
On Cryptographic Techniques for

Digital Rights Management

by

Nelly Fazio

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

September 2006

Yevgeniy Dodis

c© Nelly Fazio

All Rights Reserved, 2006

To Antonio

iii

Acknowledgments

This thesis literally would not have been possible without the impeccable supervision

of my advisor, Yevgeniy Dodis. During these years at New York University, Yevgeniy

provided invaluable guidance through the technical hurdles of my dissertational work,

and regular interaction with him helped shaping my approach to research in general.

Yevgeniy believed in me from the beginning, and his encouragement greatly helped

me maintaining a high motivation through the inevitable ups and downs of the Ph.D.

studies. For all of this, I am deeply thankful to him.

Most of the material in this thesis is the result of joint work with Yevgeniy Dodis,

Aggelos Kiayias, Anna Lysyanskaya, Antonio Nicolosi, Duong Hieu Phan, Danfeng Yao

and Moti Yung. I would like to express my gratitude for their contributions to all of

them. Many thanks also to my other collaborators: Mike Atallah, Marina Blanton,

Emmanuel Bresson, Dario Catalano, Ivan Damg̊ard and Keith Frikken. Working with

you was at the same time fruitful and enjoyable. Thanks to you all.

Sincere thanks go also to Victor Shoup and to my fellow graduate students in the

NYU Crypto Reading Group: Siddhartha Annapureddy, Carl Bosley, Sze Ming (Sher-

man) Chow, Michael Freedman, Kristiyan Haralambiev, Antonio Nicolosi, Prashant

Puniya, Roberto Oliveira and Shabsi Walfish. Our weekly meetings have played a cen-

tral role in widening my perspective on cryptographic research: many thanks to Yevgeniy

for starting this seminar series and to all internal and external speakers for keeping it

alive!

My summer internship at Aarhus University, Denmark, will always be a very dear

iv

memory to me. In particular, the friendliness with which I was hosted by the members

of the local Crypto Reading Group was very much felt and appreciated. Special thanks

to Ivan Danmg̊ard, for having made my stay possible and for being such a wonderful

person to work with, both professionally and humanely.

Similarly, I am very thankful to Jacques Stern and Dario Catalano for the opportunity

of spending a productive summer with “l’ èquipe Crypto” at Ècole Normale Supérieure

in Paris, France.

I would also like to thank Dan Boneh and David Mazières and all the members of

the Security Lab at Stanford University for hosting me during the Fall of 2005.

I am very thankful to Michael Overton for his deligent supervision of my progress in

the Ph.D. program, and for his caring attention to my social and academic integration

within the Computer Science Department at NYU.

My experience at NYU would certainly have been less enjoyable without the fun time

spent with my officemates Kranthi Gade, Alyssa Lees, Emre Mengi and Ziyang Wang.

I am especially thankful to Emre for his sincere friendship and for always being ready

to lend a hand.

My deepest gratitude goes to my family back in Italy, and in particular to my parents,

Orazio and Ernestina, and to my brother Giuseppe. Even from across the ocean the

warmth of their support was always felt strong, and their encouragement constant and

indispensable.

All my love goes to my fiancé Antonio Nicolosi, who is also my personal and profes-

sional guide: I especially would like to thank him for all the love, joy and support with

which he constantly overwhelms me!

v

Abstract

With more and more content being produced, distributed, and ultimately rendered and

consumed in digital form, devising effective Content Protection mechanisms and building

satisfactory Digital Rights Management (DRM) systems have become top priorities for

the Publishing and Entertaining Industries.

To help tackle this challenge, several cryptographic primitives and constructions have

been proposed, including mechanisms to securely distribute data over a unidirectional

insecure channel (Broadcast Encryption), schemes in which leakage of cryptographic

keys can be traced back to the leaker (Traitor Tracing), and techniques to combine

revocation and tracing capabilities (Trace-and-Revoke schemes).

In this thesis, we present several original constructions of the above primitives, which

improve upon existing DRM-enabling cryptographic primitives along the following two

directions: (1) Widening their scope of applicability e.g., by considering models taking

into accounts usability issues typical of the DRM setting; and (2) Strengthening their

security guarantees to higher levels that are standards, for example, in the case of stand-

alone encryption.

Our results along the first line of work include the following:

• An efficient public-key broadcast encryption scheme, which allows mutually mis-

trusting content providers to leverage a common delivery infrastructure, and can

cope with low-end, stateless receivers;

• A traitor tracing scheme with optimal transmission rate, in which encryption does

not cause a blow-up in the size of the content, thus allowing for optimal utilization

vi

of the broadcast channel;

• A public-key tracing and revoking scheme that can deal with both server-side and

client-side scalability issues, while preserving traceability.

As for the second direction, our contribution can be divided as follows:

• A forward-secure public-key broadcast encryption scheme, in which the unautho-

rized access resulting from cracking a user-key is constrained to a minimal time

frame which is delimited, in the future, by the revocation mechanism, and in the

past, by forward secrecy;

• A precise formalization of the notion of adaptive chosen-ciphertext security for

public-key broadcast encryption schemes, along with a modular and efficient con-

struction.

Overall, the cryptographic tools developed in this thesis provide more flexibility and

more security than existing solutions, and thus offer a better match for the challenges

of the DRM setting.

vii

Contents

Dedication iii

Acknowledgments iv

Abstract vi

List of Figures xiii

1 Introduction 1

1.1 Our Contributions . 3

1.2 Widening the Scope of Applicability . 4

1.2.1 Public-Key Broadcast Encryption for Stateless Receivers 4

1.2.2 Traitor Tracing with Optimal Transmission Rate 5

1.2.3 Scalable Public-Key Tracing and Revoking 6

1.3 Strengthening the Security Guarantees 8

1.3.1 Forward-Secure Public-Key Broadcast Encryption 8

1.3.2 Chosen-Ciphertext Security for Trace-and-Revoke Schemes 9

2 Preliminaries 11

2.1 Some Algebraic Tools . 11

2.1.1 Lagrange Interpolation in the Exponent 11

2.1.2 Discrete Logarithm Representations 12

2.1.3 Leap-Vectors . 13

viii

2.2 Collusion-Secure Codes . 15

2.3 Computational Assumptions . 16

2.4 Identity-Based Cryptography . 19

2.4.1 Identity-Based Encryption (IBE) 19

2.4.2 Hierarchical Identity-Based Encryption (HIBE) 22

2.4.3 Paired Hierarchical Identity-Based Encryption (PHIBE) 25

2.5 Forward-Secure Encryption . 28

3 DRM-Enabling Crypto Primitives and Previous Constructions 32

3.1 Broadcast Encryption . 32

3.1.1 Early Approaches . 34

3.1.2 Information Theoretic Lower Bounds 35

3.1.3 Beyond the Lower Bounds . 36

3.2 Traitor Tracing . 38

3.2.1 Tracing Based on Leaked Decryption Keys 39

3.2.2 Tracing Based on Leaked Decrypted Content 45

3.3 Trace and Revoke Schemes . 47

3.3.1 Secret-Key Trace and Revoke Schemes 47

3.3.2 Public-Key Trace and Revoke Schemes 53

4 Public-Key Broadcast Encryption for Stateless Receivers 55

4.1 Introduction . 55

4.2 Our Results . 56

4.3 Formal Model . 58

4.3.1 BE: Syntax . 58

4.3.2 BE: Security . 59

4.4 Public-Key Extension of the CS Method 62

4.5 Public-Key Extension of the SD Method 63

4.6 Public-Key Extension of the LSD Method 69

ix

4.6.1 Inclusion-Exclusion Trees . 69

5 Forward-Secure Public-Key Broadcast Encryption 70

5.1 Introduction . 70

5.2 Our Results . 72

5.3 Formal Model . 75

5.3.1 FSBE: Syntax . 75

5.3.2 FSBE: Security . 77

5.4 The Access Hypergraph Framework . 79

5.4.1 Examples of Access Hypergraphs 82

5.4.2 Reduction between Access Hypergraphs 85

5.4.3 Two Important Reductions . 87

5.4.4 Product of Access Hypergraphs 89

5.4.5 Toward Forward-Secure Broadcast Encryption 91

5.4.6 PHIBE as Hypergraph Encryption for Paired Access Hypergraphs 93

5.5 Putting it all Together . 95

5.5.1 FBE from the Access Hypergraph Framework 95

5.5.2 An Alternative Formulation based on fs-HIBE 95

5.6 Achieving Chosen-Ciphertext Security 97

6 Traitor Tracing with Optimal Transmission Rate 98

6.1 Introduction . 98

6.2 Our Results . 100

6.3 Formal Model . 102

6.3.1 TT: Syntax . 102

6.3.2 TT: Security . 103

6.4 The KY Public-Key Traitor Tracing Scheme 104

6.4.1 The Two-User Sub-Scheme . 105

6.4.2 The Multi-User Scheme . 106

x

6.5 The CPP Public-Key Traitor Tracing Scheme 108

6.5.1 The Two-User Sub-Scheme . 108

6.5.2 The Multi-User Scheme . 109

6.6 On the Query Complexity of KY Black-Box Tracing 111

6.6.1 A Simple Untraceable Pirate Strategy 111

6.6.2 The Fix . 112

6.6.3 Consequences for the Multi-User CPP Scheme 112

6.7 Black-Box Traitor Tracing with Optimal Transmission Rate 113

6.7.1 The Two-User Sub-Scheme . 113

6.7.2 Indistinguishability under Chosen-Plaintext Attack 115

6.7.3 Traceability . 116

6.7.4 The Multi-User Scheme . 119

6.7.5 Indistinguishability under Chosen-Plaintext Attack 123

6.7.6 Traceability . 124

7 Scalable Public-Key Tracing and Revoking 126

7.1 Introduction . 126

7.2 Our Results . 129

7.3 The Scalable Public-Key Tracing and Revoking Model 131

7.3.1 Scalability Objectives . 133

7.3.2 Formal Modeling of Scalable Schemes 134

7.4 Construction of a Scalable Public-Key Tracing and Revoking Scheme . . 134

7.5 Dealing with Revocation . 138

7.5.1 Model for Revocation . 138

7.5.2 Security of Revocation . 143

7.6 Dealing with Traceability . 160

7.6.1 Model for Traceability . 161

7.6.2 Black-Box Tracing . 162

7.6.3 Non-Black-Box Tracing . 180

xi

8 Chosen-Ciphertext Security for Trace-and-Revoke Schemes 191

8.1 Introduction . 191

8.2 Our Results . 192

8.3 Constructing Secure Revocation Schemes 193

8.3.1 IND-ID-CPA Security . 194

8.3.2 IND-ID-gCCA Security . 198

8.3.3 IND-ID-CCA Security . 206

8.4 Proofs of the Technical Lemmas . 211

8.4.1 Proof of the Lemma for IND-ID-CPA Security 212

8.4.2 Proofs of Lemmas for IND-ID-gCCA Security 213

8.4.3 Proofs of Lemmas for IND-ID-CCA Security 218

Bibliography 221

xii

List of Figures

6.1 Comparison of rates (transmission, secret- and public-storage rates) and

tracing features (black-box tracing and local public traceability) between

existing schemes and our construction. 100

8.1 Algorithm Encrypt(paramsBE,R, s) for the IND-ID-CPA scheme. 195

8.2 Algorithm Decrypt(paramsBE, i, SKi,B) for the IND-ID-CPA scheme. . . . 195

8.3 Algorithm Encrypt(paramsBE,R, s) for the IND-ID-gCCA scheme. 200

8.4 Algorithm Decrypt(paramsBE, i, SKi,B) for the IND-ID-gCCA scheme. . . 200

8.5 Algorithm Encrypt(paramsBE,R, s) for the IND-ID-CCA scheme. 207

8.6 Algorithm Decrypt(paramsBE, i, SKi,B) for the IND-ID-CCA scheme. . . . 208

xiii

Chapter 1

Introduction

We live in the digital information age: the growth of new technologies for the commu-

nication infrastructure and the wide availability of digital storage devices have resulted

in most content being produced, distributed, and ultimately rendered and consumed by

end users in a digital form.

The intrinsic nature of digital data makes the task of manipulating, replicating and

(re-)distributing digital copies extremely easy. Publishing content covered by intellectual

property or copyright is then faced by the challenge of countering illegal access to the

digital good, while still enabling customers to exercise their usage rights (e.g. rendering,

processing, backup, etc.) on purchased content.

Digital Rights Management (DRM) consists of architectures, protocols and technolo-

gies aimed at providing satisfactory solutions to the above problem. The complexity of

the problem is apparent from the outset, and indeed DRM has solicited efforts from a

variety of research areas, spreading from law and ethics to economics, from logics and

formal languages to system architecture.

Managing rights on digital content involves describing, monitoring and tracking all

forms of usage of the copyrighted material. Describing legitimate usages with suitable

policy languages plays an important role in guaranteeing that digital goods are dis-

tributed in compliance with legislation safeguarding the rights of the customers; at the

1

same time, it provides guidelines that enable monitoring mechanisms to discern legal

usage from abuse of the digital content.

Keeping track of how content is being used and who is using it provides an effective

(and often the only) way to trace episodes of abuse back to the misbehaving user(s).

However, in pursuing these goals, an actual DRM system ought to deal carefully with

privacy concerns—tracing all legal usages by honest customers is clearly an unacceptable

measure for any society that values individual liberty. Such tension between technical

issues and social concerns adds to the complexity of the problem, but a suitable balance

is a necessary requirements for the development of a successful DRM system: A design

inspired only by the technical need to prevent piracy, but irrespective of the customers’

legitimate expectations about the modes of fruition of the purchased goods, may well

succeed at achieving zero-piracy, but it would likely still fail due to the customers base

indifference (or even resistance) toward its adoption.

In all cases, however, at the core of any DRM proposal there always ought to be a

mechanism to enforce compliance to the prescribed rules and polices, which naturally

calls for the employment of cryptographic techniques.

The focus of this doctoral investigation is on the Cryptography that is needed to en-

able DRM technologies. Several cryptographic primitives and constructions have been

proposed in the last decade to tackle this challenge, including mechanisms to securely

distribute data over a unidirectional insecure channel (Broadcast Encryption), schemes

in which leakage of cryptographic keys can be traced back to the leaker (Traitor Trac-

ing), and techniques to combine revocation and tracing capabilities (Trace-and-Revoke

schemes).

Some of these constructions, however, suffer either from inadequacy in the level of

security they guarantee, or from limitedness of the underling model with respect to the

complexity of the specific aspect of the DRM challenge that they aim to address.

In this thesis, we seek to ameliorate such limitations in DRM-enabling cryptographic

primitives by investigating novel constructions for existing primitives that achieve higher

2

security standards, and by developing new models, capturing (some of the) practical

issues that arise in the engineering of a wider range of DRM applications.

1.1 Our Contributions

Corporate DRM efforts have so far been inspired by the underlying belief that existing

cryptographic tools, “as is,” are sufficient to build satisfactory DRM systems, and that

DRM solutions could be attained by engineering the system so as to maintain a rigid

control over the medium used by the consumers to render the digital content. However,

such approach has not yet proven successful; rather, the failure upon which some of

the major companies in this industry have stumbled recently has been spectacular (e.g.

see [5]).

It is interesting to notice that such failed solutions were not based on any of the

cryptographic primitives that have been proposed in the last decade to help tackle the

DRM problem. Such neglect may have been due just to ignorance of the relevant cryp-

tographic literature. However, it seems unlikely that the proposed crypto-DRM con-

structions could have been employed anyway, for we believe that, in their current form,

they are not applicable to complex usage scenarios, and offer only limited security guar-

antees. To address these shortcomings, new tools need to be developed to better match

the specific challenges of the DRM setting. Toward this end, this thesis presents several

original constructions, which improve upon existing DRM-enabling cryptographic prim-

itives along the following two directions: (1) widening their scope of applicability e.g.,

by considering models taking into accounts usability issues typical to the DRM setting;

and (2) strengthening their security guarantees to higher levels that are standards, for

example, in the case of stand-alone encryption.

3

1.2 Widening the Scope of Applicability

1.2.1 Public-Key Broadcast Encryption for Stateless Receivers

A broadcast encryption scheme (cf. Chapter 3, Section 3.1) allows data to be securely dis-

tributed to a dynamically changing set of users over an insecure channel. The relevance

of broadcast encryption for DRM technologies stems from its inherent access-control ca-

pability, which could be leveraged e.g., for pay-TV systems, distribution of copyrighted

material or streaming audio/video.

In symmetric-key broadcast encryption schemes, only the trusted designer of the sys-

tem can broadcast data to the receivers, because encrypting content requires knowledge

of sensitive information whose disclosure would compromise the security of the entire

scheme. In public-key schemes, in contrast, the trusted designer of the system publishes

a short public key which enables anybody to broadcast data. This allows mutually mis-

trusting content providers to share a common broadcast medium to securely disseminate

information to their own user population, thus minimizing the overhead associated with

the maintenance of the broadcasting infrastructure. Moreover, each user will need to

store only one piece of secret information, thus reducing the storage requirement at the

customer side.

The wider applicability of the public-key scenario makes it a better candidate for

practical use, but symmetric-key solutions have traditionally received much more atten-

tion in the cryptographic literature. As a result, the state-of-the-art for this setting has

usually been more advanced than for the public-key model. As first contribution to the

field of DRM-enabling cryptographic techniques, in Chapter 4 we describe how to bridge

the gap between the efficiency of the state-of-the-art broadcast encryption solution for

the symmetric-key versus public-key setting, thus combining the “best of both worlds.”

The state-of-the art symmetric-key broadcast encryption scheme was proposed in [65],

where the authors presented the Subset-Cover Framework as a formal environment

within which to formally define and analyze the security of revocation schemes. As

4

specific examples, the Complete Subtree (CS) method and the Subset Difference (SD)

method were formalized and proven secure within this framework. (Subsequently, in [51]

the Layered Subset Difference (LSD) method was introduced as an improvement on the

SD method: our techniques also apply to this improved scheme. See Chapter 4, Sec-

tion 3.3 for more details.)

The work of [65] also briefly considered the question of transposing any Subset-Cover

revocation scheme to the asymmetric setting, mentioning a generic, but highly inefficient,

technique for this purpose. Naor et al. hinted that for the case of their basic scheme

(the CS method), tools from Identity-Based Cryptography were likely to be sufficient

to regain the lost efficiency. However, a solution for the case of the more advanced SD

method was left as an interesting open problem.

In Chapter 4, we solve this problem, showing that any Hierarchical Identity-Based

Encryption (HIBE) scheme can be used to obtain a public-key counterpart for the SD

method that matches the efficiency parameters of the original symmetric-key scheme.

En route, we also verify that regular Identity-based Encryption can indeed support a

public-key version of the CS method. We also show that our HIBE-based technique can

be used for the LSD variant as well.

1.2.2 Traitor Tracing with Optimal Transmission Rate

Traitor tracing schemes (cf. Chapter 3, Section 3.2) are multi-recipient encryption algo-

rithms where the secret key of each user is fingerprinted, so that it can be traced back in

case of leakage. In Chapter 6, we describe the design of the first traitor tracing scheme

with efficient black-box traitor tracing in which the ratio of the ciphertext and plaintext

lengths (the transmission rate) is asymptotically 1, which is optimal. Optimal trans-

mission rate is of major importance for concrete DRM systems (e.g. for Pay-per-View

systems transmitting live sport events), since it entails an optimal utilization of the com-

munication medium used to distribute the encrypted content. Previous constructions in

this setting either obtained constant (but not optimal) transmission rate [57], or did not

5

support black-box tracing [27].

As additional contributions, we point out and resolve an issue in the black-box traitor

tracing mechanism in the scheme of [57]; and we show that the scheme of [27], which

extends [57] and inherits its tracing mechanism, in fact does not provide black-box

tracing nor (local) public traceability. In particular, whereas fixing the scheme of [57]

requires just a simple, local change to the tracing algorithm, repairing the black-box

functionality and the public traceability features of [27] voids the claimed optimality of

the transmission rate, and results in a new scheme with essentially the same parameters

as in [57].

Our construction is based on the Decisional Bilinear Diffie-Hellman (DBDH) assump-

tion in the standard model, and attains the same features of public traceability as (a

repaired variant of) [27], which instead is less efficient and requires non-standard as-

sumptions for bilinear groups.

1.2.3 Scalable Public-Key Tracing and Revoking

Traitor tracing schemes deter subscribers of a content distribution system from leaking

their keys by the mere fact that the identities of the leakers (the traitors) can be uncov-

ered. However, in case of leakage of a decryption key, a tracing scheme does not provide

by itself a way to exclude from subsequent broadcasts the misbehaving users that have

been identified as traitors. For this reason, traitor tracing solutions are most useful when

combined with broadcast encryption techniques (which provide revocation capabilities),

resulting in the so-called trace-and-revoke approach (cf. Chapter 3, Section 3.3).

In Chapter 7, we describe an extension to the trace-and-revoke approach to deal

with practical issues inherent to the deployment of real systems, yielding a new notion

that we call scalable trace-and-revoke schemes. Scalability is particularly relevant to

DRM, as large scale could arguably help sustain the economical profitability of DRM

services in the long run. In the context of content distribution, scalability has two facets:

server-side and client-side.

6

Server-side scalability deals with the property that allows the population of content

providers to change dynamically. Each content provider in this setting needs access to

the encryption mechanism, so that it can scramble content. This suggests that each

content provider needs to have the encryption keys that allow all users of the system to

get its content. If the content providers are few and closely connected to the security

manager, then one may assume that the encryption/decryption keys are shared among

the providers and the security manager. But this scenario does not scale, since the like-

lihood of corruption of one provider (which would immediately compromise the security

of the entire system) increases with the number of content providers. This leads to the

need of employing public-key cryptography for server-side scalability.

Client-side scalability deals with the fact that we have a user population that is

changing dynamically due to the service subscription model and security constraints.

To allow for a scalable management of user accounts, keys should be easy to generate

and revoke. An adversarial coalition that controls some of the user keys that have been

revoked should be incapable of recovering the content. It is also important to have a

mechanisms to identify misbehaving users to allow the piracy-deterrence property while

the population is dynamically changing.

Based on these design guidelines, in Chapter 7, we presented the first model of a

scalable public-key traitor tracing scheme where an unlimited number of users can be

added and removed efficiently from the system. We present a concrete scheme meeting

these requirements, based on the Decisional Diffie-Hellman DDH assumption. Addition

of users does not affect the keys of existing users of the system. Furthermore, the design

does not require an a priori bound on the number of users. User removal is achieved by

dividing the run-time of the system into periods; within a period, a bounded number of

user removals can be executed; unlimited number of user removals is then achieved by

the implementation of an efficient New-period operation (where “efficient” here means

that the operation does not depend on the total number of users and that it does not

require private channels between the system manager and the users). Within a period,

7

users are not required to maintain state. With every New-period operation, though, each

user needs to update its private-key information by employing an efficient key-update

operation.

None of the existing proposals provided such scalability properties, while preserving

traceability.

1.3 Strengthening the Security Guarantees

1.3.1 Forward-Secure Public-Key Broadcast Encryption

An important line of investigation that we pursue in this thesis is the application of the

paradigm of forward secrecy to the setting of public-key broadcast encryption. Initially

proposed in the context of digital signatures, forward secrecy aims at guaranteeing that

the security properties of past applications of the private key are retained, even in the

event that such key will eventually be compromised.

Apart from being interesting in its own right, forward secrecy is especially needed

for broadcast encryption, where by design any party can freely listen to and store any

broadcast. Should a hacker ever succeed in recovering any user’s private key, she will

manage to decrypt all past broadcast that such user was authorized to receive, unless

the scheme enjoys forward secrecy. In other words, adding forward secrecy enables the

system to constrain unauthorized access to the broadcast material to a minimal time

frame which is delimited, in the future, by the security of the revocation mechanism,

and in the past, by forward secrecy.

In Chapter 5, we construct the first forward-secure public-key broadcast encryption

(FSBE) scheme. Our scheme resists a very strong type of chosen-ciphertext and key

corruption attack, where the adversary is allowed to corrupt users (thus obtaining their

secret keys) in any order, and can also ask non-corrupted users to decrypt any ciphertexts

of her choice, during any time period. The security of our scheme is based on the

Decisional Bilinear Diffie-Hellman Inversion (DBDHI) assumption in the standard model.

8

Of independent interest, as a technical tool toward achieving forward-secure broad-

cast encryption, in Chapter 2 we define and construct an extension of the notion of

Identity-Based Encryption to complex hierarchical structures, that we term Paired Hi-

erarchical Identity-Based Encryption (PHIBE). In the setting of (regular) Hierarchical

Identity-Based Encryption (HIBE) [52, 48, 16], each user is associated with a single hi-

erarchical identifier: encrypting to a given user means that only the ancestors of the

user in the hierarchy can decrypt the message. In PHIBE, each user belongs to two

hierarchies, and encrypting to a given user means that only a common ancestor of this

user in the two hierarchies can decrypt the message. Once again, our PHIBE scheme is

based on the DBDHI assumption.

In [82], we also show how to extend PHIBE to multiple hierarchies.

1.3.2 Chosen-Ciphertext Security for Trace-and-Revoke Schemes

One of the most exciting accomplishments of modern Cryptography has been the for-

malization of the “right” notion of security for several cryptographic tasks. It took more

than a decade before the notion of adaptive chosen-ciphertext security emerged as the

accepted security standard for encryption schemes, and several more years until an effi-

cient construction of an encryption scheme meeting such a stringent notion of security

was designed.

In the context of trace-and-revoke schemes, which involve multiple recipients of the

encrypted content, and operate in open environments (and are thus inherently more vul-

nerable to attacks), it would seem natural to demand at least a similarly stringent secu-

rity level. In Chapter 8, we introduce a precise formalization of an appropriate notion of

adaptive security for public-key broadcast encryption schemes, for both chosen-plaintext

(IND-ID-CPA) and chosen-ciphertext (IND-ID-CCA) attack scenarios, and propose con-

structions IND-ID-CPA- and IND-ID-CCA-secure under the Decisional Diffie-Hellman

(DDH) assumption, with no random oracles. Our public key scheme is based on the

regular Cramer-Shoup encryption scheme [31, 32], but our extension is non-trivial, as

9

we have to resolve some difficulties inherent to the broadcast encryption setting. Our

IND-ID-CCA-secure scheme has constant storage complexity and public key size pro-

portional to the revocation threshold r. The communication complexity, as well as the

encryption and decryption times are all linear in r.

As a preliminary step in our construction, we show how to modify the IND-ID-CPA-

scheme of [80] to achieve a much more appropriate notion of adaptive security, while

maintaining essentially the same efficiency in all the parameters (up to a factor of 2).

We also provide another scheme achieving a slightly weaker (but still very strong) notion

of generalized chosen-ciphertext security (IND-ID-gCCA) [75, 2]. As argued in [2], IND-

ID-gCCA security is much more robust to syntactic changes, while still sufficient for all

known uses of IND-ID-CCA security. Interestingly, all the examples separating IND-ID-

CCA- and IND-ID-gCCA-secure encryption were “artificial” in a sense that they made

a more complicated scheme from an already existing IND-ID-CCA-secure encryption.

Our work shows the first “natural” separation, but for the setting of broadcast public-key

encryption.

10

Chapter 2

Preliminaries

2.1 Some Algebraic Tools

2.1.1 Lagrange Interpolation in the Exponent

Let q be a prime and f(x) a polynomial of degree z over Zq; let j0, . . . , jz be distinct

elements of Zq, and let f0 = f(j0), . . . , fz = f(jz). Using the Lagrange Interpolation, we

can express the polynomial as

f(x) =
z∑

t=0

(ft · λt(x))

where

λt(x) =
∏

0≤i6=t≤z

ji − x
ji − jt

, t = 0, . . . , z.

We can now define the Lagrange Interpolation Operator as follows:

LI(j0, . . . , jz; f0, . . . , fz)(x)
.
=

z∑
t=0

(ft · λt(x)).

Consider any cyclic group G of order q and a generator g of G. For any distinct values

j0, . . . , jz of Zq and (non necessarily distinct) elements v0, . . . , vz of G, let us define the

Lagrange Interpolation Operator in the Exponent as:

EXP-LI(j0, . . . , jz; v0, . . . , vz)(x)
.
= gLI(j0,...,jz ;logg v0,...,logg vz)(x).

11

Despite being defined in terms of discrete logarithms, the function EXP-LI is polynomial-

time computable, since:

gLI(j0,...,jz ;logg v0,...,logg vz)(x) =
z∏

t=0

g(logg vt·λt(x)) =
z∏

t=0

v
λt(x)
t .

We also remark on another useful property of the above operator:

EXP-LI(j0, . . . , jz; v
r
0, . . . , v

r
z)(x) = [EXP-LI(j0, . . . , jz; v0, . . . , vz)(x)]

r.

In what follows, we will refer to a function of the form gf(x), where f(x) is a polyno-

mial, as an EXP-polynomial.

2.1.2 Discrete Logarithm Representations

Let g be a generator of G and let h0, h1, . . . , hv be elements of G such that

hj = grj

with j = 0, . . . , v and r0, . . . , rv ∈ Zq. For a certain element y
.
= gb of G, a representation

of y with respect to the base h0, . . . , hv is a (v + 1)-vector

~δ
.
= 〈δ0, . . . , δv〉

such that:

y =
v∏

`=1

hδ`
`

or equivalently ~δ · ~r = b where “·” denotes the inner product of two vectors modulo q.

It is well known (e.g., see [24]) that obtaining representations of a given y with respect

to some base h0, . . . , hv is as hard as the discrete logarithm problem over G. Furthermore,

it was shown in Lemma 3.2 of [17] that if some adversary is given m < v random

representations of some y with respect to some base, then any additional representation

that can be obtained has to be a “convex combination” of the given representations (a

convex combination of the vectors ~δ1, . . . , ~δm is a vector
∑m

`=1 µ`
~δ` with

∑m
`=1 µ` = 1).

However, the scheme presented in Chapter 7 makes use of a particular family of discrete

logarithm representations, introduced below. In Section 7.6 we will see how Lemma 3.2

of [17] can be modified accordingly.

12

2.1.3 Leap-Vectors

We introduce a new family of discrete logarithm representations, called leap-vectors. In

what follows, Zv
q [x] denotes the set of v-degree polynomials over Zq and Z<v

q [x] denotes

the ring of polynomials over Zq with degree less than v.

Definition 1. Given z1, . . . , zv ∈ Zq and P (x) ∈ Zv
q [x], the set LP

z1,...,zv
of leap-vectors

with respect to P (·) and the values z1, . . . , zv, consists of all vectors ~α ∈ Zv+1
q for which

it holds that:

P (0) = ~α · 〈1, P (z1), . . . , P (zv)〉. (2.1)

In other words, a leap-vector with respect to P (·) and z1, . . . , zv, is a representation

of gP (0) with respect to the base

g, gP (z1), . . . , gP (zv).

Given any leap-vector ~α := 〈α0, . . . , αv〉 with respect to some values z1, . . . , zv, it is

possible to derive the equation

α0 =

(
1−

v∑
`=1

α`

)
a0 +

v∑
j=1

(
v∑

`=1

zj
`α`

)
aj

over the coefficients of the polynomial

P (x) := a0 + a1x+ . . .+ avx
v.

If one possesses a point 〈xi, P (xi)〉 of the polynomial P (·), it is possible to generate

a leap-vector for the values z1, . . . , zv (provided that xi 6∈ {z1, . . . , zv}) using Lagrange

Interpolation.

Definition 2. Given distinct xi, z1, . . . , zv ∈ Zq, and P (·) ∈ Zv
q [x], define the leap-vector

~νxi,P
z1,...,zv

associated to the point 〈xi, P (xi)〉 with respect to P (·) and z1, . . . , zv as:

~νxi,P
z1,...,zv

.
= 〈λ(i)

0 P (xi), λ
(i)
1 , . . . , λ

(i)
v 〉 (2.2)

where

λ
(i)
0

.
=

v∏
j=1

xi

xi − zj

(2.3)

13

and, for ` = 1, . . . , v

λ
(i)
`

.
=

z`

z` − xi

v∏
j = 1
j 6= `

z`

z` − zj

. (2.4)

An important property of leap-vectors is the following:

Proposition 3. Given a polynomial P (·) ∈ Zv
q [x] and the values z1, . . . , zv ∈ Zq,

knowledge of a leap-vector ~α ∈ LP
z1,...,zv

implies knowledge of a linear equation on

the coefficients of P (·), linearly independent from the linear equations defined using

〈z1, P (z1)〉, . . . , 〈zv, P (zv)〉.

Proof. Define

~π
.
= (P (z1), P (z2), . . . , P (zv), α0)

T .

The constraint on the coefficients a0, a1, . . . , av of the polynomial P (·) arising from points

〈z1, P (z1)〉, . . ., 〈zv, P (zv)〉 and the equation associated to the leap-vector ~α, can be

represented as:

~π = M · ~a

where

~a
.
= (a0, a1, . . . , av)

T

and

M
.
=



1 z1 . . . zv
1

1 z2 . . . zv
2

...
...

...
...

1 zv . . . zv
v

1−
∑v

j=1 αj −
∑v

j=1 αjzj . . . −
∑v

j=1 αjz
v
j


Notice that matrix M above is obtained from a Vandermonde matrix by adding

a linear combination of the first v rows to the last one. Since every Vandermonde

matrix has full rank, it follows that M has full rank, too. Hence, the equation defined

by the leap-vector ~α is linearly independent to the equations defined by the points

〈z1, P (z1)〉, . . . , 〈zv, P (zv)〉.

14

As a result, the possession of a leap-vector implies some knowledge about the

polynomial P (·) beyond what is implied by the points 〈z1, P (z1)〉, . . . , 〈zv, P (zv)〉. In

other words, a leap-vector is the necessary information needed to leap from the values

P (z1), . . . , P (zv) to the value P (0).

2.2 Collusion-Secure Codes

Collusion-secure codes [22, 23] provide a powerful tool against illegal redistribution of

fingerprinted material in settings satisfying the following Marking Assumption: 1) it

is possible to introduce small changes to the content at some discrete set of locations

(called marks), while preserving the “quality” of the content being distributed; but 2) it

is infeasible to apport changes to a mark without rendering the entire content “useless”

unless one possesses two copies of the content that differ at that mark.

Below, we include a formalization of the notion of collusion-secure codes, adapted

from [23].

Definition 4. Let Σ be a finite alphabet, and n, v ∈ Z≥0. An (n, v)-code over Σ is a set

of n v-tuples of symbols of Σ: C = {ω(1), . . . , ω(n)} ⊆ Σv.

Definition 5. Let T be a subset of indices in [1, n]. The set of undetectable positions

for T is:

RT = {` ∈ [1, v] | (∀i, j ∈ T).[ω
(i)
` = ω

(j)
`]}.

Notice that for each i ∈ T , the projection of each codeword ω(i) over the undetectable

positions for T is the same; we denote this common projected sub-word as ω|RT
. By

the Marking Assumption, any “useful” copy of the content created by the collusion of

the users in T must result in a tuple ω̄ whose projection over RT is also ω|RT
. This is

captured by the following:

Definition 6. The set of feasible codewords for T is:

FT = {ω̄ ∈ (Σ ∪ {?})v | ω̄|RT
= ω|RT

}.

15

Definition 7. Let ε > 0 and t ∈ Z≥0. C is an (ε, t, n, v)-collusion-secure code over Σ

if there exists a probabilistic polynomial-time algorithm T such that for all T ⊆ [1, n] of

size | T |≤ t, and for all ω̄ ∈ FT , it holds that:

Pr[T (rC, ω̄) ∈ T] ≥ (1− ε),

where the probability is over the random coins rC used in the construction of the (n, v)-

code C, and over the random coins of T .

2.3 Computational Assumptions

The decisional Diffie-Hellman (DDH) problem in G1:

Given (P, aP, bP, U) for some a, b ∈ Zq and U ∈ G1, output yes if U = abP and no

otherwise.

Definition 8 (DDH Assumption). The DDH problem is εDDH-hard in G1 if, for all

probabilistic polynomial-time algorithms A, we have

AdvDDHG1,A(k)
.
= |Pr[A(P, aP, bP, U) = yes | P R← G1, a, b,

R← Zq, U = abP]−

Pr[A(P, aP, bP, U) = yes | P R← G1, a, b,
R← Zq, U

R← G1]| < εDDH

where the probability is over the random selection of P from G1, of a, b from Zq, and

over A’s random coins.

The computational Diffie-Hellman (CDH) problem in G1:

Given (P, aP, bP) for random P ∈ G1 and a, b ∈ Zq, output abP ∈ G1.

Definition 9 (CDH Assumption). The CDH problem is εCDH-hard in G1 if, for all prob-

abilistic polynomial-time algorithms A, we have

AdvCDHG1,A(k)
.
= Pr[A(P, aP, bP) = abP | P R← G1, a, b

R← Zq] < εCDH

where the probability is over the random selection of P from G1, of a, b from Zq, and

over A’s random coins.

16

The Discrete Logarithm (DLog) problem in G1:

Given (P, aP) for random P ∈ G1 and a ∈ Zq, output a ∈ G1.

Definition 10 (DLog Assumption). The DLog problem is εDLog-hard in G1 if, for all

probabilistic polynomial-time algorithms A, we have

AdvDLogG1,A(k)
.
= Pr[A(P, aP) = a | P R← G1, a

R← Zq] < εDLog

where the probability is over the random selection of P from G1, of a from Zq, and over

A’s random coins.

The decisional bilinear Diffie-Hellman (DBDH) problem in (G1,G2):

Given (P, aP, bP, cP, h) for random P ∈ G1, a, b, c ∈ Zq and h ∈ G2, output yes if

h = e(P, P)abc and no otherwise.

Definition 11 (DBDH Assumption). The DBDH problem is εDBDH-hard in (G1,G2) if,

for all probabilistic polynomial-time algorithms A, we have

AdvDBDH(G1,G2),A(k)
.
=

|Pr[A(P, aP, bP, cP, h) = yes | P R← G1, a, b, c
R← Zq, h = e(P, P)abc]−

Pr[A(P, aP, bP, cP, h) = yes | P R← G1, a, b, c
R← Zq, h

R← G2]| < εDBDH

where the probability is over the random selection of P from G1, of a, b, c from Zq, and

over A’s random coins.

The decisional bilinear Diffie-Hellman Inversion (DBDHI) problem in (G1,G2):

Given (P, aP, b2P, . . . , b`P, h) for random P ∈ G1, a, b ∈ Zq and h ∈ G2, output

yes if h = e(P, P)a/b and no otherwise.

Definition 12 (DBDHI Assumption). The DBDHI problem is εDBDHI-hard in (G1,G2)

if, for all probabilistic polynomial-time algorithms A, we have

AdvDBDHI(G1,G2),A(k)
.
=

|Pr[A(P, aP, b2P, . . . , b`P, h) = yes | P R← G1, a, b
R← Zq, h = e(P, P)a/b]−

Pr[A(P, aP, b2P, . . . , b`P, h) = yes | P R← G1, a, b
R← Zq, h

R← G2]| < εDBDHI

17

where the probability is over the random selection of P from G1, of a, b from Zq, and

over A’s random coins.

The modified decisional bilinear Diffie-Hellman (DBDH1-M) problem in G1:

Given(P, aP, bP, U) for some a, b ∈ Zq and U ∈ G1, output yes if U = ab2P and

no otherwise.

Definition 13 (DBDH1-M Assumption). The DBDH1-M problem is εDBDH1-M-hard in G1

if, for all probabilistic polynomial-time algorithms A, we have

AdvDBDH1-MG1,A(k)
.
=

|Pr[A(P, aP, bP, U) = yes | P R← G1, a, b
R← Zq, U = ab2P]−

Pr[A(P, aP, bP, U) = yes | P R← G1, a, b
R← Zq, U

R← G1]| < εDBDH1-M

where the probability is over the random selection of P from G1, of a, b from Zq, and

over A’s random coins.

The extended decisional bilinear Diffie-Hellman (DBDH2-E) problem in G2:

Given (P, aP, bP, cP, ab2P, h) for some a, b, c ∈ Zq and h ∈ G2, output yes if h =

e(P, P)cb2 and no otherwise.

Definition 14 (DBDH2-E Assumption). The DBDH2-E problem is εDBDH2-E-hard in G2

if, for all probabilistic polynomial-time algorithms A, we have

AdvDBDH2-EG1,A(k)
.
=

|Pr[A(P, aP, bP, cP, ab2P, h) = yes | P R← G1, a, b, c
R← Zq, h = e(P, P)ab2]−

Pr[A(P, aP, bP, cP, ab2P, h) = yes | P R← G1, a, b, c
R← Zq, h

R← G2]| < εDBDH2-E

where the probability is over the random selection of P from G1, of a, b, c from Zq, and

over A’s random coins.

18

2.4 Identity-Based Cryptography

2.4.1 Identity-Based Encryption (IBE)

An Identity-Based Encryption scheme [74, 18, 19, 30, 81] is an encryption system in

which the identity of each user acts as his/her public key. The corresponding secret key,

rather than being directly generated by the individual users, is computed by a trusted

central authority (Root), who is also responsible for initially setting up appropriate

system-wide parameters.

Initially suggested as a means to alleviate the dependence of public-key encryption

systems from the availability of a Public-Key Infrastructure, Identity-Based Encryption

schemes have in fact proved to be a powerful primitive whose applications go beyond

their original motivation. In particular, they constitutes an important tool for the

development of the results presented in Chapter 4 and Chapter 5.

Definition 15 (Identity-Based Encryption Scheme).

An IBE scheme EIBE is a four-tuple of probabilistic polynomial-time algorithms (Setup,

Extract, Encrypt, Decrypt), where:

• Setup is a probabilistic algorithm used by the Root to initialize the parameters of

the scheme. Setup takes as input a security parameter 1λ and returns the global

public key paramsIBE and the master secret key masterIBE. Root publishes paramsIBE

and keeps masterIBE secret.

• Extract takes as input the system parameters paramsIBE, the master secret key

masterIBE, the identity IDi of a new user, and returns the corresponding secret key

SKi.

• Encrypt takes as input the system parameters paramsIBE, the recipient’s identity

IDi and a message m, and returns a ciphertext C.

• Decrypt takes as input paramsIBE, an identity IDi, the corresponding secret key SKi

19

and a ciphertext C. Decrypt outputs the hidden message m or a special rejection

symbol ⊥.

An IBE scheme EIBE should satisfy the following correctness constraint: for any pair

(paramsIBE, masterIBE) output by IBE.Setup(1λ), any secret key SKi properly generated

for identifier IDi, and any message m:

m = IBE.Decrypt(paramsIBE, IDi, SKi, IBE.Encrypt(paramsIBE, IDi,m)).

An IBE scheme EIBE is secure against chosen-ciphertext attack if no polynomial-time

adversary A has a non-negligible advantage against the challenger in the following game:

Setup: The challenger runs algorithm IBE.Setup(1λ); it then gives A the resulting

system public key paramsIBE and keeps the master secret key masterIBE secret to itself.

Phase 1: The adversary issues, in any adaptively-chosen order, queries q1, . . . , qm, where

each qj is one of the following:

1. Corrupt(IDi): the challenger runs algorithm IBE.Extract(IDi) to generate the

private key SKi corresponding to user IDi, and sends SKi to A.

2. Decrypt(IDi, Cj): the challenger runs algorithm IBE.Extract(IDi) to recover the

private key SKi corresponding to user IDi. It then runs IBE.Decrypt(paramsIBE,

IDi, SKi, Cj) and sends the resulting plaintext to A.

Challenge: Once A decides that Phase 1 is over, it outputs an identity ID∗ and two

equal length plaintexts m0,m1 ∈ M on which it wishes to be challenged. The only

restriction is that A did not previously issue the query Corrupt(ID∗). The challenger

picks a random bit b ∈ {0, 1}, sets C∗ .
= IBE.Encrypt(paramsIBE, ID

∗,mb), and sends C∗

as a challenge to A.

Phase 2: The adversary issues more queries qm+1, . . . , qn, where each qj is one of the

following:

1. Corrupt(IDi): the challenger first checks that IDi 6= ID∗ and if so, it responds

as in Phase 1.

20

2. Decrypt(IDi, Cj): the challenger first checks that Cj 6= C∗ and if so, it responds

as in Phase 1.

Guess: The adversary outputs a guess b∗ ∈ {0, 1} and wins the game if b = b∗.

We refer to such an adversary A as an IBE.IND-ID-CCA adversary. We define the

advantage of the adversary A in attacking the scheme EIBE as:

AdvIBE,A =

∣∣∣∣Pr[b = b∗]− 1

2

∣∣∣∣ .
The probability is over the random bits of the challenger and of the adversary.

A weaker notion of security, initially introduced by Canatti, Halevi and Katz [26],

requires the adversary to commit ahead of time to the identity it will attack. We refer

to this notion as selective-identity chosen-ciphertext security (IBE.IND-sID-CCA). The

game is exactly as for the IBE.IND-ID-CCA case, except that the adversary A discloses

to the challenger the target identity ID∗ before the Setup phase. Thus, the restriction

on Corrupt queries from Phase 2 also holds in Phase 1.

Definition 16 (Chosen-Ciphertext Security for IBE).

An IBE scheme EIBE is (τ, qID, qC , εIBE)-IND-ID-CCA (resp. IND-sID-CCA)-secure if,

for any τ -time IBE.IND-ID-CCA (resp. IBE.IND-sID-CCA) adversary A that makes at

most qID chosen Corrupt queries and at most qC chosen Decrypt queries, it holds

that AdvIBE,A < εIBE.

We define chosen-plaintext security for an IBE scheme according to an attack game

that is defined exactly as described above, except that the adversary is not allowed to

issue Decrypt queries. Notice, however, that the adversary may still issue adaptive

chosen Corrupt queries. This security notion is termed IBE.IND-ID-CPA (or IBE.IND-

sID-CPA in the case of selective identity adversary).

Definition 17 (Chosen-Plaintext Security for IBE).

An IBE scheme EIBE is (τ, qID, εIBE)-IND-ID-CPA (resp. IND-sID-CPA)-secure if EIBE is

(τ, qID, 0, εIBE)-IND-ID-CCA (resp. IND-sID-CCA)-secure.

21

2.4.2 Hierarchical Identity-Based Encryption (HIBE)

A Hierarchical Identity-Based Encryption scheme [52, 48, 16] is a natural extension of

the notion of Identity-Based Encryption scheme. Intuitively, HIBE allows to organize

the users into a tree hierarchy. Each user gets the secret key from its parent in the

hierarchy (and all the users share a few global parameters, initially set up by the Root).

Then, anybody can encrypt messages to any given user knowing just its position in the

hierarchy, specified as an ID-tuple (or hierarchical identifier) HID ≡ (ID1, . . . , IDi). This

means that if we consider a user located at level i, all its ancestors, starting from its

parent up to the Root, have hierarchical identifiers (ID1, . . . , IDi−1), (ID1, . . . , IDi−2),

. . ., (ID1), Root.

Definition 18 (Hierarchical Identity-Based Encryption Scheme).

An HIBE scheme EHIBE is a four-tuple of probabilistic polynomial-time algorithms (Setup,

Extract, Encrypt, Decrypt), where:

• Setup takes as input a security parameter 1λ and returns the global public key

paramsHIBE and the master secret key masterHIBE. Root publishes paramsHIBE and

keeps masterHIBE secret.

• Extract takes as input the system parameters paramsHIBE, an identity ID-tuple

HIDi ≡ (ID1, . . . , IDi) (with the convention that HID0 ≡ Root) and the corre-

sponding secret key SKi (with the convention that SK0 ≡ masterHIBE). It returns

the secret key SKi+1 ID-tuple HIDi+1 ≡ (ID1, . . . , IDi, IDi+1).

• Encrypt takes as input the system parameters paramsHIBE, the recipient’s ID-tuple

HIDi and a message m, and returns a ciphertext C.

• Decrypt takes as input paramsHIBE, an ID-tuple HIDi, the corresponding secret

key SKi and a ciphertext C. Decrypt outputs the hidden message m or a special

rejection symbol ⊥.

22

An HIBE scheme EHIBE should satisfy the following correctness constraint: for any

pair (paramsHIBE, masterHIBE) output by HIBE.Setup(1λ), any secret key SKi properly

generated for identifier HIDi, and any message m:

m = HIBE.Decrypt(paramsHIBE,HIDi, SKi,HIBE.Encrypt(paramsHIBE,HIDi,m)).

We notice that in the case of HIBE, all the ancestors of a given user can recover the

messages encrypted for this user, e.g. by first deriving the secret key for the descendant

with a sequence of Extract operations, and then decrypting the ciphertext. For specific

schemes, however, there might be more efficient/direct ways to perform such decryption.

For example, the HIBE of [48] enjoys a more efficient decryption by any ancestor of the

given node than by the node itself.

An HIBE scheme EHIBE is secure against chosen-ciphertext attack if no polynomial-

time adversary A has a non-negligible advantage against the challenger in the following

game:

Setup: The challenger runs algorithm HIBE.Setup(1λ); it gives A the resulting system

public key paramsHIBE and keeps the master secret key masterHIBE secret to itself.

Phase 1: The adversary issues, in any adaptively-chosen order, queries q1, . . . , qm, where

each qj is one of the following:

1. Corrupt(HIDi): starting from masterHIBE, the challenger uses the HIBE.Extract

algorithm to derive the secret key corresponding to all the ancestors of HIDi,

eventually obtaining the secret key SKi, which is then sent to A.

2. Decrypt(HIDi, Cj): the challenger runs algorithm HIBE.Extract(HIDi) to re-

cover the private key SKi corresponding to user HIDi. It then runs algorithm

HIBE.Decrypt(paramsHIBE, HIDi, SKi, Cj) and sends the result to A.

Challenge: Once A decides that Phase 1 is over, it outputs an identity HID∗

and two equal length plaintexts m0,m1 ∈ M on which it wishes to be challenged.

The only restriction is that A did not previously issue Corrupt(·) queries on HID∗

23

or a prefix of HID∗. The challenger picks a random bit b ∈ {0, 1}, sets C∗ .
=

HIBE.Encrypt(paramsHIBE,HID∗,mb), and sends C∗ as a challenge to A.

Phase 2: The adversary issues more queries qm+1, . . . , qn, where each qj is one of the

following:

1. Corrupt(HIDi): the challenger first checks that HIDi 6= HID∗ and that HIDi is

not a prefix of HID∗, and if both conditions are satisfied it responds as in Phase 1.

2. Decrypt(HIDi, Cj): the challenger first checks that either Cj 6= C∗ or HIDi is

not HID∗ nor a prefix of HID∗, and if so, it responds as in Phase 1.

Guess: The adversary outputs a guess b∗ ∈ {0, 1} and wins the game if b = b∗.

We refer to such an adversary A as an HIBE.IND-ID-CCA adversary. We define the

advantage of the adversary A in attacking the scheme EHIBE as:

AdvHIBE,A =

∣∣∣∣Pr[b = b∗]− 1

2

∣∣∣∣ .
The probability is over the random bits of the challenger and of the adversary.

Similarly to the case of a regular IBE scheme, we can also define the notion of selective-

identity chosen-ciphertext security for a HIBE (HIBE.IND-sID-CCA). The game is ex-

actly as for the HIBE.IND-ID-CCA case, except that the adversary A discloses to the

challenger the target identity HID∗ before the Setup phase. Thus, the restriction on

Corrupt queries from Phase 2 also holds in Phase 1.

Definition 19 (Chosen-Ciphertext Security for HIBE).

An HIBE scheme EHIBE is (τ, qID, qC , εHIBE)-IND-ID-CCA (resp. IND-sID-CCA)-secure if

for any τ -time HIBE.IND-ID-CCA (resp. HIBE.IND-sID-CCA) adversary A that makes

at most qID chosen Corrupt queries and at most qC chosen Decrypt queries, it holds

that AdvHIBE,A < εHIBE.

We define chosen-plaintext security for a HIBE scheme according to an attack game

that is exactly as in the preceding game, except that the adversary is not allowed to issue

Decrypt queries. The adversary may still issue adaptive chosen Corrupt queries.

24

Definition 20 (Chosen-Plaintext Security for HIBE).

An HIBE scheme EHIBE is (τ, qID, εHIBE)-IND-ID-CPA (resp. IND-sID-CPA)-secure if

EHIBE is (τ, qID, 0, εHIBE)-IND-ID-CCA (resp. IND-sID-CCA)-secure.

2.4.3 Paired Hierarchical Identity-Based Encryption (PHIBE)

Paired Hierarchical Identity-Based Encryption [82] is a generalization of Hierarchical

Identity-Based Encryption to the case where each entity occupies a place in two inde-

pendent hierarchies. In a standard HIBE, an entity is specified by a hierarchical identifier

HID, i.e. a sequence of identifiers; in a PHIBE, an entity is specified by a pair of hier-

archical identifiers PID
.
= 〈HID`,HIDr〉, one for the left hierarchy and the other for the

right hierarchy. As shown in [82], it is possible to extend this idea to any (constant)

number of independent hierarchies.

In the context of PHIBE, an entity PID1 = 〈HID`
1,HIDr

1〉 is considered an ancestor

of PID2 = 〈HID`
2,HIDr

2〉 if HID`
1 is a prefix of HID`

2 and HIDr
1 is a prefix of HIDr

2 (i.e. if

PID1 is an ancestor of PID2 in both hierarchies.)

Definition 21 (Paired Hierarchical Identity Based Encryption Scheme).

A PHIBE scheme EPHIBE is a four-tuple of probabilistic polynomial-time algorithms

(Setup, Extract, Encrypt, Decrypt), where:

• Setup takes as input 1λ and 1m`
, 1mr

(where λ is the security parameter and m`,mr

are the maximum depth of the left and right hierarchies, respectively), and gen-

erates some global parameters paramsPHIBE and the master secret key masterPHIBE.

Root publishes paramsPHIBE and keeps masterPHIBE secret.

