
Zero-knowledge Proofs: Efficient Techniques for
Combination Statements and their Applications

by

Chaya Ganesh

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 2017

Professor Yevgeniy Dodis

c© Chaya Ganesh
All Rights Reserved, 2017

Dedication

To all my Gurus, with gratitude.

iv

Acknowledgements

I would like to express my deep sense of gratitude to my advisor, Yevgeniy
Dodis, for opening up several opportunities for me. I thank him for his endless
support and encouragement. I am especially thankful to him for giving me great
freedom and allowing me to discover what I enjoy. His enthusiasm, energy and
passion will always inspire me.

I would like to thank all my internship mentors for investing in me: Melissa
Chase at Microsoft Research, for introducing me to zero-knowledge; Vlad Kolesnikov
at Bell Labs, for believing in me and for being an excellent mentor; Payman Mo-
hassel at Visa Research, for the wonderful time I had working with him, and for
invaluable career advice. I am grateful to all of them for giving me the opportunity
to work with them. I immensely enjoyed all my internships; they have all been
great learning experiences. I am also grateful to my hosts during various research
visits: Benny Applebaum at Tel Aviv University for hosting me when I still had
a lot to learn; and Arpita Patra at Indian Institute of Science for being both a
friend and a collaborator. I thank all my co-authors for the many hours of fun and
hard-work.

I am grateful to Victor Shoup for teaching wonderful courses on Cryptography
and Number Theory. I thank all my committee members for their constructive
comments that helped improve this work: Oded Regev, Victor Shoup, Payman
Mohassel and Vlad Kolesnikov.

I thank the staff of Computer Science Department, especially Rosemary Amico
and Santiago Pizzini, for all their help and support.

I thank the many friends I made during my stay at Courant: Adriana for her
encouragement and support during difficult times; Aris for being patient with all
my questions when I was starting out; Azam, Deva, Huck, Igor, Laura, Noah, Omri,
Sasha, Sandro, Shravas, Sid, Siyao for many discussions, and their company. I am
grateful to all of them for creating a stimulating and encouraging environment, and
for many enjoyable conversations, both academic and otherwise. I thank Shiva,
Talal and Varun for many delightful dinners, conversations and game nights in
their company.

I thank my roommates, Seher and Ashwin, for all the above and so much more:
their warmth, and for always being there. I cannot imagine this journey being half
the fun without them.

I thank Esha for standing by me through all times; good, and difficult.
Finally, I thank my family for their continuous love and unflinching support.

v

Abstract

Zero-knowledge proofs provide a powerful tool, which allows a prover to con-
vince a verifier that a statement is true without revealing any further information.
It is known that every language in NP has a zero knowledge proof system, thus
opening up several cryptographic applications. While true in theory, designing
proof systems that are efficient to be used in practice remains challenging. The
most common and most efficient systems implemented are approaches based on
sigma protocols, and approaches based on SNARKs (Succinct Non-interactive AR-
guments of Knowledge). Each approach has its own advantages and shortcomings,
and each is suited for proving certain statements.

While sigma protocols are efficient for algebraic statements, they are expensive
for non-algebraic statements. For example, proving statements about hash func-
tions that are expressed as Boolean circuits would entail writing each gate in the
circuit as an algebraic relation, resulting in several exponentiations per gate in the
circuit.

SNARKs, on the other hand, result in short proofs and efficient verification,
and are better suited for proving statements about hash functions. But proving an
algebraic statement, for instance, knowledge of discrete logarithm, is expensive as
the prover needs to perform public-key operations proportional to the size of the
circuit.

Recent works achieve zero-knowledge proofs that are efficient for statements
phrased as Boolean circuits based on Garbled circuits (GC). This, again, is expen-
sive for large circuits, in addition to being inherently interactive. Thus, SNARKs,
and GC-based approaches are better suited for non-algebraic statements, and sigma
protocols are efficient for algebraic statements.

But in some applications, one is interested in proving combination statements,
that is, statements that have both algebraic and non-algebraic components. For
example, consider proving knowledge of x such that H(gx) = y for a hash function
H, and public y. The state of the art fails to take advantage of the best of all
worlds and has to forgo the efficiency of one approach to obtain the other’s. In
this work, we ask how to efficiently prove a statement that is a combination of
algebraic and non-algebraic statements.

1. We first show how to combine the GC-based approach with sigma protocols:
we give protocols for combination statements where a garbled circuit is used
for the Boolean circuit component of the statement and sigma protocol for
the algebraic component. We show applications of our protocols in achieving
anonymous credentials based on standard signatures.

2. Then, we study how to combine sigma protocol proofs with SNARKs to ob-
tain non-interactive arguments for combination statements. We show appli-

vi

cations of our techniques to privacy-preserving protocols on the blockchain.

3. Finally, we study garbled circuits as a primitive and present an efficient way
of hashing garbled circuits. We show applications of our hashing technique,
including application to GC-based zero-knowledge.

vii

Contents

Dedication . iv
Acknowledgements . v
Abstract . vi
List of Figures . xi
List of Tables . xii

1 Introduction 1
1.1 Overview of Results . 1

1.1.1 Zero-knowledge Proofs . 2
1.1.2 Garbled Circuits . 2

1.2 Zero-knowledge Proofs . 2
1.2.1 Our Results . 3
1.2.2 Applications . 5

1.3 Garbled Circuits . 9
1.3.1 Our Results . 9
1.3.2 Applications . 10

1.4 Roadmap . 12

2 Preliminaries 14
2.1 Notation . 14
2.2 Zero-knowledge Proofs . 14

2.2.1 Sigma protocols . 16
2.2.2 Non-interactive Zero-knowledge Proofs 17

2.3 Garbled Circuits . 19
2.3.1 Yao’s construction . 22
2.3.2 Free-XOR and other optimizations 22

2.4 Garbled Circuits for ZK . 23
2.4.1 Oblivious Transfer . 23
2.4.2 ZK Proof Based on Garbled Circuits 24

2.5 SNARKs for Arithmetic Circuits 25
2.5.1 Quadratic Arithmetic Programs 25
2.5.2 Bilinear Maps . 26

viii

2.5.3 zk-SNARK construction from QAP 27

3 ZK for Combination Statements 29
3.1 Sigma Protocols and GC for Combination Statements 29

3.1.1 Preliminaries . 29
3.1.2 Proving Non-algebraic Statements on Algebraic Commitments 30
3.1.3 First Protocol . 32
3.1.4 Second Protocol . 37
3.1.5 Efficiency Comparison and Optimizations 42

3.2 Sigma Protocols and SNARKs for Combination Statements 44
3.2.1 Proof of equality of committed values 44
3.2.2 SNARK on committed input 45
3.2.3 SNARK on committed input/output 51
3.2.4 Sigma protocols on committed outputs 54

4 Applications of ZK for Combination Statements 55
4.1 Building Blocks for Privacy-Preserving Signature Verification 55

4.1.1 Proving that a committed value is the hash of another com-
mitted value . 55

4.1.2 Proof of equality of committed values in different groups . . 56
4.1.3 Proof of equality of discrete logarithm of a committed value

and another committed value 57
4.2 Privacy-Preserving Signature Verification 60

4.2.1 RSA signatures . 60
4.2.2 The DSA Scheme. 63

4.3 Secure computation on committed/signed inputs 67
4.4 Building Blocks for Privacy-Preserving Proof of Solvency 68

4.4.1 Proof of Knowledge of Double Discrete Logarithm in Elliptic
Curve Groups . 68

4.5 Proof of Solvency . 73
4.5.1 Proof of assets . 73
4.5.2 Proof of liabilities . 74
4.5.3 Privacy-preserving proof of solvency 77

5 Hashing Garbled Circuits for Free 78
5.1 Overview . 78

5.1.1 Related Work . 82
5.2 GC hashing scheme . 83

5.2.1 Hashed Garbled Circuit security 83
5.2.2 Our Construction . 84
5.2.3 Hashing in half-gates garbling scheme 90
5.2.4 Performance and Impact . 93

ix

5.3 Application to Zero-Knowledge . 97

6 Conclusion 101
Bibliography . 102

x

List of Figures

2.1 The ideal functionality FCOT . 24

3.1 The ideal functionality FCom,f . 31
3.2 The Protocol ΠCom,f . 34
3.3 The Protocol ΠMAC,f . 39
3.4 The Protocol comEq . 44
3.5 The Protocol comInSnark . 48
3.6 The Protocol comIOSnark . 54

4.1 The ideal functionality FHash . 56
4.2 The Protocol ΠHash . 56
4.3 The ideal functionality FEq . 57
4.4 The Protocol ΠEq . 57
4.5 Double discrete logarithm proof . 58
4.6 pointAddition : PK{(P = (Px, Py), Q = (Qx, Qy)) : T = (Tx, Ty) =

P +Q ∧ C1 = Comq(Px) ∧ C2 = Comq(Py) ∧ C3 = Comq(Qx) ∧ C4 =
Comq(Qy)} . 70

4.7 ec-ddlog : PK{(λ, x, y, r, r1, r2) : Comp(λ) = λP + rQ ∧ Comq(x) =
xP ′ + r1Q

′ ∧ Comq(y) = yP ′ + r2Q
′ ∧ (x, y) = λP} 72

4.8 Proof of assets . 75
4.9 Proof of liabilities . 76
4.10 Proof of solvency . 77

5.1 The Free Hash garbling scheme hG 86
5.2 The Half-Gate Free Hash garbling scheme halfG 91
5.3 The GC based Σ-protocol . 100

xi

List of Tables

5.1 Free Hash Implementation results 94
5.2 SFE Performance improvement using Free Hash 96
5.3 A billion-gate circuit. Execution time estimates of cut-and-choose

with our improvements to achieve cheating probability of 2−40 . . . 97
5.4 A billion-gate circuit. Execution time estimates of cut-and-choose

with our improvements to achieve deterrence of ε = 0.9. 97

xii

Chapter 1

Introduction

Zero-knowledge proofs [GMR85] provide an extremely powerful tool, which
allows a prover to convince a verifier that a statement is true without revealing any
further information. Since their conception, zero-knowledge proofs have emerged
as a fundamental object in modern cryptography, with deep connections to the
theory of computation [GMW86, For87, BOGG+90, Vad99].

Zero-knowledge proofs have found countless applications; some of them being
identification schemes [FFS87], group signature schemes [CS97b], public-key en-
cryption [NY90], anonymous credentials [CL01], voting [CF85], and secure multi-
party computation [GMW87a]. Most recently, zero-knowledge proofs have been
used as an important tool in alt-coins like ZCash, Monero, etc. to make the trans-
actions private and anonymous [BCG+14, NMT].

It has been shown that every NP language has a zero knowledge proof sys-
tem [GMW87b], opening up the possibility for a vast range of privacy preserving
applications. However, while this is true in theory, designing proof systems that
are efficient enough to be used is significantly more challenging. In reality, we only
have a few techniques for efficient proofs, and those only apply to a restricted set
of languages.

In this dissertation, we study efficient zero-knowledge proofs for the kind of
statements that come up in applications.

1.1 Overview of Results

We design efficient zero-knowledge proof systems to prove combination state-
ments: statements that have algebraic and non-algebraic components, that often
come up in practice. We focus on the applications of our constructions to anony-
mous credentials and privacy-preserving Bitcoin audits. We then study Garbled
circuits, design an efficient technique to hash them and show applications, includ-
ing application to zero-knowledge.

1

1.1.1 Zero-knowledge Proofs

We first give constructions that efficiently combine sigma protocol proofs with
zero-knowledge proofs based on garbled circuits. Our constructions have the prop-
erty that, for a combination statement, the circuit that is garbled for the GC-based
proof is independent of the algebraic component of the statement. In particular,
expensive group operations are not part of the circuit that is garbled. In addi-
tion, the number of public key operations in the sigma proof is independent of
the size of the circuit that is garbled. Next, we study efficient non-interactive ar-
guments for combination statements. Using the garbled circuit approach for the
non-algebraic component results in a protocol that is inherently interactive. We
begin with SNARKs that are efficient for statements represented as Boolean or
arithmetic circuits, and show how to use them together with sigma protocols. The
prover complexity in SNARKs grows with the size of the circuit. Our constructions
have the desired property that algebraic component of the combination statement
is not represented as a circuit, and the public-key operations of the sigma protocol
is independent of the circuit size of the non-algebraic component.

1.1.2 Garbled Circuits

Next, we improve (actually show how to achieve for free) a core garbling feature
of GC, circuit hashing. We propose a definition that is weaker than standard col-
lision resistance, but suffices for certain applications of garbled circuits. We then
present constructions that output a garbled circuit and its hash that satisfy our
definition of GC hash, at no additional computational overhead. We discuss ap-
plications of our GC hashing to GC-based zero-knowledge. We also show how this
improves standard GC-based cut-and-choose protocols for two-party computation,
and evaluation of private certified functions.

1.2 Zero-knowledge Proofs

Sigma protocols are proof systems that focus on proving algebraic statements,
i.e. statements about discrete logarithms, roots, or polynomial relationships be-
tween values [Sch90, GQ88, CS97b, GS08]. One could, of course, express any NP
relation as a combination of algebraic statements, for example by expressing the
relation as a circuit, and expressing each gate as an algebraic relation between
input and output wires. But if we were to take this approach to prove a statement
using sigma protocols we would need several exponentiations per gate in the cir-
cuit. This becomes prohibitively expensive for large circuits (for example a circuit
computing a cryptographic hash function or block cipher).

Recently, [JKO13] introduced a new approach for proving statements phrased

2

as boolean circuits, based on garbled circuits. Their construction has the advan-
tage that it only requires a few symmetric key operations per gate, making it
dramatically more efficient than a sigma-protocol-based solution for non-algebraic
statements. This means that it is finally practical to prove statements about com-
plex operations such as hash functions or block ciphers. For instance, zero knowl-
edge proofs for an AES circuit or a SHA256 circuit can be done in milliseconds on
standard PCs using state of the art implementations for garbled circuits. On the
other hand, expressing many public key operations as a circuit is still extremely
expensive. Consider, for example, a circuit computing modular exponentiation on
a cryptographic group - the result would be much larger than the circuit computing
a hash function, and computing a garbled circuit for such a computation would be
too expensive to be practical.

Succinct Non-interactive ARguments of Knowledge (SNARKs) [Gro10, GGPR13]
allow for very efficient verification and short proofs. They assume an honestly gen-
erated common reference string (CRS), and the prover performs public-key opera-
tions proportional to the size of the arithmetic circuit representing the statement.
Thus, though SNARKs are suited for non-algebraic statements, like a crypto-
graphic hash function, they are not well-suited for algebraic relations due to the
large size of the circuit representation of group operations.

Now we have very different techniques for achieving zero knowledge proofs for
algebraic and non-algebraic statements. But in some applications, one is inter-
ested in proving statements that combine the two. For example, what if we want
an efficient protocol for proving knowledge of a DSA or RSA signature, whose
verification requires computing both a hash function and several exponentiations?

The state of the art fails to take advantage of the best of all worlds and has
to forgo the efficiency of one approach to obtain the other’s. One might consider
directly combining the protocols, but a naive solution would allow a cheating prover
to use a different witness for the algebraic and non-algebraic components of the
computation and produce a convincing proof for a statement for which there is
no single valid witness. Thus, one of the basic challenges is to bind the values
committed to in the sigma protocols to the prover’s inputs in the GC-based zero
knowledge proof or in the SNARK, without having to perform expensive group
operations (e.g. exponentiation) inside the circuit, and without proving large-
circuit statements using sigma protocols.

1.2.1 Our Results

We study the problem of combining proof systems for algebraic and non-
algebraic statements, and obtain the following results.

1. Sigma protocols and Garbled circuits.

3

• Given an algebraic commitment C, we propose protocols for proving
that C is a commitment to x such that f(x) = 1 where f is expressed
as a boolean circuit. Both constructions have the desired property that
the GC-based component is dominated by the cost of garbling f (i.e. not
garbling expensive group operations), and the total number of public-
key operations is independent of the size of f .

More specifically, our first solution has public key operations propor-
tional to the maximum bit length of the input (|x|), and symmetric-key
operations proportional to the number of gates in f . The second has
public-key operations proportional to the statistical security parameter
s and symmetric-key operations proportional to the number of gates in
f and the length of input.

Existing solutions either require public-key operations proportional to
the size of f , or need to garble circuits for expensive group operations
such as exponentiations in large groups.

• Building directly on these protocols, we show how to implement a proof
that one committed message is the hash of another, and a proof that
two commitments in different groups commit to the same value.

• Finally, we show how we can combine all of these protocols to obtain
an efficient proof of knowledge of a signature on a committed message
for RSA-FDH, DSA, and EC-DSA signatures. This easily extends to
standardized variants of RSA like RSA-PSS.

2. Sigma protocols and SNARKs.

• Given algebraic commitments C1 and C2, we construct NIZKs for prov-
ing that C1 and C2 are commitments to x and y respectively, such that
f(x) = y. In particular, we show efficient techniques for proving that
the input used in the zk-SNARK statement is the same as the input
committed to by the algebraic commitment (similarly for the outputs).
This enables efficient switching between the algebraic and arithmetic
world.

• We give an efficient NIZK for proving knowledge of double discrete
logarithms over elliptic curve groups. In particular, we show techniques
for proving knowledge of x such that C is an algebraic commitment to
y, where y = gx and g is a generator for an elliptic curve group.

• Building on the above protocols, we construct a privacy-preserving proof
of solvency for Bitcoin.

We refer the reader to Chapter 3 for our constructions; Section 3.1 for combining

4

sigma protocols and garbled circuits, and Section 3.2 for combining sigma protocols
and SNARKs.

1.2.2 Applications

We primarily focus on anonymous credentials and proof of solvency here, al-
though we believe our results will be applicable to many other privacy protocols.

Anonymous Credentials. Anonymous credential systems were introduced by
Chaum [Cha86]. A credential system allows a user to obtain credentials from an
organization and at some later point prove to a verifier (either the same organiza-
tion or some other party) that she has been given appropriate credentials. More
specifically, the user’s credentials will contain a set of attributes, and the verifier
will require that the user prove that the attributes in her credential satisfy some
policy. We say the system is anonymous if this proof does not reveal anything
beyond this fact.

There have been several proposals for constructions of anonymous credential
systems [CL01, CL04, BCKL08, Bra99, BL13]. In general, they all follow a sim-
ilar approach: the credential is a signature from the organization on the user’s
attributes. To prove possession of valid credentials, the user will first commit to
her attributes, then prove, in zero knowledge, knowledge of a signature on the com-
mitted attributes, and finally prove, again in zero knowledge, that the committed
attributes satisfy the policy. To make these zero knowledge proofs efficient, most of
the proposed credential systems are based on sigma protocols, which as described
above give efficient proofs of knowledge for certain algebraic statements. This in
turn means that the signatures used must be specially designed so that a sigma
protocol can be used to prove knowledge of a signature on a committed message.
(We note that, the protocols of [Bra99, BL13] work slightly differently in that the
user and organization jointly compute the proof of knowledge of a signature as part
of the credential issuance. However, they still use a customized issuing protocol
which would not be compatible with standardized signatures, and they use sigma
protocols exactly as described here to prove that the committed attributes satisfy
the policy.)

But what if we want to base our credentials on a standard signature such as
FDH-RSA or DSA which includes hashing the message? Or what if we want the
user to be able to prove a statement about his attributes that is not easily express-
ible as an algebraic relation? In Chapter 4, we show how to use our constructions
to base credentials on standard signatures.

Proof of Solvency. Bitcoin as a digital currency has acheived unprecedented
success and deployment. Due to the difficulty in managing cryptographic keys,

5

many users, in practice use online exchanges that manage the keys on behalf of
the users. Bitcoin exchanges securely hold bitcoins on their customers’ behalf,
offer conversion between bitcoin and other currencies, and provide other services
similar to online banking. Though convenient, the use of exchanges renders the
users vulnerable to loss of their assets. A number of exchanges declared bankruptcy
after losing their customers’ bitcoin holdings due to a variety of reasons like theft,
fraud or technical mistakes. The infamous example of Mt.Gox, which was the
oldest and largest exchange, led to loss of over 450MUSD in customer assets. A
desirable safeguard of the users against such losses is a demonstration that an
exchange controls enough bitcoins to settle the accounts of all of its customers.
Specifically, what is desired is for an exchange to prove that it is solvent. Though
an exchange could demonstrate it is solvent by simply transferring all its assets to
a fresh public key, such an approach would reveal confidential information like the
addresses controlled by the exchange, the size of business etc which is potentially
sensitive for both customers and the exchange. A cryptographic proof of solvency
allows an exchange to demonstrate it is solvent while not revealing any other
information. A proof of reserves and a corresponding proof of liabilities together
constitute a proof of solvency.

A cryptographic proof of liabilities was first proposed by Maxwell [Wil]. How-
ever, this solution was not entirely private as it leaked information about the num-
ber and size of customer accounts. A proof of solvency that reveals no other infor-
mation, called Provisions was proposed in [DBB+15]. But, Provisions assumes that
the public key corresponding to a Bitcoin address is available on the blockchain,
and hence does not enable using addresses where the public keys are unknown.
A Bitcoin address is a hash, and only a hash of the public key is visible on the
blockchain. Hence, Provisions is not compatible with Bitcoin. A Bitcoin address is
a 160-bit hash of the public portion of a public/private ECDSA keypair [bit] where
the public portion is derived from the private key by an exponentiation operation
on the secp256k1 curve [sec]. Thus a proof of solvency for Bitcoin would have the
exchange show that it knows the private keys corresponding to some hashed public
keys available on the blockchain.

Thus any proof of solvency for a Bitcoin exchange (or any other cryptocurrency)
must deal with a zero-knowledge proof that combines both arithmetic and algebraic
statements. In particular, the exchange wants to show that it knows a secret x
such that H(gx) = y where H is a hash function such as SHA-256. The statement
has both algebraic (gx) and Boolean (hash function H) parts. One could express
the function composition as a purely algebraic or Boolean function and then use
Sigma protocols or zk-SNARKs respectively; but in the former case, the proof size
and verification time will be quite large, while in the latter, the proof generation
time will increase substantially. Ideally, one would like to use a sigma protocol for
the algebraic part and a zk-SNARK for the Boolean part, and then combine the

6

two proofs while preserving zero-knowledge. In Chapter 4, we show how to use one
of our constructions to obtain a privacy-preserving proof of solvency for Bitcoin.

Applications of Our Results.

• Anonymous Credentials based on RSA, DSA, EC-DSA signatures.
The most direct application in the context of anonymous credentials would
be to use RSA, DSA, or EC-DSA signatures directly as credentials but still
allow for privacy preserving presentation protocols. This would be slower
than existing credential systems, but it would have the advantage that the
issuer would not have to perform a complex protocol, but would only have to
issue standardized signatures. It further enables interoperability with exist-
ing libraries and non-private credential applications. The work of Delignat-
Lavaud et al. [DLFKP16] achieve a similar result using only zk-SNARKs.
This, as discussed earlier is inefficient for the algebraic component. While
our first result gives a solution in the interactive setting our second result
gives a non-interactive solution.

Alternatively, we could construct a service which allows users to convert
their non-private credentials (based on RSA/DSA/EC-DSA signatures) into
traditional anonymous credentials (e.g. Idemix [ide10] or UProve [PZ13] to-
kens, or keyed-verification credentials [CMZ14]). Using our new protocol, the
service could perform that conversion without knowing the user’s attributes :
the user would commit to his attributes, prove using our protocol that they
have been signed, and then obtain from the service an anonymous credential
encoding the same attributes. (All of these anonymous credential systems
allow for issuing credentials on committed attributes.)

• Anonymous Credentials with more general policies. Even if we con-
sider a system based on traditional anonymous credentials, we might use
our protocols to allow the user to prove that his attributes satisfy a more
complicated policy. For example, he might want to release the hash of one
of his attributes and prove that that has been done correctly, or prove that
an attribute has been encrypted using a standard encryption scheme like
RSA-OAEP.

Our protocols could also be used to prove that a user’s attributes fall in a
given range, or to prove statements about comparisons between attributes.
If the range of values possible for each attribute is small, we already have rea-
sonably efficient solutions - the user can just commit to each bit of the value,
and do a straightforward proof. However this becomes expensive when the
range gets larger, in which case the most efficient known approach is based
on integer commitments [FO97] and requires several exponentiations with

7

an RSA modulus where the exponent is larger than the group order (e.g. a
roughly 2000 bit exponentiation with a 2000 bit modulus for reasonable se-
curity parameters). Alternatively we can use our second scheme, which only
requires a number of public-key operations linear in the security parameter
(e.g. 60), and allows those operations to use much more efficient elliptic
curve groups.

• Converting between different commitment schemes. There are many
protocols based around commitments, and ideally we would be able to com-
bine these protocols arbitrarily. For example, if we have an efficient protocol
for proving that a committed tag matches one of the attributes in a user’s
credential, and another protocol for proving that a committed tag is not on
a list of revoked values, then we would be able to combine the two protocols
to prove that the user’s credential has not been revoked. However, often the
protocols will be based on different commitment schemes, or even worse, on
schemes that operate in different sized groups. (For example UProve cre-
dentials can be instantiated in standardized elliptic curve groups like those
used for EC-DSA, while revocation systems like that in [Ngu05] require pair-
ing groups; to combine the two we would need to find a pairing group whose
group order matches one of the standardized curves. Finding a pairing group
to match a specific group order often incurs a significant cost in efficiency.)
With our protocol for converting between commitment schemes we could
choose the most efficient groups for each, and then the user would merely
prove that he has used the same attributes in each. Before our work, the
only known approach to convert between groups of different sizes was to use
integer commitments, which as described above can be quite expensive.

• 2PC with authenticated input. As input to a secure computation pro-
tocol, sometimes it is desirable to use previously committed [JS07] or signed
[CZ09] inputs. In our constructions, we show how to commit to an input x
and prove knowledge of x (or prove knowledge of a signature on x) and a
non-algebraic statement f(x) = 1 using garbled circuits. As we discuss in
Section 4.3, it is relatively easy to extend our construction to also allow secure
two-party computation of g(x, y) where x is the prover’s input and y the ver-
ifier’s, hence obtaining secure two-party computation on signed/committed
inputs. The benefit of this approach is that checking the signature takes place
outside the secure two-party computation and can be significantly more effi-
cient.

• Other privacy-preserving protocols. Converting between commitment
schemes, comparing committed values, or proving other non-algebraic state-
ments come up in many other privacy/anonymity scenarios. Our techniques

8

for composing proofs could be useful in reducing the size of CRS in applica-
tions such as the anonymous decentralized digital cryptocurrencies. ZCash,
for example, uses zk-SNARKs to prove a massive statement containing many
different smaller components. For example, at a high level, one of the state-
ments being proven in ZCash is of the form: I have knowledge of xi’s such
that H(x1||H(x2|| . . . H(xn))) = y for a large value of n. The CRS generated
for proving this statement is extremely large (in the gigabytes for ZCash)
and cannot be reused to prove any different statement. A better alternative
is to generate a much smaller CRS for proving a statement of the form: I
have knowledge of x, y such that H(x||H(y)), combined with a technique for
composing many such proofs. More generally, one can envision a general sys-
tem with CRSs for small size statements C1, . . . , Cn that enables NIZKs for
arbitrary composition of these statements without having to generate new
CRSs for each new composition.

1.3 Garbled Circuits

Today Garbled Circuit (GC) is one of the main techniques for secure compu-
tation. It has advantages of high performance, low round complexity/low latency,
and, importantly, relative engineering simplicity. Both core GC (garbling), as well
as the protocols that use garbling, such as Cut-and-Choose (C&C), have been
thoroughly investigated and are today highly optimized. Particularly in the semi-
honest model there have been quite a number of asymptotic/qualitative improve-
ments since the original protocols of Yao [Yao86] and Goldreich et al. [GMW87a].
Possibly the most important development in the area of practical SFE since the
1980s was the very efficient oblivious transfer (OT) extension technique of Ishai
et al. [IKNP03]. This allowed the running of an arbitrarily large number of OTs
by executing a small (security parameter) number of (possibly inefficient) “boot-
strapping” OT instances and a number of symmetric key primitives. The cheap
OTs made a dramatic difference for securely computing functions with large inputs
relative to the size of the function, as well as for GMW-like approaches, where OTs
are performed in each level of the circuit. Another important GC core improve-
ment is the Free-XOR algorithm [KS08a], which allowed for the evaluation of all
XOR gates of a circuit without any computational or communication costs. As
SFE moves from theory to practice, even “small” factor improvements can have a
significant effect.

1.3.1 Our Results

In this work, we introduce Free Hash, a new approach to generating GC hash
at no extra cost during GC generation. GC hashing is at the core of the cut-and-

9

choose technique of GC-based secure function evaluation (SFE). Our main idea
is to intertwine hash generation/verification with GC generation and evaluation.

While we allow an adversary to generate a GC ĜC whose hash collides with an
honestly generated GC, such a ĜC w.h.p. will fail evaluation and cheating will be
discovered. Our GC hash is simply a (slightly modified) XOR of all the gate table
rows of the GC. It is compatible with Free XOR and half-gates garbling, and can
be made to work with many cut-and-choose SFE protocols.

In Chapter 5, we introduce our proposed definition of GC hash security. Our
definition is weaker than the standard hash collision guarantees, yet it is possi-
ble to make free hashing work with several standard GC constructions. We then
present hashed garbling algorithms for standard garbling (based on Just Garble
of [BHKR13]) as well as for half-gates garbling of [ZRE15]. We discuss the impact
of Free Hash garbling and cut-and-choose protocols. We report on our imple-
mentation and its performance evaluation, and discuss the application to certified
circuits. We propose a unified cost metric (time) and show higher speeds/smaller
computation and communication for the same error probability. We estimate to-
tal execution time reduction of about 43% for the cut-and-choose components
of [LP11], and of about 64% for [AO12, KM15] in settings we consider (1Gbps
channel and hardware AES). We then consider the standard cut-and-choose ap-
proach for the special case of zero-knowledge, and discuss application of Free Hash
to the GC-based sigma protocol.

1.3.2 Applications

GC hashing is an essential tool for C&C and is employed in many uses of C&C
. We start with describing C&C at the high level.

Cut-and-Choose Protocol. C&C was first mentioned in the protocol of Ra-
bin [Rab77] where this concept was used to convince a party that the other party
sent it a specially formed integer n. The expression “cut and choose” was intro-
duced later by Chaum in [BCC88] in analogy to a popular cake-sharing problem:
given a cake to be divided among two distrustful players, one of them cuts the
cake in two shares, and lets the other one choose.

Recall, the basic GC protocol is not secure against cheating GC generator,
who can submit a maliciously garbled circuit. Today, C&C is the standard tool in
achieving malicious security in secure computation. At the high level, it proceeds
as follows. GC generator generates a number of garbled circuits GC1, ...,GCn and
sends them to GC evaluator, who chooses a subset of them (say, half) at random
to be opened (with the help of the generator) and verifies the correctness of circuit
construction. If all circuits were constructed correctly, the players proceed to
securely evaluate the unopened circuits, and take the majority output. It is easy to

10

see that the probability of the GC generator succeeding in submitting a maliciously
garbled circuit is exponentially small in n. We note that significant improvement in
the concrete values of n required for a specific probability guarantee was achieved
by relatively recent C&C techniques [LP11, Lin13, HKE13, Bra13, LR14, HKK+14,
AO12, KM15].

Using GC hashing for C&C. What motivates our work is the following natural
idea, which was first formalized in Goyal et al. [GMS08]. To save on communication
(usually a more scarce resource than computation), GC generator, firstly, generates
all the circuits GC1, ...,GCn from PRG seeds s1, ..., sn. Then, instead of sending
the circuits GC1, ...,GCn, it sends their hashes H(GC1), ..., H(GCn). Finally, while
the evaluation circuits will need to be sent in full over the network, only the seeds
s1, ..., sn need to be sent to verify that the GC generator did not cheat in the
generation of the opened circuits, saving a significant amount of communication
at the cost of computing and checking H(GCi) for all n circuits.

On many of today’s computing architectures (e.g.Intel PC CPUs, with or with-
out hardware AES), the cost of hashing the GC can be up to 6× greater than the
cost of fixed-key garbling. At the same time, today’s network speeds are compara-
ble in throughput with hardware-assisted fixed-key garbling (see our calculations
in Section 5.2.4).

