
Democratizing Content Distribution

Michael Joseph Freedman

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

September 2007

Professor David Mazières

c© Michael Joseph Freedman

All Rights Reserved, 2007

“Behold how good and how pleasant it is for

brethren to dwell together in unity.”

— Psalms 133-1

To my future wife Jennifer

for her warmth and support

and

To my brother Daniel

for his courage of convictions

v

Acknowledgments

My advisor, David Mazières, always insisted that I pursue research that gives me joy. He certainly

provides a model to emulate. David is tenacious with his questions, precise with his research, and

unwavering in his support. I would not have had the same view of and success in research without

his guidance over the years. I would also like to thank Robert Morris and Frans Kaashoek for

helping to place my feet on the road to academia.

This thesis is based on research I have performed over the past five years with a number of

great colleagues, including Siddhartha Annapureddy, Christina Aperjis, Eric Freudenthal, Ramesh

Johari, Maxwell Krohn, Karthik Lakshminarayanan, David Mazières, Sean Rhea, and Ion Stoica.

Graduate school was an exciting and stimulating experience due to their involvements. I would

also like to thank the other two members of my dissertation committee, Dennis Shasha and Laksh-

minarayanan Subramanian, for their advice.

Over my time spent at MIT, NYU, and Stanford, I had the opportunity to collaborate with and

learn from many excellent peers. The intellectual variety and milieu provided by each environ-

ment was invaluable to both the content and style of my research. Beyond those already mentioned

above, I would also especially like to thank David Andersen, Martin Casado, Nick Feamster, Nick

McKeown, Antonio Nicolosi, Benny Pinkas, and Scott Shenker for being research mentors, sound-

ing boards, and (in one case) a partner in technology transfer to industry.

The research in this dissertation was funded through an NDSEG Graduate Research Fellowship

and the IRIS project (http://project-iris.net/), supported by the National Science Founda-

tion under Cooperative Agreement Number ANI-0225660.

Finally, I wish to give heartfelt thanks to my family, for their abiding support, dedication, and

vi

love: my grandparents Estelle, Gerald of blessed memory, Janice, and Saul, my parents Nancy and

Louis, my brother Daniel, and my future wife Jennifer. May good countenance continue to shine

upon them all.

vii

Bibliographic Notes

This thesis is based on research I have performed with a number of excellent colleagues between

2002 and 2007. The consideration of non-transitive routing failures presented in §2.2.4 appears in

a paper co-authored with Karthik Lakshminarayanan, Sean Rhea, and Ion Stoica [60]. An initial

design for the indexing and CDN system described in §2.3 and §3 appears in papers co-authored

with David Mazières [58, 59] and Eric Freudenthal [59]. Material for the anycast system in §4

appears in [62], co-authored with Karthik Lakshminarayanan and David Mazières. The file-system

design in §5 appears in a paper co-authored with Siddhartha Annapureddy and David Mazières [8],

while the erasure-code authentication protocol in §6 is co-authored with Maxwell Krohn and David

Mazières [104]. Finally, the ongoing work on market incentives discussed in §7 is with Christina

Aperjis and Ramesh Johari [63].

More information about the systems we present in this thesis—including papers, source code,

software plugins, and system usage and integration instructions—can be found at the website

http://www.coralcdn.org/.

viii

Abstract

In order to reach their large audiences, today’s Internet publishers primarily use content distribution

networks (CDNs) to deliver content. Yet the architectures of the prevalent commercial systems

are tightly bound to centralized control, static deployments, and trusted infrastructure, inherently

limiting their scope and scale to ensure cost recovery.

To move beyond such shortcomings, this thesis contributes a number of techniques that realize

cooperative content distribution. By federating large numbers of unreliable or untrusted hosts,

we can satisfy the demand for content by leveraging all available resources. We propose novel

algorithms and architectures for three central mechanisms of CDNs: content discovery (where are

nearby copies of the client’s desired resource?), server selection (which node should a client use?),

and secure content transmission (how should a client download content efficiently and securely

from its multiple potential sources?).

These mechanisms have been implemented, deployed, and tested in production systems that

have provided open content distribution services for more than three years. Every day, these sys-

tems answer tens of millions of client requests, serving terabytes of data to more than a million

people.

This thesis presents five systems related to content distribution. First, Coral provides a dis-

tributed key-value index that enables content lookups to occur efficiently and returns references to

nearby cached objects whenever possible, while still preventing any load imbalances from form-

ing. Second, CoralCDN demonstrates how to construct a self-organizing CDN for web content

out of unreliable nodes, providing robust behavior in the face of failures. Third, OASIS provides a

general-purpose, flexible anycast infrastructure, with which clients can locate nearby or unloaded

ix

instances of participating distributed systems. Fourth, as a more clean-slate design that can lever-

age untrusted participants, Shark offers a distributed file system that supports secure block-based

file discovery and distribution. Finally, our authentication code protocol enables the integrity veri-

fication of large files on-the-fly when using erasure codes for efficient data dissemination.

Taken together, this thesis provides a novel set of tools for building highly-scalable, efficient,

and secure content distribution systems. By enabling the automated replication of data based on

its popularity, we can make desired content available and accessible to everybody. And in effect,

democratize content distribution.

x

Contents

Dedication v

Acknowledgments vi

Bibliographic Notes viii

Abstract ix

List of Figures xvi

1 Introduction 1
1.1 Wither the democratization of content? . 2

1.2 Current CDN designs are insufficient . 5

1.3 Design principles . 9

1.4 Contributions and organization . 11

2 A Distributed Indexing Architecture for Content Discovery 18
2.1 Motivation . 19

2.2 A distributed key-value index . 20

2.2.1 Consistent hashing with global membership views 21

2.2.2 Scaling liveness detection for global membership views 23

2.2.3 Partial membership views with DHTs . 24

2.2.4 Non-transitive routing and failure detection 27

2.2.4.1 The problem with non-transitive routing 27

2.2.4.2 Fixing non-transitive routing 29

2.3 Weakening the consistency model and adding locality with Coral 30

xi

2.3.1 Distributed sloppy hash tables . 32

2.3.1.1 Constrained routing . 33

2.3.1.2 Inserting values . 35

2.3.1.3 Retrieving values . 37

2.3.1.4 Handle concurrency via combined put-and-get 37

2.3.2 Coral: Locality-optimized hierarchical DSHTs 39

2.3.2.1 Hierarchical retrieval . 40

2.3.2.2 Hierarchical insertion . 40

2.3.2.3 Joining and managing clusters 42

2.3.2.4 Implementation . 44

2.3.3 Evaluation . 48

2.3.3.1 Clustering . 48

2.3.3.2 Load balancing . 50

2.4 Related work on DHTs and directory services . 52

3 Building CoralCDN, a Web Content Distribution Network 54
3.1 Motivation . 54

3.2 Design . 56

3.2.1 Usage models . 56

3.2.2 System overview . 56

3.2.3 The CoralCDN HTTP proxy . 59

3.2.3.1 Locality-optimized inter-proxy transfers 59

3.2.3.2 Rapid adaptation to flash crowds 60

3.2.4 The (original) CoralCDN DNS server . 61

3.3 Evaluation . 64

3.3.1 Server load . 65

3.3.2 Client latency . 66

3.4 Deployment lessons . 69

3.4.1 Robustness mechanisms . 69

3.4.2 Bandwidth-shaping fairness mechanisms 71

3.4.3 Security mechanisms . 75

3.4.4 Failures of original DNS design . 78

3.5 Related work on web content distribution . 80

xii

4 Building OASIS, an Anycast System for Server Selection 82
4.1 Motivation . 82

4.2 Design . 85

4.2.1 System overview . 86

4.2.2 Design decisions . 89

4.2.2.1 Buckets: The granularity of mapping hosts 90

4.2.2.2 Geographic coordinates for location 91

4.2.2.3 System management and data replication 94

4.2.3 Architecture . 97

4.2.3.1 Managing information . 97

4.2.3.2 Putting it together: Resolving anycast 99

4.2.3.3 Improving scalability and latency 101

4.2.3.4 Selecting replicas based on load 102

4.2.3.5 Security properties . 102

4.2.4 Implementation . 104

4.3 Evaluation . 106

4.3.1 Wide-area evaluation of OASIS . 107

4.3.2 Load-based replica selection . 112

4.3.3 Scalability . 112

4.3.4 Bandwidth trade-offs . 113

4.4 Deployment lessons . 115

4.5 Related work on anycast . 116

5 Securing a Cooperative File System 119
5.1 Motivation . 120

5.2 Design . 122

5.2.1 System overview . 123

5.2.2 File servers and consistency . 125

5.2.3 Cooperative caching . 126

5.2.3.1 Data integrity via content-based naming 127

5.2.3.2 The cooperative-caching read protocol 128

5.2.3.3 Securing client-proxy interactions 130

5.2.4 Implementation . 132

xiii

5.3 Evaluation . 132

5.3.1 Alternate cooperative protocols . 134

5.3.2 Microbenchmarks . 135

5.3.3 Local-area cooperative caching . 135

5.3.4 Wide-area cooperative caching . 138

5.4 Related work on distributed file systems . 140

6 Securing Rateless Erasure Codes for Large-File Distribution 143
6.1 Motivation . 143

6.2 Design . 146

6.2.1 Brief review of erasure codes . 146

6.2.2 Threat model . 148

6.2.2.1 Hashing all input symbols . 150

6.2.2.2 Hashing check blocks . 151

6.2.3 Homomorphic hashing . 152

6.2.3.1 Notation and preliminaries . 153

6.2.3.2 Global homomorphic hashing 153

6.2.3.3 Per-publisher homomorphic hashing 158

6.2.3.4 Computational efficiency improvements 159

6.2.3.5 Homomorphic hash trees . 160

6.3 Evaluation . 162

6.3.1 Correctness . 162

6.3.2 Running-time analysis . 163

6.3.2.1 Microbenchmarks . 165

6.3.2.2 Performance Comparison . 166

6.3.2.3 Discussion . 172

6.3.3 Security . 173

6.3.3.1 Collision-resistant hash functions 173

6.3.3.2 Security of encoding verifiers 174

6.3.3.3 Discussion of end-to-end security 177

6.4 Related work on multicast security . 179

xiv

7 Conclusion 181
7.1 Summary of contributions . 181

7.2 Moving forward: Adding incentives for participation 182

7.3 Concluding remarks . 185

Bibliography 186

xv

List of Figures

1.1 The main logical participants in a content distribution system. 5

1.2 Getting content from a content distribution network comprised of two clusters via

DNS redirection and HTTP requests. 6

1.3 Potential content distribution system architectures 8

2.1 Keys (blue squares) are assigned to their successor nodes (circles) on a consistent-

hashing ring. This assignment is illustrated by arrows in the figure. 21

2.2 Chord DHT. The left-hand graph visualizes all system nodes in half a Chord ring

based on their node identifiers. The right-hand graph displays the routing tables of

one node (shown larger in red). Dotted lines are draw to the red node’s successor

list; all other visualized nodes appear in the node’s finger tables. These fingers

constitute those nodes that are successors to points that are powers-to-two distant

(separated by thin blue lines) from the red node on the ring. 25

2.3 Kademlia DHT. The left-hand graph visualizes all system nodes in a Kademlia tree

based on their node identifiers. The right-hand graph displays the routing tables

of one node (shown larger in red), who knows at least one node in each subtree

(separated by thin blue lines) of increasing distance from it. 26

2.4 Recursive and iterative styles of Chord DHT routing 26

2.5 Non-transitivity in Chord routing. 28

2.6 Comparing opportunistic and constrained routing 33

xvi

2.7 Coral’s hierarchical routing structure from the perspective of node s. Nodes use

the same IDs in each of their clusters; higher-level clusters are naturally sparser.

Note that a node can be identified in a cluster by its shortest unique ID prefix, e.g.,

11 for s in its level-2 cluster; nodes sharing ID prefixes are located on common

subtrees and are closer in the XOR metric. While higher-level neighbors usually

share lower-level clusters as shown, this is not necessarily so. We demonstrate a

get request for key k on this structure; get RPCs are numbered sequentially in the

figure. 41

2.8 Format of Coral RPC headers from sender S to recipient R 45

2.9 Format of Coral lookup RPCs . 46

2.10 Format of Coral insert RPCs . 47

2.11 Clustering within the Coral deployment on PlanetLab. Each unique, non-singleton

cluster is assigned a letter on the map; the size of the letter corresponds to the

number of collocated nodes in the same cluster. 49

2.12 Load balancing per key within Coral. The total number of put RPCs hitting each

Coral node per minute, sorted by distance from node ID to specific target key. . . . 51

3.1 Steps involved in using CoralCDN. The client first resolves a Coralized URL, then

contacts the resulting HTTP proxy to download the content. Rounded boxes rep-

resent CoralCDN nodes running Coral, DNS, and HTTP servers. Solid arrows

correspond to Coral RPCs, dashed arrows to DNS traffic, dotted-dashed arrows to

network probes, and dotted arrows to HTTP traffic. 57

3.2 CoralCDN reducing server load. The number of client accesses to CoralCDN

proxies and the origin HTTP server. Proxy accesses are reported relative to the

cluster level from which data was fetched, and do not include requests handled

through local caches. 65

3.3 End-to-end client latency for requests for Coralized URLs, comparing the effect of

single-level vs. multi-level clusters and of using traceroute during DNS redirection. 67

3.4 Latencies for proxy to get keys from Coral . 68

3.5 Average bandwidth consumed by the top-100 sites at four CoralCDN proxies on

August 2, 2007. 73

3.6 Percentage of DNS responses for selected dates in 2007 that captured locality using

the original CoralDNS servers. 78

xvii

4.1 PlanetLab abuse complaints. Frequency count of keywords in PlanetLab support-

community archives from 14-Dec-04 through 30-Sep-05, comprising 4682 mes-

sages and 1820 threads. Values report number of messages and unique threads

containing keyword. 85

4.2 OASIS system overview . 87

4.3 Various methods of using OASIS via its DNS, HTTP, or RPC interfaces, and the

steps involved in each anycast request. 88

4.4 Logical steps to answer an anycast request . 89

4.5 Correlation between round-trip-times and geographic distance across all PlanetLab

hosts [178]. 91

4.6 Distance (km) between clients and their DNS resolver 92

4.7 OASIS system components. Interfaces query core functionality to answer client

anycast requests (dashed arrows from DNS and RPC). Services and interfaces reg-

ister with the core to enable discovery. 95

4.8 Steps involved in a DNS anycast request to OASIS using rendezvous nodes. 100

4.9 Functions supported by OASIS’s HTTP interface 105

4.10 Output of dig for a hostname using OASIS . 105

4.11 Round-trip-times (ms) between clients and servers selected by OASIS 108

4.12 TCP throughput (KB/s) between clients and servers selected by OASIS 109

4.13 DNS resolution time (ms) using OASIS . 110

4.14 End-to-end download performance (ms) experienced by clients when interacting

with OASIS-selected servers . 111

4.15 95th-percentile bandwidth usage (MB) at servers selected by OASIS 112

4.16 Bandwidth trade-off between on-demand probing, caching IP prefixes (OASIS),

and caching IP addresses . 113

4.17 Services using OASIS as of May 2007. Services can be accessed using the domain

name <service>.nyuld.net. 114

5.1 Shark System Overview. A client machine simultaneously acts as a client (to handle

local application file system accesses), as a proxy (to serve cached data to other

clients), and as a node (within the distributed index). 123

5.2 Shark GETTOK RPC . 126

5.3 Notation used for Shark values . 127

xviii

5.4 Shark session establishment protocol . 130

5.5 Shark microbenchmarks. Normalized application performance for various types of

file-system access. Execution times in seconds appear above the bars. 133

5.6 Client latency. Time (seconds) for ˜100 LAN hosts (Emulab) to finish reading a 10

MB and 40 MB file. 136

5.7 Proxy bandwidth usage. Upstream bandwidth (MBs) served by each Emulab proxy

when reading 40 MB (Emulab and PlanetLab) and 10 MB (Emulab) files. 138

5.8 Client latency. Time (seconds) for 185 wide-area hosts (on PlanetLab) to finish

reading a 40 MB file using Shark and SFS. 139

6.1 Online encoding of a five-block file. bi are message blocks, a1 is an auxiliary

block, and ci are check blocks. Edges represent addition (via XOR). For example,

c4 = b2 + b3 + b5, a1 = b3 + b4, and c7 = a1 + b5. 146

6.2 Number of blocks recoverable as function of number of blocks received. Data

collected over 50 random encodings of a 10,000 block file. 152

6.3 System parameters and properties for securing erasure codes 154

6.4 Picking secure generators. The seed s can serve as an heuristic “proof” that the

hash parameters were chosen honestly. This algorithm is based on that given in

the NIST Standard [56]. The notation G(x) should be taken to mean that the

pseudo-random number generator G outputs the next number in its pseudo-random

sequence, scaled to the range {0, . . . , x−1}. 155

6.5 Homomorphic hashing microbenchmarks . 165

6.6 Comparison of hash generation performance . 169

6.7 Comparison of additional storage requirements for mirrors 170

6.8 Comparison of bandwidth utilization . 171

6.9 Comparison of per-block verification performance 172

xix

Chapter 1

Introduction

The rise of the Internet and the World Wide Web has led to a new potential of information access,

both in terms of scope and immediacy. To realize this potential—and actually enable clients to

download their desired content—publishers simply need to provide server and network resources

sufficient to handle their clients’ demands.

Yet, until now, assembling such resources has not been quite so simple—at least without signif-

icant monetary outlays. Publishers currently reach large audiences by leasing resources from com-

mercial content distribution providers, which build centrally-managed, provisioned, and trusted

networks for this task. Unfortunately, as providers’ capital and operational costs need be passed

back to their customers, publishers unable or unwilling to afford these costs will see their content

remain unavailable due to a paucity of resources.

We face a situation, therefore, where the availability of content on the Internet is to a large

degree a function of the cost shouldered by the publisher. Thus, while the Internet has always pro-

vided the potential for the free flow of information and data to all interested parties, this potential

currently cannot be realized without significant expenditures. And yet this limitation is not funda-

mental: There exists a wealth of otherwise-untapped resources on the Internet that could help to

distribute content, if only publishers had a method of leveraging them.

Our goal is to make desired content available to everybody, regardless of the publisher’s own

resources. By building mechanisms that can organize any available resources at hand—be they

1

far-flung, unreliable, or untrusted—we can automatically replicate content in proportion to its pop-

ularity. Such systems would thus, in effect, democratize content distribution.

This thesis describes mechanisms and systems that help realize this goal. While we propose

and evaluate novel designs towards this end, our approach is not merely academic: Several of the

systems we describe have been publicly deployed and in widespread use for several years. Not

only do they provide open functionality that other distributed services can leverage, but they are

also directly used by end-users—to the tune of more than a million clients and tens of thousands of

content publishers each day—and thus enable the dissemination of content that may be otherwise

unavailable.

1.1 Wither the democratization of content?

The journalist Walter Winchell once said that “Today’s gossip is tomorrow’s headline.” This is even

more true since the Internet has helped break down communication barriers and enable the rapid

dissemination of information. Messages propagate rapidly through e-mail and other messaging

layers, websites boom and bust in popularity, videos and other multimedia content spread virally,

and so forth. This ever-changing popularity of content leads to heterogeneous and dynamic traffic

demands from users, sometimes spiking into a sudden and often unexpected burst of user requests,

a so-called flash crowd.

At least on the World Wide Web, this dynamism is aided by the largely world-readable open-

ness of content and the nature of hyperlinks. Acquaintances can quickly point others to content

by relating a short Universal Resource Locator (URL). Websites, portals, and weblogs commonly

include such URLs to external sites as well, causing their own users to access these sites through

explicit or embedded links.

While this type of information dissemination enables some content to attain overnight celebrity,

it poses a danger as well. Sites hosting such content risk sudden overload following publicity, as

their resources are insufficient to satisfy the new demand from these flash crowds of users sud-

denly seeking to download their content. These jumps in traffic may be several orders of magni-

2

tude greater than a sites’ normal levels of traffic, a development witnessed by websites following

sporting events (such as the FIFO World Cup site [9]), natural disasters (such as the U.S. Geologi-

cal Survey site following earthquakes [185]), and attacks (such as the CNN and MSNBC sites on

September 11, 2001 [132]), to name only a few occurrences. In the technology world, this phe-

nomenon is often nicknamed the “Slashdot” effect, after a popular website that periodically links

to under-provisioned servers, driving unsustainable levels of traffic to them.

The content publisher’s limiting factor to serve these client demands may be caused by any

number of bottlenecks under his control: insufficient access-link network capacity to receive or

send content, CPU cycles to process requests, or disk bandwidth to read or write data to storage.

While various engineering techniques can increase the immediate capacity of any of these poten-

tial bottlenecks—e.g., compressing data before transmitting it on the network, using a poll-based

rather than an interrupt-driven network interface to prevent system livelock [124], and so forth—

these incremental solutions are only stopgap measures. Fundamentally, the only real scalable and

fault-tolerant solution is to replicate desired content across many servers and many independent

networks.

Indeed, commercial content distribution networks (CDNs) have built a profitable business

model around offering such a service, including service providers such as Akamai [2], Mirror

Image [123], and LimeLight Networks [108], or technology providers such as Cisco [41]. CDNs

deploy a network of servers around the Internet that collectively serve their customer’s content:

When a client makes a request for a particular piece of content, the client is directed to one of these

CDN servers from which to download the content—usually by using a layer of naming indirection,

such as the domain name service (DNS)—instead of accessing one of the content publisher’s ori-

gin servers. Today’s large Internet sites heavily rely on these CDNs to scale their capacity to their

clients’ demands.

Yet these commercial CDNs, in seeking to control who can use their services (i.e., their paying

customers) and to provide corresponding quality-of-service guarantees as specified in service-level

agreements with these customers, have built systems characterized by static, centrally-provisioned,

and centrally-managed deployments. These CDN companies own and operate their CDN servers,

3

carefully deciding where to place clusters of such servers in the network. For example, the Lime-

Light network is currently comprised of fifteen data centers in the United States, Western Europe,

Japan, and China, while Akamai has established many smaller clusters to leverage network peer-

ing arrangements in order to reduce their bandwidth costs. The advantage of this approach is that

the network provides a trusted, known, and more predictable infrastructure with which to serve

content. The downside is that CDN providers’ costs often scale linearly with their capacity—i.e.,

in terms of the cost of servers, bandwidth, and power—and these costs are thus passed back to

customers in the form of mostly-linear pricing schedules.

So where does this leave a content publisher that experiences a sudden jump in traffic, yet

does not have such a preexisting service contract with a commercial CDN, given that their normal

traffic patterns are low? Or even when the demand for content is predictable or regular yet still

high, and the content publisher cannot afford these CDN prices? They are left with their content,

quite literally, “in the dark.”

Fortunately, there is a way for popular data to reach many more people than publishers can

afford to serve themselves: other parties can cooperatively mirror the data on their own servers

and networks. There are many reasons why parties will choose to contribute resources for content

distribution. Indeed, the Internet has a long history of altruistic volunteer organizations with good

network connectivity mirroring data they consider to be of value. More recently, peer-to-peer file

sharing has demonstrated the willingness of even individual broadband users to dedicate upstream

bandwidth to redistribute content the users themselves enjoy, in order to improve the global good.

There are less altruistic reasons for participating in such a system as well. By collectively

performing content distribution, content publishers can perform the equivalent of time-sharing on

their network and server resources: they can provision their sites for steady-state traffic patterns,

yet weather any traffic spikes by spreading load among other participating resources. Furthermore,

organizations that mirror popular content reduce their own downstream bandwidth utilization and

improve the latency for local users accessing the mirror. Finally, one can build in mechanisms

that incentivize users to contribute upstream resources, by providing better quality-of-service to

contributors when resources are otherwise scarce.

4

 CDN Clients

store proxies

index

1
2

3

Figure 1.1: The main logical participants in a content distribution system.

1.2 Current CDN designs are insufficient

So why are the current architectures of CDNs insufficient to this task of cooperative content distri-

bution? Let us first consider the necessary logical components and mechanisms of content distri-

bution services.

At an abstract level, a content distribution system can be logically separated into several types

of participants, illustrated in Figure 1.1: clients, proxies, content stores, and an index. Some

system designs may physically combine some of these entities (e.g., caching proxies that provide

temporary content storage for other proxies), but we consider these logically distinct for now.

In order to serve a client with a particular piece of requested content, a CDN needs to address

three mechanism design questions, as numbered in the figure. (1) Server selection answers with

which proxy a client should directly interact. (2) Content discovery via some index finds where

nearby instances of the client’s desired resource are? And finally, (3) secure content transmission

describes how this content should be fetched from the system and returned to the client. The

accuracy of these answers are important, as the performance and cost of CDN systems depend

highly on the nodes involved with handling a client’s request. For example, file download times can

vary greatly based on the locality and load of the chosen proxies and content stores, and a service

provider’s costs may depend on the load spikes that the server-selection mechanism produces.

As a simple example, consider how these three mechanisms are implemented within a typical

5

Client

3: GET a

1: Where is
 example.com?

http://example.com/a

DNS

b

a

b

a

cluster 2

cluster 1

2: Where
 is a?

1: HTTP GET

Figure 1.2: Getting content from a content distribution network comprised of two clusters via DNS
redirection and HTTP requests.

commercial CDN architecture for web content, which is depicted in Figure 1.2 as comprised of

two clusters deployed at different data centers, with each cluster containing the logical participants

named in Figure 1.1. Let us assume that the publisher of a website (say, example.com) has dele-

gated responsibility for serving example.com to the CDN. Consider the steps taken when a client

fetches the content named by the URL http://example.com/a.

1. Server selection: The CDN first needs to determine from which data center the client should

be served. This selection process, which we interchangeably refer to as anycast,1 is com-

monly accomplished via DNS redirection: The DNS server(s) for the name example.com

1Some use the term anycast specifically to refer to IP anycast [137], which is characterized by late
binding: Multiple hosts announce themselves as having the same anycast address through inter-domain
routing protocols (BGP), and the IP routing layer causes a packet addressed to the anycast address to be
sent to one of these hosts, based on the shortest-distance path in terms of network hops. (There are many
arguments [10] why IP anycast never grew to widespread use, including scalability concerns, deployment
challenges, and a lack of granularity and flexibility as compared to application-level mechanisms.) That
said, we use a more encompassing definition of anycast: any mechanism used to select a host from some set
of suitable destinations and communicate with it, either through early binding via naming indirection (e.g.,
DNS) or through late binding via routing (e.g., IP anycast).

6

are aware of both data centers and, upon a name resolution query from the client’s DNS

resolver, will return an IP address for one of them, based on the client’s location and the data

centers’ load. The client subsequently sends a HTTP GET request to a proxy located at the

specified data center (either because the proxy is publicly addressable via IP or, more likely,

because a pool of physical proxies are behind a hardware load balancer that demultiplexes

client requests to the same virtual IP address).

2. Content discovery: Upon receiving a client request for content, the proxy queries a central

“master index” within each cluster that keeps a mapping from all data items to the storage

servers on which they reside, updated whenever stored content changes. The figure shows

that files a and b reside on different stores, with their locations known by the index. De-

pending upon what type of functionality it provides—hosting versus caching content—if the

stored content is not resident within the CDN, the CDN might either return an error message

(in a hosted solution), or it might retrieve the new content from the publisher’s origin servers

and subsequently cache the content among its storage servers.

3. Content transmission: Finally, the proxy retrieves the data from the appropriate storage

server and returns it to the client. If so-called dynamic content is involved, multiple pieces

of content may be reassembled into a complete web object, either directly at the webserver

(e.g., via php, asp, EJB, or other programming languages) or within off-cluster proxies (e.g.,

through Edge Side Includes [51]).

As alluded to already, virtually all commercial services use a centrally-managed and statically-

provisioned architecture to provide these mechanisms. The use of a master index and secondary

storage servers in both Figures 1.1 and 1.2, for example, illustrates the cluster-based storage and

delivery approach taken by Google (via the Google File System [68]) and Yahoo! (via the Hadoop

distributed file system [82]), in which a central “master chunk server” maps all data items to their

current storage server locations.

Such a centralized approach is often taken to simplify system design and architecture, mak-

ing it easier to administer, audit, and (arguably) deploy new services. If we consider these three

7

Clientsproxies

index 12

3

(a) BitTorrent-style architecture

Clientsproxies

1
2

3

(b) Akamai-style cluster architecture

Figure 1.3: Potential content distribution system architectures

mechanisms in such a context: locality-driven server selection only needs to choose between the

small set of stable data centers; content discovery only relies on the index at any cluster’s master

server; and whole files are transmitted from trusted servers. Unfortunately, this design comes at a

significant cost as well: such deployments are expensive to build and operate, often do not make an

efficient use of network resources (with content traversing the core multiple times), and ultimately

do not scale to the increasing size and quantity of content that services seek to distribute.

There are certainly some alternatives in the design space, as shown in Figure 1.3, which may

merge the role of proxies and content stores. A BitTorrent-style architecture [17], for example,

has participating nodes all communicate their cached content to a central indexing server (called

the tracker). Designed primarily for large files, chunks of content subsequently are downloaded in

parallel from multiple peers. Unfortunately, this design also suffers from a central point-of-failure

and limited scalability. (We should note that the BitTorrent protocol has a tracker manage informa-

tion only about a single file, requiring some out-of-band, unspecified communication mechanism

to find this tracker. Directly applying this approach to a cooperative CDN would require that the

central tracker maintain information about every piece of content in the system, or it would require

the introduction of a new content discovery layer for finding the tracker associated with a specific

file.)

Akamai deploys known clusters of nodes, removing the need for a central meta-data index

through its use of consistent hashing [94] (described further in §2.2.1) to assign responsibility for

8

content storage among nodes within each cluster. These clusters are still statically-configured and

mostly independent, provisioned with customer content through the aid of a central management

system [168]. Our goal for a cooperative system can have no such provisioning, as the corpus

that forms its content can span a huge domain, e.g., the entire Web. Furthermore, this design

controls data placement—the consistent-hashing algorithm decides where to place content within

each cluster—as opposed to having proxies cache and share content in which they themselves

(or their local users) are interested. Such a design is less amenable to cooperative environments.

Finally, such an architecture assumes reliable and adequately-provisioned back-end storage for

content, either centrally hosted by the commercial CDN or at the origin site, from which content

is pushed out or pulled in by clusters. An underprovisioned origin site hit by an unexpected flash

crowd, on the other hand, might quickly become unavailable.

A related design (not illustrated) is that taken by hierarchically-organized proxies [33], in which

independent proxies can directly query their statically-configured neighbors (e.g., via the Internet

Cache Protocol [187]). This type of cooperation, while avoiding centralization, can still see many

queries to an origin site, as each local group of configured proxies needs to independently fetch the

content.

1.3 Design principles

This discussion of alternative designs leads to several design decisions that are important for a

cooperative CDN:

Do not assume participants will delegate control over the contents of their cache. While users

have clearly demonstrated their willingness to burn bandwidth by sharing files in which they them-

selves are interested, there is less incentive to dedicate bandwidth to sharing unknown data and,

indeed, significant concerns in doing so. Such an approach confronts users with the questionable

requirement that they must “donate” storage and network resources to the system for content they

have no control in choosing, even though serving certain types of data can raise serious legal and

moral concerns.

9

We posit that a cooperative CDN should not attempt to control the placement of data, but rather

provide a content discovery layer that can locate content already cached by participants as a side-

effect of their local access patterns: i.e., index and manage location meta-data, not data itself.

This approach allows different nodes to implement various caching and security policies. Some

might provide unrestricted proxy service for the wider Internet population. Others, however, may

be configured only to cache content requested by their local clients, but also provide upstream

bandwidth to cooperatively serve other proxies (i.e., Step 3 in Figures 1.1 and 1.3).

While content may have an authoritative source, do not assume that it is reliable or sufficiently

provisioned. As our goal is to ensure that popular content remains available, content publishers

with insufficient capacity at their disposal must be spared from a large demand for their resources.

A cooperative CDN designed for this purpose should minimize load at the publisher’s origin server

whenever possible. To do such, the system’s content discover index should enable cooperation

between all participants, such that if a piece of content if available anywhere in the network, it can

be efficiently discovered and transmitted.

The importance of global discovery also arises in cases when sudden load to a publisher’s

origin site would otherwise make it unavailable: Once any content—even if seemingly-unpopular,

perhaps, because a flash crowd to the CDN has only begun—is cached within the CDN, it remains

available to subsequent client requests.

Scale to Internet-size client populations and be robust to failures. No single or few nodes are

sufficiently reliable or scalable to maintain the system’s entire location meta-data index. Thus,

both the content discovery index and the cooperative data cache should be distributed over large

numbers of participants, in order to avoid any central point-of-failure or system bottlenecks.

Leverage participants wherever they may be found. While centrally-planned and -provisioned

systems may be built around well-formed and well-known clusters—and grow by deploying addi-

tional clusters or adding new nodes to existing clusters—a cooperative system has only the peers

that choose to participate. As such, the location of these participants may be unknown, they may

differ greatly by network capacity, they may be quite remote from another other participants,

10

they are not accompanied by any special hardware load-balancers or related infrastructure, and,

of course, they may join or leave the system quite unexpectedly. Yet, in order to scale to true

Internet-size populations, a cooperative CDN needs to encompass as many resources as it can find.

Thus, the system should be designed to be self-organizing and self-managing to properly leverage

these disparate resources effectively.

The popularity of different content can vary by orders of magnitude. Not only does the popu-

larity of content normally differ greatly in content distribution systems—it has been demonstrated

that web objects, file-sharing content, video-on-demand, DVD or music sales, etc. all follow a

heavy-tailed distribution (e.g., per [5, 19, 77, 194], among others)—but our cooperative CDN is

designed specifically with flash crowds in mind. Thus, a naive approach to partitioning the index

over multiple hosts—by statically assigning responsibility of different items to different hosts—

could still have scalability limitations due to load imbalances. Thus, the system should be designed

to avoid system bottlenecks caused by the heterogeneous popularity of content.

The system should provide low end-to-end latency. Finally, while the ability to minimize origin

server load takes precedence over performance—hence the design choice of global content discov-

ery, as opposed to purely local search—the CDN service should also strive towards low end-to-end

latency to provide an acceptable client experience. To achieve such, all three CDN mechanisms—

discovery, transmission, and server selection—should be designed for low latency and fast failover,

with both asymptotic performance and practical engineering techniques in mind.

1.4 Contributions and organization

It is our thesis that one can democratize content distribution by enabling highly scalable and ef-

ficient resource cooperation through decentralized architectures. Our contributions are two-fold.

First, we propose new algorithms and architectures for all three important components of content

distribution systems. Second, we realize the goal of cooperative content distribution through the

design, implementation, and deployment of several systems that, by leveraging these techniques,

11

currently serve several terabytes of data to more than a million users every day. The view of the

Internet gained from deploying these systems provided important insights that helped evolve our

systems’ designs.

The first half of this thesis describes content distribution systems that are backwards-compatible

with today’s servers and clients. As such, they can immediately benefit underprovisioned content

publishers seeking to reach large audiences. On the other hand, these techniques are limited in

their ability to leverage untrusted participants, given a lack of end-to-end security mechanisms for

unmodified clients. Thus, in the second half, we consider a more clean-slate approach to building

CDN services, tackling the problem of securing content transmission between distrustful peers.

More specifically, this thesis is organized as follows.

Chapter 2 – Content discovery and Coral. We start with the problem of content discovery: Given a

request for a particular data object, how can one determine whether and where that object re-

sides within the system? This chapter introduces a distributed key-value index well-suited for

large, cooperative CDNs. This distributed index—which maps objects to the nodes caching

them—is designed to replace the centralized functionality described in §1.1.

We start by reviewing the basic indexing approach provided by consistent hashing, and then

discuss the more scalable algorithms of distributed hash tables (DHTs). After describing

how these proposals break under realistic routing conditions and how to fix them [60], we

argue why the traditional key-value stores as proposed in the literature are ill-suited for

building cooperative CDNs and the like. In response, wee propose a new abstraction, called

a distributed sloppy hash table (DSHT), that weakens their consistency model to yield a

better-suited distributed index [58].

This chapter describes and experimentally validates the design of Coral, a distributed index-

ing layer that couples these weaker DSHT semantics with a hierarchical, locality-optimized

structure. Coral enables lookups to occur efficiently and returns references to nearby cached

objects whenever possible, while still preventing hot-spots in the indexing layer, even under

degenerate loads. As such, Coral implements many of the design points we argued for in

§1.3: it scales to Internet-size populations while not controlling data placement, it is robust

12

to failure and self-organizing, it can handle great load imbalances to particular data items

(named by keys in the index), and it yields low discovery and transmission latency.

Chapter 3 – CoralCDN. Leveraging the distribution indexing functionality of Coral, we next describe

the design and implementation of CoralCDN [59], a decentralized, self-organizing web con-

tent distribution network. To use CoralCDN, some party simply appends “.nyud.net” to

the hostname in any URL. Through DNS redirection, oblivious clients accessing this so-

called “Coralized” URL are transparently redirected to nearby CoralCDN web caches. As

such, CoralCDN is trivial to integrate, and thus can—and does—provide immediate relief

for otherwise-overloaded sites.

Upon receiving client requests, CoralCDN caching proxies cooperate to transfer data from

nearby peers whenever possible, dissipating most of the traffic to a URL’s origin server and

enabling its content to reach much larger audiences. CoralCDN’s use of the Coral indexing

layer both enables nodes to efficiently find content without querying distant nodes and avoids

any load imbalances in its overlay and proxy infrastructures.

CoralCDN has been deployed on 300-400 servers for over three years. Each day, it serves

several terabytes of web content to over one million unique client IPs, spread across an

average of 20 to 25 million requests. This chapter concludes by describing robustness, fair-

ness, and security mechanisms—learned through CoralCDN’s deployment—introduced to

improve its effectiveness in real operating environments. We also discuss the failures of

CoralCDN’s original DNS redirection service, which motivated the design of our next sys-

tem.

Chapter 4 – Server selection and OASIS. We next turn to the problem of server selection: Given a set

of CoralCDN proxies, which one should a browser access to maximize performance? But

rather than construct another CoralCDN-specific service, we seek to build a general service

that can support many distributed systems simultaneously, with marginal additional cost per

system.

13

This chapter presents OASIS [62], a shared locality- and load-aware server-selection infras-

tructure. Since OASIS is shared across many application services, it amortizes deployment

and network measurement costs to services that adopt it. Yet to facilitate such sharing, OA-

SIS has to maintain network locality information in an application-independent way. OA-

SIS achieves these goals by mapping different portions of the Internet in advance (based

on IP prefixes) to the geographic coordinates of the nearest known landmark, using sim-

ple constraint satisfaction tests to ensure that measurement results are not (accidentally or

maliciously) erroneous. OASIS is designed explicitly to incentivize cooperation: the more

distributed services that adopt OASIS, the more vantage points OASIS has with which to

perform network measurement, which in turn leads to improved anycast accuracy and de-

creased cost per participating service.

OASIS again demonstrates the facility of distributed key-value indexing techniques intro-

duced in §2, which it uses to store information and assign tasks—which network prefixes

to probe, which servers belong to which distributed systems, where prefixes are located—in

a fully-decentralized manner. OASIS has been publicly deployed for two years, currently

providing anycast service for about a dozen distributed systems.

CoralCDN and OASIS focus on building cooperative services for unmodified clients, with the goal

of immediate deployability and widespread benefit.

What are the implications of this backwards compatibility? First, the systems are limited in

their ability to explore more advanced methods of content transmission directly to end clients: from

chunk-based (or swarming) file distribution (Chapter 5) to erasure-encoded data dissemination

(Chapter 6). Second, and even more important, these unmodified clients cannot readily deal with

malicious proxies. Web security a la SSL, for example, is designed to authenticate servers, not

ensure the integrity of the data they return. A CDN proxy server could thus maliciously modify

content en-route to the client without its detection. While this latter problem is easy to solve, at

least technically provided that the fraction of malicious proxies is small—namely, origin servers

can cryptographically sign content, and a client can failover to alternative proxies or back to the

14

origin server in its content downloaded from a proxy does not contain a valid signature—no such

functionality universally exists in today’s web browsers.

Therefore, much like Akamai and Limelight have deployed their centrally-managed CDNs on

trusted infrastructure, we have deployed the decentralized CoralCDN on trusted hosts (namely,

the shared PlanetLab network [145], spread over about 300 university sites).2 Thus, even through

their architectural designs are decentralized and highly scalable, the systems’ current deployments

are not “peer-to-peer” in the sense that the resource beneficiaries are not necessarily the resource

contributors, given our clients’ limitations.

In the second half of this thesis, we consider some clean-slate content distribution systems for

different settings, i.e., read-write data and very large files. By designing new functionality for end-

hosts, we should how even mutually-distrustful peers can use each others’ resources to improve

system performance and scalability.

Chapter 5 – Shark. Turning from immutable content to read-write data, the next system we present,

Shark [8], considers the problem building a scalable yet secure distributed file system. A

network file system can help support widely-distributed applications. Rather than manually

replicate program files, users can place a distributed application and its entire run-time en-

vironment in an exported file system, and then simply execute the program directly from

the file system on all nodes: The file system handles any necessary content distribution and

synchronization transparently. Unfortunately, current network file systems like NFS have

clients fetch data from a central file server, inherently limiting their scalability.

Shark’s design, on the other hand, only requires the central server to initially authorize a

client to read data and provide meta-data. Actual data transfers occur directly between

caching peers, minimizing load on the central server, and security protocols ensure the in-

tegrity of downloaded chunks and reader’s authorization to do so. In fact, given the way

that Shark splits files into smaller chunks and names these chunks, Shark provides cross-

file-system sharing, such that peers can cooperate to share identical content chunks, even
2OASIS has a mixed deployment, using the resources of third-party services benefiting from its function-

ality for network measurement, but using PlanetLab for information storage and front-end interfaces such
as DNS and HTTP redirection.

15

when they belongs to different files in different file systems. By using a Coral index to

communicate, Shark clients can locate nearby chunks of files across a global-scale system.

Chapter 6 – Securing erasure-coded transmission. As a final variant of content distribution, we turn

to the problem of disseminating very large files on the Internet. A particularly attractive

approach for this context, taken by multiple research systems, uses rateless erasure codes to

avoid chunk negotiation among peers. That is, instead of the need to locate and download

specific data chunks, a peer need only fetch some threshold number of randomly-chosen

coded chunks in order to recover a file. Unfortunately, such codes cannot use the traditional

method for verifying the integrity of data-blocks on-the-fly: As the domain of potential

code blocks is exponentially large, using cryptographic signatures with hash trees (Merkle

trees [120]) would require an exponentially-large hash tree. This limitation seemingly makes

such schemes ill-suited for untrusted environments.

In response, we present a scheme based on homomorphic hashing that allows a downloader

to perform on-the-fly verification of erasure-encoded blocks [104]. We prove the proto-

col’s security (by tight reduction to standard discrete-log cryptographic assumptions), and

our evaluation shows that, by incorporating optimizations such as probabilistic batch veri-

fication, it can be surprisingly efficient. This protocol, therefore, enables the application of

coding techniques for efficient content dissemination to more open (and hence untrusted)

settings.

Chapter 7 – Summary and incentiving participation. Finally, this chapter summarizes our contribu-

tions and discusses some ongoing work in incentivizing participation towards a more peer-

to-peer design. Not only does our preliminary market-based approach encourage users to

contribute upstream resources, but it also naturally leads to peers efficiently choosing which

files are “most useful” to transmit and from which peers to download content in order to

minimize network congestion.

Taken together, this thesis provides a novel suite of tools related to content distribution, ranging

from content discovery, to server selection, and to secure content transmission. While we describe

16

the design, implementation, and deployment of several concrete content distribution systems built

using these mechanisms, we envision that they may be applicable and useful to a wider range of

distributed services.

17

Chapter 2

A Distributed Indexing Architecture for

Content Discovery

This chapter focuses on the problem of content discovery: Upon receiving a request that names

a particular object, a CDN node must determine whether and where that object resides within its

system. Only then may it fetch the desired content and serve it in response to the request.

At an abstract level, this content discovery step may be implemented via a key-value index

supports two basic operations:

• put(key , value): Inserts a mapping from the key to some arbitrary value.

• get(key): Retrieves some or all of the values stored under a key.

In the context of content discovery, this index serves to map data objects—named by some type of

key, such as a file handle in network file system, a URL in a web CDN, or a data checksum—to

the node(s) currently storing them. If the index fails to return valid results for resident data, either

clients will fail to retrieve desired data, or the data’s origin servers may become overloaded follow-

ing an excessive number of requests caused by client failover. Furthermore, if the indexing system

either is slow to return results, does not properly spread requests between nodes, or insufficiently

incorporates data locality, the client can experience poor end-to-end performance.

18

With these criteria in mind, this chapter describes the design and implementation of efficient,

scalable, and fault-tolerant key-value indexes that are well-suited for content distribution systems.