• Extract is a probabilistic algorithm run by an entity PID1 to generate the secret key

for a descendant PID2. Extract takes as input paramsPHIBE, the paired hierarchical

identifier PID2, the secret key SKPID1 and outputs SKPID2 .

• Encrypt takes as input the system parameters paramsPHIBE, the recipient’s paired

hierarchical identifier PIDi and a message m, and returns a ciphertext C.

25

• Decrypt takes as input paramsPHIBE, a paired hierarchical identifier PIDi, the corre-

sponding secret key SKi and a ciphertext C. Decrypt outputs the hidden message

m or a special rejection symbol ⊥.

A PHIBE scheme EPHIBE should satisfy the following correctness constraint: for any

pair (paramsPHIBE, masterPHIBE) output by PHIBE.Setup(1λ), any secret key SKi properly

generated for identifier PIDi, and any message m:

m = PHIBE.Decrypt(paramsPHIBE,PIDi, SKi,PHIBE.Encrypt(paramsPHIBE,PIDi,m)).

A PHIBE scheme EPHIBE is secure against chosen-ciphertext attack if no polynomial-

time adversary A has a non-negligible advantage against the challenger in the following

game:

Setup: The challenger runs algorithm PHIBE.Setup(1λ, 1m`
, 1mr

); it givesA the resulting

system public key paramsPHIBE and keeps the master secret key masterPHIBE secret.

Phase 1: The adversary issues, in any adaptively-chosen order, queries q1, . . . , qm, where

each qj is one of the following:

1. Corrupt(PIDi): starting from masterPHIBE, the challenger uses PHIBE.Extract

to derive the secret key corresponding to all the ancestors of PIDi, eventually

obtaining the secret key SKi, which is then sent to A.

2. Decrypt(HIDi, Cj): the challenger runs algorithm PHIBE.Extract(PIDi) to re-

cover the private key SKi corresponding to user PIDi. It then runs algorithm

PHIBE.Decrypt(paramsPHIBE, PIDi, SKi, Cj) and sends the result to A.

Challenge: Once A decides that Phase 1 is over, it outputs an identity PID∗ and

two equal length plaintexts m0,m1 ∈ M on which it wishes to be challenged. The

only restriction is that A did not previously issue the Corrupt(·) queries on PID∗

or a prefix of PID∗. The challenger picks a random bit b ∈ {0, 1}, sets C∗ .
=

PHIBE.Encrypt(paramsPHIBE,PID∗,mb), and sends C∗ as a challenge to A.

Phase 2: The adversary issues more queries qm+1, . . . , qn, where each qj is one of the

following:

26

1. Corrupt(PIDi): the challenger first checks that PIDi 6= PID∗ and that PIDi is

not a prefix of PID∗, and if both conditions are satisfied, it responds as in Phase 1.

2. Decrypt(PIDi, Cj): the challenger first checks that either Cj 6= C∗ or PIDi is not

PID∗ nor a prefix of PID∗, and if so, it responds as in Phase 1.

Guess: The adversary outputs a guess b∗ ∈ {0, 1} and wins the game if b = b∗.

We refer to such an adversary A as a PHIBE.IND-ID-CCA adversary. We define the

advantage of the adversary A in attacking the scheme EPHIBE as:

AdvPHIBE,A =

∣∣∣∣Pr[b = b∗]− 1

2

∣∣∣∣ .
The probability is over the random bits of the challenger and of the adversary.

Similarly to the case of a regular HIBE scheme, we can also define the notion

of selective-identity chosen-ciphertext security for PHIBE (PHIBE.IND-sID-CCA). The

game is exactly as for the PHIBE.IND-ID-CCA case, except that the adversary A dis-

closes to the challenger the target identity PID∗ before the Setup phase. Thus, the

restriction on Corrupt queries from Phase 2 also holds in Phase 1.

Definition 22 (Chosen-Ciphertext Security for PHIBE).

A PHIBE scheme EPHIBE is (τ, qID, qC , εPHIBE)-IND-ID-CCA (resp. IND-sID-CCA)-secure

if for any τ -time PHIBE.IND-ID-CCA (resp. PHIBE.IND-sID-CCA) adversary A that

makes at most qID chosen Corrupt queries and at most qC chosen Decrypt queries,

it holds that AdvPHIBE,A < εPHIBE.

We define chosen-plaintext security for an PHIBE scheme according to an attack game

that is exactly as the game described above, except that the adversary is not allowed

to issue Decrypt queries. The adversary may still issue adaptive chosen Corrupt

queries.

Definition 23 (Chosen-Plaintext Security for PHIBE).

An PHIBE scheme EPHIBE is (τ, qID, εPHIBE)-IND-ID-CPA (resp. IND-sID-CPA)-secure if

EPHIBE is (τ, qID, 0, εPHIBE)-IND-ID-CCA (resp. IND-sID-CCA)-secure.

27

2.5 Forward-Secure Encryption

The central idea of forward secrecy is that the compromise of long-term keys does not

compromise past session keys and therefore past communications. This notion was first

proposed by Günther [47] and later by Diffie et al. [33] in key exchange protocols.

The notion of non-interactive forward security was proposed by Anderson [3] in 1997

and later formalized by Bellare and Miner [6], who also gave a forward-secure signature

scheme followed by a line of improvement [1, 64]. In this model, secret keys are updated

at regular intervals throughout the lifetime of the system; furthermore, exposure of a

secret key corresponding to a given interval does not enable an adversary to break the

system (in the appropriate sense) for any prior time period. The model inherently cannot

prevent the adversary from breaking the security of the system for any subsequent time

period. Bellare and Yee [7] provided a comprehensive treatment of forward security in

the context of private key based cryptographic primitives.

The first forward-secure public-key encryption scheme was given by Canetti, Halevi,

and Katz [26] based on the Gentry-Silverberg HIBE scheme [48]. The scheme constructs

a binary tree, in which a tree node corresponds to a time period and has a secret

key. Children of a node w are labeled w0 and w1, respectively. Given the secrets

corresponding to a prefix of a node representing time t, one can compute the secrets

of time t. In order to make future keys computable from the current key, the secrets

associated with a prefix of a future time are stored in the current key. After the key for

the next time period is generated, the current decryption key is erased.

Definition 24 (Forward-Secure Encryption Scheme).

A FSE scheme EFSE is a four-tuple of probabilistic polynomial-time algorithms (Setup,

Update, Encrypt, Decrypt), where:

• Setup is used by the Root to initialize the parameters of the scheme. Setup takes

as input a security parameter 1λ and the total number of time periods T . It

returns the global public key paramsFSE and the master secret key masterFSE. Root

28

publishes paramsFSE and keeps masterFSE secret.

• Update takes as input the system parameters paramsFSE, the current time period

t < T and the user’s secret key SKt. It outputs the new secret key SKt+1 valid for

the following time period t+ 1.

• Encrypt takes as input the system parameters paramsFSE, the current time period

t and a message m and returns the ciphertext C.

• Decrypt takes as input a time period t < T , the corresponding secret key SKt and a

ciphertext C. Decrypt outputs the hidden message m or a special rejection symbol

⊥.

A FSE scheme EFSE should satisfy the following correctness constraint: for any pair

(paramsFSE, masterFSE) output by FSE.Setup(1λ, T), any time instant t < T and secret

key SKt properly generated for t, and any message m:

m = FSE.Decrypt(paramsFSE, t, SKt,FSE.Encrypt(paramsFSE, t,m)).

A FSE scheme EFSE is secure against chosen-ciphertext attack if no polynomial-time

adversary A has a non-negligible advantage against the challenger in the following game:

Setup: The challenger runs algorithm FSE.Setup(1λ, T); it then gives A the resulting

system public key paramsFSE and keeps the master secret key masterFSE secret to itself.

Phase 1: The adversary issues, in any adaptively-chosen order, queries q1, . . . , qm, where

each qj is one of the following:

1. Corrupt(t): the challenger repeatedly runs algorithm FSE.Update(paramsFSE, t, ·)

to generate the private key SKt corresponding to time instant t, and sends SKt to

A.

2. Decrypt(t, Cj): the challenger first computes the private key SKt corresponding

to time instant t. It then runs algorithm FSE.Decrypt(paramsFSE, t, SKt, Cj) and

sends the resulting plaintext to A.

29

Challenge: Once A decides that Phase 1 is over, it outputs a time instant t∗ and

two equal length plaintexts m0,m1 ∈M on which it wishes to be challenged. The only

restriction is that A did not previously issue the query Corrupt(t), for 0 ≤ t < t∗ ≤ T .

The challenger picks a random bit b ∈ {0, 1}, sets C∗ .
= FSE.Encrypt(paramsFSE, t

∗,mb),

and sends C∗ as a challenge to A.

Phase 2: The adversary issues more queries qm+1, . . . , qn, where each qj is one of the

following:

1. Corrupt(t): the challenger first checks that 0 ≤ t∗ < t ≤ T and if so, it responds

as in Phase 1.

2. Decrypt(t, Cj): the challenger first checks that Cj 6= C∗ and if so, it responds as

in Phase 1.

Guess: The adversary outputs a guess b∗ ∈ {0, 1} and wins the game if b = b∗.

We refer to such an adversary A as an FSE.IND-ID-CCA adversary. We define the

advantage of the adversary A in attacking the scheme EFSE as:

AdvFSE,A =

∣∣∣∣Pr[b = b∗]− 1

2

∣∣∣∣ .
The probability is over the random bits of the challenger and of the adversary.

In [26], Canetti et al. introduced a weaker notion of security, which requires the

adversary to commit ahead of time to the time instant it will attack. We refer to this

notion as selective-identity chosen-ciphertext security (FSE.IND-sID-CCA). The game

is exactly as for the FSE.IND-ID-CCA case, except that the adversary A discloses to

the challenger the target instant t∗ before the Setup phase. Thus, the restriction on

Corrupt queries from Phase 2 also holds in Phase 1.

Definition 25 (Chosen-Ciphertext Security for FSE).

A FSE scheme EFSE is (τ, qID, qC , εFSE)-IND-ID-CCA (resp. IND-sID-CCA)-secure if, for

any τ -time FSE.IND-ID-CCA (resp. FSE.IND-sID-CCA) adversary A that makes at

most qID chosen Corrupt queries and at most qC chosen Decrypt queries, it holds

that AdvFSE,A < εFSE.

30

We define chosen-plaintext security for a FSE scheme according to an attack game

that is defined exactly as described above, except that the adversary is not allowed to

issue Decrypt queries. Notice, however, that the adversary may still issue adaptive

chosen Corrupt queries. This security notion is termed FSE.IND-ID-CPA (or FSE.IND-

sID-CPA in the case of selective identity adversary).

Definition 26 (Chosen-Plaintext Security for FSE).

A FSE scheme EFSE is (τ, qID, εFSE)-IND-ID-CPA (resp. IND-sID-CPA)-secure if EFSE is

(τ, qID, 0, εFSE)-IND-ID-CCA (resp. IND-sID-CCA)-secure.

31

Chapter 3

DRM-Enabling Crypto Primitives

and Previous Constructions

3.1 Broadcast Encryption

A broadcast encryption scheme allows the sender to securely distribute data to a dy-

namically changing set of users over an insecure channel. Namely, it should be possible

to selectively revoke (i.e. exclude) a certain subset of users from receiving the data.

For that reason, broadcast encryption schemes are often also referred to as revocation

schemes, since the revocation ability is what makes the task of broadcast encryption

non-trivial. In particular, each user should receive an individualized decoder (i.e. a

decryption device with a unique secret key) which decrypts only the ciphertexts in-

tended for the given user. The relevance of broadcast encryption for DRM technologies

stems from its applicability to access control, which enables applications such as pay-TV

systems, distribution of copyrighted material, streaming audio/video and many others.

A broadcast encryption scheme consists of the following three algorithms:

• key assignment algorithm: every new user joining the system receives a per-

sonalized secret information, needed to recover the content from the broadcast;

• broadcast algorithm: given in input the set of privileged users and the message

32

M, outputs the encryption ofM to be sent in broadcast;

• decryption algorithm: given in input the encrypted content and the secret

information of a user, output the corresponding messageM if the user is authorized

to receive the message and nonsense otherwise.

The above description of a broadcast encryption scheme is intentionally vague, and

can be refined into many different variants, depending on the specific scenario under

consideration. To name just a few, the scheme can be secret-key or public-key based;

it can support a single, bounded or unbounded number of broadcasts; it might support

a bounded or unbounded number of revocations per broadcast; the set of receivers can

be fixed, slowly changing or rapidly changing; it might or might not be possible to

periodically refresh users’ secret keys (stateful vs. stateless receivers setting).

For ease of comparison, before starting analyzing existing solutions, we fix some

notation. Let N be the set of all users, with |N | = N . Let R be the set of revoked

users, with |R| = r and denote with c the upper bound on the maximum coalition size.

In some cases, the efficiency of the scheme will depend just on c, and in others just on

r (in which case, we may think c = r).

The efficiency of a broadcast encryption scheme is evaluated considering the following

parameters:

• Storage complexity (κs): denotes the amount of personalized information each

user needs to store to recover the content from the broadcast;

• Communication complexity (κc): denotes the length of the broadcast;

• Encryption/Decryption complexity (κe/κd): measure the running time to

create the ciphertext corresponding to the message, and to recover the content

from the broadcast, respectively.

33

3.1.1 Early Approaches

A näıve solution to the problem of broadcast encryption consists of assigning a person-

alized secret key to each user and then having the transmitter sending individualized

messages to each recipient. This solution is clearly unsatisfactory, as it entails commu-

nication and encryption complexity linear in N − r.

Another trivial approach is to assign a secret key to each possible subset of N and

then give each user the secret keys corresponding to all subsets to which he belongs.

After such initialization phase, the transmitter can broadcast to any subset of users,

with just a single ciphertext, but the storage complexity at each recipient is exponential

in N .

In [10], Berkovits proposed a broadcast scheme that, although requiring communi-

cation, encryption and decryption complexity linear in the number of recipients N − r,

introduces an approach largely employed (in a revised form) in subsequent work.

The scheme of [10] is based on Shamir’s “k out of m” secret sharing scheme [73]: a

secret s from a finite field Fp is encoded as the constant term of some polynomial P over

Fp of degree k, and each participant gets a “share” consisting of the value of P at some

point xi (where the points assigned to all the users are assumed to be pairwise distinct).

Any k + 1 participants can then combine their shares to recover s via interpolation.

The idea of the scheme of [10] is to assign a pair (xi, yi) ∈ F2
p as secret key for user

i = 1, . . . , N . To transmit a message s, the sender selects a random polynomial P of

degree k (in our notation, k
.
= N − r), having s as constant coefficient and passing

through the points corresponding to the authorized users but not through the points of

the revoked users. Then, the sender broadcasts k shares of P corresponding to points

not assigned to the participants. Each authorized subscriber adds its key yi to the

received shares and, using Shamir’s secret sharing, recovers the secret s, whereas the

secret remains still random in the view of revoked users.

The merit of the scheme lies in that it shows that it is possible to encode a message

so that each and every listener needs to process the entire broadcast to recover the

34

plaintext, and guarantees that each authorized recipient deduces the secret, while all

others deduce nonsense.

The formal study of broadcast encryption was initiated by Fiat and Naor [43], who

show a scheme with storage complexity O(c log c logN) and communication complexity

O(c2 log2 c logN), regardless of the actual number of revoked users r. In other words, the

scheme allows to broadcast to any subset of users, guaranteeing that no coalition of at

most c users can recover the content. They also present a probabilistic scheme, with stor-

age complexity O(log c log(1/α)) and communication complexity O(c log2 c log(1/α)), in

which security against a subset of c revoked users holds with probability 1− α.

3.1.2 Information Theoretic Lower Bounds

The works of Blundo and Cresti [14] and of Blundo et al. [15], represent early efforts in

investigating the limits and trade-offs intrinsic to the problem of broadcast encryption.

Along the same line of research, in [62] Luby and Staddon employ combinatorial

techniques to derive a trade-off between the storage and the communication complex-

ities in an information-theoretic model, in which the storage is measured in terms of

the actual number of secret keys that each user needs to decrypt the broadcast. Such

information-theoretic model rules out schemes in which decryption keys are derived (in

a computationally-secure way) from the secret personalized information that each user

receives when he joins the system (computational model). For every given upper bound

on the information-theoretic storage complexity, they prove lower bounds on the com-

munication complexity. The authors identify two natural classes of protocols that the

sender may use in establishing a session key under which the message to broadcast is

encrypted: OR protocols and AND protocols. In an OR protocol, the broadcast consists

of several parts, and each recipients only needs to understand one of such components

to recover the session key s. In an AND protocol, instead, each user needs to under-

stand all the parts that make up the broadcast in order to infer s. For both classes of

protocols, the authors show that a broadcast encryption scheme with communication

35

complexity κc must impose an average storage complexity of κs ≥
(N

r)
1/κc

8rκc
. Additionally,

for the OR protocols they show that the bound is essentially tight, by providing a simple

construction in which the number of keys stored by each user is
(

(N
r)

1/κc

c
− 1
)
/r.

3.1.3 Beyond the Lower Bounds

Subsequent research has focused on eluding such lower bounds by twisting the underlying

model. This is the case, for example, for the multicast encryption setting, where par-

ticipants are required to update their secret information each time the set of privileged

users changes (stateful setting).

The scheme of Kumar et al. [59] also beats the lower bound proved in [62], by re-

stricting the problem of broadcast encryption to the case that a single message has to be

broadcast (also known as the blacklisting problem). In particular, [59] provides two con-

structions with no computational assumptions, that achieve communication complexity

O(r logN) and storage complexity respectively O(r logN) and O(r2).

Another line of development was suggested by Garay et al. in [46] where, to cope

with the growth of the total number of revoked users during the lifetime of a broadcast

encryption scheme and the consequential degradation of the system performances, the

authors introduce the notion of long-lived broadcast encryption. The idea is to give

each participant a “card” containing a set of keys, where the cards of two distinct users

are not necessarily disjoint. Whenever a user needs to be removed from the system

(either because his contract runs out or because he is discovered as a traitor), all the

keys contained in his card get revoked; such keys are also crossed out from those cards

(belonging to legal users) that overlap with the card to be removed. As more cards get

revoked, it may happen that the fraction of keys crossed out in a legal card approaches

a threshold above which the card is no longer functional: such card is called dead. Dead

cards are not replaced immediately, however; rather, the sender uses unicast to deliver

the content to the holders of dead cards, up until the time there are sufficiently many

dead cards to justify rekeying, When rekeying is deemed appropriate, a new epoch starts

36

and the sender replaces not only the dead cards, but also those “close to die.” Because

long-lived broadcast encryption aims at improving performance of the system in the long

run, the efficiency of schemes designed in such model is better described by a somehow

different parameterization than the one we have been looking at so far. In particular, the

authors suggest to consider the trade-off between the number of keys per card (which is

analogous to the storage complexity) and the expected number of dead cards that can

be tolerated before a specific user needs to be recarded (which in a sense is an extension

of the communication complexity). Three concrete schemes are presented in [46]: all

of them require Ω((r logN + log 1/ε) log 1/γ) keys per card and can tolerate on average

O(r) dead cards before require recarding, where γ is a measure of the overlap that is

allowed between users’ cards, and ε is an error probability governing the security of the

construction.

The schemes described so far are based on tools from Combinatorics and symmetric-

key Cryptography. The literatures also contains broadcast encryption schemes which

employ public-key techniques, but since they also provide additional functionalities, we

will treat them separately in Section 3.3. Here we observe that when using asymmetric

encryption, the storage requirement on the end users is effectively split into storage of

public information and storage of private information. Most existing solutions strive to

minimize both quantities at the same (although the bias is always toward the least private

storage when a trade-off is inevitable). The recent work of Boneh et al. [20] instead shows

that, if one can maintain at each end user a very large public storage (proportional to

the size of the entire user population), then it is possible to obtain broadcast encryption

schemes with constant communication complexity and constant private user storage, at

the cost of having encryption/decryption complexities proportional to the number of

recipients.

An interesting variant of the broadcast encryption problem has recently been pro-

posed by Barth et al. in [4]. In line with the growing public awareness of the privacy

issues related to electronic communication, the authors of [4] argue that it may be desir-

37

able to protect not only the content of the broadcast, but also the recipients’ identities.

The combination of these two properties gives rise to what the authors of [4] term a

private broadcast encryption scheme. As proof-of-concept, Barth et al. also suggests a

generic and a number-theoretic construction with communication complexity linear in

the number of recipients.

3.2 Traitor Tracing

Traitor tracing schemes constitute a very useful tool against piracy in the context of

digital content broadcast. They are multi-recipient encryption schemes that can be

employed by content providers that wish to deliver copyrighted material to an exclusive

set of users. Each user holds a decryption key that is fingerprinted and bound to his

identity. In the case of a leakage, a specialized traitor tracing algorithm is run to uncover

its source. Therefore, a traitor tracing scheme deters subscribers of a distribution system

from leaking information by the mere fact that the identities of the leaking entities (the

traitors) can be revealed.

A traitor tracing scheme consists of the following four algorithms:

• key assignment algorithm: used in the setup phase by the system manager

to assign fingerprinted secret information to each user, that enables the user to

decrypt, but at the same time is traceable in case of user misbehavior;

• encryption algorithm: run by the data supplier to create a ciphertext from the

corresponding message;

• decryption algorithm: given in input the encrypted content and the secret key

of a user, output a possibly personalized variant of the original message;

• tracing algorithm: executed by the system manager in case that a leakage is

discovered, to expose the identities of the traitors.

38

To be more precise in the formalization of a traitor tracing scheme it is necessary to

define the key characteristics of the setting under analysis. The most important trait

to specify is the kind of piracy strategy that the system is supposed to thwart. Two

natural strategies that can be employed by the pirates to enable illegal mass-access to the

copyrighted material are: (1) leaking the decryption keys, and (2) leaking the decrypted

content. Consequently, traitor tracing proposals can be categorized according to the

piracy strategy that they aim to contrast.

3.2.1 Tracing Based on Leaked Decryption Keys

Consider the case of a group of users (the traitors) that subscribe to the system with

the goal of extracting the decryption keys from their decoders and combine all their

secret-key material to obtain an illegal decryption device (the pirate decoder) that is

then sold on the black-market. If the encryption scheme used in the system assigns

the same key to all the users, then such a strategy would be completely risk-free for

the pirates, since their identities are totally unrelated to the decryption key within the

illegal box. Even if decryption keys are fingerprinted and bound to user identities, the

pirates may still hope be able to break the correspondence between keys and users by

combining their keys together to obtain a working decryption key that is different from

all their own keys. An appealing feature of this kind of piracy (from the pirates’ point

of view) is that it only requires an initial effort, after which all the content distributed

by the system will be available in the black-market at no extra cost. For these reasons,

this piracy strategy is the most likely to arise, and it has been considered extensively

in the cryptographic literature. The goal is to make sure that when a pirate decoder is

discovered, the authorities can trace the identities of the users that contributed in its

construction by employing the traitor tracing algorithm.

The first formal definition of traitor tracing scheme appears in Chor et al. [28, 29].

To measure the resiliency of a system to collusion of traitors, the authors introduce the

39

notion of c-traceability :1 intuitively, a scheme is c-traceable if, given access to a pirate

decoder built by combining at most c decryption keys, it is possible to trace in polynomial

time at least one of the traitors that contributed in its construction. In [28], the authors

presents several constructions, all based on a probabilistic design: each user possesses a

different subset of a set of keys and tracing is achieved using the properties of the key

assignment. The best of their constructions can guarantee c-traceability, while requiring

storage and decryption complexity O(c2 log2 c log(N/c)) and communication complexity

O(c3 log4 c log(N/c)). In fact, the authors also consider other solutions that achieve

better parameters by assuming that not only the secret keys assigned to the user, but also

some of the design choices are kept secret. Under this assumption, the authors provide

a scheme that, for any 0 < α < 1, provides c-traceability with probability 1 − α, and

requires storage and decryption complexity O(log(N/α) log(1/α)) and communication

complexity O(c log(N/α) log(1/α)).

Explicit combinatorial constructions of traitor tracing schemes were later imple-

mented by Stinson and Wei in [77]. The efficiency of the resulting schemes is asymp-

totically worse than those in [28], but for practical, small values of c and N , they may

actually be better. The authors additionally exploit the connection between traitor

tracing schemes and other combinatorial objects to translate known lower bounds from

combinatorics to the traitor tracing setting.

Typical applications of traitor tracing are in the entertainment industry, where piracy

is only a concern in the case the illegal device is capable of correctly decrypting the en-

tire scrambled content. Indeed, pirates would arguably have few customers in the black-

market if the stream recovered by illegal boxes had 10% of each frame blanked out.

Moving from this observation, in [66, 29] the authors consider the notion of threshold

traitor tracing scheme, where the tracing algorithm is only required to guarantee expo-

sure of the traitors’ identities for pirate decoders whose decryption probability is better

1In [28], the authors actually use the term resiliency, rather than traceability. Subsequent work

has adopted the latter terminology and we also prefer it here to avoid confusion with resiliency in the

context of broadcast encryption.

40

than a given threshold β. (In the model of [28], successful tracing is required for any

illegal box that decrypts with non-negligible probability.) Thanks to such relaxation, the

schemes presented in [66] are more efficient than the fully traceable counterparts in [28];

in particular, one construction achieves storage complexity O(c/β log(N/α)), commu-

nication complexity linear in the maximum size c of coalition and constant decryption

complexity. They also show how to improve the storage per user by a factor of roughly

k/ log k at the cost of increasing the communication complexity by a factor of roughly

log k.

All the constructions described so far are combinatorial in nature and provide prob-

abilistic tracing guarantees. In [17], Boneh and Franklin present an efficient public-key

traitor tracing scheme, with deterministic c-tracing based on an algebraic approach. At

a high level, the construction can be seen as an extension of the ElGamal encryption

scheme to the multi-recipient setting. Rather then being based on the discrete logarithm

problem, the scheme of [17] hinges upon the (computationally equivalent) representation

problem: given g1, . . . , g2c elements from a cyclic group of prime order p (called a base),

as well as y
.
= gx1

1 ·. . .·gx2c
2c for random (x1, . . . , x2c) ∈ F2c

p , recover (x1, . . . , x2c). The pub-

lic key of the scheme consists of a base g1, . . . , g2c and a value y. Encryption is performed

by masking the message with ya for random a ∈ Fp, and including the values ga
1 , . . . , g

a
2c

in the ciphertext, similarly to ElGamal encryption. Decryption requires knowledge of a

representation of y with respect to the base g1, . . . , g2c; given that, one can easily recover

the mask ya from the information in the ciphertext. To reduce user storage to O(1),

each user i is given one such representation in an implicit form, consisting of a single

value θi ∈ Fp: a representation of y is then obtained by multiplying θi by a codeword

γ(i) belonging to a fixed and publicly known linear space tracing code Γ.

Boneh and Franklin present several tracing algorithm for their construction, each

achieving a different trade-off between efficiency and the assumption on the implemen-

tation on the pirate decoder. The less demanding, and hence more widely applicable,

tracing model is the black-box model, in which the tracing algorithm access the pirate

41

decoder only by querying it on several inputs (this is the same model originally consid-

ered in [28]). In fact, the work of [17] refines this model into two variants: full-access

black-box tracing and minimal-access black-box tracing. Full-access black-box tracing

requires the pirate decoder to output either the recovered plaintext or the special re-

jection symbol “invalid” upon each query from the tracing algorithm; minimal-access

black-box tracing only demand the illegal box to output either “valid” or “invalid” when

fed with a ciphertext from the tracer. To achieve black-box tracing, [17] proceeds by

first solving the black-box confirmation problem: Given a subset of c users suspected of

treachery, the goal is to point out at least one of the traitors whenever the set of suspects

actually includes all the traitors, while never accusing an innocent user. A black-box

confirmation algorithm implies an exponential-time strategy for tracing, that may have

to go through all possible subsets of c users out of a population of N participants. How-

ever, the author argue that circumstantial evidence may allow the tracer to narrow the

search down to few sets of suspects, in which case black-box confirmation can be used

effectively.

To obtain polynomial-time tracing, [17] also considers the non-black-box model, based

on the assumption that any working pirate decoder must contain a valid representation

of y, and that it is possible to efficiently extract such secret information from the pirate

box. In this model the authors show how to exploit techniques from Code Theory to

efficiently recover all the keys that were used to construct the illegal box.

Another scheme achieving black-box traitor tracing appears in [57], where Kiayias

and Yung show that if the plaintexts to be distributed can be calibrated to be large

(rather than having length independent of the number of traitors and the size of the

user population), then it is possible to obtain ciphertexts with constant expansion rate.

Their solution is based on the frame-proof codes of Boneh and Shaw [22, 23] which,

for an error probability of ε, have a required length of O(c4 log(N/ε) log(1/ε)). Both

plaintexts and ciphertexts in the scheme of [57] have size proportional to the length of

the code; the storage complexity is O(c4 log(N/ε) log(1/ε)) as well.

42

Regardless of their black-box versus non-black-box nature, all traitor tracing algo-

rithms described so far are designed to be run by the system manager, and are crucially

based on his knowledge of all the secret information that was distributed to the sub-

scribers in the setup phase. As first noticed by Pfitzmann in [69], such design suffers

from an intrinsic limitation, namely it cannot provide non-repudiation. Indeed, even if

the pirate decoder contained all the decryption keys that were used in its construction in

an explicit form, and it were possible to extract them from the illegal box, there would

always be the possibility that the decoder was in fact purposely constructed by the sys-

tem manager with the malicious intent of framing innocent users. For this reason, the

result of the tracing algorithm in the model of [28] can never be used by the system man-

ager as evidence that the users blamed as pirates are indeed guilty of treachery: since

each user shares his decryption keys with the system manager, the mere presence of the

user’s keys in the pirate box does not imply the user’s participation in its construction.

To overcome this limitation, [69] introduces the notion of asymmetric traitor tracing.

In this model, (part of) the secret information that a subscriber gets upon registration

is obtained from the system manager in an oblivious fashion. Consequently, the system

manager does no longer know all the secret information possessed by the users. Thus,

if a pirate decoder is discovered and the tracing algorithm run to expose the identities

of the pirates, the system manager obtains some secret data which it could not have

produced on its own, so that the result of the tracing algorithm provides actual evidence

of the treachery.

The recent work of [27] proposes an orthogonal direction along which the tracing

process can be made asymmetric, introducing the notion of (local) public traceability :

Whereas in traditional traitor tracing schemes only the security manager could execute

the tracing procedure (thanks to the knowledge of some piece of information whose

secrecy is crucial for the overall security of the system), in a scheme with public trace-

ability everyone can run the tracing algorithm (or at least its preliminary, interactive

part which requires the availability of the pirate decoder, in which case one talks of

43

local public traceability). Notice, however, that this per se does not guarantee the non-

repudiation property of the asymmetric tracing of [69], since in the work of [27] the

system manager still knows the secret information of each user.

The work of Kurosawa and Desmedt [60] presents lower bounds for one-time trace-

ability in the traitor tracing model of [28]. They also provide an optimal one-time

traceable scheme, which essentially matches their lower bound. The work of [60] also

contains a traitor tracing scheme that can be used for multiple transmission (as those

in [28]), in the public-key setting. The latter scheme was insecure as presented in [60],

but a simple fix was given by Kurosawa and Yoshida in [61], where the authors addition-

ally show how to use linear codes to obtain efficient public-key traitor tracing schemes,

which include the construction of [60] and [17] as specific instances. The authors of [60]

also consider two constructions for (a variant of) the asymmetric model of [69]. The first

scheme guarantees non-repudiation (in a computational sense) by having the secret key

of the subscribers being generated by a group of external helper agents. (The system

manager can still detect treachery on its own, using the traitor tracing algorithm.) The

second scheme works in the same model of [69], and (although efficient) it can only be

used in a single transmission.

An efficient traitor tracing scheme providing non-repudiation is due to Kiayias and

Yung [56]. Building on previous unsuccessful attempts, the authors show how to exploit

oblivious polynomial evaluation to efficiently guarantee that the system manager does

not get enough information to frame innocent users. The traitor tracing scheme of [56]

achieves essentially the same efficiency parameters of [17], in the asymmetric traitor

tracing model. In particular, the storage complexity is constant, and communication

and encryption complexity are linear in the number of traitors. The scheme is public-

key based and provides non-black-box tracing.

An interesting impossibility result in the context of black-box traitor tracing is given

in [55], where Kiayias and Yung present an effective self-protecting strategy that pirates

can employ to immunize their illegal boxes against a large class of traitor tracing algo-

44

rithm. This mechanism allows the illegal box to detect whether a given ciphertext is

valid, i.e. contains some content distributed by the data supplier, or invalid, i.e. it was

supplied by the tracer to expose the traitors identities. The strategy works assuming a

coalition of ω(logN) traitors and is effective in evading tracing in schemes that strive

to achieve low communication complexity, including the efficient ones proposed in [60]

and [17]. Remarkably, the original constructions of [28, 29] are not affected by this

piracy mechanism, so that the work of [55] in a sense provides a separation between the

black-box capabilities of [28, 29] and of [60] and [17].

We remark that most traitor tracing schemes in the literature do not aim at guaran-

teeing the traceability of traitors when the entire user population conspires against the

data provider to create pirate decoders. If one insists on such strong guarantee (called

full-traceability), the current best solution, due to Boneh et al. [21], entails O(
√
n) com-

munication encryption and public storage complexity, and constant private storage.

3.2.2 Tracing Based on Leaked Decrypted Content

Another natural piracy strategy is the following. The pirates first subscribe to the

system, and whenever scrambled content is distributed by the data supplier, they decrypt

it and then rebroadcast it in the clear to their own set of customers. It is arguably less

practical for a group of pirates to follow this strategy, as it involves the maintenance of a

separate broadcast infrastructure to redistribute the content to the black-market. This

clearly entails higher cost for the pirates, and also higher visibility and consequentially

higher risk of being discovered. For these reasons, fewer proposals of traitor tracing

schemes actually address this kind of piracy threat.

One such proposal is due to Fiat and Tassa [44] who employ watermarking techniques

(similar to Boneh and Shaw’s frame-proof codes [22]) to allow the system manager to

trace the identities of the traitors in case that a pirate rebroadcast is discovered. The

model assumes that the data supplier has an unlimited stream of content to broadcast,

split into equal-length segments. Each segment is delivered to the user population via

45

a dedicated transmission. In fact, to achieve c-traceability, watermarking is used to

produce several variants of each segment. Variants are distributed in a two-step trans-

mission: first, personalized keys are distributed to the users via any broadcast encryption

scheme; then, each variant is encrypted under its own key.

Tracing in this model is an iterative process: once a pirate rebroadcast has been

found, the tracer start to observe which variant of the segment was available to the

pirates, and bases the broadcast of the subsequent segments on such observation. The

efficiency of dynamic traitor tracing schemes is measured in terms of the number of

distinct variants needed, and of the number of rounds needed in order to nail down the

identities of all the traitors (convergence time).

In [44], the authors present three deterministic schemes. The first scheme requires

no more than c+1 variants for each segment, but its convergence time is exponential in

N . The second scheme requires 2c+ 1 variants per segment, but detects all the traitors

within O(c logN) steps. The third scheme requires c + 1 variants, but its convergence

time is O(3cc logN).

Berkman et al. [9] improved the results of [44] providing a scheme that, using c + 1

variants, can trace c traitors in Θ(c2 + c logN) rounds. This scheme is quite involved

and the hidden constants are large. Alternatively, the authors define other two schemes:

the first locates c traitors in O(c2/d+logN) rounds, using c+d+1 variants (1 ≤ d ≤ c);

the second requires cd+ 1 variants (d ≥ 2) and locates c traitors in O(c logcN) rounds.

The work of [9] also contains lower-bound showing that the above results are optimal

for almost any value of d. In particular, the authors prove that, using c+d variants, the

converge time to locate c traitors (when c is not a priori known) is Ω(c2/d+ c logd+1N).

This bound is tight when d is a constant or when it is super-linear in c; otherwise the

upper-bound is off by a factor of log c.

Safavi-Naini and Wang [71, 72] points out two limitations in the model of [44]. First,

dynamic traitor tracing is subject to the delayed rebroadcast attack. The attack is

effective because, during tracing, a dynamic scheme encodes a segment s based on the

46

feedback observed on the pirate rebroadcast for segment s− 1. Second, dynamic traitor

tracing schemes impose a substantial computational overhead on the system manager,

who is required to compute the assignment of variants to users on the fly. To address

these shortcomings, Safavi-Naini and Wang [71] propose the notion of sequential traitor

tracing. In order to avoid the dependence of the broadcast on the feedback from the

pirate rebroadcast (which is the cause of both the above limitations in dynamic traitor

tracing), variant-assignment for each segment is based on a predefined table. The work

of [72] presents two concrete schemes: one based on a number-theoretic construction,

and another based on the use of error-correcting codes.

3.3 Trace and Revoke Schemes

In Section 3.1 and Section 3.2, we cover the literature related to broadcast encryption

schemes and traitor tracing schemes. It is interesting to notice that broadcast encryption

and traitor tracing schemes address orthogonal issues: the latter allows to discover the

identities of misbehaving users that can then be excluded from subsequent broadcasts

with the revocation capabilities of a broadcast encryption scheme. Such observation,

first explicitly expressed in [45], has led most of the subsequent related literature to

treat broadcast encryption and traitor tracing jointly, under the name of Trace and

Revoke schemes.

3.3.1 Secret-Key Trace and Revoke Schemes

The work of Stinson and Wei [78] presents a very general (though not efficient) technique

to add broadcasting capabilities to a traitor tracing scheme by expanding each secret

key in the universe of keys into a set of keys.

This approach was then extended by Gafni et al. in [45], where the authors discuss

methods to augment broadcast encryption schemes with traceability functionalities, and

conversely, to build revocation capabilities into traitor tracing schemes. In the first

47

case, the idea is to introduce a suitable number of clones of the universe of keys, and

for each key that a user was supposed to get in the original scheme, he now receives

a random key-clone from the corresponding set. Tracing is then based on the fact

that different users are not likely to share the same random key-clones. If the storage

complexity in the original broadcast encryption scheme is κs > 4c2 logN , then the

storage complexity of the resulting scheme remains unchanged, while the communication

complexity deteriorates by a factor of 2c2, where c measures the level of security of the

traceability algorithm (c-traceability, see Section 3.2).

In the second case (adding revocation to traitor tracing schemes), the universe of

keys is again cloned, but this time each user gets all the key-clones corresponding to his

original set of keys, so that the storage per user increases. Then, the resulting storage

and communication complexity increase by a factor of r/c.

In [65], Naor et al. present a symmetric-key trace and revoke scheme for the stateless

receiver setting. In this setting, each user is given a fixed set of keys which cannot

be updated throughout the lifetime of the system. In particular, keys do not change

when other users join or leave the system, nor they evolve based on the history of

past transmissions. Instead, each transmission must be decrypted solely on the base of

the fixed initial configuration of each user’s decryption device. The stateless receivers

setting realistically models common practical scenarios, in which receivers might not be

constantly on-line to view past history or update their secret keys, or in which keys

might be put “once-and-for-all” into a write-once tamper-resistant device.

An important contribution of [65] is to refine the class of OR protocols [62] by

defining the Subset-Cover Framework, a powerful paradigm for the formulation and

security analysis of revocation schemes. The main idea of the framework is to define

a family S of subsets of the universe N of users in the system, and to associate each

subset with a key, which is somehow made available to all the users belonging to the

given subset. When the sender wants to broadcast a session key to all the subscribers

but those in some set R, it “covers” the set of privileged users using subsets from the

48

family S (i.e. the sender determines a partition of N \ R, where all the subsets are

elements of S), and then encrypts the session key with all the keys associated to the

subsets in the found partition.

A revocation scheme within the Subset-Cover framework is fully specified defining the

particular Subset-Cover family S used, the algorithm to find the cover for the authorized

set of subscribers and the key assignment employed to (implicitly) deliver to each user

the key corresponding to the sets to which he belongs. Specific examples include the

Complete Subtree (CS) method and the Subset Difference (SD) method: the first is based

on an information-theoretic approach and achieves storage complexity O(logN) and

communication complexity O(r logN); the second employs computational techniques

to lower the communication complexity to O(r) at the cost of increasing the storage

complexity by an extra logN factor. Additionally, both schemes support an unbounded

number of broadcasts, and allow to revoke an a priori unbounded number of users. In

particular, even the coalition of all the “non-privileged” users combined cannot decrypt a

given transmission, even if this set is adaptively chosen by a central adversary. Finally,

the above features also imply that consecutive broadcasts can revoke arbitrary and

potentially unrelated subsets of users, and no “key maintenance” is necessary.

In the CS scheme, users are organized in a tree structure as leaves of a complete

binary tree TCS of height logN . The Subset-Cover family SCS is then set to be the

collection of all the complete subtrees of TCS. More precisely, if vj is a node in TCS, the

generic Sj ∈ SCS is the set of all the leaves of the complete subtree of TCS rooted at

vj (thus, in this case |SCS| = 2N − 1). To associate a key to each element of SCS, the

trusted initializer of the system assigns a random number Lj to each node vj in TCS,

which is then used to perform all the encryption/decryption operations relative to the

subset Sj. Furthermore, since each user needs to know the keys corresponding to all the

subsets he belongs to, during the subscription step, each subscriber get the keys relative

to each node in the path from the root down to the leaf representing the subscriber.

To improve the communication complexity of the CS method, in the SD scheme

49

each user belongs to more subsets, thus allowing for greater freedom (and hence higher

efficiency) in the choice of the cover. As before, users are associated to the leaves of a

complete binary tree TSD, but the generic subset Sij is now defined in term of two nodes

vi, vj ∈ TSD (with vi ancestor of vj), called respectively primary root and secondary root

of Sij. Specifically, each subset Sij consists of all the leaves of the subtree rooted at vi

except those in the subtree rooted at vj. The initialization phase follows a computational

approach that defines the keys Lij’s in term of a limited amount of random information,

called labels. To do so, the system manager associates a random number Labeli to each

internal node vi in TSD. Then, to generate a label for each subset Sij, a pseudo-random

number generator [13] G : {0, 1}m −→ {0, 1}3m is used, where m is the desired length of

the keys Lij. For notational convenience, given an input x, we denote with GL(x) the

m leftmost bits of G(x), with GR(x) the m rightmost bits of G(x), and with GM(x) the

remaining m central bits of G(x). Using the generator G, we can express the relationship

between Labelij and Labelil (with vl parent of vj) as follows:

Labelij =

 GL(Labelil), if vj is the left child of vl,

GR(Labelil), if vj is the right child of vl.

Finally, the key Lij associated to the subset Sij can be derived from Labelij as

Lij = GM(Labelij). Under this key-assignment, a user u can derive the O(N) keys

corresponding to subsets he belongs to, in terms of the O(log2N) labels {Labelij}

where vi is an ancestor of u and vj is the sibling of a lower-level ancestor of u.

In [65], Naor et al. present a black-box tracing algorithm that works in the thresh-

old traitor tracing model. Such method can be applied to any revocation scheme in

the Subset-Cover framework satisfying the property that, for any subset S ∈ S, there

exist two roughly equal-sized subsets S1, S2 that partition S (bifurcation property). The

tracing guarantees provided by the scheme of [65] are slightly relaxed with respect to

standard black-box traitor tracing: the goal of the tracer is to either discover the identity

of one of the traitors or determine a partition of N \ R that render the illegal decoder

useless. At a high level, the idea is to start with a partition of N \R and iteratively split

50

one of the subset containing at least one traitor until we either get a singleton (which

exposes the identity of a traitor), or we obtain a partition which renders the illegal box

useless. To implement this strategy, the authors additionally present a subset tracing

subroutine that efficiently tests whether a given subset contains at least one traitor using

a binary-search-like approach.

An improvement on the SD method is due to Halevy and Shamir [51], under the

name of Layered Subset Difference (LSD) method. The construction is again based on

the idea on organizing the users as leaves of a complete binary tree, but in [51] the

authors additionally structure the levels of the tree into layers, and introduce shortcuts

to jump from one level to another in a lower layer. This allows to reduce the storage

complexity to O(log1+εN), for any ε > 0 at the cost of increasing the communication

complexity by a constant factor of 1/ε.

More in details, the LSD scheme reduces the size of the family SSD by only consid-

ering a subcollection SLSD of useful subsets. The key observation to reach this goal is

that any subtree difference set Sij can be rewritten as the disjoint union Sik ∪ Skj, for

any node vk lying in the path from vi to vj.

To define the sub-collection SLSD, consecutive levels of the tree TSD are grouped into

layers, which induces the notions of local and special subsets of SSD . In particular,

local subsets are those whose primary and secondary roots both lie within the same

layer, while special subset are those having as their primary root a node lying exactly

on the boundary between two adjacent layers. The sub-collection SLSD consists exactly

of all the local and special subsets of SSD. In this way, the number of proto-keys that

each user needs in order to decrypt each broadcast can be reduced, while the Center

can preserve the functionalities of the system by at most doubling the size of the cover.

This is because any subset Sij ∈ SSD can be obtained as the union of a local subset and

a special subset in SLSD.

In [51], the authors also considered an alternative approach to the problem of spec-

ifying the set of revoked users R that should not be a able to recover the broadcasted

51

message. Such technique is based on the use of Inclusion-Exclusion Trees (IE-Trees),

which offer a convenient way of describing a large set of privileged users with relative

few nested inclusion and exclusion conditions on the nodes of the tree TSD.

The advantage of such technique is that from an IE-Tree it is possible to derive a

cover whose size is proportional to the number of conditions specified by the IE-Tree

itself.

In applications where user storage is at premium (e.g., in the context of sensor net-

works) requiring ω(logN) storage at the end user could be problematic. In [49], the

authors argue that, in such scenarios, it would be preferable to relax the stateless re-

ceivers requirement and assume that the receivers are equipped with a smaller read-write

memory to store the user’s secret information. Moving from these considerations, in [49]

the authors propose a new broadcast encryption scheme, called Stratified Subset Dif-

ference (SSD) method, which maintains the O(r) communication complexity of the SD

method, but requires only O(logN) storage complexity. The computation complexity,

however, becomes proportional to O(N1/d), where d is a parameter of the scheme.

The recent paper of [54] presents three new broadcast encryption schemes for stateless

receivers that fit within the Subset Cover framework of [65]. The first scheme, the

Skipping scheme, improves the transmission overhead when the fraction of revoked users

(r/N) is above a suitable threshold, but performs poorly below it. The degree of the

improvement and the exact value of this threshold can be controlled by two parameters,

p and c: the larger p, the larger the improvement; the larger c, the lower the threshold.

However, the storage requirement for the Skipping scheme grows with p and c as cp+1.

The second scheme, the Cascade scheme, is developed to address settings with small

ratio of revoked users, and results in a solution that has the same transmission overhead

as the SD scheme below the threshold, and slightly better above it. The storage per

user is roughly c log2N , where the parameter c controls the threshold as in the Skipping

scheme. The third scheme proposes a combination of the above two schemes, yielding

a transmission overhead which is never worse than that of SD and is actually better

52

for value of r above the threshold. The storage requirement is roughly the sum of the

storage requirements of the previous two schemes.

The work of [53] is driven by the assumption that most existing solutions have

overemphasized the relative importance of the communication complexity with respect

to the other parameters of the scheme. The authors then describe a generic transforma-

tion that reduces the storage complexity and/or decryption complexity of a broadcast

encryption scheme at the expenses of its communication and encryption complexity.

The main idea of the transformation is to arrange the user population in a high-degree

(rather than binary) hierarchy, and iteratively apply the given scheme to small subset

of users. Although this typically results in a worsening (rather than an improving) of

the asymptotic performance of the original scheme, the “transformed” version may have

better concrete performance for some choice of the parameters.

3.3.2 Public-Key Trace and Revoke Schemes

The work surveyed so far focused on the secret-key setting, where the only entity able to

broadcast to the user population is the trusted initializer and maintainer of the system.

A public-key solution, instead, allows the trusted system manager to publish a short

public key that enables any untrusted party to selects its own set of privileged users and

broadcast to them using the underlying infrastructure.

Two trace and revoke schemes have been proposed in the public-key setting, by Naor

and Pinkas in [67] and Tzeng and Tzeng in [80]. Both schemes have similar constructions

and efficiency parameters: the common idea is to combine Berkovits’ proposal [10] with

Feldman’s verifiable secret sharing [42], by lifting the shares constituting the broadcast

message to the exponent. This allows (under standard computational assumptions) to

reuse the same polynomial across broadcasts, and thus to reduce the communication

complexity from O(N − r) to O(r). Below, we describe the construction of [80], who

emphasize more the public-key nature of their scheme. To achieve security against up

to r revoked users, the sender sets up a public key of size O(r) by selecting a random

53

r-degree polynomial P over a finite field Fp and a generator g of a cyclic group G of

order p, and then publishing:

〈g, gP (0), gP (1), . . . , gP (r)〉.

Upon joining the system, a user i gets the value of the polynomial P at a random point

xi. In a public-key system, any party can broadcast a secret s ∈ G to the users in the

system, possibly revoking up to r of them. To do so, the broadcaster selects a random

d ∈ Fp and broadcast the message:

〈sgdP (0), gd, (z1, g
dP (z1)), (z2, g

dP (z2)), . . . , (zr, g
dP (zr))〉

where z1, z2, . . . , zr are the identities of the revoked users. Message decryption amounts

to computing the value gdP (0), since then it is possible to recover s from the first com-

ponent of the ciphertext. To compute gdP (0), user i first raises gd (included in the

ciphertext) to his secret share P (xi), and then uses interpolation (in the exponent) of

the resulting value together with the r values in the broadcast. Notice that any revoked

user is prevented from recovering the message, since the value resulting from his share

is already included in the broadcast, so that interpolation is not possible. The storage

complexity of the scheme is O(1), while the communication complexity is linear in r.

Both trace and revoke schemes proposed in [67, 80] provide traceability guarantees

and efficiency comparable to the traitor tracing scheme of [17]. They achieve a clean

combination of the ability to revoke up to an a priori bounded number of users, with

black-box confirmation guarantees. The also provide non-black-box traitor tracing, as-

suming the key extracted from the pirate decoder is in a suitable canonical form.

54

Chapter 4

Public-Key Broadcast Encryption

for Stateless Receivers

4.1 Introduction

As discussed in Chapter 3 (Section 3.1), one important distinction between various

broadcast encryption schemes is whether they are public-key or symmetric-key based.

In the latter variant, only the trusted designer of the system can broadcast data to the

receivers. In other words, in order to encrypt the content, one needs to know some

sensitive information (typically, the secret keys of all the users of the system) whose

disclosure will compromise the security of the system itself. Even though symmetric key

broadcast encryption is sufficient for many applications, it has a few shortcomings. For

example, it requires the sender to store all the secret keys of the system, making it a

single point of failure. Additionally, in certain situations we would like to allow possibly

untrusted users to broadcast information, which is not possible in the symmetric setting.

In contrast, in the public-key setting the trusted designer of the system publishes a

short public key which enables anybody to broadcast data, thus overcoming the above

mentioned deficiencies of the symmetric setting.

In this chapter, based on work first published as [34], we describe a construction of

55

public-key broadcast encryption for the stateless receivers setting, in which users hold

decryption keys that cannot be updated as the system evolves (cf. also Chapter 3,

Section 3.3.1).

Our construction extends the Subset-Cover Framework (cf. Section 3.3.1), initially

proposed by Naor et al. [65] for the case of symmetric-key broadcast encryption, to

the more challenging public-key setting. In fact, in [65] Naor et al. briefly mention

that the general Subset-Cover framework can in principle be adapted to the public-

key setting, by having the secret key of each subset Si replaced by some pair of pub-

lic/secret keys (PKi, SKi). Unfortunately, this creates the problem of how to compress

the exponentially-many public keys PK1, . . . , PKw to a manageable size. Naor et al. [65]

hint that the tools from Identity-Based Cryptography (cf. Chapter 2 Section 2.4) could

help for the (inefficient) CS method. However, Identity-Based Encryption (IBE), (cf.

Chapter 2, Section 2.4.1) alone is not sufficient for the more efficient SD method, since

it cannot support the key compression techniques of [65]. In fact, suitable key compres-

sion methods are much harder to come by in the public-key setting, and the question of

efficiently extending the SD method to the public-key setting was left as an interesting

open problem in [65].

4.2 Our Results

We resolve this problem in the affirmative, leveraging the concept of Hierarchical

Identity-Based Encryption (HIBE) (cf. Chapter 2, Section 2.4.2). In particular, we

show that one can get essentially all the benefits of the symmetric key versions of the

SD/LSD methods (including the same small storage per user) in the public-key setting,

while having a fixed constant size public key. As an intermediate step toward this goal,

we indicate which changes should be made to the general Subset-Cover framework of [65]

in order to translate it to the public-key setting, and also formally verify that “plain”

IBE is indeed sufficient to translate the (inefficient) CS method to the public-key setting.

The particular parameters we get can be summarized as follows when revoking r out of

56

N total users (in all cases, the public key size and the storage of the Center are O(1)):

• CS method. The ciphertext consists of r log(N/r) identity based encryptions,

each users stores O(logN) keys and needs to perform a single identity based de-

cryption.

• SD method. The ciphertext consists of (2r − 1) hierarchical identity based en-

cryptions (of “depth” at most logN each), each users stores O(log2N) keys and

needs to perform a single hierarchical identity based decryption.

• LSD method. For any ε > 0, the ciphertext consists of O(r/ε) hierarchical

identity based encryptions (of “depth” at most logN each), each users stores

O(log1+εN) keys and needs to perform a single hierarchical identity based decryp-

tion.

Comparison to Existing Public-Key Schemes. There already exist several (quite

similar to each other) public-key broadcast encryption schemes [67, 80, 36] in the state-

less receivers scenario, all based on the decisional Diffie-Hellman (DDH) assumption.

