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Abstract

Despite increases in network bandwidth, accessing network services across a wide

area network still remains a challenging task. The difficulty mainly comes from the

heterogeneous and constantly changing network environment, which usually causes

undesirable user experience for network-oblivious applications.

A promising approach to address this is to provide network awareness in com-

munication paths. While several such path-based infrastructures have been proposed,

the network awareness provided by them is rather limited. Many challenging prob-

lems remain, in particular: (1) how to automatically create effective network paths

whose performance is optimized for encountered network conditions, (2) how to dy-

namically reconfigure such paths when network conditions change, and (3) how to

manage and distribute network resources among different paths and between different

network regions. Furthermore, there is poor understanding of the benefits of using the

path-based approach over other alternatives.

This dissertation describes solutions for these problems, built into a programmable

network infrastructure called Composable Adaptive Network Services (CANS). The

CANS infrastructure provides applications with network-aware communication paths

that are automatically created and dynamically modified. CANS highlights four key

vi



mechanisms: (1) a high-level integrated type-based specification of components and

network resources; (2) automatic path creation strategies; (3) system support for low-

overhead path reconfiguration; and (4) distributed strategies for managing and allo-

cating network resources.

We evaluate these mechanisms using experiments with typical applications run-

ning in the CANS infrastructure, and extensive simulation of a large scale network

topology to compare with other alternatives. Experimental results validate the ef-

fectiveness of our approach, verifying that (1) the path-based approach provides the

best and the most robust performance under a wide range of network configurations

as compared to end-point or proxy-based alternatives; (2) automatic generation of

network-aware paths is feasible and provides considerable performance advantages,

requiring only minimal input from applications; (3) path reconfiguration strategies

ensure continuous adaptation and provide desirable adaptation behaviors by using au-

tomatically generated paths; (4) both run-time overhead and reconfiguration time of

CANS paths are negligible for most applications; (5) the resource management and

allocation strategies allow effective setting up shared resource pools in the network

and sharing resources among paths.
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Chapter 1

Introduction

1.1 Motivation

The role of the Internet has undergone a transition from simply being a data repository

to one providing access to a large set of sophisticated network-accessible services such

as e-mail, banking, on-line shopping, and entertainments.

However, accessing network services across a wide area network still remains a

challenging task. This is especially the case as an increasing number of users use

portable devices such as PDAs, Pocket/Handheld PCs, cellular phones and two-way

pagers with a variety of networking options ranging from Bluetooth [28] to Wireless

3G [54]. Examining a typical communication path between a client application and

the visited server (as shown in Figure 1.1), one can observe that the path usually in-

volves multiple links. These links can have very different bandwidth, delay, and error

characteristics, ranging from serial links to wireless to broadband to fiber. In addition

to these differences in network links, the nodes along the path can also have very dif-

1



Figure 1.1: Communication paths between clients and Internet services.

ferent capabilities (most true for the end device). Tables 1.1 and 1.2 list the diverse

characteristics of some of the links and devices that are currently used in the Internet.

Further complicating service access is the fact that the load on the network resources

along a communication path may change continually. When running in such heteroge-

neous and constantly changing environments, applications require quality guarantees

in data communication for delivering satisfactory user experiences. For example, a

media player may require the communication path to sustain 30 frames per second in

order to produce an appropriate display at the end devices.

Nevertheless, the Internet still remains a best-effort platform for delivering data

packets. Even with many proposals for providing Quality of Service such as QoS-

IP [24], RSVP [26] MPLS-TE [25] etc., provisioning of communication paths with

guaranteed QoS is usually expensive and may not be available for many applications.

More importantly, the low level QoS parameters may not be able to be mapped di-

rectly to application performance requirements (e.g. translating bytes per second to

application-specific frames per second). Consequently, the current situation is that

2



quality of data communication of applications is directly affected by the underlying

network conditions, which can result in poor performance or undesirable behavior

perceived by the end user unless the application is written to explicitly handle the

changes in network conditions.

However, what complicates the construction of such applications is the fact that

the communication abstractions provided by traditional transport protocols, instead

of exposing network conditions to applications, tries to hide them. Moreover, these

abstractions are too high-level (i.e. for all types of applications) for applications to

specify their specific requirements, not to mention to allow applications to excise any

control over data communication in their preferred fashion. For example, TCP [34]

provides applications with the abstraction of an end-to-end reliable byte stream, and

it also contains mechanisms for handling flow control and a few exceptional network

conditions (e.g. congestion). However, TCP does not allow application to specify

how to cope with the condition when the bandwidth of an individual link drops to

some level, which causes a decreased throughput at the receiving end. Such changes

require very different handling between banking applications and media streaming

applications.

The combination of these factors: heterogeneous and dynamic changing network

environment and the lack of application specific control over data communication

across the network, can cause poor performance or unsatisfactory user experiences

for network-oblivious applications.

To improve user experiences while accessing Internet services, a widely adopted

solution today relies on differentiated service for different user groups. For exam-

ple, many popular news, stock trading services, or media streaming services provide

3



Link Bandwidth
56K Analog Modem 56 Kbps

Frame Relay 56 Kbps-1.544 Mbps
WiFi 11Mbps

Ethernet (0-1 hops) 100-1000 Mbps
ADSL 1.5 to 8.2 Mbps downstream, 64K–1 Mbps upstream
SDSL 1.544/2.048 Mbps
T-1 1.544 Mbps

E-1 (Europe) 2.048 Mbps
T-3 (or DS3) 44.736 Mbps
E-3 (Europe) 34.368 Mbps

OC-3 155.52 Mbps
OC-12 622.08 Mbps
OC-48 2.488 Gbps

Table 1.1: Bandwidth of Some Links in the Network

System CPU Memory

Sun Fire 15k Up to 106 UltraSPARC III
Cu 1.2-GHz Processors

More than 1/2 TB Mem-
ory in a single domain. Up
to 18 fifth-generation Dy-
namic System Domains

Dell Dimension 8300 Intel Pentium IV processor
3GHz

Up to 2 GB Dual Channel
DDR 400MHz SDRAM

Compaq Evo N410c Intel Pentium III Mobile
1.2GHz

256MB SDRAM-133 MHz

iPAQ h3955 pocket pc 400MHz Intel XScale pro-
cessor

64MB RAM, 32MB Flash
ROM

Palm m515 handheld Motorola Dragonball VZ 33
Processor

16MB RAM

Table 1.2: Properties of Some Computer Nodes in the Network

multiple “versions” of the service for different clients. The selection of a suitable

version is usually determined by the client connection option. Though this approach

can address the heterogeneity problem to some extent (at least for the last hop), it

4



cannot satisfactorily handle resources for which the availability changes continually,

e.g., when the available bandwidth of a network link along a communication path

decreases as a result of increased traffic in the network.

1.2 Network Awareness

The problems described above reveal the need fornetwork awarenessin data com-

munication. The meaning of network awareness here is twofold. First, it means that

data communication should be aware of underlying network conditions, which may

change dynamically. Second, it means that data communication should also have the

knowledge of application performance requirements, which are directly related to the

way in which data is interpreted and used by the application. Combining these two

together, a network-aware communication path should be able to match application

performance requirements with the underlying network resource availability, and fur-

ther continually adapt to dynamic changes in the network, using the requirements as

a guide.

To highlight the benefits of network awareness, let’s consider the following ex-

ample scenario: Alice starts her day by initiating a meeting with one of her clients

in another city using a net-meeting application, which runs on a laptop with an IEEE

802.11b wireless connection. During the meeting, some of her colleagues start to

download large files using the same office network. Just before Alice notices a long

response time in conversation as a result of these download activities, the communi-

cation path realizes this problem and automatically starts to drop some less important

video frames to maintain a desirable throughput (at the cost of a slightly blurred im-
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age). When some of these download tasks are completed, the image quality comes

back to normal because the path automatically stops dropping video frames after real-

izing that there is sufficient bandwidth available once again. As the meeting continues,

Alice decides to get her lunch from a public cafe. To continue with her meeting, she

hands over the meeting session to a Pocket PC, which she can conveniently carry to

that cafe. Realizing that the network in the public cafe is different from the office

network, the path automatically encrypts data in transmission and decrypts it upon

receipt at her Pocket PC.

This example scenario highlights the benefits from network awareness in data

communication. Unlike a traditional data communication path that provides high-

level abstractions such as reliable byte streams, a network-aware communication path

understands application specific performance requirements and can accordingly change

its behavior under different network conditions. Without the support for such net-

work awareness, either applications themselves have to cope with these problems

(e.g. changes in link bandwidth or security properties of the network environment in

the above example) or the user (Alice) will end up with an unsatisfactory experience

(e.g. long response time in conversation or leakage of sensitive data in the above

example).

From the perspective of applications, using performance requirements to guide

behavior of communication paths under different network conditions allows them to

control or customize data communication in the network.
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1.3 Possible Approaches

The network awareness described above can be realized in different ways. A widely

used approach is to encode all adaptation logic into the client and server applications.

An example of such an approach can be found in many commercial media players.

When such a media player running on the end device detects that a large number

of video frames arrive after their associated deadlines, it notifies the media server to

switch to another stream with different data fidelity. After that, the communication

path may be able to sustain the required throughput.

Using such an approach requires considerable programming effort. Developing a

workable solution requires a comprehensive knowledge of network communication

and a deep understanding of how underlying network state affects the performance

of the particular application. Besides, such a hard-coded approach is usually hard to

extend to new applications.

Compared with this hard-coded approach that targets at a particular application, a

more general solution is to provide an adaptation framework that can be used by dif-

ferent types of applications. These frameworks provide necessary support for various

applications to cope with different network conditions, thus reducing the direct ef-

fort required from applications themselves. Based on where adaptation occurs, these

adaptation frameworks can be divided into three groups: end-point approaches, proxy-

based approaches and path-based approaches.

In an end-point approach, the client and server cooperate to determine how they

should communicate with each other under different network conditions. Many strate-

gies used in the hard-coded server/client approach can also be applied here, with the
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underlying infrastructure providing common system support. However, the constraint

that adaptation can occur only at end points may limit the adaptation solutions that

can be used. For example, some end devices may have insufficient capability to do

required computation (e.g. decompression/decryption). In other cases, such a con-

straint may compromise agility of adaptation: it may take a long time for end points

to respond to changes in the network, especially for long communication paths in a

wide area network.

For a proxy-based approach, proxy sites along communication paths are exploited

to realize the network awareness. These proxies can be used to do transcoding and

content distillation for different client classes. This approach relieves servers from the

responsibility of having to cope with different network conditions, thus simplifying

the task of server construction. Besides, managing a large proxy site that is devoted

to handling adaptation may also offer some economic advantages as compared to

managing a large set of servers. But the limitation that adaptation occurs only at proxy

sites (in most cases just before the last hop), like the end-point approach, again results

in similar problems in adaptation agility and limited solution spaces. Moreover, this

approach may result in resource wastage along a communication path before the proxy

node. For example, if the bandwidth of the last link along the communication path of a

media streaming application drops, the proxy will have to drop some media frames to

deliver the required throughput. Though such an adaptation solves the low bandwidth

problem, considerable bandwidth has already been wasted on the links before the last

hop.

Compared with the end-point and the proxy-based approaches, a more general

approach is to use all (or as many as possible) network resources along a communi-
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cation path for network awareness. We refer to this as apath-basedapproach. While

several frameworks have been proposed to improve data communication performance

by introducing various components into communication paths, the network aware-

ness achieved using existing path-based infrastructures is rather limited. The reason

for this is because that several key questions in the path-based approach still remain

unanswered. In particular, for a path-based infrastructure to be really useful, it must

contain effective solutions to address the following concerns: how to separate logic

that controls data communication from other parts of an application? how toauto-

maticallyconstruct new paths and modify existing paths so that applications always

achieve the best performance for the underlying network conditions? how to manage

network resources in a large scale network for such path-based infrastructures? And

finally, what are the benefits of using the path-based approach as compared to other

alternatives?

1.4 Goals and Approach of This Dissertation

This dissertation present a path-based framework with a complete set of solutions

to all of these questions mentioned above. In our approach, a communication path

is augmented with application-specific components, which are deployed throughout

all (possible) network resources between the server and the client. These compo-

nents, which can transparently handle stream degradation, reconnection, and in gen-

eral support arbitrary transcoding, caching, and protocol conversion operations, serve

to “impedance match” the application performance requirements with the underlying

network conditions. The important thing is such an augmented path is aware of ap-
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plication performance requirements and can automatically and continually adapt to

changes in the network, thus providing exactly the network awareness we described

in Section 1.2.

Our approach has been realized in a general adaptive network infrastructure that

provides network-aware paths for applications whose performance is related to the

“quality” of underlying data communication. Network-aware paths are automatically

created by the underlying infrastructure, requiring only high-level input from applica-

tions. Automatically generated paths provide optimized performance to applications

by customizing their behaviors to the network conditions encountered at run time.

Furthermore, when underlying network conditions change, such paths, both glob-

ally and at the level of individual segments, cancontinually modify their behaviors

according to the performance requirements of the application. Both path creation

and reconfiguration are handled by the underlying infrastructure; therefore, regular

(network-oblivious) applications can easily be augmented with network awareness

without requiring onerous effort from application developers.

The infrastructure embodies our belief that an appropriate balance between the

need for custom data communication and system extensibility is needed. It is based on

the observation that on one hand, common high-level abstractions of communication

paths usually suffer from poor performance in a dynamic network environment be-

cause applications can not specify their requirements; on the other hand, approaches

that require the application to take care of every aspect in data communication are

usually not extensible. Our infrastructure achieves both of these goals.

• First, it allows custom control over communication paths using various applica-
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tion specific components. The selection of components requires only high-level

information from the application. Unlike conventional abstractions, these com-

ponents understand data in transmission, thus can process it in accordance with

application performance requirements. This part of our approach provides appli-

cations with custom control over data communication in an extensible fashion.

• Second, it separates application “business” logic from what is used for creating

and controlling such augmented paths so that application developers only need

to concentrate on the former. Once high-level objectives (application perfor-

mance requirements) are specified by the application, the logic for creating and

controlling paths is application-neutral and can be handled by the infrastructure.

This part of our approach relieves applications from having to undertake this

responsibility, and provides a general way to construct adaptation solutions.

1.5 Contributions

This dissertation explores how to provide network-oblivious applications with net-

work awareness in data communication using a path-based approach. The contribu-

tions of this dissertation include the following:

• A high-level integrated specificationof components and network resources to

model behaviors of both components and network resources. This specification

allows late binding of components to paths, which is essential for flexibility of

dynamic compositions.

• Automatic path creation strategiesfor constructing network-aware access paths

for applications. The generated network paths provide optimized performance
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in accordance with application performance requirements and underlying net-

work conditions.

– The path creation strategies can satisfy different performance requirements,

i.e. maximize (minimize) value of some performance metric, or guarantee

that some performance metric lies in a required range.

– In addition to constructing an end-to-end communication path, the strate-

gies can also work on disjoint portions of a path independently while main-

taining overall performance requirements.

– The strategies allow augmented paths to be incrementally built across dif-

ferent network domains in a distributed fashion.

• System support forlow-overhead dynamic path reconfiguration. Path reconfig-

uration in our infrastructure provides semantic continuity guarantees for data

transmission, and is carried out without requiring involvement from applica-

tions. Our reconfiguration strategies can be used to modify the entire commu-

nication path as well as disjoint portions of the path concurrently and indepen-

dently.

• Distributed resource management strategies, which can be used to manage re-

sources among multiple paths and different network regions so as to improve

performance of both individual paths and the whole network.

• An adaptive network architecture called Composable Adaptive Network Ser-

vices (CANS). CANS is built from the ground up to embody our approach. A

series of experiments have been conducted on CANS with different types of

applications, the results validate the effectiveness of our approach.
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• Extensive performance comparison among end-point, proxy-based, and path-

based approaches by simulating their behaviors in a large network topology.

Our simulation results show that the path-based approach provides the best and

the most stable performance under different network configurations.

1.6 Organization

The rest of this dissertation is organized as follows.

Chapter 2 reviews related work and open questions for path-based infrastructures.

Chapter 3 presents the overall architecture of our framework. Chapter 4 describes the

type model used for specifying component and network resource behaviors. Chapter 5

describes automatic path creation strategies. Chapter 6 discusses system support for

dynamic path reconfiguration. Chapter 7 explains resource management strategies.

Chapter 8 describes the implementation of CANS. Chapter 9 shows a comprehensive

evaluation of our framework. Chapter 10 concludes this dissertation.
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Chapter 2

Background

In this chapter, as high-level context for our framework, we first highlight existing

trends that show increased computation and control functionality being introduced

into the network. After that, we discuss three groups of related efforts: general mech-

anisms for introducing control functions into the network, component-based commu-

nication systems, and general adaptation frameworks.

2.1 Networking

2.1.1 Changes in the Internet

Despite their tremendous popularity and deep impact on the way people live, com-

puter networks have a relatively short history. It was in the late 1950s and the early

1960s when the first form of networking appeared, and the Internet is only about 34

years old. Nevertheless, several things have changed dramatically in such a short pe-

riod of time. The changes are mainly in three aspects. The first is the size of the
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network. When the ARPANET was first set up in 1969, there were only 4 hosts,

but now, there are more than 170 millions hosts connected to the Internet and this

number is still growing very fast. Advances in hardware technology are responsible

for the second big change: both available bandwidth and connection options have

increased dramatically. While it was not a long time ago that most people believed

that a 28.8Kbps modem connection would satisfy the data communication needs of

all types of applications, now a lot of people have broadband connectivity (with more

than 1.5Mbps bandwidth) at home, and continue to feel that the bandwidth is not

enough. Pervasively used portable devices and wireless connectivity (Cellular Phone,

Bluetooth [28], Wireless 3G [54]) are making the Internet an even more heteroge-

neous environment. The third change, which in the author’s opinion is the most im-

portant reason for the success of the Internet, is the growth of available applications.

In the early days of the Internet, available applications were limited to four types:

email, newsgroups, file transferring, and long distance computing. Now, innumerous

applications are running on the Internet: online gaming, shopping, banking, trading,

driving directions, real time news and multimedia streaming, to name a few. These ap-

plications have pervaded every aspect of people’s lives; meanwhile, new applications

continue to emerge in the Internet everyday.

2.1.2 Advances in Communication Platforms

On the other hand, the communication platform supported by the Internet has not

seen as much improvement. Since 1982, when the TCP/IP protocol (Transmission

Control Protocol [34] and Internet Protocol [33]) was established as the standard of

the ARPANET, it is still the only reliable delivery service available for all Internet
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applications. This naturally leads to the following question: despite the fact that the

Internet has changed so much (in network size, hardware technology, and application

diversity), is the TCP/IP protocol still sufficient for the data communication needs of

all applications?

Basically, IP provides a best effort platform for delivering network packets. The

function of a network node in an IP network is merely to forward incoming packets

(using a routing table and a fixed routing algorithm). Built on top of the IP layer,

TCP supplies applications with the abstraction of a reliable, in-order, unstructured

byte stream between two end points. Though such an abstraction was quite sufficient

for early Internet applications (email, ftp etc.), people are beginning to realize the

limitation of this view as network complexity and application diversity grow. While

this simple view has gained TCP/IP tremendous success in that it has been deployed

to hundreds of millions of hosts around the world, the same view will eventually bring

severe constraints as networks and applications become more complex.

2.1.3 What is Missing?

Several ongoing efforts are investigating extensions of existing protocols as well as

proposing new protocols to address these perceived shortcoming. For example, there

exist many proposals (QoS-IP [24], RSVP [26] etc.) for providing QoS guarantees

in data communication for applications. However, no wide deployment is currently

available. The difficulty in deploying such new protocols mainly comes from the size

of the Internet and more importantly the network view of the IP network: since the

function of a network node is merely to forward packets, deploying new protocols and

communication services that require significant changes in the whole infrastructure is
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almost impossible (or at least takes a very long time).

In 1994–1995, the concept of active networking emerged [51], which proposed a

general mechanisms for extending the functionality of network nodes to support exe-

cution of code embedded in network packets: in addition to passive data, a packet in

an active network could contain some executable code (or references to code). The

network nodes (routers) in an active network are required to execute the accompa-

nying code upon receiving an incoming packet. The code, not limited to just route

packets, could perform arbitrary computation on the packets, including modification

of the packet itself. An important anticipated use of active networking was for de-

ploying new network protocols over the network. Such an approach can certainly be

used to bring applications more control over the data communication in the network,

but it entails significant modification of the existing infrastructure.

Recent work on overlay networks ( [3] [49] [12] [9]) reflects the same idea that

more functionality should be introduced into the network in order for applications

to perform better. Realizing the difficulty in modifying the existing infrastructure,

overlay networks try to bring in additional functionality on top of the existing infras-

tructure. For example, a resilient overlay network (RON) [3]) is an application-layer

overlay on top of the existing Internet routing substrate where each overlay node mon-

itors the functioning and quality of the Internet paths between itself and other overlay

nodes. RON can be used by distributed applications to detect and recover from path

failure, often much faster than TCP/IP (within the range of several seconds instead of

several minutes when TCP/IP is used). Moreover, it can also improve performance of

data communication, i.e. loss rate, latency, or throughput perceived by applications.

In summary, as the Internet exhibits increasingly complex behaviors and the di-
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versity of applications increases, the need for custom functionality in the network

also grows. From the perspective of applications, this means more control over data

communication for applications to obtain better performance; in other words, data

communication should be aware of network conditions and application requirements.

2.2 Related Efforts

Realizing that the communication abstractions provided by the Internet, which treat

all applications uniformly, usually are inefficient, researchers have been studying en-

abling mechanisms for applications to customize or control their data communica-

tion.1 The large number of proposed approaches share a common theme: to provide

communication paths augmented with specific functionality required by end applica-

tions.

In this section, we review previous efforts that are most related to our framework.

General network-layer mechanisms for introducing more functionality into the net-

work are discussed first. Then, we briefly describe several communication systems

that are constructed from small components. These works show that the component

paradigm can be applied to build extensible communication systems, without com-

promising performance. Finally, we discuss general adaptation frameworks that can

improve application performance by providing support for applications to cope with

different network conditions. As part of this, we examine the current status of the

path-based approach and open problems that need to be addressed before the network

awareness described in Chapter 1 can be realized.
1A similar phenomenon can be found in works on extensible OS (ExoKernel [17], SPIN [5] etc.).
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2.2.1 Network Layer Approaches

Functionality for data communication can be introduced at the network layer.

Transformer tunnels [50] is an approach that allows users to specify functions to

transform packets (e.g. compression, encryption) on an individual link (especially for

a last-hop link) along a communication path based on its characteristics. For example,

if a portable device in a shared wireless network environment needs to preserve the

privacy of its data transmission, encryption/decryption functions can be inserted at the

both ends of the wireless link. Functions associated with a transformer tunnel need

to be configured by the users themselves, thus requiring a comprehensive knowledge

of the underlying network substrate. Moreover, since this mechanism works on the

network layer, the associated functions of a transformer tunnel will be applied to all

communication paths passing through the tunnel, independent of the applications they

belong to. This approach is most applicable for the last-hop link, especially for mobile

hosts.

With a similar goal but unlike this link-oriented approach, protocol boosters [38]

is an end-to-end mechanism that can provide similar functionality using an extensible

protocol stack. Using this approach, protocol elements (called protocol boosters) can

be transparently inserted into and deleted from the protocol graph on an as-needed

basis. For example, if both ends of a communication path have encryption/decryption

elements installed, then the application can send and receive data using this ”boosted”

secure protocol. Though special protocols like IPSEC [58] can also provide simi-

lar functionality, the difference is that those special protocols are hard coded while

the protocol booster provides a general framework to extend the functionality of an
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existing protocol stack.

More general active network infrastructures, such as ANTS [55], Switchware [1],

Netscript [60] NodeOS [23] etc., propose mechanisms on the network layer for pack-

ets to carry arbitrary functions in addition to passive data. The accompanying func-

tions are executed in the network nodes (routers) upon the associated data.

For example, in an ANTS [55]-based network, capsules carry references to func-

tions in some protocol. Upon receiving such a capsule, an ANTS node executes the

referred function to process the capsule. Moreover, a small amount of soft state can

be left behind at the processing node so that the execution of subsequent packets

can leverage the information. In ANTS, code is distributed dynamically on-demand,

therefore a capsule needs to carry only function references instead of the actual code.

Caching mechanisms are further exploited to reduce the overhead associated with

transferring code.

In summary, these approaches can be used to introduce additional functionality

into communication paths. However, solutions built on the network layer are limited

in the following two ways. First, deploying such approaches usually requires signif-

icant changes to the existing infrastructure, which is infeasible in most cases for a

wide area network. Second, computation conducted on packets usually lack the in-

formation of application-level information of the data in transmission and how the

application interprets or uses the data. This can considerably limit the performance

improvements that can be achieved using such approaches.
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2.2.2 Component-Based Communication Systems

The component paradigm (COM [52], Corba [29], JavaBeans [15], EJB [39] etc.)

has been successfully used in building large, complex, but extensible software sys-

tems. The central idea is to construct complex software systems by composing small

components together. These small components have relatively simple functions and

well-defined interfaces for interaction amongst them. This paradigm can also be ap-

plied to build extensible, component-based communication systems.

X-kernel [32] is such an architecture for constructing communication protocols.

In the X-kernel, a complex communication protocol is decomposed into a graph of

micro-protocols and virtual protocols. A multistage approach is proposed to decom-

pose complex protocols and construct new communication services. In a protocol

graph, each micro-protocol is basically a module with a simple function (e.g. padding

the message header out to a pre-determined length); virtual protocols are used to re-

place selection logic (IF statement) in a complex protocol for non-linear composition.