Hence, eliminating the GC hashing cost will improve SFE performance by
eliminating the (smaller of the) cost of hashing or sending the open circuits. We
stress that the use of our Free Hash requires syntactic changes in C&C protocols
and it provides a security guarantee somewhat distinct from collision-resistant
hash. Hence its use in C&C protocols should be evaluated for security. We discuss
this in Section 5.2.4.

Additionally, we show that a new computation/communication cost ratio of-
fered by our free GC hash will allow for reduced communication, computation, and
execution time, while achieving the same cheating probability.

SFE of private certified functions. One advantage offered by GC is the hiding
of the evaluated function from the evaluator. To be more precise, the circuit
topology of the function is revealed, but this information leakage can be removed
or mitigated by using techniques such as universal circuit [Val76, KS08c, LMS16,
KS16] or circuit branch overlay [KKW16].

In practical scenarios, evaluated functions are to be selected as allowed by a
mutually agreed policy, e.g., to prevent evaluation of the identity function out-
putting player’s private input. Then evaluating a hidden function presumes either
a semi-honest GC generator, or employing a method for preventing/deterring out-
of-policy GC generation. An efficient C&C approach does not seem to help prevent
cheating here, since check circuits will reveal the evaluated function and will not

11

be acceptable to the GC generator. Further, depending on policy/application, the
zero-knowledge proofs of correctly constructing the circuits may be very expensive.

In many scenarios, Certificate Authorities (CA) may be used to certify the
correct generation of GCs. Indeed, this is quite feasible at small to medium scale.
Our motivating application here is the private attribute-based credential (ABC)
checking. Our results on combining sigma protocol and garbled circuits show
that credentials can be based on GCs. Recent concurrent work [KKL+16] also
use GCs to build ABCs. While [KKL+16] discuss public policy only, GC-based
constructions will not preclude achieving private policy. We note that this is a novel
property in the ABC literature, where all previous work (in addition to supporting
very small policies only) relied in an essential manner on the policy being known
to both prover and verifier.

At the high level, the architecture/steps for evaluation of private CA-certified
functions is as follows.

1. CA generates seeds s1, ...sn and, for i = 1, ...n, CA generates GCs GCi, GC
hashes H(GCi) and signatures σi = SignCA(H(GCi)). It sends all si, H(GCi),
σi to ABC verifier V .

2. Prover P and V proceed with execution of the ABC protocols, with the
following modification:

(a) Whenever GC GCi needs to be sent by V , instead V generates GCi from
si and sends to P the pair (GCi, σi).

(b) P computes H(GC) and verifies the signature σi prior to continuing. If
the verification or GC evaluation fails, P outputs abort.

Free Hash will allow to significantly (up to factor 6) reduce the computational
effort required by the CA to support such an application. Indeed the cost of the
signature generation can be small and ignored in cases where the signed circuits
are large, or a single signature can certify a number of circuits. The latter would
be the case where two parties may be expected to evaluate a number of circuits.

1.4 Roadmap

In Chapter 2, we present preliminaries and definitions of technical tools used in
the rest of the chapters. Chapter 3 presents constructions of zero-knowledge proofs
for combination statements. In Chapter 4, we present more building blocks, and
put together our constructions to build credentials based on standard signatures,
and privacy-preserving proof of solvency. In Chapter 5, we give our definition and
construction of Garbled circuit hashing and discuss application to zero-knowledge.

12

The results in this dissertation are based on works that appeared in [CGM16],
[FGK17], and on parts of another work under submission [AGM17].

13

Chapter 2

Preliminaries

2.1 Notation

Let ppt denote probabilistic polynomial time. We let κ be the security pa-
rameter and [1, n] denote the set {1, ..., n}. A function is negligible if for all large
enough values of the input, it is smaller than the inverse of any polynomial, that
is, f(·) is negligible if ∀c ∈ N, there exists n0 ∈ N such that ∀n ≥ n0, it holds
that f(n) < n−c. We use negl to denote a negligible function. Let S be an infinite
set and X = {Xs}s∈S, Y = {Ys}s∈S be distribution ensembles. We say X and
Y are computationally indistinguishable, if for any ppt distinguisher D and all
sufficiently large s ∈ S, we have |Pr[D(Xs) = 1] − Pr[D(Ys) = 1]| < 1/p(|s|) for
every polynomial p(·). We denote the i-th bit of a string s by s[i], and use || to

denote concatenation of bit strings. We write x
R← X to mean sampling a value

x uniformly from the set X . For a bit string s, we let s�i denote the bit string
obtained by shifting s by i bits to the left. Throughout, by shift we mean a circular
shift, where the vacant bit positions are filled not by zeros but by the shifted bits.
lsb(s) denotes the least significant bit of string s.

2.2 Zero-knowledge Proofs

A zero-knowledge (ZK) proof allows a prover to convince a verifier of the validity
of a statement, without revealing any other information. Let R be an efficiently
computable binary relation which consists of pairs of the form (x,w) where x is
a statement and w is a witness. Let L be the language associated with the NP
relation R: L = {x | ∃w : R(x,w) = 1}. A zero-knowledge proof for L lets
the prover convince a verifier that x ∈ L for a common input x. A proof of
knowledge captures not only the truth of a statement x ∈ L, but also that the
prover “possesses” a witness w to this fact. A proof of knowledge for a relation

14

R(·, ·) is an interactive protocol where a prover P convinces a verifier V that P
knows a w such that R(x,w) = 1, where x is a common input to P and V . The
prover can always successfully convince the verifier if indeed P knows such a w.
Conversely, if P can convince the verifier with reasonably high probability, then it
“knows” such a w, that is, such a w can be efficiently computed given x and the
code of P . The formal definition follows. In the following, we denote an interactive
protocol between P and V by 〈P, V 〉. 〈P (x), V (y)〉 denotes a protocol where P
has input x and V has input y. We denote by viewV , the “view” of the verifier
in the interaction, consisting of its input x, its random coins, and the sequence of
the prover’s messages.

Definition 2.2.1 (ZK proof of knowledge). An interactive protocol 〈P, V 〉 is a
zero-knowledge proof of knowledge for an NP relation R if the following properties
are satisfied.

1. Completeness: For all x,w such that R(x,w) = 1,

Pr[〈P (x,w), V (x)〉 = 1] = 1

2. Proof of Knowledge: For every polynomial time prover strategy P ∗, there ex-
ists an oracle PPT machine K called the extractor such that KP ∗(x) outputs
w′ and

Pr[〈P ∗(x,w), V (x)〉 = 1 ∧R(x,w′) = 0]

is negligible in κ.

3. Zero-knowledge: For every polynomial time verifier V ∗, there is a PPT al-
gorithm S called the simulator such that for every x ∈ L, and w such that
R(x,w) = 1, the following two distributions are indistinguishable:

• viewV ∗(〈P (x,w), V ∗(x)〉)
• S(x)

Honest-verifier zero-knowledge: An interactive proof system 〈P, V 〉 for a lan-
guage L is said to be honest-verifier zero knowledge if there exists a PPT algorithm
S called the simulator such that for all x ∈ L, viewV (〈P (x,w), V (x)〉) and S(x)
are indistinguishable. This definition says that the verifier gains no knowledge
from the interaction, as long as it runs the prescribed algorithm V . If the verifier
tries to gain some knowledge from its interaction with the prover by deviating from
the prescribed protocol, we should consider an arbitrary (but efficient) cheating
verifier V ∗ as in property 3 of the above definition, which is full zero-knowledge.

15

2.2.1 Sigma protocols

We introduce the notion of a sigma protocol by motivating through an example.
Let p and q be primes such that q|(p − 1). Let g be an element of order q in Z∗p.
Now suppose that a prover P chooses a random x ← Zq, and publishes y = gx

mod p. A verifier V who receives (p, q, x, y) may verify that p, q are prime, g has
order q. The following protocol by Schnorr [Sch91] allows P to convince V that he
“knows” the unique x ∈ Zq such that y = gx mod p.

• Input: The prover and the verifier have (p, q, g, y) and the prover addi-
tionally has x ∈ Zq such that y = gx mod p.

• The prover P chooses a random w ∈ Zq, and sends a = gw mod p to V.

• The verifier V chooses a random challenge r ← {0, 1}κ and sends to P,
for a fixed κ such that 2κ < q.

• The prover P responds with e = w + rx mod q to V. The verifier V
checks that p, q are prime, g, y have order q, that ge = ayr mod p, and
accepts if and only if all the above hold.

Intuitively, if some prover P∗, after having sent a, can answer two different
challenges r and r′ correctly, then this means that it could produce e, e′ such that
ge = ayr mod p and ge

′
= ayr

′
mod p. Dividing the two equations, one gets

ge−e
′

= yr−r
′

mod p. Since by assumption r 6= r′, we have r − r′ 6= 0 mod q,
and hence (r − r′)−1 exists modulo q. Since the prover knows r, r′, e, e′, it could
have computed x = g(e−e

′)(r−r′)−1
mod p. The prover thus knows the discrete

logarithm, except with probability 2−κ which is the probability that it answers
only one challenge correctly. We also note that the view of an honest verifier
can be simulated. The name of the sigma protocol comes from the letter Σ that
depicts a protocol with a three-move interaction. We refer the interested reader to
the paper by Ivan Damg̊ard [Dam] for an excellent survey on sigma protocols. We
now give a formal description below.

Sigma protocols are three round public-coin protocols and are honest-verifier
zero-knowledge proof systems. Let R be a relation, and x the common input. The
prover’s first message is denoted by a = P(x). The verifier’s message is a random
string r ∈ {0, 1}κ. The prover’s second message is e = P(x, a, r, e). The triple
(a, r, e) is called a transcript, and if the verifier accepts, that is V(x, a, r, e) = 1,
then the transcript is accepting for x.

16

Definition 2.2.2 (Σ protocol). A protocol π is a Σ protocol for a relation R if the
following properties are satisfied:

1. π is a three round public coin protocol.

2. Completeness: If P and V follow the protocol on common input x, and private
input w to P such that R(x,w) = 1, then Pr[〈P(x,w),V(x)〉 = 1] = 1 .

3. Special soundness: There exists a polynomial time algorithm, called the ex-
tractor, that, given x and two transcripts (a, r, e), (a, r′, e′) that are accepting
for x, with r 6= r′ outputs w′ such that R(x,w′) = 1.

4. Special honest verifier zero knowledge: There exists a ppt simulator Sim such
that

{Sim(x, r)}x∈L,r∈{0,1}κ ≡ {〈P(x,w),V(x, r)〉}x∈L,r∈{0,1}κ

where Sim(x, r) denotes the output of the simulator Sim upon input x and r,
and 〈P(x,w),V(x, r)〉 denotes the output transcript of an execution between
P and V, where P has input (x,w), V has input x, and r is the challenge
determined by V’s random tape.

2.2.2 Non-interactive Zero-knowledge Proofs

A model that assumes a trusted setup phase, where a string of a certain struc-
ture, also called the public parameters of the system is generated, is called the
common reference string (CRS) model. NIZKs in the CRS model were introduced
in [BFM88].

Definition 2.2.3 (Non-interactive Zero-knowledge Argument). A non-interactive
zero-knowledge argument for a binary relation R consists of a triple of polynomial
time algorithms (Setup,Prove,Verify) defined as follows.

• Setup(1κ) takes a security parameter κ and outputs a common reference string
σ.

• Prove(σ, x, w) takes as input the CRS σ, a statement x, and a witness w, and
outputs an argument π.

• Verify(σ, x, π) takes as input the CRS σ, a statement x, and a proof π, and
outputs either 1 accepting the argument or 0 rejecting it.

The algorithms above should satisfy the following properties.

17

1. Completeness. For any (x,w) ∈ R,

Pr

(
Verify(σ, x, π) = 1 :

σ ← Setup(1κ)
π ← Prove(σ, x, w)

)
= 1

2. Computational soundness. For all probabilistic polynomial time (ppt) ad-
versaries A, the following probability is negligible in κ:

Pr

(
Verify(σ, x̃, π̃) = 1

∧x̃ 6∈ L :
σ ← Setup(1κ)

(x̃, π̃)← A(1κ, σ)

)
3. Zero-knowledge. There exists a ppt simulator (S1,S2) such such that S1

outputs a simulated CRS σ and trapdoor τ , S2 takes as input σ, a statement
x and τ and outputs a simulated proof π. Formally, for all ppt adversaries
(A1,A2), the following is negligible in κ.

∣∣∣∣∣∣Pr

 (x,w) ∈ R
∧A2(π, state) = 1

:
σ ← Setup(1κ)

(x,w, state)← A1(1
κ, σ)

π ← Prove(σ, x, w)

 −
Pr

 (x,w) ∈ R
∧A2(π, state) = 1

:
(σ, τ)← S1(1κ)

(x,w, state)← A1(1
κ, σ)

π ← S2(σ, τ, x)

∣∣∣∣∣∣
Definition 2.2.4 (Non-interactive Zero-knowledge Argument of Knowledge). A
non-interactive zero-knowledge argument of knowledge for a relation R is a non-
interactive zero-knowledge argument for R with the following additional extractabil-
ity property:

• Extraction. For any ppt adversary A, there exists a ppt algorithm Ext such
that the following probability is negligible in κ:

Pr

Verify(σ, x̃, π̃) = 1∧
R(x̃, w′) = 0

:
σ ← Setup(1κ)

(x̃, π̃)← A(1κ, σ)
w′ = Ext(x̃, π̃)

Definition 2.2.5 (Zero-knowledge Succinct Non-interactive Argument of Knowl-
edge (zk-SNARK)). A zk-SNARK for a relation R is a non-interactive zero-
knowledge argument of knowledge for R with the following additional property:

• Succinctness. For any x and w, the length of the proof π is given by |π| =
poly(κ) · polylog(|x|+ |w|).

18

Sigma protocols and NIZK. It is possible to efficiently compile a Σ protocol
(which is honest-verifier ZK) into a non-interactive zero-knowledge proof of knowl-
edge. The Fiat-Shamir transform [FS87] is a way of transforming any public coin
zero-knowledge proof into a non-interactive zero-knowledge proof of knowledge. At
a high level, the transform works by having the prover compute the verifier’s mes-
sage which is a random challenge by applying an appropriate hash function to the
prover’s first message. This can be proven secure when the hash function is modeled
as a random oracle. The Fiat-Shamir transform removes interaction and guaran-
tees zero-knowledge against malicious verifiers (Sigma protocols are only honest-
verifier zero-knowledge). Transformations in the CRS model [Dam00, Lin15] are
also known. The transformation of [Dam00] gives a 3-round concurrent zero-
knowledge protocol in the CRS model, whereas [Lin15] is non-interactive.

Efficient zero knowledge proofs are known which are based on sigma protocols.
There exist sigma protocols for various tasks like proving knowledge of discrete
logarithm of a value, that a tuple is of the Diffie-Hellman type etc., and it is also
possible to efficiently combine sigma protocols to prove compound statements.

In the constructions and protocols presented in further chapters, we make use
of zero knowledge proofs of knowledge of discrete logarithms and relations between
discrete logarithms. We use the following notation:

PK{(x, y, · · ·) : statements about x, y, · · · }

In the above, x, y, · · · are secrets (discrete logarithms), the prover asserts knowl-
edge of x, y, · · · , and that they satisfy statements. The other values in the protocol
are public.

2.3 Garbled Circuits

Garbled circuits which was introduced by Yao [Yao86] as a tool for secure two
party computation, is now a primitive in its own right with many applications.
We use the abstraction of garbling schemes [BHR12] introduced by Bellare et
al. At a high-level, a garbling scheme consists of the following algorithms: Gb
takes a circuit as input and outputs a garbled circuit, encoding information e,
and decoding information d. En takes an input x and encoding information and
outputs a garbled input X. Eval takes a garbled circuit and garbled input X and
outputs a garbled output Y . Finally, De takes a garbled output Y and decoding
information and outputs a plain circuit-output (or an error ⊥).

We note that this deviates from the definition of [BHR12], in that we include
⊥ in the range of the decoding algorithm De, so it now outputs a plain output
value corresponding to a garbled output value or ⊥ if the garbled output value
is invalid. In [JKO13], the authors add an additional verification algorithm Ve to

19

the garbling scheme. Formally, we define a verifiable garbling scheme by a tuple
of functions G = (Gb,En,Eval,De,Ve) with each function defined as follows.

• Garbling algorithm Gb(1κ, C): A randomized algorithm which takes as input
the security parameter and a circuit C : {0, 1}n → {0, 1}m and outputs a
tuple of strings (GC, {X0

j , X
1
j }j∈[n], {Z0

j , Z
1
j }j∈[m]), where GC is the garbled

circuit, the values {X0
j , X

1
j }j∈[n] are called the input-wire labels, and the

values {Z0
j , Z

1
j }j∈[m] are called the output-wire labels.

• Encode algorithm En(x, {X0
j , X

1
j }j∈[n]): a deterministic algorithm that out-

puts the input wire labels X = {Xx[i]
i }i∈[n] corresponding to input x.

• Evaluation algorithm Eval(GC, {Xj}j∈[n]): A deterministic algorithm which
evaluates garbled circuit GC on input-wire labels {Xj}j∈[n], and outputs a
garbled output Y.

• Decode algorithm De(Y, {Z0
j , Z

1
j }j∈[m]): A deterministic algorithm that out-

puts the plaintext output corresponding to Y or ⊥ signifying an error if the
garbled output Y is invalid.

• Verification algorithm Ve(C,GC, {Z0
j , Z

1
j }j∈[m], {X0

j , X
1
j }j∈[n]): A determinis-

tic algorithm which takes as input a circuit C, garbled circuit GC, input-wire
labels {X0

j , X
1
j }j∈[n], and output-wire labels {Z0

j , Z
1
j }j∈[m] and outputs accept

if GC is a valid garbling of C and reject otherwise.

For purposes of brevity, we sometimes write e to mean the encoding infor-
mation {X0

j , X
1
j }j∈[n], and d to represent the decoding information {Z0

j , Z
1
j }j∈[m].

Throughout, we will only be concerned with a class of garbling schemes referred
to as projective [BHR12], where, when garbling a circuit C : {0, 1}n 7→ {0, 1}m, the
scheme produces encoding information of the form e =

(
X0
j , X

1
j

)
j∈[n]. The encoded

input X corresponding to x = (xj)j∈[n] is interpreted as X = En(x, e) =
(
X
xj
j

)
j∈[n].

A verifiable garbling scheme may satisfy several properties such as correctness,
privacy, obliviousness, authenticity and verifiability. We now review some of these
notions: (1) correctness, (2) privacy (3) authenticity, and (4) verifiability. The def-
initions for correctness and authenticity are standard: correctness enforces that a
correctly garbled circuit, when evaluated, outputs the correct output of the under-
lying circuit; privacy aims to protect the privacy of encoded inputs; authenticity
enforces that the evaluator can only learn the output label that corresponds to the
value of the function. Verifiability [JKO13] allows one to check that the garbled
circuit indeed implements the specified plaintext circuit C.

We include the definitions of these properties.

20

Definition 2.3.1. (Correctness) A garbling scheme G is correct if for all input
lengths n 6 poly(κ), circuits C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n, the
following probability is negligible in κ:

Pr(De(Eval(GC,En(e, x)), d) 6= C(x) : (GC, e, d)← Gb(1κ, C))

Definition 2.3.2. (Privacy) A garbling scheme G has privacy if for all input lengths
n 6 poly(κ), circuits C : {0, 1}n → {0, 1}m, there exists a ppt simulator Sim such
that for all inputs x ∈ {0, 1}n, for all probabilistic polynomial-time adversaries A,
the following two distributions are computationally indistinguishable:

• Real(C, x) : run (GC, e, d)← Gb(1κ, C), and output (GC,En(x, e), d).

• IdealSim(C, C(x)): output Sim(1κ, C, C(x))

Definition 2.3.3. (Authenticity) A garbling scheme G is authentic if for all input
lengths n 6 poly(κ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and all
probabilistic polynomial-time adversaries A, the following probability is negligible
in κ:

Pr

(
Ŷ 6= Eval(GC,En(x, e))

∧De(Ŷ , d) 6= ⊥
:

(GC, e, d)← Gb(1κ, C)
Ŷ ← A(C, x,GC,En(x, e))

)
Definition 2.3.4. (Verifiability) A garbling scheme G is verifiable if for all input
lengths n 6 poly(κ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and all
probabilistic polynomial-time adversaries A, the following probability is negligible
in κ:

Pr

(
De(Eval(GC,En(x, e)), d) 6= C(x) :

(GC, e, d)← A(1κ, C)
Ve (C,GC, d, e) = accept

)
In the definition of verifiability above, we give the decoding information explic-

itly to the verification algorithm since in some of our constructions, the garbled
circuit includes only the garbled tables and not the decoding information. Al-
ternatively, if the decoding information is also part of the garbled circuit itself,
we can have the verification algorithm take only the plain circuit, purported gar-
bled circuit and encoding information, and output accept or reject. In some cases,
in addition to the verifiability defined above, we require an additional extraction
property. We consider circuits with a single bit output below.

Definition 2.3.5. (Verifiability with extraction) A garbling scheme G is verifiable
with extraction if for all input lengths n 6 poly(κ), circuits C : {0, 1}n → {0, 1},
and all probabilistic polynomial-time adversaries A, there exists a ppt algorithm
Ve1, such that, for all x satisfying C(x) = 1, the following probability is negligible
in κ:

Pr

(
Ve1(GC, e) 6= Eval(GC,En(e, x)) :

(GC, e, d)← A(1κ, C)
Ve (C,GC, e) = accept

)

21

Intuitively, the above definitions say that even a malicious constructor cannot
create garbled circuits that are successfully verifiable (i.e., make Ve output accept)
and at the same time violate the correctness condition. Moreover, one can extract
the output wire key corresponding to output 1 given both input wire keys. This
extraction requirement is natural in Yao’s scheme which we define next. Looking
ahead, in Yao’s, knowing all input keys, one can iteratively “fully decrypt” every
garbled gate and finally obtain the key corresponding to the output bit 1 even
without computing an input x such that C(x) = 1. We note that a natural and
efficient way to obtain a verifiable garbling scheme is to generate GC by using the
output of a pseudorandom generator on a seed as the random tape for Gb, and
then provide the seed to the verification procedure Ve. Ve will regenerate the GC
and the encoding and decoding tables, and will output accept for a garbled circuit
if and only if it is equal to the generated one.

2.3.1 Yao’s construction

A comprehensive treatment of Yao’s construction of garbled circuits, was given
in [LP09]. At a high-level, in Yao’s construction, each wire of the boolean circuit
is associated with two random strings called wire labels or wire keys that encode
logical 0 and 1 wire values. A garbled truth table is constructed for every gate
in the circuit, where each combination of input wire labels is used to encrypt the
appropriate output wire label as per the gate functionality. This results in four
ciphertexts per gate, one for each input combination of the gate. The evaluator
knows only one label for each input wire, and can therefore, open only one of the
four ciphertexts.

2.3.2 Free-XOR and other optimizations

Several works have studied optimizations to reduce the size of a garbled gate
down from four ciphertexts. Garbled row-reduction was introduced by Naor,
Pinkas and Sumner [NPS99]. There, instead of choosing the wire labels at random
for each wire, they are chosen such that the first ciphertext will be the all-zero
string, and hence need not be sent. In [PSSW09], the authors describe a way to
further reduce the number of ciphertexts per gate to 2, by applying polynomial
interpolation at each gate. Kolesnikov and Schneider [KS08a] introduced the Free
XOR approach, allowing evaluation of XOR gates without any cost. Here, the
idea is to choose wire labels such that the two labels on the same wire have the
same (secret) offset across the entire circuit. The two labels for a given wire are
of the form (A,A⊕∆), where ∆ is secret and common to all wires. Now, as first
proposed in [Kol05], an evaluator who has one of (A,A⊕∆) and one of (B,B⊕∆)
can compute the XOR by simply XORing the wire labels. The result is either C

22

or C ⊕ ∆ where C = A ⊕ B and correctly represents the result of XOR. Thus,
no ciphertexts are needed for the XOR gate. Kolesnikov, Mohassel and Rosulek
proposed a generalization of Free XOR called FleXOR [KMR14]. In FleXOR, each
XOR gate can be garbled using 0,1, or 2 ciphertexts, depending on certain struc-
tural properties of the circuit. In [ZRE15], the authors present a method that can
garble an AND gate using only two ciphertexts. This technique is also compatible
with Free XOR. The idea is to write an AND gate as a combination of XOR and
two half-gates, where a half-gate is an AND gate for which one party knows one
of the inputs. The half-gates can be garbled with one ciphertext each, and the
resulting AND gate, in combination with free-XOR, uses two ciphertexts. In the
above schemes, a hash/key-derivation function H is used for garbling, and differ-
ent properties are required of H in the known garbling schemes. For example,
the half-gates scheme requires either a circular-correlation-robust hash function,
or works with a Davis-Meyer construction in the ideal cipher model.

2.4 Garbled Circuits for ZK

We review the approach of [JKO13] to construct zero-knowledge arguments for
non-algebraic statements and some necessary building blocks.

2.4.1 Oblivious Transfer

Oblivious transfer (OT), first proposed by Rabin [Rab05] is a fundamental
primitive for secure two-party and multi-party computation. It is a protocol
between a sender and a receiver, where the sender has as inputs n secrets and
the receiver holds a choice bit. In a 1-out-of-2 OT, the sender holds two inputs
s0, s1 ∈ {0, 1}k and the receiver holds a choice bit b. At the end of the protocol,
the receiver obtains sb. The sender learns nothing about the choice bit, and the
receiver learns nothing about the sender’s other input sb̃.

Committing OT (COT). Several flavors of the OT primitive have been stud-
ied, like verifiable OT [Cré90], committed OT [CvT95], authenticated OT [NNOB12]
and many others. In the variant we will use later, we need an OT protocol with
a sender verifiability property- that is, at the end of the OTs, the sender is com-
mitted to its messages, and can be asked to reveal all its input messages to the
receiver. This is closely related to the notion of committing OT [KS06], but can
be achieved even more generally since we do not require individual commitments
to sender’s messages. In particular, as discussed in [JKO13] it can be satisfied by a
protocol where the sender commits to a seed in the beginning of the protocol, and
then runs any secure OT protocol using the output of a pseudorandom generator

23

on the seed as its random tape. Then the open phase can be realized by letting the
sender reveal the seed and all the input messages. The ideal functionality FCOT is
defined in Figure 2.1.

Figure 2.1: The ideal functionality FCOT

• The receiver inputs (choose, b), b ∈ {0, 1}, and the sender inputs
(m0,m1).

• Output mb to the receiver.

• On input open from the sender, send (m0,m1) to the receiver.

2.4.2 ZK Proof Based on Garbled Circuits

Here, we review the garbled-circuit-based ZK protocol of Jawurek, Kerschbaum
and Orlandi[JKO13]. To prove a statement ∃w : R(x,w) = 1 (for public R and x),
the protocol proceeds as follows:

1. The verifier generates a garbled circuit computing R(x, ·). Using a commit-
ting oblivious transfer, the prover obtains the wire labels corresponding to
his private input w. Then the verifier sends the garbled circuit to the prover.

2. The prover evaluates the garbled circuit, obtaining a single garbled output
(wire label). He commits to this garbled output.

3. The verifier opens his inputs to the committing oblivious transfer, giving the
prover all garbled inputs. From this, the prover can check whether the gar-
bled circuit was generated correctly. If so, the prover opens his commitment
to the garbled output; if not, the prover aborts.

4. The verifier accepts the proof if the prover’s commitment holds the output
wire label corresponding to true.

Security against a cheating prover follows from the properties of the circuit garbling
scheme. Namely, the prover commits to the output wire label before the circuit is
opened, so the authenticity property of the garbling scheme ensures that he cannot
predict the true output wire label unless he knows a w with R(x,w) = true.
Security against a cheating verifier follows from correctness of the garbling scheme.
The garbled output of a correctly generated garbled circuit reveals only the output
of the (plain) circuit, and this garbled output is not revealed until the garbled
circuit was shown to be correctly generated.

24

2.5 SNARKs for Arithmetic Circuits

A long line of work [Gro10, Lip12, BCCT12, GGPR13, BCCT13, PHGR13] has
resulted in many proposals using pairing-based constructions that yield succinct
non-interactive arguments where the argument itself consists of a constant number
of group elements. They all rely on a common reference string and the so-called
knowledge-extractor assumptions. In this section, we review some technical tools
and assumptions that we rely on in later chapters.

2.5.1 Quadratic Arithmetic Programs

The work of [GGPR13] showed how to encode computations as quadratic pro-
grams. They show how to convert any Boolean circuit into a Quadratic Span
Program (QSP), and any arithmetic circuit into a Quadratic Arithmetic Program
(QAP). In this thesis, we will only use the latter definition.

Arithmetic circuits and QAPs. An arithmetic circuit consists of wires that
carry values from a field F, and are connected to addition and multiplication gates.

Definition 2.5.1 (Quadratic Arithmetic Program [GGPR13].). A quadratic arith-
metic program (QAP) Q over a field F consists of three sets of polynomials V =
{vk(x) : k ∈ {0, · · · ,m}},W = {wk(x) : k ∈ {0, · · · ,m}}, Y = {yk(x) : k ∈
{0, · · · ,m}} and a target polynomial t(x), all in F[X].

Let f : Fn → Fn′ be a function with input variables labeled 1, · · · , n and out-
put variables labeled m − n′ + 1, · · · ,m. Q is said to compute f if the follow-
ing holds: a1, · · · , an, am−n′+1, · · · , am ∈ Fn+n′ is a valid assignment to the input
and output variables of f (i.e., f(a1, · · · , an) = (am−n′+1, · · · , am)) iff there exist
(an+1, · · · , am−n′) ∈ Fm−n−n′ such that, t(x) divides p(x) where,

p(x) =

(
v0(x) +

m∑
k=1

akvk(x)

)
.

(
w0(x) +

m∑
k=1

akwk(x)

)
−

(
y0(x) +

m∑
k=1

akyk(x)

)

The size of the QAP Q is m, and degree is deg(t(x)).

The polynomials vk(x), wk(x), yk(x)’s have degree at most deg(t(x))− 1, since
they can be reduced modulo t(x) without affecting the divisibility check.

Building a QAP. At a high level, we construct a QAP for a given arithmetic
circuit C in the following way. For each multiplication gate g in C, we pick an

arbitrary root rg ∈ F, and the target polynomial is defined to be t(x) =
∏
g

(x−rg).

The polynomials V,W, Y encode the left input, right input and output of each

25

gate respectively. If the kth wire is a left input to gate g, then vk(rg) = 1, and 0
otherwise. Similarly, yk(rg) = 1 if the kth wire is the output wire of gate g, and
yk(rg) = 0 otherwise. For a gate g, we have,(

m∑
k=1

akvk(rg)

)
·

(
m∑
k=1

akwk(rg)

)
= agyk(rg) = ag

The above ensures that the value on the output wire of the gate is the prod-
uct of its inputs which is the constraint for a multiplication gate. The divisibility
check that t(x) should divide p(x) decomposes into deg(t(x)) separate checks that
p(rg) = 0, one check for each gate g and root rg of t(x). The actual construc-
tion also handles addition and multiplication by constants. We refer the reader
to [GGPR13, PHGR13] for a detailed discussion on building QAPs for arithmetic
circuits. We point out that for any arithmetic circuit with d multiplication gates
and N input/output elements, a QAP with degree d and size (number of poly-
nomials in each set) d + N can be constructed. Note that addition gates and
multiplication-by-constant gates do not contribute to the size or degree of the
QAP, and are thus, essentially for “free” in QAP-based SNARK constructions.

2.5.2 Bilinear Maps

Let G1,G2 and G3 be multiplicative cyclic groups of prime order p, and g1, g2
be generators of G1 and G2 respectively. A bilinear map is a map e : G1×G2 → G3

with the following properties:

• Bilinearity: ∀u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.

• Non-degeneracy: e(g1, g2) 6= 1

One could set G1 = G2. However, we allow for the more general case where
G1 6= G2, in which case the map is called asymmetric bilinear map.

Let GroupGen be an asymmetric pairing group generator that on input 1κ,
outputs description of three cyclic groups G, H, GT of prime order p = Θ(κ)
equipped with a non-degenerate efficiently computable bilinear map e : G×H→
GT . It also outputs generators g and h for G and H, respectively. We describe some
q-type assumptions on bilinear maps below on which the security of zk-SNARKs
relies.