However, all these schemes can revoke up to an a-priori fixed number of users, rmax.

Moreover, the size of the transmission is O(rmax) even if no users are revoked. In con-

trast, the SD/LSD methods allow to revoke a dynamically changing (and potentially

unbounded) number of users r, at the cost of having O(r)-size ciphertext transmission.

More importantly, the reason the schemes of [67, 80, 36] support only a bounded num-

ber of revoked users, is that the public key (as well as encryption/decryption times) are

proportional to rmax. In contrast, the analogs of CS/SD/LSD schemes we construct all

have a constant size public key, and the decryption time is at most logarithmic in the

total number of users N . Finally, the schemes of [67, 80, 36] support only a limited

form of traitor tracing (either “non-black-box” or “black-box confirmation”), while (as

was shown in [65]) the CS/SD/LSD methods enjoy a significantly more powerful kind

of “black-box” traitor tracing.

57

4.3 Formal Model

4.3.1 BE: Syntax

Definition 27 (Public-Key Broadcast Encryption Scheme).

A BE scheme EBE is a four-tuple of probabilistic polynomial-time algorithms (Setup,

Register, Encrypt, Decrypt), where:

• Setup, the key generation algorithm, is run by the Center to set up the parameters

of the scheme. Setup takes as input a security parameter 1λ and possibly 1rmax

(where rmax is a revocation threshold, i.e. the maximum number of users that can

be revoked). The input also includes the total number N of users in the system.

Setup generates the public key paramsBE and the master secret key masterBE. The

Center publishes paramsBE and keeps masterBE secret.

• Register, the registration algorithm, is run by the Center to compute the secret

initialization data for a new user. Register takes as input the master secret key

masterBE and the identity u of the user, and outputs the new secret key SKu.

• Encrypt, the encryption algorithm, is used to encapsulate a given session key s

within an enabling block B. Encrypt takes as input the public key paramsBE, the

session key s and a set R of revoked users (with |R| ≤ rmax, if a threshold has been

specified to the Setup algorithm) and returns the enabling block B to be broadcast.

• Decrypt, the decryption algorithm, takes as input the public key paramsBE, the

identity u of a user, the user’s secret key SKu and an enabling block B. Decrypt

returns a session key s or the special rejection symbol ⊥.

A BE scheme EBE should satisfy the following correctness constraint: for any pair

(paramsBE, paramsBE) output by BE.Setup(1λ, 1rmax , N), any R ⊆ N , (|R| ≤ rmax), any

user u ∈ N \R with secret key SKu (properly generated for user u) and any session key

s:

s = BE.Decrypt(paramsBE, u, SKu,BE.Encrypt(paramsBE,R, s)).

58

4.3.2 BE: Security

A BE scheme EBE is secure against chosen-ciphertext attack if for all polynomially-

bounded N , no polynomial-time adversary A has a non-negligible advantage in the

following game:

Setup: The challenger runs algorithm BE.Setup(1λ, 1rmax , N); it then gives A the result-

ing system public key paramsBE and keeps the master secret key masterBE secret.

Phase 1: The adversary issues, in any adaptively-chosen order, queries q1, . . . , qm, where

each qj is one of the following:

1. Corrupt(u): the challenger runs algorithm BE.Register(masterBE, u) to generate

the private key SKu corresponding to user u, and sends SKu to A. Notice that if

a bound rmax was specified in Setup, then the adversary is restricted to corrupt at

most rmax distinct users via Corrupt(·) queries.

2. Decrypt(u,Bj): the challenger runs algorithm BE.Register(masterBE, u) to re-

cover the private key SKu corresponding to user u. It then runs algorithm

BE.Decrypt(paramsBE, u, SKu, Bj) and sends the resulting plaintext to A.

Challenge: Once A decides that Phase 1 is over, it outputs two equal length session

keys s0, s1 ∈M on which it wishes to be challenged. The challenger picks a random bit

b ∈ {0, 1}, sets B∗ .
= BE.Encrypt(paramsBE,R∗, sb), where R∗ .

= {u | A asked a query

Corrupt(u)}. The challenger sends B∗ as a challenge to A.

Phase 2: The adversary issues more queries qm+1, . . . , qn, where each qj is of the form:

1. Decrypt(u,Bj): the challenger first checks that either u ∈ R∗ or Bj 6= B∗ and if

so, it responds as in Phase 1.

Guess: The adversary outputs a guess b∗ ∈ {0, 1} and wins the game if b = b∗.

We refer to such an adversary A as an BE.IND-ID-CCA adversary. We define the

advantage of the adversary A in attacking the BE scheme EBE as:

AdvBE,A =

∣∣∣∣Pr[b = b∗]− 1

2

∣∣∣∣ .
59

The probability is over the random bits of the challenger and of the adversary.

We can also define the notion of selective-identity chosen-ciphertext security for BE

(BE.IND-sID-CCA). The game is exactly as for the BE.IND-ID-CCA case, except that

the adversary A discloses to the challenger the set R∗ of revoked users before the Setup

phase.

Definition 28 (Chosen-Ciphertext Security for BE).

A BE scheme EBE is (τ, qID, qC , εBE)-IND-ID-CCA (resp. IND-sID-CCA)-secure if for

any τ -time BE.IND-ID-CCA (resp. BE.IND-sID-CCA) adversary A that makes at most

qID chosen Corrupt queries and at most qC chosen Decrypt queries, it holds that

AdvBE,A < εBE.

We define chosen-plaintext security for a BE scheme according to an attack game

that is exactly as in the IND-ID-CCA game, except that the adversary is not allowed

to issue Decrypt queries. The adversary may still issue adaptive chosen Corrupt

queries.

Definition 29 (Chosen-Plaintext Security for BE).

A BE scheme EBE is (τ, qID, εBE)-IND-ID-CPA (resp. IND-sID-CPA)-secure if it is

(τ, qID, 0, εBE)-IND-ID-CCA (resp. IND-sID-CCA)-secure.

A Generalization of the Notion of Chosen-Ciphertext Security. In the defini-

tion of an IND-ID-CCA game, the adversary is allowed to “play” with the decryption

machinery as she wishes, subject only to the condition that she does not ask about

enabling blocks “closely related” to her challenge B∗.

In formalizing the notion of “close relationship,” the usual treatment is to impose a

minimal restriction to the adversary, just disallowing her to submit the challenge itself

to the decryption machinery. As already noted in [75, 2], such a mild constraint does in

turn restrict too much the class of schemes that can be proven secure, excluding even

schemes that ought to be considered secure under a more intuitive notion. For this

reason, in some scenarios, it seems more reasonable to consider a variant of the IND-ID-

60

CCA-security, to which we will refer to as generalized chosen-ciphertext (IND-ID-gCCA)

security, following the terminology introduced in [2].

In a generalized chosen-ciphertext game, the set of enabling blocks the adversary

is forbidden to ask about is defined in term of an efficiently computable equivalence

relation <(·, ·). In fact, in the case of a broadcast (as opposed to ordinary) encryption,

there is no unique decryption machinery, since the decryption algorithm can be used

with the secret key of any legitimate user. For this reason, in our setting we need to

consider a family of efficient equivalence relations {<u(·, ·)}, one for each user u. As in

the regular case [2], the equivalence relation <u(·, ·) corresponding to each user u needs

to be u-decryption-respecting : equivalent enabling blocks under <u(·, ·) are guaranteed

to have exactly the same decryption according to the secret data of user u. Finally, this

family is an explicit parameter of the scheme, and an IND-ID-gCCA proof of security is

always relative to the specified decryption-respecting family {<u(·, ·)}.

Given a decryption-respecting family {<u(·, ·)}, we define generalized chosen-ciphertext

security for a BE scheme by considering an attack game that is exactly as in the IND-

ID-CCA case, except that we disallow the adversary to issue Decrypt queries for which

<u(B,B∗) holds.1 Notice that the adversary may still issue adaptive chosen Corrupt

queries.

Definition 30 (Generalized Chosen-Ciphertext Security for BE).

A BE scheme EBE is (τ, qID, qCεBE)-IND-ID-{<u(·, ·)}-gCCA (resp. IND-sID-{<u(·, ·)}-

gCCA)-secure if for any τ -time BE.IND-ID-CCA (resp. BE.IND-sID-CCA) adversary

A that makes at most qID chosen Corrupt queries and at most qC chosen Decrypt

queries (parameterized by the decryption-respecting family {<u(·, ·)}), it holds that

AdvBE,A < εBE.

1This definition encompasses the notion of IND-ID-CCA security as the special case where each

relation <u(·, ·) is the equality relation.

61

4.4 Public-Key Extension of the CS Method

As already mentioned in Section 4.2, a näıve approach to the problem of transposing

the CS method to the asymmetric setting yields a total number of 2N − 1 public keys,

which makes it unfeasible to maintain them all explicitly. To overcome this problem, we

need a scheme that allows for an implicit and compact representation of all the public

keys, from which to easily extract the needed information: the functionalities of any

Identity-Based Encryption scheme come handy in this situation, yielding the efficient

solution described below.

As a preliminary step, a fixed mapping is introduced to assign an identifier ID(Sj)

to each subset Sj of the family SCS. For example, a simple mapping could consist of

labeling each edge in the complete binary tree TCS with 0 or 1 (depending on whether

the edge connects the node with its right or left child), and then assign to the subset Sj

rooted at vj the bitstring obtained reading off all the labels in the path from the root

down to vj.

Afterwards, the Center runs the Setup algorithm of an IBE scheme to create an

instance of the system in which it will play the role of the Root. Then, the Center

publishes the parameters paramsIBE of the IBE system and the description of the mapping

used to assign an identifier to each subset: these two pieces of data constitute the

compact representation of the public keys of all the subsets in the cover family SCS for

the CS method, and require only O(1) space.

To generate the private key LPri
j associated to a subset Sj ∈ SCS, the Center sets:

LPri
j ← IBE.Extract(paramsIBE, ID(Sj),masterIBE).

At this point, the Center can distribute to each subscriber the private data necessary

to decrypt the broadcast, as in the original, symmetric scheme. Moreover, whenever a

(not necessarily trusted) party wants to broadcast a message, it can encrypt the session

key s used to protect the broadcast under the public keys LPub
ij

= ID(Sij) relative to

all the subsets that make up the cover of the chosen set of privileged users. To this

62

aim, this party only needs to know the parameters of the IBE system paramsIBE and the

description of the mapping ID(·), and then it can compute:

Bj ← IBE.Encrypt(paramsIBE, ID(Sij), s)

for all the subset Sij in the cover.

Security. The IND-ID-CCA1-security2 of the scheme follows almost immediately from

the IND-ID-CCA security of IBE. Indeed, when revoking some set R of users, the ad-

versary does not learn any of the secret keys used for transmitting the message to the

remaining users N\R (since only sets disjoint from R are used in the cover), so the

IND-ID-CCA1-security of broadcast encryption follows by a simple hybrid argument

over the sets covering N\R.

A Concrete Instantiation. If we apply the above idea in conjunction with the specific

IBE scheme proposed in [81], the public-key extension matches the original variant in all

the efficiency parameters; more precisely, the storage requirement on each user is still

O(logN) and the transmission rate is r log N
r
, where r = |R|.

4.5 Public-Key Extension of the SD Method

To improve the transmission rate, the SD scheme uses a more sophisticated Subset-Cover

family S: each user will belong to more subsets, thus allowing for greater freedom (and

hence higher efficiency) in the choice of the cover. On the flip side, this will create a

problem of compressing the user’s storage which will need to be addressed.

Due to the large number of subsets that contain a given user, it is no longer possible

to employ an information-theoretic key assignment, directly associating a random key

to each element in the family S (as it was done in the CS method), because this would

require each subscriber to store a huge amount of secret data: to overcome this problem,

a more involved, computational technique is required.

2IND-ID-CCA1-security is different from IND-ID-CCA-security for the fact that in the case of IND-

ID-CCA1 the adversary is disallowed to ask Decrypt queries after she received the challenge ciphertext.

63

The idea behind the solution proposed in [65] is to derive the set of actual keys {Lij}

from some set of “proto-keys” {Pij} satisfying the following properties:

1. given the proto-key Pij it is easy to derive the key Lij;

2. given the proto-key Pil it is easy to derive the proto-key Pij, for any node vj

descendent of node vl;

3. it is computationally difficult to obtain any information about a proto-key Pij

without knowing the proto-key Pil for some ancestor vl of vj (and descendent of

vi).

In particular, the last property implies that given the knowledge of the key Lij it is

computationally difficult to recover the proto-key Pij.

Once we have defined a way to generate a family of proto-keys featuring the above

properties (which we will call a “proto-key assignment”), it is possible to make available

to each subscriber the O(N) secret keys corresponding to all the subsets he/she belongs

to, by giving him/her only O(log2N) proto-keys, as described below.

Let u be the leaf representing the user within the tree TSD and let rT be the root of

T . Furthermore, let rT ≡ u0, u1, . . . , ut ≡ u be all the ancestors of u on the path from

rT down to u, and denote by sh the sibling of uh, h = 1, . . . , t.

By definition, the subtree difference sets Sij containing u are precisely those whose

primary root vi is one of the uh’s and whose secondary root vj is a descendent3 of sh′

for some h′ > h.

For instance, among the subsets whose primary root is rT , the ones containing u

are those whose secondary root vj is a descendent of some sh. Notice that, by the

first property of the proto-keys assignment described above, to compute the key LrT vj

corresponding to such subset, it is enough to know the proto-key PrT vj
, which in turn

(for the second property) can be obtained from the proto-key PrT sh
; thus, by giving the

3For our purposes, a node v will be considered among its own descendants.

64

user the t = logN proto-keys PrT s1 , . . . ,PrT st , he/she will be able to efficiently compute

the keys relative to all the subsets SrT vj
he/she belongs to.

Repeating the same reasoning for all the logN ancestor uh of u, we can conclude

that O(log2N) proto-keys suffice to allow the user u to recover all the O(N) relevant

keys.

To extend the SD scheme to the asymmetric scenario, one would like to generalize

the basic idea used for the case of the CS method: namely, define an ID mapping for

all the subsets Sij ∈ SSD and then employ an IBE scheme to extract all the relevant

private keys. However, as already observed, to avoid an explosion of the user’s storage,

it is necessary to use a scheme satisfying the characteristic properties of a “proto-key

assignment,” which ordinary IBE schemes do not seem to support, for this would require

the capability of deriving “children” proto-keys from a given proto-key. Luckily, the

more powerful notion of general Hierarchical Identity-Based Encryption (cf. Chapter 2,

Section 2.4.2) offers the functionalities needed, leading to the solution described below.

At a high level, our construction proceeds as follows. First, we define a (non-binary)

tree T ′
SD, whose non-leaf vertices4 are associated in a natural way to nodes in TSD, and

whose leaves correspond to subsets of the cover family SSD. Then, we will decorate

T ′
SD with a labeling, which in turn will induce a mapping HID associating a hierarchical

identifier to all vertices in T ′
SD. Using a HIBE scheme, we can then associate a private

key to each vertex by first assigning the master secret key masterHIBE to the root of T ′
SD,

and then recursively associating to a vertex w the private key resulting by running the

HIBE.Extract algorithm (with w’s parent ’s private key) on the label of the edge going

into w.

The tree T ′
SD is constructed from the tree TSD in the following two steps:

1. For each internal node u in TSD, add a vertex w (associated to u) as a child to the

root of T ′
SD, and mark it as a non-leaf. Therefore, at Level1 of the tree T ′

SD there

4For the sake of clarity, we will refer to the nodes of T ′
SD as vertices, so as to distinguish them from

the nodes of TSD.

65

are exactly N − 1 vertices, corresponding to all the possible primary roots ui of a

generic subset Sij.

2. For each vertex w at Level1 of T ′
SD (and recursively for all non-leaf vertices at

lower levels):

(a) if w is associated to a leaf u in TSD, then add a single child to w in T ′
SD, and

mark it as a leaf;

(b) otherwise, w is associated to an internal node u in TSD. Let u` and ur denote

respectively the left and right children of node u in TSD. Then, add to w: 1)

a non-leaf child w` associated to u`; 2) a non-leaf child wr associated to ur;

and 3) another child, marked as a leaf.

Now, each leaf vertex w in T ′
SD corresponds to a subset of the cover family SSD as

follows. Consider the path p from the root of T ′
SD down to such a leaf w. Let wi be the

second vertex in the path p (i.e., wi is a vertex at Level1), and wj be the second-to-last

vertex in p (i.e. wj is the parent of w). Then, the subset corresponding to w is the

subset Sij, whose primary root is the node ui in TSD associated to vertex wi, and whose

secondary root is the node uj in TSD associated to vertex wj.

To label T ′
SD, we will reuse the ID(·) mapping that we introduced in discussing the

public-key extension of the CS method. Recall that ID(·) maps a node u in TSD into a

bitstring of 0’s and 1’s, according on u’s position within TSD. Then, we can label the

edges of T ′
SD as follows:

1. label all edges that lead into leaves of T ′
SD with ⊥;

2. label an edge from the root of T ′
SD to a vertex w at Level1 with the identifier ID(u)

corresponding to the node u in TSD associated to vertex w;

3. label all remaining edges with 0 or 1, depending on whether the edge is of the form

(w,w`) or (w,wr) (cf. step 2b. in the definition of T ′
SD).

66

Given such labeling of the edges of T ′
SD, we can define the hierarchical identifier

HID(w) of a vertex w of T ′
SD as the sequence of label read off the path from the root of

TSD′ down to w. In other words:

1. if w is a vertex at Level1, then HID(w) is the length-1 sequence 〈ID(u)〉, where u

is the node in TSD associated to w;

2. if w is an internal vertex at a deeper level, let w′ be w’s ancestor at Level1, and u

and u′ the nodes in TSD associated respectively to w and w′. By construction of

T ′
SD, u is a descendent of u′ in TSD, so that ID(u′) is a prefix of ID(u): ID(u) =

ID(u′) ◦ b1 ◦ . . . ◦ bh, for some h ∈ [1, logN]. Then:

HID(w) = 〈ID(u′), b1, . . . , bt〉.

3. if wl is a leaf in T ′
SD, and w is its parent, and HID(w) = 〈ID(u′), b1, . . . , bt〉, then:

HID(wl) = 〈ID(u′), b1, . . . , bt,⊥〉.

Notice that by the correspondence of subsets of SSD with leaves of T ′
SD, the mapping

HID(·) effectively applies to the Sij’s as well.

Given this definition of the HID(·) mapping, we can describe the initialization

BE.Setup for the public-key SD method as follows: the Center runs the HIBE.Setup

algorithm of an HIBE scheme and publishes paramsHIBE and a description of the mapping

HID(·) as the public key for the SD-based broadcast encryption scheme. Notice that

we have managed to produce a compressed representation of the public keys of all the

subsets of SSD in O(1) space.

Now, the distribution of the secret decryption data to the subscribers can be carried

out as another instantiation of the proto-keys assignment: The key LPri
ij relative to a

given subset Sij will be the private key extracted from the public key LPub
ij = HID(Sij).

67

Formally:5

LPri
ij ← HIBE.Extract(paramsHIBE, 〈ID(ui), b1, . . . , bh,⊥〉,Pij)

Pij ← HIBE.Extract(paramsHIBE, 〈ID(ui), b1, . . . , bh〉,Pil)

. . .

Pii ← HIBE.Extract(paramsHIBE, 〈ID(ui)〉),masterHIBE)

where ID(uj) = ID(ui) ◦ b1 ◦ . . . ◦ bh, ul is the parent of uj, and masterHIBE is the master

secret key output by the Setup algorithm and known only to the Root of the HIBE, role

that in our setting is played by the Center.

From the above definitions, it is clear that the first two properties of a proto-key

assignment are fulfilled; moreover, the validity of the third one follows from the security

of the HIBE scheme, that ensures the computational difficulty of obtaining a private key

for any identifier without knowing the private key of any ancestor lying higher in the

hierarchy of the system.

Direct consequence of the application of the proto-key assignment to the public-key

extension, is that each subscriber only needs to store O(log2N) proto-keys, as in the

original symmetric-key SD method. As for the communication complexity, the cover

finding algorithm characteristic of the SD method ensures that 2r − 1 ciphertexts will

suffice in the worst case to broadcast the session key to all the privileged users in the

system.

Security. The formal IND-ID-CCA1-security of the scheme again follows almost im-

mediately from the powerful security definition of HIBE. Indeed, when revoking some

set R of users, none of the proto-keys the adversary learns is an ancestor of any of the

hierarchical identifies corresponding to the sets covering N\R. This property is fairly

easy to verify, and a simple hybrid argument will again complete the security proof.

A Concrete Instantiation. When used in conjunction with the HIBE of [16] the

5We remark that the values of keys and proto-keys are not uniquely defined by these probabilistic

assignments. In particular, deriving the value of the “same” key twice from some of its ancestors will

likely result in different keys. However, any value we get is equally functional by the definition of HIBE.

68

asymmetric variation of the SD scheme proposed above requires users to store O(log2N)

keys, and it entails communication complexity O(r), matching the efficiency parameters

of the symmetric-key SD method.

4.6 Public-Key Extension of the LSD Method

As described in Chapter 3, Section 3.3, the LSD scheme [51] only differs from the SD

method of [65] for the use of a smaller subcollection SLSD of the Subset-Cover family

SSD. We can extend it to the asymmetric setting applying exactly the same idea used

to generalize the SD method to the public-key scenario: indeed, any HIBE scheme can

be employed to distribute the necessary proto-keys to the users of the system, accord-

ing to the same label-distribution strategy defined for the original LSD scheme in its

conventional symmetric mode.

A Concrete Instantiation. As for the efficiency parameters of such public-key ex-

tension, we can repeat the same discussion outlined for the SD scheme: namely, if we

use the HIBE proposed in [16] (which is currently the best known implementation), the

public-key extension maintains the same communication complexity and requires user

to store the same number of keys as in the original, symmetric LSD scheme.

4.6.1 Inclusion-Exclusion Trees

Our extension to the public-key setting can be coupled with the use of Inclusion-

Exclusion Tree (IE-Trees) method of [51] (cf. also Chapter 3, Section 3.3) in the case

of both the SD scheme and the LSD scheme, since once a cover of the set of privileged

users has been obtained, both the encryption and the decryption steps can be performed

making use of our HIBE-based technique presented above.

69

Chapter 5

Forward-Secure Public-Key

Broadcast Encryption

5.1 Introduction

As observed in Chapter 3 (Section 3.1), one of the most challenging variants of public-key

broadcast encryption schemes is the one for stateless receivers [67, 65, 80, 34, 36, 58]. In

this setting, there is a single “short” public key associated with the system, while each

active user has his own distinct secret key (given to this user, at the time he joins the

system, by a trusted Center who also generates the public key). Since the receivers are

stateless, their secret keys cannot be updated, and the transmission ciphertext should

explicitly contain all the information that a legal user needs to decrypt the message with

his secret key. Specifically, the encryption algorithm only depends on the message to

be encrypted, the public key, and the set R of “revoked” users: precisely all the users

outside R should have the power to decrypt the message, without any need to listen to

prior transmissions, nor to always be “on-line”, etc.

The above restrictions of the stateless receiver scenario pose at least the following

two limitations which we address in this work:

1. broadcast encryption schemes are specifically designed and optimized for the case

70

when the user population is large, while the set of revoked users R is considerably

smaller. Indeed, the complexity of such schemes is typically (and necessarily in

the stateless receiver setting) proportional to the number of revoked users r = |R|.

Unfortunately, this creates huge efficiency problems not only when the system has

run for a while and accumulated a lot of “revoked” users, but also at the time of

system initialization, when the number of users is still small. A natural “solution”

to this problem would be to pretend that the “non-existing” users are actually not

yet revoked. However, this means that when such a “non-existent” user actually

appears and gets his secret key, he can potentially understand all the previous

broadcasts, which he was not supposed to get (i.e., did not pay for). Clearly, it

would be desirable to be able to give such users secret keys which only let them

understand future, but not past transmissions.

2. Assuming a legal user (unintentionally) exposed his key at some time period, the

attacker can read all the transmissions which included this user — both in the

“future” and in the “past”. While in the stateless receiver scenario such exposure

inevitably jeopardizes all future transmissions, it would be nice to devise a key-

evolution mechanism that at least protects past transmissions.

Both limitations above reduce to the same problem of forward-secrecy [3, 6, 26]: ex-

posing the secret key of user u for some “time period” t, should leave the transmissions

for all prior periods t′ < t secure, even if u was not revoked in these prior transmissions.

In other words, assuming there is a globally-known notion of time, and that the encryp-

tion algorithm can take the “current” time t as an extra parameter, each user should

seek to somehow evolve his secret key at end of each time period so that: (1) he can

still decrypt all ciphertexts for the current time period (as long as he is not revoked);

and (2) exposing his current secret key will not compromise any of the ciphertexts for

previous time periods (even those where he was not revoked).

Similar to the signature and (regular) encryption scenarios, we call the resulting

broadcast encryption schemes forward-secure (FSBE). We remark, however, that FSBE

71

schemes seem to be much more useful and motivated than regular forward-secure en-

cryption schemes (FSE). Indeed, attacking the security of the communication of a

stad-alone user requires a very focused and self-motivated adversary, for a handful of

reasons. First, the user may properly guard his secret key, and the life of the adversary

could be much easier if she could monitor several users, and then try to compromise

the least careful of them. Second, ciphertexts meant for a single user are usually not

widely available, so that the adversary would have to take great care to intercept and

record past ciphertexts. Moreover, before compromising the secret key, the adversary

cannot tell which ciphertexts are “important” to her goal, so that an adversary trying

to steal a business secret from a user could have to store along all the encrypted gossips

the user exchanged with his friends. Finally, there are arguably not that many scenarios

where past messages to some stand-alone user were anyway really “profitable” to an

attacker. In contrast, broadcast encryption schemes are typically used in commercial

settings, where: (1) the content provider could suffer a significant loss if many users

do not pay for the service; and (2) correspondingly, there could actually be profit as-

sociated with illegal deciphering of past transmissions, as they could later be sold as

bootleg copies. Additionally, the broadcast scenario by definition gives anybody easy

access to the encrypted content, and thus there is no problem obtaining “important past

ciphertexts”. Finally, since the content is encrypted for many users, the attacker has

many avenues for compromising secret keys. To summarize, the problem of designing

efficient FSBE schemes is well motivated and still stays within the realm of the stateless

receiver scenario, since users can evolve their secret keys independently from each other

and from prior transmissions.

5.2 Our Results

In this chapter, based on work first published as [82], we construct the first FSBE scheme.

It resists the strongest type of chosen ciphertext and key corruption attack, where the

adversary is allowed to corrupt users (thus obtaining their secret keys) in any order, and

72

can also ask non-corrupted users to decrypt any ciphertexts of her choice, during any

time period. The security of our scheme is based on the decisional bilinear Diffie-Hellman

inversion (DBDHI) assumption, in the standard model.

We show how any PHIBE can be used to build a secure FSBE. For that, we define

another general notion of independent interest: the Access Hypergraph framework. In

this framework, one considers hypergraphs where vertices corresponds to users having

secret keys, and hyperedges (i.e., subsets of vertices) corresponds to possible public keys.

These keys are then used to encrypt messages via a Hypergraph Encryption scheme. For

example, in the broadcast encryption (BE) setting (cf. Chapter 4, Section 4.3) the

hyperedges consist of all sets of (N − rmax) users, where N is the total number of users

and rmax is the maximum number of revoked users. Encrypting to a set S corresponds to

the fact that we want precisely the users in S to understand the transmissions. Similarly,

forward-secure encryption (FSE) scheme (cf. Chapter 2, Section 2.5) corresponds to

sets {1}, {1, 2}, . . . , {1, . . . , T}, where T is the total number of time periods. Indeed,

encrypting the message at time period 2 (i.e., to a set {1, 2}) means that only “current

and past periods” 1 and 2 can understand the transmission, but “future periods” 3, . . . , T

cannot.

We then formalize a notion of reduction between various access hypergraphs and

observe that the FSE construction of [26] and the BE construction of [34] (though quite

different), can both be formally viewed as reductions between the corresponding FSE/BE-

access hypergraph and HIBE-access hypergraph. Additionally, we observe that the ac-

cess hypergraph for FSBE corresponds to a hypergraph product of FSE and BE access

hypergraphs, while PHIBE corresponds to the hypergraph product of two independent

HIBE-access hypergraphs. Since we show that our reduction operation is closed under

hypergraph product, we get a non-trivial reduction between FSBE and PHIBE (in par-

ticular, this reduction would be very hard to observe directly, but it easily follows from

our modular approach). Thus, the PHIBE we construct immediately yields the desired

FSBE.

73

To summarize, in addition to the first construction of FSBE, we also define and utilize

the notion of access hypergraph and reductions between access hypergraphs, which allows

us to present our results in a modular way, and unifies several previous results in the

literature.

Parameters. Our construction obtains a secure FSBE scheme from any secure PHIBE

at the cost of increasing: the storage complexity (i.e., the size of each user’s secret

information) by a factor of O(log T log2N); the communication complexity (i.e., the size

of the encrypted broadcast) by a factor of 2r; the encryption complexity (i.e., the running

time of the encryption algorithm) by a factor of 2r plus an additional O(log T + r logN)

overhead, (where T is the maximum number of instants, N is size of the users universe

and r is the actual number of revoked users.)

Alternatively, using the specific construction for fs-HIBE of [16] we achieve storage

complexity O(log2N(log T + logN)), encryption complexity O(r(log T + logN)) and

communication complexity O(r log T).

Why this is non-trivial. Not surprisingly, our FSBE scheme utilizes a combination of

ideas from the design of regular broadcast encryption (BE) and forward-secure encryption

schemes. At first glance, one might be tempted to think that building FSBE from FSE

and BE, or PHIBE — from two HIBE’s, or for that matter, any encryption for a product

of two access hypergraphs — from that of the corresponding base hypergraphs, might

be a simple task which can be accomplished generically. Unfortunately, this does not

seem to be the case. Let us illustrate this for the case of FSBE, the others are similar.

Specifically, one might be tempted to construct a FSBE scheme from any BE and

FSE schemes by some kind of simple black-box composition, where user u at time t

would have his “BE-key” kb and “FSE-key” kf and the message will be encrypted with

respect to both of these keys. Unfortunately, this solution can never be secure. Indeed,

corrupting user u at any time t > 1 and user v at time 1, we will obtain user u’s entire

secret key at time period 1. And this is wrong, since, for example, it allows to decrypt

a message encrypted at time 1 to a set of users containing u but not v.

74

Chosen-Ciphertext Security. For simplicity, the presentation below will focus on the

simpler notion of chosen-plaintext (IND-ID-CPA) security, as the IND-ID-CPA setting

already contains most of the technical challenges we have to deal with. However, all

our definitions and constructions naturally extend to chosen-ciphertext (IND-ID-CCA)

security. This is elaborated in Section 5.6.

Organization. In Section 5.3, we present a formal model for Forward-Secure Broadcast

Encryption (FSBE), specifying syntax and FSBE.IND-ID-CPA security. In Section 5.4,

we introduce the Access Hypergraph framework, which in particular includes the defini-

tion of Hypergraph Encryption (HE) scheme and the corresponding notion of HE.IND-

ID-CPA security. We then develop some technical lemmas, leading to an approach to

construct Forward-Secure Broadcast Encryption schemes out of the product of Access

Hypergraphs. We conclude by showing how PHIBE provides the last ingredient to obtain

the first efficient Forward-Secure Broadcast Encryption scheme.

5.3 Formal Model

In this section, we present a model for public-key forward-secure broadcast encryption.

Following standard practice [65, 80, 36], we assume that the actual content of the broad-

cast is encrypted with a random session key, using a semantically-secure symmetric-key

cipher; thus, the goal of a broadcast encryption scheme is to encapsulate the session key

within an enabling block in such a way that only the authorized users will be able to

retrieve the session key, and thus recover the broadcast content.

5.3.1 FSBE: Syntax

Definition 31 (FSBE: Forward-Secure Broadcast Encryption Scheme).

A FSBE scheme EFSBE is a five-tuple of probabilistic polynomial-time algorithms (Setup,

Register, Update, Encrypt, Decrypt), where:

• Setup, the key generation algorithm, is used by the Center to set up the parameters

75

of the scheme. Setup takes as input a security parameter 1λ and possibly 1rmax

(where rmax is a revocation threshold, i.e. the maximum number of users that can

be revoked). The input also includes the total number N of users in the system

and the total number of time periods T . Setup generates the public key paramsFSBE

and the master secret key masterFSBE. The Center publishes paramsFSBE and keeps

masterFSBE secret.

• Register, the registration algorithm, is used by the Center to compute the secret

initialization data for a new user. Register takes as input the master secret key

masterFSBE, the identity u of the user and the current time period t < T , and

outputs the new secret key SKu,t.

• Update, the key update algorithm, takes as input the public key paramsFSBE, the

identity u of a user, the current time period t < T and the user’s secret key SKu,t.

It outputs the new secret key SKu,t+1 valid for the subsequent time period t+ 1.

• Encrypt, the encryption algorithm, is used to encapsulate a given session key s

within an enabling block B. Encrypt takes as input the public key paramsFSBE,

the session key s, the current time period t and a set R of revoked users (with

|R| ≤ rmax, if a threshold has been specified to the Setup algorithm) and returns

the enabling block B to be broadcast.

• Decrypt, the decryption algorithm, is a deterministic algorithm that takes as input

the public key paramsFSBE, the identity u of a user, a time period t < T , the user’s

secret key SKu,t and an enabling block B. Decrypt returns a session key s or the

special rejection symbol ⊥.

A FSBE scheme EFSBE should satisfy the following correctness constraint: for any

pair (paramsFSBE, paramsFSBE) output by FSBE.Setup(1λ, 1rmax , N, T), any t < T , any

R ⊆ N , (|R| ≤ rmax), any user u ∈ N \R with secret key SKu,t (properly generated for

time period t) and any session key s:

s = FSBE.Decrypt(paramsFSBE, u, t, SKu,t,FSBE.Encrypt(paramsFSBE,R, t, s)).

76

5.3.2 FSBE: Security

Once a user leaks its secret key, the security of every subsequent broadcast communica-

tion is compromised, as long as such user is not revoked. Intuitively, forward-security for

broadcast encryption schemes guarantees that this is the only case in which unauthorized

access to the broadcast content can occur; in other words, decryption of a ciphertext

produced at time t succeed with non-negligible probability only given the secret key

generated for an authorized user in an instant prior to t. Even corruption of many users

(possibly at different time instants), does not help in recovering the content broadcast

in some instant t, if all the users corrupted before t are considered revoked for that

broadcast.

A FSBE scheme EFSBE is forward-secure against chosen-ciphertext attack if for all

polynomial N and T , no polynomial-time adversary A has a non-negligible advantage

in the following game:

Setup: The challenger runs algorithm FSBE.Setup(1λ, 1rmax , N, T); it then gives A the

resulting system public key paramsFSBE and keeps the master secret key masterFSBE secret.

Phase 1: The adversary issues, in any adaptively-chosen order, queries q1, . . . , qm, where

each qj is one of the following:

1. Corrupt(u, t): the challenger runs algorithm FSBE.Register(masterFSBE, u, t) to

generate the private key SKu,t corresponding to user u at time instant t, and sends

SKu,t to A.

2. Decrypt(u, t,Bj): the challenger runs algorithm FSBE.Register(masterFSBE, u, t)

to recover the private key SKu,t corresponding to user u at time instant t. It then

runs algorithm FSBE.Decrypt(paramsFSBE, u, t, SKu,t, Bj) and sends the resulting

plaintext to A.

Challenge: Once A decides that Phase 1 is over, it outputs a time instant t∗ along

with two equal length session keys s0, s1 ∈M on which it wishes to be challenged. The

challenger picks a random bit b ∈ {0, 1}, sets B∗ .
= FSBE.Encrypt(paramsFSBE,Rt∗ , t

∗, sb),

77

where Rt∗
.
= {u | A asked a query Corrupt(u, j), for some t ≤ t∗}. The challenger

sends B∗ as a challenge to A.

Phase 2: The adversary issues more queries qm+1, . . . , qn, where each qj is one of the

following:

1. Corrupt(u, t): the challenger first checks that t > t∗, and if so, it responds as in

Phase 1. Notice that if a bound rmax was specified in Setup, then the adversary

is restricted to corrupt at most rmax distinct users via Corrupt(·, ·) queries.

2. Decrypt(u, t,Bj): the challenger first checks that either Bj 6= B∗ or u ∈ Rt∗ or

t 6= t∗ and if so, it responds as in Phase 1.

Guess: The adversary outputs a guess b∗ ∈ {0, 1} and wins the game if b = b∗.

We refer to such an adversary A as an FSBE.IND-ID-CCA adversary. We define the

advantage of the adversary A in attacking the FSBE scheme EFSBE as:

AdvFSBE,A =

∣∣∣∣Pr[b = b∗]− 1

2

∣∣∣∣ .
The probability is over the random bits of the challenger and of the adversary.

We can also define the notion of selective-identity chosen-ciphertext security for FSBE

(FSBE.IND-sID-CCA). The game is exactly as for the FSBE.IND-ID-CCA case, except

that the adversary A discloses to the challenger the target instant t∗ and the set R∗ of

revoked users before the Setup phase. Thus, the restriction on Corrupt queries from

Phase 2 also holds in Phase 1.

Definition 32 (Chosen-Ciphertext Security for FSBE).

An FSBE scheme EFSBE is (τ, qID, εFSBE)-IND-ID-CCA (resp. IND-sID-CCA)-secure if for

any τ -time FSBE.IND-ID-CCA (resp. FSBE.IND-sID-CCA) adversary A that makes at

most qID chosen Corrupt queries and at most qC chosen Decrypt queries, it holds

that AdvFSBE,A < εFSBE.

We define chosen-plaintext security for an FSBE scheme according to an attack game

that is exactly as in the preceding game, except that the adversary is not allowed to issue

Decrypt queries. The adversary may still issue adaptive chosen Corrupt queries.

78

Definition 33 (Chosen-Plaintext Security for FSBE).

An FSBE scheme EFSBE is (τ, qID, εFSBE)-IND-ID-CPA (resp. IND-sID-CCA)-secure if it

is (τ, qID, 0, εFSBE)-IND-ID-CCA (resp. IND-sID-CCA)-secure.

5.4 The Access Hypergraph Framework

In some applications of public-key encryption, the intended recipient of the encrypted

content is not a single entity, but rather a group of entities. In such scenario, each

entity is associated with its own specific secret key, whereas public keys (which are used

to encrypt content) corresponds to set of these entities. Typical examples of this kind

of scenarios are Broadcast Encryption (in which entities are users), Forward Encryp-

tion (entities being time instants), Hierarchical Identity-Based Encryption and possibly

others.

In this section, we introduce a unifying framework based on the notion of hyper-

graph, which enables a uniform treatment of scenarios of the type described above. To

emphasize our use of hypergraphs as structures to regulate access to encrypted content,

we will refer to such scenarios using the terminology of access hypergraphs. For more

information about hypergraphs, see [8].

After defining the notion of hypergraph encryption scheme for an access hypergraph,

we will show how any two such structures can be coupled to yield a combined access

hypergraph inheriting all their properties. As a corollary, this will provide a way to ob-

tain an efficient construction of Forward-Secure Broadcast Encryption as a combination

of Broadcast Encryption and Forward-Secure Encryption.

Definition 34 (Hypergraph).

A hypergraph H is a pair (V, S) where V is a finite set and S is a family of subsets

of V i.e., S ⊆ P(V). The elements of V are called vertices and the elements of S are

called hyperedges (or sets). The hypergraph H implicitly defines an incidence function

f : V → P(S), which associates each vertex v ∈ V to the family of sets in S containing

79

v; formally,

f(v)
.
= {s ∈ S | v ∈ s}.

As argued above, our motivation for introducing access hypergraph is to support

an encryption mechanism such that a single ciphertext could be decrypted by several

entities. We formalize this with the notion of hypergraph encryption scheme.

Definition 35 (Hypergraph Encryption Scheme).

A HE scheme EHE for an access hypergraph H = (V, S) is a triple of polynomial-time

algorithms (Setup, Encrypt, Decrypt), where:

• Setup, the key generation algorithm, takes as input a security parameter 1λ and

outputs some global parameters paramsHE (which describes some simple map-

ping associating identifiers to hyperedges of H), and a sequence of secret keys

masterHE = 〈SKv〉v∈V which associates a secret key to each vertex of H.1

• Encrypt, the encryption algorithm, is a probabilistic algorithm that takes as input

the public parameters paramsHE, a set s ∈ S and a message m and outputs the

corresponding ciphertext C.

• Decrypt, the decryption algorithm, is a deterministic algorithm that takes as input

the secret key SKv of a vertex v ∈ V , a set s ∈ S and a ciphertext C and returns

either a message m or the special rejection symbol ⊥.

A HE scheme EHE should satisfy the following correctness constraint: for any pair

(paramsHE,masterHE) output by HE.Setup, any set s ∈ S, any vertex v ∈ s and any

message m:

m = HE.Decrypt(paramsHE, s, SKv,HE.Encrypt(paramsHE, s,m)).

1Specific instances of hypergraph encryption schemes may provide some compact description of

masterHE (e.g., via a single master secret key), as long as such “compression” does not jeopardize the

security requirements stated in Definition 37 below.

80

A HE scheme EHE is secure against chosen-ciphertext attack if no polynomial-time

adversary A has a non-negligible advantage against the challenger in the following game:

Setup: The challenger runs algorithm HE.Setup(1λ); it then givesA the resulting system

public key paramsHE and keeps the master secret key masterHE secret to itself.

Phase 1: The adversary issues, in any adaptively-chosen order, queries q1, . . . , qm, where

each qj is one of the following:

1. Corrupt(v): the challenger hands off to A the secret key SKv corresponding to

vertex v ∈ V .

2. Decrypt(v, s, Cj): the challenger first picks keys SKv from masterHE and then

runs HE.Decrypt(paramsHE, s, SKv, Cj) and sends the resulting plaintext to A.

Challenge: Once A decides that Phase 1 is over, it outputs a set s∗ and two equal

length plaintexts m0,m1 ∈M on which it wishes to be challenged. The only restriction

is that A did not previously issue the query Corrupt(v) for v ∈ s∗. The challenger

picks a random bit b ∈ {0, 1}, sets C∗ .
= HE.Encrypt(paramsHE, s

∗,mb), and sends C∗ as

a challenge to A.

Phase 2: The adversary issues more queries qm+1, . . . , qn, where each qj is one of the

following:

1. Corrupt(v): the challenger first checks that v 6∈ s∗ and if so, it responds as in

Phase 1.

2. Decrypt(v, s, Cj): the challenger first checks that either Cj 6= C∗ or s 6= s∗ and

if so, it responds as in Phase 1.

Guess: The adversary outputs a guess b∗ ∈ {0, 1} and wins the game if b = b∗.

We refer to such an adversary A as an HE.IND-ID-CCA adversary. We define the

advantage of the adversary A in attacking the scheme EHE as:

AdvHE,A =

∣∣∣∣Pr[b = b∗]− 1

2

∣∣∣∣ .
The probability is over the random bits of the challenger and of the adversary.

81

Definition 36 (Chosen-Ciphertext Security for HE).

An HE scheme EHE is (τ, qID, qC , εHE)-IND-ID-CCA-secure if, for any τ -time HE.IND-ID-

CCA adversary A that makes at most qID chosen Corrupt queries and at most qC

chosen Decrypt queries, it holds that AdvHE,A < εHE.

We define chosen-plaintext security for a HE scheme according to an attack game

that is exactly as the preceding game, except that the adversary is not allowed to issue

Decrypt queries. The adversary may still issue adaptive chosen Corrupt queries.

Definition 37 (Chosen-Plaintext Security for HE).

An HE scheme EHE is (τ, qID, εHE)-IND-ID-CPA secure if EHE is (τ, qID, 0, εHE)-IND-ID-

CCA secure.

Efficiency of a Hypergraph Encryption Scheme. In comparing the efficiency of

two or more hypergraph encryptions schemes, the three major complexity measures to

be considered are: (1) storage complexity, which denotes the space required (in the worst

case) to store the secret key SKv of a vertex v; (2) encryption complexity i.e., the (worse-

case) running time of the encryption algorithm HE.Encrypt; and (3) communication

complexity, which refers to the size of ciphertexts produced by the encryption algorithm.

5.4.1 Examples of Access Hypergraphs

The above definitions of access hypergraph and of hypergraph encryption may appear

too abstract at first; to make the underlying idea clearer, we now present some examples.

Forward-Secure Encryption. In the Forward-Security model of [6, 26], time is repre-

sented as a sequence of instants 〈1, . . . , T 〉 (where T is the total number of time periods.)

Although our framework does not directly support sequences, we can easily represent

the intrinsic order among time instants as follows:

Definition 38 (Forward-Secure Access Hypergraph).

The access hypergraph HFS = (VFS, SFS) for the Forward-Security model is defined as

VFS
.
= {1, . . . , T} and SFS

.
= {{1}, {1, 2}, . . . , {1, 2, . . . , T}}.

82

Broadcast Encryption. The Broadcast Encryption setting [43, 65] can be described

by specifying a universe of users N and (possibly) a revocation threshold rmax ≤ N ,

where N = |N |. In our framework, this can be formalized with the following definition:

Definition 39 (Broadcast Access Hypergraph).

The access hypergraphHBE = (VBE, SBE) for the Broadcast Encryption model is defined

as VBE
.
= N and SBE

.
= {s ⊆ N : |s| ≥ N − rmax}.

HIBE as Hypergraph Encryption for a Family of Access Hypergraphs. As

last example, we show how Hierarchical ID-Based Encryption (HIBE) can be seen as a

hypergraph encryption for Tree Access Hypergraphs, a special kind of access hypergraph

which closely resembles the hierarchical structure of HIBE.

Definition 40 (Tree Access Hypergraph).

Let T be a tree on a set of nodes N and let � be the “ancestor-descendant” relationship

of T . The access hypergraph HT = (VT , ST) associated to T is defined as VT
.
= N and

ST
.
= {{u ∈ VT | u � v} : v ∈ VT }.

Lemma 41. Let T be a tree and let HT = (VT , ST) be the corresponding Tree Access

Hypergraph. An HE.IND-ID-CPA secure hypergraph encryption scheme for HT can be

obtained from any HIBE.IND-ID-CPA secure HIBE scheme (with essentially the same

efficiency parameters of the corresponding HIBE scheme).

Proof. The HE.KeyGen algorithm generates paramsHE and masterHE setting paramsHE
.
=

paramsHIBE and SKv
.
= HIBE.Extract∗(paramsHIBE,HIDv,masterHIBE), i.e., each node v

receives the secret key corresponding to its hierarchical identifier HIDv, and the star

in HIBE.Extract∗ denotes the fact that the HIBE.Extract algorithm may have to be run

multiple times, depending on the level at which the hierarchical identifier HIDv appears

in T . Notice that this construction allows for a compact representation of masterHE

which consists of masterHIBE.

As for the encryption and decryption algorithms, HE.Encrypt and HE.Decrypt, they

83

can be obtained from the corresponding components of HIBE:

HE.Encrypt(paramsHE, s,m)
.
= HIBE.Encrypt(paramsHIBE,HIDv̂,m)

HE.Decrypt(SKv, s, C)
.
= HIBE.Decrypt(paramsHIBE, SKHIDv̂

, C)

where: v̂ is the minimal element in the set s (w.r.t. the � relationship); HIDv̂ denotes

the hierarchical identifier associated to v̂; and SKHIDv̂
is the secret key corresponding to

the hierarchical identifier HIDv̂, which node v either has (if v = v̂), or can derive from

its secret information using the HIBE.Extract algorithm.

It easy to verify that applying the above transformation to a secure HIBE scheme

yields a hypergraph encryption for the Tree Access Hypergraph HT = (VT , ST) corre-

sponding to the given tree-hierarchy T .

Remark 42. Using the specific construction for HIBE of [48], we get an hypergraph

encryption for Tree Access Hypergraphs with storage, encryption and communication

complexity, all proportional to the depth d of the tree T .

Remark 43. Roughly speaking, a hypergraph encryption scheme for a Tree Access Hy-

pergraph deals with a “static” hierarchy (the one represented by the tree T), whereas a

HIBE scheme works also for hierarchies which are not fixed a priori, but change dynami-

cally as the need arises. However, for most applications of HIBE (such as Forward-Secure

Encryption [26] and Public-Key Broadcast Encryption [34]), the additional “dynamic”

power provided by HIBE is not needed, and the kind of static hierarchy supported by Tree

Access Hypergraphs suffices. For these reasons, the use of a full-blown HIBE scheme in

Lemma 41 above is not strictly necessary, and we could as well have based our construc-

tion on Tree Encryption, a straightforward generalization of the notion of Binary Tree

Encryption (BTE, [26]) to the case of trees with polynomial (in the security parameter

λ) breadth and depth.

84

5.4.2 Reduction between Access Hypergraphs

One advantage of the access hypergraph framework is that it makes it easier to draw

connections between the different settings that can be modeled within it, in particular

from a security viewpoint. For example, by modeling the notion of HIBE within the

access hypergraph framework, it is possible to spot a structural similarity between the

approach of [26], which bases Forward-Secure public-key encryption on Binary Tree

Encryption (BTE, a variant of HIBE), and the construction of [34], which derives a

public-key broadcast encryption scheme from any HIBE: both can be viewed as distinct

instances of the same reduction argument.

Definition 44 (Reduction).

A reduction from an access hypergraph H = (V, S) to an access hypergraph H′ =

(V ′, S ′), denoted by H′ ≤ H, consists of two polynomial-time computable functions

g : S ′ → P(S) and k : V ′ → P(V) such that:

(∀v′ ∈ V ′)(∀s′ ∈ S ′)[v′ ∈ s′ ⇔ ((
⋃

s∈g(s′)

s) ∩ k(v′)) 6= ∅].

Additionally, define the cover size of the reduction as G = max{|g(s′)| : s′ ∈ S ′}, and

the key size as K = max{|k(v′)| : v′ ∈ V ′}.

The following theorem highlights the relation between the notion of reduction and

the notion of hypergraph encryption, which makes it clear how, in designing a reduction

between two access hypergraphs, it is important to minimize the cover size G and the

key size K (which, ideally, should both be equal to 1), and to keep the running time of

the function g as low as possible.

Theorem 45 (Reduction Theorem). Let H and H′ be two access hypergraphs. If H

admits a HE.IND-ID-CPA secure hypergraph encryption and (g, k) is a reduction from H

to H′, then H′ also admits a HE’.IND-ID-CPA secure hypergraph encryption. Moreover,

the efficiency of the hypergraph encryption for H′ is related to that of the hypergraph

encryption for H as follows: the storage complexity increases by at most a factor of K,

85

the communication complexity increases by at most a factor of G, and the encryption

complexity increases by at most a factor of G, plus the additional overhead to evaluate

g.

Proof. To prove the theorem, it suffices to describe how algorithms HE′.Extract, HE′.Encrypt

and HE′.Decrypt can be implemented assuming the existence of a hypergraph encryption

scheme HE for H and a reduction (g, k) from H to H′.

The idea behind the construction of the HE′.Extract algorithm is (1) to associate

every set s′ ∈ S ′ with the identifiers of all the sets s ∈ g(s′), and (2) to associate every

vertex v′ ∈ V ′ with the secret keys of all the vertices v ∈ k(v′). Formally, on input

the security parameter 1λ, the HE′.Extract algorithm first runs HE.Extract to obtain

paramsHE and masterHE, and then outputs paramsHE′
.
= (paramsHE, g) and HE′.SKv′

.
=

〈(v,HE.SKv)〉v∈k(v′).

To encrypt a message m for a set s′, we simply encrypt it with all the public keys

associated to s′. Formally, HE′.Encrypt can be defined to output a sequence of pairs whose

first component is a set, and whose second component is the corresponding encryption:

HE′.Encrypt(paramsHE′ , s
′,m)

.
= 〈(s,HE.Encrypt(paramsHE, s,m))〉s∈g(s′).

To decrypt a ciphertext C meant for a set s′, the HE′.Decrypt algorithm uses a secret

key HE′.SKv′ as follows: for each entry (si, Ci) in C and for each entry (vj,HE.SKvj
) in

HE′.SKv′ such that vj ∈ si, decrypt Ci with HE.Decrypt(HE.SKvj
, si, Ci). If all decryp-

tions are consistent, then output the resulting plaintext; otherwise output ⊥.

Notice that if v′ ∈ s′, then by definition of reduction there will be at least one entry

in the ciphertext C and one entry in HE′.SKv′ such that HE.Decrypt(HE.SKvj
, si, Ci) can

be run, and if C was well-formed, then all its ciphertext components corresponds to the

same plaintext.

A simple reduction argument suffices to show that, if H′ ≤ H, then applying the

above transformation to a hypergraph encryption scheme for H yields a hypergraph

encryption scheme for H′.

86

5.4.3 Two Important Reductions

Forward-Secure Encryption from Tree Access Hypergraphs

We now show how the construction of a Forward-Secure public-key encryption scheme by

Canetti et al. [26] can be recast as a reduction from a suitable Tree Access Hypergraph.

Lemma 46. There exists a tree hierarchy TCHK such that HFS ≤ HTCHK
, with G = 1,

K = log T and running time Time(gCHK) = O(log T), where T is number of time

periods specified by HFS.

Proof. At a high level, Canetti et al.’s construction of a Forward-Secure scheme with

T = 2d+1 − 1 time periods [26] is based on a complete binary tree TCHK of depth

d. Instants from 1 to T are associated with nodes of TCHK according to a pre-order

traversal. More precisely, the root of TCHK represents instant 1, and inductively, if an

internal node v represents instant t, then v’s left child represents instant t + 1 and v’s

right child represents instant t+n+1, where n is the number of nodes in v’s left subtree.

