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Abstract

Despite increases in network bandwidth, accessing network services across a wide
area network still remains a challenging task. The difficulty mainly comes from the
heterogeneous and constantly changing network environment, which usually causes
undesirable user experience for network-oblivious applications.

A promising approach to address this is to provide network awareness in com-
munication paths. While several such path-based infrastructures have been proposed,
the network awareness provided by them is rather limited. Many challenging prob-
lems remain, in particular: (1) how to automatically create effective network paths
whose performance is optimized for encountered network conditions, (2) how to dy-
namically reconfigure such paths when network conditions change, and (3) how to
manage and distribute network resources among different paths and between different
network regions. Furthermore, there is poor understanding of the benefits of using the
path-based approach over other alternatives.

This dissertation describes solutions for these problems, built into a programmable
network infrastructure called Composable Adaptive Network Services (CANS). The
CANS infrastructure provides applications with network-aware communication paths

that are automatically created and dynamically modified. CANS highlights four key

Vi



mechanisms: (1) a high-level integrated type-based specification of components and
network resources; (2) automatic path creation strategies; (3) system support for low-
overhead path reconfiguration; and (4) distributed strategies for managing and allo-
cating network resources.

We evaluate these mechanisms using experiments with typical applications run-
ning in the CANS infrastructure, and extensive simulation of a large scale network
topology to compare with other alternatives. Experimental results validate the ef-
fectiveness of our approach, verifying that (1) the path-based approach provides the
best and the most robust performance under a wide range of network configurations
as compared to end-point or proxy-based alternatives; (2) automatic generation of
network-aware paths is feasible and provides considerable performance advantages,
requiring only minimal input from applications; (3) path reconfiguration strategies
ensure continuous adaptation and provide desirable adaptation behaviors by using au-
tomatically generated paths; (4) both run-time overhead and reconfiguration time of
CANS paths are negligible for most applications; (5) the resource management and
allocation strategies allow effective setting up shared resource pools in the network

and sharing resources among paths.
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Chapter 1

Introduction

1.1 Motivation

The role of the Internet has undergone a transition from simply being a data repository
to one providing access to a large set of sophisticated network-accessible services such
as e-mail, banking, on-line shopping, and entertainments.

However, accessing network services across a wide area network still remains a
challenging task. This is especially the case as an increasing number of users use
portable devices such as PDAs, Pocket/Handheld PCs, cellular phones and two-way
pagers with a variety of networking options ranging from Bluetooth [28] to Wireless
3G [54]. Examining a typical communication path between a client application and
the visited server (as shown in Figure 1.1), one can observe that the path usually in-
volves multiple links. These links can have very different bandwidth, delay, and error
characteristics, ranging from serial links to wireless to broadband to fiber. In addition

to these differences in network links, the nodes along the path can also have very dif-



Optical
Backbone

Figure 1.1: Communication paths between clients and Internet services.

ferent capabilities (most true for the end device). Tables 1.1 and 1.2 list the diverse

characteristics of some of the links and devices that are currently used in the Internet.
Further complicating service access is the fact that the load on the network resources
along a communication path may change continually. When running in such heteroge-

neous and constantly changing environments, applications require quality guarantees
in data communication for delivering satisfactory user experiences. For example, a

media player may require the communication path to sustain 30 frames per second in
order to produce an appropriate display at the end devices.

Nevertheless, the Internet still remains a best-effort platform for delivering data
packets. Even with many proposals for providing Quality of Service such as QoS-
IP [24], RSVP [26] MPLS-TE [25] etc., provisioning of communication paths with
guaranteed QoS is usually expensive and may not be available for many applications.
More importantly, the low level QoS parameters may not be able to be mapped di-
rectly to application performance requirements (e.g. translating bytes per second to

application-specific frames per second). Consequently, the current situation is that



guality of data communication of applications is directly affected by the underlying
network conditions, which can result in poor performance or undesirable behavior
perceived by the end user unless the application is written to explicitly handle the
changes in network conditions.

However, what complicates the construction of such applications is the fact that
the communication abstractions provided by traditional transport protocols, instead
of exposing network conditions to applications, tries to hide them. Moreover, these
abstractions are too high-level (i.e. for all types of applications) for applications to
specify their specific requirements, not to mention to allow applications to excise any
control over data communication in their preferred fashion. For example, TCP [34]
provides applications with the abstraction of an end-to-end reliable byte stream, and
it also contains mechanisms for handling flow control and a few exceptional network
conditions (e.g. congestion). However, TCP does not allow application to specify
how to cope with the condition when the bandwidth of an individual link drops to
some level, which causes a decreased throughput at the receiving end. Such changes
require very different handling between banking applications and media streaming
applications.

The combination of these factors: heterogeneous and dynamic changing network
environment and the lack of application specific control over data communication
across the network, can cause poor performance or unsatisfactory user experiences
for network-oblivious applications.

To improve user experiences while accessing Internet services, a widely adopted
solution today relies on differentiated service for different user groups. For exam-

ple, many popular news, stock trading services, or media streaming services provide



Link Bandwidth
56K Analog Modem 56 Kbps
Frame Relay 56 Kbps-1.544 Mbps
WiFi 11Mbps
Ethernet (0-1 hops) 100-1000 Mbps
ADSL 1.5 to 8.2 Mbps downstream, 64K—1 Mbps upstream
SDSL 1.544/2.048 Mbps
T-1 1.544 Mbps
E-1 (Europe) 2.048 Mbps
T-3 (or DS3) 44.736 Mbps
E-3 (Europe) 34.368 Mbps
0C-3 155.52 Mbps
0C-12 622.08 Mbps
0C-48 2.488 Gbps

Table 1.1: Bandwidth of Some Links in the Network

Cu 1.2-GHz Processors

System CPU Memory
More than 1/2 TB Mem-
Sun Fire 15k Up to 106 UltraSPARC III| ory in a single domain. U

to 18 fifth-generation Dy-
namic System Domains

Dell Dimension 8300

Intel Pentium IV processo
3GHz

r Up to 2 GB Dual Channe
DDR 400MHz SDRAM

Compaqg Evo N410c

Intel Pentium Il Mobile
1.2GHz

256MB SDRAM-133 MHz

iIPAQ h3955 pocket pc

400MHz Intel XScale pro-
cessor

64MB RAM, 32MB Flash
ROM

Palm m515 handheld

Motorola Dragonball VZ 33
Processor

16MB RAM

Table 1.2: Properties of Some Computer Nodes in the Network

multiple “versions” of the service for different clients. The selection of a suitable
version is usually determined by the client connection option. Though this approach

can address the heterogeneity problem to some extent (at least for the last hop), it



cannot satisfactorily handle resources for which the availability changes continually,
e.g., when the available bandwidth of a network link along a communication path

decreases as a result of increased traffic in the network.

1.2 Network Awareness

The problems described above reveal the needvétwork awareness data com-
munication. The meaning of network awareness here is twofold. First, it means that
data communication should be aware of underlying network conditions, which may
change dynamically. Second, it means that data communication should also have the
knowledge of application performance requirements, which are directly related to the
way in which data is interpreted and used by the application. Combining these two
together, a network-aware communication path should be able to match application
performance requirements with the underlying network resource availability, and fur-
ther continually adapt to dynamic changes in the network, using the requirements as
a guide.

To highlight the benefits of network awareness, let's consider the following ex-
ample scenario: Alice starts her day by initiating a meeting with one of her clients
in another city using a net-meeting application, which runs on a laptop with an IEEE
802.11b wireless connection. During the meeting, some of her colleagues start to
download large files using the same office network. Just before Alice notices a long
response time in conversation as a result of these download activities, the communi-
cation path realizes this problem and automatically starts to drop some less important

video frames to maintain a desirable throughput (at the cost of a slightly blurred im-



age). When some of these download tasks are completed, the image quality comes
back to normal because the path automatically stops dropping video frames after real-
izing that there is sufficient bandwidth available once again. As the meeting continues,
Alice decides to get her lunch from a public cafe. To continue with her meeting, she
hands over the meeting session to a Pocket PC, which she can conveniently carry to
that cafe. Realizing that the network in the public cafe is different from the office
network, the path automatically encrypts data in transmission and decrypts it upon
receipt at her Pocket PC.

This example scenario highlights the benefits from network awareness in data
communication. Unlike a traditional data communication path that provides high-
level abstractions such as reliable byte streams, a network-aware communication path
understands application specific performance requirements and can accordingly change
its behavior under different network conditions. Without the support for such net-
work awareness, either applications themselves have to cope with these problems
(e.g. changes in link bandwidth or security properties of the network environment in
the above example) or the user (Alice) will end up with an unsatisfactory experience
(e.g. long response time in conversation or leakage of sensitive data in the above
example).

From the perspective of applications, using performance requirements to guide
behavior of communication paths under different network conditions allows them to

control or customize data communication in the network.



1.3 Possible Approaches

The network awareness described above can be realized in different ways. A widely
used approach is to encode all adaptation logic into the client and server applications.
An example of such an approach can be found in many commercial media players.
When such a media player running on the end device detects that a large number
of video frames arrive after their associated deadlines, it notifies the media server to
switch to another stream with different data fidelity. After that, the communication
path may be able to sustain the required throughput.

Using such an approach requires considerable programming effort. Developing a
workable solution requires a comprehensive knowledge of network communication
and a deep understanding of how underlying network state affects the performance
of the particular application. Besides, such a hard-coded approach is usually hard to
extend to new applications.

Compared with this hard-coded approach that targets at a particular application, a
more general solution is to provide an adaptation framework that can be used by dif-
ferent types of applications. These frameworks provide necessary support for various
applications to cope with different network conditions, thus reducing the direct ef-
fort required from applications themselves. Based on where adaptation occurs, these
adaptation frameworks can be divided into three groups: end-point approaches, proxy-
based approaches and path-based approaches.

In an end-point approach, the client and server cooperate to determine how they
should communicate with each other under different network conditions. Many strate-

gies used in the hard-coded server/client approach can also be applied here, with the



underlying infrastructure providing common system support. However, the constraint
that adaptation can occur only at end points may limit the adaptation solutions that
can be used. For example, some end devices may have insufficient capability to do
required computation (e.g. decompression/decryption). In other cases, such a con-
straint may compromise agility of adaptation: it may take a long time for end points
to respond to changes in the network, especially for long communication paths in a
wide area network.

For a proxy-based approach, proxy sites along communication paths are exploited
to realize the network awareness. These proxies can be used to do transcoding and
content distillation for different client classes. This approach relieves servers from the
responsibility of having to cope with different network conditions, thus simplifying
the task of server construction. Besides, managing a large proxy site that is devoted
to handling adaptation may also offer some economic advantages as compared to
managing a large set of servers. But the limitation that adaptation occurs only at proxy
sites (in most cases just before the last hop), like the end-point approach, again results
in similar problems in adaptation agility and limited solution spaces. Moreover, this
approach may result in resource wastage along a communication path before the proxy
node. For example, if the bandwidth of the last link along the communication path of a
media streaming application drops, the proxy will have to drop some media frames to
deliver the required throughput. Though such an adaptation solves the low bandwidth
problem, considerable bandwidth has already been wasted on the links before the last
hop.

Compared with the end-point and the proxy-based approaches, a more general

approach is to use all (or as many as possible) network resources along a communi-



cation path for network awareness. We refer to this path-basedpproach. While
several frameworks have been proposed to improve data communication performance
by introducing various components into communication paths, the network aware-
ness achieved using existing path-based infrastructures is rather limited. The reason
for this is because that several key questions in the path-based approach still remain
unanswered. In particular, for a path-based infrastructure to be really useful, it must
contain effective solutions to address the following concerns: how to separate logic
that controls data communication from other parts of an application? hawttoe
matically construct new paths and modify existing paths so that applications always
achieve the best performance for the underlying network conditions? how to manage
network resources in a large scale network for such path-based infrastructures? And
finally, what are the benefits of using the path-based approach as compared to other

alternatives?

1.4 Goals and Approach of This Dissertation

This dissertation present a path-based framework with a complete set of solutions

to all of these questions mentioned above. In our approach, a communication path

is augmented with application-specific components, which are deployed throughout

all (possible) network resources between the server and the client. These compo-
nents, which can transparently handle stream degradation, reconnection, and in gen-
eral support arbitrary transcoding, caching, and protocol conversion operations, serve
to “impedance match” the application performance requirements with the underlying

network conditions. The important thing is such an augmented path is aware of ap-



plication performance requirements and can automatically and continually adapt to
changes in the network, thus providing exactly the network awareness we described
in Section 1.2.

Our approach has been realized in a general adaptive network infrastructure that
provides network-aware paths for applications whose performance is related to the
“quality” of underlying data communication. Network-aware paths are automatically
created by the underlying infrastructure, requiring only high-level input from applica-
tions. Automatically generated paths provide optimized performance to applications
by customizing their behaviors to the network conditions encountered at run time.
Furthermore, when underlying network conditions change, such paths, both glob-
ally and at the level of individual segments, caontinually modify their behaviors
according to the performance requirements of the applicati@oth path creation
and reconfiguration are handled by the underlying infrastructure; therefore, regular
(network-oblivious) applications can easily be augmented with network awareness
without requiring onerous effort from application developers.

The infrastructure embodies our belief that an appropriate balance between the
need for custom data communication and system extensibility is needed. Itis based on
the observation that on one hand, common high-level abstractions of communication
paths usually suffer from poor performance in a dynamic network environment be-
cause applications can not specify their requirements; on the other hand, approaches
that require the application to take care of every aspect in data communication are

usually not extensible. Our infrastructure achieves both of these goals.

e First, it allows custom control over communication paths using various applica-

10



tion specific components. The selection of components requires only high-level
information from the application. Unlike conventional abstractions, these com-
ponents understand data in transmission, thus can process it in accordance with
application performance requirements. This part of our approach provides appli-

cations with custom control over data communication in an extensible fashion.

e Second, it separates application “business” logic from what is used for creating
and controlling such augmented paths so that application developers only need
to concentrate on the former. Once high-level objectives (application perfor-
mance requirements) are specified by the application, the logic for creating and
controlling paths is application-neutral and can be handled by the infrastructure.
This part of our approach relieves applications from having to undertake this

responsibility, and provides a general way to construct adaptation solutions.

1.5 Contributions

This dissertation explores how to provide network-oblivious applications with net-
work awareness in data communication using a path-based approach. The contribu-
tions of this dissertation include the following:
¢ A high-level integrated specificatiosf components and network resources to
model behaviors of both components and network resources. This specification
allows late binding of components to paths, which is essential for flexibility of

dynamic compositions.

e Automatic path creation strategiésr constructing network-aware access paths

for applications. The generated network paths provide optimized performance
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in accordance with application performance requirements and underlying net-
work conditions.

— The path creation strategies can satisfy different performance requirements,
i.e. maximize (minimize) value of some performance metric, or guarantee
that some performance metric lies in a required range.

— In addition to constructing an end-to-end communication path, the strate-
gies can also work on disjoint portions of a path independently while main-

taining overall performance requirements.

— The strategies allow augmented paths to be incrementally built across dif-
ferent network domains in a distributed fashion.

e System support folow-overhead dynamic path reconfiguratidPath reconfig-
uration in our infrastructure provides semantic continuity guarantees for data
transmission, and is carried out without requiring involvement from applica-
tions. Our reconfiguration strategies can be used to modify the entire commu-
nication path as well as disjoint portions of the path concurrently and indepen-

dently.

¢ Distributed resource management strategs@hich can be used to manage re-
sources among multiple paths and different network regions so as to improve

performance of both individual paths and the whole network.

e An adaptive network architecture called Composable Adaptive Network Ser-
vices (CANS). CANS is built from the ground up to embody our approach. A
series of experiments have been conducted on CANS with different types of

applications, the results validate the effectiveness of our approach.
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e Extensive performance comparison among end-point, proxy-based, and path-
based approaches by simulating their behaviors in a large network topology.
Our simulation results show that the path-based approach provides the best and

the most stable performance under different network configurations.

1.6 Organization

The rest of this dissertation is organized as follows.

Chapter 2 reviews related work and open questions for path-based infrastructures.
Chapter 3 presents the overall architecture of our framework. Chapter 4 describes the
type model used for specifying component and network resource behaviors. Chapter 5
describes automatic path creation strategies. Chapter 6 discusses system support for
dynamic path reconfiguration. Chapter 7 explains resource management strategies.
Chapter 8 describes the implementation of CANS. Chapter 9 shows a comprehensive

evaluation of our framework. Chapter 10 concludes this dissertation.
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Chapter 2

Background

In this chapter, as high-level context for our framework, we first highlight existing

trends that show increased computation and control functionality being introduced
into the network. After that, we discuss three groups of related efforts: general mech-
anisms for introducing control functions into the network, component-based commu-

nication systems, and general adaptation frameworks.

2.1 Networking

2.1.1 Changes in the Internet

Despite their tremendous popularity and deep impact on the way people live, com-
puter networks have a relatively short history. It was in the late 1950s and the early
1960s when the first form of networking appeared, and the Internet is only about 34
years old. Nevertheless, several things have changed dramatically in such a short pe-

riod of time. The changes are mainly in three aspects. The first is the size of the
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network. When the ARPANET was first set up in 1969, there were only 4 hosts,
but now, there are more than 170 millions hosts connected to the Internet and this
number is still growing very fast. Advances in hardware technology are responsible
for the second big change: both available bandwidth and connection options have
increased dramatically. While it was not a long time ago that most people believed
that a 28.8Kbps modem connection would satisfy the data communication needs of
all types of applications, now a lot of people have broadband connectivity (with more
than 1.5Mbps bandwidth) at home, and continue to feel that the bandwidth is not
enough. Pervasively used portable devices and wireless connectivity (Cellular Phone,
Bluetooth [28], Wireless 3G [54]) are making the Internet an even more heteroge-
neous environment. The third change, which in the author’s opinion is the most im-
portant reason for the success of the Internet, is the growth of available applications.
In the early days of the Internet, available applications were limited to four types:
email, newsgroups, file transferring, and long distance computing. Now, innumerous
applications are running on the Internet: online gaming, shopping, banking, trading,
driving directions, real time news and multimedia streaming, to name a few. These ap-
plications have pervaded every aspect of people’s lives; meanwhile, new applications

continue to emerge in the Internet everyday.

2.1.2 Advances in Communication Platforms

On the other hand, the communication platform supported by the Internet has not
seen as much improvement. Since 1982, when the TCP/IP protocol (Transmission
Control Protocol [34] and Internet Protocol [33]) was established as the standard of

the ARPANET, it is still the only reliable delivery service available for all Internet
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applications. This naturally leads to the following question: despite the fact that the
Internet has changed so much (in network size, hardware technology, and application
diversity), is the TCP/IP protocol still sufficient for the data communication needs of
all applications?

Basically, IP provides a best effort platform for delivering network packets. The
function of a network node in an IP network is merely to forward incoming packets
(using a routing table and a fixed routing algorithm). Built on top of the IP layer,
TCP supplies applications with the abstraction of a reliable, in-order, unstructured
byte stream between two end points. Though such an abstraction was quite sufficient
for early Internet applications (email, ftp etc.), people are beginning to realize the
limitation of this view as network complexity and application diversity grow. While
this simple view has gained TCP/IP tremendous success in that it has been deployed
to hundreds of millions of hosts around the world, the same view will eventually bring

severe constraints as networks and applications become more complex.

2.1.3 Whatis Missing?

Several ongoing efforts are investigating extensions of existing protocols as well as
proposing new protocols to address these perceived shortcoming. For example, there
exist many proposals (QoS-IP [24], RSVP [26] etc.) for providing QoS guarantees
in data communication for applications. However, no wide deployment is currently
available. The difficulty in deploying such new protocols mainly comes from the size
of the Internet and more importantly the network view of the IP network: since the
function of a network node is merely to forward packets, deploying new protocols and

communication services that require significant changes in the whole infrastructure is
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almost impossible (or at least takes a very long time).

In 1994-1995, the concept of active networking emerged [51], which proposed a
general mechanisms for extending the functionality of network nodes to support exe-
cution of code embedded in network packets: in addition to passive data, a packet in
an active network could contain some executable code (or references to code). The
network nodes (routers) in an active network are required to execute the accompa-
nying code upon receiving an incoming packet. The code, not limited to just route
packets, could perform arbitrary computation on the packets, including modification
of the packet itself. An important anticipated use of active networking was for de-
ploying new network protocols over the network. Such an approach can certainly be
used to bring applications more control over the data communication in the network,
but it entails significant modification of the existing infrastructure.

Recent work on overlay networks ( [3] [49] [12] [9]) reflects the same idea that
more functionality should be introduced into the network in order for applications
to perform better. Realizing the difficulty in modifying the existing infrastructure,
overlay networks try to bring in additional functionality on top of the existing infras-
tructure. For example, a resilient overlay network (RON) [3]) is an application-layer
overlay on top of the existing Internet routing substrate where each overlay node mon-
itors the functioning and quality of the Internet paths between itself and other overlay
nodes. RON can be used by distributed applications to detect and recover from path
failure, often much faster than TCP/IP (within the range of several seconds instead of
several minutes when TCP/IP is used). Moreover, it can also improve performance of
data communication, i.e. loss rate, latency, or throughput perceived by applications.

In summary, as the Internet exhibits increasingly complex behaviors and the di-
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versity of applications increases, the need for custom functionality in the network
also grows. From the perspective of applications, this means more control over data
communication for applications to obtain better performance; in other words, data

communication should be aware of network conditions and application requirements.

2.2 Related Efforts

Realizing that the communication abstractions provided by the Internet, which treat
all applications uniformly, usually are inefficient, researchers have been studying en-
abling mechanisms for applications to customize or control their data communica-
tion.! The large number of proposed approaches share a common theme: to provide
communication paths augmented with specific functionality required by end applica-
tions.

In this section, we review previous efforts that are most related to our framework.
General network-layer mechanisms for introducing more functionality into the net-
work are discussed first. Then, we briefly describe several communication systems
that are constructed from small components. These works show that the component
paradigm can be applied to build extensible communication systems, without com-
promising performance. Finally, we discuss general adaptation frameworks that can
improve application performance by providing support for applications to cope with
different network conditions. As part of this, we examine the current status of the
path-based approach and open problems that need to be addressed before the network

awareness described in Chapter 1 can be realized.

A similar phenomenon can be found in works on extensible OS (ExoKernel [17], SPIN [5] etc.).
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2.2.1 Network Layer Approaches

Functionality for data communication can be introduced at the network layer.

Transformer tunnels [50] is an approach that allows users to specify functions to
transform packets (e.g. compression, encryption) on an individual link (especially for
a last-hop link) along a communication path based on its characteristics. For example,
if a portable device in a shared wireless network environment needs to preserve the
privacy of its data transmission, encryption/decryption functions can be inserted at the
both ends of the wireless link. Functions associated with a transformer tunnel need
to be configured by the users themselves, thus requiring a comprehensive knowledge
of the underlying network substrate. Moreover, since this mechanism works on the
network layer, the associated functions of a transformer tunnel will be applied to all
communication paths passing through the tunnel, independent of the applications they
belong to. This approach is most applicable for the last-hop link, especially for mobile
hosts.

With a similar goal but unlike this link-oriented approach, protocol boosters [38]
is an end-to-end mechanism that can provide similar functionality using an extensible
protocol stack. Using this approach, protocol elements (called protocol boosters) can
be transparently inserted into and deleted from the protocol graph on an as-needed
basis. For example, if both ends of a communication path have encryption/decryption
elements installed, then the application can send and receive data using this "boosted”
secure protocol. Though special protocols like IPSEC [58] can also provide simi-
lar functionality, the difference is that those special protocols are hard coded while

the protocol booster provides a general framework to extend the functionality of an

19



existing protocol stack.

More general active network infrastructures, such as ANTS [55], Switchware [1],
Netscript [60] NodeOS [23] etc., propose mechanisms on the network layer for pack-
ets to carry arbitrary functions in addition to passive data. The accompanying func-
tions are executed in the network nodes (routers) upon the associated data.

For example, in an ANTS [55]-based network, capsules carry references to func-
tions in some protocol. Upon receiving such a capsule, an ANTS node executes the
referred function to process the capsule. Moreover, a small amount of soft state can
be left behind at the processing node so that the execution of subsequent packets
can leverage the information. In ANTS, code is distributed dynamically on-demand,
therefore a capsule needs to carry only function references instead of the actual code.
Caching mechanisms are further exploited to reduce the overhead associated with
transferring code.

In summary, these approaches can be used to introduce additional functionality
into communication paths. However, solutions built on the network layer are limited
in the following two ways. First, deploying such approaches usually requires signif-
icant changes to the existing infrastructure, which is infeasible in most cases for a
wide area network. Second, computation conducted on packets usually lack the in-
formation of application-level information of the data in transmission and how the
application interprets or uses the data. This can considerably limit the performance

improvements that can be achieved using such approaches.
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2.2.2 Component-Based Communication Systems

The component paradigm (COM [52], Corba [29], JavaBeans [15], EJB [39] etc.)
has been successfully used in building large, complex, but extensible software sys-
tems. The central idea is to construct complex software systems by composing small
components together. These small components have relatively simple functions and
well-defined interfaces for interaction amongst them. This paradigm can also be ap-
plied to build extensible, component-based communication systems.

