hanging o� path P , the subtree rooted at x0 and the subtrees rooted at the

right child of every node in the path from T 's root to x which is not also on path P .

Note that these subtrees account for all of unprocessed subtrees in T . The inductive

hypothesis can be safely invoked since the root of all subtrees on which the inductive

hypothesis is invoked are of three types:

1. for the subtree rooted at x, x is already mapped into a node of R

2. for the subtree rooted at x0, x0 is in M and is not useful in M

3. for the other subtrees their roots all belong to R and are not mapped into any

5.7. APPROXIMATING OPTIMUM PERFORMANCE 81

other node.

2

The result concerning the time performance of GWF schedules can now be estab-

lished. Because the proof is fairly complex this result will be established only for branch-

ing task systems with memoryless dependences (see de�nition 5.2.2). However, the fol-

lowing result holds even for branching tasks with arbitrary dependences.

Theorem 5.7.2 Let T̂ = (O; �;G; f�PgP2Path(T̂)) be a non necessarily �nite branching

task with memoryless dependences, �max = maxop2O �(op), w a weighting function for

T̂ , Ĉ
m7�! T̂ a GWF schedule, and Ĉopt an m-optimum schedule for T̂ and w. If Ĉopt

exists, which is always the case if T̂ is �nite, then

w(Ĉ)

w(Ĉopt)
� �max �

�
2� 1

m
+
m� 1

2 �m � dlog2me
�

furthermore if the weighting function w is � skewed then

w(Ĉ)

w(Ĉopt)
� �max �

�
2� 1

m
+

m� 1

(�+ 1) �m � dlog2me
�

Proof: Consider �rst the case where �max = 1. Let Î be some instruction in Ĉ containing

k � m vertices. Then by simple algebraic manipulation one can write

m � w(Î) =
X
v2Î

w(v) +
X
v2Î

w(Î)� w(v) + (m� k) � w(Î)

Because Ĉ is a GWF schedule at least one non speculative operation must be executing

in Î . Thus there exists at least one vertex v0 2 Î such that w(v0) = w(Î). This implies

m � w(Î) �
X
v2Î

w(v) + (m� 1) � (w(Î)� wmin(Î))

where wmin(v) was de�ned in 5.7.1. Because of property 5.5.1 and the previous result

one can write

m � w(Ĉ) = m �
X
Î2Ĉ

w(Î) �
X
Î2Ĉ

X
v2Î

w(v) + (m� 1) �
X
Î2Ĉ

(w(Î)� wmin(Î))

82 CHAPTER 5. BRANCHING TASK SYSTEM

For every operation op 2 O let w(op) denote the overall weight of the execution paths

traversing op in T̂ , that is

w(op) =
X

P2Path(op;T̂)

w(P)

Because it has been assumed that �max = 1 and because Ĉ is m-admissible for T̂

8 op 2 O 8 P 2 Path(op; T̂) 9! v 2 Ĉ op(v) = op and P 2 Use(v; T̂)

thus X
Î2Ĉ

X
v2Î

w(v) =
X
op2O

w(op) � m � w(Ĉopt)

To bound w(Ĉ) in terms of w(Ĉopt) it su�ces to bound

(m� 1) �
X
Î2Ĉ

(w(Î)� wmin(Î))

Let Ĉt be the branching schedule constructed from Ĉ by replacing every instruction Î

of Ĉ whose root has d > 1 incoming edges, e1; � � � ; ed by d instructions Î1; � � � ; Îd each

isomorphic to Î and such that Îi has ei as sole incoming edge. Let v be a vertex in Î and

vi the vertex corresponding to v in Îi, i 2 [1; d]. If Use(v; T̂) contains a path traversing

edge ei then op(vi) = op(v), otherwise op(vi) = ;. Note that if op(v) is a conditional

then the branching constraint of de�nition 5.4.1 requires that Use(v; T̂) = Path(v; Ĉ)

and therefore for all i 2 [1; d], op(vi) = op(v). Clearly Ĉt
m7�! T̂ , furthermore Ĉt is a

GWF schedule whose control
ow graph minus the exit is a tree. Because of the way

op(vi) has been de�ned one has

w(v) =
dX
i=1

w(vi)) wmin(Î) �
dX
i=1

wmin(Îi)

furthermore

w(Î) =
dX
i=1

w(Îi)

thus

H = (m� 1) �
X
Î2Ĉ

(w(Î)� wmin(Î)) � (m� 1) �
X
Î2Ĉt

(w(Ît)� wmin(Ît)) = Ht

To bound Ht consider the new branching task T̂t = (Ot; �; Gt;�t) where

5.7. APPROXIMATING OPTIMUM PERFORMANCE 83

1. Let vertex v
Î
denote the root of instruction Î 2 Ĉt, Vr = fv

Î
j Î 2 Ĉt; and w(Î) >

wmin(Î)g and Vb the set of vertices in Ĉt of out-degree two which are not in Vr.

Then Ot = Vr [Vb.

2. For all v 2 Ot, �(v) = 1.

3. The control
ow graph Gt is obtained from the control
ow graph of Ĉt by deleting

every vertex not in Ot. When a vertex is deleted its immediate predecessor is set

to point to its immediate successor. This step poses no di�culties since all the

vertices deleted have out-degree and in-degree one.

4. The dependence relations in �t are such that for all v
Î
; v

Î 0
2 Vr, vÎ 0 depends on vÎ

on all paths from v
Î
to v

Î 0
if and only if wmin(Î) < w(Î 0).

The new branching task T̂t has the same set of execution paths as Ĉt and hence of T̂ .

Thus one can use w as a weighting function for T̂t. Consider the schedule Ĉo admissible

for T̂t where

1. Operations in Vb are not allowed to be scheduled concurrently with other operations

in Ot.

2. Let Îo be an an instruction of Ĉo. Two operations v
Î 0
; v

Î 00
2 Ot executing in Îo

are said to be uni�able if and only if v
Î 0
and v

Î 00
are not reachable from each other

in Gt and for every operation v
Î
2 Ot executing in Îo such that Î 0 and Î 00 are

reachable from Î in Gt one has w(Î 0) + w(Î 00) � wmin(Î). Let u be the number of

non uni�able operations in Îo, then it is required that u � m.