Assumptions on Bilinear Maps.

Assumption 2.5.2 (q-PDH). The q-power Diffie-Hellman (q-PDH) assumption
holds for GroupGen if for all non-uniform probabilistic polynomial time algorithms
A, the following probability is negligible in the security parameter.

26

Pr

gsq+1

1 ← A(σ) :

σ1 = (p,G1,G2,GT , e)← GroupGen,

g1 ← G1 \ {1}, g2 ← G2 \ {1}, s
R← Z∗p,

σ = (σ1, g1, g2, g
s
1, g

s
2, g

s2

1 , g
s2

2 , · · · , gs
q

1 , g
sq

2 ,

gs
q+2

1 , gs
q+2

2 · · · , gs2q1 , gs
2q

2)

 .

Assumption 2.5.3 (q-PKE). The q power-knowledge of exponent (q-PKE) as-
sumption holds for GroupGen if for all non-uniform probabilistic polynomial time
algorithms A, there exists a non-uniform probabilistic polynomial time extractor
χA such that the following probability is negligible in the security parameter.

Pr

e(cα, g2) = e(g1, ĉ) ∧ c 6=

∏q
i=0 g

ais
i

1 :

(p,G1,G2,GT , e)← GroupGen,
σ1 = (p,G1,G2,GT , e),

g1 ← G1 \ {1}, g2 ← G2 \ {1},
α, s

R← Z∗p,
σ = (σ1, g1, g2, g

s
1, g

s
2, · · · , gs

q

1 , g
sq

2 ,
gαs1 , g

αs
2 , · · · , gαs

q

1 , gαs
q

2),
(c, ĉ; a0, · · · , aq)← (A||χA(σ, z))

.

In the above, z is auxiliary information generated independently of α, and
(x; y) ← (A||χA)(σ, z) denotes that on input σ, A outputs x, and χA given the
same input σ, and A’s random tape, outputs y.

Assumption 2.5.4 (q-SDH). The q-strong Diffie-Hellman (q-SDH) assumption
holds for GroupGen if for all non-uniform probabilistic polynomial time algorithm
A, the following probability is negligible in the security parameter.

Pr

y = e(g1, g2)
1
s+c , c ∈ Z∗p :

(p,G1,G2,GT , e)← GroupGen,
σ1 = (p,G1,G2,GT , e),

g1 ← G1 \ {1}, g2 ← G2 \ {1}, s
R← Z∗p,

σ = (σ1, g1, g2, g
s
1, g

s
2, g

s2

1 , g
s2

2 , · · · , gs
q

1 , g
sq

2),
y ← A(σ)

 .

2.5.3 zk-SNARK construction from QAP

We review the zk-SNARK construction of [PHGR13] known as Pinocchio, be-
low. Let f be a function that maps N elements from F to 0 or 1. Convert f into
an arithmetic circuit C and build a QAP Q = (V,W, Y, t(x)) for C of size m and
degree d. We let the indices i ∈ [1, n] denote the public input (the statement y)
and i ∈ [n+ 1, N] denote the private input (the witness x).

27

1. CRS generation. Choose rv, rw, αv, αw, αy, s, β, γ
R← F. Set ry = rvrw, gv =

grv , gw = grw , and gy = gry . Set the CRS to be:

crs =
(
{gvk(s)v }k∈[n+1,m], {gwk(s)w }k∈[n+1,m], {gyk(s)y }k∈[n+1,m],

{gαvvk(s)v }k∈[n+1,m], {gαwwk(s)w }k∈[n+1,m], {gαyyk(s)y }k∈[n+1,m],

{gsi}i∈[d], {gβvk(s)v gβwk(s)w gβyk(s)y }k∈[n+1,m]

)
.

Set the short verification CRS to be:

shortcrs =
(
g, gαv , gαw , gαy , gγ, gβγ, gt(s)y , {gvk(s)v }k∈{0}∪[n],

{gwk(s)w }k∈{0}∪[n], {gyk(s)y }k∈{0}∪[n]
)
.

2. Prove. On input statement y, witness x, and crs, the prover evaluates the
QAP to obtain {ai}i∈[m]. (Equivalently, evaluates C to obtain the values
on the circuit wires). The prover solves for the quotient polynomial h such
that p(x) = h(x)t(x). Let vmid(x) =

∑
k∈[n+1,m] akvk(x), and similarly define

wmid(x) and ymid(x). The prover computes the proof π:(
gvmid(s)v , gwmid(s)w , gymid(s)y , gh(s),

gαvvmid(s)v , gαwwmid(s)w , gαyymid(s)y ,

gβvmid(s)v gβwmid(s)w gβymid(s)y

)
3. Verify. On input shortcrs, y, and a proof

π = (gVmidv , gWmid
w , gYmidy , gH , g

V ′mid
v , g

W ′mid
w , g

Y ′mid
y , gZ):

• Compute g
vin(s)
v =

∏
k∈[n]

(
g
vk(s)
v

)ak
. Similarly, compute g

win(s)
w and

g
yin(s)
y . Check whether,

e(gv0(s)v gvin(s)v gVmidv , gw0(s)
w gwin(s)w gWmid

w)

= e(gt(s)y , gH) · e(gy0(s)y gyin(s)y gYmidy , g).

• Verify that e(g
V ′mid
v , g) = e(gVmidv , gαv), e(g

W ′mid
w , g) = e(gWmid

w , gαw), and

e(g
Y ′mid
y , g) = e(gYmidy , gαy).

• Verify e(gZ , gγ) = e(gVmidv gWmid
w gYmidy , gβγ).

Output 1 if all the verifications succeed, else output 0.

28

Chapter 3

ZK for Combination Statements1

In this chapter, we give protocols to use a garbled circuit or SNARK to prove
a statement is true, and prove that the input to the statement is the committed
value in an algebraic commitment. In Section 3.1, we show how to use garbled
circuit for the Boolean circuit component of the statement, and sigma protocol
for the algebraic components. In Section 3.2, we give protocols to use a SNARK
for the circuit component of the statement and prove consistency of the input to
SNARK with a committed value.

3.1 Sigma Protocols and GC for Combination

Statements

3.1.1 Preliminaries

Simulation-based Security. We use a simulation-based definition of security in
the ideal/real world paradigm, which is formulated by specifying an ideal function-
ality. A protocol is secure if it “emulates” this ideal functionality in the presence
of any adversary. Our definitions are in the stand-alone setting (as opposed to the
UC framework). We formulate the simulation-based definitions by defining a func-
tionality F in the ideal world. In the ideal world, all parties and the adversary A
interact via F . Let IDEALF ,A(x1, x2) denote the output vector of the adversary
and the honest party from the execution in the ideal world. In the real world,
a protocol π is executed among the parties, and let REALπ,A(x1, x2) denote the
output of the adversary and the honest party from the execution of π. A two party
protocol π securely realizes the functionality F if for any PPT adversary A in the

1This chapter is based on joint work with Melissa Chase and Payman Mohassel that appeared
in CRYPTO 2016 [CGM16], and joint work with Shashank Agrawal and Payman Mohassel that
is yet to be published [AGM17]. Some passages are taken verbatim from these sources.

29

real world, there exists a PPT adversary S in the ideal-world, such that

{IDEALF ,S(x1, x2)}x1,x2s.t|x1|=|x2|
c≡ {REALπ,A(x1, x2)}x1,x2s.t|x1|=|x2|

that is, the two distributions are computationally indistinguishable.

Commitment Scheme. A commitment protocol involves two parties: the com-
mitter and the receiver. At a high level, it consists of two stages, a commitment
phase and a de-commitment phase. In the commitment stage, the committer with
a secret input m engages in a protocol with the receiver. At the end of this proto-
col, receiver does not know what m is (hiding property), and at the same time, the
committer, can subsequently in the de-commitment phase, open only one possible
value of m (binding property). Throughout, we use algebraic commitment schemes
that allow proving linear relationships among committed values. An example of
such a scheme with computational binding and unconditional hiding properties
based on the discrete logarithm problem is the one due to Pedersen [Ped91]. It
works in a group G of prime order q. Given two random generators g and h such
that logg h is unknown, a value x ∈ Zq is committed to by choosing r randomly
from Zq, and computing Cx = gxhr. Protocols are known in literature to prove
knowledge of a committed value, equality of two committed values, and so on, and
the protocols can be combined in natural ways. In particular, Pedersen commit-
ments allows proving linear relationships among committed values: Given Cx and
Cy, prove that y = ax+ b for some public values a and b.

3.1.2 Proving Non-algebraic Statements on Algebraic Com-
mitments

Garbled circuits are secure against semi-honest adversaries, and can be made
secure against malicious adversaries by using generic techniques like the cut-and-
choose technique. Here, the garbled circuit constructor sends multiple copies of
the circuit to the circuit evaluator, who chooses a random subset of the received
circuits. Then the circuit constructor “opens” the chosen garbled circuits and now
the evaluator may verify that they indeed garble the correct function, and then
the remaining unopened garbled circuits are evaluated. The complexity of this
protocol grows with the security parameter and is inefficient in practice.

In [JKO13], the authors exploit the fact that the verifier’s inputs need not be
kept secret. Therefore, the verifier can open the circuit and prove that a circuit that
computes the correct function was garbled, thereby eliminating the need for more
check circuits as in classic cut-and-choose for security against malicious adversaries.
In our application, the verifier does have a private input, but it need not be kept
secret post evaluation. Our constructions also use the technique of [JKO13] to

30

open the evaluated circuit, and achieve malicious security with only one garbled
circuit.

An important sub-protocol used in our constructions, is to commit to an input x
using an algebraic commitment Com(x) (e.g. Pedersen commitment), and perform
a zero-knowledge proof of a non-algebraic statement about x, i.e. that f(x) = 1
for a boolean circuit f .

Such a protocol allows one to efficiently switch between proving algebraic state-
ments on a committed input (e.g. proof of knowledge of a signature on a committed
input) and non-algebraic statement (e.g. hashing, comparison, equality testing and
more).

The protocols in this section are defined in terms of an ideal functionality, and
are proven secure in the ideal/real world paradigm. We start by defining the above
task in terms of an ideal functionality in Figure 3.1. We provide two instantiations
for this functionality that provide different efficiency trade-offs depending on the
input size and the algebraic commitment scheme used.

Figure 3.1: The ideal functionality FCom,f

• The verifier inputs Com(x) and prover inputs the opening information x and
the randomness for Com(x).

• If f(x) = 1 and the opening to the commitment verifies, output accept to the
verifier.

Note that in the protocol of [JKO13] described in Section 2.4.2, the prover
evaluates the garbled circuit on an input which is completely known to him. This
is the main reason that the garbled circuit used for evaluation can also be later
opened and checked for correctness, unlike in the setting of cut-and-choose for
general 2PC. Along the same lines, it was further pointed out in [FNO15] that the
circuit garbling scheme need not satisfy the privacy requirement of [BHR12], only
the authenticity requirement. Removing the privacy requirement from the garbling
scheme leads to a non-trivial reduction in garbled circuit size.

In one of our constructions (Section 3.1.4), the verifier does have a private input,
but its input only needs to be kept private until the circuit is evaluated and the
prover has committed to the output. In that scenario, we also invoke the privacy
property of the garbling scheme. The state of the art garbling scheme uses the
free-XOR technique [KS08b] to garble XOR gates and the half-gate technique to
garble AND gates [ZRE15]. For a circuit with g non-XOR gates, the total number
of ciphertexts is 2g, and the number of hash invocations is 4g for the garbler and
2g for the evaluator.

For privacy-free garbling, the costs are reduced by factor of two (see [FNO15,

31

ZRE15]). In particular, for a circuit with g non-XOR gates, the total number of
ciphertexts is g, and the number of hash invocations is 2g for the garbler and g for
the evaluator.

We need to garble a few common building-block circuits in our constructions.
It is helpful to review the size of these circuits based on the concrete constructions
given in [KSS09]. The circuit for comparing ` bit integers requires 4` non-XOR
gates. The circuit for testing equality of `-bit integers also requires 4` non-XOR
gates. The circuit for adding two `-bit integers requires 4` non-XOR gates, while
the circuit for multiplying two `-bit integers requires 8`2 − 4` non-XOR gates.

The starting point for both instantiations is the ZK-proof of non-algebraic
statements based on garbled circuits [JKO13] (see Section 2.4.2). As a naive solu-
tion we could garble a circuit that takes x and the opening of Com(x) as prover’s
input and outputs 1 if f(x) = 1 and Com(x) correctly opens to x. The main
drawback of this solution is that checking correctness of opening for an algebraic
commitment requires performing expensive group operations (e.g. exponentiation)
inside the garbled circuit which would dominate the computation/communication
cost. We provide two instantiations of FCom,f in Sections 3.1.3 and 3.1.4 that
avoid these costs and perform all algebraic operations outside the garbled circuit.
In Section 3.1.5, we discuss the efficiency considerations of the two protocols.

3.1.3 First Protocol

In our first construction, we have the prover commit to each bit of x, i.e.
Com(xi) for all i ∈ [n], and prove that when combined, they yield x.

Then, following the GC-based approach, the verifier constructs a garbled circuit
that computes f(x), parties go through the steps of the GC-based ZK proof for
the prover to prove knowledge of a value x′ such that f(x′) = 1. The main issue is
that a malicious prover may use a different input x′ 6= x in the circuit than what
he committed to.

But we observe that the input keys associated with x′ in the GC (which are
obtained through the COT), can function as one-time MACs on each bit of x′ and
can be used to enforce that x′ = x using efficient algebraic ZK proofs that take
place outside the garbled circuit. In particular, immediately after the COTs, the

prover commits to its input keys i.e. X
x′i
i for the ith bit of x′. When the GC is

opened and both input keys X0
i , X

1
i are opened, the prover can provide ZK proofs

that X
x′i
i = xiX

1
i + (1− xi)X0

i if the commitment scheme provides efficient proofs
of linear relations.

A small subtlety is that a malicious prover may use the integer x′ = x + q
as input to the circuit where q is the group size for the commitment scheme, but
commit to x in the commitment outside of the garbled circuit. A simple way of
preventing this is to allow exactly blog qc input wires for x in the circuit. This

32

would guarantee that x < q for free but is not ideal as it does not accept any value
between 2blog qc and q. Alternatively, one can augment the garbled circuit with a
comparison circuit that outputs x < q. For simplicity we assume the first variant
in both instantiations (Figure 3.2 and Figure 3.3), but discuss the cost of such a
comparison circuit in Section 3.1.5.

The complete protocol description in the COT-hybrid model is given in Fig-
ure 3.2. We point out that steps 1, 6 and 14 are additions compared to the protocol
of [JKO13].

Let G = (Gb,En,De,Eval,Ve) be a verifiable garbling scheme. Let F be the
following functionality: it takes as input x, and outputs v such that v = 1 if

f(x) = 1 and 0 otherwise. The verifier is in possession of Cx = Com(x), the prover
has input x, the randomness to open Cx, and both parties have as input the

security parameter κ.

1. The prover commits to the bits of x by sending bit-wise commitment to x:
Ci = Com(xi),∀1 ≤ i ≤ n.

2. The verifier constructs a garbled circuit for F .

(GC, e, d)← Gb(1κ, F)

3. The verifier inputs the wire labels corresponding to the prover’s input by send-
ing (i,X0

i , X
1
i) for all i ∈ [n] to FCOT .

4. The prover inputs his choice bits by sending (i, xi) for all i ∈ [n] to FCOT .

5. FCOT outputs X ′i for all i ∈ [n] to the prover where X ′i = Xxi
i .

6. The prover commits to the received input wire labels by sending CXi =
Com(X ′i) for all i.

7. The verifier sends the garbled circuit GC to the prover.

8. The prover evaluates the garbled circuit

Z ← Eval(GC, {X ′i}i∈[n])

9. The prover commits to the garbled output Z by sending Com(Z) to the verifier
and proves knowledge of opening.

10. The verifier sends open to FCOT .

11. FCOT sends (X0
i , X

1
i) to the prover for all i ∈ [n].

33

12. The prover verifies that the correct circuit was garbled by running
Ve(F,GC, {X0

i , X
1
i }i∈[n]). If the output is not accept, the prover terminates.

Otherwise if Ve outputs accept, he opens the commitment to the output Z by
sending Z and the randomness used in Com(Z).

13. The verifier checks that the opening is correct and that De(d, Z) = 1. If
the opening is not correct or if De(d, Z) 6= 1, the verifier outputs reject and
terminates.

14. If the verifier did not terminate, the prover and the verifier engage in a Zero-
knowledge protocol to prove the following:

• PK{(xi, X ′i, r, R) : Ci = Com(xi) ∧ CXi = Com(X ′i) ∧X ′i = xiX
1
i + (1 −

xi)X
0
i }, ∀1 ≤ i ≤ n.

• PK{(x, x1, · · · , xn, r, r1, · · · rn) : Cx = Com(x) ∧ Ci = Com(xi) ∧ x =∑
2ixi}

15. If the zero-knowledge proof verifies, the verifier outputs accept.

Figure 3.2: The Protocol ΠCom,f

Theorem 3.1.1. Let G be a garbling scheme satisfying correctness and authenticity
properties as defined in Section 2.3. Let Com be a secure commitment scheme, and
let the proofs PK be implemented with a zero knowledge proof of knowledge. Then,
the protocol ΠCom,f in Figure 3.2 securely implements FCom,f in the presence of
malicious adversaries in the FCOT -hybrid model.

Proof. Corrupt Prover P∗.
The simulator works as follows: It extracts the prover’s input x′ sent to the

FCOT functionality in step 4. It then plays the role of the honest verifier in the
rest of the simulation - it constructs the garbled circuit honestly and uses its input
keys as verifier’s inputs to the COT functionality. The simulator then extracts a
value Z committed to by the prover from the proofs of knowledge of opening in
step 9. It also extracts prover’s committed input x and the values X ′i that prover
committed to in the protocol, using the extractor for the ZK proof of knowledge
in step 14. The simulator finally outputs as witness x and the opening extracted
from the ZK proofs of step 14, iff all the following hold: x = x′, f(x) = 1, Z is
the one-key of the output wire, X ′i = Xxi

i for all i, the commitment in step 9 is
opened to Z, and the ZK proofs of step 14 verifies. Note that in the ideal model,
the functionality will always output accept when the simulator sends this witness.

We now prove that P∗’s view in the real protocol is indistinguishable from his
view with the simulator via a series of intermediate games.

34

• Game Ideal: This is the interaction P∗ with the simulator and functionality
as described above.

• Game G0: This is the interaction of P∗ with the simulator as described above,
with the exception that instead of the simulator sending x and the opening
to the functionality which outputs accept iff f(x) = 1, the game will output
accept iff f(x′) = 1 for the x′ extracted from the OT (and all the other
conditions listed hold). Since one of the conditions checks x = x′, this is
identical.

• Game G1: This game behaves exactly as in G0 except for a slight change in
the accept condition. It outputs accept if f(x′) = 1 and X ′i = Xxi

i for all
i and Z is the one-key of the output wire and the commitment in step 9 is
correctly opened to Z, and all the ZK proofs verify (i.e. no x = x′ check).

Indistinguishability:

Define the event Bad as the event that x 6= x′, f(x′) = 1, Z is the one-key of
the output wire, K ′i = Kxi

i for all i, and the opening to Z is correct and the
ZK proofs of step 14 verify.

Observe that G0 is identical to G1 conditioned on Bad. We now argue that
Pr[Bad] is negligible, by observing that an adversary who makes us reject
G0 but accept in G1, can only succeed with probability 1/2s where s is a
statistical security parameter, in the COT hybrid model. Without loss of
generality, let us assume the ith bit of x is 0 and ith bit of x′ is 1. Then, the
probability of the adversary guessing X0

i given only X1
i is less than 1/2|K

0
i |.

Note that |X0
i | is the computational security parameter.

Hence Games G0 and G1 are indistinguishable except with negligible proba-
bility in s.

• Game G2: This game behaves as in G1 except for another change in the accept
condition. We accept if f(x′) = 1 and ZK proofs of step 14 verifies and Z
is the one-key of the output wire, and the commitment in step 9 is correctly
opened to Z (i.e. no X ′i = Xxi

i check).

If an adversary can distinguish between Games G1 and G2, we can break the
soundness of the ZK proof of step 14. Therefore, G1 and G2 are indistinguish-
able.

• Game G3: This game behaves as in G2 except for a small change in accept
condition. We accept if ZK proofs of step 14 verifies and Z is the one-key of
the output wire, and the commitment in step 9 is correctly opened to Z (i.e.
no f(x′) = 1 check).

35

Games G2 and G3 are identical, except when the following event occurs:
f(x′) 6= 1 and ZK proof of step 14 passes, and Z is the one-key of the
output wire. When this event occurs, we accept in G3 and reject in G2. We
now argue that the probability of this event is negligible. For the sake of
contradiction, assume the prover’s input to OT is x′ such that f(x′) 6= 1,
but the value committed to is the correct one-key Z for the output wire. We
can use such a prover to break the authenticity of the garbling scheme (See
Definition 2.3.3).

• Game G4: This game behaves as in G3 except for the accept condition. We
accept if the ZK proofs of step 14 verifies and the commitment in step 9
opens correctly (i.e. no check that it is the same as extracted Z).

An adversary who can distinguish between G3 and G4 can be used to violate
the binding property of the commitment scheme.

G4 is identical to the real world game with an honest verifier.

Corrupt Verifier V∗. The simulator plays the role of the prover and commits
to bits of a random value in step 1. It also uses a random value as prover’s inputs
to the COT, and receives the verifier’s inputs to the COT functionality (X0

i , X
1
i)

for all i, i.e. the input keys to the GC. The simulator then commits to the keys
corresponding to the random input it used in the OTs.

It runs Ve(GC, (X0
i , X

1
i), f) to either obtain reject, or accept. If the output is

reject it commits to a dummy value, else it runs the extractor Ve1(GC, (X
0
i , X

1
i), f)

to obtain the one-key for the output wire denoted by Z, and commits to Z.
It then receives the “open” message from the verifier. If Ve had not output

reject earlier, the simulator opens the commitment to Z and uses the simulator for
the ZK proof to simulate the proofs of step 14. Otherwise, the simulator aborts.

• Game G0: This is the interaction of V∗ with the simulator as described above.

• Game G1: Is similar to game G0 except that the real input x of the prover is
committed to.

The two games are indistinguishable due to the hiding property of the com-
mitment scheme.

• Game G2: Is similar to G1 except that instead of computing Z by running Ve,
we run Eval(GC,Xxi

i) to compute and commit to Z.

The two games are indistinguishable due to the second condition in the cor-
rectness property of the garbling scheme. Note that we are also implicitly
using the committing OT property (the protocol described in the COT hy-
brid model) as the keys extracted in the OTs and what the functionality
sends to the honest prover are the same.

36

• Game G3: Is similar to G2 except that the honest input x of the prover is used
in the OTs.

The two games are identical in the OT hybrid model.

• Game G4: Is similar to G3 except that the simulator commits to the input
keys associated with the real input x.

The two games are identical due to the hiding property of the commitment
scheme.

• Game G5: Is similar to G4 except that in step 14, the simulator performs the
proofs honestly.

The two games are indistinguishable due to the zero-knowledge property of
the ZK proof.

Note that G5 is the real game with the honest prover.

3.1.4 Second Protocol

We now give an alternative construction that implements the functionality in
Figure 3.1. In particular, we avoid the bit-wise commitments to each bit of xi, and
the associated bit-wise ZK proofs, and hence require fewer public-key operations
(exponentiations) in the construction. On the other hand, the garbled circuit is
augmented and hence a larger number of symmetric-key operations are needed.

The idea is as follows. In order to ensure that the prover uses the same input
x in the GC, we have the circuit not only compute f(x) but also a one-time MAC
of x, i.e. t = ax + b for random a and b of the verifier’s choice. The values a
and b are initially unknown to the prover, but are opened along with the GC after
the prover has committed to t. Given a and b, the prover then provides a ZK
proof that Com(t) is indeed the one-time MAC of x (using efficient proofs of linear
relations). We note that the t = ax + b operation performed in the circuit is on
integers.

We note that our construction deviates from the standard construction of GC-
based ZK where the verifier has no input to the garbled circuit, and privacy-free
garbling is sufficient. In particular, we do invoke the privacy property of the
garbling scheme in our construction to ensure that the prover does not learn a and
b until the opening stage.

The complete protocol description in the COT-hybrid model is given in Fig-
ure 3.3.

37

Let G = (Gb,En,De,Eval,Ve) be a garbling scheme. Let F be the following
functionality: it takes as inputs x, a, b and outputs v, t such that v = 1 if f(x) = 1
and 0 otherwise, and t = ax+ b. The verifier is in possession of Cx = Com(x), the

prover has input x and the randomness to open Cx. Both parties have as input the
security parameter κ.

1. The verifier generates uniformly random integers a and b of length s and n+ s
respectively, where n = |x|. It commits to them by sending Ca = Com(a),
Cb = Com(b) and proves knowledge of their opening.

2. The verifier constructs a garbled circuit for F .

(GC, e, d)← Gb(1κ, F (x, a, b) = (f(x), ax+ b))

3. The prover inputs his choice bits by sending (i, xi) for all i ∈ [n] to FCOT .

4. The verifier inputs the wire keys corresponding to the prover’s input by sending
(i,X0

i , X
1
i) for all i ∈ [n] to FCOT .

5. FCOT outputs X ′i for all i ∈ [n] to the prover where X ′i = Xxi
i .

6. The verifier sends the garbled circuit GC to the prover. Note that in what
follows, for simplicity, we consider the input keys for a and b to be part of the
GC itself, and hence not sent separately.

7. The prover evaluates the garbled circuit

(t′, Z)← Eval(GC, {X ′i}i∈[n])

8. The prover commits to the garbled output Z by sending Com(Z) to the verifier
and proves knowledge of opening.

9. The verifier sends the decoding information dt for t.

10. The prover decodes
t = De(dt, t

′)

and commits to the decoded output by sending Ct = Com(t), and proves
knowledge of opening.

11. The verifier sends open to FCOT .

12. FCOT sends (X0
i , X

1
i) to the prover for all i ∈ [n].

13. The verifier opens Com(a) and Com(b). The prover checks the openings and
aborts if they fail.

38

14. The prover verifies that the correct circuit was garbled by running
Ve(GC, {X0

i , X
1
i }i∈[n], F). It also checks that garbled inputs for x, a, b are

the correct one. If any of checks fail, the prover terminates. Otherwise, it
receives the decoding vector d, and he opens the commitment to the output Z
by sending Z and randomness.

15. The verifier checks that the opening is correct and that De(d, Z) = 1. If
the opening is not correct or if De(d, Z) 6= 1, the verifier outputs reject and
terminates.

16. If the verifier did not terminate, the prover and the verifier engage in a Zero-
knowledge protocol to prove the following:

PK{(x, t, r, R) : Cx = Com(x) ∧ Ct = Com(t) ∧ t = ax+ b}

17. If the zero-knowledge proof verifies, the verifier outputs accept.

Figure 3.3: The Protocol ΠMAC,f

Theorem 3.1.2. Let G be a garbling scheme satisfying correctness, authenticity,
and privacy properties as defined in Section 2.3. Let Com be a secure commitment
scheme, and let the proofs PK be implemented with a zero knowledge proof of
knowledge. Then, the protocol ΠMAC,f in Figure 3.3 securely implements FCom,f in
the presence of malicious adversaries in the FCOT -hybrid model.

Proof. Corrupt Prover P∗.
The simulator works as follows: It uses the OT simulator to extract the prover’s

input x′ to the OT. It then plays the role of the honest verifier in the rest of
the simulation - it chooses a, b randomly as the honest verifier would, constructs
the garbled circuit honestly and uses its input keys as verifier’s inputs to the
COT functionality. The simulator then extracts the value Z ′ committed to by the
prover from the proofs of knowledge of opening in step 8. It also extracts prover’s
committed input x and the tag t′ that the prover committed to in the protocol,
using the extractor for the ZK proof of knowledge in step 16. The simulator finally
outputs x and the opening extracted from the ZK proofs, iff all the following hold:
x = x′, f(x) = 1, Z is the one-key of the output wire, t′ = ax+ b, the commitment
in step 8 is opened to Z, and the ZK proof of step 16 verifies. Note that in the
ideal model the functionality will always output accept when the simulator sends
this witness.

We now prove that a corrupt prover’s view in the real protocol is indistinguish-
able from his view with the simulator by a series of intermediate games.

39

• Game Ideal: This is the interaction of the corrupt prover with the simulator
and functionality as described above.

• Game G0: This is the interaction of the corrupt prover with the simulator
as described above, with the exception that instead of the simulator sending
x and the opening to F , which outputs accept iff f(x) = 1, the game will
output accept iff f(x′) = 1 for the x′ extracted from the OT (and all the
other conditions listed hold). Since one of the conditions checks x = x′, this
is identical.

• Game G1: In this game, the simulator behaves exactly as in G0 except that
it does not check the x = x′ condition.

Define the event Bad as the event that x 6= x′ but t = ax + b. Observe that
G0 is identical to G1 conditioned on Bad. We argue that Pr[Bad] is negligible
due to the unforgeability property of the one-time MAC, the hiding property
of the commitment scheme, and the privacy of the garbled circuit.

Consider a game where we run as in G1 but stop after step 10, and look
at the probability that in this game t′ = ax + b but x 6= x′; if Pr[Bad] is
non-negligible, this will be non-negligible as well. Now, by the privacy of
the garbled circuit, this is indistinguishable from a game where the verifier
computes a tag t on x′, and then constructs (GC, e, d) using the privacy
simulator: S(F, (t, 1)). Similarly, by the hiding of the commitment scheme
this is still indistinguishable from a game where the verifier commits to ran-
dom values instead of a, b. But if in this final game we get t′ = ax + b and
x 6= x′ with non-negligible probability, then we can break the unforgeabil-
ity of the MAC. The probability of forgery is bounded by 1/2|a|, and hence
exponentially small in the statistical security parameter s = |a|.

• Game G2: In this game, the simulator behaves as in G1 except that it does
not check the condition t = ax+ b.

If an adversary can distinguish between Games G2 and G1, we can break the
soundness of the ZK proof of step 16.

• Game G3: In this game, the simulator behaves as in G2 except that we do not
check the condition f(x′) = 1.

Games G2 and G3 are identical, except when the following event occurs:
f(x′) 6= 1 and ZK proof of tag verifies and Z is the one-key of the out-
put wire. We now argue that the probability of this event is negligible. For
the sake of contradiction, assume the prover’s input to OT is x′ such that
f(x′) 6= 1, but the value committed to is the correct one-key Z for the out-
put wire. We can use such a prover to break the authenticity of the garbling
scheme (See definition 2.3.3).

40

• Game G4: In this game, the simulator behaves as in G3 except for the accept
condition. The simulator accepts if the ZK proofs of step 16 verifies and the
commitment in step 8 opens correctly (i.e. no check that it is the same as
extracted Z).

An adversary who can distinguish between G4 and G3 can be used to violate
the binding property of the commitment scheme.

G4 is identical to the real world game with an honest verifier.

Corrupt Verifier V∗. The simulator extracts a and b from the proofs of
knowledge of their openings by verifier. It uses a random value as prover’s inputs
to the COT, and receives the verifier’s inputs to the COT functionality (X0

i , X
1
i)

for all i, i.e. the input keys to the verifier GC.
It then runs Ve(GC, (X0

i , X
1
i), F) to either obtain reject or accept. If the GC

verifies, the simulator runs Ve1(GC, (X
0
i , X

1
i), F) (and checks against the extracted

a, b) to extract the decoding information d. If the output is reject it commits to
dummy values for Z and t, else it commits to the one-key for the output wire
denoted by Z, and a dummy t.

The simulator receives the openings of Com(a) and Com(b). If the openings are
not what it extracted earlier, or if Ve had output reject earlier, it aborts. Else, the
simulator opens the commitment to Z and uses the simulator for the ZK proof to
simulate the proofs of step 16.

• Game G0: This is the interaction of the corrupt verifier with the simulator as
described above.

• Game G1: Is similar to game G0 except that t = ax+ b for the real input x of
prover is committed to.

The two games are indistinguishable due to the hiding property of the com-
mitment scheme.

