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Abstract

Modern high-speed programmable packet-processing pipelines—typically built on the Recon-

figurable Match Table (RMT) architecture—have enabled a wide range of network offloads, such

as in-network telemetry, caching, and machine learning parameter aggregation. However, these

capabilities remain largely inaccessible to a broader range of users and applications.

This dissertation investigates the barriers to broader adoption from two key perspectives: mul-

titenancy and general application-level, i.e., Layer 7 (L7), processing. It argues that expanding

adoption requires new hardware primitives alongside complementary software toolchains. To

address these challenges, the dissertation introduces two systems: (1) Menshen, which provides

isolation mechanisms that allow multiple programs to safely share a single pipeline without in-

terfering with each other; and (2) QingNiao, a system designed for L7 dispatch—a pervasive and

crucial L7 processing in network infrastructure—offering a holistic solution that combines novel

hardware architecture design with a high-level programming model to enable efficient L7 dispatch

on programmable pipelines.
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1 | Introduction

Programmable high-speed packet-processing pipelines—usually integrated in networking de-

vices like switches/routers [22] and Smart Network Interface Cards (SmartNICs [35, 2])—allow the

data center network infrastructure to provide additional features beyond packet forwarding/routing.

Recent work has demonstrated that offloading functionalities such as in-network caching [100],

consensus protocols [99, 107], congestion control based on in-network telemetry [108], moni-

toring [71], etc., to these programmable networking devices can improve throughput and reduce

latency, thus freeing up precious CPU cycles [82].

However, the benefits of these programmable networking devices1 are not yet broadly accessible

to a wider range of users and applications.

One major barrier is multitenancy: the ability for multiple independently developed network

offloads to simultaneously run atop a single programmable high-speed packet-processing pipeline

without interfering with each other.

Most existing systems assume that a single offload occupies the entire programmable pipeline in

a fully dedicated setting. However, as network programmability matures, there is growing demand

for devices that can multiplex offloads to conserve hardware resources. For example, public cloud

may allow tenants to install their own offloads (e.g., in-network caching [100], telemetry [71]) on

the cloud provider’s devices. Similarly, within a single organization, multiple teams may need
1Throughout this dissertation, we focus our discussion on Application-Specific Integrated Circuit (ASIC) based

high-speed packet-processing pipelines that are typically built on a Reconfigurable Match Table (RMT) architecture,
as detailed in Chapter 2.
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to colocate different offloads, e.g., an in-network measurement, and an in-network aggregation

module for machine-learning [126].

Another barrier is support for general application-level, i.e., Layer 7 (L7), processing. Most

existing systems’ offloads only work on per-packet network headers (e.g., TCP/IP [47]), which have

fixed-length fields. However, L7 messages can be highly variable as application developers can

define their own messages [23, 43]. For instance, a web server may first extract the path field

from the HTTP header [46] and then respond with appropriate contents. The path field can vary

in length, and sometimes extends to tens of bytes exceeding the parsing capacity of the current

programmable pipelines as detailed in §2.

Unfortunately, today’s ASIC-based high-speed programmable packet-processing pipelines—

commonly built on the Reconfigurable Match Table (RMT) [73] architecture, as seen in commercial

products like Tofino [22] switch, Intel Mount Evans IPU [21], Pensando SmartNIC [2]—do not

adequately support the following:

• Multitenancy. They lack the isolation mechanisms to simultaneously run multiple offloads

safely without interfering with each other, like accessing allocated hardware resources or

achieving non-degrading performance.

• General L7 processing. They cannot parse or act on variable-length L7 fields located at

arbitrary offsets in packet payloads, making it infeasible to offload application-level function-

alities that operate on such variable-length L7 fields.

In this dissertation, we present the design and implementation of two systems, i.e., Menshen

and QingNiao, to augment existing programmable pipelines with the support of multitenancy and

L7 processing, respectively. Our systems are based on the observation that:

Thesis Statement. To enable broader adoption of the programmable pipelines among ap-

plication developers—particularly in shared environments like public clouds—mechanisms that

combine new hardware primitives with supporting software toolchains are essential. These mecha-

2



nisms must make programmable pipelines more accessible and provide application-defined offloads

with strong performance improvements and isolation guarantees.

The remainder of this dissertation is organized as follows: We provide the background infor-

mation in Chapter 2 and focus on the discussion of the barriers hindering existing programmable

pipelines from being widely adopted. Then in Chapter 3, we present Menshen, a system that

provides isolation mechanisms for running multiple offloads on a single programmable pipeline.

Next in Chapter 4, we present QingNiao, a framework for the developers to harvest the benefits

of the programmable pipeline by specifically enabling offloading the functionality of L7 dispatch.

Finally, we conclude by describing limitations and future work in Chapter 5.

Previously Published Materials. Chapter 3 combines materials from two previous publica-

tions [135, 136]:

• Tao Wang*, Hang Zhu*, Fabian Ruffy, Xin Jin, Anirudh Sivaraman, Dan Ports, and Aurojit

Panda. Multitenancy for Fast and Programmable Networks in the Cloud. In USENIX

HotCloud, 2020. (*Co-primary authors)

• Tao Wang, Xiangrui Yang, Gianni Antichi, Anirudh Sivaraman, and Aurojit Panda. Isolation

Mechanisms for High-speed Packet-processing Pipelines. In USENIX NSDI, 2022.

Chapter 4 adapts materials from the following arXiv paper [134]:

• Tao Wang, Jinkun Lin, Gianni Antichi, Aurojit Panda, and Anirudh Sivaraman. Application-

Defined Receive Side Dispatching on the NIC. In arXiv, 2024.
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2 | Background

We begin by introducing the detailed architecture of the ASIC-based high-speed packet-

processing pipeline, i.e., Reconfigurable Match Table [73] (RMT) architecture which is widely

recognized in both academia (e.g., research prototypes [100, 99, 107] are built atop, etc.) and

industry (e.g., commercial products, like Intel Tofino switches [22] and Pensando SmartNICs [2],

are released). We then elaborate on the reasons why such RMT-based packet-processing pipelines

are incapable of supporting multitenancy and general L7 processing.

2.1 Reconfigurable Match Table

Programmable networking devices fall into three main categories: (1) Application-Specific In-

tegrated Circuit (ASIC) based high-speed packet-processing pipelines e.g., Intel Tofino switch [22],

Pensando SmartNIC [2]; (2) Field Programmable Gate Arrays (FPGA) based devices like Cisco

Nexus SmartNIC [8]; (3) Multicore System on a Chip (SoC) based devices like Marvell LiquidIO

SmartNIC [28]. Each offers a different tradeoff between performance (e.g., device throughput,

clock speed, power consumption, etc.) and flexibility (e.g., programmability). Among these,

ASIC-based devices provide the highest performance potential compared to the other two [82],

which is crucial as networks scale to 400Gbps and beyond. Thus, in this dissertation, we focus on

ASIC-based high-speed packet-processing pipelines using the RMT architecture [73] hereafter.

Architectural overview. As depicted in Figure 2.1, an RMT pipeline typically comprises a pro-

4
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Figure 2.1: Example of an RMT pipeline.
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VLAN

IPv4 IPv6

TCP UDP ICMP

Figure 2.2: Example of a parser graph. The nodes represent the parsing states, while the arrows represent
the transitions between parsing states.

grammable parser, multiple stages, a traffic manager, and a final programmable deparser at the

end. Except for the traffic manager—which is used for packet scheduling—, other elements are

programmable and exposed to the developer: typically, a compiler [39] is used to convert the

application offload/program1 into the configurations, which are installed on the pipeline via a

software-to-hardware interface.

Programmable parser. At a high level, the parser of each offload is represented by a parser graph

shown in Figure 2.2. When a packet comes in, the parser will serially traverse through the packet’s

byte stream according to the parser graph to match the nodes/states configured, and extract the
1We use offload and program interchangeably in this dissertation. Both terms represent the parts of an application

that the developer intends to offload to the hardware.
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related header fields. For example, as Figure 2.2 shows, the parser graph will first check whether

it is an Ethernet packet and then move along the edges/transitions to reach the final nodes/states

to see whether the packet is a TCP, UDP, or ICMP packet. In this way, the parser extracts the

header fields (e.g., IP source and destination addresses, etc.)—usually program-specific—from the

packet and stores them in the Packet Header Vectors (PHVs). Along with the pipeline metadata

(e.g., the port where the packet is received, etc.), PHVs are passed to the following consecutive

stages. Such a programmable parser is usually implemented using a Ternary Content Addressable

Memory (TCAM) and a Static Random Access Memory (SRAM) as discussed in [89].

Programmable stages. Each stage forms keys out of headers, looks up the keys in a match-action

table, and then performs the matched actions. Specifically, within a stage, upon receiving PHVs

with the metadata, a key extractor is configured in a per-program manner to combine fields from

the PHVs and the metadata to generate the key. Then, this key is compared against the entries

in the match-action table for the associated action, which is carried out in the action engine, and

the results are written back to the PHVs and passed to the next stage. For a concrete example, to

fulfill the functionality of a Network Address Translator (NAT), both the packet’s IP source and

destination addresses are kept in the PHVs. A stage is configured to match against the incoming

packet’s IP source address and modify its destination IP address accordingly based on the address

translation table configured.

Programmable deparser. After all processing stages, deparser assembles the modified PHVs back

to the packet according to the parser graph configured, which is the reverse path of the parser, and

emits the packet out from the pipeline.

2.2 RMT’s Limitations for Multitenancy

As described, RMT allows compiling offloads into pipeline configurations that can be directly

loaded into the pipeline. It does not natively support running multiple independently developed

6



offloads on a single pipeline. There are several key limitations:

• It lacks the interface to coordinate different offloads. For example, two configurations

of two application offloads might conflict with each other after compilation (e.g., without

coordination, they might be both packed into the same stage without enough resources),

which forbids them from being successfully loaded on the same device.

• It lacks the interface to specify the hardware resources used by each offload. Although some

annotations [39] are provided to indicate how to place offloads, it is challenging to fine-tune

those annotations since they are too coarse-grained and may not be strictly enforced.

• It lacks the support of disruption-free reconfigurations. Suppose one developer wants to add

features to its offload, it should be guaranteed that its reconfigurations do not impact the

running offloads. However, existing RMT can not support disruption-free reconfiguration

since it has to refresh the whole pipeline.

Inherently, the RMT architecture poses unique challenges for isolation because its pipeline

design means that neither an OS nor a hypervisor can be used to enforce isolation in the data

plane.2 This is because RMT is a dataflow or spatial hardware architecture [68, 78] with a

set of instructions units continuously processing data (packets). This is in contrast to the Von

Neumann architecture found on processors [59], where a program counter decides what instruction

to execute next. As such, an RMT pipeline is closer in its hardware architecture to an FPGA or

a CGRA [118] than a processor. This difference in architecture has important implications for

isolation. The Von Neumann architecture supports a time-sharing approach to isolation (in the

form of an OS/hypervisor) that runs different programs on the CPU successively by changing the

program counter to point to the next instruction of the next module, which can not be directly

applied to the dataflow architecture like RMT.
2An OS does run on the network device’s control CPU, allowing isolation in the control plane. Our focus is the

isolation of the RMT pipeline itself.
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To this end, in Chapter 3, we first lay out the requirements of multitenancy for RMT pipelines.

Then, we propose a software-hardware codesign, called Menshen, which leverages space-partitioning

to fulfill the desired requirements.

2.3 RMT’s Limitations for General L7 Processing

Additionally, as discussed, RMT is inherently constrained by its design and its hardware

resources, which limits its capability of processing general L7 fields. The philosophy of RMT

is to (1) extract, (2) store, and (3) modify the related fields by using the PHVs, which means that:

• Parsing complexity. RMT is not able to host an offload if its parser graph is too complex to

be loaded onto the pipeline.

• PHV limitation. RMT can not store the fields to the PHVs if the lengths of the fields used

in the offload are excessively long.

• Action limitation. RMT can not provide the desired modifications to the fields if the

operations—beyond addition, subtraction, etc.[135]—are too complicated.

However, this is always the case for the general L7 processing. Taking HTTP load balancer [34] as

an example, it usually operates on the path field inside the HTTP header. The path field usually

encapsulates the URLs that have variable lengths and start at arbitrary offsets of a packet. This

makes it hard for RMT to process.

First, different from extracting header fields for L3/4 fields where the length is fixed, in order to

extract the URLs, the developer can not specify the fixed size of such fields. Instead, the developer

has to add a sufficient number of branches to cover all the length cases of the URLs, which will

definitely cause a state explosion in the parser graph. Second, the numbers and sizes of PHVs in

RMT are usually limited (e.g., there are tens of PHVs in Tofino [22], each is at most 8 bytes), the

RMT pipeline can not store the URLs in a PHV even if it can extract it out. Third, carrying out
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actions on PHVs in each stage requires large crossbars [112], which are both resource-heavy and

performance-sensitive. It might be impossible to fabricate such RMT pipelines with large crossbars

to handle arbitrarily long fields like URLs. All these reasons make it challenging for the existing

RMT architecture to support general L7 processing.

To this, in Chapter 4, we first analyze the essential reasons why the existing ASIC-based pipeline

can not support processing general L7 fields. Then, we narrow down our scope to a specific L7

processing—i.e., L7 dispatch, which is widely used in the service mesh consisting of software

proxies—and propose our framework, called QingNiao, to address the issues.
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3 | Menshen

This chapter presents Menshen, a software-hardware codesign that addresses one aspect of

the aforementioned accessibility, i.e., multitenancy. To simultaneously and safely run multiple

programs on a single device, it is required to support isolation. However, existing high-speed

packet-processing pipelines such as RMT provide only limited support for isolation as we discussed

in Chapter 2. For example, it is possible to share stateful memory across programs but cannot

share other resources like match-action tables [142]. We begin by laying out the requirements for

isolation mechanisms on the RMT architecture that are applicable to all resources throughout the

pipeline and then we detail the design and implementation of Menshen.

3.1 Requirements for Isolation Mechanisms on RMT

Stage 1 Stage NProgram
m

able
Parser

Program 1

Program 2

Traffi
c M

anager

Deparser

packets

… …

…
… …

Match-action Pipeline

Figure 3.1: An example of running multiple programs on a single RMT pipeline. We show the resources
allocated to different programs by shading them in the appropriate colors.

As presented in Figure 3.1, the desired isolation mechanisms should guarantee that multiple
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programs can be allocated to different resources, and process packets in parallel without impacting

each other. Specifically, isolation mechanisms should ensure that:

1. Behavior isolation. The behavior of one program must not affect the behavior (i.e., input,

output, computation, and internal state) of another. This would prevent a faulty or malicious

program from adversely affecting other programs. Further, one program should not be able

to inspect the behavior of another program.

2. Resource isolation. A switch/NIC pipeline has multiple resources, e.g., static random-access

memory (SRAM) for exact matching and ternary content-addressable memory (TCAM) for

ternary matching. Each program should be able to access only its assigned subset of the

pipeline’s resources and no more. It should also be possible to allocate each resource

independent of other resources. For example, an in-network caching program may need large

amounts of stateful memory [100] for its caches, but a routing program may need significant

TCAM for routing tables.

3. Performance isolation. Each program should stay within its allotted ingress packets per

second and bits per second rates. One program’s behavior should not affect the throughput

and latency of another program.

4. Lightweight. The isolation mechanisms themselves must have low overhead so that their

presence does not significantly degrade the high performance of the underlying network

device. In addition, the extra hardware consumed by these mechanisms must be small.