As described in Definition 40, such hierarchy TCHK induces an access hypergraph

HTCHK
= (VCHK , SCHK) where VCHK is the set of all the time instants, and SCHK

is the set of all the paths from the root to every node in TCHK . We now define a

reduction from HTCHK
to HFS describing the two functions gCHK : SFS → P(SCHK)

and kCHK : VFS → P(VCHK). On input s′ = {1, . . . , t} ∈ SFS, gCHK first determines

the node vt ∈ VCHK that corresponds to instant t, and considers the set st of all vertices

on the path from the root of TCHK to vt. Then, it outputs the set {st}.

On input t ∈ VFS, kCHK first determines the node vt ∈ VCHK that corresponds to

instant t and considers the path from the root of TCHK to vt. Then, it outputs the set

containing vt and all the vertices hanging-off to the right of such path (in other words,

kCHK outputs the set containing vt along with the right sibling of every node of such

path.)

It can be easily verified that the above construction satisfies the reduction constraint:

(∀t ∈ VFS)(∀s′ ∈ SFS).[t ∈ s′ ⇔ ((
⋃

s∈gCHK(s′)

s) ∩ kCHK(t)) 6= ∅].

87

Notice that the above reduction, combined with Theorem 45 and with the HE.IND-

ID-CPA security of the hypergraph encryption scheme for Tree Access Hypergraphs de-

scribed in Lemma 41, yields an efficient HE.IND-ID-CPA secure hypergraph encryption

scheme HEFS for the model of Forward-Security. This, in turn, can be easily shown to be

equivalent to a scheme secure in the sense of forward-security against chosen-plaintext

attacks (FSE.IND-ID-CPA) (cf. Chapter 2, Section 2.5).

Corollary 47. A Forward-Secure Encryption scheme EFSE secure under FSE.IND-ID-

CPA can be obtained from any HIBE, with a factor of O(log T) increase in storage

complexity and communication complexity (T being the maximum number of instants.)

Broadcast Encryption from Tree Access Hypergraphs

In virtue of Theorem 45 and by the existence of a HE.IND-ID-CPA secure hypergraph

encryption scheme for any tree access hypergraph (cf. Lemma 41), to obtain a HE.IND-

ID-CPA secure hypergraph encryption scheme HEBE for the Broadcast Access Hyper-

graph HBE it suffices to provide a reduction from HT to HBE, for some tree T . Below

we present such a reduction, based on the construction of [34] (cf. also Chapter 4,

Section 4.5).

Lemma 48. There exists a tree hierarchy TDF such that HBE ≤ HTDF
, with G = 2r−1,

K = 1
2
log2N + 1

2
logN +1 and running time Time(gDF) = O(r logN) (where r denotes

the actual number of revoked users).

Proof. Recall (Chapter 4, Section 4.5) that the construction of [34] extends the Subset

Difference (SD) method of Naor et al. [65] to the public-key setting, by defining a

hierarchy T ′
SD whose leaves corresponds to the subsets of the SD cover family SSD. For

notational convenience, below we denote this hierarchy by TDF i.e., TDF = T ′
SD.

As described in Definition 40, the hierarchy TDF induces an access hypergraph

HTDF
= (VDF , SDF). We now define a reduction from HTDF

to HBE (with rmax = N),

88

describing the two functions gDF : SBE → P(SDF) and kDF : VBE → P(VDF). On input

s′ ∈ SBE, gDF first uses the cover algorithm of the SD method to partition s′ into the

subsets {Si1j1 , . . . , Sikjk
}.2 Recall that each subset Sihjh

(h = 1, . . . , k), corresponds to a

leaf lh in the tree TDF : let ph be the set of vertices in the path from the Root of TDF to

the leaf lh corresponding to the set Sihjh
. Then, gDF outputs the set {p1, . . . , pk} ⊆ SDF .

On input v ∈ VBE (v leaf in the tree TSD), kDF first considers the path from the

root of TSD to v: let v0, v1, . . . , vk ≡ v be all the ancestor of v, and denote by uh the

siblings of vh, h = 1, . . . , k. For 1 ≤ i < j ≤ k consider the subset difference Svi,uj
and

the associated leaf lviuj
in TDF . Then, kDF outputs the set {lviuj

: 1 ≤ i < j ≤ k}.

It can be easily verified that the above construction satisfies the reduction constraint:

∀v ∈ VBE)(∀s′ ∈ SBE).

v ∈ s′ ⇔
 ⋃

s∈gDF (s′)

s

 ∩ kDF (v)

 6= ∅
 .

As argued above, Lemma 48 proves the existence of a HE.IND-ID-CPA secure hy-

pergraph encryption scheme HEBE for the Broadcast Encryption setting, which in turn

induces a Broadcast Encryption scheme secure against chosen-plaintext attacks.

Corollary 49. A Broadcast Encryption scheme EBE secure under BE.IND-ID-CPA can

be obtained from any HIBE, with an increase of a factor of O(log2N) in storage complex-

ity, of a factor of 2r for the communication complexity, and with encryption complexity

increased by a factor of 2r, plus O(r logN) time to compute gDF (where r denotes the

actual number of revoked users.)

5.4.4 Product of Access Hypergraphs

Definition 50 (Product of hypergraphs).

Given two hypergraphs H1 = (V1, S1) and H2 = (V2, S2), define their product H3
.
=

H1 × H2 to be the hypergraph whose vertices V3 are the elements of the Cartesian

2The cover algorithm of [65] guarantees that k < 2(N − |s′|).

89

product V1 × V2, and whose hyperedges are the sets s1 × s2, with s1 ∈ S1 and s2 ∈ S2

i.e., H3 = (V3, S3), with V3
.
= V1 × V2 and S3

.
= {s1 × s2 : s1 ∈ S1 ∧ s2 ∈ S2}.

The notion of product of hypergraphs provides a powerful way to combine the prop-

erties of two access hypergraphs into a single structure. In Theorem 51, we show that

reductions between two pairs of access hypergraphs can be extended to a reduction

between their products.

Theorem 51 (Multiplication Theorem). Let H1,H′
1,H2,H′

2 be access hypergraphs such

that there exist reductions from H1 to H′
1 and from H2 to H′

2. Then there is also a

reduction from H3 = H1 ×H2 to H′
3 = H′

1 ×H′
2. In formula:

((H′
1 ≤ H1) ∧ (H′

2 ≤ H2))⇒ ((H′
1 ×H′

2) ≤ (H1 ×H2)).

Moreover, the resulting reduction has cover size G3
.
= G1 · G2, key size K3

.
= K1 · K2

and running time Time(g3)
.
= Time(g1) + Time(g2) +O(G3).

Proof. By definition, H3 = (V3, S3) where V3 = V1×V2 and S3 = {s1×s2 : s1 ∈ S1∧s2 ∈

S2}; similarly, H′
3 = (V ′

3 , S
′
3) where V ′

3 = V ′
1 × V ′

2 and S ′3 = {s′1× s′2 : s′1 ∈ S ′1 ∧ s′2 ∈ S ′2}.

To prove the theorem, we first define a reduction (g3, k3) from H3 to H′
3 (where

g3 : S ′3 → P(S3), k3 : V ′
3 → P(V3)), given a reduction (g1, k1) from H1 to H′

1 (where

g1 : S ′1 → P(S1), k1 : V ′
1 → P(V1)), and a reduction (g2, k2) from H2 to H′

2 (where

g2 : S ′2 → P(S2), k2 : V ′
2 → P(V2)). For an arbitrary s′3 ∈ S ′3 of the form s′3 = s′1 × s′2

with s′1 ∈ S ′1, s′2 ∈ S ′2 and for any v′3 ∈ V ′
3 of the form v′3 = (v′1, v

′
2) with v′1 ∈ V ′

1 , v
′
2 ∈ V ′

2 ,

define the two function g3, k3 as g3(s
′
3)

.
= {s1 × s2 : s1 ∈ g1(s

′
1) ∧ s2 ∈ g2(s

′
2)} and

k3(v
′
3)

.
= k1(v

′
1)× k2(v

′
2).

To complete the proof, we need to show that the definition of (g3, k3) satisfies the

reduction constraint:

(∀v′3 ∈ V ′
3)(∀s′3 ∈ S ′3).[v′3 ∈ s′3 ⇔ ((

⋃
s3∈g3(s′3)

s3) ∩ k3(v
′
3)) 6= ∅]

Fix v′3 ∈ V ′
3 and s′3 ∈ S ′3. First, note that

v′3 ∈ s′3 ⇔ (v′1, v
′
2) ∈ s′1 × s′2 ⇔ v′1 ∈ s′1 ∧ v′2 ∈ s′2

90

Let

I1
.
= ((

⋃
s1∈g1(s′1)

s1) ∩ k1(v
′
1))

I2
.
= ((

⋃
s2∈g2(s′2)

s2) ∩ k2(v
′
2))

By definition of reduction from H1 to H′
1 and from H2 to H′

2, it holds that

v′1 ∈ s′1 ∧ v′2 ∈ s′2 ⇔ I1 6= ∅ ∧ I2 6= ∅ ⇔ ∃ v1 ∈ I1 ∧ ∃ v2 ∈ I2

By definition of I1 and I2, this can be rewritten as

(∃ v1)(∃ v2).[(v1 ∈ k1(v
′
1) ∧ v1 ∈

⋃
s1∈g1(s′1)

s1) ∧ (v2 ∈ k2(v
′
2) ∧ v2 ∈

⋃
s2∈g2(s′2)

s2)]⇔

(∃ v1)(∃ v2).[(v1 ∈ k1(v
′
1) ∧ v2 ∈ k2(v

′
2)) ∧ (v1 ∈

⋃
s1∈g1(s′1)

s1 ∧ v2 ∈
⋃

s2∈g2(s′2)

s2)]

Now, by construction we have

v1 ∈ k1(v
′
1) ∧ v2 ∈ k2(v

′
2)⇔ v3 = (v1, v2) ∈ k3(v

′
3)

Moreover,

v1 ∈ (
⋃

s1∈g1(s′1)

s1) ∧ v2 ∈ (
⋃

s2∈g2(s′2)

s2)⇔

(∃ s̄1 ∈ g1(s
′
1)).[v1 ∈ s̄1] ∧ (∃ s̄2 ∈ g2(s

′
2)).[v2 ∈ s̄2]⇔

(∃ s̄1 ∈ g1(s
′
1))(∃ s̄2 ∈ g2(s

′
2)).[(v1, v2) ∈ s̄1 × s̄2 ⇔

(∃ s̄3 ∈ g3(s
′
3)).[(v1, v2) ∈ s̄3]]⇔

v3 = (v1, v2) ∈ (
⋃

s3∈g1(s′3)

s3)

This completes the proof.

5.4.5 Toward Forward-Secure Broadcast Encryption

Theorem 51, although simple, constitutes a crucial step towards the construction of a

FSBE.IND-ID-CPA secure FSBE scheme: it enables a smooth and easy combination of

91

the results of Lemma 46 and Lemma 48, thus yielding an efficient reduction to an access

hypergraph which formalizes the setting of Forward-Secure Broadcast Encryption.

Definition 52 (Paired Trees Access Hypergraph).

Let T1, T2 be trees, and HT1 ,HT2 be the corresponding Tree Access Hypergraphs. The

Paired Trees Access Hypergraph associated to T1, T2 is defined as HT1,T2

.
= HT1 ×HT2 .

Definition 53 (Forward-Secure Broadcast Access Hypergraph).

The access hypergraph for the Forward-Secure Broadcast model is:

HFBE
.
= HFS ×HBE.

It can be easily verified that a FSBE scheme secure in the sense of FSE.IND-ID-CPA is

essentially equivalent to a HE.IND-ID-CPA secure hypergraph encryption HEFSBE for the

Forward-Secure Broadcast Encryption model. Furthermore, by Theorem 51, Lemma 46

and Lemma 48, there exists an efficient reduction from HTCHK ,TDF
to HFBE; thus, by

Theorem 45 and Lemma 41, we get the following:

Corollary 54. A Forward-Secure Broadcast Encryption scheme can be obtained from

any HE.IND-ID-CPA secure hypergraph encryption for Paired Trees Access Hypergraph,

with an increase in storage complexity of a factor of O(log T log2N), in communication

complexity of a factor of 2r, and with encryption complexity increased by a factor of

2r, plus O(log T + r logN) time to compute gFBE (where T is the maximum number of

instants, N is size of the users universe and r is the actual number of revoked users.)

One question that arises naturally is whether a hypergraph encryption for Paired

Trees Access Hypergraphs can be obtained combining, in a black-box fashion, hyper-

graph encryptions for Tree Access Hypergraphs; or, more generally, how to securely and

efficiently combine hypergraph encryptions HE1,HE2 for H1,H2 into a hypergraph en-

cryption HE3 for H3
.
= H1 ×H2. Such a generic combination would essentially need to

define the secret key of an entity (v1, v2) ∈ H3 as the juxtaposition of the secret keys

of v1 ∈ H1 and the secret keys of v2 ∈ H2 i.e., HE3.SK(v1,v2)
.
= (HE1.SKv1 ,HE2.SKv2).

92

Unfortunately, this way of combining secret keys is not secure, as demonstrated by the

following generic attack. Suppose H1 contains vertices v1, v
′
1 and hyperedges s1, s

′
1 such

that s1 (s′1 and v1 ∈ s1, v
′
1 ∈ s′1 \ s1; and similarly, H2 contains vertices v2, v

′
2 and

hyperedges s2, s
′
2 such that s2 (s′2 and v2 ∈ s2, v

′
2 ∈ s′2 \ s2. Then, it would be possible

for an adversary holding the secret keys of vertices v′bad
.
= (v1, v

′
2) and v′′bad

.
= (v′1, v2), to

recover the secret key of (v1, v2) ∈ s1 × s2, even though neither v′bad nor v′′bad belongs to

that hyperedge, which violates security for HE3 without breaking neither HE1 nor HE2.

Motivated by the lack of such a generic construction, in [82] we introduced the concept

of Paired Hierarchical Identity Based Encryption (PHIBE), an extension of HIBE that we

discussed in Chapter 2, Section 2.4.3. In the next section, we argue that an (efficient)

HE.IND-ID-CPA secure access hypergraph for Paired Trees Access Hypergraphs can be

obtained from any (efficient) PHIBE.IND-ID-CPA secure PHIBE scheme (Lemma 55).

5.4.6 PHIBE as Hypergraph Encryption for Paired Access Hy-

pergraphs

Lemma 55. Let T `, T r be trees and let HT `,T r be the corresponding Paired Trees Access

Hypergraph. A HE.IND-ID-CPA secure hypergraph encryption scheme for HT `,T r can be

obtained from any HIBE.IND-ID-CPA secure PHIBE scheme (with essentially the same

efficiency parameters of the corresponding PHIBE scheme).

Proof. Consider the following construction of a hypergraph encryption scheme HE for

HT `,T r based on any PHIBE scheme. Let s = s` × sr and v = (v`, vr). The HE.Extract

algorithm generates paramsHE and masterHE as follows: paramsHE
.
= paramsPHIBE and

HE.SK(v`,vr)
.
= PHIBE.Extract∗(paramsPHIBE,PIDv,masterPHIBE) i.e., each entity v =

(v`, vr) receives the secret key corresponding to its paired hierarchical identifier PIDv,

and the star in PHIBE.Extract∗ denotes the fact that the PHIBE.Extract algorithm may

have to be run multiple times, depending on the levels at which the left and right com-

ponents of the paired hierarchical identifier PIDv appears in T ` and T r, respectively.

Notice that this construction allows for a compact representation of masterHE which

93

consists of masterPHIBE.

As for the encryption and decryption algorithms, HE.Encrypt and HE.Decrypt, they

can be obtained from the corresponding components of PHIBE:

HE.Encrypt(paramsHE, s,m)
.
= PHIBE.Encrypt(paramsPHIBE,PIDv̂,m)

HE.Decrypt(HE.SKv, s, C)
.
= PHIBE.Decrypt(paramsPHIBE,PHIBE.SKPIDv̂

, C)

where: v̂ = (v̂`, v̂r), v̂` is the minimal element in the set s` (w.r.t. the �` relationship in

T `) and v̂r is the minimal element in the set sr (w.r.t. the �r relationship in T r); PIDv̂

denotes the paired hierarchical identifier associated to v̂; and finally, PHIBE.SKPIDv̂
is

the secret key corresponding to the paired hierarchical identifier PIDv̂, which entity v

either has (if v` = v̂` and vr = v̂r), or can derive from its secret information using the

PHIBE.Extract algorithm.

It can be easily verified that applying the above transformation to a secure PHIBE

scheme yields a hypergraph encryption for the Tree Access Hypergraph HT `,T r corre-

sponding to the given hierarchy T ` × T r.

Remark 56. Using the specific construction for PHIBE resulting from the work of [16],

we get an hypergraph encryption for Paired Trees Access Hypergraphs under the de-

cisonal bilinear Diffie-Hellman inversion (DBDHI) assumption with communication com-

plexity proportional to d1 and storage and encryption complexity proportional to d1+d2,

where d1 and d2 denote the depths of the trees T1 and T2, respectively.

Remark 57. Reasoning along the same lines of Section 5.4.1, we notice that the full

power of PHIBE (which allows both hierarchies to grow dynamically and independently)

is not strictly necessary in Lemma 55 above, since the hierarchies defined by T ` and T r

in HT `,T r are fixed. Thus, we could as well have based our construction on Paired Tree

Encryption, a generalization of the notion of Binary Tree Encryption (BTE, [26]) to the

case of pairs of trees, each with polynomial (in the security parameter λ) breadth and

depth.

94

5.5 Putting it all Together

5.5.1 FBE from the Access Hypergraph Framework

Having obtained all the main ingredients from the Access Hypergraph Framework, our

main result for this chapter is now a straightforward consequence of Corollary 54,

Lemma 55 and Remark 56:

Theorem 58. Under the decisional bilinear Diffie-Hellman inversion (DBDHI) assump-

tion, there exists an efficient and secure Forward-Secure Public-Key Broadcast Encryp-

tion scheme with storage complexity O(log T log2N(log T +logN)), encryption complex-

ity O(r(log T + logN)) and communication complexity O(r log T).

5.5.2 An Alternative Formulation based on fs-HIBE

An alternative way to describe our approach to obtain FSBE scheme is by employ-

ing a Forward-Secure Hierarchical Identity-Based Encryption scheme fs-HIBE over the

construction of the public-key broadcast encryption that we described in Chapter 4,

Section 4.5.

Recall that such construction is based on a labeled tree T ′
SD, whose leaves corre-

spond to all the subsets Sij in the cover family SSD for the SD symmetric-key broadcast

encryption scheme of [65] (cf. Chapter 3, Section 3.3). Moreover, vertices in T ′
SD are

associated to a hierarchical identifier by a mapping HID(·).

However, to get forward-security, each vertex w in T ′
SD is no longer associated to a

single private key; rather, for each time period t, there is a secret key SKt,HID(w), which

can be computed using the Extract/Update algorithms of fs-HIBE.

Construction:

• FSBE.Setup(k, rmax, T,N): Run algorithm fs-HIBE.Setup(k, T,N), set paramsFSBE

.
= (paramsfs-HIBE,HID(·)) and masterFSBE,0

.
= masterfs-HIBE,0.

• FSBE.Register(masterFSBE,t, u, t): Consider the path from the root of TSD to the

95

leaf representing user u; let u0, u1, . . . , un ≡ u be all the ancestors of u, and

denote by vh the sibling of uh, h = 1, . . . , n. For 1 ≤ i < j ≤ n consider the

subset difference Sui,vj
and the associated leaf lui,vj

in T ′
SD; let wui,vj

be the parent

of lui,vj
in T ′

SD. Then, starting from masterPHIBE, recursively apply the Extract

algorithm of fs-HIBE to derive the secret key SKt,HID(wui,vj). Set the user’s secret

key FSBE.SKt,u
.
= {〈HID(wui,vj

), SKt,HID(wui,vj)〉 | 1 ≤ i < j ≤ n}.

• FSBE.Update(PK, u, t,FSBE.SKt,u): For each 1 ≤ i < j ≤ n such that 〈HID(wui,vj
),

SKt,HID(wui,vj)〉 ∈ FSBE.SKt,u, run PHIBE.Update(t,HID(wui,vj
), SKt,HID(wui,vj)) to

compute SKt+1,HID(wui,vj) and erase SKt,HID(wui,vj). Finally, return FSBE.SKt+1,u
.
=

{〈HID(wui,vj
), SKt+1,HID(wui,vj)〉 | 1 ≤ i < j ≤ n}. For the Center, call the

fs-HIBE.Update(t,masterfs-HIBE,t) to compute the master secret key masterFSBE,t+1

= masterfs-HIBE,t+1 for time period t+ 1.

• FSBE.Encrypt(PK,m, t,R): First run the Cover algorithm (cf. Naor et al. [65])

to partition the set N \ R into the subsets {Si1,j1 , . . . , Siz ,jz}. (The Cover al-

gorithm guarantees that z < 2|R|.) For each h = 1, . . . , z, run algorithm

fs-HIBE.Encrypt(paramsPHIBE, t,HID(wuih
,vjh

),m) to compute ciphertext Ch. Re-

turn C
.
= 〈HID(lui1

,vj1
), . . . ,HID(luiz ,vjz

), C1, . . . , Cz〉.

• FSBE.Decrypt(PK, u, t,FSBE.SKt,u, C): By definition of the Register algorithm, if

the ciphertext C
.
= 〈HID(lui1

,vj1
), . . . ,HID(luiz ,vjz

), C1, . . . , Cz〉 was constructed for

a subset R of revoked users which does not include u, then among the hierarchical

identifiers included in C, there exists one (say, HID(luih
,vjh

)) which is a descendent

of one of the ID-tuples (say, HID(wui,uj
)) for which user u received the corre-

sponding secret key when he joined the system. Let SKt,HID(wui,uj) be the value of

such a secret key at time period t. Starting from such key, recursively apply fs-

HIBE.Extract to derive the secret key SKt,HID(luih
,vjh

) corresponding to HID(luih
,vjh

).

Then, run algorithm fs-HIBE.Decrypt(paramsPHIBE, t,HIDh, SKt,HID(luih
,vjh

), Ch) to

obtain the corresponding message m.

96

Remark 59. Using the specific construction for fs-HIBE presented in [16], this yields a

Forward-Secure Broadcast Encryption Scheme, with storage complexity O(log2N(log T+

logN)), with encryption complexity O(r(log T + logN)) and communication complexity

O(r log T).

5.6 Achieving Chosen-Ciphertext Security

For the sake of clarity, in Section 5.3, Section 5.4, and Section 5.4.6 we focused on

the basic notion of IND-ID-CPA security, providing definitions, generic results and an

efficient construction specific for that level of security. Realistic usage scenarios, however,

call for a higher level of security i.e., IND-ID-CCA security.

For most of the results of Section 5.4, replacing IND-ID-CPA secure components with

their IND-ID-CCA secure counterparts suffices to yield similar results for the IND-ID-

CCA security case. In particular, this is true for Lemma 41 (and for Corollary 47 and

Corollary 49 which directly follow from it), as well as for Lemma 55 (and Corollary 54).

These simple syntactic changes, however, are not sufficient to extend Theorem 45

(the Reduction Theorem) to the IND-ID-CCA setting, since the underlining argument

is based on multiple encryptions, which can be plainly combined without incurring in

loss of security only for the IND-ID-CPA case. To deal with IND-ID-CCA security, we

leverage the result of Dodis and Katz [39] which shows how to securely combine multiple

chosen-ciphertext encryptions, without the use of the Random Oracle Methodology.

More precisely, in securely broadcasting multiple encryptions of a messagem (as man-

dated by the Reduction Theorem), the Center first generates the pair (paramssig,mastersig)

for a one-time signature scheme, and then computes e1 ← Enc1(m, paramssig), . . . , ek ←

Enck(m, paramssig). Finally, the Center generates σ = Sig(e1, . . . , ek) and broadcast the

ciphertext 〈paramssig, e1, . . . , ek, σ〉.

Using this technique, we can prove a Reduction Theorem (similar to Theorem 45)

for the IND-ID-CCA setting, with a loss in the efficiency parameters of a constant factor

due to the use of signatures in the model of [39].

97

Chapter 6

Traitor Tracing with Optimal

Transmission Rate

6.1 Introduction

As pointed out by Kiayias and Yung in [57], an important problem in designing practical

traitor tracing schemes is to ensure a low transmission rate (defined as the asymptotic

ratio of the size of ciphertexts over the size of plaintexts), while at the same time

minimize the secret- and the public-storage rates (similarly defined as the asymptotic

ratio of the size of user-keys and of public-keys over the size of plaintexts).1

Under this terminology, the transmission rate of all the above mentioned solutions

is linear w.r.t. the maximal number t of traitors, whereas in [57], Kiayias and Yung

show that if the plaintexts to be distributed are large (which is already the case for

most applications of traitor tracing, such as distribution of multimedia content), then

it is possible to obtain ciphertexts with constant expansion rate. Their solution is

1We are adopting here a terminology slightly different from the one of [57], which uses the term ci-

phertext/user-key/public-key rates, for what we called transmission/secret-storage/public-storage rates.

Moreover, in [57] transmission rate refers to the sum of the all the three rates. Our choice is of course

mostly a matter of taste: we prefer the terminology of this paper as it makes more evident the role

played by each quantity in a concrete implementation of the system.

98

based on collusion-secure fingerprint codes [23, 79] and its parameters are summarized

in Figure 6.1.

Besides the clear benefit in terms of communication-efficiency, schemes with constant

transmission rate also enjoy efficient black-box traceability, while schemes with linear

transmission rate are inherently more limited in this regard [55] (e.g., the black-box

traitor tracing of [17] takes time proportional to
(

n
t

)
).

An extension to the work of [57] was recently proposed in [27], which further in-

troduced the notion of (local) public traceability : Whereas in traditional traitor tracing

schemes only the security manager could execute the tracing procedure (thanks to the

knowledge of some piece of information whose secrecy is crucial for the overall security of

the system), in a scheme with public traceability every one can run the tracing algorithm

(or at least its preliminary, interactive part which requires the availability of the pirate

decoder, in which case one talks of local public traceability). Figure 6.1 also summarizes

the main characteristics of the scheme in [27].

One could think that existing traitor tracing schemes with linear transmission rate

(e.g. [17]) could be easily turned into schemes with constant transmission rate by means

of hybrid encryption: To send a large message, pick a random session key, encrypt it

using the given traitor tracing scheme, and append a symmetric-key encryption of the

message under the chosen session key. The problem with this approach is that it opens

the way to a simple pirate strategy: Just decrypt the session key and make it available

to the “customers” on the black market. Since all the users recover the same session key,

even if the security manager got hold of the leaked session key, it would have no way to

trace it back to the source of the leakage. Although it may be possible to augment this

idea (e.g. using dynamic traitor tracing), it is not at all clear that one would obtain a

scheme with optimal rate and efficient black-box traceability, as we do in our scheme.

Notice that such “re-broadcasting” strategy does not apply when the traitor tracing

scheme is used to directly encrypt the content, for that would likely pose too high a

demand on the up-bandwidth available to the pirate.

99

Transmission SK-Storage PK-Storage BB Local Public

Rate Rate Rate Tracing Traceability

[17] 2t+ 1 2t 2t+ 1 × ×

[57] 3 2 4
√∗ ×

[27] 1 2 1 × ×

Repaired [27] 3 2 6
√ √

Our Scheme 1 2 11
√ √

Figure 6.1: Comparison of rates (transmission, secret- and public-storage rates) and

tracing features (black-box tracing and local public traceability) between existing schemes

and our construction.

The “*” in the table refers to the fact that the scheme of [57] can support black-box

tracing with the tracing algorithm described in Section 6.6.2. The row labeled “Re-

paired [27]” refers to the variant of the scheme of [27] modified to support black-box

tracing.

6.2 Our Results

In this chapter, based on our work in [41], we present the first Public-Key Traitor

Tracing scheme with efficient black-box traitor tracing and local public traceability in

which the transmission rate is asymptotically 1, which is optimal. Encryption involves

the same amount of computation as in [27], while decryption is twice as fast. Figure 6.1

summarizes the comparison of our construction with existing schemes, in terms of both

rates and tracing features. We remark that no scheme with optimal transmission rate

was known, even in the symmetric-key setting.

As additional contribution, we point out and resolve an issue in the black-box traitor

tracing mechanism in the scheme of [57], which was claimed to work with just a single

query to the pirate decoder. We show that this is not the case, and fix the problem by

presenting a black-box tracing mechanism that employs a number of black-box queries

100

proportional to the length of the plaintext, while not requiring any change to the scheme

of [57].

We also show that [27], which extends [57] and inherits its tracing mechanism, inherits

in fact the above-mentioned problem, too. In this case, however, the consequences are

more severe. First, since the notion of local public traceability is only meaningful in

the black-box setting, this in particular means that, as given, [27] does not possess any

public traceability features. Second, fixing the black-box functionality and the local

public traceability of [27] requires substantial changes to the scheme, which intrinsically

conflict with the optimizations put up by [27] to achieve optimal transmission rate. In

other words, [27] can either provide optimal transmission rate with only non-black-box

tracing and no public traceability features, or support local public traceability with

sub-optimal transmission rate, but cannot achieve both at the same time.

On the contrary, our construction simultaneously supports (local) public traceability,

black-box traitor tracing (with the same number of queries as in the repaired [57]-

scheme), and optimal transmission rate, all under the decisional bilinear Diffie-Hellman

(DBDH) assumption in the standard model.

Message and Keys Lengths in a Concrete Instantiation. Existing constructions

of traitor tracing schemes with constant transmission rate (including ours) are based on

the use of collusion-secure fingerprint codes [23, 79], and in particular are applicable for

messages of size proportional to the length of the code, which in the case of the optimal

codes due to Tardos [79] is O(t2(log n + log 1
ε
)) (where the hidden constant is less than

100). For a typical choice of the parameters, e.g. user population n = 230, tracing error

probability ε = 2−30 and traceable threshold t = 30,2 the length of each codeword is

about 5 million bits. Instantiating our construction with codes of such length, yields a

scheme with plaintext and ciphertext of size 41 MBytes. (The ciphertext size is equal

to the plaintext size, as the additive overhead is less than 1 KByte.) These values are

well within the range of multimedia applications, since 41 MBytes roughly corresponds

to 33 seconds of DVD-quality (high-resolution) video, 4 minutes of VCD-quality (low-

101

resolution) video and 25–50 minutes of audio.

As for the key size, secret keys require roughly 206 MBytes, whereas the public key

takes 1.8GByte. Although quite large, such public key could be stored in commodity

hardware (e.g., it would fit in the hard disk of the iPod), whereas the user secret key

could be kept in a Secure Digital, like those commonly available for PDAs.

Organization. Section 6.4 and Section 6.5 review the traitor tracing schemes of [57]

and [27]. In Section 6.6, we point out a flaw in the tracing algorithms of [57] and [27]

and propose fixes. We present our new traitor tracing scheme and its security analysis

in Section 6.7.

6.3 Formal Model

6.3.1 TT: Syntax

Definition 60 (Public-Key Traitor Tracing Scheme). A public-key traitor tracing scheme

ETT is a 5-tuple of probabilistic polynomial-time algorithms (Setup, Register, Encrypt,

Decrypt, Trace), where:

• Setup takes as input a security parameter 1κ, a collusion threshold 1tmax and the

total number N of users in the system. It returns the public key paramsTT for the

scheme, along with some master secret key masterTT needed to generate user keys

and to trace traitors from pirate decoder (cf. Register and Trace).

• Register takes as input the secret information masterTT, the identity u of the new

user. Register outputs a “fingerprinted” user key SKu good for decryption with

Decrypt.3

2A content distribution network afflicted by pirate coalitions of size larger than few dozens, has

arguably bigger issues to solve, than finding out the identity of the traitors.
3Equivalently, we can think of Setup as outputting a vector of user keys, one per each user in the

system; we will refer to either formalization interchangeably.

102

• Encrypt takes as input the public key paramsTT, a message m in the message space

M, and returns a (randomized) ciphertext ψ.

• Decrypt takes as input the public key paramsTT, the identity u of a user, the user’s

secret key SKu and a ciphertext ψ. Decrypt returns the message m or the special

rejection symbol ⊥.

• Trace takes as input the master secret key masterTT, the public key paramsTT, and

black-box access to a “pirate” decoder capable of inverting the Encrypt(paramsTT, ·)

functionality. Trace returns the identity of one of the traitors that contributed

his/her user key for the realization of the pirate decoder, or ∅ upon failure.

A traitor tracing scheme ETT should satisfy the following correctness constraint: for

any pair (paramsTT, paramsTT) output by TT.Setup(1λ, 1tmax , N), any user u with secret

key SKu (properly generated for user u) and any session message m:

m = TT.Decrypt(paramsTT, u, SKu,TT.Encrypt(paramsTT,m)).

Definition 61 (Public Traceability and Local Public Traceability [27]). A public-key

Traitor Tracing scheme is said to support: 1) public traceability if the Trace algorithm

can be implemented without the master secret key masterTT; or 2) local public traceability

if the Trace algorithm can be split in an on-line phase, in which the pirate decoder can

be queried without knowledge of the secret key, and an off-line phase, without access to

the pirate decoder, that can retrieve the identity of the traitor from the master secret key

and the output of the publicly executable on-line phase.

6.3.2 TT: Security

Requirements on the Encryption Functionality.

For security, encryption of distinct messages under a traitor tracing scheme should look

indistinguishable to any efficient algorithm that is allowed to pick the two messages

based on the public key of the system, but without knowledge of any user key:

103

Definition 62 (Indistinguishability under Chosen-Plaintext Attack). A public-key traitor

tracing scheme satisfies εind-indistinguishability if, for any pair of probabilistic polynomial-

time algorithms (A1, A2):

Pr

A2(τ, ψ
∗) = b∗

∣∣∣∣∣∣∣∣∣
(paramsTT,masterTT)

R← Setup(1κ, 1tmax , N),

(m0,m1, τ)
R← A1(paramsTT),

b∗
R← {0, 1}, ψ∗ R← Encrypt(paramsTT,mb∗)]

 ≤ 1

2
+ εind,

where the probability is over b∗, and the random coins of A1, A2, Setup, and Encrypt.

Requirements on the Tracing Functionality.

For tracing, the security manager ought to be able to “extract” the identity of at least

one of the traitors, from any efficient pirate decoder4 that can be (efficiently) produced

given access to up to t adaptively chosen user keys:

Definition 63. A public-key traitor tracing scheme is εtrac-traceable if for any proba-

bilistic polynomial-time algorithm A, it holds that:

Pr

TraceD(paramsTT,masterTT) ∈ T

∣∣∣∣∣∣(paramsTT,masterTT)
R← Setup(1κ, 1tmax , N),

D
R← A(paramsTT)Register(masterTT,·)


≥ 1− εtrac

where T is the set of up to tmax indices on which A queried the Register(masterTT, ·)

oracle, D successfully inverts Encrypt(paramsTT, ·) (almost) everywhere (in probabilistic

polynomial-time), and the probability is over the random choices of Setup, Register, A,

D and Trace.

6.4 The KY Public-Key Traitor Tracing Scheme

We first briefly review the scheme of Kiayias and Yung [57]. Their approach consists

of first devising a two-user traitor tracing withstanding just a single traitor, and then

4Following [66], we assume that it is sensible for the security manager to focus only on pirate decoders

that work with probability very close to 1.

104

extend it to the multi-user setting using collusion-secure codes.

6.4.1 The Two-User Sub-Scheme

Setup: Given a security parameter 1κ, the algorithm works as follows:

Step 1: Generate a κ-bit prime q and a group G of order q in which the DDH

problem is difficult. Let P be a generator of G.5

Step 2: Pick random elements a, c ∈ Z∗
q, and set Q

.
= aP , Z

.
= cP . The private

key of the security manager is set to be the pair masterTT
.
= (a, c).

Step 3: Choose a universal hash function H : G1 → {0, 1}κ, and set the public

key as paramsTT
.
= (q, G, H, P , Q, Z). The message space isM .

= {0, 1}κ.

Register: The security manager selects two linearly independent vectors (α0, β0), (α1, β1) ∈

Z2
q such that ασ + aβσ = c mod q, for σ ∈ {0, 1}. This implies: Z = cP =

ασP + βσQ, for σ ∈ {0, 1}. The secret key of user uσ is then set to be

SKσ
.
= (ασ, βσ), for σ ∈ {0, 1}.

Encrypt: Given paramsTT, anybody can encrypt a message m ∈ M by first selecting a

random k ∈ Zq and then creating the ciphertext ψ
.
= 〈A,B,C〉 ∈ G2 ×M where

A
.
= kP, B

.
= kQ, C

.
= m⊕H(kZ).

Decrypt: Given a ciphertext ψ = 〈A,B,C〉 ∈ G2×M, user uσ computes kZ = ασA+βσB

and recovers m = C ⊕H(kZ).

Trace: To trace a decoder D back to the identity of the traitor, the security manager

picks two distinct random values k, k′ ∈ Zq, along with a random m̂ ∈ M, and

feeds D with the “illegal” ciphertext ψ̂
.
= 〈k′P, kQ, m̂〉. If the output of D is

m̂⊕H(k′ασP + kβσQ), then the algorithm returns the identity uσ as the traitor;

otherwise it outputs ∅.
5Even though [57] used the multiplicative notation, we use here the additive notation for the sake

of consistency with the rest of the paper (cf. Footnote 6).

105

In [57], the authors show that the above two-user scheme is secure and traceable (for

up to 1 traitor) in the sense of Definitions 62 and 63 under the DDH assumption (cf.

Chapter 2, Section 2.3).

6.4.2 The Multi-User Scheme

Let C = {ω(1), . . . , ω(n)} be an (ε, t, n, v)-collusion-secure code over the alphabet {0, 1}

(cf. Chapter 2, Definition 7).

At a high level, the multi-user scheme of [57] is obtained by concatenating in parallel

v instantiations of the two-user scheme from Section 6.4.1, resilient against a single

traitor. Decryption keys for the multi-user scheme are then obtained by concatenating

the keys for the v two-user sub-schemes, according to the codewords of C: in other words,

user ui (associated to the codeword ω(i)) is given key (K
1,ω

(i)
1
, ..., K

v,ω
(i)
v

), where ω
(i)
j is

the j-th bit of the codeword ω(i), and Kj,0, Kj,1 are the keys for the j-th instantiation of

the basic two-user sub-scheme.

Setup: Given security parameters 1κ, 1t and ε, the algorithm works as follows:

Step 1: Generate a κ-bit prime q and a group G in which the DDH problem is

difficult.6 Generate an (ε, t, n, v)-collusion-secure code C = {ω(1), . . . , ω(n)}

over {0, 1}.

Step 2: For each j = 1, . . . , v, let Pj be a generator of G, pick random aj, cj ∈ Z∗
q,

and set Qj
.
= ajPj, Zj

.
= cjPj. For each j = 1, . . . , v, compute two linearly

independent vectors (αj,0, βj,0), (αj,1, βj,1) in Zq2 such that αj,σ + aβj,σ =

cj mod q, for σ ∈ {0, 1}. The private key of the security manager is set to be

masterTT
.
= (aj, αj,0, βj,0, αj,1, βj,1)j=1,...,v.

6Even though [57] used the multiplicative notation, we use here the additive notation for the sake of

consistency with the rest of the paper. Notice, however, that G should not be identified with the group

G1 used elsewhere in this paper, and in particular G should not be equipped with a bilinear map, for

that would violate the required hardness of the DDH problem in G.

106

Step 3: Choose a universal hash function H : G → {0, 1}κ, and set the public

key to paramsTT
.
= (q, G, H, (P1, Q1, Z1), . . ., (Pv, Qv, Zv)). The message

space isM .
= ({0, 1}κ)v.

Register: For each user ui, the security manager first retrieves the corresponding code-

word ω(i) ∈ C, and then, for each j = 1, . . . , v, gives ui one of the two pairs

(αj,0, βj,0) or (αj,1, βj,1), according to the value of ω
(i)
j (the j-th bit of the codeword

ω(i)). The user key of ui is then set to be SKi
.
= (α

j,ω
(i)
j
, β

j,ω
(i)
j

)j=1,...,v. Notice that,

for j = 1, . . . , v, Zj = cjPj = α
j,ω

(i)
j
Pj + β

j,ω
(i)
j
Qj.

Encrypt: Given paramsTT, anybody can encrypt a message m = (m1‖ . . . ‖mv) ∈ M

by first selecting random k1, . . . , kv ∈ Zq and then creating a ciphertext ψ
.
=

〈A1, B1, C1〉, . . . , 〈Av, Bv, Cv〉 ∈ (G2
1 × {0, 1}κ)v where Aj

.
= kjPj, Bj

.
= kjQj and

Cj
.
= mj ⊕H(kjZj), j = 1, . . . , v.

Decrypt: Given a ciphertext ψ = (〈A1, B1, C1〉, . . . , 〈Av, Bv, Cv〉), user ui computes

kjZj = α
j,ω

(i)
j
Aj + β

j,ω
(i)
j
Bj) and recovers mj = Cj ⊕H(kjZj), for j = 1, . . . , v.

Trace: To trace a decoder D back to the identity of one of the traitors, the security man-

ager prepares an illegal ciphertext ψ̂
.
= (ψ̂1, . . . , ψ̂v), where each ψ̂j is constructed

as in the tracing algorithm from Section 6.4.1 (i.e., ψ̂j
.
= 〈k′jPj, kjQj, m̂j〉, for

random kj, k
′
j

R← Zq and m̂j
R← {0, 1}κ). Let m

.
= (m1‖ . . . ‖mv) be the plaintext

output by D when fed with the ciphertext ψ̂.

The security manager forms a “traitor codeword” ω̂
.
= (ω̂(1), . . . , ω̂(v)) ∈ {0, 1, ‘?’}v,

where each ω̂(j) is derived from mj as in the tracing algorithm for the two-user

scheme (i.e., ω̂(j) .= σj if mj = m̂j ⊕H(k′jαj,σj
Pj + kjβj,σj

Qj) (for σj = {0, 1}), or

ω̂(j) .= ‘?’ otherwise).

At this point, the “traitor codeword” ω̂ is run through the tracing algorithm

T (rC, ·) of the collusion-secure code C (where rC are the random coins used by

the security manager in generating C). Finally, Trace outputs whichever value in

{1, . . . , n, ∅} returned by T (rC, ω̂).

107

6.5 The CPP Public-Key Traitor Tracing Scheme

6.5.1 The Two-User Sub-Scheme

We now describe the scheme7 of [27], which is based on the use of bilinear maps. The key

difference from the scheme of [57] is the idea of proxy quantity : the security manager

selects the master secret key roughly as in [57], but now some secret information is

removed from the users’ secret keys and a derived value (the proxy quantity) is lifted to

the public key.

Setup: Given a security parameter 1κ, the algorithm works as follows:

Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an

admissible bilinear map e : G1 × G1 → G2. Let P be a generator of G1 and

set g
.
= e(P, P).

Step 2: Pick random elements a, c ∈ Z∗
q, and set Q

.
= aP , h

.
= gc. The private

key of the security manager is set to be the pair masterTT
.
= (a, c).

Step 3: The security manager selects two linearly independent vectors (α0, β0)

and (α1, β1) in Z2
q such that ασ + aβσ = c mod q, for σ ∈ {0, 1}. It chooses

a universal hash function H : G1 → {0, 1}κ, and set the public key of the

scheme to be the tuple paramsTT
.
= (q,G1,G2, e,H, g, P,Q, h, α0P, β0P, α1P,

β1P). The message space isM .
= {0, 1}κ.

Register: The secret key of user uσ is set to be SKσ
.
= (ασ). Notice that: cP = ασP+βσQ

and hence e(cP, P) = e(ασP, P) · e(βσP,Q), for σ ∈ {0, 1}.

Encrypt: Given paramsTT, anybody can encrypt a message m ∈ M by first selecting a

random k ∈ Zq and then creating the ciphertext ψ
.
= 〈A,B,C〉 ∈ G2

1 ×M where

A
.
= kP, B

.
= k2Q, C

.
= m⊕H(hk2

).

7In [27], the authors present two schemes with the same parameters. For conciseness, here we only

report the second scheme, which was claimed to also support local public traceability.

108

Decrypt: Given a ciphertext ψ = 〈A,B,C〉, user uσ computes hk2
= e(ασA,A)·e(βσP,B)

and recovers m = C ⊕H(hk2
).

Trace: To trace a decoder D back to the identity of the traitor, the tracer picks

two distinct random values k, k′ ∈ Zq, along with a random m̂ ∈ M, and

feeds D with the “illegal” ciphertext ψ̂
.
= 〈k′P, k2Q, m̂〉. If the output of D is

m̂ ⊕ H(e(ασP, P)k′2 · e(βσP,Q)k2
), then the algorithm returns the identity uσ as

the traitor; otherwise it outputs ∅.

In [27], the above two-user scheme is proven secure and traceable (for up to 1 traitor)

in the sense of Definitions 62 and 63 under two non-standard assumptions for bilinear

groups, respectively called DBDH2-E and DBDH1-M in [27] (cf. Chapter 2, Section 2.3,

Definitions 14 and 13, respectively).

6.5.2 The Multi-User Scheme

Similarly to the multi-user of [57] (c.f. Section 6.4), it is possible to concatenate multiple

instantiations of the two-user scheme from the previous section via collusion-secure codes

to obtain a multi-user scheme.

In this case, however, the use of public proxy quantities are sufficient to decrypt and

contain less information about the master secret key. This makes it (seemingly) safe to

reuse the same parameters P and Q (in the public key) and the same randomness k (in

the ciphertext) for all v components of the multi-user scheme. This (seemingly) results

in a significant bonus, as it allows for considerably shorter public keys and ciphertexts.

Setup: Given the security parameters 1κ, 1t and ε, the algorithm works as follows:

Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an

admissible bilinear map e : G1 × G1 → G2. Let P be a generator of G1 and

set g
.
= e(P, P). Additionally, generate an (ε, t, n, v)-collusion-secure code

C = {ω(1), . . . , ω(n)} over {0, 1}.

109

Step 2: Pick random elements a, cj ∈ Z∗
q (j = 1, . . . , v), and set Q

.
= aP , hj

.
=

gcj , j = 1, . . . , v. For each j = 1, . . . , v, compute two linearly independent

vectors (αj,0, βj,0), (αj,1, βj,1) in Zq2 such that αj,σ + aβj,σ = cj mod q, for

σ ∈ {0, 1}. The private key of the security manager is set to be masterTT
.
=

(a, (αj,0, βj,0, αj,1, βj,1)j=1,...,v).

Step 3: Choose a universal hash function H : G1 → {0, 1}κ, and set the public

key to: paramsTT
.
= (q, G1, G2, e, H, P , Q, (hj, αj,0, βj,0, αj,1, βj,1)j=1,...,v).

The message space isM .
= ({0, 1}κ)v.

Register: For each user ui, the security manager retrieves the corresponding codeword

ω(i) ∈ C, and sets the user key of ui to be: SKi
.
= (α

j,ω
(i)
j

)j=1,...,v. Notice that, for

j = 1, . . . , v, cjP = α
j,ω

(i)
j
P + β

j,ω
(i)
j
Q and hence, hj = e(cjP, P) = e(α

j,ω
(i)
j
P, P) ·

e(β
j,ω

(i)
j
P,Q).

Encrypt: Given paramsTT, anybody can encrypt a message m = (m1‖ . . . ‖mv) ∈ M by

first selecting a random k ∈ Zq and then creating a ciphertext ψ
.
= 〈 A, B, (C1, . . .,

Cv) 〉 ∈ G2
1 × M, where A

.
= kP , B

.
= k2Q and Cj

.
= mj ⊕H(hk2

j), j = 1, . . . , v.

Decrypt: Given a ciphertext ψ = 〈A,B, (C1, . . . , Cv)〉 ∈ G2
1 ×M, user ui computes (for

j = 1, . . . , v) the mask hk2

j = e(α
j,ω

(i)
j
A,A) · e(β

j,ω
(i)
j
P,B) and then recovers each

mj as mj = Cj ⊕H(hk2

j).

Trace: Although [27] present a tracing algorithm only for their two-user scheme, the

authors suggested therein that their multi-user scheme inherits the tracing ca-

pabilities of [57]. In particular, we sketch here the obvious necessary modifica-

tions to the Trace algorithm in Section 6.4.2: the illegal ciphertext has the form

ψ̂
.
= 〈k′P, k2Q, (m̂1, . . . , m̂v)〉, where k, k′

R← Zq, and each m̂j is random in {0, 1}κ;

and the “traitor codeword” ω̂
.
= (ω̂(1), . . . , ω̂(v)), is constructed from D’s response

m
.
= (m1‖ . . . ‖mv) by defining each ω̂(j) ∈ {0, 1, ‘?’} as in the tracing for the two-

user scheme (i.e., ω̂(j) .
= σj if mj = m̂j ⊕ H(e(αj,σj

P, P)k′2 · e(βj,σj
P,Q)k2

) (for

σj = {0, 1}), or ω̂(j) .= ‘?’ otherwise).

110

6.6 On the Query Complexity of KY Black-Box

Tracing

In Section 6.4.2, we reported the multi-user scheme of [57], which includes a black-box

tracing algorithm making a single query to the pirate decoder D. Below we show that

such algorithm is broken, and we present a simple pirate strategy that allows a coalition

of just 2 < t users to escape tracing with probability 1. We also propose a variation of

their black-box tracing algorithm, which requires v queries but is successful in tracing

up to the desired threshold of traitors, thus suggesting that the query complexity of

black-box tracing in [57] is higher than what claimed therein.

6.6.1 A Simple Untraceable Pirate Strategy

Consider the coalition of 2 users, which for simplicity we will suppose associated with

the first two codewords ω(1), ω(2) of C. Since ω(1) 6= ω(2), they must differ in at least one

of their v bits, say the first bit.

This means that by pooling their secret keys, the two traitors can construct a pirate

decoder D containing both user-keys (α1,0, β1,0), (α1,1, β1,1) for the two-user sub-scheme

associated to index 1, plus at least one user-key for each of the remaining (v − 1)

components. When given a ciphertext ψ
.
= 〈ψ1, . . . , ψv〉, D starts by decrypting ψ1

twice: once using (α1,0, β1,0), and then again using (α1,1, β1,1). If the two resulting

plaintexts coincide, then D decrypts the rest of ψ and output the resulting message;

otherwise, D can conclude that it is being traced, and can just output a predetermined

message (e.g., the all-zero message).

Notice that D perfectly decrypts ciphertext distributed according to algorithm

Encrypt(paramsTT, ·) since, by correctness of decryption, D’s “integrity” check will al-

ways pass on a valid ciphertext. Moreover, D escapes tracing with probability 1, since

the Trace algorithm of [57] prepares the invalid ciphertext ψ̂ by concatenating invalid

ciphertexts ψ̂j for each of the v components of the scheme. This will result in different

111

decryptions of ψ̂1 under (α1,0, β1,0) and (α1,1, β1,1), and thus D will reply with a plaintext

containing no information about the identities of the traitors.

6.6.2 The Fix

The problem with the Trace algorithm of [57] is that it implicitly assumed that pirate

decoders would decrypt each component of the ciphertext independently from each other,

which clearly does not need to be the case. Bearing this in mind, the fix is immediate: it

suffices for Trace to iteratively query the decoder with v ciphertexts, each constructed to

be invalid in just one component, but valid elsewhere. Now, the independence of the v

component sub-schemes implies thatD will be unable to tell valid and invalid ciphertexts

apart, unless it possesses both user-keys for the single sub-scheme “under testing.” As

a consequence, Trace will end up extracting a traitor codeword from D with at most t

unreadable marks ‘?’, and thus the tracing algorithm T (·, ·) of the collusion-secure code

C will successfully recover the identity of one of the traitor (with probability 1− ε).

6.6.3 Consequences for the Multi-User CPP Scheme

Being based on the techniques of [57], the multi-user scheme of [27] inherits the problem

pointed out in Section 6.6.1. As it turns out, however, in this case the consequences

are more severe. In particular, the easy fix that we proposed for the scheme of [57] in

Section 6.6.2 does not apply: interestingly, the higher correlation between the parameters

used in the v components of the scheme of [27], which proved crucial to attain optimal

transmission rate, at the same time poses a serious impediment to black-box tracing.

Indeed, ciphertexts in the multi-user scheme of [27] (cf. Section 6.5.2) have the form

ψ
.
= 〈kP , k2Q, (C1, . . ., Cv)〉, in which the same “randomization” values kP, k2Q are

used for all the v two-user sub-schemes. Hence, it is not possible to make the ciphertext

invalid in just one component, while preserving its validity in the remaining (v − 1)

ones (which was the idea behind our fix in Section 6.6.2). Therefore, it seems that the

scheme of [27], as given, does not support black-box tracing. Since the notion of local

112

public traceability is only meaningful in the black-box setting, this also voids the claimed

traceability features of the multi-user scheme of [27].

To salvage black-box tracing and local public traceability, one could modify the

scheme of [27] and revert to the “parallel” composition of sub-schemes (exactly as in [57]),

thus “undoing” the optimization that enabled short ciphertexts. The resulting scheme,

however, would just be a variant of [57] with the same parameters, but with the addi-

tional need of bilinear maps and reliance on non-standard bilinear-related assumptions.

As a result, it seems appropriate to regard the multi-user scheme of [27] as a scheme

with optimal transmission rate, but with only non-black-box tracing and no public trace-

ability features.

6.7 Black-Box Traitor Tracing with Optimal Trans-

mission Rate

6.7.1 The Two-User Sub-Scheme

Setup: Given a security parameter 1κ, the algorithm works as follows:

Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an

admissible bilinear map e : G1 × G1 → G2. Choose an arbitrary generator

P ∈ G1.