X-kernel [32] is such an architecture for constructing communication protocols.
In the X-kernel, a complex communication protocol is decomposed into a graph of
micro-protocols and virtual protocols. A multistage approach is proposed to decom-
pose complex protocols and construct new communication services. In a protocol
graph, each micro-protocol is basically a module with a simple function (e.g. padding
the message header out to a pre-determined length); virtual protocols are used to re-
place selection logidF statement) in a complex protocol for non-linear compaosition.
For these protocol modules to be composed in arbitrary ways, they have to conform
with a set of properties, which is called the meta-protocol.

Similar ideas can also be found in systems like Click [41], Cactus [30], Ensem-
ble [6], and Router Plugins [14] etc. For example, Click [41] is a configurable router,
for which the routing function is implemented as a graph of components with a com-
mon interface. A component in a Click router is called an element, which has input
and output ports that can support push or pull mode operations respectively and can be
connected together. Different routing functions can be realized by configuring differ-

ent element graphs. Ensemble [6] proposes a layer approach to stack micro-protocols
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together, each of which handles some small aspect of the required communication
guarantees. Cactus [30] further exploits the event paradigm, each micro-protocol is
implemented as a collection of event handlers. The primary benefit of using the event
paradigms is the indirection implicit in it, which makes micro-protocol binding/un-
binding very convenient.

The Scout operating system [42] extends this idea further from communication
subsystems to the data flows between operation systems and applications. It uses the
data flow as an explicit abstraction in OS design, cafiaths A path in the Scout
operating system is a linear data flow from one device to another (e.g. from a SCSI
card to an ETH card). The OS kernel consists of a graph of components (called
routers). Paths are created, managed and deleted dynamically for applications. Path
creation in Scout involves two steps: first a feasible sequence in the route graph is
identified; then the chosen sequence is optimized according to a set of preexisting
rules. The path abstraction is very useful, especially for applications whose logic
can be embodied as a sequence of data flows across different modules in the local
operating system. An example can be an application that encodes MPEG and sends
it to the network. The primary benefit of using the path abstraction over traditional
process/thread models is that the use of the path abstraction can make scheduling and
admission control of OS resources much easier and more stable.

These works demonstrate that the component paradigm can be used to build exten-
sible communication systems. Moreover, component-based communication systems
are also feasible from a performance perspective: as the various systems above have
demonstrated, components can be used in communication systems without incurring

a significant performance penalty as compared to monolithic implementations.
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2.2.3 Adaptation Frameworks

The general adaptation frameworks most related to the work in this dissertation focus
on a very specific goal: improving application performance by enabling applications
to adapt to different network conditions.

Most of these frameworks are built on the application layer, so information about
applications and the data in transmission can be exploited to enhance the network
awareness achieved. Depending on where adaptation operations occur, these works
can be further categorized into three groups: end-point approaches, proxy-based ap-

proaches and path-based approaches.

End-Point Approaches

An adaptation framework is called and-point approach(Rover [35], InfoPyra-

mid [40], Odyssey [45] etc.) if it uses only client and server nodes in adaptation.
Odyssey [45] is such a general framework that allows client applications to register
their expectations of resource availability. The framework is responsible for monitor-
ing resource availability and producing notifications whenever the registered resource
expectations can no longer be met. Responding to such notifications, client applica-
tions may change data fidelity accordingly. The cooperation protocol for changing
data fidelity level is handled by the server and a component on the client side called
a Warden. Though such a general framework simplifies construction of adaptation
solutions by providing common system support such as resource monitoring and noti-
fication, application developers still have to make decisions on when and how to adapt

to different network conditions.
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Although sufficient for some scenarios, end-point approaches are rather limited in
three ways. First using only server and client nodes in adaptation may not be flexible
enough to cope with changes in intermediate links. For example, if the bandwidth of
a communication path drops as a result of an increased error rate at an intermediate
link (consider a wireless link getting affected by bad weather conditions), a typical
end-point solution for this might introduce compression/decompression operations at
server and client nodes respectively, which may end up not increasing the achieved
bandwidth by much. A better solution would be to deploy error detection and recov-
ery functions at both ends of that link to quickly respond to packet transmission errors,
which can further take advantagelotal knowledgef the link characteristics. Sec-
ond, tight coupling between client and server nodes may considerably complicate the
logic of both servers and client applications. And lastly, end-point approaches usu-
ally need to make some assumptions about capacity of servers or client nodes, which
may not hold on resource-constrained sites/devices. We will revisit this point later in

Chapter 9.

Proxy-Based Approaches

In a proxy-based approactshared proxy nodes, instead of server nodes, are used to
handle different network conditions.

The cluster-based proxies in BARWAN/Daedalus [18], TACC [19], and Multi-
Space [22] are examples of systems where application-transparent adaptation happens
in intermediate proxy nodes in the network. Active Services [2] permits a client ap-
plication to explicitly start computation agents on its behalf on a gateway node for

transforming the data it receives from an end service.
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Similarly, Ninja [21] proposes the use of cluster based proxies, which are usually
placed before the last hop, to do aggressive computation such as content distilling
and transcoding on the fly to cope with variations on the client side (i.e. network,
hardware and software used by clients).

A more interesting aspect of Ninja is the Ninja Automatic Path Creation (APC)
service, which is also used in the Universal Inbox infrastructure [47]. APC is used
to create paths between various end devices and services. A Ninja path, which runs
on a proxy site and provides applications with data of a required format, consists of
a sequence of components. Although Ninja APC can automatically create communi-
cation paths to handle (static) variations on the client sites, the paths created in Ninja
are somewhat limited. At a high level, APC is a function-oriented method, which
ignores network link properties, network resource constraints, and dynamic resource
availability, therefore the application performance improvements achieved using such
paths are also very limited. No dynamic reconfiguration of paths is supported in Ninja.

Compared with end-point approaches, the proxy-based approaches offer their own
advantages and disadvantages. First, limiting adaptation to occur only at proxy sites
relieves servers from this task, thus simplifying logic on the server side. Second,
as mentioned in [18], managing a large proxy site to do adaptation, which can be
shared by a large number of servers, is more economically efficient than managing
each of these servers individually. Last, because of the resource sharing at the proxy
sites, such approaches can work with server site or end devices that have insufficient
capacity because they can take advantage of shared resources at the proxy sites. On
the other side, disadvantages of the proxy-based approaches are also obvious. First,

similar to the end-point approaches, the proxy-based approaches cannot handle local
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changes very well. Second, the limitation that adaptation only occurs at proxy sites
may result in considerable network resource waste before the last hop, especially for

long communication paths (recall the example discussed in Section 1.3).

Path-based Approaches

Differing from end-point and proxy-based approaches, recently several frameworks
have proposed the injecting of functionality along the whole communication path to
address the problems caused by different network conditions. In this more general
view, any node along a communication path can participate in adaptation.

Active Names [53] is such a framework for deploying a sequence of programs
along a communication path by intercepting the name resolving procedure. The ac-
tive name framework has a hierarchically organized name space; as a name request
from a client is being resolved, the name services construct a chain of programs for
transporting data back to the client application. Though listed here as a path-based
adaptation framework, the focus of Active Names is mostly on general mechanisms
for injecting general functionality into communication paths, it does not provide much
support for enabling applications to adapt to different network conditions.

In the Conductor project [59], multiple application-transparent components (called
adaptors) can be automatically deployed along the communication path between a ap-
plication and a service. The transparency (without application input) implies that such
systems need to rely upon self-describing properties of data streams and the data for-
mat required by the client needs to be exactly the same as what is provided at the
server side. The first assumption may or may not hold given increasingly proprietary

content. The second assumption, though it considerably simplifies functions required
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in the communication path, severely limits the applicability of such systems (consider

a mobile device that requests WML pages from a web site that provides only HTML
data). Conductor contains a planning scheme for placing adaptors to augment an ap-
plication’s data stream to address unfavorable network conditions. While two schemes
are discussed in [48], one based upon selection from a reusable plan set and the other
based on exhaustive constraint space-based search, to the best of our knowledge these
schemes have not yet been implemented or evaluated with real applications.

Recent work in the Scout project [43] has extended the path notion from a data
flow within a single node system to one that traverses across networks. The approach
it uses for building such paths is still a template-based algorithm, which takes into con-
sideration the resource requirements (for delivering media objects), user preferences,
node capabilities, and programmer-provided path rules. Though such an approach
can be used to improve performance of applications, it requires a priori construction
of path templates and storing them into a central database, simply choosing an ap-
propriate template and instantiating it based on other programmer-provided rules that
decide whether or not a component can be created on a resource.

Kiciman and Fox [36] have proposed a general path infrastructure framework for
composing mediators distributed across a network of machines. This infrastructure is
built upon Ninja’s APC service and suffers from the same limitations. Furthermore,
this approach separates out logical path creation (choice of components) from the
mapping of components to physical resources. Although this separation considerably
simplifies the problem of creating paths across multiple network resources, it can re-
sultin poor performance for generated paths since these two stages are usually tightly

interrelated.
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Compared with end-point and proxy-based approaches, the primary benefit of us-
ing path-based approaches stems from the flexibility that all segments along a com-
munication path can respond to dynamic changes in the network. Consequently, such
local adaptation can result in better agility. Besides, similar to the proxy-based ap-
proach, path-based approaches benefit from resource sharing, which is much more
flexible because shared resource pools are set up across the whole network instead of
being limited to proxy sites only. On the other hand, building a path-based solution is
much more challenging because a long communication path may involve multiple dif-
ferent network domains. Consequently, centralized schemes usually do not perform
well, thus support for distributed path construction and maintenance is required.

Despite the existence of these frameworks mentioned above, current work on path-
based approaches is very limited and many challenging problems still remain open.
In particular, the following questions need to be resolved before such an approach can
be used to realize our vision of network-aware data communication as described in

Chapter 1.

e How should one model the impact on data communication of components and
network resources along a communication path so that valid structures can be

identified mechanically?

e How does one construoptimalcommunication paths according to application

performance requirements and underlying network conditions?

e How does one provide continual and efficient adaptation to dynamic changes in

the network by dynamically modifying communication paths?

e How does one enable each segment of a communication path to be indepen-
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dently and concurrently responsive?
e How does one efficiently manage network resources?

e What fundamental advantages does the path-based approach bring as compared

to other alternatives?

Building an infrastructure that provides network-aware communication paths us-
ing the path-based approach has to answer all these questions. This motivates the

work described in this dissertation.

2.2.4 Summary

As the Internet exhibits increasingly complicated behaviors and the diversity of In-
ternet applications grows, network awareness in data communication becomes indis-
pensable for delivering satisfactory performance.

Though general mechanisms that introduce more functionality into the network
layer can enhance performance of data communication to some extent, the lack of
information about applications and data in transmission severely limits the network
awareness achieved with such approaches. General adaptation frameworks built on
the application layer can provide better performance. While network awareness can be
realized in different ways, i.e. end-point, proxy-based, or path-based approaches, the
path-based approach is the most promising way for realizing our vision of network-
aware data communication. However, many challenging problems need to be ad-
dressed before this vision can become reality. This dissertation presents our solutions

to these problems.
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Chapter 3

Architecture

In this chapter, we present an overview of our path-based framework. We first intro-
duce our logical view of the network, then describe the concepts of components and
augmented communication paths. After that, we revisit the set of open problems that
have to be addressed before network-aware data communication can be realized using

a path-based infrastructure, and briefly discuss our solutions for these problems.

3.1 Logical View of the Network

Our framework takes a general view that the network consistgppfications ser-

vices andcommunication pathsonnecting the two. The notion of the communica-
tion path is extended from one traditionally limited to data transmission between end
points to include application-specific functionality dynamically injected by end ser-
vices, applications, or the underlying infrastructure. Such functionality takes the form

of components, which are self-contained pieces of code that can perform a particu-
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Figure 3.1: Logical view of a network showing data paths constructed from components.

lar activity, e.g., protocol conversion or data transcoding. Components are connected
with each other at run time and operate on data streams to provide network awareness
in data communication by matching application requirements with physical charac-
teristics of the underlying network and properties of end devices (see Figure 3.1).

Our framework is realized in Execution Environments (EE), an instance of which
runs on all infrastructure-enabled nodes. Augmented paths are deployed to these
nodes. The execution environment provides interfaces for applications to create and
manage paths, and an environment for component execution, basically serving as the

underlying “operating system” of our infrastructure.

3.2 Components

Components serve as the basic building block for constructing adaptation-capable,
augmented communication paths. A component is a standalone mobile code module

that performs a single operation on the data stream. We sometimes refer to compo-
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nents aglrivers using the terms interchangeably. Augmented paths are constructed
by dynamically composing components. To enable efficient composition and dynamic
low-overhead reconfiguration of augmented paths, drivers are required to adhere to a

common interface as shown in Figure 3.2 and provide the following properties:

class Driver {
String driverID;

TList outTypes(TList inTypes);
:’M, DPortList getPorts();

DPort getPort(String Portld);
void push(DInPort input);
void pull(DOutPort out);

void raiseEvent(CANSEvent e);
void registerListener();

) (b)

Figure 3.2: Driver functionality (a) and interface (b).

1. Drivers consume and produce data using a standkal portinterface, called
a DPort . DPort s are associated with type information (details deferred to
Chapter 4) and distinguished based on whether they are being used for input or

output. Information about data ports and their types can be queried at run time.

2. Drivers arepassive moving data from input ports to output ports in a purely
demand-driven fashion. Driver activity is triggered only when one of its output

ports is checked for data, or one of its input ports receives data.

3. Drivers consume and produce data at the granularity of an integral number of
application-specific units, callesemantic segment3hese segments are natu-

rally defined based on the application, e.g., an HTML page or an MPEG frame.

4. Drivers contain onlysoft state which can be reconstructed simply by restart-

ing the driver. Stated differently, given a semantically equivalent sequence of
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input segments, a soft-state driver always produces a semantically equivalent
sequence of output segments, even after the internal state of the driver gets re-

set.

The first two properties enable dynamic composition and efficient transfer of data
segments between multiple drivers that are mapped to the same physical host (e.g.,
via shared memory). Moreover, they permit driver execution to be orchestrated for
optimal performance. For example, a single thread can be employed to execute, in
turn, multiple driver operations on a single data segment. The overhead of invocation
between different drivers is basically a few function calls, as if driver operations were
statically combined into a single procedure call. The only extra overhead compared to
using a statically linked module is the overhead of using virtual functions. Finally, this
choice greatly simplifies and enhances the efficiency of resource management among
multiple paths, enabling control over resource consumption of individual paths within
an execution environment.

The semantic segments and soft-state properties enable low-overhead dynamic
adaptation, either within a single driver or across communication path segments while
preserving application semantics, a topic discussed in more detail in Chapter 6. The
last thing deserving mention here about the driver interface (see Figure 3.2) is the
methods that permit a driver to raise and listen to events, facilitating its participation

in distributed adaptation activities.
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3.3 Augmented Communication Paths

Unlike conventional communication paths, an augmented path in our framework con-
tains functionality to process data in an application-specific fashion. Introducing
such functionality into communication paths can bring application two major ben-
efits. First, they can be used to match application requirements with the underlying
network conditions. For example, compression functionality can be used for address-
ing the problem of low bandwidth in a network link; encryption functionality can be
applied to address problems caused by network links that do not provide sufficient
guarantees on data privacy and integrity. Second, by allowing computation in com-
munication paths, functionality of an application can be extended with what exists
in the network. For example, for a small device that can only display WML pages
but needs to access an Internet service where only HTML format is supported, the
augmented communication path can handle the conversion from HTML to WML by
orchestrating functionality in the network, so that the browser running on the devices
can display the contents appropriately.

To construct network-aware communication paths, we need a way to orchestrate
various kinds of functionality together. Instead of using a monolithic implementa-
tion, our approach adopts a much more extensible approach where communication
paths are constructed by dynamically composing different components. This com-
position approach allows application development to be completely separated from
component authoring, which itself is decoupled from other components as well. More
importantly, it provides a foundation that allows the construction and dynamic recon-

figuration of such augmented paths to be managed by the underlying infrastructure
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without requiring involvements from applications.

Network awareness in data communication is realized by these augmented paths
and the underlying infrastructure: application specific functionality is included in the
augmented communication paths; the underlying infrastructure is responsible for cre-
ating and controlling them to continually adapt to changes in the network, in accor-
dance with application performance requirements.

To construct such augmented paths, only high level information is required, which
includes services properties, application requirements, and characteristics of the un-
derlying platform. The components that constitute a communication path, the in-
terconnections amongst them, and their internal configuration parameters can all be
modified by the infrastructure at run time to cope with different network conditions,
when application requirements can not be met by the current configuration given the

resources available.

3.4 Open Problems in Previous Path-Based Adaptation Infras-

tructures

As mentioned in Chapter 2, building a path-based infrastructure that provides network-
aware data communication needs to address the following problems: modeling of
application specific functionality and network resources, path creation and reconfig-
uration strategies, and network resource management. Furthermore, since the infras-
tructure is targeted at wide area networks, distributed solutions that do not require
global knowledge or centralized entities are required. Here we revisit the questions

identified in Section 2.2.3, briefly sketching our solutions for them.
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3.4.1 Type-based Modeling

Question 1: How should one model the impact on data communication of compo-
nents and network resources along a communication path so that valid structures can
be identified mechanically?

Carefully modeling component behaviors and the effects of different network re-
sources along a communication path is necessary for mechanically identifying valid
structures of augmented paths, which provides a foundation for automatic creation of
network-aware communication paths.

Our framework uses a high-level integratgghe-based specification of compo-
nents and network resourceSomponents are modeled as a mapping between differ-
ent set of types. Composibility between different components is determined by the
type compatibility of the components. The aggregate effect of component composi-
tion is depicted using a notion sfream typewhich eliminates the need for complete
knowledge of the entire communication path when only parts of the path need to be
modified. The effects or constraints introduced by network resource characteristics
are modeled using the notion atigmented typeApplication specific composition
constraints are expressed usingye rankingscheme.

Differing from conventional static type models, values of type instances in our
framework are calculated at run time, i.e. a component defines its own function for
calculating the outgoing type values given incoming type instances. Type values au-
tomatically flow downstream when components are connected together. This feature
is important for enabling late binding of components to paths, essential for flexibility

of dynamic composition. Chapter 4 describes the type model in more detail.
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3.4.2 Automatic Path Creation Strategies

Question 2: How does one construoptimalcommunication paths according to ap-
plication performance requirements and underlying network conditions?

To construct network-aware communication paths, the most important question is
that given the resource availability and application requirements (on data format and
performance), how does one select the path that can provide the best performance.

This dissertation describ@sitomatic path creation strategissitable for this pur-
pose. In addition to providing the required data format, generated paths also provide
applications with optimized performance for the underlying network conditions. Our
path creation strategies are very flexible: they can be used with applications that have
different type of performance requirements (i.e. a maximum/minimal value or an ac-
ceptable value range of a performance metric); they can be used for creating a whole
communication path or replacing a small portion of an existing path. Furthermore,
our strategies have distributed solutions for calculating communication paths across
different network domains, i.e. a path can be incrementally constructed from one
network domain to another without requiring a central entity or complete knowledge
of the whole network. The last two properties are very important for any path-based
infrastructure, especially for those that need to be deployed in a wide area network.

Chapter 5 describes our path creation strategies in detail.

3.4.3 Support for Path Reconfiguration

Question 3: How does one provide continual and efficient adaptation to dynamic

changes in the network by dynamically modifying communication paths?
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As underlying network conditions change dynamically, a network-aware commu-
nication path needs to adjust its configuration accordingly. We refer to the procedure
of adjusting the current path configurationgegh reconfigurationAn ideal solution
for reconfiguring a network-aware communication path should 1) avoid introducing
a long interruption period into the data transmission, 2) provide semantic continu-
ity guarantees. The problem of semantic continuity stems from the fact that at re-
configuration time there may exist data in the network or as internal state inside the
components along the path being reconfigured.

Our framework contains system support fow-overhead dynamic path recon-
figuration, which has two major parts. The first part is a set of simple rules that
components are required to conform to. The second part is a reconfiguration protocol
that is used to modify communication paths while maintaining semantic continuity of
data transmission by exploiting component properties derived from those rules.

Path reconfiguration in our framework is completely controlled by the infrastruc-
ture. Moreover, path reconfiguration can be conducted on an entire communication
path as well as on multiple disjointed segments independently and concurrently. The
latter is referred to akcal reconfiguration Using local reconfiguration can result
in better responsiveness to local changes in the network, besides it also greatly re-
duces the need for coordination across different network domains, which makes the
infrastructure suitable for highly decentralized environments.

Combining our path creation strategies and reconfiguration support, fine-tuned
and desirable adaptation behaviors can be provided to regular applications without
requiring onerous effort from application developers. Detailed description of path

reconfiguration appears in Chapter 6.
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3.4.4 Resource Management

Question 4: How does one efficiently manage network resources?

Resource management strategies for a path-based infrastructure have to provide
solutions for two questions. The first question is how to allocate resource capac-
ity among multiple active paths. Since an augmented communication path usually
involves multiple shared network resources, the goal is to support as many path as
possible and provide individual paths with the best possible performance. Since our
framework is targeted at a wide area network, we design a distributed scheme where
individual network resources can make their own decisions without requiring expen-
sive coordination among different network domains. The scheme can improve both
individual path performance and resource utilization of the whole network.

The second question is how to set up shared resource pools across the network
for a path-based infrastructure. The goal is that given a fixed amount of computa-
tion resource, we need to optimize the overall performance of the whole network.
The scheme used in our framework takes into account the existing organization of
Internet-like networks, and provides a model and algorithms for distributing compu-
tation resources hierarchically across the network (i.e. moving computation resources
from low-level network domains to high-level ones). By setting up shared resource
pools at high-level nodes in the network graph, the overall performance of the whole
network can be improved because overloaded portions can take advantage of spare
resources from others. Our scheme is able to set up a maximal resource pool at high-
level network domains without compromising the performance of low network do-

mains from which the computation resources are moved out. Detailed description of
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our resource management strategies appears in Chapter 7.

3.5 Assumptions in Our Framework

Two assumptions exist in our framework.

First, our framework does not address trust and security issues. Note that although
the distributed version of path creation and reconfiguration strategies in our frame-
work considerably reduces interdependency between different network domains, such
mechanisms are still needed for sharing information (types) and code among them.
Second, we assume resource monitoring functionality is provided by entities external
to our framework.

These assumptions are relatively independent from the network awareness focus
of this dissertation. Furthermore, for both of these issues, there is a considerably
large amount of literature available that points to how appropriate solutions can be

constructed. We defer a detailed discussion about these solution to Section 10.3.

3.6 Summary

In this chapter, we have presented the overall architecture and key concepts of our
framework, which provides applications with network-aware communication paths.

Network awareness is realized using communication paths that are augmented with
application specific functionality and an infrastructure to manage these augmented
paths. The functionality built into such augmented paths is used to match application

requirements to underlying network conditions. Moreover, such paths can dynami-
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cally adapt to dynamic changes in the network. Since path creation and adaptation
are completely handled by the underlying infrastructure, regular (legacy) applications

can easily be augmented with adaptation capability without onerous effort from ap-

plication developers.

To realize this vision, our framework relies on four key schemes: type-based mod-
eling of network resources and components, automatic path creation strategies, system
support for path reconfiguration, and distributed strategies for managing network re-
sources. Our schemes can be used in wide area networks because both distributed and

local operations are provided.
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Chapter 4

Type Model

In this chapter, we present the type model that serves as the foundation of our au-
tomatic path creation strategies. Since network-aware paths in our framework are
realized as compositions of different components, in order to identify valid compo-
sition patterns mechanically (enumeration is not feasible for most cases), we need a
model to describe the effects of functionality built into those components and network
resource characteristics along communication paths. Our approach for this is a high-
level type model that is used for abstracting component behaviors, network resource
characteristics, and expressing various composition constraints.

Generally speaking, a valid composition pattern may have to satisfy three prop-
erties. First, it should provide the exact data required by the application. The re-
guirements may include not only data format, but also other properties such as pri-
vacy guarantees etc. Second, all connections between adjacent components should
be valid, i.e. data produced by the upstream component can be processed by the

downstream one. Third, the composition order among these components should not
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violate any specified rules. For example, encryption operations are usually required
to appear after compression operations but not vice VeRBarthermore, since net-

work awareness in our framework is realized throughout the whole communication
path, of which each segment can adapt to changes independently and concurrently,
schemes that can work with path segments without requiring a complete knowledge
of the whole communication path are needed.