5. Rapid reconfiguration. If a program is reconfigured with new packet-processing logic, the

reconfiguration process should be quick.

6. No disruption. If a program is reconfigured, it must not disrupt the behavior of other

unchanged programs—especially important in a multi-tenant environment [79].
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3.2 Menshen’s Approach

As discussed in Chapter 2, RMT is inherently a dataflow architecture, thus time-sharing ap-

proaches, widely used in the OS/hypervisor, can not be directly applied to RMT. This is mainly

because swapping in/out the configurations for different programs to process each packet at the

nanosecond level is impossible.

In order to meet its performance goals, RMT’s pipelined architecture ensures that processing

stages never stall, i.e., they can process a packet every clock cycle. The Menshen design aims to

preserve this invariant so that isolation does not come at the cost of performance. To maintain this

invariant, Menshen’s isolation mechanisms cannot reconfigure stages or change table contents be-

tween packets. As a result, Menshen provides isolation by spatially partitioning pipeline resources

between packet processing programs.

While spatial partitioning is easy for resources, e.g., match-action tables and stateful memory,

that are provisioned so they can be allocated at a coarse granularity, it is much more challenging for

resources such as key extractors (Chapter 2) which are generally shared across flows. This is because

naive approaches to spatially partitioning such shared resources across packet-processing programs

would severely reduce the number of resources available to each packet-processing program—and

hence the richness and expressiveness of that program.

To see why, consider a case where a key extractor is split between two packet processing

programs: in this setting each packet processing program can only use half the key extractor,

limiting its key length to half of what it would be able to use were it running on the entire pipeline.

Concretely, suppose the original one selects 6 PHVs, if it is evenly partitioned between 2 programs,

only 3 PHVs can be selected by each program, which makes the original program that uses 6 PHVs

to form keys impossible to run. This problem is of course further exacerbated as we increase the

number of packet processing programs sharing the pipeline.

Menshen addresses this problem using overlays: we associate a configuration lookup table with
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Applied Mechanism Targeted Resources

Space partitioning Match action table entries, stateful memories

Overlays Parsing actions, key extractors,
packet header vector (PHV) containers,
arithmetic logic units (ALUs)

Table 3.1: Summary of Menshen’s mechanisms.

each shared resource through the RMT pipeline. Menshen adds additional hardware primitives in

the form of small tables that store program-specific configurations. As a packet progresses through

the pipeline, the packet’s program identifier is used as an index into these tables to extract program-

specific configurations before processing the packet according to the just extracted configuration.

These primitives are similar to the use of overlays [37, 4] in embedded systems [54, 1] and earlier

PCs [38]. They effectively allow us to bring in different configurations for the same RMT resource,

in response to different packets from different programs. For example, in the case of the key

extractor, the configuration table contains the instructions that the program uses to construct the

key (Chapter 2). Our use of overlays means that we do not need to partition resources including

ALUs or PHVs between programs. Instead, the program has exclusive access to all PHVs/ALUs in

a stage when processing a packet. Table 3.1 summarizes Menshen mechanisms.

3.3 Menshen’s Design

At a high level, as shown in Figure 3.2, Menshen combines both the software toolchain with the

proposed hardware primitives which are pervasively throughout the RMT pipeline. Specifically,

Menshen software (§3.3.1) consists of (1) a system-level program; (2) a compiler that supports

resource sharing policy, a resource usage checker, and a sanity checker with static analysis; (3) a

software-to-hardware interface like P4Runtime [40], which is used to interact with the underlying

hardware pipeline, e.g., configure table entries, gather statistics, etc. Menshen hardware primitives
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Figure 3.2: Overview of Menshen’s software toolchains and hardware primitives.

(§3.3.2) primarily are in the form of small indirection tables to realize both the techniques of space

partitioning and overlays.

3.3.1 Menshen Software

Menshen system-level program To hide information about the underlying physical infrastructure

(e.g., topology) from tenant programs in a virtualized environment, programs in Menshen can use

virtual IP addresses to operate in a shared environment [92]. Here, virtual IP addresses are local

and scoped to programs belonging to a particular tenant, regardless of which physical device these

programs are on. To support virtual IPs and provide basic services to other programs, Menshen

contains a system-level program written in P4-16 that provides common OS-like functionality,

e.g., converting virtual IPs to physical IPs, multicast, and looking up physical IPs to find output

ports. The system-level program has 3 benefits: (1) it avoids duplication among different programs

re-implementing common functions, improving the resource efficiency of the pipeline; (2) it hides

underlying physical details (e.g., topology) from each program so that one tenant’s programs on
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different network devices can form a virtual network [92]; (3) it provides common and useful

real-time statistics (e.g., link utilization, queue length, etc.) that can be further used by the packet

processing within programs.

The bottom right corner of Figure 3.2 shows how the system-level program is laid out relative to

the other user programs. Packets entering the Menshen pipeline are first processed by the system-

level program before being handed off to their respective program for program-specific processing.

After program-specific processing, these packets enter the system program for a second time before

exiting the pipeline. The first time they enter the system-level program, packets can read and update

system-level state (e.g., link utilization, packet counters, queue measurements), whereas the second

time they enter the system-level program, program-specific packet header fields (e.g., virtual IP

address) can be read by the system-level program to determine device-specific information (e.g.,

output port). In both halves, there is a narrow interface by which programs communicate with

the system-level program. This split structure of the system-level program arises directly from

the feed-forward nature of the RMT pipeline, where packets typically only flow forward, but not

backward. Hence, packets pick up information from the system-level program in the first stage

and pass information to the system-level program in the last stage. The non-system programs are

sandwiched between these two halves.

The Menshen compiler. Packet-processing pipelines (e.g., RMT [73]) are structured as feed-

forward pipelines of programmable units, each of which has limited processing capabilities. This

design ensures the all-or-nothing property: once a program has been compiled and loaded it can

run at up to line rate, while programs that can not run at line rate cannot be compiled. Menshen’s

compiler follows the same design, and only admits programs that meet line-rate requirements.

The compiler reuses the frontend and midend of the open-source P4-16 reference compiler [39]

and creates a new backend similar to BMv2 [5]. This backend has a parser, a single processing

pipeline, and a deparser. The compiler takes a program’s P4-16 program as input and conducts all

the resource usage and static checks described below. Then, for the parser and deparser, it translates
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the parser defined in the program into configuration entries for the parser and deparser tables. For

the packet-processing pipeline, which consists of match-action tables, it transforms the key in a

table to a configuration in the key extractor table, and actions to action table entries according to

the opcodes. The compiler also performs dependency checking [73, 101] to guarantee that all ALU

actions and key matches are placed in the proper stage, respecting table dependencies.

The Menshen compiler can be extended to support the same packet flowing through different

P4 programs belonging to one tenant. The compiler can take multiple P4 programs as input, assign

them the same program ID, and allocate them to non-overlapping pipeline stages—similar to how

we lay out user and system programs in different stages as in Figure 3.2.

The Menshen resource checker. The Menshen resource checker ensures that each program’s

resource allocation complies with an operator-specified resource sharing policy (e.g., dominant

resource sharing (DRF) [88], or a utility-based [95] policy). In our current design, we check

allocations statically because reassigning resources from one program to another disrupts processing

for both programs. Instead, we rely on admission control and do not load a program whose resource

requirements cannot be met. We leave the question of what is an appropriate resource allocation

policy to future work.

The Menshen static checker. To ensure isolation, Menshen’s static checker analyzes 3 properties

of the program’s P4 source code. First, it checks that programs do not modify hardware-related

statistics (e.g., link utilization) provided by the system-level program to all programs. Second,

programs can not modify their VID. This is because a program can be spread across multiple

programmable devices [99, 87], and changes to VIDs by program 𝐴 on a device can unintentionally

affect a program 𝐵 on a downstream device, where 𝐵’s real VID happens to be the same as 𝐴’s

modified VID. Third, programs must not recirculate packets and their routing tables should be

loop-free.1 This is because all programs share the same ingress pipeline bandwidth. Recirculating

packets or looping them back through multiple devices will degrade the ability of other programs
1We check loop freedom in the control plane.
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to process packets by consuming excessive ingress bandwidth.

The software-hardware interface. The Menshen software-to-hardware interface works similarly

to P4Runtime [40] to support interactions (e.g., modifying match-action entries, fetching hardware

statistics, etc.) between the Menshen software and the Menshen hardware. However, in addition

to P4Runtime’s functions, Menshen’s software-hardware interface can also be used to reconfigure

different hardware resources (we detail the types of Menshen resources in §3.4) in Menshen to

reprogram them when a program is added or updated. This allows us to dynamically reconfigure

portions of Menshen as program logic changes.

3.3.2 Menshen Hardware

Packet Filter

Parser

Key Extractor

Match-action
Table

Action
Engine

Stateful
Memory

Segment
Table

lookup

Software-to-Hardware Interface

stage 1

Deparser

stage n

new
 header

header

…

Packet Buffer

Metadata

data pkt
reconf pkt

packets
Modified
packets

read HW
registers

Figure 3.3: Menshen builds atop an RMT [73] pipeline. Specifically, Menshen introduces Yellow components
and modifies Green ones.

As depicted in Figure 3.3, Menshen’s hardware primitives are pervasively throughout the

classical RMT [73] pipeline. We first describe the overall Menshen hardware design and then

summarize the new isolation primitives added by Menshen.

Menshen expects that a data packet’s header carries information identifying what program

should process the packet. Currently, in our prototype, this is the VLAN ID (VID) header, which

we assume is set by the vSwitch [92], but other fields, e.g., VxLAN ID, can also be used instead.

Packets entering Menshen are first handled by a packet filter that discards packets without a VLAN
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Figure 3.4: Menshen programmable parser.

ID.2 Next, a parser extracts the VLAN ID from the packet and applies program-specific parsing to

extract program-specific headers from the TCP/UDP payload. The parser then pushes these parsed

packet headers into PHV containers that travel through the pipeline of match-action stages.

Each stage forms keys out of headers, looks up the keys in a match-action table, and performs

actions. At the start of each stage, a key extractor in the stage forms a key by combining together

the headers in a program-specific manner. The keys are then concatenated with the program ID and

looked up in a match-action table, whose space is partitioned across different programs. If the key

matches against a match-action pair in the table, the lookup result is used to index an action table.

Similar to the match-action table, the action table is also partitioned across programs. Each

action in the table identifies opcodes, operands, and immediate constants for a very-large instruction

word (VLIW), controlling many parallel arithmetic and logic units (ALUs). The VLIW instruction

consumes the current PHV to produce a new PHV as input for the next stage. The table’s action

can modify the persistent pipeline state, stored in stateful memory. Stateful memory is indexed by

a physical address that is computed from a local address, obtained from a program’s packets. This

computation is done by a segment table, which stores the offset and range of each program’s slice

of stateful memory. We now detail the main components of our design.

Parser. The Menshen parser is driven by a table lookup process similar to the RMT parser [73, 89].

Specifically, whenever a new packet comes in, the program ID is extracted from its VLAN ID
2The filter can be configured to send control packets without VLAN tags, e.g., BFD packets [7], to the control plane

or system-level program (§3.3.1).
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prior to parsing the rest of the packet. This program ID is then used as an index into the table

that determines how to parse the rest of the packet (Figure 3.4). Each table entry corresponds to

multiple parsing actions for a program—one action per extracted PHV container. Each parsing

action specifies (1) bytes from head, indicating where in the packet the parser should extract a

particular header; (2) container type (e.g., 4-byte container, etc.), indicating how many bytes we

should extract; (3) container index, indicating where in the PHV we should put the extracted header

into. The parser also sets aside space in the PHV for metadata that is automatically created by the

pipeline (e.g., time of enqueue into switch output queues and queueing delay after dequeue) and

for temporary packet headers used for computation.

Key extractor. Before a stage performs a lookup on a match-action table, a lookup key must be

constructed by extracting and combining together one or more PHV containers. This key extraction
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process differs between programs in the same stage, and between different stages for the same

program. To implement key extraction, just like the parser, we use a key extractor table (Figure 3.5)

that is indexed by a packet’s program ID. Each entry in this table specifies which PHV containers

to combine together to form the key. These PHV containers are then selected into the key using

a multiplexer for each portion of the key. To enable variable-length key matching for different

programs, the key extractor also includes a key mask table, which also uses the program ID as an

index to determine how many bits to pad to a certain fixed key size before lookup.

Match table. Each stage looks up the fixed-size key constructed by the key extractor in a match

table. Currently, we support only exact-match lookup. The match table is statically partitioned

across programs by giving a certain number of entries to each program. To enforce isolation

among different programs, the program ID is appended to the key output by the key extractor. This

augmented key is what is actually looked up against the entries in the match table; each entry stores

both a key and the program ID that the key belongs to. The lookup result is used as index into the

VLIW action table to identify a corresponding action to execute.

Action table and action engine. Each VLIW action table entry indicates which fields from the

PHV to use as ALU operands (i.e., the configuration of each ALU’s operand crossbar) and what

opcode should be used for each ALU controlled by the VLIW instruction (i.e., addition, subtraction,

etc.). Each ALU outputs a value based on its operands and opcode. There is one ALU per PHV

container, removing the need for a crossbar on the output because each ALU’s output is directly

connected to its corresponding PHV container. After a stage’s ALUs have modified its PHV, the

modified PHV is passed to the next stage.

Stateful memory. Menshen’s action engines can also modify the persistent pipeline state on every

packet. Each program is assigned its own address space, and the available stateful memory in

Menshen is partitioned across programs. When a program accesses its slice of stateful memory,

it supplies a per-program address that is translated into a physical address by a segment table

before accessing the stateful memory. To perform this translation, Menshen stores per-program
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configuration (i.e., base address and range) in a segment table, which can be indexed by the packet’s

program ID. Menshen borrows this idea of a segment table from NetVRM’s [142, 136] page table,

but implements it in hardware instead of programming it in P4 atop Tofino’s stateful memory like

NetVRM does. This allows Menshen to avoid using scarce Tofino stateful memory to emulate a

segment table. Also, by adding segment table hardware to each stage, Menshen avoids sacrificing

the first stage of stateful memory for a segment table, instead reclaiming it for useful packet

processing. This is unlike NetVRM, which can share stateful memory across programs only from

the second stage because the first stage is used for the page table.

Deparser. The deparser performs the inverse operation of the parser. It takes PHV containers and

writes them back into the appropriate byte offset in the packet header, merges the packet header

with the corresponding payload in the packet buffer, and transmits the merged packet out of the

pipeline. The format of the deparser table is identical to the parser table and is similarly indexed

by a program ID.

Secure reconfiguration. Our threat model assumes that the Menshen hardware and software are

trusted, but that data packets that enter the Menshen pipeline are untrusted. Data packets are

untrusted because for a switch, they can come from physical machines outside the switch’s control

and, for a NIC, they can come from tenant VMs sharing the NIC. Hence, the pipeline should be

reconfigured only by Menshen software, not data packets.

This is a security concern faced by existing RMT pipelines as well, even without isolation sup-

port. Commercial programmable switches solve this problem by using a separate daisy chain [11]

to configure pipeline stages. This chain carries configuration commands that are picked up by the

intended pipeline stage as the command passes that stage. The chain is only accessible over PCIe,

which is connected to the control-plane CPU, but not by Ethernet ports, which carry outside data

packets. Hence, the only way to write new configurations into the pipeline is through PCIe. The

packet-processing pipeline is restricted to just reading configurations and using them to implement

packet processing. Thus, the daisy chain provides secure reconfiguration by physically separating
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reconfiguration and packet processing.