2.1 Motivation

In most cluster-based architectures—as illustrated earlier in Figure 1.1—this key-value index is

managed by a single server, providing strong semantic guarantees. Recent examples of such archi-

tectures include cluster-block servers (e.g., GFS [68] and Hadoop [82]), network-attached storage

device architectures [69], and many commercial cluster management solutions (e.g., IBM Tivoli

Storage Manager [86]).

Our goal, on the other hand, is a key-value index without any central point-of-failure or scalabil-

ity bottleneck. While protocols such as primary-copy replication [109, 131] and consensus [106]

have existed for some time as a means to remove a central point-of-failure in order to improve

availability, they suffer from worse scalability bottlenecks due to the overhead of data replication.

This chapter describes several variants of distributed key-value indexes, all designed to oper-

ate at scale and across the wide-area Internet. Instead of one server storing the entire key-value

map, this map is partitioned over a set of nodes, in which each node stores the key-value entries

that belong to its partition. Such a distributed map requires that all nodes agree on the partition-

ing, i.e., (1) each node knows the partition for which it is responsible, and (2) each node can

determine and contact the node responsible for any key-value entry. The systems we present in

Chapters 3, 4, and 5—for web content distribution, an anycast infrastructure, and a distributed file

system, respectively—will all make use of various flavors of these distributed key-value indexes.

In Section §2.2, we review the basic design of a key-value index based on consistent hash-

ing [94]. Such an index requires that each node maintain a global network view, i.e., knows all

other nodes in the network. Since Karger et al.’s seminal work [94], a number of papers (e.g.,

[116, 150, 162, 177, 195]) have proposed more scalable algorithms, named distributed hash tables

(DHTs), which we also review. DHTs extend this distributed partitioning to settings in which each

node need only know some subset of other nodes in the system. Because each node only knows a

19

smaller subset of peers, these algorithms also include some routing mechanism by which known

intermediate nodes are used to contact the ultimate node responsible for any key.

In Section §2.3, we argue that the DHT-based storage abstraction that has largely captured the

interest of the academic community—proposed as an building block for higher-level applications—

is actually ill-suited for distributed services such as content distribution: They provide the wrong

abstraction, have poor locality, and control data placement in the network (and thus ignore users’

own preferences and policies).

In response, we present the design of a new key-value indexing layer, called Coral. Section

§2.3.1 describes how Coral weakens the semantics of DHT’s traditional get and put interfaces, in

order to provide an indexing abstraction better-suited for the type of distributed applications we

seek to build. Section §2.3.2 describes how we extend this basic design to a hierarchical structure,

in order to provide better routing and data locality.

Coral makes several contributions. Its new abstraction with weaker semantics is potentially

of use to any application that needs to locate nearby instances of resources on the network: In-

deed, we later build a CDN for web content (Chapter §3) and a distributed file system (Chapter

§5) on top of Coral. Coral introduces an epidemic clustering algorithm that exploits distributed

network measurements to construct its locality-optimized hierarchical structure in a fully self-

organizing manner. Finally, Coral is the first peer-to-peer key-value index that can scale to many

stores of the same key without hot-spot congestion, based on a combination of new rate-limiting

and constrained-routing techniques.

2.2 A distributed key-value index

This section reviews previous work in consistent hashing (§2.2.1) and distributed hash tables

(§2.2.3) for building key-value indexes. While these mechanisms have been proposed by other

researchers in the literature, our contribution lies in extending these approaches to be more scal-

able and fault-tolerant. Namely, §2.2.2 describes the addition of a gossip-based group membership

protocol in order to minimize the amount of liveness probing necessary to maintain a global mem-

20

160−bit id space

00...0011...11

Figure 2.1: Keys (blue squares) are assigned to their successor nodes (circles) on a consistent-
hashing ring. This assignment is illustrated by arrows in the figure.

bership view, while §2.2.4 describes an incorrect assumption of previous designs—specifically, a

fully-connected communication graph between all peers—that leads to faulty behavior under rout-

ing failures, as well as our resulting system modifications to better handle real network conditions.

2.2.1 Consistent hashing with global membership views

Consistent hashing [94] partitions the identifier space of a key-value map over participating nodes

as follows. Each participating node is assigned one or more random identifiers from the space of

integers modulo 2K , where identifiers (IDs) are K-bit numbers. Each key, also drawn from the

same domain of identifiers, is mapped to the node whose node-ID most immediately follows it

in this ID-space, as shown in Figure 2.1. We thus say that the system implements the successor

relation, and so long as each node in the network knows its predecessor in the ID-space, any node

can compute which keys are mapped onto it. For concreteness, we use the set of integers [0, 2160] as

the ID-space in our descriptions, which is well-suited for generating pseudorandomly-distributed

keys by taking the SHA-1 hash [55] of some input (e.g., a node’s IP address).1

The main benefit offered by consistent hashing over static partitioning—e.g., using some hash

function modulo N where N is the number of nodes—is that consistent hashing minimizes the

disruption caused by nodes joining or leaving the system. If κ is the number of keys in the system,

membership changes only disrupt O(κ/N) keys with high probability when using consistent hash-

1One could certainly use 256-bit identifiers and SHA-256 as an alternative hash function instead, if the
continued security of SHA-1’s collision resistance is a concern.

21

ing: A new node takes responsibility of some subset of its successor’s keys, while a node leaving

the system passes responsibility for its keys onto its successor; no other system reconfiguration

of keys is necessary. On the other hand, membership changes when using modulo-based hashing

disrupt O(κ) keys, leading to significant overhead.

If every node knows about every other node in the system, each node can easily determine to

what node every key is mapped. Thus, such a structure can support put and get primitives by first

determining the node responsible for the specified key , then directly contacting that node either to

store the inserted value or to fetch the stored value(s).

Of course, if reliable storage in this key-value map is desired, the system must replicate key-

value pairs across multiple nodes. Replication ensures that when nodes leave the system, the

key-value pair can still be found at some live node. On the other hand, when a new node joins the

system, it should get a copy of all new key-value pairs for which it will be subsequently responsible

(due to a re-partitioning of the identifier space). The literature includes proposals for both reactive

replication [39, 45] (i.e., upon the detection of node failures) and proactive replication [149] (based

on expected system behavior).

Such a global membership view can either be managed by a central membership server, or

each node can occasionally ping every other node to check its liveness and avoid the need for

centralization. In this decentralized model, a node can join the system if it knows at least one

other existing member, e.g., by fetching that node’s membership list and subsequently contacting

all newly-discovered nodes. Of course, this simple membership approach does not ensure that

each node’s view of the network is consistent. It does, however, provide the property of eventual

consistency, given the use of an unreliable failure detector [32]. Strongly-consistent membership

views, on the other hand, would require heavier-weight protocols based on group consensus (e.g.,

Paxos [106]).

Application designers using such a key-value index should determine whether they require such

strong consistency from the mapping of keys to nodes, or whether they can operate with only even-

tual consistency. The applications we later describe are able to function with the latter, either by

only assuming best-effort reliability by the indexing layer (§3, §5) or by replicating keys at multiple

22

hosts (§4), such that temporarily inconsistencies do not effect the correctness of the system. Thus,

they can avoid the communication and complexity overhead of implementing consensus protocols.

2.2.2 Scaling liveness detection for global membership views

We now describe an alternative liveness detection mechanism that greatly reduces the amount of

network probing in the system. Specifically, to avoid the O(N2) probing used by an all-pairs

approach, participating nodes detect and share failure information cooperatively.

In this model, every node maintains a weakly-consistent view of all other nodes in the network,

where each node is identified by its IP address and a globally-unique node identifier as before, as

well as a new incarnation number. Each time period—e.g., 3 seconds—every node picks a random

neighbor to probe and, if the neighbor fails its liveness check, uses epidemic gossiping to quickly

propagate its suspicion of failure.

Two techniques suggested by SWIM [48] reduce false failure announcements. First, if the

initiating node’s direct probe of its neighbor fails to elicit a response, it next chooses several in-

termediates to again probe this target. Only if these indirect probes fail as well does the initiator

announce its suspicious of failure. Such indirect probing alleviates the problem caused by par-

tial network, as opposed to end-host, failures. (We discuss the implications of such non-transitive

failures in §2.2.4.) Second, incarnation numbers help disambiguate failure messages: alive mes-

sages for incarnation i override anything for j < i; suspect for i overrides anything for j ≤ i. If

a node learns that it is suspected of failure, it increments its incarnation number and gossips its

new number as alive (no other party should increment a node’s incarnation number). A node will

only conclude that another node with incarnation i is dead if it has not received a corresponding

alive message for j > i after some time—3 minutes in our implementation—although the node

may treat suspicious nodes differently (e.g., use more aggressive request timeouts when commu-

nicating). This approach provides live nodes with sufficient time to respond to and correct false

suspicions of failure, while still bounding the time that a node failure escapes notice.

To gossip these failure messages, each node maintains a buffer of announcements to be sent (or

piggybacked on other system messages being disseminated throughout the system) to randomly-

23

chosen nodes. This buffer includes messages both originated by the local node or received from

neighbors for retransmission. Every time a node transmits a message to a random neighbor, it

increments a transmission count. When the message has been gossiped O(log N) times for N -

node networks, the message is removed from this buffer. Such an epidemic algorithm propagates

a message to all nodes in logarithmic time with high probability [48].2

While the all-pairs approach is limited solely by network size, scalability in this gossip-based

approach is limited by a function of the product of failure rate and network size; i.e., it can support

small networks with high failure rates, or it can scale to larger networks of stable nodes. Thus, it

may be better suited for decentralized services deployed on managed infrastructure nodes—as we

use for the anycast system of Chapter 4—than for peer-to-peer services on end-hosts.

2.2.3 Partial membership views with DHTs

This previous approach of ID-space partitioning can be scaled to much larger networks if every

node need only know about a subset of the network’s nodes, as opposed to a global view. Enter the

routing layer proposed for distributed hash tables (DHTs), which we review here. While there are

some algorithm differences between the various proposals [116, 150, 162, 177], they all share the

same basic approach.

As in consistent hashing, a DHT assigns every key in the ID-space to a node based on some

distance metric. In consistent hashing and Chord [177], this distance metric is simply the succes-

sor relationship across integers modulo 2K for K-bit keys. Kademlia [116] defines the distance

between two values in the ID-space to be their bitwise exclusive or (XOR), interpreted as an un-

signed integer; thus, IDs with longer matching prefixes (of most significant bits) are numerically

closer. The node closest to a key can be called either the root or successor of the key, terms we use

interchangeable.

The main primitive that DHTs contribute is lookup, in which a node can efficiently discover

a key’s root, even through each node only has a partial view of the entire network. The lookup

2While structured gossiping based on consistent hashing could reduce the bandwidth overhead needed to
disseminate a message [31], we use a randomized epidemic scheme for simplicity.

24

160−bit id space

11...11 00...00

(a) Nodes in the Chord identifier space

8

1
2

1
4

00...0011...11

1
16

1

(b) One node’s view of Chord’s ID-space

Figure 2.2: Chord DHT. The left-hand graph visualizes all system nodes in half a Chord ring based
on their node identifiers. The right-hand graph displays the routing tables of one node (shown
larger in red). Dotted lines are draw to the red node’s successor list; all other visualized nodes
appear in the node’s finger tables. These fingers constitute those nodes that are successors to
points that are powers-to-two distant (separated by thin blue lines) from the red node on the ring.

protocol discovers the key’s root by greedily traversing known neighbors in the DHT, progressing

closer to the root of the key at each step.

Each node maintains a set of neighbors that it uses to route packets. Typically, such neighbors

are divided into (a) short links chosen from the node’s immediate neighborhood in the ID space to

ensure the correctness of lookups, and (b) long links chosen to ensure that lookups are efficient. In

Chord, the set of short links is called the node’s successor list, and the long links are called fingers.

While Kademlia uses a single routing table, one can still differentiate between its closest set of

short links and farther sets of long links. Figures 2.2 and 2.3 visualize nodes in a routing structure

(left), as well as the routing table as seen from one node (right), for both Chord and Kademlia,

respectively.

If the size of a node’s DHT routing table is logarithmic in the total number of nodes comprising

the DHT, the total amount of liveness probing that each node need perform is O(log N). This

compares very favorably to the O(N) communication complexity needed to maintain the global

membership views described earlier.

Additionally, if these logarithmic-sized routing tables are filled with other nodes whose IDs

are chosen from a specific distribution, then a node can discover any key’s root in a logarithmic

number of routing hops with high probability. Specifically, if a node s is not the closest node to

25

00...00 11...11160−bit id space

1

1

1

1

1

111

1

1

11

0

0

0

0 0

0

0 0

0

0

0

0

000 1 1

1 1

0

10

(a) Nodes in the Kademlia identifier space

00...00

1

1

11

1

0

0

0

0

0

0

01

1

0

160−bit id space 11...11

(b) One node’s view of Kademlia’s ID-space

Figure 2.3: Kademlia DHT. The left-hand graph visualizes all system nodes in a Kademlia tree
based on their node identifiers. The right-hand graph displays the routing tables of one node
(shown larger in red), who knows at least one node in each subtree (separated by thin blue lines)
of increasing distance from it.

s

a

r

b

(a) Recursive routing

r

a

s

b

(b) Iterative routing

Figure 2.4: Recursive and iterative styles of Chord DHT routing

some key k, then s’s routing table almost always contains either the closest node to k, or some node

that is roughly one-half the distance to k. Repeated halvings of the distance leads to a logarithmic

number of routing hops to find the key’s root, node r.

Or, as described using the XOR metric, s discovers a node whose distance to k is at least one

bit shorter. This permits s’s lookup to visit a sequence of nodes with monotonically decreasing

distances [d1, d2, . . .] to k, such that the encoding of di+1 as a binary number has one fewer bit than

di. As a result, again, the expected number of iterations for s to discover the closest node to k is

logarithmic in the number of nodes.

These hops within the routing overlay can either be performed in an iterative or recursive

fashion, as visualized on a Chord ring in Figure 2.4, where source node s initiates a lookup for

26

some key k whose root is node r. In recursive routing, s contacts a, and a contacts b in turn, while

in iterative routing, node s first contacts node a to learn about node b, and then s subsequently

contacts b. Both routing techniques have different strengths. For example, recursive routing is

faster than iterative routing using the same bandwidth budget [47, 156] and can use faster per-

node timeouts [155]. On the other hand, iterative routing gives the initiating node more end-to-end

control, which can be used, for instance, for better parallelization [60, 116, 156].

2.2.4 Non-transitive routing and failure detection

An implicit assumption in both consistent hashing (with global views) and DHT protocols (with

partial views) is that all nodes are able to communicate with each other, yet we know this assump-

tion is unfounded in practice. We say a set of three hosts, a, b, and c, exhibit non-transitivity if two

pairs of these nodes can communicate with one another, but one pair (say, a and b) cannot. These

transient periods of non-transitivity occur for many reasons, including link failures, BGP routing

updates, and ISP peering disputes (e.g., [128]).

2.2.4.1 The problem with non-transitive routing

Such non-transitivity in the underlying network is problematic for DHTs. Consider, for example,

the segment of a Chord ring illustrated in Figure 2.5, where the dashed lines represent predecessor

links. Identifiers increase from the left, so node b is the proper successor to key k. If nodes a and

b are unable to communicate with each other, a will believe that c is its successor. Upon receiving

an iterative lookup request for k, a will return c to the requester. If the requester then tries to

insert a value associated with k at node c, node c would refuse, since according to its view it is not

responsible for key k. The same problem exists with recursive routing, as a will simply try to do

the insert at c itself.

Even if individual pairs of nodes exhibit non-transitivity with low probability, there still exists

some pair of nodes in the network for which non-transitivity breaks routing with high probability.

For example, hypothetically, if each pair of nodes with adjacent identifiers in a 300-node Chord

network (independently) has a 0.1% chance of being unable to communicate, then we expect that

27

ba ck

Figure 2.5: Non-transitivity in Chord routing.

there is a (1−0.999300) ≈ 26% chance that some pair will be unable to communicate at any time.

However, both nodes in such a pair have a 0.9992 chance of being able to communicate with the

node that most immediately precedes them both.

Non-transitivity indeed exists with non-negligible probability. Gerding and Stribling [67] ob-

served a significant degree of non-transitive network failures among hosts on PlanetLab [145], an

internationally-deployed network of well-distributed servers (mostly at university sites) that we

use to test and deploy the services described later (CoralCDN, OASIS, and Shark). They found

that of all possible unordered three tuples of nodes (a, b, c), about 9% exhibited non-transitivity.

They attributed this non-transitivity to the fact that PlanetLab consists of three classes of nodes:

Internet1-only, Internet2-only, and multi-homed nodes. Although Internet1-only and Internet2-

only nodes cannot directly communicate, multi-homed nodes can communicate with them both.

Extending the above study, we have found that transient routing problems are also a major

source of non-transitivity in PlanetLab [60]. We found that, of all unordered pairs of nodes (a, b),

about 5.2% of pairs cannot reach each other but another host c can reach both a and b. Of these

pairs of nodes, about 56% of the pairs had persistent problems; these were probably because of

the problem described above. However, the remaining 44% of the pairs exhibited problems inter-

mittently; in fact, about 25% of the pairs could not communicate with each other only in one of

the 15-minute snapshots we analyzed across a three-hour window [178]. This suggests that non-

transitivity is not entirely an artifact of the PlanetLab testbed, but also caused by transient routing

problems.

The very problem of non-transitivity has been leveraged by the RON [4] and SOSR [76] re-

search projects to improve resilience by routing around network outages. Commercially, Akamai

28

has also offered its SureRoute [3] overlay routing service to find faster or more reliable paths by

routing through intermediate nodes in its deployed clusters.

2.2.4.2 Fixing non-transitive routing

The basic way to handle non-transitive connectivity is to simply route around the problem. To do

so, we make two modifications to the above key-value indexes: (1) modifying routing tables to

include indirect entries and (2) adding support for a basic forward primitive.

First, we now represent entries in our routing tables as paths to the target destinations, where

direct connectivity allows a path of length one, while indirect connectivity requires paths of length

two or more. Using Figure 2.5 as an example, node a’s routing table would include the following

entries:

Destination Routing entries

b 〈c, b〉

c 〈c〉

Second, we introduce a forward primitive, which takes a destination and message, and wraps

the two for overlay source routing. Given the above example with routing entry b → 〈c, b〉,

forward(b, M) sends (b, M) to c, who forwards (a, M) to b in turn. If this message is part of

a two-way communication such as RPC, b responds with (a, M ′) to c, who forwards (b, M ′) to a.

(And more generally, b can choose to update its own routing table with the entry a→ 〈c, a〉.)

This basic approach can be used in overlays with both global and partial views. In the con-

text of consistent hashing, every node keeps a routing entry about every other node in the above

manner. In fact, our failure detection subsystem (§2.2.2) provides special support for precisely this

functionality: Recall that before suspicion of a node’s failure is raised after direct probing fails, an

initiator will try to use several intermediates next (five in our implementation). Any such interme-

diate node that returns success at contacting the target can immediate be added to the initiator’s

routing table as an indirect route.

In the DHT context, at least when using recursive routing, we only need to be concerned with

such non-transitivity in the context of short links (required for correctness), because the routing

29

structure offers flexibility in the choice of long links (used for efficiency) [78]. To maintain these

short links, nodes can reactively [29, 162] or periodically [155] exchange copies of their local

routing tables; doing such, nodes discover indirection points with which to reach other local peers,

even if no direct path exists. This process is akin to learning about link-state of all local peers.

This solves such problems as inconsistent roots in DHTs [60], where nodes, when only using

direct communication as a means for determining liveness, may have different views of who is the

closest node to some key.

Iterative routing presents more problems when confronted with non-transitive routing, as nodes

may not have direct connectivity to the next-hop peers returned by intermediates, even though those

intermediates do—so called invisible nodes in [60]. In practice, this problem is mitigated in two

ways. First, implementations often cache additional information beyond O(log N) routing state

as a performance optimization (caching live nodes aids in accurate RTT information to set good

timeouts; caching unreachable nodes prevents unnecessary delays while waiting for a request to

time out). It is especially useful also to include nodes with indirect connectivity, accompanied

by their routing entry, in this cache. (The state requirements for such are reasonable, given their

relative scarcity with respect to a single node). Second, iterative routing implementations can keep

a window of multiple outstanding routing requests, and thus avoid the performance hit of the single

node’s failure or delayed response. As a request approaches the key’s root, indirect requests can

be sent through the root’s immediate neighbors, and thus avoid inconsistent roots.

2.3 Weakening the consistency model and adding locality with

Coral

The academic community has proposed the use of distributed hash tables as an efficient, scalable,

and robust storage layer for building higher-level peer-to-peer applications. We now ask whether

DHTs are well-suited for some desired applications of the wider Internet population. For example,

can DHTs be used to implement file-sharing, by far the most popular peer-to-peer application?

Or could DHTs replace proprietary content distribution networks (CDNs), such as Akamai, with

30

a more democratic client caching scheme that saves it from flash crowds at no cost to the server

operator?

We suggest that the answer to these questions is largely no. DHTs fail to meet the needs of

these real peer-to-peer applications for three main reasons.

DHTs provide the wrong abstraction. Suppose many thousands of nodes store a popular music

file or cache a widely-accessed web page. How might a hash table help others find the data? Using

the hash of a web object’s URL as a key, one might use the DHT to store an index: a list of every

node that has the object. That is, have puts append values (e.g., IP addresses) under a given key,

while gets should fetch a consistent list of all such servers caching the content.

DHTs typically replicate popular data for load balancing, but replication helps only with gets,

not puts. Any node seeking a web page will likely also cache it: Any URL-to-node-list mapping

would be updated almost as frequently as it is fetched. Thus, any single node charged with main-

taining the URL-to-node mapping for a popular object can itself become a hot-spot in the indexing

infrastructure.

DHTs have poor routing and data locality. Though some DHTs make an effort to route requests

through nodes with low network latency [28, 47, 78], the last few hops in any lookup request are

essentially random. Thus, a node might need to route a query half-way around the world to learn

that its neighbor is caching a particular data object. This is of particular concern for any peer-to-

peer CDN, as the average node may have considerably worse network connectivity than the web

server itself.

Even worse, if a get just returns a list of all nodes (or some randomly-chosen subset) caching

the object, the initiating node does not have an easy way to determine which node is nearby and

thus more efficient from which to download the content.

Store-based DHTs control data placement. An alternative approach to using a DHT as an index-

ing layer, with its “write-many, read-many” access patterns, is to store actual content in the hash

table and thus support “write-once, read-many” access patterns. Unfortunately, this approach—

taken by CFS [45], PAST [161], Squirrel [89], and CobWeb [172], among others—wastes both

31

storage and bandwidth, as data must be stored at nodes where it is not needed and large amounts of

data must be shifted around when nodes join and leave the system, a common occurrence in many

systems [166]. The replication techniques of these systems must be careful: overly-aggressive

replication wastes bandwidth and storage [39], while nodes become overloaded if data is insuf-

ficiently replicated. Moreover, as discussed in the Introduction, there are non-technical concerns

with this approach, as it requires that users store and dedicate upstream bandwidth to content they

have no interest in nor control in choosing.

This section presents a new type of key-value index, called a distributed sloppy hash table

(DSHT), that overcomes these limitations of traditional DHTs. DSHTs are designed for applica-

tions storing soft-state key-value pairs, where multiple values may be stored under the same key.

DSHTs weaken the semantics of get operations, such that they are designed to only return a subset

of values inserted under a given key, as opposed to all values as in a hash table. Finally, we present

Coral, an indexing layer that adds both good routing and data locality through a hierarchical struc-

ture of DSHTs. Coral is well-suited for content distribution and similar peer-to-peer applications:

A node need not discover all peers caching a particular object, it only needs to find several, nearby

ones.

2.3.1 Distributed sloppy hash tables

Given the weakened semantic requirements of its get operations, DSHTs only require that nodes

satisfying a get request store a subset of the key’s values, not necessarily all inserted values. Thus,

DSHTs use what we term a “sloppy” storage technique that leverages a cross-layer interaction

between the routing and storage layers: A DSHT caches key-value pairs at nodes whose identifiers

are increasingly close to the key being referenced, as an inverse function of load. Values for

unpopular keys get stored on the closest node—i.e., the key’s root—while values for popular keys

get stored at nodes progressively further from the key’s root. Yet precisely because such keys are

already popular, other nodes, no matter where they are located in the network’s identifier space,

32

distance (nodeids xor)

distance (nodeids xor)

24 5 7
nodeids

151412

8

83
4

4

r

{4, 5, 7}

r RPC#2 (4)

RPC#1 (4)

11

113 10

6 10

61

1

0

0

(a) Opportunistic routing

distance (nodeids xor)

s

s

s

6

4 5
nodeids

r

11

15

82

11

14

108

5 11 90

107

RPC#1 (5)

RPC#3 (4)

RPC#2 (4)

{4, 5, 7}

{4, 5, 7}

5

4

7

distance (nodeids xor)

distance (nodeids xor)

2 127 0

1 0 2

0 31

9

(b) Constrained routing

Figure 2.6: Comparing opportunistic and constrained routing

can retrieve some valid subset of values. Thus, at least for popular items, a key’s closest node need

not be contacted when fulfilling either a put or a get operation.

This design differs from the key-value layers of §2.2, which always attempt to insert a key-value

pair at the key’s root. Yet frequent references to the same key can generate high levels of traffic

at nodes close to the key. This congestion, called tree saturation, was first identified in shared-

memory interconnection networks [143]. To minimize tree saturation, DSHTs combine on-route

caching (alluded to above) with constrained routing (i.e., not deviating from the logarithmic-length

path), which we describe next.

2.3.1.1 Constrained routing

Our basic routing algorithm is a constrained form of Kademlia [116], fixing b = 1 bit of the key

at each iteration. For concreteness, our DSHT implementation uses 160-bit identifiers. Nodes are

assigned IDs in the same 160-bit identifier space as keys; a node’s ID is the SHA-1 hash of its IP

address.

Figure 2.3.1 compares the opportunistic and constrained version of Kademlia routing. The

illustration shows eight nodes with IDs {4, 5, 7, 0, 2, 12, 14, 15}, and node s with ID 15 is looking

up the node closest to key k=4. Nodes are listed in sorted order by their XOR distance to k.

33

In opportunistic routing, node s=15 attempts to find the node closest to key k=4 during each

of its hop in the routing overlay. The top boxed row illustrates the XOR distances to k for the nodes

{5, 7, 2, 12, 14, 15} that are initially known by s, namely, distances [1, 3, 6, 8, 10, 11], respectively.

Data in RPC requests and responses are shown in parentheses and braces, respectively: First, node

s asks the closest node to k that it knows about (i.e., node with ID 5) for any closer nodes. Node s

inserts these references {4, 5, 7} it learns about into its routing table. In the next iteration (bottom

boxed row), node s contacts the node with ID 4. As this is the closest node to k (with distance 0),

s’s lookup is finished.

In constrained routing, each iteration of a DSHT routing operation prefers to correct exactly

b bits at a time. More specifically, let splice(k, s, i) designate the most significant b+ i bits of k

followed by the least significant 160−b+i bits of s. If a node with ID s wishes to search for key k,

the node first initializes a variable t← s. At each iteration, it updates t← splice(k, t, i), using the

smallest value of i≥0 that yields a new value of t. The next hop in the route is the closest node to

t that already exists in s’s routing table.

With respect to Figure 2.3.1, we first calculate 7← splice(4, 15, 0), then calculate the distance

for each node known to s to ID 7, shown in the boxes of the top row: distances [2, 0, 5, 11, 9, 8],

respectively. Node s contacts the known node closest to key 7, which is the node with ID 7 in this

example, and inserts the newly discovered nodes into its routing table. Node s then updates its

target for the iteration of lookup: As 7 ← splice(4, 7, i) for i∈ {0, 1} does not yield a new value

for the target t, s calculates the next target as 5 ← splice(4, 7, 2), and computes its known nodes

distances to t=5, shown in the boxes of the middle row: [1, 0, 2, 7, 9, 11, 10]. Node s subsequently

contacts the node with ID 5. Finally (bottom row), s updates its target to 4 ← splice(4, 5, 3),

computes each node’s distances to t=4, and sends an RPC to the node with ID 4, completing the

lookup.

In these examples, opportunistic routing was able to find the closest node in fewer hops than

constrained routing, as it always greedily routes to the nodes closest to the key k. One might think

that this problem is contrived: Given routing tables of size logarithmic in the network size, there

should not be an asymptotic difference between the two approaches.

34

In practice, however, implementations should cache information about nodes beyond a strict

O(log N) bound when possible, leading to the above differences. This caching is done for several

reasons, especially when systems use iterative routing. (1) To achieve high performance, it is

important to have accurate knowledge of a node’s RTT to determine when to timeout a request and

try an alternative node. (This was a primary motivation behind later research into virtual coordinate

systems [46, 129].) (2) Due to non-transitive routing conditions (§2.2.4), it is important that nodes

do either negative result caching or maintain a forward entry to these locally-unreachable nodes;

otherwise, a node may continue to add other nodes into its routing table based on information

learned during a lookup, even though these new neighbors are not locally reachable. (3) Finally,

most DHTs would prefer to perform one-hop routing if possible: The logarithmic overhead is

usually viewed as a necessary evil due to scalability limitations, not as the enabling means by which

to perform load balancing. Yet, for relatively-stable networks on the order of a few thousand nodes,

a node may cache information about nearly all system participants. (Indeed, Accordion [107] was

designed to dynamically trade-off routing table size for routing performance based on network

conditions and a node’s available bandwidth.)

Our constrained algorithm allows one to gain these benefits of additional node caching, while

still preserving the traditional logarithmic-depth lookup path in the routing overlay. As described

next, by limiting the use of potentially-closer known hops in this way, a DSHT can avoid overload-

ing any node, even in the presence of heavily-accessed keys.

The potential downside of longer lookup paths, of course, is higher lookup latency in the pres-

ence of slow, stale, or non-reachable nodes. In order to mitigate these effects, our iterative imple-

mentation keeps a window of multiple outstanding RPCs during a lookup (currently three), thus

avoiding blocking a lookup on a single node’s failure or delayed response.

2.3.1.2 Inserting values

A DSHT performs a two-phase operation to insert a key-value pair. In the first, or “forward,” phase,

the system routes to nodes that are successively closer to the key, as previously described. However,

to avoid tree saturation, an insertion operation may terminate prior to locating the closest node to

35

the key, in which case the key-value pair will be stored at a more distant node. More specifically,

the forward phase terminates whenever the storing node happens upon another node that is both

full and loaded for the key:

1. A node is full with respect to some key k when it already stores l values for k whose expiry

times—each calculated as the sum of the value’s insertion time and its specified time-to-live

(TTL)—are all at least one-half that of the new value (as calculated from present).

2. A node is loaded with respect to k when it has received more than the maximum leakage

rate β requests for k within the past minute.

In our experiments, l = 4 and β = 12, the latter meaning that under high load, a node claims

to be loaded for all but one store attempt every 5 seconds. This prevents excessive numbers of

requests from hitting the key’s closest nodes, yet still allows enough requests to propagate towards

the root to ensure that nodes near to the key retain fresh values.

In the forward phase, the routing layer makes repeated RPCs to contact nodes successively

closer to the key. Each of these remote nodes returns (1) whether the key is loaded and (2) the

number of values it stores under the key, along with the minimum expiry time of any such values.

The inserting client uses this information to determine if the remote node can accept the store,

potentially evicting a value with a shorter TTL. This forward phase terminates when the client

node finds either the node closest to the key, or a node that is full and loaded with respect to the

key. The client node places all contacted nodes that are not both full and loaded on a stack, ordered

by XOR distance from the key.

During the reverse phase, the inserting client attempts to insert the value at the remote node

referenced by the top stack element, i.e., the contacted node that is closest to the key. If this

operation does not succeed—perhaps due to others’ concurrent insertions—the client node pops

the stack and tries to insert on the new stack top. This process is repeated until a store succeeds or

the stack is empty.

This two-phase algorithm avoids tree saturation by storing values progressively further from

the key. Still, eviction and the leakage rate β ensure that nodes close to the key retain long-lived

36

values, so that live keys remain reachable: β nodes per minute that contact an intermediate node

(including itself) will go on to contact nodes closer to the key. For a perfectly-balanced tree, the

key’s closest node receives only (β · (2b−1) · d log n
b
e) store requests per minute, when fixing b bits

per iteration.

Proof sketch. Each node in a system of n nodes can be uniquely identified by a string S of

log n bits. Consider S to be a string of b-bit digits. A node will contact the closest node to the

key before it contacts any other node if and only if its ID differs from the key in exactly one digit.

There are d(log n)/be digits in S. Each digit can take on 2b−1 values that differ from the key. Every

node that differs in one digit will throttle all but β requests per minute. Therefore, the closest node

receives a maximum rate of (β · (2b−1) · d log n
b
e) RPCs per minute.

Irregularities in the node ID distribution may increase this rate slightly, but the overall rate of

traffic is still logarithmic, while in traditional DHTs it is linear. Section §2.3.3.2 provides support-

ing experimental evidence.

2.3.1.3 Retrieving values

To retrieve the value associated with a key k, a node simply traverses the ID space with RPCs.

When it finds a peer storing k, the remote peer returns k’s corresponding list of values. The node

terminates its search and get returns. The requesting client application handles these redundant

references in some application-specific way, e.g., an application proxy contacts multiple sources

addressed by these values in parallel to download cached content.

Note that, as multiple stores of the same key will be spread over multiple nodes, the values

(addresses) retrieved by the application are distributed among those stored. Thus, DSHTs provides

load balancing both within the indexing layer (where the requests are handled) and between peers

using the indexing layer (to where the values point).

2.3.1.4 Handle concurrency via combined put-and-get

If we use a DSHT for applications such as web content distribution—as we do in Chapter 3 with

CoralCDN—we would want to enable participating nodes to offload all traffic from an origin web-

37

server by using a put to index themselves as caching an object, and then having other nodes

discover these cached copies via a DSHT get . Ideally, each object would only be downloaded

from the origin server a single time, even when the system experiences an abrupt flash crowd for a

single object/key.

However, the protocols we described above fail to provide this property, even beyond get fail-

ures that may occur due to routing problems or packet loss. (These network failures are minimized

by our use of multiple outstanding RPCs and requirement that lookups to multiple nodes closest

to the key all fail before the higher-lever get fails.) Namely, redundant fetches may occur also

because a race condition exists in the protocol.

Consider that a key k is not yet inserted into the system. Two nodes both execute a get(k).

Having failed, these nodes fetch the content from the origin server, then optimistically perform a

put(k, self) so that other peers can immediate get the data from them. (We discuss such optimistic

references in §3.2.3.2.) On the node closest to k, however, the operations may serialize with both

gets being handling (and thus returning no values) before either put .

Simply inverting the order of operations is even worse. If multiple nodes first optimistically

perform a put , followed by a get , they can discover one another and effectively form cycles waiting

for one another, with nobody actually fetching data from the origin server (a form of distributed

deadlock).

To eliminate this condition, we extend insert operations to provide return status information,

like test-and-set in shared-memory systems. Specifically, we introduce a single put+get RPC

which performs both operations. The RPC behaves similar to a put as described above, but also

returns the first values discovered in either direction to satisfy the “get” portion of the request.

(Values returned during the forward put direction help performance, as a put may need to traverse

past the first stored values, while a get should return as soon as the first values are found; values

returning during the reverse put phase prevent this race condition.)

38

2.3.2 Coral: Locality-optimized hierarchical DSHTs

Instead of one global overlay, Coral uses several levels of DSHTs called clusters to achieve locality-

optimized routing and data placement. This section describes how Coral implements its put and

get DSHT primitives within a hierarchy of clusters, as well as the clustering mechanisms that

self-organize this hierarchical structure.

Each cluster is characterized by a maximum desired network round-trip-time (RTT) we call the

diameter. The system is parameterized by a fixed hierarchy of diameters known as levels. Every

node is a member of one DSHT at each level. A group of nodes can form a level-i cluster if a high-

enough fraction their pair-wise RTTs are below the level-i diameter threshold. Although Coral’s

implementation allows for an arbitrarily-deep DSHT hierarchy, our evaluation considers a three-

level hierarchy with thresholds of∞, 60 ms, and 20 ms for level-0, -1, and -2 clusters respectively.

Coral queries nodes in higher-level, fast clusters before those in lower-level, slower clusters. This

both reduces the latency of lookups and increases the chances of returning values stored by nearby

nodes.

Given this support for a hierarchy, Coral slightly modifies the basic indexing layer’s interface

to expose hierarchy-aware features:

• put(key , value, ttl , [levels]): Inserts a mapping from the key to some arbitrary value into

each cluster of the node’s current hierarchy, starting at the highest level (e.g., 2), specifying

the time-to-live of the reference. The caller may optionally specify a subset of the cluster

hierarchy to restrict the operation to certain levels (default is all levels).

• get(key , [levels]): Retrieves some subset of the values stored under a key, starting at the

highest level. Again, one can optionally specify a subset of the cluster hierarchy.

• put+get(key , value, ttl , [levels]): The single put-and-get primitive both inserts a mapping

from the key to some arbitrary value on each level and retrieves some subset of values stored

under a key. Because a get may complete (by finding some values) before a put does—puts

may insert at a closer node within a cluster, and puts also need to walk multiple levels of

39

the hierarchy—the response from the get and put functions of this primitive arrive asyn-

chronously.

Figure 2.7 illustrates Coral’s hierarchical routing operations. Each Coral node has the same

node ID in all clusters to which it belongs; we can view a node as projecting its presence to the

same location in each of its clusters. This structure must be reflected in Coral’s basic routing layer,

in particular to support switching between a node’s distinct DSHTs midway through a lookup.3

2.3.2.1 Hierarchical retrieval

A sending node s specifies the starting and stopping levels at which Coral should search. By

default, it initiates the get query on its highest (level-2) cluster to try to take advantage of network

locality. If routing RPCs on this cluster hit some node storing the key k (RPC 1 in Fig. 2.7), the

lookup halts and returns the corresponding stored value(s)—a hit—without ever searching lower-

level clusters.

If a key is not found, the lookup will reach k’s closest node r2 in this cluster (RPC 2), signifying

failure at this level. So, node s continues the search onward in its level-1 cluster (RPC 3), using

the next target ID specified by constrained routing’s splice, having already traversed the ID-space

up to r2’s prefix.

Even if the search eventually switches to the global cluster (RPC 4), the total number of RPCs

required is about the same as a single-level lookup service, as a lookup continues from the point at

which it left off in the identifier space of the previous cluster. Thus, (1) all lookups at the beginning

are fast, (2) the system can tightly bound RPC timeouts as a function of cluster diameter, and (3)

all pointers in higher-level clusters reference data within that local cluster.

2.3.2.2 Hierarchical insertion

A node starts by performing a put on its level-2 cluster as the simple DSHT insertion algorithm, so

that other nearby nodes can take advantage of locality. However, this placement is only “correct”

3We initially built Coral using the Chord [177] routing layer as a block-box; difficulties in maintaining
distinct clusters and the complexity of the subsequent system caused us to scrap the implementation.

40

s

10

0

0 0

0

0

0 1

10

1

1

0

0 0

160−bit id space 11...11

level 0

1

level 1

1

00...00

1

0

sr

r

r

k

s

0

21

2

21 4

level 2

2

3

1

1

1

1

1

111

1

1

11

0

0

0

0 0

0

0 0

0

0

0

0

000 1 1

1

1

1

11

1

1

0

r

r

r

Figure 2.7: Coral’s hierarchical routing structure from the perspective of node s. Nodes use the
same IDs in each of their clusters; higher-level clusters are naturally sparser. Note that a node can
be identified in a cluster by its shortest unique ID prefix, e.g., 11 for s in its level-2 cluster; nodes
sharing ID prefixes are located on common subtrees and are closer in the XOR metric. While
higher-level neighbors usually share lower-level clusters as shown, this is not necessarily so. We
demonstrate a get request for key k on this structure; get RPCs are numbered sequentially in the
figure.

41

within the context of the local level-2 cluster. Thus, provided that the key is not already loaded

and full, the node continues its insertion in the level-1 cluster from the point at which the key was

inserted in level 2, much as in the retrieval case. Again, Coral traverses the ID-space only once. As

illustrated in Figure 2.7, this practice results in a loose hierarchical cache, whereby a lower-level

cluster contains nearly all data stored in the higher-level clusters to which its members also belong.

To enable such cluster-aware behavior, the headers of every Coral RPC include the sender’s

list of clusters to which it belongs. The recipient uses this information to demultiplex requests

properly, i.e., a recipient should only consider a put and get for those levels on which it shares a

cluster with the sender. Additionally, this information drives routing table management: (1) nodes

are added or removed from the local cluster-specific routing tables accordingly, and (2) cluster

information is accumulated to drive cluster management, as described next.

2.3.2.3 Joining and managing clusters

To join the Coral network, a Coral node simply needs to contact any existing node in the system

(either using some well-known IP address, DNS lookup, or an anycast system per §4). Once a

Coral node has joined the network, it can build its routing tables by making several lookup queries

to selected keys (especially its own node identifier to explore its local region of the ID-space).

However, for joining non-global clusters, Coral adds one important requirement: A node will

only join an acceptable cluster, where acceptability requires that the pair-wise RTTs to 80% of the

nodes be below the cluster’s threshold (a configurable parameter). A node can easily determine

whether this condition holds by recording minimum RTTs to some subset of nodes belonging to

the cluster.

While nodes learn about clusters as a side effect of normal lookups, Coral also exploits its

DSHTs to store hints. When Coral starts up, it uses a built-in fast traceroute mechanism to de-

termine the addresses of routers up to five hops out. Excluding any private IP addresses (per

RFC-1918 [152]), Coral uses these router /24 prefixes as keys under which to index clustering

hints in its DSHTs. More specifically, a node a stores mappings from each router address to its

own IP address and UDP port number. When a new node b, sharing a gateway with a, joins the

42

network, it will find one or more of a’s hints and quickly cluster with it, assuming a is, in fact,

near b.

Nodes continuously collect clustering information from peers: All RPCs provide round-trip-

times to one’s neighbors and their cluster membership. Each level-i cluster is named by a randomly-

chosen 160-bit cluster identifier, while the level-0 cluster ID is predefined as 0160.

Every five minutes, nodes consider changing their cluster membership based on this piggy-

backed data. If data indicates that an alternative candidate cluster is desirable, a node first validates

the collected data by contacting several nodes within the candidate cluster by routing to selected

keys. A node can also form a new singleton cluster when 50% of its accesses to members of its

present cluster do not meet the RTT constraints. (The difference threshold for joining and leaving

a cluster are used to prevent rapid oscillations in cluster membership.) If probes indicate that 80%

of a cluster’s members are within acceptable RTTs and the alternate cluster is larger (in the loga-

rithmic scale), a node switches to the new cluster. If multiple clusters are acceptable, then Coral

chooses the largest cluster.

Unfortunately, Coral has only rough approximations of cluster size, based on its routing-table

size. If nearby clusters i and j are of similar sizes, inaccurate estimations could lead to oscillation

as nodes flow back-and-forth. To perturb an oscillating system into a stable state, Coral employs a

preference function δ that shifts every hour. A node selects the larger cluster only if the following

holds: ∣∣∣ log(size i)− log(sizej)
∣∣∣ > δ (min(age i, agej))

where age is the current time minus the cluster’s creation time. Otherwise, a node simply selects

the cluster with the lower cluster ID.

We use a square wave function for δ that takes a value 0 on an even number of hours and 2

on an odd number. For clusters of disproportionate size, the selection function immediately favors

the larger cluster. Otherwise, δ’s transition perturbs clusters to a steady state: Should clusters of

similar size continuously exchange members when δ is zero, as soon as δ transitions, nodes will

all flow to the cluster with the lower cluster ID. Should the clusters oscillate when δ = 2 (as the

43

estimations “hit” with one around 22-times larger), the nodes will all flow to the larger one when δ

returns to zero.

In either case, a node that switches clusters still remains in the routing tables of nodes in its old

cluster. Thus, old neighbors will still contact it and learn of its new, potentially-better, cluster. This

produces an avalanche effect as more and more nodes switch to the larger cluster. This merging

of clusters is very beneficial; while a small cluster diameter provides fast lookup, a large cluster

capacity increases the hit rate.

2.3.2.4 Implementation

The Coral indexing system is composed of a client library and stand-alone daemon. The simple

client library allows applications, such as our DNS server and HTTP proxy (Chapter 3), to con-

nect to and interface with the Coral daemon. Coral is about 25,000 lines of C++, and it uses the

asynchronous I/O library provided by the SFS toolkit [118], with its control flow structured as

asynchronous events and callbacks. Coral network communication is via RPC over UDP. It uses

the Berkeley DB [171] for persistent key-value storage. We have successfully run Coral on Linux,

OpenBSD, FreeBSD, and Mac OS X.