• Game G2: Is similar to G1 except that instead of computing Z and t by
running Ve, we run Eval(GC,Xxi

i) to compute and commit to Z and t.

The two games are indistinguishable due to the second condition in the cor-
rectness property of the garbling scheme, and binding property of commit-
ments Com(a) and Com(b). Note that we are also implicitly using the com-
mitting OT property (the protocol described in the COT hybrid model) as
the keys extracted in the OTs and what the functionality sends to the honest
prover are the same.

• Game G3: Is similar to G2 except that the honest input x of the prover is used
in the OTs.

The two games are identical in the OT hybrid model.

41

• Game G4: Is similar to G3 except that in step 14, the simulator performs the
proofs honestly.

The two games are indistinguishable due to zero-knowledge property of the
ZK proof.

Note that G4 is the real game with the honest prover.

3.1.5 Efficiency Comparison and Optimizations

Efficiency Comparison. In our first instantiation, in addition to the cost as-
sociated with the GC-based ZK, i.e. the oblivious transfer for x and the cost of
garbling f , O(n) exponentiations are necessary to commit to each bit of input x
and to perform the bitwise ZK proofs associated with them in the last step.

In our second instantiation, the bitwise commitments/proofs are eliminated
(i.e. only a constant number of exponentiations) but instead the circuit for ax+ b
needs to be garbled which requires O(ns+s2) additional symmetric-key operations
when using textbook multiplication (we discuss range of values for s shortly).
Using Karatsuba’s multiplication algorithm [Knu69], this can potentially be further
reduced.

The round complexity of both protocols is essentially the same as the GC-based
ZK proof of [JKO13] (5 rounds), as the extra messages can be sent within the same
rounds. (To simplify presentation, we used a separate step for each operation in
our protocol description, but many of these can be combined.) A more round-
efficient GC-based ZK proof would make our constructions more round efficient as
well.

The first instantiation requires more exponentiations which are significantly
costlier than their symmetric-key counterpart, but the total number of symmetric-
key operations in the second instantiation is higher. Hence, when n is small,
the first instantiation is likely more efficient, while when n is larger, the second
instantiation will be the better option. Furthermore, if bit-wise commitment to
the input is already necessary as part of the bigger protocol (as is the case in
some of our constructions), the first instantiation may be the better choice. In
the case where a comparison circuit x < q is also computed, an additional O(n)
symmetric-key operations suffices.

Optimizations. Next, we review a few other optimizations that improve effi-
ciency of our instantiations.

• Reducing exponentiations. We consider the following optimization for the
protocol ΠCom,f in Fig. 3.2 which reduces the number of exponentiations

42

necessary for the ZK proofs significantly. In step 6, the prover commits to
the sum of the keys received instead of individually to each wire key. The
prover sends Com(S) = Com (

∑n
i=1X

′
i) in step 6. We assume that the bit

commitment scheme Com is homomorphic, and each wire key Xi is truncated
to s bits and interpreted as a group element. Now, in the zero knowledge
proofs of step 14, the prover proves the following statements which can be
performed with fewer exponentiations:

PK{(xi, S, r, R) : Com(xi) = gxihr ∧ Com(S) = gShR

∧ S =
n∑
i=1

(
xiX

1
i + (1− xi)X0

i

)
}

PK{(x, x1, · · · , xn, r, r1, · · · rn) : Com(x) = gxhr ∧ Com(xi) = gxihri

∧ x = g
∑

2ixihr}

We can show that if the sum extracted by the simulator from the commitment
in step 6 is not equal to the sum of keys corresponding to the input x′

extracted from COT, but the ZK proofs verify, then for some i, the prover
must have correctly guessed Xb

i such that b 6= x′i. The probability of this is
negligible by the security of the COT protocol.

• Privacy-free garbling. As discussed earlier, in [FNO15] it is observed that
privacy-free garbling is sufficient for GC-based ZK proofs of non-algebraic
statements. This improves the communication/computation cost of garbled
circuits in our first instantiation by a factor of two. But as mentioned earlier,
the same cannot be said about our second construction since the privacy
property of garbling is required to hide a and b in the earlier stage of the
construction.

But we can think of bigger circuit as consisting of two smaller circuits: one
computing the function f and the other computing ax + b. If we split the
computation into two garbled circuits with shared OT, then we can use the
privacy free garbling scheme of [FNO15, ZRE15] for the first circuit as the
verifier has no input, and use a standard garbling scheme for the ax + b
circuit.

• Smaller multiplication circuit. For the one-time MAC in the second protocol,
a small a is sufficient for security - if the security (unforgeability) desired is
2−s, it suffices for a to be s bits long. Hence, for a 512-bit input, a 40−80-bit
a is sufficient to compute ax+ b which reduces the size of the multiplication
circuit significantly.

43

3.2 Sigma Protocols and SNARKs for Combina-

tion Statements

We begin by presenting a sigma protocol to prove equality of committed values
with the exponents ai in y =

∏
Gai
i . Then, we show how to prove consistency

of the input and output of a circuit in a SNARK with values committed to in
algebraic commitments.

3.2.1 Proof of equality of committed values

Let G be a group of prime order q. Let y =
∏
Gai
i , Ci = gaihri , where g,Gi, h are

generators of the group, and the prover does not know the discrete logarithms of h
with respect to g. We want to prove equality of the discrete logarithms in y and the
respective values committed to in Ci. Let k be a security parameter. Following
standard notation, we denote the protocol by PK{(a1, · · · , an, r1, · · · , rn) : y =∏n

i=1G
ai
i ∧ Ci = gaihri}.

Figure 3.4: The Protocol comEq

Given y =
∏n
i=1G

ai
i and Ci = gaihri

1. The prover computes the following values: u =
∏n
i=1G

αi
i and vi = gαihRi for

randomly chosen αi, Ri ∈ Zq and sends u, vi to the verifier.

2. The verifier chooses a random string c of length k as the challenge, and sends
it to the prover.

3. For a challenge string c, compute and send the tuple (si, ti)

si = αi − cai (mod q), ti = Ri − cri (mod q)

4. Verification:

Check if u = yc
∏
Gsii and vi = (Ci)

cgsihti . The verifier accepts if Verification
succeeds for all i.

We will show that the protocol in Figure 3.4 is correct, has a soundness error
of 1/2k, and is honest verifier zero knowledge.

Proof. • Completeness:

44

If the prover and the verifier behave honestly, it is easy to see that verifica-
tion conditions hold.

yc
∏

Gsi
i = (

∏
Gai
i)c
∏

Gsi
i =

∏
Gaic+si
i = u

(Ci)
cgsihti = (gaihri)cgsihti = gcai+sihcri+ti = vi

• Soundness: We show an extractor that computes a1, · · · an, r1, · · · , rn given
two accepting views with same commitments but different challenge strings.
Say, we have two accepting views: {(u, vi), c, (si, ti)} and {(u, vi), ĉ, (ŝi, t̂i)}
for challenges c and ĉ 6= c. Since the views are accepting, we have,

yc
∏

Gsi
i = yĉ

∏
Gŝi
i = u

yc−ĉ =
∏

Gŝi−si
i

We can now compute (in Zq), xi = (ŝi − si)(c− ĉ)−1. The inverse of (c− ĉ)
exists in Zq, since c 6= ĉ by assumption.

Similarly,
(Ci)

cgsihti = (Ci)
ĉgŝiht̂i = vi

and we can compute
ri = (t̂i − ti)(c− ĉ)−1

The extractor succeeds in extracting a witness given two accepting tran-
scripts. The prover can, therefore, cheat only when he can answer exactly
one challenge correctly, and the probability of that challenge being chosen
by the verifier is bounded by 1/2k where k is the length of the challenge.

• Honest Verifier Zero Knowledge: We show a simulator such that the
output of the simulator is statistically indistinguishable from the transcript
of the protocol with a prover. The simulator on input c, randomly chooses
si, ti ∈ Zq and computes u = yc

∏
Gsi
i , and vi = (Ci)

cgsihti .

3.2.2 SNARK on committed input

The starting point of our constructions is the verifiable computation protocol
of Pinocchio. At a high level, each polynomial of the quadratic program (defined
in 2.5), say, vk(x) ∈ F is mapped to an element in a bilinear group, gvk(s), where s

45

is a secret value chosen during CRS generation, g is a generator of the group. F is
the field of discrete logarithms and over which the operations of the computation
are performed. Given these group elements and the values ai on the circuit wires
which are the coefficients of the quadratic program, the prover can compute “in

the exponent” to obtain gv(s), where v(s) =
∑

aivk(s). The verifier uses the

bilinear map to verify that the divisibility check of the QAP holds. We assume the
computations are over large fields, that is, the QAP is defined over Fp for a large
p. The size of the field is exponential in the security parameter. We omit p in all
further descriptions of the field.

Let f : FN → Fn′ be a function with input/output values from F, computed
by an arithmetic circuit C with input wires labeled 1, . . . , N , output wires labeled
m − n′ + 1, . . . ,m. Let Q be a QAP of size m and degree d corresponding to
C. We separate the circuit wires I into private input, public input, intermediate
values, and output wires. Let Icom ⊆ {1, · · · , N} be the set of indices correspond-
ing to the private inputs x1, · · · , xn, Ipub the indices for the public input wires,
and Iout the indices for the public output. Let Imid = {1, · · · ,m} \ Ipub ∪ Icom ∪
Iout. Let Ci be an algebraic commitment, for example, Pedersen, to the ith in-
put xi, Ci = gxihri . The construction comInSnark : PK{(x1, · · · , xn, r1, · · · , rn) :
f(x1, · · · xn, z1, · · · , zN−n) = (b1, · · · , bn′) ∧ C1 = gx1hr1 ∧ · · · ∧ Cn = gxnhrn} is
given in Fig. 3.5.

Given Ci = gxihri for all i ∈ [n], commitments to private inputs, the public
inputs, z1, · · · , zN−n, and the public outputs, b1, · · · , bn′ . Let g be a generator of
G1, g̃ a generator of G2, and e : G1 ×G2 → GT , a non-trivial bilinear map.

1. CRS generation: Choose rv, rw, αv, αw, αy, s, β, γ
R← F. Set ry = rvrw, gv =

grv , gw = grw , g̃w = g̃rw , gy = gry .

Set the CRS to be:

crs = ({gvk(s)v }k∈Icom , {gvk(s)v }k∈Imid , {g̃
wk(s)
w }k∈Icom , {g̃wk(s)w }k∈Imid ,

{gyk(s)y }k∈Icom , {gyk(s)y }k∈Imid{g
αvvk(s)
v }k∈Icom , {gαvvk(s)v }k∈Imid ,

{gαwwk(s)w }k∈Icom , {gαwwk(s)w }k∈Imid , {g
αyyk(s)
y }k∈Icom , {g

αyyk(s)
y }k∈Imid

{gsi}i∈[d], {gβvk(s)v gβwk(s)w gβyk(s)y }k∈Icom , {gβvk(s)v gβwk(s)w gβyk(s)y }k∈Imid)

Set the short verification CRS to be:

shortcrs = (g, g̃, g̃αv , gαw , g̃αy , g̃γ , gβγ , g̃βγ , gt(s),

{gvk(s)v }k∈Ipub∪Iout , {g̃
wk(s)
w }k∈Ipub∪Iout , {g

yk(s)
y }k∈Ipub∪Iout)

2. Prove:

46

On input z1, · · · , zN−n, witness x1, · · · , xn, and crs, the prover evaluates the
QAP to obtain {ai}i∈[m]. (Equivalently, evaluates the circuit to obtain the val-
ues on the circuit wires). The prover solves for the quotient polynomial h such

that p(x) = h(x)t(x). Let vcom(x) =
∑

k∈Icom

akvk(x), vmid(x) =
∑

k∈Imid

akvk(x)

and similarly define wcom(x), wmid(x), ycom(x) and ymid(x).

• The prover computes the proof π:

(gvcom(s)
v , gvmid(s)v , g̃wcom(s)

w , g̃wmid(s)w , gycom(s)
y , gymid(s)y , g̃h(s),

gαvvcom(s)
v , gαvvmid(s)v , gαwwcom(s)

w , gαwwmid(s)w , g
αyycom(s)
y , g

αyymid(s)
y

gβvcom(s)
v gβwcom(s)

w gβycom(s)
y , gβvmid(s)v gβwmid(s)w gβymid(s)y)

• Prove input consistency with commitment: The prover uses the sigma
protocol comEq to compute πin: PK{(x1, · · · , xn, r1, · · · , rn) : y =∏n
i=1G

xi
i ∧ C1 = gx1hr1 ∧ · · · ∧ Cn = gxnhrn}, for Gi = g

vi(s)
v , i ∈ Icom,

and y = g
vcom(s)
v

3. Verify:

• On input shortcrs, z, and proofs π, πin parse π as

π = (gVcom , gVmid , g̃Wcom , g̃Wmid , gYcom , gYmid , g̃H ,

gV
′
com , gV

′
mid , gW

′
com , gW

′
mid , gY

′
com , gY

′
mid , gZcom , gZmid)

• Divisibility check. Compute g
vio(s)
v =

∏
k∈Ipub∪Iout(g

vk(s)
v)ak . Similarly,

compute g̃
wio(s)
w and g

yio(s)
y .

e(gv0(s)v gvio(s)v gVcomgVmid , g̃w0(s)
w g̃wio(s)w g̃Wcom g̃Wmid)

= e(gt(s), g̃H)e(gy0(s)y gyio(s)y gYcomgYmid , g̃)

• Verify that the linear combinations are in correct spans.

(a) e(gV
′
com , g̃) = e(gVcom , g̃αv)

(b) e(gV
′
mid , g̃) = e(gVmid , g̃αv)

(c) e(gW
′
com , g̃) = e(gαw , g̃Wcom)

(d) e(gW
′
mid , g̃) = e(gαw , g̃Wmid ,)

(e) e(gY
′
com , g̃) = e(gYcom , g̃αy)

(f) e(gY
′
mid , g̃) = e(gYmid , g̃αy)

• Verify same coefficients in all linear combinations.

(a) e(gZcom , g̃γ) = e(gVcomgYcom , g̃βγ)e(gβγ , g̃Wcom)

47

(b) e(gZmid , g̃γ) = e(gVmidgYmid , g̃βγ)e(gβγ , g̃Wmid)

• Verify input consistency with commitment: The verifier computes Gi =

g
vi(s)
v , i ∈ Icom, and sets y = gVcom . The verifier checks that the comEq

proof πin verifies: PK{(x1, · · · , xn, r1, · · · , rn) : y =
∏n
i=1G

xi
i ∧ C1 =

gx1hr1 ∧ · · · ∧ Cn = gxnhrn}

Figure 3.5: The Protocol comInSnark

Zero-knowledge. We make our construction zero-knowledge, and obtain zk-
comInSnark, by randomizing the elements in the proof π such that the checks
verify and the proof is statistically indistinguishable from random group elements.
Specifically, the prover chooses random δvcom , δvmid , δwcom , δwmid ← F, and adds
δvcomt(s) in the exponent to vcom(s), δvmidt(s) to vmid(s), δwcomt(s) to wcom(s), and
δwmidt(s) to wmid(s). It is easy to see that the modified value of p(x) remains
divisible by t(x). The above makes the proof statistically zero-knowledge. To
allow the prover to randomize the proof, the following terms are added to the

crs: g
t(s)
v , g̃

t(s)
w , g

t(s)
y , g

αvt(s)
v , g

αwt(s)
w , g

αyt(s)
y , g

βt(s)
v , g

βt(s)
w , g

βt(s)
y . The new values in π

can now be computed from the crs. Verification proceeds as before. For the
input consistency with commitment step: The verifier computes Gi = g

vi(s)
v , i ∈

Icom, H = g
t(s)
v , and sets y = gVcom . The proof πin: PK{(a1, · · · , an, δ, r1, · · · , rn) :

y = Hδ
∏n

i=1G
ai
i ∧C1 = ga1hr1 ∧ · · ·∧Cn = ganhrn} is statistically zero-knowledge.

We recall a technical lemma from [GGPR13] below, on which we rely for
soundness.

Lemma 3.2.1 (Lemma 10, [GGPR13]). Let F[x](k) denote polynomials over F[x]
of degree at most k. Let F[x](¬k) denote polynomials over F[x] that have a zero
coefficient for xk. For some d, let U = {uk(x)} ⊂ F[x]d, and let span(U) denote
the set of polynomials that can be generated as F-linear combinations of the poly-
nomials in U . Let a(x) ∈ F[x](d+1) be generated uniformly at random subject to the
constraint that {a(x) · uk(x) : uk(x) ∈ U} ⊂ F[x](¬(d+1)). Let s ∈ F∗. Then, for all
algorithms A

Pr[u(x)← A(U , s, a(s)) : u(x) ∈ F[x]d ∧ u(x) 6∈ span(U)

∧ a(x) · u(x) ∈ F[x](¬(d+1))] ≤ 1

|F|

Theorem 3.2.2. If the q-PDH, 2q-SDH and d-PKE assumptions hold for q ≥
4d + 4, then zk-comInSnark instantiated with a QAP of degree d is secure under
definition 2.2.4 with soundness error 1/|F|.

48

Proof. Soundness.
Assume there exists an adversary A who returns the proof of a false statement.

We use this adversary A along with the knowledge extractor that exists by the
d-PKE assumption to construct an adversary B to break either the q-PDH assump-
tion or the 2q-SDH assumption. B is given the challenge g, g̃, gs, g̃s, . . . , gs

q
, g̃s

q
,

gs
q+2
, g̃s

q+2
, · · · , gs2q , g̃s2q . A generates a function f that has a QAP Q = (t(x),V ,

W ,Y) of size m and degree d. B sets the CRS and short CRS according to the pro-
tocol, and choosing the randomness in the following way. B chooses rv, rw, αv, αw, αy
at random and sets ry = rvrw, gv = grvs

d+1
, gw = grws

2(d+1)
, gy = grys

3(d+1)

β is set to be a polynomial evaluated at s in the following way. Rewriting the
final term in the proof π, we have,

gβv(s)v gβw(s)w gβy(s)y = gβ(rvs
d+1v(s)+rws2(d+1)w(s)+rys3(d+1)y(s)) (3.1)

B sets β = sq−(4d+3)βpoly(s) where, βpoly(x) is a polynomial of degree at most
3d+3 sampled uniformly at random such that βpoly(x) · (rvvk(x)+ rwx

(d+1)wk(x)+
ryx

2(d+1)yk(x)) has a zero coefficient in front of x3d+3 for all k. Such a polynomial
is guaranteed to exist by Lemma 3.2.1. Rewriting equation 3.1 by writing β in
terms of s,

gβv(s)v gβw(s)w gβy(s)y = gβ(rvs
d+1v(s)+rws2(d+1)w(s)+rys3(d+1)y(s)) (3.2)

= gs
q−3d−2rvβpoly(s)v(s)+s

q−2d−1rwβpoly(s)w(s)+s
q−dryβpoly(s)y(s) (3.3)

= gs
q−3d−2βpoly(s)(rvv(s)+s

d+1rww(s)+s2d+2ryy(s)) (3.4)

Since βpoly(x) · (rvvk(x) + rwx
(d+1)wk(x) + ryx

2(d+1)yk(x)) has a zero coefficient
in front of x3d+3, the exponent in equation 3.2 has a zero in front of sq+1. The
powers of q in the exponent go up to (q − 3d − 2) + (3d + 3) + (2d + 2) + d =
q + 3d + 3 ≤ 2q. B can efficiently generate the terms in the CRS that contain β
by using the elements in the challenge. B generates γ′ uniformly at random from
F and sets γ = γ′sq+2. B can generate gγ from the challenge, since gs

q+2
is given.

Note, βγ = sq−(4d+3)βpoly(s)γ
′sq+2 does not have the sq+1 term, and has degree at

most q − (4d + 3) + (3d + 3) + (q + 2) ≤ 2q. Hence, B can generate gβγ using
the elements in its challenge. The polynomials vk(x), wk(x), yk(x) are of degree d,
and since we have q ≥ 4d+ 4, all the elements in the CRS can be generated using
terms in the challenge.

Let (π̂, π̂in) be a cheating proof returned by A for the computation of f with
public input and public output {ck}k∈Ipub∪Iout . Let π̂ = (gVcom , gVmid , g̃Wcom , g̃Wmid ,

gYcom , gYmid , g̃H , gV
′
com , gV

′
mid , gW

′
com , gW

′
mid , gY

′
com , gY

′
mid , gZcom , gZmid). Since the verifi-

cation holds, we have that e(gV
′
com , g̃) = e(gVcom , g̃αv), and e(gV

′
mid , g̃) = e(gVmid , g̃αv).

B can run the d-PKE extractor to recover polynomials Vmid(x) and Vcom(x) of
degree at most d such that Vmid = Vmid(s), Vcom = Vcom(s). Note that the pa-
rameters received by A is a valid input for the d-PKE assumption from which all

49

the other terms in the CRS can be efficiently generated. That is, the d-PKE ad-
versary receives input (σ, z), where σ = (p,G1,G2,GT , g, g̃, {gs

i}i∈[0,d], {g̃s
i}i∈[0,d]),

and the auxiliary input z consists of all the other terms in the CRS. Note that
the terms {gvk(s)v } can be efficiently generated from σ. A returns (V, V ′) such that
e(V, g̃) = e(V ′, g̃αv). Thus, B can invoke the d-PKE extractor χA to recover a

polynomial Vcom(x) =
d∑
i=0

cix
i of degree at most d such that V = gVcom(s). Simi-

larly, B recovers polynomials Wmid(x),Wcom(x), Ymid(x), Ycom(x) such that Wmid =
Wmid(s),Wcom = Wcom(s), Ymid = Ymid(s), Ycom = Ycom(s). Now, B computes,

V (x) = v0(x) +
∑
k∈Ipub

ckvk(x) +
∑
k∈Iout

ckvk(x) + Vcom(x) + Vmid(x)

and similarly W (x) and Y (x), and sets H(x) = (V (x)W (x)− Y (x))/t(x)
Since the proof is of a false statement, either the extracted polynomials do not

form a QAP solution, or the co-efficients of the extracted com polynomials are not
equal to the values committed to in C1, · · · , Cn. There are the following cases:

• H(x) has a non-trivial denominator.

• The polynomial R(x) = rvx
d+1Vmid(x) + rwx

2(d+1)Wmid(x) + ryx
3(d+1)Ymid(x)

is not in the linear subspace generated by the polynomials {rk(x) = rvx
d+1vk(x)+

rwx
2(d+1)wk(x) + ryx

3(d+1)yk(x)}k∈Imid

• The polynomial S(x) = rvx
d+1Vcom(x) + rwx

2(d+1)Wcom(x) + ryx
3(d+1)Ycom(x)

is not in the linear subspace generated by the polynomials {rk(x) = rvx
d+1vk(x)+

rwx
2(d+1)wk(x) + ryx

3(d+1)yk(x)}k∈Icom

• By the soundness of the protocol comEq, there exists an extractor that ex-

tracts a1, · · · , an such that Vcom(s) =
∑
k∈Icom

akvk(s), Ci = gaihri . a1, · · · , an

are different from the coefficients ci of the polynomial Vcom extracted by the
d-PKE extractor.

If none of the above cases hold, then V (x),W (x), Y (x) are a QAP solution,
with input consistent with commitments Ci.

Case 1 t(x) does not divide p(x) = V (x)W (x)− Y (x). Let (x− r) be a polynomial
that divides t(x) but not p(x), and let T (x) = t(x)/(x − r). Let d(x) =
gcd(t(x), p(x)). t(x) has degree at most d and p(x) has degree at most 2d. B
can use the extended Euclidean algorithm to find polynomials a(x), b(x) with
degrees 2d− 1 and d− 1 respectively, such that a(x)t(x) + b(x)p(x) = d(x).
Now set A(x) = a(x) · (T (x)/d(x)) and B(x) = b(x) · (T (x)/d(x)). A(x)

50

and B(x) do not have any denominator since d(x) divides T (x). We have,
A(x)t(x) +B(x)p(x) = T (x). Dividing by t(x) we have, A(x) +B(x)H(x) =

1

(x− r)
. A(x) and B(x) have degree at most 2d − 1 ≤ q; hence, B can use

the terms in its challenge to compute e(gA(s), g̃)e(gB(s), g̃H) = e(g, g̃)1/(s−r)

which solves the 2q-SDH.

Case 2 There does not exist {ck}k∈Imid such that Vmid(x) =
∑
k∈Imid

ckvk(x),Wmid(x) =∑
k∈Imid

ckwk(x) and Ymid(x) =
∑
k∈Imid

ckyk(x). By Lemma 3.2.1, we have that

xq−(4d+3)βpoly(x)(rvx
d+1vk(x) + rwx

2(d+1)wk(x) + ryx
3(d+1)yk(x)) has a non-

zero coefficient for the xq+1 term with high probability. B can use gZmid =
gs

q−(4d+3)βpoly(x)(s
d+1Vmid(s)+s

2(d+1)Wmid(s)+s
3(d+1)Ymid(s)) to subtract off all elements

of the form gs
j

for j 6= q + 1, and obtain gs
q+1

. This breaks the q-PDH as-
sumption.

Case 3 Similar to Case 2 with Vcom polynomial, and using gZcom .

Case 4 This breaks the binding property of the multi-commitment y, since we have
y =

∏
i∈Icom G

ai
i =

∏
i∈Icom G

ci
i , ai 6= ci for some i ∈ Icom.

Zero-knowledge. We now show a simulator (S, Sim) such that S outputs
a simulated crs and trapdoor, and Sim outputs a simulated proof. S generates
crs in the same way and sets the trapdoor τ to be τ = (s, αv, αw, αy, β, γ). Sim,
given the trapdoor τ picks polynomials v(x), w(x) at random such that t(x) divides
v(x)w(x). It sets h(x) to be the quotient polynomial. Now, it chooses polynomials
vcom(x), wcom(x) at random, and sets vmid(x) = v(x)−v0(x)−vio(x)−vcom(x), and
wmid(x) = w(x)−w0(x)−wio(x)−wcom(x). Given these polynomials, and s, α, β, γ
from the trapdoor, Sim can compute the encodings of Vmid = vmid(s), Vcom =
vcom(s), and other elements of the proof. Moreover, the simulated proof ele-
ments are statistically uniform, subject to the verification constraints. By the
zero-knowledge property of the protocol comEq, there exists a simulator that is
invoked by Sim to generate a simulated proof that is statistically indistinguishable
from πin.

3.2.3 SNARK on committed input/output

We separate the circuit wires into private input, private output, intermedi-
ate values and private output. Let Icom ⊆ {1, · · · ,m} be the set of indices
corresponding to the private inputs x1, · · · , xn, and Ipub the indices for the pub-
lic input wires. Let Iout be the set of indices corresponding to the outputs bi,

51

and Imid = {1, · · · ,m} \ Ipub ∪ Icom ∪ Iout. Let Ci be an algebraic commitment,
for example, Pedersen, to the ith input xi, Ci = gxihri , and Di, commitment
to the outputs Di = gbihRi . The construction comIOSnark : PK{(x1, · · · , xn,
b1, · · · , bn′ , r1, · · · , rn, R1, · · · , Rn′) : f(x1, · · · xn, z) = (b1, · · · , bn′) ∧ Ci = gxihri ∧
Di = gbihRi} is given in Fig. 3.6.

Given Ci = gxihri , for all i ∈ [n], commitments to private inputs, Di = gbihRi ,
for all i ∈ [n′] ,commitments to private outputs, and public input z. Let g be a
generator of G1, g̃ a generator of G2, and e : G1 × G2 → GT , a non-trivial bilinear
map.

1. CRS generation:

• Choose rv, rw, αv, αw, αy, s, β, γ
R← F. Set ry = rvrw, gv = grv , gw =

grw , g̃w = g̃rw , gy = gry .

• Set the CRS to be:

crs = ({gvk(s)v }k∈Icom , {gvk(s)v }k∈Iout , {gvk(s)v }k∈Imid , {g̃
wk(s)
w }k∈Icom ,

{g̃wk(s)w }k∈Iout , {g̃wk(s)w }k∈Imid , {g
yk(s)
y }k∈Icom , {gyk(s)y }k∈Iout ,

{gyk(s)y }k∈Imid{g
αvvk(s)
v }k∈Icom , {gαvvk(s)v }k∈Iout , {gαvvk(s)v }k∈Imid ,

{gαwwk(s)w }k∈Icom , {gαwwk(s)w }k∈Iout , {gαwwk(s)w }k∈Imid , {g
αyyk(s)
y }k∈Icom ,

{gαyyk(s)y }k∈Iout , {g
αyyk(s)
y }k∈Imid{g

si}i∈[d], {gβvk(s)v gβwk(s)w gβyk(s)y }k∈Icom ,

{gβvk(s)v gβwk(s)w gβyk(s)y }k∈Iout , {gβvk(s)v gβwk(s)w gβyk(s)y }k∈Imid)

• Set the short verification CRS to be:

shortcrs = (g, g̃, g̃αv , gαw , g̃αy , g̃γ , gβγ , g̃βγ , gt(s)y ,

{gvk(s)v }k∈Ipub , {g̃
wk(s)
w }k∈Ipub , {g

yk(s)
y }k∈Ipub)

2. Prove. On input z, witness x1, · · · , xn, b1, · · · , bn′ , and crs, the prover eval-
uates the QAP to obtain {ai}i∈[m]. (Equivalently, evaluates the circuit to
obtain the values on the circuit wires). The prover solves for the quotient

polynomial h such that p(x) = h(x)t(x). Let vcom(x) =
∑

k∈Icom

akvk(x),

vmid(x) =
∑

k∈Imid

akvk(x), vout(x) =
∑
k∈Iout

akvk(x) and similarly define wcom(x),

wmid(x), wout(x), ycom(x), ymid(x) and yout(x).

52

• The prover computes the proof π:

(gvcom(s)
v , gvmid(s)v , gvout(s)v , g̃wcom(s)

w , g̃wmid(s)w , g̃wout(s)w , gycom(s)
y ,

gymid(s)y , gyout(s)y , g̃h(s), gαvvcom(s)
v , gαvvmid(s)v , gαvvout(s)v , gαwwcom(s)

w ,

gαwwmid(s)w , gαwwout(s)w , g
αyycom(s)
y , g

αyymid(s)
y , g

αyyout(s)
y ,

gβvcom(s)
v gβwcom(s)

w gβycom(s)
y , gβvmid(s)v gβwmid(s)w gβymid(s)y ,

gβvout(s)v gβwout(s)w gβyout(s)y)

• Prove input consistency with commitment. The prover uses sigma pro-
tocol comEq to compute proof πin: PK{(x1, · · · , xn, r1, · · · , rn) : y =∏n
i=1G

xi
i ∧ C1 = gx1hr1 ∧ · · · ∧ Cn = gxnhrn}, for Gi = g

vi(s)
v , i ∈ Icom,

and y = g
vcom(s)
v .

• Prove output consistency with commitment. The prover uses sigma pro-
tocol comEq to compute proof πout: PK{(b1, · · · , bn′ , R1, · · · , Rn′) : y =∏n′

i=1G
bi
m−n′+i ∧D1 = gb1hR1 ∧ · · · ∧Dn′ = gbn′hRn′}, for Gj = g

vj(s)
v , j ∈

Iout, and y = g
vout(s)
v

3. Verify.

• On input shortcrs, y, and a proof π, parse it as

π = (gVcom , gVmid , gVout , g̃Wcom , g̃Wmid , g̃Wout , gYcom ,

gYmid , gYout , g̃H , gV
′
com , gV

′
mid , gV

′
out , gW

′
com ,

gW
′
mid , gW

′
out , gY

′
com , gY

′
mid , gY

′
out , gZcom , gZmid , gZout)

• Divisibility check. Compute g
vpub(s)
v =

∏
k∈Ipub(g

vk(s)
v)ak . Similarly, com-

pute g̃
wpub(s)
w and g

ypub(s)
y . Check that,

e(g
v0(s)
v g

vpub(s)
v gVcomv gVmidv gVoutv , g̃

w0(s)
w g̃

wpub(s)
w g̃Wcom

w g̃Wmid
w g̃Wout

w)

= e(g
t(s)
y , g̃H)e(g

y0(s)
y g

ypub(s)
y gYcomy gYmidy gYouty , g̃)

• Verify that the linear combinations are in correct spans.