3. Ĉo is optimal for T̂t and w subject to the above two constraints.

Let Î and Î 0 be two instructions of Ĉt such that there exists a path in Ĉt �rst

traversing Î and then Î 0. Because dependences are memoryless and because Ĉt is a

GWF schedule

8 v0 2 Î 0 w(v0) > wmin(Î)) 9 v 2 Î 8 P 2 Use(v0; T̂) op(v) �P op(v0)

Thus the dependences in T̂ are at least as constraining, from a scheduling point of view,

as the dependences in T̂t. Therefore if R̂ denotes the set of instructions in Ĉo which do

84 CHAPTER 5. BRANCHING TASK SYSTEM

not contain operations from Vb

X
Îo2R̂

w(Îo) � w(Ĉopt)

Because Ĉt is a GWF schedule every instruction Î 2 Ĉt must contain a vertex v such

that w(v) = w(Î), thus one can assume without any loss in generality that the root of

Î , v
Î
is such vertex v. De�ne wmin(vÎ) = wmin(Î). Then

Ht = (m� 1) �
X
Î2Ĉt

w(Î)� wmin(Î) = (m� 1) �
X
vÎ2Vr

w(v
Î
)� wmin(vÎ)

Let Î0 2 Ĉ0. If Ot(Îo) denotes the operations of Ot executing in Îo, then Ht can be

rewritten as

Ht = (m� 1) �
X
Îo2R̂

X
vÎ2Ot(Îo)

w(v
Î
)� wmin(vÎ)

and consequently

Ht

m �w(Ĉopt)
�

(m� 1) �P
Îo2R̂

P
vÎ2Ot(Îo)

w(v
Î
)� wmin(vÎ)

m �P
Îo2R̂

w(Îo)

By lemma 5.7.1 one can therefore write

Ht

m � w(Ĉopt)
� m� 1

m
�max
Îo2R̂

X
vÎ2Ot(Îo)

w(v
Î
)� wmin(vÎ)

w(Îo)| {z }
call this X(Îo)

Because of T̂t's dependences, for all vÎ ; vÎ 0 2 Ot(Îo), w(vÎ 0) > wmin(vÎ) implies that v
Î 0
is

not reachable from v
Î
in T̂t. In addition for all v

Î
2 Ot(Îo), w(vÎ) � w(Îo). Finally since

T̂t's control
ow graph is a tree the weighting function w is markovian and to bound

X(Îo) it su�ces to give an upper bound to the solution of the following graph theoretical

problem:

5.7. APPROXIMATING OPTIMUM PERFORMANCE 85

Heaviest subgraph in a tree: One is given a binary tree T , a positive
integer m and a weight function which maps every edge in T into a non-
negative real and is such that the sum of the weights of the edges sharing
the same tail is 1. For a vertex x of T the weight of x, w(x), is de�ned as
1 if x is T 's root and is otherwise the product of the weights of the edges
from T 's root to x. Assume that certain vertices of T are marked. Then
for every marked vertex x of T de�ne w0(x) as the maximum of the weights
of the marked vertices which are reachable from x. The goal is to mark
k � m vertices in T , x1; � � � ; xk such that w(x1; � � � ; xk), de�ned below, is
maximum:

w(x1; � � � ; xk) =
kX
i=1

w(xi)� w0(xi)

Lemma 5.7.2 gives an upper bound to the solution of the above graph theoretical problem.

Let U denote such upper bound. Then X(Îo) � U and consequently

H � Ht � (m� 1) �U � w(Copt)

Thus

m � w(Ĉ) � m � w(Ĉopt) + (m� 1) �U � w(Copt)

Finally
w(Ĉ)

w(Ĉopt)
� 1 +

m� 1

m
�U

which gives the desired result for the case �max = 1.

It remains to solve the case �max > 1. Consider the task system T̂max which is

identical to T̂ except for the duration of T̂ 's operations which are all set to last �max

cycles in T̂max. Because in T̂max all operations have the same duration the previously

established result holds for any GWF schedule m-admissible for T̂max. If Ĉmax denotes

an m-admissible GWF schedule for T̂max and Ĉmax
opt denotes an m-optimum schedule for

T̂max and w it is clear that

w(Ĉ) � w(Ĉmax) and w(Ĉmax
opt) � �max � w(Ĉopt)

from which the claim of the theorem is easily established. 2

Chapter 6

Cyclic Branching Task System

This chapter combines the models of chapters 4 and 5. A cyclic branching task models

the behavior of a system which needs to execute a branching task for an indeterminate

number of times and formalizes the intuitive notion of a loop comprising conditionals.

The scope of this chapter will be more restrained than that of chapter 4. The objective is

to establish some basic results concerning cyclic branching task systems. As in chapter 5

all branching entities will be hatted whereas straight line entities will not.

6.1 Preliminaries

A weighted control
ow graph G = (V [f�; �g; E) is a �nite control
ow graph where:

1. Each edge e 2 E is associated with some positive integer, denoted �(e) and termed

the iteration increment of e. The sum of the iteration increments of the edges in a

path P of G is called the number of iterations spanned by P and is denoted �(P).

2. Every cycle in G is required to span at least one iteration.

3. Let es = (�; vs) 2 E be the unique edge with tail �, then �(es) = 0.

For a; b 2 [1;1] de�ne G(a; b) = (V (a; b) [f�; �g; E(a; b)) to be the following acyclic

control
ow graph:

V (a; b) = fv[i] 2 V [a; b] j 9P path from � to v in G s.t. i = a+ �(P) and
9Q path from v to � in G s.t. i+ �(Q) � b g

E(a; b) = f(�; vs[a])g [f(u[i]; �) j u[i] 2 V (a; b); (u; �) 2 Eg [
f(u[i]; v[j]) j u[i]; v[j] 2 V (a; b); e = (u; v) 2 E; j = i+ �(e)g

86

6.2. DEFINITION 87

Let R be a path in G from some vertex v1 to some vertex v2. For i � 1 if v1[i] and

v2[i + �(R)] belong to V (a; b) one de�nes R(i) to be the unique path in G(a; b) which

goes from v1[i] to v2[i + �(R)] and is such that for any k � 1, v[j] is the k-th vertex

traversed by R(i) in G(a; b) if and only if v is the k-th vertex traversed by R in G.