For reference, we now show the makeup of several of Coral’s main RPCs. Figure 2.8 shows the

header information included in most RPC query and responses. First, header information includes

a network identifier as a means of admission control; all packets received with an invalid netid

are discarded.4 Second, headers address both sender and recipient (in node-ID space and with

potentially-multiple public IPs to provide support for NAT traversal). Finally, headers also include

information about a node’s cluster membership at all non-global levels of the hierarchy—cluster

ID, level, estimated cluster size, and creation time—which is used for the discovery and selection

of new clusters (per §2.3.2.3).

Figure 2.9 provides the routing RPC. A lookup includes the key being requested, the potentially-

4Our implementation currently uses a simple globally-shared secret, although a cryptographic keyed hash
function Fnetid(nodeidS) would provide improved security. In practice, this network identifier is also useful
when rolling out new versions of Coral, to ensure that non-wire-compatible versions do not interact with
one another during overlapping deployments.

44

struct coral_qry_hdr { /* RPC request headers */
qry_hdr {
u_int32 netid; /* Coral network ID known to S */
id srvid; /* 160-bit nodeID of recipient R */
sock_addr srv; /* Known IP address of R */
node_info { /* Description about S */
id clntid; /* 160-bit nodeID of S */
vec<sock_addr> a; /* Public IP address(es) of S */
u_int32 flags; /* Services run on S */

}
}
hierarchy_info { /* Information about sender’s clusters */
vec<cluster_info> { /* List of clusters to which S belongs */
cluster_desc { /* to properly scope request */
id clusterid; /* 160-bit cluster identifier */
u_int32 level; /* Cluster level (1, 2,) */

}
enum policy_type; /* Type of clustering performed */
u_int32 logsize; /* Log of estimated size of cluster */
u_int32 crtime; /* Creation time in secs (since Epoch) */

}
}

};

struct coral_rsp_hdr { /* RPC response headers */
rsp_hdr {
u_int32 net_id; /* Coral network ID known to R */
sock_addr clnt; /* Known IP address of S */
node_info srv; /* Desc about R, same as in qry_hdr */

}
hierarchy_info hinfo; /* Same as in coral_qry_hdr */

};

Figure 2.8: Format of Coral RPC headers from sender S to recipient R

45

struct coral_lookup_arg {
coral_qry_hdr hdr; /* Request header */
id key; /* 160-bit key to lookup values */
id target; /* 160-bit target to route towards */
u_int32 win; /* Return # next-hop nodes near target */

};

struct coral_lookup_res {
coral_rsp_hdr hdr; /* Response header */
u_int32 srv_time; /* R’s clock for time synch issues */
vec<level_lookup_res> { /* Lookup result for levels i=0,1,2,... */
enum routing_status; /* Status of routing req (OK, ERR, UNK) */
enum load_status; /* How loaded is node for key? */
u_int32 min_expiry; /* Min expiry time for cached values */
vec<node_info> closer; /* Known <win> peers closest to <targ> */
vec<dsht_value> values; /* Known values at level i w.r.t. S */

}
};

Figure 2.9: Format of Coral lookup RPCs

different target ID used in constrained routing (§2.3.1.1), and the window size of known neighbors

nearest to target that the recipient R should return to the sender S. This RPC is used for both get

operations and the “forward direction” of put operations. In its response, the recipient provides

information for each of the clusters on which it matches with S; namely, the closer peers it knows

with respect to target, any values it has cached under key, and the load status and min-expiry

times of its entries under key. Hierarchically-scoping the returned values is necessary because two

nodes in the same level-2 cluster may or may not be in the same level-1 cluster. If they do match

on both levels, we want to find all matching values in a single RPC. Finally, the load and expiry

information is used to tell S when to terminate the “forward phase” of puts.

Figure 2.10 shows the insert RPC, used during the “reverse phase” of put operations. The

query includes the key and DSHT value, the latter being the actual data being indexed, its time-to-

live ttl, and the inserting node’s cluster information. Again, this information is needed to ensure

when nodes belong to different clusters at various levels: if multiple nodes insert values under key

k, and node S does a lookup on k, node S must determine which of these nodes, if any, belong to

46

struct coral_insert_arg {
coral_qry_hdr hdr; /* Request header */
id key; /* 160-bit key on which to insert value */
dsht_value value { /* Value to be inserted */
opaque data; /* IP address, URL, node info, etc */
vec<cluster_desc> cds; /* Clusters to which value belongs */
u_int32 ttl; /* TTL of new entry */

}
bool get; /* If true, return prior stored values */

};

struct coral_insert_res {
coral_res_hdr hdr; /* Response header */
vec<level_insert_res> { /* Results from insertion at each level */
enum cache_status; /* Status of R’s cache (full, empty,) */
bool insert_status; /* Success at insert */

}
vec<level_insert_get_res> {
enum routing_status; /* Status of routing req (OK, ERR, UNK) */
vec<dsht_value> values; /* Known values at level i w.r.t. S */

}
}

Figure 2.10: Format of Coral insert RPCs

47

the same level-2 cluster as itself, the same level-1 cluster, etc. Finally, the get flag is true iff the

request is a put+get , in which case R’s response should include any known values for key. The

recipient responds with the result of the insertion request, as well as any cached DSHT values in

the case of put+get queries.

2.3.3 Evaluation

In this section, we provide experimental results that support our hypotheses:

1. Coral naturally forms suitable clusters.

2. Coral prevents hot spots within its indexing system.

In the next chapter, we present a content distribution network built on the Coral indexing layer and

quantify the performance benefit of Coral’s hierarchical design.

2.3.3.1 Clustering

To examine how Coral’s clustering mechanism behaves in real operating conditions, we launched

a Coral daemon on 166 PlanetLab machines [145], geographically distributed mainly over North

America and Europe. These Coral nodes were configured to organize themselves into a three-level

hierarchy by setting the clustering RTT threshold of level 1 to 60 ms and level 2 to 20 ms. For

simplicity, all nodes were seeded with the same list of well-known hosts for bootstrapping the

network. The network was allowed to stabilize for 30 minutes.5

Figure 2.11 illustrates a snapshot of the clusters from the previous experiments, at the time

when clients began fetching URLs (30 minutes out). This map is meant to provide a qualitative

feel for the organic nature of cluster development, as opposed to offering any quantitative measure-

ments. On both maps, each unique, non-singleton cluster within the network is assigned a letter.

5We should note that the stabilization time could be made shorter by reducing the clustering period
(5 minutes). Additionally, in real applications, clustering is in fact a simpler task, as new nodes would
immediately join nearby large clusters as they join the pre-established system. In our setup, clusters develop
from an initial network comprised entirely of singletons.

48

AAAA

BB

CC
CC

DD
EE

FF

GGGG

HHHHHH

HH
HH

HHHH
HHHHHHHH
HH
HH HH
HHHH

II
II II
IIII

II

IIIIII

II

II IIII
II

II
II

II
II II

II II
IIII II IIII II IIIIIIII

II
IIII

II

II
II II

II
II

II
II IIIIII

II

JJ

JJ
JJ

JJ
JJ

JJJJ JJ
JJJJ JJ
JJ

KK
KK

AAAA

BB

CC
CC

DD
EE

FF

GGGG

HHHHHHHHHH HHHH

HH

HH

HHHHHHHH
HHHH

II
II II
IIII

II

IIIIII

II

II IIII
II

II
II

II
II II

II II
IIII II IIII IIIIIIIIII

II
IIII

II
IIII

II
II

II

IIII
II IIIIII

JJ

JJ
JJ

JJ
JJ

JJJJ JJ
JJJJ JJ
JJ

KK
KK

AAAA

BB

CC
CC

DD
EE

FF

GGGG

HHHHHHHHHH HHHH

HH

HH

HHHHHHHH
HHHH

II
II II
IIII

II

IIIIII

II

II IIII
II

II
II

II
II II

II II
IIII II IIII IIIIIIIIII

II
IIII

II
IIII

II
II

II

IIII
II IIIIII

JJ

JJ
JJ

JJ
JJ

JJJJ JJ
JJJJ JJ
JJ

KK
KK

AAAA

BB

CC
CC

DD
EE

FF

GGGG

HHHHHHHHHH HHHH

HH

HH

HHHHHHHH
HHHH

II
II II
IIII

II

IIIIII

II

II IIII
II

II
II

II
II II

II II
IIII II IIII IIIIIIIIII

II
IIII

II
IIII

II
II

II

IIII
II IIIIII

JJ

JJ
JJ

JJ
JJ

JJJJ JJ
JJJJ JJ
JJ

KK
KK

AAAA

BB

CC
CC

DD
EE

FF

GGGG

HHHHHHHHHH HHHH

HH

HH

HHHHHHHH
HHHH

II
II II
IIII

II

IIIIII

II

II IIII
II

II
II

II
II II

II II
IIII II IIII IIIIIIIIII

II
IIII

II
IIII

II
II

II

IIII
II IIIIII

JJ

JJ
JJ

JJ
JJ

JJJJ JJ
JJJJ JJ
JJ

KK
KK

AAAA

BB

CC
CC

DD
EE

FF

GGGG

HHHHHHHHHH HHHH

HH

HH

HHHHHHHH
HHHH

II
II II
IIII

II

IIIIII

II

II IIII
II

II
II

II
II II

II II
IIII II IIII IIIIIIIIII

II
IIII

II
IIII

II
II

II

IIII
II IIIIII

JJ

JJ
JJ

JJ
JJ

JJJJ JJ
JJJJ JJ
JJ

KK
KK

AAAA

BB

CC
CC

DD
EE

FF

GGGG

HHHHHHHHHH HHHH

HH

HH

HHHHHHHH
HHHH

II
II II
IIII

II

IIIIII

II

II IIII
II

II
II

II
II II

II II
IIII II IIII IIIIIIIIII

II
IIII

II
IIII

II
II

II

IIII
II IIIIII

JJ

JJ
JJ

JJ
JJ

JJJJ JJ
JJJJ JJ
JJ

KK
KK

AAAA

BB

CC
CC

DD
EE

FF

GGGG

HHHHHHHHHH HHHH

HH

HH

HHHHHHHH
HHHH

II
II II
IIII

II

IIIIII

II

II IIII
II

II
II

II
II II

II II
IIII II IIII IIIIIIIIII

II
IIII

II
IIII

II
II

II

IIII
II IIIIII

JJ

JJ
JJ

JJ
JJ

JJJJ JJ
JJJJ JJ
JJ

KK
KK

AAAA

BB

CC
CC

DD
EE

FF

GGGG

HHHHHHHHHH HHHH

HH

HH

HHHHHH
HHHH

II
II II
IIII

II

IIIIII

II

II IIII
II

II
II

II
II II

II II
IIII II IIII IIIIIIIIII

II
IIII

II
IIII

II
II

II

IIII
II IIIIII

JJ

JJ
JJ

JJ
JJ

JJJJ JJ
JJJJ JJ
JJ

KK
KK

AAAA

BB

CC
CC

DD
EE

FF

GGGG

HHHHHHHHHH HHHH

HH

HH

HH

HHHH
II

II
IIII

II

IIIIII

II

II IIII
II

II
II

II
II II

II
IIII II IIIIIIIIII

II
IIII

II
IIII

II
II

II

IIII
II II

II

JJ

JJ
JJ

JJ
JJ

JJJJ JJ
JJ

JJ
JJ

KK
KK

AA

CC
CC

GGGG

HHHH
HH HHHH

HH

HH

HH
IIII

II

II

II

II
II

II
II II IIII II IIIIIIII

II
IIII
IIII

II
II

II

II

II

JJ
JJ

JJ

JJJJ
JJKK

X
X
X

3 nodes3 nodes

2 nodes2 nodes

1 node1 node

(a) World view of level-1 clusters (60 ms threshold)

AA
AAAA

AA
AA

AAAA

AA AA
BB

BB
BB

BB

CC

CC

DDDD

EE

EE

EE

EE

FF

FF

GG

HH

HH

II
JJ

JJ
JJJJ

KK

KK

KK

LL

MM

NN

OOOO

OO

OO

OO

OOOO
OO

OO

OO OO

OO
OO

OO

OO
OO

OO

PP
PP PP

PP

AA

AA

AA
AA

AAAA

AA AA
BB

BB
BB

BB

CC

CC

DDDD

EE

EE

EE

EE

FF

FF

GG

HH

HH

II
JJ

JJ
JJJJ

KK

KK

KK

LL

MM

NN

OOOO

OO

OO

OO

OOOO
OO

OO

OO OO

OO
OO

OO

OO
OO

OO

PP
PP PP

PP

AA

AA

AA
AA

AAAA

AA AA
BB

BB
BB

BB

CC

CC

DDDD

EE

EE

EE

EE

FF

FF

GG

HH

HH

II
JJ

JJ
JJJJ

KK

KK

KK

LL

MM

NN

OOOO

OO

OO

OO

OOOO
OO

OO

OO OO

OO
OO

OO

OO
OO

OO

PP
PP PP

PP

AA

AA

AA
AA

AAAA

AA AA
BB

BB
BB

BB

CC

CC

DDDD

EE

EE

EE

EE

FF

FF

GG

HH

HH

II
JJ

JJ
JJJJ

KK

KK

KK

LL

MM

NN

OOOO

OO

OO

OO

OOOO
OO

OO

OO OO

OO
OO

OO

OO
OO

OO

PP
PP PP

PP

AA

AA

AA
AA

AAAA

AA AA
BB

BB
BB

BB

CC

CC

DDDD

EE

EE

EE

EE

FF

FF

GG

HH

HH

II
JJ

JJ
JJJJ

KK

KK

KK

LL

MM

NN

OOOO

OO

OO

OO

OOOO
OO

OO

OO OO

OO
OO

OO

OO
OO

OO

PP
PP PP

PP

AA

AA

AA
AA

AAAA

AA AA
BB

BB
BB

BB

CC

CC

DDDD

EE

EE

EE

EE

FF

FF

GG

HH

HH

II
JJ

JJ
JJJJ

KK

KK

KK

LL

MM

NN

OOOO

OO

OO

OO

OOOO
OO

OO

OO OO

OO
OO

OO

OO
OO

OO

PP
PP PP

PP

AA

AA

AA
AA

AAAA

AA AA
BB

BB
BB

BB

CC

CC

DDDD

EE

EE

EE

EE

FF

FF

GG

HH

HH

II
JJ

JJ
JJJJ

KK

KK

KK

LL

MM

NN

OOOO

OO

OO

OO

OOOO
OO

OO

OO OO

OO
OO

OO

OO
OO

OO

PP
PP PP

PP

AA

AA

AA
AA

AAAA

AA AA
BB

BB
BB

BB

CC

CC

DDDD

EE

EE

EE

EE

FF

FF

GG

HH

HH

II
JJ

JJJJ
KK

KK

KK

LL

MM

NN

OOOO

OO

OO

OO

OOOO
OO

OO

OO OO

OO
OO

OO

OO
OO

OO

PP
PP PP

PP

AA

AA

AA
AA

AAAA

AA AA
BB

BB
BB

BB

CC

CC

DDDD

EE

EE

EE

EE

FF

FF

GG

HH

HH

JJ

JJ

KK

KK

LL

MM

NN

OOOO
OO

OO

OOOO
OO

OO

OO OOOO

OO

OO

OO

PP
PP PP

PP

AA

AA

AA AA
BB

BB

CC

CC

DDDD

EE

EE

EE

FF

FF

HH

HH

JJ

JJ

KK

KK

LL

OOOO
OO

OO

OO

OO

OOOO

PP

PP

X
X
X

3 nodes3 nodes

2 nodes2 nodes

1 node1 node

(b) United States view of level-2 clusters (20 ms threshold)

Figure 2.11: Clustering within the Coral deployment on PlanetLab. Each unique, non-singleton
cluster is assigned a letter on the map; the size of the letter corresponds to the number of collocated
nodes in the same cluster.

49

We have plotted the location of our nodes by latitude/longitude coordinates. If two nodes belong

to the same cluster, they are represented by the same letter. As each PlanetLab site usually collo-

cates several servers, the size of the letter expresses the number of nodes at that site that belong to

the same cluster. For example, the very large “H” (world map) and “A” (U.S. map) correspond to

nodes collocated at U.C. Berkeley. We did not include singleton clusters on the maps to improve

readability; post-run analysis showed that such nodes’ RTTs to others (surprisingly, sometimes

even at the same site) were above the Coral thresholds.

The world map shows that Coral found natural divisions between sets of nodes along geospatial

lines at a 60 ms threshold. The map shows several distinct regions, the most dramatic being the

Eastern U.S. (70 nodes in “I”), the Western U.S. (37 nodes in “H”), and Europe (19 nodes in “J”).

The close correlation between network and physical distance suggests that speed-of-light delays

dominate round-trip-times. Note that, as we did not plot singleton clusters, the map does not

include three Asian nodes (in Japan, Taiwan, and the Philippines, respectively).

The United States map shows level-2 clusters again roughly separated by physical locality.

The map shows 16 distinct clusters; obvious clusters include California (22 nodes in “A”), the

Pacific Northwest (9 nodes in “J”), the South, the Midwest, and so forth. The Northeast Corridor

“O” cluster contains 29 nodes, stretching from North Carolina to Massachusetts. One interesting

aspect of this map is the three separate, non-singleton clusters in the San Francisco Bay Area.

Close examination of individual RTTs between these sites shows widely varying latencies; Coral

clustered correctly given the underlying network topology.

2.3.3.2 Load balancing

To evaluate whether Coral prevents tree saturation within its indexing system, we instrumented

Coral nodes to generate requests at very high rates, all for the same key.

Figure 2.12 shows the extent to which a DSHT balances requests to a single key. In this

experiment, we ran three nodes on each of the earlier hosts for a total of 494 nodes. We configured

the system as a single level-0 cluster. At the same time, all nodes began to issue back-to-back

put and get requests at their maximum (non-concurrent) rates. All operations referenced the same

50

 0

 12

 24

 36

 48

 60

 72

 84

farnear

R
eq

ue
st

s
/ M

in
ut

e

Distance to popular key

Figure 2.12: Load balancing per key within Coral. The total number of put RPCs hitting each
Coral node per minute, sorted by distance from node ID to specific target key.

(randomly-chosen) key; the values stored during put requests were randomized. On average, each

node issued 400 put and get operation pairs per second, for a total of approximately 12 million

put and get requests per minute, although only a fraction hit the network: Once a node is storing

a key, get requests are satisfied locally, and once it is full and loaded, each node only allows the

leakage rate β put RPCs “through” it per minute.

The graphs show the number of put RPCs that hit each node in steady-state, sorted by the XOR

distance of the node’s ID to the key. During the first minute, the closest node received 106 put

RPCs. In the second minute, as shown in Figure 2.12, the system reached steady-state with the

closest node receiving 83 put RPCs per minute. Recall that our equation in §2.3.2 predicts that

it should receive (β · dlog ne) = 108 RPCs per minute. The difference between the analytically-

compute load (12 · 9) and the experimentally-observed load of approximately (12 · 7) is due to

irregularities in the node ID distribution, as nodes choose their identifiers at random and the ana-

lytical results apply to a perfectly-balanced tree. That said, the plot still strongly emphasizes the

efficacy of the leakage rate β = 12, as the number of RPCs received by the majority of nodes is a

low multiple of 12.

No nodes on the far side of the graph received any RPCs. Coral’s routing algorithm explains

this condition: these nodes begin routing by flipping their ID’s most-significant bit to match the

51

key’s, and they subsequently contact a node on the near side. We have omitted the graph of get

RPCs: During the first minute, the most-loaded node received 27 RPCs; subsequently, the key was

widely distributed and the system quiesced.

2.4 Related work on DHTs and directory services

There is a large body of work in designing DHTs with various algorithmic properties; we review a

few here.

A DHT exposes two basic functions to the application: put(key , value) stores a value at the

specified key ID; get(key) returns this stored value, just as in a normal hash table. Most DHTs

use a key-based routing layer—such as CAN [150], Chord [177], Kademlia [116], Pastry [162],

or Tapestry [195]—and store keys on the node whose ID is closest to the key. Keys must be well

distributed to balance load among nodes. DHTs often replicate multiply-fetched key/value pairs

for scalability and availability. Gummadi et al. [78] shows how all these routing geometries allow

some flexibility in neighbor and path selection to provide better routing locality, a generalization

of the performance optimization considered in [28, 47]. Accordion [107] dynamically balances

routing state with performance, allowing the system to transition from O(N) to O(log N) state,

based on network conditions and a node’s available bandwidth.

DHTs can act either as actual data stores or merely as directory services storing pointers.

CFS [45] (using the DHash layer in Chord) and PAST [161] take the former approach to build

a distributed file system for immutable data. Kelips [79] takes a gossip-based approach to replicate

data and provides O(
√

N) performance with O(
√

N) state. Beehive [149] also uses proactive data

replication, but can guarantee any asymptotic lookup behavior: Rather than increase the number

of neighbors known to peers, they replicate content in the DHT (Pastry) based on observed access

patterns.

Using the network as an directory service, Tapestry [195] and Coral relax the consistency of

operations in the network. To put a key, Tapestry routes along fast hops between peers, placing at

each peer a pointer back to the sending node, until it reaches the node closest to the key. Nearby

52

nodes routing to the same key are likely to follow similar paths and discover these cached pointers.

Coral’s flexible clustering provides similar latency-optimized lookup and data placement, and its

rate-limiting and constrained routing algorithms prevent multiple stores from forming hot spots.

A few other DHTs have also leveraged a hierarchical structure. But rather than using self-

organizing clustering algorithms like Coral, SkipNet [84] builds a hierarchy by explicitly grouping

nodes based on domain name in order to support organizational disconnect. Canon takes a similar

approach for multiple DHT geometries [65].

To our knowledge, our integration of Coral into the CoralCDN system, described in the next

chapter, was the first use of a DHT-like structure in a production environment. DHTs have sub-

sequently been used in other peer-to-peer services, e.g., Kademlia [116] serves as the basis for

BitTorrent’s and Azureus’s “trackerless” option [17].

53

Chapter 3

Building CoralCDN, a Web Content

Distribution Network

This chapter couples the Coral indexing layer with a complete system design for scalable and

efficient web content distribution. Using CoralCDN, web-site publishers who cannot otherwise

afford data centers or commercial CDNs—and hence rather limited in the size of audience and type

of content they can normally serve—can reach more clients by leveraging the network and server

resources of third parties in a scalable and self-organizing fashion. In other words, CoralCDN helps

democratize web content distribution by automating the process of replicating and propagating

popular content.

3.1 Motivation

To use CoralCDN, a content publisher, end-host client, or someone posting a link to a high-traffic

portal simply appends “.nyud.net” to the hostname in a URL. Through DNS redirection, clients

with unmodified web browsers are transparently redirected to nearby CoralCDN web caches.

These caches cooperate to transfer data from nearby peers whenever possible, thus utilizing the

aggregate bandwidth of participants running the software to absorb and dissipate most of the traf-

54

fic for websites using the system. In doing so, CoralCDN minimizing both the load on the origin

webserver, and it may even improve the end-to-end latency experienced by clients.

CoralCDN is built on top of the Coral key-value indexing layer, described previously in §2.3.

Two properties make Coral ideal for CDNs. First, Coral allows nodes to locate nearby cached

copies of web objects without querying more distant nodes. Second, Coral prevents hot spots in

the indexing infrastructure, even under degenerate loads.

Taken together, the resulting system enables people to publish content that they previously

could not or would not because of distribution costs. To our knowledge, CoralCDN is the first

decentralized and self-organizing web-content distribution network, and it contains the first peer-

to-peer DNS redirection infrastructure, allowing the system to interoperate with unmodified web

browsers.

Measurements of CoralCDN demonstrate that it allows under-provisioned websites to achieve

dramatically higher capacity, and its clustering provides quantitatively better performance than

locality-unaware systems.

CoralCDN has been deployed on 300-400 servers on the PlanetLab network [145] since March

2004. For the past two years, it has served an average of 20-25 million requests for more than two

terabytes of web content to over one million unique client IPs per day. In doing so, it has allowed

websites to scale to otherwise intractable audience sizes, while needed near zero changes to origin

websites to achieve this result.

This chapter describes the usage scenarios of CoralCDN and its system design (§3.2), including

its HTTP proxy and DNS server. We evaluate the system in §3.3, before discussing additional

engineering mechanisms that we introduced in response to operating challenges learned during the

course of CoralCDN’s deployment (§3.4). We conclude by discussing related CDN work (§3.5).

55

3.2 Design

CoralCDN is comprised of three main parts: (1) a network of cooperative HTTP proxies that han-

dle users’ requests,1 (2) a network of DNS nameservers for nyud.net that map clients to nearby

CoralCDN HTTP proxies, and (3) the underlying Coral indexing infrastructure and clustering ma-

chinery on which the first two applications rely.

3.2.1 Usage models

To enable immediate and incremental deployment, CoralCDN is transparent to clients and requires

no software or plug-in installation. CoralCDN can be used in a variety of ways, including:

• Publishers. A website publisher can change selected URLs in their web pages to so-

called “Coralized” URLs—e.g., modify the URL http://www.example.com/ to http:/

/www.example.com.nyud.net/—either through static or dynamic rewriting.

• Third-parties. Any interested third-party—e.g., , a poster to a web portal or a Usenet

group—can Coralize a URL before publishing it, causing all embedded relative links in

the web page to use CoralCDN as well.

• Users. CoralCDN-aware users can manually construct Coralized URLs (or automatically

via installed software or browser plugins) when surfing slow or overloaded websites. Based

on the way these URLs are modified, any HTTP redirects or relative links within returned

web pages are automatically Coralized.

3.2.2 System overview

Figure 3.1 shows the steps that occur when a client accesses a Coralized URL, such as http://

www.example.com.nyud.net/, using a standard web browser.

1While CoralCDN’s HTTP proxy definitely provides proxy functionality, it is not an HTTP proxy in the
strict RFC-2616 [54] sense. Rather, it serves requests that are syntactically formatted for an ordinary HTTP
server.

56

Coral

http prx

Coral
dns srv
http prx

Coral
dns srv
http prx

Coral

dns srv
http prx

Coral

dns srv
http prx

Coral

www.example.com
.nyud.net

.nyud.net/
www.example.com

Resolver Browser

dns srv

4 4
9

8, 11

5
1 6

10

72
3dns srv

http prx

Coral

http prx

dns srv

Figure 3.1: Steps involved in using CoralCDN. The client first resolves a Coralized URL, then
contacts the resulting HTTP proxy to download the content. Rounded boxes represent CoralCDN
nodes running Coral, DNS, and HTTP servers. Solid arrows correspond to Coral RPCs, dashed
arrows to DNS traffic, dotted-dashed arrows to network probes, and dotted arrows to HTTP traffic.

57

1. A client sends a DNS request for www.example.com.nyud.net to its local resolver.

2. The client’s resolver attempts to resolve the hostname using some CoralCDN DNS server(s),

possibly starting at one of the few (˜12) registered under the .net domain.

3. Upon receiving a query, the DNS server probes the client to determines its round-trip-time

and last few network hops.

4. Based on the probe results, the DNS server checks Coral to see if there are any known

nameservers and/or HTTP proxies near the client’s resolver.

5. The DNS server replies, returning any servers found through Coral in the previous step; if

none were found, it returns a random set of nameservers and proxies. In either case, if the

DNS server is close to the client, it only returns nodes that are close to itself (see §3.2.4).

6. The client’s resolver returns the address of a CoralCDN HTTP proxy for the Coralized do-

main www.example.com.nyud.net.

7. The client sends the HTTP request http://www.example.com.nyud.net/ to the specified

proxy. If the proxy is caching the corresponding file locally, it returns the file and stops.

Otherwise, this process continues.

8. The proxy looks up the web object’s URL in Coral.

9. If Coral returns the address of a node caching the object, the proxy begins fetching the object

from this node. Otherwise, the proxy begins downloading the object from the origin server,

www.example.com (this step is not shown in the figure).

10. The proxy begins storing the web object and returning it to the client browser.

11. The proxy stores a reference to itself in Coral, recording the fact that is now caching the

URL so that its cached copy can be made available to other proxies in the future.

This section describes the design of CoralCDN’s HTTP proxy and original DNS redirector,

especially with regard to their use of the Coral indexing layer. In the deployed CoralCDN ser-

vice, this original Coral-specific DNS service has been replaced with the use of a general-purpose

anycast service we present in Chapter 4 as the preferred method of proxy selection. However,

58

we still present this original design in order to discuss its observed shortcomings in §3.4.4, which

motivated and influenced our subsequent redesign.

3.2.3 The CoralCDN HTTP proxy

The CoralHTTP proxy satisfies HTTP requests for Coralized URLs. It seeks to provide reasonable

request latency and high system throughput, even while serving data from origin servers behind

comparatively slow network links such as home broadband connections. This point in the design

space requires particular care in minimizing load on origin servers compared to traditional CDNs,

for two reasons. First, many of CoralCDN’s origin servers are likely to have slower network con-

nections than typical customers of commercial CDNs. Second, commercial CDNs often collocate

a number of machines at each deployment site, and then they select a client’s proxy based in part on

the URL requested—effectively partitioning objects across proxies—often having pre-provisioned

their customer’s content. CoralCDN, in contrast, selects proxies only based on client locality and

does not seek to control data placement by design.

In this section, we describe how CoralHTTP proxy is designed to use the Coral indexing layer

for effective inter-proxy cooperation and for rapid adaptation to flash crowds.

3.2.3.1 Locality-optimized inter-proxy transfers

To aggressively minimize load on origin servers, a CoralHTTP proxy must fetch web pages from

other proxies whenever possible. Each proxy keeps a local cache from which it can immediately

fulfill requests. When a client requests a non-resident URL, CoralHTTP proxy first attempts to

locate a cached copy of the referenced resource using Coral (a get), with the resource indexed by

a SHA-1 hash of the URL. Only after the Coral indexing layer provides no referrals or none of its

referrals return the data, CoralHTTP proxy attempts to fetch the resource directly from the origin.

If a CoralHTTP proxy discovers that one or more other proxies have the data, it attempts to

open TCP connections to multiple other proxies in parallel (currently configured to two), and issues

an HTTP request to the first proxy to which it successfully connects. These pre-established TCP

connections also provide faster failover if the initial request to a different CoralHTTP proxy fails—

59

e.g., the CoralHTTP proxy has already evicted the content from its cache, returns an unexpected

error message, or is unresponsive at the application layer—at which time the initiating CoralHTTP

proxy will issue a new HTTP request to an open connection while simultaneously opening addi-

tional TCP connections to maintain the appropriate window size for failover, provided additional

proxies are known. Once a neighboring proxy begins to send back valid content, all outstanding

TCP connections are closed.

Note that these inter-proxy transfers are locality-optimized, both from their use of parallel

connection requests and, more importantly, by the order which neighboring proxies are contacted.

The properties of Coral’s hierarchical indexing layer implies that the list of proxy IP addresses

returned by get(SHA-1(url)) will be sorted based on their cluster distance to the request initiator,

preferring level-2 neighbors before level-1 and level-0 nodes, respectively.

3.2.3.2 Rapid adaptation to flash crowds

Unlike many web proxies, CoralHTTP proxy is explicitly designed for flash crowd scenarios: If a

flash crowd suddenly fetches a web object, all CoralHTTP proxies, other than the first simultaneous

requests to the origin server, will naturally form a kind of “multicast tree” for retrieving the web

page: Data streams from the proxies that initially fetch the object from the origin server to those

arriving later. CoralCDN provides such behavior by combining optimistic references and cut-

through routing.

As soon as a CoralHTTP proxy begins receiving the first bytes of a web object—either from

the origin or from another CoralHTTP proxy—it inserts a reference to itself in the Coral indexing

layer with a short time-to-live (30 seconds). It continually renews this short-lived references until

either it completes the download or the download fails.

CoralCDN’s cut-through routing at each proxy helps reduce transmission time for larger files.

In other words, proxies begin uploading content as soon as it is downloaded, not waiting until they

receive the entire file.2 Once any CoralHTTP proxy successfully finishes downloading the content,

it inserts much longer-lived reference to itself. Because the Coral insertion algorithm accounts for
2The CoralHTTP proxy implements such behavior through its event-based structure communicating

through the file system. Multiple client connections can register read callbacks on a single file, and whenever

60

expiry times (per §2.3.1.2),3 these longer-lived references will overwrite shorter-lived ones, and

they can be stored on well-selected nodes even under high insertion load. CoralHTTP proxies

renew their pointers stored in Coral to these cached objects every time-to-live period, but only

provided that the content has been requested subsequent to its initial download event.

A CoralHTTP proxy manages its disk using a least-recently-used eviction policy (each proxy is

configured with some maximum-allocated disk space, which is 3-4 GB per proxy on our PlanetLab

deployment). Note, however, that the LRU eviction policy can cause a proxy to evict an item, even

while a reference in Coral still exists.4 Recovery from such failures is handled by our use of

multiple HTTP requests for failover, described above. In practice, however, the working set of our

deployed system experiences sufficiently slow turnover as to make such a situation relatively rare

and thus have little impact.

3.2.4 The (original) CoralCDN DNS server

The CoralDNS server returns IP addresses of CoralHTTP proxies when browsers look up the host-

names of Coralized URLs. To improve locality, it attempts to return proxies near requesting clients.

In particular, whenever a DNS resolver (client) contacts a nearby CoralDNS server instance, the

CoralDNS server seeks to both return proxies within an appropriate cluster and ensure that future

DNS requests from that client will not leave the cluster. CoralDNS also exploits on-the-fly net-

work measurement and stores topology hints in Coral to increase the chances of clients discovering

nearby DNS servers.

More specifically, every instance of CoralDNS is an authoritative nameserver for the do-

this file is written to as content is received from a remote node, these connection callbacks are dispatched
and the newly-written content is sent to other remote nodes downstream in the tree.

3The deployed system uses two-hour TTLs for “successful” transmissions (e.g., status code results in-
cluding 200 (OK), 301 or 302 (Moved), etc.). It also uses 15-minute TTLs for non-transient “unsuccessful”
transmissions (e.g., 403 (Forbidden), 404 (File Not Found), etc.) in order to perform negative-result caching
across the network.

4Coral does not provide any mechanism to delete a reference. If a delete primitive was only best-effort,
an application relying on such a function would still need to be able to handle the cases in which the delete
failed. On the other hand, a delete primitive that provided strong consistency would require much heavier-
weight protocols than Coral is designed to support.

61

main nyucd.net. Assuming a 3-level hierarchy, as Coral is generally configured, CoralDNS

maps any domain name ending http.L2.L1.L0.nyucd.net to one or more CoralHTTP prox-

ies. (For an (n + 1)-level hierarchy, the domain name is extended out to Ln in the obvious

way.) Because such names are somewhat unwieldy, we established a DNS DNAME alias [44],

nyud.net, with target http.L2.L1.L0.nyucd.net: This translates to the DNS rule that any do-

main name ending with the suffix nyud.net is equivalent to the same name with the longer suffix

http.L2.L1.L0.nyucd.net, allowing Coralized domain names to be more concise.

The CoralDNS servers assume that web browsers are generally close to their resolvers on the

network, so that the source address of a DNS query reflects the browser’s network location. This

assumption holds to varying degrees, but it good enough that Akamai [2], Mirror Image [123],

and LimeLight Networks [108] have all successfully deployed commercial CDNs based on DNS

redirection. (In fact, we later present one of the first quantitative analyses of client-DNS resolver

proximity in Figure 4.6 of §4.2.2.2.) The locality problem therefore is reduced to returning proxies

that are near the source of a DNS request. In order to achieve locality, a CoralDNS server measures

its round-trip-time to the client’s resolver (via ICMP and TCP probes) and categorizes it by level.

For a 3-level hierarchy, the resolver will correspond to a level 2, level 1, or level 0 client, depending

on how its RTT compares to Coral’s cluster-level thresholds (e.g., ≤ 20ms, ≤ 60ms, and > 60ms,

respectively).

When asked for the address of a hostname ending http.L2.L1.L0.nyucd.net, the CoralDNS

server’s reply contains two sections of interest: A set of addresses for the name—answers to the

query—and a set of nameservers for that name’s domain—known as the authority section of a

DNS reply. CoralDNS server returns addresses of CoralHTTP proxies in the cluster whose level

corresponds to the client’s level categorization. In other words, if the RTT between the DNS

resolver and CoralDNS server is below the level-i threshold (for the best i), CoralDNS server will

only return addresses of Coral nodes in its level-i cluster (we extended Coral’s interface to provide

a nodes(level) primitive, which returns a randomly-chosen subset of peers known to a node within

a specified-level cluster). CoralDNS always returns CoralHTTP proxy addresses with short time-

to-live fields (30 seconds for levels 0 and 1, 60 for level 2).

62

To achieve better locality, a CoralDNS server also attempts to find proxies near to the client’s

DNS resolver based on network hints. That is, it probes the addresses of the last five network

hops to the resolver and uses the results to look for clustering hints stored in the Coral index. To

avoid significantly delaying clients, it maps these network hops using a fast, built-in traceroute-

like mechanism that combines concurrent probes and aggressive timeouts to minimize latency.

The entire mapping process generally requires around two RTTs and 350 bytes of bandwidth. The

server caches these measurement results to avoid repeatedly probing the same client.

The closer a CoralDNS server is to a client, the better its selection of CoralHTTP proxy ad-

dresses will likely be for the client. The CoralDNS server therefore exploits the authority section

of DNS replies to “lock” a DNS client into a good cluster whenever it happens upon a nearby

CoralDNS server. As with the answer section, a CoralDNS server selects the nameservers it re-

turns from the appropriate cluster level and exploits measurement and network hints as well. Un-

like addresses in the answer section, however, it gives nameservers in the authority section a long

TTL (one hour). A nearby CoralDNS server must therefore override any inferior nameservers that

a DNS client may be caching from previous queries; it does so by manipulating the domain for

which returned nameservers are servers. To clients more distant than the level-1 timing threshold,

CoralDNS server claims to return nameservers for domain L0.nyucd.net. For clients closer than

that threshold, it returns nameservers for L1.L0.nyucd.net. For clients closer than the level-

2 threshold, it returns nameservers for domain L2.L1.L0.nyucd.net. Because DNS resolvers

query the servers for the most specific known domain, this scheme allows closer CoralDNS server

instances to override the results of more distant ones.

Unfortunately, although resolvers can tolerate a fraction of unavailable DNS servers, browsers

do not handle bad HTTP servers gracefully. (This is one reason for returning CoralHTTP proxy

addresses with short TTL fields.) As an added precaution, a CoralDNS server only returns Coral-

HTTP proxy addresses which it has recently verified first-hand. This sometimes means syn-

chronously checking a proxy’s liveness status (via a UDP RPC) prior to replying to a DNS query.

63

3.3 Evaluation

In this section, we provide experimental results that support our following hypotheses:

1. CoralCDN dramatically reduces load on servers, solving the “flash crowd” problem.

2. Clustering provides performance gains for popular data, resulting in good client perfor-

mance.

Recall that we showed earlier in §2.3.3 that Coral (1) naturally forms suitable clusters and (2)

prevents hot spots within its indexing system.

To examine these two claims, we present wide-area measurements of a synthetic work-load on

CoralCDN nodes running on PlanetLab. We use such an experimental setup because traditional

tests for CDNs or webservers are not interesting in evaluating CoralCDN: (1) Client-side traces

generally measure the cacheability of data and client latencies. However, we are mainly interested

in how well the system handles load spikes. (2) Benchmark tests such as SPECweb99 measure

a webserver’s throughput on disk-bound access patterns, while CoralCDN is designed to reduce

load on off-the-shelf webservers that are network-bound.

The basic structure of the experiments were the same as in §2.3.3. First, on each of 166 Plan-

etLab machines geographically distributed mainly over North America and Europe, we launch a

Coral daemon, as well as a CoralDNS server and CoralHTTP proxy. For experiments referred to as

multi-level, we configure a three-level hierarchy by setting the clustering RTT threshold of level 2

to 20 ms and level 1 to 60 ms. Experiments referred to as single-level use only a single (level-0)

global cluster. No objects are evicted from CoralHTTP proxy caches during these experiments.

Next, we run an unmodified Apache webserver sitting behind a DSL line with 384 Kbit/s

upstream bandwidth, serving 12 different 41 KB files, representing groups of three embedded

images referenced by four web pages.

Third, we launch client processes on each machine that, after an additional random delay be-

tween 0 and 180 seconds for asynchrony, begin making HTTP GET requests to Coralized URLs.

Each client generates requests for the group of three files, corresponding to a randomly selected

64

 0

 100

 200

 300

 0 300 600 900 1200

R
eq

ue
st

s
/ M

in
ut

e

Time (sec)

< 20ms

< 60ms

global

origin server

Figure 3.2: CoralCDN reducing server load. The number of client accesses to CoralCDN proxies
and the origin HTTP server. Proxy accesses are reported relative to the cluster level from which
data was fetched, and do not include requests handled through local caches.

web page, for a period of 30 minutes. While we recognize that web traffic generally has a Zipf

distribution [19], we are attempting merely to simulate a flash crowd to a popular web page with

multiple, large, embedded images. With 166 clients, we are generating 99.6 requests/second, re-

sulting in a cumulative download rate of approximately 32, 800 Kb/s. This rate is almost two or-

ders of magnitude greater than the origin web server could handle. Note that this rate was chosen

synthetically and in no way suggests a maximum system throughput. (Indeed, our current deploy-

ment on PlanetLab sees 200-300 Mb/s of traffic on average, although this again is not a technical

maximum, as the PlanetLab deployment is artificially limited by bandwidth-shaping mechanisms,

discussed in §3.4.2.)

3.3.1 Server load

Figure 3.2 plots the number of requests per minute that could not be handled by a CoralHTTP

proxy’s local cache. During the initial minute, a total of 15 requests hit the origin webserver (for

the 12 unique files, shown by dotted purple line with squares). The 3 redundant lookups are due

65

to the simultaneity at which requests are generated;5 subsequently, requests are handled either

through CoralCDN’s wide-area cooperative cache or through a proxy’s local cache, supporting our

hypothesis that CoralCDN can migrate load off of an origin webserver.

During this first minute, equal numbers of requests were handled by the level-2 (solid red

line with crosses) and level-1 (dashed green line with x’s) cluster caches. However, as the files

propagated into CoralHTTP proxy caches, requests quickly were resolved within faster level-2

clusters. Within 8-10 minutes, the files became replicated at nearly every server, so few client

requests went further than the proxies’ local caches. Repeated runs of this experiment yielded some

variance in the relative magnitudes of the initial spikes in requests to different levels, although the

number of origin server hits remained consistent.

3.3.2 Client latency

Figure 3.3 shows the end-to-end latency for a client to fetch a file from CoralCDN, following the

steps given in §3.2.2. The top graph shows the cumulative distribution function (CDF) of latency

across all PlanetLab nodes used in the experiment. The bottom graph only includes data from

the clients located on five nodes in Asia: Hong Kong (two), Taiwan, Japan, and the Philippines.

Because most nodes are located in the U.S. or Europe, the performance benefit of clustering is

much more pronounced on the graph of Asian nodes.

Recall that this end-to-end latency includes the time for the client to make a DNS request and

to connect to the discovered CoralHTTP proxy. The contacted proxy attempts to fulfill the client

request first through its local cache, then through Coral, and finally through the origin web server.

Because the CoralHTTP proxy implements cut-through routing, clients begin receiving a file as

soon as the proxy begins downloading it.

These figures report three results: (1) the distribution of latency of clients using only a single

level-0 cluster (the dotted blue line), (2) the distribution of latencies of clients using multi-level

5This race condition may be eliminated through the single put+get primitive of §2.3.1.4. Although now
used in our live PlanetLab deployment, this extension to the Coral indexing layer was not available at the
time of these experiments.

66

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

F
ra

ct
io

n
of

 R
eq

ue
st

s

Latency (sec)

multi-level, hints
multi-level

single-level

(a) Performance of nodes world-wide

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

F
ra

ct
io

n
of

 R
eq

ue
st

s

Latency (sec)

Asia, multi-level, hints
Asia, multi-level

Asia, single-level

(b) Performance of nodes in Asia

Request latency (seconds) All nodes Asian nodes
50% 96% 50% 96%

single-level 0.79 9.54 2.52 8.01
multi-level 0.31 4.17 0.04 4.16

multi-level, traceroute 0.19 2.50 0.03 1.75

Figure 3.3: End-to-end client latency for requests for Coralized URLs, comparing the effect of
single-level vs. multi-level clusters and of using traceroute during DNS redirection.

67

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10

F
ra

ct
io

n
of

 R
eq

ue
st

s

Latency (sec)

multi-level
single-level

Figure 3.4: Latencies for proxy to get keys from Coral

clusters (the dashed green line), and (3) the same hierarchical network, but using traceroute during

DNS resolution to map clients to nearby proxies (the solid red line).