For these protocol modules to be composed in arbitrary ways, they have to conform

with a set of properties, which is called the meta-protocol.

Similar ideas can also be found in systems like Click [41], Cactus [30], Ensem-

ble [6], and Router Plugins [14] etc. For example, Click [41] is a configurable router,

for which the routing function is implemented as a graph of components with a com-

mon interface. A component in a Click router is called an element, which has input

and output ports that can support push or pull mode operations respectively and can be

connected together. Different routing functions can be realized by configuring differ-

ent element graphs. Ensemble [6] proposes a layer approach to stack micro-protocols
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together, each of which handles some small aspect of the required communication

guarantees. Cactus [30] further exploits the event paradigm, each micro-protocol is

implemented as a collection of event handlers. The primary benefit of using the event

paradigms is the indirection implicit in it, which makes micro-protocol binding/un-

binding very convenient.

The Scout operating system [42] extends this idea further from communication

subsystems to the data flows between operation systems and applications. It uses the

data flow as an explicit abstraction in OS design, calledpaths. A path in the Scout

operating system is a linear data flow from one device to another (e.g. from a SCSI

card to an ETH card). The OS kernel consists of a graph of components (called

routers). Paths are created, managed and deleted dynamically for applications. Path

creation in Scout involves two steps: first a feasible sequence in the route graph is

identified; then the chosen sequence is optimized according to a set of preexisting

rules. The path abstraction is very useful, especially for applications whose logic

can be embodied as a sequence of data flows across different modules in the local

operating system. An example can be an application that encodes MPEG and sends

it to the network. The primary benefit of using the path abstraction over traditional

process/thread models is that the use of the path abstraction can make scheduling and

admission control of OS resources much easier and more stable.

These works demonstrate that the component paradigm can be used to build exten-

sible communication systems. Moreover, component-based communication systems

are also feasible from a performance perspective: as the various systems above have

demonstrated, components can be used in communication systems without incurring

a significant performance penalty as compared to monolithic implementations.
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2.2.3 Adaptation Frameworks

The general adaptation frameworks most related to the work in this dissertation focus

on a very specific goal: improving application performance by enabling applications

to adapt to different network conditions.

Most of these frameworks are built on the application layer, so information about

applications and the data in transmission can be exploited to enhance the network

awareness achieved. Depending on where adaptation operations occur, these works

can be further categorized into three groups: end-point approaches, proxy-based ap-

proaches and path-based approaches.

End-Point Approaches

An adaptation framework is called anend-point approach(Rover [35], InfoPyra-

mid [40], Odyssey [45] etc.) if it uses only client and server nodes in adaptation.

Odyssey [45] is such a general framework that allows client applications to register

their expectations of resource availability. The framework is responsible for monitor-

ing resource availability and producing notifications whenever the registered resource

expectations can no longer be met. Responding to such notifications, client applica-

tions may change data fidelity accordingly. The cooperation protocol for changing

data fidelity level is handled by the server and a component on the client side called

a Warden. Though such a general framework simplifies construction of adaptation

solutions by providing common system support such as resource monitoring and noti-

fication, application developers still have to make decisions on when and how to adapt

to different network conditions.
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Although sufficient for some scenarios, end-point approaches are rather limited in

three ways. First using only server and client nodes in adaptation may not be flexible

enough to cope with changes in intermediate links. For example, if the bandwidth of

a communication path drops as a result of an increased error rate at an intermediate

link (consider a wireless link getting affected by bad weather conditions), a typical

end-point solution for this might introduce compression/decompression operations at

server and client nodes respectively, which may end up not increasing the achieved

bandwidth by much. A better solution would be to deploy error detection and recov-

ery functions at both ends of that link to quickly respond to packet transmission errors,

which can further take advantage oflocal knowledgeof the link characteristics. Sec-

ond, tight coupling between client and server nodes may considerably complicate the

logic of both servers and client applications. And lastly, end-point approaches usu-

ally need to make some assumptions about capacity of servers or client nodes, which

may not hold on resource-constrained sites/devices. We will revisit this point later in

Chapter 9.

Proxy-Based Approaches

In a proxy-based approach, shared proxy nodes, instead of server nodes, are used to

handle different network conditions.

The cluster-based proxies in BARWAN/Daedalus [18], TACC [19], and Multi-

Space [22] are examples of systems where application-transparent adaptation happens

in intermediate proxy nodes in the network. Active Services [2] permits a client ap-

plication to explicitly start computation agents on its behalf on a gateway node for

transforming the data it receives from an end service.
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Similarly, Ninja [21] proposes the use of cluster based proxies, which are usually

placed before the last hop, to do aggressive computation such as content distilling

and transcoding on the fly to cope with variations on the client side (i.e. network,

hardware and software used by clients).

A more interesting aspect of Ninja is the Ninja Automatic Path Creation (APC)

service, which is also used in the Universal Inbox infrastructure [47]. APC is used

to create paths between various end devices and services. A Ninja path, which runs

on a proxy site and provides applications with data of a required format, consists of

a sequence of components. Although Ninja APC can automatically create communi-

cation paths to handle (static) variations on the client sites, the paths created in Ninja

are somewhat limited. At a high level, APC is a function-oriented method, which

ignores network link properties, network resource constraints, and dynamic resource

availability, therefore the application performance improvements achieved using such

paths are also very limited. No dynamic reconfiguration of paths is supported in Ninja.

Compared with end-point approaches, the proxy-based approaches offer their own

advantages and disadvantages. First, limiting adaptation to occur only at proxy sites

relieves servers from this task, thus simplifying logic on the server side. Second,

as mentioned in [18], managing a large proxy site to do adaptation, which can be

shared by a large number of servers, is more economically efficient than managing

each of these servers individually. Last, because of the resource sharing at the proxy

sites, such approaches can work with server site or end devices that have insufficient

capacity because they can take advantage of shared resources at the proxy sites. On

the other side, disadvantages of the proxy-based approaches are also obvious. First,

similar to the end-point approaches, the proxy-based approaches cannot handle local
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changes very well. Second, the limitation that adaptation only occurs at proxy sites

may result in considerable network resource waste before the last hop, especially for

long communication paths (recall the example discussed in Section 1.3).

Path-based Approaches

Differing from end-point and proxy-based approaches, recently several frameworks

have proposed the injecting of functionality along the whole communication path to

address the problems caused by different network conditions. In this more general

view, any node along a communication path can participate in adaptation.

Active Names [53] is such a framework for deploying a sequence of programs

along a communication path by intercepting the name resolving procedure. The ac-

tive name framework has a hierarchically organized name space; as a name request

from a client is being resolved, the name services construct a chain of programs for

transporting data back to the client application. Though listed here as a path-based

adaptation framework, the focus of Active Names is mostly on general mechanisms

for injecting general functionality into communication paths, it does not provide much

support for enabling applications to adapt to different network conditions.

In the Conductor project [59], multiple application-transparent components (called

adaptors) can be automatically deployed along the communication path between a ap-

plication and a service. The transparency (without application input) implies that such

systems need to rely upon self-describing properties of data streams and the data for-

mat required by the client needs to be exactly the same as what is provided at the

server side. The first assumption may or may not hold given increasingly proprietary

content. The second assumption, though it considerably simplifies functions required
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in the communication path, severely limits the applicability of such systems (consider

a mobile device that requests WML pages from a web site that provides only HTML

data). Conductor contains a planning scheme for placing adaptors to augment an ap-

plication’s data stream to address unfavorable network conditions. While two schemes

are discussed in [48], one based upon selection from a reusable plan set and the other

based on exhaustive constraint space-based search, to the best of our knowledge these

schemes have not yet been implemented or evaluated with real applications.

Recent work in the Scout project [43] has extended the path notion from a data

flow within a single node system to one that traverses across networks. The approach

it uses for building such paths is still a template-based algorithm, which takes into con-

sideration the resource requirements (for delivering media objects), user preferences,

node capabilities, and programmer-provided path rules. Though such an approach

can be used to improve performance of applications, it requires a priori construction

of path templates and storing them into a central database, simply choosing an ap-

propriate template and instantiating it based on other programmer-provided rules that

decide whether or not a component can be created on a resource.

Kiciman and Fox [36] have proposed a general path infrastructure framework for

composing mediators distributed across a network of machines. This infrastructure is

built upon Ninja’s APC service and suffers from the same limitations. Furthermore,

this approach separates out logical path creation (choice of components) from the

mapping of components to physical resources. Although this separation considerably

simplifies the problem of creating paths across multiple network resources, it can re-

sult in poor performance for generated paths since these two stages are usually tightly

interrelated.
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Compared with end-point and proxy-based approaches, the primary benefit of us-

ing path-based approaches stems from the flexibility that all segments along a com-

munication path can respond to dynamic changes in the network. Consequently, such

local adaptation can result in better agility. Besides, similar to the proxy-based ap-

proach, path-based approaches benefit from resource sharing, which is much more

flexible because shared resource pools are set up across the whole network instead of

being limited to proxy sites only. On the other hand, building a path-based solution is

much more challenging because a long communication path may involve multiple dif-

ferent network domains. Consequently, centralized schemes usually do not perform

well, thus support for distributed path construction and maintenance is required.

Despite the existence of these frameworks mentioned above, current work on path-

based approaches is very limited and many challenging problems still remain open.

In particular, the following questions need to be resolved before such an approach can

be used to realize our vision of network-aware data communication as described in

Chapter 1.

• How should one model the impact on data communication of components and

network resources along a communication path so that valid structures can be

identified mechanically?

• How does one constructoptimalcommunication paths according to application

performance requirements and underlying network conditions?

• How does one provide continual and efficient adaptation to dynamic changes in

the network by dynamically modifying communication paths?

• How does one enable each segment of a communication path to be indepen-
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dently and concurrently responsive?

• How does one efficiently manage network resources?

• What fundamental advantages does the path-based approach bring as compared

to other alternatives?

Building an infrastructure that provides network-aware communication paths us-

ing the path-based approach has to answer all these questions. This motivates the

work described in this dissertation.

2.2.4 Summary

As the Internet exhibits increasingly complicated behaviors and the diversity of In-

ternet applications grows, network awareness in data communication becomes indis-

pensable for delivering satisfactory performance.

Though general mechanisms that introduce more functionality into the network

layer can enhance performance of data communication to some extent, the lack of

information about applications and data in transmission severely limits the network

awareness achieved with such approaches. General adaptation frameworks built on

the application layer can provide better performance. While network awareness can be

realized in different ways, i.e. end-point, proxy-based, or path-based approaches, the

path-based approach is the most promising way for realizing our vision of network-

aware data communication. However, many challenging problems need to be ad-

dressed before this vision can become reality. This dissertation presents our solutions

to these problems.
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Chapter 3

Architecture

In this chapter, we present an overview of our path-based framework. We first intro-

duce our logical view of the network, then describe the concepts of components and

augmented communication paths. After that, we revisit the set of open problems that

have to be addressed before network-aware data communication can be realized using

a path-based infrastructure, and briefly discuss our solutions for these problems.

3.1 Logical View of the Network

Our framework takes a general view that the network consists ofapplications, ser-

vices, andcommunication pathsconnecting the two. The notion of the communica-

tion path is extended from one traditionally limited to data transmission between end

points to include application-specific functionality dynamically injected by end ser-

vices, applications, or the underlying infrastructure. Such functionality takes the form

of components, which are self-contained pieces of code that can perform a particu-
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Figure 3.1: Logical view of a network showing data paths constructed from components.

lar activity, e.g., protocol conversion or data transcoding. Components are connected

with each other at run time and operate on data streams to provide network awareness

in data communication by matching application requirements with physical charac-

teristics of the underlying network and properties of end devices (see Figure 3.1).

Our framework is realized in Execution Environments (EE), an instance of which

runs on all infrastructure-enabled nodes. Augmented paths are deployed to these

nodes. The execution environment provides interfaces for applications to create and

manage paths, and an environment for component execution, basically serving as the

underlying “operating system” of our infrastructure.

3.2 Components

Components serve as the basic building block for constructing adaptation-capable,

augmented communication paths. A component is a standalone mobile code module

that performs a single operation on the data stream. We sometimes refer to compo-
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nents asdrivers, using the terms interchangeably. Augmented paths are constructed

by dynamically composing components. To enable efficient composition and dynamic

low-overhead reconfiguration of augmented paths, drivers are required to adhere to a

common interface as shown in Figure 3.2 and provide the following properties:

Driver

Input 1

Input 2

Output

DPort

(a) (b)

class Driver {
  String driverID;

  TList outTypes(TList inTypes);
  DPortList getPorts();
  DPort getPort(String PortId);
  void push(DInPort input);
  void pull(DOutPort out);
  void raiseEvent(CANSEvent e);
  void registerListener();

}

Figure 3.2: Driver functionality (a) and interface (b).

1. Drivers consume and produce data using a standarddata port interface, called

a DPort . DPort s are associated with type information (details deferred to

Chapter 4) and distinguished based on whether they are being used for input or

output. Information about data ports and their types can be queried at run time.

2. Drivers arepassive, moving data from input ports to output ports in a purely

demand-driven fashion. Driver activity is triggered only when one of its output

ports is checked for data, or one of its input ports receives data.

3. Drivers consume and produce data at the granularity of an integral number of

application-specific units, calledsemantic segments. These segments are natu-

rally defined based on the application, e.g., an HTML page or an MPEG frame.

4. Drivers contain onlysoft state, which can be reconstructed simply by restart-

ing the driver. Stated differently, given a semantically equivalent sequence of
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input segments, a soft-state driver always produces a semantically equivalent

sequence of output segments, even after the internal state of the driver gets re-

set.

The first two properties enable dynamic composition and efficient transfer of data

segments between multiple drivers that are mapped to the same physical host (e.g.,

via shared memory). Moreover, they permit driver execution to be orchestrated for

optimal performance. For example, a single thread can be employed to execute, in

turn, multiple driver operations on a single data segment. The overhead of invocation

between different drivers is basically a few function calls, as if driver operations were

statically combined into a single procedure call. The only extra overhead compared to

using a statically linked module is the overhead of using virtual functions. Finally, this

choice greatly simplifies and enhances the efficiency of resource management among

multiple paths, enabling control over resource consumption of individual paths within

an execution environment.

The semantic segments and soft-state properties enable low-overhead dynamic

adaptation, either within a single driver or across communication path segments while

preserving application semantics, a topic discussed in more detail in Chapter 6. The

last thing deserving mention here about the driver interface (see Figure 3.2) is the

methods that permit a driver to raise and listen to events, facilitating its participation

in distributed adaptation activities.
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3.3 Augmented Communication Paths

Unlike conventional communication paths, an augmented path in our framework con-

tains functionality to process data in an application-specific fashion. Introducing

such functionality into communication paths can bring application two major ben-

efits. First, they can be used to match application requirements with the underlying

network conditions. For example, compression functionality can be used for address-

ing the problem of low bandwidth in a network link; encryption functionality can be

applied to address problems caused by network links that do not provide sufficient

guarantees on data privacy and integrity. Second, by allowing computation in com-

munication paths, functionality of an application can be extended with what exists

in the network. For example, for a small device that can only display WML pages

but needs to access an Internet service where only HTML format is supported, the

augmented communication path can handle the conversion from HTML to WML by

orchestrating functionality in the network, so that the browser running on the devices

can display the contents appropriately.

To construct network-aware communication paths, we need a way to orchestrate

various kinds of functionality together. Instead of using a monolithic implementa-

tion, our approach adopts a much more extensible approach where communication

paths are constructed by dynamically composing different components. This com-

position approach allows application development to be completely separated from

component authoring, which itself is decoupled from other components as well. More

importantly, it provides a foundation that allows the construction and dynamic recon-

figuration of such augmented paths to be managed by the underlying infrastructure
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without requiring involvements from applications.

Network awareness in data communication is realized by these augmented paths

and the underlying infrastructure: application specific functionality is included in the

augmented communication paths; the underlying infrastructure is responsible for cre-

ating and controlling them to continually adapt to changes in the network, in accor-

dance with application performance requirements.

To construct such augmented paths, only high level information is required, which

includes services properties, application requirements, and characteristics of the un-

derlying platform. The components that constitute a communication path, the in-

terconnections amongst them, and their internal configuration parameters can all be

modified by the infrastructure at run time to cope with different network conditions,

when application requirements can not be met by the current configuration given the

resources available.

3.4 Open Problems in Previous Path-Based Adaptation Infras-

tructures

As mentioned in Chapter 2, building a path-based infrastructure that provides network-

aware data communication needs to address the following problems: modeling of

application specific functionality and network resources, path creation and reconfig-

uration strategies, and network resource management. Furthermore, since the infras-

tructure is targeted at wide area networks, distributed solutions that do not require

global knowledge or centralized entities are required. Here we revisit the questions

identified in Section 2.2.3, briefly sketching our solutions for them.
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3.4.1 Type-based Modeling

Question 1: How should one model the impact on data communication of compo-

nents and network resources along a communication path so that valid structures can

be identified mechanically?

Carefully modeling component behaviors and the effects of different network re-

sources along a communication path is necessary for mechanically identifying valid

structures of augmented paths, which provides a foundation for automatic creation of

network-aware communication paths.

Our framework uses a high-level integratedtype-based specification of compo-

nents and network resources. Components are modeled as a mapping between differ-

ent set of types. Composibility between different components is determined by the

type compatibility of the components. The aggregate effect of component composi-

tion is depicted using a notion ofstream type, which eliminates the need for complete

knowledge of the entire communication path when only parts of the path need to be

modified. The effects or constraints introduced by network resource characteristics

are modeled using the notion ofaugmented type. Application specific composition

constraints are expressed using atype rankingscheme.

Differing from conventional static type models, values of type instances in our

framework are calculated at run time, i.e. a component defines its own function for

calculating the outgoing type values given incoming type instances. Type values au-

tomatically flow downstream when components are connected together. This feature

is important for enabling late binding of components to paths, essential for flexibility

of dynamic composition. Chapter 4 describes the type model in more detail.
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3.4.2 Automatic Path Creation Strategies

Question 2: How does one constructoptimalcommunication paths according to ap-

plication performance requirements and underlying network conditions?

To construct network-aware communication paths, the most important question is

that given the resource availability and application requirements (on data format and

performance), how does one select the path that can provide the best performance.

This dissertation describesautomatic path creation strategiessuitable for this pur-

pose. In addition to providing the required data format, generated paths also provide

applications with optimized performance for the underlying network conditions. Our

path creation strategies are very flexible: they can be used with applications that have

different type of performance requirements (i.e. a maximum/minimal value or an ac-

ceptable value range of a performance metric); they can be used for creating a whole

communication path or replacing a small portion of an existing path. Furthermore,

our strategies have distributed solutions for calculating communication paths across

different network domains, i.e. a path can be incrementally constructed from one

network domain to another without requiring a central entity or complete knowledge

of the whole network. The last two properties are very important for any path-based

infrastructure, especially for those that need to be deployed in a wide area network.

Chapter 5 describes our path creation strategies in detail.

3.4.3 Support for Path Reconfiguration

Question 3: How does one provide continual and efficient adaptation to dynamic

changes in the network by dynamically modifying communication paths?
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As underlying network conditions change dynamically, a network-aware commu-

nication path needs to adjust its configuration accordingly. We refer to the procedure

of adjusting the current path configuration aspath reconfiguration. An ideal solution

for reconfiguring a network-aware communication path should 1) avoid introducing

a long interruption period into the data transmission, 2) provide semantic continu-

ity guarantees. The problem of semantic continuity stems from the fact that at re-

configuration time there may exist data in the network or as internal state inside the

components along the path being reconfigured.

Our framework contains system support forlow-overhead dynamic path recon-

figuration, which has two major parts. The first part is a set of simple rules that

components are required to conform to. The second part is a reconfiguration protocol

that is used to modify communication paths while maintaining semantic continuity of

data transmission by exploiting component properties derived from those rules.

Path reconfiguration in our framework is completely controlled by the infrastruc-

ture. Moreover, path reconfiguration can be conducted on an entire communication

path as well as on multiple disjointed segments independently and concurrently. The

latter is referred to aslocal reconfiguration. Using local reconfiguration can result

in better responsiveness to local changes in the network, besides it also greatly re-

duces the need for coordination across different network domains, which makes the

infrastructure suitable for highly decentralized environments.

Combining our path creation strategies and reconfiguration support, fine-tuned

and desirable adaptation behaviors can be provided to regular applications without

requiring onerous effort from application developers. Detailed description of path

reconfiguration appears in Chapter 6.
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3.4.4 Resource Management

Question 4: How does one efficiently manage network resources?

Resource management strategies for a path-based infrastructure have to provide

solutions for two questions. The first question is how to allocate resource capac-

ity among multiple active paths. Since an augmented communication path usually

involves multiple shared network resources, the goal is to support as many path as

possible and provide individual paths with the best possible performance. Since our

framework is targeted at a wide area network, we design a distributed scheme where

individual network resources can make their own decisions without requiring expen-

sive coordination among different network domains. The scheme can improve both

individual path performance and resource utilization of the whole network.

The second question is how to set up shared resource pools across the network

for a path-based infrastructure. The goal is that given a fixed amount of computa-

tion resource, we need to optimize the overall performance of the whole network.

The scheme used in our framework takes into account the existing organization of

Internet-like networks, and provides a model and algorithms for distributing compu-

tation resources hierarchically across the network (i.e. moving computation resources

from low-level network domains to high-level ones). By setting up shared resource

pools at high-level nodes in the network graph, the overall performance of the whole

network can be improved because overloaded portions can take advantage of spare

resources from others. Our scheme is able to set up a maximal resource pool at high-

level network domains without compromising the performance of low network do-

mains from which the computation resources are moved out. Detailed description of
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our resource management strategies appears in Chapter 7.

3.5 Assumptions in Our Framework

Two assumptions exist in our framework.

First, our framework does not address trust and security issues. Note that although

the distributed version of path creation and reconfiguration strategies in our frame-

work considerably reduces interdependency between different network domains, such

mechanisms are still needed for sharing information (types) and code among them.

Second, we assume resource monitoring functionality is provided by entities external

to our framework.

These assumptions are relatively independent from the network awareness focus

of this dissertation. Furthermore, for both of these issues, there is a considerably

large amount of literature available that points to how appropriate solutions can be

constructed. We defer a detailed discussion about these solution to Section 10.3.

3.6 Summary

In this chapter, we have presented the overall architecture and key concepts of our

framework, which provides applications with network-aware communication paths.

Network awareness is realized using communication paths that are augmented with

application specific functionality and an infrastructure to manage these augmented

paths. The functionality built into such augmented paths is used to match application

requirements to underlying network conditions. Moreover, such paths can dynami-
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cally adapt to dynamic changes in the network. Since path creation and adaptation

are completely handled by the underlying infrastructure, regular (legacy) applications

can easily be augmented with adaptation capability without onerous effort from ap-

plication developers.

To realize this vision, our framework relies on four key schemes: type-based mod-

eling of network resources and components, automatic path creation strategies, system

support for path reconfiguration, and distributed strategies for managing network re-

sources. Our schemes can be used in wide area networks because both distributed and

local operations are provided.
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Chapter 4

Type Model

In this chapter, we present the type model that serves as the foundation of our au-

tomatic path creation strategies. Since network-aware paths in our framework are

realized as compositions of different components, in order to identify valid compo-

sition patterns mechanically (enumeration is not feasible for most cases), we need a

model to describe the effects of functionality built into those components and network

resource characteristics along communication paths. Our approach for this is a high-

level type model that is used for abstracting component behaviors, network resource

characteristics, and expressing various composition constraints.

Generally speaking, a valid composition pattern may have to satisfy three prop-

erties. First, it should provide the exact data required by the application. The re-

quirements may include not only data format, but also other properties such as pri-

vacy guarantees etc. Second, all connections between adjacent components should

be valid, i.e. data produced by the upstream component can be processed by the

downstream one. Third, the composition order among these components should not
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violate any specified rules. For example, encryption operations are usually required

to appear after compression operations but not vice versa.1 Furthermore, since net-

work awareness in our framework is realized throughout the whole communication

path, of which each segment can adapt to changes independently and concurrently,

schemes that can work with path segments without requiring a complete knowledge

of the whole communication path are needed.

In our framework, all these requirements are expressed and enforced using a uni-

fied type model. The basic idea is the notion that all data flowing along a commu-

nication path istyped, and that values of type instances are affected by components

along the data path as well as network resources making up the route. We model the

functionality of a component as a mapping from input types to output types. Com-

posibility between different components is modeled as a type compatibility problem

between those components. The effect of network resources on the communication

path is captured with a notion ofaugmented types. The aggregate effect of compo-

nents on the path is captured using the notion ofstream types, therefore knowing the

incoming and outgoing stream type values is sufficient for understanding the func-

tionality within a path segment, eliminating the need for complete knowledge of the

whole path. Type ranks, which constrain possible structures of stream types, are used

to express specific constraints on composition orders among components.

4.1 Modeling Component Functionality

Types associated with components include two concepts:data typesandstream types.
1Encrypted data usually cannot be compressed effectively.
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Data type is the basic unit of type information, represented by an object that in

addition to a unique name can contain arbitrary attributes and a method for checking

type compatibility. Our framework assumes that, in most application domains, it is

possible to define aclosed, semantically unambiguous set of types, e.g., MIME types

to represent common media objects.