Menshen uses a similar approach by employing a daisy chain for reconfiguration when a

program is updated. A special reconfiguration packet carries configuration commands for the

pipeline’s resources (e.g., parser). Our implementation of this daisy chain varies depending on the

platform. For our NetFPGA prototype, this daisy chain is connected solely to the switch CPU via

PCIe, similar to current switches. For our Corundum NIC prototype, we connect the daisy chain

directly to PCIe and use a packet filter before our parser to filter out reconfiguration packets from

untrusted data packets by ensuring that reconfiguration packets have a specific UDP destination

port. An ideal solution would be to use a physically separate interface, e.g., USB or JTAG, for

reconfiguring the Menshen pipeline on Corundum, but we found it challenging to implement such

a physically separate reconfiguration interface on Corundum. In the evaluation, we show how a

daisy chain permits more rapid reconfiguration than an alternative approach of using the AXI-L

protocol on an FPGA.

Summary of Menshen’s new primitives. The hardware primitives introduced by Menshen on top of

an RMT pipeline (Figure 3.3) are the configuration tables for the parser, deparser, key extractor, key

mask units and segment table. These tables provide an overlay feature to share the same unit across

multiple programs. Specifically, for each unit, Menshen provides a table with a configuration entry

per program, rather than one configuration for the whole unit. In addition, Menshen introduces the

packet filter to ensure secure reconfiguration. Menshen also modifies match tables, by appending

the program ID to the match key and the match-action entries. Finally, Menshen partitions match-

action tables and stateful memory across all programs. These primitives ensure that updating one

program only affects a single entry (for Menshen resources that use overlays) and only affects a

subset of memory (for Menshen resources that use space partitioning), thus allowing us to update

one program without disrupting others (§3.5).

ASIC feasibility of Menshen’s primitives. Menshen’s parser, deparser, key extractor, key mask,

and segment tables are small and simple arrays indexed by the program identifier. They can be
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readily realized in SRAM that can support a memory read every clock cycle. The packet filter is

a simple combinational circuit that checks if the incoming packet is destined to a specific UDP

destination port. Extending the match-action tables in each stage to append a program ID to every

entry amounts to modestly increasing the key width in the table. While these new primitives add

some additional latency relative to RMT, e.g., to go through the packet filter or reading out the

per-program parser configuration, the pipelined nature of RMT means that this additional latency

does not impact the packet-forwarding rate.

3.3.3 Optimizations for Menshen Hardware

As shown in Figure 3.6, we apply 3 main techniques to optimize the forwarding performance

of Menshen: (1) masking RAM read latency, (2) using multiple parsers and deparsers, and (3)

increasing pipeline depth. We demonstrate the effect these techniques have on Menshen when

evaluating Menshen’s throughput in §3.5.2.

1 Masking RAM read latency. The design described in §3.3.2 attaches the module ID to the

PHV that is sent from one element (e.g., parser, key extractor) to the next. In this design, we

read the module’s configuration from SRAM after the PHV arrives, thus incurring a few additional
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clock cycles of latency. To optimize this, we mask SRAM access latency by splitting the module

ID from the PHV and sending the module ID to the next element ahead of time. The PHV follows

the module ID, and thus the module configuration at a stage can be read concurrently with the PHV

being transmitted to that stage.

2 Multiple parsers and deparsers. In §3.3.2’s design, there is one parser, deparser, and packet

buffer. The parser extracts and parses the header and puts the full packet in the packet buffer. Then

the deparser takes the modified headers from the last stage, uses them to overwrite the relevant

portions of the full packet in the packet buffer, and sends out the packet.

Our optimized design uses multiple parallel parsers, deparsers, and packet buffers to improve

throughput. Deparsing is the most expensive operation as any position within the PHV container

might be modified, and thus any part of the packet header (128 bytes in our implementation) might

need to be updated. Furthermore, deparsing has to process both the packet header and the payload.

Therefore, we use 4 parallel deparsers and 2 parsers. We also associate a separate packet buffer

with each deparser.

On ingress, the packet filter tags each packet with a packet buffer number (0–3) in round robin

order. It also round robins incoming packets to the 2 parsers. The last pipeline stage uses the

packet buffer tag to determine which packet buffer’s packet the last stage’s modified PHV should be

combined with. Each packet buffer’s deparser combines the earliest packet from the packet buffer

along with the last stage’s most recently modified PHV for that buffer.

3 Deep pipelining. With careful digital design, in Menshen’s implementation, we can pipeline

each element (e.g., match-action table) into several sub-elements to improve throughput. For

example in Figure 3.6, we divide the match-action table into CAM-lookup and action-RAM-read

sub-elements. In this specific example, this allows us to process a PHV every 2 clock cycles at each

sub-element rather than every 4 clock cycles at the whole match-action table.
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3.4 Implementation

3.4.1 Menshen Software

The Menshen compiler reuses the open-source P4-16 reference compiler [39] and implements

a new backend extension in 3773 lines of C++. It takes the program written in P4-16 together

with resource allocation as the inputs, and generates per-program configurations for Menshen

hardware. Specifically, it (1) conducts resource usage checking to ensure every program’s resource

usage is below its allocated amount; (2) places the system-level program’s (120 lines of P4-16)

configurations in the first and last stages in the Menshen pipeline; and (3) allocates PHV containers

to the fields shared between the system-level and other programs so that the other programs can be

sandwiched between the two halves of the system-level program (§3.3.1). The Menshen software-

to-hardware interface is written in Python. It configures Menshen hardware by converting program

configurations to reconfiguration packets.

3.4.2 Menshen Hardware

To implement Menshen hardware, we first built a baseline RMT implementation for an FPGA.

Menshen includes (1) a packet filter to filter out reconfiguration packets from data packets us-

ing a specific predefined UDP destination port (i.e., 0xf1f2), (2) a programmable parser, (3) a

programmable RMT pipeline with 5 programmable processing stages, (4) a deparser, and (5) a sep-

arate daisy-chain pipeline for reconfiguration. It also includes Menshen’s primitives for isolation.

We have integrated it into both the Corundum NIC [83] and the NetFPGA reference switch [144].

The Menshen code base together with the optimizations (§3.3.3) consists of 9975 lines of Verilog.

Of this, 3098 and 3226 lines are for handling data bus widths of 512 bits (Corundum) and 256 bits

(NetFPGA) respectively. 3651 lines are for the common blocks, e.g., key extractor, etc. Below, we

describe our hardware implementation in more detail. Figure 3.7 shows the formats of Menshen’s
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Common HDR Resource ID Reserved Index Padding Payload

1st 6B 2nd 6B 1st 4B 2nd 4B 1st 2B 2nd 2B flag

Index Index Index Index Index Index Opcode Operand 1 Operand 2

1st 6B 1st 6B 1st 6B 1st 6B 1st 6B 1st 6B

Opcode Container 1 Container 2 Reserved

Opcode Container 1 Immediate value

3b 4b 8b 8b

1b

46B 12 bits 4b 1B 15B Varied 

4b

4b

5b

5b

5b 11b

16b

Format of Menshen’s reconfiguration packet

Format of match key

Format of entry in key extractor table

(1) Action with 2 operands from PHV

(2) Action with 1 operand from PHV

Figure 3.7: Formats of Menshen’s packets and tables.

packets and tables.

PHV format. Menshen’s PHV has 3 types of containers of different sizes, namely 2-byte, 4-byte

and 6-byte containers. Each type has 8 containers. Also, we allocate and append an additional 32

bytes to store platform-specific metadata (e.g., an indication to drop the packet, destination port,

etc.), which results in a PHV length of 128 bytes in total. Thus, we have a total of 3 ∗ 8+ 1 = 25

PHV containers. To prevent any possibility of PHV contents leaking from one program to another,

the PHV is zeroed out for each incoming packet.

Reconfiguration packet format. Figure 3.7 shows the format of Menshen reconfiguration packets.

The reconfiguration packet is a UDP packet with the standard UDP, Ethernet, VLAN, and IP

headers. Within the UDP payload, a 12-bit resource ID indicates which hardware resource within

which stage should be updated (e.g., key extractor table in stage 3). To reconfigure the resource,

the table storing the configuration for this resource must be updated by writing the entry stored

within the reconfiguration packet’s payload at the location specified by the 1-byte index field

in the reconfiguration packet header. The UDP destination port field determines whether the

reconfiguration packet is valid or not.
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Packet filter. The packet filter has 2 registers that can be accessed by the Menshen software via

Xilinx’s AXI-Lite protocol [61]: (1) a 4-byte reconfiguration packet counter, which monitors how

many reconfiguration packets have passed through the daisy chain; (2) a 32-bit bitmap, which

indicates which program is currently being updated (e.g., bit 1 stands for program 1, bit 2 for

program 2, etc.). During the reconfiguration of a program, via the software-to-hardware interface,

the Menshen software reads the reconfiguration packet counter. It then writes the bitmap to reflect

the program ID 𝑀 of the program currently being updated. The bitmap is then consulted on every

packet to drop data packets from 𝑀 until reconfiguration completes, so that 𝑀’s “in-flight” packets

aren’t incorrectly processed by partial configurations.

Then, the Menshen software sends all reconfiguration packets embedded with the predefined

UDP destination port to the daisy chain. Finally, it polls the reconfiguration packet counter to check

if reconfiguration is over and then zeroes the bitmap so that 𝑀’s packets are no longer dropped.

Reconfiguration packets may be dropped before they reach the RMT pipeline. This can be detected

by polling the reconfiguration packet counter to see if it has been correctly incremented or not. If it

hasn’t been incremented correctly, then the entire reconfiguration process restarts with 𝑀’s packets

being dropped until reconfiguration is successful.

Programmable parser/deparser. We currently support per-program packet header parsing in the

first 128 bytes of the packet. These 128 bytes also include the headers common to all programs

(e.g., Ethernet, VLAN, IP, and UDP). We design the parser action for each parsed PHV container

as a 16-bit action. The first 3 bits are reserved. The next 7 bits indicate the starting extraction

position in bytes from byte 0. These 7 bits can cover the whole 128-byte length. Then, the next

2 bits and 3 bits indicate the container type (2, 4, or 6 byte) and number (0–7) respectively. The

last bit is the validity bit. For each program, we allocate 10 such parser actions (i.e., to parse out at

most 10 containers), resulting in a 160-bit-wide entry for the parser action table.

We note that we only parse out fields of a packet into PHV containers, if those fields are actually

used as part of either keys or actions in match-action tables. Before packets are sent out, the
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deparser pulls out the full packet (including the payload) from the packet buffer and only updates

the portions of the packet that were actually modified by table actions. This approach allows us to

reduce the number of PHV containers to 25 because packet fields that are never modified or looked

up by the Menshen pipeline need not travel along with the PHV.

Key extractor. The key for lookup in the match-action table is formed by concatenating together

up to 2 PHV containers each of the 2-byte, 4-byte, and 6-byte container types. Hence the key can

be up to 24 bytes and 6 containers long. Since there are 8 containers per type, the key extraction

table entry for each program in each stage uses 𝑙𝑜𝑔2(8) ∗6 = 18 bits to determine which container

to use for the 6 key locations. Additionally, the key extractor is also used to support conditional

execution of actions based on the truth value of a predicate of the form 𝐴 𝑂𝑃 𝐵, where 𝐴 and 𝐵 are

packet fields and 𝑂𝑃 is a comparison operator. For this purpose, each key extractor table entry also

specifies the 2 operands for the comparison operation and the comparison opcode. The opcode is

a 4-bit number, while the operands are 8 bits each. The operands can either be an immediate value

or refer to one of the PHV containers. The result of the predicate evaluation adds one bit to the

original 24 byte key, bringing the total key length to 24∗8+1 = 193 bits. Because not all keys need

to be 193 bits long, we use a 193-bit-wide mask table. Each entry in this table denotes the validity

of each of the 193 key bits for each program in each stage. This is somewhat wasteful and can be

improved by storing validity information within the key extractor table itself.

Exact match table. To implement the exact match table, we leverage the Xilinx CAM block [64].

This CAM matches the key from the key extractor program against the entries within the CAM.

As discussed in §3.3.2, to ensure isolation between different programs, we append the program ID

(i.e., VLAN ID) to each entry, which means that the CAM has a width of 193+12 = 205 bits. The

lookup result from the CAM is used to index the VLIW action table. The action is designed in a

25-bit format per ALU/container (Figure 3.7). As we have 24+1 = 25 PHV containers, the width of

the VLIW action table is 25∗25 = 625 bits. The Xilinx CAM block simplifies the implementation

of an exact-match table and can also easily support ternary matches if needed.
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Operation Description

add/sub Add/subtract between containers
addi/subi Add/subtract an immediate to/from container
set Set a container to an immediate value
load Load a value from stateful memory
store Store a value to stateful memory
loadd Load value from stateful memory, add 1, and store back
port Set destination port
discard Discard packet

Table 3.2: Supported operations in Menshen’s ALU.

Action engine. The crossbar and ALUs in the action engine use the VLIW actions to generate

inputs for each ALU and carry out per-ALU operations. ALUs support simple arithmetic, stateful

memory operations (e.g., loads and stores), and platform-specific operations (e.g., discard packets)

(Table 3.2). The formats of these actions are shown in Figure 3.7. Additionally, in stateful ALU

processing, each entry in the segment table is a 2-byte number, where the first byte and second byte

indicate memory offset and range, respectively.

Menshen primitives. Menshen’s isolation primitives (e.g., key-extractor and segment tables) are

simple arrays implemented using the Xilinx Block RAM [63] feature. All Menshen’s hardware

resources are detailed in Table 3.3.

3.4.3 Corundum and NetFPGA Integrations

We have integrated Menshen into 2 FPGA platforms: one for the NetFPGA platform that

captures the hardware architecture of a switch [144], and another for the Corundum platform that

captures the hardware architecture of a NIC [83]. Menshen’s integration on Corundum [83] is

based on a 512-bit AXI-S [62] data width and runs at 250 MHz. Although Menshen’s pipeline

can be integrated into both the sending and receiving path, in our current implementation, we

have integrated Menshen into only Corundum’s sending path, i.e., PCIe input to Ethernet output.
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Hardware Resource Description

Packet Filter A 32-bit bitmap,
and a 4-byte reconfiguration packet counter

PHV
2-byte, 4-byte, 6-byte containers,
each type has 8 containers
a 32-byte container for platform-specific metadata

Parsing action 16 bits wide
Parser and deparser table 10 parsing actions, 160 bits wide, 32 entries deep

Key extractor table 38 bits wide, 32 entries deep
Key mask table 193 bits wide, 32 entries deep

Exact match table 205 bits wide, 16 entries deep
ALU Action 25 bits wide

VLIW action table 25 ALU actions, 625 bits wide, 16 entries deep
Segment table 16 bits wide, 32 entries deep

Stages 5
Program ID 12 bits

Table 3.3: Hardware resources in Menshen

Menshen on NetFPGA [144] uses a 256-bit AXI-S [62] data width and runs at 156.25 MHz.