All clients ran on the same subnet (and host, in fact) as a CoralHTTP proxy in our experimental

setup. This would not be the case in the real deployment: We would expect a combination of hosts

sharing networks with CoralHTTP proxies—within the same IP prefix as registered with Coral—

and hosts without. Although the multi-level network using traceroute provides the lowest latency

at most percentiles, the multi-level system without traceroute also performs better than the single-

level system. Clustering has a clear performance benefit for clients, and this benefit is particularly

apparent for poorly-connected hosts.

Figure 3.4 shows the latency of get operations, as seen by CoralHTTP proxies when they

lookup URLs in Coral (Step 8 of §3.2.2). We plot the get latency on the single level-0 system versus

the multi-level systems. The multi-level system is 2-5 times faster up to the 80% percentile. After

the 98% percentile, the single-level system is actually faster: Under heavy packet loss—which

PlanetLab can (excessively) experience—the multi-level system requires a few more timeouts as it

traverses its hierarchy levels.

68

3.4 Deployment lessons

CoralCDN has been deployed on 300-400 servers on the PlanetLab network [145] for over three

years. For the past two years, it has served an average of 20-25 million requests for more than two

terabytes of web content to over one million unique client IPs per day. This section describes some

of the mechanisms developed and lessons learned during the course of CoralCDN’s deployment.

3.4.1 Robustness mechanisms

Unlike many web proxies, a CoralHTTP proxy regularly interacts with overloaded or poorly-

behaving origin servers, and our explicit goal is to keep content available in the face of such

conditions.

For example, a fairly normal situation for CoralCDN is the following: First, a portal like Slash-

dot [170] or digg [50] runs a story that links to a third-party website, driving a sudden influx of

readers to this previously unpopular site. Second, a user posts a Coralized link to the same website

in a “comment” to the portal’s story, providing an alternate means to fetch the content. (Similarly,

several third-party browser plugins automatically Coralize their users’ links for either all web con-

tent or for that of special pages, e.g., Slashdot.) Several things can occur given these situations, all

of which should be handled differently.

• The website’s origin server(s) become unavailable before CoralCDN proxies can download

a copy of the content.

• CoralCDN already has a copy of the content, but requests arrive to CoralCDN after the

content’s expiry time has passed; subsequent HTTP requests to the origin webserver result

in failures or error statements.

• CoralCDN already has a copy of the content, but requests arrive to CoralCDN after the

content’s expiry time has passed; subsequent requests to the origin server yield only partial

transfers.

We next consider how CoralCDN handles these different situations.

69

Negative result caching. CoralCDN may be hit with a flood of requests for a URL that is not

accessible for a variety of reasons (i.e., DNS resolution fails, the webserver does not respond to

TCP connection requests, etc.). For these situations, CoralCDN maintains a negative result cache,

whereby after repeated failures, CoralHTTP proxies will locally cache information that certain

hostnames will not resolve or establish TCP sessions. Otherwise, we have seen excessive load and

resource exhaustion on both CoralHTTP proxies and the proxies’ local DNS resolvers given flash

crowds to apparently dead sites (e.g., because the proxy would need to hold open client connections

for several seconds while attempting to resolve or connect to the specified hostname). Notice that,

unlike when an origin server returns a permanent status-code error, this failure status is only cached

locally, as it may be caused by a local network or DNS failure at the proxy and not at the origin

server at all.

Serving stale content. CoralCDN proxies obey the expiry times of content, as specified in

Cache-Control (HTTP/1.1) or Expires (HTTP/1.0) header.6 (If no expiry time is specified,

CoralHTTP proxies default to twelve hours.) As such, after content has expired, CoralHTTP

proxies will attempt to perform a conditional (If-Modified-Since) request. If the content has

not changed, of course, these requests minimize overhead given that the origin can simply respond

with a 304 (Not Modified) message and not resend the same body content.

What happens, however, if the origin server does not respond at all, or simply responds with

some temporary error condition? Rather than return an error to the client, a CoralHTTP proxy

will return stale content instead (and update its expiry timer again). Specifically, if the origin

responds with a 403 (Forbidden), 404 (Not Found), 408 (Timeout), 500 (Internal Server Error), or

6The only caveat is that a CoralHTTP proxy sets a minimum expiry time of some duration (currently
configured as five minutes), and thus does not recognize No-Cache directives as such. Note, however, be-
cause CoralCDN does not support cookies, SSL bridging, or POSTs, most of the privacy concerns normally
associated with caching such content are alleviated. Our anecdotal experience suggests many sites use such
directives to provide their sites with complete HTTP logs (e.g., for counting page views), not for privacy
reasons. We note that because CoralCDN does not re-write web pages, the origin site will see still requests
for any absolute URLs embedded in the page; thus, normal tricks with web-beacons can provide their sites
with accurate logs.

70

503 (Service Unavailable) message, a CoralHTTP proxy will serve stale data for up to 24 hours

(configurable) after it expires.

This decision is, of course, a trade-off that will not satisfy every situation. Is a Forbidden mes-

sage due to the website publisher seeking to make the content unavailable, or it is caused by the

website going over its daily bandwidth quota and its hosting service returning an error? Does a 404

indicate whether the condition is temporary (from a php or database error) or permanent (from a

third-party issuing a take-down notice to the website)? (Indeed, such ambiguity led to the introduc-

tion of 410 (Gone) messages in HTTP/1.1, denoting permanence, which does result in the eviction

of content from our caches.) We have seen all these situations; the problem is simply that many

status-code responses are inherently ambiguous. But we found the above behavior to satisfy both

our users’ desire to robustly get content, as well as our publishers’ desire to control caching behav-

ior. Unfortunately, we have also seen many situations caused by semantically-incorrect server-side

results as well, often generated by poorly-written php or other server scripts: Too often do our

servers receive a 200 (OK) message with humanly-readable body content to the tune of “an error

occurred,” resulting in CoralCDN replacing valid content with such useless information.

Whole-file overwrites. Finally, consider when the CoralHTTP proxy is already caching an

expired file, but a subsequent re-request yields a partial or excessively-slow response from the

origin site (due to the fact that it is being overloaded). Rather than having the proxy lose a valid

copy of a stale file, CoralHTTP proxies perform whole-file overwrites: Namely, new versions of

content are written to temporary files; only after the file completes downloading and appears valid

(e.g., based on Content-Length) will a CoralHTTP proxy replace its existing copy with this new

version of the data.

3.4.2 Bandwidth-shaping fairness mechanisms

Operators that run a CoralHTTP proxy would like to be able to configure the node’s total bandwidth

usage. This demand arose even on CoralCDN’s use of the PlanetLab platform, which is comprised

largely of university sites: Without any bandwidth-limited mechanism, CoralCDN’s bandwidth

71

use spiked immediately following the Asian tsunami of December 2004, as CoralCDN was being

used to distributed many amateur videos of the natural disaster. PlanetLab sites were threatening

to pull their servers offline if such use could not be curtailed.

While PlanetLab has implemented its own kernel-level bandwidth-limiting mechanism, this is

not sufficient for our goals. First, such limitations are done on a per-“slice” and per-packet basis,

i.e., they will indiscriminately limit all traffic from a service such as CoralCDN, not intelligently

choosing between different CoralCDN requests (flows) and communication types (system main-

tenance traffic versus client requests). Second, such a technique still sees CoralCDN processing

requests and sending data in response. These response packets, however, are subsequently being

queued (and ultimately dropped) in the kernel, causing CoralCDN servers to perform much useless

work.

Instead, a CoralHTTP proxy implements its own application-level bandwidth-shaping mecha-

nism, where it attempts to provide fairness across websites using CoralCDN on a per-domain basis.

We have found that the majority of CoralCDN’s bandwidth is consumed by a relatively small sub-

set of websites, as the primary adoption of CoralCDN is server-side, not client-side. Thus, it is

important that any bandwidth limits are also applied on a server-side basis. (We do have some

limited mechanisms to prevent the malicious overuse of CoralCDN’s bandwidth by clients, but

such misuse occurs relatively rare, is easy to prevent, and accounts for only a small portion of

CoralCDN’s total bandwidth.)

Our fairness mechanisms ultimately attempt to ensure that a CoralHTTP proxy only sends

some upper-bounded amount of traffic per day in steady-state (on PlanetLab, our configured limit

is 10 GB per node per day). We attempt to balance three goals. Firstly, CoralCDN will get flash

crowds and changing traffic patterns, so it needs that the hard limits for peak traffic differs from

steady-state limits to allow short bursts of unexpected activity. Secondly, however, our primary

consumers of bandwidth are sites that have permanently adopted CoralCDN, not short-term flash

crowds caused by a link being posted on some web portal. Thus, we also seek to ensure that

normal traffic patterns to a site domain are limited over short time-scales, such that the expected

usage over longer time-scales is acceptable. Finally, we want this accounting to be fair: Network

72

 0.25

 1

 4

 16

 64

 256

 1 2 4 8 16 32 64

M
B

 p
er

 h
ou

r

Rank (top-100 domains)

NYU 1
NYU 2

Stanford 1
Stanford 2

Figure 3.5: Average bandwidth consumed by the top-100 sites at four CoralCDN proxies on August
2, 2007.

wide, CoralCDN currently distributes approximately 2 TB per day, while our demand sometimes

exceeds 10 TB per day. The difference between these two limits—caused by only a small number

of bandwidth hogs—is due to CoralCDN rejecting a significant number of requests. But it does so

by rejecting the bandwidth hogs, not indiscriminate requests.

Figure 3.5 plots the amount of hourly traffic that four CoralHTTP proxies permitted per domain

for the top-100 bandwidth hogs: Note that the graphs (in logarithmic scale) show that a relatively

small number of domains use most of the bandwidth. Indeed, it is only a handful of domains

towards the left-side of this graph that will see any of their requests rejected due to excessive use.

Due to our fairness mechanisms, the remaining will be unaffected.

CoralCDN implements the following algorithm on each CoralHTTP proxy. The system is

configured with three maximum rates. maxpeak provides a hard-upper bound of the maximum

traffic can be sent per time period (our deployment sets maxpeak to 1000 MB per each one-hour

period per node); maxsteady provides an upper bound on the expected amount of total traffic

in steady state per time period, calculated as an exponentially-weighted moving average (set to

400 MB per hour); maxsteadyper provides this upper bound per domain (200 MB per hour).

During each time period, we record the number of bytes transmitted for every domain (bw). At

the end of every time period, we calculate and store the average bandwidth usage (bwavg) of the

73

top-k sites at time t as an exponentially-weighted moving average:

∀i=1. . .k : bwavg
i,t =

(α− 1

α
· bwavg

i,t−1

)
+

(1

α
· bwi,t

)
(3.1)

where α = 168 and time periods are one hour in our deployment, thus serving to smooth bandwidth

usage out over a one week period.

We then calculate the maximum dynamically-adapted steady-state traffic allowed per host: Let

limt = (α−1
α
· limt−1) + (1

α
·maxpeak); reduce limt until a point whereby if that limit had been

enforced during the previous period (see below), the expected bandwidth use
∑

i=1...k bwavg
i,t would

be ≤ maxsteady.

For any particular request, a CoralHTTP proxy rejects it (with a Forbidden message) if and

only if (1) the current time period has too much total peak traffic across all domains (
∑

∀i bwi,t ≥

maxpeak), or (2) the marginal bandwidth cost of the request (calculated as in Equation 3.1) would

exceed either the total steady-state static limit maxsteady, or the domain’s specific static limit

maxsteadyper, or the domain’s dynamically-adapted limit limt. Any request for content ≤ 1 KB

in size is allowed, however, given that bandwidth and cycles processing the small request will have

already been spent.

Note that this mechanism is applied independently on each node. It may be an interesting piece

of future work to enable (approximate) accounting across the entire network, yet do so without

centralization and in a bandwidth-efficient manner (i.e., with o(kN) communication complexity

for N -node networks).

In the above description, a CoralHTTP proxy simply rejects a request when the site is over its

bandwidth allotment. Operators of some sites, on the other hand, have expressed their preference

that such requests instead be redirected back to their site and allow their server(s) to deal with the

additional load, as opposed to rejecting the request outright. To specify such functionality, sites

can include a X-Coral-Control header in their server’s HTTP response—additional meta-data

that a CoralHTTP proxy caches along with the object—that details how CoralHTTP proxy should

handle such overload conditions. (If clients are redirected back to the origin server, a CoralHTTP

proxy appends an additional query-string coral-no-serve on their request. This helps ensure

74

that the origin site knows that it should serve the request, as opposed to creating a request loop by

dynamically redirecting the client back to CoralCDN again.)

3.4.3 Security mechanisms

CoralHTTP proxies also incorporate a number of security mechanisms to prevent misuse. This

section discusses some of the security protections and limitations of CoralCDN’s current deploy-

ment.

Limited functionality. CoralCDN proxies only support GET and HEAD requests. Therefore,

many of the attacks for which “open” proxies are infamous [134] are simply not feasible. For

example, clients cannot use CoralCDN to POST passwords for brute-force cracking. CoralHTTP

proxies do not support CONNECT requests, and thus they cannot be used to resend email as an

SMTP relay, to forge “From” addresses in web mail, or to spam IRC networks. Furthermore, be-

cause CoralCDN only handles Coralized URLs, it cannot be used directly by pointing a browser’s

proxy settings at it. Although this certainly does not offer any real security, it results in CoralCDN

not appearing on most “open-proxy lists” found on the Web, thus reducing CoralCDN’s exposure.

Domain blacklisting. We currently maintain a global domain-name blacklist that each Coral-

HTTP proxy regularly fetches and reloads during run-time. This blacklist is used to satisfy origin

servers that do not wish their content to be accessed via CoralCDN. Such restrictions are especially

important for sites that perform IP-based authentication, as CoralHTTP proxies may be located

within IP blocks that have been whitelisted by such authorities (this is true for many academic

journals, for instance, as the deployed CoralHTTP proxies mostly run on university networks).

The technical need for such blacklists is not apparent, however; certainly any modern web-

server could reject CoralCDN requests based on its unique User-Agent string (“CoralWebPrx”),

as CoralCDN does not attempt to anonymize itself as an end-user. Indeed, CoralCDN HTTP re-

quests include both Via and X-Forwarded-For headers as well. (In fact, we show in [26] how

web proxies can be detected as such in real-time, even when they do not include required proxy

headers.) In practice, however, many site operators are either unwilling or ill-trained to perform

75

such security checks themselves, and instead issue abuse complaints to operators whose networks

host CoralCDN proxies (i.e., PlanetLab sites). Our use of such blacklists was necessary to enable

CoralCDN to continue to run in such networks.

Interestingly, we have found users that have circumvented these domain-based blacklists by

creating dynamic DNS records for random domains that point to the IP addresses of the desired

target, e.g., an online journal. In these cases, the CoralHTTP proxy check on the domain passes, but

the request is sent through to the origin site. (An IP-based blacklist, on the other hand, could stop

this attack but instead would have to be concerned with origin sites having multiple or dynamic IP

addresses.) It is interesting to note that such circumvention techniques would not be a problem if

origin sites would verify the Host field of the HTTP request, i.e., it corresponds to a valid name for

the website, not a randomly-generated one as above. Unfortunately, again, such security measures

are often not taken.

In the longer term, research towards supporting individualized blacklists at proxies would help

enable deployments under more decentralized control.

Excessive use and recursive looping. As we allude to with the discussion of CoralCDN’s

bandwidth-shaping techniques, CoralHTTP proxies keep a sliding window of client-side usage

patterns. Not only do we seek to prevent excessive bandwidth usage by clients, but also an exces-

sive number of (even small) requests; these are usually caused either by “bots” or recursive HTTP

redirection loops.

Bots occasionally attempt to use CoralCDN to hide their identity while attempting to gain login

access to various servers. However, as CoralCDN both does not support POSTs and forwards

the client’s origin IP address in the X-Forwarded-For header, its usefulness in such settings is

certainly questionable.

We have found multiple instances of recursive looping from misconfigured servers that use dy-

namic URL rewriting to Coralize URLs, i.e., respond to requests for http://example.com/ with

an HTTP redirect to http://example.com.nyud.net/. Some sites choose always to use such

rewriting so that their logs continue to reflect all client requests. Others do so in more inventive

ways: for example, if and only if the request’s Referer header is from a portal such as Slashdot

76

or digg, suggesting a potential flash crowd; or by combining such rewriting with load detection, so

that their servers only start rewriting requests in order to shed load that they otherwise could not

handle.

When using dynamic rewriting, it is critical that sites check that the request is not from a

CoralHTTP proxy itself; otherwise, an HTTP redirect will be cached and returned to the client,

causing a loop (and the real content to be unreachable). For example, a regular-expression rule for

Apache’s mod rewrite would look like the following:

RewriteEngine on

RewriteCond %{HTTP_USER_AGENT} !^CoralWebPrx

RewriteCond %{QUERY_STRING} !(^|&)coral-no-serve$

RewriteRule ^/(.*)$ http://example.com.nyud.net/$1 [R,L]

where the second line checks if the client is a CoralCDN proxy and the third-line checks if the

request is not due to the “failover” condition described in §3.4.2. While CoralHTTP proxies do

perform a simple check for looping—will the Location header returned cause a simple loop—we

have found more complex, multi-hop loops to occur in practice (mostly through misconfigurations,

not malice). Thus, tracking a client’s request frequency at a proxy also helps protect CoralCDN

against such conditions.

Amusingly, some users early during CoralCDN’s deployment caused recursion in a different

way: by submitting URLs with many copies of nyud.net in a hostname’s suffix: L repeated

instances of nyud.net would cause a CoralHTTP proxy to make L recursive requests, stripping

the last instance off in each iteration. CoralHTTP proxies now verify that URLs do not contain

such expressions.

No cookies. CoralCDN does not support cookies; it deletes any Cookie or Set-Cookie HTTP

headers in both directions. Many websites now manage and set cookies via javascript, however,

as opposed to via HTTP headers. This could be problematic from a privacy standpoint if the

CoralHTTP proxies were running on untrusted clients, especially for “third-party” cookies that

could expose linkages between a client’s use of multiple sites. Even worse, however, is that the

“same-origin” RFC-2965 security policies [103] are ill-suited for liberal configuration settings

77

Jan 1 Mar 1 May 1 Jul 1
Level 0 49.6% 60.0% 53.6% 92.2%
Level 1 44.8% 36.3% 37.4% 7.6%
Level 2 5.6% 3.6% 9.0% 0.5%

Figure 3.6: Percentage of DNS responses for selected dates in 2007 that captured locality using
the original CoralDNS servers.

in cookies when combined with CoralCDN’s domain-name modifications and untrusted proxies.

Specifically, if a site (say, a) sets their cookie’s domain as .nyud.net instead of a.nyud.net, any

other site b.nyud.net can read a’s .nyud.net cookies.

3.4.4 Failures of original DNS design

CoralCDN’s DNS mechanism used two methods for server selection: (1) looking up topological

hints in the indexing layer and (2) encoding the cluster level in the returned DNAME alias, so

that if a client ever randomly finds a nearby nameserver, it will “stick” with it. Neither approach

worked particularly well.

First, the topological hints only work if a CoralHTTP proxy is deployed at a site local to the

client. Given that CoralCDN’s user population is spread world-wide, yet CoralCDN is sparsely

deployed—only at a few hundred sites, mostly university networks—fewer than 1% of clients were

found to be local. Thus, not only is such a technique ineffective, but it also requires synchronous,

on-demand probing, yielding both abuse complaints from and unnecessary delays for clients.

Second, most clients interact with CoralCDN to download only a few web objects; client ses-

sions are relatively short. Thus, while the CoralDNS server approach of random walks to find a

nearer nameserver will take only a few iterations in expectation, it is less common that the same

resolver will make multiple DNS requests before its cached nyud.net NS records expires and it

needs to start-over at a random nameserver. (This is compounded by the fact that many browsers

pin name-to-IP mappings for a fixed duration (several minutes), no matter the A record’s TTL.

Such pinning was introduced to prevent some DNS rebinding attacks [90]). Furthermore, the

CoralDNS servers were unable to estimate the locality of a majority of DNS requests (53.6%),

78

after both ICMP and TCP probes failed to return a valid RTT estimate, given the existence of

on-path firewalls and other middleboxes that confound such measurements.7 In total, Figure 3.6

shows the percentage of real DNS requests that took advantage of nameserver locality using the

original CoralDNS server: between 50% and 90% took advantage of no locality, while fewer than

9% used CoralHTTP proxies that were within the local cluster (i.e., a 20 ms diameter from the

CoralDNS server).

Third, the use of DNAME records proved problematic due to forward-compatibility bugs in

some DNS resolvers (e.g., in Windows 2000 and 2003 servers). Per RFC-1123 [18], if DNS re-

solvers receive a response with a mix of resource record types, they should accept the known

types and preserve the unknown types for downstream transmission as opaque data. Unfortunately,

some resolvers reject the entire DNS response if it includes an unsupported DNAME record (type

39), making CoralCDN appear unreachable. Thankfully, most clients do not appear to use such

DNS resolvers; common implementations such as BIND support these record types. As a (ugly)

workaround, the CoralDNS server began returning a DNAME record probabilistically (one-third

of requests), and it otherwise synthesized CNAME records as aliases. (A CNAME record will

only map a specific name a to name a.b, as opposed to the “wildcard” aliasing—any name * to

*.b—provided by DNAMEs. This wildcard matching allows a client’s resolver to satisfy requests

for different Coralized domains using already cached information.) With such probabilistic be-

havior by the CoralDNS server, broken resolvers will need to retry one-third of the time, while

working resolvers will cache the day-long-TTL DNAME record once it is received. Unfortu-

nately, this does not handle every case: if a broken resolver recurses through a working resolver

(e.g., BIND) before it queries a CoralDNS server, the intermediate resolver will cache and propa-

gate such DNAME records correctly, leading back to the problematic condition.

In the next chapter, we introduce an alternative design for DNS redirection. Based on these

above experiences, this new system both avoids any on-demand probing (and minimizes probing

in general), and it returns nearby servers upon the client’s first request.

7In fact, this difficulty in performing active measurement led to our subsequent work on opportunistic
client measurement [26]

79

3.5 Related work on web content distribution

Web caching systems fit within a large class of CDNs that handle high demand through diverse

replication.

Prior to the recent interest in peer-to-peer systems, several projects proposed cooperative web

caching [33, 53, 64, 112]. These systems either multicast queries or require that caches know

some or all other servers, which worsens their scalability, fault-tolerance, and susceptibility to hot

spots. Although the cache hit rate of cooperative web caching increases only to a certain level,

corresponding to a moderate population size [189], highly-scalable cooperative systems can still

increase the total system throughput by reducing server-side load.

Several projects have considered peer-to-peer overlays for web caching, although all such sys-

tems only benefit participating clients and thus require widespread adoption to reduce server load.

Stading et al. use a DHT to cache replicas [174], and PROOFS uses a randomized overlay to

distribute popular content [175]. Both systems focus solely on mitigating flash crowds and suffer

from high request latency. Squirrel proposes web caching on a traditional DHT, although only for

organization-wide networks [89]. Squirrel reported poor load-balancing when the system stored

pointers in the DHT. We attribute this to the DHT’s inability to handle too many values for the same

key—Squirrel only stored 4 pointers per object—while CoralCDN references many more proxies

by storing different sets of pointers on different nodes. SCAN examined replication policies for

data disseminated through a multicast tree from a DHT deployed at ISPs [36].

Akamai [2], LimeLight [108], and other commercial CDNs use DNS redirection to reroute

client requests to local clusters of machines, having built detailed maps of the Internet through a

combination of BGP feeds and their own measurements, such as traceroutes from numerous van-

tage points [173]. Then, upon reaching a cluster of collocated machines, hashing schemes [94, 180]

map requests to specific machines in order to increase their usable storage capacity. These systems

require deploying large numbers of highly-provisioned servers, and typically result in very good

performance (both latency and throughput) for customers. CoralCDN offers less aggregate storage

capacity than such networks, as cache management is completely localized. But, it is designed

for a much larger number of machines and vantage points: CoralCDN may provide better perfor-

80

mance for small organizations hosting nodes, as it is not economically efficient for commercial

CDNs to deploy machines behind most bottleneck links (e.g., LimeLight builds out their network

by deploying higher numbers of servers at still relatively few data centers).

At about the same time as CoralCDN’s deployment, CoDeeN started providing users with a set

of open web proxies [42, 186]. Users can reconfigure their browsers to use a CoDeeN proxy and

subsequently enjoy better performance. The system has also been deployed on PlanetLab, and it

has been enjoyed similar success at distributing content efficiently. Although CoDeeN gives par-

ticipating users better performance to most websites, CoralCDN’s goal is to gives most users better

performance to participating websites—namely those whose publishers have Coralized the URLs.

The two design points pose somewhat different challenges. For instance, CoralCDN takes pains to

greatly minimize the load on under-provisioned origin servers, while CoDeeN has tighter latency

requirements as it is on the critical path for all web requests. More recently, CobWeb [172] has

taken a similar approach to CoDeeN, but using proactive replication for managing content [149].

This approach can yield high performance, but, much like CoDeeN, it has the key-value layer con-

trol data placement on participating nodes, as opposed to just using an indexing system such as

Coral to leverage nodes’ underlying access patterns.

81

Chapter 4

Building OASIS, an Anycast System for

Server Selection

This chapter focuses on a flexible solution for the server-selection problem faced by all CDN ser-

vices. However, instead of designing an anycast system to serve a single service—as the original

CoralCDN DNS servers (§3.2.4) were designed to do—the next system we present, OASIS, may

be used by many services simultaneously. In fact, OASIS incentivizes participation as its accuracy

improves and cost per participant decreases as more services adopt OASIS. OASIS again demon-

strates our general approach to building democratizing systems: leverage resources across many

unreliable or untrusted resources, wherever they may be found. While CoralCDN utilizes band-

width and storage resources, OASIS leverages participants for information that may be gleaned

from their unique and distinct network vantage points.

4.1 Motivation

When a client interacts with a distributed system such as CoralCDN, the performance and cost

of these systems depend highly on the client’s choice of servers. File download times can vary

greatly based on the locality and load of the chosen service instance, or server replica. A service

82

provider’s costs may depend on their servers’ load spikes, as many collocation data centers charge

customers based on the 95th-percentile usage over all five-minute periods in a month.

Unfortunately, common techniques for replica selection produce sub-optimal results. Asking

human users to select the best replica is both inconvenient and inaccurate. Round-robin and other

primitive DNS techniques spread load, but do little for network locality.

Indeed, using peers to cooperatively distribute content should not happen haphazardly. For

example, recent studies have shown that a overwhelming percentage of wide-area transfers in peer-

to-peer file sharing are unnecessary: up to 90% of this ingress traffic at edge networks corresponds

to data already residing at local hosts [93]. Such a situation goes directly to the need for better

locality- and load-award mechanisms for content discovery and server selection, even more so

when the choice of content sources is large.

In response, more accurate techniques for server selection have been developed. When a legacy

client initiates an anycast request—i.e., give me one from the set of all servers—these techniques

typically probe the client from a number of vantage points, and then use this information to find the

closest server. While more sophisticated efforts, such as virtual coordinate systems [46, 129] and

on-demand probing overlays [167, 191], have sought to reduce the probing overhead, the savings

in overhead comes at a cost of accuracy.

Nevertheless, significant on-demand probing is still necessary for all these techniques, and

this overhead is reincurred by every new deployed service. While on-demand probing potentially

offers greater accuracy, it has several drawbacks that we experienced first-hand when deploying

CoralCDN. First, probing adds latency, which can be significant for small web requests. Second,

performing several probes to a client often triggers intrusion-detection alerts, resulting in abuse

complaints. This mundane problem can pose real operational challenges for a deployed system.

This chapter presents OASIS (Overlay-based Anycast Service InfraStructure), a shared server-

selection infrastructure. OASIS is designed to be used by many services simultaneously: Services

that adopt OASIS provide increasing numbers of network vantage points, resulting in improve-

ments in OASIS’s locality accuracy and decreases in its network probing cost per participating

replica.

83

OASIS is organized as an infrastructure overlay, providing high availability and scalability.

OASIS allows a service to register a list of servers, then answers the general query, “Which server

should the client contact?” Selection is primarily optimized for network locality, but also incorpo-

rates liveness and load.

To eliminate on-demand probing when clients make anycast requests, OASIS probes clients in

the background. One of OASIS’s main contributions is a set of techniques that makes it practical

to measure the entire Internet in advance. By leveraging the locality of IP prefixes—as learned

through our previous measurement research [61]—OASIS probes only each prefix, not each client.

In practice, IP prefixes from BGP dumps are used as a starting point. OASIS delegates measure-

ments to the service replicas themselves, thus amortizing costs (approximately 2–10 GB/week)

across multiple services, resulting in an acceptable per-node cost.

To share OASIS across services and to make background probing feasible, OASIS requires

stable network coordinates for maintaining locality information. Unfortunately, virtual coordi-

nates tend to drift over time. Thus, since OASIS seeks to probe an IP prefix as infrequently as

once a week, virtual coordinates would not provide sufficient accuracy. Instead, OASIS stores the

geographic coordinates of the replica closest to each prefix it maps.

OASIS is publicly deployed on PlanetLab [145] and has already been adopted by about a dozen

services. We have implemented a DNS redirector that performs server selection upon hostname

lookups, thus supporting a wide range of unmodified client applications. We also provide an

HTTP and RPC interface to expose its anycast and locality-estimation functions to OASIS-aware

hosts [130].

Experiments from our deployment have shown rather surprisingly that the accuracy of OASIS

is competitive with Meridian [191], currently the best on-demand probing system. In fact, OASIS

performs better than all replica-selection schemes we evaluated across a variety of metrics, includ-

ing resolution and end-to-end download times for simulated web sessions, while incurring much

less network overhead.

84

Keyword Threads Msgs Keyword Threads Msgs
abuse 198 888 ICMP 64 308
attack 98 462 IDS 60 222
blacklist 32 158 intrusion 14 104
block 168 898 scan 118 474
complaint 216 984 trojan 10 56
flood 4 30 virus 24 82

Figure 4.1: PlanetLab abuse complaints. Frequency count of keywords in PlanetLab support-
community archives from 14-Dec-04 through 30-Sep-05, comprising 4682 messages and 1820
threads. Values report number of messages and unique threads containing keyword.

4.2 Design

An anycast infrastructure like OASIS faces three main challenges. First, network peculiarities are

fundamental to Internet-scale distributed systems. Large latency fluctuations, non-transitive rout-

ing (§2.2.4), and middleboxes such as transparent web proxies, NATs, and firewalls can produce

wildly inaccurate network measurements and hence suboptimal anycast results.

Second, the system must balance the goals of accuracy, response time, scalability, and avail-

ability. In general, using more measurements from a wider range of vantage points should result in

greater accuracy. However, probing clients on-demand increases latency and may overemphasize

transient network conditions. A better approach is to probe networks in advance. However, ser-

vices do not know which clients to probe a priori, so this approach effectively requires measuring

the whole Internet, a seemingly daunting task.

A shared infrastructure, however, can spread measurement costs over many hosts and gain

more network vantage points. Of course, these hosts may not be reliable. While structured peer-

to-peer systems [162, 177] can, theoretically, deal well with unreliable hosts, such protocols add

significant complexity and latency to a system and break compatibility with existing clients. For

example, DNS resolvers and web browsers deal poorly with unavailable hosts since hosts cache

stale addresses longer than appropriate.

Third, even with a large pool of hosts over which to amortize measurement costs, it is impor-

tant to minimize the rate at which any network is probed. Past experience [59] has shown us that

85

repeatedly sending unusual packets to a given destination often triggers intrusion detection sys-

tems and results in abuse complaints. For example, PlanetLab’s support-community mailing list

receives thousands of complaints yearly due to systems that perform active probing; Figure 4.1

lists the number and types of complaints received over one ten-month period. They range from

benign inquiries to blustery threats to drastic measures such as blacklisting IP addresses and entire

netblocks. Such measures are not just an annoyance; they impair the system’s ability to function.

This section describes how OASIS’s design tackles the above challenges. A two-tier archi-

tecture (§4.2.1) combines a reliable core of hosts that implement anycast with a larger number of

replicas belonging to different services that also assist in network measurement. OASIS minimizes

probing and reduces susceptibility to network peculiarities by exploiting geographic coordinates

as a basis for locality (§4.2.2.2). We assume that every replica knows its latitude and longitude,

which already provides some information about locality before any network measurement. Then,

in the background, OASIS estimates the geographic coordinates of every netblock on the Internet.

Because the physical location of IP prefixes rarely changes [153], an accurately pinpointed net-

work can be safely re-probed very infrequently (say, once a week). Such infrequent, background

probing both reduces the risk of abuse complaints and allows fast replies to anycast requests with

no need for on-demand probing.

4.2.1 System overview

Figure 4.2 shows OASIS’s high-level architecture. The system consists of a network of core nodes

that help clients select appropriate replicas of various services. All services employ the same core

nodes; we intend this set of infrastructure nodes to be small enough and sufficiently reliable so

that every core node can know most of the others. Replicas also run OASIS-specific code, both

to report their own load and liveness information to the core, and to assist the core with network

measurements. Clients need not run any special code to use OASIS, because the core nodes provide

DNS- and HTTP-based redirection services. An RPC interface is also available to OASIS-aware

clients.

Though the three roles of core node, client, and replica are distinct, the same physical host

86

Service 2Service 1

 OASIS

Clients

Figure 4.2: OASIS system overview

often plays multiple roles. In particular, core nodes are all replicas of the OASIS RPC service, and

often of the DNS and HTTP redirection services as well. Thus, replicas and clients typically use

OASIS itself to find a nearby core node.

Figure 4.3 shows various ways in which clients and services can use OASIS. The top diagram

shows an OASIS-aware client, which uses DNS-redirection to select a nearby replica of the OASIS

RPC or HTTP service (i.e., a core node), then queries that node to determine the best replica of

Service 1.

The middle diagram shows how to make legacy clients select replicas using DNS redirection.

The service provider advertises a domain name served by OASIS. When a client looks up that

domain name, OASIS first redirects the client’s resolver to a nearby replica of the DNS service

(which the resolver will cache for future accesses). The nearby DNS server then returns the address

of a Service 2 replica suitable for the client. This result can be accurate if clients are near their

resolvers, which is often, although not always, the case (e.g., per [114] and 4.2.2.2).

The bottom diagram shows a third technique, based on service-level (e.g., HTTP) redirection.

Here the replicas of Service 3 are also clients of the OASIS RPC service. Each replica connects to

a nearby OASIS core node selected by DNS redirection. When a client connects to a replica, that

replica queries OASIS to find a better replica, then redirects the client. Such an approach does not

require that clients be located near their resolvers in order to achieve high accuracy.

87

Client

Service 1

Resolv

OASIS
OASIS
core OASIS

core

Replica
Srv

Replica
Srv

1: DNS

2: RPC / HTTP
3: APP J

I

(a) OASIS-aware client using RPC or HTTP

Client

Service 2

Resolv

OASIS
OASIS
core OASIS

core

Replica
Srv

Replica
Srv

1: DNS

2: DNS
3: APP J

I

(b) DNS redirection via OASIS

Client

Service 3

OASIS
OASIS
core OASIS

core

Replica
Srv

Replica
Srv

2: RPC
 / HTTP

3: APP J1: APP
I

0: DNS
K

(c) Service-level redirection via OASIS

Figure 4.3: Various methods of using OASIS via its DNS, HTTP, or RPC interfaces, and the steps
involved in each anycast request.

88

response

anycast request

bucketing service

IP prefix

IP addr name

proximity liveness coords

policy

Figure 4.4: Logical steps to answer an anycast request

In the remainder of this section, we largely focus on DNS redirection, since it is the easiest to

integrate with existing applications.

4.2.2 Design decisions

Given a client IP address and service name, the primary function of the OASIS core is to re-

turn a suitable service replica. For example, an OASIS nameserver calls its core node with the

client resolver’s IP address and a service name extracted from the requested domain name (e.g.,

coralcdn.nyuld.net indicates service coralcdn).

Figure 4.4 shows how OASIS resolves an anycast request. First, a core node maps the client IP

address to a network bucket, which aggregates adjacent IP addresses into netblocks of collocated

hosts. It then attempts to map the bucket to a location (i.e., coordinates). If successful, OASIS

returns the closest service replica to that location (unless load-balancing requires otherwise, as

described in §4.2.3.4). Otherwise, if it cannot determine the client’s location, it returns a random

replica.

The anycast process relies on four databases maintained in a distributed manner by the core:

89

(1) a service table lists all services using OASIS (and records policy information for each service),

(2) a bucketing table maps IP addresses to buckets, (3) a proximity table maps buckets to locations,

and (4) one liveness table per service includes all live replicas belonging to the service and their

corresponding information (e.g., coordinates, load, and capacity).

4.2.2.1 Buckets: The granularity of mapping hosts

OASIS must balance the precision of identifying a client’s network location with its state require-

ments. One strawman solution is simply to probe every IP address ever seen and cache results

for future requests. Many services have too large a client population for such an approach to be

attractive. For DNS redirection, probing each DNS resolver would be practical if the total number

of resolvers were small and constant. Unfortunately, measurements at DNS root servers [99] have

shown many resolvers use dynamically-assigned addresses, thus precluding a small working set.

Fortunately, our previous research has shown that IP aggregation by prefix often preserves

locality [61]. For example, of the autonomous systems we analyzed, more than 99% of /24 IP

prefixes announced by stub autonomous systems (and 97% of /24 prefixes announced by all au-

tonomous systems) are at the same location. Thus, we aggregate IP addresses using IP prefixes as

advertised by BGP, using BGP dumps from RouteViews [160] as a starting point.1

However, some IP prefixes (especially larger prefixes) do not preserve locality [61]. OASIS

discovers and adapts to these cases by splitting prefixes that exhibit poor locality precision,2 an

idea originally proposed by IP2Geo [133]. Using IP prefixes as network buckets not only improves

scalability by reducing probing and state requirements, but also provides a concrete set of targets

to precompute and hence avoids on-demand probing.

1For completeness, we also note that OASIS currently supports aggregating by the less-locality-
preserving autonomous system number, although we do not present the corresponding results in this chapter.

2We deem that a prefix exhibits poor locality if probing different IP addresses within the prefix yields
coordinates with high variance.

90

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140 160 180

R
ou

nd
-t

rip
-t

im
e

(m
s)

Geographic coodinate distance (degrees)

Figure 4.5: Correlation between round-trip-times and geographic distance across all PlanetLab
hosts [178].

4.2.2.2 Geographic coordinates for location

OASIS takes a two-pronged approach to locate IP prefixes: We first use a direct probing mecha-

nism [191] to find the replica closest to the prefix, regardless of service. Then, we represent the

prefix by the geographic coordinates of this closest replica and its measured round-trip-time to the

prefix. We assume that all replicas know their latitude and longitude, which can be easily obtained

from a variety of online geocoding services given knowledge of a replica’s street-level or city-level

location.

While geographic coordinates are certainly not optimal predictors of round-trip-times, they

work well in practice: The heavy band in Figure 4.5 shows a strong linear correlation between ge-

ographic distance and RTT. In fact, anycast only has the weaker requirement of predicting a relative

ordering of nodes for a prefix, not an accurate RTT estimation. For comparison, we also imple-

mented Vivaldi [46] and GNP [129] coordinates within OASIS; §4.3 includes some comparison

results.

More importantly, however, as OASIS is fundamentally designed as a shared service, it has the

potential for dense deployments. That is, the more third-party services that adopt OASIS, the more

vantage points OASIS has with which to perform network measurement and probing (i.e., using

those services’ replicas). This is a virtuous cycle, as higher accuracy may incentivize more services

91

CDF percentile Distance (km)
50.0 5.74
75.0 299.59
90.0 681.14
95.0 1055.74
99.0 3885.64
99.9 12195.10

Figure 4.6: Distance (km) between clients and their DNS resolver

to join OASIS, which again leads to denser deployments: as such, OASIS will operate towards the

lower-left-side of Figure 4.5, where there are relatively few outliers in which geographic distance

is not a good predictor of network latency. In the limit, OASIS will gain a vantage point in nearly

every significant network, and thus minimize the potential networks for which it does not have a

good coordinate prediction.

Finally, at least for DNS redirection, there is a limit to the accuracy that any anycast system can

hope to achieve, as DNS redirection is done with respect to the client’s DNS resolver’s IP address,

not that of the client. Figure 4.6 shows the measured distance between clients and their DNS

resolvers. (This large-scale study of clients we performed [26] included 1.78 million pairs of clients

and their DNS resolvers; for this study, we got access to Quova’s IP geolocation database [147].3)

We found that while clients are often close to their resolvers, the association is not perfect: 10% are

more than 680 km apart, while 1% are over 3800 km apart.4 Thus, attempts to find more accurate

representations of Internet locality may yield diminishing results.

The advantage of our two-pronged approach—denoting geographic coordinates with their RTT

accuracy—is several-fold:

3It’s important to recognize that Quova is attempting to solve a similar geolocation problem as OASIS.
Quova’s solution, however, requires the use of limited, manually-deployed vantage points and significant
human operator analysis and expertise, while OASIS attempts to build a much larger network of partici-
pating replicas to leverage for network measurement and to perform geolocation in an automated fashion
from known locations. Furthermore, Quova focuses solely on being a data provider, while OASIS builds a
complete and flexible anycast system.

4Of course, this evaluation is only as accurate as Quova’s geolocation database which, while an industry
leader, cannot be easily evaluated in terms of absolute accuracy in any statistically-significant manner.

92

Time- and service-invariant coordinates. Since geographic coordinates are stable over time,

they allow OASIS to probe each prefix infrequently. Since geographic coordinates are indepen-

dent of the services, they can be shared across services—an important requirement since OASIS is

designed as a shared infrastructure. Geographic coordinates remain valid even if the closest replica

fails. In contrast, virtual coordinate systems [46, 129] fall short of providing either accuracy or sta-

bility [167, 191]. Similarly, simply recording a prefix’s nearest replica—without its corresponding

geographic coordinates—is useless if that nearest replica fails. Such an approach also requires a

separate mapping per service.

Absolute error predictor. Another advantage of our two-pronged approach is that the RTT

between a prefix and its closest replica is an absolute bound on the accuracy of the prefix’s esti-

mated location. This bound suggests a useful heuristic for deciding when to re-probe a prefix to

find a better replica. If the RTT is small (a few milliseconds), reprobing is likely to have little

effect. Conversely, reprobing prefixes having high RTTs to their closest replica can help improve

accuracy when previous attempts missed the best replica or newly-joined replicas are closer to the

prefix. Furthermore, a prefix’s geographic coordinates will not change unless it is probed by a

closer replica. Of course, IP prefixes can physically move, but this happens rarely enough [153]

that OASIS only expires coordinates after one week. Moving a network can therefore result in

sub-optimal predictions for at most one week.

Sanity checking via constraint satisfaction. A number of network peculiarities can cause in-

correct network measurements. For example, a replica behind a transparent web proxy may erro-

neously measure a short RTT to some IP prefix, when in fact it has only connected to the proxy.

Replicas behind firewalls may believe they are pinging a remote network’s firewall, when really

they are probing their own. Or a malicious replica or service may attempt to purposely inject

incorrect locality information into OASIS. OASIS currently employs a number of tests to detect

such situations (see §4.4); we do not, however, want to base the accuracy of our system on the

assumption that such ad-hoc tests will provide full coverage from erroneous results.

Yet because our approach gives this absolute error bound, we can perform simple constraint

93

satisfaction checks on returned results, i.e., do they obey physical constraints due to the speed-of-

light propagation delay in fiber? The core only accepts a prefix-to-coordinate mapping after seeing

two consistent measurements from replicas on different networks (to capture network peculiarities

such as firewalls) and belonging to different services (to capture potential service-wide malicious

behavior).

In hindsight, another significant benefit of geographic coordinates is the ability to couple them

with real-time visualization of the network [130], which has helped us identify, debug, and subse-

quently handle these various network peculiarities.

4.2.2.3 System management and data replication

To achieve scalability and robustness, the location information of prefixes must be made available

to all core nodes. We now describe OASIS’s main system management and data organization

techniques.

Gossiping. Designed as an infrastructure service, every OASIS core node maintains a global

view of all other nodes in the core, using the scalable failure detection subsystem (described in

§2.2.2) to keep this membership set weakly-consistent. Implicit in this design is the assumption

that nodes are relatively stable; otherwise, the system would incur a high bandwidth cost for failure

announcements.

Additionally, the gossiping mechanism used by this group membership layer is used to ef-

ficiently disseminate other system messages, including information about service policy updates

and new prefix coordinates. The group membership messages, in fact, can just be piggybacked on

top of these preexisting system messages (as they are meant to be broadcast through the network,

and thus are forwarded to randomly-chosen neighbors, as required by the epidemic gossiping al-

gorithm).