Traditional type hierarchies can still be used to organize data types. However,

realizing type instances as objects with the compatibility method give us the utmost

flexibility in defining type compatibility relationships that cannot easily be expressed

just by matching type names. For instance, it is possible to define a customizedMPEG

type, which contains a frame size attribute such that it is compatible with anyMPEG

types with smaller frame size (shown in Figure 4.1), naturally capturing the behavior

that a lower resolutionMPEGstream can be played on a platform capable of displaying

a higher resolution stream.

Stream types capture the aggregate effect of multiple drivers operating upon a data

stream. Stream types are constructed at run time, and represented as astackof data

types. For example, after anMPEGtype passes through an encryption driver (Fig-

ure 4.2), the stream type of its output port is a stack in which the typeEncryption

is placed on top of the typeMPEG.

The primary reason for using stream types is for eliminating the requirement for

complete knowledge of the whole path when small portions of the path need to be

adjusted independently. By using stream types, any segment of a path only needs to

consult its incoming and outgoing stream type instances.

This point is highlighted in Figure 4.2 in which anMPEGtype passes through an
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pub l i c c l a s s MPEGType {
pub l i c boolean i s C o m p a t i b l e ( DataType d t ){

. . .
}
. . .
i n t he igh t , w id th ;

}

pub l i c c l a s s MyMPEGType ex tends MPEGType {
pub l i c boolean i s C o m p a t i b l e ( DataType d t ){

i f ( ( d t i n s t a n c e o f MPEGType)
&&(((MPEGType) d t ) . width<=wid th )
&&(((MPEGType) d t ) . he i gh t<=h e i g h t ) )

re turn t rue ;
e l s e re turn f a l s e;

}
. . .

}

Figure 4.1: An Example of the Type Compatibility Method

EncryptedBaseStream

Encryption Decryption
MPEGMPEG

Encrypted

MPEG

Figure 4.2: An Example of Stream Types

Encryption driver and aDecryption driver. If components were just modeled

as consuming data of a particular type and producing data of another, it would be diffi-

cult to express the behavior of theEncryption andDecryption drivers in a way

that permits their use with generic typeswithoutlosing information about the original

type at the output of theDecryption driver. Specifically, without stream types, the

Encryptiondriver will set its output as being of theEncrypted type, and the output

of theDecryption driver ends up being of theBaseStream type (unless the en-
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tire communication path is examined). This will cause a type compatibility problem at

some downstream point because the client requires a more specific type (MPEG) than

the incoming type (BaseStream ). In contrast, the stream type representation per-

mits local decision making, which is important for run-time adaptation via dynamic

component composition, especially for the cases where long communication paths are

used.

Operations allowed on stream types includepush, pop, peek,andclone, which

have the standard meanings. From the type point of view, each CANS component with

m input ports andn output ports defines a function that maps its input stream types

into output stream types:f(DTin1 , DTin2 , ..., DTinm) → (STout1 , STout2 , ..., SToutn)

whereDTini
is the requireddata typeset for theith input port, andSToutj is the

resultingstream typeproduced on thejth output port. The type compatibility between

an input and an output port is determined by checking the top of the output port’s

stream type against the required data type of the input port. Stream type information

flows downstream automatically when two ports get connected at run time.

4.2 Modeling Network Resource Characteristics

In addition to the effect of components along a communication path, network re-

source characteristics can also have impacts on paths. This consequently introduces

additional constraints affecting both which components must be present along a com-

munication path and how these should be composed. For example, the risk of packet

interception on a shared wireless link necessitates the presence of a pair of encryp-

tion and decryption drivers for preserving privacy of data transmission. Since these
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drivers are not required if one just examines the type properties of the data source and

that required by the client application, it is clear that one needs to take into account

network resource characteristics into the component selection process.

In our approach, such constraints are also described by our type model as a type

compatibility problem. Modeling such constraints along with composability of com-

ponents in the same type model is very important for the automatic path creation

strategies described in the next chapter, which strive to find the optimal communica-

tion path for underlying network conditions. In the following discussion, we restrict

our attention to network links, but the same principle can be applied to other network

resources. The basic idea of our approach is to represent requirements for specific

components because of link characteristics implicitly by modeling how links affect

the types of data that go across them.

To capture the effect of link properties on data types, we introduce the notion of

an augmented type: each data type is extended with a set of link properties such as

security (used here to denote transmission privacy), reliability, and timeliness, etc.

These properties can take values from a fixed set (boolean values for most proper-

ties). Network links are modeled in terms of the same property set and have the

effect of modifying, in a type-specific fashion, values of the corresponding properties

associated with different data types. To give an example, consider transmission of

MPEGdata over an insecure link. Our type framework captures this as follows: the

data type produced at the source is represented byMPEG(secure =true ), the net-

work link is represented by the propertysecure =false , and the effect of the link

propertysecure on theMPEGdata type by the rule that the augmented typeMPEG

(secure =true ) is modified toMPEG(secure =false ) upon crossing a link with
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Typedef L i n k P r o p e r t i e s AugmentedPart ;

pub l i c c l a s s DataType {
p ro tec ted AugmentedPart ap ;
. . .
}

pub l i c c l a s s StreamType{
pub l i c vo id passL ink ( L i n k P r o p e r t i e s l i n k P r o p ){

f o r ( I t e r a t o r i = t y p e S t a c k . i t e r a t o r ( ) ; i . hasNext ( ) ; ){
DataType d t =( DataType ) i . nex t ( ) ;
d t . passL ink ( l p ) ;

}
} . . .
p r i v a t e Stack t y p e S t a c k ;

}

pub l i c c l a s s MPEGType ex tends DataType{
pub l i c AugmentedPart passL ink ( L i n k P r o p e r t i e s l i n k P r o p ){

ap . s e c u r i t y&=l i n k P r o p . s e c u r i t y ;
. . .

} . . .
}

pub l i c c l a s s EncryptedType ex tends DataType{
pub l i c AugmentedPart passL ink ( L i n k P r o p e r t i e s l i n k P r o p ){

/ / i s o l a t i o n o f the s e c u r i t y proper ty
l i n k P r o p . s e c u r i t y =t rue ;
ap . s e c u r i t y&=l i n k P r o p . s e c u r i t y ;
. . .

} . . .
}

Figure 4.3: Code fragments showing use of Augmented Types

the propertysecure =false (shown as theMPEGTypeclass in Figure 4.3).

This base scheme is extended to stream types by introducing the notion ofisola-

tion. Stated informally, specific data types have the capability to isolate others below

them in the stream’s type stack from having their properties being affected by a link.

For example, anEncrypted type can isolate thesecure property of types that it
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EncryptedBaseStream

Encryption Decryption
Link

sec=false

MPEG sec=true

Encrypted

MPEG sec=true MPEG sec=true

Figure 4.4: An Example of Augmented Types and the Isolation Effect

“wraps”, i.e., this type of encrypted data still remains secure after crossing insecure

links, irrespective of what specific type(s) the data corresponds to. The reason that

isolation only works for the types below the “wrapping” type in a type stack is be-

cause the effects caused by components afterwards can not be covered. For example,

an encryption driver cannot provide privacy guarantee for any data that is appended

after the encryption operation.

The EncryptedType class in Figure 4.3 shows an example of how the iso-

lation notion works. When a stream type passes through a network link, the method

StreamType.passLink will be invoked, which in turn calls thepassLink method

upon each type in the type stack (from the top to the bottom). The isolation effect oc-

curs when thepassLink method of theEncryptedType is invoked, forcing the

security property of the link to be set totrue . This means that for all type in-

stances below theEncryptedType , their security property will not be affected by

the link, i.e. will be the same value as at the source.2 Figure 4.4 shows how these

concepts work together by depicting the case in which anMPEGtype passes through

an unsecured link using anEncryption driver.

In addition to security properties, this scheme can also be applied to other network
2If the security property of the source is false, it will remain as false even with an encryption, which reflects

the fact that the privacy guarantee has already been compromised before that link.
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characteristics, such as reliability, timeliness etc. A case study described later in this

chapter provides more details about how to use this scheme.

4.2.1 Modeling Constraints on Composition Order

To express constraints on the order of composition, we use the notion oftype ranks: if

typet1 andt2 satisfyrank(t1) > rank(t2), thent1, t2 cannot appear on the same type

stack witht1 appearing belowt2. This simple scheme can be used to express various

constraints on how components can be composed together.

For instance, assigning the encryption type a higher rank ensures that for any com-

munication path requiring both encryption and compression, encryption will always

happen after compression. Similarly, the ranking scheme can be used to describe the

constraint that a relatively stronger compression can happen after a relatively weaker

one but not vice versa.

To simplify the use of types, our infrastructure predefines a set of commonly used

data types for operations such as encryption, compression, image transcoding etc.

These types are organized into a linear rank lattice. When a new type is added in the

lattice, its constraints on type ranks will also be automatically checked by the system.

Constraints on composition order, of course, can also be expressed using some rule-

based mechanisms; however our scheme is simple to use with our type model and

quite expressive in describing various composition constraints. By using the notion

of type ranks, valid composition patterns can be identified by only checking type

compatibility between adjacent components and the type stacks that appear along the

communication path.
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4.3 Case Study: A Streaming Media Application

To demonstrate how such type-based modeling can be used to identifyvalid aug-

mented communication paths, we describe the following scenario. Consider a mobile

user, using a laptop with both wired and wireless connections, who downloads a me-

dia stream from an Internet-based server. This user starts off at his office desk but

then has to leave in the middle to go elsewhere in the building. Let us assume that

the user wishes to continue viewing the stream using the laptop’s wireless connection,

while retaining the same privacy guarantees (freedom from eavesdroppers) he might

have had on a wired connection even if, as we assume here, the wireless link provides

inadequate security guarantees.

An ideal network-aware communication path would provide the user with a stream

of high quality when he is using a wired connection, and the quality gracefully de-

grades depending on his distance from the wireless access point. Additionally, the

path would isolate the user from the switch between wired and wireless connectivity,

transparently providing the required privacy guarantees.

The type-driven view in our framework can identify valid communication paths

that enable this scenario by augmenting the path between the user and media server

with the following six components:reconnector(src) , reconnector(dest) ,

padder , splitter , encryption , anddecryption . Thereconnector(src)

andreconnector(dest) components cooperate to buffer and retransmit frames

of the stream, ensuring that the client application always receives semantically valid

frames despite any connection disruptions. Thepadder component “fills in” legal

media frames whenever its input stream stops, and helps isolate the media player ap-
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P: padder
RD: reconnecter (dest)       RS: reconnecter (src)
E: encryption                    D: decryption
S: splitter

Wireless 
Network

Wireless 
Network

Media ServerMediaPlayer

Path with
wired link

Path  with
wireless link

P D SERSRD

P RSRD

Figure 4.5: Valid communication paths for a Mobile User to Access a Media Server

plication from any reconnection delays. Thesplitter component can split the

incoming media stream into its video and audio portions, enabling adaptation in low-

bandwidth situations. Finally, theencryption anddecryption components co-

operate to preserve privacy of stream data by encrypting it before the wireless link

and decrypting it before delivering to the application.

4.3.1 Type-based Modeling

To identify valid communication paths the example application described above, the

specification of components need to include the following four pieces of information:

data type definitions (including rules governing how data types are modified by links),

network links modeled in terms of a set of link properties, and component properties

described in terms of input and output types.

Figure 4.6(a) shows the data type definitions.BaseStream is the basic stream

type with three boolean link properties:reliable , secure , andrealtime . The

typesRStream , Media , andEncrypted extend theBaseStream type, repre-

senting reliable, media, and encrypted streams respectively.Video and Audio
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    BaseStrem {
         bool reliable;
         bool secure;
         bool realtime;
    }

   Media::BaseStream
(rank:1)

Video::Media Audio::Media

 RStream::BaseStream
(rank:0)

 Encrypted::BaseStream
(rank:2)

(a)
properties

secure reliable realtime
wired T F F
wireless F F F

(b)
secure reliable realtime
T F T F T F

Media — F — F — F
RStream — F T* T* — F
Encrypted T* T* — F — F

—: no change *: Isolation Effect
(c)

components Input & output type

Media
player
(sink)

media:{
    realtime = T;
    reliable = T;
    secure = T;
}

source
video:{
    realtime = T;
    reliable = T;
    secure = T;
}

splitter videoaudio

padder
media:{
    realtime = *;
    }

media:{
    realtime = T;
 }

components Input & output type

encryption

decryption

reconnecter
(src)

reconnecter
(dest)

*
Encrypted

*

Encrypted

**

*
RStream

*

RStream

**

(d)

Figure 4.6: Types in the streaming media example: (a) data type definitions; (b) link prop-
erties; (c) effect of link properties on augmented types; and (d) input and output
types of components.

are two subtypes of theMedia type. TheRStream type is given a lower rank

as compared to the other types to capture the composition constraint involving the

encryption /decryption andreconnecter drivers.
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Figure 4.6(b) shows properties of the wired and wireless links. The wired link

is modeled withreliable andrealtime properties set tofalse to capture the

fact that it can get disconnected during the access. Similarly, the wireless link has the

secure property set tofalse to denote its limited support for transmission privacy.

Figure 4.6(c) shows how these link properties affect different types. For example,

thesecurity property of the media type will be changed toFalse after it passes

through a link whosesecurity property value isFalse , but the value remains the

same if the security property value of the link isTrue . As discussed in Section 4.2,

some of the types have the effect of isolating certain link properties from those below

them in the type stack. In this example, theEncrypted type isolates the security

property, and theRStream type isolates the reliability property.

Figure 4.6(d) lists the input/output types of the six components, along with the

types produced by the source and that required by the sink. To consider some ex-

amples, the sink specification says that the client application requires a reliable, real

time, and securedMedia type. Thepadder , which fills in legal frames whenever it

does not receive input in a timely fashion, is represented as a component that trans-

forms the input typeMedia with an arbitrary value for therealtime property,

into the output typeMedia with realtime =true . Similarly, theencryption

component is modeled as an entity that converts an arbitrary stream type at its input

into a new stream type consisting of theEncrypted type wrapping whatever was

originally present. Thedecryption component performs the reverse operation,

stripping away theEncrypted type out of the stream type.
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4.3.2 Valid Paths

The primary advantage of modeling component properties, network resource charac-

teristics, and composition constraints in a unified type model is that all valid commu-

nication paths associated with a given set of network conditions correspond simply

to type-compatible component sequences that transform the source data type into that

required by the sink. The important point here is that these valid sequences can be

inferred fully automatically. In this example, the two network conditions of interest

are whether the user connects to the server using a wired link or a wireless link.

With the wired link, the above type specifications yield the following two valid

component sequences:reconnecter(src) —reconnecter(dest) —padder ,

andsplitter —reconnecter(src) —reconnecter(dest) —padder . In-

formally, the former might be used when link capacities are sufficient for transmission

of the original video+audio stream to the client, while the latter is required when this

is not the case.

With the wireless link, we also have two valid sequences:encryption —

reconnecter(src) —reconnecter(dest) —decryption —padder , and

splitter —encryption —reconnecter(src) —reconnecter(dest) —

decryption —padder . Notice that theencryption anddecryption com-

ponents are required to preserve the secure property of a stream transmitted across the

wireless link (see Figure 4.6(c)). Note also that an alternate type-compatible sequence

reconnecter(src) —encryption —decryption —reconnecter(dest)

—padder is disallowed because of the ranks associated with theRStream and

Encrypted types.
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4.4 Summary

In this chapter, we have presented our type-based model of component functionality,

network resource characteristics and composition constraints. Components are mod-

eled as entities that transform data from input types to output types. Aggregate effect

of component composition is represented using the notion of stream types, which

eliminates the need for complete knowledge of the whole communication path when

modifying only a subset of the path. When passing through a network resource, the

augmented part of data types may be changed depending on the characteristics of the

resource, consequently introducing additional constraints for meeting application re-

quirements. Constraints on composition order are expressed using type ranks. Our

type model and these concepts serve as the foundation of our path creation strategies,

described in the next chapter, which provides a mechanism for validating communi-

cation paths mechanically.
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Chapter 5

Automatic Path Creation Strategies

In this chapter, we present our path creation strategies for automatically generating

augmented paths to meet application requirements, while providing optimized perfor-

mance for the underlying network conditions.

In general, creation of an augmented communication path consists of two steps:

route selectionwhere a graph of nodes and links is selected for deploying the path,

and component selection and mappingwhere appropriate components are selected

and mapped to the chosen route. Route selection is typically driven by external factors

(such as connectivity considerations of wireless hops, ISP-level agreements, etc.) and

so we focus only on the component selection and mapping problem here.

The component selection and mapping process takes as input the application com-

munication requirements and a chosen route between client and server nodes, and

produces a sequence of drivers and their mapping to the route that can provide the

application with optimized performance. Given that our goal is to provide network

awareness to applications in awide area network, the strategies described in this chap-
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ter have the property that they can also work with small segments of a communication

path and can be employed incrementally across different network domains in a dis-

tributed fashion.

To optimize path performance, we first need ways of characterizing the impact

of a particular component on the resource utilization along a path, as well as for

associating a performance metric with the overall path.

5.1 Performance Characteristics of Network Resources and Com-

ponents

In this section, we describe how we model performance characteristics of network

resources and components along an augmented path.

5.1.1 Network Resources

Performance characteristics of a network resource are modeled in terms of its capac-

ity: computation capacity (i.e. how many operations per time unit) for a network

node, bandwidth and latency for a network link. An individual path is allocated a

certain share of the resource, in accordance with the resource management algorithms

described in Chapter 7.

5.1.2 Component resource utilization model

To characterize the resource utilization and performance of a path, we need to cap-

ture the behavior of each component without requiring an explicit enumeration of

all possible situations in which the component can be mapped. To facilitate this,
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each componentc is modeled in terms of itscomputation load factor(load(c)), the

average per-input byte cost of running the component, and itsbandwidth impact fac-

tor (bwf(c)), the average ratio between input and output data volume. For example,

a compression component that reduces stream bandwidth by a factor of two has a

bwf = 0.5. The value ofload andbwf can be obtained via profiling with typical data

input.

This component model assumes that the underlying behavior of the component,

with respect to computation time and output data size, varies linearly with input data

size. Knowing the rate at which input data packets arrive at the component permits

one to estimate the CPU requirements as well as network bandwidth requirements on

the downstream link.

We should note that our algorithms themselves do not rely on this specific linear

model ofload(c) andbwf(c): the computation load or compression ratio can be any

arbitrary function as long as this information can be provided to our planning algo-

rithms by components themselves or by detailed profiling. The primary reason that

we choose computation load to be a linear function of the input data size and compres-

sion ratio to be a constant value is because of profiling experiments we have conducted

with typical components. Appendix A lists the raw profiling data and shows that it is

represented well by this model .

This simple model can be extended to allow components to have multiple config-

urations. Further, for each configuration, the values of computation load and com-

pression ratio can be parameterized by the actual stream type of incoming data. For

example, when an image resizing component is placed after an image filter, itsload

andbwf factors are determined by the image quality attributes contained in the type
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object generated by the filter. Such values can be obtained by an approach we call

class profiling, which basically groups possible value of these data properties (for our

example applications, the image quality) into several classes, and profiles components

with representative data in each class. Values between different classes are estimated

using linear interpolation. Such class-based profiling provides a more accurate model

of component behavior.

5.2 Problem Definition

An augmented communication path, D = (c1, . . . , cn), is a sequence of type-

compatible components, in whichci’s output is sent to the input ofci+1.

A route, R = {N1, N2, . . . , Np}, is a sequence of nodes separated by links . Each

nodeNi is modeled in terms of itscomputation capacity, comp(Ni) (operations per

second), and a link between two nodes,Li = (Ni, Ni+1), is modeled in terms of its

bandwidth,bw(Li). Bothcomp(Ni) andbw(Li) are defined in terms of the shares of

resources along the route available for a particular path.

A mapping, M : D → R, associates components on augmented communication

pathD with nodes in routeR. We are only interested in mappings that satisfy the

following restriction:(M(ci) = Nu)
∧

(M(ci+1) = Nq) ⇒ u ≤ q, i.e., components

are mapped to nodes in path sequence order. The intuition behind this is that sending

data back and forth between nodes along a route usually results in poor performance

and wastes resources.

Our path creation strategies exploit the type compatibility described in the last

chapter to identify valid composition patterns. The relation between types and com-
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ponents is depicted using atype graph Gt: a vertex in the graph represents a type,

and an edge represents a component that can transform data from the source type to

the sink type.

The path creation problem can now be formally stated as the following: given a

routeR (with the resource shares allocated to the path), a type graphGt, a source data

type ts, a destination data typetd, select an augmented communication pathD that

transformsts to td and can be mapped toR so as to satisfy the following requirements:

• Type compatibility between adjacent components.

• Optimal performance. Performance can mean different things, for example,

maximum throughput, minimal latency etc.

5.3 Overview of Our Solutions

Our path creation strategies automatically select and map a type-compatible compo-

nent sequence to underlying network resources. In addition to satisfying type require-

ments, the strategies respect constraints imposed by node and link characteristics and

optimize some overall path metric such as response time, data quality, or throughput.

We first describe a base version of the algorithm, based on dynamic programming,

in which a single performance metric needs to be optimized (e.g. maximum through-

put or minimal latency).

We then present an extension for applications that require the value of some per-

formance metric to be in anacceptable range. For such applications, only after that

range has been met does the application worry about other preferences. For example,

most media streaming applications usually demand a suitable data transmission rate
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(in some range) so that received data can be rendered appropriately at display devices;

once the transmission rate is kept in that range, other factors such as data quality be-

come the concern. We use the termsrange metricsandperformance metricsto refer

to the two types of preferences.

Lastly, we describe a “local” scheme that can be used for a portion of the commu-

nication path. Using local planning, disjoint segments of a communication path can

adjust their behaviors independently and concurrently while maintaining some overall

performance guarantee. Such a local scheme can improve adaptation agility in that

any portion of a communication path can be modified to respond to local changes in

its network segment. More importantly, such schemes are indispensable for deploy-

ing path-based infrastructures in the situations where a communication path need to

span multiple network domains, for which fine-grained coordination across different

network domains is either prohibitively expensive or infeasible due to administration

policies.

5.4 Base Algorithm

Unfortunately, finding the optimal solution for the path creation problem defined in

Section 5.2 is an NP-hard problem.1 The complexity mainly comes from the large

number of possible composition among candidate components.

However, this problem can be made tractable with a reasonable simplification:

we partition the computation capacities of nodes into a fixed number ofdiscreteload

intervals, i.e., capacity is allocated to components only at interval granularity. This
1The multiple choice knapsack problem can be converted to a simplified version of this problem

62



practical assumption allows us to define, for a routeR, the notion of anavailable

computation resource vector, ~A = (r1, r2, . . . , rp), whereri reflects the available

capacity intervals on nodeni (normalized to the interval [0,1]).

In the description that follows, we use maximum throughput as the goal of perfor-

mance optimization. Note that the throughput is an application performance metric,

i.e. the number of semantic units that pass through the network in a time unit, for

example how many frames per second are delivered for a streaming application. We

usep as the number of hosts in routeR (i.e. p = |R|); m as the total number of types

(i.e. m = |V (Gt)|); andn as the total number of components.

Dynamic Programming Strategy

The intuition behind the algorithm is to incrementally construct, for different

amounts of route resources, optimal paths from the source data type to all types with

increasing numbers of components, sayi + 1, using as input optimal partial solutions

involving i or fewer components.

To construct a solution withi + 1 (or fewer components) for a given typet and re-

source vector~A, we consider all possible intermediate typest′ that can be transformed

to t, i.e. all those types for which an edge(t′, t) is present in the type graph. For each

sucht′, consider all possible mappings of the associated componentc on nodes along

the route that use no more than~A resources. Each mapping ofc transforms the avail-

able resource vector to~A′ (after accounting forload times the incoming data volume),

and provides a new mapping that combines this component with the previously cal-

culated solution fort′ with i (or fewer) components and resource vector~A′. The
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length<=(k0-1)
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load(c)=2/4
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Figure 5.1: Mapc to N3 and lookup solution with~A′

combined mapping that yields the maximum throughput is deemed the solution at the

(i + 1)th level.

Because this procedure runs backwards from the destination to the source (i.e.cj+1

is mapped beforecj), consequently, only resource vectors of the form(1, ..., 1, rj ∈

[0, 1], 0, ..., 0) are used in the calculation. These set of such resource vectors is desig-

nated asRA. It is obvious that the size ofRA is O(p), wherep is the number of nodes

along the route.

Formally, the algorithm fills up a table of partial optimal solutions (s[ts, t, ~A, i]) in

the orderi = 0, 1, 2, . . .. The solutions[ts, t, ~A, i] is the data path that yields maximum

throughput for transforming the source typets to typet, usingi or fewer components

and requiring no more resources than~A ( ~A ∈ RA). Figure 5.1 shows the moment

in the calculation ofs[ts, t0, (1, 1, 1, 3/4, 0), i + 1] when componentc is mapped to

noden3, and appended with partial solutions[ts, t′, (1, 1, 2/4, 0, 0), i]. Note that in

this example, computation capacity of nodes is partitioned into 4 intervals.

