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Abstract

There is a growing awareness, both in industry and academia, of the crucial

role of formally verifying the translation from high-level source-code into low-

level object code that is typically performed by an optimizing compiler. Formally

verifying an optimizing compiler, as one would verify any other large program,

is not feasible due to its size, ongoing evolution and modification, and possibly,

proprietary considerations.Translation validationis a novel approach that offers

an alternative to the verification of translator in general and compilers in partic-

ular: Rather than verifying the compiler itself, one constructs a validation tool

which, aftereveryrun of the compiler, formally confirms that the target code pro-

duced in the run is a correct translation of the source program. This thesis work

takes an important step towards ensuring an extremely high level of confidence in

compilers targeted at EPIC architectures.

The dissertation focuses on the translation validation ofstructure-preserving

optimizations, i.e., transformations that do not modify programs’ structure in a

major way, which include most of the global optimizations performed by compil-

ers. The first part of the dissertation develops the theory of a correct translation,

which provides a precise definition of the notion of a target program being a cor-

rect translation of a source program, and the method that formally establishes the

correctness of structure preserving transformations based on computational induc-

tion. The second part of the dissertation describes a tool that applies the theory



of the first part to the automatic validation of global optimizations performed by

Intel’s ORC compiler for IA-64 architecture. With minimal instrumentation from

the compiler, the tool constructs “verification conditions” – formal theorems that,

if valid, establish the correctness of a translation. This is achieved by performing

own control-flow and data-flow analyses together with various heuristics. The ver-

ification condition are then transferred to an automatic theorem prover that checks

their validity. Together with the theorem prover, the tool offers a fully automatic

method to formally establish the correctness of each translation.
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Chapter 1

Introduction

1.1 Motivation

There is a growing awareness, both in industry and academia, of the crucial role

of formally proving the correctness of safety-critical portions of systems. Most

verification methods focus on verification of specification with respect to require-

ments, and high-level code with respect to specification. However, if one is to

prove that the high-level specification is correctly implemented in low-level code,

one needs to verify the compiler which performs the translations. Verifying the

correctness of modern optimizing compilers is challenging because of the com-

plexity and reconfigurability of the target architectures, as well as the sophisticated

analysis and optimization algorithms used in the compilers.

Formally verifying a full-fledged optimizing compiler, as one would verify

any other large program, is not feasible, due to its size, evolution over time, and,
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possibly, proprietary considerations.Translation Validationis a novel approach

that offers an alternative to the verification of translators in general and of com-

pilers in particular. Using the translation validation approach, rather than verify

the compiler itself one constructs avalidating toolwhich, after every run of the

compiler, formally confirms that the target code produced is a correct translation

of the source program.

The introduction of new families of microprocessor architectures, such as the

EPIC family exemplified by the Intel IA-64 architecture, places an even heavier

responsibility on optimizing compilers. Compile-time dependence analysis and

instruction scheduling is required to exploit instruction-level parallelism in order

to compete with other architectures, such as the super-scalar class of machines

where the hardware determines dependences and reorders instructions at run-time.

As a result, a new family of sophisticated optimizations have been developed and

incorporated into compilers targeted at EPIC architectures.

At first glance, the approach of translation validation is designed to ensure the

correct functioning of compilers. But it also have impact on the testing process

of compiler development. Since the output of compilers is unreadable, people

can recognize a incorrect compilation only by observing an incorrect program

execution. As compiler testers have observed, many times an “incorrect output”

is caused not by the compiler itself, but by the errors in the program it compiles.

As a result, much of the time and efforts in compiler testing is spent in isolating

the bugs in the testing programs from those in the compiler. Since the translation

validation approach checks the output of compilers directly, the error it detects
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is guaranteed to be a compilation error, and thus makes the compiler debugging

process more efficient.

1.2 Related Works

This thesis research is an extension of the work on translation validation by Pnueli,

Siegel and Singerman ([PSS98a]), which developed a tool for translation valida-

tion, CVT, that succeeded in automatically verifying translations involving ap-

proximately 10,000 lines of source code in about 10 minutes. The success of

CVT critically depends on some simplifying assumptions that restrict the source

and target to programs with a single external loop, and assume a very limited set

of optimizations.

The work by Necula in [Nec00] covers some important aspects of my work.

For one, it extends the source programs considered from single-loop programs to

programs with arbitrarily nested loop structure. An additional important feature

is that the method requires no compiler instrumentation at all, and applies various

heuristics to recover and identify the optimizations performed and the associated

refinement mappings. But the method used in Necula’s work carries very lim-

ited information in between different check points, hence it cannot validate some

common optimizations such as loop invariant code motion and strength reduction,

which our approach can handle.

Another related work is credible compilation by Rinard and Marinov [RM00]

which proposes a comparable approach to translation validation, where an impor-

3



tant contribution is the ability to handle pointers in the source program. However,

the method proposed there assumesfull instrumentation of the compiler, which is

not assumed here or in [Nec00].

The work in [LJWF04] presents a framework for describing global optimiza-

tions by rewrite rules with CTL formulae as side conditions, which allow for gen-

eration of correct optimizations, but not for verification of (possibly incorrect)

optimizations. The work in [GGB02] proposes a method for deploying optimiz-

ing code generation while correct translation between input program and code.

They focus on code selection and instruction scheduling for SIMD machines.

1.3 Overview of the Compiler Validation Project

The ultimate goal of our compiler validation project is to develop a methodology

for the translation validation of advanced optimizing compilers, with an empha-

sis on EPIC-targeted compilers and the aggressive optimizations characteristic to

such compilers. Our methods will handle an extensive set of optimizations and

can be used to implement fully automatic certifiers for a wide range of compilers,

ensuring an extremely high level of confidence in the compiler in areas, such as

safety-critical systems and compilation into silicon, where correctness is of para-

mount concern.

The approach of translation validation is based on the theory of correct trans-

lation. In general terms, we first give common semantics to the source and target

languages using the formalism ofTransition Systems(TS’s). The notion of a target
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codeT being a correct implementation of a source codeS is then defined in terms

of refinement, stating that every computation ofT corresponds to some computa-

tion of S with matching values of the corresponding variables. In Figure 1.1 we

present the process of refinement as completion of a mapping diagram.

Compiler
Semantics

Mapping

Semantics

Mapping

Refinement
Optimizing

S: Source Sem(S)

Sem(T)T : Target

Figure 1.1: Refinement Completes the Picture

To apply the general approach of translation validation to verifying compiler

optimizations, we distinguish betweenstructure preservingoptimizations, which

admit a clear mapping of control points in the target program to corresponding

control points in the source program, andstructure modifyingoptimizations that

admit no such mapping.

Structure Preserving optimizations cover most high-level optimizations and

many low-level control-flow optimizations. Our approach for dealing with these

optimizations is to establish a correspondence between the target and source code,

based onrefinement, and to prove it bysimulation. According to this approach,

we establish arefinement mappingcorrelating the control points the source and

target, and indicating how the relevant source variables correspond to the target

variables or expressions at each control point. The proof is then broken into a

set ofverification conditions(also calledproof obligations), each claiming that a
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segment of target execution corresponds to a segment of source execution.

A more challenging category of optimizations is that of structure modifying

optimizations which includes, e.g.,loop distributionand fusion, loop tiling, and

loop interchange. For this class, it is often impossible to apply the refinement-

based rule since there are often no control points where the states of the source and

target programs can be compared. We identify a large class of these optimizations,

namely thereordering transformations, and devise a set ofpermutation rulesthat

allow for their effective translation validation[ZPG+02, ZPFG03].

Valid

Invalid

yes/no

Compiler

Source IR S .l file Target IR T

TVOC

yes/no Verification Conditions

CVC    Lite

Source program

Phase 1 Phase 2IR S’

Figure 1.2: The architecture ofTVOC.