A set Î of branching m-instructions is said to cover the weighted control
ow graph

G if and only if Î is anm-instruction covering of G without consideration of the iteration

increments and every edge belonging to a branching instruction in Î has null iteration

increment in G. Let Î = (V
Î
; E

Î
) 2 Î. For i � 1 one de�nes Î(i) = (V

Î
(i); E

Î
(i)) to be

the following branching instruction:

V
Î
(i) = V

Î
[i; i]\ V (a; b)

E
Î
(i) = f(u[i]; v[i]) j (u; v) 2 E

Î
and (u[i]; v[i])2 E(a; b)g

Furthermore if op(v) = op[k] then for v[i] 2 V
Î
(i), op(v[i]) = op[k + i � 1] if k + i > 1

and op(v[i]) is the null operation otherwise. For a; b 2 [1;1]

Î(a; b) = fÎ(i) j Î 2 Î and V
Î
6= ;g

Note that Î covers the weighted control
ow graphG if and only if Î(a; b) is an instruction
covering of G(a; b).

Let H be a di-graph and let < denote the sub-path relation. A set P of paths in H

is said to be redundant if and only if there exist two di�erent paths P;Q 2 P such that

P < Q. The <-minimum of P , denoted min<, is de�ned to be the non redundant subset

of P such that for any P 2 min<P , there exists a path Q 2 P such that P < Q.

6.2 De�nition

Informally a cyclic branching system L̂ can be seen as an in�nite sequence of branching

tasks called iterations. Iterations share the same operation set O, duration function

� and control
ow graph G but may have di�erent dependence relations. In addition

operations from an iteration may depend on operations in preceding iterations.

De�nition 6.2.1 A cyclic branching task system L̂ (or more brie
y cyclic branching

system) is an in�nite branching task L̂ = (O[1;1]; �; G(1;1);�) such that:

88 CHAPTER 6. CYCLIC BRANCHING TASK SYSTEM

1. O is a �nite set called the core operation set of L̂. The operation set of L̂ is O[1;1].

For op 2 O, op[i] denotes operation op executed during iteration i. The integer i is

termed the iteration index of op[i].

2. For all op 2 O and i; j 2 [1;1], �(op[i]) = �(op[j]). In the sequel such unique

number is denoted �(op).

3. G = (O [f�; �g; E) is a weighted control
ow graph such that (O;E \ O � O) is

strongly connected and the iteration increment of each edge is either 0 or 1. Let

ops denotes the immediate successor of �. One further requires that ops be the

head of all the edges with unitary iteration increment. The graph G is called the

core control
ow graph of L̂. The control
ow graph of L̂ is G(1;1). Note that

O(1;1) = O[1;1].

4. � = f�P gP2Path(L̂) is the usual set of dependence relations of L̂.

For n � 1 the function � and the partial orders in � can trivially be restricted to O(1; n)

and G(1; n). The branching task L̂(n) = (O(1; n); G(1; n); �;�) is termed the n-instance

of L̂.

Unlike cyclic straight line systems, the n-instance of L̂ formalizes the case where L̂
is required to iterate at most n times in order to complete.

As in chapter 4 it is important, for the purpose of generating periodic schedules, to

identify the most stringent dependences between any two operations in O. In extending

the notion of dependence distance introduced in de�nition 4.3.1 one needs to be attentive

to the fact that dependences need to be expressed in terms of paths rather than simple

numbers.

De�nition 6.2.2 Let L̂ be some cyclic branching system with core operation set O and

core control
ow graph G. For all op; op0 2 O the set of dependence paths from op to op0,

denoted d̂(op; op0), is de�ned as:

d̂(op; op0) = min<fR path of G j 8 i � 1 9 k � i 9 P path of G(1;1)
R(k) < P and op[k] �P op0[k+ �(R)]g

Furthermore if

8 op; op0 2 O 8 i � 1 8R 2 d̂(op; op0) 8 P path of G(1;1)

6.3. INFINITE AND PERIODIC SCHEDULES 89

R(i) < P) op[i] � op0[i+ �(R)]

one says that L̂ is recurrent or has recurrent dependences.

As in chapter 4 the idea behind d̂(op; op0) is to disregard dependences that do not

repeat in�nitely many times, as these do not pertain to the repetitive nature of cyclic sys-

tems. Note that the dependences of recurrent cyclic branching systems are memoryless.

The de�nition of memoryless dependences was given in 5.2.2.

6.3 In�nite and Periodic Schedules

Like in the straight line case, real-life branching schedulers will mostly generate higly

structured and regular schedules. As in chapter 4 in�nite schedules model the behavior

of dynamic schedulers and as in chapter 4 periodicity is grafted onto in�nite schedules

to model static schedulers. This last notion is extended as follows.

De�nition 6.3.1 Let L̂ be some cyclic branching system and Ĉ = (G1; Î1) an m-

admissible in�nite branching schedule for L̂. Ĉ is said to be periodic if and only if there

exists a weighted control
ow graph B̂ and an m-instructions covering Ĵ of B̂ such

that G1 = B̂(1;1) and Î1 = Ĵ (1;1). The graph B̂ is called the body of Ĉ and the

maximum number of iterations spanned by any cycle of B̂ is called the unfolding of Ĉ.

6.4 Asymptotic Performance

In chapter 5 the weighted average running time of a branching schedule was introduced.

If the schedule is in�nite this measure of time performance may be unde�ned. In order

to guarantee convergence and because for cyclic systems one is more interested in asymp-

totic behavior, the performance criteria which will be this chapter focus is a combination

of those de�ned in 4.6.1 and 5.5.3.

De�nition 6.4.1 Let L̂ be a cyclic branching system, w a weighting function for L̂ and

Ĉ m7�! T̂ an in�nite branching schedule. The asymptotic weighted average running time

of Ĉ is de�ned as

w(Ĉ) =
X

P2Path(L̂)

w(P) � jĈ(P)j
�(P)

90 CHAPTER 6. CYCLIC BRANCHING TASK SYSTEM

Ĉ is said to be asymptotic m-optimum for L̂ and w if and only if there exists no Ĉ0 m7�! L̂
such that w(Ĉ0) < w(Ĉ).