(a) e(gV
′
com , g̃) = e(gVcom , g̃αv)

(b) e(gV
′
mid , g̃) = e(gVmid , g̃αv)

(c) e(gV
′
out , g̃) = e(gVout , g̃αv)

(d) e(gW
′
com , g̃) = e(gαw , g̃Wcom)

(e) e(gW
′
mid , g̃) = e(gαw , g̃Wmid)

(f) e(gW
′
out , g̃) = e(gαw , g̃Wout)

(g) e(g
Y ′com
y , g̃) = e(gYcom , g̃αy)

53

(h) e(g
Y ′mid
y , g̃) = e(gYmid , g̃αy)

(i) e(g
Y ′out
y , g̃) = e(gYout , g̃αy)

• Verify same coefficients in all linear combinations.

(a) e(gZcom , g̃γ) = e(gVcomgYcom , g̃βγ)e(gβγ , g̃Wcom)

(b) e(gZmid , g̃γ) = e(gVmidgYmid , g̃βγ)e(gβγ , g̃Wmid)

(c) e(gZout , g̃γ) = e(gVoutgYout , g̃βγ)e(gβγ , g̃Wout)

• Verify input consistency with commitment. Verify comEq proof πin. The

verifier computes Gi = g
vi(s)
v , i ∈ Icom, and sets y = gVcom from the proof

π. The verifier checks that the proof πin is a proof of knowledge of:
PK{(x1, · · · , xn, r1, · · · , rn) : y =

∏n
i=1G

xi
i ∧ C1 = gx1hr1 ∧ · · · ∧ Cn =

gxnhrn}.
• Verify output consistency with commitment. Verify comEq proof πout.

The verifier computes Gi = g
vi(s)
v , i ∈ Iout, and sets y = gVout

from the proof π. The verifier checks that the proof πout verifies.
PK{(b1, · · · , bn′ , R1, · · · , Rn′) : y =

∏n′

i=1G
bi
m−n′+i ∧D1 = gb1hR1 ∧ · · · ∧

Dn′ = gbn′hRn′}.

Figure 3.6: The Protocol comIOSnark

3.2.4 Sigma protocols on committed outputs

In [CDS94], the authors devise an OR composition technique for sigma pro-
tocols. Essentially, a prover can efficiently show ((x0 ∈ L) ∨ (x1 ∈ L)), without
revealing which xi is in the language. We show how to use the OR composition
to construct a sigma protocol with committed output. In particular, given alge-
braic commitments to inputs x1, · · · , xn, public y1, · · · , ym and an efficient sigma
protocol to prove that f(x1, · · · , xn, y1, · · · , ym) = 1, we show how to construct
an efficient sigma protocol to prove f(x1, · · · , xn, y1, · · · , ym) = b, for a commit-
ted bit b. Let Ci be a commitment to the ith input xi. PK{(b, x1, · · · , xn) :
f(x1, · · · , xn, y1, · · · , ym) = b ∧Db = gbhR ∧ Ci = gxihri}

• The prover commits to the output bit b,Db = gbhR

• The prover proves the following OR statement:

PK{(b, x1, · · · , xn) :
(
f(x1, · · · , xn, y1, · · · , ym) = 1 ∧ b = 1 ∧Db = gbhR

∧ Ci = gxihri) ∨
(
b = 0 ∧Db = gbhR

)
}

54

Chapter 4

Applications of ZK for
Combination Statements1

In this chapter, we show how to use the techniques to combine garbled circuits
and SNARKs with sigma protocols from Chapter 3 in applications. We focus on
anonymous credentials and proof of solvency as application examples, and begin
by discussing some necessary building blocks.

4.1 Building Blocks for Privacy-Preserving Sig-

nature Verification

We now look at anonymous credentials as an application for our zero-knowledge
proofs for combination statements. We use the constructions from Chapter 3 to
base credentials on standard signatures. We introduce three important building
blocks for our privacy-preserving signature verification protocols. Two of them can
be directly instantiated using our FCom,f functionality introduced in Section 3.1,
while for the third one we provide a customized construction.

4.1.1 Proving that a committed value is the hash of an-
other committed value

Here, the goal is to commit to a message m and its hash H(m) and prove in
zero-knowledge that one committed value is the hash of the other. We define the
task in terms of the ideal functionality in Figure 4.1.

1This chapter is based on joint work with Melissa Chase and Payman Mohassel that appeared
in CRYPTO 2016 [CGM16], and joint work with Shashank Agrawal and Payman Mohassel that
is yet to be published [AGM17]. Some passages are taken verbatim from these sources.

55

Figure 4.1: The ideal functionality FHash

• The verifier inputs Com(m),Com(M) and the prover inputs the opening infor-
mation (m,M) and the randomness.

• If H(m) = M and the openings to the commitments verify, output accept to
the verifier.

We now use the abstract functionality FCom,f from Figure 3.1 with a commit-
ment scheme Comh to instantiate a protocol that implements FHash. Here, the
input is x = (m,M = H(m)) and the Comh is defined as Comh(x = (m,M)) =
(Com(m),Com(M)). Recall, one of our protocols (Section 3.1.4), required bitwise
commitments from the prover. To commit to bits of x, one can commit to bits of
m and M individually. Comh inherits efficient proofs of linear relations from Com
as long as the proofs on m and M are performed separately. Given these, we show
in Figure 4.2 how to implement FHash by defining the right function f for the ideal
functionality FCom,f .

Figure 4.2: The Protocol ΠHash

1. The prover commits to x = (m,M) by sending Comh(x) = Com(m),Com(M)
to the verifier.

2. The prover and the verifier run ΠCom,f where f is the following functionality:
f takes m and M as inputs and outputs v such that v = 1 if H(m) = M and
0 otherwise.

Theorem 4.1.1. The protocol ΠHash in Figure 4.2 securely implements FHash,
given the ideal functionality FCom,f , in the presence of malicious adversaries.

4.1.2 Proof of equality of committed values in different
groups

The goal is to prove that the value committed to in different prime groups of
size p and q are the same. We define the task in terms of an ideal functionality,
defined in Figure 4.3. This can be achieved using standard techniques which involve
using the integer commitment scheme by Damgard and Fujisaki [DF02] to prove
properties about the discrete logarithms in Z (instead of modulo the order of the

group). This requires that the verifier choose an RSA modulus Ñ such that the
factorization is unknown to the prover, and prove that it is chosen correctly in

56

an initial set-up phase. The prover also has to compute exponentiations in an
RSA group where the exponents are |Ñ | + κ bits long. Since the group order
is hidden, chinese remaindering cannot be used to speed up the exponentiations,
and therefore the approach is fairly expensive. We give a protocol that avoids the
integer commitment technique.

Figure 4.3: The ideal functionality FEq

• The verifier inputs Comp(x),Comq(y) and the prover inputs (x, y) and the
opening information. p and q are public primes and q < p.

• If 0 ≤ x < p, 0 ≤ y < p, x ≡ y mod q, and the openings to the commitments
verify, output accept to the verifier.

In Figure 4.4, we use the ideal functionality FCom,f from Figure 3.1 with a
commitment scheme Compq to instantiate a protocol that implements FEq. The
scheme is defined as Compq(x) = (Comp(x),Comq(x)), where it is assumed that
Comp and Comq allow for proving linear relationships among committed values.

Figure 4.4: The Protocol ΠEq

1. The prover commits to x and y by sending Comp(x),Comq(y) to the verifier.

2. The prover and the verifier run ΠCom,f where f is the following functionality:
f takes x and checks that it is upper bounded by p and outputs v such that
v = 1 if x ≤ p and 0 otherwise.

4.1.3 Proof of equality of discrete logarithm of a commit-
ted value and another committed value

Let G1 = 〈G1〉 and G2 = 〈G2〉 be two groups of order p and q respectively
with q|(p − 1) and let g ∈ G2 be an element of order q. Given y1 = Ggx

1 H
R1
1

and y2 = Gx
2H

R2
2 , we want to prove that the discrete logarithm w.r.t to base g

of the value committed to in y1 is equal to the value committed to in y2. Let k
be a security parameter. Following standard notation, we denote the protocol by
PK{(x,R1, R2) : y1 = Ggx

1 H
R1
1 ∧ y2 = Gx

2H
R2
2 }. The technique of our protocol

is similar to [Sta96], [CS97a], and is a variant of [MGGR13]. Our protocol is
only honest verifier zero-knowledge. This HVZK protocol can be compiled into
a full zero-knowledge proof of knowledge in the auxiliary string model using the

57

technique of [Dam00]. The protocol PK{(x,R1, R2) : y1 = Ggx

1 H
R1
1 ∧ y2 = Gx

2H
R2
2 }

is given in Figure 4.5.

Figure 4.5: Double discrete logarithm proof

Given y1 = Gg
x

1 H
R1
1 and y2 = Gx2H

R2
2

1. The prover computes the following 2k values: ui = Gg
αi

1 Hβi
1 and vi = Gαi2 H

γi
2

for 1 ≤ i ≤ k, for randomly chosen αi, γi ∈ Zq and βi ∈ Zp, and sends ui, vi to
the verifier.

2. The verifier chooses a random string c of length k as the challenge, and sends
it to the prover.

3. For a challenge string c = c1 . . . ck, compute and send the tuple (ri, si, ti)
If ci = 0,

ri = αi, si = βi, ti = γi

If ci = 1,

ri = αi − x (mod q), si = βi −R1g
ri (mod p), ti = γi −R2 (mod q)

4. Verification:
If ci = 0, check whether ui = Gg

ri

1 Hsi
1 and vi = Gri2 H

ti
2

If ci = 1, check if ui = yg
ri

1 Hsi
1 and vi = y2G

ri
2 H

ti
2 . The verifier accepts if

Verification succeeds for all i.

We will show that the protocol in Figure 4.5 is correct, has a soundness error
of 1/2k, and is honest verifier zero knowledge.

Proof. • Completeness:

If the prover and the verifier behave honestly, it is easy to see that verification
conditions hold:
If ci = 0:

G
gri
1 H

si
1 = Ggαi

1 Hβi
1 = ui and Gri

2 H
ti
2 = Gαi

2 H
γi
2 = vi

If ci = 1:

yg
ri

1 Hsi
1 = (Ggx

1)g
ri (HR1

1)g
riHsi

1 = Ggαi
1 Hβi

1 = ui and ,

y2G
ri
2 H

ti
2 = Gx

2H
R2
2 Gri

2 H
ti
2 = vi

58

• Soundness: We show an extractor that computes x,R1, R2 given two differ-
ent accepting views with same commitments but different challenge strings.
Say, we have two accepting views for challenges c and ĉ 6= c. Without loss of
generality, let us assume that they differ in the jth position, and cj = 0. We
have,

uj = Ggrj

1 H
sj
1 = yg

r̂j

1 H
ŝj
1

Ggrj

1 H
sj
1 = Ggxgr̂j

1 H
Rgr̂j+ŝj
1

gx = grj−r̂j

We can compute (in Zq),
x = rj − r̂j

We have,
sj = R1g

r̂j + ŝj

and thus,

R1 =
sj − ŝj
gr̂j

We also have
vj = G

rj
2 H

tj
2 = y2G

r̂j
2 H

t̂j
2

G
rj
2 H

tj
2 = G

x+r̂j
2 H

t̂j+R2

2

and thus,
R2 = tj − t̂j

• Honest Verifier Zero Knowledge: We show a simulator such that the
output of the simulator is statistically indistinguishable from the transcript
of the protocol with a prover. The simulator on input c, randomly chooses
αi = ri ∈ Zq, βi = si ∈ Zp, γi = ti ∈ Zq and computes for 1 ≤ i ≤ k:
If ci = 0,

ui = Ggri
1 Hsi

1 and vi = Gri
2 H

ti
2

if ci = 1,
ui = yg

ri

1 Hsi
1 and vi = y2G

ri
2 H

ti
2

59

4.2 Privacy-Preserving Signature Verification

4.2.1 RSA signatures

The FDH-RSA Scheme. The Full Domain Hash RSA signature scheme FDH =
(KeyGen, Sign,Verify) is defined as follows [BR93a]. The KeyGen algorithm on input
the security parameter k, selects two k/2-bit primes p and q and computes the
modulus N = pq. It then chooses an exponent e ∈ Z∗φ(N), and computes d such

that ed = 1 mod φ(N). Return (pk, sk), where pk = (N, e) and sk = (N, d).
The signature generation and verification are as follows and use a hash function
H : {0, 1} → Z∗N .

SignN,d(M)
x = H(M)
σ = xd mod N
return σ

VerifyN,e(M,σ)
y = σe mod N
y′ = H(M)
if (y = y′) then return 1;
else return 0;

4.2.1.1 Proof of Knowledge of RSA Signatures

Given ComN(m), a commitment to m in a group of order N , the following
protocol is a zero knowledge proof of knowledge of a valid RSA signature on m.

1. The prover has input (m,σ) and the verifier is in possession of ComN(m) =
C1 = gmhr1

2. The prover commits to M = H(m), that is, M ∈ ZN , compute ComN(M) =
C2 = gMhr2 , for randomly chosen r2 ∈ Z∗N . Send C2 to the verifier and prove
knowledge of opening.

3. The prover and verifier engage in the protocol ΠHash with inputs (m,M) and
(C1, C2) respectively.

4. The prover proves knowledge of e-th root of a committed value [CS97a].
Given y = C2 = gMhr, prover proves knowledge of σ, such that, y = gσ

e
hr.

(a) The prover computes the following tuple:

(y1, · · · , ye−1) where yi = gσ
i

hri

for randomly chosen ri ∈ ZN , for i = 1 to e− 1.

60

(b) The prover and the verifier run the following proof of knowledge:

PK{(α, (β1, · · · , βe)) : y1 = gαhβ1 ∧ y2 = yα1 h
β2 ∧ · · · ∧ y = yαe−1h

βe}

When e is one greater than a power of 2, we can employ optimizations like
repeated squaring to prove knowledge of e-th root. Given y = gσ

e
hr, for e = 2k+1,

step 4 in the verification protocol can be now be realized as follows:

1. The prover computes the following tuple:

(y0, y1, · · · , yk) where yi = gσ
2i

hri

for randomly chosen ri ∈ ZN , for i = 1 to k.

2. The prover and the verifier run the following proof of knowledge:

PK{(α, α1, · · · , αk, β, β0, · · · , βk, R0, · · · , Rk) :

y0 = gαhβ ∧ y1 = yα0 h
β0 ∧ y1 = gα1hR0 ∧ y2 = yα1

1 hβ1

∧ y2 = gα2hR1 · · · ∧ yk = y
αk−1

k−1 h
βk−1 ∧ yk = gαkhRk−1 ∧ y = yαkh

βk}

It might be possible to improve the efficiency for some e’s by using addition chains
for the integer e. An addition chain for integer e is an ascending sequence 1 =
e0 < e1 < · · · er = e such that for each i, 1 6 i 6 r, there is some j and k with
1 6 j 6 k < i and ei = ej + ek. The prover, now, would have to provide only the
yi’s for which i is an element of the addition chain for e. The relations among the
yi’s will be sightly different, but can be proved in a similar way.

The above verification protocol can also be adapted to support variants of RSA-
based signatures, like the probabilistic signature scheme (PSS) from [BR96]. PSS
is a probabilistic generalization of FDH which uses two hash functions and more
complicated padding. We can instantiate protocol ΠCom,f with an f that verifies
the additional checks of PSS to achieve privacy preserving verification of a PSS
signature.

Proof of security. We sketch a proof that the above protocol is a zero-knowledge
proof of knowledge of an RSA signature on a committed message.

1. Completeness: By correctness of the protocol ΠHash, we have that M =
H(m). We now show the completeness of the proof in step 4. We have
that the interactive protocol corresponding to PK{(α, (β1, · · · , βe)) : y1 =
gαhβ1 ∧ y2 = yα1 h

β2 ∧ · · · ∧ y = yαe−1h
βe} is a proof of knowledge of values

α, β1, · · · , βe. It follows that,

61

y =
(
yαe−1

)
hβe =

((
· · ·
(
gαhβ1

)α
hβ2 · · ·

)α
hβe−1

)α
hβe

= gα
e

hβe+αβe−1+···+αe−1β1

If the prover and the verifier behave honestly, the verifier accepts.

2. Soundness: We show an extractor, that, given access to the prover, extracts
(m,σ) such that VerifyN,e(m,σ) = 1. The extractor invokes the simulator for
the corrupt prover of protocol ΠHash to extract m and M . It then runs the
extractor corresponding to the proof in step 4b to extract α. By the security
of ΠHash and the binding property of Com, it follows that αe mod N = M =
H(m).

3. Zero-knowledge: We sketch a simulator that simulates the verifier’s view in
the protocol. The simulator commits to a random value on behalf of the
prover in step 2 by computing C ′2 = Com(M ′). It sends C ′2 to the verifier,
proves knowledge of opening and invokes the simulator for the corrupt verifier
of protocol ΠHash. It then chooses y1, · · · , ye−1 ∈ ZN at random, and runs
the simulator corresponding to the proof in step 4b. We can show that the
view of the verifier in the protocol is indistinguishable from the view with
the simulator via a sequence of intermediate games.

• Game G0: This is the real game of the verifier with the honest prover.

• Game G1: This game is similar to G0 except in step 3, the simulator for
protocol ΠHash is invoked instead of honestly running ΠHash.

Games G0 and G1 are indistinguishable by the security of ΠHash.

• Game G2: This game is similar to game G1 above except that in step 4b,
the simulator for the zero-knowledge proof is invoked instead of doing
the proof honestly.

Games G1 and G2 are indistinguishable by the zero-knowledge property
of the proof of knowledge.

• Game G3: This game is similar to game G2 except that a random value
is committed to in step 2 instead of using the real input.

Games G2 and G3 are indistinguishable by the hiding property of the
commitment scheme Com. We also note that G3 is the interaction of
the corrupt verifier with the simulator.

62

4.2.2 The DSA Scheme.

The Digital Signature Algorithm (DSA) is a variant of the Elgamal signature
scheme. The key generation, signature generation and verification algorithms are
given next. The KeyGen algorithm chooses two primes p and q such that q | p− 1.
Let g be an element of order q in Z∗p. It then chooses x randomly from {1, · · · , q−1}.
The private key is set to be x and the public key is (g, p, q, y), y = gx mod p.

Sign(m)
M ← H(m)
Pick a random k, 1 ≤ k < q
r = (gk mod p) mod q
s = k−1(M + rx) mod q
return (r, s)

Verify(m, (r, s))
M ← H(m)
w = s−1 mod q
u1 = Mw mod q
u2 = rw mod q
if r = (gu1yu2 mod p) mod q
then return;
1 else return 0;

The ECDSA Scheme. ECDSA is the elliptic curve analogue of DSA. It works
in an elliptic curve group E(Zp). The ECDSA Key generation, signature and
verification algorithms are given below. The KeyGen algorithm chooses an elliptic
curve E defined over Zp such that the number of points in E(Zp) is divisible by a
large prime n. Pick a point P ∈ E(Zp) of order n. Let d ∈ [1, n−1] be a randomly
chosen integer. Set Q = dP . The public key is (E,P,Q, n) and the private key is
d.

Sign(m)
M ← H(m)
Pick a random k ∈ [1, n− 1]
kP = (x0, y0)
r = x0 mod n
s = k−1(M + rd) mod n
return (r, s)

Verify(m, (r, s))
M ← H(m)
if r, s 6∈ [1, n− 1] then return;
0
w = s−1 mod n
u1 = Mw mod n
u2 = rw mod n
(x1, y1) = u1P + u2Q
v = x1 mod n
if r = v then return 1;
else return 0;

63

4.2.2.1 Proof of Knowledge of DSA Signatures

Let (r, s) be the DSA signature on m. Let G1 = 〈G1〉 and G2 = 〈G2〉 be two
distinct groups of order p and q respectively where p and q are the parameters
of the DSA signature algorithm. One technical difficulty is that we have to show
r in G1 and G2 is equal modulo q. For that purpose, we use our protocol ΠEq

from Figure 4.4 to prove equality across groups. We also employ our protocol from
Figure 4.5 to prove equality of discrete logarithm of a committed value and another
committed value. We now describe the DSA verification protocol in detail. Given
a commitment to m, the following protocol is a zero-knowledge proof of knowledge
of a valid DSA signature on m.

1. The verifier is in possession of C1 = Comq(m), and the prover has as input
message (m, (r, s)) and the opening information of C1 to m.

2. The prover commits toM = H(m), that is, M ∈ Zq, compute C2 = Comq(M)
Send C2 to the verifier and prove knowledge of opening.

3. Now the prover and verifier engage in the protocol ΠHash to prove that M =
H(m).

4. The prover commits to the signature (r, s) by sending Compq(r) = (Comp(r),
Comq(r)) and Comq(s). The prover also commits to the following values:
u1 = H(m)s−1, u2 = rs−1, α = gu1 , β = yu2 , where g is the generator of a
cyclic group of order q in Z∗p used in DSA signing, and y is the DSA public
key. The prover sends Comq(u1),Comq(u2),Comp(α),Comp(β).

5. The prover and the verifier carry out the following Σ-protocol zero-knowledge
proofs of knowledge:

(a) PK{(u1, R1, R2) : Comp(α) = Ggu1
1 HR1

1 ∧ Comq(u1) = Gu1
2 H

R2
1 }

(b) PK{(u2, R1, R2) : Comp(β) = Gyu2
1 HR1

1 ∧ Comq(u2) = Gu2
2 H

R2
1 }

(c) PK{(r, α, β,R1, R2, R3) : Comp(β) = Gβ
1H

R1
1 ∧ Comp(α) = Gα

1H
R2
1 ∧

Comp(r) = Gr
1H

R3
1 ∧ r = αβ}

(d) PK{(M,u1, s, R1, R2, R3) : Comq(M) = GM
2 H

R1
2 ∧Comq(u1) = Gu1

2 H
R2
2 ∧

Comq(s) = Gs
2H

R3
2 ∧M = u1s}

(e) PK{(r, u2, s, R1, R2, R3) : Comq(r) = Gr
2H

R1
2 ∧ Comq(u2) = Gu2

2 H
R2
2 ∧

Comq(s) = Gs
2H

R3
2 ∧ r = u2s}

6. The prover and verifier engage in ΠEq with input Compq(r).

64

Proof of security. We sketch a proof that the above protocol is a zero-knowledge
proof of knowledge of a DSA signature (r, s) on a committed message.

1. Completeness: The security of protocol ΠHash ensures that M = H(m). By
completeness of the proofs of knowledge of step 5, we have that the privacy
preserving verification protocol between an honest prover and verifier will
make the verifier accept.

2. Proof of Knowledge: We show an extractor, that, given access to the prover,
extracts (m, (r, s)) such that Verify(m, (r, s)) = 1. The extractor invokes the
simulator for the corrupt prover of protocol ΠHash to extract m and M and
the opening information for C1.

It then runs the extractor guaranteed by the proof of knowledge property of
the proofs in step 5 to extract u1, u2, α, β, s, r. Finally it returns (m, (r, s))
and the opening information. By security of ΠHash, ΠEq and the binding
property of the commitment scheme Com, it follows that r = gMs−1

yrs
−1

and
M = H(m).

3. Zero-knowledge: We sketch a simulator that simulates the verifier’s view in
the protocol. The simulator commits to a random value on behalf of the
prover in step 2 by computing C ′2 = Com(M ′). It sends C ′2 to the verifier,
proves knowledge of the opening and invokes the simulator for the corrupt
verifier of protocol ΠHash. It then commits to random values in step 4, and
runs the simulator corresponding to the proofs of knowledge in step 5. Finally
in step 6, the simulator invokes the simulator for protocol ΠEq. We can show
that the view of the verifier in the protocol is indistinguishable from the view
with the simulator via a sequence of intermediate games.

• Game G0: This is the real game of the verifier with the honest prover.

• Game G1: This game is similar to G0 except in step 3, the simulator for
protocol ΠHash is invoked instead of honestly running ΠHash.

Games G0 and G1 are indistinguishable by the security of ΠHash.

• Game G2: This game is similar to game G1 above except that in step 5,
the simulator for the zero-knowledge proof is invoked instead of doing
the proof honestly.

Games G1 and G2 are indistinguishable by the zero-knowledge property
of the proofs of knowledge.

• Game G3: This game is similar to game G2 except that the in step 6, the
simulator for protocol ΠEq is invoked instead of honestly running ΠEq.

Games G2 and G3 are indistinguishable by the security of ΠEq.

65

• Game G4: This game is similar to game G3 except that random values
are committed to in steps 2 and 4 instead of using the real input and
real computed values.

Games G3 and G4 are indistinguishable by the hiding property of the
commitment scheme Com. We also note that G4 is the interaction of
the corrupt verifier with the simulator.

4.2.2.2 Proof of Knowledge of ECDSA Signatures

Let (r, s) be the ECDSA signature on m. Let G1 = 〈G1〉 and G2 = 〈G2〉 be
two distinct groups of order p and n respectively where p is the order of the field
of the curve and n is the order of point P . Addition of elliptic curve points which
is the group operation requires arithmetic operations in the underlying finite field
Zp of the curve E. We use a straight forward variant of the protocol in Fig. 4.5 to
prove statements about multiples of an elliptic curve point (elliptic curve analogue
of exponentiation) inside commitments.

1. The verifier is in possession of C1 = Comp(m) and the prover has as input
(m,σ) and the opening of C1 to m.

2. The prover commits to M = H(m), by computing C2 = Comp(M). Send C2

to the verifier and prove knowledge of opening.

3. The prover and verifier engage in the protocol ΠHash with inputs (m,M) and
(C1, C2) respectively.

4. The prover commits to the signature (r, s) and proves knowledge of an open-
ing. The prover sends Compn(r) = (Comp(r),Comn(r)) and Comn(s). The
prover also commits to the following values: u1 = H(m)s−1, u2 = rs−1, and
the co-ordinates of the points u1P = (αx, αy), u2Q = (βx, βy), where P is the
point of order n in E(Zp) used in ECDSA signing, and Q is the ECDSA public
key. The prover sends Comn(u1), Comn(u2), Comp(αx),Comp(αy), Comp(βx),
Comp(βy).

5. The prover and the verifier carry out the following Σ-protocol zero-knowledge
proofs of knowledge:

(a) PK{(u1, αx, αy, R1, R2, R3) : Comp(αx) = Gαx
1 HR1

1 ∧
Comp(αy) = G

αy
1 H

R2
1 ∧ Comn(u1) = Gu1

2 H
R3
1 ∧ (αx, αy) = u1P}

(b) PK{(u2, βx, βy, R1, R2, R3) : Comp(βx) = Gβx
1 H

R1
1 ∧

Comp(βy) = G
βy
1 H

R2
1 ∧ Comn(u2) = Gu2

2 H
R3
1 ∧ (βx, βy) = u2Q}

66

(c) PK{(r, αx, αy, βx, βy, R1, R2, R3, R4, R5) : Comp(βx) = Gβx
1 H

R1
1 ∧

Comp(βy) = G
βy
1 H

R2
1 ∧ Comp(αx) = Gαx

1 HR3
1 ∧ Comp(αy) =

G
αy
1 H

R4
1 ∧ Comp(r) = Gr

1H
R5
1 ∧ r = ((αx, αy) + (βx, βy))x}

(d) PK{(M,u1, s, R1, R2, R3) : Comn(M) = GM
2 H

R1
2 ∧

Comn(u1) = Gu1
2 H

R2
2 ∧ Comn(s) = Gs

2H
R3
2 ∧M = u1s}

(e) PK{(r, u2, s, R1, R2, R3) : Comn(r) = Gr
2H

R1
2 ∧ Comn(u2) = Gu2

2 H
R2
2

∧ Comn(s) = Gs
2H

R3
2 ∧ r = u2s}

6. The prover and verifier engage in ΠEq with input Compn(r).

The above protocol is a zero knowledge proof of knowledge of ECDSA signature,
the proofs for correctness, soundness and zero-knowledge are similar to the proofs
of the protocol for the DSA signature.

4.3 Secure computation on committed/signed

inputs

In the protocols described above, we have shown how to commit to a value
Com(x) and then use a GC-based ZK proof to prove non-algebraic statements
about x.

It is not hard to show that one can extend this approach, to a full-fledged secure
two-party computation (2PC) of any function g(x, y) where x is the committed
input of the prover. In particular, note that in the ZK proof, the prover feeds its
input x into the COTs in order to obtain its inputs keys to the GC of the ZK proof.
In order to extend this to a secure 2PC based on garbled circuits, we let the prover
play the role of the evaluator in a cut-and-choose 2PC based on garbled circuits,
and use the same COT as above for the prover to obtain the garbled inputs for x
in the 2PC. This would ensure that the same x that was used in the ZK proof is
also used in the 2PC, and the ZK proof already ensures that this is the same input
committed to in Com(x).

A subtle point here is that we need to open the sender’s input to the COTs
for the GC for the ZK but not for the GCs for the 2PC. This is supported by
the committing OT of [sS11] (also see the discussion on COTs in [MR13]). It is
interesting to explore the use of OT extension in such COTs where some sender
inputs are opened while others are not.

We emphasize that the GCs for the 2PC only garble the desired function g,
and hence the GC for the ZK proof is not part of any cut-and-choose. However,
we note that the above technique is currently limited to the evaluator’s input since
the OTs for evaluator’s input enable an almost-free check of equality of inputs in

67

the 2PC and the ZK. Extending the ideas to both party’s inputs is an interesting
future direction.

This approach can be easily extended to prove other statements about x, such
as proof of knowledge of a signature on x (hence signed-input 2PC) either using
the techniques we give below in the case of RSA/DSA signatures, or using previous
techniques to give a proof of knowledge of a CL signature [CL01].

4.4 Building Blocks for Privacy-Preserving

Proof of Solvency

In this section, we construct a proof for committing to gx where g is a generator
for an elliptic curve group, and proving knowledge of x such that Com(gx) = y for
a public y. Previous techniques for proving such statements are limited to integer
groups and are hence are not immediately applicable in applications like protocols
for Bitcoin which uses elliptic curve groups. We then use this construction along
with our technique to combine SNARKs with sigma protocols from Section 3.2 to
build a privacy-preserving proof of solvency for Bitcoin.

4.4.1 Proof of Knowledge of Double Discrete Logarithm in
Elliptic Curve Groups

The goal is to prove the equality of a committed value and the discrete loga-
rithm of another committed value. When the commitments are in elliptic curve
groups, the known techniques for double discrete logarithm proofs will not work.
This is because a group element cannot be naturally interpreted as a field element,
as can be done in integer groups. Towards this end, we first describe a protocol to
prove that the sum of two elliptic curve points that are committed to, is another
public point on the curve.

Let E be a curve defined over Ft. The point addition relation is defined by the
point addition equation specific to the curve. Consider the curve given by,

y2 = x3 + ax+ b (4.1)

a, b ∈ Ft. The curve used by Bitcoin sec256k1 is of the above family, for a = 0, b =
7. The point addition for the above curve is : Let P = (x1, y1), Q = (x2, y2), P,Q ∈
E(Ft), T = (x3, y3) = P +Q where,

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2

y3 =
y2 − y1
x2 − x1

(x1 − x3)− y1

68

We can prove the above relations for committed x1, x2, y1, y2 using known Sigma
protocol techniques. Since the point addition computation is over Ft, the commit-
ments to the coordinates have to be in a group of order t, which is not necessarily
the same as p, the order of the group E(Ft). The Complex Multiplication (CM)
method maybe used to find elliptic curve groups of a specific order, which, however
might be inefficient for large orders. In the following, we give a protocol without
having to find a group of a given order.

We rewrite the point addition formula.

x3x
2
2+x3x

2
1+x1x

2
2+x2x

2
1+x31+x32+2y1y2 = y22+y21+2x21x2+2x1x

2
2+2x1x2x3 (4.2)

x2y3 + x3y2 + x2y1 = x1y2 + x3y1 + x1y3 (4.3)

Let Lx and Rx denote the left-hand side, and right-hand side respectively of
equation 4.2, and Ly and Ry, of equation 4.3.