A tool for translation validation of optimizing compilers, calledTVOC, has

been developed for Intel’s Open Research Compiler (ORC) [CJW01]. Fig. 1.2

shows the overall design ofTVOC. TVOC accepts as input a source programS
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and target programT . These are provided in theWHIRL intermediate representa-

tion, a format used by theORC compiler among others. Just as compilers perform

optimizations in multiple passes, it is reasonable to break the validation into mul-

tiple phases, each using a different proof rule and focusing on a different set of

optimizations. Currently,TVOC uses two phases to validate optimizations per-

formed by the compiler, with two componentsTVOC-LOOP andTVOC-SP. In

the first phase,TVOC-LOOP attempts to detect loop reordering transformations

and generates an intermediate programS ′ which is obtained by transformingS so

that it’s loop structure corresponds to that found inT . The equivalence ofS andS ′

is verified using rulePERMUTE [ZPG+02, ZPFG03]. Verification conditions are

submitted to and checked by the automatic theorem proverCVC Lite [BB04]. In

the second phase,TVOC-SP compares the programS ′ generated by phase 1 to the

target programT . Since the transformation fromS ′ to T is structure-preserving,

the equivalence of these two programs is verified using ruleVALIDATE (as pre-

sented in Chapter 3) Again, verification conditions are submitted toCVC Lite. If

all verification conditions from both phases succeed, then the source and target

are equivalent andTVOC outputs the result “VALID”. Otherwise,TVOC outputs

“INVALID” with a message indicating the stage at which the verification failed.

1.4 Contribution and Thesis Outline

The main goal of this thesis research is to develop theory and tools for validating

structure preserving optimizations. The contribution of my thesis work includes:
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• participating in desiging the current version of a proof rule, calledVALIDATE ,

for validating structure preserving optimizations;

• developingTVOC-SP, a tool that automatically generate proofs ofVALIDATE

rule for structure preserving optimizations of an EPIC compiler;

• modeling memory operations and aliasing information to accomodate pro-

grams with arrays and pointers.

Chapter 2 describes a formal model and theory of correct translation. It also

presents definitions and terms commonly used in the research of compiler opti-

mizations that is later refered in this thesis.

Chapter 3 first describes a general proof rule, calledVALIDATE , for translation

validation of structure preserving optimizations. The proof rule presented in this

thesis succeeds a series of proof rules that were sound but failed to handle some

common optimizations. The current version has the versitility to handle minor

structure changes in transformation, as long as the structure of loops is preserved.

Then I define the well-formedness of aVALIDATE proof, and show that, given

well-formed proofsP1 and P2 that establish the refinement betweenS andT1,

and the refinement betweenT1 andT2, respectively, we can compose aVALIDATE

proof fromP1 andP2 that establishes the refinement betweenS andT2 directly.

Chapter 4 studies a series of individual compiler optimizations that are candi-

dates for validation with ruleVALIDATE . The study of individual optimizations not

only shows the scope of ruleVALIDATE , but also gives valuable insights of what

type of the refinement mapping and auxiliary invariants are required to construct
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a VALIDATE proof, which lead to the various heuristics used in the validation tool

TVOC-SP.

Chapter 5 presents the heuristics and algorithms in the toolTVOC-SP which

automatically generatesVALIDATE proofs for global optimizations performed by

the Intel’s ORC compiler. When I started building the tool, I had expected that

compiler would provide us with the information of what kind of optimizaitons

are performed and in which order they are performed, and the intermediate code

produced by the compiler would contain program annotations that could be used

as auxiliary invariants. However, it turned out that none of these information is

available fromORC, andTVOC-SP ended up performing its own static analyses to

constructVALIDATE proofs. One major challenge in the generation of aVALIDATE

proof is to produce sufficient auxiliary invariants, hence this topic is explored

extensively in Chapter 5.

Chapter 6 discusses the issues in validating programs with aliasing with rule

VALIDATE . The challenge includes how to model program identities that can be

accessed in more than one way and how to represent aliasing information as pro-

gram invariants.

Chapter 7 summarizes the results and discusses possible future works.
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Chapter 2

Preliminaries

2.1 Program Representation

The programs we consider are written inWHIRL [CJW01], the intermediate lan-

guage (IR) for the ORC compiler. As compilation can be viewed as a process of

gradual transition from the high level language constructs to the low level ma-

chine instructions, there are different levels ofIR possible. The closer anIR is to

the source language, the higher is its level. The more anIR resembles the machine

instructions, the lower is its level. TheWHIRL IR was designed to be capable of

representing any level ofIR from Very High to Very Low except the level that

corresponds to the machine instructions. The compiler optimizations we focus on

are the global optimizations, which are performed on High and MidWHIRL, and

the control-flow optimziations, which are perfomed on LowWHIRL.

During the compilation from HighWHIRL to Low WHIRL, high level control
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flow constructs such as the operatorDO LOOP, DO WHILE, WHILD DO, IF ,etc.

are translated to be uniformly represented viaTRUEBR, FALSEBR or GOTO in

Low WHIRL. In addition, the form of array subscription preserved in HighWHIRL

via ARRAY is lowered to address expressions in Mid and LowWHIRL.

For exposition purposes we assume that programs are written in theIR inter-

mediate language, which is a subset of Mid and LowWHIRL, whose syntax is

shown in Fig. 2.1. A function body is a sequence ofIR statements. Among state-

ments, we have direct assignments to symbols, denoted byid ← expr; function

entries, denoted byFUNC ENTRY f, id1, . . . , idm, which represents a functionf

with an array of formal parametersid1, . . . , idm; function returnsRETURN id; la-

belsLABEL L :; unconditional jumpsGOTO; and conditional jumpsTRUEBR and

FALSEBR. The expressions in theIR language contain symbol identitiesid, con-

stantsc, and composite expressions using a variety of operatorsexpr1 op expr2.

We assume that the evaluation of expression does not have side-effect, i.e. none

of the program variables have their values modified in the process of evaluation.

With the set of statements inIR as represented in Fig. 2.1, the high level control

constructs such as loops and conditional branches preserved by the HighWHIRL

operatorsDO LOOP, DO WHILE, WHILD DO, IF, etc. are translated to be uni-

formly represented viaTRUEBR, FALSEBR or GOTO in Low WHIRL.

Example 1 Consider the functionfoo written in C language in Fig. 2.2 and its

translation, by Intel ORC compiler into the intermediate codeIR.
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Statements stat ::= id← expr | LABEL L : |
FUNC ENTRY f, id1, . . . , idm | RETURN id |
GOTOL | TRUEBR expr, L | FALSEBR expr, L

Expressions expr ::= id | c | expr1 op expr2
Operators op ::= + | − | ∗ | / | = | < | ≤ | . . .

Figure 2.1: The syntax of theIR intermediate language

int k;
int foo(int n) {

int i,j;
k = 0;
i = 1;
j = 2;
while (i<=n) {

j = j * 2;
k = 1;
i = i+1;

}
if (k)

i = j;
else

i = i + 1;
return i;

}

FUNC_ENTRY foo,n
k <- 0
i <- 1
j <- 2
FALSEBR (n>=i),L1
j <- j * 2
k <- 1
i <- i + 1

L1:
FALSEBR (k!=0),L2
i <- j
GOTO L3

L2:
i <- i + 1

L3:
RETURN i

Figure 2.2: A C Program and its Intermediate Code

2.2 Control-Flow Analyses

Given a program in its intermediate representation, it is seen as a sequence of

statements with few hints about what the program does or how it does it. It re-

mains for control-flow analyses to discover the hierarchical flow of control within

each procedure and for data-flow analysis to determine global (i.e., procedural-

wide) information about the manipulation of data. Understanding the control-flow

structure of a program is important not only to transforming the program to a more
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efficient one, but also essential to validating the correctness of the transformation.

Given a program inIR, the program’s control structure is discovered with the

following steps:

1. Identify basic blocks and construct control flow graphs (CFG). Basic block

is, informally, a straight-line sequence of code that can be entered only at

the beginning and exited only at the end. Acontrol flow graphis an ab-

stract representation of a procedure or a program. Each node in the graph

represents a basic block. Directed edges are used to represent jumps in the

control flow.

2. Identify the relation of dominance for each node in the control flow graph.

We say that noded dominatesnodei, if every possible execution path from

entry toi includesd. We say thatd is animmediate dominatorof i, if every

dominator ofi that is notd dominatesd. Identifying dominance relation is

important for performing further control-flow and data-flow analyses.