The algorithm is listed in Figure 5.2. Line 3 of the algorithm handles the base

case: only the case witht = ts achieves non-zero throughput. Lines 8–13 represent

the induction step, examining different drivers to extend the current partial solution

for each specific intermediate typet and resource vector~A. Lines 12 and 13 ensure
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Algorithm Plan
Input: ts,td, Gt, R
Output: The augmented path that yields maximal throughput from typets to td on route

R
1. (∗ Step 1: Initialization for partial plans with zero components∗)
2. for all t, and ~A ∈ RA
3. do calculates[ts, t, ~A, 0]
4. (∗ Step 2: Incrementally building partial solutions∗)
5. for i←1 to pn
6. do for all t ∈ V (Gt), ~A ∈ RA
7. do s[ts, t, ~A, i]←s[ts, t, ~A, i− 1]
8. for all c = (t′, t) ∈ E(Gt)
9. do for all Nj with ~A[Nj ] > load′(c)
10. do M(c)←Nj

11. ~A′←( ~A[0], . . . , ~A[Nj − 1], ~A[Nj ]− load′(c), 0, . . .)
12. TH←throughput(append(s[ts, t′, ~A′, i− 1], c, ~A))
13. if TH > s[ts, t, ~A, i]
14. then s[ts, t, ~A, i]←TH
15. return s[ts, td, ~A = [1, 1, ..., 1], pn]

Figure 5.2: Base Path Creation Algorithm

that the component achieving the maximum throughput defines the next-level partial

solution. To optimize other performance metrics (e.g. shortest latency), only lines

12–14 of the algorithm need to be changed accordingly.

Table 5.1 shows how to calculate throughput of a communication path, i.e. the

minimal value among the throughput of the nodes and links along the path. To calcu-

late throughput values of individual links and nodes, compression ratios before links

(C(Li)) and components (C(ci)) need to be calculated. These compression ratios rep-

resent the number of bytes, at those points (beforeLi or ci), generated by one byte

of data at the source. So the throughput of a link is its bandwidth “decompressed”

by the compression ratio. The division by the data unit size at source converts the
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Path D = {c1, ..., cn}
Route R = {N1, N2, ...., Np}, Li = (Ni, Ni+1)
Data unit size at source S

Node Component Set M−1(Ni) = {ci1 , ..., cim |M(cik) = Ni, 1 ≤ i ≤ k}
Accumulated Compression

(link)
C(Li) = Πjbwf(cj), for M(cj) = Nk with k ≤ i

Accumulated Compression
(driver)

C(ci) = Πi−1
j=1bwf(cj)

Throughput (link) TH(Li) = bw(Li)/(S · C(Li))

Throughput (node) TH(Ni) =

{
TH(Li−1) ifM−1(Ni) = ∅

comp(Ni)
S·Σm

k=1(load(cik
)·C(cik

)) ifM−1(Ni) 6= ∅
Path Throughput TH = mini(TH(Li),TH(Ni))

Table 5.1: Calculation of throughput of a communication path

granularity from bytes to data units. Similarly, the throughput of a node, if there are

any components residing on that node, is its computation capacity divided by the load

for processing a data volume that corresponds to one data unit at the source. The ex-

pressionΣm
k=1(load(cik) ·C(cik)) represents the load at nodeni caused by one byte of

data at the source.
One additional point about our algorithm needs some clarification: We need to

know how much resources (load′(c) in line 9) to set aside for componentc before

we can combinec with an optimal Stepi − 1 solution. The problem here is that

c’s resource requirementsload(c) are expressed in terms of per-input byte costs, and

are difficult to evaluate without knowing what the input data volume is, which itself

is only known once the Stepi − 1 solution is selected. Our solution to break this

cyclic dependency is to firstguessthe resource requirements ofc and then evaluate

the throughput for this guess. Note that because of discretized load levels, we only

need to make a constant number of guesses at each step, thus this does not change the
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complexity of the whole algorithm.

The algorithm terminates at Steppn, with the solution ins[ts, td, (1, ..., 1), pn].

This follows from the observation that there is no performance benefit from mapping

multiple copies of the same component to a node. The complexity of this algorithm

is O(n2mp3) = O(n3p3)2 as opposed toO(pn) for an exhaustive enumeration strat-

egy. n, the total number of components, usually is a big number. Even for a simple

operation, such as compression, there may exist many different candidates, not to

mention that each component may have multiple configurations. Therefore,O(pn) is

infeasible in practice. In most scenarios,p is expected to be a small constant, there-

fore overall complexity of our path creation algorithm is determined by the number

of components.

Two implementation issues need additional attention here. First, reducing the size

of the type graph is important. When calculating paths, only types that can be reached

from both source and destination types are considered. In addition, type ranks (de-

scribed in Section 4.2.1) can be used to further reduce the size of type graph. These

mechanisms help because of the observation that the total number of possible com-

posable operations involving a specific type is limited. Second, when a type object

needs to be made available across a network link, the augmented part of the type

object needs to be calculated on the other side of the link using the link property

transformation rules described in Section 4.2.
2It is safe to assume thatm < n, i.e. the total number of types is less than the total number of components.

This is because a type exists only if some components can produce and consume data of that type.
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5.5 Extension 1: Planning for Value Ranges

As mentioned before, some applications require some performance metrics to be in an

acceptable range, and only after the requirement of these range performance metrics

is met, other performance metrics become interesting. To support such applications,

given that our planning algorithm constructs data paths by incrementally filling in a

solution table ofs[ts, t, ~A, i], it is natural to extend this to check that retained solutions

satisfy two conditions: (1) values of range metrics achieved by the current solution

lie within the desired range, and (2) the value of any performance metrics is in fact

optimized.

Although this is the basic idea of the extension, for some range metrics, such as

path latency, additional work is needed. For such range metrics, even if the current

value of the range metrics is not in the range for a partial solution, this does not

exclude the possibility that this partial path may actually become a part of the final

solution. For example, appending compression components to a partial path can bring

down overall path latency by reducing packet size. So such candidates cannot be

pruned.

To estimatewhether the desired range can in fact be achieved by appending ad-

ditional components, we employ a procedure calledcomplementary planning, which

just runs the planning algorithm in reverse, providing information about whether or

not the range metrics can meet the requirement using residual resources from type

t to td. In the process ofcomplementary planning, component parameters are also

reversed, modeling the situation where data flows from output ports to input ports.

A reversed solutions′[td, t, ~A′ = (0, .., 0, r, 1, ..., 1), i] represents the communication
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path with the best performance fromt to td using resources less than~A′. When calcu-

latings[ts, t, ~A, i], those partial solutions that can not meet the range requirement will

be discarded by looking ups′[td, t, (1, ..., 1)− ~A, pn− i]. Heuristic functions are used

for choosing among candidate paths that can all meet the required range. For exam-

ple, data quality can be used to choose between two solutions that both can provide

required throughput. Note that complementary planning needs to be run just once for

the whole calculation.

5.6 Extension 2: Local Planning for Segments of the Network

Route

The challenge in replanning for portions of an existing communication path is how

to modify these portions independently while still maintaining some overall perfor-

mance guarantee. For example, we would like to ensure that the range metrics for the

entire path still fall within their desired range. Note that local mechanisms may com-

promise optimality of performance metrics, but we look at this as a reasonable tradeoff

between global optimality and the benefits of local mechanisms as mentioned before,

i.e., increased responsiveness to changes and eliminating the need for coordination

across different network domains.

Our local planning strategy is a straightforward extension of the range planning

mechanism described above. To create a partial path forR′, which is a segment of

the original routeR, all we need to do is to run the range planning algorithm onR′

with localized parameters. Since the types entering and leavingR′ and the size of the

incoming data units are known, the only thing left is to adjust the range metrics for
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R′. Adjustment for throughput and latency is shown below:

• For applications that require an overall throughput range[thlow, thhigh], this can

be done by assuring that each disjoint region in the path plans with the same

range, which also gives them the most flexibility for building paths.

• For applications that require a latency range[llow, lhigh], the localized latency

range will be[llow,R′ , lhigh,R′ ], wherelV,R′ is the divided portion of latencylV

over segmentR′. One way of doing this division is to consider the contribution

of links in R′ to the overall latency ofR.

5.7 Distributed (Incremental) Planning

Though our path creation strategies have so far been described in a centralized way,

they can easily be extended to run in a distributed fashion. To do that, each node

(ni) on the route calculatess[ts, t, ~A = (1, ..., 1︸ ︷︷ ︸
i

, 0, ..., 0),
∑i

j=0(CNj)] whereCNj is

the total number of components on nodenj.3 In particular, the first node just needs

to calculate its part of the solutions (for all possible typest) and send these partial

solutions to the next node; upon receiving partial solutions from an upstream node, a

node calculates its own solutions using the partial solutions from the upstream node.

This procedure continues until it reaches the client node.

The primary benefit of this distributed version is that there is no need for a central-

ized planner, which requires a complete knowledge of components and types for all

nodes in the route. By incrementally calculating a path in such a distributed fashion,
3The value ofCNj is not important for nodes other thannj . Every node just tries to append partial solutions

from the direct upstream node with as many of its own components as possible,CNj is the maximal number of

components that can be appended. Recall thats[ts, t, ~A, i] is the best solution usingno more thani components.
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only knowledge for common types that are used across different network domains is

needed. A network node does not need to know which components exist on other

nodes. This distributed version, combined with the local mechanisms described ear-

lier make it much more practical for a path-based infrastructure to be deployed in the

Internet, where a path usually spans multiple administration domains.

The extra traffic incurred for this distributed version is only messages of partial

solutions (with~A = (1, ..., 1, 0, ...)) between adjacent nodes. It should be noted here

that only values of the performance metric are needed, transmission of components

and connectivity information is unnecessary. The size of such messages should be

small since the number of possible common types is expected to be small along a

communication path with fixed source and destination types. Heuristic strategies can

be exploited to further reduce the number of partial solutions that need to be transmit-

ted.

5.8 Summary

In this chapter, we have presented a model and algorithms for automatically con-

structing network-aware paths. Such paths can provide applications with required

data and optimized performance for the underlying network conditions. Our strategies

are very flexible in that they can work with applications with different performance

requirements (maximum/minimum values or value ranges), and they can be used to

construct an entire new path as well as modify portions of an existing path. The path

calculation can be carried out by a centralized entity or incrementally from one net-

work domain to another in a distributed fashion. The local planning and distributed
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implementation are important for such path-based infrastructures to be used in a wide

area network, where information exchange (about components etc.) between different

network domains is either expensive or impossible due to administration constraints.

The evaluation of our path creation strategies is described in Chapter 9.
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Chapter 6

System Support for Efficient Path

Reconfiguration

To cope with dynamic changes in the network, a network-aware communication path

needs to reconfigure itself when the current configuration can no longer meet its per-

formance requirements.1 Our solution of low-overhead reconfiguration has two parts:

(1) a set of simple rules placing slight restrictions on component behavior, and (2) a

reconfiguration protocol that leverages these restrictions. Before we describe these

two parts, we observe that there are two major challenges in dynamically modifying

a communication path.

First, path reconfiguration should provide semantic continuity guarantee. Since

components within an augmented communication path can transform data from one

type to another, the conventional notion of continuity, i.e. in-order byte level delivery,
1This can be detected by either monitoring changes in resource availability of the path or by comparing the

expected performance of the path with the value actually measured at run time.
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can not be applied directly to this scenario. Instead, the continuity required by ap-

plications is at the granularity of semantic segments. A semantic segment here refers

to a demarcatable application-specific unit of data in transmission, e.g., an HTML

page or an MPEG frame. Conventional properties such as in-order transmission and

exactly-once delivery can now be defined at the granularity of semantic segments.

Second, a path reconfiguration should avoid introducing a long interruption period

in data transmission. To reduce reconfiguration overhead, mechanisms that can adapt

to “local” changes in the network by modifying small portions of a whole communi-

cation path are important.

6.1 Reconfiguration Semantics

With the notion of semantic segment in hand, it is now possible to define what the

application can assume about the received data after a portion of the communication

path is modified. Our reconfiguration protocols can be customized to provide three

different levels of semantics:

• Level 1 semantics provides no guarantees, leaving it up to the application to

reconstruct any lost data. This can be used for applications that involve non-

critical data (e.g., news feeds), or applications that themselves can exploit in-

order delivery guarantees to perform efficient recovery.

• Level 2 semantics provides the guarantee of delivering completesemantic seg-

ments, essentially simplifying the task of the application recovery code. For ex-

ample, in a streaming media application, a semantic segment might correspond

to one video frame. Level 2 semantics ensure that a frame is either completely
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delivered or not delivered at all.

• Level 3 semantics provide full continuity guarantees with exactly-once seman-

tics, completely isolating the application from the fact that the path has been

reconfigured. Note that real-time applications can still detect a break in data

availability; we take the view that such applications are best handled by insert-

ing additional application-specific components that provide necessary timeli-

ness guarantees. For an example of such components, see section 4.3.

6.2 Rules Restricting Driver Behaviors

To guarantee the above semantics, our framework relies upon thesemantic segment

and soft stateproperties of components in an augmented path, introduced in Sec-

tion 3.2.

First, drivers are required to consume and produce data at the granularity of an

integral number of semantic segments. Informally, this requirement ensures there

must exist some points where data transmission can be safely suspended and path

reconfiguration can be carried out with the semantic continuity guarantee. We will

revisit this point later in the description of our reconfiguration protocols. Note that this

property only refers to the logical view of the driver, and admits physical realizations

that transmit data at any convenient granularity as long as segment boundaries are

somehow demarcated (e.g., with marker messages).

Second, drivers are required to contain only soft state, which can be reconstructed

simply by restarting the driver. Stated differently, given a semantically equivalent

sequence of input segments, a soft-state driver always produces a semantically equiv-
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alent sequence of output segments. For example, aZip driver that produces com-

pressed data will produce semantically equivalent output (i.e., uncompressed to the

same string) if presented with the same input strings. This property ensures that

drivers can be dynamically removed from or inserted into an existing path, and data

retransmission can be used to reproduce the same output sequences.

Together, these two properties enable low-overhead path reconfiguration as de-

scribed below.

6.3 Reconfiguration Protocol

The reconfiguration process is triggered by dynamic changes in the network, and is

carried out by path control entities along the communication path. Path reconfigura-

tion consists of three major steps: (1) generating a new plan, (2) ensuring required

semantics prior to suspending data transmission, and (3) deploying the new plan and

resuming data transmission.

Step 1 uses the planning algorithm described in Chapter 5, optionally reusing some

of the solutions of previous calculations (e.g. by caching previously calculated paths),

and can be overlapped with ongoing transmission. Steps 2 and 3 are controlled using

our reconfiguration protocol.

Reconfiguration requires slightly different support for the three levels of reconfig-

uration semantics described earlier. Since required activities for Levels 1 and 2 are

a subset of that for Level 3, our description focuses on the latter. The underlying

problem is that in order to provide in-order and exactly-once semantics, any path re-

configuration scheme must take into account the fact that the portion of the path being
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Figure 6.1: An example of data path reconfiguration using semantics segments.

reconfigured can have partially processed data either in the internal state of drivers

or in transit across the network, or data that has been lost due to failures. Note that

the soft-state requirement on its own does not provide any guarantees on semantic

information loss or in-order reception.

Figure 6.1 shows an example highlighting this problem. To introduce some termi-

nology, we refer to the portion of a communication path that needs to be modified due

to changes in the network as thereconfiguration portion, and the components immedi-

ately upstream and downstream of this portion as theupstream pointanddownstream

point respectively. In the example, driverd0 is an HTML data source, andd3 is a

component receiving WML data. The reconfiguration portion consists of driversd1

andd2. In this case, let’s assume that driverd1 converts every incoming HTML pages

into three TXT pages, and driverd2 composes every four incoming TXT pages into a

WML deck. Consider a situation where system conditions change after the upstream

pointd0 has output two HTML pages, and the downstream pointd3 has received one

WML deck. At this point, the reconfiguration portion cannot be replaced because do-

ing so affects semantic continuity. It is incorrect to retransmit either the second page

from d0 whose effects have been partially observed atd3, or the third page, which

would result in a loss of continuity atd3.
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Our reconfiguration protocol leverages the semantic segments and soft state re-

strictions placed on driver functionality as follows.

Intuitively, the first restriction allows us to infer which segments arriving at the

downstream point of the reconfiguring portion depend on a specific segment injected

at the upstream point and vice-versa, while the second makes it always possible, even

if any internal driver state is reset, to recreate the same output segment sequence at

the downstream point by just retransmitting selected input segments at the upstream

point.

The basic idea of our solution is to delay the reconfiguration tosafe pointsin data

transmission where the reconfiguration portion can be safely removed, and semantic

continuity can be achieved usingselective retransmissionof data that has not been

seen downstream of the reconfiguration portion.

The key to detecting these “safe” points is to keep track of the correspondence be-

tween segments received at the downstream point and the segments sent from the up-

stream point, which is determined by the driver characteristics in the reconfiguration

portion. If a reconfiguration portion contains a sequence of driversD = {c1, ..., cn} of

which driverci producespi semantic segments upon receivingqi input segments, we

refer top/q = Πn
i=1pi/qi as thesynthesis factorof the reconfiguration portion (herep

andq are relative primes). For the reconfiguration portion, the semantic information

in thejth outgoing segment from the upstream point is contained in segments within

the range of[b(j − 1) · p/qc+ 1, djp/qe] received by the downstream point. More in-

teresting is the fact that the boundary of each(i · q)th segment at the upstream point is

preserved at the downstream point, which corresponds to the boundary of the(i · p)th

segment. This means that after the downstream point receives such a segment, all seg-
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ments (inclusively) before the(i·q)th segment must have been seen at the downstream

point and there is no state of these segments left in the reconfiguration portion. Such

segments are referred to asflushingsegments in our reconfiguration protocol to reflect

the fact that these segments can in effect completely push state (and data) remaining

in the reconfiguration portion (of previous segments) to the downstream point.

Note that in practicepi/qi may not necessarily be a constant number, so our

framework exploits a flexible mechanism that tracks these flushing segments by using

marker messages, which demarcate segment boundaries. All drivers along a com-

munication path are required to pass only incoming markers that match their output

segment boundary (others will be discarded). Therefore, receipt of a marker at the

downstream point of a configuration portion signifies the end of a flushing segment

(at the upstream point).

6.3.1 Reconfiguration Process

The state diagram of a path during a reconfiguration is depicted in Figure 6.2. In this

figure, a bold font is used for distinguishing control messages or data segments from

actions taken by the path (shown in italics). The reconfiguration process includes the

following steps.

1. Upon receiving a message signifying the start of a reconfiguration (with the new

plan) , the downstream point starts to monitor incoming data (1′) (theMonitor

state); the upstream point starts to buffer outgoing segments while continuing

to deliver them downstream (1)(theBuffering state). Besides, a marker is

appended at the end of each output segment from the upstream point. Other
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nodes within the reconfiguration portion do not change their state.

2. The downstream point continues monitoring until it receives a marker from the

upstream point, which signifies the end of a flushing segment from the upstream

point. The downstream point then sends aSeg Ack message to the upstream

point, and begins to discard any further incoming data segments (2).

3. Upon receipt of theSeg Ack from the downstream point, the upstream point

suspends (keeps buffering but not delivers data downstream) data transmission

and sends aModify message to all nodes that are involved in the reconfigura-

tion (3).

4. Upon receipt of aModify message, all nodes in the reconfiguration portion en-

ters theRecfg state, tearing down the components in the old configuration and

replacing them with the new component graph. In this stage, all drivers within

the reconfiguration portion except the upstream point discard any incoming data

(4’). The upstream point continues buffering outgoing segments (4).

5. After the modification on a node is finished, anACKmessage will be sent to the

upstream point (5).

6. After receivingACKmessages from all nodes, the upstream point resumes data

transmission, starting with retransmission from the segment that follows the last

flushing segment received by the downstream point (6). Note that since every

driver is associated with a unique ID, new components after the reconfiguration

will not accept data from the network that is addressed to the old components.
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The process described above achieves semantics level three reconfiguration se-

mantics. For semantics level two, the data buffering and retransmission actions can

be omitted. For semantics level one, step 1 and 2 can be further bypassed, i.e., the

upstream point needs not wait for theSegAck message from the downstream point.

Example For the example shown in Figure 6.1, reconfiguration works as follows.

First, the upstream point (d0) starts buffering every segment it produces after the re-

configuration begins. The downstream point (d3) will receive a marker after the third

page fromd2, which is the marker appended at the end of the fourth page from the

upstream point. It then sends an acknowledgement to the upstream point. After that,

data transmission will be suspended atd0 so thatd1 andd2 can be replaced with an-

other compatible driver graph. To resume data transmission,d0 retransmits buffered

data starting from the fifth page.

6.3.2 Error Recovery

In addition to adapting to changes in resource availability, our scheme can also be

used for “extreme” cases where link or node errors cause lost of data or driver state.

The only difference between the two situations is whether the reconfiguration protocol

is executed on demand or runs all the time.

To gracefully recover from the failures of links and nodes along a communica-

tion path, we need to do buffering and monitoring all the time at the upstream and

downstream points of an unstable network segment. Moreover, the downstream point

needs to delay the delivery of received segments until it receives a marker from the

upstream point. Meanwhile, the downstream also needs to send acknowledgements
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Figure 6.2:State diagram of path reconfiguration. Numbers on arcs correspond to the steps

described in the text.

of received markers to the upstream point so that the upstream point can free buffer

space accordingly. Upon recovery from a network failure, the downstream point dis-

cards its buffered data and resends the acknowledgement of the last received marker

to the upstream point. The procedure that follows is exactly the same as steps (3) –(6)

in the reconfiguration process described earlier.

6.4 Local Reconfiguration

In addition to modifying a whole communication path (where it calledglobal recon-

figuration), the reconfiguration process can also be applied to allow individual nodes
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or small portions of a communication path to adjust their behaviors independently and

concurrently. We refer to the latter aslocal reconfiguration. By using local reconfig-

uration, every segment of a communication path can independently and concurrently

adapt to dynamic changes in the network. This not only results in better respon-

siveness, but more importantly, also enables each network domain along the path to

control its portion independently, especially important for infrastructures that run in a

wide area network, such as the Internet.

To support local reconfiguration, in addition to the reconfiguration process de-

scribed earlier, we need two more things. First, we need a planning algorithm suitable

for generating a small path portion to replace a part of an existing communication

path while retaining some overall performance guarantee. In Section 5.6, we have

described an algorithm that can provide such support. Second, we need strategies

to determine which part of a communication path (i.e. nodes and links) should be

involved in a local reconfiguration. In this section, we focus on this issue.

To start with an example, if the bandwidth of a network link changes, local recon-

figuration may first try using only the direct upstream node of that link. If the new

calculated plan can cope with the change, it will be deployed without further action.

Otherwise, the reconfiguration portion has to be increased to involve more network

resources until the situation is handled. Note that this propagation can be terminated

at any time by just invoking a global reconfiguration.

The tradeoff in choosing an appropriate point to switch between local and global

reconfiguration involves the length of the segment selected for reconfiguration (which

affects reconfiguration cost), and the likelihood that the reconfiguration can success-

fully handle changes. Our framework uses a three-level strategy. Upon a reconfigura-
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tion request, the first reconfiguration attempt happens in a single node when its load

changes or the load on its direct downstream link changes. If the first reconfiguration

attempt cannot meet the application requirements, then the second reconfiguration

attempt will be triggered, which includes network segments comprising nodes con-

nected with relatively fast links (usually within a single network domains). Lastly, if

both of these fail, a global reconfiguration will be started for the whole communica-

tion path.

From a performance perspective, local reconfiguration can be viewed as a mecha-

nism for balancing the tradeoff between adaptation agility and the optimality of data

transmission. In a dynamic network environment where dynamic change is frequent

and modification of the whole data path may introduce big overhead, we believe such

mechanisms are desirable.

More importantly, mechanisms that allow individual segments to be constructed

(see section 5.7) and modified in a distributed fashion can greatly reduce the need for

global knowledge of components and resource availability, and coordination across

multiple network domains. These aspects, in addition to the overhead of coordination

across different network domains, are the most troublesome problems in managing

long communication paths that span multiple network domains. Combining local re-

configuration with distributed path creation together, our approach allowsevery net-

work domain to have complete control over the path portions within its region without

requiring coordination from others.2

2For such cases, global path reconfiguration can be completely substituted by the combination of local re-

configuration and rebuilding a new path in a distributed fashion when local reconfigurations can not handle the

change.
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6.5 Summary

In this chapter, we have presented system support for modifying augmented paths in

our framework with semantic continuity guarantees. Our scheme relies on a set of

simple rules on component behaviors and an efficient reconfiguration protocol. In ad-

dition to modifying communication paths, our scheme can also be used for recovering

data transmissions from failures of network nodes and links along a communication

path. Moreover, our scheme can be used over a whole communication path (i.e. global

reconfiguration) as well as with disjoint segments of a communication path indepen-

dently and concurrently (i.e. local reconfiguration). Support for local reconfiguration

can not only considerably improve the responsiveness of communication paths to dy-

namic changes, but also greatly eliminate the requirements of global knowledge and

coordination across different network domains, which allows our framework to be

used in a large scale network.

The overhead of path reconfiguration and the relative benefits of global and local

reconfiguration are examined with experiments in Chapter 9.
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Chapter 7

Resource Management for Path-Based

Infrastructures

For a path-based infrastructure to support network-aware paths in a wide area network,

resource management is important for providing individual paths with optimized per-

formance while maintaining a high throughput for the whole network (i.e. accepting

as many paths as possible). In particular, there are two questions that need to be

answered:

• How should shared network resources be allocated among multiple paths that

pass through them?

• How should computation resources be distributed among different network re-

gions in order to achieve better overall performance?

In this chapter, we present our solutions for these questions.
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Scheme.