Consistent hashing. OASIS tasks must be assigned to nodes in some globally-known yet fully-

decentralized manner. For example, to decide the responsibility of mapping specific IP prefixes,

94

Replica
App server

DB

OASIS
core
node

DNS

RPC

Replica

OASIS server

HTTPD

reg

reg

Figure 4.7: OASIS system components. Interfaces query core functionality to answer client anycast
requests (dashed arrows from DNS and RPC). Services and interfaces register with the core to
enable discovery.

we partition the set of prefixes over all nodes. Similarly, we assign specific nodes to play the role

of a service rendezvous to aggregate information about a particular service (described in §4.2.3.3).

OASIS provides this assignment through its use of consistent hashing to build a distributed

key-value index, as describe in §2.2. Each node has a random identifier; a key in the system—e.g.,

the SHA-1 hash of the IP prefix or service name—is mapped to several nodes with the closest node

identifiers. Finding these nodes is easy, of course, since all nodes have a global view. While nodes’

views of the set of closest nodes are not guaranteed to be consistent, views can be easily reconciled

using nodes’ incarnation numbers. This replication of function is robust to node failures, while our

use of a forward primitive that enables indirect routing (as described in §2.2.4) allows nodes to

route around network failures to reach their desired target in the overlay.

We note that the design of OASIS is not at odds with a DHT-based key-value index. Rather,

given the levels of scalability that we believe are required to provide OASIS’s functionality, we

eschewed such a design given the performance and simplicity of the above.

Soft-state replica registration. OASIS must know all replicas belonging to a service in order

to answer corresponding anycast requests. To tolerate replica failures robustly, replica informa-

95

tion is maintained using soft-state: replicas periodically send registration messages to core nodes

(currently, every 60 seconds).

Hosts running services that use OASIS for anycast—such as the web server shown in Fig-

ure 4.7—run a separate replica process that connects to their local application (i.e., the web server)

every keepalive period (currently set to 15 seconds). The application responds with its current load

and capacity. While the local application remains alive, the replica continues to refresh its locality,

load, and capacity with its OASIS core node.5

Service discovery. OASIS’s anycast functionality provides an elegant approach for service

discovery and bootstrapping: OASIS can support multiple protocol interfaces—DNS, RPC, and

HTTP currently—without requiring that every node support every interface. (Our current deploy-

ment on PlanetLab, for example, does not have access to UDP port 53 on every host on which to

run its DNS server.) To enable clients to find a nearby or unloaded node running the desired inter-

face, OASIS runs its various interfaces just as any other service, using a replica process to register

its interfaces, as shown in Figure 4.7. Thus, to access a particular OASIS interface for subse-

quent requests, a client can simply issue a DNS request for the desired interface: dns.nyuld.net,

rpc.nyuld.net, http.nyuld.net, and so forth.

Closest-node discovery. OASIS offloads all measurement costs to service replicas. All repli-

cas, belonging to different services, form a lightweight overlay, in order to answer closest-replica

queries from core nodes. Each replica organizes its neighbors into concentric rings of exponentially-

increasing radii, as proposed by Meridian [191]: A replica accepts a neighbor for ring i only if its

RTT is between 2i and 2i+1 milliseconds. To find the closest replica to a destination d, a query

operates in successive steps that “zero in” on the closest node in an expected O(log n) steps. At

each step, a replica with RTT r from d chooses neighbors to probe d, restricting its selection to

those with RTTs (to itself) between 1
2
r and 3

2
r. The replica continues the search on its neighbor

5Alternatively, a service can adopt OASIS without modifying the local application by instead using
scripts to check application liveness and load and to respond to keepalive queries, although this approach
may have less application-level knowledge.

96

returning the minimum RTT to d. The search stops when the latest replica knows of no other

potentially-closer nodes.

Our implementation differs from [191] in that we perform closest routing iteratively, as opposed

to recursively: The first replica in a query initiates each progressive search step. This design trades

overlay routing speed for greater robustness to packet loss.

4.2.3 Architecture

In this section, we describe the distributed architecture of OASIS in more detail: its distributed

management and collection of data, locality and load optimizations, scalability, and security prop-

erties.

4.2.3.1 Managing information

We now describe how OASIS manages the four tables described in §4.2.2. OASIS optimizes

response time by heavily replicating most information. Service, bucketing, and proximity infor-

mation need only be weakly consistent; stale information only affects system performance, not its

correctness. On the other hand, replica liveness information must be more fresh.

Service table. When a service initially registers with OASIS, it includes a service policy that

specifies its service name and any domain name aliases, its desired server-selection algorithm, a

public signature key, the maximum and minimum number of addresses to be included in client

responses, and the TTLs of these responses (if applicable). Each core node maintains a local copy

of the service table to be able to efficiently handle requests. When a new service joins OASIS or

updates its existing policy, its policy is disseminated throughout the system by gossiping.

The server-selection algorithm specifies how to order replicas as a function of their distance,

load, and total capacity when answering anycast requests. By default, OASIS ranks nodes by

their coordinate distance to the target, favoring nodes with greater excess capacity to break ties.

The optional signature key is used to authorize replicas registering with an OASIS core node as

belonging to the service (see §4.2.3.5).

97

Bucketing table. An OASIS core node uses its bucketing table to map IP addresses to IP prefixes.

We bootstrap the table using BGP feeds from RouteViews [160], which has approximately 200,000

prefixes. A PATRICIA trie [125] efficiently maps IP addresses to prefixes using longest-prefix

matching.

When core nodes modify their bucketing table by splitting or merging prefixes [133], these

changes are gossiped in order to keep nodes’ tables weakly consistent. Again, stale information

does not affect system correctness: prefix withdrawals are only used to reduce system state, while

announcements are used only to identify more precise coordinates for a prefix.

Proximity table. When populating the proximity table, OASIS seeks to find accurate coordinates

for every IP prefix, while preventing unnecessary reprobing.

OASIS maps an IP prefix to the coordinates of its closest replica. To discover the closest

replica, a core node first selects an IP address from within the prefix and issues a probing request

to one or more known replicas (or first queries a neighbor to discover some). Each selected replica

traceroutes the requested IP to find the last routable IP address, performs closest-node discovery

using the replica overlay (see §4.2.2.3), and, finally, returns the coordinates of the nearest replica

and its RTT distance from the target IP. If the prefix’s previously recorded coordinate has either ex-

pired or has a larger RTT from the prefix—and provided that the new prefix passes sanity checking

(4.2.2.2)—the OASIS core node reassigns the prefix to these new coordinates and starts gossiping

this information.

To prevent many nodes from probing the same IP prefix, the system assigns prefixes to nodes

using consistent hashing. That is, several nodes closest to hash(prefix) are responsible for probing

the prefix (three by default). All nodes go through their subset of assigned prefixes in random

order, probing the prefix if its coordinates have not been updated within the last Tp seconds. Tp is

a function of the coordinate’s error, such that highly-accurate coordinates are probed at a slower

rate (see §4.2.2.2).

Liveness table. For each registered service, OASIS maintains a liveness table of known replicas.

Gossiping is not appropriate to maintain these liveness tables at each node: stale information could

98

cause nodes to return addresses of failed replicas, while high replica churn would require excessive

gossiping and hence bandwidth consumption.

Instead, OASIS aggregates liveness information about a particular service at a few service

rendezvous nodes, which are selected by consistent hashing. When a replica joins or leaves the

system, or undergoes a significant load change, the OASIS core node with which it has registered

sends an update to one of the k nodes closest to hash(service). For scalability, these rendezvous

nodes only receive occasional state updates, not each soft-state refresh continually sent by replicas

to their core nodes. Rendezvous nodes can dynamically adapt the parameter k based on load,

which is then gossiped as part of the service’s policy. By default, k = 4, which is also configured

as the dynamic lower bound.

Rendezvous nodes regularly exchange liveness information with one another, to ensure that

their liveness tables remain weakly consistent. If a rendezvous node detects that a core node

fails (via OASIS’s failure detection mechanism), it invalidates all replicas registered by that node.

These replicas will subsequently re-register with a different core node and their information will

be re-populated at the rendezvous nodes.

Compared to logically-decentralized systems such as DHTs [162, 177], this aggregation at

rendezvous nodes allows OASIS to provide faster response (similar to one-hop lookups) and to

support complex anycast queries (e.g., as a function of both locality and load).

4.2.3.2 Putting it together: Resolving anycast

Given the architecture that we have presented, we now describe the steps involved when resolving

an anycast request (see Figure 4.8). For simplicity, we limit our discussion to DNS redirection.

When a client queries OASIS for a hostname—e.g., coralcdn.nyuld.net—for the first time:

1. The client queries the DNS root servers, finding an OASIS nameserver I for nyuld.net to

which it sends the request.

2. Core lookup: OASIS core node I finds other core nodes near the client that support the

DNS interface by executing the following steps:

99

Resolv
1

3

OASIS
rendezv

coralcdn

dns

24

OASIS
Consistent

Hashing
J

I

SJ

S
I

OASIS
rendezv

OASIS
core

OASIS
core

Figure 4.8: Steps involved in a DNS anycast request to OASIS using rendezvous nodes.

(a) I locally maps the client’s IP address to IP prefix, and then prefix to location coordi-

nates.

(b) I queries one of the k rendezvous nodes for service dns, call this node SI , sending the

client’s coordinates.

(c) SI responds with the best-suited OASIS nameservers for the specified coordinates.

(d) I returns this set of DNS replicas to the client. Let this set include node J .

3. The client resends the anycast request to J .

4. Replica lookup: Core node J finds replicas near the client using the following steps:

(a) J extracts the request’s service name and maps the client’s IP address to coordinates.

(b) J queries one of the k rendezvous nodes for service coralcdn, call this SJ .

(c) SJ responds with the best coralcdn replicas, which J returns to the client.

Although DNS is a stateless protocol, we can force legacy clients to perform such two-stage

lookups, as well as signal to their nameservers which stage they are currently executing. Sec-

tion §4.2.4 gives implementation details.

100

4.2.3.3 Improving scalability and latency

While OASIS can support a large number of replicas by simply adding more nodes, the anycast

protocol described in §4.2.3.2 has a bottleneck in scaling to large numbers of clients for a particular

service: one of the k rendezvous nodes is involved in each request. We now describe how OASIS

reduces these remote queries to improve both scalability and client latency.

Improving core lookups. OASIS first reduces load on rendezvous nodes by lowering the fre-

quency of core lookups. For DNS-based requests, OASIS uses relatively-long TTLs for OASIS

nameservers (currently 15 minutes) compared to those for third-party replicas (configurable per

service, 60 seconds by default). These longer TTLs seem acceptable given that OASIS is an

infrastructure service, and that resolvers can failover between nameservers since OASIS returns

multiple, geo-diverse nameservers.

Second, we observe that core lookups are rarely issued to random nodes: Core lookups in DNS

will initially go to one of the twelve primary nameservers registered for .nyuld.net in the main

DNS hierarchy. So, we can arrange the OASIS core so that these 12 primary nameservers play the

role of rendezvous nodes for dns, by simply having them choose k=12 consecutive node identifiers

for consistent hashing (in addition to their normal random identifiers). This configuration reduces

latency by avoiding remote lookups.

Improving replica lookups. OASIS further reduces load by leveraging request locality. Since

both clients and replicas are redirected to their nearest OASIS core nodes—when performing any-

cast requests and initiating registration, respectively—hosts redirected to the same core node are

likely to be close to one another. Hence, on receiving a replica lookup, a core node first checks

its local liveness table—which has cached liveness information about replicas directly registering

with it—for any replica that satisfies the service request.

To improve the effectiveness of using local information, OASIS also uses local flooding: Each

core node receiving registrations sends these local replica registrations to some of its closest neigh-

bors. (“Closeness” is calculated using coordinate distance, not round-trip-time latency, to mirror

the same selection criterion used for anycast.) Intuitively, this approach helps prevent situations in

101

which replicas and clients select different collocated nodes and therefore lose the benefit of local

information. We analyze the performance benefit of local flooding in §4.3.1.

OASIS implements other obvious strategies to reduce load, including having core nodes cache

replica information returned by rendezvous nodes and batch replica updates to rendezvous nodes.

4.2.3.4 Selecting replicas based on load

While our discussion has mostly focused on locality-based replica selection, OASIS supports mul-

tiple selection algorithms incorporating factors such as load and capacity. However, in most prac-

tical cases, load-balancing need not be perfect; a reasonably good node is often acceptable. For

example, to reduce costs associated with “95th-percentile billing,” only the elimination of traffic

spikes is critical. To eliminate such spikes, a service’s replicas can track their 95% bandwidth us-

age over five-minute windows, then report their load to OASIS as the logarithm of this bandwidth

usage. By specifying load-based selection in its policy, a service can ensure that its 95% band-

width usage at its most-loaded replica is within a factor of two of its least-loaded replica; we have

evaluated this policy in §4.3.2.

However, purely load-based metrics cannot be used in conjunction with many of the optimiza-

tions that reduce replica lookups to rendezvous nodes (§4.2.3.3), as locality does not play a role

in such replica selection. On the other hand, the computation performed by rendezvous nodes

when responding to such replica lookups is much lower: while answering locality-based lookups

requires the rendezvous node to compute the closest replica(s) with respect to the client’s location,

answering load-based lookups requires the node simply to return the first element(s) of a single list

of service replicas, sorted by increasing load. The ordering of this list needs to be recomputed only

when replicas’ loads change.

4.2.3.5 Security properties

OASIS has the following security requirements. First, it should prohibit unauthorized replicas from

joining a registered service. Second, it should limit the extent to which a particular service’s repli-

102

cas can inject bad coordinates. Finally, it should prevent adversaries from using the infrastructure

as a platform for DDoS attacks.

We assume that all OASIS core nodes are trusted; they do not gossip false bucketing, coordi-

nates, or liveness information. We also assume that core nodes have loosely synchronized clocks

to verify expiry times for replicas’ authorization certificates. (Loosely-synchronized clocks are

also required to compare registration expiry times in liveness tables, as well as measurement times

when determining whether to reprobe prefixes.) Additionally, we assume that services joining OA-

SIS have some secure method to initially register a public key. An infrastructure deployment of

OASIS may have a single or small number of entities performing such admission control; the ser-

vice provider(s) deploying OASIS’s primary DNS nameservers are an obvious choice. Less secure

schemes such as using DNS TXT records may also be appropriate in certain contexts.

To prevent unauthorized replicas from joining a service, a replica must present a valid, fresh

certificate signed by the service’s public key when initially registering with the system. This cer-

tificate includes the replica’s IP address and its coordinates. By providing such admission control,

OASIS only returns IP addresses that are authorized as valid replicas for a particular service.

OASIS limits the extent to which replicas can inject bad coordinates by evicting faulty repli-

cas or their corresponding services. We believe that sanity-checking coordinates returned by the

replicas—coupled with the penalty of eviction—is sufficient to deter services from assigning inac-

curate coordinates for their replicas and replicas from responding falsely to closest-replica queries

from OASIS.

Finally, OASIS prevents adversaries from using it as a platform for distributed denial-of-service

attacks by requiring that replicas accept requests to perform closest-replica discovery only from

core nodes. It also requires that a replica’s overlay neighbors are authorized by OASIS (hence,

replicas only accept probing requests from other approved replicas). OASIS itself has good resis-

tance to DoS attacks, as most client requests can be resolved using information stored locally, i.e.,

not requiring wide-area lookups between core nodes.

103

4.2.4 Implementation

OASIS’s implementation consists of three main components: the OASIS core node, the service

replica, and stand-alone interfaces (including DNS, HTTP, and RPC). All components are im-

plemented in C++ and use the asynchronous I/O library from the SFS toolkit [118], structured

using asynchronous events and callbacks. The core node comprises about 12,000 lines of code, the

replica about 4,000 lines, and the various interfaces about 5,000 lines. The bucketing table is main-

tained using an in-memory PATRICIA trie [125], while the proximity table uses BerkeleyDB [171]

for persistent storage.

OASIS’s design uses static latitude/longitude coordinates with Meridian overlay probing [191].

For comparison purposes, OASIS also can be configured to use synthetic coordinates using Vi-

valdi [46] or GNP [129].

RPC and HTTP interfaces. OASIS’s RPC and HTTP interfaces take additional inputs and

expose extra functionality as compared to DNS. Figure 4.9 gives the queries currently supported

by OASIS’s HTTP interface (with function arguments passed as query string parameters). It can,

for example, perform an anycast request with respect to any specified IP address, as opposed to that

of the requesting client’s, to support HTTP redirectors for third-party services (Figure 4.3). These

interfaces also enable a localization service by simply exposing OASIS’s proximity table, so that

any client can ask “What are the coordinates of IP x?” In addition to HTML, the HTTP interface

supports XML-formatted output for easy visualization using online mapping services (e.g., Google

Maps [71]).

DNS interface. OASIS takes advantage of low-level DNS details to implement anycast. First, a

nameserver must differentiate between core and replica lookups. Core lookups only return name-

server (NS) records for nearby OASIS nameservers. Replica lookups, on the other hand, return

address (A) records for nearby replicas. Since DNS is a stateless protocol, we signal the type of

a client’s request in its DNS query: replica lookups all have oasis prepended to nyuld.net. We

force such signaling by returning CNAME records during core lookups, which map aliases to their

canonical names.

104

Function Purpose
clnt (ip) Geolocate a particular IP address.
dist (srcip, dstip) Geolocate two addresses and estimate their distance apart.
anycast (service, ?ip, ?lat, ?lng,
?max, ?min)

Return a set of IP addresses at which the specified service is
running. If the optional latitude and longitude are supplied,
servers nearby those coordinates are returned; otherwise, servers
nearby to the optionally-supplied ip are returned (otherwise, the
requesting client’s address is used). The values min and max
specify the desired number of addresses.

redir (service, ?ip, ?suffix) Generate an HTTP redirect to a URL http://ipaddr/suffix,
where the returned IP address belongs to the specified service
(with respect to the optional ip, or to the requesting client if
none is given).

rndz (service) Return the set of core rendezvous nodes (see §4.2.3.1) responsi-
ble for the specified service.

pol (service) Return all policy information about a service.
srvs (service) Return a subset of known nodes belonging to a service.

Figure 4.9: Functions supported by OASIS’s HTTP interface

;; QUESTION SECTION:
;example.net.nyud.net. IN A

;; ANSWER SECTION:
example.net.nyud.net 600 IN CNAME coralcdn.ab4040d9a9e53205.oasis.nyuld.net.

coralcdn.ab4040d9a9e53205.oasis.nyuld.net. 60 IN A 171.64.64.217

;; AUTHORITY SECTION:
ab4040d9a9e53205.oasis.nyuld.net. 600 IN NS 171.64.64.217.ip4.oasis.nyuld.net.
ab4040d9a9e53205.oasis.nyuld.net. 600 IN NS 169.229.50.5.ip4.oasis.nyuld.net.

Figure 4.10: Output of dig for a hostname using OASIS

105

This technique alone is insufficient to force many client resolvers, including BIND, to immedi-

ately issue replica lookups to these nearby nameservers. We illustrate this with an example query

for CoralCDN. A resolver R discovers nameservers u, v for nyud.net by querying the root servers

for example.net.nyud.net.6 Next, R queries u for this hostname. Consider if R is returned a

CNAME for the mapping

example.net.nyud.net→ coralcdn.oasis.nyuld.net

along with NS records x, y for coralcdn.oasis.nyuld.net. In practice, R will then reissue a

new query for coralcdn.oasis.nyuld.net to nameserver v, which is not guaranteed to be close

to R (and v’s local cache may include replicas far from R).

Instead, we again use the DNS query string to signal whether a client is contacting the correct

nameservers. When responding to core lookups, we encode the set of NS records in hex format

(ab4040d9a9e53205) in the returned CNAME record (Figure 4.10). Thus, if v receives a replica

lookup, it checks whether the query encodes its own IP address, and if it does not, immediately re-

returns NS records for x, y (extracted from the hex-encoding). Now, having received NS records

authoritative for the name queried, a resolver contacts the desired nameservers x or y, which returns

an appropriate replica for coralcdn.

4.3 Evaluation

This section evaluates OASIS’s performance benefits for DNS-based anycast, as well as its scala-

bility and bandwidth trade-offs.

6To adopt OASIS yet preserve its own top-level domain name, CoralCDN points the NS records for
nyud.net to OASIS’s nameservers; nyud.net is an alias for coralcdn in its service policy registered with
OASIS.

106

4.3.1 Wide-area evaluation of OASIS

Experimental setup. We present wide-area measurements on PlanetLab [145] that evaluate the

accuracy of replica selection based on round-trip-time and throughput, DNS response time, and the

end-to-end time for a simulated web session. In all experiments, we ran replicas for one service

on approximately 250 PlanetLab hosts spread around the world (including 22 in Asia), and we ran

core nodes and DNS servers on 37 hosts.7

We compare the performance of replica selection using six different anycast strategies: (1) OA-

SIS (LF) refers to the OASIS system, using both local caching and local flooding (to the nearest

three neighbors; see §4.2.3.3). (2) OASIS uses only local caching for replicas. (3) Meridian (our im-

plementation of [191]) performs on-demand probing by executing closest-replica discovery when-

ever it receives a request. (4) Vivaldi uses 2-dimensional dynamic virtual coordinates [46], instead

of static geographic coordinates, by probing the client from 8-12 replicas on-demand. The core

node subsequently computes the client’s virtual coordinates and selects its closest replica based

on virtual coordinate distance. (5) Vivaldi (cached) probes IP prefixes in the background, instead

of on-demand. Thus, it is similar to OASIS with local caching, except uses virtual coordinates

to populate OASIS’s proximity table. (6) Finally, RRobin performs round-robin DNS redirection

amongst all replicas in the system, using a single DNS server located at Stanford University.

We performed client measurements on the same hosts running replicas. However, we config-

ured OASIS so that when a replica registers with an OASIS core node, the node does not directly

save a mapping from the replica’s prefix to its coordinates, as OASIS would do normally (as this

would give OASIS an unfair benefit in our evaluation, given the collocation of our test clients). In-

stead, we rely purely on OASIS’s background probing to assign coordinates to the replica’s prefix.

Three consecutive experiments were run at each site when evaluating ping, DNS, and end-

to-end latencies. Short DNS TTLs were chosen to ensure that clients contacted OASIS for each

request. Data from all three experiments are included in computing the following cumulative

distribution function (CDF) graphs.

7This number was due to the unavailability of UDP port 53 on most PlanetLab hosts, especially given
CoralCDN’s concurrent use of same.

107

 0

 20

 40

 60

 80

 100

 0.1 1 10 100 1000

P
er

ce
nt

 o
f p

in
gs

 h
av

in
g

R
T

T

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)
RRobin

Figure 4.11: Round-trip-times (ms) between clients and servers selected by OASIS

Minimizing RTTs. Figures 4.11 shows the CDFs of round-trip-times in log-scale between clients

and their returned replicas. We measured RTTs via ICMP echo messages, using the ICMP re-

sponse’s kernel timestamp when calculating RTTs. RTTs as reported are the minimum of ten con-

secutive probes. We see that OASIS and Meridian significantly outperform anycast using Vivaldi

and round robin by one to two orders of magnitude.

Two other interesting results merit mention. First, Vivaldi (cached) performs significantly

worse than on-demand Vivaldi and even often worse than RRobin. This arises from the fact that

Vivaldi is not stable over time with respect to coordinate translation and rotation. Hence, cached

results quickly become inaccurate, although some recent work has sought to minimize this instabil-

ity [49, 144]. Second, OASIS outperforms Meridian for 60% of measurements, a rather surprising

result given that OASIS uses Meridian as its background probing mechanism. It is here where

we see OASIS’s benefit from using RTT as an absolute error predictor for coordinates (§4.2.2.2):

reprobing by OASIS yields strictly better results, while the accuracy of Meridian queries can vary.

Maximizing throughput. Figure 4.12 shows the CDFs of the steady-state throughput from

replicas to their clients, to examine the benefit of using nearby servers to improve data-transfer

rates. TCP throughput is measured using iperf-1.7.0 [88] in its default configuration (a TCP

108

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

P
er

ce
nt

 o
f r

eq
s

w
ith

 th
ro

ug
hp

ut

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)
RRobin

Figure 4.12: TCP throughput (KB/s) between clients and servers selected by OASIS

window size of 32 KB). The graph shows TCP performance in steady-state. OASIS is competitive

with or superior to all other tested systems, demonstrating its benefit for large data transfers.

DNS resolution time. Figure 4.13 evaluates the DNS performance for new clients and for clients

already caching their nearby OASIS nameservers. A request by a new client includes the time to

perform three steps: (1) contact an initial OASIS core node to learn a nearby nameserver, (2) re-

contact a distant node and again receive NS records for the same nearby nameservers (see §4.2.4),

and (3) contact a nearby core node as part of a replica lookup. Note that we did not specially

configure the 12 primary nameservers as rendezvous nodes for dns (see §4.2.3.3), and thus use a

wide-area lookup during Step 1. This two-step approach is taken by all systems: Meridian and

Vivaldi both perform on-demand probing twice. We omit RRobin from this experiment, however,

as it always uses a single nameserver. Clients already caching nameserver information need only

perform Step 3, as given in the bottom figure.

OASIS’s strategy of first finding nearby nameservers and then using locally-cached information

can achieve significantly faster DNS response times compared to on-demand probing systems. The

median DNS resolution time for OASIS replica lookups is almost 30-times faster than that for

109

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

P
er

ce
nt

 o
f l

oo
ku

ps
 h

av
in

g
la

te
nc

y

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)

(a) Resolution time (ms) for new clients

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

P
er

ce
nt

 o
f l

oo
ku

ps
 h

av
in

g
la

te
nc

y

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)
RRobin

(b) Resolution time (ms) for replica lookups

Figure 4.13: DNS resolution time (ms) using OASIS

110

 0

 20

 40

 60

 80

 100

 10 100 1000 10000 100000

P
er

ce
nt

 o
f l

oo
ku

ps
 h

av
in

g
la

te
nc

y

OASIS (LF)
OASIS

Meridian
Vivaldi

Vivaldi (cached)
RRobin

Figure 4.14: End-to-end download performance (ms) experienced by clients when interacting with
OASIS-selected servers

Meridian.8 We also see that local flooding can improve median performance by 40% by reducing

the number of wide-area requests to rendezvous nodes.

End-to-end latency. Figure 4.14 shows the end-to-end time for a client to perform a synthetic

web session, which includes first issuing a replica lookup via DNS and then downloading eight

10 KB files sequentially. This file size is chosen to mimic that of common image files, which are

often embedded multiple times on a given web page. We do not simulate persistent connections for

our transfers, so each request establishes a new TCP connection before downloading the file. Also,

our faux-webserver never touches the disk, so does not take (PlanetLab’s high) disk-scheduling

latency into account.

End-to-end measurements underscore OASIS’s true performance benefit, coupling fast DNS

response time with accurate server selection. Median response time for OASIS is 290% faster than

Meridian and 500% faster than simple round-robin systems.

8A recursive Meridian implementation [191] may be faster than our iterative implementation: our design
emphasizes greater robustness to packet loss, given our preference for minimizing probing.

111

metric California Texas New York Germany
latency 23.3 0.0 0.0 0.0

load 9.0 11.3 9.6 9.2

Figure 4.15: 95th-percentile bandwidth usage (MB) at servers selected by OASIS

4.3.2 Load-based replica selection

This section considers replica selection based on load. We do not seek to quantify an optimal

load- and latency-aware selection metric; rather, we verify OASIS’s ability to perform load-aware

anycast. Specifically, we evaluate a load-balancing strategy meant to reduce costs associated with

95th-percentile billing (§4.2.3.4).

In this experiment, we use four distributed servers that run our faux-webserver. Each webserver

tracks its bandwidth usage per minute, and registers its load with its local replica as the logarithm

of its 95th-percentile usage. Eight clients, all located in California, each make 50 anycast requests

for a 1 MB file, with a 20 second delay between requests. (Policy specifies that DNS records are

returned with a TTL of 15 seconds.)

Table 4.15 shows that the bandwidth utilization at the webserver with highest bandwidth costs

is easily within a factor of two of the least-loaded server. On the other hand, pure locality-based

replica selection creates a traffic spike at a single webserver.

4.3.3 Scalability

Since OASIS is designed as an infrastructure system, we now verify that a reasonable-sized OASIS

core can handle Internet-scale usage.

Measurements at DNS root servers have shown steady traffic rates of around 6.5M A queries

per 10 minute interval across all {e, i, k, m}.root-servers.net [99]. With a deployment of 1000

OASIS DNS servers—and, for simplicity, assuming an even distribution of requests to nodes—

even if OASIS received requests at an equivalent rate, each node would see only about 10 requests

per second.

On the other hand, OASIS often uses shorter TTLs to handle replica failover and load bal-

112

 1000

 10000

 100000

 0 1000 2000 3000 4000 5000

P
ro

bi
ng

 B
W

 u
se

d
(M

B
 p

er
 w

ee
k)

DNS requests (thousands per day)

1 probe / prefix

2 probes / prefix

5 probes / prefix

1 probe / IP

2 probes / IP

5 probes / IP

on-demand probing

Figure 4.16: Bandwidth trade-off between on-demand probing, caching IP prefixes (OASIS), and
caching IP addresses

ancing. The same datasets showed approximately 100K unique resolvers per 10 minute interval.

Using the default TTL of 60 seconds, even if every client re-issued a request every 60 seconds for

all s services using OASIS, each core node would receive at most (1.6 · s) requests per second.

To consider one real-world service, as opposed to some upper bound for all Internet traffic,

CoralCDN’s DNS service (in December 2005) answered slightly fewer than 5 million DNS queries

(for all query types) per day, using TTLs of 30-60 seconds. This translates to a system total of 57

DNS queries per second.

4.3.4 Bandwidth trade-offs

This section examines the bandwidth trade-off between precomputing prefix locality and perform-

ing on-demand probing. If a system receives only a few hundred requests per week, for example,

OASIS’s approach of probing every IP prefix would not be worthwhile. Figure 4.16 plots the

amount of bandwidth used in caching and on-demand anycast systems for a system with 2000

replicas. Following the results of [191], we estimate each closest-replica query to generate about

10.4 KB of network traffic (load grows sub-linearly with the number of replicas).

113

Project Service Description
ChunkCast [40] chunkcast Anycast gateways for large-file distribution
CoralCDN [59] coralcdn Web proxies
DONA [100] dona Data-oriented network architecture
Galaxy [193] galaxy Distributed file-system clients
Na Kika [73] nakika Web proxies

OASIS dns DNS interface
http HTTP interface
rpc RPC interface

OCALA [92] ocala Client IP gateways for overlay routing
ocalarsp Server IP gateways for overlay routing

OpenDHT [157] opendht Client DHT gateways
OverCite [179] overcite Distributed CiteSeer proxies
SlotNet [163] slot Overlay transport proxies

Figure 4.17: Services using OASIS as of May 2007. Services can be accessed using the domain
name <service>.nyuld.net.

Figure 4.16 simulates the amount of bandwidth used per week for up to 5 million DNS requests

per day (the request rate from CoralCDN), where each results in a new closest-replica query. OA-

SIS’s probing of 200K prefixes—even when each prefix may be probed multiple times—generates

orders of magnitude less network traffic. We also plot an upper-bound on the amount of traffic

generated if the system were to cache the IP addresses of observed DNS resolvers, as opposed to

using IP prefixes.

While one might expect the number of DNS resolvers to be constant and relatively small, many

resolvers use dynamically-assigned addresses and thus preclude a small working set: the root-

servers saw more than 4 million unique clients in a week, with the number of clients increasing

linearly after the first day’s window [99]. Figure 4.16 uses this upper-bound to plot the amount of

traffic needed when caching IP addresses. Of course, new IP addresses always need to be probed

on-demand, with the corresponding performance hit (per Figure 4.13).

114

4.4 Deployment lessons

OASIS has been deployed on about 250 PlanetLab hosts since November 2005. Figure 4.17 lists

the systems currently using OASIS and a brief description of their service replicas. We now present

some lessons that we learned in the process.

Make it easy to integrate. Though each application server requires a local replica, for a shared

testbed such as PlanetLab, a single replica process on a host can serve on behalf of multiple local

processes running different applications. To facilitate this, we now run OASIS replicas as a public

service on PlanetLab; to adopt OASIS, PlanetLab applications need only listen on a registered port

and respond to keepalive messages.

Applications can integrate OASIS even without any source-code changes or recompilation.

Operators can run or modify simple stand-alone scripts we provide that answer replica keepalive

requests after simple liveness and load checks (via ps and the /proc filesystem).

Check for proximity discrepancies. Firewalls and middleboxes can lead one to draw false

conclusions from measurement results. Consider the following two problems we encountered,

mentioned earlier in §4.2.2.2.

To determine a routable IP address in a prefix, a replica performs a traceroute and uses the

last reachable node that responded to the traceroute. However, since firewalls can perform egress

filtering on ICMP packets, an unsuspecting node would then ask others to probe its own egress

point, which may be far away from the desired prefix. Hence, replicas initially find their immediate

upstream routers—i.e., , the set common to multiple traceroutes—which they subsequently ignore.

When replicas probe destinations on TCP port 80 for closest-replica discovery, any local trans-

parent web proxy will perform full TCP termination, leading an unsuspecting node to conclude

that it is very close to the destination. Hence, a replica first checks for a transparent proxy, then

tries alternative probing techniques.

Both problems would lead replicas to report themselves as incorrectly close to some IP prefix.

So, by employing measurement redundancy, OASIS can compare answers for precision and sanity.

115

Be careful what you probe. No single probing technique is both sufficiently powerful and

innocuous (from the point-of-view of intrusion-detection systems). As such, OASIS has adapted

its probing strategies based on ISP feedback. ICMP probes and TCP probes to random high ports

were often dropped by egress firewalls and, for the latter, flagged as unwanted port scans. Probing

to TCP port 80 faced the problem of transparent web proxies, and probes to TCP port 22 were often

flagged as SSH login attacks. Unfortunately, as OASIS performs probing from multiple networks,

automated abuse complaints from IDSs are sent to many separate network operators. Currently,

OASIS uses a mix of TCP port 80 probes, ICMP probes, and reverse DNS name queries.

Be careful whom you probe. IDSs deployed on some networks are incompatible with active

probing, irrespective of the frequency of probes. Thus, OASIS maintains and checks a blacklist

whenever a target IP prefix or address is selected for probing. We apply this blacklist at all stages

of probing: Initially, only the OASIS core checked target IP prefixes. However, this strategy led

to abuse complaints from autonomous systems that provide transit for the target, yet filter ICMPs;

in such cases, replicas tracerouting the prefix would end up probing the upstream autonomous

system, which would otherwise not be caught by the OASIS core.

4.5 Related work on anycast

We classify related work into two areas most relevant to OASIS: network distance estimation

and server selection. Network distance estimation techniques are used to identify the location

and/or distance between hosts in the network. The server-selection literature deals with finding an

appropriately-located server (possibly using network distance estimation) for a client request.

Network distance estimation. Several techniques have been proposed to reduce the amount

of probing per request. Some initial proposals (such as [81]) are based on the triangle-inequality

assumption. IDMaps [57] proposed deploying tracers that all probe one another; the distance

between two hosts is calculated as the sum of the distances between the hosts and their selected

tracers, and between the two selected tracers. Theilmann and Rothermel described a hierarchical

116

tree-like system [181], and Iso-bar proposed a two-tier system using landmark-based clustering

algorithms [37]. King [75] used recursive queries to remote DNS nameservers to measure the RTT

distance between any two non-participating hosts.

Recently, virtual coordinate systems (such as GNP [129] and Vivaldi [46]) offer new methods

for latency estimation. Here, nodes generate synthetic coordinates after probing one another. The

distance between peers in the coordinate space is used to predict their RTT, the accuracy of which

depends on how effectively the Internet can be embedded into a d-dimensional (usually Euclidean)

space.

Another direction for network estimation has been the use of geographic mapping techniques;

the main idea is that if geographic distance is a good indicator of network distance, then estimat-

ing geographic location accurately would obtain a first approximation for the network distance

between hosts. Most approaches in geographic mapping are heuristic. The most common ap-

proaches include performing queries against a whois database to extract city information [87, 139],

or tracerouting the address space and then mapping router names to locations based on ISP-specific

naming conventions [61, 133]. Commercial entities have sought to create exhaustive IP-range map-

pings [2, 147].

Server selection. IP anycast was proposed as a network-level solution to server selection [98,

137]. However, with various deployment and scalability problems, IP anycast is not widely used

or available. Recently, PIAS has argued for supporting IP anycast as a proxy-based service to

overcome deployment challenges [10]; OASIS can serve as a powerful and flexible server-selection

backend for such a system.

One of the largest deployed content distribution networks, Akamai [2] reportedly traceroutes

the IP address space from multiple vantage points to detect route convergence, then pings the

common router from every data center hosting an Akamai cluster [37]. OASIS’s task is more

difficult than that of commercial CDNs: Akamai need only map the network relative to its clusters,

while OASIS needs to find an intermediate representation of locality, given its goal of providing

anycast for multiple services.

Recent literature has proposed techniques to minimize such exhaustive probing. Meridian [191]

117

(used for DNS redirection by [190]) creates an overlay network with neighbors chosen from a

particular distribution; routing to closer nodes is guaranteed to find a minimum given a growth-

restricted metric space [95]. In contrast, OASIS completely eliminates on-demand probing.

OASIS allows more flexible server selection than pure locality-based solutions, as it stores load

and capacity estimates from replicas in addition to locality information.

118

Chapter 5

Securing a Cooperative File System

The systems that we have described so far—CoralCDN and OASIS—have been characterized by

backwards-compatible designs. CoralCDN went to great efforts to interoperate with unmodified

web clients and servers, while OASIS made practical trade-offs given the lack of locality sup-

port and information from the network. Further, while both of these systems were designed for

scalability and decentralized control, they were ultimately deployed on trusted servers due to secu-

rity concerns. Malicious OASIS core servers could return incorrect, malicious replicas to anycast

queries, akin to DNS hijacking attacks. Malicious CoralCDN proxies could otherwise modify

content in transmission, and unmodified clients would not be able to detect the changes. Some of

these problems are not technically difficult to solve, e.g., a web client might only accept content if

it is cryptographically signed by an origin webserver, but no such functionality universally exists

in today’s web browsers.

Rather than continuing to try to bolt on functionality to existing systems, we ask what we would

do differently if not constrained by the goal of backwards-compatibility. The next two chapters

focus on the clean-slate design of two systems for different classes of content distribution: dis-

tributed file systems and large-file distribution systems. We focus both on more advanced methods

of content transmission directly between peers, as well as new security mechanisms for these pro-

tocols. Such security mechanisms serve as contrast to the limitations we encountered earlier, but

119

also show that it is possible to build secure, robust systems through cryptographic protocols, even

though participants may be malicious.

We first consider the case for Shark [8], a secure cooperative file system. Shark leverages

participants’ file caches in order to scale to large numbers of client read requests.

5.1 Motivation

Users of distributed computing environments often launch similar processes on hundreds of ma-

chines nearly simultaneously. Running jobs in such an environment can be significantly more

complicated, both because of data-staging concerns and the increased difficulty of debugging.

Batch-oriented tools, such as Condor [52], can provide I/O transparency to help distribute CPU-

intensive applications. However, these tools are ill-suited to tasks like distributed web hosting

and network measurement, in which software needs low-level control of network functions and

resource allocation. An alternative is frequently seen on network testbeds such as RON [4] and

PlanetLab [145]: users replicate their programs, along with some minimal execution environment,

on every machine before launching a distributed application.

Replicating execution environments has a number of drawbacks. First, such replication wastes

resources, particularly bandwidth. Popular file synchronization tools do not optimize for network

locality, and they can push many copies of the same file across slow network links. Moreover, in

a shared environment, multiple users will inevitably copy the exact same files, such as popular op-

erating system add-on packages with language interpreters or shared libraries. Second, replicating

run-time environments requires hard state, a scarce resource in a shared testbed. Programs need

sufficient disk space, yet idle environments continue to consume disk space, in part because own-

ers are loathe to consume the bandwidth and effort required for redistribution. Third, replicated

run-time environments differ significantly from an application’s development environment, in part

to conserve bandwidth and disk space. For instance, users usually distribute only stripped binaries,

not source or development tools, making it difficult to debug running processes in a distributed

system.

120

Shark is a network file system specifically designed to support widely distributed applications.

Rather than manually replicate program files, users can place a distributed application and its entire

run-time environment in an exported file system, and simply execute the program directly from the

file system on all nodes. In a chrooted environment such as PlanetLab, users can even make /usr/

local a symbolic link to a Shark file system, thereby trivially making all local software available

on all testbed machines.

Of course, the big challenge faced by Shark is scalability. With a normal network file system,

if hundreds of clients suddenly execute a large, 40MB C++ program from a file server, the server

quickly saturates its network uplink and delivers unacceptable performance. Shark, however, scales

to large numbers of clients through a locality-aware cooperative cache. When reading an uncached

file, a Shark client avoids transferring the file or even chunks of the file from the server, if the

same data can be fetched from another, preferably nearby, client. For world-readable files, clients

will even download nearby cached copies of identical files—or even file chunks—originating from

different servers.

Shark leverages the Coral indexing layer (§2.3) to coordinate client caching. Shark clients

form self-organizing clusters of well-connected machines. When multiple clients attempt to read

identical data, these clients locate nearby replicas and stripe downloads from each other in parallel.

Thus, even modestly-provisioned file servers can scale to hundreds, possibly thousands, of clients

making mostly read accesses.

There have been serverless, peer-to-peer file systems capable of scaling to large numbers of

clients, notably Ivy [127]. Unfortunately, these systems have highly non-standard models for ad-

ministration, accountability, and consistency. For example, Ivy spreads hard state over multiple

machines, chosen based on file-system data structure hashes. This leaves no single entity ulti-

mately responsible for the persistence of a given file. Moreover, peer-to-peer file systems are

typically noticeably slower than conventional network file systems. Thus, they do not provide a

substitute for conventional file systems in either accountability or performance. Shark, by contrast,

exports a traditional file-system interface, is compatible with existing backup and restore proce-

121

dures, provides competitive performance on the local area network, and yet easily scales to many

clients in the wide area.

For workloads with no read sharing between users, Shark offers performance that is competitive

with traditional network file systems. However, for shared read-heavy workloads in the wide area,

Shark greatly reduces server load and improves client latency. Compared to both NFSv3 [23] and

SFS [119], a secure network file system, Shark can reduce server bandwidth usage by nearly an

order of magnitude and can provide a 4x-6x improvement in client latency for reading large files,

as shown by both local-area experiments on the Emulab [188] testbed and wide-area experiments

on PlanetLab [145].

By providing scalability, efficiency, and security, Shark enables network file systems to be em-

ployed in environments where they were previously impractical. Yet Shark retains their attractive

API, semantics, and portability: Shark interacts with the local host using an existing network file

system protocol (NFSv3) and runs in user space.

5.2 Design

Shark’s design incorporates a number of key ideas aimed at reducing the load on the server and

improving client-perceived latencies. Shark enables clients to securely mount remote file systems

and efficiently access them, by providing mechanisms by which mutually distrustful peers can read

content from another, while still preserving traditional integrity and authorization guarantees.

When a client is the first to read a particular file, it fetches data from the file server. Upon

retrieving chunks of the file, the client caches them and registers itself as a replica proxy (or proxy

for short) for these chunks in the distributed index. (Notice that while CoralCDN used the Coral

index to map entire files to proxies, Shark takes a finer-grained approach in order to better exploit

parallelism when downloading large files.) Subsequently, when another client attempts to access

the file, it discovers proxies for the file chunks by querying the distributed index. The client then

establishes a secure channel to multiple such (untrusted) proxies and downloads the file chunks

122

Proxies

Client Server

Client

File

File

Establish secure channel

Request file attributes and tokens

Initiate secure channel

Securely transfer file chunks

Client

Proxy

Lookup tokens

Coral
Overlay

1

2

3

Proxy

Chunks

Figure 5.1: Shark System Overview. A client machine simultaneously acts as a client (to handle
local application file system accesses), as a proxy (to serve cached data to other clients), and as a
node (within the distributed index).

in parallel. Upon successfully fetching these chunks, the client registers itself also as a proxy for

these chunks.

5.2.1 System overview

Figure 5.1 provides an overview of the Shark system. In a real deployment, there may be multiple

file servers that each host separate file systems, and each client may access multiple file systems.

For simplicity, however, we show a single file server.

When a client attempts to read a file, it queries the file server for the file’s attributes and some

opaque tokens (Step 1 as shown). One token identifies the contents of the whole file, while other

tokens each identify a particular chunk of the file. A Shark server divides a file into chunks by

123

running a Rabin fingerprint algorithm on the file. This technique (used previously by LBFS [126])

splits a file along specially chosen boundaries in such a way that preserves data commonalities

across files. Such commonalities may be found, for example, between file versions or when con-

catenating files, such as building program libraries from object files.