On the Corundum NIC platform, we insert a 1-bit discard flag, while on the NetFPGA switch

platform, we insert a 1-bit discard flag and 128-bit platform-specific metadata, i.e., source port,

destination port and packet length, into the PHV’s metadata field. A 4-bit one-hot encoded tag

indicates the packet buffer (§3.3.3). The table depth in Menshen’s parser, key extractor, key

mask, page, and deparser tables affects the maximum number of programs we can support and

is currently 32. The depth of CAM and VLIW action table directly influences the amount of

match-action entries and VLIW actions that can be allocated to all programs. Due to the open

technical challenge of implementing CAMs on FPGAs efficiently [120, 98], we set their depth to

16 in each stage. While 16 is a small depth, the depth can be improved by using a hash table, rather

than a CAM, for exact matching, e.g., cuckoo hashing [117].
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Program Description

CALC [41] return value based on parsed opcode and operands
Firewall [41] stateless firewall that blocks certain traffic
Load Balancing [41] steer traffic based on 4-tuple header info
QoS [41] set QoS based on traffic type
Source Routing [41] route packets based on parsed header info
NetCache [100] in-network key-value store
NetChain [99] in-network sequencer
Multicast [41] multicast based on destination IP address

Table 3.4: Evaluated use cases.

3.5 Evaluation

SFP+

PCIe

SFP+

Host

NIC

NIC

NetFPGA

(1) NetFPGA Setup

PCIe

Host

Corundum

QSFP28

NIC

(2) Corundum Setup

(a) Correctness setup.

PCIe
Host

Crundum
Menshen

QSFP28

QSFP28

Spirent 
Tester

QSFP28

QSFP28

(b) Performance test setup.

Figure 3.8: Testbed setup. Red arrow shows packet flow.

In §3.5.1, we show that Menshen can meet our requirements (§3.1): it can be rapidly re-

configured, is lightweight, provides behavior isolation, and is disruption-free. Menshen achieves

performance isolation by (1) assuming packets exceed a minimum size (to guarantee line rate) and

(2) forbidding recirculation. If either is violated, hardware rate limiters can be used to limit each

program’s packet/bit rate. It achieves resource isolation by ensuring that a table entry for a resource

(e.g., parser) is allotted to at most one program. In §3.5.2, we evaluate the current performance of
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Menshen in terms of throughput and latency.

Experimental setup. To demonstrate Menshen’s ability to provide multi-program support, we

picked 6 tutorial P4 programs [41], as detailed in Table 3.4, together with simplified versions of

NetCache [100] and NetChain [99].3 The system-level program provides basic forwarding and

routing, with multicast logic integrated into it. Menshen’s parameters are detailed in §3.4 and

summarized in Table 3.3 in the §3.4.2.

Testbed. Our experimental setup is depicted in Figure 3.8. We evaluate Menshen based on our

Corundum and NetFPGA integrations as described in §3.4.3. For the switch platform experiments

on NetFPGA, we use a single quad-port NetFPGA SUME board [33], where two ports are connected

to a machine equipped with an Intel Xeon E5645 CPU clocked at 2.40 GHz and a dual-port Intel

XXV710 10/25GbE NIC. For the NIC platform experiments on Corundum, we use a single Xilinx

Alveo U250 board [3], where one port is with Menshen for the transmitting path and this port

is connected to a 100 GbE NIC as the receiving path. Both setups are used to check Menshen’s

correctness (§3.5.1). For NetFPGA performance tests (§3.5.2), we use the host as a packet generator.

For Corundum performance tests (§3.5.2), we internally connect its receiving and transmitting path,

and use the Spirent tester [49] to generate traffic.

3.5.1 Does Menshen meet its requirements?

Menshen can be rapidly reconfigured. Reconfiguration time includes both the software’s com-

pilation time (Figure 3.9) and the hardware’s configuration time (Figure 3.10); we evaluate each

separately. When a program is compiled, the compiler needs to generate both configuration bits

for various hardware resources as well as match-action entries for the tables the program looks up.

These match-action entries can and will be overwritten by the control plane, but we need to start

out with a new set of match-action entries for a program to ensure no information leaks from a

previous program.
3Our versions of NetChain and NetCache do not include some features such as tagging hotkeys.
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Figure 3.9: Compilation time of Menshen.
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Figure 3.10: Configuration time of Menshen.

Hence, every time a program is compiled, the compiler also generates match-action entries.

Within an exact match table, these entries must be different from each other to prevent multiple

lookup results. As a result shown in Figure 3.9, Menshen’s compilation time increases with the

number of match-action entries in the program. To contextualize this, Menshen’s compile times

(few seconds) compare favorably to compile times for Tofino (∼10 seconds for our use cases)

and FPGA synthesis times (10s of minutes). We note that this is an imperfect comparison: our

compiler performs fewer optimizations than either the Tofino or FPGA compilers and our targets are

simpler. That said, compilation can happen offline, and hence it is not as time-sensitive compared

to run-time reconfiguration which is more important as new configurations should take effect as

quickly as possible.

To measure time taken for Menshen’s configuration post compilation, we vary the number of

entries the Menshen software has to write into the pipeline.4 Also, as a comparison, we evaluate

the cost of the Tofino run-time APIs from Tofino SDE 9.0.0 to insert match-action table entries

for the CALC program. From Figure 3.10, we observe that the time spent in configuration of the

hardware via Menshen’s software-to-hardware interface is similar to Tofino’s run-time APIs.

Daisy-Chain vs. Fully-AXI-L-Based Configuration. Additionally, as discussed in §3.4.2, Men-
4Since the Menshen hardware can’t currently support so many entries (§3.4.2), we overwrite previously written

entries to measure configuration time.
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Figure 3.11: Configuration time comparison for AXI-L based (estimated) and Menshen’s daisy-chain config-
uration (measured).

shen uses a daisy chain pipeline to configure the Menshen pipeline and uses the AXI-L [61] protocol

for safety alone, i.e., to read the reconfiguration packet counter and update the bitmap during re-

configuration. Before using this daisy-chain approach, we considered a different approach based

fully on the AXI-L protocol. In this approach, all configuration settings on the FPGA would be

set using the AXI-L protocol via PCIe from the host instead of passing a reconfiguration packet

through a daisy chain pipeline. We elected to use the daisy-chain approach instead for 2 reasons

described below.

First, as one AXI-L write in Corundum can only support a 32-bit data length, we have to write

⌈625/32⌉ = 20 and ⌈205/32⌉ = 7 times for configuring one entry in the VLIW action table and

CAM respectively. For our test modules, we estimate AXI-L reconfiguration time based on the

write time of a single AXI-L write. As shown in Figure 3.11, Menshen’s daisy-chain configuration

is much faster than the AXI-L based method, especially for longer entries (i.e., VLIW action table).

These benefits are likely to be more pronounced on a larger implementation of Menshen because

the entries (both for VLIW action table and CAM) will be even longer in that case. Second, the

daisy-chain approach is more similar in style to how programmable switch ASICs are configured

today, hence, it is preferable for an eventual ASIC implementation of Menshen.
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Figure 3.12: Disruption-free reconfiguration measured every 0.1 s.

Menshen can reconfigure without disruption. To show Menshen can support disruption-free

reconfiguration, we launch three CALC programs with fixed input packet rates, i.e., 5:3:2 ratio on a

single link for the program 1, 2 and 3, respectively. We use netmap-based tcprelay to generate total

traffic of 9.3 Gbit/s on a 10 Gbit/s link. 0.5 seconds in, we start to reconfigure the first program

to see if the packet processing of other programs has stalled or not. In Figure 3.12 we show the

throughput achieved by each of the three programs when reconfiguring program 1. We can observe

that model 2 and 3 see no impact on their throughput. This demonstrates that Menshen provides

performance isolation, and that it is feasible for a tenant to reconfigure their program without

impacting other tenants. By contrast, updating a program on Tofino (§3.6) requires resetting the

entire switch pipeline. Even with Tofino’s Fast Refresh [25], this leads to a 50 ms disruption of

all servers (and their VMs) whose traffic is routed through the switch. This disruption of tens of

milliseconds can be significant in public cloud environments, and in many cases renders dynamic

reconfiguration infeasible.

Menshen is lightweight. We list Menshen’s resource usage of logic and memory (i.e., LUTs

and Block RAMs), including absolute numbers and fractions, in Table 3.5. For comparison,

we also list the resource usage of the NetFPGA reference switch and the Corundum NIC. We

believe that the additional hardware footprint of Menshen is acceptable for the programmability
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Hardware Implementation Slice LUTs Block RAMs

NetFPGA reference switch 42325 (9.77%) 245.5 (16.7%)
RMT on NetFPGA 200573 (46.3%) 641 (43.6%)
Menshen on NetFPGA 200733 (46.34%) 641 (43.6%)
Corundum 61463 (3.56%) 349 (12.98%)
RMT on Corundum 235686 (13.63%) 316 (11.75%)
Menshen on Corundum 235903 (13.65%) 316 (11.75%)

Table 3.5: Resources used by 5-stage Menshen pipeline, on NetFPGA SUME and AU250 boards, compared
with reference switch, Corundum NIC, and RMT.

and isolation mechanisms it provides relative to the base platforms. The reason that Menshen uses

more LUTs than Block RAMs is that Menshen leverages the Shift Register Lookup (SRL)-based

implementation of Xilinx’s CAM IP [64]. We also compared with an RMT design, where we

modified Menshen’s hardware to support only one program. Relative to RMT, Menshen incurs an

extra 0.65% (NetFPGA) and 0.15% (Corundum) in LUTs usage.

Menshen provides behavior isolation. Next, we spot check that Menshen can correctly isolate

programs, i.e., every running program can concurrently execute its desired functionality. For this,

we ran the CALC, Firewall, and NetCache program simultaneously on the Menshen pipeline. We

generate data packets of different VIDs, which indicate which of these 3 programs they belong to,

and input them to the Menshen FPGA prototype on both platforms. By examining the output packets

at the end of Menshen’s pipeline, we checked that Menshen had correctly isolated the programs,

i.e., each program behaved as it would have had it run by itself. We repeated the same experiment by

running the Load Balancing, Source Routing, and NetChain programs simultaneously; we observed

correct behavior isolation here too.

3.5.2 Menshen Performance

How many programs can be packed? In our current prototype on both Corundum and NetFPGA,

we can support at most 32 programs because each isolation primitive (e.g., key extractor table)

36



64 96 12
8

25
6

51
2

Packet size (B)

7.0

7.5

8.0

8.5

9.0

9.5

10.0
Th

ro
ug

hp
ut

 (G
bp

s)

2

4

6

8

10

12

14

Pa
ck

et
 ra

te
 (M

pp
s)

Layer 1 Throughput
Layer 2 Throughput
Packet rate

(a) Optimized NetFPGA.

70 12
8

25
6

51
2

76
8

10
24

15
00

Packet size (B)

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

10

20

30

40

50

60

Pa
ck

et
 ra

te
 (M

pp
s)Layer 1 Throughput

Layer 2 Throughput
Packet rate

(b) Optimized Corundum.

currently has 32 entries. In practice, the number of programs could be less than 32 if programs need

to share a more bottlenecked hardware resource. For instance, if each program wants a match-action

entry in every pipeline stage, the maximum number of programs is at most 16 because there are

only 16 match-action entries in each stage in our current prototype. However, the numbers above

are entirely a function of how much hardware one is willing to pay in exchange for multitenancy

support. If we can afford to expend additional resources on an FPGA or extra area on an ASIC, we

can correspondingly support a larger number of programs.
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Figure 3.14: Results for performance benchmarks.

Latency. In our current implementation, the number of clock cycles needed to process a packet in
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the pipeline depends on packet size. This is because the number of cycles to process both the header

and the payload depend on the header and payload length. For instance, for a minimum packet

size of 64 bytes, Menshen’s pipeline introduces 79 and 106 cycles of processing for NetFPGA and

Corundum, resulting in 79∗ 1000
156.25 = 505.6 ns and 106∗ 1000

250 = 424 ns latency, respectively. For the

max. packet size of 1500 bytes, Menshen incurs 146 and 112 cycles for NetFPGA and Corundum,

resulting in 150∗ 1000
156.25 = 960 ns and 129∗ 1000

250 = 516 ns latency.

Throughput. For NetFPGA, we used MoonGen [80] to generate packets with different sizes.

Figure 3.13(a) shows that Menshen achieves a rate of 10 Gbit/s after a packet size of 96 bytes.

This is the maximum supported by our MoonGen setup because we have a single 10G NIC.

For Corundum, we internally connected Corundum’s receiving and transmitting path. Rather

than using a host-based packet generator through PCIe, we used Spirent FX3-100GO-T2 tester

to test Menshen’s throughput. The MTU size is set to 1500 bytes. As shown in Figure 3.13(b)

and Figure 3.14(a), optimized Menshen on Corundum achieves 100 Gbit/s at 256 bytes, while

unoptimized Menshen can only achieve 80 Gbit/s at MTU-size packets. Also, we sample packets

to evaluate the packet latency of optimized Menshen on Corundum with full rate. As depicted in

Figure 3.14(b), at full rate, it incurs about 1.2 µs latency.

ASIC feasibility. With the same parameter settings in §3.5, we use the Synopsys DC synthesis

tool [52] and FreePDK45nm technology library [17] to assess the ASIC feasibility of the Menshen

pipeline.5 At 1 GHz frequency, when compared with an RMT design, where we modified Menshen

to support only one program, Menshen incurs 18.5%, 7%, 20.9% additional chip area for the parser,

deparser and one stage, respectively. For a 5-stage pipeline along with the packet filter, parser,

deparser and packet buffers, Menshen (10.81 mm2) incurs 11.4% additional chip area compared

with RMT (9.71 mm2).

Considering that memory (i.e., lookup tables) and packet processing logic only costs at most 50%
5Since we can not have access to the source code of Xilinx IPs (e.g., DMA, Ether+PHY, etc.), we solely run

synthesis on Menshen’s Verilog codebase.
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in switch chip area [42, page 36], Menshen’s chip area overhead is moderate (11.4%∗50% = 5.7%),

which is conservative since the number of entries in our match-action table is only 16 (§3.4.2). With

a much larger number of entries in lookup tables—which is the common block between Menshen

and RMT—Menshen’s additional chip area will be negligible.

3.6 Related Work

Multi-core architecture solutions. To support isolation on programmable network devices based

on multicores [50, 27, 29], FairNIC [91] partitions cores, caches, and memory across tenants

and shares bandwidth across tenants through Deficit Weighted Round Robin (DWRR) scheduling.

iPipe [114] uses a hybrid DRR+FCFS scheduler to share SmartNIC and host processors between

different programs. Menshen uses space partitioning as well to allocate different resources to

different programs. However, RMT’s spatial/dataflow architecture differs considerably from the

Von Neumann architectures for multi-core network processors targeted by FairNIC and iPipe. An

RMT architecture can not support a runtime system similar to the ones used by iPipe and FairNIC.

FPGA-based solutions. Several FPGA platforms exist for programmable packet processing. These

platforms can be broadly categorized into (1) direct programming of FPGAs [106, 82, 30, 96, 127,

131, 133] and (2) higher-level abstractions built on top of FPGAs [120, 74, 67, 81].

Systems (e.g., VirtP4 [127], MTPSA [131]) based on direct FPGA programming typically

implement packet-processing logic in a hardware-description language (HDL) or using a high-level

language like P4 [133, 96] or C [66, 106] that is translated into HDL. The HDL program is fed

to an FPGA synthesis tool to produce a bitstream, which is written into the FPGA. This approach

requires combining the programs of different programs into a single Verilog program, which can

then be fed to the synthesis tool. Thus, changing one program disrupts other programs, violating

our requirement of no disruption, similar to other compile-time solutions (e.g., P4Visor [139],

ShadowP4 [140]).
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The disruption can be addressed through partial reconfiguration (PR) [105, 6.2], where the

grid of computing elements (called look-up tables or LUTs) on an FPGA are divided into regions.