Note that w(Ĉ) is not always de�ned. This may for instance be the case if Ĉ contains

an unbounded number of empty branching instructions. A branching instruction Î is

said to be empty if for every vertex v 2 Î , Use(v; L̂) = ;. Clearly for w(Ĉ) to be de�ned
it is su�cient, but not necessary, that there exist a k such that

8 P 2 Path(L̂) jĈ(P)j � k � �(P)

In practice typical schedules for cyclic branching systems satisfy such condition. This is

true in particular if every instruction contains a non speculative operation.

The asymptotic time performance measure induces a total order on the m-admissible

schedules of a cyclic branching system L̂. Because the set fw(Ĉ)jĈ m7�! L̂ and w(Ĉ) <1g
is lower bounded by 0 it must have a greatest lower bound. If L̂ has an asymptotic m-

optimum for w, its asymptotic performance must equal such lower bound. However

there is no guarantee that an asymptotic m-optimum for L̂ and w exists. Indeed for

m =1 such optimum need not exist. This is quite obvious if there are no dependences

from one iteration to the next and consequently an unlimited number of L̂ iterations

can be executed concurrently. However, even under the restrictive condition that for all

operation op in L̂ and for every i � 1 there be a dependence chain from op[i] to op[i+ 1]

one can show that cyclic branching systems with no asymptotic 1-optimum for L̂ and

w exist [53]. This solves an open problem posed by several researchers [4,59].

Theorem 6.4.1 There exists a cyclic branching system L̂ with recurrent dependences,

core operation set O and such that

8 op 2 O d̂(op; op) 6= ; and 8R 2 d̂(op; op) �(R) = 1

for which no asymptotic 1-optimum exists for L̂ and any weighting function w mapping

only �nitely many execution paths of L̂ into zero.

Proof: Because resources are unbounded an in�nite schedule Ĉ admissible for L̂ is asymp-

totically 1-optimum for w if and only if for all P 2 Path(L̂), w(P) > 0 implies that

6.4. ASYMPTOTIC PERFORMANCE 91

jĈ(P)j be equal to the length of the longest dependence chain in the straight line task

L̂(P), that is the restriction of L̂ to P (see de�nition 5.2.1).

Let L̂ = (O[1;1]; �;G(1;1);�) be the cyclic branching system where

1. O = fcj1; cj2; op1; op2; op3; op3; op4; op5; op6g.
2. 8 op 2 O �(op) = 1.

3. G, the core control
ow graph of L̂ is given in �gure 6.1(a).

4. L̂ has recurrent dependences. The dependence relations are exactly those implied

by the following sets of dependence paths and portrayed in �gure 6.1(b).

d̂(op1; op2) = fe12g d̂(op2; op1) = fP21g
d̂(op1; op1) = fe12P21g d̂(op2; op2) = fP21e12g
d̂(op4; op6) = fe46g d̂(op6; op4) = fP64g
d̂(op5; op6) = fe56g d̂(op6; op5) = fP65g
d̂(op4; op4) = fe46P64g d̂(op5; op5) = fe56P65g
d̂(op6; op6) = d̂(op4; op4) [d̂(op5; op5)
d̂(op2; op3) = fe23g
d̂(op6; op3) = fe63g
d̂(op3; op3) = all simple cycles of G

d̂(op3; cj1) = fe31g
d̂(op3; cj2) = fP32g

All other sets of dependence paths are empty.

Consider an execution path P 2 Path(L̂) such that �(P) = 2 � n, for some even

integer n � 2 and P traverses op1 for the �rst n iterations and cj2 for the remaining n

iterations. Let Ĉ be an admissible branching schedule for L̂. Because n is arbitrary and

only �nitely many execution paths are mapped into zero by w, Ĉ cannot be asymptotically

1-optimum for w unless

jĈ(P)j = 2 � n + 1 + n = 3 � n+ 1

In fact all the longest dependence chains in L̂(P) are of length 3 � n + 1. For instance

there is a dependence chain of 2 � n cycles between op1 and op2 in the �rst n iterations,

a dependence chain of n cycles from op3 to itself in the remaining n iterations and the

dependence from op2 to op3 in iteration n. Any copy of operation op3[2 � n] has to be

92 CHAPTER 6. CYCLIC BRANCHING TASK SYSTEM

executed in cycle 3 �n+1 in order to guarantee that jĈ(P)j = 3 �n+1. Because op3[2 �n]
depends on op6[2 � n], and because of the 2 � n cycles dependence chains involving op4 &

op6 and op5 & op6 in iterations n through 2 � n, copies of operation op6[n + n=2] must

start executing in cycle 2 � n at the latest. Because of the dependence from op3 to cj2,

conditional cj2[n+n=2] cannot be executed, and hence resolved, before cycle 2�n+1+n=2.
This creates a gap of at least n=2+1 cycles between the point where op6[n+n=2] has to

be executed, in order to ensure that jĈ(P)j = 3 �n+1, and the point where the exact path

from which op6[n+n=2] is reached is known. One must therefore execute at least 2b
n=2+1

2
c

copies of operation op6[n+n=2]. As only 2 �n branching instructions are available for the

�rst n iterations, the number of operations executed in some instruction must increase

with n. Since in any branching schedule the number of operations per instruction is

required to be �nite, no admissible schedule Ĉ for L̂ can be asymptotically 1-optimum

for w. 2

In the remainder of this chapter it will be assumed that m < 1. If m <1 one can

show that an asymptotic m-optimum always exists.

Theorem 6.4.2 If m < 1 then for any cyclic branching system L̂ and any weighting

function w for L̂ the asymptotic m-optimum for L̂ and w exists.

Proof: Recall that for n � 1, L̂(n) denotes the n-instance of L̂ (see de�nition 6.2.1).

Given a branching schedule Ĉ m7�! L̂, Ĉ(n) denotes the branching schedule extracted from
Ĉ which is m-admissible for L̂(n). More formally if Ĉ = (G1; Î1) then Ĉ(n) = (Gn; În)
is the m-admissible schedule for L̂(n) where Gn is a subgraph of G1 and În � Î1.