In our framework, all these requirements are expressed and enforced using a uni-
fied type model. The basic idea is the notion that all data flowing along a commu-
nication path istyped and that values of type instances are affected by components
along the data path as well as network resources making up the route. We model the
functionality of a component as a mapping from input types to output types. Com-
posibility between different components is modeled as a type compatibility problem
between those components. The effect of network resources on the communication
path is captured with a notion @ugmented typesThe aggregate effect of compo-
nents on the path is captured using the notiostedam typestherefore knowing the
incoming and outgoing stream type values is sufficient for understanding the func-
tionality within a path segment, eliminating the need for complete knowledge of the
whole path. Type ranks, which constrain possible structures of stream types, are used

to express specific constraints on composition orders among components.

4.1 Modeling Component Functionality

Types associated with components include two concelptst typesandstream types

'Encrypted data usually cannot be compressed effectively.
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Data type is the basic unit of type information, represented by an object that in
addition to a unique name can contain arbitrary attributes and a method for checking
type compatibility. Our framework assumes that, in most application domains, it is
possible to define elosed semantically unambiguous set of types, e.g., MIME types
to represent common media objects.

Traditional type hierarchies can still be used to organize data types. However,
realizing type instances as objects with the compatibility method give us the utmost
flexibility in defining type compatibility relationships that cannot easily be expressed
just by matching type names. For instance, it is possible to define a custovhi4eG
type, which contains a frame size attribute such that it is compatible witivVidtyG
types with smaller frame size (shown in Figure 4.1), naturally capturing the behavior
that a lower resolutioMPEGtream can be played on a platform capable of displaying

a higher resolution stream.

Stream types capture the aggregate effect of multiple drivers operating upon a data
stream. Stream types are constructed at run time, and representsthaka data
types. For example, after aMPEQype passes through an encryption driver (Fig-
ure 4.2), the stream type of its output port is a stack in which the Byypeyption
is placed on top of the typIPEG

The primary reason for using stream types is for eliminating the requirement for
complete knowledge of the whole path when small portions of the path need to be
adjusted independently. By using stream types, any segment of a path only needs to
consult its incoming and outgoing stream type instances.

This point is highlighted in Figure 4.2 in which aMPEGype passes through an
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public class MPEGType {
public boolean isCompatible (DataType dtY

}

int height, width;
}

public class MyMPEGType extends MPEGType {
public boolean isCompatible (DataType dtY
if ((dt instanceof MPEGType)
&&(((MPEGType) dt ). width<=width)
&&(((MPEGType) dt). height=height))
return true ;
else return false;

Figure 4.1: An Example of the Type Compatibility Method

A Encrypted _'

— () Encryption (- »(O Decryption O——»
- -~/

BaseStream Encrypted

Figure 4.2: An Example of Stream Types

Encryption  driver and aDecryption  driver. If components were just modeled

as consuming data of a particular type and producing data of another, it would be diffi-
cult to express the behavior of tmcryption  andDecryption  drivers in a way

that permits their use with generic typ@ghoutlosing information about the original
type at the output of thBecryption  driver. Specifically, without stream types, the
Encryptiondriver will set its output as being of tHencrypted type, and the output

of theDecryption  driver ends up being of thBaseStream type (unless the en-
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tire communication path is examined). This will cause a type compatibility problem at
some downstream point because the client requires a more specifidviipaegithan
the incoming typeBaseStream ). In contrast, the stream type representation per-
mits local decision making, which is important for run-time adaptation via dynamic
component composition, especially for the cases where long communication paths are
used.

Operations allowed on stream types inclyzesh, pop, peekand clong which
have the standard meanings. From the type point of view, each CANS component with
m input ports anch output ports defines a function that maps its input stream types
into output stream typesf(DT;,,, DTy, ..., DTin..) — (STouts, SToutss -+, SLout, )
where DT, is the requireddata typeset for theith input port, andST,,; is the
resultingstream typgroduced on thgth output port. The type compatibility between
an input and an output port is determined by checking the top of the output port’s
stream type against the required data type of the input port. Stream type information

flows downstream automatically when two ports get connected at run time.

4.2 Modeling Network Resource Characteristics

In addition to the effect of components along a communication path, network re-
source characteristics can also have impacts on paths. This consequently introduces
additional constraints affecting both which components must be present along a com-
munication path and how these should be composed. For example, the risk of packet
interception on a shared wireless link necessitates the presence of a pair of encryp-

tion and decryption drivers for preserving privacy of data transmission. Since these
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drivers are not required if one just examines the type properties of the data source and
that required by the client application, it is clear that one needs to take into account
network resource characteristics into the component selection process.

In our approach, such constraints are also described by our type model as a type
compatibility problem. Modeling such constraints along with composability of com-
ponents in the same type model is very important for the automatic path creation
strategies described in the next chapter, which strive to find the optimal communica-
tion path for underlying network conditions. In the following discussion, we restrict
our attention to network links, but the same principle can be applied to other network
resources. The basic idea of our approach is to represent requirements for specific
components because of link characteristics implicitly by modeling how links affect
the types of data that go across them.

To capture the effect of link properties on data types, we introduce the notion of
anaugmented typeeach data type is extended with a set of link properties such as
security (used here to denote transmission privacy), reliability, and timeliness, etc.
These properties can take values from a fixed set (boolean values for most proper-
ties). Network links are modeled in terms of the same property set and have the
effect of modifying, in a type-specific fashion, values of the corresponding properties
associated with different data types. To give an example, consider transmission of
MPEQata over an insecure link. Our type framework captures this as follows: the
data type produced at the source is representddPisecure =true ), the net-
work link is represented by the propedgcure =false , and the effect of the link
propertysecure on theMPEGata type by the rule that the augmented tifREG

(secure =true )is modified toMPEQsecure =false ) upon crossing a link with
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Typedef LinkProperties AugmentedPart;

public class DataType{
protected AugmentedPart ap;

.

public class StreamType{
public void passLink(LinkProperties linkProp]
for (lterator i=typeStack.iterator (); i.hasNext(); )
DataType dt=(DataType)i.next();
dt.passLink(Ip);

¥
}.

private Stack typeStack;
}

public class MPEGType extends DataTypeg
public AugmentedPart passLink(LinkProperties linkProg)
ap.security&=linkProp.security;

}

public class EncryptedType extends DataTypeg{
public AugmentedPart passLink(LinkProperties linkProg)
/l'isolation of the security property
linkProp.securitytrue;
ap.security&=linkProp.security;

Figure 4.3: Code fragments showing use of Augmented Types

the propertysecure =false (shown as thtIPEGTypeclass in Figure 4.3).

This base scheme is extended to stream types by introducing the notswieef
tion. Stated informally, specific data types have the capability to isolate others below
them in the stream’s type stack from having their properties being affected by a link.

For example, afEncrypted type can isolate theecure property of types that it
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Y — Encrypted Y —
MPEG sectrue MPEG sec=true MPEG sectrue
—— () Encryption O———————- »() Decryption O
. sec=false
Link
BaseStream Encrypted

Figure 4.4: An Example of Augmented Types and the Isolation Effect

“wraps”, i.e., this type of encrypted data still remains secure after crossing insecure
links, irrespective of what specific type(s) the data corresponds to. The reason that
isolation only works for the types below the “wrapping” type in a type stack is be-
cause the effects caused by components afterwards can not be covered. For example,
an encryption driver cannot provide privacy guarantee for any data that is appended
after the encryption operation.

The EncryptedType class in Figure 4.3 shows an example of how the iso-
lation notion works. When a stream type passes through a network link, the method
StreamType.passLink will be invoked, which in turn calls thepassLink method
upon each type in the type stack (from the top to the bottom). The isolation effect oc-
curs when thgassLink method of theEncryptedType is invoked, forcing the
security  property of the link to be set ttvue . This means that for all type in-
stances below thEncryptedType , their security property will not be affected by
the link, i.e. will be the same value as at the sodrdéigure 4.4 shows how these
concepts work together by depicting the case in whicM&kEQype passes through
an unsecured link using &ncryption  driver.

In addition to security properties, this scheme can also be applied to other network

2If the security property of the source is false, it will remain as false even with an encryption, which reflects

the fact that the privacy guarantee has already been compromised before that link.
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characteristics, such as reliability, timeliness etc. A case study described later in this

chapter provides more details about how to use this scheme.

4.2.1 Modeling Constraints on Composition Order

To express constraints on the order of composition, we use the notippeofanks if
typet, andt, satisfyrank(t;) > rank(ty), thent,, t, cannot appear on the same type
stack witht; appearing below,. This simple scheme can be used to express various
constraints on how components can be composed together.

For instance, assigning the encryption type a higher rank ensures that for any com-
munication path requiring both encryption and compression, encryption will always
happen after compression. Similarly, the ranking scheme can be used to describe the
constraint that a relatively stronger compression can happen after a relatively weaker
one but not vice versa.

To simplify the use of types, our infrastructure predefines a set of commonly used
data types for operations such as encryption, compression, image transcoding etc.
These types are organized into a linear rank lattice. When a new type is added in the
lattice, its constraints on type ranks will also be automatically checked by the system.
Constraints on composition order, of course, can also be expressed using some rule-
based mechanisms; however our scheme is simple to use with our type model and
quite expressive in describing various composition constraints. By using the notion
of type ranks, valid composition patterns can be identified by only checking type
compatibility between adjacent components and the type stacks that appear along the

communication path.
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4.3 Case Study: A Streaming Media Application

To demonstrate how such type-based modeling can be used to ideatidyaug-
mented communication paths, we describe the following scenario. Consider a mobile
user, using a laptop with both wired and wireless connections, who downloads a me-
dia stream from an Internet-based server. This user starts off at his office desk but
then has to leave in the middle to go elsewhere in the building. Let us assume that
the user wishes to continue viewing the stream using the laptop’s wireless connection,
while retaining the same privacy guarantees (freedom from eavesdroppers) he might
have had on a wired connection even if, as we assume here, the wireless link provides
inadequate security guarantees.

An ideal network-aware communication path would provide the user with a stream
of high quality when he is using a wired connection, and the quality gracefully de-
grades depending on his distance from the wireless access point. Additionally, the
path would isolate the user from the switch between wired and wireless connectivity,
transparently providing the required privacy guarantees.

The type-driven view in our framework can identify valid communication paths

that enable this scenario by augmenting the path between the user and media server

with the following six componentseconnector(src) , reconnector(dest) ,
padder , splitter ,encryption , anddecryption . Thereconnector(src)
andreconnector(dest) components cooperate to buffer and retransmit frames

of the stream, ensuring that the client application always receives semantically valid
frames despite any connection disruptions. padder component “fills in” legal

media frames whenever its input stream stops, and helps isolate the media player ap-
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Figure 4.5: Valid communication paths for a Mobile User to Access a Media Server

plication from any reconnection delays. Thplitter component can split the
incoming media stream into its video and audio portions, enabling adaptation in low-
bandwidth situations. Finally, thencryption  anddecryption  components co-
operate to preserve privacy of stream data by encrypting it before the wireless link

and decrypting it before delivering to the application.

4.3.1 Type-based Modeling

To identify valid communication paths the example application described above, the
specification of components need to include the following four pieces of information:
data type definitions (including rules governing how data types are modified by links),
network links modeled in terms of a set of link properties, and component properties
described in terms of input and output types.

Figure 4.6(a) shows the data type definitioBaseStream is the basic stream
type with three boolean link propertie®liable , secure , andrealtime . The
typesRStream , Media , andEncrypted extend theBaseStream type, repre-

senting reliable, media, and encrypted streams respectivéigeo and Audio
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BaseStrem {
bool reliable;
bool secure;
bool realtime;

}

RStream::BaseStream Media::BaseStream Encrypted::BaseStream
(rank:0) (rank:1) (rank:2)

Video::Media | | Audio::Media

()
properties
secure reliable realtime
wired T F F
wireless F F F
(b)
secure reliable realtime
T F T F T F
Media — | F | — F — F
RStream — | F | T* T — F
Encrypted ™ | T | — F — F
—: no change *: Isolation Effect
(c)
components Input & output type components Input & output type
) media:{
;'\)/ES: O‘i :ﬁgglnee:}? encryption Encrypted | Q«f
(sink) secure =T; *
}
video:{
souce | etnesr ()| deanypton | [ o) [

secure =T,

}

. reconnecter RStream
splitter audio video M
(src) *
media:{ media:{ RSt
4_< )4_ reconnecter < ream
padder realtime = T; realtime = *; (dest) ‘—Q N

) )
(d)

Figure 4.6: Types in the streaming media example: (a) data type definitions; (b) link prop-
erties; (c) effect of link properties on augmented types; and (d) input and output
types of components.

are two subtypes of thdledia type. TheRStream type is given a lower rank
as compared to the other types to capture the composition constraint involving the

encryption /decryption  andreconnecter  drivers.
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Figure 4.6(b) shows properties of the wired and wireless links. The wired link
is modeled withreliable andrealtime  properties set téalse to capture the
fact that it can get disconnected during the access. Similarly, the wireless link has the
secure property settdalse to denote its limited support for transmission privacy.

Figure 4.6(c) shows how these link properties affect different types. For example,
thesecurity  property of the media type will be changedRalse after it passes
through a link whossecurity  property value ig-alse , but the value remains the
same if the security property value of the linKTisue . As discussed in Section 4.2,
some of the types have the effect of isolating certain link properties from those below
them in the type stack. In this example, tBecrypted type isolates the security
property, and th&®Stream type isolates the reliability property.

Figure 4.6(d) lists the input/output types of the six components, along with the
types produced by the source and that required by the sink. To consider some ex-
amples, the sink specification says that the client application requires a reliable, real
time, and securelledia type. Thepadder , which fills in legal frames whenever it
does not receive input in a timely fashion, is represented as a component that trans-
forms the input typeMedia with an arbitrary value for theealtime  property,
into the output typeMedia with realtime =true . Similarly, theencryption
component is modeled as an entity that converts an arbitrary stream type at its input
into a new stream type consisting of tRacrypted type wrapping whatever was
originally present. Thalecryption = component performs the reverse operation,

stripping away thé&ncrypted type out of the stream type.
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4.3.2 Valid Paths

The primary advantage of modeling component properties, network resource charac-
teristics, and composition constraints in a unified type model is that all valid commu-
nication paths associated with a given set of network conditions correspond simply
to type-compatible component sequences that transform the source data type into that
required by the sink. The important point here is that these valid sequences can be
inferred fully automatically. In this example, the two network conditions of interest
are whether the user connects to the server using a wired link or a wireless link.

With the wired link, the above type specifications yield the following two valid
component sequencegconnecter(src) —reconnecter(dest) —padder
andsplitter ~ —reconnecter(src) —reconnecter(dest) —padder . In-
formally, the former might be used when link capacities are sufficient for transmission
of the original video+audio stream to the client, while the latter is required when this
is not the case.

With the wireless link, we also have two valid sequencescryption  —

reconnecter(src) —reconnecter(dest) —decryption —padder , and
splitter ~ —encryption —reconnecter(src) —reconnecter(dest) —
decryption —padder . Notice that theencryption  anddecryption  com-

ponents are required to preserve the secure property of a stream transmitted across the
wireless link (see Figure 4.6(c)). Note also that an alternate type-compatible sequence
reconnecter(src) —encryption —decryption —reconnecter(dest)

—padder is disallowed because of the ranks associated withRRBeeam and

Encrypted types.
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4.4 Summary

In this chapter, we have presented our type-based model of component functionality,
network resource characteristics and composition constraints. Components are mod-
eled as entities that transform data from input types to output types. Aggregate effect
of component composition is represented using the notion of stream types, which
eliminates the need for complete knowledge of the whole communication path when
modifying only a subset of the path. When passing through a network resource, the
augmented part of data types may be changed depending on the characteristics of the
resource, consequently introducing additional constraints for meeting application re-
quirements. Constraints on composition order are expressed using type ranks. Our
type model and these concepts serve as the foundation of our path creation strategies,
described in the next chapter, which provides a mechanism for validating communi-

cation paths mechanically.
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Chapter 5

Automatic Path Creation Strategies

In this chapter, we present our path creation strategies for automatically generating
augmented paths to meet application requirements, while providing optimized perfor-
mance for the underlying network conditions.

In general, creation of an augmented communication path consists of two steps:
route selectiorwhere a graph of nodes and links is selected for deploying the path,
and component selection and mappindnere appropriate components are selected
and mapped to the chosen route. Route selection is typically driven by external factors
(such as connectivity considerations of wireless hops, ISP-level agreements, etc.) and
so we focus only on the component selection and mapping problem here.

The component selection and mapping process takes as input the application com-
munication requirements and a chosen route between client and server nodes, and
produces a sequence of drivers and their mapping to the route that can provide the
application with optimized performance. Given that our goal is to provide network

awareness to applications imé@de area networkthe strategies described in this chap-
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ter have the property that they can also work with small segments of a communication
path and can be employed incrementally across different network domains in a dis-
tributed fashion.

To optimize path performance, we first need ways of characterizing the impact
of a particular component on the resource utilization along a path, as well as for

associating a performance metric with the overall path.

5.1 Performance Characteristics of Network Resources and Com-

ponents

In this section, we describe how we model performance characteristics of network

resources and components along an augmented path.

5.1.1 Network Resources

Performance characteristics of a network resource are modeled in terms of its capac-
ity: computation capacity (i.e. how many operations per time unit) for a network
node, bandwidth and latency for a network link. An individual path is allocated a
certain share of the resource, in accordance with the resource management algorithms

described in Chapter 7.

5.1.2 Component resource utilization model

To characterize the resource utilization and performance of a path, we need to cap-
ture the behavior of each component without requiring an explicit enumeration of

all possible situations in which the component can be mapped. To facilitate this,
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each component is modeled in terms of itsomputation load factofload(c)), the
average per-input byte cost of running the component, arzhitslwidth impact fac-

tor (bwf(c)), the average ratio between input and output data volume. For example,
a compression component that reduces stream bandwidth by a factor of two has a
bwf = 0.5. The value ofoad andbwf can be obtained via profiling with typical data
input.

This component model assumes that the underlying behavior of the component,
with respect to computation time and output data size, varies linearly with input data
size. Knowing the rate at which input data packets arrive at the component permits
one to estimate the CPU requirements as well as network bandwidth requirements on
the downstream link.

We should note that our algorithms themselves do not rely on this specific linear
model ofload(c) andbwf(c): the computation load or compression ratio can be any
arbitrary function as long as this information can be provided to our planning algo-
rithms by components themselves or by detailed profiling. The primary reason that
we choose computation load to be a linear function of the input data size and compres-
sion ratio to be a constant value is because of profiling experiments we have conducted
with typical components. Appendix A lists the raw profiling data and shows that it is
represented well by this model .

This simple model can be extended to allow components to have multiple config-
urations. Further, for each configuration, the values of computation load and com-
pression ratio can be parameterized by the actual stream type of incoming data. For
example, when an image resizing component is placed after an image filtesdits

andbwf factors are determined by the image quality attributes contained in the type
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object generated by the filter. Such values can be obtained by an approach we call
class profiling which basically groups possible value of these data properties (for our
example applications, the image quality) into several classes, and profiles components
with representative data in each class. Values between different classes are estimated
using linear interpolation. Such class-based profiling provides a more accurate model

of component behavior.

5.2 Problem Definition

An augmented communication path D = (¢,...,¢,), iS a sequence of type-
compatible components, in whiekis output is sent to the input ef, ;.

Aroute, R = {Ny, Na, ..., N,}, is a sequence of nodes separated by links . Each
nodeXN; is modeled in terms of itsomputation capacitycomp(JV;) (operations per
second), and a link between two nodés,= (N;, N;1), is modeled in terms of its
bandwidth,bw(L;). Bothcomp(N;) andbw(L;) are defined in terms of the shares of
resources along the route available for a particular path.

A mapping, M : D — R, associates components on augmented communication
path D with nodes in routek. We are only interested in mappings that satisfy the
following restriction: (M (¢;) = N,) A(M(cit1) = Ny) = u < ¢, i.e., components
are mapped to nodes in path sequence order. The intuition behind this is that sending
data back and forth between nodes along a route usually results in poor performance
and wastes resources.

Our path creation strategies exploit the type compatibility described in the last

chapter to identify valid composition patterns. The relation between types and com-
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ponents is depicted usingtgpe graph G;: a vertex in the graph represents a type,
and an edge represents a component that can transform data from the source type to
the sink type.

The path creation problem can now be formally stated as the following: given a
route R (with the resource shares allocated to the path), a type gramnsource data
type t,, a destination data typg, select an augmented communication pAthhat

transformg, to t4 and can be mapped #®so0 as to satisfy the following requirements:
e Type compatibility between adjacent components.

e Optimal performance. Performance can mean different things, for example,

maximum throughput, minimal latency etc.

5.3 Overview of Our Solutions

Our path creation strategies automatically select and map a type-compatible compo-
nent sequence to underlying network resources. In addition to satisfying type require-
ments, the strategies respect constraints imposed by node and link characteristics and
optimize some overall path metric such as response time, data quality, or throughput.

We first describe a base version of the algorithm, based on dynamic programming,
in which a single performance metric needs to be optimized (e.g. maximum through-
put or minimal latency).

We then present an extension for applications that require the value of some per-
formance metric to be in aacceptable rangeFor such applications, only after that
range has been met does the application worry about other preferences. For example,

most media streaming applications usually demand a suitable data transmission rate
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(in some range) so that received data can be rendered appropriately at display devices;
once the transmission rate is kept in that range, other factors such as data quality be-
come the concern. We use the temasge metricsandperformance metrick refer

to the two types of preferences.

Lastly, we describe a “local” scheme that can be used for a portion of the commu-
nication path. Using local planning, disjoint segments of a communication path can
adjust their behaviors independently and concurrently while maintaining some overall
performance guarantee. Such a local scheme can improve adaptation agility in that
any portion of a communication path can be modified to respond to local changes in
its network segment. More importantly, such schemes are indispensable for deploy-
ing path-based infrastructures in the situations where a communication path need to
span multiple network domains, for which fine-grained coordination across different
network domains is either prohibitively expensive or infeasible due to administration

policies.

5.4 Base Algorithm

Unfortunately, finding the optimal solution for the path creation problem defined in
Section 5.2 is an NP-hard problémThe complexity mainly comes from the large
number of possible composition among candidate components.

However, this problem can be made tractable with a reasonable simplification:
we partition the computation capacities of nodes into a fixed numbdisofeteload

intervals, i.e., capacity is allocated to components only at interval granularity. This

The multiple choice knapsack problem can be converted to a simplified version of this problem
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practical assumption allows us to define, for a rofitethe notion of anavailable
computation resource vectorl = (ri,79,...,7,), Wherer; reflects the available
capacity intervals on node (normalized to the interval [0,1]).

In the description that follows, we use maximum throughput as the goal of perfor-
mance optimization. Note that the throughput is an application performance metric,
i.e. the number of semantic units that pass through the network in a time unit, for
example how many frames per second are delivered for a streaming application. We
usep as the number of hosts in routg(i.e. p = |R|); m as the total number of types

(i.,e.m = |V(G,)|); andn as the total number of components.

Dynamic Programming Strategy

The intuition behind the algorithm is to incrementally construct, for different
amounts of route resources, optimal paths from the source data type to all types with
increasing numbers of components, $ay1, using as input optimal partial solutions
involving i or fewer components.

To construct a solution with+ 1 (or fewer components) for a given typand re-
source vector, we consider all possible intermediate typabat can be transformed
tot, i.e. all those types for which an ed@é, ¢) is present in the type graph. For each
sucht’, consider all possible mappings of the associated comper@nhodes along
the route that use no more tharesources. Each mapping ofransforms the avail-
able resource vector t&/ (after accounting foload times the incoming data volume),
and provides a new mapping that combines this component with the previously cal-

culated solution for’ with i (or fewer) components and resource vectdr The
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A=(1,1,1,3/4,0)

load(c)=2/4 [N

Figure 5.1: Map: to N3 and lookup solution withd’

combined mapping that yields the maximum throughput is deemed the solution at the
(i + 1)™ level.

Because this procedure runs backwards from the destination to the soureg (i.e.
is mapped before;), consequently, only resource vectors of the fdim..,1,r; €
[0,1],0,...,0) are used in the calculation. These set of such resource vectors is desig-
nated aRRA. Itis obvious that the size dfA is O(p), wherep is the number of nodes
along the route.

Formally, the algorithm fills up a table of partial optimal solutiong( ¢, A, i]) in
the orderi = 0, 1,2, . ... The solutions|t,, t, ff, i] is the data path that yields maximum
throughput for transforming the source typdo typet, using: or fewer components
and requiring no more resources thanA € RA). Figure 5.1 shows the moment
in the calculation ofs[ts, to, (1,1,1,3/4,0),7 + 1] when component is mapped to
nodens, and appended with partial solutioft,, ', (1,1,2/4,0,0),4]. Note that in
this example, computation capacity of nodes is partitioned into 4 intervals.