7.1 Resource Sharing among Multiple Paths

We start by describing a strategy that answers the first question posed at the start of this

Chapter, namely how should shared network resources be allocated among multiple

paths that pass through them. The goal is to ensure that optimized performance is

delivered to as many paths as possible.

To solve this problem, we first need to understand how a network-aware path be-

haves within a shared network environment. Figure 7.1(a) shows the state transitions

of such a path during its lifetime (the start and finish states are omitted to simplify

the presentation). If the resources allocated to the path are sufficient for it to meet

the performance requirements, a path is deemed to be in theInRange state, i.e., its

performance is in the desired range. When some of its resource shares change, there

are two possibilities: either it continues to meet its performance requirements or not.
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In the latter case, there are also two possibilities depending on whether or not the path

can manage to go back to the InRange state by reconfiguring itself. If it can, it stays

in a state calledAdaptation until reconfiguration is complete. If not, it enters the

OutRange state, from which it can transit to the other states only after the path’s

allocated resource shares are raised. We callInRange andOutRange asstable

states.

Examining the life time of an individual path, which is depicted in Figure 7.1(a),

one can observe that there are three different types of resource shares that can be

associated with the path. The first type is the share values used in planning for a new

configuration (for path creations or reconfigurations). In general, the greater the value,

the better the generated plan will be. The second type is the upper bound values of

resource shares that the path is allowed to use, i.e. the allocated shares. The third type

is the actually used shares by the path at a particular time.

Taking these three types of resource shares into consideration, we observe that

in order to provide optimized performance to as many paths as possible, an ideal

scheme for allocating resource shares among multiple paths should 1) maximize the

value of the resource share for planning purposes to produce as good as possible a

configuration; 2) minimize the difference between the allocated and the actual used

shares to avoid resource waste.

This is the basic idea of our scheme, which employs the following two strate-

gies: 1) when planning is needed, a path can increase its allocated shares by sending

requests to all the resources involved; 2) whenever a path enters a stable state, it is re-

quired to release unused resources. The state diagram of an individual path using this

scheme is shown in Figure 7.1(b). TheTransitionstate is for a path to sendallocation
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requests to all the resources along the path. Upon receipt of anallocation request, a

network resource is required to do its best to increase the allocated share of that path.

In addition to producing better path configurations, another benefit of using such

allocation requests is that they can effectively balance load across the network. For

example, if pathA uses nodesn1 andn2, and among themn1 is heavily loaded butn2

has many unused computation resources. After sendingallocationrequests to both of

them, pathA will receive a larger share fromn2. As a result,A will place most of its

computation onn2. If the load in thhe network changes afterwards so thatn2 becomes

the overloaded one andn1 has unused resources, the same requests can effectively

move computation required byA from n2 to n1. Though one can also achieve a

similar effect through one tight coupling betweenn1 andn2, such cooperation usually

requires expensive information exchange about dynamic resource availability, thus

does not scale well for large networks.

To manage allocated shares of a path, our solution has two parts: (1)allocation,

which determines the new allocated share in response to anallocation request; and

(2) adjustment, which changes shares of existing paths, triggered either by a need

to satisfy allocation requests from other paths or by releases of resources from other

paths that have left or entered a stable state.

7.1.1 Allocation

The goals of our allocation strategy are to provide the largest possible allocated share

(up to a maximum value,MAX) to ensure success during planning, while at the same

time avoiding frequent reconfigurations and cascading adjustments. The algorithm

listed in Figure 7.2 reflects these ideas.
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Algorithm Allocation
Input: Path
Output: Allocated Share for the path
1. if available > MAX
2. then return MAX
3. (∗ p: number of paths,n: increase inp within the last time unit∗)
4. r ← max(1, n)
5. pr ← max(dp/re × r, p + c)
6. if (Path is a New Path)
7. then return 1/pr

8. else returnmax(current share,min(available, 1/pr))

Figure 7.2: Calculation of the Value of the Allocated Share

When the resource is underutilized, allocation requests result in a predefinedMAX

amount of resources being allocated. Information about this amount can either be

provided by the path or specified by the resource. Note that since paths return unused

resources, allocating a large share for planning purposes does not negatively impact

resource availability for future paths.

The case where the resource is oversubscribed (i.e., fewer thanMAX resources are

available) is more interesting. Intuitively, the algorithm implements a fair policy: the

resource is equally partitioned among all active paths. However, this base policy needs

to be refined to meet our original goals, namely to avoid frequent reconfigurations and

cascading adjustments.

A situation where frequent reconfigurations happen with the base policy is when

new paths are continually entering the system and making allocation requests. If

paths were allocated a share of1/p (wherep is the number of paths) the arrival of

each new path would force an adjustment of the shares granted to all existing paths,

resulting in an undesirable user experience. To take this into account, our algorithm
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“damps” the effect of path arrivals by instead allocating a smaller share1/pr, where

the quantitypr is computed in terms of two parametersn andc as shown in Figure 7.2.

As computed in lines 4–5,pr takes on a new value only once for each time unit (using

n, a prediction for the expected increase in the number of paths over the time unit).

This has the benefit that each existing path would need to be adjusted at most once

over a time unit.

Line 5 also shows how the parameterc is used to bound the minimum value ofpr.

By observing that each adjustment of a path returns a share equal to(1/p − 1/pr), it

follows that the fraction of paths that will need to be adjusted to grant an allocation

request is1/(pr − p). The value of this fraction is at most1/c, thereby limiting the

amount of work that will need to be done in the worst case.c would typically be a

different predefined constant for each resource. In our experiments, we choosec to be

5% of the maximum number of paths that can be sustained on the resource.

The other refinement over the base scheme is shown in lines 6–8 of the algorithm,

where different shares are returned depending on whether the allocation request is

made by an existing path or a new one. For existing paths, the algorithm ensures

that any increases in share allocation are constrained from above by the amount of

available resources (i.e., those resources that can be granted without adjusting share

allocations for other paths). To understand this policy, consider what would happen

in its absence for a pathA, which shares the resourcer1 with pathB. If A requests

an increase in its allocated share, the share of pathB may need to be reduced. To

maintain the required performance, pathB may in turn issue allocation requests to

increase its shares on other resources along the path. These requests fromB may

affect pathC in a similar fashion ifB andC happen to use the same resourcer2.
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The same thing can happen for pathD if C andD share another resourcer3, and

so on. The situation would be even worse ifD is actuallyA andr3 is actuallyr1,

for which A initially tried to increase its share onr1 but end up with a decreased

share. In summary, such propagation may cause the whole network to oscillate with

overwhelming allocation requests and adjustments. The constraint in line 8 is used to

avoid this problem.

The algorithm in Figure 7.2 treats all paths uniformly for resource allocation pur-

poses. Note that it is straightforward to extend this scheme to handle cases where

some paths have higher priority than others by associating weights with paths.

7.1.2 Adjustment

Adjustment on allocated shares of existing paths occurs in two situations: (1) when

there are insufficient resources available to satisfy an allocation request, and (2) when

an allocated share is released.

For the first situation, a set of existing paths needs to be selected and their shares

will be reduced in order to accumulate a large-enough share for the allocation request.

The allocation step described earlier is responsible for determining how large this

share needs to be; the adjustment step decides which paths to take away resources

from. Several different heuristic schemes can be employed to guide the latter process.

Our scheme picks victims in decreasing order of the allocated shares, affecting paths

that have a larger share of the resource. This basic scheme can be extended to restrict

attention only to paths in theInRange state. The intuition here is twofold. First,

such paths are more amenable to reconfiguration for staying in the desired range, as

opposed to the paths in the other states. Second, if resources are overcommitted, it is
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usually more acceptable to reject new connections rather than push existing paths into

theOutRange state. Note that, employing this extension may end up reducing the

overall share that can be allocated to the requester.

The adjustment in the second situation is simpler: when a share of a resource is

released, it is used to increase the allocation of paths in theOutRange state to the

preconfigured maximum. The intuition here is the same as in the allocation step:

providing paths with the maximal opportunity of reentering theInRange state. If no

such path exists, a variety of heuristics can be employed. For instance, if the load on

the resource is increasing (as observed by monitoring the number of active paths), the

release resources are reserved for future connections; otherwise, the released shares

are used to increase the allocation of the path with the smallest value of the allocated

share.

7.2 Resource Distribution across Network Regions

We now present our solution for the second question posed at the beginning of this

Chapter, i.e., how should computation resources be distributed among different net-

work regions in order to achieve a better overall performance? For a path-based in-

frastructure, different distributions of a same amount of total computation capacity

among the network nodes can result in very different performance. The goal is to

improve the overall performance of the whole network.

Our strategy is motivated by the observation that although path-based infrastruc-

tures can in general deploy operators on any network node along a communication

path, usable nodes in practice are most likely a small set of strategic nodes such as ISP
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Figure 7.3: Hierarchical arrangement of servers and ISP nodes.

and gateway nodes. Besides, there usually exist some forms of administrative agree-

ments between a higher-level network domain (e.g., the ISP) and a lower-level one

(e.g., the server). Combining these two together, one can view the computation distri-

bution problem as one of rearranging computation resources in a hierarchical network

graph. Specifically, given a fixedcomputation resource budget, initially assumed allo-

cated to nodes of a lower-level domain, the problem becomes one of moving a portion

of the budget to nodes in a higher-level domain so that the overall performance of the

whole network can be improved. The reason that such rearrangements result in bet-

ter performance of the overall network is basically because of resource sharing; after

such a rearrangement, overloaded servers can take advantage of shared resources at a

high-level node in the network graph, contributed by servers that have a relative light

load.

Our strategy aims to move the maximal amount of resources to high-level network

domains with the guarantee that the performance of those domains, from which the

computation resources are moved out, will not be compromised after the rearrange-

ment.

This rearrangement problem is illustrated in Figure 7.3. Initially, each serversi
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has a computation budgetCi (number of operations per second), and is connected to

the ISP node (I) via a link with bandwidthBWi. The ISP node in turn is connected

to a higher-level network domain with a link of bandwidthBWI . We use the terms

server linkandISP link to distinguish between the two types of links. We can further

assume that1 ∑
i

BWi ≥ BWI (7.1)

The problem is to determine what portion ofCi ought to be moved fromsi to I (and

what portion of the computation resources atI can be moved to the higher-level...). In

the description that follows, we first focus on how to distribute computation resources

between these two levels. How to apply our strategy recursively within a network

graph is deferred to the end of our description.

7.2.1 Algorithm for Distributing Computation Resources

In the context of a two-level network structure, the question that our strategy answers

is what fraction of the computational resources from which servers can be transferred

to the ISP node (see Figure 7.3)without compromisingthe performance of the con-

tributing servers, namely leaving unchanged the number of connections that they can

serve.

To describe our strategy, we need to introduce a model for client connection re-

quests. We assume that all communication paths require a throughput ofTH data units

per second, and that these paths are of two kinds:uncompressedandcompressed. The

latter involves transcoding and/or compression operators to reduce its bandwidth re-
1Otherwise the bandwidth in the higher-level network domain would remain underutilized
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Figure 7.4: Performance impact of incrementally transferring computation resources from a
single server node to the ISP node for a fixed load level. The three cases corre-
spond to different saturation situations for the server and ISP links.COther denotes
the maximum resource level that can be utilized for improving the performance of
other servers.CSL denotes the resource level at which the server link gets satu-
rated.

quirement. Each compressed path requires an average computation ofc operations per

data unit,2 and reduces bandwidth requirement by the fractionD. We further assume

that the fractionpi(0 ≤ pi ≤ 1) of all requests via ISPI is for accessing contents on

serversi, which has a computation budget ofCi. As shown in Figure 7.3, we refer to

the bandwidth on the link connecting serversi to I (the server link) asBWi and that

on the link connectingI to the Internet (the ISP link) asBWI . Our strategy calculates

C ′
i, the computation resource left at each serversi. Note that0 ≤ C ′

i ≤ Ci.

Assuming the above client traffic pattern, the strategy identifies servers for whom

the corresponding server link has unused capacity for load levels where the ISP link

is operating at capacity. The rationale for this choice can be seen by examining Fig-

ure 7.4, which depicts, for a given load level, the impact on overall performance as

resources are incrementally transferred from a particular server,si, to the ISP node.

Depending on whether the ISP link is saturated or not, and whether a particular server
2Here we only consider the computation capacity required for manipulating data; the overhead of reading the

content from disk and passing it through a protocol stack are not counted since these overheads are always present.
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link is saturated or not (at the beginning point), one can distinguish three classes of

server behavior: (A) when the server link is saturated; (B) when the server link is

unsaturated while the ISP link is saturated; and (C) when neither the server link or

the ISP link are saturated. For each class, Figure 7.4 shows the impact on aggregate

system performance (solid line) and individual server performance (dashed line) as

resources are incrementally moved out of the server.

When the server link gets saturated (case (A)), any movement of computation

resources out ofsi will decrease the number of connections sustainable at the server.

This decrease is offset at the aggregate system level untilCOther resources have been

transferred, by other servers benefiting from the pooled resources.

When the ISP link gets saturated before the server link (case (B)), there are two

situations. Both situations start off by seeing an increase in aggregate performance

because of additional compressed connections being served on other servers. Mean-

while, moving computation resources out ofsi increases the bandwidth consumption

at its server link but does not affect its performance. This situation continues until we

reach a point where either there is no further benefit from additional ISP resources

(the left figure), or the server link gets saturated (the right figure). In the first situ-

ation, aggregate performance levels off until theCSL level is reached at which point

both server and aggregate performance start decreasing. In the situation where the

server link gets saturated first, server performance starts decreasing immediately but

its impact on aggregate performance is offset as in case (A) above until theCOther

level is reached. The points marked by black circles in the case (B) figures represent

the maximal amount of computation resources that can be moved out ofsi without

degrading its performance.
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nI = BWI/TH + (1−D)×
∑

i
Ci

TH×c nI = nc(compressed) + nuc(uncompressed)
nc =

∑
i

Ci
TH×c

nuc × TH + nc ×D × TH = BWI

 Maximum number of connec-
tions sustainable over the ISP
link

nsl,i = BWi/TH + (1−D)× C′
i

TH×c

Maximum number of connec-
tions can be sustained at the
server link of si after mov-
ing some of its computation re-
sources to the ISP node.

Table 7.1: Calculation of the Number of Connections Sustainable at ISP Link and Server
Link.

In Figure 7.4(C), neither the ISP link nor the server link is saturated, so moving

computation resources fromsi does not increase the aggregate performance unlike in

case (B). This is understandable because at this time the number of connections that

can be sustained at a server is unaffected by the amount of computation resources at

the ISP node. Only after the server link gets saturated does both the aggregate and

server performance decrease. Changes in load level can convert a case (C) server

into either case (A) or (B) depending on whether the server link or the ISP link gets

saturated first, thus this case can not be used to determine which server and how many

computation resources can be moved out.

In light of the above analysis, our strategy restricts itself to identifying servers that

would fall into category (B) above. For such servers, it is safe to move resources up to

the point marked by the black circles in Figure 7.4(B) irrespective of the encountered

load levels.

Servers whose server links remain unsaturated when the ISP link is saturated can

be identified by comparingpi × nI , the maximum number of server connections that

can be sustained assuming that the ISP link becomes the bottleneck (pi is the fraction
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of connections directed towardssi) with nsl,i, the maximum number of server connec-

tions that can be sustained assuming the server link becomes the bottleneck. Table 7.1

shows how these parameters are computed by considering the number of compressed

and uncompressed connections that can be supported by a given amount of computa-

tion and bandwidth resources. Thensl,i expression assumes thatC ′
i resources are left

behind at the server. Servers in case (B) must havensl,i ≥ pi × nI , i.e. satisfy the

following equation:

 0 ≤ C ′
i ≤ Ci

BWi/TH + (1−D)× C′
i

TH×c
≥ pi × nI

(7.2)

It is easy to prove, by contradiction, that there must be at least one category (B)

server. Let us assume that no server has a valid solution for Equation 7.2. This implies

that (summing up over all servers)∑
i

BWi

TH
+ (1−D)×

∑
i

Ci

TH× c
<

∑
pi × nI

The right hand side of the above inequality is justnI , which in turn can be substituted

by the corresponding expression from Table 7.1. Thus, our assumption leads us to the

inequality∑
i

BWi

TH
+ (1−D)×

∑
i

Ci

TH× c
<

BWI

TH
+ (1−D)×

∑
i

Ci

TH× c

This requires
∑

i BWi < BWI , which is in contradiction with our previous assump-

tion of
∑

i BWi ≥ BWI . Therefore, there must be at least one category (B) server.

The recursive algorithm employed by our strategy is shown in Figure 7.5. Lines

3–8 check, for a given load distribution, whether a server has a valid solution for Equa-

tion (7.2). If not, it is excluded from further consideration, with the available ISP link
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Algorithm Distribute
Input: Server SetS, BWI

Output: Distribution of computation between servers and the ISP node
1. S′←S
2. BW′

I ←BWI

3. for all si ∈ S′

4. do if for si equation (7.2) has a solution
5. then setC ′

i

6. else C ′
i ←Ci

7. BW′
I ←BW′

I −BWi

8. S′←S′ − si

9. if S′ 6= S
10. then Adjust load distribution for alls ∈ S′

11. Call Distribute(S′,BW′
I);

12.

Figure 7.5: Distribution of Computation Resources between ISP and Server Nodes

bandwidth adjusted as shown in Line 7. To understand this, note that the bandwidth

contribution of such servers on the ISP link cannot exceedBWi, because no additional

connections (compressed or uncompressed) for this server can be supported once the

server link is saturated. The recursive call uses this reduced value of available ISP

link bandwidth and adjusted load distribution values (based on the relative contribu-

tions from remaining servers). Note that the two invariants about load distribution

(
∑

i pi = 1) and bandwidth (
∑

i BWi ≥ BWI) hold after each adjustment. The

algorithm terminates when all servers inS ′ have valid solutions for Equation (7.2).

It is only these servers that can contribute a portion of their computation budget to

the ISP node. The amount that can be transferred is easily determined by picking

the minimum valueC ′
i for each such server that still results in Equation (7.2) being

satisfied.

Figure 7.6 illustrates this algorithm using an example configuration consisting of
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Figure 7.6: An example showing recursive calculation of the computation budget transferred
to the ISP node.

5 servers with computation budgets 10, 20, 30, 50, and 60 units, with client connec-

tion paths requiringTH = 1, c = 1, andD = 0.5. Client requests are uniformly

distributed amongst these servers. The first call to theDistribute routine results in

servers 4 and 5 being removed fromS ′ because their server links cannot sustain205
5

connections. The second call removes server 3 because it cannot sustain160
3

connec-

tions. The algorithm terminates on the third call when both servers 1 and 2 can sus-

tain 115/2 connections, and can contribute a portion of their computation resources

(amounts shown in the figure) to the ISP node.

Our description above considered a two level hierarchy (i.e. between servers and

ISPs). This strategy can be easily extended to a hierarchically organized network

domain with multiple levels. The basic idea is as follows: when moving resources to

anth level node, count the resource budget of the(n−1)th level node as the aggregate

value of the resources at all levels (inclusively) lower thann − 1; but only resources

on the(n− 1)th level node (no lower level) can be moved to higher-level nodes.

A practical note: the algorithm sketched above assumes prior knowledge of the

load distribution among low-level network domains. Since the load distribution varies

over time, the redistribution process can be made more conservative by capping the

maximal amount of resources that can be moved.
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7.3 Summary

In this chapter, we have presented strategies for managing network resources for path-

based infrastructures. This contains two parts. The first part is for allocating resources

among multiple active paths on a shared network resource. We proposed a scheme that

enables an individual path to achieve a better configuration by allocating it a share as

large as possible, and allows the whole network to sustain as many as possible paths

by reducing resource waste. Another good property of this scheme is that resource

allocation is conducted in a completely distributed fashion without requiring informa-

tion exchange on resource availability.

The second part is for distributing computation resources across the network to

improve the overall performance of the whole network. Based on the current organi-

zation of the Internet, we proposed a hierarchical model and corresponding algorithm

to rearrange computation resources by moving some portion of computation resources

from lower-level nodes to higher-level ones in the network graph. Our scheme is able

to set up maximal resource pools across the network, with the guarantee that the per-

formance of network domains where computation resources are moved out will not be

compromised after such rearrangements. The benefit of such rearrangements is that

by setting up shared resource pools at high-level network nodes, overloaded network

domains can always take advantage of spare resources contributed by other domains.

We evaluate these two strategies in Chapter 9 by simulating their effect in the context

of a large network supporting many simultaneous client requests to media servers.
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Chapter 8

Implementation: CANS

Infrastructure

We have implemented a prototype of our framework in the form of a programmable

network infrastructure, calledComposableAdaptive Network Services (CANS in

short). CANS contains implementations of all the schemes described in Chapter 3

to Chapter 7.

The kernel of the CANS infrastructure is the CANS Execution Environment (EE).

The CANS EE serves as the runtime system for components in augmented communi-

cation paths, and provides all the infrastructural support required by these paths to re-

alize network-aware data communication: delivering data across networks, managing

resources and communication paths (i.e. path creation and reconfiguration), down-

loading mobile code, and providing resource availability information.1 A CANS net-
1The current implementation of CANS relies upon external entities to monitor resource availability across the

network and feed such information to the infrastructure
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Figure 8.1: CANS Execution Environment

work is realized by a set of CANS-Enabled nodes, each runs an instance of the CANS

EE. Augmented paths are deployed on these nodes.

Components (drivers) and Most parts of the CANS EE are written in Java; the

current version runs on any Java-enabled node. The primary reason we choose Java

for our prototype is because of its existing support for code mobility and controlled

execution for downloaded code from different sites.

In this chapter, we describe in turn the overall structure of the CANS execution

environment, several important interfaces, data communication and control interac-

tion in the infrastructure, its support for legacy applications and components (referred

to as services). We conclude this chapter by showing the whole procedure of setting

up and reconfiguring a CANS path.
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8.1 CANS Execution Environment

8.1.1 Overall Structure

The CANS Execution Environment (EE) serves as the node run-time system for com-

ponents in augmented communication paths. The structure of the CANS EE is il-

lustrated in Figure 8.1. It contains the following six major modules:Plan Manager,

Driver Manager, Service Manager, Event Manager, Resource Monitor, andClass

Manager. In this section, we provide a brief description of the functions provided by

each of these modules.

ThePlan Manageris responsible for constructing network-aware communication

paths upon requests from applications. The planning algorithms described in Chap-

ter 5 are used to calculate communication paths with optimized performance in accor-

dance with application requirements and underlying network conditions. Moreover,

this module is also responsible for partitioning the generated paths and sending path

segments to all of the nodes involved in the path. The plan manager has both local

and remote interfaces so that it is possible to run a plan manager on only a subset of

the nodes along a path, a feature important for small devices that have very limited

resources and computation capacity.

The Driver Manager is a support module for the plan manager. Its primary re-

sponsibility is to manage drivers within a CANS EE, i.e., to assemble, modify and

remove driver graphs.

TheService Manageris used to control legacy components on local hosts, inside

or outside of the CANS EE. Legacy components are called services in our framework,

and distinguished from drivers in that they are not required to support the interface re-
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quirements imposed on the latter. The service manager module provides APIs for

creating, terminating, registering, and querying service instances. Besides, in order

to process data using these services, the service manager connects active service in-

stances with drivers in the execution environment.

TheClass Manageris responsible for downloading code and instantiating driver

instances as required. It is built as a custom class loader for the Java Virtual Machine

supporting the EE. Upon receipt of a component graph, theClass Managerfirst tries

to load all the class files of the corresponding components from its local repository. If

the code is not available locally, the class loader downloads the class files from the lo-

cation where it receives the graph. The use of the class loader mechanism gives us the

flexibility of isolating the execution of components from different sites. Furthermore,

by associating each class loader with a specific instance of the environment object,

used by the drivers for interacting with the underlying EE, we can further customize

the access of downloaded code from different sites.

TheEvent Manageris used to propagate events within an EE and across different

EEs. Distributed events are the primary interaction mechanism in the CANS. Com-

pared with a pre-wired implementation, the event paradigm (with simple publish and

subscription primitives) is an effective, and much more flexible way for modeling

complicated control logic among different entities in this component-based frame-

work. Components can have different needs from the EEs, and are usually developed

by many different providers. Additionally, the event model gives us the flexibility of

extending the functionality built in the infrastructure. A more detailed description of

the use of distributed events in CANS is deferred to Section 8.1.4.

TheResource Monitoris responsible for producing notifications of changes in re-
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pub l i c c l a s s P a t h C o n t r o l l e r
implements P e r f o r m a n c e E v e n t L i s t e n e r , R e c o n f i g E v e n t L i s t e n e r{

p r i v a t e vo id i n i t ( AppPol icy po l i c y , PathGraph graph ) ;

/ / p rocess even ts
pub l i c boolean p r o c e s s R e c o n f i g E v e n t ( Recon f igEven t e v e n t ) ;
pub l i c boolean p r o c e s s P e r f o r m a n c e E v e n t ( P e r f E v e n t e v e n t ) ;
pub l i c boolean f o rwardEven t ( Event e v e n t ) ;

/ / re turn address l i s t o f a l l nodes
pub l i c synchron ized L i s t ge tRemoteAdd ressL i s t ( ) ;

pub l i c S t r i n g g e t P a t h I d ( ) ;

/ / g l o b a l / l o c a l r e c o n f i g u r a t i o n
pub l i c vo id l o c k F o r R e c o n f i g u r a t i o n ( ) ;

}

Figure 8.2: Path Controller Interface

source availability: once it detects a change in resource availability (for an individual

path or for the whole network resource), the resource monitor generates a notifica-

tion by raising a corresponding event. For changes occurring on the resource level,

the current CANS implementation relies on external entities for monitoring resource

availability and providing change information. Such information from the external

monitor utility is transformed into events in CANS via the interface provided by the

resource monitor.