Next, a client attempts to discover replica proxies for the particular file via Shark’s distributed

index (Step 2). Shark clients organize themselves into a Coral key-value indexing layer: A client

executes put to declare that it has something; get returns the list of nearby clients who have some-

thing. A Shark client uses its tokens to derive indexing keys that serve as inputs to these operations.

It uses this distributed index to register itself and to find other nearby proxies caching a file chunk.

Finally, a client connects to several of these proxies, and it requests various chunks of data from

each proxy in parallel (Step 3). Note, however, that clients themselves are mutually distrustful, so

Shark must provide various mechanisms to guarantee secure data sharing: (1) Data should be

encrypted to preserve confidentiality and should be decrypted only by those with appropriate read

permissions. (2) A malicious proxy should not be able to break data integrity by modifying content

without a client detecting the change. (3) A client should not be able to download large amounts

of even encrypted data without proper read authorization.

Shark uses the opaque tokens generated by the file server in several ways to handle these

security issues. (1) The tokens serve as a shared secret (between client and proxy) with which

to derive symmetric cryptographic keys for transmitting data from proxy to client. (2) The client

can verify the integrity of retrieved data, as the token acts to bind the file contents to a specific

verifiable value. (3) A client can “prove” knowledge of the token to a proxy and thus establish

read permissions for the file. Note that the indexing keys used as input to the distributed index are

only derived from the token; they do not in fact expose the token’s value or otherwise destroy its

usefulness as a shared secret.

Shark allows clients to share common data segments on a sub-file granularity. As a file server

provides the tokens naming individual file chunks, clients can share data at the granularity of

chunks as opposed to whole files.

In fact, Shark provides cross-file-system sharing when tokens are derived solely from file con-

124

tents. Consider the case when users attempt to mount /usr/local (for the same operating system)

using different file servers. Most of the files in these directories are identical and even when the

file versions are different, many of the chunks are identical. Thus, even when distinct subsets of

clients access different file servers to retrieve tokens, one can still act as a proxy for the other to

transmit the data.

Given the benefit of cross-file-system sharing, all Shark clients organize themselves into a

global Coral indexing layer, even though non-overlapping subsets of these clients may be directly

interacting only with independent Shark file servers. If such sharing is not desired or required—

it has some privacy implications, which we discuss in §5.2.3.1—then global scalability in the

indexing layer is not necessary. (A single Shark server is practically limited to a few thousand

clients, after all, due to the underlying file-system consistency protocols it uses, described next.)

In those cases, therefore, one could deploy Shark using a much simpler and faster indexing layer

based on global membership views (as we did with OASIS in §4 using techniques from §2.2). Our

implementation and evaluation, however, uses Coral as the more scalable design choice.

5.2.2 File servers and consistency

Shark names file systems using self-certifying pathnames, as in SFS [119]. These pathnames

explicitly specify all information necessary to securely communicate with remote servers. Every

Shark file system is accessible under a pathname of the form:

/shark/@server , pubkey

A Shark client provides access to a remote file system by automounting requested directories [119].

This allows a client-side Shark NFS loop-back server to provide unmodified applications with

seamless access to remote Shark file systems. Unlike NFS, however, all communication with

the file server is sent over a secure channel, as the self-certifying pathname includes sufficient

information to establish a secure channel.

Shark uses two network-file-system techniques to improve read performance and decrease

125

 File not cached or lease invalidated

GETTOK (fh, offset, count)

file attributes

(chunktok1, offset1, size1)
(chunktok2, offset2, size2)
eof = true

Send GETTOK

Split data into chunks

From offset to (offset+count),

Else, start cooperative fetch

If cached and not modified, done

Compute token over entire file

Compute tokensfile token

+ attributes changed

Client Server

Figure 5.2: Shark GETTOK RPC

server load: leases [72] and AFS-style whole-file caching [85]. When a user attempts to read

any portion of a file, the client first checks its disk cache.

If the file is not already cached, the client fetches a new version from Shark (either from the

cooperative cache or directly from the file server). If its read lease on its cached copy is not up-

to-date or the client has received a server callback, the client contacts the file server for fresh file

attributes, determining thereafter whether its cached copy is fresh or whether the client needs to

fetch a new version from Shark.

While Shark attempts to handle reads within its cooperative cache, all writes are sent to the

origin server. When any type of modification occurs, the server must invalidate all unexpired

leases, update file attributes, recompute its file token, and update its chunk tokens and boundaries.

5.2.3 Cooperative caching

File reads in Shark make use of one RPC procedure not in the NFS protocol, GETTOK, as shown

in Figure 5.2.

GETTOK supplies a file handle, offset, and count as arguments, just as in a READ RPC.

However, instead of returning the actual file data, it returns the file’s attributes, the file token, and

a vector of chunk descriptions. Each chunk description identifies a specific extent of the file by

126

Symbol Description Generated by . . . Only known by . . .

F File Server and approved readers
Fi ith file chunk Chunking algorithm Parties with access to F
r Per-server randomness r = PRNG() or r = 0 Parties with access to F
T File/chunk token tok(F) = HMACr(F) Parties with access to F /Fi

I,E,AC ,AP Special constants System-wide parameters Public
I Indexing key HMACT (I) Public

rC , rP Session nonces rC , rP = PRNG() Parties exchanging F /Fi

AuthC Client auth token HMACT (AC , C, P, rC , rP) Parties exchanging F /Fi

AuthP Proxy auth token HMACT (AP , P, P, rP , rC) Parties exchanging F /Fi

KE Encryption key HMACT (E, C, P, rC , rP) Parties exchanging F /Fi

Figure 5.3: Notation used for Shark values

offset and size, and includes a chunk token for that extent. The server will only return up to 1,024

chunk descriptions in one GETTOK call; the client must issue multiple calls for larger files.

The file attributes returned by GETTOK include sufficient information to determine if a local

cached copy is up-to-date (as discussed). The tokens allow a client (1) to discover current proxies

for the data, (2) to demonstrate read permission for the data to proxies, and (3) to verify the integrity

of data retrieved from proxies. First, let us specify how Shark’s various tokens and keys are derived.

5.2.3.1 Data integrity via content-based naming

Shark names content with cryptographic hash operations, as given in Table 5.3.

A file token is a 160-bit value generated by a cryptographic hash of the file’s contents F and

some optional per-file randomness r that a server may use as a key for each file (discussed later):

TF = tok(F) = HMACr(F)

Throughout our design, HMAC is a keyed hash function [14], which we instantiate with SHA-1.

We assume that SHA-1 acts as a collision-resistant hash function, which implies that an adversary

cannot find an alternate input pair that yields the same TF .1

1While our current implementation uses SHA-1, we could similarly instantiate HMAC with SHA-256 for
greater security.

127

The chunk token TFi
in a chunk description is also computed in the same manner, but only uses

the particular chunk of data (and optional randomness) as an input to SHA-1, instead of the entire

file F . As file and chunk tokens play similar roles in the system, we use T to refer to either type of

token indiscriminately.

The indexing key I used in Shark’s distributed index is simply computed by HMACT (I). We key

the HMAC function with T and include a special character I to signify indexing. More specifically,

IF refers to the indexing key for file F , and IFi
for chunk Fi.

The use of such server-selected randomness r ensures that an adversary cannot guess file con-

tents, given only I . Otherwise, if the file is small or stylized, an adversary may be able to perform

an offline brute-force attack by enumerating all possibilities.

On the flip-side, omitting this randomness enables cross-file-system sharing, as its content-

based naming can be made independent of the file server. That is, when r is omitted and re-

placed by a string of 0s, the distributed indexing key is dependent only on the contents of F :

IF = HMACHMAC0(F)(I). Cross-file-system sharing can improve client performance and server

scalability when nearby clients use different servers. Thus, the system allows one to trade-off ad-

ditional security guarantees with potential performance improvements. By default, we omit this

randomness for world-readable files, although configuration options can override this behavior.

5.2.3.2 The cooperative-caching read protocol

We now specify in detail the cooperative-caching protocol used by Shark. The main goals of the

protocol are to reduce the load on the server and to improve client-perceived latencies. To this end,

a client tries to download chunks of a file from multiple proxies in parallel. At a high level, a client

first fetches the tokens for the chunks that comprise a file. It then contacts nearby proxies holding

each chunk (if such proxies exists) and downloads them accordingly. If no other proxy is caching

a particular chunk of interest, the client falls back on the server for that chunk.

The client sends a GETTOK RPC to the server and fetches the whole-file token, the chunk

tokens, and the file’s attributes. It then checks its cache to determine whether it has a fresh local

copy of the file. If not, the client runs the following cooperative read protocol.

128

The client always attempts to fetch k chunks in parallel. Each fetch is assigned a random

chunk Fi from the list of needed chunks. The client attempts to discover nearby proxies caching

that chunk by querying Coral using the primitive get(IFi
= HMACTFi

(I)). If this get request fails

to find a proxy or does not find one within a specified time, the client fetches the chunk from the

server. After downloading the entire chunk, the client announces itself in Coral as a proxy for Fi.

If the get request returns several proxies for chunk Fi, the client chooses one with minimal

latency and establishes a secure channel with the proxy, as described later. If the security protocol

fails (perhaps due to a malicious proxy), the connection to the proxy fails, or a newly specified

time is exceeded, the client chooses another proxy from which to download chunk Fi. Upon

downloading Fi, the client verifies its integrity by checking whether TFi

?
= tok(Fi). If the client

fails to successfully download Fi from any proxy after a fixed number of attempts, it falls back

onto the origin file server.

To reduce the number of requests to the Coral indexing layer,2 while a client is downloading

a chunk from a proxy, it attempts to reuse the connection to the proxy by negotiating for other

chunks. The client picks α random chunks still needed. It computes the corresponding α indexing

keys and sends these to the proxy. The proxy responds with those γ chunks, among the α requested,

that it already has. If γ = 0, the proxy responds instead with β keys corresponding to chunks that

it does have. The client, upon downloading the current chunk, selects a new chunk from among

those negotiated (i.e., needed by the client and known to the proxy). The client then proves read

permissions on the new chunk and begins fetching the new chunk. If no such chunks can be

negotiated, the client terminates the connection.

2More recent work [146], also using Rabin fingerprinting for content-based chunking, has shown how to
reduce the amount of references stored in the indexing layer—and hence also reduce the number of index
lookups—to a constant number (usually around 30). While perhaps not so much a practical concern, we note
that this approach sacrifices the ability to deterministically find the same chunks that belong to different files
and instead relies on probabilistic guarantees, based on the similarity of the files to which the chunks belong.
That said, we could equally apply the handprint technique from [146] for naming content to Shark.

129

i

Auth , E (F)

r P

r C

Client Proxy

...

Auth , I C F

 P i

Figure 5.4: Shark session establishment protocol

5.2.3.3 Securing client-proxy interactions

We now describe the secure communication mechanisms between clients and proxies that ensure

confidentiality and authorization. We already described how clients achieve data integrity by veri-

fying the contents of files/chunks by their tokens.

To prevent adversaries from passively reading or actively modifying content while in transmis-

sion, the client and proxy first derive a symmetric encryption key KE before transmitting a chunk.

As the token TFi
already serves as a shared secret for chunk Fi, the parties can simply use it to

generate this key.

Figure 5.4 shows the protocol by which Shark clients establish a secure session. First, the

parties exchange fresh, random 20-byte nonces rC and rP upon initiating a connection. For each

chunk to be sent over the connection, the client must signal the proxy which token TFi
to use, but it

can do so without exposing information to eavesdroppers or malicious proxies by simply sending

IFi
in the clear. Using these nonces and knowledge of TFi

, each party computes authentication

tokens as follows:

AuthC = HMACTFi
(AC , C, P, rC , rP)

AuthP = HMACTFi
(AP , P, C, rP , rC)

The AuthC token proves to the proxy that the client actually has the corresponding chunk token

130

TFi
and thus read permissions on the chunk. Upon verifying AuthC , the proxy replies with AuthP

and the chunk Fi after applying E to it.

In our current implementation, E is instantiated by a symmetric block encryption function,

followed by a MAC covering the ciphertext. However, we note that AuthP already serves as

a MAC for the content, and thus this additional MAC is not strictly needed.3 The symmetric

encryption key KE for E is derived in a similar manner as before:

KE = HMACTFi
(E, C, P, rC , rP)

An additional MAC key can be similarly derived by replacing the special character E with M.

Shark’s use of fresh nonces ensure that these derived authentication tokens and keys cannot be

replayed for subsequent requests.

Upon deriving this symmetric key KE , the proxy encrypts the data within a chunk using 128-bit

AES in counter mode (AES-CTR). Per each 16-byte AES block, we use the block’s offset within

the chunk/file as its counter.

The proxy protocol has READ and READDIR RPCs similar to NFS, except they specify the

indexing key I and AuthC to name a file (which is server independent), in place of a file handle.

Thus, after establishing a connection, the client begins issuing read RPCs to the proxy; the client

decrypts any data it receives in response using KE and the proper counter (offset).

While this block encryption prevents a client without TFi
from decrypting the data, one may be

concerned if some unauthorized client can download a large number of encrypted blocks, with the

goal of either wasting the proxy’s upstream resources, or with the hope of either learning KE later

or performing some offline attack. The proxy’s explicit check of AuthC prevents this. Similarly,

the verifiable AuthP prevents a malicious party that does not hold Fi from registering itself under

the public IFi
and then wasting the client’s bandwidth by sending invalid blocks (that later will fail

hash verification).
3The results of Krawczyk [102] speaking on the generic security concerns of “authenticate-and-encrypt”

are not really relevant here, as we already expose the raw output of our MAC via IFi and thus implicitly
assume that HMAC does not leak any information about its contents. Thus, the inclusion of AuthP does not
introduce any additional data confidentiality concerns.

131

Thus, Shark provides strong data integrity guarantees to the client and authorization guarantees

to the proxy, even in the face of malicious participants.

5.2.4 Implementation

Shark consists of three main components, the server-side daemon sharksd, the client-side daemon

sharkcd and the Coral daemon. All three components are implemented in C++ and are built using

the SFS toolkit [118]. The file-system daemons interoperate with the SFS framework, using its

automounter, authentication daemon, and so forth. sharksd is implemented as a loop-back client

which communicates with the kernel NFS server. sharkcd comprises an NFS loop-back server

which traps local user requests and forwards them to either the origin file server or a Shark proxy.

In particular, a read for a file block is intercepted by sharkcd’s loop-back server and translated into

a series of READ calls to fetch the entire file. The server side of sharkcd implements a proxy,

accepting connections from other clients. If this proxy cannot immediately satisfy a request, it

registers a callback for the request, responding when the block has been fetched.

5.3 Evaluation

This section evaluates Shark against NFSv3 and SFS in order to quantify the benefits of its coop-

erative caching design for read-heavy workloads. To measure the performance of Shark against

these file systems, without the gain from cooperative caching, we first present microbenchmarks

for various types of file-system access tests, both in the local-area and across the wide-area.

Second, we measure Shark’s cooperative caching mechanism by performing read tests both

within the controlled Emulab LAN environment [188] and in the wide-area on PlanetLab [145].

In all experiments, we start with cold file caches on all clients, but first warm the server’s chunk

token cache. The server required 0.9 seconds to compute chunks for a 10 MB random file, and 3.6

seconds for a 40 MB random file.

We chose to evaluate Shark on Emulab, in addition to wide-area tests on PlanetLab, in order

to test Shark in a more controlled, native environment: While Emulab allows one to completely

132

10 MB file read 40 MB file read small file reads
0.0

0.5

1.0

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 t

im
e

31.4

0.9

5.7
4.1

5.6

127.6

3.6
12.4

19.6 19.3

2.08
1.59

4.36

6.70
7.13

SFS

NFSv3

Shark, no Coral

Shark, seq

Shark, rand

(a) Local-area microbenchmarks

10 MB file read 40 MB file read small file reads
0.0

0.5

1.0

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 t

im
e

26.5

6.6

14.8

18.4 18.6

106.2

24.7

57.2

81.0 84.1

147

272

213

289 303

SFS

NFSv3

Shark, no Coral

Shark, seq

Shark, rand

(b) Wide-area microbenchmarks

Figure 5.5: Shark microbenchmarks. Normalized application performance for various types of
file-system access. Execution times in seconds appear above the bars.

reserve machines, individual PlanetLab hosts may be executing tens or hundreds of experiments

(slices) simultaneously. In addition, most PlanetLab hosts implement bandwidth caps of 10 Mb/s

across all slices. For example, on a local PlanetLab machine operating at NYU, a Shark client took

approximately 65 seconds to read a 40 MB file from the local (non-PlanetLab) Shark file server,

while a non-PlanetLab client on the same network took 19.3 seconds. Furthermore, deployments of

Shark on large LAN clusters (for example, as part of grid computing environments) may experience

similar results to those we report.

The server in all the microbenchmarks and the PlanetLab experiments is a 1.40 GHz Athlon at

NYU, running OpenBSD 3.6 with 512 MB of memory. It runs the corresponding server daemons

for SFS and Shark. All microbenchmark and PlanetLab clients used in the experiments ran Fedora

Core 2 Linux. The server used for Emulab tests was a host in the Emulab testbed; it did not

simultaneously run a client. All Emulab hosts ran Red Hat Linux 9.0.

The Shark client and server daemons interact with the respective kernel NFS modules using

133

the loopback interface. On the Red Hat 9 and Fedora Core 2 machines, where we did our testing,

the loopback interface has a maximum MTU of 16436 bytes and any transfer of blocks of size ≥

16 KB results in IP fragmentation which appears to trigger a bug in the kernel NFS code. Since

we could not increase the MTU size of the loopback interface, we limited both Shark and SFS to

use 8 KB blocks. NFS, on the other hand, issued UDP read requests for blocks of 32 KB over the

ethernet interface without any problems. These settings could have affected our measurements.

5.3.1 Alternate cooperative protocols

This section considers several alternative cooperative-caching strategies for Shark in order to char-

acterize the benefits of various design decisions.

First, we examine whether clients should issue requests for chunks sequentially (seq), as op-

posed to choosing a random (previously unread) chunk to fetch. There are two additional strate-

gies to consider when performing sequential requests: Either the client immediately pre-announces

itself for a particular chunk upon requesting it (with the concurrent put+get from §2.3.1.4), or the

client waits until it finishes fetching a chunk before announcing itself (via a put). We consider

such sequential strategies to examine the effect of disk scheduling latency: for single clients in the

local area, one intuits that the random strategy limits the throughput to that imposed by the file

server’s disk seek time, while we expect the network to be the bottleneck in the wide area. Yet,

when multiple clients operate concurrently, one intuits that the random strategy allows all clients

to fetch independent chunks from the server and later trade these chunks among themselves. Using

a purely sequential strategy, the clients all advance only as fast as the few clients that initially fetch

chunks from the server.

Second, we disable the negotiation process by which clients may reuse connections with prox-

ies and thus download multiple chunks once connected. In this case, the client must query the

distributed index for each chunk.

134

5.3.2 Microbenchmarks

For the local-area microbenchmarks, we used a local machine at NYU as a Shark client. Maximum

TCP throughput between the local client and server, as measured by ttcp, was 11.14 MB/s. For

wide-area microbenchmarks, we used a client machine located at the University of Texas at El

Paso. The average round-trip-time (RTT) between this host and the server, as measured by ping,

is 67 ms. Maximum TCP throughput was 1.07 MB/s.

Access latency. We measure the time necessary to perform four types of file-system accesses: (1)

to read 10 MB and (2) 40 MB large random files on remote hosts, and (3) to read large numbers

of small files. The small file test attempts to read 1,000 1 KB files evenly distributed over ten

directories.

We performed single-client microbenchmarks to measure the performance of Shark. Figure 5.5

shows the performance on the local- and wide-area networks for these three experiments, We

compare SFS, NFS, and three Shark configurations; namely, Shark without calls to its distributed

indexing layer (noCoral), fetching chunks from a file sequentially (seq), and fetching chunks in

random order (rand). Shark issues up to eight outstanding RPCs (for seq and rand, fetching four

chunks simultaneously with two outstanding RPCs per chunk). SFS sends RPCs as requested by

the NFS client in the kernel.

For all experiments, we report the normalized median value over three runs. We interleaved the

execution of each of the five file systems over each run. We see that Shark is competitive across

different file system access patterns and is optimized for large read operations.

5.3.3 Local-area cooperative caching

Shark’s main claim is that it improves a file server’s scalability, while retaining its benefits. We

now study the end-to-end performance of reads in a cooperative environment with many clients

attempting to simultaneously read the same file(s).

In this section, we evaluate Shark on Emulab [188]. In all the configurations of Shark, clients

attempt to download a file from four other proxies simultaneously.

135

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

P
er

ce
nt

ag
e

co
m

pl
et

ed
 w

ith
in

 ti
m

e

Time since initialization (sec)

10 MB read
Shark, rand, neg

Shark, rand
Shark, seq, pre

Shark, seq
NFS
SFS

(a) Latency for 10 MB file

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

P
er

ce
nt

ag
e

co
m

pl
et

ed
 w

ith
in

 ti
m

e

Time since initialization (sec)

40 MB read
Shark, rand, neg

Shark, rand
Shark, seq, pre

Shark, seq
NFS
SFS

(b) Latency for 40 MB file

Figure 5.6: Client latency. Time (seconds) for ˜100 LAN hosts (Emulab) to finish reading a 10 MB
and 40 MB file.

136

Figure 5.6 shows the cumulative distribution functions (CDFs) of the time needed to read a 10

MB and 40 MB (random) file across 100 physical Emulab hosts, comparing various cooperative

read strategies of Shark against vanilla SFS and NFS. In each experiment, all hosts mounted the

server and began fetching the file simultaneously. We see that Shark achieves a median completion

time less than one-quarter that of NFS and one-sixth that of SFS. Furthermore, its 95th percentile

is almost an order of magnitude better than SFS.

Shark’s fast, almost vertical rise (for nearly all strategies) demonstrates its cooperative cut-

through routing: Shark clients effectively organize themselves into a distribution mesh. Consider-

ing a single data segment, a client is part of a chain of nodes performing cut-through routing, rooted

at the origin server. Because clients may act as root nodes for some blocks and act as leaves for oth-

ers, most finish at almost synchronized times. The lack of any degradation of performance in the

upper percentiles demonstrates the lack of any heterogeneity, in terms of both network bandwidth

and underlying disk/CPU load, among the Emulab hosts.

Interestingly, we see that most NFS clients finish at loosely synchronized times, while the CDF

of SFS clients’ times has a much more gradual slope, even though both systems send all read

requests to the file server. Subsequent analysis of NFS over TCP (instead of NFS over UDP as

shown) showed a similar slope as SFS, as did Shark without its cooperative cache. One possible

explanation is that the heavy load on (and hence congestion at) the file server imposed by these

non-cooperative file systems drives some TCP connections into back-off, greatly reducing fairness.

We find that a random request strategy, coupled with inter-proxy negotiation, distinctly out-

performs all other evaluated strategies. A sequential strategy effectively saw the clients furthest

along in reading a file fetch the leading (four) chunks from the origin file server; other clients used

these leading clients as proxies. Thus, modulo possible inter-proxy timeouts and synchronous re-

quests in the non-pre-announce example, the origin server saw at most four simultaneous chunk

requests. Using a random strategy, more chunks are fetched from the server simultaneously and

thus propagate more quickly through the clients’ dissemination mesh.

Figure 5.7 shows the total amount of bandwidth served by each proxy as part of Shark’s coop-

erative caching, when using a random fetch strategy with inter-proxy negotiation for the 40 MB

137

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90

B
an

dw
id

th
 tr

an
sm

itt
ed

 (
M

B
)

Unique Shark proxies

PlanetLab, 40MB

Emulab, 40MB

Emulab, 10MB

Figure 5.7: Proxy bandwidth usage. Upstream bandwidth (MBs) served by each Emulab proxy
when reading 40 MB (Emulab and PlanetLab) and 10 MB (Emulab) files.

and 10 MB experiments on Emulab. (The graph also shows the proxy bandwidth use for wide-area

experiments on PlanetLab, discussed next.) We see that the proxy serving the most bandwidth

contributed four and seven times more upstream bandwidth than downstream bandwidth, respec-

tively. During these experiments, the Shark file server served a total of 92.55 MB and 15.48 MB,

respectively. Thus, we conclude that Shark is able to significantly reduce a file server’s bandwidth

utilization, even when distributing files to large numbers of clients. Furthermore, Shark ensures

that any one cooperative-caching client does not assume excessive bandwidth costs.

5.3.4 Wide-area cooperative caching

Shark’s main claim is that it improves a file server’s scalability, which still maintaining security,

accountability, and manageability. In our cooperative caching experiment, we study the end-to-end

performance of attempting to perform reads within a large, wide-area distributed testbed.

On approximately 185 PlanetLab hosts, well-distributed across North America, Europe, and

Asia, we attempted to simultaneously read a 40 MB random file. All hosts mounted the server and

began fetching the file simultaneously.

138

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

P
er

ce
nt

ag
e

co
m

pl
et

ed
 w

ith
in

 ti
m

e

Time since initialization (sec)

40 MB read
Shark

SFS

Figure 5.8: Client latency. Time (seconds) for 185 wide-area hosts (on PlanetLab) to finish reading
a 40 MB file using Shark and SFS.

Figure 5.8 shows a CDF of the time needed to read the file on all hosts, comparing Shark with

SFS, which can be summarized with the following percentile results:

% done in (sec) 50% 75% 90% 95% 98%

Shark 334 350 375 394 481

SFS 1848 2129 2241 2364 2396

We see that, between the 50th and 98th percentiles, Shark is five to six times faster than SFS. The

graph’s sharp rise and distinct knee demonstrates Shark’s cooperative caching: 96% of the nodes

effectively finish at nearly the same time. Clients in SFS, on the other hand, complete at a much

slower rate. Wide-area experiments with NFS repeatedly crashed our file server (i.e., it caused a

kernel panic). We were therefore unable to evaluate NFS in the wide area.

Figure 5.7 shows the total amount of bandwidth served by each proxy during this experiment.

We see that the proxy serving the most bandwidth contributed roughly three times more upstream

than downstream bandwidth.

Finally, Shark reduces the server’s bandwidth usage by an order of magnitude compared to

SFS: During the experiment for 185 hosts to fetch the same 40 MB file, the Shark file server served

139

954 MB, while the SFS server served 7400 MB. We believe, however, that Shark’s client-cache

implementation may be improved to reduce bandwidth usage quite further, e.g., by trading-off

better client latency for continually retrying the cooperative cache to minimize server reads.

5.4 Related work on distributed file systems

There are numerous network file systems designed for local-area access. NFS [164] provides a

server-based file system, while AFS [85] improves its performance via client-side caching. Some

network file systems provide security to operate on untrusted networks, including AFS with Ker-

beros [176], Echo [113], Truffles [151], and SFS [119]. Even wide-area file systems such as AFS,

however, do not perform any bandwidth optimizations necessary for the types of workloads and

applications that Shark targets. Additionally, although not an intrinsic limitation of AFS, there are

some network environments that do not work as well with its UDP-based transport compared to

a TCP-based one. This section describes some complementary and alternate designs for building

scalable file systems.

Scalable file servers. JetFile [74] is a wide-area network file system designed to scale to large

numbers of clients, by using the Scalable Reliable Multicast (SRM) protocol, which is logically

layered on IP multicast. JetFile allocates a multicast address for each file. Read requests are

multicast to this address; any client which has the data responds to such requests. In JetFile,

any client can become the manager for a file by writing to it—which implies the necessity for

conflict-resolution mechanisms to periodically synchronize to a storage server—whereas all writes

in Shark are synchronized at a central server. However, this practice implies that JetFile is intended

for read-write workloads, while Shark is designed for read-heavy workloads.

High-availability file systems. Several local-area systems propose distributing functionality over

multiple collocated hosts to achieve greater fault-tolerance and availability. Zebra [83] uses a

single meta-data server to serialize meta-data operations (e.g., i-node operations), and it maintains

a per-client log of file contents striped across multiple network nodes. Harp [109] replicates file

140

servers to ensure high availability; one such server acts as a primary replica in order to serialize

updates. These techniques are largely orthogonal to, yet possibly could be combined with, Shark’s

cooperative caching design.

Serverless file systems. Serverless file systems are designed to offer greater local-area scalability

by replicating functionality across multiple hosts. xFS [7] distributes data and meta-data across

all participating hosts, where every piece of meta-data is assigned a host at which to serialize

updates for that meta-data. Frangipani [182] decentralizes file storage among a set of virtualized

disks, and it maintains traditional file system structures, with small meta-data logs to improve

recoverability. A Shark server can similarly use any type of log-based or journaled file system to

enable recoverability, while it is explicitly designed for wide-area scalability.

Farsite [1] seeks to build an enterprise-scale distributed file system. A single primary replica

manages file writes, and the system protects directory meta-data through a Byzantine-fault-tolerant

protocol [27]. When enabling cross-file-system sharing, Shark’s encryption technique is similar to

Farsite’s convergent encryption, in which files with identical content result in identical ciphertexts.

Peer-to-peer file systems. A number of peer-to-peer file systems—including PAST [161],

CFS [45], Ivy [127], and OceanStore [105]—have been proposed for wide-area operation and

similarly use some type of DHT infrastructure for content discovery ([162, 177, 195], respec-

tively). All of these systems differ from Shark in that they provide a serverless design: While such

a fully decentralized design removes any central point of failure, it adds complexity, performance

overhead, and management difficulties.

PAST and CFS are both designed for read-only data, where data (whole files in PAST and

file blocks in CFS) are stored in the peer-to-peer DHT [162, 177] at nodes closest to the key that

names the respective block/file. Data replication helps improve performance and ensures that a

single node is not overloaded. In contract, Shark uses Coral to index clients caching a replica,

so data is only cached where it is needed by applications and on nodes that have proper access

permissions to the data.

Ivy builds on CFS to yield a read-write file system through logs and version vectors. The head

141

of a per-client log is stored in the DHT at its closest node. To enable multiple writers, Ivy uses

version vectors to order records from different logs. It does not guarantee read/write consistency.

Also managing read/write storage via versioned logs, OceanStore divides the system into a large

set of untrusted clients and a core group of trusted servers, where updates are applied atomically. Its

Pond prototype [154] uses a combination of Byzantine-fault-tolerant protocols, proactive threshold

signatures, erasure-encoded and block replication, and multicast dissemination mechanisms.

142

Chapter 6

Securing Rateless Erasure Codes for

Large-File Distribution

The previous chapter on Shark introduced a new content distribution design in the context of file

systems, which must handle the complexity of managing the consistency of read/write data. The

final mechanism this thesis presents returns to the problem of delivering read-only content. How-

ever, instead of web content—with its mostly small- to medium-sized objects—we now consider a

clean-slate approach to distributing large files. Specifically, we present a novel protocol to secure

the dissemination of erasure-encoded content.

6.1 Motivation

Peer-to-peer file-sharing systems are trafficking larger and larger files, but end-users have not wit-

nessed meaningful increases in their available bandwidth, nor have individual nodes become more

reliable. As a result, the transfer times of files in these networks often exceed the average uptime

of source nodes, and receivers frequently experience download truncations.

These peer-to-peer, large-file content distribution networks (LF-CDNs) can be extremely waste-

ful of bandwidth if they solely use whole-file, unicast transmissions, as a small number of files

account for a sizable percentage of total transfers. Studies indicate that from a university network,

143

for instance, KaZaa’s 300 top bandwidth-consuming objects can account for 42% of all outbound

traffic [165]. This overhead is partly due to these peer-to-peer systems ignoring locality: Recall

that Karagiannis et al. [93] found that up to 90% of peer-to-peer ingress traffic into networks cor-

responds to data already residing locally.

Combining good peer selection (§4) with multicasting popular files might drastically reduce

the total bandwidth consumed, by minimizing the frequency with which data repeatedly traverses

expensive, long-distance links. Traditional multicast systems would fare poorly in such unstable

networks, however, due to the overhead of maintaining the multicast structure (often a tree) upon

node failures.

Developments in practical erasure codes [111] and rateless erasure codes [110, 115, 169] point

to elegant solutions for this problem. Erasure codes of rate r (where 0 < r < 1) map a file of

n message blocks onto a larger set of n/r check blocks. Using such a scheme, a sender simply

transmits a random sequence of these check blocks. A receiver can decode the original file with

high probability once he has amassed a random collection of slightly more than n unique check

blocks. At larger values of r, senders and receivers must carefully coordinate to avoid block

duplication. In rateless codes, block duplication is much less of a problem: encoders need not

pre-specify a value for r and can instead map a file’s blocks to a set of check blocks whose size is

exponential in n.

When using low-rate or rateless erasure codes, senders and receivers forgo the costly and com-

plicated feedback protocols often needed to reconcile truncated downloads or to maintain a reliable

multicast tree. Receivers can furthermore collect blocks from multiple senders simultaneously.

One can envision an ideal situation, in which many senders transmit the same file to many recip-

ients in a “forest of multicast trees.” No retransmissions are needed when receivers and senders

leave and re-enter the network, as they frequently do.

A growing body of literature considers erasure codes in the context of modern distributed

systems. Earlier work applied fixed-rate codes to centralized multicast CDNs [20, 21]. More

current work considers rateless erasure codes in unicast, multi-source LF-CDNs [22, 117]. Even

more recently, SplitStream [30] has explored applying rateless erasure codes to overlapping peer-

144

to-peer multicast networks, and Bullet [101] calls on these codes when implementing “overlay

meshes.”

There is a significant downside to this popular approach. When transferring erasure-encoded

files, receivers can only “preview” their file at the very end of the transfer. A receiver may discover

that, after dedicating hours or days of bandwidth to a certain file transfer, he was receiving incorrect

or useless blocks all along. Most prior work in this area assumes honest senders, but architects of

robust, real-world LF-CDNs cannot make this assumption.

This chapter describes a novel construction that lets recipients verify the integrity of check

blocks immediately, before consuming large amounts of bandwidth or polluting their download

caches. In our scheme, a file F is compressed down to a smaller hash value, H(F), with which

the receiver can verify the integrity of any possible check block. Receivers then need only ob-

tain a file’s correct hash value to avoid being duped during a transfer. Our function H is based

on a discrete-log-based, collision-resistant, homomorphic hash function, which allows receivers to

compose hash values in much the same way that encoders compose message blocks. Unlike more

obvious constructions, ours is independent of encoding rate and is therefore compatible with rate-

less erasure codes. It is fast to compute, efficiently verified using probabilistic batch verification,

and has provable security under the discrete-log assumption. Furthermore, our implementation

results suggest this scheme is practical for real-world use.

Note that there is a parallel between this hash value and Shark’s use of a proxy authenticator

token (§5.2.3.3). That token plays a similar role—namely, a means to prevent a malicious sender

from wasting a receiver’s bandwidth—but in a much simpler context. In Shark, a fingerprint of

every chunk’s contents is known a priori to each party, retrieved from a Shark file server. On

the other hand, as there are an exponential number of potential erasure-encoded check blocks in

this context, the contents of these blocks are unknown to the receiver. Hence, the receiver cannot

simply download all potential hashes from a file publisher.

145

Figure 6.1: Online encoding of a five-block file. bi are message blocks, a1 is an auxiliary block,
and ci are check blocks. Edges represent addition (via XOR). For example, c4 = b2 + b3 + b5,
a1 = b3 + b4, and c7 = a1 + b5.

6.2 Design

6.2.1 Brief review of erasure codes

This chapter considers the non-streaming transfer of very large files over erasure channels such

as the Internet. Typically, a file F is divided into n uniformly-sized blocks, known as message

blocks (or alternatively, input symbols). Erasure-encoding schemes add redundancy to the orig-

inal n message blocks, so that receivers can recover from packet drops without explicit packet

retransmissions.

Though traditional forward error correction codes such as Reed-Solomon are applicable to

erasure channels [158], their decoding times—quadratic in n—make them prohibitively expensive

for large files. To this effect, researchers have proposed a class of erasure codes with sub-quadratic

decoding times. Examples include Tornado Codes [21], LT Codes [110], Raptor Codes [169]

and Online Codes [115]. All four of these schemes output check blocks (or alternatively, output

symbols) that are simple summations of message blocks. That is, if the file F is composed of

message blocks b1 through bn, the check block c1 might be computed as b1 + b2. The specifics of

these linear relationships vary with the scheme.

Tornado Codes, unlike the other three, are fixed-rate. A sender first chooses a rate r and then

146

can generate no more than n/r check blocks. Furthermore, the encoding process grows more ex-

pensive as r approaches zero. For multicast and other applications that benefit from lower encoding

rates, LT, Raptor, and Online codes are preferable [117]. Unlike Tornado codes, they feature rate-

less encoders that can generate an enormous sequence of check blocks with state constant in n. LT

codes are decodable in time O(n ln(n)), while Tornado, Raptor and Online Codes have linear-time

decoders.

We use Online Codes when considering the specifics of the encoding and decoding processes;

however, all three rateless techniques are closely related, and the techniques we describe are

equally applicable to LT and Raptor Codes.

Online codes [115]. Online Codes consist of three logical components: a precoder, an encoder,

and a decoder. A sender initializes the encoding scheme via the precoder, which takes as input

a file F with n message blocks and outputs nδk auxiliary blocks. k is small constant such as 3,

and δ, a parameter discussed later, has a value such as .005. The precoder works by adding each

message block to k distinct randomly-chosen auxiliary blocks. An auxiliary block is thus the sum

of 1/δ message blocks on average. This process need not be random in practice; the connections

between the message and auxiliary blocks can be a deterministic function of the input size n, and

the parameters k and δ. Finally, the n message blocks and the nδk auxiliary blocks are considered

together as a composite file F ′ of size n′ = n(1 + δk), which is suitable for encoding.

To construct the ith check block, the encoder randomly samples a pre-specified probability

distribution for a value di, known as the check block’s degree. The encoder then selects di blocks

from F ′ at random, and computes their sum, ci. The outputted check block is a pair 〈xi, ci〉, where

xi describes which blocks were randomly chosen from F ′. In practice, an encoder can compute

the degree di and the meta-data xi as the output of a pseudo-random function on input (i, n). It

thus suffices to send 〈i, ci〉 to the receiving client, who can compute xi with knowledge of n,

the encoding parameters, and access to the same pseudo-random function. See Figure 6.1 for a

schematic example of precoding and encoding.

To recover the file, a recipient collects check blocks of the form 〈xi, ci〉. Assume a received

block has degree one; that is, it has meta-data xi of the form {j}. Then, ci is simply the jth block

147

of the file F ′, and it can be marked recovered. Once a block is recovered, the decoder subtracts it

from the appropriate unrecovered check blocks. That is, if the kth check block is such that j ∈ xk,

then bj is subtracted from ck, and j is subtracted from xk. Note that during this subtraction process,

other blocks might be recovered. If so, then the decoding algorithm continues iteratively. When

the decoder receives blocks whose degree is greater than one, the same type of process applies;

that is, all recovered blocks are subtracted from it, which might in turn recover it.

In the encoding process, auxiliary blocks behave like message blocks; in the decoding process,

they behave like check blocks. When the decoder recovers an auxiliary block, it then adds it to the

pool of unrecovered check blocks. When the decoder recovers a message block, it simply writes

the block out to a file in the appropriate location. Decoding terminates once all n message blocks

are recovered.

In the absence of the precoding step, the codes are expected to recover (1−δ)n message blocks

from (1 + ε)n check blocks, as n becomes large. The auxiliary blocks introduced in the precoding

stage help the decoder to recover the final δn blocks. A sender specifies δ and ε prior to encoding;

they in turn determine the encoder’s degree distribution and consequently the number of block

operations required to decode.

Online Codes, like the other three schemes, use bitwise exclusive OR (XOR) for both addition

and subtraction. We note that although XOR is fast, simple, and compact—i.e., XORing two blocks

does not produce carry bits—it is not essential. Any efficiently invertible operation suffices.

6.2.2 Threat model

Deployed LF-CDNs like KaZaa consist of nodes who function simultaneously as publishers, mir-

rors, and downloaders of content. Nodes transfer content by sending contiguous file chunks over

point-to-point links, with few security guarantees. We imagine a similar but more powerful net-

work model.

When a node wishes to publish F , he uses a collision-resistant hash function such as SHA-1

to derive a succinct cryptographic file handle, H(F). He then pushes F into the network and also

publicizes the mapping of the file’s name N(F) to its key, H(F). Mirrors maintain local copies of

148

the file F and transfer erasure encodings of it to multiple clients simultaneously. As downloaders

receive check blocks, they can forward them to other downloaders, harmlessly “downsampling” if

constrained by downstream bandwidth. Once a downloader fully recovers F , he generates his own

encoding of F , sending “fresh” check blocks to downstream recipients. Meanwhile, erasure codes

enable downloaders to collect check blocks concurrently from multiple sources.

This setting differs notably from traditional multicast settings. Here, internal nodes are not

mere packet-forwarders but instead are active nodes that produce unique erasure encodings of the

files they redistribute.

Unfortunately, in a LF-CDN, one must assume that adversarial parties control arbitrarily many

nodes on the network. Hence, mirrors may be frequently malicious.1 Under these assumptions, the

LF-CDN model is vulnerable to a host of different attacks:

1. Content Mislabeling. A downloader’s original lookup mapped N(F)→ H(F̃). The down-

loader will then request and receive the file F̃ from the network, even though he expected

file F .

2. Bogus-Encoding Attacks. Mirrors send blocks that are not check blocks of the expected

file, with the intent of thwarting the downloader’s decoding. This has also been termed a

pollution attack [96].

3. Distribution Attacks. A malicious mirror sends valid check blocks from the encoding of

F , but not according to the correct distribution. As a result, the receiver might experience

degenerate behavior when trying to decode.

Deployed peer-to-peer networks already suffer from malicious content-mislabeling. A popular

file may resolve to dozens of names, only a fraction of which are appropriately named. A number

of solutions exist, ranging from simply downloading the most widely replicated name (on the

assumption that people will keep the file if it is valid), to more complex reputation-based schemes.

1We do not explicitly model adversaries controlling the underlying physical routers or network trunks,
although our techniques are also robust against these adversaries, with the obvious limitations (e.g., the
adversary can prevent a transfer if he blocks the downloader’s network access).

149

In more interesting LF-CDNs, trusted publishers might sign file hashes. Consider the case of a

Linux vendor using a LF-CDN to distribute large binary upgrades. If the vendor distributes its

public key in CD-based distributions, clients can verify the vendor’s signature of any subsequent

upgrade. This is also the context we considered earlier in CoralCDN and Shark, where an authentic

“origin” server or publisher is known for each particular file. The general mechanics of reliable

filename resolution are beyond the scope of our consideration; we assume that a downloader can

retrieve H(F) given N(F) via some out-of-band and trusted lookup.

This work focuses on the bogus-encoding attack. When transferring large files, receivers will

talk to many different mirrors, in series and in parallel. At the very least, the receiver should be

able to distinguish valid from bogus check blocks at decoding time. One bad block should not

ruin hundreds of thousands of valid ones. Moreover, receivers have limited bandwidth and cannot

afford to communicate with all possible mirrors on the network simultaneously. They would clearly

benefit from a mechanism to detect cheating as it happens, so they can terminate connections to

bad servers and seek out honest senders elsewhere on the network.

To protect clients against encoding attacks, LF-CDNs require some form of source verification.

That is, downloaders need a way to verify individual check blocks, given a reliable and compact

hash of the desired file. Furthermore, this verification must not be interactive; it should work

whether or not the original publisher is online. The question becomes, should the original publisher

authenticate file blocks before or after they are encoded? We consider both cases.

6.2.2.1 Hashing all input symbols

A publisher wishes to distribute an n-block file F . Assuming Online Codes, he first runs F through

a precoder, yielding an n′-block file F ′. He then computes a Merkle hash tree of F ′ [120]. The

file’s full hash is the entirety of the hash tree, but the publisher uses the hash tree’s root for the

file’s succinct cryptographic handle. To publish, he pushes the file and the file’s hash tree into the

network, all keyed by the root of the hash tree. Note that although the hash tree is smaller than the

original file, its size is still linear in n.

To download F , a client maps N(F) to H(F) as usual, but now H(F) is the root of the file’s

150

hash tree. Next, the client retrieves the rest of the hash tree from the network, and is able to verify

its consistency with respect to its root. Given this information, he can verify check blocks as the

decoding progresses, through use of a “smart decoder.” As check blocks of degree one arrive, he

can immediately verify them against their corresponding leaf in the hash tree. Similarly, whenever

the decoder recovers an input symbol bj from a check block 〈xi, ci〉 of higher degree, the receiver

verifies the recovered block bj against its hash. If the recovered block verifies properly, then the

receiver concludes that 〈xi, ci〉 was generated honestly and hence is valid. If not, then the receiver

concludes that it is bogus.