The algorithm is listed in Figure 5.2. Line 3 of the algorithm handles the base
case: only the case with= t, achieves non-zero throughput. Lines 8-13 represent
the induction step, examining different drivers to extend the current partial solution

for each specific intermediate typend resource vectof. Lines 12 and 13 ensure
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Algorithm Plan
Input: ts,tq, G, R
Output: The augmented path that yields maximal throughput from typetyq on route
R
(x Step 1: Initialization for partial plans with zero componests
for all t, andA € RA
do calculates[t,, t, A, 0]
(x Step 2: Incrementally building partial solutior)s
for i —1topn
doforallt € V(G;),A € RA
do slts, t, A, i] «s[ts, t, A,i — 1]
for allc = (t',t) € E(Gy)
do for all N; with A[N;] > load’(c)
do M(C) <—Nj
A" —(A[0),. .., A[Nj — 1], A[N;] — load'(c),0,. . .)
TH «—throughput(append(s|ts, t’, Al — 1], ¢, A))
if TH > slts, t, A, i
then s[ts, t, A, i] —TH
. return sfte, tq, A = [1,1,...,1],pn]

©oNoGOhA~WDNE

PR R R R
aokrowbdpEo

Figure 5.2: Base Path Creation Algorithm

that the component achieving the maximum throughput defines the next-level partial
solution. To optimize other performance metrics (e.g. shortest latency), only lines
12-14 of the algorithm need to be changed accordingly.

Table 5.1 shows how to calculate throughput of a communication path, i.e. the
minimal value among the throughput of the nodes and links along the path. To calcu-
late throughput values of individual links and nodes, compression ratios before links
(C(L;)) and componentg{(c;)) need to be calculated. These compression ratios rep-
resent the number of bytes, at those points (befgrer ¢;), generated by one byte
of data at the source. So the throughput of a link is its bandwidth “decompressed”

by the compression ratio. The division by the data unit size at source converts the
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Path D ={c1,...,cn}

Route R = {Nl,NQ,....,Np},LZ': (Nz’7Ni+1)

Data unit size at source S

Node Component Set M=Y(Ny) = {ciy, .y, |[M (i) = Niy1 < i < k}

Accumulated Compression

C(LZ) = Hijf(Cj), for M(Cj) = Nk with & <1

(link)
Accumulated Compression . ;4 '
(driven) C(ci) = I bwi(c))
Throughput (link) TH(L;) = bw(L;)/(S - C(L;))
Throughput (node) TH(N;) TH(Li) M (N =0
I’0ug pu node i) — comp(N; . _
S-Z?zl(loadp(iik))C'(cik)) i MTHN;) # 0
Path Throughput TH = min;(TH(L;), TH(N;)

Table 5.1: Calculation of throughput of a communication path

granularity from bytes to data units. Similarly, the throughput of a node, if there are
any components residing on that node, is its computation capacity divided by the load
for processing a data volume that corresponds to one data unit at the source. The ex-
pression, (load(c;, ) - C'(cy,.)) represents the load at nodecaused by one byte of

data at the source.
One additional point about our algorithm needs some clarification: We need to

know how much resource$ofd’(c) in line 9) to set aside for componeatbefore

we can combine: with an optimal Step — 1 solution. The problem here is that

¢’s resource requirementsad(c) are expressed in terms of per-input byte costs, and
are difficult to evaluate without knowing what the input data volume is, which itself
is only known once the Step— 1 solution is selected. Our solution to break this
cyclic dependency is to firgjuessthe resource requirements ofind then evaluate

the throughput for this guess. Note that because of discretized load levels, we only

need to make a constant number of guesses at each step, thus this does not change the
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complexity of the whole algorithm.

The algorithm terminates at Stem, with the solution inslts, tq, (1, ..., 1), pn].

This follows from the observation that there is no performance benefit from mapping
multiple copies of the same component to a node. The complexity of this algorithm
is O(n*mp?) = O(n?p®)? as opposed t@)(p") for an exhaustive enumeration strat-
egy. n, the total number of components, usually is a big number. Even for a simple
operation, such as compression, there may exist many different candidates, not to
mention that each component may have multiple configurations. Theréfgre) is
infeasible in practice. In most scenaripss expected to be a small constant, there-
fore overall complexity of our path creation algorithm is determined by the number
of components.

Two implementation issues need additional attention here. First, reducing the size
of the type graph is important. When calculating paths, only types that can be reached
from both source and destination types are considered. In addition, type ranks (de-
scribed in Section 4.2.1) can be used to further reduce the size of type graph. These
mechanisms help because of the observation that the total number of possible com-
posable operations involving a specific type is limited. Second, when a type object
needs to be made available across a network link, the augmented part of the type
object needs to be calculated on the other side of the link using the link property

transformation rules described in Section 4.2.

’It is safe to assume that < n, i.e. the total number of types is less than the total number of components.

This is because a type exists only if some components can produce and consume data of that type.
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5.5 Extension 1: Planning for Value Ranges

As mentioned before, some applications require some performance metrics to be in an
acceptable range, and only after the requirement of these range performance metrics
is met, other performance metrics become interesting. To support such applications,
given that our planning algorithm constructs data paths by incrementally filling in a
solution table of[t,, ¢, A, i], it is natural to extend this to check that retained solutions
satisfy two conditions: (1) values of range metrics achieved by the current solution
lie within the desired range, and (2) the value of any performance metrics is in fact
optimized.

Although this is the basic idea of the extension, for some range metrics, such as
path latency, additional work is needed. For such range metrics, even if the current
value of the range metrics is not in the range for a partial solution, this does not
exclude the possibility that this partial path may actually become a part of the final
solution. For example, appending compression components to a partial path can bring
down overall path latency by reducing packet size. So such candidates cannot be
pruned.

To estimatewhether the desired range can in fact be achieved by appending ad-
ditional components, we employ a procedure catlechplementary planningvhich
just runs the planning algorithm in reverse, providing information about whether or
not the range metrics can meet the requirement using residual resources from type
t to tq. In the process otomplementary planningcomponent parameters are also
reversed modeling the situation where data flows from output ports to input ports.

A reversed solution’[ty, t, Al = (0,..,0,r,1,...,1),] represents the communication
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path with the best performance frano ¢4 using resources less thah. When calcu-

lating s[ts, t, A, i], those partial solutions that can not meet the range requirement will
be discarded by looking ug[tq, t, (1,...,1) — A, pn— i]. Heuristic functions are used

for choosing among candidate paths that can all meet the required range. For exam-
ple, data quality can be used to choose between two solutions that both can provide
required throughput. Note that complementary planning needs to be run just once for

the whole calculation.

5.6 Extension 2: Local Planning for Segments of the Network

Route

The challenge in replanning for portions of an existing communication path is how
to modify these portions independently while still maintaining some overall perfor-
mance guarantee. For example, we would like to ensure that the range metrics for the
entire path still fall within their desired range. Note that local mechanisms may com-
promise optimality of performance metrics, but we look at this as a reasonable tradeoff
between global optimality and the benefits of local mechanisms as mentioned before,
i.e., increased responsiveness to changes and eliminating the need for coordination
across different network domains.

Our local planning strategy is a straightforward extension of the range planning
mechanism described above. To create a partial pat®fowhich is a segment of
the original routeRz, all we need to do is to run the range planning algorithmin
with localized parameters. Since the types entering and ledviagd the size of the

incoming data units are known, the only thing left is to adjust the range metrics for
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R’. Adjustment for throughput and latency is shown below:
e For applications that require an overall throughput rabyg,,, thyes, this can
be done by assuring that each disjoint region in the path plans with the same

range, which also gives them the most flexibility for building paths.

e For applications that require a latency rarigg., lnign|, the localized latency
range Will be[lipw v/, lhigh,r’], Wherely p is the divided portion of latency,
over segment?’. One way of doing this division is to consider the contribution

of links in R’ to the overall latency of:.

5.7 Distributed (Incremental) Planning

Though our path creation strategies have so far been described in a centralized way,
they can easily be extended to run in a distributed fashion. To do that, each node

(n;) on the route calculateﬁts,t,ff =(1,..,1,0, ...,O),Z;.:O(CNJ-)] whereCN; is

the total number of components on nod]:a3 In particular, the first node just needs
to calculate its part of the solutions (for all possible typepand send these partial
solutions to the next node; upon receiving partial solutions from an upstream node, a
node calculates its own solutions using the partial solutions from the upstream node.
This procedure continues until it reaches the client node.

The primary benefit of this distributed version is that there is no need for a central-
ized planner, which requires a complete knowledge of components and types for all

nodes in the route. By incrementally calculating a path in such a distributed fashion,

3The value ofCN; is not important for nodes other than. Every node just tries to append partial solutions
from the direct upstream node with as many of its own components as po$sibjas the maximal number of

components that can be appended. Recalldftatt, A, 1] is the best solution usingo more than components.
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only knowledge for common types that are used across different network domains is
needed. A network node does not need to know which components exist on other
nodes. This distributed version, combined with the local mechanisms described ear-
lier make it much more practical for a path-based infrastructure to be deployed in the
Internet, where a path usually spans multiple administration domains.

The extra traffic incurred for this distributed version is only messages of partial
solutions (with/f = (1,...,1,0,...)) between adjacent nodes. It should be noted here
that only values of the performance metric are needed, transmission of components
and connectivity information is unnecessary. The size of such messages should be
small since the number of possible common types is expected to be small along a
communication path with fixed source and destination types. Heuristic strategies can
be exploited to further reduce the number of partial solutions that need to be transmit-

ted.

5.8 Summary

In this chapter, we have presented a model and algorithms for automatically con-
structing network-aware paths. Such paths can provide applications with required
data and optimized performance for the underlying network conditions. Our strategies
are very flexible in that they can work with applications with different performance
requirements (maximum/minimum values or value ranges), and they can be used to
construct an entire new path as well as modify portions of an existing path. The path
calculation can be carried out by a centralized entity or incrementally from one net-

work domain to another in a distributed fashion. The local planning and distributed
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implementation are important for such path-based infrastructures to be used in a wide
area network, where information exchange (about components etc.) between different
network domains is either expensive or impossible due to administration constraints.

The evaluation of our path creation strategies is described in Chapter 9.
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Chapter 6

System Support for Efficient Path

Reconfiguration

To cope with dynamic changes in the network, a network-aware communication path
needs to reconfigure itself when the current configuration can no longer meet its per-
formance requirementsOur solution of low-overhead reconfiguration has two parts:
(1) a set of simple rules placing slight restrictions on component behavior, and (2) a
reconfiguration protocol that leverages these restrictions. Before we describe these
two parts, we observe that there are two major challenges in dynamically modifying
a communication path.

First, path reconfiguration should provide semantic continuity guarantee. Since
components within an augmented communication path can transform data from one

type to another, the conventional notion of continuity, i.e. in-order byte level delivery,

1This can be detected by either monitoring changes in resource availability of the path or by comparing the

expected performance of the path with the value actually measured at run time.
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can not be applied directly to this scenario. Instead, the continuity required by ap-
plications is at the granularity of semantic segments. A semantic segment here refers
to a demarcatable application-specific unit of data in transmission, e.g., an HTML
page or an MPEG frame. Conventional properties such as in-order transmission and
exactly-once delivery can now be defined at the granularity of semantic segments.
Second, a path reconfiguration should avoid introducing a long interruption period
in data transmission. To reduce reconfiguration overhead, mechanisms that can adapt
to “local” changes in the network by modifying small portions of a whole communi-

cation path are important.

6.1 Reconfiguration Semantics

With the notion of semantic segment in hand, it is now possible to define what the
application can assume about the received data after a portion of the communication
path is modified. Our reconfiguration protocols can be customized to provide three

different levels of semantics:

e Level 1 semantics provides no guarantees, leaving it up to the application to
reconstruct any lost data. This can be used for applications that involve non-
critical data (e.g., news feeds), or applications that themselves can exploit in-

order delivery guarantees to perform efficient recovery.

e Level 2 semantics provides the guarantee of delivering comgleteantic seg-
ments essentially simplifying the task of the application recovery code. For ex-
ample, in a streaming media application, a semantic segment might correspond

to one video frame. Level 2 semantics ensure that a frame is either completely
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delivered or not delivered at all.

e Level 3semantics provide full continuity guarantees with exactly-once seman-
tics, completely isolating the application from the fact that the path has been
reconfigured. Note that real-time applications can still detect a break in data
availability; we take the view that such applications are best handled by insert-
ing additional application-specific components that provide necessary timeli-

ness guarantees. For an example of such components, see section 4.3.

6.2 Rules Restricting Driver Behaviors

To guarantee the above semantics, our framework relies upaethantic segment
and soft stateproperties of components in an augmented path, introduced in Sec-
tion 3.2.

First, drivers are required to consume and produce data at the granularity of an
integral number of semantic segments. Informally, this requirement ensures there
must exist some points where data transmission can be safely suspended and path
reconfiguration can be carried out with the semantic continuity guarantee. We will
revisit this point later in the description of our reconfiguration protocols. Note that this
property only refers to the logical view of the driver, and admits physical realizations
that transmit data at any convenient granularity as long as segment boundaries are
somehow demarcated (e.g., with marker messages).

Second, drivers are required to contain only soft state, which can be reconstructed
simply by restarting the driver. Stated differently, given a semantically equivalent

sequence of input segments, a soft-state driver always produces a semantically equiv-
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alent sequence of output segments. For exampBp adriver that produces com-
pressed data will produce semantically equivalent output (i.e., uncompressed to the
same string) if presented with the same input strings. This property ensures that
drivers can be dynamically removed from or inserted into an existing path, and data
retransmission can be used to reproduce the same output sequences.

Together, these two properties enable low-overhead path reconfiguration as de-

scribed below.

6.3 Reconfiguration Protocol

The reconfiguration process is triggered by dynamic changes in the network, and is
carried out by path control entities along the communication path. Path reconfigura-

tion consists of three major steps: (1) generating a new plan, (2) ensuring required
semantics prior to suspending data transmission, and (3) deploying the new plan and
resuming data transmission.

Step 1 uses the planning algorithm described in Chapter 5, optionally reusing some
of the solutions of previous calculations (e.g. by caching previously calculated paths),
and can be overlapped with ongoing transmission. Steps 2 and 3 are controlled using
our reconfiguration protocol.

Reconfiguration requires slightly different support for the three levels of reconfig-
uration semantics described earlier. Since required activities for Levels 1 and 2 are
a subset of that for Level 3, our description focuses on the latter. The underlying
problem is that in order to provide in-order and exactly-once semantics, any path re-

configuration scheme must take into account the fact that the portion of the path being
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reconfiguration portion

upstream downstream

point o ‘ ‘ point

Source HTML—TXT TXTWML WML

(a) After D, ouputs 2 pages (b) After D, ouputs 4 pages

Figure 6.1: An example of data path reconfiguration using semantics segments.

reconfigured can have partially processed data either in the internal state of drivers
or in transit across the network, or data that has been lost due to failures. Note that
the soft-state requirement on its own does not provide any guarantees on semantic
information loss or in-order reception.

Figure 6.1 shows an example highlighting this problem. To introduce some termi-
nology, we refer to the portion of a communication path that needs to be modified due
to changes in the network as ttezonfiguration portionand the components immedi-
ately upstream and downstream of this portion asufhstream poinanddownstream
point respectively. In the example, driveg is an HTML data source, and; is a
component receiving WML data. The reconfiguration portion consists of driiers
andd,. In this case, let's assume that drivikrconverts every incoming HTML pages
into three TXT pages, and drivés composes every four incoming TXT pages into a
WML deck. Consider a situation where system conditions change after the upstream
pointd, has output two HTML pages, and the downstream pajritas received one
WML deck. At this point, the reconfiguration portion cannot be replaced because do-
ing so affects semantic continuity. It is incorrect to retransmit either the second page
from dy whose effects have been partially observedsator the third page, which

would result in a loss of continuity af.
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Our reconfiguration protocol leverages the semantic segments and soft state re-
strictions placed on driver functionality as follows.

Intuitively, the first restriction allows us to infer which segments arriving at the
downstream point of the reconfiguring portion depend on a specific segment injected
at the upstream point and vice-versa, while the second makes it always possible, even
if any internal driver state is reset, to recreate the same output segment sequence at
the downstream point by just retransmitting selected input segments at the upstream
point.

The basic idea of our solution is to delay the reconfiguraticsafe pointsn data
transmission where the reconfiguration portion can be safely removed, and semantic
continuity can be achieved usirsglective retransmissioof data that has not been
seen downstream of the reconfiguration portion.

The key to detecting these “safe” points is to keep track of the correspondence be-
tween segments received at the downstream point and the segments sent from the up-
stream point, which is determined by the driver characteristics in the reconfiguration
portion. If a reconfiguration portion contains a sequence of drikdess {c;, ..., ¢, } of
which driverc; produces; semantic segments upon receivipgnput segments, we
refer top/q = 117, p;/q; as thesynthesis factoof the reconfiguration portion (hege
andq are relative primes). For the reconfiguration portion, the semantic information
in the jth outgoing segment from the upstream point is contained in segments within
the range of| (7 — 1) - p/q] + 1, [jp/q]] received by the downstream point. More in-
teresting is the fact that the boundary of e&chy)th segment at the upstream point is
preserved at the downstream point, which corresponds to the boundary(of thth

segment. This means that after the downstream point receives such a segment, all seg-
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ments (inclusively) before thg- ¢)th segment must have been seen at the downstream
point and there is no state of these segments left in the reconfiguration portion. Such
segments are referred tofisshingsegments in our reconfiguration protocol to reflect

the fact that these segments can in effect completely push state (and data) remaining
in the reconfiguration portion (of previous segments) to the downstream point.

Note that in practicep;/¢; may not necessarily be a constant number, so our
framework exploits a flexible mechanism that tracks these flushing segments by using
marker messages, which demarcate segment boundaries. All drivers along a com-
munication path are required to pass only incoming markers that match their output
segment boundary (others will be discarded). Therefore, receipt of a marker at the
downstream point of a configuration portion signifies the end of a flushing segment

(at the upstream point).

6.3.1 Reconfiguration Process

The state diagram of a path during a reconfiguration is depicted in Figure 6.2. In this
figure, a bold font is used for distinguishing control messages or data segments from
actions taken by the path (shown in italics). The reconfiguration process includes the

following steps.

1. Upon receiving a message signifying the start of a reconfiguration (with the new
plan) , the downstream point starts to monitor incoming de)gthe Monitor
state); the upstream point starts to buffer outgoing segments while continuing
to deliver them downstream (1)(tHguffering  state). Besides, a marker is

appended at the end of each output segment from the upstream point. Other
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nodes within the reconfiguration portion do not change their state.

. The downstream point continues monitoring until it receives a marker from the
upstream point, which signifies the end of a flushing segment from the upstream
point. The downstream point then sendSeg_Ack message to the upstream

point, and begins to discard any further incoming data segments (2).

. Upon receipt of th&eg_Ack from the downstream point, the upstream point
suspends (keeps buffering but not delivers data downstream) data transmission
and sends 8odify message to all nodes that are involved in the reconfigura-

tion (3).

. Upon receipt of Modify message, all nodes in the reconfiguration portion en-
ters theRecfg state, tearing down the components in the old configuration and
replacing them with the new component graph. In this stage, all drivers within
the reconfiguration portion except the upstream point discard any incoming data

(4"). The upstream point continues buffering outgoing segments (4).

. After the modification on a node is finished, A8Kmessage will be sent to the

upstream point (5).

. After receivingACKmessages from all nodes, the upstream point resumes data
transmission, starting with retransmission from the segment that follows the last
flushing segment received by the downstream point (6). Note that since every
driver is associated with a unique ID, new components after the reconfiguration

will not accept data from the network that is addressed to the old components.
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The process described above achieves semantics level three reconfiguration se-
mantics. For semantics level two, the data buffering and retransmission actions can
be omitted. For semantics level one, step 1 and 2 can be further bypassed, i.e., the

upstream point needs not wait for tBegAck message from the downstream point.

Example For the example shown in Figure 6.1, reconfiguration works as follows.
First, the upstream pointl{) starts buffering every segment it produces after the re-
configuration begins. The downstream poify) (will receive a marker after the third
page fromd,, which is the marker appended at the end of the fourth page from the
upstream point. It then sends an acknowledgement to the upstream point. After that,
data transmission will be suspendedi/g@to thatd; andd, can be replaced with an-
other compatible driver graph. To resume data transmisdjoretransmits buffered

data starting from the fifth page.

6.3.2 Error Recovery

In addition to adapting to changes in resource availability, our scheme can also be
used for “extreme” cases where link or node errors cause lost of data or driver state.
The only difference between the two situations is whether the reconfiguration protocol
is executed on demand or runs all the time.

To gracefully recover from the failures of links and nodes along a communica-
tion path, we need to do buffering and monitoring all the time at the upstream and
downstream points of an unstable network segment. Moreover, the downstream point
needs to delay the delivery of received segments until it receives a marker from the

upstream point. Meanwhile, the downstream also needs to send acknowledgements
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Figure 6.2:State diagram of path reconfiguration. Numbers on arcs correspond to the steps

described in the text.

of received markers to the upstream point so that the upstream point can free buffer
space accordingly. Upon recovery from a network failure, the downstream point dis-
cards its buffered data and resends the acknowledgement of the last received marker
to the upstream point. The procedure that follows is exactly the same as steps (3) —(6)

in the reconfiguration process described earlier.

6.4 Local Reconfiguration

In addition to modifying a whole communication path (where it catiémbal recon-

figuration), the reconfiguration process can also be applied to allow individual nodes
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or small portions of a communication path to adjust their behaviors independently and
concurrently. We refer to the latter Bxal reconfiguration By using local reconfig-
uration, every segment of a communication path can independently and concurrently
adapt to dynamic changes in the network. This not only results in better respon-
siveness, but more importantly, also enables each network domain along the path to
control its portion independently, especially important for infrastructures that run in a
wide area network, such as the Internet.

To support local reconfiguration, in addition to the reconfiguration process de-
scribed earlier, we need two more things. First, we need a planning algorithm suitable
for generating a small path portion to replace a part of an existing communication
path while retaining some overall performance guarantee. In Section 5.6, we have
described an algorithm that can provide such support. Second, we need strategies
to determine which part of a communication path (i.e. nodes and links) should be
involved in a local reconfiguration. In this section, we focus on this issue.

To start with an example, if the bandwidth of a network link changes, local recon-
figuration may first try using only the direct upstream node of that link. If the new
calculated plan can cope with the change, it will be deployed without further action.
Otherwise, the reconfiguration portion has to be increased to involve more network
resources until the situation is handled. Note that this propagation can be terminated
at any time by just invoking a global reconfiguration.

The tradeoff in choosing an appropriate point to switch between local and global
reconfiguration involves the length of the segment selected for reconfiguration (which
affects reconfiguration cost), and the likelihood that the reconfiguration can success-

fully handle changes. Our framework uses a three-level strategy. Upon a reconfigura-
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tion request, the first reconfiguration attempt happens in a single node when its load
changes or the load on its direct downstream link changes. If the first reconfiguration
attempt cannot meet the application requirements, then the second reconfiguration
attempt will be triggered, which includes network segments comprising nodes con-
nected with relatively fast links (usually within a single network domains). Lastly, if
both of these fail, a global reconfiguration will be started for the whole communica-
tion path.

From a performance perspective, local reconfiguration can be viewed as a mecha-
nism for balancing the tradeoff between adaptation agility and the optimality of data
transmission. In a dynamic network environment where dynamic change is frequent
and modification of the whole data path may introduce big overhead, we believe such
mechanisms are desirable.

More importantly, mechanisms that allow individual segments to be constructed
(see section 5.7) and modified in a distributed fashion can greatly reduce the need for
global knowledge of components and resource availability, and coordination across
multiple network domains. These aspects, in addition to the overhead of coordination
across different network domains, are the most troublesome problems in managing
long communication paths that span multiple network domains. Combining local re-
configuration with distributed path creation together, our approach abversy net-
work domain to have complete control over the path portions within its region without

requiring coordination from other$

2For such cases, global path reconfiguration can be completely substituted by the combination of local re-
configuration and rebuilding a new path in a distributed fashion when local reconfigurations can not handle the

change.
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6.5 Summary

In this chapter, we have presented system support for modifying augmented paths in
our framework with semantic continuity guarantees. Our scheme relies on a set of
simple rules on component behaviors and an efficient reconfiguration protocol. In ad-
dition to modifying communication paths, our scheme can also be used for recovering
data transmissions from failures of network nodes and links along a communication
path. Moreover, our scheme can be used over a whole communication path (i.e. global
reconfiguration) as well as with disjoint segments of a communication path indepen-
dently and concurrently (i.e. local reconfiguration). Support for local reconfiguration
can not only considerably improve the responsiveness of communication paths to dy-
namic changes, but also greatly eliminate the requirements of global knowledge and
coordination across different network domains, which allows our framework to be
used in a large scale network.