Each region is assigned to a different Verilog program, and the FPGA bitstream in each region

can be synthesized independent of the other regions. PR can be used for isolation by assigning

each packet-processing program to a separate PR region. Menshen’s space partitioning to allocate

RMT resources across programs is effectively a form of partial reconfiguration, but specialized to

the context of RMT. However, space sharing alone isn’t sufficient for isolation on RMT and we

additionally need overlays to share some RMT resources across multiple programs.

FlowBlaze [120], SwitchBlade [67], and hXDP [74] expose a restricted higher-level abstraction

like RMT or eBPF on top of an FPGA. FlowBlaze and hXDP do not provide support for isolation.

SwitchBlade does, but its higher-level abstraction is much less flexible than the RMT abstraction

in Menshen. NICA [81] targets an FPGA NIC and is designed to share one pre-programmed

offloading engine across many programs, while Menshen also targets ASIC pipelines and supports

reprogramming individual programs without disrupting others. This higher-level abstraction is

reconfigured by a compiler every time a programmer updates the program, instead of synthesizing

a new FPGA bitstream each time, which is more time consuming.

Our prototype implementation of Menshen is effectively a higher-level RMT model on top of

an FPGA with support for inter-program isolation. However, we stress that our FPGA prototype is

for ease of engineering; an eventual implementation of Menshen will likely use an ASIC.

Tofino [22]. Tofino is a commercial switch ASIC that uses multiple parallel RMT pipelines.

However, Tofino currently does not support multiple programs/P4 programs within a single pipeline.

The current Tofino compiler requires a single P4 program per pipeline. Multiple P4 programs can

be merged into a single program per pipeline and then fed into the Tofino compiler (Wang et

al. [136] and 𝜇P4 [129]). However, both approaches still disrupt all tenants every time a single

tenant in any pipeline is updated. This is because despite supporting an independent program per

pipeline, updating any of these programs requires a reset of the entire Tofino switch [25].
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Emulation-based solutions. Hyper4 [94] and HyperV [138] propose to emulate multiple P4

programs/programs using a single hypervisor P4 program, which can be configured at run time by

the control plane, thus supporting disruption-free reconfiguration. However, we found that it was

very challenging to design a sufficiently “universal” hypervisor program on a commercial RMT

switch like Tofino.

As one example, the hypervisor program needs to support performing a bit-shift by an amount

determined by a packet field, where the packet field is specified by the control plane. However,

a high-speed chip like Tofino has several restrictions on bit-shifts and other computations for

performance, e.g., on Tofino, the shift width and field to shift must be supplied at compile time, not

at run time by the control plane.

PANIC [112] and FlexCore [137]. PANIC and FlexCore [137] are programmable multi-tenant

NIC and switch designs, respectively. They both suffer from scalability issues because they need

to build a large crossbar with long wires interconnecting all engines to each other, which requires

careful physical design [75, Appendix C]. Menshen’s RMT pipeline is easier to scale as its wires

are shorter: they only connect adjacent pipeline stages [73, 2.1].

3.7 Summary

To sum up, this chapter presents Menshen, a system for addressing the issue of accessibility in

terms of isolating co-resident packet-processing modules on pipelines similar to RMT. Menshen

comprises both software toolchains and hardware primitives: (1) Menshen software is mainly used

for allocating hardware resources and guaranteeing no malicious operations are done by each user-

submitted program; (2) Menshen hardware builds on the idea of space partitioning and overlays,

and is comprised of a set of simple hardware primitives that are inserted at different points in an

RMT pipeline. These primitives are straightforward to realize in both ASICs and FPGAs. Menshen

thus demonstrates that providing inter-module isolation in programmable pipelines is practical.
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4 | QingNiao

This chapter introduces QingNiao, a system that addresses the other aspect, i.e., general L7

processing. Over the last decade, L7 processing has been increasingly moved from the application

itself into the software proxies (e.g., Envoy [14]). Specifically, QingNiao targets enabling L7

dispatch in hardware. L7 dispatch is a representative type of L7 processing, as all software

proxies—regardless of how they are configured or what types of L7 processing they implement—

must choose where to forward the messages.

In this chapter, first, we show how costly the typical L7 processing in software like L7 dispatch

is and analyze the sources of the overhead. Then, we discuss the challenges of offloading such L7

processing to the high-speed packet-processing pipeline like RMT [73]. Last, we detail the design,

implementation, and evaluation of QingNiao, to see how it works to address the challenges and

how it can be generalized to other L7 processing beyond L7 dispatch.

4.1 The case for L7 dispatch in hardware

As depicted in Figure 4.1(a), L7 dispatch requires the processing elements (e.g., software

proxies) to look at the application-level (L7) data in each message, and forward them to the

downstream elements (e.g., typically processes) based on the configured L7 rules (e.g., matching

against the configured URL patterns [34]). L7 dispatch impacts the throughput and latency almost

for every message: it is reported that Istio [24]—the most commonly used service mesh—imposes

42



Server

NIC

Extract Message

App0
Msg. Lib.

Software Proxy
(e.g., Envoy [7]) Msg. Lib.

L7 Policies

1

Send
Message2

App1
Msg. Lib.

Server

App0
QingNiao 

Lib.

QingNiao NIC
with L7 Logic and Policies

Extract & Send
Message

App1
QingNiao 

Lib.

(a) SW L7 Processing (b) HW Offloaded L7 Processing

L7 LogicOffloaded

Figure 4.1: Architectural comparison of L7 processing implemented in software and hardware (e.g., our
solution QingNiao).

significant overhead for this operation: it increases latency by 269% [143] and CPU usage by

163%. Consequently, a lot of work [14, 24, 23, 26, 34, 125, 51, 31, 86, 6, 32] has aimed to improve

dispatch performance.

However, none of these efforts can bypass the communication pattern in the current architecture

(Figure 4.1a). This is because of two steps that are required for software dispatch: (1) extracting

application messages from network packets and applying policies (e.g., authentication) on the

extracted data; (2) using inter-process communication (IPC) to send the application message to the

thread that processes it. Both steps add overheads.

To quantify it, we start by measuring the overheads on response latency for performing L7

dispatch in software. To do so we compare response latency for FastHTTP [16] when running

standalone to a deployment where Envoy [14],1 a widely adopted L7 proxy, is used to implement L7

dispatch. We use the same FastHTTP configuration in both cases. For the Envoy-based deployment,

we use one Envoy instance and two FastHTTP instances, and pin Envoy and FastHTTP to different

cores. In both cases, we ensure there is no request queuing and report average latency across 100K

iterations. The experimental setup is detailed in and consistent with §4.6.
1We used version v1.50.0 and v1.21.0 for FastHTTP and Envoy, respectively.
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Component Time

HTTP Processing 27 µs
Interprocess Communications 15.23 µs

Total 42.23 µs

Table 4.1: Dissection of additional latency brought by Envoy.

In our setting, FastHTTP when run without Envoy has a response latency of 45 µs. As shown in

Table 4.1, running FastHTTP with Envoy increases this latency to 87.23 µs, an increase of 91.9%.

We used BCC’s funclatency [15] to understand the source of these overheads. We found that

Envoy’s HTTP parsing contributed approximately 27 µs, while IPC between Envoy and FastHTTP

added approximately 15.23 µs. To put this breakdown in context, HTTP parsing within Envoy takes

60% of the time FastHTTP takes to process a request, while IPC takes 33.8% of the time FastHTTP

takes for processing requests. Thus both contribute to the additional response latency.

Not only does Envoy increase response latency, it also decreases throughput. We measured this

using wrk [60], and found that adding Envoy reduces throughput by over 9×: FastHTTP without

Envoy can process 123.65 Krps, while with Envoy it can only process 13.13 Krps.

High-performance software dispatcher. Software solutions, including Shenango [116], Shin-

juku [102], Caladan [85] and Junction [84] aim to reduce the overheads of software dispatch,

however they only allow L3/4 information to be used for dispatch. Our evaluation (§4.6.1) shows,

extending them to consider L7 information adds significant overhead, and negates much of their

performance advantage.

Hardware dispatchers. Recent work has also developed hardware-accelerated dispatches. How-

ever, many of these, including RackSched [141] and RingLeader [111], only allow for L3/4 dispatch

rules, and thus do not apply to our setting. Other work, in particular, Cerebros [122] and Neb-

ula [132], move a single application’s RPC logic into the NIC (note, both use the term ‘dispatch’

to refer to code dispatch, i.e., calling the appropriate function for an RPC message, a sense that is
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different than our use of the term). However, these approaches cannot implement many common

proxy policies, e.g., they cannot distribute RPCs across shards of the same service.

4.2 Challenges to offloading L7 dispatch

To mitigate the overheads of L7 dispatch and improve performance, we are seeking to delegate

L7 dispatch to the NIC hardware which is located on the application’s communication path, as

shown in Figure 4.1(b). Potentially, the L7 dispatch logic is directly implemented on the NIC, thus

avoiding expensive L7 processing alongside IPC to be performed on the CPU host.

However, it is challenging to directly extend the existing packet-processing pipeline like

RMT [73] due to the following unique characteristics of L7 processing: The first, was a mis-

match between the size of application messages and network packets: an application message

can be several megabytes in size, exceeding the MTU of most networks. Consequently, a single

application message is often segmented, which is split across multiple packets. Software-based

proxies rely on the OS network stack to reassemble packet payloads into an application message

before processing. However, implementing segmentation reassembly—e.g., handling recovery of

packet loss, buffer management, etc.—on hardware requires complicated logic and large amounts

of memory [119].

The second, was the presence of variable-length fields (e.g., strings or vectors) within the

application messages. Existing match-action pipelines are designed to process fixed-length fields

(e.g., IP addresses), and this affects both how match rules are specified (using exact values or bit

masks) and processed.

These two unique features of L7 processing make offloading to existing packet-processing

pipelines like RMT [73] impossible as discussed in Chapter 2. This is due to the fact that RMT-like

pipelines are designed to extract, store, and modify the packet header fields with limited on-chip

memory, which makes it essentially hard to support the variable-length L7 fields. To this, we design
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new hardware primitives (§4.4.2) in QingNiao.

4.3 QingNiao Design

QingNiao’s goal is to offload L7 dispatch to a NIC, and thus eliminate the overheads (§4.1)

of software dispatchers. We had two primary goals when designing QingNiao: (1) generality,

allowing QingNiao to be used by different L7 message definitions and with different L7 dispatch

rules; (2) hardware resource efficiency, allowing QingNiao to be implemented on a wide variety of

NICs and combined with other types of offloads.

At a high level, to address the challenges (§4.2), we design a new encoding scheme (§4.4.1)

in QingNiao to avoid requiring reassembly on the NIC: each Menshen packet contains a message

ID, and the first packet of a message contains all the fields that are used to dispatch the message.

This design allows the NIC to process individual packets without reassembly: the NIC determines

and caches a dispatch decision when it receives the message’s first packet, and all subsequent

message packets are dispatched using the cache. Additionally, we adopt a skip-and-match based

rule specification (§4.4.2) to specify matching rules over variable length fields, and design a

hardware match engine that can efficiently match packet contents using these rules without storing

the interested L7 fields.
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QingNiao is designed to operate in internal services, where applications running atop can be

easily linked to QingNiao library. External messages can be translated via gateways [31]. It consists

of the three components (Figure 4.2): (1) QingNiao software (§4.4.1), which provides interfaces

for the applications: a QingNiao Interface Definition Language (IDL) and its compiler to customize

L7 message structs for achieving generality, a runtime API library to interact with the underlying

QingNiao NIC; (2) QingNiao hardware (§4.4.2), which achieves resource efficiency by buffering

no packets, thus avoiding excessive memory footprint and complex on-NIC buffer management for

L7 message reassembly; (3) QingNiao controller, which manages on-NIC QingNiao L7 dispatch

rules at runtime.

Data layout is the core technique that enables QingNiao. When segmenting an application

message that spans multiple packets, QingNiao lays out data so that: (1) portions relevant to L7

dispatch appear in the message’s first packet, (2) and each packet carries this message’s unique ID.

As a result, QingNiao allows to dispatch every packet: a dispatch decision can be made on the

message’s first packet, which can be looked up for subsequent packets using the same message ID.

To make prototyping feasible, our current design does not use TCP as a transport protocol, and

instead uses a simpler QingNiao protocol (QNP) described in §4.5.2. As we discuss later in §4.8,

our design choices can be used with TCP or other transport protocols.

4.4 An Example of QingNiao

Before diving into the details of QingNiao, we first present an example of how to build and

deploy an application atop QingNiao. We use this example throughout the rest of this section to

illustrate QingNiao’s design.

Suppose Bob, a developer at a university, wants to build and deploy a course review application.

The application needs to be able to track reviews for courses offered by all of the university’s

departments. Bob starts by defining his application’s interface. The application processes messages
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msg_struct MSG {
  string student [[dispatch_info]];
  string course [[dispatch_info]];
  string review; }

Bob’s message definition

MSG A {
  .student = “/NY/202401”;
  .course = “/CS/Network”;
  .review= “Good”; }
MSG B {
  .student = “/CA/201901”;
  .course = “/EE/Math”;
  .review= “Bad”; }

Two MSG examples

(a) Example of messages.

Server
Application Processes

QingNiao NIC

student: 
/CA/.*
course: 
/.*/Math

student: 
/.*/2024.*

Rule A

MSG
A

MSG
B

Rule B

A B

(b) Example of dispatch rules.

Figure 4.3: Example of the message struct definition and dispatch rules.

(Figure 4.3(a)) that consist of three variable-length string fields: (1) “student” with the format

“/<campus>/<id>”; (2) “course” with the format “/<department>/<course>”; and (3) “review”.

Bob wants to ensure that the application can scale to all users at the university, and span

multiple cores. His design for scaling requires that he launches multiple processes that execute the

application, and shard reviews (e.g., by student ID or department) across these processes. Because

data is sharded, he must ensure that messages are forwarded to the correct shard, and he must use

an L7 dispatcher.

To use QingNiao as an L7 dispatcher, Bob first defines the application messages (Figure 4.3(a))

using the QingNiao IDL (§4.4.1). When defining application messages, Bob uses the annotation

dispatch_info to indicate the set of fields that can be used for L7 dispatch. Then, Bob writes

the course review application using the QingNiao library (§4.4.1). Next, Bob must decide what L7

dispatch rules he should use. We show two example dispatch rules in Figure 4.3(b): Rule A directs

any messages where the “student” field matches the pattern /.*/2024 to process A, while Rule B

directs messages where the “student” matches /CA/.* and “course” field matches /.*/Math to

process B.

After creating the application and determining dispatch rules, Bob deploys all of the application
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processes on a server equipped with a QingNiao NIC. Then Bob uses QingNiao’s controller

(Figure 4.2), to configure dispatch rules. Once this is done, QingNiao forwards messages to the

configured processes, thus performing L7 dispatch.

4.4.1 QingNiao Software Stack

We discuss the design of QingNiao software and defer the detailed implementation to §4.5.2.

QingNiao IDL and compiler. Similar to protobuf [43], QingNiao provides an IDL and compiler

for customizing message structs. Additionally, it provides a dispatch_info attribute specifier to

mark fields used for L7 dispatch as in Figure 4.3(a).