Lx(x1, y1, x2, y2) = x3x
2
2 + x3x

2
1 + x1x

2
2 + x2x

2
1 + x31 + x32 + 2y1y2

Rx(x1, y1, x2, y2) = y22 + y21 + 2x21x2 + 2x1x
2
2 + 2x1x2x3

Ly(x1, y1, x2, y2) = x2y3 + x3y2 + x2y1

Ry(x1, y1, x2, y2) = x1y2 + x3y1 + x1y3

We use sigma protocols to prove that Lx, Rx, Ly and Ry satisfy the above re-
lations using committed intermediate values. Let G2 be an elliptic group of order
q such that q > 2t3, and P ′, Q′, points in G2. We commit to the coordinates and
the intermediate values necessary for the proof in G2, and since the largest inter-
mediate value in equations 4.2 and 4.3 is cubic, the choice of q ensures there is no
reduction when the computation is modulo q. Since all computation on commit-
ted values will now be modulo q, and the addition equations are to be computed
modulo t, we use division with remainder. We prove equality of Lx and Rx modulo
q, divide them by t taking away multiples of t, and prove that the remainders are
equal. When used together with appropriate range proofs, we get equality modulo
t. There are several known techniques to achieve range proofs [CCs08, Bou00],
that is, to prove that x ∈ [0, S] for a public S and committed x. The protocol
pointAddition is given in Figure 4.6.

Given P = (Px, Py), Q = (Qx, Qy), T = (Tx, Ty), P,Q, T ∈ E(Ft),C1 =
Comq(Px),C2 = Comq(Py),C3 = Comq(Qx),C4 = Comq(Qy), q > 2t3, prove that
T = P +Q.

69

1. Let Lx(Px, Py, Qx, Qy) = k1t + r1, Rx(Px, Py, Qx, Qy) = k′1t +
r′1, Ly(Px, Py, Qx, Qy) = k2t + r2, Ry(Px, Py, Qx, Qy) = k′2t + r′2, for
k1, k

′
1, k2, k

′
2 <

q
t and r1, r

′
1, r2, r

′
2 < t.

Compute and send commitments C4 = Comq(Lx),C5 = Comq(Rx),C6 =
Comq(Ly),C7 = Comq(Ry),C8 = Comq(k1),C9 = Comq(r1),C10 =
Comq(k

′
1),C11 = Comq(r

′
1),C12 = Comq(k2),C13 = Comq(r2),C14 =

Comq(k
′
2),C15 = Comq(r

′
2).

2. The prover proves that (Px, Py), (Qx, Qy) and (Tx, Ty) satisfy the addition
equation for the x-coordinate.

π1 : PK{(Px, Py, Qx, Qy, Lx, Rx) : C1 = Comq(Px) ∧ C2 = Comq(Py) ∧ C3 =
Comq(Qx) ∧ C4 = Comq(Qy) ∧ C4 = Comq(Lx) ∧ C5 = Comq(Rx) ∧ Lx =
TxQ

2
x + TxP

2
x + PxQ

2
x +QxP

2
x + P 3

x + P 3
y + 2Pyy ∧Rx = Q2

y + P 2
y + 2P 2

xQx +
2PxQ

2
x + 2PxQxTx}

3. The prover proves that (Px, Py), (Qx, Qy) and (Tx, Ty) satisfy the addition
equation for the y-coordinate.

π2 : PK{(Px, Py, Qx, Qy, Ly, Ry) : a2 = Comq(Px) ∧ a3 = Comq(Py) ∧ C2 =
Comq(Qx) ∧ C3 = Comq(Qy) ∧ C6 = Comq(Ly) ∧ C7 = Comq(Ry) ∧ Ly =
QxTy + TxQy +QxPy ∧Ry = PxQy + TxPy + PxTy}

4. The prover proves the coordinates are in the correct range by giving the proof.

π3 : PK{(Qx, Qy, Px, Py) : C2 = Comq(Qx)∧C3 = Comq(Qy)∧a2 = Comq(Px)∧
a3 = Comq(Py) ∧Qx < t ∧Qy < t ∧ Px < t ∧ Py < t}

5. The prover proves Lx and Rx are equal modulo t, by dividing each side by t,
showing correct range for the quotients and the remainders, and proving the
remainders are equal.

π4 : PK{(Lx, Rx, k1, k′1, r1, r′1) : C4 = Comq(Lx) ∧ C5 = Comq(Rx) ∧ C8 =
Comq(k1) ∧ C9 = Comq(r1) ∧ C10 = Comq(k

′
1) ∧ C11 = Comq(r

′
1) ∧ Lx = k1t +

r1 ∧Rx = k′1t+ r′1 ∧ r1 < t ∧ r′1 < t ∧ k1 < q
t ∧ k

′
1 <

q
t ∧ r1 − r

′
1 = 0}

6. The prover proves Ly and Ry are equal modulo t, by dividing each side by t,
showing correct range for the quotients and the remainders, and proving the
remainders are equal.

π5 : PK{(Ly, Ry, k2, k′2, r2, r′2) : C6 = Comq(Ly) ∧ C7 = Comq(Ry) ∧ C12 =
Comq(k2) ∧ C13 = Comq(r2) ∧ C14 = Comq(k

′
2) ∧ C15 = Comq(r

′
2) ∧ Ly =

k2t+ r2 ∧Ry = k′2t+ r′2 ∧ r2 < t ∧ r′2 < t ∧ k2 < q
t ∧ k

′
2 <

q
t ∧ r2 − r

′
2 = 0}

Figure 4.6: pointAddition : PK{(P = (Px, Py), Q = (Qx, Qy)) : T = (Tx, Ty) =
P +Q∧ C1 = Comq(Px)∧ C2 = Comq(Py)∧ C3 = Comq(Qx)∧ C4 = Comq(Qy)}

70

We show that the protocol pointAddition is honest verifier zero-knowledge, and
sound with a soundness error of 1

2k
, where k is the length of the challenge.

• Honest verifier zero-knowledge. The simulator invokes the simulator for
the proofs π1, π2, π3, π4, π5. Zero-knowledge follows from the zero-knowledge
of these proofs.

• Soundness. We show an extractor that computes P = (Px, Py), Q =
(Qx, Qy) such that T = P+Q, given two accepting transcripts for two differ-
ent challenge bits. Say, we have two accepting views for challenge bits c and
ĉ 6= c.

From the soundness of proofs π1, π3, π4, we can extract Px, Py, Qx, Qy such
that Lx(Px, Py, Qx, Qy) and Rx(Px, Py, Qx, Qy) satisfy the following.

Lx = k1t+ r1 mod q, Rx = k′1t+ r′1 mod q Now,

Lx mod t = ((k1t+ r1) mod q) mod t

= (k1t+ r1) (Since q > t3, k1 < q/t, r1 < t)

= r1 mod t (Since r1 < t)

= r′1 mod t (Since r1 = r′1 mod q, r′1 < t)

= Rx mod t (Since k′1 < q/t, r′1 < t)

Similarly, from soundness of π2, π3, π5 we get, Ly = Ry mod t

We note that the above protocol may be modified to prove point addition for a
committed point T in the following way. The proofs π1 and π2 are on committed
coordinates (Tx, Ty), and the range proof π3 also includes proving the range of
coordinates of T . We denote the point addition protocol on all committed points
PK{(P = (Px, Py), Q = (Qx, Qy), T = (Tx, Ty)) : T = P +Q∧C1 = Com(P)∧C2 =
Com(Q) ∧ C3 = Com(T)} by comPointAddition.

We now construct a protocol to prove the equality of a committed value and
the discrete logarithm of another committed value using the point addition proof.
The double discrete logarithm proof is given in Figure 4.7.

Theorem 4.4.1. Let E(Ft) be an elliptic curve given by equation 4.1, and P ∈ E
be an element of prime order p. Then, ec-ddlog is a Σ-protocol for the relation
R = {(P, (λ, h)) : h = λP, 0 < λ < p}.

Proof. We will show that the protocol ec-ddlog is honest verifier zero-knowledge,
and sound with a soundness error of 1

2k
, where k is the length of the challenge.

71

Given C1 = Comp(λ),C2 = Comq(x),C3 = Comq(y), for q > 2t3, prove that
(x, y) = λP , where P ∈ E is an element of prime order p, 0 < λ < p, P ′, Q′, points

in G2 of order q.

1. The prover computes the following values: a1 = Comp(α) = αP + β1Q, a2 =
Comq(γ1) = γ1P

′ + β2Q
′, a3 = Comq(γ2) = γ2P

′ + β3Q
′ where α ∈ Fp and

(γ1, γ2) = αP .

and sends a1, a2, a3 to the verifier.

2. The verifier chooses a random challenge bit c and sends it to the prover.

3. For challenge c,

• If c = 0, compute z1 = α, z2 = β1, z3 = β2, z4 = β3. Send the tuple
(z1, z2, z3, z4)

• If c = 1, compute z1 = α − λ. Let T = z1P = (t1, t2). The prover uses
pointAddition (Figure 4.6) to prove that T = (γ1, γ2)− (x, y).

π : PK{(x, y, γ1, γ2) : T = (γ1, γ2)− (x, y)}. Send (z1, π)

4. Verification:
Compute (t1, t2) = z1P . If c = 0, check if a1 = z1P + z2Q, a2 = t1P

′ +
z3Q

′, a3 = t2P
′ + z4Q

′.

If c = 1, Verify proof π.

Figure 4.7: ec-ddlog : PK{(λ, x, y, r, r1, r2) : Comp(λ) = λP + rQ ∧ Comq(x) =
xP ′ + r1Q

′ ∧ Comq(y) = yP ′ + r2Q
′ ∧ (x, y) = λP}

72

• Honest verifier zero-knowledge. We can construct a simulator such that
the output of the simulator is statistically indistinguishable from the tran-
script of the protocol with a prover. On input a bit c, the simulator does the
following: if c = 0, the simulator randomly chooses z1, z2 ∈ Zp, z3, z4 ∈ Zq,
and computes a1 = z1P + z2Q, a2 = γ1P

′ + z3Q
′, a3 = γ2P

′ + z4Q
′ for

(γ1, γ2) = z1P . It is easy to see that the output of the simulator is dis-
tributed identically with the distribution of the protocol transcript. If c = 1,
the simulator randomly chooses z1 ∈ Zt and invokes the simulator for the
proof pointAddition. Zero-knowledge follows from the zero-knowledge of the
proof π.

• Soundness. We show an extractor that computes λ, x, y given two accepting
transcripts for two different challenge bits. Say, we have two accepting views
for challenge bits c and ĉ 6= c. We have,

λ = z1 − ẑ1 mod t

From the soundness of proofs π, we can extract x, y, γ1, γ2 such that
Lx(x, y, γ1, γ2) = Rx(x, y, γ1, γ2), and Ly(x, y, γ1, γ2) = Ry(x, y, γ1, γ2). Thus,
T = (γ1, γ2)− (x, y) = ẑ1P − λP . Thus λP = (x, y).

4.5 Proof of Solvency

In this section, we show how to use our constructions for proving composite
statements in zero-knowledge to build a privacy-preserving proof of solvency for
Bitcoin exchanges. A proof of solvency demonstrates that an exchange controls
sufficient reserves to settle each customer’s account. If the exchange loses a large
amount of money in an attack, it would not be able to provide such a proof. Thus
customers will find out about the attack very soon and take necessary actions. We
use our SNARK on committed input and output constructions from Section 3.2,
and the double discrete logarithm proof in elliptic curve groups from Figure 4.7, to
prove a combination statement that is necessary for a proof of solvency for Bitcoin.

4.5.1 Proof of assets

We give the proof of assets in Figure 4.8, which allows an exchange to generate a
commitment to its total assets along with a zero-knowledge proof that the exchange
knows the private keys for a set of Bitcoin addresses whose total value is equal to
the committed value. g is a fixed public generator of a group of order q. For a
bitcoin public key y, x ∈ Zq is the corresponding secret key such that y = gx.

73

We assume that the bitcoin addresses available are the hashes of the public keys.
h = H(y) is the bitcoin address corresponding to the key y. We denote the balance
associated with an address h by bal(h). The exchange creates a set of public keys
PK to serve as an anonymity set.

PK = {y1, · · · , yn} ⊆ G

Let x1, · · · , xn be the corresponding secret keys, so that hi = H(gxi). si ∈ {0, 1}
indicates whether the corresponding public key in the set is controlled by the
exchange. The total assets can now be expressed as:

Assets =
n∑
i=1

si · bal(hi)

The public data available from the blockchain: hi = H(yi), pi = gbal(hi).

4.5.2 Proof of liabilities

The proof of liabilities given in Figure 4.9, has the exchange commit to its
total liability, and in addition, convince all its customers of the inclusion of their
balances in the commitment. Consider the mapping of real customers to entries on
a liability list. Each real customer should have an entry in the list and no distinct
customers is given the same entry. To ensure an injective mapping, customers are
provided with an identifier, and in step (d), each customer commits to the unique
information useri (which could potentially include username, email address, or
account number). The commitment is binding, preventing the exchange from
opening a CID to distinct data for different users. It is also hiding, preventing an
adversary who knows the useri of a potential customer from determining if that
customer is in the Liability List. Since we only need hiding and binding and not
additive homomorphism, we use a hash-based commitment scheme. We do not
require the mapping to be surjective: The exchange can always add fake users
to the list, but we need to ensure that doing so can only increase the exchange’s
apparent liabilities. By including fake users with a zero (or tiny) balance, the
exchange can obscure the total number of customers it truly has. However, we need
to ensure that any included users can only add to the exchanges total liabilities.
That is, the exchange should not be able include a negative balance to try to
decrease its apparent liabilities. The requirement, therefore, is that when added
together, the sum will never exceed the order of the group. This is enforced in the
protocol by having the exchange give a proof that each committed balance is in
an interval between 0 and Max = 251. While the Provisions, the proof of solvency
proposed in [DBB+15] achieves this range proof by using bitwise commitments
(which contributes to the bulk of the proof size), our comInSnark protocol for zk-
SNARK on committed input allows us to use a circuit to check the range instead.

74

Figure 4.8: Proof of assets

• Commitments: For i ∈ [1, n], commit to xi and yi by publishing αi =
gxihai , βi = gyihbi .

• The prover commits to the balance in each address for the public keys
he controls and to 0 otherwise, by publishing ui = gsi·bal(hi)hri = psii h

ri ,
si ∈ {0, 1}, si = 1 when the prover knows xi such that yi = gxi .

• Let f1 be defined as follows:

f1(y, h) =

{
1 if H(y) = h

0 otherwise

Let f2 be defined as:

f2(x, y) =

{
1 if y = gx

0 otherwise

The prover uses the protocol ec-ddlog for f2, SNARK on committed input
and output comIOSnark for f1 and the OR composition to prove the
following, for each i:
πi : PK{(yi, xi, si, ri, ai, bi) : (αi = gxihai ∧ βi = gyihbi ∧ f2(xi, yi) =
si ∧ f1(yi, hi) = si ∧ ui = gsi·bal(hi)hri ∧ si = 1) ∨ (si = 0)}

• Compute and publish ZAssets =
∏n

i=1 ui

75

Figure 4.9: Proof of liabilities

(a) Let C be a circuit that takes as input m bit integers x1, · · · , xn and
outputs 1 if xi < Max for all i and 0 otherwise.

(b) The prover commits to each customer Ci’s balance xi by publishing ci =
gxihri

(c) The prover gives a SNARK on committed input that xi < Max for
all customers. The prover uses comInSnark to give a ZK proof π that
C(x1, · · · , xn) = 1 given ci. PK{(xi, ri) : C(x1, · · · , xn) = 1∧ci = gxihri}.

(d) The prover computes a customer identifier for each customer by choosing
a random nonce and computing

CIDi = H(useri||ni)

where ni ∈ {0, 1}512, useri is the ith customer’s username, and H is a
collision resistant hash function.

(e) Publish the liabilities list of all customers’ tuples.

ListLiab = (CID1, · · · ,CIDn, c1, · · · , cn, π)

(f) Each client is privately given (ri, ni)

(a) The client computes CID and verifies inclusion in the liabilities list.

(b) The client checks its own balance is included by computing ci =
gbalanceihri

(c) Verifies the proof π

(d) Each client computes ZLiab =
∏n

i=1 ci

76

Figure 4.10: Proof of solvency

1. The exchange uses the proof of assets in Figure 4.8 and generates a com-
mitment to its total assets ZAssets.

2. The exchange uses the proof of liabilities in Figure 4.9 to generate a
commitment to its total liabilities ZLiab and a list of its liabilities, ListLiab.

3. The exchange gives a proof π : PK{(R) : Z = hR}, where Z = ZAssets ·
Z−1Liab.

4.5.3 Privacy-preserving proof of solvency

We assume that each customer checks the liability list published by the ex-
change as part of the proof of liabilities to verify the inclusion of their customer
CID and the correctness of committed balance. Thus, in step (f), the customers
need to perform step (f)b. Steps (f)c and (f)d, on the other hand maybe per-
formed by an auditor on behalf of the customers. Given the proofs in Figures 4.8
and 4.9, the proof of solvency involves the exchange proving that ZAssets−Liab is a
commitment to 0. The proof of solvency is given in Figure 4.10.

As suggested in Provisions, the case where the exchange is actually running
a surplus, and the total assets are greater than total liabilities, can be handled
with a simple modification: the exchange can create a commitment to its surplus,
and apply the same range proof used for customer balances to prove that this is
a small positive number. It then replaces the final step in Figure 4.10 to Z =
ZAssets · Z−1Liab · Z

−1
surplus. The exchange could also move its surplus into a separate

address and not include it in the addresses used in its proof of assets, or include
the value of the surplus in a number of fake customers’ accounts if it is desirable
to hide even the existence of any surplus.

77

Chapter 5

Hashing Garbled Circuits for Free
1

In this chapter, we present a definition for hash security of garbled circuits,
present constructions that satisfy our definition and show applications to zero-
knowledge and general secure two-party computation. We begin this chapter with
a high-level technical overview of our approach, then present our Free Hash con-
struction.

5.1 Overview

We take advantage of the observation that the input to the hash is a garbled
circuit GC, which must be evaluatable using the garbled circuit Eval function. We
will not require standard hash collision resilience of GC strings, achieving which is
very costly relative to the cost of GC generation. Instead, we guarantee that if an
adversary can find another string ĜC that matches the hash of a correctly garbled
GC, then with high probability, the garbled circuit property of ĜC is broken and
its evaluation will fail.

We present our intuition iteratively; we start with a naive efficient approach,
which we then refine and arrive at a secure hashed garbling. Recall, we start with
a correctly generated GC GC with the set of output decoding labels d. The adver-
sary’s goal is to generate a circuit ĜC with the same hash as GC, and which will not
fail evaluation/decoding given the same output labels d. This hash guarantee is
sufficient for certain GC-based SFE protocols. A syntactic difference with [GMS08]
C&C hashing is that verification of Free Hash involves GC evaluation, and is only

1This chapter is primarily based on joint work with Xiong Fan and Vladimir Kolesnikov,
that appeared in Eurocrypt 2017 [FGK17]. Certain passages have been taken from this source
verbatim.

78

possible once input labels are received (e.g., after OT of input labels). More im-
portantly, Free Hash, as applied to C&C, provides a security guarantee subtly
distinct from collision-resistance. Hence, drop-in replacement of [GMS08] C&C
hashing with Free Hash may not be always possible, and in general should be done
by hand and original proofs re-checked. See Section 5.2.4 for additional discussion.

We present the intuition for the classical four-row GC; we use similar ideas to
achieve half-gates GC hashing as well. We present and prove secure both Free
Hash constructions.

The first Free Hash idea is to simply set the hash of the garbled circuit to be
the XOR of all garbled table (GT) rows of GC. This is clearly problematic, since
a cheating garbler A can mount, for example, the following attack. A will set one
GT entry to be the encryption of the wrong wire label. This affects the XOR hash
as follows H(ĜC) = H(GC)⊕∆. Now suppose the garbler knows (or guesses) which
GT entry anywhere in GC will not be used in evaluation (inactive GT row). Now
A simply replaces the inactive GT row X with value X ⊕∆. This will restore the
hash to the desired value, and since this entry will not be used in the evaluation,
the garbler will not be caught.

The following refinement of this approach counters the above attack: we make
the gate’s output wire key depend (in an efficient manner) on all GT rows of that
gate. The idea is that XOR hash correction, such as above, will necessarily involve
modification to an active GT row, which will affect the computed wire key on that
gate. Importantly, because wire keys and GT rows are related via a random (albeit
known) function, a GT row offset by ∆ (needed to “fix” the hash) will result in
effectively randomizing the output wire label of the gate. Because a non-failing
evaluation requires output wire labels to be consistent with the fixed decoding
information d, A will now be stuck.

We attempt this by starting with a secure garbling scheme G, and modifying the
way the wire labels are defined, as follows. The two wire labels w0

i , w
1
i associated

with gate Gi’s output wire will now be treated as temporary labels. A label W j
i

of the new scheme will be obtained from the wji simply by XORing it with all the
GT rows of Gi.

This is not quite sufficient, as it still allows the attacker to modify a GT row
and then correct it within the same gate table. This is possible since a “fix” for
the hash does not disrupt the validity of the wire label, as both the hash and the
new wire label are defined in the same manner (as XOR of all the GT rows of
Gi). Our final idea, is to use the GT rows as XOR pads in a different manner for
computing the GC hash and for offsetting the wire values. This way, the fix for the
hash w.h.p. will not simultaneously keep the wire label valid. We achieve this by
malleating GT rows prior to using them as XOR pads in wire value computation.

It is not hard to show that the above changes preserve the privacy and authen-
ticity properties of the garbling scheme.

79

We summarize the intuition for the hash security of the above construction.
Consider a ĜC 6= GC that collides under the above hash. Then, the evaluation of
ĜC will deviate from that of GC w.r.t. some wire label. Importantly, ĜC evaluation
can subsequently either return to a valid wire label or to a correct running hash,
but not both. Thus, evaluation of ĜC using encoding information ê cannot go back
to both the wire label and the hash being correct.

A formalization of what precisely the GC description string GC includes is
often natural and hence is usually omitted from discussion. In our setting this an
important aspect, as we focus on the collision resilience-related properties of GC
strings, as well as on minimizing the size of GC and its computation time.

Firstly, we remind the reader that in the BHR [BHR12] notation the function
Gb outputs the garbling function F. Since it is problematic to operate on functions,
BHR regards Gb as operating on strings representing and defining the correspond-
ing functions. In our notation, Gb outputs GC, which we treat as a string defining
the evaluation process as well.

Clearly, GC will contain a set of garbled tables; the question is how to treat
the circuit topology, i.e. exactly how to describe/define how Eval should process
GC. One choice is to treat the plaintext circuit/topology as a part of GC. Because
we focus on size/computation, this approach would cause some waste. Indeed, in
most scenarios, the circuit and topology is known to both players, and hence could
be implicit in GC.

Instead, we opt to consider the circuit description, including the locations of
the free XOR gates as an externally generated string. This is certainly the case
in SFE where the evaluated function is known to both players, and players can a
priori adopt a convention on how to map the GC garbled gates to the circuit gates,
hence defining the evaluation process. In Private Function Evaluation (PFE),
which is the case in our certified function evaluation scenario (see Section 1.3.2),
the evaluated function is not known to the evaluator. In this case, we still treat
the topology/evaluation instructions as external to GC and assume that they are
correctly delivered to the evaluator. We note that in the certified function case, this
can be naturally achieved by the CA signing the topology with a unique identifier,
and including this identifier with GC and the hash of GC.

Our Assumptions. Our work optimizes high-performance primitives, and it is
important to be clear on the assumptions we require of them so as to properly
compare to related work.

We use the same primitives, and nearly identical constructions as JustGar-
ble [BHKR13] and half-gates [ZRE15]. As a result, privacy and authenticity prop-
erties of our schemes hold under the same assumptions as [BHKR13, ZRE15],
namely that the key derivation function used in garbling is a Davies-Meyer (DM)
construction in the random-permutation model (RPM). While [BHKR13] proves

80

the security of their construction in the RPM directly, [ZRE15] abstracts the DM
security property as a variant of correlation-robust function. To achieve hash se-
curity, we need to assume collision resistance of DM. We give the definition of a
collision resistant hash function below.

Collision-resistant hash function. A hash function family H is a collection
of functions, where each H ∈ H is a mapping from {0, 1}m to {0, 1}n, such that
m > n and m,n are polynomials in security parameter κ. An instance H ∈ H can
be described by a key which is publicly known. We say a hash function family H
is collision-resistant if for any ppt adversary A

Pr
(
x 6= x′ ∧H(x) = H(x′) : (x, x′)← A(H), H

R← H
)

= negl(κ)

Cipher Instantiation. We instantiate the key derivation function (KDF) calls
as do [BHKR13, ZRE15], with the Davies-Meyer construction. Namely, the input
X to KDF H(X, i) are the 128-bit long wire keys, and i is an internal integer that
simply increments per hash function call. We set Hπ(X, i) = π(K) ⊕ K, where
K = 2X ⊕ i (π is assumed to be an ideal cipher, instantiated with 128-bit AES
with randomly chosen key).

Ideal cipher model. The Ideal Cipher Model (ICM) is an idealized model of
computation, similar to the random oracle model (ROM) [BR93b]. In the ICM,
one has a publicly accessible random block cipher (or ideal cipher). This is a block
cipher with a k-bit key and a n-bit input/output, that is chosen uniformly at
random among all block ciphers of this form; this is equivalent to having a family
of 2k independent random permutations. All parties including the adversary can
make both encryption and decryption queries to the ideal block cipher, for any
given key. The ICM is shown to be equivalent to ROM [CPS08, HKT11].

Hash Security Parameters. We use κ = 128-bit security parameter, which
is standard for encryption and GCs. However, 128-bit hash domain is often seen
as insufficient. This is because of the birthday attack, which provides time-space
tradeoff for an attacker. Specifically, a collision-finding attacker can precompute
and store a square-root number of hash images. Then by birthday paradox, a
random collision will be found among these images with significant probability.
This attack requires 264 hash computations and efficiently accessible storage for
264 hash values. We argue that 128-bit hash security is nevertheless acceptable in
SFE, if used carefully. Importantly, hash checks in two party computation have an
online property, meaning that we can set up the system such that preprocessing
or post-processing will not aid the attacker. Indeed, consider the SFE scenario

81

and the following solution. In the existing fixed-key cipher-based protocols it is
specified that the fixed key is chosen at random prior to GC generation. We can
simply explicitly require that both players contribute to key generation, and that
the selected key will be the one defining the fixed-key permutation used in GC.
This will render any precomputation useless. Post-computation, while a threat to
the privacy and, perhaps, authenticity of GC, is not helping the attacker, since
the GC evaluator decision to accept or reject reached during the execution, is
irrevocable. GC evaluator can set a generous time limit (e.g. several seconds or
even minutes) after which it will abort the execution.

5.1.1 Related Work

To our knowledge, there is no prior work specifically addressing hashing of
GCs. At the same time, significant research effort has been expended on optimiz-
ing core GC performance. Work includes algorithmic GC improvements, such as
Free XOR [KS08a], FleXOR [KMR14], half-gates [ZRE15], as well as optimizing
underlying primitives, such as JustGarble [BHKR13]. Our work complements the
existing GC improvement work.

Of course, the natural GC hashing approach works: just hash the generated
GC. The problem with this is, of course, its cost. Relative cost of fixed-key cipher
garbling and hashing are strongly architecture-dependent. They can be almost the
same (e.g., when both AES and SHA are implemented in hardware). In another
extreme, Intel’s white paper [GGO+] reports that AES-NI evaluation of 16-byte
blocks is 23× faster that that of SHA1 (35, 965.9 vs 793, 718.7 KB/sec). In our ex-
periments reported in Section 5.2.4, we observed about 6× performance difference
between AES-NI and SHA1.

Improving on this, and motivated in part by the availability of fast hardware
AES implementations, there was a short series of works [BRS02, RS08b, RS08a,
BÖS11], implementing a hash function with three fixed-key AES function calls.
A recent work of Rogaway and Steinberger [RS08a] constructs a class of linearly-
determined, permutation-based compression functions {0, 1}mn → {0, 1}rn making
k calls to the different permutations πi for i ∈ [k], where they named their construc-
tion as LPmkr. The fastest construction LP362 (12.09 cycles per byte) [BÖS11],
with 6 calls to fixed-key AES would cost about 6× of that of fast garbling. Davies-
Meyer-based hash construction [Win84] in the ideal cipher model considered in
literature is reported to have similar speeds [BÖS11].

In comparison, our work eliminates the cost of hash whatsoever, while adding
no cost to garbling or GC evaluation.

C&C and uses of hashed GC. There is a long sequence of GC-based SFE
work, e.g. [Lin13, HKE13, Bra13, LR14, HKK+14, KM15], most of which uses

82

some form of C&C or challenging the GC generator. Based on [GMS08], these
works will benefit from our result, to varying degree. The exact performance
benefit will depend on where the Free Hash is used, the ratio of evaluated/test
circuits, as well as the computational/communication resources available to the
players. In Section 5.2.4, we calculate performance improvement in several C&C
protocols due to our GC hash, and in Section 5.3, we discuss the application of
Free Hash to zero-knowledge.

5.2 GC hashing scheme

In this section, we define our hashed garbled circuit scheme. We capture the
security guarantees we require from this new notion, and then present our construc-
tion that outputs a garbled circuit and its hash. Our garbled circuit construction
satisfies the properties of correctness, authenticity and privacy. We then show that
our construction is secure according to our hash security definition.

5.2.1 Hashed Garbled Circuit security

Recall, we want to define hash security of garbled circuits with the same topol-
ogy. We require that if the hash of such two garbled circuits collide, and one of
them verifies correctly, then with high probability the other garbled circuit will fail
evaluation. We now formalize this intuition in the definition below.

Definition 5.2.1. (Hash security) A garbling scheme G is hash-secure with respect
to a hash function H if for every boolean circuit C, input x and ppt adversary A,

Pr

De(Eval(ĜC,En(x, ê)), d) 6= ⊥

GC 6= ĜC,

Topology(GC) = Topology(ĜC),
Ve(C,GC, d, e) = accept,

H(GC) = H(ĜC) = h)

:

(
GC, ĜC, e = {X0

j , X
1
j }j∈[m],

ê = {X̂0
j , X̂

1
j }j∈[m], d, h

)
← A(C, 1κ),

is negligible in κ.

We point out that the decoding information d that results in failed decoding of
ĜC is the same decoding information with respect to which GC successfully verifies,
and this is essential to hash security. If we did not place this requirement, then
an adversary can change d to d̂ which decodes any string that Eval on ĜC returns.
We note that in full generality it is not necessary to require A to generate a GC
passing the verification Ve of a specific circuit C. We can achieve that if an A
generates two unequal GCs with the same hash, at least one of them will always

83

output ⊥. However, the above definition 5.2.1 reflects the typical use of GCs, and
is sufficient for our construction.

In this work, we consider verifiable garbling schemes with hash security. That
is, G = (Gb,En,Eval,De,Ve,H). Because we apply our constructions to secure
computation, we will need schemes additionally satisfying the properties of cor-
rectness (cf. Definition 2.3.1) and privacy (cf. Definition 2.3.2). If needed, the
authenticity property of GC (cf. Definition 2.3.3) can be achieved as well.

5.2.2 Our Construction

We now formalize the intuition of Section 5.1 on how to generate a GC hash
for free when garbling. The full construction is presented in Figure 5.1; here we
provide additional intuition. Recall, in Section 5.1, we explained that after we
generated (temporary) GC tables, we need to XOR their GT entries into the GC
hash in one manner, and into the GC wire labels in another manner. In our
construction, we do so by bitwise shifting the GT entries Ci prior to XORing them
into the wire labels.

We note that we use bit shifting because it is fast and easy to implement, but a
more general condition is sufficient for security of our scheme, which is as follows:
We set the wire labels of a gate output wire as a function of its temporary wire
labels and the entries of the garbled gate table. Consider functions fi such that, if

4⊕
i=1

Ci =
4⊕
i=1

Ĉi

for some Ci 6= Ĉi, then,

Pr[
4⊕
i=1

fi(Ci) =
4⊕
i=1

fi(Ĉi)]

is negligible. As we will later see in the proof, this is the property that we use in
proving the hash security of our construction in proof of Theorem 5.2.4.

In presenting our construction, we adopt the approach used by [BHKR13] and
others, where the gates are garbled as H(wi||wj||r)⊕wk, where wi and wj are wire
labels on input wires, r is a nonce and wk is a wire label on the output wire. H is
a key-derivation function modeled as a random oracle.