3. Identify loops. Without loss of generality, we assume that the programs

we consider only havenatural loops, where a natural loop is, informally, a

strongly connected components with a unique entry node1. To determine

the natural loops in aCFG, we first define aback edgesas an edge inCFG

whose head dominate its tail. Each back edgem → n characterizes anat-

ual loop as a subgraph consisting of the set of nodes containingn and all

the nodes from whichm can be reached in the flowgraph without passing

1A technique callednode splittingcan transform loops that are not natural into natural
ones[JC97]
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throughn and the edge set connecting all the nodes in its node set. For a

natual loop, we define

• loop headerto be the node that dominates every node in the loop.

• loop preheaderto be a new (initially empty) block placed just before

the header of the loop, such that all the edges that previously went to

the header from outside the loop now go to the preheader, and there is

a single new edge from the preheader to the header.

Fig. 2.3 presents the control flow graph corresponding to theIR program in

Fig. 2.2. In the flowgraph, the set of blocks{B2, B3} forms a natual loop charac-

terized by the back edgeB3→ B2. B2 is the loop’s header, andB1 is the preheader.

2.3 Static Single-Assignment (SSA) Form

Static single-assignment (SSA) form[CFR+89, CRF+91] is a relatively new in-

termediate representation that effectively separates the value operated on in a pro-

gram from the locations they are stored in, making possible more effective version

of several optimizations.

A procedure is instatic single-assignment formif every variable assigned a

value in it occurs as the target of only one assignment. In SSA form du-chains

are explicit in the representation of a procedure: a use of a variable may use the

value produced by a particular definition if and only if the definition and use have

exactly the same name for the variable in the SSA form of the procedure. This
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B6

N

Y

Y

B1

B3 B4

B5

B2

N

B7

k ← 0
i ← 1
j ← 2

i ≤ n

k 6= 0

i← i+ 1

j ← j ∗ 2
k ← 1
i ← i+ 1

i← j

return i

func foo, n

Figure 2.3: Example 1 represented as Control-Flow Graph

simplifies and makes more effective several kinds of optimizing transformations,

including constant propagation, value numbering, invariant code motion and re-

moval, strength reduction, and partial-redundancy elimination. Thus, it is valuable

to be able to translate a given representation of a procedure into SSA form, to op-

erate on it and, when appropriate, to translate it back into the original form.

In translation to SSA form, the standard mechanism is to subscript each of the

variables and to use so-calledφ-functions at join points, i.e. location where two

or more control flows merge, to sort out the multiple assignments to a variable.

Eachφ- function has as many argument positions as there are versions of the
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variable coming together at that point, and each argument position corresponds to

a particular control-flow predecessor of the point. Thus, the standard SSA-form

representation of our example in Fig. 2.2 is shown in Fig. 2.4.

Y N

Y N

B6

B1

B2

B5

B4B3

B7

i5 ← i3 + 1

k1 ← 0
i1 ← 1
j1 ← 2

k3 ← φ(k1, k2)
i3 ← φ(i1, i2)
j3 ← φ(j1, j2)

i3 ≤ n0

k3 6= 0

i4 ← j3

j2 ← j3 ∗ 2
k2 ← 1
i2 ← i3 + 1

func foo, n0

i6 ← φ(i4, i5)
return i6

Figure 2.4: Example 1 represented in SSA Form

2.4 Transition Systems

In order to present the formal semantics of source and intermediate code we in-

troducetransition systems(TS’s), a variant of thetransition systemsof [PSS98b].
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A Transition SystemS = 〈V,O,Θ, ρ〉 is a state machine consisting of:

• V a set ofstate variables,

• O ⊆ V a set ofobservable variables,

• Θ an initial conditioncharacterizing the initial states of the system, and

• ρ a transition relation, relating a state to its possible successors.

The variables are typed, and astateof a TS is a type-consistent interpretation of

the variables. For a states and a variablex ∈ V , we denote bys[x] the value that

s assigns tox. The transition relation refers to both unprimed and primed versions

of the variables, where the primed versions refer to the values of the variables in

the successor states, while unprimed versions of variables refer to their value in

the pre-transition state. Thus, e.g., the transition relation may include “y′ = y+1”

to denote that the value of the variabley in the successor state is greater by one

than its value in the old (pre-transition) state.

The observable variables are the variables we care about, where we treat each

I/O device as a variable, and each I/O operation removes/appends elements to

corresponding variable. If desired, we can also include among the observables

the history of external procedure calls for a selected set of procedures. When

comparing two systems, we require that the observable variables in the two system

match.

A computation of aTS is a maximal finite or infinite sequence of statesσ :

s0, s1, . . . , starting with a state that satisfies the initial condition such that every
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two consecutive states are related by the transition relation. I.e.,s0 |= Θ and

〈si, si+1〉 |= ρ for everyi, 0 ≤ i+ 1 < |σ|2.

Example 2 We translate the intermediate code in Fig. 2.3 into aTS. The set

of state variablesV includesi ,j ,k ,n, among which the observable varaibles are

global variablek and local variablei whose value is returned by functionfoo .

We also include inV the control variable (program counter)pc that points to the

next statement to be executed. Because the transitions connecting two consecutive

states can represent either a single statement or a sequence of statements, depend-

ing on the intermediate states users care about in the computation, the range of

pc can be the set of all program locations or selective locations. Here we choose

the range ofpc to be{B1, B2, B4, B7}, whereBi denotes the location right before

basic blocki. The initial condition, given byΘ: π = B1, states that the program

starts at locationB1.

The transition relationρ can be presented as the disjunction of four disjuncts

ρ = ρ12 ∨ ρ22 ∨ ρ24 ∨ ρ47, whereρij describes all possible moves from

Bi to Bj without passing through locations in the range ofπ.

E.g.,ρ47 is:

(k 6= 0 ∧ i′ = j ∨ k = 0 ∧ i′ = i+ 1) ∧ pres({j, k, n})

wherepres(V ) is an abbreviation of formula
∧

v∈V (v′ = v).

2|σ|, thelength ofσ, is the number of states inσ. Whenσ is infinite, its length isω.
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A computation of the program starts withB1, continues toB2, cycles toB3

and back toB2 several times, then exits the cycle and branches toB5 or B6,

depending on the value ofk, and finally terminates atB7. The state reached at

each block is described by the values assigned to the variables.

A transition systemT is calleddeterministicif the observable part of the initial

condition uniquely determines the rest of the computation. That is, ifT has two

computationss0, s1, . . . andt0, t1, . . . such that the observable part (values of the

observable variables) ofs0 agrees with the observable part oft0, then the two com-

putations are identical. We restrict our attention to deterministic transition systems

and the programs which generate such systems. Thus, to simplify the presenta-

tion, we do not consider here programs whose behavior may depend on additional

inputs which the program reads throughout the computation. It is straightforward

to extend the theory and methods to such intermediate input-driven programs.

The translation of an intermediate code into aTS is straightforward; we there-

fore assume that all code we are dealing with here is described by aTS.

2.4.1 Comparison and Refinement betweenTSs

Let P
S

= 〈V
S
,O

S
,Θ

S
, ρ

S
〉 andP

T
= 〈V

T
,O

T
,Θ

T
, ρ

T
〉 be two TS’s, to which

we refer as thesourceandtarget TS’s, respectively. Such two systems are called

comparableif there exists a one-to-one correspondence between the observables

of P
S

and those ofP
T
. To simplify the notation, we denote byX ∈ O

S
and

x ∈ O
T

the corresponding observables in the two systems. A source states is
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defined to becompatiblewith the target statet, if s andt agree on their observable

parts. That is,s[X] = t[x] for every x ∈ O
T
. We say thatP

T
is a correct

translation(refinement) of P
S

if they are comparable and, for everyσ
T

: t0, t1, . . .

a computation ofP
T

and everyσ
S

: s0, s1, . . . a computation ofP
S

such that

s0 is compatible witht0, σT
is terminating (finite) iffσ

S
is and, in the case of

termination, their final states are compatible.