Application Programming Interfaces (APIs). QingNiao provides a minimalistic programming

model to applications, namely send_msg() and recv_msg() APIs in QingNiao library.

To send messages to the underlying network, applications use the send_msg() API, which

lays out and serializes message fields. Specifically, for the layout, QingNiao library arranges the

message fields such that the fields marked with “dispatch_info” appear before the other fields. Then

the message is segmented into multiple packets if necessary, and the “dispatch_info” fields are

guaranteed to appear complete in the first packet. In the packet header, each packet will carry

the message’s unique ID and its in-message packet sequence number. As we will show in §4.4.2,

QingNiao hardware offloads L7 dispatch by leveraging this packet layout to avoid on-NIC packet

buffering and message reassembly.

For the serialization, QingNiao library uses the serialization functions—generated by IDL

compiler—to translate message fields into a Type-Length-Value (TLV [56]) format as in Fig-

ure 4.4(a), which is effective in expressing variable-length L7 values and widely used [43]. We

elaborate the format and encoding in §4.5.2.

On a server equipped with QingNiao NIC, each application process is allocated with a set of

TX/RX queues (Figure 4.5, §4.4.2). To receive messages from the underlying network, applications
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(a) TLV format.

MSG A {
  .student = “/NY/202401”,
  .course  = “/EE/Comp_Arch”,
  .review = … /* A 1500-byte string */
}

/NY/202401 /EE/Comp_Archpkt. hdrs
student course

……
review
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(b) Packet layout.

Figure 4.4: Example of QingNiao on-wire format for a message struct with two fields, where fields ‘student’
and ‘course’ are used for dispatch.
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use the recv_msg() API. The QingNiao NIC and library will ensure the packets with the same

message are all received in order and deserialized into the original message, which is delivered to

the application.
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4.4.2 QingNiao Hardware Architecture

The RX path is where all of QingNiao’s logic resides. By contrast, the TX path works as any

other NICs: it sends out packets provided by our library. Thus, we only describe the RX path in

this section. We first detail the basic packet handling, and then describe the Receive Side Dispatch

(RSD) module that implements the L7 dispatch logic.

As we explained above, when sending a multi-packet message, QingNiao library (1) places

dispatch_info fields in the first packet; (2) adds a message ID to all packets. The QingNiao NIC

uses this layout: when it receives the first packet for a message it uses the dispatch_info field to

decide where the packet should be dispatched. It then caches this decision, and uses the message

ID field to find the cached result and dispatch subsequent packets.

This message layout allows us to avoid buffering packets and reassembling messages on NIC,

reducing resource requirements [53, 13]. The only per-message state maintained by the QingNiao

NIC are: descriptor for DMAing packet payloads, sequence numbers of received packets, timer for

message expiration, and cached dispatch result.

QingNiao’s RX path (Figure 4.5) performs following steps when it receives a packet:

• 1 a packet filter parses out packet metadata (i.e., message ID, length, and packet sequence

number) and inputs it to RSD along with the packet to compute the 2 dispatch result (i.e.,

RX queue) for the message.

• The result is cached for this message ID and used by Packet Receive Engine to 3 fetch a

descriptor from the target RX queue, then 4 packet content is DMAed to the host, by using

the fetched descriptor and the packet’s in-message sequence number to determine its offset in

the descriptor-pointed memory region. QingNiao uses per-message descriptor and ensures

the pointed memory region is large enough for the message itself.

• 5 Message Receive Engine tracks the following states per message: the fetched descriptor,
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an indicator of received and missing packets to show whether a message is fully received,

and a timer when the last packet of the message was received. These states are essential

for QingNiao’s correctness and resource efficiency: the descriptor is kept for the subsequent

packets within the same message, and the per-message timer is used to notify QingNiao to

reclaim the corresponding on-NIC states and at-host memory once it expires.

• 6 When all packets of the message are received, QingNiao NIC notifies the host of the

successful message delivery. By calling QingNiao recv_msg() API, applications can directly

receive the deserialized messages from the allocated RX queues.

We now discuss two core design decisions that we made: how we deliver messages to applica-

tions, and how we process L7 dispatch rules using our receive side dispatch module.

Separation of packet and message delivery. The NIC DMAs each received packet to host memory

immediately. However, it delays notifying the host until all packets in a message are received, thus

providing the host with an abstraction where it receives the whole message.

One concern with this approach is what to do if the second (or a later) packet for a message

arrives before the first? Dispatch information is only carried in the first packet, and without this

information we cannot decide where to DMA the packet. We currently handle such out-of-order

packet arrivals by discarding any packets (for a message) that arrive before the first message packet.

This simplification has been adopted in other NIC designs, including several RDMA NICs that use

a go-back-N retransmission strategy [93] and Tesla’s TTPoE, to limit resource requirements.

QingNiao Receive Side Dispatch. QingNiao Receive Side Dispatch (RSD) is the hardware module

responsible for mapping messages to desired RX queues based on the specified L7 dispatch rules.

We first describe the type of dispatch rules supported by QingNiao, and then elaborate how RSD is

designed to match incoming messages against configured dispatch rules.

QingNiao dispatch rules based on skip-and-match. As discussed in §4.2, L7 dispatch usually re-

quires matching message fields of byte strings against configured rules. To support this, one
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straightforward way is to implement on-NIC regex as it is expressive for string matching [45].

Unfortunately, implementing reconfigurable regex matching based on Deterministic Finite Au-

tomatas (DFAs) using lookup tables [89] is complex and challenging [90] since the number of

states of DFAs grows exponentially as the complexity of regex increases [70, 113].

To this end, QingNiao instead adopts a simpler string matcher based on a skip-and-match

abstraction which is a relaxed form of regex. Following regex [45] convention, QingNiao’s skip-

and-match supports two primitive patterns: (1) Skip, i.e., ‘.Nstr’, where 𝑁 bytes are skipped and a

byte string str is matched; (2) SkipUtil, i.e., ‘[ˆ/]*/’, which bypasses any bytes until a configured

‘/’ is matched. This allows QingNiao to match against fixed or variable number of bytes of the

input. The rationale behind this is that dispatch rules often match on only portions of a string, e.g.,

the first few bytes of an argument or a URL pattern. Specifically, one skip-and-match consists of

an alternating sequence of bytes that should be skipped and strings that should be matched.

Recall Bob’s dispatch Rule A (i.e., /.*/2024) in Figure 4.3(b) as an example, it can be achieved

by two skip-and-matches: (1) Skip 0 bytes and Match /; (2) SkipUntil a specified character (e.g.,

‘/’) and Match 2024. This rule matches any string that has the prefix starting with /, and ending

with /2024. Concretely, it will match the string /CA/20240919, but not the string /PA/202345.

In practice, skip-and-match is expressive enough to encode L7 dispatch rules given a known

string format. For example, in an HTTP URL [57] string, a path component typically consists

of a sequence of path segments separated by a slash (e.g., https://harrypotter.fandom.com/

wiki/Hedwig). Using skip-and-match’s Skip and SkipUntil primitives—two SkipUtils bypass

the domain (‘harrypotter.fandom.com/wiki’) and one Skip matches ‘Hedwig’—can easily match

desired portions of such strings as elaborated before.

How RSD works. QingNiao RSD extracts L7 message struct fields from packet contents and matches

them against the configured dispatch rules to emit the dispatch result (i.e., RX queue). To fulfill

this, RSD should be able to (1) decode TLV-encoded message fields, which requires RSD to parse

field type, length, and value in order; (2) move along the field’s byte sequence and match it against
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Figure 4.6: Receive Side Dispatch’s components: (1) BytePipe with look-ahead window; (2) programmable
Matcher which implements skip-and-match.

the dispatch rules, consisting of skip-and-matches. They both require processing bytes serially.

However, memory elements typically do not natively support serial access at byte granularity [65].

Therefore, the RSD (Figure 4.6) is designed with 2 parts: (1) a BytePipe, and (2) a programmable

Matcher. BytePipe takes in the packets and serves as a serial transient byte stream for the Matcher

as it presents the Matcher with the available bytes. Matcher will consume bytes from BytePipe to

parse L7 message fields in the TLV format, and match them against configured dispatch rules. The

original packet contents are also stored in the transient packet buffer, which will emit the packets

along with the dispatch result to the downstream module.

Specifically, as shown in Figure 4.6, to support serial parsing for the Matcher, BytePipe provides

3 operations: read and write—with a number of bytes as an argument—specify how many bytes are

read out and written in, respectively; inspect checks bytes of a look-ahead window. By interacting

with BytePipe, Matcher is designed to carry out skip-and-match: it uses read operation to skip

bytes and then instructs inspect operation to get a window of bytes, which is used to match against

the bytes configured in dispatch rules.

Additionally, when QingNiao control plane starts to reconfigure dispatch rules for an application,

it will also notify the packet filter to discard the traffic from the applications under reconfigura-

tion. This allows Matcher to support disruption-free reconfiguration without impacting existing

traffic from other running applications, as shown in §4.6.2. In §4.5.1, we describe an FPGA
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implementation of RSD.

4.5 QingNiao Implementation

In this section, we detail the prototype of QingNiao hardware and software stack. We also

describe two optimizations that our implementation uses to improve the NIC’s throughput.

4.5.1 QingNiao Hardware Prototype

We prototype QingNiao hardware using FPGA and integrate it into Corundum [83]. Our NIC

implementation consists of 6004 lines of Verilog, and runs at 250 MHz (which allows us to hit

line-rate on our NIC). We discuss the three main modules of our implementation below:

Receive Side Dispatch. As discussed in §4.4.2, RSD mainly consists of BytePipe and Matcher

modules, of which we show the implementations in the following.

BytePipe. As in Figure 4.7, inspired by protoacc [104], BytePipe is implemented as a set of parallel

First-Word Fall-Through FIFO queues (FWFT FIFOs), where the word size is 1 byte and the first

byte at the head is immediately presented if it is not empty. This allows BytePipe to accept a

simultaneous read/write of a sequence of bytes, which is capped by the number of parallel FWFT
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FIFOs. To support read, write and inspect, BytePipe keeps track of read and write index when

executing read and write operations, respectively.

Take Figure 4.7 as an example. For read, BytePipe starts with the read indexed FIFO and

iterates on parallel FIFOs to extract byte till the desired length. A 4-byte read operation starts

from 1-indexed FIFO and BytePipe outputs BEE/. Note that reading from parallel FIFOs can be

done simultaneously. Inspect works in the same way as read, except that it only exposes the bytes

but does not consume them. At the same time, to support SkipUntil, a priority encoder is used to

indicate the index of the specified character (e.g., ‘/’ in the example), which can be used as the

number of bytes to be skipped. For write, BytePipe arranges the insertion of the byte to each FIFO

starting from the write indexed FIFO. As shown in Figure 4.7, DECAF of 5 bytes will be spread out

over all 4 FIFOs and two rounds of inserting bytes to FIFOs, where the 0-indexed FIFO will be

written twice.

In our current prototype, the number of the parallel FWFT-FIFOs is set to 64, allowing it to

support at most 64 bytes for each round, where each operation may take multiple rounds. BytePipe

needs 3 cycles for the read and write round, while inspect operates immediately. The depth of each

FIFO is set to 128, allowing it to store 8192 bytes at most transiently.
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Matcher. We take inspiration from implementing hardware packet parsers [89] to implement skip-

and-match in Matcher by mapping skips and matches to Random Access Memory (RAM) and

Content Addressable Memory (CAM) respectively. Specifically, as in Figure 4.8, a dispatch rule

consisting of skip-and-matches can be translated into a state machine, where states alternate between

skipping bytes and matching strings until a final output is found. We map states that skip bytes into

entries in RAM, and states that match string into entries in a CAM so that the string matching can

be implemented as a content-addressable operation. Rule matching then requires going back and

forth between these two units, and Matcher outputs an RX queue identifier when a match/mismatch

has been found.

To meet timing at 250MHz (i.e., 4ns), the number of entries for configuring dispatch rules is

set to 512 for both RAM and CAM in our current prototype. The RAM entry is designed to be

32-bit width: an 8-bit field index to be matched against, two 8-bit numbers of how many bytes to

skip and match for one skip-and-match, and an 8-bit state number to represent the translated state

machine of corresponding dispatch rule in the Matcher. In our implementation, we use the number

of skipped bytes set to 0xff to indicate the SkipUntil primitive, which means to skip to the character

‘/’. Otherwise, it is configured as the Skip primitive. We ensure the number of skipped bytes in

each skip is smaller than 64, as BytePipe can support reading 64B at most simultaneously.

Each CAM entry is 96-bit wide: a 24-bit number to be matched against an 8-bit application ID,

8-bit message type and 8-bit field index, an 8-bit numbered state and an 8-byte (i.e., 64-bit) byte

string to be matched against. The terminating rule is encoded into RAM entry of skip-and-match

with 0 bytes to skip and match.

Cache of dispatch result. We use a small RAM as a stash to cache the dispatching result for each

message. We simply assign the available stash entry to the incoming message, otherwise, entires are

evicted in an LRU manner. Specifically, each stash entry is 41-bit wide: 8-bit cached dispatching

result, 32-bit corresponding message ID, and 1-bit indicator of validity. The depth of the stash is

set to 128.
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QingNiao hardware states. As described in §4.4.2, instead of buffering packets for L7 message

reassembly on NIC, QingNiao only tracks neccesary states for in-flight messages. In our current

prototype, the number of tracked message entries is set to 512. The states of each entry consist

of a 16-byte descriptor for DMAing packets from NIC to host, a 24-bit timer, and an 8-bit tracker

of received individual packets within the message. The timeout for invalidating existing message

entries is fixed to 1s.

4.5.2 QingNiao Software Prototype

1 struct qnp_pkt_hdr {
2 u8 app_id; // application ID
3 u8 msg_type; // indicator of message type
4 u32 msg_id; // message ID
5 u32 msg_acked_id; // acked message ID
6 u8 msg_len_in_pkts; // # of pkt in msg
7 u8 pkt_seq_num_in_msg; // pkt’s seqnum in msg
8 u8 pkt_flag; // indicator of DATA or ACK
9 // for optimization
10 u8 seg_cnt; // #segments that count for RSD
11 u8 paddings[PAD_SIZE]; // for alignment
12 };

Figure 4.9: QNP packet header definition.

QingNiao IDL compiler. QingNiao IDL currently offers string as the only type for the message

struct fields—which is enough to represent variable-length byte string—and it assumes no nested

message struct definition. We based our QingNiao IDL compiler on a protobuf [43] frontend parser.

The QingNiao IDL compiler is written in 180 lines of Golang. It takes the message format as input

and emits the corresponding data structure and (de)serialization functions in C++.

QingNiao protocol. For simplicity, instead of directly modifying the complex protocols (e.g.,

TCP [47], QUIC [48]), we propose a QingNiao protocol (QNP) for QingNiao library to easily

lay out the message packets as desired. QNP is designed to provide minimum support of reliable

delivery by ACKing every message. Primarily, the QNP header consists of three main fields— a

unique message ID, an in-message packet sequence number, and a message length in the number
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of packets—which allows both sender and receiver to keep track of individual packets of each

message. Figure 4.9 details the definition of QNP header.