The overhead of path reconfiguration and the relative benefits of global and local

reconfiguration are examined with experiments in Chapter 9.
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Chapter 7

Resource Management for Path-Based

Infrastructures

For a path-based infrastructure to support network-aware paths in a wide area network,
resource management is important for providing individual paths with optimized per-
formance while maintaining a high throughput for the whole network (i.e. accepting
as many paths as possible). In particular, there are two questions that need to be

answered:

e How should shared network resources be allocated among multiple paths that

pass through them?

e How should computation resources be distributed among different network re-

gions in order to achieve better overall performance?

In this chapter, we present our solutions for these questions.
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Scheme.

7.1 Resource Sharing among Multiple Paths

We start by describing a strategy that answers the first question posed at the start of this
Chapter, namely how should shared network resources be allocated among multiple
paths that pass through them. The goal is to ensure that optimized performance is
delivered to as many paths as possible.

To solve this problem, we first need to understand how a network-aware path be-
haves within a shared network environment. Figure 7.1(a) shows the state transitions
of such a path during its lifetime (the start and finish states are omitted to simplify
the presentation). If the resources allocated to the path are sufficient for it to meet
the performance requirements, a path is deemed to be imf@nge state, i.e., its
performance is in the desired range. When some of its resource shares change, there

are two possibilities: either it continues to meet its performance requirements or not.
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In the latter case, there are also two possibilities depending on whether or not the path
can manage to go back to the InRange state by reconfiguring itself. If it can, it stays
in a state called\daptation  until reconfiguration is complete. If not, it enters the
OutRange state, from which it can transit to the other states only after the path’s
allocated resource shares are raised. Welo&hAnge andOutRange asstable
states.

Examining the life time of an individual path, which is depicted in Figure 7.1(a),
one can observe that there are three different types of resource shares that can be
associated with the path. The first type is the share values used in planning for a new
configuration (for path creations or reconfigurations). In general, the greater the value,
the better the generated plan will be. The second type is the upper bound values of
resource shares that the path is allowed to use, i.e. the allocated shares. The third type
is the actually used shares by the path at a particular time.

Taking these three types of resource shares into consideration, we observe that
in order to provide optimized performance to as many paths as possible, an ideal
scheme for allocating resource shares among multiple paths should 1) maximize the
value of the resource share for planning purposes to produce as good as possible a
configuration; 2) minimize the difference between the allocated and the actual used
shares to avoid resource waste.

This is the basic idea of our scheme, which employs the following two strate-
gies: 1) when planning is needed, a path can increase its allocated shares by sending
requests to all the resources involved; 2) whenever a path enters a stable state, it is re-
quired to release unused resources. The state diagram of an individual path using this

scheme is shown in Figure 7.1(b). Theansitionstate is for a path to seradlocation
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requests to all the resources along the path. Upon receipt af@ationrequest, a
network resource is required to do its best to increase the allocated share of that path.
In addition to producing better path configurations, another benefit of using such
allocationrequests is that they can effectively balance load across the network. For
example, if pathd uses nodes; andn,, and among them, is heavily loaded but,
has many unused computation resources. After seraliogationrequests to both of
them, pathA will receive a larger share from,. As a result,A will place most of its
computation oms,. If the load in thhe network changes afterwards sothdtecomes
the overloaded one and has unused resources, the same requests can effectively
move computation required by from n, to n;. Though one can also achieve a
similar effect through one tight coupling betweenandn, such cooperation usually
requires expensive information exchange about dynamic resource availability, thus
does not scale well for large networks.
To manage allocated shares of a path, our solution has two partstiddation,
which determines the new allocated share in response &dl@ation request; and
(2) adjustmentwhich changes shares of existing paths, triggered either by a need
to satisfy allocation requests from other paths or by releases of resources from other

paths that have left or entered a stable state.

7.1.1 Allocation

The goals of our allocation strategy are to provide the largest possible allocated share
(up to a maximum valuéyIAX) to ensure success during planning, while at the same
time avoiding frequent reconfigurations and cascading adjustments. The algorithm

listed in Figure 7.2 reflects these ideas.
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Algorithm Allocation

Input: Path

Output: Allocated Share for the path

1. if available > MAX

2 then return MAX

3. (x p: number of pathsy: increase irp within the last time unit)
4. r—max(l,n)

5. p, — max([p/r] xr,p+c)

6. if (Pathis a New Path)

7 then return 1/p,

8 else return max(current_share, min(available, 1/p,))

Figure 7.2: Calculation of the Value of the Allocated Share

When the resource is underutilized, allocation requests result in a predefigd
amount of resources being allocated. Information about this amount can either be
provided by the path or specified by the resource. Note that since paths return unused
resources, allocating a large share for planning purposes does not negatively impact
resource availability for future paths.

The case where the resource is oversubscribed (i.e., fewekthanhresources are
available) is more interesting. Intuitively, the algorithm implements a fair policy: the
resource is equally partitioned among all active paths. However, this base policy needs
to be refined to meet our original goals, namely to avoid frequent reconfigurations and
cascading adjustments.

A situation where frequent reconfigurations happen with the base policy is when
new paths are continually entering the system and making allocation requests. If
paths were allocated a sharelofy (wherep is the number of paths) the arrival of
each new path would force an adjustment of the shares granted to all existing paths,

resulting in an undesirable user experience. To take this into account, our algorithm
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“damps” the effect of path arrivals by instead allocating a smaller share where

the quantityp,. is computed in terms of two parameterandc as shown in Figure 7.2.

As computed in lines 4-%,. takes on a new value only once for each time unit (using

n, a prediction for the expected increase in the number of paths over the time unit).
This has the benefit that each existing path would need to be adjusted at most once
over a time unit.

Line 5 also shows how the parametas used to bound the minimum valuegf
By observing that each adjustment of a path returns a share equabpte- 1/p,), it
follows that the fraction of paths that will need to be adjusted to grant an allocation
request isl /(p, — p). The value of this fraction is at mos${ ¢, thereby limiting the
amount of work that will need to be done in the worst cas&ould typically be a
different predefined constant for each resource. In our experiments, we c¢tHodse
5% of the maximum number of paths that can be sustained on the resource.

The other refinement over the base scheme is shown in lines 6-8 of the algorithm,
where different shares are returned depending on whether the allocation request is
made by an existing path or a new one. For existing paths, the algorithm ensures
that any increases in share allocation are constrained from above by the amount of
available resources (i.e., those resources that can be granted without adjusting share
allocations for other paths). To understand this policy, consider what would happen
in its absence for a pati, which shares the resource with path B. If A requests
an increase in its allocated share, the share of pathay need to be reduced. To
maintain the required performance, pathmay in turn issue allocation requests to
increase its shares on other resources along the path. These requesi$ rinasn

affect pathC' in a similar fashion ifB and C' happen to use the same resourge
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The same thing can happen for pdthif C' and D share another resoureg, and
so on. The situation would be even worsdlfis actually A andrs is actuallyr,
for which A initially tried to increase its share on but end up with a decreased
share. In summary, such propagation may cause the whole network to oscillate with
overwhelming allocation requests and adjustments. The constraint in line 8 is used to
avoid this problem.

The algorithm in Figure 7.2 treats all paths uniformly for resource allocation pur-
poses. Note that it is straightforward to extend this scheme to handle cases where

some paths have higher priority than others by associating weights with paths.

7.1.2 Adjustment

Adjustment on allocated shares of existing paths occurs in two situations: (1) when
there are insufficient resources available to satisfy an allocation request, and (2) when
an allocated share is released.

For the first situation, a set of existing paths needs to be selected and their shares
will be reduced in order to accumulate a large-enough share for the allocation request.
The allocation step described earlier is responsible for determining how large this
share needs to be; the adjustment step decides which paths to take away resources
from. Several different heuristic schemes can be employed to guide the latter process.
Our scheme picks victims in decreasing order of the allocated shares, affecting paths
that have a larger share of the resource. This basic scheme can be extended to restrict
attention only to paths in thlnRange state. The intuition here is twofold. First,
such paths are more amenable to reconfiguration for staying in the desired range, as

opposed to the paths in the other states. Second, if resources are overcommitted, it is
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usually more acceptable to reject new connections rather than push existing paths into
the OutRange state. Note that, employing this extension may end up reducing the
overall share that can be allocated to the requester.

The adjustment in the second situation is simpler: when a share of a resource is
released, it is used to increase the allocation of paths i©OthtRange state to the
preconfigured maximum. The intuition here is the same as in the allocation step:
providing paths with the maximal opportunity of reenteringliiRange state. If no
such path exists, a variety of heuristics can be employed. For instance, if the load on
the resource is increasing (as observed by monitoring the number of active paths), the
release resources are reserved for future connections; otherwise, the released shares
are used to increase the allocation of the path with the smallest value of the allocated

share.

7.2 Resource Distribution across Network Regions

We now present our solution for the second question posed at the beginning of this
Chapter, i.e., how should computation resources be distributed among different net-
work regions in order to achieve a better overall performance? For a path-based in-
frastructure, different distributions of a same amount of total computation capacity
among the network nodes can result in very different performance. The goal is to
improve the overall performance of the whole network.

Our strategy is motivated by the observation that although path-based infrastruc-
tures can in general deploy operators on any network node along a communication

path, usable nodes in practice are most likely a small set of strategic nodes such as ISP
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Figure 7.3: Hierarchical arrangement of servers and ISP nodes.

and gateway nodes. Besides, there usually exist some forms of administrative agree-
ments between a higher-level network domain (e.g., the ISP) and a lower-level one
(e.g., the server). Combining these two together, one can view the computation distri-
bution problem as one of rearranging computation resources in a hierarchical network
graph. Specifically, given a fixetbmputation resource budgéntitially assumed allo-

cated to nodes of a lower-level domain, the problem becomes one of moving a portion
of the budget to nodes in a higher-level domain so that the overall performance of the
whole network can be improved. The reason that such rearrangements result in bet-
ter performance of the overall network is basically because of resource sharing; after
such a rearrangement, overloaded servers can take advantage of shared resources at a
high-level node in the network graph, contributed by servers that have a relative light
load.

Our strategy aims to move the maximal amount of resources to high-level network
domains with the guarantee that the performance of those domains, from which the
computation resources are moved out, will not be compromised after the rearrange-
ment.

This rearrangement problem is illustrated in Figure 7.3. Initially, each sefver
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has a computation budgét (number of operations per second), and is connected to
the ISP nodel) via a link with bandwidthBW;. The ISP node in turn is connected
to a higher-level network domain with a link of bandwidBW ;. We use the terms
server linkandISP linkto distinguish between the two types of links. We can further
assume that

> BW; > BW, (7.1)

The problem is to determine what portion@f ought to be moved from; to / (and

what portion of the computation resourceg aan be moved to the higher-level...). In
the description that follows, we first focus on how to distribute computation resources
between these two levels. How to apply our strategy recursively within a network

graph is deferred to the end of our description.

7.2.1 Algorithm for Distributing Computation Resources

In the context of a two-level network structure, the question that our strategy answers
is what fraction of the computational resources from which servers can be transferred
to the ISP node (see Figure 7\8jthout compromisinghe performance of the con-
tributing servers, namely leaving unchanged the number of connections that they can
serve.

To describe our strategy, we need to introduce a model for client connection re-
guests. We assume that all communication paths require a throughpldtdsta units
per second, and that these paths are of two kindsompressedndcompressedThe

latter involves transcoding and/or compression operators to reduce its bandwidth re-

10therwise the bandwidth in the higher-level network domain would remain underutilized
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Figure 7.4: Performance impact of incrementally transferring computation resources from a
single server node to the ISP node for a fixed load level. The three cases corre-
spond to different saturation situations for the server and ISP lfikg,.. denotes
the maximum resource level that can be utilized for improving the performance of
other servers(Cgy, denotes the resource level at which the server link gets satu-
rated.

guirement. Each compressed path requires an average computatmpesétions per
data unit? and reduces bandwidth requirement by the fracfioVe further assume
that the fractiorp; (0 < p; < 1) of all requests via ISP is for accessing contents on
servers;, which has a computation budget@f. As shown in Figure 7.3, we refer to
the bandwidth on the link connecting serseto I (the server link) aBW, and that
on the link connectind to the Internet (the ISP link) d8W ;. Our strategy calculates
C!, the computation resource left at each seryeNote that) < C! < ;.

Assuming the above client traffic pattern, the strategy identifies servers for whom
the corresponding server link has unused capacity for load levels where the ISP link
is operating at capacity. The rationale for this choice can be seen by examining Fig-
ure 7.4, which depicts, for a given load level, the impact on overall performance as
resources are incrementally transferred from a particular sexyedq the ISP node.

Depending on whether the ISP link is saturated or not, and whether a particular server

2Here we only consider the computation capacity required for manipulating data; the overhead of reading the

content from disk and passing it through a protocol stack are not counted since these overheads are always present.
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link is saturated or not (at the beginning point), one can distinguish three classes of
server behavior: (A) when the server link is saturated; (B) when the server link is
unsaturated while the ISP link is saturated; and (C) when neither the server link or
the ISP link are saturated. For each class, Figure 7.4 shows the impact on aggregate
system performance (solid line) and individual server performance (dashed line) as
resources are incrementally moved out of the server.

When the server link gets saturated (case (A)), any movement of computation
resources out of; will decrease the number of connections sustainable at the server.
This decrease is offset at the aggregate system level@giil, resources have been
transferred, by other servers benefiting from the pooled resources.

When the ISP link gets saturated before the server link (case (B)), there are two
situations. Both situations start off by seeing an increase in aggregate performance
because of additional compressed connections being served on other servers. Mean-
while, moving computation resources outspincreases the bandwidth consumption
at its server link but does not affect its performance. This situation continues until we
reach a point where either there is no further benefit from additional ISP resources
(the left figure), or the server link gets saturated (the right figure). In the first situ-
ation, aggregate performance levels off until thg, level is reached at which point
both server and aggregate performance start decreasing. In the situation where the
server link gets saturated first, server performance starts decreasing immediately but
its impact on aggregate performance is offset as in case (A) above untildhe
level is reached. The points marked by black circles in the case (B) figures represent
the maximal amount of computation resources that can be moved suwithout

degrading its performance.
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In —nI(/com re(ssed) —l)—n Z(tln?cp(l)in ressed ) Maximum number of conneg
re e P _ c; P tions sustainable over the ISP

e = Zz THxc link
Nue X TH+n. x D xTH =BW;

Maximum number of connec
) tions can be sustained at the
ng; = BW;/TH+ (1 — D) x Tgixc server link of s; after mov-
ing some of its computation re

sources to the ISP node.

Table 7.1: Calculation of the Number of Connections Sustainable at ISP Link and Server
Link.

In Figure 7.4(C), neither the ISP link nor the server link is saturated, so moving
computation resources frog does not increase the aggregate performance unlike in
case (B). This is understandable because at this time the number of connections that
can be sustained at a server is unaffected by the amount of computation resources at
the ISP node. Only after the server link gets saturated does both the aggregate and
server performance decrease. Changes in load level can convert a case (C) server
into either case (A) or (B) depending on whether the server link or the ISP link gets
saturated first, thus this case can not be used to determine which server and how many
computation resources can be moved out.

In light of the above analysis, our strategy restricts itself to identifying servers that
would fall into category (B) above. For such servers, it is safe to move resources up to
the point marked by the black circles in Figure 7.4(B) irrespective of the encountered
load levels.

Servers whose server links remain unsaturated when the ISP link is saturated can
be identified by comparing; x n;, the maximum number of server connections that

can be sustained assuming that the ISP link becomes the bottlenéxkhe fraction
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of connections directed towardg with ng ;, the maximum number of server connec-
tions that can be sustained assuming the server link becomes the bottleneck. Table 7.1
shows how these parameters are computed by considering the number of compressed
and uncompressed connections that can be supported by a given amount of computa-
tion and bandwidth resources. Thg,; expression assumes tl@tresources are left
behind at the server. Servers in case (B) must have> p; x ny, i.e. satisfy the
following equation:

0<C <G,
(7.2)

BW;/TH + (1 — D) X el > p; X 1y
It is easy to prove, by contradiction, that there must be at least one category (B)
server. Let us assume that no server has a valid solution for Equation 7.2. This implies
that (summing up over all servers)

BWi Cz
2 E TA-D X ) g < mxm

% 7

The right hand side of the above inequality is jugtwhich in turn can be substituted
by the corresponding expression from Table 7.1. Thus, our assumption leads us to the
inequality

> TH +(1_D)XZTHXC< TH +(1_D)XZTHXC

This requiresy_, BW; < BW/}, which is in contradiction with our previous assump-

tion of > . BW; > BW/,. Therefore, there must be at least one category (B) server.
The recursive algorithm employed by our strategy is shown in Figure 7.5. Lines

3-8 check, for a given load distribution, whether a server has a valid solution for Equa-

tion (7.2). If not, it is excluded from further consideration, with the available ISP link
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Algorithm Distribute

Input: Server Sef5, BW;

Output: Distribution of computation between servers and the ISP node
1. 88

2. BW/, —BW;

3. foralls; €5

4 do if for s; equation (7.2) has a solution
5. then setC;

6 else C! —C;

7 BW/ —BW’ — BW;

8 Sl <—Sl — S5

9. ifS#S8

10. then Adjust load distribution for alk € S’
11. Call Distribute(S’, BW");

12.

Figure 7.5: Distribution of Computation Resources between ISP and Server Nodes

bandwidth adjusted as shown in Line 7. To understand this, note that the bandwidth
contribution of such servers on the ISP link cannot exd&ad, because no additional
connections (compressed or uncompressed) for this server can be supported once the
server link is saturated. The recursive call uses this reduced value of available ISP
link bandwidth and adjusted load distribution values (based on the relative contribu-
tions from remaining servers). Note that the two invariants about load distribution
(>, pi = 1) and bandwidth X", BW,; > BW/) hold after each adjustment. The
algorithm terminates when all servers$h have valid solutions for Equation (7.2).

It is only these servers that can contribute a portion of their computation budget to
the ISP node. The amount that can be transferred is easily determined by picking
the minimum valueC! for each such server that still results in Equation (7.2) being
satisfied.

Figure 7.6 illustrates this algorithm using an example configuration consisting of
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Figure 7.6: An example showing recursive calculation of the computation budget transferred
to the ISP node.

5 servers with computation budgets 10, 20, 30, 50, and 60 units, with client connec-
tion paths requiringlH = 1, ¢ = 1, andD = 0.5. Client requests are uniformly
distributed amongst these servers. The first call toDfstribute routine results in
servers 4 and 5 being removed fragthbecause their server links cannot sust@ﬁw
connections. The second call removes server 3 because it cannot séfstainnec-

tions. The algorithm terminates on the third call when both servers 1 and 2 can sus-
tain 115/2 connections, and can contribute a portion of their computation resources
(amounts shown in the figure) to the ISP node.

Our description above considered a two level hierarchy (i.e. between servers and
ISPs). This strategy can be easily extended to a hierarchically organized network
domain with multiple levels. The basic idea is as follows: when moving resources to
an'® level node, count the resource budget of(the- 1)** level node as the aggregate
value of the resources at all levels (inclusively) lower than 1; but only resources
on the(n — 1) level node (no lower level) can be moved to higher-level nodes.

A practical note: the algorithm sketched above assumes prior knowledge of the
load distribution among low-level network domains. Since the load distribution varies
over time, the redistribution process can be made more conservative by capping the

maximal amount of resources that can be moved.
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7.3 Summary

In this chapter, we have presented strategies for managing network resources for path-
based infrastructures. This contains two parts. The first part is for allocating resources
among multiple active paths on a shared network resource. We proposed a scheme that
enables an individual path to achieve a better configuration by allocating it a share as
large as possible, and allows the whole network to sustain as many as possible paths
by reducing resource waste. Another good property of this scheme is that resource
allocation is conducted in a completely distributed fashion without requiring informa-
tion exchange on resource availability.

The second part is for distributing computation resources across the network to
improve the overall performance of the whole network. Based on the current organi-
zation of the Internet, we proposed a hierarchical model and corresponding algorithm
to rearrange computation resources by moving some portion of computation resources
from lower-level nodes to higher-level ones in the network graph. Our scheme is able
to set up maximal resource pools across the network, with the guarantee that the per-
formance of network domains where computation resources are moved out will not be
compromised after such rearrangements. The benefit of such rearrangements is that
by setting up shared resource pools at high-level network nodes, overloaded network
domains can always take advantage of spare resources contributed by other domains.
We evaluate these two strategies in Chapter 9 by simulating their effect in the context

of a large network supporting many simultaneous client requests to media servers.
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Chapter 8

Implementation: CANS

Infrastructure

We have implemented a prototype of our framework in the form of a programmable
network infrastructure, calle€omposableAdaptive Network Services (CANS in
short). CANS contains implementations of all the schemes described in Chapter 3
to Chapter 7.

The kernel of the CANS infrastructure is the CANS Execution Environment (EE).
The CANS EE serves as the runtime system for components in augmented communi-
cation paths, and provides all the infrastructural support required by these paths to re-
alize network-aware data communication: delivering data across networks, managing
resources and communication paths (i.e. path creation and reconfiguration), down-

loading mobile code, and providing resource availability informatiénCANS net-

The current implementation of CANS relies upon external entities to monitor resource availability across the

network and feed such information to the infrastructure
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Figure 8.1: CANS Execution Environment

work is realized by a set of CANS-Enabled nodes, each runs an instance of the CANS
EE. Augmented paths are deployed on these nodes.

Components (drivers) and Most parts of the CANS EE are written in Java; the
current version runs on any Java-enabled node. The primary reason we choose Java
for our prototype is because of its existing support for code mobility and controlled
execution for downloaded code from different sites.

In this chapter, we describe in turn the overall structure of the CANS execution
environment, several important interfaces, data communication and control interac-
tion in the infrastructure, its support for legacy applications and components (referred
to as services). We conclude this chapter by showing the whole procedure of setting

up and reconfiguring a CANS path.
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8.1 CANS Execution Environment

8.1.1 Overall Structure

The CANS Execution Environment (EE) serves as the node run-time system for com-
ponents in augmented communication paths. The structure of the CANS EE is il-
lustrated in Figure 8.1. It contains the following six major moduleksin Managey
Driver Manager Service ManagerEvent ManagerResource Monitgrand Class
Manager In this section, we provide a brief description of the functions provided by
each of these modules.

ThePlan Manageris responsible for constructing network-aware communication
paths upon requests from applications. The planning algorithms described in Chap-
ter 5 are used to calculate communication paths with optimized performance in accor-
dance with application requirements and underlying network conditions. Moreover,
this module is also responsible for partitioning the generated paths and sending path
segments to all of the nodes involved in the path. The plan manager has both local
and remote interfaces so that it is possible to run a plan manager on only a subset of
the nodes along a path, a feature important for small devices that have very limited
resources and computation capacity.

The Driver Manageris a support module for the plan manager. Its primary re-
sponsibility is to manage drivers within a CANS EE, i.e., to assemble, modify and
remove driver graphs.

The Service Managers used to control legacy components on local hosts, inside
or outside of the CANS EE. Legacy components are called services in our framework,

and distinguished from drivers in that they are not required to support the interface re-
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quirements imposed on the latter. The service manager module provides APIs for
creating, terminating, registering, and querying service instances. Besides, in order
to process data using these services, the service manager connects active service in-
stances with drivers in the execution environment.

The Class Manageis responsible for downloading code and instantiating driver
instances as required. It is built as a custom class loader for the Java Virtual Machine
supporting the EE. Upon receipt of a component graphCilass Managefirst tries
to load all the class files of the corresponding components from its local repository. If
the code is not available locally, the class loader downloads the class files from the lo-
cation where it receives the graph. The use of the class loader mechanism gives us the
flexibility of isolating the execution of components from different sites. Furthermore,
by associating each class loader with a specific instance of the environment object,
used by the drivers for interacting with the underlying EE, we can further customize
the access of downloaded code from different sites.

The Event Managers used to propagate events within an EE and across different
EEs. Distributed events are the primary interaction mechanism in the CANS. Com-
pared with a pre-wired implementation, the event paradigm (with simple publish and
subscription primitives) is an effective, and much more flexible way for modeling
complicated control logic among different entities in this component-based frame-
work. Components can have different needs from the EEs, and are usually developed
by many different providers. Additionally, the event model gives us the flexibility of
extending the functionality built in the infrastructure. A more detailed description of
the use of distributed events in CANS is deferred to Section 8.1.4.