Our goal is to provide an automated method that will establish (or refute) that

a given target code correctly implements a given source code, where both are

expressed asTSs.
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Chapter 3

Validating Structure-Preserving

Optimizations

3.1 RuleVALIDATE

LetP
S

= 〈V
S
,O

S
,Θ

S
, ρ

S
〉 andP

T
= 〈V

T
,O

T
,Θ

T
, ρ

T
〉 be comparableTSs, where

P
S

is thesourceandP
T

is the target. In order to establish thatP
T

is a correct

translation ofP
S

for the cases thatP
T

does not alter the structure ofP
S

in a

major way, we introduce a proof rule that is an elaboration of the computational

induction approach ([Flo67]) which offers a proof methodology to validate that

one programrefinesanother. This is achieved by establishing acontrol mapping

from target locations to source locations, adata abstractionmapping from source

variables to target variables, and proving that they are preserved with each step of

the target program.
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Some caution is needed in order to guarantee that VALIDATE can handle mi-

nor structure changes, for example, as in loop invariant code motion when assign-

ments in the target occur before their counterparts in the source. It is actually a

difficult problem to devise such a proof rule – the current version of the proof rule

succeeds a series of proof rules that were sound but failed to handle some common

optimizations. The version of the proof rule presented here has been successful

in handling numerous examples, and we believe it is capable of handling all the

optimizations that do not involve major structure modifications (as in the various

loop optimizations.)

The proof rule is presented in Fig. 3.1. There, eachTS is assumed to have a

cutpoint setCP (i.e., a set that includes the initial and terminal block, as well as

at least one block from each of the cycles; note that the cut-point set is a subset

of the data domain of the control variable.) Asimple pathin between nodes in

the cutpoint set refers to a path, in the flow graph of system, that leads in between

two blocks of the cutpoint set and does not include, as an internal node, any other

block of the set. For each such simple path leading from cut pointi to cut point

j, ρij describes the transition relation betweeni andj. Note that, when the path

from i to j passes through program locationss that are not in the cutpoint set,ρij

is a compressed transition relation that can be computed by the composition the

intermediate transition relation on the path fromi to j.

The control abstractionκ in part (1) of VALIDATE is the standard Floyd control

mapping. The target invariantsϕ(i) in part (2) and source invariantsψ(i) in part

(3) are program annotations that are expected to be provided by compiler from
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its data flow analysis. Intuitively, their role is to carry information in between cut

points. The data abstractionα in part (4) is a variant of the standard Floyd-like

data abstraction. The two differences are that we allow forα to be partial, and to

be different at each target cut point. The motivation for allowingα to be partial

is to accommodate situations, that occur for example in dead code elimination,

where source variables have no correspondence in the target. The motivation for

allowingα to be different at each target cut point is to accommodate situations,

that occur for example in loop invariant code motion, where at some points of the

execution, source variables have no correspondence in the target, while at other

points they do.

The verification conditions assert that at each (target) transition from cutpoint

i to cut pointj1, if the assertionϕ(i), ψ(κ(i)) and the data abstraction hold before

the transition, and the transition takes place, then after the transition there exist

new source variables that reflect the corresponding transition in the source, while

the data abstraction and the assertionsϕ(j) andψ(κ(j)) hold in the new state.

Hence,ϕi andψ(κ(i)) are used as a hypothesis at the antecedent of the implica-

tionCij. In return, the validator also has to establish thatϕj andψ(κ(j)) hold after

the transition. Thus, we do not trust the annotation provided by the instrumented

compiler but, as part of the verification effort, we confirm that the proposed as-

sertions are indeed inductive and hold whenever visited. Since the assertionϕ(i)

mentions only target variables, their validity should depend solely on the target

code. Similarly, the validity ofψ(i) should depend solely on the source code. In

1Recall that we assume path described by the transition is simple.
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most cases, the primed source variables can be easily realized from the code, and

the existential quantification in verification condition (5) can be eliminated, since

the implicationq → ∃x′ : (x′ = E) ∧ r is validity-equivalent to the implication

q ∧ (x′ = E) → r. However, this may not always be the case and we are forced

to leave the existential quantifier in (4). In Section 3.3, we will discuss in which

circumstance we can eliminate the quantifier in verification conditions.

Example 3 Consider the program of Fig. 3.2 after a series of optimizations: Con-

stant folding, copy propagation, dead code elimination, control flow graph opti-

mization (loop inversion), and strength reduction. The annotation (ϕ1, denoted

phi1 ) is supplied by the translation validation tool (see Chapter 5).

To validate the program, we use the control mappingκ = {0 7→ 0, 1 7→ 2, 2 7→ 4},

and the data abstraction

α :

 (PC = κ(pc)) ∧ (pc 6= 0→ Y = y)

∧ (pc 6= 0→ W = w) ∧ (pc 6= 0→ N = 500)


Note that we always include inα the control mappingPC = κ(pc).

The verification conditionC01 obtained for the simple path fromB0 to B1,

after simplification (including the removal of the existential quantifier), is:

C01 : ρ
T

01 ∧ α′ → ρ
S

02 ∧ ϕ′1
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whereρ
T

01 is defined by:

(
(pc = 0) ∧ (.t264′ = 0) ∧ (y′ = 0) ∧ (w′ = 1) ∧ (pc′ = 1)

)

andρ
S

02 is defined by:

(
(PC = 0) ∧ (Y′ = 0) ∧ (W′ = 1) ∧ (N′ = 500) ∧ (N′ ≥ W′) ∧ (PC′ = 2)

)

We also have:

α′ :
(

(Y′ = y′) ∧ (W′ = w′) ∧ (N′ = 500)

)

andϕ′1 : (.t264′ = 2 ∗ y′) The other verification conditions are constructed simi-

larly. They are all trivial to verify.

3.2 Soundness ofVALIDATE

Let P
S

= 〈V
S
,O

S
,Θ

S
, ρ

S
〉 andP

T
= 〈V

T
,O

T
,Θ

T
, ρ

T
〉 be two comparable deter-

ministicTSs. LetCP
S

andCP
T

be the sets of cut-points ofP
S

andP
T

respectively.

Assume that the control mappingκ, the data abstractionα, and the invariantsϕ(i)s

andψ(i)s are all defined. Assume further that all verification conditionsCij (for

everyi andj such that there is a simple path inP
T

leading fromBi to Bj ) have

been established. We proceed to show thatP
T

is a correct translation ofP
S
.
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Let

σ
T

: s1, s2, . . .

be a finite or infinite computation ofP
T
, which visits blocksBi1, Bi2, . . ., respec-

tively. ObviouslyBi1 is in CP
T

and if the computation is finite (terminating) then

its last block is also inCP
T
. According to an observation made in [Flo67],σ

T
can

be decomposed into a fusion2 of simple paths

β
T

: (Bj1, . . . , Bj2)︸ ︷︷ ︸
π

T
1

◦ (Bj2, . . . , Bj3)︸ ︷︷ ︸
π

T
2

◦ · · ·

such thatBj1 = Bi1, everyBjk is in the cut-point setCP
T

, andπ
T

m = Bjm, . . . , Bjm+1

is a simple path. Since all VCs are assumed to hold, we have that

Cjkjk+1
:

ϕ(jk) ∧ ψ(κ(jk)) ∧ α ∧ ρ
T

jkjk+1 →

∃V
S

′ : (
∨

Π∈Paths(κ(jk),κ(jk+)) ρ
S

Π) ∧ α′ ∧ ϕ′(jk+1) ∧ ψ′(κ(jk+1))

holds for everyk = 1, 2, . . ..

We can show that there exists a computation ofP
S
:

σ
S

: S1, . . . , S2, . . . ,

such thatS1 visits cut-pointBκ(j1), S2 visits cut-pointBκ(j2), and so on, and

such that the source state visiting cut-pointBκ(jr) is compatible with the target

2concatenation which does not duplicate the node which appears at the end of the first path and
the beginning of the second path
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state visiting cut-pointBjr, for everyr = 0, 1, . . ..

Consider now the case that the target computation is terminating. In this case,

the last statesr of σ
T

visits some terminal cut-pointBjr. It follows that the com-

putationσ
S

is also finite, and its last stateSm (σ
T

andσ
S

are often of different

lengths) visits cut-pointB(κ(jr)) and is compatible withsr. Thus, every termi-

nating target computation corresponds to a terminating source computation with

compatible final states.