We implement QNP on top of UDP packets. To simplify hardware implementation, we make

sure the packet header (i.e., Ethernet, IP, UDP, and QNP) is 512-bit aligned, which is the data width

in QingNiao hardware. Thus we set PAD_SIZE to 8 in Figure 4.9. QNP’s control loop works at the

granularity of message, meaning that once an application message is received, QingNiao library

will piggyback the ACK to the response. Compared with ACKing every individual packet at NIC,

it avoids packet amplification that may lead to excessive traffic load on NIC’s TX path.

QingNiao on-wire format. QingNiao uses a TLV format—which can effectively express variable-

length strings (e.g., protobuf [43], HTTP/2 [46])—to represent on-wire message struct fields in

the QNP payload. Recall the example in Figure 4.4(a), a student field “/PA/202504” is encoded

as 12 bytes: 1-byte field index, 1-byte field length, and 8-byte original string. Recall that we also

encode a 1-byte field index in the RSD’s Matcher configuration, the TLV’s field index and length

are used by QingNiao RSD to ensure dispatch rules are correctly enforced on the target struct fields

by matching the field index and check the already parsed field byte length.

QingNiao library and driver. QingNiao library implements QingNiao APIs (i.e., send_msg() and

recv_msg()) with QNP. Specifically, send_msg() API serializes the message into on-wire bytes

using the serialization function generated by QingNiao IDL, segments the message into 1500-

byte packets, and attaches them with a unique message ID per sender and a corresponding packet

sequence number within the message (Figure 4.4(b)). Also, fields marked with dispatch_info are

guaranteed to be laid out only in the first packets as described in §4.4.1. These packets of each

message are then pushed to the QNP layer, which is responsible for reliable delivery. Once a

message is ACKed, the corresponding memories used by its packets are reclaimed at the sender’s

QNP layer. Currently, QingNiao assumes each message has at most 4 packets. recv_msg() API

grabs the received messages from the QNP layer.

We implemented the QingNiao library on top of DPDK 21.11 [12], and wrote a poll-mode driver
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to allow applications to interface with the QingNiao NIC. The QingNiao software components are

written in C++ and consist of 2757 LOC.

4.5.3 Optimizations of QingNiao

Parallel RSDs. Since Matcher needs to instruct BytePipe based on the configured dispatch rules,

it requires more cycles to dispatch a packet as the complexity (i.e., number of skip-and-match) in-

creases. This will bottleneck the NIC processing. To alleviate the potential performance bottleneck

due to RSD’s serial processing, we apply parallel RSDs to process the incoming packets. Messages

are sharded across parallel RSDs by their message IDs. A larger number of parallel RSDs improves

performance but results in larger hardware resource consumption. Our current implementation

uses four parallel RSDs, allowing us to meet our 250 MHz timing constraints.

Explicit indicator of dispatch info length. Additionally, when Matcher emits the dispatch result,

it still needs to wait for BytePipe to finish flushing unused bytes of the same packet, to avoid

polluting the processing of the next packet. However, flushing needs cycles. If it takes too long, the

temporary packet buffer will be filled up, thus causing a bottleneck in the NIC pipeline. To this end,

we introduce a field seg_cnt in QNP header (Figure 4.9) to indicate how many AXI-S segments,

where the segment size is determined by the AXI-S data width (64B in our implementation), are

used by Matcher when serializing dispatch_info fields (§4.5.2). Instead of inserting all the packet

AXI-S segments, seg_cnt controls the number of AXI-S segments inserted to RSD’s transient

packet buffer, thus reducing the cycles for flushing unused bytes.

4.6 Evaluation

In this section, we evaluate QingNiao using integration with RocksDB [19] and conducting

microbenchmarks. We compare QingNiao to both existing software and hardware solutions.

Experimental setup. As shown in Figure 4.10, We evaluate QingNiao on a server machine with
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Figure 4.10: Experimental setup.

two Intel(R) Xeon(R) Gold 6132 14-core CPUs @ 2.6GHz, which runs Ubuntu LTS 20.04 with

Linux kernel version 5.15.0. Additionally, this server is equipped with an AMD Xilinx Alveo

U250 FPGA board [3] programmed as a NIC, which is plugged into a PCIe Gen3 x16 slot and

is loaded with QingNiao hardware prototype and Corundum of the same base commit [10] for

evaluating baselines. Our client machine is equipped with an Intel(R) Core(TM) i7-9700 8-core

CPU @ 3.0GHz and a Nvidia Mellanox CX-5 100GbE NIC [36]. We disable hyper-threading on

both machines and run processes within the same NUMA domain of the NIC to avoid expensive

cross-NUMA communication. The NIC-to-NIC round-trip latency between two machines is ∼800

ns in our testbed.

Baselines. We compare QingNiao to the following baselines, including both software and hardware

solutions as described:

Software L7 dispatchers: For a direct and fair comparison,2 we build software RSD dispatchers atop

Corundum [83] using RSS [44] and IPC mechanisms to allow messages to be exchanged between

the software dispatcher and application threads.3 The IPC mechanisms between the dispatcher and

application threads are (1) DPDK RTE Ring [12]; (2) an eBPF accelerated IPC mechanism similar
2The performance numbers of our baselines are much better than our tested numbers with Envoy (§4.2).
3The software dispatchers implement a straw-man match against the configured rules in a for loop in each skip-and-

match.
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to SPRIGHT [123].

We use a shared-nothing architecture: when one thread (e.g., application, software dispatcher)—

that interacts with the NIC—is launched, one free TX/RX queue pair is exclusively initialized and

allocated to it. Throughout the evaluation, each thread is pinned on a unique core. The applications

and software dispatches comprise 2396 lines of C++ code.

Caladan [85]: Besides, we also compare QingNiao to Caldan, a state-of-the-art system dispatch-

ing/scheduling application messages across processes. Since Caladan only supports L3/4 dispatch,

to enable L7 dispatch in Caladan, we port software RSD implementation into Caladan IOKer-

nel [85], which oversees every incoming message and distributes it to the applications running

atop. To ensure a fair comparison, Caladan is always assigned one more dedicated core running

its IOKernel. Caladan’s performance numbers are reported using two CloudLab [9] d6515 nodes,

where one server node and one client node are connected via a ToR switch. Each node is equipped

with an AMD EPYC Rome 32-core CPU and a Nvidia Mellanox CX-5 100GbE NIC.

RingLeader [111] and RSS [44]: RingLeader offloads message scheduling to the NIC, but it does

not support on-NIC L7 dispatch. Nevertheless, in §4.6.2 we compare QingNiao’s performance

(using L7 policies) to RingLeader4 and RSS (both of which use L3/4 based policies).

Methodology. In §4.6.1, we integrate QingNiao with RocksDB [19], and compare it with software

L7 dispatchers baselines. We demonstrate that QingNiao can (1) provide programmability to

support dispatching rules; (2) benefit applications by improving throughput while decreasing

latency as dispatching rules are more complex. Next, in §4.6.2, we use microbenchmarks to show

that: (1) QingNiao achieves similar performance as L3/L4 hardware dispatchers; (2) QingNiao

outperforms the L7 software dispatcher implementations. We also show QingNiao’s hardware

resource consumption.

Configurations of dispatch rules. As in §4.5.1, the total number of dispatch rules is constrained by

the number of entries of RAM & CAM in RSD, which is 512 in our prototype. To show QingNiao’s
4Our test uses the public RingLeader implementation [18] with default settings and VFIO [58] disabled.
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Figure 4.11: On throughput, QingNiao outperforms Caladan by 6.54× averagely with varying the number of
skip-and-matches.

support of programmability, we explore 3 dimensions of QingNiao’s skip-and-match (including

both Skip and SkipUntil) abstraction: (1) the number of skip-and-matches; (2) the number of

dispatch rules; (3) the number of matched bytes per skip-and-match,5 where larger numbers mean

that rules are more complex. When testing, we vary one dimension and keep the others fixed.6

We use randomly generated skip-and-match rules, and use configuration that require fewer than

512 entries in the RSD RAM and CAM (to fit within available resources). Further, our workload

ensures that each messages matches exactly one dispatch rule.

We use a closed-loop traffic generator written in DPDK 21.04 to generate our workload. The

use of closed-loop generator allows us to measure the maximum throughput in the absence of drops.

We configured the workload generator to ensure that it is not a bottleneck. When testing RSS, we

use a workload that evenly distributes traffic across NIC queues.
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Figure 4.12: On throughput, QingNiao outperforms Caladan by 5.67× averagely with varying the number of
rules dimension.
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Figure 4.13: With the same number of cores, QingNiao outperforms software by 3.91× averagely with varying
the number of skip-and-matches on throughput.

4.6.1 Integration with RocksDB

Workloads. We choose RocksDB [19] v7.9.2, a wide-deployed in-memory key-value store, as our

application service to serve GET messages. We configure RocksDB to be backed by a 4G tmpfs

folder. It pre-loads 3.14 million 64-byte keys with 64-byte values. Keys are evenly partitioned into

48 ranges, which are then equally assigned to each application thread. From the traffic generator,
5Results are presented in §4.6.2.
6The numbers of skip-and-matches, dispatch rules, and matched bytes per skip-and-match are fixed to 4, 32, and 5

respectively, when they are not the varying dimension.
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Figure 4.14: With the same number of cores, QingNiao outperforms software by 3.34× averagely with varying
the number of rules dimension on throughput.

within each partition, message keys follow a Zipfian distribution with a Zipfian parameter equal to

0.9. The dispatch rules evenly map the keys of messages to the configured number of application

threads. We test the maximal end-to-end throughput and report the 99-percentile latency, where

numbers are gathered from the traffic generator and averaged for 5 runs.

Settings. In our baselines, we fix the number of application threads to 8. (1) First, to see how

QingNiao’s performance compares to state-of-the-art L7 dispatchers, we compare our performance

to Caladan [85] and our DPDK L7 dispatcher. We allocate 1 core for the IOKernel [85] and DPDK

dispatcher. (2) Secondly, we evaluate QingNiao’s resource benefit by varying the number of cores

used by the deployment: for software, the cores are allocated to both the dispatcher and application,

while for QingNiao they are allocated to the application.

Figures 4.11 and 4.12 demonstrate that QingNiao is able to offload varied dispatch rules effi-

ciently. In terms of achieved throughput, as we can observe from Figure 4.11(a) and Figure 4.12(a),

QingNiao outperforms Caladan by 6.54× and 5.67×, respectively. The more complex dispatch

rules are, the larger QingNiao’s performance gain. This is because the CAM allows RSD to match

multiple (e.g., tens in our case) entries in a single cycle—unlike software dispatch. Both our DPDK

baseline and Caladan have similar throughput: they both use DPDK to receive packets and shared
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memory pipes for IPC [72]. However, the dispatcher logic is a throughput bottleneck in both cases.

Next, we increase the number of cores used in L7 dispatchers. We denote DPDK-N as the

DPDK baseline using N cores for dispatchers, and denote QingNiao-M as the total cores used by

QingNiao is M. When configured with same number of cores, QingNiao-12 outperforms DPDK-4

and eBPF-4 baselines by 2.44× and 4.88× (Figure 4.13(a) where we vary the complexity of rules),

and 2.03× and 4.43× (Figure 4.14(a) where we vary number of rules).

In terms of end-to-end latency, as shown in Figure 4.13(b) and 4.14(b), QingNiao-12 reduces

latency by 62% and 59%, respectively compared to eBPF-4. Further, our results show that software

latency grows as rule complexity increases (Figure 4.11(b) and 4.13(b)), and also as number of

rules increase (Figure 4.12(b) and 4.14(b)). By contrast, QingNiao’s latency does not depend on

rule-complexity or the number of rules.

Takeaway #1. Our RocksDB evaluation shows that for a real program, QingNiao can outperform

state-of-the-art software dispatchers, achieving ∼3× higher throughput, and ∼ 60% lower 99-

percentile latency.

4.6.2 Microbenchmarks

Throughout the microbenchmarks below, unless stated, the traffic generator generates 128-byte

messages, including all the packet headers (§4.5.1), and waits for a 128-byte response from the

server application thread. We term this application as PingPong, where each PingPong application

has its unique message format and dispatch rules.

In the following, we have two scenarios: (1) single PingPong, where it compares QingNiao

with L7-agnostic hardware dispatchers and QingNiao’s software implementation; (2) multiple

PingPong, where it demonstrates QingNiao’s support of multiple concurrent applications. The

results are collected at the traffic generator and averaged over 5 runs.

We start by evaluating QingNiao using a single PingPong.
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System QingNiao RSS RingLeader

Number of S&M 1 2 4 8 16 32 48 - -

Number of Cycles 15 21 33 57 105 201 297 3 25

Latency(ns) 448 469 517 613 805 1189 1573 - -

Table 4.2: QingNiao’s latency reported in simulation and testbed. QingNiao adds 6 cycles per skip-and-
match (S&M).

Comparison against L3/4 hardware dispatchers. In terms of the latency of dispatching, L3/4

hardware dispatchers have a fixed number of cycles, since they are processing fixed-length fields

(e.g., IP addresses) at known offsets. In comparison, QingNiao’s processing latency is dependent on

the number of skip-and-matches. To show this, we report the number of cyles from a cycle-accurate

simulator. Additionally, we timestamp the received packet at both the Ethernet MAC+PHY and the

RSD modules (Figure 4.5) to measure the ingress latency—including all ingress processing (e.g.,

packet filter, etc.)—on the testbed. We send 4K messages, with a gap of 50ms between messages

to ensure there is no message queuing.

Compared with L3/4 dispatcher RSS and RingLeader [111] that take 3 and 25 cycles respectively

to compute a dispatch decision, QingNiao incurs increasing latency as L7 matching becomes more

complex as shown in Table 4.2. It reaches 297 cycles and leads to a total of 1573 ns ingress latency

for 48 skip-and-matches.

We also evaluated the latency of an ASIC implementation by creating a prototype, with 4-

parallel RSDs, using Synopsys DC [52] and FreePDK45nm [17]. The resulting ASIC runs at

1GHz and requires 0.766mm2 chip area.

Next, we compare QingNiao’s througput to RSS and RingLeader. For this evaluation we

vary the number of cores (both number queues and application threads), and use simple skip-

and-match rules that require 1 match. As shown in Figure 4.15,7 despite the incurred additional
7RingLeader’s performance numbers reported on our testbed are lower than the numbers reported in the original

paper. This is because we use different hardware.
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Figure 4.15: QingNiao achieves comparable perfor-
mance as hardware L3/4 dispatcher.

4 6 8 10 12
Number of skip-and-matches

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

rp
s) HW QingNiao SW QingNiao

Figure 4.16: QingNiao outperforms software imple-
mentation by 6.49× averagely with varying number
of skip-and-matchs.
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Figure 4.17: QingNiao outperforms software imple-
mentation by 5.74× averagely with varying number
of rules.
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Figure 4.18: Having parallel RSDs improves
throughput.

processing latency as we described, QingNiao achieves comparable throughput with RSS and can

get 16.06Mrps for 4 cores. However, QingNiao’s performance drops slightly to 15.34Mrps for 8

cores. This can be the result of more cache contention as the number of cores in the same NUMA

domain increases.