The Resource Monitors responsible for producing notifications of changes in re-

106



public class PathController
implements PerformanceEventListener , ReconfigEventListengr

private void init (AppPolicy policy , PathGraph graph);

/I process events

public boolean processReconfigEvent(ReconfigEvent event);
public boolean processPerformanceEvent(PerfEvent event);
public boolean forwardEvent(Event event);

[lreturn address list of all nodes
public synchronized List getRemoteAddressList();

public String getPathld ();

/I global/local reconfiguration
public void lockForReconfiguration ();

Figure 8.2: Path Controller Interface

source availability: once it detects a change in resource availability (for an individual
path or for the whole network resource), the resource monitor generates a notifica-
tion by raising a corresponding event. For changes occurring on the resource level,
the current CANS implementation relies on external entities for monitoring resource
availability and providing change information. Such information from the external
monitor utility is transformed into events in CANS via the interface provided by the

resource monitor.

8.1.2 Path Controller

To control augmented paths, an instance pah controlleris created in every EE

for each path that is deployed to a set of CANS-enabled nodes. The most important
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function of the path controller is to monitor performance of the path and trigger re-
configuration whenever necessary. Most parts of the path reconfiguration protocol are
implemented in the path controller, which controls components (and their data ports)
to operate in accordance with the states in the reconfiguration process (as described in
Chapter 6). For local reconfiguration situations, the path controller first neéaiskto

the region that it wants to modify. In addition to this, path controllers are also used to
forward path-level events (events destined for all nodes along the path). The interface

of the path controller is illustrated in Figure 8.2.

8.1.3 Communication Adapter

Data communication across networks in CANS is implemented with auxiliary CANS

components called communication adapters. Communication adapters hide details of
physical data transmission from drivers by exposing the same data port interface to
drivers. Therefore, from a driver’s perspective, sending data across the network is

exactly the same as forwarding data to another driver in the same EE. CANS contains
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several different types of communication adapters that transmit data between two EEs,
or between an EE and an application that does not expose the data port interface.
Each communication adapter can support multiple input/output data ports to/from
CANS paths. This allows multiple logical connections to be multiplexed on a single
physical link (see Figure 8.3). A communication adapter can further exploit the trans-
port mechanism that best matches the characteristics of the underlying network. Ad-
ditionally, communication adapters can also encapsulate behaviors that permit them
to adapt to and recover from minor variations in network characteristics. For instance,
these adapters can be written to use one of several network alternatives, automatically

transitioning between them to improve performance.

8.1.4 Event Propagation

Dynamic changes and control messages in the CANS infrastructure are realized as
distributed events in the system. The use of the event paradigm gives us the flexibility
in allowing different parts of CANS infrastructure to interact with each other, without
requiring prior knowledge of their interfaces.

In CANS, any entity (including drivers) can raise arbitrary events as well as listen
for specific ones. Event support is realized by a perBsEnt Manager, which is
responsible for catching, firing, and transmitting events across the network. Event
raising and firing is implemented using simple method calls and callback functions
associated with the relevant components.

A CANS event contains a name, and the IDs of the event source and destination.
Each of these values can be specified as a wildcard value. When the event manager

receives an event (from the local EE or from the network), a template match is per-
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formed between the event object and all registered templates. This approach is very
flexible in that using this, different communication patterns (unicast, multicast, and
subscription of multiple events) can be easily implemented.

There are two major types of CANS events: events from the local resource moni-
tor, indicating a change in resource status, and events from components on the com-
munication path. The first type of events is sent only to local components that have
registered themselves as interested listeners. The second type of events, called path-
level events, are first sent to tpath controller(see Section 8.1.2), which is respon-
sible for forwarding the event to the destination along the path. The path controller
keeps track information such as driver location etc., and uses the event manager to
transmit events across the network. For example, for events whose destination ID is
the ID of a path, they are delivered to all nodes along the path; for events whose des-
tination is (path ID, driver ID), they are sent to the node where the specified driver

resides.

8.2 Interfaces of Components and Types

To facilitate dynamic composition, our framework relies on an interface to which
drivers are required to adhere, and a type model (described in Chapter 4). To give
some details on how all these concepts are implemented, in this Section we present

the interfaces of components and types used in the CANS infrastructure.
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public abstract class Driver implements Serializablef
protected Driver(String id);
public boolean init ();
[l push/pull operations
public abstract void push(DInPort input);
public abstract void pull(DOutPort out);

//lookup for ports
public abstract DPort getPort(String Portld);
public List getAllPorts ();
/I calculate types of output ports
public abstract Map getOutputPortType
(Map inputPortTypes);

//A incoming marker received

public synchronized void incomingMarker(DPort srcPort,
int segNo);

//send out a marker

public void outMarker(int seqNo);

/levent interaction

protected void raiseEvent(Event event);

protected void registerEventListener (String eventName, Object src,
Object dest=ull ,
EventListener listener);

protected void removeEventListener(String eventName, Object src,
EventListener listener);

[/ for reconfiguration
public boolean setStatus {nt newStatus,b String portld);

public static void setExecutionEnvironment(DriverEE dee);
public void reset ();

Figure 8.4: Driver Interface

8.2.1 Interface of Components

The interface of drivers is shown in Figure 8.4. It contains four groups of methods,

which respectively handle data port (DPorts) lookup, events, data transmission, and
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path reconfiguration. Most of these methods are implemented in the base Driver class
so that derived component classes can use them directly. Note that the Driver class has
a static member of a driverEE object, an environment object that allows components
to interact with the underlying EE. As we mentioned in Section 8.1.1, this field is
initialized by the class loader to customize the access right of downloaded driver code.
The DPort interface is illustrated in Figure 8.5. It includes methods for setting
up connections between different DPorts, and dispatching data between it and the
owner driver. Moreover, a data port contains a status flag, which is controlled by
the path controller This flag is used to determine whether incoming data should be
forwarded, buffered, or discarded according to the reconfiguration protocol discussed
in Section 6.3.1. The DPort is an abstract class that contains implementations for
common methods in this interface. Derived from the DPort class, there are two sub-
classes: DOutPort and DInPort which support input or output operations respectively.

Implementations of all of these classes are provided by the infrastructure.

8.2.2 Interface of Types

The interfaces for simple types and stream types are shown in Figure 8.6. The stream
type is basically a stack of simple data types. The most important operations for them
are 1) determining if two types are compatible, and 2) calculating the augmented part
of a type instance in a type specific way when a type instance is passing through a

network link, as described in Chapter 4.
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public abstract class DPort implements Serializable {
protected DPort(Driver owner, String portld);

public Driver getOwner ();
public String getPortld ();

public PortType getPortType();
public void setPortType (PortType type);

public abstract void incomingMarker(int seqNo);
public void setDatapyte[] buffer);
public byte[] getData ();
public boolean hasData ();
public void connect(DPort newlLinkee)
throws TypelncompatibleException;
public void disconnect();
public DPort getLinkee ();
// status during reconfiguration
public int getStatus ();
public void changeStatusifit status);
public synchronized void reset ();
public final static int STATUSACTIVE=0;

public final static int STATUSBUFFER=0x1;
public final static int STATUSDISCARD=0x2;

Figure 8.5: DPort Interface

8.3 Support for Legacy Components or Applications

In this section, we describe how the CANS infrastructure supports legacy components
(i.e. existing functionality encoded in a way that does not adhere to the required inter-
face of drivers), and legacy applications that are CANS oblivious. For legacy compo-

nents, we view them as if they were regular network services that provide content or
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public abstract class DataType implements Serializable , Cloneable

{

public abstract boolean isCompatible (DataType dt);
public boolean equals(Object dt);

/l calculation of augmented part when passing a network link
public LinkProperties passLink(LinkProperties link);

public Object clone ();
//type rank

public int getRank();
public void setRank(nt rankValue);

}

public class StreamTypeimplements Serializable {
public StreamType ();

public DataType getCurrentTypeboolean peek);
public void pushNewType(DataType newType);

public Object clone ();
public boolean equals(Object obj);

public LinkProperties passLink(LinkProperties link);

Figure 8.6: Type Interfaces

data processing functionality. CANS provides a general platform for integrating and
controlling services (running inside or outside of the CANS EE); legacy applications

are supported using an interception layer to bridge them to the CANS infrastructure.

8.3.1 Services

Services are modeled as providing content or data processing functionality. Unlike the
constrained driver interface, services can export data using any standard protocol (e.g.,

TCP or HTTP), encapsulate heavyweight functions, process concurrent requests, and
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maintain persistent state. Relaxing interface requirements permits use of legacy ser-
vices; however, our framework does not support migration for services, requiring a
service to manage its own state transfer. This design choice reflects the view that
services are migrated infrequently and doing so requires protocols that are difficult to
abstract cleanly.

CANS provides APIs to create, compose, and control services across the network.
Services can run inside or outside the CANS EE. A service is required to register
itself by providing adelegate objecthat can control the service and act on its behalf

in interactions with the rest of the framework.

8.3.2 Support for Legacy Applications

The CANS infrastructure supports both CANS-aware and CANS-oblivious applica-
tions. The former just hook into the driver and service interfaces described earlier. For
the latter cases, CANS providesiaterception layethat is transparently inserted into

the application and virtualizes its existing network bindings. The interception layer is
injected using a technique known as API interception [31], supported on both Win-
dows and Unix platform, using a variety of mechanisms, ranging from DLL import
table modification to run-time rewrite of portion of the memory image of the applica-
tion.

The general architecture of the interception layer is shown in Figure 8.7. The
interception layer provides the application with an illusion of a TCP socket which can
be bound to various interfaces (CANS or native network) for actual data transmission.
An application specific policy responds to events (such as connect requests) delivered

to it by the interception layer, which in turn influences the binding. Thus, enabling
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Figure 8.7: Architecture of the interception layer.

CANS support for a new legacy application would require only writing a specific

policy for that application.

8.4 Procedures of Path Setup and Reconfiguration

To demonstrate how these parts of the CANS infrastructure work together, in this
section, we briefly describe the lifetime of a typical CANS path.

To set up the path, the application needs to callRle Manager(on either the
local or a remote host) directly or via the interception layer, with information about
the server to access and its performance requirements. The next steps that follow are
different depending on a centralized or distributed strategy is in use.

In the centralized case, tfdan Manageffirst determines a network route (and the
resource availability) between the server and the client application (using a shortest
path algorithm). With the selected route, the plan manager constructs the compo-
nent graph and the mapping using the planning algorithms described in Chapter 5. It

partitions the component graph, and sends these partitions to nodes along the path.
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The distributed strategy works as follows: When the plan manager receives a re-
guest from the application, it routes the request towards the server. After the request
arrives, the server (or the CANS node next to the server along the route) bounces back
a planning request. This planning request is received by each of the nodes along the
route, which calculates its portion of the communication path. In the cases where
complementary planning is needed (see Chapter 5), it is calculated during the forward
routing stage.

After the components graph is determined and communicated, every node along
the path instantiates its components in the local EE. In addition, it also creates an
instance of thgpath controllerobject for controlling this path.

The path controller running on each node along a CANS path, monitors events
that reflect the performance of the path. Whenever a path controller realizes that
the performance does not meet the requirements, it triggers reconfiguration using the
protocol described in Chapter 6.

When data transmission of a path completes, drivers and path controller of the

path are removed from the EE, and any allocated resources released.

8.5 Summary

In this chapter, we have presented a prototype of our framework, the CANS infras-
tructure. We described the structure of the CANS EE, which, as the kernel of the
infrastructure, provides complete support for realizing network-aware communica-
tion paths. In addition to drivers and CANS-aware applications, legacy components

or services can be integrated into communication path using a delegate model; legacy
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applications can also use the CANS infrastructure via an interception layer.
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Chapter 9

Evaluation

To evaluate our framework, we have extensively experimented with the CANS infras-

tructure. In particular, our evaluation focuses on the following questions:

1. Can application specific functionality be automatically introduced into the net-

work, and if so, what are the associated overheads?

2. Do our automatic path creation strategies bring applications considerable per-

formance benefit?

3. Can desirable continuous adaptation behaviors be achieved using our automatic

strategies for path creation and reconfiguration?

4. What are the fundamental benefits of path-based approaches as compared to

end-point or proxy-based alternatives?

To answer these questions, we have carried out four studies.
In the first study, we measured the runtime overhead of the CANS infrastructure by

examining its impact on bandwidth and latency of communication paths when trivial

119



forwarding drivers are in use. To investigate the overheads of component composition
at a finer level of detall, the timeline of a more complicated augmented path was also
examined.

In the second study, we investigated the performance advantages that our frame-
work can bring to applications. In the experiments, we run a typical web access
application under a wide range of network configurations, comparing achieved per-
formance of the case where the CANS infrastructure was used and the situation where
no adaptation support was provided.

In the third study, we examined the adaptation behaviors provided by our auto-
matically constructed and reconfigurable communication paths. By running an image
streaming application within a network environment where bandwidth changes fre-
guently, we characterized how fast the CANS infrastructure could adapt to resource
changes, and how good the automatically generated adaptation decisions were.

In the last study, we compared performance differences between a CANS-link
path-based approach and other alternatives, i.e. end-point and proxy-based approaches.
The real question underlying this study was to investigate whether the path-based
approach is really necessary in terms of the benefits it delivers despite its complex-
ity. The comparison was conducted by simulating the behavior of each of these ap-
proaches in the context of a large network topology. In addition to comparing the
performance differences, the experiments also provide us insights into how exactly
the constraints on adaptation locations affect both performance of individual paths as
well as the whole network. The latter provdes an understanding, hitherto unavailable,

of the network configuration under which one approach is preferred over others.
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We start by discussing the experimental platform and applications, and then present

the result and analysis of the four studies.

9.1 Experimental Platform

Internet Service Edge Server Proxy Server Mobile Client
= |
—E & -
No N, w—/Nz

Figure 9.1: A typical network path between a mobile client and an internet services.

In most of our experiments, we consider a typical network path between a mobile
client and an Internet server as shown in Figure 9.1. This platform models a mobile
user using a portable devic&{) such as a laptop or a pocket PC to access an Internet
service in a shared wireless environment. The communication path from the device
to the visited service typically spans (at least) three hops: a wirelessilipkcOn-
necting the user’s device to an access point, a wired link between the wireless
access point and a gateway to the general Internet, and finally a WAN link between
the gateway and the host running the service. We assume that CANS components can
be deployed on three sites, the mobile devi¥e)( a proxy server located close to the
access pointX;), or an edge server located near the gateway.t

In our experiments, bandwidth on links and L, can change dynamically. This

10ur use of the term “edge server” differs from its usage in content distribution networks. We use the term to

refer to a host on the frontier of the network administrative domain.
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either results from dynamic network traffic or users joining and leaving the shared
wireless networkV;.

For our experiments, network configurations with different link bandwidths and
computation capabilities are obtained by running CANS either on an appropriate se-
lected actual hardware platform, or one emulated using “sandboxing” techniques that
model a range of computation capacity and link characteristics by limiting CPU con-
sumption of applications and the rate at which applications are allowed to send and
receive messages [10].

The accuracy of the emulated behaviors using the “sandbox” techniques is dis-
cussed in Appendix B. The sandbox techniques give us the flexibility of controlling
experiment parameters used in our experiments, making up for the absence of such
control in current-day hardware. Additionally, the “sandbox” also provides resource

availability information to CANS EEs.

9.1.1 Applications

We use two applications used throughout our experiments: a web access application

and an image streaming application.

The web access application involves a browser client, which downloads web pages
(both HTML page and images) from a standard web server. Our experiments used the
Microsoft Internet Explorer(IE) browser. The communication path from IE is bridged
into the CANS infrastructure using a CANS-aware HTTP Proxy.

For this application, short response time is the major performance concern. Transcod-

ing components can reduce download times under low-bandwidth network conditions
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by dynamically compressing text and/or degrading image quality. Previous research
has shown that such an approach is effective [18, 44]. In our experiments, we used this
application to study whether an appropriately customized subset of these transcoding
components can be automatically deployed to minimize download time for different

network conditions.

The image streaming application is a Java Media Framework (JMF) application that
continuously fetches and displays JPEG frames from an image server. To perform
appropriately, this application requires that frames arrive at a certain throughput (i.e.
frames per second), and once that is satisfied, prefers high quality data. The communi-
cation path between the client application and the image server can be augmented with
two kinds of transcoding components capabléltdring andresizingimages respec-
tively. Each of these components can support multiple configurationd=iltee
component can produce output images corresponding to different JPEG quality lev-
els, while theResizer component can generate output images with different scale
factors. In our experiments, we used this application to investigate whether desir-
able adaptation behaviors can be achieved using our automatic path creation and
reconfiguration strategies. This application also serves as the application for our
simulation-based study that compares performance among end-point, proxy-based

and path-based adaptation approaches in a large network setting.
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9.2 Runtime System Overhead

To measure the runtime overhead of the CANS infrastructure, we run two experi-
ments. First, we used a simple path containing only trivial forwarding drivers, and

compared its performance (bandwidth and latency) with that of a direct TCP connec-
tion. In the second experiment, to investigate the detailed cost of component com-
position, we recorded the timeline for a more complicated CANS path and examined
the actual overhead incurred in the interaction between different components in our

implementation.
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Figure 9.2: Latency and bandwidth impact of the CANS infrastructure.

9.2.1 Microbenchmarks

All measurements in this section were taken on a set of Pentium Il 450Mhz, 128 MB

nodes, running Windows 2000 and connected using 100 Mbps switched Ethernet.
Figure 9.2 shows the overheads introduced by CANS, measured in terms of how

they impact communication performance between two communication parties. The

applications used here are simple, standard applications to measure bandwidth and
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round trip time. Each graph shows the round-trip time and bandwidth achievable for
different message sizes for four configuratio@sprog andJava prog refer to our
baselines, corresponding to application and server programs that communicate di-
rectly using native sockets in C or Java respectivielyprocess Driver andOne EE

refer to basic CANS configurations; the former shows the case when trivial forward-
ing drivers (also called null drivers) and a communication adaptor are embedded into
the application interception layer and indicates the basic overheads of driver compo-
sition, and the latter considers the case where the communication path includes null
drivers on an intermediate host between the application and service.

Figure 9.2 shows that tHa process Driver configuration introduces minimal ad-
ditional overheads when compared with tleva prog configuration (less than 10%
arising from extra synchronization and data copying), attesting to the efficiency of our
driver design and composition mechanism. On the other handieeEE config-
uration does show marked degradation in performance, primarily because of context
switch costs and the fact that the transmitted data has to traverse across application-
level and network-level in the communication protocol stack four times instead of two
times. However, given that intermediate EEs are intended to be used across different
network domains in the Internet where other factors dominate latency and bandwidth,
such overheads (an extra cost of 1-2 milliseconds or restricting achieved bandwidth

to be around 70 Mbps bandwidth) is unlikely to have much overall impact.

9.2.2 Timeline of an augmented path

To investigate the detailed runtime overhead caused by component composition, we

recorded the timeline of a more complicated path. The path we recorded was gen-
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erated for the web access application. The path structure is illustrated in Figure 9.3.
It contains components that can reduce sizes of images and HTML pages; the path
branch for images contains components that can degrade image duadigefilter )

and decrease the image dimensidnsageResizer ); the branch for HTML pages
contains compression/decompression components usirgghealgorithm. Details

of these components or the reason for such a configuration are deferred to the next
Section. The focus of this section is on the runtime overhead incurred by interaction
between adjacent components along the path, i.e. the cost of composition.

Edge Server N, L

1 Mobile Client N,

G R image
0 Z text @>®7
@ Demultiplexer @ ZipDriver ® ImageFilter
@ Multiplexer @ UnzipDriver ® ImageResizer

Proxy Server N, — L,

Figure 9.3: An augmented path for the web access application.

Figure 9.4 shows the overall timeline for the path when a HTML page and six
embedded JPEG images are downloaded. This timeline is broken down into individ-
ual operations performed by the CANS execution environment and the components
themselves for processing a single text and image packet. The original client request
results in the downloading of the text portion of the page, and is followed by requests
for each of the six contained images. A request is sent to the web server through
N; and Ny. Text responses comprise several packets, each of which passes through
the Demultiplexer and Zip drivers on the edge server, and the Unzip and Multiplexer

drivers on the client before being delivered to the browser application. Similarly a
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response to an image request comprise multiple packets, each of which flow through
the Demultiplexer, ImageFilter, and ImageResizer drivers on the edge server and the
Multiplexer on the client before being delivered to the application.

The timeline shows that for this particular application, CANS overheads are neg-
ligible because the dominant contributor to response time is actually the round-trip
between the edge server and the central server (0.2 seconds on the text path and 0.16
seconds on the image path). Even if this were not the case, CANS run-time overheads
(shown hatched in the figure) for retrieving data from the network and supplying it
to each driver in turn are small for all but very fine-grained components (the De-
multiplexer and Multiplexer). For the components used in this experiment, CANS
incurs an average cost of about;&5for each driver invocation, reflecting the cost

of several method calls between adjacent components, which is acceptable for most

applications.
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Figure 9.4: Timeline of requests and responses (all times are microseconds). The blocks
markedD, M, Z, U, andF correspond to the executions of the respective com-
ponents. Communication overheads, including wait times, are shown using gray,
whereas CANS overheads are shown using hatched blégkdicationrefers to
the overhead of communicating the data to the client application.
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9.3 Effectiveness of Automatic Path Creation

To study the performance advantages obtained by using automatically generated paths,
we experimented with the web access application under a wide range of network con-
figurations and compared the performance of CANS paths with that of direct TCP
connections.

Components used with the web access applications include: single-configuration
ImageFilter and ImageResizecomponents, which can degrade image quality to a
factor of 0.2 and reduce image size to a factor of 0.2 respectivelyZgrahdUnzip
components, which work together to compress text pages. The load and bandwidth
factor values were obtained by profiling component execution on representative data
inputs: a web page containing 14 KB text and six 25 KB JPEG images (see Appendix
A for the profile information). In this experiment we used the same data inputs that
the components were profiled on. This is a simplifying assumption, but reasonable
given our primary focus here was evaluating whether our approach could effectively
construct the “best” communication path for different network conditions. Evaluating
the effectiveness of the approach when component characteristics may be imprecise
is examined in our next set of experiments.

To model different network conditions likely to be encountered along a mobile
access path, we defined twelve different configurations listed in Table 9.1. These
configurations represent the network bandwidth and node capacity available to a sin-
gle client, and reflect different loading of shared resources and different mobile con-

nectivity options> These configurations are grouped into three categories, based on

2The bandwidth between the internet server and edge server available to a single client is assumed to be
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whether the mobile link, exhibits cellular, infrared, or wireless LAN-like charac-
teristics. Five of the configurations correspond to real hardware setups (tagged with a
*), the remainder were emulated using “sandboxing” techniques that constrain CPU,
memory, and network resources available to an application [10]. The computation
power of different nodes is normalized to a 1 GHz Pentium Il node with 256M bytes
800MHz RDRAM.

Table 9.1 also identifies, for each platform configuration, the plan automatically
generated by CANS for the web access application. The plans themselves are shown
in Figure 9.5. To take an example, consider platform configuration 7 for which the
path creation strategy generates Plan C. The reason for this plan is as follows. Since
link L; has high bandwidth whild., has moderate bandwidth, there is a need to
reduce image transmission size, which is accomplished usinbriageFiltercom-
ponent. TheZip and Unzip drivers help improve download speeds by trading off
computation for network bandwidth. Both thmageFilterandZip components are
placed on the proxy server, because it has more capacity than the edge server. While
this explanation justifies the generated plan, we note that the plans themselves were

mechanically generated use the algorithms described in Chapter 5.
Figure 9.6 shows the performance advantages of the automatically generated plans

when compared to the response times incurred for direct interaction between the
browser client and the server (denof&idect in the figure). The bars in Figure 9.6 are

normalized with respect to the best response time achieved on each platform (so lower
is better). In all twelve configurations, the generated plans improve the response time

metric, by up to a factor of seven. Note that the lower response times come at the

10Mbps.
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Platform | Edge Server L Proxy Server| 1. pps) | Client(Ny) | Plan
(No) (V1)
1 Medium Ethernet High 19.2K | CellPhone| A
2 Medium Ethernet High 19.2K | PocketPC| A
3* High Fast Ethernet Medium 57.6 K Laptop B
4* High Fast Ethernet  Medium 115.2K Laptop B
5 Medium Ethernet High 384K | PocketPC| A
6* High Fast Ethernet Medium 576 K Laptop B
7* Medium Fast Ethernel High Y Laptop C
8 Medium Ethernet High 3.84M | PocketPC| D
9 Medium Ethernet High 3.84 M Laptop D
10 Medium DSL High 3.84M Laptop B
11 Medium DSL Low 3.84 M Laptop B
12* Medium Fast Ethernelf High 55M Laptop E

Relative computation power of different node types
(Normalized to a 1 GHz Pentium Il node with 128 MByte 800MHZ RDRAM):

High = 1.0, Medium =0.5, Laptop =0.5, Low =0.25 Pocket PC 9.1, Cell Phone .05
Link bandwidths

Fast Ethernet 200 Mbps, Ethernet =10 Mbps, DSL =384 Kbps
Table 9.1: Twelve configurations representing different loads and mobile network connectiv-
ity scenarios, identifying the CANS plan automatically generated in each case.
cost of degraded image quality, but this is to be expected. The point here is that our
approachautomateshe decisions of when such degradation is necessary.