Let �0 be the class of m-admissible branching schedules for L̂. For n � 1 one

inductively de�nes the class �n � �n�1. Given any two Ĉ; Ĉ0 2 �n�1 de�ne the following

relation �n:

Ĉ �n Ĉ0 , Ĉ(n) = Ĉ0(n)

The relation �n is an equivalence relation on the schedules in �n�1. De�ne the following

partial order <� on the equivalence classes of �n. Given 	 and 	0 two such equivalence

classes

	 <�	0 , 8 Ĉ0 2 	0 9 Ĉ 2 	 w(Ĉ) < w(Ĉ0)

6.4. ASYMPTOTIC PERFORMANCE 93

�

�

�

�

�

�

�

�

� �

?
�

�
�

�	

@
@
@
@R

?

�
�
�
��

A
A
A
AU

A
A
A
AU

�
�
�
��
@
@
@
@R

�
�

�
�	

?

�

cj1

op3

�

op1

op2

cj2

op6

op4 op5

�

'

&

-

e011 = (cj1; op1) e12 = (op1; op2)
e23 = (op2; op3) e031 = (op3; cj1)
e012 = (cj1; cj2) e024 = (cj2; op4)
e025 = (cj2; op5) e46 = (op4; op6)
e56 = (op5; op6) e63 = (op6; op3)

(a)

�

�

�

�

�

�

� �

?

A
A
A
AU

�
�
�
��
@
@
@
@R

�
�

�
�	

cj1

op3

op1

op2

cj2

op6

op4 op5

�

'

&

-

�

'

&

�
?

& %

� � � �
? ?

� �

� �
?

���
�1

P21
P65P64

P32

P21 = (e23; e
0
31; e

0
11)

P64 = (e63; e031; e
0
12; e24)

P65 = (e63; e
0
31; e

0
12; e25)

P32 = (e031; e
0
12)

(b)

Figure 6.1: (a) Core control
ow graph of L̂. (b) Graph representing the dependence
paths between the operations in L̂. Thin edges represent paths of more than one edge.

94 CHAPTER 6. CYCLIC BRANCHING TASK SYSTEM

Because m < 1 there are only �nitely many equivalence classes for �n. Thus there

exists a class �n � �n�1 such that for all other equivalence class 	 of �n

	 6<��n

that is

9 Ĉ 2 �n 8 Ĉ0 2 	 w(Ĉ) � w(Ĉ0)
Thus it is possible to construct a sequence (�n)n�0 of sets of branching schedules m-

admissible for L̂ such that:

1. 8 n � 1 �n � �n�1.

2. 8 i � 0 8 j � i 8 Ĉ 2 �i 8 Ĉ0 2 �j Ĉ(i) = Ĉ0(i)
Informally the schedule comprising only the �rst i iterations of Ĉ 2 �i is a sub-

schedule of schedule Ĉ0 2 �j , for j � i.

3. 8 i � 0 9 Ĉ 2 �i 8 Ĉ0 m7�! L̂ Ĉ0 62 �i) w(Ĉ) � w(Ĉ0).

The sequence (�n)n�0 is lower bounded by the empty set, thus because of property 1

above

lim
n!1

�n = �1 exists

Furthermore, because of property 2 above, �1 must contain exactly one schedule, Ĉopt.
Finally the last of the above properties guarantees that Ĉopt is asymptoticallym-optimum

for L̂ and w. 2

6.5 Approximating Optimal Asymptotic Performance

It is natural to wonder whether for cyclic branching systems there exists a heuristic

which is as simple as the GWF rule of the previous chapter and guarantees the same

performance bound for w as GWF does for w.

Theorem 6.5.1 Let L̂ be a cyclic branching system, �max the longest duration of an

operation in L̂, w a weighting function for L̂ and Ĉopt m7�! L̂ an asymptotic m-optimum

for w. Let w0 be the weighting function for L̂ such that for P 2 Path(L̂):

w0(P) =
w(P)

� � �(P) where � =
X

P2Path(P)

w(P)

�(P)

6.5. APPROXIMATING OPTIMAL ASYMPTOTIC PERFORMANCE 95

Then for every branching schedule Ĉ m7�! L̂ if Ĉ is GWF with respect to w0 then

w(Ĉ)
w(Ĉopt)

� �max �
�
2� 1

m
+
m� 1

2 �m � dlog2me
�

furthermore if the weighting function w is � skewed then

w(Ĉ)
w(Ĉopt)

� �max �
�
2� 1

m
+

m� 1

(�+ 1) �m � dlog2me
�

Proof: The proof of theorem 5.7.2 in chapter 4 was established for �nite as well as

in�nite tasks as long as them-optimum for the weighting function employed was de�ned.

Because theorem 6.4.2 has shown that such is the case if w0 is the weighting function

employed and because the asymptotic m-optimum for w is the same as the asymptotic

m-optimum for w0 the above claim holds. 2

As in chapter 4 the goal of a static scheduler is to approximate optimum performance

with periodic schedules. Theorem 4.6.3 clearly indicates that for arbitrary dependences

the asymptotic performance of all periodic schedules could be very poor. However, like

for the straight line case, if dependences are recurrent there exist periodic branching

schedules that are arbitrarily close to the asymptotic optimum.

Theorem 6.5.2 Let L̂ be a cyclic branching system with recurrent dependences, w an

arbitrary weighting function and Ĉopt an asymptotic m-optimum for w. Then for every

arbitrarily small � there exists an in�nite branching schedule Ĉ m7�! L̂ which is periodic

and is such that:

w(Ĉ; L̂)� w(Ĉopt; L̂) < �

Proof: Let B̂n be a branching schedule which is m-admissible for L̂(n) and is such that

for all Ĉ
m7�! L̂(n):

X
P 2 Path(L̂)

�(P) � n

w(P) � jB̂n(P)j
�(P)

�
X

P 2 Path(L̂)

�(P) � n

w(P) � jĈ(P)j
�(P)

96 CHAPTER 6. CYCLIC BRANCHING TASK SYSTEM

Such schedule B̂n must exist because there are only �nitely manym-admissible schedules

for L̂(n). Let Ĉn be the periodic schedule with body B̂n. Because L̂'s dependences are
periodic, Ĉn m7�! L̂. Furthermore one can write

w(Ĉn)� w(Ĉopt) =
X

P 2 Path(L̂)

�(P) � n

w(P) � jB̂n(P)j � jĈopt(P)j
�(P)

+

X
P 2 Path(L̂)