Step 2: Pick random elements a, b, c ∈ Zq∗, and set Q
.
= aP,R

.
= bP, h

.
=

e(P, cP). The private key of the security manager is set to be masterTT
.
=

(a, b, c).

Step 3: The security manager selects two linearly independent vectors (α0, β0)

and (α1, β1) in Zq such that bασ + aβσ = c mod q, for σ ∈ {0, 1}. Finally, it

chooses a universal hash function H : G1 → {0, 1}κ and set the public key

113

of the scheme to be the tuple:

paramsTT
.
= (q,G1,G2, e,H, P,Q,R, α0R, β0P, α1R, β1P).8

The associated message space isM .
= {0, 1}κ.

Register: The secret key of user uσ is set to be SKσ
.
= ασ. Notice that, cP = ασR+βσQ

and hence h = e(P, cP) = e(P,R)ασ · e(βσP,Q), for σ ∈ {0, 1}.

Encrypt: Given paramsTT, anybody can encrypt a message m ∈ M by first selecting a

random k ∈ Zq and then creating the ciphertext ψ
.
= 〈A,B,C〉 ∈ G2 × G1 ×M

where

A
.
= e(P,R)k, B

.
= kQ, C

.
= m⊕H(hk).

Decrypt: Given a ciphertext ψ = 〈A,B,C〉, user uσ computes hk = Aασ · e(βσP,B) and

recovers m = C ⊕ H(hk). Correctness of the decryption algorithm is clear by

inspection.

Trace: Given paramsTT, anybody can trace a decoder D back to the identity of the

traitor, as follows: First, pick two distinct random values k, k′ ∈ Zq, along with a

random m̂ ∈M; then, feed D with the “illegal” ciphertext ψ̂
.
= 〈e(P,R)k′ , kQ, m̂〉.

If the output of D is m̂⊕H(e(P, ασR)k′ ·e(Q, βσP)k), then return uσ as the traitor’s

identity; otherwise, output ∅.

Before moving on to proving the security and traceability of our two-user scheme

in the sense of Definitions 62 and 63 (cf. Section 6.3), we remark that Trace does not

require knowledge of the master secret key masterTT, and thus, like the two-user scheme

of [27], it supports Public Traceability (cf. Definition 61). Also, notice that decryption

requires only one pairing computation.

8Note that there is no need to explicitly include h in the public key, as it can be derived as h =

e(P, ασR) · e(Q, βσP). Caching the value of h, however, is recommendable when public storage is not

at a premium, as that would save two pairing computations during encryption.

114

6.7.2 Indistinguishability under Chosen-Plaintext Attack

Theorem 64. Under the DBDH assumption for (G1,G2), the scheme in Section 6.7.1

is secure w.r.t. indistinguishability under chosen-plaintext attack (c.f. Definition 11 and

Definition 62).

Proof. Let us assume that the scheme does not satisfy Definition 62, i.e, there is an

adversary A = (A1,A2) that, given the public key

paramsTT = (q,G1,G2, e,H, P,Q,R, α0R, β0P, α1R, β1P)

can break the scheme with advantage εind. We then construct an algorithm B (whose

running time is polynomially related to A’s) that breaks the DBDH assumption with

probability εDBDH = εind.

Algorithm B is given as input an instance (P ′, xP ′, yP ′, zP ′, h′) of the DBDH problem

in (G1,G2); its task is to determine whether h′ = e(P ′, P ′)xyz or h′ is a random element

in G2. B proceeds as follows:

Setup: B lets P
.
= xP ′ and Q

.
= P ′. Then, B picks r

R← Zq∗, and sets R
.
=

rQ. B now chooses β0, β1
R← Zq∗ and computes β0P and β1P . Then, B

lets α0R
.
= zP ′ and α1R

.
= α0R + β0Q − β1Q. B can now set paramsTT

.
=

(q,G1,G2, e,H, P,Q,R, α0R, β0P, α1R, β1P) and send it to A1.

Challenge: A1 outputs two message m0,m1 on which it wishes to be challenged, along

with some state τ to be passed to A2. To prepare the ciphertext, B lets

kQ
.
= yP ′, e(P,R)k .

= e(P, kQ)r, hk .
= h′ · e(β0P, kQ).

(Notice that this implicitly defines k = y.) Then, B picks random b∗ ∈ {0, 1}, and

sends the ciphertext (e(P,R)k, kQ, mb∗ ⊕H(hk)) as challenge to A2 (along with

the state τ).

Guess: Algorithm A2 outputs a guess b′ ∈ {0, 1}. B returns 1 if b′ = b∗ and 0 otherwise.

115

If h′ = e(P ′, P ′)xyz, A2 gets a valid encryption of mb∗ , since then:

hk = h′ · e(β0P, kQ) = e(P ′, P ′)xyz · e(β0P,Q)k = e(xP ′, zP ′)y · e(β0P,Q)k =

= e(P, α0R)y · e(β0P,Q)k = e(P, α0R)k · e(β0P,Q)k = [e(P,R)α0 · e(β0P,Q)]k.

So when B’s input comes from the DBDH distribution, b′ = b∗ holds with probability

εind + 1/2.

Otherwise, since H is randomly chosen from a universal hash function family, the

challenge is independent from mb∗ . In fact, when h′ is randomly chosen, the message

mb∗ is encrypted with a totally random value, independent from b∗. Thus, in this case

b′ = b∗ holds with probability 1/2.

It follows that adversary B breaks the DBDH assumption with advantage εDBDH =

εind.

6.7.3 Traceability

To prove the security of the Trace algorithm, we first observe that security of the en-

cryption functionality (cf. Theorem 64) implies that any efficient pirate decoder D that

successfully inverts the Encrypt(paramsTT, ·) functionality must “incorporate” knowledge

of at least one user key. Indeed, if D did not somehow encode knowledge of any user key

SKσ, yet it successfully inverted Encrypt(paramsTT, ·) (almost) everywhere (in probabilis-

tic polynomial-time), then we would have an efficient algorithm distinguishing between

ciphertexts of any two distinct messages based only on the system’s public key paramsTT,

contradicting Theorem 64.

Then, the goal of the Trace algorithm can be recast as that of identifying which secret

information is embedded withinD that enables it to go beyond what’s (efficiently) doable

based only on paramsTT. In principle, any (α,Π) ∈ Zq × G1 such that h = e(P,R)α ·

e(Π, Q) would suffice, as D could then recover the mask hk from ψ
.
= 〈e(P,R)k, kQ,m⊕

H(hk)〉 as hk = (e(P,R)k)α · e(Π, kQ). However, below we prove that, under the CDH

assumption (cf. Chapter 2, Section 2.3), the only such pair (α,Π) that the traitor uσ

can obtain from the public key and his/her secret key is (ασ, βσP):

116

Lemma 65. Under the CDH assumption in G1, given the public key paramsTT = (q,

G1, G2, e, H, P , Q, R, α0R, β0P , α1R, β1P) and the secret key SKσ
.
= ασ of user

uσ, it is computational infeasible to construct a pair (α,Π) ∈ Zq × G1 such that h =

e(P,R)α · e(Π, Q), but α 6= ασ.

Proof. Assume for simplicity that σ = 0. We proceed by contradiction, i.e. let us

assume that there exists an adversary A that, given the public key paramsTT and the

secret key α0, is able to compute (α,Π) ∈ Zq ×G1 such that h = e(P,R)α · e(Π, Q) but

α 6= α0. We then construct an algorithm B (whose running time is polynomially related

to A’s) that solves the CDH problem in G1.

On input a random instance (P ′, xP ′, yP ′) of the CDH problem in G1, B proceeds

as follows:

Setup: B lets P
.
= xP ′, Q

.
= P ′ and R

.
= yP ′. B then chooses α0, β0, β1

R← Zq∗

and computes α0R, β0P and β1P . Then, B lets α1R
.
= α0R + β0Q − β1Q. This

implicitly defines h = e(P,R)α0 · e(β0P,Q) = e(P,R)α1 · e(β1P,Q). B can now set

paramsTT
.
= (q,G1,G2, e,H, P,Q,R, α0R, β0P, α1R, β1P) and send it to A1, along

with the secret key SK0 = α0 of user u0.

Attack: A outputs a pair (α,Π) such that h = e(P,R)α · e(Π, Q), but α 6= α0.

Break: B outputs (α0 − α)−1 · (Π− β0xP
′).

If A’s output is correct, then B’s output is xyP ′. Indeed, writing Π = βP , for some

unknown β ∈ Zq∗, the fact that e(P,R)α · e(βP,Q) = h = e(P,R)α0 · e(β0P,Q), implies

that e(P, αR + βQ) = e(P, α0R + β0Q), and from the injectivity of e(P, ·), we get:

α0R + β0Q = αR + βQ⇔ α0yP
′ + β0P

′ = αyP ′ + βP ′ ⇔

⇔ α0y + β0 = αy + β ⇔ y = (β − β0) · (α0 − α)−1.

Hence, the target CDH value can be written as:

xyP ′ = ((β − β0)(α0 − α)−1)xP ′ = (α0 − α)−1(βxP ′ − β0xP
′) =

= (α0 − α)−1(Π− β0xP
′).

117

An immediate corollary of the above lemma is a sort of “non-incrimination” prop-

erty: a traitor uσ cannot frame the innocent user u1−σ by constructing a pirate decoder

containing SK1−σ:

Corollary 66 (Non-Incrimination). Under the CDH assumption, given the public key

paramsTT = (q, G1, G2, e, H, P , Q, R, α0R, β0P , α1R, β1P) and the secret key SKσ =

ασ of user uσ, it is computationally infeasible to construct the secret key SK1−σ
.
= α1−σ

of user u1−σ.

Another consequence of Lemma 65 is that a pirate decoder D created by uσ decrypts

a ciphertext ψ
.
= 〈A,B,C〉 as m

.
= C ⊕H(Aασ · e(βσP,B)). However, this holds (except

with negligible probability) when ψ is properly created, whereas the Trace algorithm

from Section 6.7.1 queries D on “probe” ciphertexts which are not distributed according

to Encrypt(paramsTT, ·):

Definition 67 (Valid and Probe Ciphertexts). A ciphertext ψ = 〈A,B,C〉 is

• valid, if A = e(P,R)k, B = kQ, for random k ∈ Zq;

• probe, if A = e(P,R)k′ , B = kQ, for random k, k′ ∈ Zq.

Nevertheless, in Lemma 68 we prove thatD cannot distinguish between the two cases,

and thus D replies to a probe with the “plaintext” C ⊕ H((e(P,R)k′)ασ · e(βσP, kQ)).

It follows that the Trace algorithm from Section 6.7.1 correctly identifies the traitor uσ,

except with negligible probability, as required by Definition 63.

Lemma 68 (Indistinguishability of Valid vs. Probe Ciphertexts). Under the DBDH

assumption for (G1,G2), given the public key

paramsTT = (q,G1,G2, e,H, P,Q,R, α0R, β0P, α1R, β1P)

and the secret key SKσ = ασ of user uσ, it is infeasible to distinguish a valid ciphertext

from a probe.

118

Proof. For simplicity, assume σ = 0. We proceed by contradiction: assume there is an

adversary A that, given the public key

paramsTT = (q,G1,G2, e,H, P,Q,R, α0R, β0P, α1R, β1P)

and the secret key α0 of user u0, can distinguish valid ciphertexts from probes with

probability ε. We then construct an algorithm B (whose running time is polynomially

related to A’s) that breaks the DBDH assumption with probability εDBDH = ε.

Algorithm B is given as input an instance (P ′, xP ′, yP ′, zP ′, h′) of the DBDH problem

in (G1,G2); its task is to determine whether h′ = e(P ′, P ′)xyz or h′ is a random element

in G2. B proceeds as follows:

Setup: B lets P
.
= xP ′, Q

.
= P ′, R

.
= yP ′, chooses α0, β0, β1

R← Zq∗ and computes

α0R, β0P and β1P . B also lets α1R
.
= α0R + β0Q − β1Q, and paramsTT

.
= (q,

G1, G2, e, H, P , Q, R, α0R, β0P , α1R, β1P). Then, B lets kQ
.
= zP ′ (which

implicitly defines k = z) and prepares a challenge ciphertext ψ̂ by picking m̂ ∈M

and setting ψ̂
.
= 〈h′, kQ, m̂〉. At this point, B feeds A with paramsTT, ψ̂, and α0.

Attack: A returns her guess to whether ψ̂ is a valid ciphertext or a probe (w.r.t. the

public key paramsTT).

Break: B outputs yes or no accordingly.

If h′ = e(P ′, P ′)xyz, then A gets a valid ciphertext since h′ = e(xP ′, yP ′)z = e(P,R)k.

Otherwise, h′ is a random value, totally independent from k, and thus ψ̂ is a probe.

Therefore, B breaks the DBDH assumption with the same advantage as A’s i.e., εDBDH =

ε.

6.7.4 The Multi-User Scheme

To generalize the two-user scheme of Section 6.7.1, we start from the following consider-

ations. During tracing, we make v queries to the decoder; in each query, one component

of the ciphertext ought to be invalid, whereas the remaining (v− 1) components should

119

be valid. In this way, if the decoder does not have both keys for the invalid component,

it will be unable to tell that the ciphertext is invalid.

A straightforward way to achieve this independence of the components is to have

v independent copies of the two-user scheme in Section 6.7.1, and use independent

randomness in the encryption. This, however, would yield public-storage rate 4 and

transmission rate 3, which is no better than what already attained by [57].

To get ciphertext rate 1, the idea is that each ciphertext will include a “special”

component ` ∈ {1, . . . , v} which will be encrypted using an instance of the two-user

scheme of Section 6.7.1 specific to the `-th component; the remaining (v−1) components,

on the other hand will be encrypted using a “shared” two-user scheme, as in the scheme

of [27] (cf. also Section 6.5.2).

Setup: Given the security parameters 1κ, 1t and ε, the algorithm works as follows:

Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an

admissible bilinear map e : G1 ×G1 → G2. Generate an (ε, t, n, v)-collusion-

secure code C = {ω(1), . . . , ω(n)}.

Step 2a: Generate v independent copies of the 2-user scheme described in Sec-

tion 6.7.1 (call these copies the special schemes). In particular, for j =

1, . . . , v, let Pj be a generator of G1; pick random elements aj, bj, cj ∈ Z∗
q,

and set Qj
.
= ajPj, Rj

.
= bjPj, hj

.
= e(Pj, cjPj). Also, for j = 1, . . . , v,

compute linearly independent vectors (αj,0, βj,0), (αj,1, βj,1) ∈ Zq2 such that

bjαj,σ + ajβj,σ = cj mod q, for σ ∈ {0, 1}.

Step 2b: Generate one more independent copy of the 2-user scheme of Sec-

tion 6.7.1, in which we additionally select v values for h (call this the shared

scheme). At a high level, the shared scheme can be thought of as v parallel

copies of the 2-user scheme of Section 6.7.1, sharing the same values P , Q and

R. More precisely, draw P
R← G1, a, b

R← Zq∗, and set Q
.
= aP , and R

.
= bP ;

then, for each j = 1, . . . , v, select c̄j ∈ Z∗
q and set h̄j

.
= e(P, c̄jP). Also,

120

for each j = 1, . . . , v, compute two linearly independent vectors (ᾱj,0, β̄j,0),

(ᾱj,1, β̄j,1) in Zq2 such that bᾱj,σ + aβ̄j,σ = cj mod q, for σ ∈ {0, 1}.

Step 2c: The master secret key of the security manager is set to be:

masterTT
.
= ((aj, bj, (αj,0, βj,0, αj,1, βj,1))j=1,...,v, a, b, (ᾱj,0, β̄j,0, ᾱj,1, β̄j,1)j=1,...,v).

Step 3: Choose a universal hash function H : G1 → {0, 1}κ, and set paramsTT
.
=

(H, (Pj, Qj, Rj, αj,0Rj, βj,0Pj, αj,1Rj, βj,1Pj)j=1,...,v, P,Q,R, (ᾱj,0R, β̄j,0P ,

ᾱj,1R, β̄j,1P)j=1,...,v). The associated message space isM .
= ({0, 1}κ)v.

Register: For each user ui, the security manager first retrieves the corresponding code-

word ωi ∈ C and sets the secret key of user ui to:

SKi
.
= ((α

j,ω
(i)
j

)j=1,...,v, (ᾱj,ω
(i)
j

)j=1,...,v).

Notice that, for j = 1, . . . , v, it holds that:

cjPj = α
j,ω

(i)
j
Rj + β

j,ω
(i)
j
Qj

c̄jP = ᾱ
j,ω

(i)
j
R + β̄

j,ω
(i)
j
Q

and hence

hj = e(Pj, cjPj) = e(Pj, αj,ω
(i)
j
Rj) · e(βj,ω

(i)
j
Pj, Qj)

h̄j = e(P, c̄jP) = e(P, ᾱ
j,ω

(i)
j
R) · e(β̄

j,ω
(i)
j
P,Q).

Encrypt: Given paramsTT, anybody can encrypt a message m = (m1‖ . . . ‖mv) ∈ M as

follows: First, select `
R← {1, . . . , v} and k`

R← Zq, and compute the special com-

ponent of the ciphertext (A`, B`, C`) ∈ G2 ×G1 × {0, 1}κ, where A`
.
= e(P`, R`)

k` ,

B
.
= k`Q` and C`

.
= m`⊕H(hk`

`). Then, select k
R← Zq, and compute the remaining

pieces of the ciphertext as: (A,B,C1, . . . , C`−1, C`+1, . . . , Cv), where A
.
= e(P,R)k,

B
.
= kQ, and Cj

.
= mj ⊕ H(h̄k

j), for j = 1, . . . , v, j 6= `. The ciphertext is set to

be the tuple ψ
.
= 〈`, A`, B`, A,B,C1, . . . , Cv〉

121

Decrypt: Given a ciphertext ψ = 〈`, A`, B`, A,B,C1, . . . , Cv〉 ∈ Z× (G2 ×G1)
2 ×M, ui

computes:

hk`
` = (A`)

α
j,ω

(i)
j · e(β

j,ω
(i)
j
Pj, B`)

h̄k
j = (A)

ᾱ
j,ω

(i)
j · e(β̄

j,ω
(i)
j
P,B) (j = 1, . . . , v, j 6= `)

recovers m` = C` ⊕ H(hk`
`) and mj = Cj ⊕ H(h̄k

j) (for j ∈ {1, . . . , v} \ {`}) and

outputs m
.
= (m1‖ . . . ‖mv).

Trace: Given paramsTT, anybody can extract the “traitor codeword” ω̂
.
= (ω̂(1), . . ., ω̂(v))

∈ {0, 1, ‘?’}v from a decoder D by making v queries to D. At a high level, the idea

is to iteratively derive each ω̂(j) by feeding D with an invalid ciphertext that looks

valid in the “shared” components, but is actually a probe on the j-th “special”

component. In this way, if D contains only one of the two user-keys for the j-

th “special” two-user component (say, αj,σj
), it will reply with a plaintext which

reveals the value of σj. More in detail, the probe ciphertext to extract ω̂(j) from

D is: ψ̂(j) .
= 〈j, Âj, B̂j, A

(j), B(j), C
(j)
1 , . . . , C

(j)
v 〉, where kj, k

′
j, k

(j) are drawn from

Zq, C(j)
1 , . . . , C

(j)
v are drawn from {0, 1}κ, and

Âj
.
= e(Pj, Rj)

k′j , B̂j
.
= kjQj, A(j) .= e(P,R)k(j)

, B(j) .= k(j)Q.

Let m
.
= (m1‖ . . . ‖mv) be the plaintext output by D when fed with the ciphertext

ψ̂(j). Then ω̂(j) is derived from mj as in the tracing algorithm for the two-user

scheme i.e.,

ω̂(j) .=


σj if mj = C

(j)
j ⊕H(e(αj,σj

Rj, Pj)
k′j · e(βj,σj

Pj, Qj)
kj),

‘?’ otherwise.

At this point, the “traitor codeword” ω̂ is handed to the tracer, who (knowing the

random coins rC used in generating C) can run it through the tracing algorithm

T (rC, ·) of the collusion-secure code C, thus obtaining a value in {1, . . . , n, ∅}, which

is the output of Trace.

122

Before moving on to proving the security and traceability of our multi-user scheme,

we make few remarks.

First, following [66] (and [57, 27]), we assume that it is sensible to focus the trac-

ing effort only on pirate decoders that work with probability very close to 1, since in

concrete applications (e.g., distribution of multimedia content) pirate decoders with

sub-optimal decryption capabilities are not likely to attract a significant share of the

content distribution network’s customer base. However, as already noted in [57], any

constant-rate traitor tracing scheme can be made effective against decoders that decrypt

any non-negligible fraction of ciphertexts by simply pre-processing plaintexts with an

all-or-nothing transform (AONT) [70, 25] (cf. [57] for details).

Second, since the Trace algorithm needs masterTT only in the off-line phase, which

does not access the pirate decoder and is much less computation-intensive,9 our multi-

user scheme supports Local Public Traceability (cf. Definition 61).

Finally, notice that the size of the message blocks can be shrunk to any κ′ ≤ κ,

by choosing a universal hash function H : G1 → {0, 1}κ
′
. This is possible as long as

κ′ > log v + log(1/ε) = O(log t + log log(n/ε) + log(1/ε)), which ensures that, during

tracing, the probability of a hash collision in any of the v components of the scheme is

bounded by ε. For the choice of parameters given in Section 5.1 (n = 230, ε = 2−30,

t = 30), κ′ can be chosen as low as 64 bits.

6.7.5 Indistinguishability under Chosen-Plaintext Attack

Theorem 69. Under the DBDH assumption for (G1,G2), the scheme in Section 6.7.4

is secure w.r.t. indistinguishability under chosen-plaintext attack (cf. Chapter 2 Sec-

tion 2.3 and Definition 62).

In light of Theorem 64, Theorem 69 reduces to Lemma 70, whose proof follows from

a standard hybrid argument:

9For the scheme of [79], for example, such computation consists just of a matrix-vector multiplication.

123

Lemma 70. If the two-user scheme in Section 6.7.1 is secure w.r.t. indistinguisha-

bility under chosen-plaintext attack (cf. Theorem 64), then the multi-user scheme in

Section 6.7.4 is secure w.r.t. the same notion.

6.7.6 Traceability

Throughout this section, T denotes the set of indices of the (up to t) traitors. The

following definitions aim at capturing the possible secret information that the traitors

in T could derive from pooling their secret keys together.

Definition 71 (T -Associated Secret Tuple). A tuple Ω̂
.
= (α̂j, Π̂j, ˆ̄αj,

ˆ̄Πj)j=1,...,v ∈

((G2 × G1)
2)v is T -associated to ω̂ ∈ {0, 1, ‘?’}v if for all j ∈ [1, v], either ω̂j = ‘?’,

or (α̂j, Π̂j, ˆ̄αj,
ˆ̄Π) = (αj,ω̂j

, βj,ω̂j
Pj, ᾱj,ω̂j

, β̄j,ω̂j
P).

Definition 72 (T -Feasible Secret Tuple). Let FT be the set of feasible codewords for T

(cf. Definition 6). Define the set of T -feasible secret tuple as C(FT)
.
= {Ω̂ ∈ ((G2 ×

G1)
2)v | (∃ω̂ ∈ FT).[Ω̂ is T -associated to ω̂]}.

Lemma 73. Given the public key paramsTT = (q, G1, G2, e, H, (Pj, Qj, Rj, αj,0Rj,

βj,0Pj, αj,1Rj, βj,1Pj)j=1,...,v, P,Q,R, (ᾱj,0R, β̄j,0P , ᾱj,1R, β̄j,1P)j=1,...,v) and the secret

keys SKi
.
= ((α

j,ω
(i)
j

)j=1,...,v, (ᾱ
j,ω

(i)
j

)j=1,...,v), for i ∈ T , constructing a secret tuple Ω̂
.
=

(α̂j, Π̂j, ˆ̄αj,
ˆ̄Πj)j=1,...,v ∈ ((G2 × G1)

2)v such that hj = e(Pj, α̂jRj) · e(Π̂j, Qj) and h̄j =

e(Pj, ˆ̄αjRj) · e(ˆ̄Πj, Qj) (j = 1, . . . , v) but Ω̂ 6∈ C(FT), requires breaking the CDH problem

in G1 or the collusion-secure code C.

Sketch. The proof follows from Lemma 65 and Definitions 6 and 72.

Corollary 74 (Non-Incrimination). Under the CDH assumption, and assuming collusion-

security of the code C, given the public key paramsTT = (q, G1, G2, e, H, (Pj, Qj, Rj,

αj,0Rj, βj,0Pj, αj,1Rj, βj,1Pj)j=1,...,v, P,Q,R, (ᾱj,0R, β̄j,0P , ᾱj,1R, β̄j,1P)j=1,...,v) and

the secret keys SKi
.
= ((α

j,ω
(i)
j

)j=1,...,v, (ᾱ
j,ω

(i)
j

)j=1,...,v) (for i ∈ T), it is computationally

infeasible to construct the secret key SKi′ of user ui′, with i′ 6∈ T .

124

Definition 75 (Valid and `-Probe Ciphertexts). A ciphertext ψ = 〈 `, A`, B`, A, B,

C1, . . ., Cv〉 is

• valid, if A` = e(P`, R`)
k` , B` = k`Q`, A = e(P,R)k, B = kQ, for random k, k` ∈

Zq;

• `-probe, if A` = e(P`, R`)
k′` , B` = k`Q`, A = e(P,R)k, B = kQ, for random

k`, k
′
`, k

′ ∈ Zq.

Lemma 76 (Indistinguishability of Valid vs. Probe Ciphertexts). Under the DBDH

assumption for (G1,G2), given the public key paramsTT = (q, G1, G2, e, H, Pj, Qj, Rj,

(αj,0Rj, βj,0Pj, αj,1Rj, βj,1Pj)j=1,...,v, P , Q, R, (ᾱj,0R, β̄j,0P , ᾱj,1R, β̄j,1P)j=1,...,v) and

the secret keys SKi
.
= ((α

j,ω
(i)
j

)j=1,...,v, (ᾱ
j,ω

(i)
j

)j=1,...,v) (i ∈ T) it is infeasible to distinguish

a valid ciphertext from an `-probe, for any ` in the set RT of undetectable positions for

T .

Sketch. The proof follows from Lemma 68, Definition 5 and from the independence of

the “special” sub-schemes from the “shared” sub-schemes in our construction.

125

Chapter 7

Scalable Public-Key Tracing and

Revoking

7.1 Introduction

An important application of global networking is digital content distribution. In a typi-

cal scenario (e.g., Pay-TV) the entities that are active are the content providers and the

users that subscribe to services and receive the content. In addition, the security man-

ager is the entity in the system that manages providers and users and is responsible for

enforcing various operational rules. For digital content distribution services to remain

economically viable in the long run, it is important to design distribution schemes with

certain basic properties: (1) strong content-protection—to ensure that only current sub-

scribers have access to the distributed content; (2) traitor-traceability—to counter illegal

content reception; (3) transmission efficiency—to optimize the bandwith utilization of

the communication medium; and (4) scalability—to support many content providers and

a large, dynamically changing population of subscribers. Next, we elaborate on these

properties.

126

Content-protection

Exclusive reception of the digital content can be achieved by employing a multi-user

encryption scheme in conjunction with a subscription-based model of service. In this

setting only currently subscribed users are able to recover the content successfully. From

a security viewpoint, the challenge here is similar to regular encryption systems: to

make sure that at any given moment the active subscriber population can access the

content whereas outsiders who eavesdrop on the communication medium are incapable

of recovering the plaintext content.

Traitor-Traceability

Even if an ideally secure content protection mechanism can be realized, it cannot prevent

each subscriber from illicitly share its secret information with non-members. More gen-

erally, a group of subscribers (the traitors) can collude to construct an illegal decryption

device (a pirate decoder), which can then be distributed on the black market. We would

like to have a mechanism by which misbehaving pirates get caught. One effective such

mechanism is provided by the notion of a traitor tracing scheme. As discussed in Chap-

ter 3, Section 3.2, a traitor tracing scheme is a multi-recipient encryption system that

can be used for digital content distribution, with the property that the decryption key

of each user is fingerprinted. When a pirate decoder is discovered, the security manager

can employ a traitor tracing algorithm to uncover the identities of the traitors. The

corresponding decryption keys could then be revoked, thus making the pirate decoder

useless. A traitor tracing scheme is also a powerful tool against unauthorized access

to the content since it allows the uncovering of compromised decryption keys and thus

their removal from the system. Ideally, one would like an algorithm able to recover the

traitors’ identities by just probing the pirate decoder in a black-box fashion. However,

the inherent hardness of this problem [55] poses limitations on the efficiency attainable

with this approach, so that some traitor tracing mechanisms often operate under the as-

sumption that it is possible to extract the actual decryption key that enables the pirate

127

decoder to unscramble the content (non-black-box traceability). We will consider both

variants in this work.

Transmission efficiency

For efficiency reasons, a distribution scheme should send as few ciphertexts as possible

while allowing the legitimate receivers to recover the plaintext content. Also, the amount

of users’ storage and decryption time should be as small as possible. In an efficient

system these parameters must be independent of the total number of user management

operations (user additions and removals) as well as of the total number of users.

Scalability

In the context of digital content distribution, scalability has two facets: server-side and

client-side.

Server-side scalability deals with the property that allows the population of content

providers to change dynamically. Each content provider in this setting needs access to

the encryption mechanism (so that it can scramble content) and access to the distribution

channel. Access to the distribution channel can be handled directly using access control

mechanisms that are negotiated between the manager of the communication medium

and the joining content provider: we will not focus on this aspect; note that in some

cases the distribution channel may be a service entirely separated from the subscription

service, e.g., when the Internet is used for distribution. On the other hand, access to the

encryption mechanism suggests that each content provider needs to have the encryption

keys that allow all users of the system to get its content. If the content providers are few

and closely connected to the security manager, then one may assume that the encryption

keys (and perhaps the decryption keys as well) are shared among the providers and the

security manager. But this scenario does not scale, since when there are many providers,

the amount of keys each user has to store can become prohibitively large (thus violating

transmission efficiency property). Therefore, there is a need for providers to use the same

128

key information. If symmetric key methods are being used, a corruption of one provider

among the large (sub)-group of providers immediately compromises the content of all

providers in that (sub)-group, violating the content protection property. Thus, due to

the fact that we deal with a large set of providers and cannot trust all of them, we need

an encryption mechanism whose security is not degraded when senders are compromised.

This leads to the need of employing public-key cryptography for server-side scalability.

Client-side scalability deals with the fact that we have a user populaion that is

changing dynamically due to the service subscription model and security constraints. To

allow for a scalable management of user accounts, keys should be easy to generate and

revoke. Adversaries that control some user keys that are revoked should be incapable of

reading content. We obviously need mechanisms to identify misbehaving users to allow

the piracy-deterrence property while the population is dynamically changing.

7.2 Our Results

Given the state of the art, we notice a lack of models and systems where all the properties

that constitute a scalable public-key traitor tracing scheme are achieved simultaneously.

The study of such a scheme is the undertaking of our work in [38] and our results and

approach are outlined in this subsection. An earlier version of this work appeared in [37];

[38] presents detailed modeling of the primitive suggested in this earlier paper, contains

all proofs and corrects a flaw in the original construction.

We introduce the first model of a scalable public-key traitor tracing scheme where an

unlimited number of users can be added and removed efficiently from the system. Being

based on public-key techniques, the scheme supports any number of content providers

broadcasting over the same infrastructure. Based on the decisional Diffie-Hellman (DDH)

assumption, we then present a concrete scheme meeting these requirements, while pre-

serving the confidentiality of the broadcast from revoked users in the adaptive chosen-

plaintext sense. Addition of new users does not affect the keys of users already in the

system. Unlimited number of user removals is achieved by dividing the lifetime of the

129

system into periods: within a period, a bounded number of user removals can be exe-

cuted. When an a priori specified threshold is reached, a fresh period is started with

a New-period operation. For efficiency, such operation does not require private channels

between the system manager and the users, and its complexity is independent of the

number of users in the system. Within a period, users are not required to maintain

state and are stateless. With every New-period operation each user needs to update its

private-key information by employing an efficient key-update operation that depends on

a security parameter.

The renewal of periods is influenced by the “proactive security model” of Ostrovsky

and Yung [68], where information is updated by the manager. Unlike the proactive

model, though, each period has a different key, which is reminiscent of the “key insu-

lated” model of security of Dodis et al. [40].

In a scalable scheme, adversaries can introduce adversarially-controlled users in the

system, they can observe the modifications to the global public key that occur during the

run-time operation of the scheme and potentially take advantage of them. We consider

two types of adversaries, the ones that attempt to defeat the content protection and user-

management mechanism of the system and the ones that try to elude the traceability

capability. Since the adversarial goal is distinct in these two cases, we consider the

following classification of the two adversaries:

• Window Adversary : the adversary obtains the encryption-key as well as some

secret keys that are subsequently revoked; the adversary remains active and ob-

serves the revocation of other users of the system (in fact we allow the adversary to

adaptively select which users should be revoked an unbounded number of times).

Moreover, the adversary is allowed to control arbitrarily many content providers

and select the content that is scrambled by the system, except for the challenge

broadcast. We show that our construction is secure against window adversaries as

long as they are fully revoked in a “window” of the system’s operation that has a

certain length (specified as a system parameter).

130

• Traceability Adversary : the adversary, as before, obtains some secret keys and

constructs a pirate decryption device, employing the secret user-key information

(we allow the adversary to adaptively select the identities of the traitors). We show

that our construction is secure against this type of adversaries in the non-black-box

traitor tracing model. Our traitor tracing algorithm is deterministic and recovers

the identities of all traitors (i.e., those contributed to the pirate-key construction).

Furthermore, our scheme supports the black-box confirmation method of [17], that

even allows a form of traceability in the black-box traitor tracing model.

The advantage of our scalable public-key traitor tracing scheme over previous results

comes from the fact that any adversary against the content protection mechanism that

is fully revoked in the specified window of the system’s operation will, in fact, “expire.”

An expired adversary will be incapable of intercepting the scrambled content (in the

semantic security sense) even if it remains active in the system after being revoked.

It is the capability of our scheme to expire adversaries that allows for the enhanced

functionality of an unlimited number of revocations. None of the previous public-key

traitor tracing schemes with revocation capability [67, 80, 34, 36] possessed this crucial

property. Indeed, in all previous public-key schemes, if an adversary, after being revoked,

could continue to observe the system operations and cause more user revocations, then

she would be able to “revive” her revoked key information and use it to intercept the

scrambled content again.

7.3 The Scalable Public-Key Tracing and Revoking

Model

In the scalable public-key traitor tracing model, the lifetime of the system is divided

into periods. A period is an administrative unit managed based on the system activity

and (possibly) on time passing.

A scalable scheme is comprised of the following basic procedures:

131

• Setup. An initialization procedure that is executed by the security manager. It

takes as input a security parameter 1k and a saturation limit 1v that is an upper

bound to the number of users that can be removed within a period. It generates a

master secret key MSK along with a public key PK. The security manager keeps

MSK secret and publishes PK.

• Add-user. It is a key-generation procedure executed by the security manager. It

takes as input the master secret key MSK and the identity i of the new user, and

results in a personalized secret key SKi which is securely communicated to user i.

• Encryption. A public encryption algorithm E that takes as input the public key

PK and a plaintext m, and outputs a ciphertext ψ, to be distributed to the user

population through an insecure broadcast channel.

• Decryption. A deterministic algorithm D that takes as input the secret key SKi

of some user i and a ciphertext ψ, and outputs the corresponding plaintext or the

special rejection symbol ⊥.

• Remove-user. A procedure that given a public key PK, the identity of a user i

and the corresponding secret key SKi, results in a public key PK ′ so that, for

all messages m, E(PK ′,m) should be “incomprehensible” for the user holding the

revoked secret key SKi, while non-removed users should be capable of decrypting

it. If the saturation limit has been reached, then a New-period operation has to be

executed before removing user i.

• New-period. A procedure executed by the security manager to initiate a fresh pe-

riod when the saturation limit is reached (a reactive change), or when a certain

time-limit is reached (a proactive change). It takes as input the master secret key

MSK and the current public key PK, and results in a new public key PK ′ and

a special reset message to be transmitted over an authenticated but otherwise in-

secure broadcast channel. Active subscribers can interpret such reset message and

132

update their secret key accordingly; users removed in previous periods, instead, are

prevented from doing so by the security properties of the scheme (cf. Section 7.5).

• Tracing. Given the master secret key MSK, the current public key PK and

access (either black-box or non-black-box, cf. Section 7.6) to a pirate decoder, this

procedure identifies (at least) one of the traitor users whose keys were employed

to construct the pirate decoder.

7.3.1 Scalability Objectives

A scalable scheme should satisfy the following requirements:

• Efficient addition of unlimited number of users throughout the scheme’s lifetime.

Specifically, the Add-user operation should have (i) communication independent of

the size of the user population, and (ii) it should not involve the existing users of

the system in any way.

• Efficient revocation of the decryption capabilities of a set of users within a period,

provided that the number of users to be removed is below the saturation limit.

Specifically, Remove-user should have time complexity independent of the total

number of active users in the system, and should only affect the public key of the

system.

• Efficient introduction of a new period. The communication overhead for changing

a period should be independent of the total number of active users in the system

and it should not require private communication channels between the security

manager and the active users (but contrary to Remove-user it will require from

users to modify their secret keys—as a result, in our model users are stateless

within a period and stateful across periods).

• Efficient traitor tracing of a pirate decoder. Specifically, the tracing procedure

should be polynomial-time in the number of users and the number of traitors.

133

7.3.2 Formal Modeling of Scalable Schemes

A scalable public-key traitor tracing scheme should provide two basic functionalities: on

the one hand, the system should be capable of revoking the decryption capabilities of

“bad” users; on the other hand, it should be capable of identifying users that participate

in the construction of pirate decoders. We formally model the security of revocation and

tracing in Section 7.5 and Section 7.6, respectively.

7.4 Construction of a Scalable Public-Key Tracing

and Revoking Scheme

Here we present our scheme and show that it is a correct public-key system (i.e., that the

public key information allows anyone to encrypt and that a holder of one of the private

key representations can apply the decryption algorithm to recover the plaintext).

Setup. The description of a cyclic multiplicative group G of order q is generated.

Then, two random generators g, g′ ∈ G and two random polynomials A(·), B(·) ∈ Zv
q [x]

are selected. The parameter v will be also referred to as the saturation limit, whereas

m = bv
2
c will be the maximum traitor collusion size. Define

A(x)
.
= a0 + a1x+ . . .+ avx

v

B(x)
.
= b0 + b1x+ . . .+ bvx

v.

The master secret key is

MSK
.
= (A(·), B(·))

and the system’s public key is

PK
.
= 〈g, g′, gA(0)g′B(0), 〈`, gA(`)g′B(`)〉v`=1〉

where indices 1, . . . , v are used as place-holders. The security manager initiates a new

period by publishing PK, and setting the saturation level L to 0. L is a system variable

known to the security manager.

134

Add-user. When a new user i requests to join the system, the security manager

transmits (over a private channel) the tuple SKi
.
= 〈xi, A(xi), B(xi)〉 to user i, where

xi
R← Zq xi 6∈ {1, . . . , v} ∪ U .

The set U is the user-registry containing all values xi that were selected in previous

executions of the Add-user procedure. Subsequently, the security manager records the

value xi as associated to user i and adds xi to U .

Encryption. The sender obtains the current public key of the system

PK
.
= 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉

(where y = gA(0)g′B(0) and h` = gA(z`)g′B(z`), for some identity z`, ` = 1, . . ., v) and

then employs the encryption function E that, given the public key PK and a plaintext

m ∈ G, selects a random r
R← Zq and sets the corresponding ciphertext to be:

ψ
.
= 〈gr, g′r, yrm, 〈z1, h

r
1〉, . . . , 〈zv, h

r
v〉〉.

Decryption. The decryption algorithm D takes as input a secret key SKi =

〈xi, A(xi), B(xi)〉 and a ciphertext ψ = 〈u, u′, u′′, 〈z1, u1〉, . . . , 〈zv, uv〉〉. D first computes

the leap-vectors (cf. Chapter 2, Section 2.1.3):

~νA,i
.
= ~νxi,A

z1,...,zv
~νB,i

.
= ~νxi,B

z1,...,zv

associated to the points 〈xi, A(xi)〉 and 〈xi, B(xi)〉 with respect to the values z1, . . . , zv.

Observe that, by Definition 2 (Equations (2.2) and (2.4)), ~νA,i and ~νB,i agree on all

components except for the first: denoting with (νA,i)` (respectively (νB,i)`) the entry in

~νA,i (respectively ~νB,i) indexed by `, it holds that:

νi,`
.
= (νA,i)` = (νB,i)`, for` = 1, . . . , v.

The decryption algorithm returns:

D(ψ)
.
=

u′′

u(νA,i)0u′(νB,i)0
∏v

`=1 u
νi,`

`

.

135

If ψ is a properly formed ciphertext, i.e.

ψ = 〈gr, g′r, yrm, 〈z1, h
r
1〉, . . . , 〈zv, h

r
v〉〉

then, due to the properties of the leap-vector representation (Equation (2.1)), we have:

D(ψ) =
grA(0)g′rB(0)m

gr(νA,i)0g′r(νB,i)0
∏v

`=1 g
rνi,`A(z`)g′rνi,`B(z`)

= m.

Remove-user. Let i1, . . . , ik be the identities of the users to be removed, so that

L + k ≤ v. Suppose that the current public key is PK = 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉.

The revocation procedure uses the user-registry U to retrieve the values xi1 , . . . , xik and

modifies the current public key PK as:

PK
.
=〈g, g′, y, 〈z1, h1〉, . . . , 〈zL, hL〉,

〈xi1 , g
A(xi1

)g′B(xi1
)〉, . . . , 〈xik , g

A(xik
)g′B(xik

)〉,

〈zL+k+1, hL+k+1〉, . . . , 〈zv, hv〉〉.

Finally, the saturation level is increased to L
.
= L+ k.

New-period. When a Remove-user operation is invoked such that the resulting sat-

uration level L would “overflow” the saturation limit v, the security manager starts a

new period. First, the security manager broadcasts a special message change period

(signed, but not encrypted). Note that we assume that change period is digitally signed

by the security manager so that no third parties can maliciously initiate the New-period

operation.

Let enc : Zq → G be an easily invertible encoding that translates a number from

{0, . . . , q−1} into an element of G. If G is the subgroup of Z∗
p of oder q = p−1

2
, then enc

can be implemented as follows: enc(a)
.
= (a+1)2 mod p. It is easy to see that enc(a) ∈ G

for any a ∈ Zq: this is because G is the subgroup of quadratic residues modulo p. The

encoding function enc can be easily inverted as follows: given b
.
= enc(a), compute the

two square roots ρ1, ρ2 of a modulo p and define enc−1(b) = min{ρ1, ρ2} − 1 where min

treats ρ1, ρ2 as integers in {0, . . . , p− 1}.

136

The security manager selects d0, . . . , dv, e0, . . . , ev uniformly at random from Zq and

transmits the reset message

ψreset
.
= 〈E(PK, enc(d0)), . . . , E(PK, enc(dv)),

E(PK, enc(e0)), . . . , E(PK, enc(ev))〉

where PK is the current public key of the system. Let D(·) be the polynomial defined

by d0, . . . , dv and let E(·) be the polynomial defined by e0, . . . , ev: namely,

D(x) = d0 + d1x+ . . .+ dvx
v

E(x) = e0 + e1x+ . . .+ evx
v.

At this point, the security manager resets the saturation level L
.
= 0, updates the two

secret polynomials to be:

Anew(·) .
= A(·) +D(·) (mod q)

Bnew(·) .
= B(·) + E(·) (mod q)

and modifies the public key PK as follows:

PKnew
.
= 〈g, g′, gAnew(0)g′Bnew(0), 〈`, gAnew(`)g′Bnew(`)〉v`=1〉.

Upon receiving the signed change period message, user i enters a wait-mode. When the

user receives the reset message ψreset, he decrypts all ciphertexts, decodes the coefficients

d0, . . . , dv, e0, . . . , ev using enc−1 and forms the polynomials D(·), E(·). Then, the user

modifies his secret key SKi to be the new tuple

SKi
.
= 〈xi, A(xi) +D(xi), B(xi) + E(xi)〉.

Intuitively, this is secure because a revoked user i will not be able to decrypt any of

the ciphertext in the reset message. Therefore, the secret polynomials in the (updated)

master secret key will look completely random to user i and his secret key will become

useless. A formal security analysis is presented in Section 7.5.

137

Remark. We notice that the efficiency of the New-period operation can be improved

by using hybrid encryption. In particular, instead of computing and sending 2v + 2

ciphertexts under the current public-key (which incurs a cost of O(v2) in terms of com-

munication), the security manager may pick a random session key k, use it to encrypt the

2v+2 coefficients via a secure one-time symmetric-key encryption scheme, and broadcast

the resulting ciphertext together with E(PK, enc′(k)) (where enc′ is a suitable encoding

of session keys into elements of G). Each non-revoked user will then be able to recover

the coefficients d0, . . ., dv, e0, . . ., ev from such reset message by first recovering the ses-

sion key k from the public-key ciphertext E(PK, enc′(k)), and then using k to decrypt

the symmetric-key ciphertext. This will drop the communication cost to O(v). We omit

the details.

7.5 Dealing with Revocation

7.5.1 Model for Revocation

The public-key traitor tracing scheme described in Section 7.4 withstands a more

powerful type of attack than what has been considered so far in previous related

work [67, 80, 34, 36]. In our attack scenario, the adversary A is allowed not only to

join the system up to a bounded number of times v (equal to the saturation level, which

is fixed as a system parameter), but also to observe and even actively affect the evolu-

tion of the system, by specifying which users should be revoked and their relative order

in the sequence of revocations. Notice that this type of adversary defeats all previous

public-key traitor tracing schemes with fixed ciphertext size [67, 80, 36].

More formally, in our model the adversary interleaves, in any adaptively-chosen order,

two types of queries:

• Join query: it models the subscription to the system of a user controlled by the

adversary. To reply to such query, a variant of the Add-user operation is executed,

in which the adversary is allowed to specify the identity for which she will get the

138

decryption key, (whereas in a regular Add-user operation, the security manager

would assign a random identity to the new user). Thus, the Join query models

a more powerful adversary that could control the random choice of the security

manager. Notice that, after a Join query, the adversary obtains a valid secret key

capable of recovering subsequent encrypted broadcasts.

• Revoke query: it models the revocation of a user from the system. To reply to such

query, a Remove-user operation is performed and A is given the new public key

that results after the invalidation of the key corresponding to the revoked user.

The main constraint that the above attack scenario imposes on the adversary’s behavior

is that A can make at most v Join queries; no restriction is placed on the number of

Revoke queries. Whenever A has finished collecting the amount of information she thinks

she needs to maximize her chances of winning the game, the corrupted users are revoked,

the adversary outputs a pair of messages and receives back the encryption of either one

with equal probability.

Note that proving security under this attack scenario does not mean that a real-

world implementation of our scheme would withstand only adversaries corrupting up to

v users; rather, it provides provable security against adversaries controlling an unlimited

number of users, as long as no more than v users are ever corrupted in a row, without the

security manager discovering them and revoking their decryption keys within a single

period.

To fully appreciate the novelty of the attack scenario proposed above, recall that in

the adversarial model that has been considered in previous work on public-key traitor

tracing [67, 80, 34, 36], the only functionality conceded to A was to obtain the secret key

of a user which was also simultaneously revoked from the system. In our model, such

capability, usually called corruption, is split into two distinct operations. This clearly

allows the adversary to mount more powerful attacks, and does indeed more closely

model the reality, since the security manager does not always find out about “bad”

users immediately. Moreover, keeping the Join and Revoke operations distinct, allows

139

us to impose on the adversary the (minimal) restriction of obtaining at most v secret

keys, without bounding the number of Revoke queries. This constitutes a major novelty

of our adversarial model: previous work required both the number of revoked users and

the number of compromised secret keys (tied together by the definition of corruption

query) to be bounded by v.

Clearly, for the challenge to the adversary not to be trivial, all the secret keys that

A obtains through Join queries must have been rendered useless by corresponding sub-

sequent Revoke queries. We model this necessary constraint by requiring that before

asking for her challenge, A enters a wait-mode during which all the (at most v) users

she corrupted are revoked within a window of consecutive revocations that should not

get interrupted by a New-period operation.

It is interesting to point here some technical similarities of the window adversary

model to a lunch-time chosen-ciphertext attack (IND-ID-CCA1). In particular, in a

lunch-time attack the adversary, prior to obtaining the challenge, can query a decryption

oracle to obtain decryptions of chosen ciphertexts; in the security proof, this introduces

the technical challenge of simulating such decryption oracle. In the case of a window-

adversary, the adversary can query the Join oracle to obtain valid decryption keys (that

will be revoked afterwards). From a technical viewpoint, simulating the Join oracle is

a technical challenge of similar nature to the task of simulating the decryption oracle

of a IND-ID-CCA1 attacker. Indeed, in our security proof and system design we take

advantage of techniques that were developed for dealing with IND-ID-CCA1 attacks.

Formal Model for Window Adversary

We formalize the above attack scenario in terms of the window adversary attack game

Gv
win(1

k), played between a challenger and the adversary A. The game consists of three

stages, denoted respectively fst, snd and trd. To enable coordination between the three

stages, at the end of each stage A is allowed to output a piece of state information (via

the variable aux), which will be given as input to the next stage.

140

The first stage (fst) is a learning stage, in which the adversary is allowed to obtain

the secret keys of at most v users and to make the system evolve via Revoke queries. At

the end of this stage, all the corrupted users get revoked.

The second stage (snd) is a choosing stage, in which A picks two messages m0, m1

that she deems she will be able to distinguish in the ciphertext form.

In the third stage (trd), A receives a challenge ciphertext ψ∗, which consists of the

encryption of either m0 or m1 with equal probability. The game ends with A outputting

her best guess to whether m0 or m1 was encrypted.

1. Let 〈PK,MSK〉 R← Setup(1k, 1v)

2. Let L
.
= 0, Corr

.
= ∅

3. Let state
.
= 〈L, PK,MSK,Corr〉

4. aux
R← AJoin(state,·),Revoke(1,state,·)(fst, state.PK)

5. If L+ |Corr| > v then exit

6. For all xj ∈ Corr do aux
R← aux||Revoke(0, state, xj)

7. 〈aux,m0,m1〉
R← ARevoke(1,state,·)(snd, aux, state.PK)

8. ψ∗
R← E(state.PK,mσ∗), where σ∗

R← {0, 1}

9. σ
R← ARevoke(state,·)(trd, aux, state.PK, ψ∗)

10. Output Success if and only if σ = σ∗

The two oracles employed above are defined as follows:

Join(state, x) :

(i) parse state as 〈L, PK,MSK,Corr〉

(ii) parse PK as 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉

(iii) parse MSK as (A(·), B(·))

141

(iv) if x ∈ {1, . . . , v}, then exit

(v) set Corr
.
= Corr ∪ {x} and return (A(x), B(x))

Revoke(isOracle, state, x) :

(i) parse state as 〈L, PK,MSK,Corr〉

(ii) parse PK as 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉

(iii) parse MSK as (A(·), B(·))

(iv) if isOracle = 1 and x ∈ Corr, then exit

(v) if L = v then a New-period operation is executed and state is updated ac-

cordingly (i.e., L is reset to 0, state.MSK is modified by adding the randomizing

polynomials and state.PK changes correspondingly)

(vi) set L
.
= L+ 1

(vii) update state.PK by replacing the pair 〈zL, hL〉 with 〈x, gA(x)g′B(x)〉

(viii) output state.PK; if Step (v) caused a New-period operation, then also output

the corresponding reset message ψreset.

Few points in the above formalization are worth of comment. First, without loss of

generality, we assume that the adversary never corrupts the same user twice, as there

is no extra information to be gained. We also assume that A never revokes the users it

corrupts, as they get explicitly revoked at Step 6. of the attack game Gv
win.

Second, note that the test at Step 5. is needed to enforce the window constraint: just

testing |Corr| > v would not have been enough to ensure that in Step 6. we can revoke

all the corrupted users within the same period.

Finally, note that the code for Revoke is used both as an oracle to A (Steps 4. and

7.) and as a subroutine for the attack game (Step 6.). To distinguish these two cases,

we use the boolean variable isOracle.

Definition 77. Define A’s advantage as

Advwin,A(k)
.
=| Pr(σ = σ∗)− 1/2 |

142

where the probability is over all the randomness introduced by the window attack game.

A public-key traitor tracing scheme is secure against window adversaries if for any

probabilistic-polynomial time adversary A, Advwin,A(k) is negligible in k .

7.5.2 Security of Revocation

We now formally prove that the scalable public-key traitor tracing scheme described in

Section 7.4 is secure against window adversaries (as defined above). In the security proof,

we will follow the same structural approach used in [36], first advocated in [32]. Starting

from the actual attack scenario, we consider a sequence of hypothetical games, all defined

over the same probability space. In each game, the adversary’s view is obtained in

different ways, but its distribution is still indistinguishable among the games.

The security of our scheme relies on the DDH assumption, as shown below in Theo-

rem 78.

Theorem 78. Under the decisional Diffie-Hellman assumption for G, the scheme pre-

sented above is secure against window adversaries.

Proof. We define a sequence of “indistinguishable” games G0,G1, . . ., all operating over

the same underlying probability space. Starting from the actual adversarial game G0 =

Gv
win(1

k), we incrementally make slight modifications to the behavior of the oracles,

thus changing the way the adversary’s view is computed, while maintaining the views’

distributions indistinguishable among the games. In the last game, it will be clear that

the adversary has (at most) a negligible advantage; by the indistinguishability of any two

consecutive games, it will follow that also in the original game the adversary’s advantage

is negligible. Recall that in each game Gj, the goal of adversary A is to output σ ∈ {0, 1}

which is her best guess to the bit σ∗ used at Step 7. of the attack game Gv
win(1

k) to create

the challenge ciphertext ψ∗: let Tj be the event that σ = σ∗ in game Gj (i.e., the event

that the game ends with Success as output). Without loss of generality, in the following

we assume that the adversary corrupts exactly v users during the attack game.