Figure 9.6 also shows that different platforms require a different “optimal” plan,
stressing the importance of automating the component selection and mapping pro-
cedure. In each case, the CANS-generated plan is the one that yields the best per-
formance, also improving performance by up to a factor of seven over the worst-

performing transcoding path.
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Figure 9.5: Component placement for the five automatically generated plans.

9.4 Dynamic Adaptation Behaviors

To study the adaptation behavior achieved using the CANS infrastructure, we experi-
mented with the image streaming application in a dynamic network environment. The
experiment modeled the following scenario: initially a user receives a bandwidth al-
location of 150 KBps on the wireless link.{), which then goes down to 10 KBps

in increments of 10 KBps every 40 seconds (modeling new user arrivals or move-
ment away from the access point) before rising back to 150 KBps at the same rate
(modeling user departures or movement towards the access point). The communica-
tion path is allocated a (fixed) computation capacity of 1.0 (normalized to a 1 GHz
Pentium Il node) on noded/; and N, respectively and a bandwidth of 500 KBps

on L;. The rationale for these choices is thgt, N,, and L; are wired resources

and consequently more capable of maintaining a certain minimum allocation (e.g., by
employing additional geographically distributed resources) than the wirelesk.link

In this experiment, we started with the base mechanisms (base planning algorithm
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Figure 9.6: Response times achieved by different plans for each of the twelve platform config-
urations compared to that achieved by direct interaction. All times are normalized
to the best performing plan for each configuration.

+ global reconfiguration), and show the incremental benefits on adaptation behavior

from each of the schemes described in Chapter 5 and 6.

9.4.1 Base Mechanisms

In the first step, the components used with the image streaming example included
thelmagekFilter andlmageResizer used in section 9.3 (which degrade image
quality or reduce image size by a factor of 0.2). As mentioned earlier, the applica-
tion requirement is for the throughput to be in the range of 8 to 15 frames per sec.
Within that range, better image quality is preferred. We started with the base planning
strategy described in Section 5.4. Since the strategy can only optimize one of these

metrics at a time, we chose to optimize throughput. The component parameters were
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Figure 9.7: Performance with the Base Planning Algorithm

obtained by profiling their behavior on a 25 KB JPEG image (quality assumed to be
1.0), one of a set of images ranging in size from 20—-30KB repeatedly transmitted by
the server. The profiled values of computation load and bandwidth impact factor for
various components are listed in Appendix A.

Figure 9.7 shows the throughput and image quality achieved by the communica-
tion path over the 20 minute run of the experiment; the plans automatically deployed
by CANS are shown in the right table. The plot needs some explanation. The light-
gray staircase pattern near the bottom of the graph shows the bandwidth @ link
normalized to the throughput of a 25 KB image transmitted over the link; so, a link
bandwidth of 150 KBps corresponds to a throughput of 6 frames/sec, and a bandwidth
of 10 KBps corresponds to a throughput of 0.4 frames/sec. The dashed black line cor-
responds to the quality achieved by the path. The jagged curve shows the number
of frames received every second; because of border effects (a frame may arrive just

after the measurement), this number fluctuates around the mean. The plateaus in the
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Figure 9.8: Performance with Range Planning

quality curve are labelled with the plan that is deployed during the corresponding time

interval.

The results in Figure 9.7 show that the plans automatically created and dynami-

cally deployed by CANS do improve application throughput over what a static con-

figuration would have been able to achieve. However, it also points out several defi-

ciencies:

e Always trying to maximizing the throughput may sacrifice image quality unnec-

essarily, failing to meet application performance preference.

e The reconfiguration at 80 seconds from Plan A to Plan B is seemingly unex-

plainable given that it was initiated to improve application throughput, not to

reduce it. A closer examination identified this problem to be caused by the fact

that component behavior for tHenageResizer

component did not match

profiled behavior when the input was a filtered image as opposed to the original.

A similar problem exists for Plan C.
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9.4.2 Range Planning

To address the first problem, we applied the range planning algorithm (Section 5.5)
to this application, and obtained the result shown in Figure 9.8. Comparing with
Figure 9.7, we can see two improvements. First, the range planning system retains
Plan A for much longer than before (till 280 seconds into the experiment), choosing
not to reconfigure while the throughput is still within the desired range. Second,
the system employs an additional plan that falls between Plan A and B chosen in
Figure 9.7 and represents a tradeoff that compromises on achieved throughput (while
still ensuring that it is within the desired range) to improve quality. Such gradual
decrease/increase in image quality is desirable adaptation behavior expected by end

users.

9.4.3 Component Model

To address undesirable adaptation caused by inaccurate component parameters, we
incorporated two improvements.

First, we allowed both components in our image streaming example to take on
multiple configurations: ninEilter  configurations corresponding to quality values
0.1t0 0.9, and eiglResizer configurations corresponding to scale factors of 0.1 to
0.8.

Second, we exploited theass profiling described in section 5.1.2. We profiled
the components with three types of image quality: high(1.0), medium (0.5) and low
(0.1). The parametersdqmp, bwf ) of these components used in path calculation are

determined by the incoming image quality.
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Figure 9.9: Performance with Multi-Configuration Components and Class Profiling

Figure 9.9 shows the resulting performance and associated plans. There are three
obvious improvements over Figure 9.8. First, the throughput is kept in the required
range for the whole duration of the experiment (except for transition points caused by
reconfigurations). Second, the image quality changes more smoothly than what was
previously shown in Figure 9.8. Instead of 3 configurations (quality levels), there are
7 different plans, permitting smoother variations in path quality. Finally, the low costs
of switching between two configurations of the same component is reflected in tran-
sitions from plans A to B, and B to C, which hardly disrupt the achieved throughput
unlike the associated cost for introducing a new component (transition between plan

C and D).

9.4.4 Reconfiguration Overhead and Benefits of Local Reconfiguration

Reconfiguration may introduce interruptions in data transmission, therefore a short

reconfiguration time is important for providing better user experience. To investigate
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Figure 9.10: Performance of Local Reconfiguration
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Figure 9.11: Performance of Global Reconfiguration

the cost of data path reconfiguration in CANS, we used the image streaming applica-
tion, and measured the reconfiguration overhead of local and global reconfiguration.
In both cases, we measured the cost for level 3 reconfiguration, i.e. the reconfiguration
that provides exactly-once and in-order delivery semantics for data transmission.

To emphasize the difference in behaviors between local and global reconfigura-

tion, we closely examined the portion of the experiment between 400 seconds and 600
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Figure 9.12: Reconfiguration Cost

seconds, corresponding to a bandwidth range of 50 KBps to 10 KBps. Unlike global
reconfiguration which partitions tHenageResizer andlmageFilter portions
of the data paths in plans B, C, and D, so that they run on both n&gesd NV,
to obtain a slightly higher value of throughput, local reconfiguration chooses to both
calculate the plan and deploy the components on the same node, thereby avoiding
the cost of coordination across nodes. The cost however is that the local reconfig-
uration does not quite achieve the same throughput as the global case, achieving 10
frames/sec instead of 12. Note that this is still within the desired range, otherwise
global reconfiguration would have been triggered.

A breakdown of the reconfiguration costs for the bandwidth change event at 480
seconds in the two cases is shown in Figure 9.12. The total reconfiguration time is
1.08 seconds and 0.35 seconds for the global and local case respectively. To map these

overheads to the 6-stage reconfiguration process described in sectiorPér8tion-
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Shippingis the overhead for delivering new plans to nodes (stageHlysh-Data
covers stages 2 and Reconfigurations the time for stages 4 and 5; ahst Message
is the time for delivering the first segment to the downstream node, i.e. stage 6.

This figure shows that the major contributors to shorter reconfiguration times in
the local mechanism are the first 3 stages of reconfiguration: shorter planning time,
which is the result of shorter network paths; and shorter overheads for partitioning the
plan, flushing data belonging to the old plan, and deploying the new plan, all of which
benefit from the fact that all required coordination occurs locally and there is less
data in transit. It should be noted that during the first 3 stages (including planning)
of reconfiguration, data keeps flowing downstream. So the suspension period of data
transmission is about 0.18 seconds for the global case and 0.12 seconds for the local
case.

Note that the time of the first three stages (including planning) basically reflects the
inertia of data paths, in which the existing path is still in use after a resource change is
detected. The difference (about 0.68 seconds) between global and local mechanisms
means that using the local mechanism can substantially increase the responsiveness
of the data path. This observation is hold out by Figures 9.10 and 9.11, which show
throughput for local and global reconfiguration mechanisms respectively. From these
figures, we can observe that the use of local reconfigurations does result in more
stable throughput during reconfiguration (look especially at the first reconfiguration
that happens at the 80 second point in the figure, which corresponds to the 480 second

point in the original experiment).
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9.5 Overall Benefits of Path-Based Approaches

To compare the performance of our approach with that of other alternatives, i.e., end-
point and proxy-based approaches, we carried out a study that characterize the per-
formance that can be achieved using each of these approaches. In particular, our goal
was to investigate the following questions: What is the performance impact of placing
constraints on adaptation location? Under which network conditions is one kind of
approach preferred over the others? Is the additional complexity of the path-based
approach, which requires distributed control over the network, really necessary?

We investigated these questions by simulating the behaviors of different approaches
in the context of a large-scale network. We compared the performance of these ap-
proaches for different network configurations, load levels, and server/clients proper-
ties. In our simulation, each of these adaptation approaches tries its best to sustain
as many connections as possible with performance of individual paths optimized as
much as possible.

In this experiment, we used the strategies described in Chapter 5 through 7 for
creating and reconfiguring paths, and managing resources. These strategies, though
designed for our path-based infrastructure, are approach-neutral in that they do not
introduce bias for any of these approaches, which differ only in the constraints on
adaptation location. These strategies can be uniformly applied to the end-point, the
proxy-based and our path-based approaches without affecting the fairness of the con-

clusions drawn from our study.
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9.5.1 Methodology and Simulation Scenario

In order to study the performance of those adaptation approaches under different net-
work conditions, we adopt a simulation-based methodology. Using a detailed simula-
tor modeling a typical large-scale network where multiple concurrently-active clients
download media content from server sites, we characterize the performance of the
three approaches — end-point, proxy-based, and path-based. We provide an overview
of our simulation scenario and performance metrics of interest below, deferring a de-

tailed description of the specific parameters to the next section.

Simulated Network. The network modeled in our simulation is depicted in Figure 9.13.
The network contains multiple ISP regions, each of which is modeled as a centralized
gateway/proxy node providing a connection to the Internet backbone. The server and
client nodes in the network are attached to one of these ISP nodes using various con-

nectivity options.

Agcess Point 1

Backbone

mmmmm

Figure 9.13: Experiment Network Topology
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Application Behavior. The simulation models users connecting to server nodes from
client nodes to download and display streaming media content. The connection is
released once the download session is completed (which can happen either after the
content is completely downloaded, or when the download task is cancelled by the
user). To display the received content appropriately, the throughput of a download
path is required to be in some specific range (i.e., a certain frame rate). When the
available bandwidth is insufficient to meet the requirement, several components can

be used to reduce bandwidth consumption.

9.5.2 Simulation Settings

Application Performance Requirements In our simulation, every client downloads
continuous JPEG image frames (with an average size of 4K bytes) from a server site.
In order to display the received content appropriately, the throughput of a download
path is required to be in the range of 10 to 16 frames per seconds; within this range
higher data quality is preferred.

Possible components that can be used with these paths inclutage-filterand
animage-resizerwhich reduce bandwidth consumption by degrading image quality
or reducing image size respectively. As in Section9.4.3, these components support 9
and 8 different configurations respectively; in each case theonfiguration reducing
image quality or size by a factor af/10. Details about théoad andbwf values of

each operator are shown in Appendix A.

Network Characteristics The topology of our simulated network was shown earlier

in Figure 9.13. For the results reported here, the network is assumed to comprise ten
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ISPs. Each ISP is connected to the Internet backbone via an OC48 (2.488Gbps) link
and includes 20 media servers, 100 public IEEE802.11b (6.0Wlagsess points,
and a number of client sites.

Connectivity options for clients include T3 (44.73Mbps), T1 (1.544Mbps), ADSL
(1.5Mbps), Dialup (56Kbps), and IEEE802.11b connections (via the public access
points). The T3, T1 and ADSL links are assumed to have sufficient bandwidth for
the media application, while Dialup connections are incapable of meeting throughput
requirements without the use of compression components. For wireless connections,
available bandwidth is dependent on the load of the access point and may sometimes
necessitate compression components along the path.

At each ISP, we model the arrival of clients as a Poisson process; the arrival rate of
clients is a parameter that can be adjusted for different load levels. Once initiated, the
duration of a download session is assumed exponentially distributed with an average
of 1 minute.

Media servers within each ISP fall into one of two configurations. One fourth of
the servers are categorizedlage siteswith high-bandwidth connections to the ISP
node (via an OC12 link operating at 622Mbps) and a computation budget uniformly
distributed between 100 to 200 unftsThe remainder three fourth of the servers are
categorized asmall sites with relatively lower-bandwidth connections to the ISP
node (an OC3 link operating at 155Mbps) and a smaller computation budget uni-

formly distributed between 10 and 100 units.

3We assume a 55% bandwidth utilization of an IEEE802.11b network.
4One unit is normalized as a computer with a Pentium 1ll 1GHZ processor and 256MByte 800MHz RDRAM.
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Adaptation Approaches Our simulation considered five different adaptation approaches:
the end-point approach, the proxy approach, an approach that uses servers in addition
to proxies (labeled aserver+proxy, the path-based approach, and a path-based ap-
proach without reconfiguration support (labeledgpath-reconfiy The last approach
clarifies the benefits of dynamic adaptation; communication paths in this approach
can adapt to different network conditions only at path-creation time. As mentioned
earlier, the first four approaches represent different constraints on where adaptation
is allowed. For theend-pointapproach, only the server node and the client node of

a communication path can be involved in adaptation. file&y approach is allowed

to use client nodes and client-side ISP nodes. Sérger+proxyapproach represents

an intermediate point, which, in addition to nodes used by the proxy approach, can
also use server nodes for adaptation. Finallypdghapproach can use all four nodes
along a communication path: the server node, the server-side ISP node, the client-side
ISP node, and the client node.

To make a fair comparison between these approaches, our studies used the same
total computation resource budget in each case.the end-point approach, all re-
sources reside on server sites. For the proxy approach, all resources on server sites
are aggregated on the ISP nodes they attach to. For the server+proxy approach and
the path approach, a portion of the computation budget of every server site is moved
to its ISP node using the strategy described in Section 7.2. The redistribution assumes

that requests from clients are uniformly distributed among all server sites. Our study

5The computation budget refers only to resources available for path transcoding and compression operations.
Sufficient resources are assumed available on the server and proxy nodes for data retrieval from disk and forward-

ing through the protocol stacks.

144



also examines situations where this assumption does not hold, providing insights into

how performance is affected by inaccuracies in client traffic models.

Performance Metrics. Our simulations characterize two major performance metrics.
The first is the aggregate time of all paths when the throughput of the path is in the
desired range. We refer to this as th®ange time, i.e., the time where paths stay

in thelnRange state of the state diagram shown in Figure 7.1. Another possibility
for this is the aggregatlnRange time weighted by data quality of the communi-
cation path. Because we have observed the same behavior between the “weighted”
and “original”’ InRange time in our experiments, we report only on results for the
originalInRange time.

The second performance metric is the total number of connection failures due
to insufficient resources. Connection failures result from admission control, which
actively rejects any incoming connection request if the initial planning cannot produce
a communication path that meets the performance requirements.

In addition to the aggregate performance data for the whole network, we also col-
lected data for different types of servers and clients to further examine how different
adaptation approaches perform towards different types of servers or clients. In partic-
ular, we report on data of server sites that have the maximum or minimal computation
budget (i.e. computation resources before redistribution for the path-based approach),

and of clients that use different connectivity options.

Reconfiguration Overheads Path reconfiguration overheads in our study are modeled

after the reconfiguration process described in Section 6.3.1. Specifically, it contains
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the following six parts:

e Detection of changes in resource availability. In our simulation, network re-
sources themselves are responsible for allocating partitions for individual paths
(using the strategy described in Section 7.1.1). Therefore, the delay of detecting
a change of resource availability is basically the time for delivering notifications.
Since a notification is a small message that can be embedded in the regular data
streanf, we model the delivery time as the total network link latency between

the resource and the receiver.

e Planning. In general, the time for calculating a new path is highly dependent
on the planning algorithm, but can be significantly reduced by employing a path
cache of previously generated solutions. Given that attributes of most paths in
our study (content type, client connectivity, resource availability) are likely to
be clustered in a small range, we expect a high hit rate from such a cache. Con-
sequently, we assume that planning incurs negligible overhead, modeling the

situation where new plans are almost always obtained directly from the cache.

¢ Distribution of the new plan. New plan partitions need to be distributed to every
node, participating in the reconfiguration, along the communication path. This
is done by sending, in parallel to all these nodes, a data packet containing the
plan partition of the receiving node. The packet itself has a size that is plan-
dependent, and incurs latency dictated by the available bandwidth allocated to

the path.

e Flushing data in transmission. The protocol ensures semantic continuity of data

SFor example, the outbound data mechanism in TCP can be used for delivering such notifications.
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transmission by flushing any incomplete data segments in transmission or in-
ternal state built up in operators (see Section 6.3). We model the overhead of
this step in the simulation as the time required for transmitting the required seg-

ments.

e Deployment of new operators. Because operators are reusable and contain only
soft state, the time for replacing old components with new operators on a node
is usually a constant. In our study we use a value of 100 milliseconds, which is
consistent with that observed in our previous experimentation with the CANS

infrastructure (Section 9.4.4).

e Resumption of data transmission. The final step resumes data transmission
through the new path. In the simulation, this step is assumed to incur negli-

gible overhead.

In the rest of this section, we first report on the performance achieved by differ-
ent adaptation approaches with client traffic uniformly distributed among the vari-
ous server sites for a particular client connectivity profile. We then separately exam-
ine how performance is affected by non-uniform traffic distribution (where “hotspot”
servers receive a larger share of the connection requests), and when the client connec-
tivity profile is changed (with different fractions of clients using high-bandwidth and
low-bandwidth links). In each case, we simulate the network for 4 minutes, recording
data only for sessions that are started within the last 2 minutes, i.e. after the network
reaches a stable state (recall the average length of a download session is 1 minute).

The measurement ends at the 4 minute mark.
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Figure 9.14: Aggregate Performance under Uniform Load Distribution.

9.5.3 Performance under Uniform Load Distribution

This configuration uniformly distributes client requests among all server sites, varying
client arrival rates at each ISP from 10 to 250 clients per second. These rates corre-
spond to 6000 to 150,000 active paths simultaneously existing in the network. The
client connectivity profile is fixed as follows: 25% use links with sufficient bandwidth
(T1/T3/ADSL), 25% use Dialup, and the remaining 50% use wireless connections.

We examine the impact of changes from this profile later in Section 9.5.5.

Analysis of Aggregate Performance

The aggregate performance achieved by different adaptation approaches for this con-
figuration is shown in Figure 9.14. From Figures 9.14(a) and (b), it can be observed
that all four adaptation approaches that include reconfiguration support perform very
well when the network is lightly loaded. However, after the load increases to some
level (client rate=80 in Figure 9.14(a)), the performance of the proxy approach is the
first to reach saturation. This is explainable by the following: since adaptation can

only occur on the node before the last hop, all paths end up consuming considerable
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bandwidth in the network core, consequently saturating this portion of the network
much faster than other approaches. Once the network gets saturated, further increases
in InRange time are still possible, albeit at a much smaller rate, because of local loops
(a client downloads contents from a server that is attached to the same ISP).

Compared with the proxy approach, the end-point approach performs better (with
higher InRange Time and fewer connection failures), especially after the “saturation”
point of the proxy approach. This is expected because the end-point approach uses
server sites to do image filtering or resizing, and does not waste bandwidth on the
network links. However, it can also be observed from the Figure 9.14(b) that the
end-point approach starts to reject connections early, even when the network is lightly
loaded. These rejections mainly come from clients that use weaker links such as
Dialup to access small sites with limited computation capacity.

Figures 9.14(a) and (b) also show that the path-based approach provides the best
performance at all load levels. The InRange time of the path-based approach is up
to 12% and 97% higher than that of the end-point approach and the proxy approach
respectively. The number of connection failures of the path-based approach is also
much lower. For example, for a client rate of 200 connections/second, the end-point
approach rejects 59% more connections and the proxy approach rejects about 343%
more connections than the path approach. The reason for this behavior is because
the path-based approach combines the advantages of both proxy and end-point ap-
proaches. On one hand, similar to the end-point approach, the path-based approach
can utilize upstream nodes along a communication path to ensure that network band-
width is not wasted; and on the other, similar to the proxy approach, the path-based

approach can set up shared resource pools across the network, permitting overloaded
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Figure 9.15: Performance of Different Client Classes under Uniform Load Distribution.

servers to benefit from spare computation resources elsewhere.

The performance of the server+proxy approach falls between the path-based ap-
proach and the end-point approach, which verifies that allowing adaptation to happen
on even one more node in the middle of the communication path can improve overall

performance.

Performance of Different Clients

Figures 9.15(a) and (b) show the performance (InRange time (normalized with re-
spect to the total session time)) of the adaptation approaches from the perspective of
different client classes, i.e., clients connected to the network with sufficient bandwidth
versus those that use weaker connections. We can observe that while the proxy ap-
proach exhibits a more or less uniform behavior, the end-point approach demonstrates
considerable preference for clients with better connectivities over others. The path
approach, in addition to providing the best performance, uniformly supports different
classes of clients until one runs out of computation resources beyond a certain load

level. At this point, all approaches end up rejecting more clients with weak connectiv-
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Figure 9.16: Performance of Different Server Classes under Uniform Load Distribution.

ity because they require more computation (image filtering and resizing operations)

along the paths.

Performance of Different Server Sites

Comparing between Figures 9.16(a)—(d) allows us to draw conclusions about how the

different adaptation approaches perform from the perspective of connections targeting

servers with higher or lower computation budgets. The results indicate that the end-

point approach shows a distinct bias, performing much better with the largest server

than with the smallest one. The proxy approach performs uniformly with both servers,

primarily because all computation resources are aggregated at proxy sites. The path-
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based approach performs as well as the end-point approach for the largest server, and
performs the best for the smallest server. This can again be explained by the flexibility
brought by resource sharing and being able to use upstream nodes to do adaptation.
Another point deserving mention is the performance decrease of the server+proxy
approach in Figure 9.16(c) for client arrival rates higher than 90 connections/second.
This can be explained as follows: after load increases to the point where the small-
est server runs out of computation resources, other server nodes continue to support
filtering or resizing components because they have additional computation capacity.
Since compressed connections (with components) consume less bandwidth than un-
compressed ones, accepting more compressed connections for these servers can in
turn decrease the number of uncompressed connections to the smallest server because
the size of resource shares in the core network links shrinks as more compressed con-
nections join in. Consequently, for the smallest server, the InRange time drops and the
number of connection failures increases as load increases. Note that the path-based

approach avoids this situation by exploiting resource pooling at server-side proxies.

Performance Impact of Dynamic Reconfiguration

The plots in Figure 9.14 also show that there is a considerable performance penalty
incurred for disallowing reconfiguration after the path has been created. This validates
the need for aeactivemechanism to cope with dynamic changes. In general, different
types of paths may have different requirements on network resources (e.g. some of
them may require more bandwidth while others may need more computation). As

load changes, it is necessary to adjust allocated shares of existing paths in order to
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accept more connectiodsWVithout reconfiguration support, adjustments for one path
may end up pushing other paths out of the required range, and thereby negatively
impact the overall performance.

Another detail that should be mentioned about the path-reconfig approach is the
ramp-up at the end of Figure 9.14(c). This can be explained as follows: as the number
of client connections increase, the number of partitions of network resources grows
while decreasing the size of each partition. Eventually, it becomes difficult for clients
who use weak connections to successfully connect to servers because the partition
of computation resources is too small to perform the required image filtering and/or
resizing operations. As a result, a large number of such connections end up getting
rejected. On the other hand, connection requests from clients with higher bandwidth
links continue getting accepted. Moreover, because more compressed paths are re-
jected, the likelihood that an uncompressed path will get pushed out of the required
range decreases. This results in increased normalized InRange time for clients who

use T3/T1/ADSL links.