8.1.2 Path Controller

To control augmented paths, an instance of apath controlleris created in every EE

for each path that is deployed to a set of CANS-enabled nodes. The most important
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Figure 8.3: CANS Communication Adapter

function of the path controller is to monitor performance of the path and trigger re-

configuration whenever necessary. Most parts of the path reconfiguration protocol are

implemented in the path controller, which controls components (and their data ports)

to operate in accordance with the states in the reconfiguration process (as described in

Chapter 6). For local reconfiguration situations, the path controller first needs tolock

the region that it wants to modify. In addition to this, path controllers are also used to

forward path-level events (events destined for all nodes along the path). The interface

of the path controller is illustrated in Figure 8.2.

8.1.3 Communication Adapter

Data communication across networks in CANS is implemented with auxiliary CANS

components called communication adapters. Communication adapters hide details of

physical data transmission from drivers by exposing the same data port interface to

drivers. Therefore, from a driver’s perspective, sending data across the network is

exactly the same as forwarding data to another driver in the same EE. CANS contains
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several different types of communication adapters that transmit data between two EEs,

or between an EE and an application that does not expose the data port interface.

Each communication adapter can support multiple input/output data ports to/from

CANS paths. This allows multiple logical connections to be multiplexed on a single

physical link (see Figure 8.3). A communication adapter can further exploit the trans-

port mechanism that best matches the characteristics of the underlying network. Ad-

ditionally, communication adapters can also encapsulate behaviors that permit them

to adapt to and recover from minor variations in network characteristics. For instance,

these adapters can be written to use one of several network alternatives, automatically

transitioning between them to improve performance.

8.1.4 Event Propagation

Dynamic changes and control messages in the CANS infrastructure are realized as

distributed events in the system. The use of the event paradigm gives us the flexibility

in allowing different parts of CANS infrastructure to interact with each other, without

requiring prior knowledge of their interfaces.

In CANS, any entity (including drivers) can raise arbitrary events as well as listen

for specific ones. Event support is realized by a per-EEEvent Manager, which is

responsible for catching, firing, and transmitting events across the network. Event

raising and firing is implemented using simple method calls and callback functions

associated with the relevant components.

A CANS event contains a name, and the IDs of the event source and destination.

Each of these values can be specified as a wildcard value. When the event manager

receives an event (from the local EE or from the network), a template match is per-
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formed between the event object and all registered templates. This approach is very

flexible in that using this, different communication patterns (unicast, multicast, and

subscription of multiple events) can be easily implemented.

There are two major types of CANS events: events from the local resource moni-

tor, indicating a change in resource status, and events from components on the com-

munication path. The first type of events is sent only to local components that have

registered themselves as interested listeners. The second type of events, called path-

level events, are first sent to thepath controller(see Section 8.1.2), which is respon-

sible for forwarding the event to the destination along the path. The path controller

keeps track information such as driver location etc., and uses the event manager to

transmit events across the network. For example, for events whose destination ID is

the ID of a path, they are delivered to all nodes along the path; for events whose des-

tination is (path ID, driver ID), they are sent to the node where the specified driver

resides.

8.2 Interfaces of Components and Types

To facilitate dynamic composition, our framework relies on an interface to which

drivers are required to adhere, and a type model (described in Chapter 4). To give

some details on how all these concepts are implemented, in this Section we present

the interfaces of components and types used in the CANS infrastructure.
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pub l i c a b s t r a c t c l a s s D r i v e r implements S e r i a l i z a b l e{
p ro tec ted D r i v e r ( S t r i n g i d ) ;
pub l i c boolean i n i t ( ) ;
/ / push / p u l l ope ra t i ons
pub l i c a b s t r a c t vo id push ( DInPor t i n p u t ) ;
pub l i c a b s t r a c t vo id p u l l ( DOutPort ou t ) ;

/ / lookup fo r po r t s
pub l i c a b s t r a c t DPort g e t P o r t ( S t r i n g P o r t I d ) ;
pub l i c L i s t g e t A l l P o r t s ( ) ;
/ / c a l c u l a t e types o f output po r t s
pub l i c a b s t r a c t Map ge tOu tpu tPo r tType

(Map i n p u t P o r t T y p e s ) ;

/ / A incoming marker r ec e i ved
pub l i c synchron ized void incomingMarker ( DPort s r c P o r t ,

i n t seqNo ) ;
/ / send out a marker
pub l i c vo id outMarker (i n t seqNo ) ;

/ / event i n t e r a c t i o n
p ro tec ted void r a i s e E v e n t ( Event e v e n t ) ;
p ro tec ted void r e g i s t e r E v e n t L i s t e n e r ( S t r i n g eventName , Ob jec t s rc ,

Ob jec t d e s t =nu l l ,
E v e n t L i s t e n e r l i s t e n e r ) ;

p ro tec ted void r e m o v e E v e n t L i s t e n e r ( S t r i n g eventName , Ob jec t s rc ,
E v e n t L i s t e n e r l i s t e n e r ) ;

/ / f o r r e c o n f i g u r a t i o n
pub l i c boolean s e t S t a t u s (i n t newStatus , S t r i n g p o r t I d ) ;

pub l i c s t a t i c vo id s e t E x e c u t i o n E n v i r o n m e n t ( Dr iverEE dee ) ;
pub l i c vo id r e s e t ( ) ;

}

Figure 8.4: Driver Interface

8.2.1 Interface of Components

The interface of drivers is shown in Figure 8.4. It contains four groups of methods,

which respectively handle data port (DPorts) lookup, events, data transmission, and
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path reconfiguration. Most of these methods are implemented in the base Driver class

so that derived component classes can use them directly. Note that the Driver class has

a static member of a driverEE object, an environment object that allows components

to interact with the underlying EE. As we mentioned in Section 8.1.1, this field is

initialized by the class loader to customize the access right of downloaded driver code.

The DPort interface is illustrated in Figure 8.5. It includes methods for setting

up connections between different DPorts, and dispatching data between it and the

owner driver. Moreover, a data port contains a status flag, which is controlled by

thepath controller. This flag is used to determine whether incoming data should be

forwarded, buffered, or discarded according to the reconfiguration protocol discussed

in Section 6.3.1. The DPort is an abstract class that contains implementations for

common methods in this interface. Derived from the DPort class, there are two sub-

classes: DOutPort and DInPort which support input or output operations respectively.

Implementations of all of these classes are provided by the infrastructure.

8.2.2 Interface of Types

The interfaces for simple types and stream types are shown in Figure 8.6. The stream

type is basically a stack of simple data types. The most important operations for them

are 1) determining if two types are compatible, and 2) calculating the augmented part

of a type instance in a type specific way when a type instance is passing through a

network link, as described in Chapter 4.
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pub l i c a b s t r a c t c l a s s DPort implements S e r i a l i z a b l e {

p ro tec ted DPort ( D r i v e r owner , S t r i n g p o r t I d ) ;

pub l i c D r i v e r getOwner ( ) ;
pub l i c S t r i n g g e t P o r t I d ( ) ;

pub l i c Por tType ge tPo r tType ( ) ;
pub l i c vo id s e t P o r t T y p e ( Por tType type ) ;

pub l i c a b s t r a c t vo id incomingMarker (i n t seqNo ) ;
pub l i c vo id s e t D a t a (byte [ ] b u f f e r ) ;
pub l i c byte [ ] ge tDa ta ( ) ;
pub l i c boolean hasData ( ) ;

pub l i c vo id connec t ( DPort newLinkee )
throws T y p e I n c o m pa t i b l e E x c e p t i o n ;

pub l i c vo id d i s c o n n e c t ( ) ;
pub l i c DPort g e t L i n k e e ( ) ;

/ / s t a t u s dur ing r e c o n f i g u r a t i o n
pub l i c i n t g e t S t a t u s ( ) ;
pub l i c vo id c h a n g e S t a t u s (i n t s t a t u s ) ;

pub l i c synchron ized void r e s e t ( ) ;

pub l i c f i n a l s t a t i c i n t STATUS ACTIVE=0;
pub l i c f i n a l s t a t i c i n t STATUS BUFFER=0x1 ;
pub l i c f i n a l s t a t i c i n t STATUS DISCARD=0x2 ;

}

Figure 8.5: DPort Interface

8.3 Support for Legacy Components or Applications

In this section, we describe how the CANS infrastructure supports legacy components

(i.e. existing functionality encoded in a way that does not adhere to the required inter-

face of drivers), and legacy applications that are CANS oblivious. For legacy compo-

nents, we view them as if they were regular network services that provide content or
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pub l i c a b s t r a c t c l a s s DataType implements S e r i a l i z a b l e , C loneab le
{

pub l i c a b s t r a c t boolean i s C o m p a t i b l e ( DataType d t ) ;
pub l i c boolean e q u a l s ( Ob jec t d t ) ;

/ / c a l c u l a t i o n o f augmented par t when pass ing a network l i n k
pub l i c L i n k P r o p e r t i e s passL ink ( L i n k P r o p e r t i e s l i n k ) ;

pub l i c Ob jec t c l o n e ( ) ;
/ / type rank
pub l i c i n t getRank ( ) ;
pub l i c vo id se tRank (i n t rankVa lue ) ;

}

pub l i c c l a s s StreamType implements S e r i a l i z a b l e {
pub l i c StreamType ( ) ;

pub l i c DataType ge tCu r ren tType (boolean peek ) ;
pub l i c vo id pushNewType ( DataType newType ) ;

pub l i c Ob jec t c l o n e ( ) ;
pub l i c boolean e q u a l s ( Ob jec t ob j ) ;

pub l i c L i n k P r o p e r t i e s passL ink ( L i n k P r o p e r t i e s l i n k ) ;
}

Figure 8.6: Type Interfaces

data processing functionality. CANS provides a general platform for integrating and

controlling services (running inside or outside of the CANS EE); legacy applications

are supported using an interception layer to bridge them to the CANS infrastructure.

8.3.1 Services

Services are modeled as providing content or data processing functionality. Unlike the

constrained driver interface, services can export data using any standard protocol (e.g.,

TCP or HTTP), encapsulate heavyweight functions, process concurrent requests, and
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maintain persistent state. Relaxing interface requirements permits use of legacy ser-

vices; however, our framework does not support migration for services, requiring a

service to manage its own state transfer. This design choice reflects the view that

services are migrated infrequently and doing so requires protocols that are difficult to

abstract cleanly.

CANS provides APIs to create, compose, and control services across the network.

Services can run inside or outside the CANS EE. A service is required to register

itself by providing adelegate objectthat can control the service and act on its behalf

in interactions with the rest of the framework.

8.3.2 Support for Legacy Applications

The CANS infrastructure supports both CANS-aware and CANS-oblivious applica-

tions. The former just hook into the driver and service interfaces described earlier. For

the latter cases, CANS provides aninterception layerthat is transparently inserted into

the application and virtualizes its existing network bindings. The interception layer is

injected using a technique known as API interception [31], supported on both Win-

dows and Unix platform, using a variety of mechanisms, ranging from DLL import

table modification to run-time rewrite of portion of the memory image of the applica-

tion.

The general architecture of the interception layer is shown in Figure 8.7. The

interception layer provides the application with an illusion of a TCP socket which can

be bound to various interfaces (CANS or native network) for actual data transmission.

An application specific policy responds to events (such as connect requests) delivered

to it by the interception layer, which in turn influences the binding. Thus, enabling
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Figure 8.7: Architecture of the interception layer.

CANS support for a new legacy application would require only writing a specific

policy for that application.

8.4 Procedures of Path Setup and Reconfiguration

To demonstrate how these parts of the CANS infrastructure work together, in this

section, we briefly describe the lifetime of a typical CANS path.

To set up the path, the application needs to call thePlan Manager(on either the

local or a remote host) directly or via the interception layer, with information about

the server to access and its performance requirements. The next steps that follow are

different depending on a centralized or distributed strategy is in use.

In the centralized case, thePlan Managerfirst determines a network route (and the

resource availability) between the server and the client application (using a shortest

path algorithm). With the selected route, the plan manager constructs the compo-

nent graph and the mapping using the planning algorithms described in Chapter 5. It

partitions the component graph, and sends these partitions to nodes along the path.
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The distributed strategy works as follows: When the plan manager receives a re-

quest from the application, it routes the request towards the server. After the request

arrives, the server (or the CANS node next to the server along the route) bounces back

a planning request. This planning request is received by each of the nodes along the

route, which calculates its portion of the communication path. In the cases where

complementary planning is needed (see Chapter 5), it is calculated during the forward

routing stage.

After the components graph is determined and communicated, every node along

the path instantiates its components in the local EE. In addition, it also creates an

instance of thepath controllerobject for controlling this path.

The path controller, running on each node along a CANS path, monitors events

that reflect the performance of the path. Whenever a path controller realizes that

the performance does not meet the requirements, it triggers reconfiguration using the

protocol described in Chapter 6.

When data transmission of a path completes, drivers and path controller of the

path are removed from the EE, and any allocated resources released.

8.5 Summary

In this chapter, we have presented a prototype of our framework, the CANS infras-

tructure. We described the structure of the CANS EE, which, as the kernel of the

infrastructure, provides complete support for realizing network-aware communica-

tion paths. In addition to drivers and CANS-aware applications, legacy components

or services can be integrated into communication path using a delegate model; legacy
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applications can also use the CANS infrastructure via an interception layer.
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Chapter 9

Evaluation

To evaluate our framework, we have extensively experimented with the CANS infras-

tructure. In particular, our evaluation focuses on the following questions:

1. Can application specific functionality be automatically introduced into the net-

work, and if so, what are the associated overheads?

2. Do our automatic path creation strategies bring applications considerable per-

formance benefit?

3. Can desirable continuous adaptation behaviors be achieved using our automatic

strategies for path creation and reconfiguration?

4. What are the fundamental benefits of path-based approaches as compared to

end-point or proxy-based alternatives?

To answer these questions, we have carried out four studies.

In the first study, we measured the runtime overhead of the CANS infrastructure by

examining its impact on bandwidth and latency of communication paths when trivial
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forwarding drivers are in use. To investigate the overheads of component composition

at a finer level of detail, the timeline of a more complicated augmented path was also

examined.

In the second study, we investigated the performance advantages that our frame-

work can bring to applications. In the experiments, we run a typical web access

application under a wide range of network configurations, comparing achieved per-

formance of the case where the CANS infrastructure was used and the situation where

no adaptation support was provided.

In the third study, we examined the adaptation behaviors provided by our auto-

matically constructed and reconfigurable communication paths. By running an image

streaming application within a network environment where bandwidth changes fre-

quently, we characterized how fast the CANS infrastructure could adapt to resource

changes, and how good the automatically generated adaptation decisions were.

In the last study, we compared performance differences between a CANS-link

path-based approach and other alternatives, i.e. end-point and proxy-based approaches.

The real question underlying this study was to investigate whether the path-based

approach is really necessary in terms of the benefits it delivers despite its complex-

ity. The comparison was conducted by simulating the behavior of each of these ap-

proaches in the context of a large network topology. In addition to comparing the

performance differences, the experiments also provide us insights into how exactly

the constraints on adaptation locations affect both performance of individual paths as

well as the whole network. The latter provdes an understanding, hitherto unavailable,

of the network configuration under which one approach is preferred over others.
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We start by discussing the experimental platform and applications, and then present

the result and analysis of the four studies.

9.1 Experimental Platform

Edge Server Proxy ServerInternet Service Mobile Client

wired link

L1 L2

N0 N1 N2IBM Compatible

Figure 9.1: A typical network path between a mobile client and an internet services.

In most of our experiments, we consider a typical network path between a mobile

client and an Internet server as shown in Figure 9.1. This platform models a mobile

user using a portable device (N2) such as a laptop or a pocket PC to access an Internet

service in a shared wireless environment. The communication path from the device

to the visited service typically spans (at least) three hops: a wireless link (L2) con-

necting the user’s device to an access point, a wired link (L1) between the wireless

access point and a gateway to the general Internet, and finally a WAN link between

the gateway and the host running the service. We assume that CANS components can

be deployed on three sites, the mobile device (N2), a proxy server located close to the

access point (N1), or an edge server located near the gateway (N0).1

In our experiments, bandwidth on linksL1 andL2 can change dynamically. This
1Our use of the term “edge server” differs from its usage in content distribution networks. We use the term to

refer to a host on the frontier of the network administrative domain.
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either results from dynamic network traffic or users joining and leaving the shared

wireless networkN1.

For our experiments, network configurations with different link bandwidths and

computation capabilities are obtained by running CANS either on an appropriate se-

lected actual hardware platform, or one emulated using “sandboxing” techniques that

model a range of computation capacity and link characteristics by limiting CPU con-

sumption of applications and the rate at which applications are allowed to send and

receive messages [10].

The accuracy of the emulated behaviors using the “sandbox” techniques is dis-

cussed in Appendix B. The sandbox techniques give us the flexibility of controlling

experiment parameters used in our experiments, making up for the absence of such

control in current-day hardware. Additionally, the “sandbox” also provides resource

availability information to CANS EEs.

9.1.1 Applications

We use two applications used throughout our experiments: a web access application

and an image streaming application.

The web access application involves a browser client, which downloads web pages

(both HTML page and images) from a standard web server. Our experiments used the

Microsoft Internet Explorer(IE) browser. The communication path from IE is bridged

into the CANS infrastructure using a CANS-aware HTTP Proxy.

For this application, short response time is the major performance concern. Transcod-

ing components can reduce download times under low-bandwidth network conditions
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by dynamically compressing text and/or degrading image quality. Previous research

has shown that such an approach is effective [18, 44]. In our experiments, we used this

application to study whether an appropriately customized subset of these transcoding

components can be automatically deployed to minimize download time for different

network conditions.

The image streaming application is a Java Media Framework (JMF) application that

continuously fetches and displays JPEG frames from an image server. To perform

appropriately, this application requires that frames arrive at a certain throughput (i.e.

frames per second), and once that is satisfied, prefers high quality data. The communi-

cation path between the client application and the image server can be augmented with

two kinds of transcoding components capable offiltering andresizingimages respec-

tively. Each of these components can support multiple configurations: theFilter

component can produce output images corresponding to different JPEG quality lev-

els, while theResizer component can generate output images with different scale

factors. In our experiments, we used this application to investigate whether desir-

able adaptation behaviors can be achieved using our automatic path creation and

reconfiguration strategies. This application also serves as the application for our

simulation-based study that compares performance among end-point, proxy-based

and path-based adaptation approaches in a large network setting.
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9.2 Runtime System Overhead

To measure the runtime overhead of the CANS infrastructure, we run two experi-

ments. First, we used a simple path containing only trivial forwarding drivers, and

compared its performance (bandwidth and latency) with that of a direct TCP connec-

tion. In the second experiment, to investigate the detailed cost of component com-

position, we recorded the timeline for a more complicated CANS path and examined

the actual overhead incurred in the interaction between different components in our

implementation.
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Figure 9.2: Latency and bandwidth impact of the CANS infrastructure.

9.2.1 Microbenchmarks

All measurements in this section were taken on a set of Pentium II 450Mhz, 128 MB

nodes, running Windows 2000 and connected using 100 Mbps switched Ethernet.

Figure 9.2 shows the overheads introduced by CANS, measured in terms of how

they impact communication performance between two communication parties. The

applications used here are simple, standard applications to measure bandwidth and
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round trip time. Each graph shows the round-trip time and bandwidth achievable for

different message sizes for four configurations:C prog andJava prog refer to our

baselines, corresponding to application and server programs that communicate di-

rectly using native sockets in C or Java respectively.In process Driver andOne EE

refer to basic CANS configurations; the former shows the case when trivial forward-

ing drivers (also called null drivers) and a communication adaptor are embedded into

the application interception layer and indicates the basic overheads of driver compo-

sition, and the latter considers the case where the communication path includes null

drivers on an intermediate host between the application and service.

Figure 9.2 shows that theIn process Driver configuration introduces minimal ad-

ditional overheads when compared with theJava prog configuration (less than 10%

arising from extra synchronization and data copying), attesting to the efficiency of our

driver design and composition mechanism. On the other hand, theOne EE config-

uration does show marked degradation in performance, primarily because of context

switch costs and the fact that the transmitted data has to traverse across application-

level and network-level in the communication protocol stack four times instead of two

times. However, given that intermediate EEs are intended to be used across different

network domains in the Internet where other factors dominate latency and bandwidth,

such overheads (an extra cost of 1-2 milliseconds or restricting achieved bandwidth

to be around 70 Mbps bandwidth) is unlikely to have much overall impact.

9.2.2 Timeline of an augmented path

To investigate the detailed runtime overhead caused by component composition, we

recorded the timeline of a more complicated path. The path we recorded was gen-
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erated for the web access application. The path structure is illustrated in Figure 9.3.

It contains components that can reduce sizes of images and HTML pages; the path

branch for images contains components that can degrade image quality (ImageFilter )

and decrease the image dimensions (ImageResizer ); the branch for HTML pages

contains compression/decompression components using theZip algorithm. Details

of these components or the reason for such a configuration are deferred to the next

Section. The focus of this section is on the runtime overhead incurred by interaction

between adjacent components along the path, i.e. the cost of composition.
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Figure 9.3: An augmented path for the web access application.

Figure 9.4 shows the overall timeline for the path when a HTML page and six

embedded JPEG images are downloaded. This timeline is broken down into individ-

ual operations performed by the CANS execution environment and the components

themselves for processing a single text and image packet. The original client request

results in the downloading of the text portion of the page, and is followed by requests

for each of the six contained images. A request is sent to the web server through

N1 andN0. Text responses comprise several packets, each of which passes through

the Demultiplexer and Zip drivers on the edge server, and the Unzip and Multiplexer

drivers on the client before being delivered to the browser application. Similarly a
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response to an image request comprise multiple packets, each of which flow through

the Demultiplexer, ImageFilter, and ImageResizer drivers on the edge server and the

Multiplexer on the client before being delivered to the application.

The timeline shows that for this particular application, CANS overheads are neg-

ligible because the dominant contributor to response time is actually the round-trip

between the edge server and the central server (0.2 seconds on the text path and 0.16

seconds on the image path). Even if this were not the case, CANS run-time overheads

(shown hatched in the figure) for retrieving data from the network and supplying it

to each driver in turn are small for all but very fine-grained components (the De-

multiplexer and Multiplexer). For the components used in this experiment, CANS

incurs an average cost of about 25µs for each driver invocation, reflecting the cost

of several method calls between adjacent components, which is acceptable for most

applications.
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9.3 Effectiveness of Automatic Path Creation

To study the performance advantages obtained by using automatically generated paths,

we experimented with the web access application under a wide range of network con-

figurations and compared the performance of CANS paths with that of direct TCP

connections.

Components used with the web access applications include: single-configuration

ImageFilter and ImageResizercomponents, which can degrade image quality to a

factor of 0.2 and reduce image size to a factor of 0.2 respectively, andZip andUnzip

components, which work together to compress text pages. The load and bandwidth

factor values were obtained by profiling component execution on representative data

inputs: a web page containing 14 KB text and six 25 KB JPEG images (see Appendix

A for the profile information). In this experiment we used the same data inputs that

the components were profiled on. This is a simplifying assumption, but reasonable

given our primary focus here was evaluating whether our approach could effectively

construct the “best” communication path for different network conditions. Evaluating

the effectiveness of the approach when component characteristics may be imprecise

is examined in our next set of experiments.

To model different network conditions likely to be encountered along a mobile

access path, we defined twelve different configurations listed in Table 9.1. These

configurations represent the network bandwidth and node capacity available to a sin-

gle client, and reflect different loading of shared resources and different mobile con-

nectivity options.2 These configurations are grouped into three categories, based on
2The bandwidth between the internet server and edge server available to a single client is assumed to be
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whether the mobile linkL2 exhibits cellular, infrared, or wireless LAN-like charac-

teristics. Five of the configurations correspond to real hardware setups (tagged with a

*), the remainder were emulated using “sandboxing” techniques that constrain CPU,

memory, and network resources available to an application [10]. The computation

power of different nodes is normalized to a 1 GHz Pentium III node with 256M bytes

800MHz RDRAM.