�(P) > n

w(P) � jĈn(P)j � jĈopt(P)j
�(P)

because of the choice of B̂n

w(Ĉn)� w(Ĉopt) �
X

P 2 Path(L̂)

�(P) > n

w(P) � jĈn(P)j
�(P)

Let O the core operation set of L̂ and �max = maxop2O �(op). Then

8 P 2 Path(L̂) jĈn(P)j � jOj � �max � �(P)

Thus X
P 2 Path(L̂)

�(P) > n

w(P) � jĈn(P)j
�(P)

� jOj � �max �
X

P 2 Path(L̂)

�(P) > n

w(P)

since

lim
n!1

X
P 2 Path(L̂)

�(P) > n

w(P) = 0

for every � > 0 it su�ces to select a branching schedule B̂n for a su�ciently large n. 2

Note that in the previous proof the body of the periodic schedule can contain an

arbitrarily large number of iterations and consequently its unfolding can be enormous.

Chapter 7

Conclusion

The aim of the dissertation was the identi�cation of theoretical advantages and bottle-

necks of the VLIW architectural paradigm. In this respect several results have been

established.

The performance of idealized dynamic and static schedulers have been compared. The

schedulers are idealized in that both have access to the same set of operation dependences

and both have in�nite scheduling lookahead. Because of the idealistic assumptions, static

and dynamic schedulers di�er only in the presence of loops: Statically generated loop

schedules are required to be periodic whereas dynamic ones are not.

In this framework it is shown that close to optimum dynamic schedules always exist.

Furthermore such schedules can be generated by employing a simple heuristic. On the

contrary if operation dependences in the original loop are irregular all static schedules

can yield poor performance. More precisely let m denote the number of available pro-

cessors. Then sequential loops have been exhibited for which all static schedules are

approximately m times slower than the optimum. If loop dependences are regular, how-

ever, there always exist static schedules which are arbitrarily close to the optimum and

the same heuristic used dynamically can be employed to generate static schedules with

close to optimum performance.

In the case of straight line loops with regular dependences (sr-loops) it was shown that

optimum schedules could be generated statically if all loop operations are interdependent.

In an attempt to characterize sr-loops for which optimum schedules can be generated

statically it was shown that this occurs if and only if an optimum schedule exists where

the maximum number of execution cycles separating two operations of the same iteration

97

98 CHAPTER 7. CONCLUSION

is bounded. The general problem of whether optimum schedules for sr-loops can be

generated statically remains open. When loops are not straight line an example was

exhibited for which no optimum static schedules on unlimited resource VLIWs exist.

In the case of sr-loops an e�cient loop parallelization algorithm has also been pre-

sented. The algorithm generates parallel loops with the same number of operations as

the original loop and guarantees a worst case performance of roughly twice the optimum.

The algorithm is based on a novel technique that deletes certain critical edges from the

loop's dependence graph. Because dependence graphs have usually a number of edges

linear in the number of operations, the algorithm runs in quadratic time on the average

and in cubic time in the worst case.

Some loop parallelization algorithms developed for VLIWs assume that dependences

between operations span at most one iteration. If this property does not hold, unrolling

is invoked on the input loop to diminish dependence distances between operations. A

side result has been to show that unrolling does not systematically guarantee smaller de-

pendence distances. Consequently loop parallelizing algorithms must explicitly account

for all type of dependences unless some degree of available parallelism is sacri�ced.

Because static schedules are created at compile time all possible execution scenarios

have to be generated. This opens the possibility for a time/space tradeo�. Indeed

even to achieve modest speedups some sequential applications where shown to require

exponential increases in code size.

Parallelism in sequential applications is clearly limited by operation dependences. It

is not immediate, however, that conditionals may equally inhibit parallelism. In fact it

was proved that only logarithmic speedups can be achieved when path probabilities are

slightly skewed and conditionals are abundant. This result holds for both static and dy-

namic schedulers. If path probabilities are skewed then better speedups are possible. As

the skew factor increases the general branching model degenerates into trace scheduling.

Thus, depending on the applications envisioned, a complex multi-branches design may

be unjusti�ed.

When generating instructions for branching or straight line schedules, statically or

dynamically, it is often the case that several operations are available for execution in

the same cycle. In the case where such operations cannot all be executed together a se-

lection criterion must be employed. For straight line schedules Graham has shown that

99

a random choice guarantees a bound of 2� 1=m from the optimum for an m processor

machine. When conditionals are present a simple scheduling heuristic extending Gra-

ham's random rule is introduced. The heuristic, termed greatest weight �rst or GWF,

gives priority to operations belonging to execution paths with greatest probability. If

all operations have the same duration the bound on optimality guaranteed by the GWF

rule is shown to vary between 2� 1=m and 2� 1=m+ (m� 1)=2m � dlog2me depending
on the skewing of branch probabilities.

The experiments performed by Riseman & Foster and Nicolau & Fisher estimated

the parallelism that could be extracted from sequential applications by a clairvoyant

dynamic scheduler. More precisely the parallelism was measured by assuming in�nite

hardware capabilities, perfect alias analysis and path prediction and was insensitive to

dependence irregularities. Thus these studies pointed out what could be hoped for in

the best of cases, not what could be realistically expected. In practice variable aliasing

results in more constraining operation dependences for static schedulers whereas dynamic

schedulers have limited operation lookahead. In addition this dissertation shows that

irregularity of dependences, path prediction and space/time tradeo� may further reduce

the parallelism statically or dynamically exploitable. The negative e�ect of various

factors on statically/dynamically extractible parallelism is summarized in the following

table. If a particular scheduler is una�ected by a given factor the corresponding slot is

left blank, otherwise it contains the symbol
p
.

variable dependence limited path space/time
aliasing irregularity lookahead prediction tradeo�

Static scheduler
p p p p

Dynamic scheduler
p p

In view of these results it is important that more realistic experiments be performed.

Some simulations in this direction have recently been performed by Wall [60]. Wall

shows that �ne grained parallelism realistically available is an order of magnitude less

100 CHAPTER 7. CONCLUSION

than that reported by Riseman & Foster and Nicolau & Fisher. Unfortunately Wall's

experiments do not inspect sequential applications but rely on a compiler to generate

machine code which is then tested for parallelism. Furthermore the measurements report

the parallelism that can be extracted with today's state of the art techniques. No at-

tempt is made to classify applications according to technology independent parameters.