9.5.4 Performance under Non-Uniform Load Distribution

This configuration examines how different adaptation approaches perform when con-
nection requests from clients are directly non-uniformly towards servers. Similar to

load patterns observed on the Internet, we assume a “hot-spot” model, where a small
portions of servers (the hot-spots) receive most of the requests from clients. Specifi-

cally, 20% of the servers receive 80% of the total requests. We further ensure that the

"One can argue that using reservations may eliminate the need for dynamic adjustments, but such approaches

usually have poor throughput (sustain fewer connections) as load dynamically changes
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Figure 9.17: Aggregate Performance under Non-Uniform Load Distribution.

average load of large sites (i.e., sites with an OC12 link and computation budget uni-
formly distributed in the range [100,200)) is about 4 times the average load of small
sites (i.e., sites with an OC3 link and computation budget uniformly distributed in the

range of [10,100)).

Figures 9.17-9.19 show the performance achieved by the different approaches.
The organization of the plots is similar to that seen earlier in the previous section.
There are several observations that one can make here. First, focusing on aggregate
performance, we see that the overall ranking of performance among these adaptation
approaches remains the same as in the uniform distribution case. However, the total
InRange time is noticeably lower than the values we saw in Section 9.5.3. This is
expected because the overloaded hot-spot servers cause increased connection failures.
Second, the relative performance of the path-reconfig approach is worse than seen
earlier. This verifies our intuition that such an approach performs poorly when some
portions of the network get overloaded; due to the absence of reconfiguration, existing
paths cannot be adjusted to take advantage of surplus resources in network regions that

are lightly loaded.
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Figure 9.18: Performance of Different Client Classes under Non-Uniform Load Distribution.

Looking at performance seen by clients with different connectivity options, the
overall trends mirror those seen for uniform traffic. Figure 9.18(a) is a little different
from the corresponding plot in Figure 9.15(a) in that the end-point approach gets the
highest normalized in-range time for clients using T3/T1/ADSL connections. This
value comes at the cost of more connection failures for clients with weak connec-
tions (recall that 75% of all clients use dialup/wireless connections). The aggregated
InRange time of the path-based approach is still the best among the five approaches.

Looking at the performance from the perspective of servers with the maximum
and minimum computation budgets (Figure 9.19, it can be observed that the path-
based approach outperforms all other approaches. This again verifies the benefit of
resource sharing in the network: overloaded sites can always take advantage of spare
computation resources elsewhere. This is true even for sites that have a large amount
of computation resources, because there will be a load level that causes these sites to
become overloaded. The end-point approach performs poorly on sites with smaller
computation budgets. The proxy approach exhibits the same behavior, independent

of computation budget, as in the uniform distribution case. However, as before, the
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Figure 9.19: Performance of Different Server Classes under Non-Uniform Load Distribution.

problem of bandwidth waste results in the network core becoming an early bottleneck
as load increases.

A more interesting point with this set of results is that they used the same resource
distribution between server and ISP nodes as in Section 9.5.3, namely ores-that
sumes a uniform load distributionThis is important because load distributions at
run-time are likely to be different from what is considered when deciding about how
to provision resources in the network. Our results show that the path-based approach
still performs very well even with an inaccurate knowledge of load distribution. This

robustness mainly comes from the shared resource pools across the whole network
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Figure 9.20: Performance under Different Client Connectivity Profiles.
that act like “buffers”, absorbing most negative impact because of the unexpected

load.

9.5.5 Performance under Different Client Connectivity Profiles

In this configuration, we examine how the different adaptation approaches perform
when different fractions of clients use different connectivity options. The simulations
run with the same settings as in Section 9.5.4 with only two differences: the client
arrival rate was fixed at 100 users per second, and we varied the percentage of clients
that use weak connections (dialup or wireless) from 0 to 100 percent (the ratio be-

tween numbers of clients that use dialup and wireless connections was maintained at
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1:2).

Figure 9.20(a)—(d) shows the performance results. One can observe that among the
four approaches with reconfiguration support, the end-point approach is the only one
that exhibits decreasing performance as more clients use weak connections while the
other three approaches achieve relatively stable performance across different config-
urations. Because the end-point approach does not support resource sharing, smaller
sites or overloaded sites end up rejecting many connection requests once they run out
of computation resources.

It can also be seen that the path-reconfig approach performs better when the client
connectivity profile is more uniform. This can be explained as follows: as more
paths exhibit similar behavior (i.e., have similar resource requirements), there is lower
likelihood that an existing path will get pushed out of its required performance range
by the arrival of a new connection. Stated differently, the more heterogeneous the
environment, the larger the need for dynamic reconfiguration.

Some clarification is needed for the increasing InRange time achieved in Fig-
ure 9.20(a) by the server+proxy approach as more clients use weak connections.
While this may appear counter-intuitive, the following explains this behavior. Con-
sider what happens when clients use connections that have sufficient bandwidth. As
load increases, initially modest compression (filtering/resizing) will be introduced into
the paths and executed on the server sites. As the number of connections further in-
creases, the size of partitions on the server sites will eventually become too small to
do the required compression. Consequently, after this point, the network core starts
become a bottleneck and once it does, new connections end up getting rejected. Note

however that when this happens, the proxy sites close to clients remain underutilized

158



because they are ineffective for reducing bandwidth requirements in the network core.

On the other hand, the situation is different when most of the clients are using weak
connections. Due to the limited bandwidth of weak connections, strong compression
will be required at the server sites from the beginning. The strong compression results
in considerable saving in bandwidth in the network core. Therefore, as load increases,
some of the new connections can take advantage of the saved bandwidth in the net-
work core and do compression at the client side proxy sites. As a result, the utilization
of the proxy sites is high and more connections are accepted.

The above behavior also provides further evidence for the benefits by using addi-

tional nodes in the data path to perform adaptation operations.

9.5.6 Summary of Simulation Results

The main results from our study are summarized below:

1. Support for dynamic reconfiguration is important for the performance of both

individual paths and the whole network.

2. The end-point approach usually works well with server sites that have a large
amount of computation resources and for clients that connect to the network
with relatively high bandwidth links. However, servers that have limited com-
putation capacity or clients that use weak connections may suffer from poor

performance using such an approach.

3. The proxy approach usually does not exhibit bias towards different types of
servers or clients. The shared resource pool at proxy sites can bring better per-

formance for small server sites or clients that have weak connectivity. However,
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constraining the adaptation to only occur before the last hop can cause consider-
able resource wastage in the network, in turn leading to early saturation as load

increases.

4. The path-based approach has all the benefits of both end-point and proxy ap-
proaches. Adaptation can be conducted on upstream nodes without being lim-
ited to the node before the last hop. More importantly, the approach sets up
shared resource pools across the whole network, providing the most flexibility
for overloaded servers to benefit from spare computation resources elsewhere.
In summary, with effective resource management strategies, this approach pro-
vides the best and the most robust performance under different network config-

urations.

9.6 Summary

In this chapter, we have presented an extensive evaluation of our framework, under
different network configurations and using different applications. We carried out our
experiments by running typical applications on top of the CANS infrastructure, and
simulating our schemes for large-scale networks. The experimental results validate

our approaches, verifying that:

e Network awareness in data communication can be provided to regular applica-
tions by injecting application specific functionality into the network and letting

the underlying infrastructure control such paths.

e Network-aware communication paths created with our automatic path creation

strategies provide applications with considerable performance advantages.
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¢ Fine tuned, desirable, and continuous adaptation behaviors can be constructed

using our strategies for path creation and reconfiguration.

e The run-time overheads of the CANS infrastructure are negligible, and recon-
figuration cost is small for most applications, and can be further substantially

reduced by our local mechanisms.

e Compared with adaptation using end-point or proxy-based approaches, CANS-
like path-based approach provides the best and the most robust performance for

different servers/clients under most network conditions.
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Chapter 10

Summary and Future Work

In this chapter, we summarize the work presented in this dissertation, discuss future

work, and our perspective on the longer term implications of this work.

10.1 Summary

We observe that network awareness in data communication is important for accessing
services across the Internet. In addition to transmitting data like a conventional com-
munication path, a network-aware communication path is capable of automatically
and continually adapting to different underlying network conditions according to ap-
plication requirements. This dissertation proposes a general framework for providing
various applications with network-aware communication paths.

To continually match application requirements with underlying network condi-
tions, application specific functionality, organized in the form of components with

a well-defined interface, is dynamically injected into the communication path; the
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underlying infrastructure is used for creating and controlling such communication
paths and managing resources across the network. The former (application specific
functionality) allows applications to customize its data communication requirements,
while the latter (underlying infrastructure) provides common support for realizing
network awareness. Combining these two together, regular (legacy) applications can
easily be augmented with adaptation capabilities, requiring only high-level input from
applications.

Compared with end-point or proxy-based approaches, network awareness in our
framework is realized throughout all (possible) network resources along communica-
tion paths.

To build a path-based infrastructure to support network-aware communication
paths, several challenging problems need to be addressed before this vision could
become reality. These problems were the focus of this dissertation. In particular,
we have presented solutions for the following previougbenquestions: 1) how to
model and organize application specific functionality so that adaptation operations can
be separated from other parts of the application, and control logic of communication
paths can be extracted and built into the underlying infrastructure? 2) How to auto-
matically construct theestpath based on application requirements and network con-
ditions? 3) How to efficiently modify such paths when network conditions change? 4)
How to efficiently manage network resources across the network? Solutions for these
problems are indispensable for any practical deployment of a path-based infrastruc-
ture.

Below, we briefly review our key schemes.

163



Dynamic Composition and Type-Based Modeling In our framework, application spe-

cific functionality is organized in the form of components with a well-defined inter-
face. To separate path creation/adaptation logic from the application itself, our frame-
work constructs communication paths by dynamically composing different compo-
nents together. Dynamic composition is supported by the component interface and
a high-level type specification of component behaviors. The use of the component
paradigm make our framework highly extensible: the functionality contained in the
infrastructure grows as new components being added in; besides, application devel-
opment is completely independent from component authoring, so is the latter from
that of other components. More importantly, such a composition view lays a solid
foundation for extracting common logic for creating and controlling network-aware

paths for inclusion at the infrastructure level.

Automatic Path Creation Strategies In our framework, network-aware communica-
tion paths are created usigitomatic path creation strategieur strategies can
produce communication paths with optimized performance in accordance with ap-
plication requirements and underlying network conditions, requiring only high-level
information from applications. Such automatically generated paths, in addition to
providing applications with considerable performance benefits (i.e. throughput, la-
tency, or data quality etc.), can also address other requirements such as required data
format (when different from that of the data source), security guarantees etc., which
are effected by the characteristics of the network resources along the path.

Our path creation strategies are very flexible in that they can be used with appli-

cations with very different performance requirements, i.e., some may need to max-
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imize/minimize some performance metrics while others may demand the guarantee
of some performance metric being in a specific range with other performance met-
rics optimized. The calculation of such network-aware communication paths does not
require a centralized entity or global knowledge (except for commonly used types)
across different network domains, and can be built incrementally in a distributed fash-
ion. Furthermore, in addition to building a whole new path, our path creation strate-
gies can also be used to replace small portions of an existing path while maintaining
some overall performance guarantees. This is very important for our vision of net-
work awareness: every segment of a communication path can continually adapt to

changes in the network, independently and concurrently.

Dynamic Path Reconfiguration To provide applications with dynamic adaptation, our
framework includes system support fow-overhead dynamic path reconfiguration
Path reconfiguration is controlled completely by the underlying infrastructure so that
the application can concentrate on its own “business” logic.

The reconfiguration process is quite flexible in that different applications are al-
lowed to customize different levels of semantic continuity guarantees for data trans-
missions when reconfiguration occurs. In addition to modifying the whole communi-
cation path (which is called global reconfiguration), our reconfiguration strategies also
support independent and concurrent modification of small portions of the path (called
local reconfiguration). When network conditions change, local reconfigurations will
be tried first, with global reconfiguration being triggered only if local reconfigura-
tion cannot effectively cope with the change. Such a multiple-level reconfiguration

is not only important for adaptation agility but also for use of such an infrastructure
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with long communication paths, which usually span multiple network administrative
domains.

Combining the support for path creation and reconfiguration together, our frame-
work provides various applications with fine-tuned, desirable adaptation behaviors
for dynamic changes in the network. Since when and how to adapt is completely con-
trolled by the underlying infrastructure, network-oblivious applications can be aug-

mented with adaptation capabilities.

Distributed Resource Management Deploying such a path-based infrastructure re-
qguires a large network of infrastructure-enabled nodes that overlay on existing Internet
infrastructure to run computation required by these augmented paths. Our framework
includes distributed strategies for managing network resources among different com-
munication paths and different network regions. By efficiently allocating and adjust-
ing resource shares of multiple communication paths, our strategies provide individual
paths with good performance and improve the throughput of the whole network, i.e.,
increase the number of connections can be sustained. Moreover, our framework con-
tains a hierarchical model and a corresponding algorithm to set up shared resource
pools across the network. By distributing computation resources across different net-
work domains, the overall performance of the whole network gets improved because

overloaded network regions can make use of shared resources from others.

The CANS infrastructure  Our framework is realized as a Java-based programmable
network infrastructure called Composable Adaptive Network Services (CANS). CANS

is built from the ground up to provide applications with network-aware communica-
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tion paths. Extensive experiments have been carried out with different applications

running on top of CANS. The results validate the effectiveness of our schemes.

10.2 Conclusion

Our framework provides a complete set of solutions for building a path-based in-
frastructure that provides applications adaptation capability to changes in the net-
work using network-aware communication paths. By building these solutions into a
programmable network infrastructure (CANS) and with extensive experiments using

typical Internet applications, we have verified that

e Automatic path creation and reconfiguration are achievable and do in fact yield

substantial performance benefits.

e Our approach is effective at providing applications that have different perfor-

mance preferences with fine tuned, desirable adaptation behaviors.

e Despite the flexibility, the overhead incurred by the CANS infrastructure is neg-
ligible, and the cost to reconfigure data paths is acceptable for most applications.
Additionally, these costs can be further reduced substantially using local plan-

ning and reconfiguration mechanisms.

e The resource management strategies are effective in improving both individual

path performance and resource utilization of the whole network.

e Compared with alternative end-point and proxy-based approaches, using a CANS-
like path-based approach to realize network awareness throughout the entire

communication path not only results in better responsiveness to changes in the
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network, but more importantly provides the flexibility of adaptation anywhere

and resource sharing across the network, allowing overloaded network regions
to take advantage of spare resources from other parts of the network. This makes
such a path-based approach the best and the most robust way for delivering sat-

isfactory performance across the network.

In conclusion, this dissertation has presented a general framework that provides
applications with network-aware communication paths. These paths, which are au-
tomatically created by the underlying infrastructure, can further continually adapt to
dynamic changes in the network. To the best of our knowledge, our work is among

the first providing such network awareness in the context of a general framework.

10.3 Future Work

There are two issues that have not been completely integrated into our framework:
security concerns and resource monitoring across the network. These two problems
are relatively independent of the focus (on network awareness) of this dissertation
in that the support for distributed authentication, secure execution of mobile code,
and information about resource availability required by our framework are likely to
be important features of other distributed systems as well. There is already a large
body of literature on these topics, and several proposals. In the near future, the work

described in this dissertation can be extended as follows.
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10.3.1 Security Concerns

Security concerns are raised by the need for deploying and executing mobile code
along communication paths that span multiple administrative network domains. This
requires distributed authentication mechanisms as well as a secure execution environ-
ment for mobile code. Distributed authentication (and trust management in general)
frameworks (such as PolicyMaker [8], KeyNote [7], Taos [56], and dRBAC [20]
etc.) allow users to express distributed trust relationships, such infrastructures can be
integrated to control code downloading in our framework.

The current implementation of the CANS execution environment provides a se-
cure environment for running downloaded code by leveraging the the features of Java
programming language and existing security features built into JVMs [46]. By using
a custom class loader with an environment object (via which drivers can only access
the functionality of the CANS EE), execution of components from different locations
can be effectively isolated from each other. The passive interface of the CANS Driver
further makes it relatively simple to constrain how many resources can be consumed
by a particular path.

For components embedded with native code (e.g. via the JNI interface), the situ-
ation is more complicated. One way to control native code is by intercepting the JNI
interface and employing a similar controlling strategy as the commonly used sand-

boxing technique.
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10.3.2 Resource Monitoring Utility

Our framework also needs a resource monitoring utility that provides information
about dynamic resource availability. While our distributed/local versions of the plan-
ning and reconfiguration strategies greatly reduce the requirements for global infor-
mation of resource availability information, we still need efficient mechanisms for
monitoring network resources in a wide area network. Furthermore, effective filtering
mechanisms are also needed to reduce unnecessary path reconfiguration. The ap-
proaches being evaluated in existing and proposed frameworks such as Remos [16],
Network Weather Service [57], Grid Monitoring Services [61], and [37] may be used

with our framework.

10.4 Perspective

Our approach of building network-aware communication paths by dynamically and

automatically composing and managing components reveals the feasibility of inte-
grating and orchestrating between diverse functionality across the network. By com-
posing functionality from different sites to address user’s high level requirements,

individual services are no longer isolated islands that implement simple functions in a
monolithic way. Instead, the world of services is interconnected and new services can
be constructed on the fly as appropriate for the needs of different users. This vision
presents users with a network characterized by truely integrated functionality. The ap-
proach advocated in this dissertation takes this view and provides solutions for how to
model, compose, and control various functionality to meet user requirements on data

communication, providing automatic adaptation to regular applications in dynamic
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environments.

Our approach is based on a data flow view that models functionality as a map-
ping between input data and output data type while maintaining the same underlying
semantics for the processed data. Such a view is quite effective for various transforma-
tion services. However, to support compositions among arbitrary services, this view
may need to be extended for modeling behaviors of more complicated components or
services that can change the semantics of the processed data. In turn, it is likely that
the semantic description of such services may need to be extended to enable compo-
sition. We look at this as a higher level problem, which can be built on top of our
framework with new models to describe and deduce semantic information, possibly
leveraging standard ontologies such as being developed by the Semantic Web [4] and
IEEE’s Standard Upper Ontology [27] efforts.

The emergence of industry standards (WSDL [11] UDDI [13]) for describing and
searching components across the Internet reflects the increasing need for interoper-
ability across the Internet. We believe that the prospect of intelligence in the network
will eventually become reality, allowing seamless integration of functionality in the
Internet to meet various user needs. As such needs grow, underlying infrastructure
will be required to provide network-aware communication, and efficient and seamless
composition of such functionality. We view the work presented in this dissertation
as a step toward this direction and look at the infrastructure that supports construc-
tion of intelligent applications by composing functionality across the Internet as the

longer-term outcome of this work.
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Appendix A

Component Profile Information

Table A.1 lists some of the profiled values @dmputation load factofload , i.e.,
number of operations for each byte of incoming data) baddwidth impact load
factor (bwf) of the components used in this dissertation. Table A.1(a) lists these
values of drivers that have only a single configuratimip: , unzip , Encryption

and Decryption . The data used in the profiling is a typical HTML page with
the size of 14 K bytes. Table A.1(b), (c) show the valuesnshgeFilter and
ImageResizer respectively, both of these drivers support multiple configurations.
The profiling used a typical high-quality JPEG image with the size of 25K bytes

(profiling results using images of medium and poor qualities are omitted for brevity).

A.1 Profiling with different data sizes

We model the performance characteristics of a drivesing itscomputation load

factor (load(c)), the average per-input byte cost of executing the component, and the
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Driver load (op/byte)| bwf
Zip 0.133 0.3175
Unzip 0.118 3.15
Encryption 0.435 1
Decryption 0.435 1

(a) Parameters of Single Configuration Drivers

Configuration 1 2 3 4 5 6 7 8

Resizing 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

load (op/byte)| 2.786| 3.070| 3.806 | 4.316 | 4.674| 5.301| 6.295| 6.939

bwf 0.121| 0.195| 0.287| 0.389| 0.488| 0.606 | 0.710| 0.847

(b) Parameters of ImageResizer

Configuration 1 2 3 4 5 6 7 8 9

Image Quality | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

load (op/byte)| 2.552| 2.590| 2.602| 2.642 | 2.652| 2.733| 2.746| 2.707 | 2.771

bwf 0.271] 0.402| 0.531| 0.574| 0.751| 0.87 | 0.961| 1.055| 1.411

(c) Parameters of ImageFilter

Table A.1: Profiled Parameter of Components

bandwidth impact facto(bwf(c)), the average ratio between input and output data
volume. This linear model is based on profiling we have conducted with various com-

ponents. Here, we present a subset of these profiling results usimgapeFilter
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and thelmageResizer components. For this experiment, we profiled the perfor-
mance ofmageFilter and thelmageResizer with a set of image files of sizes
ranging from 21K bytes to 221K bytes.

Figure A.1 shows the computation time of these two components for processing
these images. It shows that the computation time is basically linear with the size of
input data, and the values bif remain almost constant with only small variations.
Though there could be some unusual components that exhibit different performance
characteristics, whose computation load is not linear with the size of incoming data,
the result validates thalopad(c) andbwf(c) are reasonable approximations for mod-

eling performance characteristics of regular components.

A.2 Profiling Component Composition

We also need to verify that the linear approximation remains valid when multiple
components are execution together in the same execution environment. To observe the
performance under component compositions, we profiled the computation time of the
composition olmageResizer andimageFilter , both of which are configured

to use the 5th configuration. The profiling used the same set of image files as the
previous experiment. Figure A.2 shows the profiled result, and compares it with the
expected values calculated using our approach: The expected value is calculated using
s - (load(Resizers) + bwf(Resizers) - load(Filters), wheres is the input image size.

This figure verifies that the calculated values using our approach are very close to the

actual values we measured, thus verifying the linear model works for composition.
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Appendix B

Emulating Real Network Behaviors

Using Sandboxing

To investigate the performance of our framework in a wide range of network configu-
rations, in our experiments described in Chapter 9, we extensively used a sandboxing
toolkit to emulate different network conditions. The sandboxing toolkit [10] (de-
signed by Chang et al.) can be used to control resource consumption of applications
by intercepting system calls between the applications and the underlying operating
system. Taking the example of network resources, the sandboxing toolkit emulates
links with different bandwidth properties by constraining the rate at which applica-
tions are allowed to send/receive data. Experimental results presented in [10] verify
that this toolkit can effectively control application usages of CPU, memory, and net-
work bandwidth.

However, because the purpose of our experiments is to study adaptation behaviors

of applications, the effectiveness of the emulation with the sandboxing toolkit needs

176



to be studied for validating our experimental results. This is especially the case for
some of our experiments, where we used the sandboxing toolkit on a local network
to emulate some “logical” network links that may involve multiple hops (e.g. the
connection between the edge server and the proxy server in Section 9.1).

To examine the differences between the behaviors of a real network configura-
tion and the behaviors emulated using the sandboxing toolkit, we conducted an ex-
periment, using the image streaming application described in Chapter 9. In this ex-
periment, we compared the behavior of the application when running in a real net-
work configuration with that on the emulated one (i.e. in a LAN with the sandboxing
toolkit). For the real network configuration, we run the image client on a laptop using
a wireless network (IEEE802.11b) in our lab, downloading images from an image
server running on elsewhere on campus. Including the last wireless connection, there
were a total of 6 hops between these two machinefor the emulation, we run
the application in a 100Mbps Ethernet LAN connected with a Ethernet switch, and
emulated the behaviors of the real network configuration by using the sandboxing
toolkit to constrain data transmission between the server and the client applications to
correspond to the measured bandwidth value in the real configuration.

The bandwidth measured between these two nodes in the real network configura-
tion was 542KBps. The average size of the image files used in this experiment was
24K bytes. The measured throughout in the real network configuration was 21.87
frames per second. The emulation provided a throughput of 22.30 frames per second,
validating that the sandboxing toolkit is effective in emulating the overall performance

characteristics of a real network configuration.

!Determined by using theacerouteutility
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Figure B.1: Arrival Interval of Individual Image Frames

To further examine the microscopic behaviors of these two cases, we recorded the
arrival interval of individual image frames. The result is shown in Figure B.1. In this
Figure, the x-axis denotes the image frame sequence numbers, and the y-axis denotes
the interval between the arrival times of two consecutive frames. Figure B.1(a) shows
that the interval values in the real network configuration are clustered around 0.04

to 0.05 seconds. Figure B.1(b) shows that in the emulation, the values of arrival
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Figure B.2: Averaged Arrival Interval Time for Every Two Adjacent Image Frames

intervals are clustered in two groups: about half of the frames have a value of 0.04
seconds, and the other half a value of 0.05 seconds. This behavior is mainly due to
the accuracy limitation of the fine-grained timer used by the sandbox implementation,
which can only support accuracy at a granularity of 10 milliseconds. To account for
this implementation artifact, we examined the average of the interval values for every
2 adjacent frames (= (t;+t;+1)/2). The resultis shown in Figure B.2, which shows

the averaged value of arrival interval is 0.045 seconds, a close match to that seen on
the real network.

Our results show that despite the behaviors emulated by the sandboxing toolkit not
being exactly the same as that on a real network configuration, the former provides a
very close approximation. Therefore, we conclude that for the specific experiments
undertaken in this dissertation, the use of the sandboxing toolkit should not affect the

conclusions drawn from our experimental results.
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