Comparison against software dispatchers. We compared QingNiao to existing software dispatch-

ers in §4.6.1. Here we compare against a software implementation of an RSD based approach. Our

implementation runs the RSD logic in software, but rather than dispatching to another process it

echoes it back to the sender (thus avoiding IPC overheads). We use 8 cores to run the software RSD

logic. Our results, shown in Figure 4.16 and 4.17, QingNiao outperforms its software implemen-

tation by 6.49× and 5.74×, respectively. We do observe that latency for the hardware QingNiao

implementation increases as the number of rules increase: when few rules are in use the NIC is
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Figure 4.19: Introducing seg_cnt improves through-
put.
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Figure 4.20: QingNiao supports multi-packet mes-
sages.
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Figure 4.21: APP0’s throughput decreases and la-
tency increases as APP1’s rate increases.
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Figure 4.22: APP0’s rate is not impacted when
APP1 is reconfiguring in QingNiao at runtime.

bottlenecked on DMA, but as the number of rules increase the bottleneck moves to the RSD.

Number of parallel RSDs LUTs as logic LUTs as memory BRAM

1 20033 (1.16%) 2644 (0.334%) 3 (0.112%)
2 40098 (2.32%) 5288 (0.668%) 6 (0.223%)
4 81589 (4.72%) 10576 (1.337%) 12 (0.446%)
8 163959 (9.45%) 21152 (2.674%) 24 (0.893%)

Table 4.3: FPGA resources usage for module of parallel RSDs.

Effectiveness of QingNiao’s optimizations (§4.5.1) As discussed, when the number of skip-and-

match increases, QingNiao’s RSD needs more cycles to process one single packet, which stalls

the entire NIC pipeline. Having multiple parallel RSDs alleviates this problem. As shown in

Figure 4.18, the performance of QingNiao with 8 parallel RSDs doubles as compared to QingNiao

configured with 4 parallel RSDs when the bottleneck shifts from DMA to RSD as the number of
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skip-and-matches increases from 12 to 24. However, there is a tradeoff between performance and

resource consumption. As shown in Table 4.3, the FPGA memory usage doubles as we double the

number of RSDs.

The seg_cnt field in the HP header also helps improve QingNiao performance as shown in

Figure 4.19. The intuition behind this is that the BytePipe can use this field to limit the number

of bytes that it needs to buffer. This allows the RSD to examine fewer bytes and reach a dispatch

decision sooner, leading to higher throughputs.

QingNiao supports multi-packet message. Finally, we evaluate QingNiao’s performance when

processing multi-packet messages. Figure 4.20 shows throughput when processing 4-packet mes-

sages (each packet is 1500 bytes) with 1 core: we observe a throughput of 91.28Gbps. This is

the peak throughput we expected, and shows that accessing cached dispatch results does not add

additional overhead.

Takeaway #2. QingNiao achieves similar performance compared to L3/4 hardware dispatchers

(i.e., RingLeader [111] and RSS) and outperforms its corresponding software implementation.

Our optimizations are effective at improving QingNiao’s performance, and QingNiao can support

multi-packet messages without a loss of throughput.

Next, we evaluate QingNiao’s performance when multiple applications are running on a single

machine. Our evaluation runs two PingPong applications on the server.

Multiple applications with varied message formats. As we observed above, QingNiao’s processing

latency increases as the number of skip-and-matches increases. To show the impact of collocating

messages with different processing latencies, we configure two different dispatch rules: we set the

number of skip-and-matches to 2 (APP0) and 48 (APP1).

Running them separately gives us a throughput of 15.7Mrps and 3.37Mrps. APP0 is bottle-

necked on DMA, while APP1 is bottlenecked on the RSD. To eliminate the DMA bottleneck, we

fix APP0’s target rate to 7Mrps and gradually increase APP1’s target rate. As in Figure 4.21,

when increasing APP1’s rate from 0 to 2.5Mrps, APP0’s achieved throughput decreases slightly
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and latency increases. This is because QingNiao shards incoming messages into different RSDs

by hashing message IDs, which delays APP0’s processing. As APP1’s rate reaches 3Mrps from

2.5Mrps, APP0’s latency increases by 1.43×, since messages start to queue up at RSD processing.

This is the result of QingNiao’s design choice of being work-conserving rather than providing

strong isolation between messages.

Support of disruption-free reconfiguration. We configure two applications to send messages at

5Gbps constantly. Individual response rates are measured at traffic generator with 0.1 s granularity.

As Figure 4.22 shows, APP 1’s rate drops to 0 when it starts to reconfigure at 1s, while APP 0’s

rate is still maintained at 5 Gbps. After this 1.5-s reconfiguration, APP 1’s rate recovers to 5 Gbps,

which demonstrates QingNiao’s support of disruption-free reconfiguration at runtime.

Takeaway #3. The QingNiao implementation supports multiple applications: multiple applications

can specify rules, and rule changes from one application do not disrupt another. However, QingNiao

does not provide performance isolation between applications, and we discuss approaches for this

next in §4.8.

Resource Usage of QingNiao. Finally, in Table 4.4 we report on the additional resources required

by our implementation of the QingNiao NIC in contrast to Corundum: QingNiao uses about 4.92×

more LUTRAM and 10.4% more BRAM than Corundum. Specifically, this additional resource

usage mainly comes from implementing RSD, RAM, and CAM entries to store dispatch rules based

on skip-and-match in QingNiao.

HW Resources QingNiao Corundum Additional Usage

LUT 222622 (12.88%) 53723 (3.11%) 314.4%
LUTRAM 65038 (8.22%) 10978 (1.39%) 492.4%
BRAM 196.5 (7.31%) 178 (6.62%) 10.4%
URAM 10 (0.78%) 10 (0.78%) 0%

Table 4.4: FPGA resource usage of QingNiao vs Corundum.

Additionally, to show how the third dimension in §4.6—the number of matched bytes per skip-
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Figure 4.23: QingNiao outperforms its software implementation by 3.36× averagely with varying number of
matched bytes.

and-match—impacts the performance, we slightly modify QingNiao implementation to support up

to 32-byte matching per skip-and-match, by reducing the number of entries in RAM and CAM

to run at 250MHz, which only impacts the configured number of dispatch rules but not impact

QingNiao hardware performance. Here, we use 256-byte messages in the PingPong application

(§4.6.2) for this test.

As shown in Figure 4.23, QingNiao’s performance remains constant. This is because matching

on CAM can support a longer sequence as long as it does not exceed CAM width. Also, the per-

formance degradation of software implementation is negligible. The reason may be that matching

on 32-byte sequences still does not pollute CPU cache to cause performance degradation.

4.7 Related Work

Message dispatching and scheduling. Recent works [85, 116, 77, 102] design software dispatch-

ing and scheduling mechanisms to better utilize CPUs. Dispatching is inherently orthogonal to

scheduling: dispatching decides where the messages should go while scheduling determines in

which order the messages should be served. MICA [109] dispatches messages using a client-

assisted technique to reduce L7 dispatch overhead. However, it assumes single-packet messages

and requires exposing underlying server configurations to the clients, which brings management

concerns, e.g., leaking server configurations.
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QingNiao also offloads dispatch to hardware to save CPUs, similar to RingLeader [111] and

RackSched [141], which only support L3/4 dispatch. Further, to handle multi-packet messages,

both RackSched and QingNiao attach message ID to each packet, which alone is insufficient to

support L7 dispatch based on message content. To this end, QingNiao additionally requires to

explicit lay out dispatch information into the first packet of every message (§4.3).

Hardware acceleration for RPCs. Google’s work [103] showed that a significant fraction of

datacenter CPU cycles are spent processing RPC messages. Consequently, there have been several

efforts to offload portions of this processing to specialized hardware, but focus on different problems

compared to ours.

Protoacc [104], OptimusPrime [121], and Cereal [97] developed hardware offloads for serial-

ization and deserialization, which is a common component of these overheads. These works are

complementary to ours.

Another line of work (e.g., Nebula [132], Cerebros [122]) that addresses the problem of

offloading “dispatch”. However, they address a different type of dispatch: code dispatch, where

the hardware parses function ID from the packet header and calls a function to handle a received

RPC message. By contrast, we address the process dispatch problem, i.e., we decide what process

should receive a message. These problems are useful in different places: code dispatch is required

when implementing RPC within a process, while process dispatch is used to shard messages across

multiple instances of the same program. These problems also require different solutions: Cerebros

(and software code dispatch approaches) use a lookup table that exact-matches a packet header field

(i.e., RPC type) to function, which can not be directly applied to matching variable-length message

contents (e.g., L7 fields) to decide where to forward the message as QingNiao (and process dispatch

solutions) target.
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4.8 Summary

In summary, this chapter presents QingNiao, a system combining both software toolchains and

hardware primitives to enable offloading L7 dispatch to NICs. We have found that solely focusing

on the NIC design can not achieve that because of current approaches for encoding multi-packet

application messages, and limitations of how matching policies are specified and implemented in

the hardware.

Consequently, we had to rethink our approach: QingNiao adopts a holistic design that uses a

custom-made application message encoding that allows the hardware to process individual packets

(rather than needing access to the whole message), an abstraction that is rich enough to specify

policies over variable length fields efficiently implementable in hardware, and a software library

that minimizes developer effort required to adopt QingNiao. We have prototyped QingNiao on an

FPGA, demonstrating its viability.

QingNiao’s lessons. Specifically, as discussed in §4.2, one inherent challenge of offloading L7

dispatch is that application messages (L7) and network packets (L4) do not strictly align with each

other in today’s protocols. As a result, the fields related to dispatch may start from arbitrary offsets

of a message spanning multiple packets. This requires the NIC to buffer all received packets of the

same message, scan for the location of dispatch-related fields, and can only release the message’s

corresponding allocated buffer until its related fields are processed by the L7 functions, which is

complex and challenging for the hardware design (e.g., buffer management).

Lesson: To enable L7 dispatch offloads without scanning and unbounded buffering in the NIC,

fields related to dispatch must start at a known fixed offset of an early packet upon arrival at NIC.

Consequently, two necessary conditions must be enforced by the L4 segmentation and L7 encoding:

(a) at L4, application messages always start at the beginning of a packet but never the middle; (b)

at L7, the fields relevant to dispatch are encoded and laid out at the beginning of the message.

QingNiao demonstrates one feasible solution for offloading L7 dispatch.
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QingNiao with existing transports. QingNiao changes how application messages are encoded and

segmented as discussed. It is also feasible to use QingNiao with stream-oriented transports (e.g.,

TCP [47], QUIC [48]), though it may need minor implementation changes on the sender side. Note,

no protocol changes are required.

Specifically, the sender’s protocol implementation would need to change in two ways (a) it must

allow the application to packet align each application message, i.e., ensure that each packet contains

data from a single message; and (b) allow the application to determine how much (application) data

is sent in each packet. Once this is done, implementing QingNiao on top of this modified transport

implementation merely requires changing the application message format to follow QingNiao

encoding, rather than the entire transport protocol.

On the receiver side, QingNiao can be integrated with transport offloads (e.g., Beehive [110],

Limago [124]) that leverage off-chip memory for buffering. Specifically, we can employ the

technique like Indirect-TCP [69], which splits the NIC-to-Host communication into two: (a) one

is between the on-NIC TCP module and QingNiao’s RSD via network-on-chip substrates [110],

which receives application messages; (b) the other is between RSD and host via DMA, which

dispatches received messages to target processes. We leave such integration as future work.

Similarly, QingNiao can also be easily applied to message-oriented protocols such as Homa [115]

and MTP [130], where again only application messages need to accommodate QingNiao encoding.

End-to-end Encryption and QingNiao. End-to-end encryption (as provided by TLS [55]) can be

a challenge for QingNiao, since it needs to operate on application data. We can adopt approaches

like Google PSP [20] if encryption is desired. This approach would require administrators to use an

out-of-band mechanism to configure (and update) cipher keys, but allow the NIC to decrypt packets

before they are processed by QingNiao. Thus, it is feasible to deploy QingNiao-like approaches in

environments where encryption is necessary.
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5 | Conclusion

This dissertation presents two systems, Menshen and QingNiao, for making programmable

networking devices (i.e., RMT-based [73] devices) a wider adoption for application developers to

fully reap the potential benefits they can provide.

At its core, Menshen designs isolation mechanisms—i.e., hardware primitives in the form of

small indirection tables—based on the techniques of space partitioning and overlays, thus allowing

multiple application offloads to simultaneously run atop a single device without impacting each

other. Additionally, Menshen also leverages the software techniques to enforce sanity checking to

exclude potential malicious users.

QingNiao targets offloading L7 processing to the NIC and focus on one specific type of it, i.e.,

L7 dispatch. To achieve that, QingNiao takes a holistic approach where it redesigns how the L7

messages are encoded, how the transport is implemented, and how the NIC hardware is architected.

QingNiao demonstrates a feasible approach to offload L7 processing, which was thought too generic

to be implemented on a packet-processing pipeline [76].

Both systems demonstrate that hardware primitives together with software toolchains are neces-

sary to bring the programmable networking devices to the broader application developers. Also. to

help further advance the research in this direction, we open source Menshen and QingNiao at [135]

and [134], respectively.
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5.1 Limitation and Future work

Here, we discuss other aspects which are worth further exploration.

Resource allocation. Currently, Menshen only supports statically partitioning hardware resources

among different programs. However, the policy of resource allocation is important in a shared

environment, since it can meet different properties (e.g., fairness, etc.) by allocating the amounts

of resources that can be accessed by a specific program. As we have shown in Menshen, a packet-

processing pipeline is inherently a multi-resources environment, one may think of directly applying

the Dominant-Resource Fair [88] policy. However, it may not work as different resources may

correlate with each other. For example, one may consider TCAM and SRAM as two different

resources, but in fact, one TCAM entry might correspond to different SRAM entries, which means

that there is an implicit connection between these two types of resources. Additionally, one type

of hardware resource here might be relative to multiple uses. For example, SRAM can also be

used to implement hash-based exact matching. All these make the resource allocation on RMT-like

pipeline complex but worth investigation.

Disruption-free runtime. Additionally, Menshen’s current approach ensures isolation but ignores

the inefficiency in terms of that it might be possible to dynamically adjust the amounts of resources

allocated to different programs. For example, different measurement programs [71] might need

different amounts of resources to fulfill their goals (e.g., finding heavy hitters), according to the

traffic they are experiencing [142]. This means that it will increase the efficiency of resource usage

if we can support resource reallocation dynamically at runtime. To achieve that, two major aspects

should be considered: how to safely and disruption-freely carry out the reallocation decision.

Memory access in RMT. Current design of RMT—as introduced in Chapter 2—scatters on-device

stateful memory across different stages. With Menshen’s isolation mechanisms, it still needs careful

management to access the stateful memories. How to provide unified access to those on-device

memory still requires new designs.
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Performance isolation. Both Menshen and QingNiao do not deal with isolating traffic from

different programs competing for the link bandwidth, which is a traffic management problem.

Proposals like PIFO [128] can be used here, by assigning PIFO ranks to different programs to

realize a desired bandwidth-sharing policy.

Load balancing in QingNiao. Policy-wise, QingNiao currently only supports pre-configured static

rules rather than dynamically adjusting the rules according to the live traffic. To achieve that, we can

extend QingNiao by monitoring traffic load in the QingNiao controller and periodically updating

dispatch rules on hardware.

Other L7 processing. L7 dispatch does not involve any modification to the original L7 message.

However, other L7 processing (e.g., compression, serialization, etc.) may alter the length of the

original L7 message. Purely packet-processing pipeline (e.g., RMT or QingNiao) can not be directly

applied to handling this type of L7 processing. Such pipelines may not be an ideal architecture

to carry out this type of L7 processing. One potential solution may integrate pipeline processing

with general cores like Pensando SmartNICs [2]: pipeline processing is used to dispatch the L7

messages to different cores for the modifications.
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