In the other direction, letσ
S

: S0, . . . , Sn be a terminating source computa-

tion. Let σ
T

: s0, s1, . . . be the unique (due to determinism) target computation

evolving from the initial states0 which is compatible withS0. If σ
T

is terminating

then, by the previous line of arguments, its final state must be compatible with the

last state ofσ
S
. If σ

T
is infinite, we can follow the previously sketched construc-

tion and obtain another source computationσ̃
S

: S̃0, S̃1, . . . which is infinite and

compatible withσ
S
. Since bothS0 andS̃0 are compatible withs0 they have an

identical observable part. This contradicts the assumption thatP
S

is determinis-

tic and can have at most a single computation with a given observable part of its

initial state.

It follows that every terminating source computation has a compatible termi-

nating target computation.
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3.3 Quantifier Elimination in VALIDATE

As mentioned in Section 3.1, the verification condition in ruleVALIDATE (4) con-

sists of existential quantifiers that cannot always be eliminated. Elimination of

the existential quantifier is desirable because makes it more likely that the gener-

ated verification conditions can be checked automatically. The following theorem

shows that the rules are equivalent under the assumption that the transition sys-

tems are deterministic.

Theorem 1 The following verification conditions are equivalent:

ϕi ∧ ψκ(i) ∧ α∧ ρ
T

ij → ∃V
S

′ : (
∨

π1∈Paths(κ(i),κ(j))

ρ
S

π1
)∧ α′ ∧ ϕ′j ∧ψ′

κ(j), (3.1)

and

ϕi ∧ ψκ(i) ∧ α ∧ ρ
T

ij ∧ (
∨

π2∈Paths(κ(i))

ρ
S

π2
) → α′ ∧ ϕ′j ∧ ψ′

κ(j). (3.2)

Proof:

In one direction, suppose (3.2) holds and suppose that we haveϕi ∧ α ∧ ρ
T

ij . By

definition ofρ andα, it follows thatPC = κ(i). Without loss of generality, we

can assume that at every non-terminal source cut-point, some transition must

be taken and that at terminal source cut-points, no transitions are enabled. It
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then follows that(
∨

π2∈Paths(κ(i)) ρ
S

π2
) holds. Thus, by (3.2), we haveα′ ∧ ϕ′j .

But fromρ
T

ij ∧ α′, PC′ = κ(j) follows. We thus have(
∨

π1∈Paths(κ(i),κ(j)) ρ
S

π1
) ∧

α′ ∧ ϕ′j , and so clearly we also have∃V
S

′ : (
∨

π1∈Paths(κ(i),κ(j)) ρ
S

π1
) ∧ α′ ∧ ϕ′j .

In the other direction, suppose that (3.1) holds and suppose that we have

ϕi ∧ α ∧ ρ
T

ij ∧ (
∨

π2∈Paths(κ(i)) ρ
S

π2
). In particular, one of the transitionsρ

S

π2
is

true. By (3.1), we have∃V
S

′ : (
∨

π1∈Paths(κ(i),κ(j)) ρ
S

π1
) ∧ α′ ∧ ϕ′j. Thus, there

exists some successor state of the current-state named byV
S

such that one of

the transitionsρ
S

π1
is true together withα′ andϕ′j. But because the transition

system is deterministic, the next-state variablesV
S

′ are uniquely determined by

the present-state variablesV
S
. In other words, the existence of a successor state

which satisfiesα′ ∧ ϕ′j implies that every successor state satisfiesα′. Since

ρ
S

π2
names a specific successor state, this successor state satisfiesα′ ∧ ϕ′j.
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1. Establish acontrol abstractionκ : CP
T
→ CP

S
that maps initial and termi-

nal points of the target into the initial and terminal points of the source.

2. For each target cut pointi in CPT , form antarget invariantϕ(i) that may
refer only to concrete (target) variables.

3. For each source cut pointi in CP
S
, form asource invariantψ(i) that may

refer only to abstract (source) variables.

4. Establish, for each target cut pointi in CPT , adata abstraction

α(i) : (v1 = E1) ∧ · · · ∧ (vn = En)

assigning tosomenon-control source state variablesvk ∈ VS
an expression

Ek over the target state variables. Note thatα(i) is allowed to be partial,
i.e., it may contain no clause for some variables. It is required that, for
everyobservablevariableV ∈ O

S
(whose target counterpart isv) and every

terminal pointt, α(t) has a clause(V = v).

5. For each cut pointsi andj such that there is a simple path fromi to j in the
control graph ofP

T
, form the verification condition

Cij :

(
ϕ(i) ∧ ψ(κ(i)) ∧ α(i) ∧ ρ

T

ij →
∃V

S
′ : ρS

κ(i),κ(j) ∧ α′(j) ∧ ψ′(κ(j)) ∧ ϕ′(j).

)

6. Establish the validity of all the generated verification conditions.

Figure 3.1: The Proof Rule VALIDATE
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B0 N <- 500
Y <- 0
W <- 1

B1 WHILE (W <= N)
B2 BLOCK

W <- W + 2 * Y + 3
Y <- Y + 1
ENDBLOCK

B4
(a) Input Program

B0 .t264 <- 0
y <- 0
w <- 1

B1 {phi1: .t264 = 2 * y}
w <- .t264 + w + 3
y <- y + 1
.t264 <- .t264 + 2
IF (w <= 500) GOTO B1

B2
(b) Optimized Code

Figure 3.2: Example : Source and Annotated Target Programs
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3.4 Transitivity of VALIDATE Proofs

In the previous section, we present ruleVALIDATE and prove its soundness in es-

tablishing the equivalence between two transition systems. One question people

often ask is the completeness of this proof rule. We claim that this rule can be

applied to validate transformations that arestructure-preserving, i.e., transforma-

tions that do not modify the structure of the source program in a major way. A

formal description of structure preserving transformations is that, for some cut-

point sets of source and target programs, there exists Floyd-like data mapping

between corresponding cut points in source and target. But this definition is ex-

actly what ruleVALIDATE attempt to establish, hence is not helpful in identifying

the scope of ruleVALIDATE .

Although we are cannot precisely characterize the set of transformations rule

VALIDATE is capable of verifying, we can still check whether the rule can be

applied to verifying individual transformations. Our efforts to find out the com-

pleteness of ruleVALIDATE can start with finding out the set of individual opti-

mizations performed by compilers that ruleVALIDATE can handle. For instance,

copy propagation and constant folding do not modify control flow graph at all,

thus can be verified by ruleVALIDATE ; if simplifications eliminate a branch inIF

conditional, with a careful control abstraction, they can still be verified by rule

VALIDATE . A list of individual compiler optimizations that can be handled by

rule VALIDATE will be described in detail in the next chapter. Transformations

performed by compilers consist of a sequence of individual optimizations, not
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necessarily in any particular order, hence it is desirable for ruleVALIDATE to be

transitive, i.e. if each individual optimizations can be handled by ruleVALIDATE ,

so should their composition. Having ruleVALIDATE transitive will also meet with

our intuition, because the composition of two structure-preserving optimizations

should also be structure-preserving.

In order to formally define the transitivity ofVALIDATE rule, we first define

what aVALIDATE proof is. A VALIDATE proof P = 〈κ, α, ϕ, ψ〉 that establishes

the refinement between a source programP
S

and a target programP
T

consists of

• a control mappingκ : CP
T
→ CP

S
,

• a data abstractionα :
∧

i∈CP
T

(pc = i→ α(i)),

• a target invariantϕ :
∧

i∈CP
T

(pc = i→ ϕ(i)),

• a source invariantψ :
∧

i∈CP
S

(PC = i→ ψ(i)).

The transitivity of aVALIDATE proof can be described as follows:

if there exist proofs of ruleVALIDATE for transformationsF1 and

F2, there also exist a proof of ruleVALIDATE for the transformation

obtained by performingF1 followed byF2.

In general, aVALIDATE proof is not transitive. However, we show, some “well

formed” applications of ruleVALIDATE are. Before we formally define “well

formedness”, we make the assumption that the programs we consider are repre-

sented in SSA form, and we definelive variablesandvisible variablesof programs
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in SSA form. In the rest of this section, We define a variable to belive if it con-

tributes to the computation of observable variables. To be presice, the set oflive

variablescan be determined with a recursive approach as follows:

1. mark a variable to be live if it isobservable, where a value isobservable

means that it either is definitely returned or output by the procedure or it

affects a storage location that may be accessible from outside the procedure;

2. mark a variable to be live at locationi if its value is used to compute the

marked variable.