The scheme we present below follows the standard point-and-permute opti-
mization. This was introduced by Beaver, Micali and Rogaway in [BMR90], where
a select bit is appended to each wire label, such that the two labels on each wire
have opposite select bits. This association between select bits and the logical truth
values is random and kept secret. Now the garbled truth table can be arranged by

84

these public select bits. The evaluator can select the correct ciphertext to decrypt
based on the select bit instead of trying all four. For each wire label w, its least
significant bit lsb(w) is reserved as a select bit that is used as in the point-and-
permute technique, and complementary wire labels have opposite select bits. For
the ith wire, define pi = lsb(w0

i). When using Free XOR, the global randomly
chosen offset R is such that lsb(R) = 1. Since w0

i ⊕w1
i = R holds for each i in the

circuit, we have that lsb(w0
i) 6= lsb(w1

i).
To simplify presentation, in our constructions and notation we set the decoding

information simply to be the output wire labels. We note, this does not preserve the
authenticity property of GC. Authenticity can be easily achieved in our scheme, e.g.
by instead setting the decoding information to be the collision-resistant hashes of
the output labels. In more detail, let H be a collision-resistant hash function. The
output translation table for a wire will now be {H(w0

i), H(w1
i)}. Given a garbled

value wbi on an output wire, it is possible to determine whether it corresponds to
the 0 or 1 key by computing H(wbi) and checking whether it is equal to the first
or second value in the pair. However, given this output translation table, it is not
feasible to find the actual garbled values.

Let H : {0, 1}∗ → {0, 1}κ be a function, satisfying properties discussed in
Section 5.1. For a function represented by a circuit C : {0, 1}n → {0, 1}m, we use
Win,Wout to denote the input and output wires of f respectively, and Ginter for
intermediate gates. The Free Hash garbling scheme hG = (Gb,En,De,Eval,Ve,H)
is described in Figure 5.1.

• Gb(1κ, C): On input the security parameter κ and a circuit C, choose R ←
{0, 1}λ−1||1 and set h = 0.

1. For each input wire Wi ∈Win of the circuit C, set garbled labels in the following
way: Randomly choose K0

i ∈ {0, 1}
κ. Set K1

i = K0
i ⊕R. Set the garbled labels

for input wire Wi as wi = (K0
i ,K

1
i).

2. For each intermediate gate Gi : Wc = gi(Wa,Wb) of C in topological order:

(a) Parse the garbled input labels as wa = (K0
a ,K

1
a) and wb = (K0

b ,K
1
b).

(b) If Gi is an XOR gate, set garbled labels for the gate output wire Wc as
K0
c = K0

a ⊕K0
b , and K1

c = K0
c ⊕R.

(c) If Gi is an AND gate

– Choose temporary garbled labels for the gate output wire Wc as T 0
c ∈

{0, 1}κ, and set T 1
c = T 0

c ⊕R.

– Create Gi’s garbled table: For each possible combination of Gi’s in-

put values va, vb ∈ {0, 1}, set τ iva,vb = H(Kva
a |K

vb
b |i) ⊕ T

gi(va,vb)
c .

Sort entries τ i in the table by input pointers, and let the entries be
Ci,1, Ci,2, Ci,3, Ci,4.

85

– For d ∈ {0, 1}, compute:

padi,1 = C�1
i,1 ⊕ C

�2
i,2 ⊕ C

�3
i,3 ⊕ C

�4
i,4

K0
c = T 0

c ⊕ padi,1

Set the garbled labels for wire Wc as

wc = (K0
c ,K

1
c), where K1

c = K0
c ⊕R

– Define
padi,2 = Ci,1 ⊕ Ci,2 ⊕ Ci,3 ⊕ Ci,4

h = h⊕ padi,2

3. For each output wire Wi ∈Wout of C, set d0i = (0,K0
i) and d1i = (1,K1

i)

4. Output encoding information e, decoding information d, garbled circuit GC and
hash H(GC) as

e = {(K0
i ,K

1
i)}Wi∈Win

, d = {(d0i , d1i)}Wi∈Wout ,GC = {τ ia,b}a,b∈{0,1}
Gi∈Ginter

,H(GC) = h

• En(x, e): On input encoding information e and input x, output encoding X =

{Xx[i]
i }i∈[n].

• De(Y, d): On input the decoding information d and the garbled output of the
circuit Y = (Y1, ..., Ym), for each output wire i of the circuit C, parse d as d =
{(0,K0

i), (1,K1
i)}i∈[m]. Then, set yi = b if Yi = Kb

i and yi = ⊥ if Yi 6∈ {K0
i ,K

1
i }.

Output the result y = (y1, ..., ym) if ∀i, yi 6= ⊥. Else, output ⊥.

• Eval(GC,X): On input the garbled circuit GC and garbled input X, for each gate
Gi : Wc = gi(Wa,Wb) with garbled inputs wa = Kva

a , wb = Kvb
b . If Gi is an XOR

gate, compute w
gi(va,vb)
c = Kva

a ⊕K
vb
b . If Gi is an AND gate:

1. Let C1, C2, C3, C4 be the table entries. Compute pad =
4⊕
i=1

C�ii .

2. Decode the temporary output value from garbled table entry τ i in position

(va, vb) as T
gi(va,vb)
c = H(Kva

a |K
vb
b |i)⊕ τ

i.

3. Compute the garbled value as w
gi(va,vb)
c = T

gi(va,vb)
c ⊕ pad.

• Ve(C,GC, d, e): Check that each gate in GC correctly encrypts the gate in C given
the encoding information e. If yes, then output accept, else output reject.

• H(GC): On input the garbled circuit GC, output h as the XOR of all ciphertexts,

h =
⊕
gi

(Ci,1 ⊕ Ci,2 ⊕ Ci,3 ⊕ Ci,4)

Figure 5.1: The Free Hash garbling scheme hG

86

The construction in Figure 5.1 satisfies the properties of authenticity (cf. Defi-
nition 2.3.3), privacy (cf. Definition 2.3.2) and hash security (cf. Definition 5.2.1).
Our changes to the standard construction do not affect the other GC properties.
The proofs of privacy and authenticity closely follow the arguments of [BHKR13]
and [ZRE15], and use the weakened definition of circular correlation robustness of
a function H, in [ZRE15] (Definition 3 of [ZRE15]). We prove the hash security of
our construction below.

Hash security. We now state and prove a technical lemma on which we rely for
proving hash security (Theorem 5.2.4). The lemma below captures the following

useful fact about GC and ĜC: a gate in ĜC whose padi,2 (XOR hash of the gate
table) collides with that of the gate in GC will not be evaluated correctly (i.e. will
not produce a valid label on the output wire) if the gate table is different, or if
the input wire keys of the gate are different, or both. We say that a wire label,
obtained during evaluation on input x encoded using ê, is valid if it is one of the two
possible wire labels for the same wire in GC. For presentation, we slightly abuse
notation, by writing gi to mean both the gate and the garbled table corresponding
to the gate. It will be clear from context, which of the two is meant.

Definition 5.2.2. (Valid key) Let (GC, e, ĜC, ê, d, h) be such that GC 6=
ĜC,Topology(GC) = Topology(ĜC),H(ĜC) = H(GC) = h and Ve(GC, d, e) =

accept. An internal wire key K̂b
i obtained on wire wi during Eval of ĜC is called

valid if K̂b
i ∈ {K0

i , K
1
i } where (K0

i , K
1
i) are the wire keys corresponding to 0 and 1

on wire wi in GC.

Lemma 5.2.3. Let (GC, e, ĜC, ê, d, h) ← A(1κ) be such that GC 6=
ĜC,Topology(GC) = Topology(ĜC),H(ĜC) = H(GC) = h and Ve(GC, d, e) =

accept. Assuming padi,2 = p̂adi,2, evaluation of the garbled gate ĝi during Eval
results in a valid wire label for the output wire of the gate with probability negl(κ)
in the following cases:

1. Input wire keys to gate ĝi are valid, and ĝi 6= gi.

2. At least one input wire key to gate ĝi is invalid and ĝi = gi.

3. At least one input wire key to gate ĝi is invalid, and ĝi 6= gi.

Proof. Let gi = {C1, C2, C3, C4} be the ith garbled table in GC and ĝi =

{Ĉ1, Ĉ2, Ĉ3, Ĉ4} the ith garbled table in ĜC.

Case 1 Since ĝi 6= gi, w.l.o.g., let C1 6= Ĉ1. Since padi,2 = p̂adi,2, there must be

(at least) one j 6= 1 such that Ĉj 6= Cj. Now, padi,2 = p̂adi,2 gives,

Ĉj ⊕ Ĉ1 = Cj ⊕ C1 (5.1)

87

Let K̂ = (K̂a, K̂b) be the input wire key to gate gi in ĜC during Eval, which
by assumption is valid.

For the sake of contradiction, say, one of the ciphertexts, say, Ĉ1, in ĝi gives a
valid output wire key. Let T be the intermediate key obtained by decrypting
Ĉ1. Now validity of output wire key implies T ⊕ p̂adi,1 = K ∈ {K0, K1}.

T ⊕ p̂adi,1 = K

Ĉj
�j
⊕ Ĉ1

�1
= C�jj ⊕ C�1

1 ⊕R (5.2)

whereR = T⊕K⊕padi,1 is a fixed value, and T = H(K̂||i)⊕Ĉ1. Therefore, K
is valid only when both (5.1) and (5.2) hold. We now argue that this happens
with probability ≤ 1/2λ. By the assumption that Ve(GC, d, e) = accept,
C1 and Cj are random keys masked by the outputs of the function H. If,

therefore, a Ĉ1 and Ĉj that satisfies (5.1), also satisfies (5.2), then we can
find r1 and r2 such that r1 ⊕ r2 is δ for some fixed δ and r�1 ⊕ r�2 collides
with the output of the function H on a fixed value. By collision resistance
of the function H, this happens only with probability ≤ 1/2λ.

Case 2 gi = ĝi. Either K̂a 6∈ {K0
a , K

1
a) or K̂b 6∈ {K0

b , K
1
b) or both, where (K0

a , K
1
a)

and (K0
b , K

1
b) are the wire keys corresponding to the input wires of ĝi in GC.

Let (K0, K1) be the wire keys of the output wire of gi.

For the sake of contradiction, say, one of the ciphertexts, say, C1, gives a valid
output wire key with K̂ as the input wire keys. Let T be the intermediate
key obtained by decrypting C1. Now validity of output wire key implies
T ⊕ padi,1 = K ∈ {K0, K1}. That is,

H(K̂||i)⊕ C1 ⊕ padi,1 = K (5.3)

K is valid when (5.3) holds, and that happens with negligible probability
since we can find a r such that the output of H on r collides with a given
value only with probability ≤ 1/2λ.

Case 3 W.l.o.g., let C1 6= Ĉ1. Since padi,2 = p̂adi,2, there must be (at least) one

j 6= 1 such that Ĉj 6= Cj.

Either K̂a 6∈ {K0
a , K

1
a) or K̂b 6∈ {K0

b , K
1
b) or both, where (K0

a , K
1
a) and

(K0
bK

1
b) are the wire keys corresponding to the input wires of ĝi in GC.

(K0, K1) be the wire keys of the output wire of gi.

Now, padi,2 = p̂adi,2 gives,

Ĉj ⊕ Ĉ1 = Cj ⊕ C1 (5.4)

88

Let K̂ = (K̂a, K̂b) be the input wire key to gate gi in ĜC during Eval. Since

K̂ is invalid by assumption, either K̂a 6∈ {K0
a , K

1
a) or K̂b 6∈ {K0

b , K
1
b) or both,

where (K0
a , K

1
a) and (K0

b , K
1
b) are the wire keys corresponding to the input

wires of ĝi in GC. (K0, K1) be the wire keys of the output wire of gi.

For the sake of contradiction, say, one of the ciphertexts, say, Ĉ1, in ĝi gives a
valid output wire key. Let T be the intermediate key obtained by decrypting
Ĉ1. Now validity of output wire key implies T ⊕ p̂adi,1 = K ∈ {K0, K1}.

T ⊕ p̂adi,1 = K

Ĉj
�j
⊕ Ĉ1

�1
= C�jj ⊕ C�1

1 ⊕R (5.5)

where R = T ⊕ K ⊕ pad1, and T = H(K̂||i) ⊕ Ĉ1. Therefore, K is valid
only when both (5.4) and (5.5) hold. We now argue that this happens with
probability ≤ 1/2λ. By the assumption that Ve(GC, d, e) = accept, C1 and
Cj are random keys masked by the outputs of the function H. If, therefore,

K̂, Ĉ1 and Ĉj satisfy (5.4) and (5.5), then we can find r, r1 and r2 such that
the output of the function H on r collides with r�1 ⊕ r�2 and r1 ⊕ r2 is δ for
some fixed δ. By collision resistance of the function H, this happens with
probability at most 1/2λ.

When there is more than one j 6= 1 such that Ĉj 6= Cj in cases (1) and (3) above,
we will have, ⊕

j 6=1

Ĉj ⊕ Ĉ1 =
⊕
j 6=1

Cj ⊕ C1⊕
j 6=1

Ĉj
�j
⊕ Ĉ1

�1
=
⊕
j 6=1

C�jj ⊕ C�1
1 ⊕R

and the same arguments extend.

Theorem 5.2.4. The Free Hash garbling scheme hG described in Figure 5.1 sat-
isfies hash security as defined in Definition 5.2.1 assuming the collision-resistance
of H.

Proof. Given an adversary A who outputs (GC, e, ĜC, ê, d, h) such that GC 6=
ĜC,H(ĜC) = H(GC) = h, Ve(GC, d, e) = accept, we show that

∀x,Pr[Eval(ĜC,En(x, ê)) 6= ⊥] = negl(κ). Since GC 6= ĜC, they differ in at least
one garbled gate. Let gi be the first gate in topological order that differs in GC and
ĜC. When padi,2 = p̂adi,2 for all ĝi 6= gi, by case (1) of Lemma 5.2.3, we have that
the output wire key for ĝi is invalid. Now, by inductively applying cases (2) and
(3) of Lemma 5.2.3, all wire keys from then on, in topological order of evaluation
remain invalid.

89

Now, when padi,2 6= p̂adi,2, Eval on ĜC can return to a valid wire key for the

output wire of ĝi 6= gi. Let us denote by Ĥi the running hash up until gate ĝi in ĜC.
Since padi,2 6= p̂adi,2, we have Ĥi 6= Hi. By the assumption that H(ĜC) = H(GC),
there must be a gate ĝj 6= gj such that

∆ =
⊕

i:padi,2 6=p̂adi,2

(padi,2 ⊕ p̂adi,2) = Ĥi ⊕Hi (5.6)

p̂adj,2 = padj,2 ⊕∆ (5.7)

We now argue that the output wire of ĝj is invalid. From an argument similar
to case (1) of Lemma 5.2.3 (since the input wire keys to ĝj are valid), (5.7) imposes
a constraint on the ciphertexts of ĝj. Thus the probability that output wire key is
valid is bounded by the probability of finding r1 and r2 such that r1 ⊕ r2 is δ for
some fixed δ and r�1 ⊕ r�2 collides with the output of the function H on a fixed
value. By collision resistance of the function H, this happens only with probability
≤ 1/2λ.

By Lemma 5.2.3 and the union bound, we have that,
Pr[De(Eval(ĜC,En(x, ê)), d) 6= ⊥] ≤ |C|q2/2κ, where |C| is the number of
gates in the circuit, and q is the number of queries to the function H that A is
allowed to make.

Since the input x that lead to the above wire labels was arbitrary, we have
that, given H(ĜC) = H(GC),GC 6= ĜC,Ve(GC, d, e) = accept,

∀x,Pr[De(Eval(ĜC,En(x, ê)), d) 6= ⊥] = negl(κ)

As calculated in the proof, the probability of hash collision is bounded by
|C|q2/2κ. See Section 5.1 for discussion on parameter choices.

5.2.3 Hashing in half-gates garbling scheme

The current state of the art for garbled circuit construction is the half-gates
scheme of Zahur et al. In the half-gates construction, two ciphertexts are used for
each AND gate and the construction is compatible with the free-XOR technique
[KS08a]. A half-gate is a garbled AND gate where one of the inputs to the gate
is known in clear to one of the parties. Consider an AND gate c = a ∧ b. Now
suppose the generator chooses a uniformly random bit r, and imagine we can have
the evaluator learn the value of r ⊕ b. We can write c as

c = a ∧ b = (a ∧ r)⊕ (a ∧ (r ⊕ b))

90

[ZRE15] show how to garble the first AND gate with a generator-half-gate where
the generator knows one of the values r, and the second AND gate with evaluator-
half-gate since the evaluator know r ⊕ b. The full AND gate is garbled by taking
XOR of the two half-gates. Each garbled half-gate is one ciphertext, and with
free-XOR, the full AND gate is two ciphertexts.

Let GC′ = (Gb′,En′,De′,Eval′) be the algorithms of the half-gate garbling pro-
cedure in [ZRE15]. The algorithms for encoding and evaluation in our scheme
are the same; we only include the garbling and decoding algorithms, Gb and De.
We assume that the half-gate garbling scheme outputs wire labels corresponding
to both 0 and 1 on the output wires as the decoding information. Gb outputs a
garbled circuit, the encoding and decoding information and the hash of the garbled
circuit. De returns a decoded output or ⊥ if the garbled output is invalid.

• Gb(1κ, C): On input security parameter κ and a circuit C, run the half-gate gar-
bling algorithm (e′, d′,GC′) ← Gb′(1κ, C), where GC′ = {τGi , τEi}gi∈Ginter

, and
d′ = {(d0i , d1i)}Wi∈Wout . Set the encoding information e, decoding information
d, garbled circuit GC and hash H(GC) as

e = e′, d = d′, GC = GC′, H(GC) =
⊕
i

(τGi ⊕ τEi)

• En is defined to be En′ .

• Eval is defined to be Eval′.

• De(Y, d): On input the decoding information d and the garbled output of the
circuit Y = (Y1, ..., Ym), for each output wire i of the circuit C, parse d as
d = {d0i , d1i }i∈[m]. Then, set yi = b if Yi = dbi and yi = ⊥ if Yi 6∈ {d0i , d1i }.
Output the result y = (y1, ..., ym) if ∀i, yi 6= ⊥. Else, output ⊥.

Figure 5.2: The Half-Gate Free Hash garbling scheme halfG

Note that in the construction of hashed garbling scheme for half-gates above,
the hash is the XOR of all the ciphertexts. Unlike our construction for general
garbled circuits (cf. Figure 5.1), we do not modify the wire keys. Since the garbled
circuit is the same as the original half-gates construction, we retain the privacy
and authenticity properties. To argue hash security, first observe that in the half-
gates scheme both ciphertexts in a garbled gate (one per half-gate) are decrypted
and used for output wire computation. Consider an attacker A which modifies a
gate table and changes one entry to decrypt to a wrong label. Then there must
be another modified entry to correct the hash, and both modified entries need to

91

decrypt correctly during evaluation to produce a valid label. Thus, in the half-
gate garbling, the intuition for hash security is similar to that of our original 4-row
construction. Namely, any modified gate will break the XOR hash. Further, any
gate table that brings back the hash to the correct value will result in an invalid
output wire label. We provide a proof sketch below.

Theorem 5.2.5. The Half-Gate Free Hash garbling scheme halfG described in Fig-
ure 5.2 satisfies hash security as defined in Definition 5.2.1 assuming the collision-
resistance of H.

Proof Sketch. Given an adversary A who outputs (GC, e, ĜC, ê, d, h) such that

GC 6= ĜC,H(ĜC) = H(GC) = h, Ve(GC, d, e) = accept, we show that

∀x,Pr[Eval(ĜC,En(ê, x)) 6= ⊥] = negl(κ). Since GC 6= ĜC, they must differ in
at least one garbled gate, and let gi 6= ĝi be the first gate in topological order that
differs: gi = {τGi , τEi} and ĝi = {τ̂Gi , τ̂Ei}. Let Ĥi be the running hash up until

gate ĝi in ĜC. We consider the following cases:

1. Ĥi = Hi where Hi is the running hash until gate gi in GC. Now gi 6= ĝi and
Ĥi = Hi implies that both half-gates are modified since ĝi is the first gate
that differs from GC. That is,

τGi 6= τ̂Gi and τEi 6= τ̂Ei

Let (K̂a, K̂b) be the input wire keys of ĝi. The output wire key of ĝi during
Eval is given by

K̂ = H(K̂a)⊕ saτ̂Gi ⊕H(K̂b)⊕ sb(τ̂Ei ⊕ K̂a)

where sa and sb are select bits. The probability that K̂ is valid is at most
1/2λ by the collision resistance of function H. Now, by inductively using

argument similar to cases (2) and (3) of Lemma 5.2.3, the wire keys of ĜC
remain invalid.

2. gi 6= ĝi, Ĥi 6= Hi and H(GC) = H(ĜC) implies there must be a gate ĝj 6= gj
such that

τ̂Gj ⊕ τ̂Ej = Ĥi ⊕Hi ⊕ (τGj ⊕ τEj) (5.8)

We now argue that the output wire of ĝj is invalid: (5.8) imposes a constraint
on the ciphertexts of ĝj. Thus the probability that output wire key is valid
is bounded by the probability of finding r1 and r2 such that r1 ⊕ r2 is δ

92

for some fixed δ and r1 and r2 collide with the outputs of function H. By
collision resistance of H, this happens with probability at most 1/2λ. Again,

inductively all further wire keys of ĜC remain invalid.

By the union bound, we have that, Pr[De(Eval(ĜC,En(ê, x)), d) 6= ⊥] ≤
|C|q2/2κ, where |C| is the number of gates in the circuit, and q is the number
of queries to the function H that A is allowed to make.

As calculated in the proof, the probability of hash collision is bounded by
|C|q2/2κ. See Section 5.1 for discussion on parameter choices.

5.2.4 Performance and Impact

Cut-and-choose protocols using hG. As pointed out in [GMS08], an improve-
ment in communication complexity can be achieved by taking the following ap-
proach. To compute a garbled circuit, the garbler P1 generates a random PRG
seed. Then the output of the pseudorandom generator is used as the random tape
for the garbling algorithm. In C&C, P1 sends to P2 only a collision-resistant (CR)
hash of each GC. In a later stage of the protocol, if a GC GC is chosen as a check
circuit and needs to be opened, P1 simply sends the seed corresponding to that
circuit to P2.

hG hash can be used in C&C similarly to standard CR hash of GC. In [GMS08],
P1 commits via a collision resistant hash function to garbled circuits. These GCs
can be either good or cheating. Importantly, due to the CR property of the hash, a
malicious P1 cannot change this designation at a later time. In using hG, P1 has the
same choice: he can compute hG of either a good or a cheating GC. If he computed
and sent the hash h of a good garbled circuit GC, then h cannot be claimed to
match a cheating evaluation circuit ĜC, even if the XOR hash H(GC) = H(ĜC).

Indeed, w.h.p., evaluation of such a ĜC will fail and P2 will abort, independently
of P2’s input. Similarly, if P1 computed and sent the hash of a cheating circuit ĜC,
it cannot be later opened as a good check circuit GC.

We stress that we must be careful when P2 is allowed to abort, so as to not allow
a selective failure attack. Specifically, a malicious P1 could cause evaluation failure
by sending an invalid label on a specific input wire/value pair or by generating a
GC which produces an invalid label based on a value of an internal wire. Thus,
while it is OK for P2 to abort if it sees a GC which does not match the hG-hash, it
should not (necessarily) abort simply based on seeing a decoding failure. Instead,
this failure should be treated by the C&C procedure. We stress that it is protocol
dependent, and protocol security should be evaluated. At the high level, our
hashing guarantees that the garbler cannot open/equivocate an “honest” hashed
circuit as a valid “malicious” circuit (or vice versa). However, he can open any
(i.e. honest or malicious) hashed circuit as a “broken” one (i.e. one which will fail
evaluation).

93

Our hG construction Garble + SHA justGarble
Standard Garbling 31.1 226.7 29

Half-gates 26.8 157.7 25.3

Table 5.1: Free Hash Implementation results

Covert C&C protocols [AL07, KM15], as well as C&C based on majority output,
such as [LP11], can be made to work with hG. Indeed, exercising the extra power
the adversary has (turning a good or bad evaluation circuit into a broken evaluation
circuit) will simply cause covert evaluator to abort independently of its input.
Similarly, in [LP11], the evaluation circuits which were made broken cannot be
used to contribute to majority output. Using hG with [KM15] requires a bit of
care. [KM15] actually already explicitly support using [GMS08]. Using hG differs
from [GMS08] only in that a cheating P1 can open an honest evaluation circuit as
a broken one, resulting in an abort. However, the same effect could be achieved
by P1 sending an invalid signature on the garbled circuit.

We note that [Lin13] uses [LP11] as a basic step in cheating punishment and
our hG can be used within the [LP11] subprotocol of [Lin13]. However, it is not
immediately clear hG can be used elsewhere in [Lin13]. This is because the cheating
punishment relies on evaluator having received a good evaluation circuit to recover
the cheating garbler’s input. However, in our case, malicious garbler can present
a broken circuit, preventing input recovery.

Similarly, it is not immediately clear that the dual-execution C&C protocols
of [HKE13, KMRR15] can take advantage of hG. Intuitively, this is because a
malicious generator P1 might produce a single cheating circuit, which is likely to
be chosen for evaluation among a number of honest circuits. Then, P1 will open
all honest evaluation circuits as broken ones. Avoiding selective failure attack, P2

will not abort, and the resulting output will depend on the output of the cheating
circuit.

Implementation. We implemented our scheme using libgarble [Mal] for garbling
and report on the performance below. In Table 5.1, we compare the cost of our
GC hashing construction with garbling and then hashing the GC using SHA. We
use the AES circuit to garble in the comparisons. The numbers in Table 5.1 are in
cycles per gate. The configuration of the machine we used to run our implemen-
tation is: 2.3 GHz Core i5-2410M processor with 4 GB RAM. The processor has
AES-NI integrated.

We believe that free hashing will simplify and speed up GC use particularly
in larger systems using GC, such as the Blind Seer encrypted database [PKV+14,

94

FVK+15], where GC processing will be competing for the CPU resource with a
number of other tasks.

SFE of private certified functions. We now consider the use case described
in Section 1.3.2, where a Certificate Authority (CA) generates and certifies a num-
ber of GCs for use by the subscribers of the CA. In this case, clearly, CA is
the bottleneck; Table 5.1 demonstrates over 6× performance improvement for the
state-of-the-art half-gates GC, as compared with using standard hashing available
with the OpenSSL library. Again, we stress that with half-gates hashing, simple
XOR of all rows of all the gate tables provides a secure hash. This allows simple
implementation in addition to the performance improvement.

Impact on Cut-and-choose. We discuss the SFE performance improvement
brought by our work on the example of the state-of-the-art approach of [LP11]
and [KM15]. (Subsequent improvements to [LP11], as well as C&C, covert and
other GC protocols will benefit from free GC hashing correspondingly). We review
the C&C choices and parameters of [LP11, AO12, KM15] in light of [GMS08] and
free hashing allowed by our work. We will show that:

1. Computing and sending additional GC hashes does not increase communi-
cation cost (computation cost is minimal due to our work), but significantly
reduces cheating probability (see Table 5.2).

2. Keeping the cheating probability constant, we improve total C&C time by
43−64% by sending circuit hashes instead of circuits as suggested by [GMS08]
(See Table 5.3).

For concreteness, to achieve a cheating probability of, say, 2−40, the number of
garbled circuits that need to be sent is n. This incurs a communication cost, in
bits, of k, where k = nC, and C is the cost of a garbled circuit.

Sending only the hashes of the garbled circuits in the beginning of the cut-and-
choose, let the total number of garbled circuits be ñ. Let h be the size of the hash
of a GC, which is the communication cost of a check circuit. Now, we have that
the communication bits incurred,

k̃ = ñh +
1

2
ñC

Setting the communication complexity to be the same, k̃ = k = nC, we have,

n = ñq +
ñ

2

where q = h
C

is the ratio of the cost of a check circuit and the cost of a garbled
circuit. For q < 1/2, we have ñ = n

q+ 1
2

> n, thus giving a cheating probability

95

2−ñ < 2−n for the same communication complexity. For large circuits, we expect
C� h, giving concrete improvements in the security at no additional communica-
tion cost.

Communication k Number of circuits Cheating probability / Deterrence
[LP11] k = 125|GC| n = 125 2−40

[LP11] with hG, q = 1/4 k = 125|GC| ñ = 166 2−51

[LP11] with hG, q = 1/8 k = 125|GC| ñ = 200 2−62

[KM15] without [GMS08] k = 10|GC| n = 10 0.9
[KM15] with hG, q = 1/4 k = 10|GC| ñ = 36 0.972
[KM15] with hG, q = 1/8 k = 10|GC| ñ = 72 0.986

Table 5.2: SFE Performance improvement using Free Hash

We note that [KM15] incorporates the [GMS08] hashing in the protocol. As we
discussed, sending circuits over a fast channel may only be about 3× slower than
hardware-assisted garbling, while computing SHA1 may be up to 6× slower than
such garbling. Hence, sending circuits over a fast channel may actually be faster
than generating SHA1 hash. Therefore, in our calculations for the fast channel
setting as above, we consider [KM15] without [GMS08] hash. For comparison, we
note that the protocol of [Lin13] achieves covert security with deterrent ε = 0.999
using 11 circuits, but does not achieve public verifiability.

Performance improvement for constant cheating probability. Consider
the task of evaluating a billion-gate circuit (cf. [KSS12]). We show estimated im-
provement due to our technique as applied to [LP11] and [KM15]. We do this
in terms of expended time by unifying the computation and communication costs
of generating and sending garbled circuits. These calculations are not based on
specific implementations or protocol definitions. Instead they are based on sim-
ple estimates of time needed to generate, hash and send GCs, and adding them
together.

We first calculate and explain the computation and communication costs in
seconds of our basic tasks.

According to [BHKR13], using JustGarble to garble the AES circuit (6660 non-
XOR gates) takes 637 microseconds. Adjusting for size, we calculate that the time
taken for GC generation for a circuit with 1 billion gates to be 95 seconds. For
communication, assuming ideal scenario in 1Gbps channel, assume we can send 1
billion bits/sec. Thus the time to send a circuit of 1 billion gates is 256 seconds at
(assuming half gates and 2× 128 bits per gate).

The total number of seconds needed in the cut-and-choose phase to maliciously
evaluate a 1 billion-gate circuit with 2−40 cheating probability using previous tech-
nique and our construction using the optimal parameters. In our calculation we
include the costs of generating, hashing (in our scheme) and sending the GCs. We
do not include the cost of regenerating the check circuits at the evaluator’s end that

96

Total number Number of Circuits Time
of circuits check circuits sent (in secs)

[LP11] 125 75 125 43875
[LP11] +hG 125 75 50 24675

Table 5.3: A billion-gate circuit. Execution time estimates of cut-and-choose with
our improvements to achieve cheating probability of 2−40

Total number Number of Circuits Time
of circuits check circuits sent (in secs)

[AL07] 10 9 10 3510
[AL07]+hG 10 9 1 1260

[KM15] without [GMS08] 10 9 10 3510
[KM15]+hG 10 9 1 1260

Table 5.4: A billion-gate circuit. Execution time estimates of cut-and-choose with
our improvements to achieve deterrence of ε = 0.9.

is incurred by our technique. This is because this cost is also incurred by other
techniques. Indeed, checking correctness of a circuit that the evaluator already
has (directly, or when using [GMS08] hash) is simplest and fastest by receiving its
generating seed, reconstructing and comparing. We are concerned only with the
cut-and-choose phase, and ignore the time taken for OT and GC evaluation in the
protocol and show how our construction allow for reduced execution time in the
cut-and-choose phase.

The cost in seconds calculated in Table 5.3 is obtained by adding the time to
generate, hash (if needed) and send all the required garbled circuits. As explained
above, we assume that it takes 95 seconds to generate a 1-Billion gate GC, and
256 seconds to send it.

5.3 Application to Zero-Knowledge

Ishai et al. [IKOS07, IKOS09] introduced the “MPC-in-the-head” technique
that allows a generic transformation of an MPC protocol into a zero-knowledge
proof. This provides a powerful tool to obtain black-box constructions for generic
statements without relying on expensive Karp reductions. Recently, this tech-
nique was further studied in [GMO16] resulting in efficient ZK arguments tailored

97

for Boolean circuits. They study variants of the “MPC-in-the-head” framework,
plug in different MPC protocols, and provide concrete estimates of soundness.
In [HV16], the authors extend this idea, into “2PC-in-the-head” and give a generic
transformation from a secure two-party computation protocol to a ZK proof.