In this process, the decoder only XORs check blocks with validated degree-one blocks. Conse-

quently, valid blocks cannot be corrupted during the decoding process. On the other hand, invalid

check blocks which are reduced to degree-one blocks are easily identified and discarded. Using

this “smart decoder,” a receiver can trivially distinguish bogus from valid check blocks and need

not worry about the download cache pollution described in [96]. The problem, however, is that

a vast majority of these block operations happen at the very end of the decoding process—when

almost n check blocks are available to the decoder. Figure 6.2 exhibits the average results for de-

coding a file of n = 10, 000 blocks, taken over 50 random Online encodings. According to these

experiments, when a receiver has amassed .9n check blocks, he can recover only .068n message

blocks; when he has amassed n check blocks, he can recover only .303n message blocks. In prac-

tice, a downloader could dedicate days of bandwidth to receiving gigabytes of check blocks, only

to find that most are bogus.

6.2.2.2 Hashing check blocks

Instead of hashing the input to the erasure encoder, publishers might hash its output. If so, the LF-

CDN is immediately limited to fixed-rate codes. Recall that the publisher is not directly involved

in the file’s ultimate distribution to clients and therefore cannot be expected to hash and sign check

blocks on-the-fly. Thus, the publisher must pre-specify a tractable rate r and “pre-authorize” n/r

check blocks. In practice, the publisher might do this by generating n/r check blocks, computing

their hash tree, and keying the file by its root. When mirrors distribute the file, they distribute

151

1.00

0.80

0.60

0.40

0.30

0.20

0.07
0.00

 0.5 0.6 0.7 0.8 0.9 1 1.1

F
ra

ct
io

n
of

 m
sg

 b
lo

ck
s

re
co

ve
re

d

(# check blocks received) / (file size in blocks)

Figure 6.2: Number of blocks recoverable as function of number of blocks received. Data collected
over 50 random encodings of a 10,000 block file.

only those check blocks that the publisher has pre-authorized. With the benefit of the hash tree

taken over all possible check blocks, the receiver can trivially verify check blocks as they arrive.

Section §6.3.2.2 explores this proposal in more detail. We simply observe here that it becomes pro-

hibitively expensive for encoding at low rates, in terms of the publisher’s computational resources

and the bandwidth required to distribute hashes.

6.2.3 Homomorphic hashing

Our solution combines the advantages of the previous section’s two approaches. As in the first

scheme, our hashes are reasonably-sized and independent of the encoding rate r. As in the second,

they enable receivers to authenticate check blocks on-the-fly.

We propose two possible authentication protocols based on a homomorphic collision-resistant

hash function (CRHF). In the global hashing model, there is a single way to map F to H(F)

by using global parameters. As such, one-time hash generation is slow but well-defined. In the

per-publisher hashing model, each publisher chooses his own hash parameters, and different pub-

152

lishers will generate different hashes for the same file. We will later show that the per-publishing

model enables publishers to generate hashes more efficiently, although the downloader’s verifica-

tion overhead is the same.

In today’s file-sharing systems, there may be multiple publishers for the same exact content—

e.g., different individuals may rip the same CD—thus these publishers may use global hashing so

that all copies look identical to the system. In other environments, content has a single, well-known

publisher, and the per-publisher scheme is more appropriate. While the latter might be ill-suited

for copyright circumvention, it otherwise is more useful, allowing publishers to sign file hashes

and clients to authenticate filename to file-hash mappings. Many Internet users could benefit from

cheap, trusted, and efficient distribution of bulk data: anything from Linux binary distributions to

large academic datasets to high-definition videos could travel through such a network.

6.2.3.1 Notation and preliminaries

In the following discussion, we will be using scalars, vectors, and matrices defined over modular

subgroups of Z. We write scalars in lowercase (e.g., x), vectors in lowercase boldface (e.g., x)

and matrices in uppercase (e.g., X). Furthermore, for the matrix X , the jth column is a vector

written as xj , and the ijth cell is a scalar written as xij . Vectors might be row vectors or column

vectors, and we explicitly specify them as such. All additions are assumed to be taken over Zq,

and multiplications and exponentiations are assumed to be taken over Zp, with q and p selected as

described in the next subsection. Finally, we invent one notational convenience concerning vector

exponentiation. That is, we define gr = g component-wise: if the row vector r = (r1 r2 · · · rm),

then the row vector gr = (gr1 gr2 · · · grm).

6.2.3.2 Global homomorphic hashing

In global homomorphic hashing, all nodes on the network must agree on hash parameters so that

any two nodes independently hashing the same file F should arrive at exactly the same hash. To

achieve this goal, all nodes must agree on security parameters λp and λq. Then, a trusted party

globally generates a set of hash parameters G = (p, q,g), where p and q are two large random

153

Name Description e.g.,
λp discrete log security parameter (in bits) 1024
λq discrete log security parameter (in bits) 257
p random prime, |p| = λp

q random prime, q|(p− 1), |q| = λq

β block size 16 KB
m = dβ/(λq − 1)e 512

(number of “sub-blocks” per block)
g 1×m row vector of order q elts in Zp

G hash parameters, given by (p, q,g)
n original file size (in blocks) 65, 536

k precoding parameter 3
δ fraction of unrecoverable message blocks .005

(without the benefit of precoding)
n′ precoded file size, n′ = (1 + δk)n 66, 519
ε asymptotic encoding overhead .01
d average degree of check blocks ∼ 8.17

Figure 6.3: System parameters and properties for securing erasure codes

primes such that |p| = λp, |q| = λq, and q|(p − 1). The hash parameter g is a 1 ×m row-vector,

composed of random elements of Zp, all order q. These and other parameters are summarized in

Figure 6.3.

In decentralized LF-CDNs, such a trusted party might not exist. Rather, users joining the

system should demand “proof” that the group parameters G were generated honestly. In particular,

no node should know i, j, xi, xj such that gxi
i = g

xj

j , as one that had this knowledge could easily

compute hash collisions. The generators might therefore be generated according to the algorithm

PickGroup given in Figure 6.4. The input (λp, λq, m, s) to the PickGroup algorithm serves as a

heuristic proof of authenticity for the output parameters, G = (p, q,g). That is, unless an adversary

exploits specific properties of SHA-1, he would have difficulty computing a seed s that yields

generators with a known logarithmic relation. In practice, the seed s might be chosen globally,

or even chosen per file F such that s = SHA1(N(F)). Either way, the same parameters G will

always be used when hashing file F .

154

Algorithm PickGroup(λp, λq, m, s)
Seed PRNG G with s.
do

q ← qGen(λq)
p← pGen(q, λp)

while p = 0 done
for i = 1 to m do

do
x← G(p− 1) + 1
gi ← x(p−1)/q (mod p)

while gi = 1 done
done
return (p, q,g)

Algorithm qGen(λq)
do

q ← G(2λq)
while q is not prime done
return q

Algorithm pGen(q, λp)
for i = 1 to 4λp do

X ← G(2λp)
c← X (mod 2q)
p← X − c + 1 // Note p ≡ 1 (mod 2q)
if p is prime then return p

done
return 0

Figure 6.4: Picking secure generators. The seed s can serve as an heuristic “proof” that the hash
parameters were chosen honestly. This algorithm is based on that given in the NIST Standard [56].
The notation G(x) should be taken to mean that the pseudo-random number generator G outputs
the next number in its pseudo-random sequence, scaled to the range {0, . . . , x−1}.

155

File representation. As per Figure 6.3, let β be the block size, and let m = dβ/(λq − 1)e.

Consider a file F as an m × n matrix, whose cells are all elements of Zq. Our selection of m

guarantees that each element is less than 2λq−1, and is therefore less than the prime q. Now,

the jth column of F simply corresponds to the jth message block of the file F , which we write

bj = (b1,j, . . . , bm,j). Thus:

F = (b1 b2 · · · bn) =


b1,1 · · · b1,n

...

bm,1 · · · bm,n


We add two blocks by adding their corresponding column-vectors. That is, to combine the ith and

jth blocks of the file, we simply compute:

bi + bj = (b1,i + b1,j, . . . , bm,i + bm,j) mod q

Precoding. Recall that the precoding stage in Online Codes produces auxiliary blocks that are

summations of message blocks, and that the resulting composite file has the original n message

blocks and the additional nδk auxiliary blocks. The precoder now proceeds as usual, but uses

addition over Zq instead of the XOR operator.

We can represent this process succinctly with matrix notation. That is, the precoding stage is

given by a binary n×n′ matrix, Y = (I|P). The matrix Y is the concatenation of the n×n identity

matrix I , and the n × nδk matrix P that represents the composition of auxiliary blocks. All rows

of P sum to k, and its columns sum to 1/δ on average. The precoded file can be computed as

F ′ = FY . The first n columns of F ′ are the message blocks. The remaining nδk columns are the

auxiliary blocks. For convenience, we refer to auxiliary blocks as bi, where n < i ≤ n′.

Encoding. Like precoding, encoding is unchanged save for the addition operation. For each

check block, the encoder picks an n′-dimensional bit vector x and computes c = F ′x. The output

〈x, c〉 fully describes the check block.

156

Hash generation. To hash a file, a publisher uses a CRHF, secure under the discrete-log assump-

tion. This hash function is a generalized form of the Pederson commitment scheme [138] (and

from Chaum et al. [35]), and it is similar to that used in various incremental hashing schemes (see

§6.4). Recall that a CRHF is informally defined as a function for which finding any two inputs that

yield the same output is difficult.

For an arbitrary message block bj , define its hash with respect to G:

hG(bj) =
m∏

i=1

g
bi,j

i mod p (6.1)

Define the hash of file F as a 1 × n row-vector whose elements are the hashes of its constituent

blocks:

HG(F) = (hG(b1) hG(b2) · · · hG(bn)) (6.2)

To convey the complete hash, publishers should transmit both the group parameters and the hash

itself: (G, HG(F)). From this construction, it can be seen that each block of the file is β bits, and

the hash of each block is λp bits. Hence, the hash function HG reduces the file by a factor of β/λp,

and therefore |HG(F)| = |F |λp/β.

Hash verification. If a downloader knows (G, HG(F)), he can first compute the hash values for

the nδk auxiliary blocks. Recall that the precoding matrix Y is a deterministic function of the file

size n and the preestablished encoding parameters δ and k. Thus, the receiver computes Y and

obtains the hash over the composite file as HG(F ′) = HG(F) ·Y . The hash of the auxiliary blocks

are the last nδk cells in this row vector.

To verify whether a given check block 〈x, c〉 satisfies c = F ′x, a receiver verifies that:

hG(c) =
n′∏

i=1

hG(bi)
xi (6.3)

hG functions here as a homomorphic hash function. For any two blocks bi and bj , hG(bi + bj) =

hG(bi)hG(bj).

157

Downloaders should monitor the aggregate behavior of mirrors during a transfer. If a down-

loader detects a number of unverifiable check blocks above a predetermined threshold, he should

consider the sender malicious and should terminate the transfer.

Decoding. Decoding proceeds as described in §6.2.1. Of course, XOR is conveniently its own

inverse, so implementations of standard Online Codes need not distinguish between addition and

subtraction. In our case, we simply use subtraction over Zq to reduce check blocks as necessary.

Despite our emphasis on Online Codes in particular, we note that these techniques apply to

LT and Raptor codes as well. LT Codes do not involve preprocessing, so the above scheme can

be simplified. Raptor Codes involve a two-stage precoding process, and they probably are not

compatible with the implicit calculation of auxiliary block hashes described above. In this case,

we compute file hashes over the output of the precoder, therefore obtaining slightly larger file

hashes.

6.2.3.3 Per-publisher homomorphic hashing

The per-publisher hashing scheme is an optimization of the global hashing scheme just described.

In the per-publisher hashing scheme, a given publisher picks group parameters G so that a logarith-

mic relation among the generators g is known. The publisher picks q and p as above, but generates

g by picking a random g ∈ Zp of order q, generating a random vector r whose elements are in Zq

and then computing g = gr.

Given the parameters g and r, the publisher can compute file hashes with many fewer modular

exponentiations:

HG(F) = grF (6.4)

The publisher computes the product rF first, and then performs only one modular exponentiation

per file block to obtain the full file hash. See §6.3.2 for a more complete running-time analysis.

The publisher must be careful to never reveal g and r; doing so allows an adversary to compute

arbitrary collisions for HG.

Aside from hash parameter generation and hash generation, all aspects of the protocol described

158

above hold for both the per-publisher and the global scheme. A verifier does not distinguish be-

tween the two types of hashes, beyond ensuring that the party who generated the parameters is

trusted (or the parameters are accompanied by a proof of their correct generation, per Figure 6.4).

6.2.3.4 Computational efficiency improvements

So far, we have presented a bare-bones protocol that achieves our security goals, but it is expensive

in terms of bandwidth and computation. The hash function HG is orders of magnitude slower

than a more conventional hash function such as SHA-1. Our goal here is to improve verification

performance, so that a downloader can, at the very least, verify hashes as quickly as he can receive

them from the network. The bare-bones primitives above imply that a client must essentially

recompute the hash of the file HG(F), but without knowing r.

We use a technique suggested by Bellare, Garay, and Rabin [15] to improve verification per-

formance. Instead of verifying each check block ci exactly, we verify them probabilistically and in

batches. Each downloader picks a batch size t such as 256 blocks, and a security parameter l such

as 32.

The downloader runs a probabilistic batch verifier given by V . The algorithm takes as input the

parameter array (HG(F ′), G, X,C). As usual, HG(F ′) is the hash of the precoded file F ′ and G

denotes the hash parameters. The m × t matrix C represents the batch of t check blocks that the

downloader received; for convenience, we will write the decomposition C = (c1 · · · ct), where a

column ci of the matrix represents the ith check block of the batch. The m× t matrix X is a sparse

binary matrix. The cell xij should be set to 1 if the jth check block contains the message block bi

and should be 0 otherwise. In other words, the jth column of the matrix X is exactly xj .

Algorithm V(HG(F ′), G, X,C)

1. Let si ∈ {0, 1}l be chosen randomly for 0 < i ≤ t, and let the column vector

s = (s1, . . . , st).

2. Compute column vector z = Cs.

159

3. Compute γj =
∏n′

i=0 hG(bi)
xij for all j ∈ {1, .., t}. Note that if the sender is

honest, then γj = hG(cj).

4. Compute y′ =
∏m

i=1 gzi
i , and y =

∏t
j=1 γ

sj

j .

5. Verify that y′ ≡ y mod p.

This algorithm is designed to circumvent the expensive computations of hG(ci) for check

blocks in the batch. V performs an alternative and roughly equivalent computation with the prod-

uct y in Step 4. The key optimization here is that the exponents sj are small (l bits) as compared

to the much larger λq-bit exponents used in Equation 6.1.

Batching does open the receiver to small-scale bandwidth-consumption attacks by a malicious

sender: a receiver will accept a batch worth of invalid check blocks before detecting the prob-

lem and closing the connection. With our example parameters, each batch is 4 MB. However, a

downloader can batch over multiple sources. Only once a batch fails to verify might the down-

loader attempt per-source batching to determine which source is sending corrupted check blocks

(in other words, we can optimize for the common, correct case). Finally, downloaders might tune

the batching parameter t based upon their available bandwidth or gradually increase t for each

source—based on the assumption that history is a good predictor of behavior—so as to bound its

overall fraction of bad blocks.

6.2.3.5 Homomorphic hash trees

As previously noted, hashes HG(F) are proportional in size to the file F and hence can grow quite

large. With our sample hash parameters, an 8 GB file will have a 64 MB hash—a sizable file in

and of itself. If a downloader were to use traditional techniques to download such a hash, he would

be susceptible to the very same attacks we have set out to thwart, albeit on a smaller scale.

To solve this problem, we construct homomorphic hash trees: treating large hashes themselves

as files, and repeatedly hashing until an acceptably small hash is output. We also use a tradi-

tional hash function such as SHA-1 to reduce our hashes to standard 20-byte sizes, for convenient

indexing at the network and systems levels.

160

First, pick a parameter L to represent the size of the largest hash that a user might download

without the benefit of on-the-fly verification. A reasonable value for L might be 1 MB. Define the

following:

H0
G(F) = F

H i
G(F) = HG(H i−1

G (F)) for i > 0

IG(F) = (G, j, Hj
G(F)) for minimal j such that |IG(F)| < L

JG(F) = SHA1(IG(F))

That is, H i
G(F) denotes i recursive applications of HG. Note that J outputs hashes that are the

standard 20 bytes in size. Now, the different components of the system are modified accordingly.

Filename-to-hash mappings. Lookup services map N(F)→ JG(F), for some G.

File publication. To publish a file F , a publisher must compute the hashes chain of hashes

H1
G(F), . . . , Hj

G(F), and also the hashes IG(F) and JG(F). For i ∈ {0, ..., j− 1}, the pub-

lisher stores H i
G(F) under the key (JG(F), i), and he additionally stores IG(F) under the key

(JG(F),−).

File download. To retrieve a file F , a downloader first performs the name-to-hash lookup

N(F) → JG(F), for some G. He then uses some key-value indexing layer (§2) to determine

a set of sources who serve the file and hashes corresponding to JG(F). The downloader queries

one of the mirrors with the key (JG(F),−), and expects to receive IG(F). This transfer can be at

most L big. Assuming the hash JG(F) = SHA1(IG(F)) correctly verifies, the downloader knows

the value j, as well as the jth order hash Hj
G(F). He can then request the next hash in the sequence

simultaneously from all of the mirrors who serve F . The downloader queries these servers with the

key (JG(F), j−1), expecting the hash Hj−1
G (F) in response. This transfer also can be completed

using erasure encoding and our hash verification protocol. The downloader iteratively queries its

sources for lower-order hashes until it receives the 0th order hash, or rather, the file itself.

In practice, it would be rare to see a j greater than 3. With our sample hash parameters, the

161

third-order hash of a 512 GB file is a mere 32 KB. However, this scheme can scale to arbitrarily

large files. Also note that because each application of the hash function cuts the size of the input by

a factor of β/λp, the total overhead in hash transmission will be bounded below a small fractional

multiple of the original file size, namely:

overhead
filesize

=

j∑
i=1

(
λp

β

)i

<

∞∑
i=1

(
λp

β

)i

<
1

1− λp/β
− 1 =

λp

β − λp

With our example parameters, λp/(β − λp) ≈ 0.79%.

6.3 Evaluation

In this section, we prove the correctness of our protocol, analyze the performance of our hashing

scheme, and then prove its security under standard cryptographic assumptions.

6.3.1 Correctness

We now show that homomorphic hashing scheme coupled with the batch verifier given in §6.2.3.4

guarantees correctness. That is, a verifier should always accept the encoded output from an honest

sender. Given the proof of this more involved probabilistic verifier, it is easy to see that the naive

verifier is also correct.

To prove the batched verification algorithm given in §6.2.3.4 correct—i.e., that correct check

blocks will be validated—let us examine an arbitrary hash (G, HG(F)). For notational conve-

nience, we write y and y′ computed in Step 4 in terms of an element g ∈ Zp of order q and row

vector r such that gr = g mod p. These elements are guaranteed to exist, even if they cannot be

computed efficiently. Thus,

y′ =
m∏

i=1

gzi
i =

m∏
i=1

grizi = g
Pm

i=1 ziri = grz

162

By the definition of z from Step 2, we conclude y′ = grCs.

Now we examine the other side of the verification, y. Recalling Equation 6.1, rewrite hashes

of check blocks in terms of a common generator g:

hG(cj) =
m∏

i=1

grici,j = g
Pm

i=1 rici,j = grcj

As noted in Step 3, for an honest sender, γj = hG(cj). Thus, we can write that γj = gsjrcj .

Combining with the computation of y in Step 4:

y =
t∏

j=1

gsjrcj = g
Pt

j=1 sjrcj = grCs

Thus we have that y′ ≡ y mod p, proving the correctness of the validator.

6.3.2 Running-time analysis

In analyzing the running time of our algorithms, we count the number of multiplications over Z∗
p

and Zq needed. For instance, a typical exponentiation yx in Z∗
p requires 1.5|x|multiplications using

the “iterative squaring” technique. |x| multiplications are needed to produce a table of values y2z ,

for all z such that 1 ≤ z < |x|. Assuming data compression, half of the bits of x on average

will be 1, thus requiring |x|/2 multiplications of values in the table. In our analysis, we denote

MultCost(p) as the cost of multiplication in Z∗
p, and MultCost(q) as the cost of multiplication in

Zq.

Note that computations of the form
∏m

i=1 gxi
i are computed at various stages of the different

hashing protocols. As mentioned above, the precomputation of the g2z

i requires mλq multiplica-

tions over Z∗
p. But the product itself can be computed in (mλq/2) MultCost(p) computations—and

not (mλq/2 + m− 1) MultCost(p) as one might expect—by keeping a “running product.”

We recognize that certain operations like modular squaring are cheaper than generic modular

multiplication. Likewise, multiplying an element of Zq by a 32-bit number is less expensive than

163

multiplying two random elements from Zq. In our analysis, we disregard these optimizations and

seek only simplified upper bounds.

Per-publisher hash generation. Publishers first precompute a table g2z for all z such that

1 ≤ z < λq. This table can then be used to compute HG(F) for any file F . Here and through-

out this analysis, we can disregard the one-time precomputation, since n � m. Thus, the n-

vector exponentiation in Equation 6.4 requires an expected nλq/2 multiplications in Z∗
p. To com-

pute rF as in Equation 6.4, mn multiplications are needed in Zq. The total cost is therefore

mn MultCost(q) + nλq MultCost(p)/2.

Global hash generation. Publishers using the global hashing scheme do not know r and hence

must do multiple exponentiations per block. That is, they must explicitly compute the product

given in Equation 6.1, with only the benefit of the precomputed squares of the gi. If we ignore

these precomputation costs, global hash generation requires a total of nmλq MultCost(p)/2 worth

of computation.

Naive hash verification. Hash verifiers who chose not to gain batching speed-ups perform

much the same operations as the global hash generators. That is, they first precompute tables of

squares, and then compute the left side of Equation 6.3 for the familiar cost of mλq MultCost(p)/2.

The right side of the equation necessitates an average of d multiplications in Z∗
p, where d, we

recall, is the average degree of a check block c. Thus, the expected per-block cost is (mλq/2 +

d)MultCost(p).

Fast hash verification. We refer to the algorithm described in §6.2.3.4. In Step 2, recall that

C is a m × t matrix, and hence the matrix multiplication costs mt MultCost(q). V determines γj

in Step 3 with d multiplications over Z∗
p, at a total cost of td MultCost(p). In Step 4, computing

y′ costs mλq/2 MultCost(p) with access to precomputed tables of the form g2x

i . For y, no such

precomputations exist; the bases in this case are γj , of which there are more than n. To compute

y efficiently, we use the fast multiplication algorithm presented in [15] (and discussed in [104]),

164

time throughput
Operation on 16 KB block b (ms) (MB/s)
Per-publisher computation of hG(b) 1.39 11.21
Global computation of hG(b) 420.90 0.037
Naive verification of hG(b) 431.82 0.038
Batched verification of hG(b) 2.05 7.62
SHA1(b) 0.28 56.25
Sign b with Rabin-1024 1.98 7.89
Verify Rabin-1024 signature of b 0.29 53.88
Receiving b on a T1 83.33 0.186
Reading b from disk (sequentially) 0.27 57.87

Figure 6.5: Homomorphic hashing microbenchmarks

which costs (tl/2 + l − 1) MultCost(p).2 Summing these computations and amortizing over the

batch size t yields a per-block cost of:

m ·MultCost(q) +

[
d +

l

2
+

mλq/2 + l − 1

t

]
·MultCost(p)

6.3.2.1 Microbenchmarks

We implemented a version of these hash primitives using the GNU MP library, version 4.1.2.

Figure 6.5 shows the results of our C++ testing program when run on a 3.0 GHz Pentium 4, with

the sample parameters given in Figure 6.3 and the batching parameters given in §6.2.3.4. On this

machine, MultCost(p) ≈ 6.2 µsecs and MultCost(q) ≈ 1.0 µsecs. Our results are reported in both

cost per block and overall throughput. For comparison, we include similar computations for SHA-

1 and for the Rabin signature scheme with 1024-bit keys [148]. We also include disk bandwidth

measurements for reading blocks off a Seagate 15K Cheetah SCSI disk drive (in batches of 64),

and maximum theoretical packet arrival rate on a T1 connection. We will call on these benchmarks

in the next section.
2This fast multiplication algorithm offers no per-block performance improvement for naive verification,

thus we only consider it for fast verification.

165

Although batched verification of hashes is almost an order of magnitude slower than a more

conventional hash function such as SHA-1, it is still more than an order of magnitude faster than

the maximum packet arrival rate on a good Internet connection. Furthermore, by adjusting the

batch parameter t, downloaders can upper-bound the amount of time they waste receiving bad

check blocks. That is, receivers with faster connections can afford to download more potentially

bogus check blocks, and can therefore increase t (and thus verification throughput) accordingly.

Our current scheme for global hash generation is rather slow, but publishers with reasonable

amounts of RAM can use k-ary exponentiation to achieve a four-fold speedup (see [104]). Our

performance analysis focuses on the per-publisher scheme, which we believe to be better-suited

for copyright-friendly distribution of bulk data.

6.3.2.2 Performance Comparison

In §6.2.2.1, we discussed other strategies for on-the-fly verification of check blocks in LF-CDNs.

We now describe these proposals in greater detail, to examine how our scheme compares in terms

of bandwidth, storage, and computational requirements. There are three schemes in particular to

consider:

High-degree SHA-1 hash tree. The publisher generates n/r check blocks, and then hashes each

one. Since this collection of hashes might be quite large, the publisher uses the recursive scheme

described in §6.2.3.5 to reduce it to a manageable size. The publisher distributes the file, keyed by

the root of the hash tree. Downloaders first retrieve all nodes in the hash tree and then can verify

check blocks as they arrive.

Binary SHA-1 hash tree. As before, the publisher generates n/r check blocks, but then computes

a binary hash tree over all check blocks. The publisher keys the file by the root of its hash tree.

In this scheme, mirrors need access to the entire hash tree, but clients do not. Rather, when the

mirrors send check blocks, they prepend the “authentication path” describing the particular check

block’s location in the hash tree. If downloaders know the hash tree’s root a priori, they can, given

166

the correct authentication path, verify that a received check block is one of those intended by the

publisher.

Sign every block. A publisher might generate n/r blocks and simply sign every one. The hash

of the file is then the SHA-1 of the filename and the publisher’s public key. The mirrors must

download and store these signatures, prepending them to check blocks before they are sent to

remote clients. To retrieve the file, clients first obtain the publisher’s public key from the network,

and verify this key against the hash of the file. When they arrive from mirrors, the check blocks

contain their own signatures and are thus easily verified.

These three schemes require a suitable value of r. For codes with rate r, a file with n message

blocks will be expanded into n/r check blocks. For simple lower bounds, assume that any set of

n of these check blocks suffices to reconstruct the file. In a multicast scenario, a client essentially

collects these blocks at random, and the well-known “coupon collector bound” predicts that he

will receive −(n/r) ln(1 − r) check blocks on average before collecting n unique check blocks.3

Using this bound, we can estimate the expected additional transmission overheads due to repeated

check blocks:

r −(1/r) ln(1− r)

1/2 0.3863

1/4 0.1507

1/8 0.0683

1/16 0.0326

1/32 0.0160

That is, with an encoding rate r=1/2, a receiver expects an additional 39% overhead correspond-

ing to duplicate blocks. In many-to-many transmission schemes, small encoding rates are essential

to achieving good bandwidth utilization.

We now present a performance comparison of the three fixed-rate schemes and our homomor-

phic hashing proposal, focusing on key differences between them: hash generation costs incurred

3This asymptotic bound is within a 10−5 neighborhood of the exact probability when n = 216.

167

by the publisher, storage requirements at the mirror, bandwidth utilization between the mirror and

downloader, and verification performance.

Hash generation. Fixed-rate schemes such as the three presented above can generate signatures

only as fast as they can generate check blocks. Encoding performance depends upon the file’s size,

but because we wish to generalize our results to very large files, we must assume that the publisher

cannot store the entire input file (or output encoding) in main memory. Hence, secondary storage

is required.

Our implementation experience with Online Codes has shown that the encoder works most

efficiently if it stores the relevant pieces of the encoding graph structure and a fixed number of

check blocks in main memory.4 The encoder can make several sequential passes through the file.

With each pass, it adds message blocks from disk into check blocks in memory, as determined by

the encoding graph. As the pass is completed, it flushes the completed batch of check blocks to

the network, to disk, or to functions that compute hashes or signatures. This technique exploits the

fact that sequential reads from disk are much faster than random seeks.

Our current implementation of Online Codes can achieve encoding throughputs of about 21

MB/s (on 1 GB files, using roughly 512 MB of memory). However, to better compare our system

against fixed-rate schemes, we will assume that an encoder exists that can achieve the maximum

possible throughput. This upper bound is ae/(βn), where the file has n blocks, the block size is

β, the amount of memory available for storing check blocks is a, and the disk’s sequential read

throughput is e.

When publishers use fixed-rate schemes to generate hashes, they must first precompute n/r

check blocks. Using the encoder described above, this computation requires nβ/(ra) scans of the

entire file. Moreover, each scan of the file involves n block reads, so n2β/(ra) block reads in total

are required. Concurrent with these disk reads, the publisher computes hashes and signatures of

the check blocks and the implied hash trees if necessary.

The theoretical requirements for all four schemes are summarized in Figure 6.6. In the bottom

table, we have attempted to provide some concrete realizations of our theoretical bounds. Through-

4With little impact on performance, our implementation also stores auxiliary blocks in memory.

168

Scheme Block Reads DLog Hashes SHA-1 Hashes Sigs
Homomorphic Hashing n nβ/(β − λp) 1 1
Big-Deg. SHA-1 Tree n2β/(ra) 0 (n/r)β/(β − 160) 1
Binary SHA-1 Tree n2β/(ra) 0 2n/r 1
Sign Every Block n2β/(ra) 0 0 n/r

Scheme Disk (sec) CPU (sec) Lower Bound (sec)
Homomorphic Hashing 17.69 91.81 91.81
Big-Deg. SHA-1 Tree 566.23 293.96 566.23
Binary SHA-1 Tree 566.23 587.20 587.20
Sign Every Block 566.23 2076.18 2076.18

Figure 6.6: Comparison of hash generation performance

out, we assume (1) a 1 GB file, broken up into n = 216 blocks, each of size β = 16 KB, (2) the

publisher has a=512 MB of memory for temporary storage of check blocks, and (3) disk through-

puts can be sustained at 57.87 MB/s as we observed on our test machine. Under these conditions,

an encoder can achieve theoretical encoding throughputs of up to 28.9 MB/s. We further assume

that (4), seeking to keep overhead due to redundant check blocks below 5%, the publisher uses an

encoding rate of r =1/16, and (5) a publisher can entirely overlap disk I/O and computations and

therefore only cares about whichever takes longer. In the right-most column, we present reasonable

lower bounds on hash generation performance for the four different schemes.

Despite our best efforts to envision a very fast encoder, the results for the three fixed-rate

schemes are poor, largely due to the cost of encoding n/r file blocks. Moreover, in the sign-every-

block scheme, the CPU becomes the bottleneck due to the expense of signature computation.

By contrast, the homomorphic hashing scheme can escape excessive disk accesses, because it

hashes data before it is encoded. It therefore requires only one scan of the input file to generate the

hashes of the message blocks. The publisher’s subsequent computation of the higher-level hashes

H2(F), H3(F), . . . easily fit into memory. Our prototype can compute a homomorphic hash of a

1 GB file in 123.63 seconds, reasonably close to the lower bound of 91.81 seconds predicted in

Figure 6.6.

Of course, performance for the three fixed-rate schemes worsens as r becomes smaller or n

169

Scheme Overhead Storage (MB)
Homomorphic Hash 0.008 8.06
Big-Degree Tree 0.020 20.02
Binary Tree 0.039 40.00
Sign Every Block 0.125 128.00

Figure 6.7: Comparison of additional storage requirements for mirrors

becomes larger. It is possible to ameliorate these problems by raising the block size β or by

striping the file into several different files, but these schemes involve various trade-offs that are

beyond the scope of our consideration.

Mirror’s encoding performance. In theory, the homomorphic hashing scheme renders encoding

more computationally expensive because it substitutes XOR block addition for more expensive

modular additions. We have measured that our machine computes the exclusive OR of two 16 KB

check blocks in 8.5 µsecs. By comparison, our machine requires 37.4 µsecs to sum two blocks with

modular arithmetic. The average check-block degree in our implementation of Online Codes is

8.17, so check-block generation on average requires 69.5 µsecs and 305 µsecs under the two types

of addition. This translates to CPU-bound throughputs of 224.8 MB/s and 51.3 MB/s, respectively.

However, recall that disk throughput and memory limitations combine to bound encoding for both

schemes at only 28.9 MB/s. Moreover, these throughputs are orders of magnitude larger than

typical upstream network capacities in peer-to-peer deployments.

Storage required on the mirror. Mirrors participating in LF-CDNs donate disk space for con-

tent distribution, though usually they mirror files they also use themselves. All four verification

schemes require additional storage for hashes and signatures. With homomorphic hashing, the mir-

ror should store the hash that the publisher provides. Regenerating the hash is theoretically possi-

ble but computationally expensive. Similarly, mirrors in the two SHA-1 hash-tree schemes should

retrieve complete hash trees from the publisher and store them to disk, or they must otherwise ded-

icate tremendous amounts of disk I/O to generate them on-the-fly. Finally, in the sign-every-block

scheme, the mirror does not know the publisher’s private key and hence cannot generate signatures.

170

Up-Front Per-Block
Scheme Predicted (bits) e.g., (MB) Predicted (bits) e.g., (KB)
Homomorphic Hashing λpnβ/(β − λp) 8.06 β + m 16.06
Big-Deg. SHA-1 Tree 160nβ/(β − 160) 20.02 β 16.00
Binary SHA-1 Tree 0 0 β + 160 log2(n/r) 16.39
Sign Every Block 0 0 β + λσ 16.13

Scheme Total (GB) w/ Penalty (GB)
Homomorphic Hashing 1.0118 1.0118
Big-Deg. SHA-1 Tree 1.0196 1.0528
Binary SHA-1 Tree 1.0244 1.0578
Sign Every Block 1.0078 1.0407

Figure 6.8: Comparison of bandwidth utilization

He has no choice but to store all signatures. We summarize these additional storage requirements

in Figure 6.7, again assuming a 1 GB input file and an encoding rate of r=1/16.

Bandwidth. The bandwidth requirements of the various schemes are given in terms of up-front

and per-block costs. These results are considered in Figure 6.8. The new parameter λσ describes

the size of signatures, which is 1024 bits in our examples. In multicast settings, receivers of

fixed-rate codes incur additional overhead due to repeated blocks (reported as “penalty”). At an

encoding rate of r = 1/16, the coupon collector bound predicts about 3.3% overhead. In all four

schemes, downloaders also might see duplicate blocks when reconciling partial transfers with other

downloaders. That is, if two downloaders participate in the same multicast tree, and then try to

exchange check blocks with each other, they will have many blocks in common. This unavoidable

(and deployment-specific) problem affects all four schemes equally, and we thus do not include

it in our analysis. It can be mitigated, however, by general set-reconciliation algorithms [22] or

protocols specific to peer-to-peer settings [117].

The binary SHA-1 tree and the sign-every-block scheme allow downloaders to retrieve a file

without the up-front transfer of cryptographic meta-data. Of course, when downloaders become

full mirrors, they cannot avoid this cost. In the former scheme, the downloader needs the hash tree

in its entirety, adding an additional 3.9% overhead to its total transfer. In the latter, the downloader

171

Scheme Batch SHA-1 Rabin Total (ms)
Homomorphic Hash 1 0 0 2.05
Big-Degree Tree 0 1 0 0.28
Binary Tree 0 log2(n/r) 0 5.60
Sign Every Block 0 0 1 0.29

Figure 6.9: Comparison of per-block verification performance

requests all those signatures not already received. This translates to roughly 11.7% additional

overhead when r=1/16.

Verification. Figure 6.9 summarizes the per-block verification costs of the four schemes. For

our homomorphic hashing scheme, we assume batched verification with the parameters given in

§6.2.3.4. The Rabin signature scheme was specially chosen due to its fast verification time, as

shown. Surprisingly, verifying a check block using a SHA-1 binary tree is more than twice as slow

as using our homomorphic hashing protocol, due to the height of the tree.

6.3.2.3 Discussion

For encoding rates such as r =1/16, each of the three fixed-rate schemes has important strengths

and weaknesses. Though the sign-every-block scheme is bandwidth-efficient, requires no up-front

hash transfer, and has good verification performance, its hash generation costs are prohibitive and

its storage costs are higher. Similarly, though the binary hash tree method has no up-front transfer,

its bandwidth, storage and verification costs make it less attractive than hash trees with larger fan-

out. The homomorphic hashing scheme entails no such trade-offs, as it performs well across all

categories considered. Homomorphic hashing ranks less favorably when considering verification

throughput, but as argued in §6.3.2.1, tuning batch size allows throughput to scale with available

bandwidth.

172

6.3.3 Security

In real-world LF-CDNs, an honest receiver who wishes to obtain the file F communicates almost

exclusively with untrusted parties. As mentioned in §6.2.2, we do not consider the problem of

mapping file names to file hashes; in our analysis, we assume that the receiver can reliably re-

solve N(F)→ JG(F) through a trusted, out-of-band channel. We wish to prove, however, that

given JG(F), the downloader can recover F from the network while recognizing certain types of

dishonest behavior almost immediately.

6.3.3.1 Collision-resistant hash functions

First, we formally define a collision-resistant hash function (CRHF) in the manner of [13]. Recall

that a family of hash functions is given by a pair of PPT algorithms F = (HGen,H). HGen

denotes a hash generator function, taking an input of security parameters (λp, λq, m) and outputting

a description of a member of the hash family, G. HG will hash inputs of size mλq to outputs of size

λp, exactly as we have seen thus far. A hash adversary A is a probabilistic algorithm that attempts

to find collisions for the given function family.

Definition 1 For any CRHF family F , any probabilistic algorithm A, and security parameter

λ = (λp, λq, m) where λq < λp and m ≤ poly(λp), let

Advcol-atk
F ,λ (A) = Pr [G← HGen(λ); (x1, x2)← A(G) :

HG(x1) = HG(x2) ∧ x1 6= x2]

F is a (τ, ε)-secure hash function family if, for all PPT adversaries A with time-complexity τ(λ),

Advcol-atk
F ,λ (A) < ε(λ), where ε(λ) is negligible in λ and τ(λ) is polynomial in λ.

Our definition of the hash primitive h per §6.2.3 fits naturally into this definition. In fact, the

PickGroup algorithm is a reasonable candidate for the function HGen(). See [13] for a proof that

the function family hG is collision-resistant hash function, assuming that the discrete log problem

is hard over the group parameterized by (λp, λq).

173

6.3.3.2 Security of encoding verifiers

We can now define a notion of security against bogus-encoding attacks. For simplicity, we assume

erasure codes that have a precoding algorithm P and an encoder amenable to succinct matrix

representation; as discussed in §6.2.1, examples include LT, Raptor, and Online Codes.

As usual, consider an adversary A against an honest verifier V . The adversary A succeeds in

a bogus-encoding attack if he can convince the verifier V to accept blocks from “forged” or bogus

file encodings. When making the decision of whether or not to accept a given encoding, V can

only access the hash HG(F ′) of the precoded file F ′ he expects. In this definition, the adversary

has the power to generate the file F , which is then precoded as normal to obtain F ′.

Definition 2 (Secure Encoding Verifier) For any CRHF H, any probabilistic algorithm A, any

honest verifier V , any m, n > 0, and any batch size t > 1, let:

Advenc-atk
H,V,m,n,t(A) = Pr [G← HGen(H); (F, X,C)← A(G, m, n, t);

F ′ ← P(F); b← V(HG(F ′), G, X,C) :

F is m× n ∧ F ′ is m× n′ ∧ X is n′ × t

∧ C is m× t ∧ F ′X 6= C ∧ b = Accept]

The encoding verifier V is (τ, ε)-secure if, ∀ m, n > 0, t > 1 and PPT adversaries A with time-

complexity τ(m, n, t), Advenc-atk
H,V,m,n,t(A) < ε(m, n, t).

Our definition requires that V be (τ, ε)-secure for all values of t > 1. Thus, a protocol that uses

a secure encoding verifier can tune t as desired to trade computational efficiency for communica-

tion overhead. From here, we can prove that the batch verification procedure presented previously

is secure.

Theorem 1 Given security parameters l, λp, λq, batch size t, number of generators m, and the

(τ, ε)-secure hash family h generated by (λq, λp, m), the batched verification procedure V given

above is a (τ ′, ε′)-secure encoding verifier, where τ ′ = τ −mt(MultCost(q) + MultCost(p)) and

ε′ = ε + 2−l.

174

We do not state or prove the corresponding theorem for the naive verifier, but it is straight-

forward to check that it has equivalent or stronger properties than that of the batch verifier. The

security of the recursive hashing scheme outlined in §6.2.3.5 follows from an inductive application

of Theorem 1.

Proof of secure encoding verifier. We now prove the security of the batched verification scheme

by proving Theorem 1. Our proof follows from that of [15], with some additional complexity due

to our multi-dimensional representation of a file.

Consider the hash function family h parameterized by (λp, λq, m). For any file size n and batch

size t < n, consider an arbitrary adversary A′ that (τ ′, ε′)-attacks the encoding verifier V . Based

on this adversary, define a CRHF-adversary A(G) that works as follows:

Algorithm A(G)

1. (F, X,C)← A′(G, m, n, t).

2. If F is not m× n or X is not n′ × t or C is not m× t, then Fail.

3. F ′ ← P(F).

4. If F ′X = C, then Fail.

5. If V(HG(F ′), G, X,C) = Reject, then Fail.

6. If HG(F ′X) 6= HG(C), then Fail.

7. Find a column j such that F ′xj 6= cj . Return (F ′xj, cj).

By our selection of the adversary A′, running it in Step 1 will require time complexity τ ′ and will

succeed in the experiment given in Definition 2 with probability ε′. By construction,A corresponds

naturally to the steps of our definitional experiment in Equation 6.5. Step 2 enforces appropriate

dimensionality. Step 4 enforces the requirements that 〈X, C〉 not be a legal encoding, given in

Equation 6.5 by F ′X 6= C. Step 5 requires that the verifier V accepts the “forged” input. We can

conclude that the Algorithm A will arrive at Step 6 with probability ε′.

We now argue that A fails at Step 6 with probability 2−l. To arrive at this step, the verifier V

as defined in §6.2.3.4 must have output Accept. Using the same manipulations as those in §6.3.1,

175

we take the fact that V accepted to mean that:

grF ′Xs ≡ grCs mod p

Note that the exponents on both sides of the equation are scalars. Because g has order q, we can

say that these exponents are equivalent mod q; that is, rF ′Xs ≡ rCs mod q., Rearranging, we

have that:

r (F ′X − C) s ≡ 0 mod q (6.5)

If the algorithm A′ fails at Step 6, then HG(F ′X) 6= HG(C). Rewriting these row vectors

in terms of the g and r, we have that grF ′X 6≡ grC mod p. Recalling that g is order q and that

exponentiation of a scalar by a row vector is defined component-wise, we can write that rF ′X 6≡

rC mod q, and consequently:

r (F ′X − C) 6≡ 0 mod q (6.6)

For convenience, let the 1×t row vector u = r(F ′X−C). Equation 6.6 gives us that u 6≡ 0 mod q;

thus some element of u must be non-zero. For simplicity of notation, say that u1 is the first non-

zero cell, but our analysis would hold for any index. Equation 6.5 gives us that us ≡ 0 mod q.

Since u1 6= 0, it has a multiplicative inverse, u−1
1 , in Z∗

q . Therefore:

s1 ≡ −
(
u−1

1

) t∑
j=2

ujsj mod q (6.7)

Referring to Step 1 of verifier V , s1 was selected at random from 2l possible values; consequently,

the probability of it having the particular value in Equation 6.7 is at most 2−l. Thus, A can fail at

Step 6 with probability at most 2−l.

Combining our results, we have that algorithm A will reach Step 7 with probability ε′ − 2−l.

At this point in the algorithm, A is assured that F ′X 6= C, since execution passed Step 4. If

we consider this inequality column-wise, we conclude there must be some j ∈ {1, ..., t} such

that F ′xj 6= cj , where xj and cj are the jth columns of X and C, respectively. Because Step 6

176

guarantees that HG(F ′X) = HG(C) at this point in the algorithm, we can use the definition of HG

to claim that for all j, hG(F ′xj) = hG(cj). Thus, (F ′xj, cj) represents a hash collision for the

hash function hG.

Analyzing the time-complexity of A, Step 1 completes with time-complexity τ ′, the matrix

multiplication F ′X in Step 4 requires mt multiplications in Zq, and the hash computations in

Step 6 each require tm/2 multiplications in Z∗
p, assuming the usual precomputations. Therefore,

A has a time complexity given by τ = τ ′ + mt(MultCost(q) + MultCost(p)).