3. repeat the previous step until the process stabilized.

We define variablev to bevisible at locationi if the location wherev is defined

dominates locationi. We define aVALIDATE proof P = 〈κ, α, ϕ, ψ〉 to bewell

formedif

1. data abstractionα(i) at each target cut pointi has the form

α(i) :
∧
u∈U

(u = Eu)

whereU ⊂ V
S

is the set oflive variables that arevisible at locationκ(i),

andEu is an expression over targetlive variables that arevisibleat location

i;

2. target invariantϕ(i) at a target cut pointi is a boolean expression over the

set of targetlive variables that arevisible at locationi in the target;
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3. source invariantψ is T.

In the above definition, we require that the data abstraction correlates every live

source variable to a target expression, since, without having the value of a live

source variable encoded as a target expression at a check point, we may lose track

of its value in the computation after that check point, hence we will not be able

to establish the data abstraction at the next check point. We also require that dead

variables appears neither in the data mapping nor in the target invariant, since

dead variables do not contribute to the computation of “useful” information in the

programs. Finally, we require that the source invariant be trivial because it can

always be encoded as part of the target invariant. That is, for a source invariant

ψ(κ(i)) at source cut pointκ(i) over the set of live variable{u1, . . . , um} that are

visible atκ(i), and a data abstraction

α(i) : (u1 = Eu1
) ∧ . . . ∧ (u

k
= Eum

)

that mapsu
l

at source locationκ(i) to Eu
l

at target locationi, we can substitute

eachu
l
in ψ(κ(i)) with Eu

l
and obtain a target invariant

ψ(κ(i))[Eu1
/u1, . . . , Eum

/um].

Theorem 2 Let P
S

= 〈V
S
,O

S
,Θ

S
, ρ

S
〉, P

T1
= 〈V

T1
,O

T1
,Θ

T1
, ρ

T1
〉 andP

T2
=

〈V
T2
,O

T2
,Θ

T2
, ρ

T2
〉 be comparableTS’s, whereP

S
is the source,P

T1
is a refine-

ment ofP
S
, andP

T2
is a refinement ofP

T1
. If there exist well-formedVALIDATE
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proofs that establish the refinement fromP
S

to P
T1

, and fromP
T1

to P
T2

, then

there also exists a well-formedVALIDATE proof that validates the refinement di-

rectly fromP
S

toP
T2

.

Proof:

Let P1 = 〈κ1 , α1, ϕ1 , T〉 be a well-formed proof for the refinement fromP
S

to P
T1

, Let P2 = 〈κ2 , α2, ϕ2 , T〉 be a well-formed proof for the refinement

from P
T1

to P
T2

. Let (i2 , j2) be a pair of cut points inP
T2

. Let (i1 , j1) be the

corresponding cut points inP
T1

, and(i, j) be the corresponding cut points in

P
S
. That is,

i1 = κ2(i), j1 = κ2(j)

and i
S

= κ
1
◦ κ

2
(i), j

S
= κ

1
◦ κ

2
(j).

In proof P2, if there exists a simple path fromi2 to j2 in the control graph of

P
T2

, there exists a valid verification condition

C
T1T2

i2j2
:

 ϕ
2
(i

2
) ∧ α

2
∧ ρ

T2

i2j2

→ ∃V
T1

′ : ρ
S

i1j1
∧ α′

2
(j2) ∧ ϕ′

2
(j2)

 (3.3)

Similarly, in proofP1, for the pair of cut pointsκ
2
(i), κ

2
(j) in P

T1
, there exists

valid verification condtion

C
ST1

i1j1
:

 ϕ1(i1) ∧ α1(i1) ∧ ρ
T1

i1j1

→ ∃V
S

′ : ρ
S

ij
∧ α′

1
(j1) ∧ ϕ′

1
(j1)

 (3.4)
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Combining formula 3.3 and formula 3.4, we obtain a valid formula

 ∧ ϕ2(i2) ∧ ρ
T2

i2 j2

∧ ∃V
T1

:
(
α

2
(i

2
) ∧ ϕ

1
(i

1
) ∧ α

1
(i

1
)
)
 →

∃V ′
S

:

 ϕ′
2
(j2) ∧ ρ

S

ij

∧ ∃V ′
T1

:
(
α′

2
(j2) ∧ ϕ′

1
(j1) ∧ α′

1
(j1)
)
 .

(3.5)

Formula 3.5 is similar to our desired form, however, it has two clauses of the

form

∃V
T1

:
(
α1(i1) ∧ α2(i) ∧ ϕ1(i1)

)
(3.6)

(first in a non-primed, and second in a primed form) that violate the desired

form. Thus, it is suffices to show that formula 3.6 can be separated to a well-

formed data abstraction fromV
S

to V
T2

and an invariant ofP
T2

.

Let U1 = {u1, . . . , um} ⊆ V
T1

be the set of live variables that are visible at

locationi1 in programT1. ProofP1 is well formed, hence theV
T1

variables that

appear free inα
1
(i

1
) andϕ

1
(i

1
) are inU

1
. ProofP2 is also well formed, hence

we have the data mapping

α2(i2) : (u1 = Eu1
) ∧ . . . (um = Eum

) (3.7)

whereEu1
, . . . , Eum

are expressions over live variables inV
T2

that are visible

at locationi2 .

By substituting, for eachk = 1..m, u
k

in α1(i1) andϕ1(i1), withEu
k

we can
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eliminate the quantifiers in formula 3.6 and obtain an equivalent formula

α1(i1)[Eu1
/u1, . . . , Eum

/um] ∧ ϕ1(i1)[Eu1
/u1, . . . , Eum

/um]

where the first conjunct is a well-formed data mapping fromP
S

to P
T2

and the

second conjunct is an invariant ofP
T2

.

Noticing that

∃V
T1

:
(
α

1
(i

1
) ∧ α

2
(i

2
)
)
⇐⇒ α

1
(i

1
)[Eu1

/u
1
, . . . , Eum

/um]

and ∃V
T1

:
(
ϕ1(i1) ∧ α2(i2)

)
⇐⇒ ϕ1(i1)[Eu1

/u1, . . . , Eum
/um],

we can construct aVALIDATE proofP = 〈κ, α, ϕ, ψ〉 that establishes the refine-

ment fromP
S

toP
T2

with

• contorl abstractionκ = κ1 ◦ κ2 ,

• data abstractionα :
∧

i∈CP
T2

(pc = i→ α(i)) where

α(i) : ∃V
T1

: (α1(κ(i)) ∧ α2(i)) for eachi ∈ CP
T2

,

• target invariantϕ :
∧

i∈CP
T2

(pc = i→ ϕ(i)) where

ϕ(i) : ϕ
2
(i) ∧ ∃V

T1
: (ϕ

1
(κ(i)) ∧ α

2
(i)) for eachi ∈ CP

T2
,

• source invariantψ = T,
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andP is well formed.
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Chapter 4

Proving Various Optimizations with

Rule VALIDATE

In the previous chapter, we present a proof rule calledVALIDATE for validating

structure preservingoptimizations. Essentially, to be able to apply the rule, it re-

quires that the loop structure be the same in the source and target programs. In this

chapter, we show how to apply this rule to validating a set of individual optimiza-

tions that are commonly implemented in compilers. For each optimization that

can be validated by ruleVALIDATE , we give a well-formedVALIDATE proof. Sec-

tion 4.1 discuss a series of data-flow analyses optimizations that make no changes

to control flow, while Section 4.2 covers a set of control-flow optimizations that

modify control flow but not in a major way. Still, there exist control-flow opti-

mizations that are beyond the capability of ruleVALIDATE . In Section 4.3, we

give two examples of optimizations that ruleVALIDATE cannot handle.
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4.1 Global Optimizations

In this section, we discuss a series of optimizations that add/remove/modify in-

structions without changing the data flow of a program.