Indeed it would be useful for future generation of hardware designers and paralleliza-

tion experts to classify sequential applications according to parameters such as fraction

of conditionals per execution path, skewness of path probabilities, degree of aliasing,

regularity of loop dependences, space/time tradeo� factor and parallelism available as

a function of lookahead size at the source. As long as such classi�cation is missing

the family of sequential applications whose �ne grained parallelism can commercially be

exploited remains unclear.

Bibliography

[1] A. V. Aho, J. D. Ullman, and J. E. Hopcroft, The Design and Analysis of

Computer Algorithms, Addison Wesley, 1974.

[2] A. Aiken, Compaction-Based Parallelization, PhD thesis, Cornell University,

Ithaca, New York, June 1988. TR 88-922.

[3] A. Aiken and A. Nicolau, A development environment for horizontal microcode,

IEEE Transactions on Software Engineering, 14 (1988), pp. 584{594.

[4] , Optimal loop parallelization, in Proceedings of the SIGPLAN 1988 Conference

on Programming Language Design and Implementation (Atlanta, Georgia), New

York, New York, June 1988, ACM, pp. 308{317.

[5] , Perfect pipelining: a new loop parallelization technique, in ESOP '88: 2nd

European Symposium on Programming (Nancy, France), New York, New York,

June 1988, Springer-Verlag, pp. 221{235. Lecture notes in Computer Science No.

300.

[6] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante, An overview

of the PTRAN analysis system for multiprocessing, Journal of Parallel and Dis-

tributed Computing, 5 (1988), pp. 617{640.

[7] R. Allen and K. Kennedy, Automatic translation of Fortran programs to vec-

tor form, ACM Transactions on Programming Languages and Systems, 9 (1987),

pp. 491{542.

[8] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, The IBM System/360

model 91: Machine philosophy and instruction handling, IBM Journal of Research

101

102 BIBLIOGRAPHY

and Development, 11 (1967), pp. 8{24.

[9] A. E. Charlesworth, An approach to scienti�c array processing: The architec-

tural design of the AP{120B/FPS-164 family, IEEE Computer, 14 (1981), pp. 18{

27.

[10] E. G. Coffman, Computer and Job-shop Scheduling Theory, John Wiley and Sons,

New York, New York, 1976.

[11] E. G. Coffman and R. L. Graham, Optimal scheduling for two processor sys-

tems, Acta Informatica, 1 (1972), pp. 200{213.

[12] R. P. Colwell, R. P. Nix, J. J. O'Donnel, D. B. Papworth, and P. K.

Rodman, A VLIW architecture for a trace scheduling compiler, IEEE Transactions

on Computers, C-37 (1988), pp. 967{979.

[13] R. Cytron, Doacross: Beyond vectorization for multiprocessors, in Proceedings of

the 1985 International Conference on Parallel Processing (Penn State University,

Pennsylvania), Silver Spring, Maryland, Aug. 1986, IEEE and ACM, pp. 836{844.

[14] K. Ebcio�glu, A compilation technique for software pipelining of loops with con-

ditional jumps, in 20th Annual Microprogramming Workshop (Colorado Spring,

Colorado), New York, New York, Dec. 1987, IEEE and ACM, pp. 69{79.

[15] , Some design ideas for a VLIW architecture for sequential-natured software, in

Proceedings of the IFIP WG 10.3 Working Conference on Parallel Processing (Pisa,

Italy), Amsterdam, the Netherlands, Apr. 1988, North-Holland, pp. 1{21.

[16] K. Ebcio�glu and T. Nakatani, A New Compilation Technique for Parallelizing

Loops with Unpredictable Branches on a VLIW Architecture, Languages and Com-

pilers for Parallel Computing. Research Monographs in Parallel and Distributed

Computing, MIT Press, 1989, ch. 12.

[17] K. Ebcio�glu and A. Nicolau, A global resource-constrained parallelization tech-

nique, in International Conference on Supercomputing (Crete, Greece), New York,

New York, June 1989, ACM, pp. 154{163.

BIBLIOGRAPHY 103

[18] J. R. Ellis, Bulldog: A Compiler for VLIW Architectures, ACM doctoral disser-

tation awards; 1985, MIT Press, Boston, Massachussets, 1986.

[19] J. Ferrante, K. J. Ottenstein, and J. D. Warren, The program dependence

graph and its use in optimization, ACM Transactions on Programming Languages

and Systems, 9 (1987), pp. 319{349.

[20] J. A. Fisher, Trace scheduling: A technique for global microcode compaction, IEEE

Transactions on Computers, C-30 (1981), pp. 478{490.

[21] , Instruction level parallelism. NYU Computer Science Colloquium, Apr. 1990.

[22] J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau, Parallel

processing: A smart compiler and a dumb machine, in Proceedings of the ACM

SIGPLAN 1984 Symposium on Compiler Construction (Seattle, Washington), New

York, New York, June 1984, ACM, pp. 37{47.

[23] M. R. Garey and D. S. Johnson, Computers and Intractability - A Guide to the

Theory of NP-Completeness, Freeman, New York, New York, 1979.

[24] R. L. Graham, , D. E. Knuth, and O. Patashnik, Concrete Mathematics: A

Foundation for Computer Science, Addison Wesley, 1989.

[25] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan,

Optimization and Approximation in Deterministic Sequencing and Scheduling: A

Survey, vol. 5 of Annals of Discrete Mathematics, North Holland Publishing Com-

pany, 1979, pp. 287{326.

[26] D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms,

Birkh�auser, 1982.

[27] N. S. Grigor'yeva, I. S. Latypov, and I. V. Romanovskii, Cyclic problems

of scheduling theory, Tekhnicheskaya Kibernetika, (1988), pp. 3{11. English trans-

lation.

[28] R. Gupta, A recon�gurable LIW architecture and its compiler, PhD thesis, Univer-

sity of Pittsburgh, Pittsburg, Pennsylvania, 1987. Technical Report 87-3.

104 BIBLIOGRAPHY

[29] R. Gupta and M. L. Soffa, Region scheduling: An approach for detecting and

redistributing parallelism, IEEE Transactions on Software Engineering, 16 (1990),

pp. 421{431.