Table 9.1 also identifies, for each platform configuration, the plan automatically

generated by CANS for the web access application. The plans themselves are shown

in Figure 9.5. To take an example, consider platform configuration 7 for which the

path creation strategy generates Plan C. The reason for this plan is as follows. Since

link L1 has high bandwidth whileL2 has moderate bandwidth, there is a need to

reduce image transmission size, which is accomplished using theImageFiltercom-

ponent. TheZip and Unzip drivers help improve download speeds by trading off

computation for network bandwidth. Both theImageFilterandZip components are

placed on the proxy server, because it has more capacity than the edge server. While

this explanation justifies the generated plan, we note that the plans themselves were

mechanically generated use the algorithms described in Chapter 5.
Figure 9.6 shows the performance advantages of the automatically generated plans

when compared to the response times incurred for direct interaction between the

browser client and the server (denotedDirect in the figure). The bars in Figure 9.6 are

normalized with respect to the best response time achieved on each platform (so lower

is better). In all twelve configurations, the generated plans improve the response time

metric, by up to a factor of seven. Note that the lower response times come at the

10Mbps.
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Platform Edge Server
(N0)

L1
Proxy Server

(N1)
L2(bps) Client (N2) Plan

1 Medium Ethernet High 19.2 K Cell Phone A
2 Medium Ethernet High 19.2 K Pocket PC A

3∗ High Fast Ethernet Medium 57.6 K Laptop B
4∗ High Fast Ethernet Medium 115.2 K Laptop B
5 Medium Ethernet High 384 K Pocket PC A
6∗ High Fast Ethernet Medium 576 K Laptop B

7∗ Medium Fast Ethernet High 1 M Laptop C
8 Medium Ethernet High 3.84 M Pocket PC D
9 Medium Ethernet High 3.84 M Laptop D
10 Medium DSL High 3.84 M Laptop B
11 Medium DSL Low 3.84 M Laptop B
12∗ Medium Fast Ethernet High 5.5 M Laptop E

Relative computation power of different node types
(Normalized to a 1 GHz Pentium III node with 128 MByte 800MHZ RDRAM):
High = 1.0, Medium =0.5, Laptop =0.5, Low = 0.25, Pocket PC =0.1, Cell Phone =0.05
Link bandwidths:
Fast Ethernet =100 Mbps, Ethernet =10 Mbps, DSL = 384 Kbps

Table 9.1: Twelve configurations representing different loads and mobile network connectiv-
ity scenarios, identifying the CANS plan automatically generated in each case.

cost of degraded image quality, but this is to be expected. The point here is that our

approachautomatesthe decisions of when such degradation is necessary.

Figure 9.6 also shows that different platforms require a different “optimal” plan,

stressing the importance of automating the component selection and mapping pro-

cedure. In each case, the CANS-generated plan is the one that yields the best per-

formance, also improving performance by up to a factor of seven over the worst-

performing transcoding path.
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9.4 Dynamic Adaptation Behaviors

To study the adaptation behavior achieved using the CANS infrastructure, we experi-

mented with the image streaming application in a dynamic network environment. The

experiment modeled the following scenario: initially a user receives a bandwidth al-

location of 150 KBps on the wireless link (L2), which then goes down to 10 KBps

in increments of 10 KBps every 40 seconds (modeling new user arrivals or move-

ment away from the access point) before rising back to 150 KBps at the same rate

(modeling user departures or movement towards the access point). The communica-

tion path is allocated a (fixed) computation capacity of 1.0 (normalized to a 1 GHz

Pentium III node) on nodesN1 andN2 respectively and a bandwidth of 500 KBps

on L1. The rationale for these choices is thatN1, N2, andL1 are wired resources

and consequently more capable of maintaining a certain minimum allocation (e.g., by

employing additional geographically distributed resources) than the wireless linkL2.

In this experiment, we started with the base mechanisms (base planning algorithm
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Figure 9.6: Response times achieved by different plans for each of the twelve platform config-
urations compared to that achieved by direct interaction. All times are normalized
to the best performing plan for each configuration.

+ global reconfiguration), and show the incremental benefits on adaptation behavior

from each of the schemes described in Chapter 5 and 6.

9.4.1 Base Mechanisms

In the first step, the components used with the image streaming example included

theImageFilter andImageResizer used in section 9.3 (which degrade image

quality or reduce image size by a factor of 0.2). As mentioned earlier, the applica-

tion requirement is for the throughput to be in the range of 8 to 15 frames per sec.

Within that range, better image quality is preferred. We started with the base planning

strategy described in Section 5.4. Since the strategy can only optimize one of these

metrics at a time, we chose to optimize throughput. The component parameters were
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Figure 9.7: Performance with the Base Planning Algorithm

obtained by profiling their behavior on a 25 KB JPEG image (quality assumed to be

1.0), one of a set of images ranging in size from 20–30KB repeatedly transmitted by

the server. The profiled values of computation load and bandwidth impact factor for

various components are listed in Appendix A.

Figure 9.7 shows the throughput and image quality achieved by the communica-

tion path over the 20 minute run of the experiment; the plans automatically deployed

by CANS are shown in the right table. The plot needs some explanation. The light-

gray staircase pattern near the bottom of the graph shows the bandwidth of linkL2

normalized to the throughput of a 25 KB image transmitted over the link; so, a link

bandwidth of 150 KBps corresponds to a throughput of 6 frames/sec, and a bandwidth

of 10 KBps corresponds to a throughput of 0.4 frames/sec. The dashed black line cor-

responds to the quality achieved by the path. The jagged curve shows the number

of frames received every second; because of border effects (a frame may arrive just

after the measurement), this number fluctuates around the mean. The plateaus in the
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Figure 9.8: Performance with Range Planning

quality curve are labelled with the plan that is deployed during the corresponding time

interval.

The results in Figure 9.7 show that the plans automatically created and dynami-

cally deployed by CANS do improve application throughput over what a static con-

figuration would have been able to achieve. However, it also points out several defi-

ciencies:

• Always trying to maximizing the throughput may sacrifice image quality unnec-

essarily, failing to meet application performance preference.

• The reconfiguration at 80 seconds from Plan A to Plan B is seemingly unex-

plainable given that it was initiated to improve application throughput, not to

reduce it. A closer examination identified this problem to be caused by the fact

that component behavior for theImageResizer component did not match

profiled behavior when the input was a filtered image as opposed to the original.

A similar problem exists for Plan C.
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9.4.2 Range Planning

To address the first problem, we applied the range planning algorithm (Section 5.5)

to this application, and obtained the result shown in Figure 9.8. Comparing with

Figure 9.7, we can see two improvements. First, the range planning system retains

Plan A for much longer than before (till 280 seconds into the experiment), choosing

not to reconfigure while the throughput is still within the desired range. Second,

the system employs an additional plan that falls between Plan A and B chosen in

Figure 9.7 and represents a tradeoff that compromises on achieved throughput (while

still ensuring that it is within the desired range) to improve quality. Such gradual

decrease/increase in image quality is desirable adaptation behavior expected by end

users.

9.4.3 Component Model

To address undesirable adaptation caused by inaccurate component parameters, we

incorporated two improvements.

First, we allowed both components in our image streaming example to take on

multiple configurations: nineFilter configurations corresponding to quality values

0.1 to 0.9, and eightResizer configurations corresponding to scale factors of 0.1 to

0.8.

Second, we exploited theclass profiling described in section 5.1.2. We profiled

the components with three types of image quality: high(1.0), medium (0.5) and low

(0.1). The parameters (comp, bwf ) of these components used in path calculation are

determined by the incoming image quality.
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Figure 9.9: Performance with Multi-Configuration Components and Class Profiling

Figure 9.9 shows the resulting performance and associated plans. There are three

obvious improvements over Figure 9.8. First, the throughput is kept in the required

range for the whole duration of the experiment (except for transition points caused by

reconfigurations). Second, the image quality changes more smoothly than what was

previously shown in Figure 9.8. Instead of 3 configurations (quality levels), there are

7 different plans, permitting smoother variations in path quality. Finally, the low costs

of switching between two configurations of the same component is reflected in tran-

sitions from plans A to B, and B to C, which hardly disrupt the achieved throughput

unlike the associated cost for introducing a new component (transition between plan

C and D).

9.4.4 Reconfiguration Overhead and Benefits of Local Reconfiguration

Reconfiguration may introduce interruptions in data transmission, therefore a short

reconfiguration time is important for providing better user experience. To investigate
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Figure 9.10: Performance of Local Reconfiguration
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Figure 9.11: Performance of Global Reconfiguration

the cost of data path reconfiguration in CANS, we used the image streaming applica-

tion, and measured the reconfiguration overhead of local and global reconfiguration.

In both cases, we measured the cost for level 3 reconfiguration, i.e. the reconfiguration

that provides exactly-once and in-order delivery semantics for data transmission.

To emphasize the difference in behaviors between local and global reconfigura-

tion, we closely examined the portion of the experiment between 400 seconds and 600
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Figure 9.12: Reconfiguration Cost

seconds, corresponding to a bandwidth range of 50 KBps to 10 KBps. Unlike global

reconfiguration which partitions theImageResizer andImageFilter portions

of the data paths in plans B, C, and D, so that they run on both nodesN0 andN1

to obtain a slightly higher value of throughput, local reconfiguration chooses to both

calculate the plan and deploy the components on the same node, thereby avoiding

the cost of coordination across nodes. The cost however is that the local reconfig-

uration does not quite achieve the same throughput as the global case, achieving 10

frames/sec instead of 12. Note that this is still within the desired range, otherwise

global reconfiguration would have been triggered.

A breakdown of the reconfiguration costs for the bandwidth change event at 480

seconds in the two cases is shown in Figure 9.12. The total reconfiguration time is

1.08 seconds and 0.35 seconds for the global and local case respectively. To map these

overheads to the 6-stage reconfiguration process described in section 6.3.1:Partition-
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Shippingis the overhead for delivering new plans to nodes (stage 1);Flush-Data

covers stages 2 and 3;Reconfigurationis the time for stages 4 and 5; and1st Message

is the time for delivering the first segment to the downstream node, i.e. stage 6.

This figure shows that the major contributors to shorter reconfiguration times in

the local mechanism are the first 3 stages of reconfiguration: shorter planning time,

which is the result of shorter network paths; and shorter overheads for partitioning the

plan, flushing data belonging to the old plan, and deploying the new plan, all of which

benefit from the fact that all required coordination occurs locally and there is less

data in transit. It should be noted that during the first 3 stages (including planning)

of reconfiguration, data keeps flowing downstream. So the suspension period of data

transmission is about 0.18 seconds for the global case and 0.12 seconds for the local

case.

Note that the time of the first three stages (including planning) basically reflects the

inertia of data paths, in which the existing path is still in use after a resource change is

detected. The difference (about 0.68 seconds) between global and local mechanisms

means that using the local mechanism can substantially increase the responsiveness

of the data path. This observation is hold out by Figures 9.10 and 9.11, which show

throughput for local and global reconfiguration mechanisms respectively. From these

figures, we can observe that the use of local reconfigurations does result in more

stable throughput during reconfiguration (look especially at the first reconfiguration

that happens at the 80 second point in the figure, which corresponds to the 480 second

point in the original experiment).
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9.5 Overall Benefits of Path-Based Approaches

To compare the performance of our approach with that of other alternatives, i.e., end-

point and proxy-based approaches, we carried out a study that characterize the per-

formance that can be achieved using each of these approaches. In particular, our goal

was to investigate the following questions: What is the performance impact of placing

constraints on adaptation location? Under which network conditions is one kind of

approach preferred over the others? Is the additional complexity of the path-based

approach, which requires distributed control over the network, really necessary?

We investigated these questions by simulating the behaviors of different approaches

in the context of a large-scale network. We compared the performance of these ap-

proaches for different network configurations, load levels, and server/clients proper-

ties. In our simulation, each of these adaptation approaches tries its best to sustain

as many connections as possible with performance of individual paths optimized as

much as possible.

In this experiment, we used the strategies described in Chapter 5 through 7 for

creating and reconfiguring paths, and managing resources. These strategies, though

designed for our path-based infrastructure, are approach-neutral in that they do not

introduce bias for any of these approaches, which differ only in the constraints on

adaptation location. These strategies can be uniformly applied to the end-point, the

proxy-based and our path-based approaches without affecting the fairness of the con-

clusions drawn from our study.
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9.5.1 Methodology and Simulation Scenario

In order to study the performance of those adaptation approaches under different net-

work conditions, we adopt a simulation-based methodology. Using a detailed simula-

tor modeling a typical large-scale network where multiple concurrently-active clients

download media content from server sites, we characterize the performance of the

three approaches — end-point, proxy-based, and path-based. We provide an overview

of our simulation scenario and performance metrics of interest below, deferring a de-

tailed description of the specific parameters to the next section.

Simulated Network. The network modeled in our simulation is depicted in Figure 9.13.

The network contains multiple ISP regions, each of which is modeled as a centralized

gateway/proxy node providing a connection to the Internet backbone. The server and

client nodes in the network are attached to one of these ISP nodes using various con-

nectivity options.

ISP1

ISPi

T1/AdslModem
Server1 Server20

Access Point 100

Backbone
ISP10

Access Point 1

Figure 9.13: Experiment Network Topology
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Application Behavior. The simulation models users connecting to server nodes from

client nodes to download and display streaming media content. The connection is

released once the download session is completed (which can happen either after the

content is completely downloaded, or when the download task is cancelled by the

user). To display the received content appropriately, the throughput of a download

path is required to be in some specific range (i.e., a certain frame rate). When the

available bandwidth is insufficient to meet the requirement, several components can

be used to reduce bandwidth consumption.

9.5.2 Simulation Settings

Application Performance Requirements In our simulation, every client downloads

continuous JPEG image frames (with an average size of 4K bytes) from a server site.

In order to display the received content appropriately, the throughput of a download

path is required to be in the range of 10 to 16 frames per seconds; within this range

higher data quality is preferred.

Possible components that can be used with these paths include animage-filterand

an image-resizer, which reduce bandwidth consumption by degrading image quality

or reducing image size respectively. As in Section9.4.3, these components support 9

and 8 different configurations respectively; in each case thenth configuration reducing

image quality or size by a factor ofn/10. Details about theload andbwf values of

each operator are shown in Appendix A.

Network Characteristics The topology of our simulated network was shown earlier

in Figure 9.13. For the results reported here, the network is assumed to comprise ten
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ISPs. Each ISP is connected to the Internet backbone via an OC48 (2.488Gbps) link

and includes 20 media servers, 100 public IEEE802.11b (6.0Mbps3) access points,

and a number of client sites.

Connectivity options for clients include T3 (44.73Mbps), T1 (1.544Mbps), ADSL

(1.5Mbps), Dialup (56Kbps), and IEEE802.11b connections (via the public access

points). The T3, T1 and ADSL links are assumed to have sufficient bandwidth for

the media application, while Dialup connections are incapable of meeting throughput

requirements without the use of compression components. For wireless connections,

available bandwidth is dependent on the load of the access point and may sometimes

necessitate compression components along the path.

At each ISP, we model the arrival of clients as a Poisson process; the arrival rate of

clients is a parameter that can be adjusted for different load levels. Once initiated, the

duration of a download session is assumed exponentially distributed with an average

of 1 minute.

Media servers within each ISP fall into one of two configurations. One fourth of

the servers are categorized aslarge sites, with high-bandwidth connections to the ISP

node (via an OC12 link operating at 622Mbps) and a computation budget uniformly

distributed between 100 to 200 units.4 The remainder three fourth of the servers are

categorized assmall sites, with relatively lower-bandwidth connections to the ISP

node (an OC3 link operating at 155Mbps) and a smaller computation budget uni-

formly distributed between 10 and 100 units.
3We assume a 55% bandwidth utilization of an IEEE802.11b network.
4One unit is normalized as a computer with a Pentium III 1GHZ processor and 256MByte 800MHz RDRAM.
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Adaptation Approaches Our simulation considered five different adaptation approaches:

the end-point approach, the proxy approach, an approach that uses servers in addition

to proxies (labeled asserver+proxy), the path-based approach, and a path-based ap-

proach without reconfiguration support (labeled aspath-reconfig). The last approach

clarifies the benefits of dynamic adaptation; communication paths in this approach

can adapt to different network conditions only at path-creation time. As mentioned

earlier, the first four approaches represent different constraints on where adaptation

is allowed. For theend-pointapproach, only the server node and the client node of

a communication path can be involved in adaptation. Theproxyapproach is allowed

to use client nodes and client-side ISP nodes. Theserver+proxyapproach represents

an intermediate point, which, in addition to nodes used by the proxy approach, can

also use server nodes for adaptation. Finally, thepathapproach can use all four nodes

along a communication path: the server node, the server-side ISP node, the client-side

ISP node, and the client node.

To make a fair comparison between these approaches, our studies used the same

total computation resource budget in each case.5 In the end-point approach, all re-

sources reside on server sites. For the proxy approach, all resources on server sites

are aggregated on the ISP nodes they attach to. For the server+proxy approach and

the path approach, a portion of the computation budget of every server site is moved

to its ISP node using the strategy described in Section 7.2. The redistribution assumes

that requests from clients are uniformly distributed among all server sites. Our study
5The computation budget refers only to resources available for path transcoding and compression operations.

Sufficient resources are assumed available on the server and proxy nodes for data retrieval from disk and forward-

ing through the protocol stacks.
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also examines situations where this assumption does not hold, providing insights into

how performance is affected by inaccuracies in client traffic models.

Performance Metrics. Our simulations characterize two major performance metrics.

The first is the aggregate time of all paths when the throughput of the path is in the

desired range. We refer to this as theInRange time, i.e., the time where paths stay

in the InRange state of the state diagram shown in Figure 7.1. Another possibility

for this is the aggregateInRange time weighted by data quality of the communi-

cation path. Because we have observed the same behavior between the “weighted”

and “original” InRange time in our experiments, we report only on results for the

original InRange time.

The second performance metric is the total number of connection failures due

to insufficient resources. Connection failures result from admission control, which

actively rejects any incoming connection request if the initial planning cannot produce

a communication path that meets the performance requirements.

In addition to the aggregate performance data for the whole network, we also col-

lected data for different types of servers and clients to further examine how different

adaptation approaches perform towards different types of servers or clients. In partic-

ular, we report on data of server sites that have the maximum or minimal computation

budget (i.e. computation resources before redistribution for the path-based approach),

and of clients that use different connectivity options.

Reconfiguration Overheads Path reconfiguration overheads in our study are modeled

after the reconfiguration process described in Section 6.3.1. Specifically, it contains
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the following six parts:

• Detection of changes in resource availability. In our simulation, network re-

sources themselves are responsible for allocating partitions for individual paths

(using the strategy described in Section 7.1.1). Therefore, the delay of detecting

a change of resource availability is basically the time for delivering notifications.

Since a notification is a small message that can be embedded in the regular data

stream,6 we model the delivery time as the total network link latency between

the resource and the receiver.

• Planning. In general, the time for calculating a new path is highly dependent

on the planning algorithm, but can be significantly reduced by employing a path

cache of previously generated solutions. Given that attributes of most paths in

our study (content type, client connectivity, resource availability) are likely to

be clustered in a small range, we expect a high hit rate from such a cache. Con-

sequently, we assume that planning incurs negligible overhead, modeling the

situation where new plans are almost always obtained directly from the cache.

• Distribution of the new plan. New plan partitions need to be distributed to every

node, participating in the reconfiguration, along the communication path. This

is done by sending, in parallel to all these nodes, a data packet containing the

plan partition of the receiving node. The packet itself has a size that is plan-

dependent, and incurs latency dictated by the available bandwidth allocated to

the path.

• Flushing data in transmission. The protocol ensures semantic continuity of data
6For example, the outbound data mechanism in TCP can be used for delivering such notifications.

146



transmission by flushing any incomplete data segments in transmission or in-

ternal state built up in operators (see Section 6.3). We model the overhead of

this step in the simulation as the time required for transmitting the required seg-

ments.

• Deployment of new operators. Because operators are reusable and contain only

soft state, the time for replacing old components with new operators on a node

is usually a constant. In our study we use a value of 100 milliseconds, which is

consistent with that observed in our previous experimentation with the CANS

infrastructure (Section 9.4.4).

• Resumption of data transmission. The final step resumes data transmission

through the new path. In the simulation, this step is assumed to incur negli-

gible overhead.

In the rest of this section, we first report on the performance achieved by differ-

ent adaptation approaches with client traffic uniformly distributed among the vari-

ous server sites for a particular client connectivity profile. We then separately exam-

ine how performance is affected by non-uniform traffic distribution (where “hotspot”

servers receive a larger share of the connection requests), and when the client connec-

tivity profile is changed (with different fractions of clients using high-bandwidth and

low-bandwidth links). In each case, we simulate the network for 4 minutes, recording

data only for sessions that are started within the last 2 minutes, i.e. after the network

reaches a stable state (recall the average length of a download session is 1 minute).

The measurement ends at the 4 minute mark.
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Figure 9.14: Aggregate Performance under Uniform Load Distribution.

9.5.3 Performance under Uniform Load Distribution

This configuration uniformly distributes client requests among all server sites, varying

client arrival rates at each ISP from 10 to 250 clients per second. These rates corre-

spond to 6000 to 150,000 active paths simultaneously existing in the network. The

client connectivity profile is fixed as follows: 25% use links with sufficient bandwidth

(T1/T3/ADSL), 25% use Dialup, and the remaining 50% use wireless connections.

We examine the impact of changes from this profile later in Section 9.5.5.

Analysis of Aggregate Performance

The aggregate performance achieved by different adaptation approaches for this con-

figuration is shown in Figure 9.14. From Figures 9.14(a) and (b), it can be observed

that all four adaptation approaches that include reconfiguration support perform very

well when the network is lightly loaded. However, after the load increases to some

level (client rate=80 in Figure 9.14(a)), the performance of the proxy approach is the

first to reach saturation. This is explainable by the following: since adaptation can

only occur on the node before the last hop, all paths end up consuming considerable
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bandwidth in the network core, consequently saturating this portion of the network

much faster than other approaches. Once the network gets saturated, further increases

in InRange time are still possible, albeit at a much smaller rate, because of local loops

(a client downloads contents from a server that is attached to the same ISP).

Compared with the proxy approach, the end-point approach performs better (with

higher InRange Time and fewer connection failures), especially after the “saturation”

point of the proxy approach. This is expected because the end-point approach uses

server sites to do image filtering or resizing, and does not waste bandwidth on the

network links. However, it can also be observed from the Figure 9.14(b) that the

end-point approach starts to reject connections early, even when the network is lightly

loaded. These rejections mainly come from clients that use weaker links such as

Dialup to access small sites with limited computation capacity.

Figures 9.14(a) and (b) also show that the path-based approach provides the best

performance at all load levels. The InRange time of the path-based approach is up

to 12% and 97% higher than that of the end-point approach and the proxy approach

respectively. The number of connection failures of the path-based approach is also

much lower. For example, for a client rate of 200 connections/second, the end-point

approach rejects 59% more connections and the proxy approach rejects about 343%

more connections than the path approach. The reason for this behavior is because

the path-based approach combines the advantages of both proxy and end-point ap-

proaches. On one hand, similar to the end-point approach, the path-based approach

can utilize upstream nodes along a communication path to ensure that network band-

width is not wasted; and on the other, similar to the proxy approach, the path-based

approach can set up shared resource pools across the network, permitting overloaded
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Figure 9.15: Performance of Different Client Classes under Uniform Load Distribution.

servers to benefit from spare computation resources elsewhere.

The performance of the server+proxy approach falls between the path-based ap-

proach and the end-point approach, which verifies that allowing adaptation to happen

on even one more node in the middle of the communication path can improve overall

performance.

Performance of Different Clients

Figures 9.15(a) and (b) show the performance (InRange time (normalized with re-

spect to the total session time)) of the adaptation approaches from the perspective of

different client classes, i.e., clients connected to the network with sufficient bandwidth

versus those that use weaker connections. We can observe that while the proxy ap-

proach exhibits a more or less uniform behavior, the end-point approach demonstrates

considerable preference for clients with better connectivities over others. The path

approach, in addition to providing the best performance, uniformly supports different

classes of clients until one runs out of computation resources beyond a certain load

level. At this point, all approaches end up rejecting more clients with weak connectiv-
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Figure 9.16: Performance of Different Server Classes under Uniform Load Distribution.

ity because they require more computation (image filtering and resizing operations)

along the paths.

Performance of Different Server Sites

Comparing between Figures 9.16(a)–(d) allows us to draw conclusions about how the

different adaptation approaches perform from the perspective of connections targeting

servers with higher or lower computation budgets. The results indicate that the end-

point approach shows a distinct bias, performing much better with the largest server

than with the smallest one. The proxy approach performs uniformly with both servers,

primarily because all computation resources are aggregated at proxy sites. The path-
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based approach performs as well as the end-point approach for the largest server, and

performs the best for the smallest server. This can again be explained by the flexibility

brought by resource sharing and being able to use upstream nodes to do adaptation.

Another point deserving mention is the performance decrease of the server+proxy

approach in Figure 9.16(c) for client arrival rates higher than 90 connections/second.

This can be explained as follows: after load increases to the point where the small-

est server runs out of computation resources, other server nodes continue to support

filtering or resizing components because they have additional computation capacity.

Since compressed connections (with components) consume less bandwidth than un-

compressed ones, accepting more compressed connections for these servers can in

turn decrease the number of uncompressed connections to the smallest server because

the size of resource shares in the core network links shrinks as more compressed con-

nections join in. Consequently, for the smallest server, the InRange time drops and the

number of connection failures increases as load increases. Note that the path-based

approach avoids this situation by exploiting resource pooling at server-side proxies.

Performance Impact of Dynamic Reconfiguration

The plots in Figure 9.14 also show that there is a considerable performance penalty

incurred for disallowing reconfiguration after the path has been created. This validates

the need for areactivemechanism to cope with dynamic changes. In general, different

types of paths may have different requirements on network resources (e.g. some of

them may require more bandwidth while others may need more computation). As

load changes, it is necessary to adjust allocated shares of existing paths in order to
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accept more connections.7 Without reconfiguration support, adjustments for one path

may end up pushing other paths out of the required range, and thereby negatively

impact the overall performance.

Another detail that should be mentioned about the path-reconfig approach is the

ramp-up at the end of Figure 9.14(c). This can be explained as follows: as the number

of client connections increase, the number of partitions of network resources grows

while decreasing the size of each partition. Eventually, it becomes difficult for clients

who use weak connections to successfully connect to servers because the partition

of computation resources is too small to perform the required image filtering and/or

resizing operations. As a result, a large number of such connections end up getting

rejected. On the other hand, connection requests from clients with higher bandwidth

links continue getting accepted. Moreover, because more compressed paths are re-

jected, the likelihood that an uncompressed path will get pushed out of the required

range decreases. This results in increased normalized InRange time for clients who

use T3/T1/ADSL links.