143

Game G0. Define G0 to be the original game Gv
win(1

k).

Game G1. Define the “special” New-period operation to be the first one to be caused by

the Revoke oracle at Step 7. of the attack game. Depending on the adversary’s strategy,

such “special” New-period operation may not occur at all.

Game G1 is identical to game G0, except that in G1 the reset message output by

the “special” New-period operation contains 2v + 2 encryptions of random elements of

Zq, rather than encryptions of the coefficients of the randomizing polynomials. This

modification suggests that the secret polynomials which are contained in state.MSK at

the beginning of the period initiated by the “special” New-period operation are totally

random, even given all the information in the adversary’s view.

In Lemma 80 (whose proof is given below), we show that the chances of adversary A

winning game G1 cannot be significantly better than her chances of winning game G0:

more precisely, ∣∣Pr[T1]− Pr[T0]
∣∣ ≤ (4v + 4) AdvDDHG,A(k). (7.1)

Game G2. To turn game G1 into game G2, Step 8. of the attack game is modified as

follows:

8′. ψ∗ ← E(state.PK,m),where m
R← G, σ∗ R← {0, 1}

Because of this change, the challenge ciphertext ψ∗ no longer contains σ∗, nor does any

other information in the adversary’s view; therefore,

Pr[T2] =
1

2
. (7.2)

In Lemma 81, proven below, we show that the adversary has almost the same chances

to guess σ∗ in game G1 and G2: more precisely,

∣∣Pr[T2]− Pr[T1]
∣∣ ≤ 2 AdvDDHG,A(k). (7.3)

Combining Equations (7.1), (7.2), and (7.3) together, adversary A’s advantage can

be bounded as:

Advwin,A(k) ≤ (4v + 6) AdvDDHG,A(k).

144

The core of the proof of Theorem 78 is in the two lemmas that follow, Lemma 80

and Lemma 81.

Overview of the Proof Technique

Throughout the paper, we make extensive use of a technical lemma, stated and proved

as Lemma 9 in [32]. For ease of reference, we report it verbatim below.

Lemma 79. Let k,n be integers with 1 ≤ k ≤ n, and let K be a finite field. Consider a

probability space with random variables ~α ∈ Kn×1, ~β = (β1, . . . , βk)
T ∈ Kk×1, ~γ ∈ Kk×1,

and M ∈ Kk×n, such that ~α is uniformly distributed over Kn, ~β = M~α + ~γ, and for

1 ≤ i ≤ k, the first i-th rows of M and ~γ are determined by β1, . . . , βi−1. Then,

conditioning on any fixed values of β1, . . . , βk−1 such that the resulting matrix M has

rank k, the value of βk is uniformly distributed over K in the resulting conditional

probability space.

Our use of this technical lemma is quite uniform across the proofs to follow. In all

cases, our main aim will be to prove that some quantity rand ∈ Zq looks uniformly

random to the adversary, despite all the other information in the adversary’s view. At

a high level, our approach is organized in the following steps.

First, we consider all the randomness underlying a specific execution of the attack

game. This will include, for instance, the random coins of the adversary, the randomness

used in creating the challenge, etc. We then partition all the randomness in two parts:

a quantity ~V and a vector ~α, such that conditioning on any fixed value of ~V , ~α is still

distributed uniformly at random in the appropriate vector space (which usually will have

Zq as support).

Second, we consider another vector ~β, whose last entry is rand, with the property

that fixing a value for ~V and ~β also fixes the value of ~α, and thus all the information of

the entire game (which in particular includes the information in the adversary’s view).

145

Third, we define a matrix M (and possibly a vector ~γ) describing the constraints

binding vector ~α to vector ~β, thus obtaining a matrix equation of the form:

~β = M · ~α+ ~γ.

Finally, we make sure that the preconditions of Lemma 79 are fulfilled; it will follow

that the last entry of ~β (which is the quantity of interest rand), is distributed uniformly

at random in Zq, even conditioning on fixed values of ~V and of all the other entries of

~β, or equivalently, conditioning on all the other information in the adversary’s view.

Notation

In what follows, we refer to the period initiated by the t-th New-period operation as

the t-th period. Also, for notational convenience, we denote with Dt(·) and Et(·) the

randomizing polynomials chosen during the t-th New-period operation and with dt
0, . . . , d

t
v

and et
0, . . . , e

t
v the corresponding coefficients. In some cases, it will be convenient to

denote these 2v+2 coefficients with a uniform notation; for this reason, for j = 1, . . . , 2v+

2, we additionally define ctj as follows:

ctj
.
=


dt

j−1 if j ∈ {1, . . . , v + 1},

ej−v−2 if j ∈ {v + 2, . . . , 2v + 2}.

Moreover, let At(·) and Bt(·) be the values of the secret polynomials after the changes

due to the t-th New-period operation. In other words, the system starts with period

number 0, A0(·) and B0(·) are the polynomials initially output by the Setup algorithm

and

At(·) .
= At−1(·) +Dt(·) Bt(·) .

= Bt−1(·) + Et(·). (7.4)

Also define

Dt1,t2(·) .
=

t2∑
t=t1

Dt(·) Et1,t2(·) .
=

t2∑
t=t1

Et(·). (7.5)

146

Proofs of Lemmata

Lemma 80.
∣∣Pr[T1]− Pr[T0]

∣∣ ≤ (4v + 4) AdvDDHG,A(k).

Proof. Recall that G1 differs from G0 only in the way the reset message is computed

for the “special” New-period operation: hence, if the adversary’s strategy does not cause

any New-period operation to occur during Step 7. of the attack game, the two games are

identical, so that in fact Pr[T1] = Pr[T0], and the Lemma immediately follows.

We now discuss the case in which the “special” New-period operation takes place:

in particular, let t̂ be the period initiated by this operation and Dt̂(·) and E t̂(·) be

the randomizing polynomials used in such New-period operation. We then consider

the sequence of 2v + 3 hybrid games G0,0, . . . ,G0,2v+2, where G0,i is defined as G0,

except that the first i ciphertexts in the “special” reset message contain random values

rather than coefficients of the randomizing polynomials Dt̂(·) and E t̂(·). In other words,

G0,0 ≡ G0, G0,2v+2 ≡ G1 and two consecutive hybrid games G0,i and G0,i+1 differ only

in that the (i + 1)-th ciphertext of the “special” reset message contains the (i + 1)-th

coefficient in game G0,i, whereas it contains a random value in game G0,i+1. Then, to

prove the Lemma it suffices to show that for all i = 0, . . . , 2v + 1 it holds:∣∣Pr[T0,i+1]− Pr[T0,i]
∣∣ ≤ 2 AdvDDHG,A(k). (7.6)

To this aim, fix i and consider the additional games G0
0,i ≡ G0,i, G1

0,i, G2
0,i, G3

0,i,

G4
0,i ≡ G0,i+1, defined as follows:

Game G1
0,i. It operates as G0

0,i, except that the (i + 1)-th ciphertext in the “special”

reset message is computed as:

〈u, u′, u′′, 〈z`, u
At̂−1(z`)u′B

t̂−1(z`)〉v`=1〉

where u
.
= gr, u′

.
= g′r, u′′

.
= uAt̂−1(0) u′B

t̂−1(0)enc(ct̂i+1), r
R← Zq and ct̂i+1 is either the

(i+ 1)-th coefficient of the randomizing polynomial Dt̂(·) (if 0 ≤ i ≤ v) or the (i− v)-th

coefficient of E t̂(·) (if v + 1 ≤ i ≤ 2v + 1). Since such modification is just a syntactic

change, it holds:

Pr[T 1
0,i] = Pr[T 0

0,i]. (7.7)

147

Game G2
0,i. To turn game G1

0,i into game G2
0,i we make another change to the way in

which the (i+ 1)-th ciphertext in the “special” reset message is computed. Namely, the

value u′ is now computed as u′
.
= g′r

′
, for a random r′ ∈ Zq such that r′ 6= r. In other

words, in game G2
0,i the values u and u′ are nearly independent (being subject only to

r 6= r′), whereas in game G1
0,i they are obtained using the same value r. Therefore, using

a standard reduction argument, any difference in behavior between games G1
0,i and G2

0,i

can be used to distinguish Diffie-Hellman tuples from totally random tuples. Hence,∣∣Pr[T 2
0,i]− Pr[T 1

0,i]
∣∣ ≤ AdvDDHG,A(k). (7.8)

Note that for simplicity here (and throughout the rest of the paper) we omit the negligible

additive term that is caused by the negligibly-rare event r = r′.

Game G3
0,i. To define game G3

0,i, we again modify the (i + 1)-th ciphertext in the

“special” reset message: specifically, the value u′′ is now computed as gr′′ , for a random

r′′ ∈ Zq.

We want to show that this modification does not alter the behavior of adversary A

or, more precisely, that Pr[T 3
0,i] = Pr[T 2

0,i]. To this aim, we first consider all the random

variables affecting the adversary’s view, and then we show that they are distributed

according to the same joint distribution in both games.

Let t̄ be the total number of New-period operations that occur during the entire game,

and for t = 1, . . . , t̄, let ct1, . . ., c
t
2v+2 be the coefficients of the randomizing polynomials

Dt(·) and Et(·) used in the t-th New-period operation. For t = 1, . . . , t̄, t 6= t̂, and

j = 1, . . . , 2v+ 2, let rt
j be the randomness used to encrypt (the encoding of) coefficient

ctj in the t-th reset message.

As for the “special” reset message (i.e., the one corresponding to t = t̂), recall that

in both game G2
0,i and game G3

0,i the first i ciphertexts consists of just random values

s1, . . ., si ∈ G, rather than (the encoding of) the corresponding coefficients ct̂1, . . ., c
t̂
i.

Coefficients ct̂i+2, . . ., c
t̂
2v+2, instead, are regularly encrypted under the public key PK t̂−1

in both games: let rt̂
j be the randomness used in such encryptions, for j = i+2, . . . , 2v+2.

The ciphertext corresponding to coefficient ci+1 in the “special” reset message constitutes

148

the only difference between the adversary’s view in game G2
0,i and G3

0,i. In particular,

such encryption is defined in terms of the values r, r′ and r′′: r and r′ are randomly

chosen from Zq in both games, whereas r′′ is computed differently in the two games. For

the sake of clarity, we will denote with [r′′]2 and [r′′]3 the value of such quantity in game

G2
0,i and G3

0,i, respectively. Notice that [r′′]2 is a linear combination of r, r′ (and other

quantities), whereas [r′′]3 is uniformly distributed in Zq, independently of anything else.

Define

~W
.
=
(
{ctj, rt

j}2v+2
j = 1
t 6= t̂

, {ct̂j, sj, r
t̂
j}ij=1, {ct̂j, rt̂

j}2v+2
j=i+1, r, r

′
)

and consider the quantity

~V
.
= (Coins, w, σ∗, r∗, ~W)

where Coins represents the coin tosses of A, w
.
= logg g

′, σ∗ is the random bit chosen by

the challenger in Step 8. of the attack game and r∗ is the randomness used to create the

challenge ψ∗.

The remaining randomness used during the attack game consists of the 2v + 2 coef-

ficients of the polynomials A0(·), B0(·) and can be represented by a vector ~α uniformly

distributed in Z(2v+2)×1
q :

~α
.
= (a0, a1, . . . , av, b0, b1, . . . , bv)

T .

Consider the vector ~β ∈ Z(2v+2)×1
q defined as:

~β
.
= (X0,X1, . . . ,Xv,A1, . . . ,Av, r

′′)T

where X0
.
= A0(0) + wB0(0), X`

.
= A0(`) + wB0(`) and A`

.
= A0(x`) for ` = 1, . . . , v,

and r′′
.
= logg u

′′.

It is clear by inspection that all the information in the adversary’s view is completely

determined by ~V and ~β. In particular, the initial public key PK0 is fixed by ~β and w;

the secret keys of the corrupted users are determined by the choice of ~β, Coins and w;

the “special” reset message is fixed by PK0, Coins, r′′ and all the randomness in ~W ; and

the resulting public key PK t̂ only depends on PK0 and ~W . Thus, if the distribution of

149

~V and ~β is the same in both games G2
0,i and G3

0,i, it will follow that Pr[T 3
0,i] = Pr[T 2

0,i].

Since the definition of r′′ is the only difference between game G2
0,i and G3

0,i, and in G3
0,i

the value of [r′′]3 is chosen uniformly from Zq, independently of anything else, it suffices

to show that the distribution of [r′′]2, conditioned on ~V and the first 2v+ 1 entries of ~β,

is also uniform in Zq.

In game G2
0,i, the quantities in ~V , ~β and ~α are related according to the following

matrix equation:

[~β]2 = M · ~α+ ~γ

where [~β]2 denotes the value of ~β in game G2
0,i (i.e. when the value of the last entry is

[r′′]2), ~γ ∈ Z(2v+2)×1
q is the vector

~γ
.
=



0

0

...

0

0

...

0

rD0,t̂−1(0) + wr′E0,t̂−1(0) + logg enc(c
t̂
i+1)


and M ∈ Z(2v+2)×(2v+2)

q is the matrix

M
.
=



1 0 . . . 0 w 0 . . . 0

1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 x1 . . . xv
1 0 0 . . . 0

...
...

1 xv . . . xv
v 0 0 . . . 0

r 0 . . . 0 wr′ 0 . . . 0


150

The above matrix describes all the constraints on ~α arising from the information in the

adversary’s view in game G2
0,i (which, as noted above, can be described just by ~V and

[~β]2). In other words, all other constraints on ~α are linear combination of the above,

possibly using coefficients from ~V . In particular, the constraints that the adversary can

derive from knowledge of the values B0(x`), ` = 1, . . . , v (which come from the secret keys

that A got via Join queries) can be obtained from the constraints corresponding to X0,

X1, . . ., Xv, A1, . . ., Av and the value of w. As for Revoke queries, notice that the public

key PK resulting from invalidating the secret key of an arbitrary user z during time

period t, does not provide any new information about ~α to the adversary. Indeed, PK

only differs from the previous public key in that it contains the value hz = gAt(z)g′B
t(z)

which is determined by the quantity:

X
.
= At(z) + wBt(z)− (D0,t(z) + wE0,t(z))

= A0(z) + wB0(z).

Since such value is just a point of the v-degree polynomial A0(·) + wB0(·), which is

completely fixed by the values X0, X1, . . ., Xv, it immediately follows that the constraint

on ~α induced by X is a linear combination of the first v + 1 rows of M. Similarly, the v

values u1, . . ., uv included in the (v+ 1)-th ciphertext of the “special” reset message are

determined by the quantities Xz1 , . . ., Xzv where, for ` = 1, . . . , v, Xz`
is defined as:

Xz`

.
= rAt̂−1(z`) + wr′B t̂−1(z`)− (rD0,t̂−1(z`) + wr′E0,t̂−1(z`))

or equivalently

Xz`

.
= rA0(z`) + wr′B0(z`).

Such values are just points of the v-degree polynomial

rA0(·) + wr′B0(·)

which is determined by A1, . . ., Av, B
0(x1), . . ., B

0(xv), r, r
′, w and [r′′]2. Thus, it

follows that all the constraints on ~α induced by Xz1 , . . ., Xzv are linear combinations of

the rows of M.

151

Moreover, M has rank (2v+ 2), provided that r 6= r′ and w 6= 0, since the corrupted

users x1, . . ., xv are assumed to be distinct.

As soon as we fix a value for ~V , vector ~γ and the first v + 1 rows of matrix M are

completely fixed, but ~α is still distributed uniformly and independently at random in

Z(2v+2)×1
q . If we additionally fix the value of the first (v + 1) components of [~β]2, the

initial public key PK0 is fixed; it follows that the first identity x1 that A chooses to

corrupt is also fixed and thus the (v+2)-th row of M is determined. Fixing also a value

for A1 (which is the (v + 2)-th entry of [~β]2), the value of B1 is fixed too, so that all

the information on which the adversary can base her choice of x2 is fixed, and thus the

(v + 3)-th row of M is determined as well. By a similar reasoning, it follows that fixing

the first (v+ i+1) entries of [~β]2 determines the (v+ i+2)-th row of M, for i = 1, . . . , v.

Hence, by Lemma 79, we can conclude that the conditional distribution of [r′′]2, with

respect to ~V and to all other components of [~β]2, is also uniform over Zq, from which it

follows that

Pr[T 3
0,i] = Pr[T 2

0,i]. (7.9)

Game G4
0,i. Game G4

0,i is defined to be identical to G0,i+1. Thus, G4
0,i differs from

G3
0,i only in that the values u and u′ in the (i + 1)-th ciphertext in the “special” reset

message are consistent, rather than being nearly independent, as in game G3
0,i. Namely,

the values u and u′ are now computed as u
.
= gr and u′

.
= g′r, for the same random

r ∈ Zq. It follows that any difference in behavior between games G3
0,i and G4

0,i can be

used to distinguish Diffie-Hellman tuples from totally random tuples. Hence,

∣∣Pr[T 4
0,i]− Pr[T 3

0,i]
∣∣ ≤ AdvDDHG,A(k). (7.10)

Combining Equations (7.7), (7.8), (7.9) and (7.10) we get Equation (7.6), for all i =

0, . . . , 2v + 1; then, by definition of the hybrid sequence G0,0, . . . ,G0,2v+2, the thesis

follows.

Lemma 81.
∣∣Pr[T2]− Pr[T1]

∣∣ ≤ 2 AdvDDHG,A(k).

152

Proof. Recall that G2 differs from G1 only in the way the challenge ciphertext ψ∗ is

computed: in particular, in game G1, ψ
∗ encrypts either one of the two messages m0

and m1 chosen by the adversary, whereas in G2, ψ
∗ encrypts a totally random message

m
R← G.

To reach the thesis, we consider the sequence of games G0
1 ≡ G1, G1

1, G2
1, G3

1,

G4
1 ≡ G2, defined below.

Game G1
1. It operates as G0

1, except that the challenge ciphertext is computed as

follows:

〈u∗, u′∗, u′′∗, 〈z∗` , u∗
At∗ (z∗`)u′∗

Bt∗ (z∗`)〉v`=1〉

where u∗
.
= gr∗ , u′∗

.
= g′r

∗
, u′′∗

.
= u∗At∗ (0)u′∗Bt∗ (0)mσ∗ and r∗

R← Zq. This syntactic

change does not affect the adversary’s view, and thus

Pr[T 1
1] = Pr[T 0

1]. (7.11)

Game G2
1. To turn game G1

1 into game G2
1 we make another change to the way in

which the challenge ciphertext is computed. Namely, the value u′∗ is now computed

as u′∗
.
= g′r

′∗
, for a random r′∗ ∈ Zq such that r′∗ 6= r∗. In other words, in game G2

1

the values u∗ and u′∗ are nearly independent (being subject only to r∗ 6= r′∗), whereas

in game G1
1 they are obtained using the same value r∗. Therefore, using a standard

reduction argument, any difference in behavior between games G1
1 and G2

1 can be used

to distinguish Diffie-Hellman tuples from totally random tuples. Hence,

∣∣Pr[T 2
1]− Pr[T 1

1]
∣∣ ≤ AdvDDHG,A(k). (7.12)

Game G3
1. To define game G3

1, we again modify the challenge ciphertext: specifically,

the value u′′∗ is now computed as gr′′∗ , for a random r′′∗ ∈ Zq.

To prove that Pr[T 3
1] = Pr[T 2

1], we first consider all the quantities that can affect

event T 2
1 in game G2

1 and event T 3
1 in game G3

1, and then we show that these quantities

have the same joint distribution in both games.

153

Let Dt∗(·) and Et∗(·) be the randomizing polynomials used in the last New-period

operation before the challenge ciphertext was created. (If no New-period occurred at all

during the attack game, then let both Dt∗(·) and Et∗(·) be just the zero polynomial.)

Let t̄ be the total number of New-period operations that occured during the entire

game, and for t = 1, . . . , t̄, let ct1, . . ., c
t
2v+2 be the coefficients of the randomizing

polynomials Dt(·) and Et(·) used in the t-th New-period operation. For t = 1, . . . , t̄, and

j = 1, . . . , 2v+ 2, let rt
j be the randomness used to encrypt (the encoding of) coefficient

ctj in the t-th reset message.

Observe that the challenge ciphertext ψ∗ is the only value in the adversary’s view

which is computed differently in game G2
1 and game G3

1. In particular, such encryption

is defined in terms of the values r∗, r′∗ and r′′∗: r∗ and r′∗ are randomly chosen from

Zq in both games, whereas r′′∗ is computed differently in the two games. For the sake

of clarity, we will denote with [r′′∗]2 and [r′′∗]3 the value of such quantity in game G2
1

and G3
1, respectively. Notice that [r′′∗]2 is a linear combination of r∗, r′∗ (and other

quantities), whereas [r′′∗]3 is uniformly distributed in Zq, independently of anything

else.

The rest of our analysis proceeds differently depending on whether the adversary’s

strategy caused the “special” New-period operation to occur or not. The case in which

no New-period operation occurred at Step 7. of the attack game is slightly simpler, so

we discuss it first.

Case 1. Consider the quantity

~V
.
= (Coins, w, {{ctj, rt

j}2v+2
j=1 }t̄t=1, σ

∗, r∗, r′∗)

where Coins represents the coin tosses of A, w
.
= logg g

′, and σ∗ is the random bit chosen

by the challenger in Step 8. of the attack game.

The remaining randomness used during the attack game consists of the 2v + 2 coef-

ficients of the polynomials A0(·), B0(·) and can be represented by a vector ~α uniformly

distributed in Z(2v+2)×1
q :

~α
.
= (a0, a1, . . . , av, b0, b1, . . . , bv)

T .

154

Consider the vector ~β ∈ Z(2v+2)×1
q defined as:

~β
.
= (X0,X1, . . . ,Xv,A1, . . . ,Av, r

′′∗)T

where X0
.
= A0(0) + wB0(0), X`

.
= A0(`) + wB0(`) and A`

.
= A0(x`) for ` = 1, . . . , v,

and r′′∗
.
= logg u

′′∗.

It is clear by inspection that all the information in the adversary’s view is completely

determined by ~V and ~β. Thus, if the distribution of ~V and ~β is the same in both games

G2
1 and G3

1, it will follow that Pr[T 3
1] = Pr[T 2

1]. Since the definition of r′′∗ is the only

difference between game G2
1 and G3

1, and in G3
1 the value of [r′′∗]3 is chosen uniformly

from Zq, independently of anything else, it suffices to show that the distribution of [r′′∗]2,

conditioned on ~V and the first 2v + 1 entries of ~β, is also uniform in Zq.

In game G2
1, the quantities in ~V , ~β and ~α are related according to the following

matrix equation:

[~β]2 = M · ~α+ ~γ

where [~β]2 denotes the value of ~β in game G2
1 (i.e. when the value of the last entry is

[r′′∗]2), ~γ ∈ Z(2v+2)×1
q is the vector

~γ
.
=



0

0

...

0

0

...

0

r∗D0,t∗(0) + wr′∗E0,t∗(0) + logg mσ∗



155

and M ∈ Z(2v+2)×(2v+2)
q is the matrix

M
.
=



1 0 . . . 0 w 0 . . . 0

1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 x1 . . . xv
1 0 0 . . . 0

...
...

1 xv . . . xv
v 0 0 . . . 0

r∗ 0 . . . 0 wr′∗ 0 . . . 0


The above matrix M is square, has full rank (provided that r∗ 6= r′∗ and w 6= 0)

and it describes all the constraints on the (2v+2) unknowns represented by ~α, that can

be derived from the information in the adversary’s view in G2
1. In particular, the fact

that no New-period operation occurred during execution of Step 7. of the attack game

guarantees that the identities included in the public key PK∗ that was used to create the

challenge ciphertext ψ∗ are exactly those of the users corrupted by the adversary. Hence,

the constraints on ~α arising from the last v components of the challenge ciphertext ψ∗

can be obtained as linear combination of the constraints specified by M.

As soon as we fix a value for ~V , the first 2v + 1 entries of vector ~γ and the first

v + 1 rows of matrix M are completely fixed, but ~α is still distributed uniformly and

independently at random in Z(2v+2)×1
q . If we additionally fix the value of the first (v+1)

components of [~β]2, the initial public key PK0 is fixed; it follows that the first identity

x1 that A chooses to corrupt is also fixed and thus the (v+2)-th row of M is determined.

Fixing also a value for A1 (which is the (v+ 2)-th entry of [~β]2), the value of B1 is fixed

too, so that all the information on which the adversary can base her choice of x2 is fixed,

and thus the (v+3)-th row of M is determined as well. By a similar reasoning, it follows

that fixing the first (v + ` + 1) entries of [~β]2 determines the (v + ` + 2)-th row of M,

for ` = 1, . . . , v. In particular, fixing all the entries of [~β]2 but the last, fixes all the

information that adversary A sees before asking for her challenge: thus, her choice of

156

m0, m1 is determined, so that the last entry of ~γ is fixed, too. Hence, by Lemma 79, we

can conclude that the conditional distribution of [r′′∗]2, with respect to ~V and to all the

other components of [~β]2, is also uniform over Zq, from which it follows that

Pr[T 3
1] = Pr[T 2

1]. (7.13)

Case 2. We now discuss the case in which the “special” New-period operation takes

place: in particular, let Dt̂(·) and E t̂(·) be the randomizing polynomials used in such

New-period operation. Consider the quantity

~V
.
=
(
Coins, w, {ctj, rt

j}2v+2
j = 1
t 6= t̂

, {sj, r
t̂
j}2v+2

j=1 , σ
∗, r∗, r′∗

)
where Coins represents the coin tosses of A, w

.
= logg g

′, σ∗ is the random bit chosen by

the challenger in Step 8. of the attack game, and s1, . . ., s2v+2 are the random elements of

G that are encrypted by the “special” New-period operation in place of the randomizing

coefficients dt̂
0, d

t̂
1, . . ., d

t̂
v, and et̂

0, e
t̂
1, . . ., e

t̂
v.

The remaining randomness used during the attack game consists of these randomizing

coefficients, along with the 2v + 2 coefficients of the polynomials A0(·), B0(·) and can

be represented by a vector ~α uniformly distributed in Z(4v+4)×1
q , defined as:

~α
.
= (a0, a1, . . . , av, b0, b1, . . . , bv, d

t̂
0, d

t̂
1, . . . , d

t̂
v, e

t̂
0, e

t̂
1, . . . , e

t̂
v)

T .

Consider the vector ~β ∈ Z(4v+3)×1
q defined as

~β
.
= (X0,X1, . . . ,Xv, X̂0, X̂1, . . . , X̂v,A1, . . . ,Av,X

∗
1, . . . ,X

∗
v, r

′′∗)T .

It is clear by inspection that all the information in the adversary’s view is completely

determined by ~V and ~β. In particular, the initial public key PK0 is fixed by ~β and w;

the secret keys of the corrupted users are determined by the choice of ~β, Coins and w;

the “special” reset message is fixed by PK0, Coins, and all the randomness in ~V ; the

resulting public key PK t̂ only depends on ~β and w; and the adversary’s choice of m0

and m1 is fixed by ~V and the first 4v + 2 entries of ~β.

157

Thus, if the distribution of ~V and ~β is the same in both games G2
1 and G3

1, it will

follow that Pr[T 3
1] = Pr[T 2

1]. Since the definition of r′′∗ is the only difference between

game G2
1 and G3

1, and in G3
1 the value of [r′′∗]3 is chosen uniformly from Zq, independently

of anything else, it suffices to show that the distribution of [r′′∗]2, conditioned on ~V and

the first 4v + 2 entries of ~β, is also uniform in Zq.

In game G2
1, the quantities in ~V , ~β and ~α are related according to the following

matrix equation:

[~β]2 = M · ~α+ ~γ

where [~β]2 denotes the value of ~β in game G2
1 (i.e. when the value of the last entry is

[r′′∗]2) and ~γ ∈ Z(4v+3)×1
q is defined as:

~γ
.
=



0

0

...

0

D0,t̂−1(0) + wE0,t̂−1(0)

D0,t̂−1(1) + wE0,t̂−1(1)

...

D0,t̂−1(v) + wE0,t̂−1(v)

0

...

0

r∗(D0,t̂−1(z∗1) +Dt̂+1,t∗(z∗1)) + wr′∗(E0,t̂−1(z∗1) + E t̂+1,t∗(z∗1))

...

r∗(D0,t̂−1(z∗v) +Dt̂+1,t∗(z∗v)) + wr′∗(E0,t̂−1(z∗v) + E t̂+1,t∗(z∗v))

r∗(D0,t̂−1(0) +Dt̂+1,t∗(0)) + wr′∗(E0,t̂−1(0) + E t̂+1,t∗(0)) + logg mσ∗



158

and M ∈ Z(4v+3)×(4v+4)
q is defined as:

1 0 . . . 0 w 0 . . . 0 0 0 . . . 0 0 0 . . . 0

1 1 . . . 1 w w . . . w 0 0 . . . 0 0 0 . . . 0

...
...

...
...

1 v . . . vv w wv . . . wvv 0 0 . . . 0 0 0 . . . 0

1 0 . . . 0 w 0 . . . 0 1 0 . . . 0 w 0 . . . 0

1 1 . . . 1 w w . . . w 1 1 . . . 1 w w . . . w

...
...

...
...

1 v . . . vv w wv . . . wvv 1 v . . . vv w wv . . . wvv

1 x1 . . . xv
1 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

...
...

...
...

1 xv . . . xv
v 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

r∗ r∗z∗1 . . . r∗z∗v1 wr′∗ wr′∗z∗1 . . . wr′∗z∗v1 r∗ r∗z∗1 . . . r∗z∗v1 wr′∗ wr′∗z∗1 . . . wr′∗z∗v1

...
...

...
...

r∗ r∗z∗v . . . r∗z∗vv wr′∗ wr′∗z∗v . . . wr′∗z∗vv r∗ r∗z∗v . . . r∗z∗vv wr′∗ wr′∗z∗v . . . wr′∗z∗vv

r∗ 0 . . . 0 wr′∗ 0 . . . 0 r∗ 0 . . . 0 wr′∗ 0 . . . 0


The matrix M describes all the constraints on the (4v+4) unknowns represented by

~α, that can be derived from the information in the adversary’s view in game G2
1. Notice

that M includes the constraints on ~α arising from the last v components of the challenge

ciphertext ψ∗. Moreover, since we are assuming that the “special” New-period operation

took place during the execution of Step 7. of the attack game, and that the adversary

never revokes the users she corrupts, the identities z∗1 , . . ., z
∗
v specified in the public key

PKt∗ that is used to create the challenge ciphertext are all different from the identities

x1, . . ., xv of the corrupted users, so that M has full rank, provided that r∗ 6= r′∗ and

w 6= 0.

As soon as we fix a value for ~V , the first 4v + 2 entries of vector ~γ and the first

2v + 2 rows of matrix M are completely fixed, but ~α is still distributed uniformly

and independently at random in Z(4v+4)×1
q . If we additionally fix the value of the first

159

(2v + 2) components of [~β]2, the initial public key PK0 is fixed (in fact, the public key

PK t̂ resulting from the “special” New-period operation gets fixed, too); it follows that

the first identity x1 that A chooses to corrupt is also fixed and thus the (2v + 3)-th

row of M is determined. Fixing also a value for A1 (which is the (2v + 3)-th entry of

[~β]2), the value of B1 is fixed too, so that all the information on which the adversary

can base her choice of x2 is fixed, and thus the (2v + 4)-th row of M is determined as

well. By a similar reasoning, it follows that fixing the first (2v + ` + 2) entries of [~β]2

determines the (2v + `+ 3)-th row of M, for ` = 1, . . . , v. In particular, fixing the first

3v + 2 entries of [~β]2 fixes all the information that adversary A sees before asking for

her challenge: thus, the identities z∗1 , . . ., z
∗
v , as well as the two messages m0, m1 chosen

by A are determined, so that all the remaining rows of M, as well as the last entry of ~γ

get fixed, too. Hence, by Lemma 79, we can conclude that the conditional distribution

of [r′′∗]2, with respect to ~V and to all other components of [~β]2, is uniform over Zq, from

which it follows that Equation (7.13) holds in this case, too.

Game G4
1. Game G4

1 is defined to be identical to G2. Thus, G4
1 differs from G3

1 only in

that the values u∗ and u′∗ in the challenge ciphertext ψ∗ are consistent, rather than being

nearly independent, as in game G3
1. Namely, the values u∗ and u′∗ are now computed

as u∗
.
= gr∗ and u′∗

.
= g′r

∗
, for the same random r∗ ∈ Zq. It follows that any difference

in behavior between games G3
1 and G4

1 can be used to distinguish Diffie-Hellman tuples

from totally random tuples. Hence,

∣∣Pr[T 4
1]− Pr[T 3

1]
∣∣ ≤ AdvDDHG,A(k). (7.14)

Combining Equations (7.11), (7.12), (7.13) and (7.14), the thesis follows.

7.6 Dealing with Traceability

The goal of a tracing algorithm is to obtain the identity of at least one of the pirates who

colluded in creating a given “pirate decoder” D which, as in previous work, is assumed

160

to be stateless. In this section we present a formal model for traceability and two tracing

algorithms that can be integrated within the scheme described in Section 7.4.

The first method, a black-box algorithm, repeatedly calls a black-box confirmation

subroutine that, given a pirate decryption device and a subset of at most c suspected

users,1 checks whether the suspected set includes all the secret keys that were used to

generate the pirate device, and if so outputs the identity of one of the traitors.

The second method, a non-black-box algorithm, receives as input a “valid” key ex-

tracted from a pirate device which was constructed using the keys of at most c users

and deterministically recovers the identities of all the traitors.

7.6.1 Model for Traceability

The traceability adversary operates similarly to the window adversary described in Sec-

tion 7.5. Namely, after receiving the initial public key of the system, adversary A can

interleave (in any adaptively-chosen order) up to c Join queries, upon which A receives

the secret keys of the corresponding users (the traitors), and a polynomial number of

Revoke queries. Notice that each Revoke will change the public key, and the adversary

monitors these changes as well. Also notice that the final set of revoked users is likely

very different, and typically disjoint from the set T of traitors. At the end, A outputs

a pirate decoder D which presumably works well (in some sense more precisely clarified

below), with the final public key PKA.

Formal Model for Traceability Adversary

The above attack scenario can be formalized in terms of the following traceability ad-

versary attack game Gc
trt(1

k), played between a challenger and the adversary.

1. Let 〈PK,MSK〉 .= Setup(1k, 1c)

2. Let L
.
= 0, T .

= ∅
1Recall, c denotes the collusion threshold, and should not be confused with the revocation threshold

v defined in Section 7.4; e.g., in our schemes c = b v
2 c.

161

3. Let state
.
= 〈L, PK,MSK, T 〉

4. D
R← AJoin(state,·),Revoke(1,state,·)(state.PK)

5. If |T | > c then exit

6. Parse state as 〈L, PKA,MSKA, T 〉

7. Output 〈D, PKA,MSKA, T 〉

The definitions of the Join and Revoke oracles is the same as in Section 7.5.1, except

that the role of the set Corr is now played by the set T .

Definition 82. For any public key PK, define the success probability of a decoder D as:

SuccPK(D)
.
= Pr[m′ = m | m R← G;ψ∗

R← E(PK,m);m′ R← D(ψ∗)]

where the probability is over the random choice of m, the randomness used to create the

challenge ciphertext ψ∗ and the coin tosses of D.

Notice that the pirate decoder D expects to receive a ciphertext created under the

public key PKA, but the quantity SuccPK(D) can be defined for any public key anyway.

Clearly, if D could notice the change, then it could stop working properly: in this case

we can assume that it outputs a message m′ 6= m.

The job of the tracing algorithm is to find one or all of the (at most) c traitors whose

keys were used by A in building D. The precise security guarantees depend on whether

tracing is black-box or not. We describe both tracing methods in Sections 7.6.2 and

7.6.3, respectively.

7.6.2 Black-Box Tracing

In the black-box model, the tracing algorithm is only allowed to query the pirate decoder

D on a polynomial number of a random-looking ciphertexts, and from the plain obser-

vation of D’s input/output behavior, the tracing algorithm should successfully identify

(at least) one of the traitors.

162

This form of tracing is the most desirable, as it can be applied to any stateless

pirate decoder. Similarly to previous work [17, 67, 80] though, the algorithm presented

below only achieves a weaker variant of black-box tracing, called black-box confirmation.

Informally, a black-box confirmation algorithm is a subroutine that tests whether a given

set Susp of at most c suspected users does include all the traitors that cooperated to

construct a given pirate decoder D and if so, it outputs at least one such pirate. On

a pessimistic note, this means that our tracing algorithm might have to go through all

c-element subsets of the user universe U to do full-fledged tracing. However, we point

out that: (1) in many cases a lot of partial information about the set of corrupted users

makes the search space dramatically smaller; (2) all previous public-key traitor tracing

schemes suffer from the same problem; (3) as observed in [55], the problem seems to be

inherent to this setting.

However, we significantly improve upon previous black-box confirmation algorithms

in the following respects: (1) formal modeling of the problem; (2) our algorithm al-

lows the adversary to adaptively corrupt players before building the pirate decoder; (3)

our algorithm can be successfully applied to pirate decoders that work on at least an

ε-fraction of correctly formed messages (rather than with probability 1), where ε is

the desired threshold below which the decoder is considered “useless” (following the

“threshold tracing” approach of [66]).

Definition 83 (Black-Box Confirmation Algorithm).

A Black-Box Confirmation (BBC) algorithm is a probabilistic, polynomial time oracle

machine taking as oracle input a pirate decoder D, and as regular input a public key

PK, the corresponding master secret key MSK, and a set Susp of suspected traitors.

Its output is either a user’s identity i or the special symbol ?.

Definition 84 (ε-Black-Box Confirmation Property).

Let A be any probabilistic, polynomial-time adversary, and let 〈D, PKA, MSKA, T 〉

be the output resulting from the adversary playing the traceability attack game Gc
trt(1

k)

with the challenger. A Black-Box Confirmation algorithm BBC satisfies ε-Black-Box

163

Confirmation if, for any probabilistic-polynomial time adversary A playing the Gc
trt(1

k)

game, the following two properties hold with all but negligible probability:

• Confirmation: whenever T ⊆ Susp, then the output of BBCD(PKA,MSKA,

Susp) is some identity i ∈ T .

• Soundness: whenever BBCD(PKA,MSKA, Susp) outputs i 6= ?, then i ∈ T .

Black-Box Confirmation Algorithm

At a high level, our black-box confirmation algorithm BBC works as follows. Based on

the current set I of suspected users (initially set to Susp) and using the master secret key

MSKA, it modifies the public key PKA into a fake public key PK(I). It then estimates

the probability

δ(I)
.
= SuccPK(I)(D)

by observing the behavior of D when fed with encryptions of the form E(PK(I),m),

for random messages m. The Chernoff bound implies that the latter estimation can be

done quickly and accurately (by computing statistics from repeated sampling), provided

δ(I) is “large enough” (specifically, at least ε/c). Now, BBC takes any index i ∈ I,

and accurately estimates δ(I \ {i}). If the difference between δ(I) and δ(I \ {i}) is

“non-trivial” (specifically, at least ε/2c), it proclaims i as a traitor. Otherwise, it sets

I
.
= I \ {i}, and repeats the entire procedure until I = ∅ (in which case it outputs ?).

The last main detail to be filled in is how the algorithm generates the fake public

key PK(I). Recall from Section 7.4 that the master secret key MSKA consists of two

random polynomials over Zv
q [x]. Let t̄ be the total number of New-period operations that

occur during the entire game, and for t = 1, . . . , t̄, let ct1, . . ., c
t
2v+2 be the coefficients

of the randomizing polynomials Dt(·) and Et(·) used in the t-th New-period operation.

For t = 1, . . . , t̄, and j = 1, . . . , 2v + 2, let rt
j be the randomness used to encrypt (the

encoding of) coefficient ctj in the t-th reset message. By Equation (7.4), (At̄(·), B t̄(·))

denotes the master secret key corresponding to the public key PKA. Given the set I,

164

we create two polynomials A′(·) and B′(·) uniformly distributed over Zv
q [x] except they

agree with At̄(·) and B t̄(·) on points in I:

A′(xs) = At̄(xs) B′(xs) = B t̄(xs), ∀s ∈ I.

Notice that, since |I| ≤ c ≤ v/2, this creates no problem. We then create the public key

PK(I) as if the master secret key were MSK ′ = (A′(·), B′(·)) rather than MSKA =

(At̄(·), B t̄(·)). Specifically, we define

PK(I)
.
= (g, g′, y′, 〈z`, h

′
`〉v`=1).

where y′
.
= gA′(0)g′B

′(0), and h′`
.
= gA′(z`)g′B

′(z`), for ` = 1, . . . , v.

Correctness of Black-Box Tracing

The correctness of the black-box tracing algorithm described above follows from Theo-

rem 85 and Theorem 87 stated below. Theorem 85 implies that if the decoder was useful

at the start (i.e., SuccPKA(D) ≥ ε) and T ⊆ Susp, then the decoder cannot “notice”

that PKA was changed to PK(Susp), i.e. δ(Susp) & ε.2 Coupled with the obvious fact

that δ(∅) is negligible (since m is encrypted with a totally random one-time pad), we

see that there must be a time when δ(I) changes by a non-trivial amount (i.e., at least

by ε/2c) when we remove some i ∈ I. This i will then be output by our algorithm, and

since i cannot be an innocent user (by Theorem 87 below), i must be one of the traitors.

This shows the confirmation property.

Theorem 85. Under the DDH assumption, if T ⊆ Susp and |Susp| ≤ v, then |δ(Susp)−

SuccPKA(D)| is negligible.

Proof. We again follow the structural approach of defining a sequence of “indistinguish-

able” games G0,G1, . . ., all operating over the same underlying probability space. Each

of these games consists of the BBC algorithm sending a ciphertext ψ∗ to the pirate de-

coder D; different games only differs in the way ψ∗ is computed. In the original game

2The relation & is meant to indicate that δ(Susp) is greater than ε minus negligible terms.

165

G0, the goal of the decoder D is to output a message m′ which is D’s best guess at the

random message m encrypted within ψ∗; for each game Gj, let Tj be the event that

m = m′ in Gj.

Game G0: This game defines the probability SuccPKA(D). In this game, the BBC

algorithm takes as input the public key PKA, the corresponding master secret key

MSKA and a set Susp of suspected users; it then chooses a message m
R← G and, using

the public key PKA, encrypts it as follows:

E1. r
R← Zq

E2. u← gr

E3. u′ ← g′r

E4. u′′ ← gAt̄(0)rg′B
t̄(0)rm

E5. u` ← gAt̄(z`)rg′B
t̄(z`)r, ` = 1, . . . , v

E6. ψ∗ ← 〈u, u′, u′′, 〈z1, u1〉, . . . , 〈zv, uv〉〉

By definition, we have that

Pr[T0] = SuccPKA(D). (7.15)

Game G1: Game G1 is identical to game G0, except that in game G1 steps E4 and

E5 are substituted with:

E4′. u′′ ← uAt̄(0)u′B
t̄(0)m

E5′. u` ← uAt̄(z`)u′B
t̄(z`), ` = 1, . . . , v

Notice that the point of these changes is just to make explicit any functional dependency

of ψ∗ on the quantities u and u′. Since we just made a conceptual change, it clearly

holds that

Pr[T1] = Pr[T0]. (7.16)

Game G2: To define game G2, we make more changes to the encryption algorithm as

166

follows:

E1′. r
R← Zq; r′

R← Zq \ {r}

E3′. u′ ← g′r
′

Notice that while in game G1 the value u and u′ are obtained using the same value

r, in game G2 they are nearly independent, being subject only to r 6= r′. Therefore,

using a standard reduction argument, any non-negligible difference in behavior between

games G1 and G2 can be used to construct a probabilistic-polynomial time adversary

able to distinguish Diffie-Hellman tuples from totally random tuples with non-negligible

advantage. Hence, ∣∣Pr[T2]− Pr[T1]
∣∣ ≤ AdvDDHG,A(k). (7.17)

Game G3: To turn game G2 into game G3, we consider the set Susp and construct the

public key PK(Susp) as described above; specifically, two random polynomials A′(·) and

B′(·) are chosen such that

A′(xs) = At̄(xs) B′(xs) = B t̄(xs), ∀s ∈ Susp (7.18)

and PK(Susp) is set to be:

PK(Susp)
.
= 〈g, g′, gA′(0)g′B

′(0), 〈z`, g
A′(z`)g′B

′(z`)〉v`=1〉.

Then, we change steps E4′ and E5′ of the encryption algorithm of game G2 as follows:

E4′′. u′′ ← uA′(0)u′B
′(0)m

E5′′. u` ← uA′(z`)u′B
′(z`), ` = 1, . . . , v

Using the technique outlined in Section 7.5.2, in Lemma 86 below, we show that

Pr[T3] = Pr[T2]. (7.19)

Game G4: In game G4, we “undo” the changes of game G2, restoring lines E1′ and

E3′ of the encryption oracle to their original values:

E1′′. r
R← Zq

E3′′. u′ ← g′r

167

Notice that in game G4 the value u and u′ are again obtained using the same value r,

whereas in game G3 they are nearly independent, being subject only to r 6= r′. Therefore,

using a standard reduction argument, any non-negligible difference in behavior between

games G3 and G4 can be used to construct a probabilistic-polynomial time adversary

able to distinguish Diffie-Hellman tuples from totally random tuples with non-negligible

advantage. Hence, ∣∣Pr[T4]− Pr[T3]
∣∣ ≤ AdvDDHG,A(k). (7.20)

Finally, observe that in G4 the encryption of the random message m is obtained

using the public key PK(Susp): thus, game G4 is exactly the game which defines the

probability δ(Susp) i.e.,

Pr[T4] = δ(Susp). (7.21)

Combining Equations (7.15), (7.16), (7.17), (7.19), (7.20) and (7.21), we can conclude

that A has only a negligible chance to tell whether the message m was encrypted under

the public keys PKA or PK(Susp); more precisely:

|δ(Susp)− SuccPKA(D)| ≤ 2 AdvDDHG,A(k).

Lemma 86. Pr[T3] = Pr[T2].

Proof. To prove the lemma, we consider all the quantities that can affect event T2 in game

G2 and event T3 in game G3, and then we show that these quantities are distributed

according to the same joint distribution in both games.

Consider the quantity:

~V
.
= (CoinsA,CoinsD, w,m, r, r

′, {{ctj, rt
j}2v+2

j=1 }t̄t=1)

where CoinsA denotes the coin tosses of A, CoinsD denotes the coin tosses of D, w
.
=

logg g
′, m is the random message encrypted within ψ∗, r and r′ are the random values

used to create ψ∗, and {{ctj, rt
j}2v+2

j=1 }t̄t=1 represents all the randomness used in the t̄

New-period operations that took place during the Gc
trt(1

k) attack game.

168

The remaining randomness used during games G2 and G3 consists of the 4v + 4

coefficients of the polynomials A0(·), B0(·) (chosen by the Setup algorithm in Step 1. of

the Gc
trt(1

k) attack game) and A′(·), B′(·) (used in game G3). This randomness can be

represented with the vector

~α
.
= (a0, a1, . . . , av, b0, b1, . . . , bv)

T

which is uniformly distributed in Z(2v+2)×1
q , and the vector

~α′
.
= (a′0, a

′
1, . . . , a

′
v, b

′
0, b

′
1, . . . , b

′
v)

T

which is uniformly distributed in Z(2v+2)×1
q , subject to the constraints arising from im-

posing Equation (7.18).

Let T = {t1, . . . , tc} be the set of traitors and set

Aj
.
= At̄(xtj) Bj

.
= B t̄(xtj), j = 1, . . . , c.

Notice that, since T ⊆ Susp, for j = 1, . . . , c, it holds that Aj = A′(xtj) and Bj =

B′(xtj).

Consider the quantity ~̄β ∈ Z(v+c+1)×1
q defined as:

~̄β
.
= (X0,X1, . . . ,Xv,A1, . . . ,Am)T

where X0
.
= A0(0) + wB0(0), and X`

.
= A0(`) + wB0(`), for ` = 1, . . . , v.

It is clear by inspection that all the information in the view of the adversary A during

the attack game Gc
trt(1

k) is completely determined by ~V and ~̄β. In particular, the initial

public key PK0 is fixed by ~̄β and w, and the secret keys of the traitors are determined

by the choice of ~̄β, CoinsA and w.

Besides the information in A’s view, which is completely determined by the value

of ~V and ~̄β, the only other quantity affecting D’s behavior is the ciphertext ψ∗. This

ciphertext is computed differently in games G2 and G3: for the sake of clarity, we will

denote with [ψ∗]2 and [ψ∗]3 the value of such quantity in game G2 and G3, respectively.

We now want to show that, conditioned on all the other information in D’s view, [ψ∗]2

and [ψ∗]3 are distributed according to the same distribution in the two games.

169

In game G2, the ciphertext [ψ∗]2 sent to the decoder is completely determined by

~V , ~̄β and by the v-degree polynomial X t̄(·) .
= rAt̄(·) + wr′B t̄(·). Similarly, in game G3,

the ciphertext [ψ∗]3 is completely determined by ~V , ~̄β and by the v-degree polynomial

X ′(·) .
= rA′(·) + wr′B′(·). Moreover, [ψ∗]2 depends on ~V , ~̄β and X t̄(·) according to

the same functional dependence of [ψ∗]3 upon ~V , ~̄β and X ′(·). Therefore, to prove the

lemma, it suffices to show that, conditioning on any fixed values of ~V and ~̄β, X t̄(·) and

X ′(·) are distributed according to the same conditional probability distribution; namely,

both are random polynomials over Zv
q [x], subject to the constraint that their value at

xtj is rAj + wr′Bj, for j = 1, . . . , c.

By Lagrange interpolation, X t̄(·) can be identified with its value at the points 0, 1,

. . ., v − c, xt1 , . . ., xtc ; define

Xt̄
`
.
= X t̄(`), ` = 0, . . . , v − c

and

Xt̄
v−c+j

.
= X t̄(xij), j = 1, . . . , c.

Similarly, we can also identify X ′(·) with its value at the same v + 1 points; define

X′
`
.
= X ′(`), ` = 0, . . . , v − c

and

X′
v−c+j

.
= X ′(xtj), j = 1, . . . , c.

As noticed above, the assumption that T ⊆ Susp implies that for j = 1, . . . , c:

At̄(xtj) = A′(xtj) = Aj, B t̄(xtj) = B′(xtj) = Bj.

Therefore, it follows that

Xv−c+j = X′
v−c+j, j = 1, . . . , c. (7.22)

It only remains to be proven that, conditioning on fixed values of ~V and ~̄β, the tuple

Xt̄
0, . . ., Xt̄

v−c and the tuple X′
0, . . ., X′

v−c are distributed according to the same joint

170

conditional distribution. (Notice that fixing a value for ~V and ~̄β, immediately fixes a

value for the tuple Xt̄
v−c+j, which by Equation (7.22) is equal to X′

v−c+j, j = 1, . . ., c.)

Recall that, in game G3, the polynomials A′(·) and B′(·) are chosen uniformly at

random from Zv
q [x], independently from anything else, but subject to the constraints in

Equation (7.18). It follows that the polynomial X ′(·) = rA′(·) + wr′B′(·) is also random

in Zv
q [x], subject to the constraint that its value at xs is

rAt̄(xs) + wr′B t̄(xs), ∀s ∈ Susp.

Therefore, conditioning on fixed values of ~V and ~̄β, the tuple X′
0, . . . ,X

′
v−c is dis-

tributed uniformly at random in Z(v−c+1)×1
q . Hence, it suffices to show that, for ` = 0,

. . ., v − c, the conditional distribution of Xt̄
` with respect to ~V , ~̄β and Xt̄

0, . . . ,X
t̄
`−1 is

uniform over Zq. To this aim, fix ` ∈ {0, . . ., v − c}, and consider the following matrix

equation:

~β` = M` · ~α+ ~γ`

where ~β` ∈ Z(v+c+`+2)×1
q is the vector

~β`
.
= (X0,X1, . . . ,Xv,A1, . . . ,Ac,X

t̄
0,X

t̄
1, . . . ,X

t̄
`)

T ,

~γ` ∈ Z(v+c+`+2)×1
q is the vector

~γ`
.
=



0

0

...

0

D0,t̄(xt1)

...

D0,t̄(xtc)

rD0,t̄(0) + wr′E0,t̄(0)

rD0,t̄(1) + wr′E0,t̄(1)

...

rD0,t̄(`) + wr′E0,t̄(`)


171

and M` ∈ Z(v+c+`+2)×(2v+2)
q is the matrix

M`
.
=



1 0 . . . 0 w 0 . . . 0

1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 xt1 . . . xv
t1

0 0 . . . 0

...
...

1 xtc . . . xv
tc 0 0 . . . 0

r 0 . . . 0 wr′ 0 . . . 0

r r . . . r wr′ wr′ . . . wr′

...
...

r r` . . . r`v wr′ wr′` . . . wr′`v


By inspection, it is possible to see that the rows of matrix M` are linearly independent,

provided that r 6= r′ and w 6= 0: thus, the rank of M` is v + c + ` + 2. As soon

as we fix ~V , vector ~γ` and the first v + 1 rows of M` are determined, but ~α is still

distributed uniformly and independently at random in Z(2v+2)×1
q . Similarly to the proof

of Lemma 81, it is also possible to show that fixing the first v+ j entries of ~̄β determines

the (v+ j+1)-th row of M`, for j = 1, . . . , c; and that moreover, fixing the first v+ c+1

entries of ~̄β determines all the remaining rows of M`.