[30] IBM Corporation, IBM RISC System/6000 Technology, IBM Corporation, 1990.

[31] R. M. Karp, A Characterization of the Minimum Cycle Mean in a Digraph, vol. 23

of Discrete Mathematics, North Holland Publishing Company, 1978, pp. 309{311.

[32] R. M. Karp and R. E. Miller, Properties of a model for parallel computations:

Determinacy, termination, queueing, SIAM Journal of Applied Mathematics, 14

(1966), pp. 1390{1411.

[33] K. Karplus and A. Nicolau, E�cient hardware for multi-way jumps and pre-

fetches, in 18th Annual Microprogramming Workshop (Paci�c Grove, California),

Washington, DC, Dec. 1985, IEEE and ACM, pp. 11{18.

[34] , A compiler-driven supercomputer, Applied Mathematics and Computations,

20 (1986), pp. 95{110.

[35] P. Kogge, The microprogramming of pipelined processors, in Proceedings of the

4th Annual Symposium on Computer Architecture, Silver Spring, Maryland, 1977,

IEEE, pp. 63{69.

[36] D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, Dependence graphs

and compiler optimizations, in 8th ACM Symposium on Principles of Programming

Languages, ACM, New York, New York, 1981, pp. 207{218.

[37] , The structure of an advanced retargetable vectorizer, in Tutorial on Super-

computers: Designs and Applications, K. Hwang, ed., IEEE Press, New York, New

York, 1984, pp. 163{178.

[38] M. Lam, Software pipelining: an e�ective scheduling technique for VLIW machines,

in Proceedings of the SIGPLAN 1988 Conference on Programming Language Design

and Implementation (Atlanta, Georgia), ACM, June 1988, pp. 318{328.

[39] S. Lam and R. Sethi, Worst case analysis of two scheduling algorithms, SIAM

Journal of Computing, 6 (1977), pp. 518{536.

BIBLIOGRAPHY 105

[40] E. L. Lawler, Combinatorial Optimization, Holt, Rinehart and Winston, 1976.

[41] J. K. Lenstra and A. H. G. Rinnooy Kan, Complexity of scheduling under

precedence constraints, Operations Research, 26 (1978), pp. 22{35.

[42] A. Munshi and B. Simons, Scheduling loops on processors: Algorithms and com-

plexity, SIAM Journal of Computing, 19 (1990), pp. 728{741.

[43] T. Nakatani and K. Ebcio�glu, Using a lookahead window in a compaction-

based parallelizing compiler, in 23rd Annual Microprogramming Workshop, Nov.

1990, pp. 57{68.

[44] A. Nicolau, Parallelism, Memory Anti{aliasing and Correctness Issues for a Trace

Scheduling Compiler, PhD thesis, Yale University, New Haven, Connecticut, June

1984.

[45] , Uniform parallelism exploitation in ordinary programs, in Proceedings of the

1985 International Conference on Parallel Processing (Penn State University), Silver

Spring, Maryland, Aug. 1985, IEEE and ACM, pp. 614{618.

[46] A. Nicolau and J. A. Fisher, Measuring the parallelism available for very

long instruction word architectures, IEEE Transactions on Computers, C-33 (1984),

pp. 968{976.

[47] R. Paige, Transformational programming { applications to algorithms and systems,

in Proceedings of the 10th ACM Symposium on Principles of Programming Lan-

guages, ACM, Jan. 1983, pp. 73{87.

[48] P. W. Purdom and C. A. Brown, The Analysis of Algorithms, Holt, Rinehart

and Winston, 1985.

[49] B. R. Rau, C. D. Glaeser, and R. L. Picard, E�cient code generation for

horizontal architectures: Compiler techniques and architectural support, in 9th An-

nual Symposium of Computer Architecture, Silver Spring, Maryland, Apr. 1982,

IEEE and ACM, pp. 131{139.

[50] R. Reiter, Scheduling parallel computations, Journal of the ACM, 15 (1968),

pp. 590{599.

106 BIBLIOGRAPHY

[51] E. M. Riseman and C. C. Foster, The inhibition of potential parallelism by

conditional jumps, IEEE Transactions on Computers, C-21 (1972), pp. 1405{1411.

[52] I. V. Romanovskii, Optimization of stationary control of a discrete deterministic

process, Kibernetika, 3 (1967), pp. 66{78. English translation.

[53] U. Schwiegelshohn, F. Gasperoni, and K. Ebcio�glu, On optimal paralleliza-

tion of arbitrary loops, Journal of Parallel and Distributed Computing, 11 (1991),

pp. 130{134.

[54] M. Sharir, A strong connectivity algorithm and its application in data
ow analy-

sis, Computers and Mathematics with Applications, 7 (1981), pp. 67{72.

[55] B. Su, S. Ding, and J. Xia, URPR { An extension of URCR for software pipelin-

ing, in 19th Annual Microprogramming Workshop (Washington, DC), New York,

New York, Oct. 1986, IEEE and ACM, pp. 94{103.

[56] R. E. Tarjan, Depth �rst search and linear graph algorithms, SIAM Journal of

Computing, 1 (1972), pp. 146{160.

[57] J. E. Thornton, Design of a Computer { The Control Data 6600, Scott, Foresman

and Co., Glenview, Illinois, 1970.

[58] R. F. Touzeau, A Fortran compiler for the FPS scienti�c computer, in Proceed-

ings of the ACM SIGPLAN 1984 Symposium on Compiler Construction (Montreal,

Canada), New York, New York, June 1984, ACM, pp. 48{57.

[59] A. K. Uht, Requirements for optimal execution of loops with tests, in International

Conference on Supercomputing (St. Malo, France), New York, New York, July 1988,

ACM. Also available as Technical Report CS88-116, University of California, San

Diego.

[60] D. W. Wall, Limits of instruction-level parallelism, in Fourth International Confer-

ence on Architectural Support for Programming Languages and Operating Systems,

Apr. 1991, pp. 176{188.

BIBLIOGRAPHY 107

[61] A. Zaky and P. Sadayappan, Optimal static scheduling of sequential loops on

multiprocessors, in International Conference on Parallel Processing, IEEE, Aug.

1989, pp. III{(130{137).