Therefore, we have shown that if an adversary A′ exists that is successful in a (τ ′, ε′)-attack

against V , then another adversaryA exists that is (τ, ε)-successful in finding collisions for the hash

function h, where τ ′ = τ −mt(MultCost(q) + MultCost(p)) and ε = ε′ + 2−l. This completes the

proof of Theorem 1.

6.3.3.3 Discussion of end-to-end security

These security guarantees, while necessary, are not sufficient for all multicast settings. In §6.2.2,

we proposed both the bogus-encoding attack and the distribution attack. While we have solved the

former, one can imagine malicious encoders that thwart the decoding process through an incorrect

distribution of well-formed check blocks. Because Tornado, Raptor, Online, and LT Codes are

all based on irregular graphs, their output symbols are not interchangeable. Bad encoders could

corrupt degree distributions; they could also purposefully avoid outputting check blocks derived

from some particular set of message blocks. Indeed, the homomorphic hashing scheme and the

three fixed-rate schemes discussed in §6.3.2.2 are all vulnerable to the distribution attack.

In future work, we hope to satisfy a truly end-to-end definition of security for encoding schemes.

For the end-to-end model, we envision an experiment in which the adversary can chose to supply

the recipient with either its own check blocks or those from an honest encoder. The X and C pa-

rameters of the verifier function now correspond to the entire download history, not just to the most

recent batch of blocks. The verifier outputs Reject if it believes it is talking to a malicious encoder,

in which case the experiment discards the batch of blocks just received. In the end, the experiment

177

runs the decoder on all retained check blocks after receiving (1 + ε)n′ + aB total blocks, where a

is a constant allowance for wasted bandwidth per bad encoder, and B is the number of times the

verifier correctly output Reject after receiving blocks from the adversary. The adversary succeeds

if this decoding fails with non-negligible probability.

One approach toward satisfying such a definition might be to require a sender to commit to a

pseudo-random sequence determined by a succinct seed, and then to send check blocks whose xi

portions are entirely determined by the pseudo-random sequence. But in the context of non-reliable

network transport or multicast “downsampling,” a malicious sender can drop particular blocks in

the sequence and place the blame on congestion. If, for example, the sender drops all degree-one

blocks, or drops all check blocks that mention a particular message block, decoding will never

succeed.

A more promising approach involves validating an existing set of check blocks by simulating

the receipt of future check blocks. Given an existing set of check blocks:

〈x1, c1〉, 〈x2, c2〉, . . . , 〈xQ, cQ〉

the verifier can run the encoder (without the contents of F) to generate a stream of block descrip-

tions xQ+1,xQ+2, If the file would not be recoverable given cQ+1, cQ+2, . . ., this is evidence

that the distribution of x1, . . . ,xQ has been skewed. If the file would be recoverable, the verifier

can repeat the experiment several times to amplify its confidence in x1, . . . ,xQ. To be of any use,

such a verifier can do no more than O(log n) operations per check block received. Thus simulated

streams should be re-used for efficiency, with the effects of the first simulated block xQ+1 replaced

by those of the next real block received. The feasibility of efficiently “undoing” encoding remains

an open question; we therefore leave the description and analysis of an exact algorithm to future

work.

178

6.4 Related work on multicast security

Multicast source authentication is a well-studied problem in the recent literature; for a taxonomy of

security concerns and some schemes, see [25]. Preexisting solutions fall into two broad categories:

(1) sharing secret keys among all participants and MACing each block, or (2) using asymmetric

cryptography to authenticate each block sent. Unfortunately, the former lacks any source authenti-

cation, while the latter is costly with respect to both computation resources and bandwidth.

A number of papers have looked at providing source authentication via public-key cryptogra-

phy, yet amortizing asymmetric operations over several blocks. Gennaro and Rohatgi [66] propose

a protocol for stream signatures, which follows an initial public-key signature with a chain of effi-

cient one-time signatures, although it does not handle block erasures (e.g., from packet loss). Wong

and Lam [192] delay consecutive packets into a pool, then form an authentication hash and sign

the tree’s root. Rohatgi [159] uses reduced-size online/offline k-time signatures instead of hashes.

Tree-based [70] and graph-based [122] approaches reduce the time/space overheads and are de-

signed for bursty communication and random packet loss. More recent work [135, 136] makes use

of trusted erasure encoding in order to authenticate blocks; most schemes, including our own, try

instead to authenticate blocks in spite of untrusted erasure encoding.

Another body of work is based solely on symmetric-key operations or hash functions for real-

time applications. Several protocols use the delayed disclosure of symmetric keys to provide source

authentication, including Chueng [38], the Guy Fawkes protocol [6], and TESLA [141, 142], by

relying on loose time synchronization between senders and recipients. The BiBa [140] protocol

exploits the birthday paradox to generate one-time signatures from k-wise hash collisions. The

latter two can withstand arbitrary packet loss; indeed, they were explicitly developed for Digi-

tal Fountain’s content distribution system [20, 21] to support video-on-demand and other similar

applications. Unfortunately, these delayed-disclosure key schemes require that publishers remain

online during transmission.

In the traditional settings considered above, the publisher and the encoder are one in the same.

In our LF-CDN setting, untrusted mirrors generate the check blocks; moreover, a trusted publisher

cannot explicitly authenticate every possible check block, since their number grows exponentially

179

with file size. Thus, a publisher must generate its authentication tokens on the initial message

blocks, and we require a hash function that preserves the group structure of the encoding process.

Our basic homomorphic hashing scheme is complementary to existing threads of work that

make use of homomorphic group operations. One-way accumulators [11, 16] and incremental

hashing [13], based on RSA and discrete-log constructions respectively, examine commutative

hash functions that yield an output independent of the operations’ order. Improvements to the

schemes’ efficiency [12, 24, 183], however, largely focus on dynamic or incremental changes to

the elements being hashed/authenticated, e.g., the modification of an entry of an authenticated

dictionary. More recent work has investigated homomorphic signature schemes for specific ap-

plications: undirected transitive signatures [121], authenticated prefix aggregation [34], redactable

signatures [91], and set-union signatures via accumulators [91]. We use similar techniques to

maintain group structure across applications of the cryptographic function, but to different ends.

Composing homomorphic signatures with traditional hash functions such as SHA-1 [55] would

not solve our problem, as the application of the traditional hash function would destroy the group

structure we hope to preserve.

180

Chapter 7

Conclusion

7.1 Summary of contributions

This thesis contributes a number of techniques that realize highly-scalable cooperative content

distribution by federating large numbers of participants. These mechanisms have been designed,

implemented, deployed, and tested in production systems that have served billions of requests

from many millions of users over the past three-and-a-half years. More specifically, this thesis has

presented and evaluated the following systems and techniques.

• For effective content discovery, the Coral indexing layer provides a soft-state key-value store,

offering good routing and data locality through a hierarchical structure and self-organizing

clusters, yet preventing any hot spots in the indexing layer, even under degenerate loads.

• CoralCDN builds a web content distribution network, using Coral to manage the referenc-

ing and discovery of cached content. CoralCDN incorporates a number of mechanisms,

learned over its deployment, to provide efficient downloads, robustness to origin failures,

bandwidth fairness, and security. We have made CoralCDN freely available (see http:/

/www.coralcdn.org/), so that even people with slow connections can publish websites

whose capacity grows automatically with popularity.

181

• For server selection, OASIS provides a shared locality- and load-aware anycast infrastruc-

ture. OASIS shows how to amortize deployment and network measurement costs over

all participants, determine and maintain network locality information in an application-

independent way, and manage all tasks and data in a decentralized manner through a key-

value index.

• Investigating new approaches for secure cooperation, Shark shows how to scale a distributed

read/write file system by utilizing the bandwidth of mutually-distrustful peers. Rather than

always fetch data from an origin file server, nodes can locate (via the Coral indexing layer)

and read chunks of cached data from each other, even while ensuring traditional data integrity

and read authorization properties.

• Finally, also taking a more clean-slate approach for secure content transmission, we show

how to securely leverage rateless erasure codes when downloading large files. We present

a discrete-log-based hash scheme that provides useful homomorphic properties for verify-

ing the integrity of individually-downloaded blocks, while batching techniques make this

scheme practical for real-world use.

We have found these mechanisms and systems to be quite useful for building distributed ser-

vices: Several CDNs employ the Coral indexing layer [8, 59, 73], OASIS is used by about a dozen

distributed services for anycast [40, 59, 73, 92, 100, 157, 163, 179, 193], and CoralCDN is in

extensive public use. We fully envision that these tools may find similar applicability to a wider

range of distributed systems.

7.2 Moving forward: Adding incentives for participation

Most of this thesis has focused on building efficient, scalable, and secure mechanisms for distribut-

ing content, leveraging and organizing resources wherever they may be found. What we have not

directly addressed, however, is why nodes will choose to contribute resources. Some of these con-

tributions may arise through altruism. Others are likely as a side-effect of nodes participating in

182

the system for their own observed benefit: e.g., a CoralHTTP proxy that serves its local clients for

improved availability may contribute upstream bandwidth in return; a client using Shark’s cooper-

ative read protocols for better file-system performance may share its own local file cache. These

systems, however, have no secure mechanistic way to incentivize nodes to contribute resources:

the CoralCDN or Shark proxy can turn off or block its upstream contributions with little downside.

But if our ultimate goal is to make desired content available to everybody, we should have

a means to incentivize sufficient system capacity. Indeed, recall that our current deployment of

CoralCDN already suffers from an insufficient bandwidth supply; it can serve only 2 TB of the

10 TB requested on a daily basis. While algorithms can ensure that this capacity is fairly allocated

across the set of files or origin sites (e.g., as in §3.4.2), a better goal would be to increase the

capacity of our system in the first place!

In ongoing work [63], we are examining how to better address the overall welfare of all par-

ticipants in peer-to-peer systems. Rather than just enforce that peers contribute some upstream

resources [43, 80, 97, 184], we seek to address which files are “most useful” to disseminate, where

resource congestion is occurring, and who is providing useful content to the system.

We believe that the centerpiece of such a system should be a market-based file-exchange mech-

anism that associates prices to files and resource constraints. At the system’s core, users can act

as both buyers and sellers, with their software exchanging virtual currency in each transaction.

Buyers specify which files they seek to download, while sellers decide which files they are will-

ing to upload and their maximum aggregate upload rate. But as the system fully specifies the

buy-and-sell behavior of clients—e.g., resource allocation and prices for sellers, and budgeting

and peer selection for buyers—price mechanisms are largely invisible to users. Yet users remain

incentivized to contribute upstream capacity to ensure a sufficient budget for downloading under

resource constraints. On the other hand, if resources are not constrained, prices will drop and even

non-contributors (freeloaders) can download files, as it is socially efficient for them to do. This

design philosophy—viewing freeloading as a concern only in the context of resource constraints—

diverges significantly from prior work.

Second, our design also can benefit two commonly-overlooked participants in peer-to-peer

183

content distribution systems: network providers and content publishers. Specifically, we consider

a facility for network operators to set network cost multipliers for long-haul traffic carriage. When

coupled with a hierarchical network model that captures the congestion points in a network and

enables parties to price each accordingly, these cause peer-to-peer traffic to have a strong incentive

to remain local when possible, or at least traverse wide-area links that yield more efficient network

usage. Furthermore, discovering the instantaneous value of content also can signal content pub-

lishers as to how they should allocate scarce origin server resources across their set of files. By

recognizing the interests of all these parties, we can potentially turn peer-to-peer content distribu-

tion into a collaboration between service providers and their users, as opposed to the contention

that currently exists (e.g., where ISPs block or rate-limit traffic).

Finally, for each collection of files, a rendezvous service can allow peers to discover one an-

other, while a bank can track each users’ virtual wealth from peer-to-peer payments. We envision

multiple rendezvous and bank services to exist simultaneously, each run by a content or service

provider that seeks to disseminate a collection of files, which may range from large multimedia li-

braries (e.g., iTunes) to a corpus that spans the entire web (as in CoralCDN). Notice, however, that

some of the very techniques we describe in this thesis have a role to play in this new system model

as well: locality estimation in OASIS is one way with which to determine network costs, while

OASIS’s infrastructure can also provide the network cost and rendezvous lookup services needed

by such a model. Furthermore, the same distributed key-value indexing techniques we present can

be used to scale this bank service, i.e., by partitioning users across servers.

Work is still needed to better understand whether our network model accurately captures and

prices resource constraints in the system, how monetary policy should be enacted, how content

publishers should allocate server resources to ensure some level of quality-of-service for their

clients, and, perhaps most importantly, whether these mechanistic incentives will actually lead to

the desired behavior in a real deployment. But the general approach is promising, as it potentially

offers benefits for all participants—users, network operators, and content publishers—involved in

peer-assisted content distribution.

184

7.3 Concluding remarks

Without sufficient server and network resources, publishers cannot satisfy the content demands of

their audiences. Yet, until now, assembling such resources to meet clients’ demands is not quite

so simple. At best, publishers turn to commercial CDNs that are centrally-managed and statically-

provisioned, running on trusted infrastructure. At worst, content remains unavailable to some

clients.

This thesis argues for a new approach, for decentralized systems and open infrastructures that

enable the scalable and efficient dissemination of content. By coupling content discovery, server

selection, and secure content transmission with incentives that help ensure adequate resources—

the very mechanisms proposed in this thesis—one can realize the goal of democratized content

distribution. Desired content can be made available to everybody, regardless of its publisher’s own

resources.

185

Bibliography

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R.

Lorch, M. Theimer, and R. P. Wattenhofer. FARSITE: Federated, available, and reliable

storage for an incompletely trusted environment. In Proc. 5th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI), Boston, MA, Dec. 2002.

[2] Akamai Technologies. http://www.akamai.com/, 2007.

[3] Akamai Technologies. SureRoute. http://www.akamai.com/dl/feature sheets

/fs edgesuite sureroute.pdf, 2007.

[4] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient Overlay Networks. In

Proc. 18th ACM Symposium on Operating Systems Principles (SOSP), Banff, Canada, Oct.

2001.

[5] C. Anderson. The long tail. Wired Magazine, 12(10), Oct. 2004.

[6] R. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and R. Needham. A new

family of authentication protocols. Operating Systems Review, 32(4):9–20, Oct. 1998.

[7] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roseli, and R. Y. Wang.

Serverless network file systems. ACM Transactions on Computer Systems, 14(1):41–79,

Feb. 1996.

186

[8] S. Annapureddy, M. J. Freedman, and D. Mazières. Shark: Scaling file servers via cooper-

ative caching. In Proc. 2nd Symposium on Networked Systems Design and Implementation

(NSDI), Boston, MA, May 2005.

[9] M. Arlitt and T. Jin. A workload characterization study of the 1998 World Cup Web site.

IEEE Network, 14(3):30–37, May 2000.

[10] H. Ballani and P. Francis. Towards a global IP anycast service. In Proc. ACM SIGCOMM,

Philadelphia, PA, Aug. 2005.

[11] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes

without trees. In Advances in Cryptology—EUROCRYPT ’97, Konstanz, Germany, May

1997.

[12] M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incrementality

at reduced cost. In Advances in Cryptology—EUROCRYPT ’97, Konstanz, Germany, May

1997.

[13] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography: The case of hash-

ing and signing. In Advances in Cryptology—CRYPTO ’94, Santa Barbara, CA, Aug. 1994.

[14] M. Bellare, R. Canetti, and H. Krawczyk. Keyed hash functions and message authentication.

In Advances in Cryptology—CRYPTO ’96, Santa Barbara, CA, Aug. 1996.

[15] M. Bellare, J. Garay, and T. Rabin. Fast batch verification for modular exponentiation and

digital signatures. In Advances in Cryptology—EUROCRYPT ’98, Helsinki, Finland, May

1998.

[16] J. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative to digital

sinatures. In Advances in Cryptology—EUROCRYPT ’93, Lofthus, Norway, May 1993.

[17] BitTorrent. http://www.bittorrent.com/, 2007.

[18] R. Braden. RFC 1123: Requirements for Internet hosts—application and support, Oct. 1989.

187

[19] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like dis-

tributions: Evidence and implications. In Proc. IEEE INFOCOM, New York, NY, Mar.

1999.

[20] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A Digital Fountain approach to reliable

distribution of bulk data. In Proc. ACM SIGCOMM, Vancouver, Canada, Sept. 1998.

[21] J. Byers, M. Luby, and M. Mitzenmacher. Accessing multiple mirror sites in parallel: Using

Tornado codes to speed up downloads. In Proc. IEEE INFOCOM, New York, NY, Mar.

1999.

[22] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. Informed content delivery across

adaptive overlay networks. In Proc. ACM SIGCOMM, Pittsburgh, PA, Aug. 2002.

[23] B. Callaghan, B. Pawlowski, and P. Staubach. RFC 1813: NFS version 3 protocol specifi-

cation, June 1995.

[24] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revo-

cation of anonymous credentials. In Advances in Cryptology—CRYPTO ’02, Santa Barbara,

CA, Aug. 2002.

[25] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast security:

A taxonomy and some efficient constructions. In Proc. IEEE INFOCOM, New York, NY,

Mar. 1999.

[26] M. Casado and M. J. Freedman. Peering through the shroud: The effect of edge opacity on

IP-based client identification. In Proc. 4th Symposium on Networked Systems Design and

Implementation (NSDI), Cambridge, MA, Apr. 2007.

[27] M. Castro and B. Liskov. Proactive recovery in a byzantine-fault-tolerant system. In Proc.

4th USENIX Symposium on Operating Systems Design and Implementation (OSDI), San

Diego, Oct. 2000.

188

[28] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploiting network proximity in dis-

tributed hash tables. In Proc. Workshop on Future Directions in Distributed Computing

(FuDiCo), Bertinoro, Italy, June 2002.

[29] M. Castro, M. Costa, and A. Rowstron. Performance and dependability of structured peer-

to-peer overlays. Technical Report MSR-TR-2003-94, Microsoft Research, Dec. 2003.

[30] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Split-

stream: High-bandwidth multicast in a cooperative environment. In Proc. 18th ACM Sym-

posium on Operating Systems Principles (SOSP), Bolton’s Landing, NY, Oct. 2003.

[31] M. Castro, M. Costa, and A. Rowstron. Debunking some myths about structured and un-

structured overlays. In Proc. 2nd Symposium on Networked Systems Design and Implemen-

tation (NSDI), Boston, MA, May 2005.

[32] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.

Journal of the ACM, 43(2):225–267, Mar. 1996.

[33] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrell. A hierarchical

Internet object cache. In Proc. USENIX Annual Technical Conference, San Diego, CA, Jan.

1996.

[34] S. Chari, T. Rabin, and R. Rivest. An efficient signature scheme for route aggregation.

Manuscript, Feb. 2002.

[35] D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically strong undeniable signatures,

unconditionally secure for the signer. In Advances in Cryptology—CRYPTO ’91, Santa

Barbara, CA, Aug. 1991.

[36] Y. Chen, R. Katz, and J. Kubiatowicz. SCAN: A dynamic, scalable, and efficient content

distribution network. In Proc. International Conference on Pervasive Computing, Zurich,

Switzerland, Aug. 2002.

189

[37] Y. Chen, K. H. Lim, R. H. Katz, and C. Overton. On the stability of network distance

estimation. SIGMETRICS Performance Evaluation Review, 30(2):21–30, Sept. 2002.

[38] S. Cheung. An efficient message authentication scheme for link state routing. In Proc. 13th

Annual Computer Security Applications Conference, San Diego, CA, Dec. 1997.

[39] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, F. Kaashoek, J. Kubiatowicz,

and R. Morris. Efficient replica maintenance for distributed storage systems. In Proc. 3rd

Symposium on Networked Systems Design and Implementation (NSDI), San Jose, CA, May

2006.

[40] B.-G. Chun, P. Wu, H. Weatherspoon, and J. Kubiatowicz. ChunkCast: An anycast service

for large content distribution. In Proc. International Workshop on Peer-to-Peer Systems

(IPTPS), Santa Barbara, CA, Feb. 2006.

[41] Cisco’s CDN Approach. http://www.bcr.com/bcrmag/2000/10/p16s1.asp, Oct. 2000.

[42] CoDeeN. http://codeen.cs.princeton.edu/, 2007.

[43] B. Cohen. Incentives build robustness in BitTorrent. In Proc. Workshop on Economics of

Peer-to-Peer Systems, Berkeley, CA, June 2003.

[44] M. Crawford. RFC 2672: Non-terminal DNS name redirection, Aug. 1999.

[45] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative

storage with CFS. In Proc. 18th ACM Symposium on Operating Systems Principles (SOSP),

Banff, Canada, Oct. 2001.

[46] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network coordinate

system. In Proc. ACM SIGCOMM, Portland, OR, Aug. 2004.

[47] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris. Designing a DHT for

low latency and high throughput. In Proc. 1st Symposium on Networked Systems Design

and Implementation (NSDI), San Francisco, CA, Mar. 2004.

190

[48] A. Das, I. Gupta, and A. Motivala. SWIM: Scalable weakly-consistent infection-style pro-

cess group membership protocol. In Proc. Dependable Systems and Networks, Washington,

DC, June 2002.

[49] C. de Launois, S. Uhlig, and O. Bonaventure. A stable and distributed network coordinate

system. Technical report, Universite Catholique de Louvain, Dec. 2004.

[50] Digg. http://www.digg.com/, 2007.

[51] Edge Side Includes. http://www.esi.org/, 2007.

[52] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A worldwide flock

of condors: Load sharing among workstation clusters. J. Future Generations of Computer

Systems, 12:53–65, May 1996.

[53] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable wide-area web-

cache sharing protocol. Technical Report 1361, CS Department, U. Wisconson, Madison,

WI, Feb 1998.

[54] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC

2616: Hypertext Transfer Protocol—HTTP/1.1, June 1999.

[55] FIPS 180-1. Secure Hash Standard. U.S. Department of Commerce/NIST, National Tech-

nical Information Service, Springfield, VA, Apr. 1995.

[56] FIPS 186-2. Digital Signature Standard (DSS). U.S. Department of Commerce/NIST, Na-

tional Technical Information Service, Springfield, VA, 2000.

[57] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. IDMaps: A global

Internet host distance estimation service. IEEE/ACM Transactions on Networking, 9(5):

525–540, Oct. 2001.

[58] M. J. Freedman and D. Mazières. Sloppy hashing and self-organizing clusters. In Proc.

International Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, CA, Mar. 2003.

191

[59] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing content publication with

Coral. In Proc. 1st Symposium on Networked Systems Design and Implementation (NSDI),

San Francisco, CA, Mar. 2004.

[60] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica. Non-transitive connectivity

and DHTs. In Proc. USENIX Workshop on Real Large Distributed Systems (WORLDS), San

Francisco, CA, Dec. 2005.

[61] M. J. Freedman, M. Vutukuru, N. Feamster, and H. Balakrishnan. Geographic locality of IP

prefixes. In Proc. Internet Measurement Conference, Berkeley, CA, Oct. 2005.

[62] M. J. Freedman, K. Lakshminarayanan, and D. Mazières. OASIS: Anycast for any service.

In Proc. 3rd Symposium on Networked Systems Design and Implementation (NSDI), San

Jose, CA, May 2006.

[63] M. J. Freedman, C. Aperjis, and R. Johari. Prices are right: Aligning incentives for peer-

assisted content distribution. Manuscript, Aug. 2007.

[64] S. Gadde, J. Chase, and M. Rabinovich. A taste of crispy squid. In Proc. Workshop on

Internet Server Performance, Madison, WI, June 1998.

[65] P. Ganesan, K. Gummadi, and H. Garcia-Molina. Canon in G Major: Designing DHTs with

hierarchical structure. In Proc. International Conference on Distributed Computing Systems

(ICDCS), Tokyo, Japan, Mar. 2004.

[66] R. Gennaro and P. Rohatgi. How to sign digital streams. In Advances in Cryptology—

CRYPTO ’97, Santa Barbara, CA, Aug. 1997.

[67] S. Gerding and J. Stribling. Examining the tradeoffs of structured overlays in a dynamic non-

transitive network. http://pdos.csail.mit.edu/˜strib/docs/projects /networking fall2003.pdf,

Dec. 2003.

[68] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. In Proc. 19th ACM

Symposium on Operating Systems Principles (SOSP), Lake George, NY, Oct. 2003.

192

[69] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff, C. Hardin,

E. Riedel, D. Rochberg, and J. Zelenka. A cost-effective, high-bandwidth storage archi-

tecture. In Proc. 8th Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), San Jose, CA, Oct. 1998.

[70] P. Golle and N. Modadugu. Authenticated streamed data in the presernce of random packet

loss. In Proc. Network and Distributed System Security Symposium (NDSS), San Diego,

CA, Feb. 2001.

[71] Google Maps. http://maps.google.com/, 2007.

[72] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant mechanism for distributed file

cache consistency. In Proc. 12th ACM Symposium on Operating Systems Principles (SOSP),

Litchfield Park, AZ, Dec. 1989.

[73] R. Grimm, G. Lichtman, N. Michalakis, A. Elliston, A.Kravetz, J. Miller, and S. Raza. Na

Kika: Secure service execution and composition in an open edge-side computing network.

In Proc. 3rd Symposium on Networked Systems Design and Implementation (NSDI), San

Jose, CA, May 2006.

[74] B. Gronvall, A. Westerlund, and S. Pink. The design of a multicast-based distributed file

system. In Proc. 3rd USENIX Symposium on Operating Systems Design and Implementation

(OSDI), New Orleans, LA, Feb. 1999.

[75] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating latency between arbitrary

Internet end hosts. In Proc. Internet Measurement Workshop, San Francisco, CA, Nov. 2001.

[76] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and D. Wetherall. Improving

the reliability of Internet paths with one-hop source routing. In Proc. 5th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI), Boston, MA, Dec. 2002.

193

[77] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan. Measure-

ment, modeling, and analysis of a peer-to-peer file-sharing workload. In Proc. 19th ACM

Symposium on Operating Systems Principles (SOSP), Lake George, NY, Oct. 2003.

[78] K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The

impact of DHT routing geometry on resilience and proximity. In Proc. ACM SIGCOMM,

Karlsruhe, Germany, Aug. 2003.

[79] I. Gupta, K. Birman, P. Linga, A. Demers, and R. V. Renesse. Kelips: building an effi-

cient and stable P2P DHT through increased memory and background overhead. In Proc.

International Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, CA, Mar. 2003.

[80] M. Gupta, P. Judge, and M. Ammar. A reputation system for peer-to-peer networks. In

Proc. ACM NOSSDAV, Monterey, CA, June 2003.

[81] J. Guyton and M. Schwartz. Locating nearby copies of replicated Internet servers. In Proc.

ACM SIGCOMM, Cambridge, MA, Aug. 1995.

[82] Hadoop. http://lucene.apache.org/hadoop/, 2007.

[83] J. H. Hartman and J. K. Ousterhout. The Zebra striped network file system. In Proc. 14th

ACM Symposium on Operating Systems Principles (SOSP), Asheville, NC, Dec. 1993.

[84] N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable over-

lay network with practical locality properties. In Proc. USENIX Symposium on Internet

Technologies and Systems (USITS), Seattle, WA, Mar. 2003.

[85] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N. Side-

botham, and M. J. West. Scale and performance in a distributed file system. ACM Transac-

tions on Computer Systems, 6(1):51–81, Feb. 1988.

[86] IBM Tivoli. Storage manager. http://www.ibm.com/tivoli, 2007.

[87] IP to Lat/Long server. http://cello.cs.uiuc.edu/cgi-bin/slamm/ip2ll/, 2005.

194

[88] Iperf. Version 1.7.0—the TCP/UDP bandwidth measurement tool.

http://dast.nlanr.net/Projects/Iperf/, 2005.

[89] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized, peer-to-peer web cache.

In Proc. Principles of Distributed Computing (PODC), Monterey, CA, July 2002.

[90] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. Protecting browsers from DNS re-

binding attacks. In Proc. 14th ACM Conference on Computer and Communication Security

(CCS), Alexandria, VA, Oct. 2007.

[91] R. Johnson, D. Molnar, D. Song, and D. Wagner. Homomorphic signature schemes. In

Progress in Cryptology—CT-RSA 2002, San Jose, CA, Feb. 2002.

[92] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan, I. Stoica, and K. Wehrle. OCALA:

An architecture for supporting legacy applications over overlays. In Proc. 3rd Symposium

on Networked Systems Design and Implementation (NSDI), San Jose, CA, May 2006.

[93] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should Internet service providers fear

peer-assisted content distribution? In Proc. Internet Measurement Conference, Berkeley,

CA, Oct. 2005.

[94] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent

hashing and random trees: Distributed caching protocols for relieving hot spots on the World

Wide Web. In Proc. ACM Symposium on the Theory of Computing (STOC), El Paso, TX,

May 1997.

[95] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted metrics. In Proc.

ACM Symposium on the Theory of Computing (STOC), Montreal, Canada, May 2002.

[96] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. Tygar. Distillation codes and applications

to DoS resistant multicast authentication. In Proc. 11th Network and Distributed Systems

Security Symposium (NDSS), San Diego, CA, Feb. 2004.

195

[97] I. Kash, E. J. Friedman, and J. Y. Halpern. Optimizing scrip systems: Efficiency, crashes,

hoarders, and altruists. In Proc. ACM Conference on Electronic Commerce, San Diego, CA,

June 2007.

[98] D. Katabi and J. Wroclawski. A framework for scalable global IP-anycast (GIA). In Proc.

ACM SIGCOMM, Stockholm, Sweden, Aug. 2000.

[99] K. Keys. Clients of DNS root servers, 2002-08-14. http://www.caida.org/projects/dns-

analysis/, Aug. 2002.

[100] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I. Sto-

ica. A data-oriented (and beyond) network architecture. In Proc. ACM SIGCOMM, Kyoto,

Japan, Aug. 2007.

[101] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High bandwidth data dis-

semination using an overlay mesh. In Proc. 18th ACM Symposium on Operating Systems

Principles (SOSP), Bolton’s Landing, NY, Oct. 2003.

[102] H. Krawczyk. The order of encryption and authentication for protecting communications

(or: How secure is SSL?). In Advances in Cryptology—CRYPTO ’01, Santa Barbara, CA,

Aug. 2001.

[103] D. Kristol and L. Montulli. RFC 2965: HTTP state management mechanism, Oct. 2000.

[104] M. N. Krohn, M. J. Freedman, and D. Mazières. On-the-fly verification of rateless erasure

codes for efficient content distribution. In Proc. IEEE Symposium on Security and Privacy,

Oakland, CA, May 2004.

[105] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,

S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore: An architecture

for global-scale persistent storage. In Proc. 9th Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), Cambridge, MA, Nov. 2000.

196

[106] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):

133–169, May 1998.

[107] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-efficient management of DHT

routing tables. In Proc. 2nd Symposium on Networked Systems Design and Implementation

(NSDI), Boston, MA, May 2005.

[108] LimeLight Networks. http://www.limelightnetworks.com/, 2007.

[109] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams. Replication in

the Harp file system. Operating Systems Review, 25(5):226–238, Oct. 1991.

[110] M. Luby. LT codes. In Proc. IEEE Symposium on Foundation of Computer Science (FOCS),

Vancouver, Canada, Nov. 2002.

[111] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann. Practical loss-

resilient codes. In Proc. ACM Symposium on the Theory of Computing (STOC), El Paso,

TX, May 1997.

[112] R. Malpani, J. Lorch, and D. Berger. Making world wide web caching servers cooperate. In

Proc. World Wide Web Conference, Darmstadt, Germany, Apr. 1995.

[113] T. Mann, A. D. Birrell, A. Hisgen, C. Jerian, and G. Swart. A coherent distributed file cache

with directory write-behind. ACM Transactions on Computer Systems, 12(2):123–164, May

1994.

[114] Z. M. Mao, C. Cranor, F. Douglis, M. Rabinovich, O. Spatscheck, and J. Wang. A precise

and efficient evaluation of the proximity between web clients and their local DNS servers.

In Proc. USENIX Annual Technical Conference, Monterey, CA, June 2002.

[115] P. Maymounkov. Online codes. Technical Report 2002-833, New York University, Nov.

2002.

197

[116] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information system based on

the xor metric. In Proc. International Workshop on Peer-to-Peer Systems (IPTPS), Cam-

bridge, MA, Mar. 2002.

[117] P. Maymounkov and D. Mazières. Rateless codes and big downloads. In Proc. International

Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, CA, Feb. 2003.

[118] D. Mazières. A toolkit for user-level file systems. In Proc. USENIX Annual Technical

Conference, Boston, MA, June 2001.

[119] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key management

from file system security. In Proc. 17th ACM Symposium on Operating Systems Principles

(SOSP), Kiawah Island, SC, Dec. 1999.

[120] R. C. Merkle. A digital signature based on a conventional encryption function. In Advances

in Cryptology—CRYPTO ’87, Santa Barbara, CA, Aug. 1987.

[121] S. Micali and R. Rivest. Transitive signature schemes. In Progress in Cryptology—CT-RSA

2002, San Jose, CA, Feb. 2002.

[122] S. Miner and J. Staddon. Graph-based authentication of digital streams. In Proc. IEEE

Symposium on Security and Privacy, Oakland, CA, May 2000.

[123] Mirror Image Internet. http://www.mirror-image.com/, 2007.

[124] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an interrupt-driven

kernel. ACM Transactions on Computer Systems, 13(3):217–252, Aug. 1997.

[125] D. Morrison. Practical algorithm to retrieve information coded in alphanumeric. Journal of

the ACM, 15(4):514–534, Oct. 1968.

[126] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth network file system. In

Proc. 18th ACM Symposium on Operating Systems Principles (SOSP), Banff, Canada, Oct.

2001.

198

[127] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A read/write peer-to-peer file

system. In Proc. 5th USENIX Symposium on Operating Systems Design and Implementation

(OSDI), Boston, MA, Dec. 2002.

[128] D. Neel. Cogent, Level 3 in standoff over Internet access. TechWeb, Oct. 2005.

[129] E. Ng and H. Zhang. Predicting Internet network distance with coordinates-based ap-

proaches. In Proc. IEEE INFOCOM, New York, NY, June 2002.

[130] OASIS. http://oasis.coralcdn.org/, 2007.

[131] B. M. Oki and B. H. Liskov. Viewstamped replication: a new primary copy method to

support highly available distributed systems. In Proc. Principles of Distributed Computing

(PODC), New York, NY, 1988.

[132] V. Padmanabhan and K. Sripanidkulchai. The case for cooperative networking. In Proc.

International Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, Mar. 2002.

[133] V. N. Padmanabhan and L. Subramanian. An investigation of geographic mapping tech-

niques for Internet hosts. In Proc. ACM SIGCOMM, San Diego, CA, Aug. 2001.

[134] V. Pai, L. Wang, K. Park, R. Pang, and L. Peterson. The dark side of the web: An open

proxy’s view. In Proc. HotNets, Cambridge, MA, Nov. 2003.

[135] A. Pannetrat and R. Molva. Efficient multicast packet authentication. In Proc. Network and

Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2003.

[136] J. M. Park, E. K. P. Chong, and H. J. Siegel. Efficient multicast stream authentication using

erasure codes. ACM Transactions on Information and System Security, 6(2):258–285, May

2003.

[137] C. Patridge, T. Mendez, and W. Milliken. RFC 1546: Host anycasting service, Nov. 1993.

[138] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.

In Advances in Cryptology—CRYPTO ’91, Santa Barbara, CA, Aug. 1991.

199

[139] D. M. R. Periakaruppan and J. Donohoe. Where in the world is netgeo.caida.org? In Proc.

Internet Society Conference, Yokohama, Japan, June 2000.

[140] A. Perrig. The BiBa one-time signature and broadcast authentication protocol. In Proc. 8th

ACM Conference on Computer and Communication Security (CCS), Philadelphia, PA, Nov.

2001.

[141] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient authentication and signature of

multicast streams over lossy channels. In Proc. IEEE Symposium on Security and Privacy,

Oakland, CA, May 2000.

[142] A. Perrig, R. Canetti, D. Song, and D. Tygar. Efficient and secure source authentication

for multicast. In Proc. Network and Distributed System Security Symposium (NDSS), San

Diego, CA, Feb. 2001.

[143] G. Pfister and V. A. Norton. “Hot spot” contention and combining in multistage intercon-

nection networks. IEEE Transactions on Computers, 34(10):943–948, Oct. 1985.

[144] P. Pietzuch, J. Ledlie, and M. Seltzer. Supporting network coordinates on PlanetLab. In

Proc. USENIX Workshop on Real Large Distributed Systems (WORLDS), San Francisco,

CA, Dec. 2005.

[145] PlanetLab. http://www.planet-lab.org/, 2007.

[146] H. Pucha, D. G. Andersen, and M. Kaminsky. Exploiting similarity for multi-source down-

loads using file handprints. In Proc. 4th Symposium on Networked Systems Design and

Implementation (NSDI), Cambridge, MA, Apr. 2007.

[147] Quova. http://www.quova.com/, 2007.

[148] M. O. Rabin. Digitalized signatures and public key functions as intractable as factorization.

Technical Report 212, MIT Laboratory for Computer Science, Jan. 1979.

200

[149] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) lookup performance for power-law

query distributions in peer-to-peer overlays. In Proc. 1st Symposium on Networked Systems

Design and Implementation (NSDI), San Francisco, CA, Mar. 2004.

[150] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-

addressable network. In Proc. ACM SIGCOMM, San Diego, CA, Aug. 2001.

[151] P. Reiher, J. T. Page, G. J. Popek, J. Cook, and S. Crocker. Truffles—a secure service

for widespread file sharing. In Proc. PSRG Workshop on Network and Distributed System

Security, San Diego, CA, Feb. 1993.

[152] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. RFC 1918: Address

allocation for private Internets, Feb. 1996.

[153] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang. BGP routing stability of popular destinations.

In Proc. Internet Measurement Workshop, Marseille, France, Nov. 2002.

[154] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond: the

OceanStore prototype. In Proc. USENIX Conference on File and Storage Technologies,

Berkeley, CA, Mar. 2003.

[155] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT. In Proc.

USENIX Annual Technical Conference, Boston, MA, June 2004.

[156] S. Rhea, B.-G. Chun, J. Kubiatowicz, and S. Shenker. Fixing the embarrassing slowness of

OpenDHT on PlanetLab. In Proc. USENIX Workshop on Real Large Distributed Systems

(WORLDS), San Francisco, CA, Dec. 2005.

[157] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica, and

H. Yu. OpenDHT: A public DHT service and its uses. In Proc. ACM SIGCOMM, Philadel-

phia, PA, Aug. 2005.

[158] L. Rizzo. Effective erasure codes for reliable computer communication protocols. ACM

Computer Communication Review, 27(2):24–36, Apr. 1997.

201

[159] P. Rohatgi. A compact and fast hybrid signature scheme for multicast packet authentication.

In Proc. 6th ACM Conference on Computer and Communication Security (CCS), Singapore,

Nov. 1999.

[160] RouteViews. http://www.routeviews.org/, 2007.

[161] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale,

persistent peer-to-peer storage utility. In Proc. 18th ACM Symposium on Operating Systems

Principles (SOSP), Banff, Canada, Oct. 2001.

[162] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing

for large-scale peer-to-peer systems. In Proc. IFIP/ACM International Conference on Dis-

tributed Systems Platforms (Middleware), Heidelberg, Germany, Nov. 2001.

[163] S. Roy, H. Pucha, Z. Zhang, Y. C. Hu, and L. Qiu. Overlay node placement: Analysis,

algorithms and impact on applications. In Proc. International Conference on Distributed

Computing Systems (ICDCS), Toronto, Canada, June 2007.

[164] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation

of the Sun network filesystem. In Proc. USENIX Annual Technical Conference, Portland,

OR, June 1985.

[165] S. Saroui, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy. An analysis of

Internet content delivery systems. In Proc. 5th Symposium on Operating Systems Design

and Implementation (OSDI), Boston, MA, Oct. 2002.

[166] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks. In Proc. Internet

Measurement Workshop, Marseille, France, Nov. 2002.

[167] K. Shanahan and M. J. Freedman. Locality prediction for oblivious clients. In Proc. Inter-

national Workshop on Peer-to-Peer Systems (IPTPS), Ithaca, NY, Feb. 2005.

202

[168] A. Sherman, P. Lisiecki, A. Berkheimer, and J. Wein. ACMS: Akamai Configuration Man-

agement System. In Proc. 2nd Symposium on Networked Systems Design and Implementa-

tion (NSDI), Boston, MA, May 2005.

[169] A. Shokrollahi. Raptor codes. Technical Report DF2003-06-001, Digital Fountain, Inc.,

June 2003.

[170] Slashdot. http://www.slashdot.com/, 2007.

[171] Sleepycat. BerkeleyDB v4.2. http://www.sleepycat.com/, 2005.

[172] Y. J. Song, V. Ramasubramanian, and E. Sirer. Optimal resource utilization in content

distribution networks. Technical Report 2005-2004, Cornell University, Nov. 2005.

[173] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with Rocketfuel. In

Proc. ACM SIGCOMM, Pittsburgh, PA, Aug 2002.

[174] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching schemes to address flash crowds.

In Proc. International Workshop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, Mar.

2002.

[175] A. Stavrou, D. Rubenstein, and S. Sahu. A lightweight, robust P2P system to handle flash

crowds. In Proc. IEEE International Conference on Network Protocols, Paris, France, Nov.

2002.

[176] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An authentication service for open

network systems. In Proc. USENIX Annual Technical Conference, Dallas, TX, Feb. 1988.

[177] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for Internet applications.

IEEE/ACM Transactions on Networking, 11(1):17–32, Feb. 2003.

[178] J. Stribling. PlanetLab All Pairs Ping data, 08-03-2005.

http://www.pdos.lcs.mit.edu/˜strib/pl app/, 2005.

203

[179] J. Stribling, J. Li, I. Councill, M. F. Kaashoek, and R. Morris. OverCite: A cooperative

digital research library. In Proc. 3rd Symposium on Networked Systems Design and Imple-

mentation (NSDI), San Jose, CA, May 2006.

[180] D. Thaler and C. Ravishankar. Using name-based mappings to increase hit rates. IEEE/ACM

Transactions on Networking, 6(1):1–14, Feb. 1998.

[181] W. Theilmann and K. Rothermel. Dynamic distance maps of the Internet. In Proc. IEEE

INFOCOM, Tel Aviv, Israel, Mar. 2000.

[182] C. Thekkath, T. Mann, and E. Lee. Frangipani: A scalable distributed file system. In Proc.

16th ACM Symposium on Operating Systems Principles (SOSP), Saint Malo, France, Oct.

1997.

[183] G. Tsudik and S. Xu. Accumulating composites and improved group signing. In Advances

in Cryptology—ASIACRYPT ’03, Taipei, Taiwan, Nov. 2003.

[184] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: A secure economic frame-

work for P2P resource sharing. In Proc. Workshop on Economics of Peer-to-Peer Systems,

Berkeley, CA, June 2003.

[185] L. A. Wald and S. Schwarz. 1999 Southern California Seismic Network Bulletin. Seismo-

logical Research Letters, 71(4):401–422, July/Aug. 2000.

[186] L. Wang, V. Pai, and L. Peterson. The effectiveness of request redirection on CDN robust-

ness. In Proc. 5th USENIX Symposium on Operating Systems Design and Implementation

(OSDI), Boston, MA, Dec 2002.

[187] D. Wessels and K. Claffy. RFC 2186: Internet Cache Protocol (ICP) version 2, Sept. 1997.

[188] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb,

and A. Joglekar. An integrated experimental environment for distributed systems and net-

works. In Proc. 5th USENIX Symposium on Operating Systems Design and Implementation

(OSDI), Boston, MA, Dec. 2002.

204

[189] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy. On the scale

and performance of cooperative web proxy caching. In Proc. 17th ACM Symposium on

Operating Systems Principles (SOSP), Kiawah Island, SC, Dec. 1999.

[190] B. Wong and E. G. Sirer. ClosestNode.com: an open access, scalable, shared geocast service

for distributed systems. Operating Systems Review, 40(1):62–64, Jan. 2006.

[191] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A lightweight network location service

without virtual coordinates. In Proc. ACM SIGCOMM, Philadelphia, PA, Aug. 2005.

[192] C. K. Wong and S. S. Lam. Digital signatures for flows and multicasts. In Proc. IEEE

International Conference on Network Protocols, Austin, TX, Oct. 1998.

[193] C. Yoshikawa, F. Annexstein, and K. A. Berman. The Galaxy filesystem toolkit: Provid-

ing Windows Explorer access to custom data. Technical Report ECECS-TR-2006-7, U.

Cincinnati, July 2006.

[194] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng. Understanding user behavior in large-scale

video-on-demand systems. In Proc. EuroSys, Leuven, Belgium, Apr. 2006.

[195] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz. Tapestry: A

resilient global-scale overlay for service deployment. IEEE J. Selected Areas in Communi-

cations, 22(1):41–53, Jan. 2004.

205