Hence, by Lemma 79, we can conclude that the conditional distribution of Xt̄
` with

respect to (~V , ~̄β, Xt̄
0, . . ., Xt̄

`−1) is uniform over Zq, ∀` ∈ {0, . . . , v− c}. In other words,

the value of X t̄(·) at any point is uniformly random, subject to the constraint

Xt̄(xtj) = rAj + wr′Bj, ∀tj ∈ T .

Thus, (~V , ~̄β,X t̄(·))) has the same joint distribution as (~V , ~̄β, X ′(·)), completing the

proof.

We now move on to prove the soundness of the BBC algorithm, showing that it

can accuse an innocent user with at most negligible probability. Informally this is true

172

because, under the DDH assumption it is impossible to notice if the values A′(xi) and

B′(xi) (which are unknown to the adversary since i is assumed to be honest), were

replaced by random noise A′′(xi) and B′′(xi). Thus, the behavior of the decoder will be

the same regardless of whether PK(I) or PK(I\{i}) was used to encrypt the ciphertext.

Since our algorithm only accuses a user i when a sensible change occurs in the decryption

capability of the pirate decoder, it follows that an innocent user will be blamed with at

most negligible probability.

Theorem 87. Under the DDH assumption, if |I| ≤ v and i 6∈ T , then |δ(I)− δ(I \ {i})|

is negligible.

Proof. Proceeding as in the proof of Theorem 85, we define a sequence of “indistinguish-

able” games G0, G1, . . . : for each game Gj, let Tj be the event that decoder D correctly

decrypts the challenge sent by the BBC algorithm in game Gj.

Game G0: This game describes the experiment which defines the value of δ(I). In this

game, the decoder D is fed with ciphertexts obtained encrypting random messages under

the fake public key PK(I), defined as:

PK(I) = 〈g, g′, gA′(0)g′B
′(0), 〈z`, g

A′(z`)g′B
′(z`)〉v`=1〉

where A′(·) and B′(·) are random v-degree polynomials subject to:

A′(xs) = At̄(xs) B′(xs) = B t̄(xs), ∀s ∈ I. (7.23)

More precisely, the BBC algorithm chooses a random message m and encrypts it as

follows:

173

E1. r
R← Zq

E2. u← gr

E3. u′ ← g′r

E4. u′′ ← gA′(0)rg′B
′(0)rm

E5. u` ← gA′(z`)rg′B
′(z`)r, ` = 1, . . . , v

E6. ψ∗ ← 〈u, u′, u′′, 〈z1, u1〉, . . . , 〈zv, uv〉〉

By definition, we have that:

Pr[T0] = δ(I). (7.24)

Game G1: Game G1 is identical to game G0, except that in game G1 steps E4 and

E5 are substituted with:

E4′. u′′ ← uA′(0)u′B
′(0)m

E5′. u` ← uA′(z`)u′B
′(z`), ` = 1, . . . , v

Notice that the point of these changes is just to make explicit any functional dependency

of ψ∗ on the quantities u and u′. Since we just made a conceptual change, it clearly

holds that

Pr[T1] = Pr[T0]. (7.25)

Game G2: Game G2 is identical to game G1, except that in game G2 steps E1 and

E3 are substituted with:

E1′. r
R← Zq; r′

R← Zq \ {r}

E3′. u′ ← g′r
′

Notice that while in game G1 the value u and u′ are obtained using the same value

r, in game G2 they are nearly independent, being subject only to r 6= r′. Therefore,

using a standard reduction argument, any non-negligible difference in behavior between

174

games G1 and G2 can be used to construct a probabilistic-polynomial time adversary

able to distinguish Diffie-Hellman tuples from totally random tuples with non-negligible

advantage. Hence, ∣∣Pr[T2]− Pr[T1]
∣∣ ≤ AdvDDHG,A(k). (7.26)

Game G3: To turn game G2 into game G3, we consider the set I \ {i} and construct

the public key PK(I \ {i}): two new random v-degree polynomials A′′(·) and B′′(·) are

chosen such that

A′′(xs) = At̄(xs) B′′(xs) = B t̄(xs), ∀s ∈ I \ {i} (7.27)

and PK(I \ {i}) is set to be:

〈g, g′, gA′′(0)g′B
′′(0), 〈z`, g

A′′(z`)g′B
′′(z`)〉v`=1〉.

Notice that, by Equations (7.23) and (7.27), it holds that

A′′(xs) = A′(xs) B′′(xs) = B′(xs), ∀s ∈ I \ {i}.

Finally, we change steps E4′ and E5′ of the encryption algorithm as follows:

E4′′. u′′ ← uA′′(0)u′B
′′(0)m

E5′′. u` ← uA′′(z`)u′B
′′(z`), ` = 1, . . . , v

Using the technique described in Section 7.5.2, in Lemma 88 below, we show that

Pr[T3] = Pr[T2]. (7.28)

Game G4: In game G4, we “undo” the changes of game G2, restoring lines E1 and E3

of the encryption oracle to their original values:

E1′′. r
R← Zq

E3′′. u′ ← g′r

Notice that in game G4 the value u and u′ are again obtained using the same value r,

whereas in game G3 they are nearly independent, being subject only to r 6= r′. Therefore,

175

using a standard reduction argument, any non-negligible difference in behavior between

games G3 and G4 can be used to construct a probabilistic-polynomial time adversary

able to distinguish Diffie-Hellman tuples from totally random tuples with non-negligible

advantage. Hence, ∣∣Pr[T4]− Pr[T3]
∣∣ ≤ AdvDDHG,A(k). (7.29)

In game G4, the encryption of the random message m is obtained using the public

key PK(I \ {i}): thus, game G4 is exactly the game defining δ(I \ {i}) i.e.,

Pr[T4] = δ(I \ {i}). (7.30)

By Equations (7.24), (7.25), (7.26), (7.28), (7.29) and (7.30), we can conclude that

the adversary has only a negligible chance to tell whether the message m was encrypted

under PK(I) or PK(I \ {i}); more precisely:

|δ(I)− δ(I \ {i})| ≤ 2 AdvDDHG,A(k).

Lemma 88. Pr[T3] = Pr[T2]

Proof. To prove the lemma, we consider all the quantities that can affect event T2 in game

G2 and event T3 in game G3, and then we show that these quantities are distributed

according to the same joint distribution in both games.

Let c̄
.
= |T ∩I|, where T = {t1, . . . , tc} is the set of traitors; without loss of generality

assume that T ∩ I = {t1, . . . , tc̄}. Also, set

Aj
.
= At̄(xtj) Bj

.
= B t̄(xtj), j = 1, . . . , c.

Notice that, since i 6∈ T , for 1 ≤ j ≤ c̄ it also holds that:

Aj = A′(xtj) = A′′(xtj) Bj = B′(xtj) = B′′(xtj).

Consider the quantity:

~V
.
= (CoinsA,CoinsD, w,m, r, r

′, {{ctj, rt
j}2v+2

j=1 }t̄t=1)

176

where CoinsA denotes the coin tosses of A, CoinsD denotes the coin tosses of D, w
.
=

logg g
′, X`

.
= (A0(`)+B0(`)) for ` = 0, . . . , v, m is the random message encrypted within

ψ∗, r and r′ are the random values used to create ψ∗, and {{ctj, rt
j}2v+2

j=1 }t̄t=1 represents all

the randomness used in the t̄ New-period operations that took place during the attack

game Gc
trt(1

k).

The remaining randomness used during games G2 and G3 consists of the 6v + 6

coefficients of the polynomials A0(·), B0(·) (chosen by the Setup algorithm in Step 1.

of the Gc
trt(1

k) attack game), A′(·), B′(·) (used in game G2), and A′′(·), B′′(·) (used in

game G3). This randomness can be represented with the vector

~α
.
= (a0, a1, . . . , av, b0, b1, . . . , bv)

T

which is uniformly distributed in Z(2v+2)×1
q , the vector

~α′
.
= (a′0, a

′
1, . . . , a

′
v, b

′
0, b

′
1, . . . , b

′
v)

T

which is uniformly distributed in Z(2v+2)×1
q , subject to the constraints arising from im-

posing Equation (7.23), and the vector

~α′′
.
= (a′′0, a

′′
1, . . . , a

′′
v, b

′′
0, b

′′
1, . . . , b

′′
v)

T

which is uniformly distributed in Z(2v+2)×1
q , subject to the constraints arising from im-

posing Equation (7.27).

Consider the quantity ~̄β ∈ Z(v+c̄+1)×1
q defined as:

~̄β
.
= (X0,X1, . . . ,Xv,A1, . . . ,Ac̄)

T

where X0
.
= A0(0) + wB0(0), and X`

.
= A0(`) + wB0(`), for ` = 1, . . . , v.

It is clear by inspection that all the information in the view of the adversary A during

the attack game Gc
trt(1

k) is completely determined by ~V and ~̄β. In particular, the initial

public key PK0 is fixed by ~V , and the secret keys of the traitors are determined by the

choice of ~̄β, CoinsA and w.

Besides the information in A’s view, the only other quantity affecting D’s behavior

is the ciphertext ψ∗. This ciphertext is computed differently in games G2 and G3:

177

for the sake of clarity, we will denote with [ψ∗]2 and [ψ∗]3 the value of such quantity

in game G2 and G3, respectively. We now want to show that, conditioned on all the

other information in D’s view, [ψ∗]2 and [ψ∗]3 are distributed according to the same

distribution in the two games.

In game G2, the ciphertext [ψ∗]2 sent to the decoder is completely determined by

~V , ~̄β and by the v-degree polynomial X ′ .= rA′(·) + wr′B′(·). Similarly, in game G3,

the ciphertext [ψ∗]3 is completely determined by ~V , ~̄β and by the v-degree polynomial

X ′′(·) .
= rA′′(·) + wr′B′′(·). Moreover, [ψ∗]2 depends on ~V , ~̄β and X ′(·) according to

the same functional dependence of [ψ∗]3 upon ~V , ~̄β and X ′′(·). Therefore, to prove the

Lemma, it suffices to show that, conditioning on any fixed values of ~V and ~̄β, X ′(·) and

X ′′(·) are distributed according to the same conditional probability distribution.

Recall that, in game G2, the polynomials A′(·) and B′(·) are chosen uniformly at

random from Zv
q [x], independently from anything else, but subject to the constraints in

Equation (7.23). It follows that the polynomial X ′(·) = rA′(·) + wr′B′(·) is also random

in Zv
q [x], subject to the constraint that its value at xs is

rAt̄(xs) + wr′B t̄(xs), ∀s ∈ I.

Similarly, in game G3, the polynomials A′′(·) and B′′(·) are chosen uniformly at

random from Zv
q [x], independently from anything else, but subject to the constraints

in Equation (7.27). It follows that the polynomial X ′′(·) = rA′′(·) + wr′B′′(·) is also

random in Zv
q [x], subject to the constraint that its value at xs is

rAt̄(xs) + wr′B t̄(xs), ∀s ∈ I \ {i}.

In other words, the distributions of X ′(·) and X ′′(·) only differ in that the value of

X ′(·) at xi is fixed to be

X′
i
.
= rAt̄(xi) + wr′B t̄(xi)

whereas the value of X ′′(·) at xi is a random element in Zq. Thus, to prove that X ′(·)

and X ′′(·) have the same conditional probability distribution with respect to ~V and ~̄β,

178

it suffices to show that, conditioning on any fixed values of ~V and ~̄β, the value X′
i is

distributed uniformly at random in Zq.

To this aim, consider the following matrix equation:

~β = M · ~α+ ~γ

where ~β ∈ Z(v+c̄+2)×1
q is the vector

~β
.
= (X0,X1, . . . ,Xv,A1, . . . ,Ac̄,X

′
i)

T ,

~γ ∈ Z(v+c̄+2)×1
q is the vector

~γ
.
=



0

0

...

0

D0,t̄(xt1)

...

D0,t̄(xtc̄)

rD0,t̄(xi) + wr′E0,t̄(xi)


and M ∈ Z(v+c̄+2)×(2v+2)

q is the matrix

M
.
=



1 0 . . . 0 w 0 . . . 0

1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 xt1 . . . xv
t1

0 0 . . . 0

...
...

1 xtc . . . xv
tc̄ 0 0 . . . 0

r rxi . . . rxv
i wr′ wr′xi . . . wr′xv

i


By inspection, it is possible to see that the rows of matrix M are linearly independent,

provided that r 6= r′ and w 6= 0: thus, the rank of M is v + c̄+ 2. As soon as we fix ~V ,

179

vector ~γ and the first v+1 rows of M are determined, but ~α is still distributed uniformly

and independently at random in Z(2v+2)×1
q . Similarly to the proof of Lemma 81, it is

also possible to show that fixing the first v+ j entries of ~̄β determines the (v+ j+ 1)-th

row of M, for j = 1, . . . , c̄; and that moreover, fixing the first v + c̄ + 1 entries of ~̄β

determines all the remaining rows of M.

By Lemma 79, we can conclude that the conditional distribution of X′
i with respect

to ~V and ~̄β is uniform over Zq. In other words, conditioning on the information seen by

the adversary before receiving the challenge ψ∗, the value of X ′(·) at xi looks random

over Zq. Thus, (~V , ~̄β,X ′(·)) has the same joint distribution as (~V , ~̄β, X ′′(·)), completing

the proof.

7.6.3 Non-Black-Box Tracing

In Section 7.6.3 we describe a non-black-box tracing algorithm which builds on the results

of [17, 67], but it is tailored to our family of representations. Then, in Section 7.6.3,

we analyze its security properties in the formal model for traceability of Section 7.6.1,

under a non-black-box assumption, given below as Assumption 1. Before that, however,

we develop some notation.

Notation

Recall that in the scheme of Section 7.4, the secret key of user xi consists of two points

A(xi), B(xi), which can be combined with the system’s public key to obtain two leap-

vectors to be used in the decryption algorithm. More precisely, given the current public

key

PK
.
= 〈g, g′, y, 〈z1, h1〉, . . . , 〈zv, hv〉〉,

it is possible to construct (by Chapter 2, Definition 2) two leap-vectors:

~νA,i
.
= ~νxi,A

z1,...,zv
~νB,i

.
= ~νxi,B

z1,...,zv

180

where (A(·), B(·)) is the master secret key corresponding to the current public key PK.

By Equations (2.2) and (2.4), ~νA,i and ~νB,i agree on the last v components; thus, under

the current public key PK, user xi’s secret key can be compactly rewritten as

~δi
.
= 〈(νA,i)0, (νB,i)0, ~δ

′
i〉

.
= 〈λ(i)

0 A(xi), λ
(i)
0 B(xi), 〈λ(i)

1 , . . . , λ
(i)
v 〉〉,

where λ
(i)
0 , λ

(i)
1 , . . . , λ

(i)
v are the Lagrange coefficients defined in Equations (2.3) and (2.4).

(Recall that, for notational convenience, we use superscript (i) to make explicit that a

given set of Lagrange coefficients is relative to user xi.)

Notice that such vector ~δi is a representation of y with respect to g, g′, h1, . . .,

hv; for short, when this is the case, in the following we will just say that ~δi is a valid

representation of the public key PK. Also notice that any such valid representation ~δ

of the current public key PK would work for decrypting messages encrypted with PK;

for a generic valid representation

~δ
.
= 〈γa, γb, γ1, . . . , γv〉,

we will denote with ~δ′ its last v entries:

~δ′
.
= 〈γ1, . . . , γv〉.

In the non-black-box model, the tracing algorithm is assumed to be able of inspecting

the content of a successful pirate decoder, and to extract the secret key hidden within

it. More precisely, in designing and analyzing our non-black-box tracing algorithm, we

make the following assumption:

Assumption 1 (Non-Black-Box Assumption).

Let A be any probabilistic, polynomial-time adversary, and let 〈D, PKA, MSKA, T 〉 be

the output resulting from the adversary playing the traceability attack game Gc
trt(1

k) with

the challenger. If D can correctly decrypt random ciphertexts encrypted using PKA (in

other words, SuccPKA(D) = 1), then D contains a valid representation ~δ of PKA, and it

is possible to reverse-engineer D and extract ~δ.

181

Assumption 1 is partially supported by Proposition 3 and it is essentially equivalent

to what was previously assumed in [17]. It is also a priori much less restrictive than the

non-black-box assumption made in [67], where the non-black-box analysis is subject to

the hypothesis that the illegal key extracted from the pirate decoder is a convex linear

combination of some of the traitors’ keys. In fact, in Lemma 89 (whose proof is given in

Section 7.6.3) we show that in our context, the seemingly more restrictive assumption

from [67] actually follows from Assumption 1 and Assumption 10.

Lemma 89. Let A be any probabilistic, polynomial-time adversary, and let 〈D, PKA,

MSKA, T 〉 be the output resulting from the adversary playing the traceability attack

game Gc
trt(1

k) with the challenger. Also let T .
= {t1, . . . , tc} and, for j = 1, . . . , c,

denote with ~δtj the compact representation of the secret key of user tj with respect to the

public key PKA. If the pirate decoder D output by A contains a valid representation ~δ

for the public key PKA, such that ~δ′ is not a linear combination of ~δ′t1 , . . . ,
~δ′tc, then the

discrete logarithm problem over G is solvable.

Non-Black-Box Tracing Algorithm

We present a deterministic tracing algorithm that recovers, under Assumptions 10 and

1, the identities of the traitors that created the pirate key. Suppose that the content of

a pirate decoder is exposed. By Assumption 1, it is possible to extract from D a valid

representation ~δ of the current public key PKA. Define {x1, . . . , xn} to be the set of all

values assigned to the users in the system (where n denotes the total number of users

in the system), and let ~δ1, . . . , ~δn be the corresponding secret keys. Let {zi1 , . . . , ziv} be

the set of values of the revoked users specified in the current public key.3 Remember

that the secret key of user j with respect to the current public key can be compactly

represented in the form

~δj
.
= 〈λ(j)

0 A(xj), λ
(j)
0 B(xj), λ

(j)
i1
, . . . , λ

(j)
iv
〉

3Without loss of generality we are assuming that the current saturation level L is equal to v.

182

where λ
(j)
j , λ

(j)
i1
, . . . , λ

(j)
iv

are the Lagrange coefficients defined in Equations (2.3) and (2.4).

Notice that, for any polynomial P (·) ∈ Zv
q [x], it holds that

P (0) = λ
(j)
0 P (xj) + λ

(j)
i1
P (xi1) + . . .+ λ

(j)
iv
P (xiv).

Consider the matrix A ∈ Zn×v
q whose jth row is ~δ′j, for j = 1, . . . , n, i.e.:

A
.
=


λ

(1)
i1

. . . λ
(1)
iv

. . .

λ
(n)
i1

. . . λ
(n)
iv


Define the identities of the traitors to be {t1, . . . , tc} ⊆ {1, . . . , n}. By Lemma 89

and Assumption 10, ~δ′ must be a linear combination of the vectors ~δ′t1 , . . . ,
~δ′tc obtained

by projecting the traitors’ secret keys ~δt1 , . . . ,
~δtc onto the last v components. It follows

that ~δ′ also lies in the linear span of ~δ′1, . . . ,
~δ′n. More precisely, there exists a vector ~ϕ

of Hamming weight at most c such that

~δ′ = ~ϕ ·A. (7.31)

Consider the two matrices:

B
.
=


xi1 . . . xv

i1

. . .

xiv . . . xv
iv

 H
.
=


−λ(1)

0 x1 . . . −λ(1)
1 xv

1

. . .

−λ(n)
0 xn . . . −λ(n)

0 xv
n


It is easy to verify that A ·B = H. Multiplying Equation (7.31) by B, we get

~ϕ ·H = ~δ′′

where

~δ′′
.
= ~δ′ ·B. (7.32)

Let C denote the linear code over Zn
q that has H as its parity-check matrix, i.e.

~c ∈ C ⇐⇒ ~c ·H = ~0.

183

Let λ1, . . . , λn be the Lagrange coefficients corresponding to {x1, . . . , xn}; thus, for every

P (·) ∈ Z<n
q [x], it holds that

P (0) = λ1P (x1) + . . .+ λnP (xn).

In Lemma 90 (Section 7.6.3), we prove that C is a Generalized Reed-Solomon Code

(GRS), with distance (v+1). For more details about Generalized Reed-Solomon Codes,

see e.g. [63]. Generalized Reed-Solomon Codes can be decoded efficiently by the algo-

rithm of Berlekamp and Welch [11]. This means that, for any e ≤ c and any vector

~µ ∈ Zn
q , there exists (at most) a unique vector ~ω ∈ C that disagrees with ~µ in at most

e positions (since C has distance (v + 1) and c = bv
2
c). Moreover, such unique vector

~ω ∈ C (if it exists) can be recovered in deterministic polynomial-time. We now describe

how this can be exploited to reconstruct ~ϕ given ~δ′.

First, we compute an arbitrary vector ~ϑ ∈ Zn
q that satisfies the system of equations

~ϑ ·H = ~δ′′. (7.33)

where ~δ′′ is defined in Equation (7.32). Note that such ~ϑ can be found by standard linear

algebra since Equation (7.33) induces a system of v equations with n unknowns, n > v,

and H contains a non-singular minor of size v. It is easy to verify that the vector

~ω
.
= ~ϑ− ~ϕ

belongs to the linear code C; indeed,

~ω ·H = ~ϑ ·H− ~ϕ ·H

= ~δ′′ − ~δ′′

= ~0.

As a result, the vector ~ϑ can be expressed as ~ϑ = ~ω + ~ϕ.

Provided that the number of traitors is at most c, it holds that the Hamming weight

of ~ϕ is less than or equal to c and as a result ~ϑ is an n-vector that differs in at most c

positions from the vector ~ω (which belongs to C): in other words, we can view ~ϑ as a

184

“partially corrupted” version of the codeword ~ω. Therefore, we can recover ~ω from ~ϑ,

by running the Berlekamp-Welch decoding algorithm for GRS-codes on input ~ϑ. At this

point, ~ϕ can be computed as ~ϕ = ~ϑ− ~ω.

By Equation (7.31), ~ϕ is a vector of Hamming weight at most c, whose non-zero

components correspond to the identities of the traitors; thus, the traitors’ identities can

be recovered as

{t1, . . . , tc}
.
= {j ∈ {1, . . . , n} | ~ϕj 6= 0}.

Time-Complexity. The tracing procedure has time complexity O(n2), which can be

optimized to O(n(log n)2), if matrix operations are implemented in a more sophisticated

manner, see e.g. [12]. If the number of traitors exceeds the bound c, it is still possible to

extract candidate sets of potential traitors using the Guruswami-Sudan algorithm [50],

which performs GRS-decoding “beyond the error-correction bound.” This will work

provided that the size of the traitor coalition is less than or equal to n−
√
n(n− v).

Correctness of Non-Black-Box Tracing

Given Lemmas 89 and 90, the correctness of the non-black-box tracing algorithm de-

scribed above follows from the properties of algebraic decoding of GRS codes. Thus, to

conclude the argument, we now move on to the proofs of these lemmas.

Proof of Lemma 89

Let g be a generator of G, and let g′
.
= gw. Using adversary A described in the attack

game Gc
trt(1

k), we want to show how to recover the value w. In performing Step 1. of

Gc
trt(1

k), choose two random polynomials A0(·) and B0(·) and set the initial public key

to be

〈g, g′, gA0(0)g′B
0(0), 〈`, gA0(`)g′B

0(`)〉v`=1〉.

The game then proceeds as described in Section 7.6.1; in particular, let t̄ be the

number of New-period operation occurring during the entire game. Eventually, adversary

A outputs a pirate decoder D from which (by Assumption 1) it is possible to extract a

185

vector

~δ = 〈γa, γb, γ1, . . . , γv〉,

which is a valid representation of the final public key PKA. In formula,

y = gγag′γb

v∏
`=1

hγ`

` (7.34)

where

PKA
.
= 〈g, g′, y, 〈xi` , h`〉v`=1〉.

Considering discrete logarithms to the base g of Equation (7.34), we get:

At̄(0) + wB t̄(0) = γa +
v∑

`=1

At̄(xi`)γ` + w
(
γb +

v∑
`=1

B t̄(xi`)γ`

)
that can be rewritten as:

w
(
γb +

v∑
`=1

B t̄(xi`)γ` −B t̄(0)
)

= At̄(0)− γa −
v∑

`=1

At̄(xi`)γ` (7.35)

Notice that both the right-hand side and the coefficient of w in Equation (7.35) are

known, so that if such coefficient is non-zero (or, equivalently, if the right-hand side

of Equation (7.35) is non-zero), then we can successfully recover the value of w, thus

violating Assumption 10. To complete the argument, it then suffices to show that the

right-hand side of Equation (7.35) is zero only with negligible probability, or equivalently

that:

Pr[γa = γ̄a] = 1/q (7.36)

where

γ̄a
.
= At̄(0)−

v∑
`=1

At̄(xi`).

To this aim, below we prove that, conditioning on all the other information in A’s

view, the quantity γ̄a is uniformly distributed in Zq. It will follow that A’s chances of

outputting a value γa equal to γ̄a are just 1 in q, proving Equation (7.35) and thus the

lemma.

To prove that γ̄a is distributed uniformly in Zq, we again make use of Lemma 79

following the same approach described in Section 7.5.2.

186

Consider the quantity

~V
.
= (Coins, w, {{ctj, rt

j}2v+2
j=1 }t̄t=1)

where Coins represents the coin tosses of A, w
.
= logg g

′, and {{ctj, rt
j}2v+2

j=1 }t̄t=1 repre-

sents all the randomness used in the t̄ New-period operations that took place during the

Gc
trt(1

k) attack game.

The remaining randomness used during the attack game consists of the 2v + 2 coef-

ficients of the polynomials A0(·), B0(·) and can be represented by a vector ~α uniformly

distributed in Z(2v+2)×1
q :

~α
.
= (a0, a1, . . . , av, b0, b1, . . . , bv)

T .

Consider the vector ~β ∈ Z(v+c+2)×1
q defined as:

~β
.
= (X0,X1, . . . ,Xv,A1, . . . ,Ac, γ̄a)

T

where X0
.
= A0(0) +wB0(0), X`

.
= A0(`) +wB0(`), for ` = 1. . . . , v and Aj

.
= A0(tj) for

j = 1, . . . ,m.

It is clear by inspection that all the information in the view of the adversary A during

the attack game Gc
trt(1

k) is completely determined by ~V and ~β. In particular, the initial

public key PK0 is fixed by ~β and w, and the secret keys of the traitors are determined

by the choice of ~β, Coins and w.

The quantities in ~V , ~β and ~α are related according to the following matrix equation:

~β = M · ~α+ ~γ

187

where ~γ ∈ Z(v+c+2)×1
q is the vector

~γ
.
=



0

0

...

0

0

...

0

D0,t̄(0)−
∑v

`=1D
0,t̄(xi`)γ`


and M ∈ Z(v+c+2)×(2v+2)

q is the matrix

1 0 . . . 0 w 0 . . . 0

1 1 . . . 1 w w . . . w

...
...

1 v . . . vv w wv . . . wvv

1 xt1 . . . xv
t1

0 0 . . . 0

...
...

1 xtc . . . xv
tc 0 0 . . . 0

1−
∑v

`=1 γ` −
∑v

`=1 γ`xi` . . . −
∑v

`=1 γ`x
v
i`

0 0 . . . 0


By inspection, it is possible to see that the first v + c + 1 rows of M are linearly

independent, provided that w 6= 0. To see that the rank of M is indeed v+ c+ 2, define

T ∈ Zc×v
q to be the minor of matrix A resulting from considering only rows t1, . . . , tc:

T
.
=


λ

(t1)
i1

. . . λ
(t1)
iv

. . .

λ
(tc)
i1

. . . λ
(tc)
iv


It is possible to show that if the last row of M were in the linear span of the first v+c+1

rows of M, it would follow that ~δ′ should belong to the linear span of the rows of T. But

since, by hypothesis, ~δ′ is not a linear combination of ~δ′t1 , . . .,
~δ′tc , the matrix M must

have full rank.

188

As soon as we fix ~V , the first v + c + 1 entries of ~γ and the first v + 1 rows of M

are determined, but ~α is still distributed uniformly and independently at random in

Z(2v+2)×1
q . Similarly to the proof of Lemma 81, it is also possible to show that fixing the

first v + j + 1 entries of ~β determines the (v + j + 2)-th row of M, for j = 1, . . . , c; and

that moreover, fixing the first v + c + 1 entries of ~β also determines the last rows of ~γ

and of M.

Hence, by Lemma 79, we can conclude that the conditional distribution of γ̄a with

respect to ~V and to the first v + c + 1 entries of ~β, is uniform over Zq. In other words,

conditioning on all the other information in A’s view, the quantity γ̄a is uniformly

distributed over Zq. Equation (7.35), and thus the lemma, follows.

Lemma 90. Consider the Generalized Reed-Solomon code:

C ′ .=
{
〈− λ1

λ
(1)
0

P (x1), . . . ,−
λn

λ
(n)
0

P (xn)〉 | P ∈ Z<n−v
q [x]}.

It holds that

1. C = C ′.

2. C is a linear code with message-rate (n− v)/n and distance v + 1.

Proof.

1. We only need to show that C ′ ⊆ C. Indeed, assuming that C ′ is a linear sub-space of

C, since dim(C) = n− v = dim(C ′), it immediately follows that C = C ′.

To prove that C ′ ⊆ C, notice that if 〈c1, . . . , cn〉 ∈ C ′, then it is of the form

〈
− λ1

λ
(1)
0

P (x1), . . . ,−
λn

λ
(n)
0

P (xn)
〉

for some polynomial P (·) ∈ Z<n−v
q [x]. We now verify that 〈c1, . . . , cn〉 belongs to C.

First, notice that for ` = 1, . . . , v, multiplying 〈c1, . . . , cn〉 by the `-th column of H we

get

〈c1, . . . , cn〉 · 〈−λ(1)
0 x`

1, . . . ,−λ
(n)
0 x`

n〉 =
n∑

i=1

λiP (xi)x
`
i .

189

Now observe that
n∑

i=1

λiP (xi)x
`
i = 0

by the choice of λ1, . . . , λn and the facts that degree(P) < n−v and ` ≤ v (just consider

the polynomial Q(x)
.
= P (x)x` ∈ Z<n

q [x]). It follows that

〈c1, . . . , cn〉 ·H = ~0.

2. Observe that a vector of Zn−v
q can be encoded as the coefficients of a polynomial

P (·) ∈ Z<n−v
q [x]. The corresponding codeword of C will be the vector

〈
− λ1

λ
(1)
0

P (x1), . . . ,−
λn

λ
(n)
0

P (xn)
〉
.

To see that the distance of the linear code is v + 1, observe that any two different

codewords of C can agree on at most n−v−1 positions, or equivalently any two distinct

codewords differ on at least v + 1 positions.

190

Chapter 8

Chosen-Ciphertext Security for

Trace-and-Revoke Schemes

8.1 Introduction

As discussed in Chapter 3, Section 3.3, in the public key setting, the only known Trace

and Revoke schemes have been constructed by [67, 80] based on the DDH assumption,

and achieve public key and message overhead O(v) (where v denotes an upper bound

to the number of revoked users). In fact, these schemes are essentially identical: in the

following we will refer to the work of [80], who emphasize more the public key nature of

their scheme.

Despite providing a simple and elegant scheme, the work of [80] has several noticeable

shortcomings. First, the given (informal) notion of security does not address the peculiar

features of the revocation setting. Indeed, to show the “security” of revocation, [80]

shows the following two claims: (1) the scheme is semantically secure when no users

are revoked; (2) no set of v a-priori fixed users can compute the secret key of another

user. Clearly, these properties do not imply the security notion we really care about

and which informally states: (3) if the adversary controls some set R of up to v revoked

users, then the scheme remains semantically secure. Indeed, the scheme of [80] can be

191

shown to satisfy the needed property (3) only when the set R is chosen by the adversary

non-adaptively, and in fact only if it is chosen before the adversary learns the public key.

Such weak non-adaptive security is clearly insufficient for realistic usages of a public key

revocation scheme, since the distributed nature of a broadcast encryption scheme makes

it much more prone to adaptive attacks than regular encryption.

Most importantly, the extended scheme of [80] is proven to be IND-ID-CCA-secure

when none of the users is corrupted, but stops being such the moment just a single

user is corrupted, even if this user is immediately revoked for the rest of the protocol.

Again, this is too weak—the scheme should remain IND-ID-CCA-secure even after many

users have been revoked. As we will see, achieving this strong type of security is very

non-trivial, and requires a much more involved scheme than the one proposed by [80].

8.2 Our Results

In this chapter, based on work first published as [36, 35], we introduce for the first

time a precise formalization of an appropriate notion of adaptive security for public-key

broadcast encryption schemes, for both the IND-ID-CPA and the IND-ID-CCA setting,

which naturally models property (3) mentioned above. We construct the first IND-

ID-CCA-secure public key broadcast encryption scheme under the DDH assumption,

with no random oracle. Our public key scheme is based on the regular Cramer-Shoup

encryption [31, 32], but our extension is non-trivial, as we have to resolve some difficulties

inherent to the Broadcast Encryption setting. Our IND-ID-CCA-secure scheme requires

a constant user storage and a public key size proportional to the revocation threshold

v. The length of each ciphertext, and the time to encrypt and decrypt a message are all

proportional to O(v).

As a preliminary step, we show how to modify the IND-ID-CPA-scheme of [80] to

achieve a much more appropriate notion of adaptive security, while maintaining essen-

tially the same efficiency in all the parameters (up to a factor of 2).

Of independent interest, we provide another scheme achieving the slightly weaker

192

(but still very strong) notion of generalized chosen-ciphertext (IND-ID-gCCA) secu-

rity [75, 2]. As argued in [2], the IND-ID-gCCA security is much more robust to syntactic

changes, while still sufficient for all known uses of IND-ID-CCA security. Interestingly,

all the examples separating IND-ID-CCA- and IND-ID-gCCA-secure encryption were

“artificial” in a sense that they made a more complicated scheme from an already ex-

isting IND-ID-CCA-secure encryption. Our work shows the first “natural” separation,

but for the setting of broadcast public key encryption.

A Note on Traitor Tracing. By slightly modifying standard tracing algorithms from

previous schemes (e.g. [67, 80]), tracing algorithms can be added to our schemes, thus

yielding fully functional Trace and Revoke schemes. However, in what follows, we will

focus only on Broadcast Encryption (i.e. revocation), which is also the main novelty

part of our result.

8.3 Constructing Secure Revocation Schemes

In this section, we present three broadcast encryption schemes, achieving IND-ID-CPA,

IND-ID-gCCA and IND-ID-CCA security respectively (cf. Chapter 4, Section 4.3).

Subsequent schemes build on the previous one, in a incremental way, so that it is possible

to obtain increasing security at the cost of a slight efficiency loss.

Our proofs follow the structural approach advocated in [32] defining a sequence of at-

tack games G0, G1, . . . , all operating over the same underlying probability space. Start-

ing from the actual adversarial game G0, we incrementally make slight modifications to

the behavior of the oracles, thus changing the way the adversary’s view is computed,

while maintaining the view’s distributions indistinguishable among the games. While

this structural approach takes more space to write down, it is much less error-prone and

much more understandable than a slicker “direct argument” (e.g., compare [31, 32]).

193

8.3.1 IND-ID-CPA Security

As a warm-up, before addressing the more challenging case of chosen ciphertext security,

we describe a simpler IND-ID-CPA-secure scheme. Our scheme naturally builds upon

previous works [67, 80], but achieves a much more appropriate notion of adaptive security,

which those previous schemes do not enjoy.

The Key Generation Algorithm. The first step in the key generation algorithm

Setup(1λ, 1v) is to define a group G of order q, for a random λ-bit-long prime q such

that p = 2q + 1 is also prime, in which the DDH assumption is believed to hold. This is

accomplished selecting a random prime q with the above two properties and a random

element g1 of order q modulo p: the group G is then set to be the subgroup of Z∗
p

generated by g1, i.e.

G .
= {gi

1 mod p : i ∈ Zq} ⊂ Z∗
p

A random w
R← Zq is then chosen and used to compute g2

.
= gw

1 . (In what follows,

all computations are mod q in the exponent, and mod p elsewhere.) Then, the key

generation algorithm selects two random v-degree polynomials1 Z1(·) and Z2(·) over

Zq, and computes the values h0
.
= g

Z1,0

1 · gZ2,0

2 , . . . , hv
.
= g

Z1,v

1 · gZ2,v

2 . Finally, the pair

(paramsBE,masterBE) is given in output, where

paramsBE
.
= 〈g1, g2, h0, . . . , hz〉

masterBE
.
= 〈Z1(·), Z2(·)〉

The Registration Algorithm. Each time a new user i > v (in all our schemes,

we reserve the first indices 0, . . . , v for “special purposes”), decides to subscribe to the

system, the Center provides the user with a decoder box containing the secret key

SKi
.
= 〈i, Z1,i, Z2,i〉.

The Encryption Algorithm. The encryption algorithm Encrypt is given in Figure 8.1.

It receives as input the public key paramsBE, a session key s and a set R = {j1, . . . , jv}

of revoked users and returns the enabling block B. If there are less than v revoked users,

1For conciseness, we will use the following notation: Z1,i
.= Z1(u) and Z2,i

.= Z2(i).

194

the remaining indices are set to 1, . . . , (v − |R|), which are never given to any “real”

user.

E1. r1
R← Zq

E2. u1
R← gr1

1

E3. u2
R← gr1

2

E4. H`
R← hr1

` , ` = 0, . . . , v

E5. Hj`
← EXP-LI(0, . . . , v;H0, . . . , Hv)(j`), ` = 1, . . . , v

E6. S ← s ·H0

E7. B ← 〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv)〉

Figure 8.1: Algorithm Encrypt(paramsBE,R, s) for the IND-ID-CPA scheme.

The Decryption Algorithm. If a legitimate user i wants to recover the session key

embedded in the enabling block B = 〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv)〉, he can proceed

as in Figure 8.2. If i is a revoked user (i.e. i ∈ {j1, . . . , jv}), the algorithm fails in step

D2, since the interpolation points j1, . . . , jv, i are not pairwise distinct.

D1. Hi ← u
Z1,i

1 · uZ2,i

2

D2. s← S/EXP-LI(j1, . . . , jv, i;Hj1 , . . . , Hjv , Hi)(0)

Figure 8.2: Algorithm Decrypt(paramsBE, i, SKi,B) for the IND-ID-CPA scheme.

Security. As shown in the Theorem 91, the IND-ID-CPA-security of the above scheme

relies on the decisional Diffie-Hellman (DDH) assumption.

Theorem 91. If the DDH problem is hard in G, then the above broadcast encryption

scheme is IND-ID-CPA-secure. In particular, for all probabilistic polynomial-time algo-

rithm A, we have that IND − ID − CPA.AdvBE,A(λ) ≤ ν(λ).

Proof. We define a sequence of “indistinguishable” games G0,G1, . . ., where G0 is the

original game, and the last game clearly gives no advantage to the adversary.

195

Game G0. This game is exactly as the IND-ID-CPA game defined in Chapter 4, Defi-

nition 29. Let T0 be the event that b = b∗ in game G0.

Game G1. Game G1 is identical to game G0, except that, in game G1, step E4 of the

encryption algorithm in Figure 8.1, is replaced with the following:

E4′. H` ← u
Z1,`

1 · uZ2,`

2 , ` = 0, . . . , v.

By the properties of the Lagrange Interpolation in the Exponent (cf. Chapter 2, Sec-

tion 2.1.1), it is clear that step E4′ computes the same values H`, ` = 0, . . . , v as step

E4. The point of this change is just to make explicit any functional dependency of the

above quantities on u1 and u2. Let T1 be the event that b = b∗ in game G1; clearly, it

holds that

Pr[T0] = Pr[T1]. (8.1)

Game G2. To turn game G1 into game G2 we make another change to the encryption

oracle used in game G1. In game G2 steps E1, E3 are replaced with the following:

E1′. r1
R← Zq, r2

R← Zq \ {r1}

E3′. u2 ← gr2
2

Let T2 be the event that b = b∗ in game G2. Notice that while in game G1 the values u1

and u2 are obtained using the same value r1, in game G2 they are independent subject to

r1 6= r2. Therefore, using a standard reduction argument, any non-negligible difference

in behavior between G1 and G2 can be used to construct a probabilistic polynomial-

time algorithm A1 that is able to distinguish Diffie-Hellman tuples from totally random

tuples with non negligible advantage. Hence,

∣∣Pr[T2]− Pr[T1]
∣∣ ≤ AdvDDHG,A(λ). (8.2)

Game G3. To define game G3, we again modify the encryption oracle as follows:

E6′. e
R← Zq, S ← ge

1

196

Let T3 be the event that b = b∗ in game G3. Because of this last change, the challenge

no longer contains b, nor does any other information in the adversary’s view; therefore,

it holds that

Pr[T3] =
1

2
. (8.3)

Moreover, we can prove (see Lemma 97), that the adversary has the same chances to

guess b in both game G2 and G3, i.e.

Pr[T3] = Pr[T2]. (8.4)

Combining Equations (8.1), (8.2), (8.4) and (8.3), adversary A’s advantage can be

bounded as:

IND-ID-CPA.AdvBE,A(λ) ≤ AdvDDHG,A(λ).

A comparison with the IND-ID-CPA schemes of [67, 80]. Our IND-ID-CPA

scheme extends those proposed in [67, 80] by using two generators. This improvement

turns out to be crucial: the adaptive security of our IND-ID-CPA scheme hinges heavily

upon this change. In particular, the presence of two generators plays a key role in the

reduction from the DDH problem mentioned in the description of game G2 in Theo-

rem 91. More specifically, when setting up the simulation of the IND-ID-CPA game, the

two distinct generators used in the public key of the scheme provide the perfect place

where to embed the first two elements g1 and g2 of the DDH “challenge” at hand. Doing

so, the simulator can choose the rest of the public key in a “honest” way, and hence it

will know all the corresponding secret keys (i.e. the polynomials Z1(·) and Z2(·)). This

in turn allows the simulator to answer any corruption query that the adversary may

want to carry out before querying the encryption oracle.

On the contrary, the use of a single generator in both IND-ID-CPA-secure schemes

of [67, 80] leads to a reduction in which the simulator does not know the entire secret key

(in particular, the constant term of the secret polynomial is unknown to the simulator;

cf. Theorem 1 of [80]). As a consequence, there seems to be no way to answer corruption

197

queries, so that the IND-ID-CPA game cannot be properly simulated: thus the reduction

argument does not go through.

8.3.2 IND-ID-gCCA Security

Once we have constructed an IND-ID-CPA-secure broadcast encryption scheme, it is

natural to try to devise an extension achieving IND-ID-CCA security. This was already

attempted by [80], but they do not elaborate (neither formally nor informally) on what

an “adaptive chosen ciphertext attack” of a broadcast encryption scheme exactly is. As

a consequence, in Theorem 3 of [80], the authors only show the security of their scheme

against an adversary that does not participate in the system, whereas (as we will argue

at the end of this section) their scheme is certainly not IND-ID-CCA-secure with respect

to even a single malicious revoked user.

To achieve IND-ID-CCA security, we will first try to apply the standard technique

of [31, 32] to the scheme presented in Chapter 3, Section 8.3.1. Unfortunately, this

natural approach does not completely solve the IND-ID-CCA problem; still, it leads us

to an interesting scheme that achieves the (sligthly weaker) notion of generalized chosen

ciphertext security.

The Key Generation Algorithm. As before, the first task of the key generation

algorithm is to select a random group G ⊂ Z∗
p of prime order q and two random gen-

erators g1, g2 ∈ G. Then, Setup(1λ, 1v) selects six random v-degree polynomials2 X1(·),

X2(·), Y1(·), Y2(·), Z1(·) and Z2(·) over Zq, and, for ` = 0, . . . , v, computes the values

c`
.
= g

X1,`

1 · gX2,`

2 , d`
.
= g

Y1,`

1 · gY2,`

2 , and h`
.
= g

Z1,`

1 · gZ2,`

2 Finally, Setup chooses at random a

hash function H from a family F of collision resistant hash functions,3 and outputs the

2For conciseness, we will use the following notation: X1,i
.= X1(i), X2,i

.= X2(i), Y1,i
.= Y1(i), Y2,i

.=

Y2(i), Z1,i
.= Z1(i) and Z2,i

.= Z2(i).
3Recall, it is hard to find x 6= y such that H(x) = H(y) for a random member H of F .

198

pair (paramsBE,masterBE), where

paramsBE
.
= 〈g1, g2, c0, . . . , cv, d0, . . . , dv, h0, . . . , hv,H〉,

masterBE
.
= 〈X1, X2, Y1, Y2, Z1, Z2〉.

The Registration Algorithm. Each time a new user i > v subscribes to the

system, the Center provides the user with a decoder box containing the secret key

SKi
.
= 〈i,X1,i, X2,i, Y1,i, Y2,i, Z1,i, Z2,i〉.

The Encryption Algorithm. Using the idea of [31, 32], in order to obtain non-

malleable ciphertexts, we “tag” each encrypted message so that it can be verified before

proceeding with the actual decryption. In the broadcast encryption scenario, where

each user has a different decryption key, the tag cannot be a single point — we need to

distribute an entire EXP-polynomial V(x). This is accomplished appending v + 1 tags

to the ciphertext: each user i first computes the tag vi using his private key and then

verifies the validity of the ciphertext by checking the interpolation of the v+ 1 values in

point i against its vi.

The encryption algorithm Encrypt receives as input the public key paramsBE, the

session key s to be embedded within the enabling block and a set R = {j1, . . . , jv} of

revoked users. It proceeds as described in Figure 8.3, and finally it outputs B.

The Decryption Algorithm. If a legitimate user i wants to recover the session key

embedded in the enabling block B = 〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv), t0, . . . , tv〉, he can

proceed as in Figure 8.4. If i is a revoked user, the algorithm fails in step D6, since the

interpolation points j1, . . . , jv, i are not pairwise distinct.

Security. As mentioned above, the presence of many decryption keys leads to the use

of an EXP-polynomial V(x) to tag the encryption of the message. This in turn makes

the ciphertext malleable: since each user i can verify the value of V(x) only in one point,

the adversary can modify the tj’s values and construct a different EXP-polynomial V ′(x)

intersecting V(x) at point i—thus fooling user i to accept as valid a corrupted ciphertext.

In the next section we show a non-trivial solution to this problem; here, we assess the

IND-ID-gCCA-security of the broadcast encryption scheme presented above. As already

199

E1. r1
R← Zq

E2. u1 ← gr1
1

E3. u2 ← gr1
2

E4. H` ← hr1
` , ` = 0, . . . , v

E5. Hj`
← EXP-LI(0, . . . , v;H0, . . . , Hv)(j`), ` = 1, . . . , v

E6. S ← s ·H0

E7. α← H(S, u1, u2, (j1, Hj1), . . . , (jv, Hjv))

E8. t` ← cr1
` · d

r1α
` , ` = 0, . . . , v

E9. B ← 〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv), t0, . . . , tv〉

Figure 8.3: Algorithm Encrypt(paramsBE,R, s) for the IND-ID-gCCA scheme.

D1. α← H(S, u1, u2, (j1, Hj1), . . . , (jv, Hjv))

D2. t̄i ← u
X1,i+Y1,iα
1 · uX2,i+Y2,iα

2

D3. ti ← EXP-LI(0, . . . , v; t0, . . . , tv)(i)

D4. if ti = t̄i

D5. then Hi ← u
Z1,i

1 · uZ2,i

2

D6. s← S/EXP-LI(j1, . . . , jv, i;Hj1 , . . . , Hjv , Hi)(0)

D7. return s

D8. else return ⊥

Figure 8.4: Algorithm Decrypt(paramsBE, i, SKi,B) for the IND-ID-gCCA scheme.

discussed in Chapter 4, to this aim it is necessary to introduce a family of equivalence

relations {<i(·, ·)}: intuitively, two ciphertexts B and B′ are equivalent for user i if they

have the same “data” components, and the tag “relevant to user i” is correctly verified,

i.e. ti = t′i (even though other “irrelevant” tags could be different). Clearly, this relation

is efficiently computable and i-decryption-respecting.

200

Definition 92 (Equivalence Relation). Consider the EXP-polynomials

V(x)
.
= EXP-LI(0, . . . , v; t0, . . . , tv)(x),

V ′(x) .
= EXP-LI(0, . . . , v; t′0, . . . , t

′
v)(x).

Given a user i, and the two enabling blocks

B .
= 〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv), t0, . . . , tv〉

B′ .= 〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv), t
′
0, . . . , t

′
v〉

we say that B is equivalent to B′ with respect to user i, and we write <i(B,B′), if the

two EXP-polynomials V(x) and V ′(x) intersect at point i, i.e. ti = V(i) = V ′(i) = t′i.

Theorem 93. If the DDH Problem is hard in G and H is chosen from a collision-

resistant hash functions family F , then the above broadcast encryption scheme is IND-

ID-gCCA-secure, under the family of equivalence relations {<i(·, ·)} defined in Defini-

tion 92.

Proof. To prove this theorem, we pursue the same approach as in the proof of Theo-

rem 91, where the starting scenario of the sequence of games is defined as in the definition

of the adaptive IND-ID-gCCA attack.

Game G0. This game is exactly as the IND-ID-gCCA game defined in Chapter 4. Let

T0 be the event that b = b∗ in game G0.

Game G1. Game G1 is identical to game G0, except that, in game G1, steps E4, E8

of the encryption algorithm in Figure 8.3, are replaced with the following:

E4′. H` ← u
Z1,`

1 · uZ2,`

2 , ` = 0, . . . , v

E8′. t` ← u
X1,`+Y1,`α
1 · uX2,`+Y2,`α

2 ` = 0, . . . , v

By the properties of the Lagrange Interpolation in the Exponent, it is clear that step

E4′ computes the same values Hj`
, ` = 0, . . . , v as steps E4; similarly, step E8′ computes

the same values t`, ` = 0, . . . , v as step E8. The point of these changes is just to make

explicit any functional dependency of the above quantities on u1 and u2.

201

Let T1 be the event that b = b∗ in game G1. Clearly, it holds that

Pr[T0] = Pr[T1]. (8.5)

Game G2. To turn game G1 into game G2 we make another change to the encryption

oracle used in game G1. In game G2 steps E1, E3 are replaced with the following:

E1′. r1
R← Zq, r2

R← Zq \ {r1}

E3′. u2 ← gr2
2

Let T2 be the event that b = b∗ in game G2. Notice that while in game G1 the values u1

and u2 are obtained using the same value r1, in game G2 they are independent subject to

r1 6= r2. Therefore, using a standard reduction argument, any non-negligible difference

in behavior between G1 and G2 can be used to construct a probabilistic polynomial-

time algorithm A1 that is able to distinguish Diffie-Hellman tuples from totally random

tuples with non negligible advantage. Hence,

∣∣Pr[T2]− Pr[T1]
∣∣ ≤ AdvDDHG,A(λ). (8.6)

Game G3. To define game G3 we slightly modify the decryption oracle: instead of

using the algorithm in Figure 8.4, in game G3 steps D2, D4, D5 are replaced with the

following:

D2′. t̄i ← u
(X1,i+Y1,iα)+(X2,i+Y2,iα)·w
1

D4′. if (u2 = uw
1 ∧ ti = t̄i)

D5′. then Hi ← u
Z1,i+Z1,i·w
1

The rationale behind these changes is that we want to strengthen the condition that the

enabling block has to meet in order to be considered valid and hence to be decrypted.

This will make it easier to show the security of the scheme; however, for these changes

to be useful, there should be no observable difference in the way invalid enabling blocks

are “caught” in games G2 and G3. To make it formal, we now introduce the following

two events: let T3 be the event that b = b∗ in game G3, and let R3 be the event that

202

A submits some decryption query that would have been decrypted in game G2 but is

rejected in game G3; in other words, R3 is the event that some decryption query that

would have passed the test in step D4 of the decryption oracle used in game G2, fails to

pass the test in step D4′ used in game G3. Clearly, G2 and G3 are identical until event

R3 occurs; hence, if R3 never occurs, the adversary has the same chances to win in both

the two games, i.e. using Lemma 95),

T3 ∧ ¬R3 ≡ T2 ∧ ¬R3 ⇒
∣∣Pr[T3]− Pr[T2]

∣∣ ≤ Pr[R3]. (8.7)

To bound the last probability, we consider two more games, G4 and G5.

Game G4. To define game G4, we again modify the encryption oracle as follows:

E6′. e
R← Zq, S ← ge

1

Let T4 be the event that b = b∗ in game G4. Because of this last change, the challenge

no longer contains the bit b, nor does any other information in the adversary’s view;

therefore, it holds that

Pr[T4] =
1

2
. (8.8)

Let R4 be the event that A submits some decryption query that would have been

decrypted in game G2 but is rejected in game G4; in other words, R4 is the event that

some decryption query that would have passed the test in step D4 of the decryption

oracle used in game G2, fails to pass the test in step D4′ used in game G4. In Lemma 98,

we show that those events happen with the same probability as the corresponding events

of game G3, i.e.

Pr[T4] = Pr[T3] (8.9)

Pr[R4] = Pr[R3]. (8.10)

Game G5. In this game, we again modify the decryption algorithm, adding the follow-

ing special rejection rule, whose goal is to prevent the adversary from submitting illegal

enabling blocks to the decryption oracle, once she has received her challenge.

203

After A receives her challenge

B∗ = 〈S∗, u∗1, u∗2, (j∗1 , Hj∗1
), . . . , (j∗v , Hj∗v), t

∗
0, . . . , t

∗
v〉

the decryption oracle rejects any query 〈i,B〉, with

B = 〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv), t0, . . . , tv〉

such that

〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv)〉 6= 〈S∗, u∗1, u∗2, (j∗1 , Hj∗1
), . . . , (j∗v , Hj∗v)〉

but α = α∗, and it does so before executing the test in step D4′.