We present a protocol that is essentially a special case of general cut-and-choose.
Since the verifier has no input, we do not have to handle selective failure where
the evaluator’s abort could leak a bit of his input, or ensure input consistency
of the garbler, since the circuit is evaluated on an input entirely known to the
garbler. While in [HV16], a similar approach is seen as “2PC-in-the-head”, we
cast our protocol as a cut-and-choose protocol. Standard transformations based
on Oblivious Transfer and Fiat-Shamir may then be applied to obtain a 2-round
ZK and a NIZK respectively. Loosely speaking, choosing to reveal P1’s view in
“2PC-in-the-head” in [HV16] is equivalent to choosing a circuit to be a check
circuit in our protocol; and choosing to reveal P2’s view corresponds to a circuit
being an evaluation circuit. We make some observations about the protocol that
could lead to improved efficiency.

• We do not need the gadgets for input consistency checks of the prover, and
input recovery mechanisms in case of inconsistent outputs as used in sev-
eral works [Lin13, LR14, RR16, MR17]. We note that we do not need to
enforce output recovery when two evaluated circuits result in different out-
puts. The output recovery mechanism that is used in general 2PC protocols
[Lin13, LR14, LR15, AMPR14, MR17] relies on authenticity property of the
underlying garbling scheme. This means that taking the [GMS08] approach
of hashing GCs can benefit the sigma protocol to achieve an improvement
in communication complexity. The weaker hash definition introduced in this
chapter will suffice for our protocol and Free Hash allows this improvement
at no additional computational overhead.

• We do not rely on the authenticity property of the underlying garbling
scheme. It remains open to study authenticity-free garbled circuits and the
possibility of taking advantage of this, in a vein similar to privacy-free garbled
circuits [FNO15] and their application to zero-knowledge.

Sigma protocol from Garbled Circuits. Following the standard cut-and-
choose paradigm, the prover constructs many independent garbled circuits of the
circuit implementing C. The verifier generates a uniformly random string as the
challenge. The challenge bits determine whether a garbled circuit is to be opened
and checked, or is to be evaluated. If all the check circuits are valid and if all
evaluated circuits output 1, the verifier accepts. This is sufficient for our applica-
tion since there is no need to address selective failure issues that arise in general

98

computation. This is because the verifier has no private input, and hence there is
nothing to leak when he aborts.

We denote the garbled input corresponding to the jth wire in the ith circuit
by Xb

ij, for b ∈ {0, 1}. Our Σ-protocol is given in Figure 5.3.
We now prove that the protocol in Figure 5.3 is a Σ-protocol by proving that

it is honest-verifier zero knowledge and 2-special sound. The 2-special soundness
implies a soundness error of 2−µ where µ is the length of the challenge, which is
the number of garbled circuits. It is easy to see that the protocol is 3-move and
complete.

Theorem 5.3.1. Protocol in Figure 5.3 is a Σ-protocol for the relation Rf with
2-special soundness, assuming G is a correct, private, verifiable garbling scheme.

Proof. 1. Special honest verifier zero-knowledge: The simulator Sim on input x
and r does the following. For every bit ri such that ri = 0, Sim constructs
the corresponding garbled circuits GCi honestly for the function C. For
every bit ri such that ri = 1, Sim uses the garbled circuit simulator that
exists for a private garbling scheme, to construct a fake garbled circuit that
always outputs 1. Indistinguishability of the simulator’s output from the real
transcript follows from the privacy of the garbling scheme.

2. Special soundness: Consider two accepting transcripts τ1 = (a, r1, e1), τ2 =
(a, r2, e2). Now, r1 6= r2 means there must exist some index i where the
two strings differ, that is, r1i 6= r2i . w.l.o.g, this means that, the ith garbled
circuit in a is a check circuit in τ1 and an evaluation circuit in τ2. Since both
transcripts are accepting, GCi is a valid garbled circuit that was opened and
checked in τ1 and GCi evaluated to 1 in τ2. We can now extract the input
bits by mapping the input wire keys of the garbled circuit GCi in τ2 with
the opened garbled circuit GCi in τ1. By correctness and verifiability of the
garbling scheme used, the extracted bits xi are such that R(z, x) = 1.

99

Figure 5.3: The GC based Σ-protocol

Let G = (Gb,En,De,Eval,Ve) be a verifiable garbling scheme. Let C be the cir-
cuit implementing the relation R(x,w). Both parties have as input the security
parameter κ, the statistical security parameter µ and instance x, and the prover
additionally has as input a witness w such that R(x,w) = 1.

• Commit:

1. The prover P constructs µ independent garbled circuits GC1, · · · ,GCµ
for C.

(GC, {X0
j , X

1
j }j∈[n], {Z0, Z1})← Gb(1κ, C)

2. The prover sends the first message to the verifier.

a = {(GC1, {Z0
1 , Z

1
1}), . . . , (GCµ, {Z0

µ, Z
1
µ})}

• Prove:

1. The verifier chooses a uniformly random string r of length µ.

r ← {0, 1}µ

The verifier sends the challenge r to the prover.

2. For the challenge string r, if bit ri = 0, the garbled circuit GCi is a
check circuit and if ri = 1, GCi is an evaluation circuit. The prover
reveals the randomness used to construct GCi if ri = 0, and reveals the
input wire keys corresponding to input x if ri = 1.

ei =

{
{Xwj

ij }nj=1 if ri = 1

{X0
ij , X

1
ij}nj=1 otherwise

Send the response e = {ei}µi=1 to the verifier.

• Verify:

1. If Ve(C,GCi, {X0
ij , X

1
ij}nj=1, {Z0

i , Z
1
i }) = 0 for some i with ri = 0, the

verifier outputs reject and aborts.

2. If De(Eval(GCi, {X
xj
ij }nj=1), {Z0

i , Z
1
i }) 6= 1 for some i with ri = 1, the

verifier outputs reject and aborts.

3. If the verifier did not abort, she outputs accept.

100

Chapter 6

Conclusion

In this dissertation, we constructed efficient zero-knowledge proofs for com-
bination statements that have both algebraic and non-algebraic components. We
showed how to combine state-of-the-art approaches of sigma protocols, garbled cir-
cuits and SNARKs while retaining the efficiency of each of them. We also showed
applications of zero-knowledge for combinations statements in anonymous creden-
tials and privacy-preserving proof of solvency for Bitcoin. Further, we proposed a
definition for hash security of garbled circuits, and gave constructions.

Several interesting questions remain open. We summarize some of them below.

• It is a natural direction to explore how the techniques we introduced to
combine GC and sigma protocols might work with the “MPC-in-the-head”
technique. Recent work of ZKBoo [GMO16] that uses “MPC-in-the-head”
gives efficient sigma protocols to prove non-algebraic statements. Exploring
ZKBoo together with algebraic sigma protocols might lead to non-interactive
proofs for combination statements with different trade-offs.

• It remains to study authenticity-free garbled circuits. It is known that giving
up on privacy of garbled circuits leads to more efficient constructions and they
suffice for application in certain zero-knowledge protocols. Besides being
interesting to separate the different garbled circuit properties, the feasibility
of efficient authenticity-free garbled circuits could lead to similar application
to GC-based zero-knowledge protocols.

• Despite many advances in the efficiency of Garbled Circuit constructions,
the techniques mostly apply to boolean circuits. In our first construction
combining garbled circuits and sigma protocols for proof of a combination of
algebraic and non-algebraic statement, the bottleneck in terms of efficiency
is the garbling of a multiplication circuit. This can be greatly improved if we
could garble an arithmetic circuit directly. In a recent work, [BMR16] present
simple new constructions that apply to arithmetic circuits. It is interesting to

101

try to use these gadgets for arithmetic garbling with our technique for zero-
knowledge proofs. It also remains to study if we can get better privacy-free
garbled circuits in the arithmetic world.

102

Bibliography

[AGM17] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. Non-
interactive zero-knowledge proofs for compound statements. Preprint,
2017.

[Aho87] Alfred Aho, editor. 19th ACM STOC. ACM Press, May 1987.

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adver-
saries: Efficient protocols for realistic adversaries. In Salil P. Vadhan,
editor, TCC 2007, volume 4392 of LNCS, pages 137–156. Springer,
Heidelberg, February 2007.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-
interactive secure computation based on cut-and-choose. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 387–404. Springer, Heidelberg, May 2014.

[AO12] Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert
security with public verifiability. In Xiaoyun Wang and Kazue Sako,
editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 681–698.
Springer, Heidelberg, December 2012.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum dis-
closure proofs of knowledge. J. Comput. Syst. Sci., 37(2):156–189,
1988.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer.
From extractable collision resistance to succinct non-interactive ar-
guments of knowledge, and back again. In Shafi Goldwasser, editor,
ITCS 2012, pages 326–349. ACM, January 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer.
Recursive composition and bootstrapping for SNARKS and proof-
carrying data. In Dan Boneh, Tim Roughgarden, and Joan Feigen-
baum, editors, 45th ACM STOC, pages 111–120. ACM Press, June
2013.

103

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew
Green, Ian Miers, Eran Tromer, and Madars Virza. Zerocash: De-
centralized anonymous payments from bitcoin. In IEEE S&P 2014
[IEE14], pages 459–474.

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyan-
skaya. P-signatures and noninteractive anonymous credentials. In
Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 356–
374. Springer, Heidelberg, March 2008.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM
STOC, pages 103–112. ACM Press, May 1988.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Ro-
gaway. Efficient garbling from a fixed-key blockcipher. In IEEE S&P
2013 [IEE13], pages 478–492.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations
of garbled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor,
editors, ACM CCS 12, pages 784–796. ACM Press, October 2012.

[bit] Technical background of version 1 bitcoin addresses. https:

//en.bitcoin.it/wiki/Technical_background_of_version_1_

Bitcoin_addresses.

[BL13] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials
light. In Sadeghi et al. [SGY13], pages 1087–1098.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round com-
plexity of secure protocols. In Proceedings of the twenty-second an-
nual ACM symposium on Theory of computing, pages 503–513. ACM,
1990.

[BMR16] Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for
boolean and arithmetic circuits. In Weippl et al. [WKK+16], pages
565–577.

[BOGG+90] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad,
Joe Kilian, Silvio Micali, and Phillip Rogaway. Everything prov-
able is provable in zero-knowledge. In Shafi Goldwasser, editor,
CRYPTO’88, volume 403 of LNCS, pages 37–56. Springer, Heidel-
berg, August 1990.

104

https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses

[BÖS11] Joppe W. Bos, Onur Özen, and Martijn Stam. Efficient hashing
using the AES instruction set. In Bart Preneel and Tsuyoshi Takagi,
editors, CHES 2011, volume 6917 of LNCS, pages 507–522. Springer,
Heidelberg, September / October 2011.

[Bou00] Fabrice Boudot. Efficient proofs that a committed number lies in an
interval. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807
of LNCS, pages 431–444. Springer, Heidelberg, May 2000.

[BR93a] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Proceedings of the 1st
ACM conference on Computer and communications security, pages
62–73. ACM, 1993.

[BR93b] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In V. Ashby, editor, ACM
CCS 93, pages 62–73. ACM Press, November 1993.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital
signatures-how to sign with rsa and rabin. In Advances in Cryptology-
Eurocrypt’96, pages 399–416. Springer, 1996.

[Bra99] Stefan Brands. Rethinking Public Key Infrastructure and Digital
Certificates— Building in Privacy. PhD thesis, Eindhoven Institute
of Technology, Eindhoven, The Netherlands, 1999.

[Bra13] Lúıs T. A. N. Brandão. Secure two-party computation with reusable
bit-commitments, via a cut-and-choose with forge-and-lose technique
- (extended abstract). In Kazue Sako and Palash Sarkar, editors,
ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 441–463.
Springer, Heidelberg, December 2013.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box
analysis of the block-cipher-based hash-function constructions from
PGV. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS,
pages 320–335. Springer, Heidelberg, August 2002.

[CCs08] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient proto-
cols for set membership and range proofs. In Josef Pieprzyk, editor,
ASIACRYPT 2008, volume 5350 of LNCS, pages 234–252. Springer,
Heidelberg, December 2008.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding protocols.

105

In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages
174–187. Springer, Heidelberg, August 1994.

[CF85] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryp-
tographically secure election scheme (extended abstract). In 26th
FOCS, pages 372–382. IEEE Computer Society Press, October 1985.

[CG13] Ran Canetti and Juan A. Garay, editors. CRYPTO 2013, Part II,
volume 8043 of LNCS. Springer, Heidelberg, August 2013.

[CGM16] Melissa Chase, Chaya Ganesh, and Payman Mohassel. Efficient zero-
knowledge proof of algebraic and non-algebraic statements with ap-
plications to privacy preserving credentials. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816
of LNCS, pages 499–530. Springer, Heidelberg, August 2016.

[Cha86] David Chaum. Showing credentials without identification: Signatures
transferred between unconditionally unlinkable pseudonyms. In Franz
Pichler, editor, EUROCRYPT’85, volume 219 of LNCS, pages 241–
244. Springer, Heidelberg, April 1986.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revoca-
tion. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045
of LNCS, pages 93–118. Springer, Heidelberg, May 2001.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and
anonymous credentials from bilinear maps. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 56–72. Springer,
Heidelberg, August 2004.

[CMZ14] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic
MACs and keyed-verification anonymous credentials. In Gail-Joon
Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14, pages 1205–
1216. ACM Press, November 2014.

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The
random oracle model and the ideal cipher model are equivalent. In
Wagner [Wag08], pages 1–20.

[Cré90] Claude Crépeau. Verifiable disclosure of secrets and applications (ab-
stract). In Jean-Jacques Quisquater and Joos Vandewalle, editors,
EUROCRYPT’89, volume 434 of LNCS, pages 150–154. Springer,
Heidelberg, April 1990.

106

[CS97a] Jan Camenisch and Markus Stadler. Efficient group signature schemes
for large groups. In Advances in Cryptology-CRYPTO’97, pages 410–
424. Springer, 1997.

[CS97b] Jan Camenisch and Markus Stadler. Efficient group signature schemes
for large groups (extended abstract). In Kaliski Jr. [Kal97], pages
410–424.

[CvT95] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed
oblivious transfer and private multi-party computation. In Don Cop-
persmith, editor, CRYPTO’95, volume 963 of LNCS, pages 110–123.
Springer, Heidelberg, August 1995.

[CZ09] Jan Camenisch and Gregory M Zaverucha. Private intersection of
certified sets. In Financial Cryptography and Data Security, pages
108–127. Springer, 2009.

[Dam] Ivan Damg̊ard. On Σ-protocols. http://www.cs.au.dk/~ivan/

Sigma.pdf.

[Dam00] Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary
string model. In Advances in Cryptology-EUROCRYPT 2000, pages
418–430. Springer, 2000.

[DBB+15] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy Clark,
and Dan Boneh. Provisions: Privacy-preserving proofs of solvency
for bitcoin exchanges. In Ray et al. [RLK15], pages 720–731.

[DF02] Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer
commitment scheme based on groups with hidden order. In Advances
in Cryptology-ASIACRYPT 2002, pages 125–142. Springer, 2002.

[DLFKP16] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and
Bryan Parno. Cinderella: Turning shabby X.509 certificates into ele-
gant anonymous credentials with the magic of verifiable computation.
In 2016 IEEE Symposium on Security and Privacy, pages 235–254.
IEEE Computer Society Press, May 2016.

[FFS87] Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge proofs of
identity. In Aho [Aho87], pages 210–217.

[FGK17] Xiong Fan, Chaya Ganesh, and Vladimir Kolesnikov. Hashing garbled
circuits for free. In Advances in Cryptology - EUROCRYPT 2017 -
36th Annual International Conference on the Theory and Applications

107

http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf

of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part III, pages 456–485, 2017.

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Or-
landi. Privacy-free garbled circuits with applications to efficient zero-
knowledge. In Oswald and Fischlin [OF15], pages 191–219.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowl-
edge protocols to prove modular polynomial relations. In Kaliski
Jr. [Kal97], pages 16–30.

[FOC86] 27th FOCS. IEEE Computer Society Press, October 1986.

[For87] Lance Fortnow. The complexity of perfect zero-knowledge (extended
abstract). In Aho [Aho87], pages 204–209.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Odlyzko [Odl87], pages
186–194.

[FVK+15] Ben A. Fisch, Binh Vo, Fernando Krell, Abishek Kumarasubrama-
nian, Vladimir Kolesnikov, Tal Malkin, and Steven M. Bellovin.
Malicious-client security in blind seer: A scalable private DBMS. In
2015 IEEE Symposium on Security and Privacy, pages 395–410. IEEE
Computer Society Press, May 2015.

[GG14] Juan A. Garay and Rosario Gennaro, editors. CRYPTO 2014,
Part II, volume 8617 of LNCS. Springer, Heidelberg, August 2014.

[GGO+] Vinodh Gopal, Jim Guilford, Erdinc Ozturk, Sean Gul-
ley, and Wajdi Feghali. Improving OpenSSL perfor-
mance. https://software.intel.com/sites/default/files/

open-ssl-performance-paper.pdf. Retrieved Feb 3, 2017.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs.
In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 626–645. Springer, Hei-
delberg, May 2013.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster
zero-knowledge for boolean circuits. In 25th USENIX Security Sympo-
sium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016.,
pages 1069–1083, 2016.

108

https://software.intel.com/sites/default/files/open-ssl-performance-paper.pdf
https://software.intel.com/sites/default/files/open-ssl-performance-paper.pdf

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract). In 17th
ACM STOC, pages 291–304. ACM Press, May 1985.

[GMS08] Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party
and multi party computation against covert adversaries. In Smart
[Sma08], pages 289–306.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield
nothing but their validity and a methodology of cryptographic proto-
col design (extended abstract). In FOCS 1986 [FOC86], pages 174–
187.

[GMW87a] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest
majority. In Aho [Aho87], pages 218–229.

[GMW87b] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove
all NP-statements in zero-knowledge, and a methodology of crypto-
graphic protocol design. In Odlyzko [Odl87], pages 171–185.

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-
knowledge protocol fitted to security microprocessor minimizing both
trasmission and memory. In C. G. Günther, editor, EUROCRYPT’88,
volume 330 of LNCS, pages 123–128. Springer, Heidelberg, May 1988.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge ar-
guments. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477
of LNCS, pages 321–340. Springer, Heidelberg, December 2010.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems
for bilinear groups. In Smart [Sma08], pages 415–432.

[HKE13] Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-
party computation using symmetric cut-and-choose. In Canetti and
Garay [CG13], pages 18–35.

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan,
and Alex J. Malozemoff. Amortizing garbled circuits. In Garay and
Gennaro [GG14], pages 458–475.

[HKT11] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equiv-
alence of the random oracle model and the ideal cipher model, re-
visited. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM
STOC, pages 89–98. ACM Press, June 2011.

109

[HV16] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On
the power of secure two-party computation. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of
LNCS, pages 397–429. Springer, Heidelberg, August 2016.

[ide10] Specification of the identity mixer cryptographic library (revised ver-
sion 2.3.0). Technical Report RZ 3730, IBM Research, April 2010.

[IEE13] 2013 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2013.

[IEE14] 2014 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2014.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending
oblivious transfers efficiently. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 145–161. Springer, Heidelberg, August
2003.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. In David S.
Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30.
ACM Press, June 2007.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge proofs from secure multiparty computation. SIAM
J. Comput., 39(3):1121–1152, 2009.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
knowledge using garbled circuits: how to prove non-algebraic state-
ments efficiently. In Sadeghi et al. [SGY13], pages 955–966.

[JS07] Stanis law Jarecki and Vitaly Shmatikov. Efficient two-party se-
cure computation on committed inputs. In Advances in Cryptology-
EUROCRYPT 2007, pages 97–114. Springer, 2007.

[Kal97] Burton S. Kaliski Jr., editor. CRYPTO’97, volume 1294 of LNCS.
Springer, Heidelberg, August 1997.

[KKL+16] Vladimir Kolesnikov, Hugo Krawczyk, Yehuda Lindell, Alex J. Mal-
ozemoff, and Tal Rabin. Attribute-based key exchange with general
policies. In Weippl et al. [WKK+16], pages 1451–1463.

110

[KKW16] W. Sean Kennedy, Vladimir Kolesnikov, and Gordon Wilfong. Over-
laying circuit clauses for secure computation. Cryptology ePrint
Archive, Report 2016/685, 2016. http://eprint.iacr.org/2016/

685.

[KM15] Vladimir Kolesnikov and Alex J. Malozemoff. Public verifiability in
the covert model (almost) for free. In Tetsu Iwata and Jung Hee
Cheon, editors, ASIACRYPT 2015, Part II, volume 9453 of LNCS,
pages 210–235. Springer, Heidelberg, November / December 2015.

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR:
Flexible garbling for XOR gates that beats free-XOR. In Garay and
Gennaro [GG14], pages 440–457.

[KMRR15] Vladimir Kolesnikov, Payman Mohassel, Ben Riva, and Mike Ro-
sulek. Richer efficiency/security trade-offs in 2PC. In Yevgeniy Dodis
and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume 9014 of
LNCS, pages 229–259. Springer, Heidelberg, March 2015.

[Knu69] Donald E Knuth. The art of computer programming. vol. 2: Seminu-
merical algorithms. addisonwesley. Reading, MA, pages 229–279,
1969.

[Kol05] Vladimir Kolesnikov. Gate evaluation secret sharing and secure
one-round two-party computation. In Bimal K. Roy, editor, ASI-
ACRYPT 2005, volume 3788 of LNCS, pages 136–155. Springer, Hei-
delberg, December 2005.

[KS06] Mehmet Kiraz and Berry Schoenmakers. A protocol issue for the ma-
licious case of yaos garbled circuit construction. In 27th Symposium
on Information Theory in the Benelux, pages 283–290, 2006.

[KS08a] Vladimir Kolesnikov and Thomas Schneider. Improved garbled cir-
cuit: Free XOR gates and applications. In Luca Aceto, Ivan Damg̊ard,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of
LNCS, pages 486–498. Springer, Heidelberg, July 2008.

[KS08b] Vladimir Kolesnikov and Thomas Schneider. Improved garbled cir-
cuit: Free xor gates and applications. In Automata, Languages and
Programming, pages 486–498. Springer, 2008.

[KS08c] Vladimir Kolesnikov and Thomas Schneider. A practical universal
circuit construction and secure evaluation of private functions. In

111

http://eprint.iacr.org/2016/685
http://eprint.iacr.org/2016/685

Gene Tsudik, editor, FC 2008, volume 5143 of LNCS, pages 83–97.
Springer, Heidelberg, January 2008.

[KS16] Ágnes Kiss and Thomas Schneider. Valiant’s universal circuit is prac-
tical. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part I, volume 9665 of LNCS, pages 699–728. Springer,
Heidelberg, May 2016.

[KSS09] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider.
Improved garbled circuit building blocks and applications to auctions
and computing minima. In Cryptology and Network Security, pages
1–20. Springer, 2009.

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate
secure computation with malicious adversaries. In Proceedings of the
21st USENIX Conference on Security Symposium, Security’12, pages
14–14, Berkeley, CA, USA, 2012. USENIX Association.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious
and covert adversaries. In Canetti and Garay [CG13], pages 1–17.

[Lin15] Yehuda Lindell. An efficient transform from sigma protocols to nizk
with a crs and non-programmable random oracle. In Theory of Cryp-
tography, pages 93–109. Springer, 2015.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidel-
berg, March 2012.

[LMS16] Helger Lipmaa, Payman Mohassel, and Saeed Sadeghian. Valiant’s
universal circuit: Improvements, implementation, and applications.
Cryptology ePrint Archive, Report 2016/017, 2016. http://eprint.
iacr.org/2016/017.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s proto-
col for two-party computation. Journal of Cryptology, 22(2):161–188,
April 2009.

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via
cut-and-choose oblivious transfer. In Yuval Ishai, editor, TCC 2011,
volume 6597 of LNCS, pages 329–346. Springer, Heidelberg, March
2011.

112

http://eprint.iacr.org/2016/017
http://eprint.iacr.org/2016/017

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure com-
putation in the online/offline and batch settings. In Garay and Gen-
naro [GG14], pages 476–494.

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2PC in the offline/online
setting with security for malicious adversaries. In Ray et al. [RLK15],
pages 579–590.

[Mal] Alex J. Malozemoff. libgarble: garbling library based on justgarble.
https://github.com/amaloz/libgarble.

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin.
Zerocoin: Anonymous distributed e-cash from bitcoin. In Security
and Privacy (SP), 2013 IEEE Symposium on, pages 397–411. IEEE,
2013.

[MR13] Payman Mohassel and Ben Riva. Garbled circuits checking garbled
circuits: More efficient and secure two-party computation. In Canetti
and Garay [CG13], pages 36–53.

[MR17] Payman Mohassel and Mike Rosulek. Non-interactive secure 2pc in
the offline/online and batch settings. In Advances in Cryptology -
EUROCRYPT 2017 - 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part III, pages 425–455, 2017.

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications.
In Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track
at the RSA Conference 2005, San Francisco, CA, USA, February 14-
18, 2005, Proceedings, pages 275–292, 2005.

[NMT] Shen Noether, Adam Mackenzie, and Monero Core Team. Ring
confidential transactions. https://lab.getmonero.org/pubs/

MRL-0005.pdf.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-
party computation. In Reihaneh Safavi-Naini and Ran Canetti, edi-
tors, CRYPTO 2012, volume 7417 of LNCS, pages 681–700. Springer,
Heidelberg, August 2012.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserv-
ing auctions and mechanism design. In Proceedings of the 1st ACM
conference on Electronic commerce, pages 129–139. ACM, 1999.

113

https://github.com/amaloz/libgarble
https://lab.getmonero.org/pubs/MRL-0005.pdf
https://lab.getmonero.org/pubs/MRL-0005.pdf

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd ACM STOC, pages 427–
437. ACM Press, May 1990.

[Odl87] Andrew M. Odlyzko, editor. CRYPTO’86, volume 263 of LNCS.
Springer, Heidelberg, August 1987.

[OF15] Elisabeth Oswald and Marc Fischlin, editors. EUROCRYPT 2015,
Part II, volume 9057 of LNCS. Springer, Heidelberg, April 2015.

[Ped91] Torben Pryds Pedersen. Non-interactive and information-theoretic se-
cure verifiable secret sharing. In Advances in CryptologyCRYPTO91,
pages 129–140. Springer, 1991.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova.
Pinocchio: Nearly practical verifiable computation. In IEEE S&P
2013 [IEE13], pages 238–252.

[PKV+14] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal
Malkin, Seung Geol Choi, Wesley George, Angelos D. Keromytis, and
Steve Bellovin. Blind seer: A scalable private DBMS. In IEEE S&P
2014 [IEE14], pages 359–374.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C.
Williams. Secure two-party computation is practical. In Mitsuru
Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 250–
267. Springer, Heidelberg, December 2009.

[PZ13] C. Paquin and G. Zaverucha. U-prove cryptographic specification v1.1
(revision 2). Available online: www.microsoft.com/uprove, 2013.

[Rab77] Michael O. Rabin. Digitalized signatures. Foundations of secure com-
putation. In Richard AD et al. (eds): Papers presented at a 3 day
workshop held at Georgia Institute of Technology, Atlanta, pages 155–
166. Academic, New York, 1977.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer.
Cryptology ePrint Archive, Report 2005/187, 2005. http://eprint.
iacr.org/2005/187.

[RLK15] Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors. ACM
CCS 15. ACM Press, October 2015.

114

http://eprint.iacr.org/2005/187
http://eprint.iacr.org/2005/187

[RR16] Peter Rindal and Mike Rosulek. Faster malicious 2-party secure com-
putation with online/offline dual execution. In 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,
2016., pages 297–314, 2016.

[RS08a] Phillip Rogaway and John P. Steinberger. Constructing cryptographic
hash functions from fixed-key blockciphers. In Wagner [Wag08], pages
433–450.

[RS08b] Phillip Rogaway and John P. Steinberger. Security/efficiency trade-
offs for permutation-based hashing. In Smart [Sma08], pages 220–236.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart
cards. In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS,
pages 239–252. Springer, Heidelberg, August 1990.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards.
Journal of Cryptology, 4(3):161–174, 1991.

[sec] Secp256k1. https://en.bitcoin.it/wiki/Secp256k1.

[SGY13] Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors. ACM
CCS 13. ACM Press, November 2013.

[Sma08] Nigel P. Smart, editor. EUROCRYPT 2008, volume 4965 of LNCS.
Springer, Heidelberg, April 2008.

[sS11] abhi shelat and Chih-Hao Shen. Two-output secure computation
with malicious adversaries. In Kenneth G. Paterson, editor, EU-
ROCRYPT 2011, volume 6632 of LNCS, pages 386–405. Springer,
Heidelberg, May 2011.

[Sta96] Markus Stadler. Publicly verifiable secret sharing. In Advances in
Cryptology-EUROCRYPT96, pages 190–199. Springer, 1996.

[Vad99] Salil Pravin Vadhan. A study of statistical zero-knowledge proofs.
PhD thesis, Massachusetts Institute of Technology, 1999.

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In STOC,
pages 196–203, New York, NY, USA, 1976. ACM Press.

[Wag08] David Wagner, editor. CRYPTO 2008, volume 5157 of LNCS.
Springer, Heidelberg, August 2008.

[Wil] Zooko Wilcox. Proving bitcoin reserves. https://iwilcox.me.uk/

2014/proving-bitcoin-reserves.

115

https://en.bitcoin.it/wiki/Secp256k1
https://iwilcox.me.uk/2014/proving-bitcoin-reserves
https://iwilcox.me.uk/2014/proving-bitcoin-reserves

[Win84] Robert S Winternitz. A secure one-way hash function built from des.
In Security and Privacy, 1984 IEEE Symposium on, pages 88–88.
IEEE, 1984.

[WKK+16] Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors. ACM CCS 16. ACM Press,
October 2016.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (ex-
tended abstract). In FOCS 1986 [FOC86], pages 162–167.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a
whole - reducing data transfer in garbled circuits using half gates. In
Oswald and Fischlin [OF15], pages 220–250.

116

	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Overview of Results
	Zero-knowledge Proofs
	Garbled Circuits

	Zero-knowledge Proofs
	Our Results
	Applications

	Garbled Circuits
	Our Results
	Applications

	Roadmap

	Preliminaries
	Notation
	Zero-knowledge Proofs
	Sigma protocols
	Non-interactive Zero-knowledge Proofs

	Garbled Circuits
	Yao's construction
	Free-XOR and other optimizations

	Garbled Circuits for ZK
	Oblivious Transfer
	ZK Proof Based on Garbled Circuits

	SNARKs for Arithmetic Circuits
	Quadratic Arithmetic Programs
	Bilinear Maps
	zk-SNARK construction from QAP

	ZK for Combination Statements
	Sigma Protocols and GC for Combination Statements
	Preliminaries
	Proving Non-algebraic Statements on Algebraic Commitments
	First Protocol
	Second Protocol
	Efficiency Comparison and Optimizations

	Sigma Protocols and SNARKs for Combination Statements
	Proof of equality of committed values
	SNARK on committed input
	SNARK on committed input/output
	Sigma protocols on committed outputs

	Applications of ZK for Combination Statements
	Building Blocks for Privacy-Preserving Signature Verification
	Proving that a committed value is the hash of another committed value
	Proof of equality of committed values in different groups
	Proof of equality of discrete logarithm of a committed value and another committed value

	Privacy-Preserving Signature Verification
	RSA signatures
	The DSA Scheme.

	Secure computation on committed/signed inputs
	Building Blocks for Privacy-Preserving Proof of Solvency
	Proof of Knowledge of Double Discrete Logarithm in Elliptic Curve Groups

	Proof of Solvency
	Proof of assets
	Proof of liabilities
	Privacy-preserving proof of solvency

	Hashing Garbled Circuits for Free
	Overview
	Related Work

	GC hashing scheme
	Hashed Garbled Circuit security
	Our Construction
	Hashing in half-gates garbling scheme
	Performance and Impact

	Application to Zero-Knowledge

	Conclusion
	Bibliography