For transformations that do not change data flow, we can assume that there

exists one-to-one correspondence between the program locations in source and

target programs. This can be achieved by addingSKIP at the location in source

where an instruction is inserted by the transformation and at the location in target

where an instruction is removed. For such source and target programs, we can use

a trivial control mapping, i.e. we take the set of program locations as cut-point

set for both programs, and haveκ(i) = i for each cut point. For presentation’s

purpose, we only present the data mapping and the target invariant at the cut points

at which changes happen. The data mapping and the invariant at other cut points

are either trivial, or can be easily obtained by propagating the information from

the point where changes happen. Besides, we assume source and target programs

are written in SSA form. LetV be the set of variables that appear in both source

and target. To simplify the notation, for a variablex ∈ V, we denote byX andx

the corresponding variables in source and target systems, respectively.

4.1.1 Algebraic Simplification and Reassociation

Algebraic simplificationsuse algebraic properties of operators or particular operator-

operand combinations to simplify expressions.Reassociationrefers to using spe-

cific algebraic properties – namely, associativity, commutativity, and distributivity
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– to divide an expression into parts that are constant, loop-invariant(i.e., have the

same value for each iteration of a loop), and variables. In general, this class of

optimizatons can be described as below, where the source and target programs are

the same except that the expressions assgined tox at locationi are different.

. . .

Li : X ← expr1

Li + 1 : . . .

Source

. . .

Li : x← expr2

Li + 1 : . . .

Target

To apply ruleVALIDATE to this case, we define

α(i) :
∧
v∈V

(V = v)

ϕ(i) : T

and the non-trivial verification condition is

Ci,i+1 :

 α(i) ∧ (x′ = expr1) ∧ pres(V
T
− {x})

∧ (X ′ = expr2) ∧ pres(V
S
− {X})

→ α′(i+ 1)

If the transformation is correct,expr1 andexpr2 evaluate to the same value, which

means(X = x) holds after the transition and this condition is valid.

4.1.2 Constant Propagation

Constant propagationis a transformation that, given an assignmentx <- c for

a variablex and a constantc, replaces later uses ofx with uses ofc as long as
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intervening assignments have not changed the value ofx. Sparse conditional con-

stant propagationdetects variables that are constant by deriving information from

conditionals. The following programs represents a typical scenario of constant

propagation: variabley has a constant valuec when the execution gets toLi,

hence the use ofy atLi is replaced byc in the target.

. . .

Li : X ← Y op Z

Li + 1 : . . .

Source

. . .

Li : x← c op z

Li + 1 : . . .

Target

To apply ruleVALIDATE to this case, we define

α(i) : (Y = c) ∧
∧

v∈V−{y}
(V = v)

ϕ(i) : T

4.1.3 Value Numbering

Value numberingis one of the several methods for determining that two compu-

tations are equivalent and eliminating one of them. It associates a symbolic value

with each computation without interpreting the operation performed by the com-

putation, but in such a way that two computations with the same symbolic value

always compute the same value.

Two varaibles are congruent to each other if the computation that define them

have identical operators (or constant values) and their corresponding operands are

congruent.
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. . .
Li : A← op(Y 1, . . . , Y m)

. . .
Lj : B ← op(Z1, . . . , Zm)
Lj + 1 :

Source

. . .
Li : a← op(y1, . . . , ym)

. . .
Lj : b← a
Lj + 1 :

Target

A typical optimization of value numbering is described by the programs be-

low: in source program, variablesa andb are found to be congruent, so in target

programb gets the value ofa instead of the expressionop(z1, . . . , zm). Notice

thata andb being congruent means that the corresponding operands of operator

op in source and target are congruent, which entails that, for eachk = 1 . . .m,

(yk = zk).

To apply ruleVALIDATE to this case, we define

α(j) :
∧

k=1..m

(Zk = yk) ∧
∧

v∈V−{z1,...,zm}
(V = v)

ϕ(j) : a = op(y1, . . . , ym)

with which we can show thatB = b holds after the transitions atLj in source and

target are taken.

4.1.4 Copy Propagation

Copy propagationis a transformation that, given an assignmentx ← y for some

variablesx andy, replaces later uses ofx with uses ofy, as long as intervening
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instructions have not changed the value of eitherx or y. Following programs

describe the scenario of copy propagation.

. . .

Li : A← X op Z

Li + 1 : . . .

Source

. . .

Li : a← y op z

Li + 1 : . . .

Target

To apply ruleVALIDATE to such a transformation, we define

α(i) : (X = y) ∧
∧

v∈V−{x}
(V = v)

ϕ(i) : T

The data abstraction atLi mapsX to y and every other source variablesV

to the correspondingv in target. Thus, the right-hand-side expressions atLi in

source and target evalute to the same value, and we obtainA = a atLi + 1.

4.1.5 Redundancy Elimination

The following three optimizations that deal with elimination of redundant compu-

tations are discussed here:

• The first one,common-subexpression elimination, finds computations that

are always performed at least twice on a given execution path and eliminate

the second and later occurences of them. This optimization requires data-

flow analysis to locate redundant compuations.
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• The second,loop-invariant code motion, finds computations that produce

the same result every time a loop is iterated and moves them out of the loop.

While this can be determined by an independent data-flow analysis, it is

usually based on using ud-chains.

• The third,partial-redundancy elimination, moves computations that are at

least partially redundant (i.e., those that are computed more than once on

some path through the flowgraph) to their optimal computation points and

eliminates totally redundant ones. It encompasses common-subexpression

elmination, loop invariant code motion, and more. The data-flow analyses

for this optimization is more complex than any other case we consider, and

it requires the computation a series of local and global data-flow properties

of expressions.

As readers may have noticed, to validate an optimiztion, what matters is not

how the optimization is implemented, butwhat it produces. In the case of redun-

dancy elimination, the first two optimizations mentioned above are both subcases

of the third one. Therefore, even though these the first two optimizations are com-

puted by totally different approaches from the third, for the purpose of validation,

a VALIDATE proof for partial redundancy elimination can also be applied to the

other two optimizations.

We consider the following programs which is a representative case of redun-

dancy elimination.
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Lj : A← Y op Z

Li3 : skip

Li1 : skip Lj2 : skip

Source

Lj : a← t3

Li3 : t3 ← φ(t1, t2)

Li1 : t1 ← y op z Lj2 : t2 ← y op z

Target

In the above control-flow graphs, we assume that execution reachesLi3 from

eitherLi1 or Li2, andLi3 dominatesLi. Variablest1, t2 and t3 are temporary

variables introduced during optimization. To apply ruleVALIDATE to this case,

we define

α(j) :
∧

v∈V(V = v)

ϕ(j) : (t1 = y op z) ∧ (t2 = y op z) ∧ (t3 = t1 ∨ t3 = t2)

With the invariantϕ(j) which implies(t3 = y op z), we can show thatA = a

holds after taking the transitions atLj in source and target.

4.1.6 Code Motion

Code motionis to move identical instructions from basic blocks to their common

ancestor (known as code hoisting) or descendent in flow graphs (known as code

sinking).
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The transformation of code hoisting is represented in the flowgraphs below,

whereLi is a common ancestor ofLj1 andLj2.

Lj2 : X2 ← Y op ZLj1 : X1 ← Y op Z

Li : skip

Source

Lj2 : skipLj1 : skip

Li : x← y op z

Target

To apply ruleVALIDATE , we define

α(j1) :
∧

v∈V−{X1}(V = v)

ϕ(j1) : (x = y op z)

It is straightforward to show thatX1 = x holds after the instructions atLj1 + 1

are executed. Besides,X1 = x is not guaranteed along the path fromLi to Lj1,

but when the code hoisting is performed safely, there should not exist use ofx

along the paths, hence not havingX1 = x in the data abstraction does not affect

the validity of the verification conditions. The motion of the instruction atLj2 can

be validated analogously.

Next, we show the transformation of code sinking in the following flowgraphs,

whereLk is the location where the paths fromLi1 and fromLi2 join, andLk

dominatesLj.