Notice that in the IND-ID-gCCA setting the adversary is not allowed to query the

decryption oracle Decrypt(paramsBE, i, SKi,B) on enabling blocks <i-equivalent to the

challenge B∗. Therefore, when the special rejection rule is applied, we already know

that it holds ¬<i(B,B∗).

Let C5 be the event that the adversary submits a decryption query that is rejected

using the above special rejection rule; let R5 be the event thatA submits some decryption

query that would have passed the test in step D4 of the decryption oracle used in game

G2, but fails to pass the test in step D4′ used in game G5. Notice that this implies

that such a query passed the <i-equivalence test and the special rejection rule, because

otherwise step D4′ wouldn’t have been executed. Clearly, G4 and G5 are identical until

event C5 occurs, i.e.

R5 ∧ ¬C5 ≡ R4 ∧ ¬C5 ⇒
∣∣Pr[R5]− Pr[R4]

∣∣ ≤ Pr[C5] (8.11)

where the implication follows from Lemma 95.

Our final task is to show that events C5 and R5 occur with negligible probability:

while the argument to bound event C5 is based on the collision resistance assumption

for the family F (using a standard reduction argument, we can construct a probabilis-

tic polynomial-time algorithm A2 that breaks the collision resistance assumption with

204

non negligible advantage), the argument to bound event R5 hinges upon the fact that

the adversary is not allowed to submit queries that are “<i-related” to her challenge,

and upon information-theoretic considerations (as proven in Lemma 99). From these

considerations, we obtain that

Pr[C5] ≤ εCR (8.12)

Pr[R5] ≤
QA(λ)

q
(8.13)

where εCR is a negligible quantity and QA(λ) is an upper bound on the number of

decryption queries made by the adversary.

Combining Equations (8.5), (8.6), (8.7), (8.8), (8.9), (8.10), (8.11), (8.12) and (8.13),

adversary A’s advantage can be bounded as:

IND-ID-gCCA.AdvBE,A(λ) ≤ AdvDDHG,A(λ) + εCR +QA(λ)/q.

A comparison with the IND-ID-CCA attempt of [80]. As already noticed when

describing the encryption algorithm, in the broadcast encryption setting it is not safe

to use a single point as validating tag; it is for that reason that in our IND-ID-gCCA

solution we use a validating EXP-polynomial V(x). On the contrary, in [80] the authors

didn’t recognize the inherent insecurity of using a single tag and proposed a scheme

that not only uses a single generator, but also tags ciphertexts with just one point.

Consequently, the information distributed to the users of the system to enable them to

check the validity of a given ciphertext (namely, x1, x2, y1, y2 in the notation of [80]) is

the same for all participants. To verify the validity of a ciphertext B, a user recomputes

the tag t̄ = F x1+y1α
a · F x2+y2α

b from quantities present in the ciphertext itself and from

the secret information x1, x2, y1, y2 (common to all users). The value t̄ is then compared

against the tag t in B.

This means that revoking a user does not affect his/her ability to check the validity of

a ciphertext; furthermore, validating a ciphertext is effectively equivalent to computing

205

the corresponding tag. This implies that any revoked user is able to construct new, legal

ciphertexts from any encrypted message; in other words, ciphertexts are malleable and

hence the scheme cannot be IND-ID-CCA secure. More precisely, even an adversary that

non-adaptively corrupts just a single user, can break the scheme with a single decryption

query: upon receiving the challenge ciphertext from the encryption oracle, the adversary

changes it in some easily-reversible way, computes the proper tag (exploiting the knowl-

edge of x1, x2, y1, y2 that she got from the revoked user) and asks the decryption oracle

to decrypt such modified ciphertext. Once the adversary gets the decrypted message

back, she can easily tell which message was hidden within her challenge, breaking the

scheme.

8.3.3 IND-ID-CCA Security

In Section 8.3.2, we saw how a direct application of the standard technique of [31, 32]

does not provide a complete solution to the IND-ID-CCA problem, but only suffices

for IND-ID-gCCA security. As proven in Lemma 99, the restriction imposed by the

IND-ID-gCCA attack (namely, forbidding the adversary to submit decryption queries

〈i,B〉 such that <i(B,B∗) holds) is essential for the security of the previous broadcast

encryption scheme. Indeed, given a challenge B∗ with tag sequence t0, . . . , tv, it is trivial

to come up with a different sequence t′0, . . . , t
′
v such that ti = t′i, resulting in a “different”

enabling block B′ 6= B∗: however, Decrypt(i,B∗) = Decrypt(i,B′), allowing the adversary

to “break” the IND-ID-CCA security.

Although we feel that IND-ID-gCCA security is enough for most applications of

broadcast encryption schemes, it is possible to extend the broadcast encryption scheme

presented in Section 8.3.2 to obtain IND-ID-CCA security (with only a slight efficiency

loss). The modified scheme, presented in this section, maintains the same Setup and

Register algorithms described before; the essential modifications involve the operations

used to construct the enabling block. In particular, to achieve IND-ID-CCA security, it is

necessary to come up with some trick to make the tag sequence t0, . . . , tv non-malleable.

206

To this aim, we will use any secure (deterministic) message authentication code (MAC)

[76] to guarantee the integrity of the entire sequence. In fact, we only need any one-time

MAC, satisfying the following simple property: given a (unique) correct value MACk(m)

for some message m (under key k), it is infeasible to come up with a correct (unique)

value of MACk(m
′), for any m′ 6= m.

The Encryption Algorithm. The encryption algorithm Encrypt receives as input the

public key paramsBE, the session key s to be embedded within the enabling block and a

set R = {j1, . . . , jv} of revoked users. To construct the enabling block B, the encryption

algorithm (defined in Figure 8.3) operates similarly to the IND-ID-gCCA encryption

algorithm: the main difference is that now a MAC key k, randomly chosen from the

MAC key space K, is used to MAC the tag sequence t0, . . . , tv, and is encapsulated

within B along with the session key s.

E1. r1
R← Zq

E2. u1 ← gr1
1

E3. u2 ← gr1
2

E4. H` ← hr1
` , ` = 0, . . . , v

E5. Hj`
← EXP-LI(0, . . . , v;H0, . . . , Hv)(j`), ` = 1, . . . , v

E6. k
R← K

E7. S ← (s ‖ k) ·H0

E8. α← H(S, u1, u2, (j1, Hj1), . . . , (jv, Hjv))

E9. t` ← cr1
` · d

r1α
` , ` = 0, . . . , v

E10. τ ← MACk(t0, . . . , tv)

E11. B ← 〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv), t0, . . . , tv, τ〉

Figure 8.5: Algorithm Encrypt(paramsBE,R, s) for the IND-ID-CCA scheme.

The Decryption Algorithm. If a legitimate user i wants to recover the session key

embedded in the enabling block B = 〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv)〉, he can proceed as

207

in Figure 8.6. If i is a revoked user, the algorithm fails in step D6, since the interpolation

points j1, . . . , jv, i are not pairwise distinct.

D1. α← H(S, u1, u2, (j1, Hj1), . . . , (jv, Hjv))

D2. t̄i ← u
X1,i+Y1,iα
1 · uX2,i+Y2,iα

2

D3. ti ← EXP-LI(0, . . . , v; t0, . . . , tv)(i)

D4. if ti = t̄i

D5. then Hi ← u
Z1,i

1 · uZ2,i

2

D6. s ‖ k ← S/EXP-LI(j1, . . . , jv, i;Hj1 , . . . , Hjv , Hi)(0)

D7. extract s and k from s ‖ k

D8. if τ 6= MACk(t0, . . . , tv)

D9. then return ⊥

D10. else return s

D11. else return ⊥

Figure 8.6: Algorithm Decrypt(paramsBE, i, SKi,B) for the IND-ID-CCA scheme.

Security. The security analysis for this scheme is very subtle, because there is the risk

of circularity in the use of the MAC key k. Namely, k is part of the ciphertext (since it

is encapsulated, along with the session key s, within S); this means that α, the hash of

the ciphertext, depends on k (at least information-theoretically), and thus the sequence

of tags depends on k. In other words, we are MAC-ing something that depends on the

MAC key k, which could be a problem. Luckily, the information-theoretic nature of the

structural approach to the security analysis that we are pursuing (following [32]) allows

us to prove that actually k is completely hidden within S, so that MAC-ing the resulting

tag with k is still secure.

The solution to the IND-ID-CCA problem for broadcast encryption schemes and the

relative security analysis can be viewed as the main technical contribution of this paper;

at the same time, the capability to resolve the apparent circularity in the use of the

208

MAC demonstrates the importance of providing a formal model and precise definitions,

without which it would have been much harder to devise a correct proof of security for

the above scheme.

Theorem 94. If the DDH Problem is hard in G, H is chosen from a collision-resistant

hash functions family F and MAC is a one-time message authentication code, then the

above broadcast encryption scheme is IND-ID-CCA-secure.

Proof. The proof proceeds defining a sequence of games similar to that presented in

Theorem 93. The definition of games G0, . . . , G5 closely follow the exposition given

in Theorem 93: however, the statements of all lemmas (and their proofs) need to be

changed to accommodate for the use of the MAC. In particular, we can easily state and

prove a lemma analogous to Lemma 98, where the only difference is the presence of

information about the MAC key k in the challenge (see Lemma 102). More importantly,

to bound the probability Pr[R5] we introduce a new game G6 to deal with the use of

the MAC in the enabling block, while a lemma similar to Lemma 99 is used to bound

the probability of event R6 defined in game G6.

Game G6. To define this game, we modify the decryption algorithm, adding the follow-

ing second special rejection rule, whose goal is to detect illegal enabling blocks submitted

by the adversary to the decryption oracle, once she has received her challenge. Notice

that, while the special rejection rule, defined in game G5, is used to reject adversary’s

queries aiming at exploiting any weakness in the collision-resistant hash family F , the

second special rejection rule is used to reject ciphertexts aiming at exploiting any weak-

ness in the MAC scheme.

After A receives her challenge

B∗ = 〈S∗, u∗1, u∗2, (j∗1 , Hj∗1
), . . . , (j∗v , Hj∗v), t

∗
0, . . . , t

∗
v, τ

∗〉

the decryption oracle rejects any query 〈i,B〉, with

B = 〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv), t0, . . . , tv, τ〉

209

such that

〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv)〉 = 〈S∗, u∗1, u∗2, (j∗1 , Hj∗1
), . . . , (j∗v , Hj∗v)〉

and (t0, . . . , tv) 6= (t∗0, . . . , t
∗
v), but τ = MACk∗(t0, . . . , tv), and it does so before

executing the test in step D4′, and before applying the special rejection rule.

Let M6 be the event that the adversary submits a decryption query that is rejected in

game G6 using the second special rejection rule; let C6 be the event that the adversary

submits a decryption query that is rejected in game G6 using the special rejection rule;

let R6 be the event that A submits some decryption query that would have passed

both the test in step D4 and in step D8 of the decryption oracle used in game G2,

but fails to pass the test in step D4′ used in game G6. Notice that this implies that

such a query passed both the second special rejection rule and the special rejection rule,

because otherwise step D4′ wouldn’t have been executed at all.

Event M6 is closely related to the security of the one time MAC used in the scheme;

in particular, any difference in behavior between game G5 and game G6 can be used

to construct a probabilistic polynomial-time algorithm A3 that is able to forge a legal

authentication code under a one-message attack with non-negligible probability, thus

breaking the MAC scheme. Hence, for some negligible εMAC,

Pr[M6] ≤ εMAC. (8.14)

Moreover, since G5 and G6 are identical until event M6 occurs, if it doesn’t occur at all,

they will proceed identically; i.e., by Lemma 95:

C6 ∧ ¬M6 ≡ C5 ∧ ¬M6 ⇒
∣∣Pr[C6]− Pr[C5]

∣∣ ≤ Pr[M6], (8.15)

R6 ∧ ¬M6 ≡ R5 ∧ ¬M6 ⇒
∣∣Pr[R6]− Pr[R5]

∣∣ ≤ Pr[M6]. (8.16)

Our final task is to bound the probability that events C6 and R6 occur: the argument

to bound Pr[C6] is based on the collision resistance assumption for the family F , while the

argument to bound Pr[R6] hinges upon information-theoretic considerations (as proven

210

in Lemma 103). From those facts, we obtain that

Pr[C6] ≤ εCR (8.17)

Pr[R6] ≤
QA(λ)

q
(8.18)

where εCR is a negligible quantity and QA(λ) is an upper bound on the number of

decryption queries made by the adversary.

Combining Equations (8.5), (8.6), (8.7), (8.8), (8.9), (8.10), (8.11), (8.12), (8.13),

(8.14), (8.15), (8.16), (8.17) and (8.18), adversary A’s advantage can be bounded as:

IND − ID − CCA.AdvBE,A(λ) ≤ AdvDDHG,A(λ) + εCR + 2εMAC +QA(λ)/q.

8.4 Proofs of the Technical Lemmas

The proofs of the following lemmas is based on the same techniques used in [32]; the

main tools are the following technical lemmas:

Lemma 95. If U1, U2 and F are events such that (U1∧¬F) and (U2∧¬F) are equivalent

events, then

|Pr[U1]− Pr[U2]| ≤ Pr[F].

Lemma 96. Let k,n be integers with 1 ≤ k ≤ n, and let K be a finite field. Consider a

probability space with random variables ~α ∈ Kn×1, ~β = (β1, . . . , βk)
T ∈ Kk×1, ~γ ∈ Kk×1,

and M ∈ Kk×n, such that ~α is uniformly distributed over Kn, ~β = M~α + ~γ, and for

1 ≤ i ≤ k, the first i-th rows of M and ~γ are determined by β1, . . . , βi−1. Then,

conditioning on any fixed values of β1, . . . , βk−1 such that the resulting matrix M has

rank k, the value of βk is uniformly distributed over K in the resulting conditional

probability space.

In what follows, we will denote with Coins the coin tosses of A and we define

X`
.
= X1,` + wX2,`, Y`

.
= Y1,` + wY2,`, Z`

.
= Z1,` + wZ2,`, ` = 0, . . . , v

211

8.4.1 Proof of the Lemma for IND-ID-CPA Security

Lemma 97. Pr[T4] = Pr[T3]

Proof. Consider the quantity ~V := (Coins, w, Z1, . . ., Zv, b, r
∗
1, r

∗
2) and the value Z0.

According to the specification of games G2 and G3, ~V and Z0 assume the same value

in both games. Let us now consider the value e∗ = logg1
S∗: unlike the previous two

quantities, e∗ assumes different values in the above two games. In particular, while

in game G2 e
∗ contains information about the session key sb, in game G3 e

∗ is just a

random value: let us denote with [e∗]2 and [e∗]3 the values of e∗ in game G2 and game

G3, respectively.

By definition of game G2, event T2 solely depends on (~V ,Z0, [e
∗]2); similarly, by

definition of game G3, event T3 solely depends on (~V ,Z0, [e
∗]3). Moreover, event T2

depends on (~V ,Z0, [e
∗]2) according to the same functional dependence of event T3 upon

(~V ,Z0, [e
∗]3). Therefore, to prove the lemma, it suffices to show that (~V ,Z0, [e

∗]2) and

(~V ,Z0, [e
∗]3) have the same distribution.

According to the specification of game G3, [e∗]3 is chosen uniformly over Zq, in-

dependently from ~V and Z0. Hence, to reach the thesis, it suffices to prove that the

distribution of [e∗]2, conditioned on ~V and Z0, is also uniform in Zq.

In game G2, the quantities (~V ,Z0, [e
∗]2) are related according to the following matrix

equation:  Z0

[e∗]2

 =

 1 w

r∗1 wr∗2


︸ ︷︷ ︸

M

·

Z1,0

Z2,0

 +

 0

logg1
sb



where det(M) = w(r∗2 − r∗1) 6= 0, provided r∗2 6= r∗1.

As soon as we fix the value of ~V , the matrix M is completely fixed, but the values

Z1,0 and Z2,0 are still uniformly and independently distributed over Zq. Now, fixing a

value for Z0 also fixes a value for sb; hence, by Lemma 96, we can conclude that the

conditioned distribution of [e∗]2, w.r.t. ~V and Z0, is also uniform over Zq.

212

8.4.2 Proofs of Lemmas for IND-ID-gCCA Security

Lemma 98. Pr[T4] = Pr[T3] and Pr[R4] = Pr[R3]

Proof. Consider the quantity ~V := (Coins,H, w, X1,0, X2,0, . . ., X1,v, X2,v, Y1,0, Y2,0,

. . ., Y1,v, Y2,v, Z1, . . ., Zv, b, r
∗
1, r

∗
2) and the value Z0. Introducing similar notations

as in Lemma 97 and reasoning as above, we can notice that event T3 solely depends

on (~V ,Z0, [e
∗]3) and that event T4 solely depends on (~V ,Z0, [e

∗]4). Moreover, event

T3 depends on (~V ,Z0, [e
∗]3) according to the same functional dependence of event T4

upon (~V ,Z0, [e
∗]4). The same considerations hold for events R3 and R4. Therefore, to

prove the lemma, it suffices to show that (~V ,Z0, [e
∗]3) and (~V ,Z0, [e

∗]4) have the same

distribution.

According to the specification of game G4, [e∗]4 is chosen uniformly over Zq, in-

dependently from ~V and Z0. Hence, to reach the thesis, it suffices to prove that the

distribution of [e∗]3, conditioned on ~V and Z0, is also uniform in Zq.

In game G3, the quantities (~V ,Z0, [e
∗]3) are related according to the following matrix

equation:  Z0

[e∗]3

 =

 1 w

r∗1 wr∗2


︸ ︷︷ ︸

M

·

Z1,0

Z2,0

 +

 0

logg1
sb



where det(M) = w(r∗2 − r∗1) 6= 0, provided r∗2 6= r∗1.

As soon as we fix the value of ~V , the matrix M is completely fixed, but the values

Z1,0 and Z2,0 are still uniformly and independently distributed over Zq. Now, fixing a

value for Z0 also fixes a value for sb; hence, by Lemma 96, we can conclude that the

conditioned distribution of [e∗]3, w.r.t. ~V and Z0, is also uniform over Zq.

Lemma 99. If QA(λ) is an upper bound on the number of decryption queries that A

poses to the decryption algorithm, then Pr[R5] ≤ QA(λ)
q

.

Proof. In what follows, for 1 ≤ j ≤ QA(λ), we will denote with R
(j)
5 the event that the

j-th ciphertext 〈i,B〉, submitted by A to the decryption oracle in game G5, fails to pass

213

the test in step D4′, but would have passed the test in step D4 in game G2. Besides, for

1 ≤ j ≤ QA(λ), we will denote with B
(j)
5 the event that the j-th ciphertext is submitted

to the decryption oracle before A received her challenge, and with B̂
(j)
5 the event that

the j-th ciphertext is submitted to the decryption oracle after A received her challenge.

If we show that, for 1 ≤ j ≤ QA(λ), Pr[R
(j)
5 | B

(j)
5] ≤ 1

q
and that Pr[R

(j)
5 | B̂

(j)
5] ≤ 1

q
,

then the thesis will follow.

Claim 100. Pr[R
(j)
5 | B

(j)
5] ≤ 1

q
.

To prove this claim, fix 1 ≤ j ≤ QA(λ) and consider the quantities:

~V := (Coins,H, w,Z0, . . . ,Zv), ~V ′ := (X0, . . . ,Xv,Y0, . . . ,Yv).

These two quantities together contain all the randomness needed to determine the behav-

ior of A and of all the oracles she interacts with, up to the moment that A performs the

encryption query. Once we fix ~V and ~V ′, we totally define how the adversary proceeds

in her attack, before she receives her challenge back.

Moreover, fixing ~V and ~V ′, the event B
(j)
5 is completely defined: given ~V and ~V ′, we

say they are relevant, if the event B
(j)
5 occurs. Hence, to reach the claim, it suffice to

prove that the probability of event R
(j)
5 , conditioned on any relevant values of ~V and ~V ′,

is less then 1/q.

Recall that the condition tested in step D4′ in game G5 is (u2 = uw
1 ∧ vi = v̄i): since

we are considering the case that the j-th query fails to pass the test in step D4′, but

would have passed the test in step D4 of game G2, it must be the case that ti = t̄i but

u2 6= uw
1 . Therefore, we only consider relevant values of ~V and ~V ′ such that u2 6= uw

1 .

Taking the logs (base g1), the condition u2 6= uw
1 is equivalent to r1 6= r2 and the

condition ti = t̄i is equivalent to βi = β̄i, where

β̄i
.
= logg1

t̄i = r1X1,i + wr2X2,i + αr1Y1,i + αwr2Y2,i

βi
.
= logg1

ti = LI(0, . . . , v; logg1
t0, . . . , logg1

tv)(i).

Notice that β̄i can be expressed in terms of the vector

(X1,0, X2,0, . . . , X1,v, X2,v, Y1,0, Y2,0, . . . , Y1,v, Y2,v)
T

214

Indeed,

X1,i = LI(0, . . . , v;X1,0, . . . , X1,v)(i) =
v∑

`=0

(X1,` · λ`(i))

and similar relations hold for X2,i, Y1,i and Y2,i. Therefore, by means of some matrix

manipulation, we can write:

β̄i = ~δ · (X1,0, X2,0, . . . , X1,v, X2,v, Y1,0, Y2,0, . . . , Y1,v, Y2,v)
T

where ~δ ≡ (δ0, δ1, . . . , δ2v, δ2v+1, δ2v+2, δ2v+3, . . . , δ4v+2, δ4v+3) is defined as:

~δ
.
= (r1λ0(i), wr2λ0(i), . . . , r1λv(i), wr2λv(i), αr1λ0(i), αwr2λ0(i), . . . , αr1λv(i), αwr2λv(i)).

In game G5, the random values defined above are related according to the following

matrix equation:



X0

...

Xv

Y0

...

Yv

β̄i


=



1 w . . . 0 0 0 0 . . . 0 0

...
...

...
...

0 0 . . . 1 w 0 0 . . . 0 0

0 0 . . . 0 0 1 w . . . 0 0

...
...

...
...

0 0 . . . 0 0 0 0 . . . 1 w

δ0 δ1 . . . δ2v δ2v+1 δ2v+2 δ2v+3 . . . δ4v+2 δ4v+3


︸ ︷︷ ︸

M

·



X1,0

X2,0

...

X1,v

X2,v

Y1,0

Y2,0

...

Y1,v

Y2,v


We want to show that the rank of the matrix M is 2v+3. Clearly, the first 2v+2 rows are

linearly independent; to see why the last row (i.e. the vector ~δ) is independent from the

others, notice that the only way to obtain δ0 is by multiplying the first row by r1λ0(i):

doing so, the second component of δ results to be wr1λ0(i). But since δ1 = wr2λ0(i),

this implies that r1 = r2, contradicting the assumption that the query fails to pass the

test in step D4′ in game G5.

As soon as we fix the value of ~V , the first 2v+2 rows of matrix M are fixed, but the

values X1,0, X2,0, . . . , Y1,v, Y2,v are still uniformly and independently distributed over Zq;

215

as for ~δ, its value is still undetermined, since r1, r2 and i are not yet fixed. Now, fixing a

value for ~V ′ such that ~V and ~V ′ are relevant and that r1 6= r2, determines the value of the

j-th query (and hence the value of ~δ), along with the values X0, . . . ,Xv,Y0, . . . ,Yv and

β̄i. Therefore, by Lemma 96, we can conclude that the distribution of β̄i, conditioned on

relevant values of ~V and ~V ′, is uniform over Zq; since conditioning on any fixed, relevant

value of ~V and ~V ′, βi is just a single point in Zq, it follows that Pr[βi = β̄i] = 1
q
.

Claim 101. Pr[R
(j)
5 | B̂

(j)
5] ≤ 1

q
.

To prove this claim, fix 1 ≤ j ≤ QA(λ) and consider the quantities:

~V := (Coins,H, w,Z0, . . . ,Zv, r
∗
1, r

∗
2, e

∗), ~V ′ := (X0, . . . ,Xv,Y0, . . . ,Yv, β
∗
i)

where β∗i
.
= logg1

t∗i = LI(0, . . . , v; logg1
t∗0, . . . , logg1

t∗v)(i) and i > v. Notice that by the

specification of the encryption oracle used in game G5, for ` = 0, . . . , v, it holds that:

logg1
t∗` = r∗1X1,` + wr∗2X2,` + α∗r∗1Y1,` + α∗wr∗2Y2,`.

Therefore, we can write:

β∗i =
v∑

`=0

λ`(i)(r
∗
1X1,` + wr∗2X2,` + α∗r∗1Y1,` + α∗wr∗2Y2,`).

Together, ~V and ~V ′ contain all the parameters needed to determine the behavior of A

and of all the oracles she interacts with: once we fix ~V and ~V ′, we totally define how

the adversary proceeds in the entire attack.

Moreover, fixing ~V and ~V ′, the event B̂
(j)
5 is completely defined: given ~V and ~V ′, we

say they are relevant if the event B̂
(j)
5 occurs. Hence, to show the claim, it suffices to

prove that the probability of event R
(j)
5 , conditioned on any relevant values of ~V and ~V ′,

is less then 1/q.

As shown above, we can consider just relevant values of ~V and ~V ′ for which it

holds that u2 6= uw
1 . Reasoning as in the previous case, and maintaining the notation

introduced there, the random values defined above are related according to the following

matrix equation:

216



X0

...

Xv

Y0

...

Yv

β∗i

β̄i



=



1 w . . . 0 0 0 0 . . . 0 0

...
...

...
...

0 0 . . . 1 w 0 0 . . . 0 0

0 0 . . . 0 0 1 w . . . 0 0

...
...

...
...

0 0 . . . 0 0 0 0 . . . 1 w

δ∗0 δ∗1 . . . δ∗2v δ∗2v+1 δ∗2v+2 δ∗2v+3 . . . δ∗4v+2 δ∗4v+3

δ0 δ1 . . . δ2v δ2v+1 δ2v+2 δ2v+3 . . . δ4v+2 δ4v+3


︸ ︷︷ ︸

M

·



X1,0

X2,0

...

X1,v

X2,v

Y1,0

Y2,0

...

Y1,v

Y2,v


where ~δ∗ ≡ (δ∗0, δ

∗
1, . . ., δ

∗
2v, δ

∗
2v+1, δ

∗
2v+2, δ

∗
2v+3, . . ., δ

∗
4v+2, δ

∗
4v+3) is defined as ~δ∗

.
= (r∗1λ0(i),

wr∗2λ0(i), . . ., r
∗
1λv(i), wr

∗
2λv(i), α

∗r∗1λ0(i), α
∗wr∗2λ0(i), . . ., α

∗r∗1λv(i), α
∗wr∗2λv(i)).

We want to show that the rank of the matrix M is 2v + 4. Clearly, the first 2v + 2

rows of M are all linear independent. Moreover, as shown in the previous claim, both

β∗i and β̄i are linearly independent from the first 2v + 2 rows of M.

First, notice that the assumption that the j-th query 〈i,B〉 is rejected in step D4′

of game G5, implies not only ¬<i(B,B∗), but also that B passed the special rejec-

tion rule; furthermore, we may assume that α 6= α∗, since otherwise the only way B

may have passed the special rejection rule is that 〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv)〉 =

〈S∗, u∗1, u∗2, (j∗1 , Hj∗1
), . . . , (j∗v , Hj∗v)〉. But this on one hand entails ~δ∗ = ~δ, i.e. β∗i = β̄i,

whereas on the other hand implies that βi 6= β∗i (because otherwise B and B∗ would be

<i-related). Thus, if α = α∗ then βi 6= β̄i, contradicting the assumption that the j-th

query 〈i,B〉 would have passed the test in step D4 in game G2.

In order to show that ~δ is linearly independent from the first 2v + 3 rows, observe

that the only way to obtain δ0 is by multiplying the first row by (r1− r∗1)λ0(i) and ~δ∗ by

1; similarly, to obtain δ2v+2 as a linear combination of the other elements in its column,

we need to multiply the (v + 2)-th row by α(r1 − r∗1)λ0(i) and ~δ∗ by α
α∗

: since α 6= α∗,

217

α
α∗
6= 1 and so, ~δ is linearly independent from all the other rows.

As soon as we fix the value of ~V , the first 2v+2 rows of matrix M are fixed, but the

values X1,0, X2,0, . . . , Y1,v, Y2,v are still uniformly and independently distributed over Zq;

as for δ∗ and δ, their values are still undetermined, since r∗1, r
∗
2, r1, r2 and i, are not yet

fixed. Now, fixing a value for ~V ′ such that ~V and ~V ′ are relevant and that r1 6= r2, also

fixes the last 2 rows of matrix M along with the values X0, . . . ,Xv,Y0, . . . ,Yv and β∗i ;

hence, by Lemma 96, we can conclude that the distribution of β̄i, conditioned on relevant

values of ~V and ~V ′, is also uniform over Zq; since conditioning on any fixed, relevant

values of ~V and ~V ′, βi is just a single point in Zq, it follows that Pr[βi = β̄i] = 1
q
.

8.4.3 Proofs of Lemmas for IND-ID-CCA Security

Lemma 102. Pr[T4] = Pr[T3] and Pr[R4] = Pr[R3] .

Proof. Consider the quantity ~V := (Coins,H, w, X1,0, X2,0, . . ., X1,v, X2,v, Y1,0, Y2,0, . . .,

Y1,v, Y2,v, Z1, . . ., Zv, b, r
∗
1, r

∗
2, k) and the value Z0. We can repeat the same considerations

stated in Lemma 98: the only difference is that the quantities (~V ,Z0, [e
∗]3) characterizing

game G3 are related according to the following slightly different matrix equation: Z0

[e∗]3

 =

 1 w

r∗1 wr∗2


︸ ︷︷ ︸

M

·

Z1,0

Z2,0

 +

 0

logg1
(sb‖k)



For the same reasons seen in Lemma 98, as soon as we fix a value for ~V , the matrix

M is completely fixed, as well as the value of k, but the values Z1,0 and Z2,0 are still

uniformly and independently distributed over Zq. Now, fixing a value for Z0 also fixes a

value for sb and hence for logg1
(sb ‖ k); thus, by Lemma 96, the conditioned distribution

of [e∗]3, w.r.t. ~V and Z0, is also uniform over Zq.

Lemma 103. If QA(λ) is an upper bound on the number of decryption queries that A

poses to the decryption algorithm, then Pr[R6] ≤ QA(λ)
q

.

218

Proof. In what follows, for 1 ≤ j ≤ QA(λ), we will denote with R
(j)
6 the event that the

j-th ciphertext 〈i,B〉, submitted by A to the decryption oracle in game G6, fails to pass

the test in step D4′, but would have passed both tests in step D4 and in step D8 in

game G2. Besides, for 1 ≤ j ≤ QA(λ), we will denote with B
(j)
6 the event that the j-th

ciphertext is submitted to the decryption oracle before A received her challenge, and

with B̂
(j)
6 the event that the j-th ciphertext is submitted to the decryption oracle after

A received her challenge. If we show that, for 1 ≤ j ≤ QA(λ), Pr[R
(j)
6 | B

(j)
6] ≤ 1

q
and

that Pr[R
(j)
6 | B̂

(j)
6] ≤ 1

q
, then the thesis will follow.

Claim 104. Pr[R
(j)
6 | B

(j)
6] ≤ 1

q
.

The proof of this claim closely follows the one presented in Lemma 99, so we omit

the details.

Claim 105. Pr[R
(j)
6 | B̂

(j)
6] ≤ 1

q
.

To prove this claim we proceed like in Lemma 99, fixing 1 ≤ j ≤ QA(λ) and consid-

ering the quantities:

~V := (Coins,H, w,Z0, . . . ,Zv, r
∗
1, r

∗
2, e

∗), ~V ′ := (X0, . . . ,Xv,Y0, . . . ,Yv, β
∗
i , k)

where we are maintaining all the notations introduced above.

Again, we can repeat exactly the same construction utilized in Lemma 99: the only

difference from the argument presented there is in the considerations aiming at showing

that we can assume that α 6= α∗; thus, we only need to justify this assumption in the

new scenario, and the claim will follow.

Under the assumptions that the j-th query 〈i,B〉 is rejected in step D4′ of game G6

but would have been decrypted as valid in game G2, we can deduce that B passed both

the second special rejection rule and the special rejection rule. We may also assume

that α 6= α∗, since otherwise the only way that B may have passed the special rejection

rule is that 〈S, u1, u2, (j1, Hj1), . . . , (jv, Hjv)〉 = 〈S∗, u∗1, u∗2, (j∗1 , Hj∗1
), . . . , (j∗v , Hj∗v)〉; but

since B must differ from the challenge B∗, then it must be the case that (t0, . . . , tv) 6=

(t∗0, . . . , t
∗
v), and so, from the fact that B passed the second special rejection rule we get

219

that τ 6= MACk∗(t0, . . . , tv), thus contradicting the assumption that the j-th query would

have been decrypted in game G2 (since the test in step D8, for the validity of the tag

τ , would have failed).

220

Bibliography

[1] S. Abdalla, M. Miner and C. Namprempre. Forward-Secure Threshold Signature

Schemes. In Topics in Cryptography—CT-RSA ’01, pages 441–456, 2001. LNCS

2020.

[2] J. An, Y. Dodis, and T. Rabin. On the Security of Joint Signature and Encryp-

tion. In Advances in Cryptology—EuroCrypt ’02, pages 83–107, Heidelberg, 2002.

Springer. LNCS 2332.

[3] R. Anderson. Two Remarks on Public Key Cryptog-

raphy. Invited Lecture, ACM-CCS ’97. Available at

http://www.cl.cam.ac.uk/ftp/users/rja14/forwardsecure.pdf, 1997.

[4] A. Barth, D. Boneh, and B. Waters. Private Encrypted Content Distribution using

Private Broadcast Encryptions. In Financial Cryptography—FC 2006, pages ??–??,

Heidelberg, 2006. Springer. LNCS ??

[5] BBCNews. Sony slated over anti-piracy CD.

http://news.bbc.co.uk/2/hi/technology/4400148.stm.

[6] M. Bellare and S. Miner. A Forward-Secure Digital Signature Scheme. In Advances

in Cryptology—Crypto ’99, pages 431–448, Heidelberg, 1999. Springer. LNCS 1666.

[7] M. Bellare and B. Yee. Forward Security in Private-Key Cryptography. In

Topics in Cryptography—CT-RSA ’03, 2003. To appear. Preliminary version at

http://eprint.iacr.org/2001/035.

221

[8] C. Berge. Hypergraphs. Elsevier, New York, 1989.

[9] O. Berkman, M. Parnas, and J. Sgall. Efficient Dynamic Traitor Tracing. In

Proceedings of the 11th Symposium on Discrete Algorithms, pages 586–595, 2000.

[10] S. Berkovits. How to Broadcast a Secret. In Advances in Cryptology—EuroCrypt

’91, pages 535–541, Heidelberg, 1991. Springer. LNCS 547.

[11] E. Berlekamp and L. R. Welch. Error Correction of Algebraic Block Codes, 1986.

U.S. Patent, Number 4,633,470.

[12] D. Bini and V. Y. Pan. Polynomial and Matrix Computations (vol. 1): Fundamental

Algorithms. Birkhauser, 1994.

[13] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of

Pseudo-Random Bits. SIAM Journal of Computing, 13(4):850–864, 1984.

[14] C. Blundo and A. Cresti. Space Requirements for Broadcast Encryption. In Ad-

vances in Cryptology—EuroCrypt ’94, pages 287–298, Heidelberg, 1994. Springer.

LNCS 950.

[15] C. Blundo, L. A. Frota Mattos, and D. R. Stinson. Trade-offs between Commu-

nication and Storage in Unconditionally Secure Schemes for Broadcast Encryption

and Interactive Key Distribution. 387-400. In Advances in Cryptology—Crypto ’96,

pages 387–400, Heidelberg, 1996. Springer. LNCS 1109.

[16] D. Boneh, X. Boyen, and E. Goh. Hierarchical Identity Based Encryption with

Constant Size Ciphertext. In Advances in Cryptology - EuroCrypt 2005, pages

440–456, Heidelberg, 2005. Springer. LNCS 3493.

[17] D. Boneh and M. Franklin. An Efficient Public Key Traitor Tracing Scheme. In

Advances in Cryptology—Crypto ’99, pages 338–353, Heidelberg, 1999. Springer.

LNCS 1666. Full version available at crypto.stanford.edu/˜dabo/pubs.html.

222

[18] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. In

Advances in Cryptology—Crypto ’01, pages 213–229, Heidelberg, 2001. Springer.

LNCS 2139.

[19] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. SIAM

J. of Computing, 32(3):586–615, 2003. Full version of [18].

[20] D. Boneh, C. Gentry, and B. Waters. Collusion Resistant Broadcast Encryption

with Short Ciphertexts and Private Keys. In Advances in Cryptology - Crypto 2005,

pages 258–275, Heidelberg, 2005. Springer. LNCS 3621.

[21] D. Boneh, A. Sahai, and B. Waters. Fully Collusion Resistant Traitor Tracing with

Short Ciphertexts and Private Keys. In Advances in Cryptology - EuroCrypt 2006,

pages ??–??, Heidelberg, 2006. Springer. LNCS ??

[22] D. Boneh and J. Shaw. Collusion-Secure Fingerprinting for Digital Data. In

Advances in Cryptology—Crypto ’95, pages 452–465, Heidelberg, 1995. Springer.

LNCS 963.

[23] D. Boneh and J. Shaw. Collusion-Secure Fingerprinting for Digital Data. IEEE

Transactions on Information Theory, 44(5):1897–1905, 1998. Full version of [22].

[24] S. Brands. Rethinking Public Key Infrastructures and Digital Certificates—Building

in Privacy. PhD thesis, Technical University of Eindhoven, 1999.

[25] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-Resilient

Functions and All-or-Nothing Transform. In Advances in Cryptology—EuroCrypt

’00, pages 453–469, Heidelberg, 2000. Springer. LNCS 1807.

[26] R. Canetti, S. Halevi, and J. Katz. A Forward-Secure Public-Key Encryption

Scheme. In Advances in Cryptology—EuroCrypt ’03, pages 255–271, Heidelberg,

2003. Springer. LNCS 2656.

223

[27] H. Chabanne, D. Phan, and D. Poitcheval. Public Traceability in Traitor Tracing

Schemes. In Advances in Cryptology—EuroCrypt ’05, pages 542–558, Heidelberg,

2005. Springer. LNCS 3494.

[28] B. Chor, A. Fiat, and N. Naor. Tracing Traitors. In Advances in Cryptology—

Crypto ’94, pages 257–270, Heidelberg, 1994. Springer. LNCS 839.

[29] B. Chor, A. Fiat, N. Naor, and B. Pinkas. Tracing Traitors. IEEE Transaction on

Information Theory, 46(3):893–910, 2000.

[30] C. Cocks. An Identity-Based Encryption Scheme based on Quadratic Residuosity.

In Cryptology and Coding, pages 360–363, Heidelberg, 2001. Springer. LNCS 2260.

[31] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure

Against Adaptive Chosen Ciphertext Attack. In Advances in Cryptology—Crypto

’98, pages 13–25, Heidelberg, 1998. Springer. LNCS 1462.

[32] R. Cramer and V. Shoup. Design and Analysis of Practical Public-Key Encryp-

tion Scheme Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal of

Computing, 33(1):167–226, 2003.

[33] W. Diffie, P. van Oorschot, and W. Wiener. Authentication and Authenticated Key

Exchanges. In Designs, Codes and Cryptography, volume 2, pages 107–125, 1992.

[34] Y. Dodis and N. Fazio. Public-Key Broadcast Encryption for Statless Receivers.

In Digital Rights Management—DRM ’02, pages 61–80, Heidelberg, 2002. Springer.

LNCS 2696.

[35] Y. Dodis and N. Fazio. Public-Key Trace and Revoke Scheme Secure against

Adaptive Chosen Ciphertext Attack. Full version of [36], available from

http://eprint.iacr.org/, 2002.

224

[36] Y. Dodis and N. Fazio. Public-Key Trace and Revoke Scheme Secure against Adap-

tive Chosen Ciphertext Attack. In Public Key Cryptography—PKC ’03, pages 100–

115, Heidelberg, 2003. Springer. LNCS 2567.

[37] Y. Dodis, N. Fazio, A. Kiayias, and M. Yung. Scalable Public-Key Tracing and

Revoking. In 22nd Annual Symposium on Principles of Distributed Computing—

PODC ’03, pages 190–199, New York, 2003. ACM Press. Invited paper to the

PODC ’03 Special Issue of Journal of Distributed Computing [38].

[38] Y. Dodis, N. Fazio, A. Kiayias, and M. Yung. Scalable Public-Key Tracing and

Revoking. Journal of Distributed Computing, 17(4):323–347, 2005.

[39] Y. Dodis and J. Katz. Chosen Ciphertext Security of Multiple Encryption. In The-

ory of Cryptography—TCC ’05, pages 188–209, Heidelberg, 2005. Springer. LNCS

3378.

[40] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-Insulated Public-Key Cryptosys-

tems. In Advances in Cryptology—EuroCrypt ’02, pages 65–82, Heidelberg, 2002.

Springer. LNCS 2332.

[41] N. Fazio, A. Nicolosi, and H. Phan. Traitor Tracing with Optimal Transmission

Rate. In submission, 2006.

[42] P. Feldman. A Practical Scheme for Non-Interactive Verifiable Secret Sharing. In

Proceedings of the 28th Annual Symposium on Foundations of Computer Science—

FOCS ’87, pages 427–437, 1987.

[43] A. Fiat and M. Naor. Broadcast Encryption. In Advances in Cryptology—Crypto

’93, pages 480–491, Heidelberg, 1993. Springer. LNCS 773.

[44] A. Fiat and T. Tassa. Dynamic Traitor Tracing. Journal of Cryptology, 14(3):211–

223, 2001.

225

[45] E. Gafni, J. Staddon, and Y. L. Yin. Efficient Methods for Integrating Traceability

and Broadcast Encryption. In Advances in Cryptology—Crypto ’99, pages 372–387,

Heidelberg, 1999. Springer. LNCS 1666.

[46] A. Garay, J. Staddon, and A. Wool. Long-Lived Broadcast Encryption. In Advances

in Cryptology—Crypto 2000, pages 333–352, Heidelberg, 2000. Springer. LNCS

1880.

[47] C. Günther. An Identity-Based Key Exchange Protocol. In Advances in

Cryptology—EuroCrypt ’89, pages 29–37, Heidelberg, 1989. Springer. LNCS 434.

[48] C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. In Advances in

Cryptology—Asiacrypt ’02, pages 548–566, Heidelberg, 2002. Springer. LNCS 2501.

[49] M. T. Goodrech, J. Sun, and R. Tamassia. Efficient Tree-Based Revocation in

Groups of Low-State Devices. In Advances in Cryptology–Crypto ’04, pages 511–

527, Heidelberg, 2004. Springer.

[50] V. Guruswami and M. Sudan. Improved Decoding of Reed-Solomon and Algebraic-

Geometric Codes. In IEEE Symposium on Foundations of Computer Science, pages

28–39, 1998.

[51] D. Halevy and A. Shamir. The LSD Broadcast Encryption Scheme. In Advances

in Cryptology—Crypto ’02, pages 47–60, Heidelberg, 2002. Springer. LNCS 2442.

[52] J. Horwitz and B. Lynn. Toward Hierarchical Identity-Based Encryption. In Ad-

vances in Cryptology—EuroCrypt ’02, pages 466–481, Heidelberg, 2002. Springer.

LNCS 2332.

[53] J. Hwang, D. Lee, and J. Lim. Generic Transformation for Scalable Broadcast

Encryption Schemes. In Advances in Cryptology - Crypto 2005, pages 276–292,

Heidelberg, 2005. Springer. LNCS 3621.

226

[54] N. Jho, J. Hwang, J. Cheon, M. Kim, D. Lee, and E. Yoo. One-Way Chain Based

Broadcast Encryption Scheme. In Advances in Cryptology—EuroCrypt ’05, pages

542–558, Heidelberg, 2005. Springer. LNCS 3494.

[55] A. Kiayias and M. Yung. Self Protecting Pirates and Black-Box Traitor Tracing.

In Advances in Cryptology—Crypto ’01, pages 63–79, Heidelberg, 2001. Springer.

LNCS 2139.

[56] A. Kiayias and M. Yung. Breaking and Repairing Asymmetric Public-Key Traitor

Tracing. In Digital Rights Management—DRM ’02, pages 32–50, Heidelberg, 2002.

Springer. LNCS 2696.

[57] A. Kiayias and M. Yung. Traitor Tracing with Constant Transmission Rate. In

Advances in Cryptology—EuroCrypt ’02, pages 450–465, Heidelberg, 2002. Springer.

LNCS 2332.

[58] C. Kim, Y. Hwang, and P. Lee. An Efficient Public Key Trace and Revoke Scheme

Secure against Adaptive Chosen Ciphertext Attack. In Advances in Cryptology -

Asiacrypt 2003, pages 359–373, Heidelberg, 2003. Springer. LNCS 2894.

[59] R. Kumar, S. Rajagopalan, and A. Sahai. Coding Constructions for Blacklisting

Problems without Computational Assumptions. In Advances in Cryptology—Crypto

’99, pages 609–623, Heidelberg, 1999. Springer. LNCS 1666.

[60] K. Kurosawa and Y. Desmedt. Optimum Traitor Tracing and new Direction for

Asymmetricity. In Advances in Cryptology—EuroCrypt ’98, pages 145–157, Heidel-

berg, 1998. Springer. LNCS 1403.

[61] K. Kurosawa and T. Yoshida. Linear Code Implies Public-Key Traitor Tracing.

In Public Key Cryptography—PKC ’02, pages 172–187, Heidelberg, 2002. Springer.

LNCS 2274.

227

[62] M. Luby and J. Staddon. Combinatorial Bounds for Broadcast Encryption. In

Advances in Cryptology—EuroCrypt ’98, pages 512–526, Heidelberg, 1998. Springer.

LNCS 1403.

[63] F. J. MacWilliams and N. Sloane. The Theory of Error Correcting Codes. North

Holland, Amsterdam, 1977.

[64] T. Malkin, D. Micciancio, and S. Miner. Efficient Generic Forward-Secure Signa-

tures with an Unbounded Number of Time Periods. In Advances in Cryptology—

EuroCrypt ’02, pages 400–417, Heidelberg, 2002. Springer. LNCS 2332.

[65] D. Naor, M. Naor, and J. Lotspiech. Revocation and Tracing Schemes for Stateless

Receivers. In Advances in Cryptology—Crypto ’01, pages 41–62, Heidelberg, 2001.

Springer. LNCS 2139.

[66] M. Naor and B. Pinkas. Threshold Traitor Tracing. In Advances in Cryptology—

Crypto ’98, pages 502–517, Heidelberg, 1998. Springer. LNCS 1462.

[67] M. Naor and B. Pinkas. Efficient Trace and Revoke Schemes. In Financial

Cryptography—FC 2000, pages 1–20, Heidelberg, 2000. Springer. LNCS 1962. Full

version available at www.wisdom.weizmann.ac.il/˜naor/onpub.html.

[68] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. In L. Lo-

grippo, editor, Proceedings of the 10th Annual ACM Symposium on Principles of

Distributed Computing, pages 51–60, Montréal, Québec, Canada, Aug. 1991. ACM

Press.

[69] B. Pfitzmann. Trials of Traced Traitors. In Information Hiding, pages 49–64,

Heidelberg, 1996. Springer. LNCS 1174.

[70] R. Rivest. All-or-Nothing Encryption and the Package Transform. In Fast Softaware

Encryption, 1997.

228

[71] R. Safavi-Naini and Y. Wang. Sequential Traitor Tracing. In Advances in

Cryptology—Crypto 2000, pages 316–332, Heidelberg, 2000. Springer. LNCS 1880.

[72] R. Safavi-Naini and Y. Wang. Sequential Traitor Tracing. IEEE Transactions on

Information Theory, 49(5):1319–1326, 2003.

[73] A. Shamir. How To Share a Secret. Communications of the ACM, 22(11):612–613,

1979.

[74] A. Shamir. Identity Based Cryptosystems and Signatures Schemes. In Advances in

Cryptology—Crypto ’84, pages 47–53, Heidelberg, 1984. Springer. LNCS 196.

[75] V. Shoup. A Proposal for an ISO Standard for Public-Key Encryption. Manuscript,

2001.

[76] G. Simmons. A Survey on Information Authentication. In Contemporary Cryptog-

raphy: The Science of Information Integrity, pages 379–419. IEEE Press, 1992.

[77] D. R. Stinson and R. Wei. Combinatorial Properties and Constructions of Trace-

ability Schemes and Frameproof Codes. SIAM Journal on Discrete Mathematics,

11(1):41–53, 1998.

[78] D. R. Stinson and R. Wei. Key Preassigned Traceability Schemes for Broadcast

Encryption. In Selected Areas in Cryptography, pages 144–156, Heidelberg, 1998.

Springer. LNCS 1556.

[79] G. Tardos. Optimal Probabilistic Fingerprint Codes. In Proceedings of the 35th

Symposium on Theory of Computing—STOC’03, pages 116– 125, New York, 2003.

ACM Press.

[80] W. Tzeng and Z. Tzeng. A Public-Key Traitor Tracing Scheme with Revocation

Using Dynamics Shares. In Public Key Cryptography—PKC ’01, pages 207–224,

Heidelberg, 2001. Springer. LNCS 1992.

229

[81] B. Waters. Efficient Identity-Based Encryption without Random Oracles. In Ad-

vances in Cryptology—EuroCrypt ’05, pages 114–127, Heidelberg, 2005. Springer.

LNCS 3494.

[82] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya. ID-Based Encryption for Com-

plex Hierarchies with Applications to Forward Security and Broadcast Encryption.

In Computer and Communications Security—CCS ’04, pages 354–363, New York,

2004. ACM Press.

230

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	Introduction
	Our Contributions
	Widening the Scope of Applicability
	Public-Key Broadcast Encryption for Stateless Receivers
	Traitor Tracing with Optimal Transmission Rate
	Scalable Public-Key Tracing and Revoking

	Strengthening the Security Guarantees
	Forward-Secure Public-Key Broadcast Encryption
	Chosen-Ciphertext Security for Trace-and-Revoke Schemes

	Preliminaries
	Some Algebraic Tools
	Lagrange Interpolation in the Exponent
	Discrete Logarithm Representations
	Leap-Vectors

	Collusion-Secure Codes
	Computational Assumptions
	Identity-Based Cryptography
	Identity-Based Encryption (IBE)
	Hierarchical Identity-Based Encryption (HIBE)
	Paired Hierarchical Identity-Based Encryption (PHIBE)

	Forward-Secure Encryption

	DRM-Enabling Crypto Primitives and Previous Constructions
	Broadcast Encryption
	Early Approaches
	Information Theoretic Lower Bounds
	Beyond the Lower Bounds

	Traitor Tracing
	Tracing Based on Leaked Decryption Keys
	Tracing Based on Leaked Decrypted Content

	Trace and Revoke Schemes
	Secret-Key Trace and Revoke Schemes
	Public-Key Trace and Revoke Schemes

	Public-Key Broadcast Encryption for Stateless Receivers
	Introduction
	Our Results
	Formal Model
	BE: Syntax
	BE: Security

	Public-Key Extension of the CS Method
	Public-Key Extension of the SD Method
	Public-Key Extension of the LSD Method
	Inclusion-Exclusion Trees

	Forward-Secure Public-Key Broadcast Encryption
	Introduction
	Our Results
	Formal Model
	FSBE: Syntax
	FSBE: Security

	The Access Hypergraph Framework
	Examples of Access Hypergraphs
	Reduction between Access Hypergraphs
	Two Important Reductions
	Product of Access Hypergraphs
	Toward Forward-Secure Broadcast Encryption
	PHIBE as Hypergraph Encryption for Paired Access Hypergraphs

	Putting it all Together
	FBE from the Access Hypergraph Framework
	An Alternative Formulation based on fs-HIBE

	Achieving Chosen-Ciphertext Security

	Traitor Tracing with Optimal Transmission Rate
	Introduction
	Our Results
	Formal Model
	TT: Syntax
	TT: Security

	The KY Public-Key Traitor Tracing Scheme
	The Two-User Sub-Scheme
	The Multi-User Scheme

	The CPP Public-Key Traitor Tracing Scheme
	The Two-User Sub-Scheme
	The Multi-User Scheme

	On the Query Complexity of KY Black-Box Tracing
	A Simple Untraceable Pirate Strategy
	The Fix
	Consequences for the Multi-User CPP Scheme

	Black-Box Traitor Tracing with Optimal Transmission Rate
	The Two-User Sub-Scheme
	Indistinguishability under Chosen-Plaintext Attack
	Traceability
	The Multi-User Scheme
	Indistinguishability under Chosen-Plaintext Attack
	Traceability

	Scalable Public-Key Tracing and Revoking
	Introduction
	Our Results
	The Scalable Public-Key Tracing and Revoking Model
	Scalability Objectives
	Formal Modeling of Scalable Schemes

	Construction of a Scalable Public-Key Tracing and Revoking Scheme
	Dealing with Revocation
	Model for Revocation
	Security of Revocation

	Dealing with Traceability
	Model for Traceability
	Black-Box Tracing
	Non-Black-Box Tracing

	Chosen-Ciphertext Security for Trace-and-Revoke Schemes
	Introduction
	Our Results
	Constructing Secure Revocation Schemes
	IND-ID-CPA Security
	IND-ID-gCCA Security
	IND-ID-CCA Security

	Proofs of the Technical Lemmas
	Proof of the Lemma for IND-ID-CPA Security
	Proofs of Lemmas for IND-ID-gCCA Security
	Proofs of Lemmas for IND-ID-CCA Security

	Bibliography