9.5.4 Performance under Non-Uniform Load Distribution

This configuration examines how different adaptation approaches perform when con-

nection requests from clients are directly non-uniformly towards servers. Similar to

load patterns observed on the Internet, we assume a “hot-spot” model, where a small

portions of servers (the hot-spots) receive most of the requests from clients. Specifi-

cally, 20% of the servers receive 80% of the total requests. We further ensure that the
7One can argue that using reservations may eliminate the need for dynamic adjustments, but such approaches

usually have poor throughput (sustain fewer connections) as load dynamically changes
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Figure 9.17: Aggregate Performance under Non-Uniform Load Distribution.

average load of large sites (i.e., sites with an OC12 link and computation budget uni-

formly distributed in the range [100,200)) is about 4 times the average load of small

sites (i.e., sites with an OC3 link and computation budget uniformly distributed in the

range of [10,100)).

Figures 9.17–9.19 show the performance achieved by the different approaches.

The organization of the plots is similar to that seen earlier in the previous section.

There are several observations that one can make here. First, focusing on aggregate

performance, we see that the overall ranking of performance among these adaptation

approaches remains the same as in the uniform distribution case. However, the total

InRange time is noticeably lower than the values we saw in Section 9.5.3. This is

expected because the overloaded hot-spot servers cause increased connection failures.

Second, the relative performance of the path-reconfig approach is worse than seen

earlier. This verifies our intuition that such an approach performs poorly when some

portions of the network get overloaded; due to the absence of reconfiguration, existing

paths cannot be adjusted to take advantage of surplus resources in network regions that

are lightly loaded.
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Figure 9.18: Performance of Different Client Classes under Non-Uniform Load Distribution.

Looking at performance seen by clients with different connectivity options, the

overall trends mirror those seen for uniform traffic. Figure 9.18(a) is a little different

from the corresponding plot in Figure 9.15(a) in that the end-point approach gets the

highest normalized in-range time for clients using T3/T1/ADSL connections. This

value comes at the cost of more connection failures for clients with weak connec-

tions (recall that 75% of all clients use dialup/wireless connections). The aggregated

InRange time of the path-based approach is still the best among the five approaches.

Looking at the performance from the perspective of servers with the maximum

and minimum computation budgets (Figure 9.19, it can be observed that the path-

based approach outperforms all other approaches. This again verifies the benefit of

resource sharing in the network: overloaded sites can always take advantage of spare

computation resources elsewhere. This is true even for sites that have a large amount

of computation resources, because there will be a load level that causes these sites to

become overloaded. The end-point approach performs poorly on sites with smaller

computation budgets. The proxy approach exhibits the same behavior, independent

of computation budget, as in the uniform distribution case. However, as before, the
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Figure 9.19:Performance of Different Server Classes under Non-Uniform Load Distribution.

problem of bandwidth waste results in the network core becoming an early bottleneck

as load increases.

A more interesting point with this set of results is that they used the same resource

distribution between server and ISP nodes as in Section 9.5.3, namely one thatas-

sumes a uniform load distribution. This is important because load distributions at

run-time are likely to be different from what is considered when deciding about how

to provision resources in the network. Our results show that the path-based approach

still performs very well even with an inaccurate knowledge of load distribution. This

robustness mainly comes from the shared resource pools across the whole network
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Figure 9.20: Performance under Different Client Connectivity Profiles.

that act like “buffers”, absorbing most negative impact because of the unexpected

load.

9.5.5 Performance under Different Client Connectivity Profiles

In this configuration, we examine how the different adaptation approaches perform

when different fractions of clients use different connectivity options. The simulations

run with the same settings as in Section 9.5.4 with only two differences: the client

arrival rate was fixed at 100 users per second, and we varied the percentage of clients

that use weak connections (dialup or wireless) from 0 to 100 percent (the ratio be-

tween numbers of clients that use dialup and wireless connections was maintained at
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1:2).

Figure 9.20(a)–(d) shows the performance results. One can observe that among the

four approaches with reconfiguration support, the end-point approach is the only one

that exhibits decreasing performance as more clients use weak connections while the

other three approaches achieve relatively stable performance across different config-

urations. Because the end-point approach does not support resource sharing, smaller

sites or overloaded sites end up rejecting many connection requests once they run out

of computation resources.

It can also be seen that the path-reconfig approach performs better when the client

connectivity profile is more uniform. This can be explained as follows: as more

paths exhibit similar behavior (i.e., have similar resource requirements), there is lower

likelihood that an existing path will get pushed out of its required performance range

by the arrival of a new connection. Stated differently, the more heterogeneous the

environment, the larger the need for dynamic reconfiguration.

Some clarification is needed for the increasing InRange time achieved in Fig-

ure 9.20(a) by the server+proxy approach as more clients use weak connections.

While this may appear counter-intuitive, the following explains this behavior. Con-

sider what happens when clients use connections that have sufficient bandwidth. As

load increases, initially modest compression (filtering/resizing) will be introduced into

the paths and executed on the server sites. As the number of connections further in-

creases, the size of partitions on the server sites will eventually become too small to

do the required compression. Consequently, after this point, the network core starts

become a bottleneck and once it does, new connections end up getting rejected. Note

however that when this happens, the proxy sites close to clients remain underutilized
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because they are ineffective for reducing bandwidth requirements in the network core.

On the other hand, the situation is different when most of the clients are using weak

connections. Due to the limited bandwidth of weak connections, strong compression

will be required at the server sites from the beginning. The strong compression results

in considerable saving in bandwidth in the network core. Therefore, as load increases,

some of the new connections can take advantage of the saved bandwidth in the net-

work core and do compression at the client side proxy sites. As a result, the utilization

of the proxy sites is high and more connections are accepted.

The above behavior also provides further evidence for the benefits by using addi-

tional nodes in the data path to perform adaptation operations.

9.5.6 Summary of Simulation Results

The main results from our study are summarized below:

1. Support for dynamic reconfiguration is important for the performance of both

individual paths and the whole network.

2. The end-point approach usually works well with server sites that have a large

amount of computation resources and for clients that connect to the network

with relatively high bandwidth links. However, servers that have limited com-

putation capacity or clients that use weak connections may suffer from poor

performance using such an approach.

3. The proxy approach usually does not exhibit bias towards different types of

servers or clients. The shared resource pool at proxy sites can bring better per-

formance for small server sites or clients that have weak connectivity. However,
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constraining the adaptation to only occur before the last hop can cause consider-

able resource wastage in the network, in turn leading to early saturation as load

increases.

4. The path-based approach has all the benefits of both end-point and proxy ap-

proaches. Adaptation can be conducted on upstream nodes without being lim-

ited to the node before the last hop. More importantly, the approach sets up

shared resource pools across the whole network, providing the most flexibility

for overloaded servers to benefit from spare computation resources elsewhere.

In summary, with effective resource management strategies, this approach pro-

vides the best and the most robust performance under different network config-

urations.

9.6 Summary

In this chapter, we have presented an extensive evaluation of our framework, under

different network configurations and using different applications. We carried out our

experiments by running typical applications on top of the CANS infrastructure, and

simulating our schemes for large-scale networks. The experimental results validate

our approaches, verifying that:

• Network awareness in data communication can be provided to regular applica-

tions by injecting application specific functionality into the network and letting

the underlying infrastructure control such paths.

• Network-aware communication paths created with our automatic path creation

strategies provide applications with considerable performance advantages.
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• Fine tuned, desirable, and continuous adaptation behaviors can be constructed

using our strategies for path creation and reconfiguration.

• The run-time overheads of the CANS infrastructure are negligible, and recon-

figuration cost is small for most applications, and can be further substantially

reduced by our local mechanisms.

• Compared with adaptation using end-point or proxy-based approaches, CANS-

like path-based approach provides the best and the most robust performance for

different servers/clients under most network conditions.
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Chapter 10

Summary and Future Work

In this chapter, we summarize the work presented in this dissertation, discuss future

work, and our perspective on the longer term implications of this work.

10.1 Summary

We observe that network awareness in data communication is important for accessing

services across the Internet. In addition to transmitting data like a conventional com-

munication path, a network-aware communication path is capable of automatically

and continually adapting to different underlying network conditions according to ap-

plication requirements. This dissertation proposes a general framework for providing

various applications with network-aware communication paths.

To continually match application requirements with underlying network condi-

tions, application specific functionality, organized in the form of components with

a well-defined interface, is dynamically injected into the communication path; the
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underlying infrastructure is used for creating and controlling such communication

paths and managing resources across the network. The former (application specific

functionality) allows applications to customize its data communication requirements,

while the latter (underlying infrastructure) provides common support for realizing

network awareness. Combining these two together, regular (legacy) applications can

easily be augmented with adaptation capabilities, requiring only high-level input from

applications.

Compared with end-point or proxy-based approaches, network awareness in our

framework is realized throughout all (possible) network resources along communica-

tion paths.

To build a path-based infrastructure to support network-aware communication

paths, several challenging problems need to be addressed before this vision could

become reality. These problems were the focus of this dissertation. In particular,

we have presented solutions for the following previouslyopenquestions: 1) how to

model and organize application specific functionality so that adaptation operations can

be separated from other parts of the application, and control logic of communication

paths can be extracted and built into the underlying infrastructure? 2) How to auto-

matically construct thebestpath based on application requirements and network con-

ditions? 3) How to efficiently modify such paths when network conditions change? 4)

How to efficiently manage network resources across the network? Solutions for these

problems are indispensable for any practical deployment of a path-based infrastruc-

ture.

Below, we briefly review our key schemes.
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Dynamic Composition and Type-Based Modeling In our framework, application spe-

cific functionality is organized in the form of components with a well-defined inter-

face. To separate path creation/adaptation logic from the application itself, our frame-

work constructs communication paths by dynamically composing different compo-

nents together. Dynamic composition is supported by the component interface and

a high-level type specification of component behaviors. The use of the component

paradigm make our framework highly extensible: the functionality contained in the

infrastructure grows as new components being added in; besides, application devel-

opment is completely independent from component authoring, so is the latter from

that of other components. More importantly, such a composition view lays a solid

foundation for extracting common logic for creating and controlling network-aware

paths for inclusion at the infrastructure level.

Automatic Path Creation Strategies In our framework, network-aware communica-

tion paths are created usingautomatic path creation strategies. Our strategies can

produce communication paths with optimized performance in accordance with ap-

plication requirements and underlying network conditions, requiring only high-level

information from applications. Such automatically generated paths, in addition to

providing applications with considerable performance benefits (i.e. throughput, la-

tency, or data quality etc.), can also address other requirements such as required data

format (when different from that of the data source), security guarantees etc., which

are effected by the characteristics of the network resources along the path.

Our path creation strategies are very flexible in that they can be used with appli-

cations with very different performance requirements, i.e., some may need to max-
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imize/minimize some performance metrics while others may demand the guarantee

of some performance metric being in a specific range with other performance met-

rics optimized. The calculation of such network-aware communication paths does not

require a centralized entity or global knowledge (except for commonly used types)

across different network domains, and can be built incrementally in a distributed fash-

ion. Furthermore, in addition to building a whole new path, our path creation strate-

gies can also be used to replace small portions of an existing path while maintaining

some overall performance guarantees. This is very important for our vision of net-

work awareness: every segment of a communication path can continually adapt to

changes in the network, independently and concurrently.

Dynamic Path Reconfiguration To provide applications with dynamic adaptation, our

framework includes system support forlow-overhead dynamic path reconfiguration.

Path reconfiguration is controlled completely by the underlying infrastructure so that

the application can concentrate on its own “business” logic.

The reconfiguration process is quite flexible in that different applications are al-

lowed to customize different levels of semantic continuity guarantees for data trans-

missions when reconfiguration occurs. In addition to modifying the whole communi-

cation path (which is called global reconfiguration), our reconfiguration strategies also

support independent and concurrent modification of small portions of the path (called

local reconfiguration). When network conditions change, local reconfigurations will

be tried first, with global reconfiguration being triggered only if local reconfigura-

tion cannot effectively cope with the change. Such a multiple-level reconfiguration

is not only important for adaptation agility but also for use of such an infrastructure
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with long communication paths, which usually span multiple network administrative

domains.

Combining the support for path creation and reconfiguration together, our frame-

work provides various applications with fine-tuned, desirable adaptation behaviors

for dynamic changes in the network. Since when and how to adapt is completely con-

trolled by the underlying infrastructure, network-oblivious applications can be aug-

mented with adaptation capabilities.

Distributed Resource Management Deploying such a path-based infrastructure re-

quires a large network of infrastructure-enabled nodes that overlay on existing Internet

infrastructure to run computation required by these augmented paths. Our framework

includes distributed strategies for managing network resources among different com-

munication paths and different network regions. By efficiently allocating and adjust-

ing resource shares of multiple communication paths, our strategies provide individual

paths with good performance and improve the throughput of the whole network, i.e.,

increase the number of connections can be sustained. Moreover, our framework con-

tains a hierarchical model and a corresponding algorithm to set up shared resource

pools across the network. By distributing computation resources across different net-

work domains, the overall performance of the whole network gets improved because

overloaded network regions can make use of shared resources from others.

The CANS infrastructure Our framework is realized as a Java-based programmable

network infrastructure called Composable Adaptive Network Services (CANS). CANS

is built from the ground up to provide applications with network-aware communica-
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tion paths. Extensive experiments have been carried out with different applications

running on top of CANS. The results validate the effectiveness of our schemes.

10.2 Conclusion

Our framework provides a complete set of solutions for building a path-based in-

frastructure that provides applications adaptation capability to changes in the net-

work using network-aware communication paths. By building these solutions into a

programmable network infrastructure (CANS) and with extensive experiments using

typical Internet applications, we have verified that

• Automatic path creation and reconfiguration are achievable and do in fact yield

substantial performance benefits.

• Our approach is effective at providing applications that have different perfor-

mance preferences with fine tuned, desirable adaptation behaviors.

• Despite the flexibility, the overhead incurred by the CANS infrastructure is neg-

ligible, and the cost to reconfigure data paths is acceptable for most applications.

Additionally, these costs can be further reduced substantially using local plan-

ning and reconfiguration mechanisms.

• The resource management strategies are effective in improving both individual

path performance and resource utilization of the whole network.

• Compared with alternative end-point and proxy-based approaches, using a CANS-

like path-based approach to realize network awareness throughout the entire

communication path not only results in better responsiveness to changes in the
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network, but more importantly provides the flexibility of adaptation anywhere

and resource sharing across the network, allowing overloaded network regions

to take advantage of spare resources from other parts of the network. This makes

such a path-based approach the best and the most robust way for delivering sat-

isfactory performance across the network.

In conclusion, this dissertation has presented a general framework that provides

applications with network-aware communication paths. These paths, which are au-

tomatically created by the underlying infrastructure, can further continually adapt to

dynamic changes in the network. To the best of our knowledge, our work is among

the first providing such network awareness in the context of a general framework.

10.3 Future Work

There are two issues that have not been completely integrated into our framework:

security concerns and resource monitoring across the network. These two problems

are relatively independent of the focus (on network awareness) of this dissertation

in that the support for distributed authentication, secure execution of mobile code,

and information about resource availability required by our framework are likely to

be important features of other distributed systems as well. There is already a large

body of literature on these topics, and several proposals. In the near future, the work

described in this dissertation can be extended as follows.
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10.3.1 Security Concerns

Security concerns are raised by the need for deploying and executing mobile code

along communication paths that span multiple administrative network domains. This

requires distributed authentication mechanisms as well as a secure execution environ-

ment for mobile code. Distributed authentication (and trust management in general)

frameworks (such as PolicyMaker [8], KeyNote [7], Taos [56], and dRBAC [20]

etc.) allow users to express distributed trust relationships, such infrastructures can be

integrated to control code downloading in our framework.

The current implementation of the CANS execution environment provides a se-

cure environment for running downloaded code by leveraging the the features of Java

programming language and existing security features built into JVMs [46]. By using

a custom class loader with an environment object (via which drivers can only access

the functionality of the CANS EE), execution of components from different locations

can be effectively isolated from each other. The passive interface of the CANS Driver

further makes it relatively simple to constrain how many resources can be consumed

by a particular path.

For components embedded with native code (e.g. via the JNI interface), the situ-

ation is more complicated. One way to control native code is by intercepting the JNI

interface and employing a similar controlling strategy as the commonly used sand-

boxing technique.
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10.3.2 Resource Monitoring Utility

Our framework also needs a resource monitoring utility that provides information

about dynamic resource availability. While our distributed/local versions of the plan-

ning and reconfiguration strategies greatly reduce the requirements for global infor-

mation of resource availability information, we still need efficient mechanisms for

monitoring network resources in a wide area network. Furthermore, effective filtering

mechanisms are also needed to reduce unnecessary path reconfiguration. The ap-

proaches being evaluated in existing and proposed frameworks such as Remos [16],

Network Weather Service [57], Grid Monitoring Services [61], and [37] may be used

with our framework.

10.4 Perspective

Our approach of building network-aware communication paths by dynamically and

automatically composing and managing components reveals the feasibility of inte-

grating and orchestrating between diverse functionality across the network. By com-

posing functionality from different sites to address user’s high level requirements,

individual services are no longer isolated islands that implement simple functions in a

monolithic way. Instead, the world of services is interconnected and new services can

be constructed on the fly as appropriate for the needs of different users. This vision

presents users with a network characterized by truely integrated functionality. The ap-

proach advocated in this dissertation takes this view and provides solutions for how to

model, compose, and control various functionality to meet user requirements on data

communication, providing automatic adaptation to regular applications in dynamic
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environments.

Our approach is based on a data flow view that models functionality as a map-

ping between input data and output data type while maintaining the same underlying

semantics for the processed data. Such a view is quite effective for various transforma-

tion services. However, to support compositions among arbitrary services, this view

may need to be extended for modeling behaviors of more complicated components or

services that can change the semantics of the processed data. In turn, it is likely that

the semantic description of such services may need to be extended to enable compo-

sition. We look at this as a higher level problem, which can be built on top of our

framework with new models to describe and deduce semantic information, possibly

leveraging standard ontologies such as being developed by the Semantic Web [4] and

IEEE’s Standard Upper Ontology [27] efforts.

The emergence of industry standards (WSDL [11] UDDI [13]) for describing and

searching components across the Internet reflects the increasing need for interoper-

ability across the Internet. We believe that the prospect of intelligence in the network

will eventually become reality, allowing seamless integration of functionality in the

Internet to meet various user needs. As such needs grow, underlying infrastructure

will be required to provide network-aware communication, and efficient and seamless

composition of such functionality. We view the work presented in this dissertation

as a step toward this direction and look at the infrastructure that supports construc-

tion of intelligent applications by composing functionality across the Internet as the

longer-term outcome of this work.
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Appendix A

Component Profile Information

Table A.1 lists some of the profiled values ofcomputation load factor(load , i.e.,

number of operations for each byte of incoming data) andbandwidth impact load

factor (bwf ) of the components used in this dissertation. Table A.1(a) lists these

values of drivers that have only a single configuration:zip , unzip , Encryption

and Decryption . The data used in the profiling is a typical HTML page with

the size of 14 K bytes. Table A.1(b), (c) show the values ofImageFilter and

ImageResizer respectively, both of these drivers support multiple configurations.

The profiling used a typical high-quality JPEG image with the size of 25K bytes

(profiling results using images of medium and poor qualities are omitted for brevity).

A.1 Profiling with different data sizes

We model the performance characteristics of a driverc using itscomputation load

factor (load(c)), the average per-input byte cost of executing the component, and the
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Driver load (op/byte) bwf

Zip 0.133 0.3175

Unzip 0.118 3.15

Encryption 0.435 1

Decryption 0.435 1

(a) Parameters of Single Configuration Drivers

Configuration 1 2 3 4 5 6 7 8

Resizing 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

load (op/byte) 2.786 3.070 3.806 4.316 4.674 5.301 6.295 6.939

bwf 0.121 0.195 0.287 0.389 0.488 0.606 0.710 0.847

(b) Parameters of ImageResizer

Configuration 1 2 3 4 5 6 7 8 9

Image Quality 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

load (op/byte) 2.552 2.590 2.602 2.642 2.652 2.733 2.746 2.707 2.771

bwf 0.271 0.402 0.531 0.574 0.751 0.87 0.961 1.055 1.411

(c) Parameters of ImageFilter

Table A.1: Profiled Parameter of Components

bandwidth impact factor(bwf(c)), the average ratio between input and output data

volume. This linear model is based on profiling we have conducted with various com-

ponents. Here, we present a subset of these profiling results using theImageFilter
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and theImageResizer components. For this experiment, we profiled the perfor-

mance ofImageFilter and theImageResizer with a set of image files of sizes

ranging from 21K bytes to 221K bytes.

Figure A.1 shows the computation time of these two components for processing

these images. It shows that the computation time is basically linear with the size of

input data, and the values ofbwf remain almost constant with only small variations.

Though there could be some unusual components that exhibit different performance

characteristics, whose computation load is not linear with the size of incoming data,

the result validates that (load(c) andbwf(c) are reasonable approximations for mod-

eling performance characteristics of regular components.

A.2 Profiling Component Composition

We also need to verify that the linear approximation remains valid when multiple

components are execution together in the same execution environment. To observe the

performance under component compositions, we profiled the computation time of the

composition ofImageResizer andImageFilter , both of which are configured

to use the 5th configuration. The profiling used the same set of image files as the

previous experiment. Figure A.2 shows the profiled result, and compares it with the

expected values calculated using our approach: The expected value is calculated using

s · (load(Resizer5) + bwf(Resizer5) · load(Filter5), wheres is the input image size.

This figure verifies that the calculated values using our approach are very close to the

actual values we measured, thus verifying the linear model works for composition.
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Appendix B

Emulating Real Network Behaviors

Using Sandboxing

To investigate the performance of our framework in a wide range of network configu-

rations, in our experiments described in Chapter 9, we extensively used a sandboxing

toolkit to emulate different network conditions. The sandboxing toolkit [10] (de-

signed by Chang et al.) can be used to control resource consumption of applications

by intercepting system calls between the applications and the underlying operating

system. Taking the example of network resources, the sandboxing toolkit emulates

links with different bandwidth properties by constraining the rate at which applica-

tions are allowed to send/receive data. Experimental results presented in [10] verify

that this toolkit can effectively control application usages of CPU, memory, and net-

work bandwidth.

However, because the purpose of our experiments is to study adaptation behaviors

of applications, the effectiveness of the emulation with the sandboxing toolkit needs

176



to be studied for validating our experimental results. This is especially the case for

some of our experiments, where we used the sandboxing toolkit on a local network

to emulate some “logical” network links that may involve multiple hops (e.g. the

connection between the edge server and the proxy server in Section 9.1).

To examine the differences between the behaviors of a real network configura-

tion and the behaviors emulated using the sandboxing toolkit, we conducted an ex-

periment, using the image streaming application described in Chapter 9. In this ex-

periment, we compared the behavior of the application when running in a real net-

work configuration with that on the emulated one (i.e. in a LAN with the sandboxing

toolkit). For the real network configuration, we run the image client on a laptop using

a wireless network (IEEE802.11b) in our lab, downloading images from an image

server running on elsewhere on campus. Including the last wireless connection, there

were a total of 6 hops between these two machines1. For the emulation, we run

the application in a 100Mbps Ethernet LAN connected with a Ethernet switch, and

emulated the behaviors of the real network configuration by using the sandboxing

toolkit to constrain data transmission between the server and the client applications to

correspond to the measured bandwidth value in the real configuration.

The bandwidth measured between these two nodes in the real network configura-

tion was 542KBps. The average size of the image files used in this experiment was

24K bytes. The measured throughout in the real network configuration was 21.87

frames per second. The emulation provided a throughput of 22.30 frames per second,

validating that the sandboxing toolkit is effective in emulating the overall performance

characteristics of a real network configuration.
1Determined by using thetracerouteutility
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Figure B.1: Arrival Interval of Individual Image Frames

To further examine the microscopic behaviors of these two cases, we recorded the

arrival interval of individual image frames. The result is shown in Figure B.1. In this

Figure, the x-axis denotes the image frame sequence numbers, and the y-axis denotes

the interval between the arrival times of two consecutive frames. Figure B.1(a) shows

that the interval values in the real network configuration are clustered around 0.04

to 0.05 seconds. Figure B.1(b) shows that in the emulation, the values of arrival
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Figure B.2: Averaged Arrival Interval Time for Every Two Adjacent Image Frames

intervals are clustered in two groups: about half of the frames have a value of 0.04

seconds, and the other half a value of 0.05 seconds. This behavior is mainly due to

the accuracy limitation of the fine-grained timer used by the sandbox implementation,

which can only support accuracy at a granularity of 10 milliseconds. To account for

this implementation artifact, we examined the average of the interval values for every

2 adjacent frames (ti = (ti +ti+1)/2). The result is shown in Figure B.2, which shows

the averaged value of arrival interval is 0.045 seconds, a close match to that seen on

the real network.

Our results show that despite the behaviors emulated by the sandboxing toolkit not

being exactly the same as that on a real network configuration, the former provides a

very close approximation. Therefore, we conclude that for the specific experiments

undertaken in this dissertation, the use of the sandboxing toolkit should not affect the

conclusions drawn from our experimental results.
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