48



Li1 : X1 ← Y op Z Li2 : X2 ← Y op Z

Lk : X← φ(X1, X2)

Lj : skip

Source

Li1 : skip; Li2 : skip

Lk : skip

Lj : x← y op z;Lj:

Target

To apply ruleVALIDATE , we define

α(j) : (X = y op z) ∧
∧

v∈V−{X}(V = v)

ϕ(j) : T

It is straightforward to show thatX = x holds atLj + 1. The invariantϕ(j) is

derived from the assertion(X1 = y op z) ∧ (X = X1) ∨ (X2 = y op z) ∧ (X =

X2) propagated fromLk.

4.1.7 Loop Optimizations

The optimizations covered in this subsection apply directly to the class ofwell-

behaved loops[Muc97] where the loop’s iterations are counted by an integer-

valued variable that proceeds upward (or downward) by a constant amount with

each iteration. All of the following three optimizations involve manipulation on

induction variables, i.e. those whose value is incremented (or decremented) by a
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constant amount with each iteration.

Strength Reduction replaces expensive operations, such as multiplications , by

less expensive ones, such as additions. To perform strength reduction for a loop,

one need to devide the loop’s induction variables intobasic induction variables,

which are explicitly modified by the same constant amount during each iteration

of a loop, anddependent induction variablesin the class of a basic induction vari-

able, which are computed by adding or multiplying that basic induction variable

by a constant. Assume thati is a basic induction variable incremented by a con-

stantdwith each iteration, andj is in the class ofiwith linear equationj = b∗i+c.

Let db be a value of the expressiond ∗ b. The following programs demonstrate

strength reduction applied to induction variablej.

To apply ruleVALIDATE to this case, we define

α(j) :
∧
v∈V

(V = v)

ϕ(j) : (t1 = b ∗ i1 + c) ∧ (t2 = b ∗ i2 + c) ∧ (t3 = b ∗ i3 + c)

The three clauses in the invariantϕ(j) is propagated from the instructions atLi−1,

Lk andLi, respectively. With the clause(t2 = b ∗ i3 + c) in ϕ(j), it is straightfor-

ward to see thatJ1 = j2 holds after the instructions atLj are executed.

Linear-Function Test Replacement replaces the loop-closing test by another

induction variable in that context. It is beneficial when an induction variable is
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Li− 1 : skip

Li : I3 ← φ(I1, I2)

Lk : I2 ← I3 + d

Lj : J1 ← b ∗ I2 + c

Source

Li− 1 : t1 ← b ∗ i1 + c

Li : i3 ← φ(i1, i2)
t3 ← φ(t1, t2)

Lk : i2 ← i3 + d
t2 ← t3 + db

Lj : j1 ← t2

Target

used only in the loop-closing test, and can be removed after being replaced.

To verify a linear-fucntion test replacement that replacing a loop-closing test

f(i) by g(j) wherei andj are induction variables andf andg are linear functions,

essentially we need to showf(i)↔ g(j) for the valuesi andj take in the same

iteration. Havingi andj as induction varialbes, we can always find a linear fucn-

tion h such thatj = h(i) at the point of loop-closing test. If the test replacement

is correct, we should havef(i)↔ g(j) valid under the constraintj = h(i).

Here is an example of linear-function test replacement.
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Y N

I1← 1
J1← 0

I3 ← φ(I1, I2)
J3 ← φ(J1, J2)

Lj : (I3 > 100)?

Li : . . . Lj + 1 : . . .
I2 ← I3 + 1
J2 ← J3 + 4

Source

Y N

i1← 1
j1← 0
t ← 396

i3 ← φ(i1, i2)
j3 ← φ(j1, j2)

Lj : (j3 > t)?

Li : . . . Lj + 1 : . . .
i2 ← i3 + 1
j2 ← j3 + 4

Target

To apply ruleVALIDATE to this example, we define

α(j) : (I1 = 1) ∧ (I2 = j2/4 + 1) ∧ (I3 = j3/4 + 1) ∧
∧

v∈V−{i1,i2,i3}
(V = v)

ϕ(j) : (j1 = 0) ∧ (t = 396)

The clause(I3 = j3/4+1) in α(j) implies that the test conditions(I3 > 100) and

(j3 > 396) are equivalent, hence the two verification conditionsCj,j+1 andCj,i

are valid. Notice that the data abstraction atLj mapsI3 to an expression overj3

instead ofi3. This is because, after the test replacement,i3 can be dead if it is not

used after the loop, while a well-formed data abstraction requires to map source

variables to expressions over live target variables.
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Removal of Induction Variables In addition to strength-reducing induction

variables, we can often remove them entirely when they serve no useful purpose

in the program. There are several situations where induction variables can be

removed:

1. The variable may have contributed nothing to the computation to begin with.

2. The variable may become useless as a result of another transformation, such

as strength reduction.

3. The variable may have been created in the process of performing a strength

reduction and then become useless as a result of another one.

4. The variable may be used only in the loop-closing test and may be replace-

able by another induction variable in that context.

Removal of induction variables is a subcase of dead code elimination that will

be discussed next.

4.1.8 Dead Code Elimination

A variable isdeadif it is not used on any path from the location in the code where

it is defined to the exit point of the routine in question. An instruction isdeadif

it computes only values that are not used on any executable path leading from the

instruction. Programs may include dead code beofre optimization, but such code

is much more likely to arise from optimization; removal of induction variables

mentioned in Subsection 4.1.7 is an example that produces dead code; and there
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are many other. Many optimizations creates dead code as part of a division of

labor priciple: keep each optimization phase as simple as possible so as make it

easy to implement and maintain, leaving it to other phase to clean up after it.

The maximal set of dead instructions can be determined with an optmistice

recursive approach as follows:

1. mark all instructions that compute observable values (also known asessen-

tial values, where a value isobservableif it either is definitely returned or

output by the procedure or it affects a storage location that may be accessi-

ble from outside the procedure;

2. mark instructions that contribute to the computation of the marked instruc-

tions;

3. repeat the previous step until the process stabilized. All unmarked instruc-

tions are dead and may be deleted.

Dead code elimination causes the data mapping to be partial: if a variablex

has dead value at a set of locationsL and the instruction that assigns that dead

value tox is deleted in the target program, the mapping fromx’s abstract version

to its concrete versionX = x does not hold at any location inL. However, since

the dead values does not contribute to the compuation of observable values, the

data abstraction can still establish the equality between observable values in the

source and their counterpart in the target and all verification conditions are still

valid.
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4.2 Control Flow Optimizations

Here we discuss optimizations that apply to the control flow of a procedure that

are usually carried out on programs in a low-level intermediate code. Such opti-

mizations often produce longer basic blocks, thus have the potential to increase

available instruction-level parallelism.

In Section 3.1, we claim that ruleVALIDATE is capable of handling all the

optimizations that do not involve major structure modification. Control flow opti-

mizations are a potentially problematic category to apply ruleVALIDATE , due to

changes of control flows in the target programs they produce. Surprising, most

of the commonly used control flow optimizations do fall into the category that

rule VALIDATE is capable to validate, which demonstrates the versatility of rule

VALIDATE . In the rest of this subsection, we discuss a list of control flow opti-

mizations that ruleVALIDATE can be applied to.

In order to apply ruleVALIDATE to control flow optimizations that modify

the control flow in the transformation while preserve the data flow, we need an

appropriate control mapping over carefully chosen sets of cut points in source

and target programs, and leave the data mapping to be trivial, i.e., for a program

variablev ∈ V, its abstract version and concrete version are equivalent at every

cut points, and the control variablesPC = κ(pc).

4.2.1 Unreachable-code elimination

Unreachable codeis code that cannot possibly be executed, regardless of the input
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data. In general, ruleVALIDATE is not able to validate unreachable-code elimi-

antion. As a matter of fact, the refinement relation established by ruleVALIDATE

allows computations in the target program to be a subset of those in the source,

hence will not detect the elimination of reachable code. However, under the as-

sumption that programs are deterministic, ruleVALIDATE establish the one-to-

one correspondence between computations in source and target. Thus, with a

control abstraction maps each location in the target to its corresponding loca-

tion in the source, and a trivial data mapping, we can establish the correctness

of unreachable-code elimination.

4.2.2 Straightening

Straighteningis an optimization that applies, in its most basic form, to pairs of

basic blocks such that the first has no successors other than the second and the

second has no predecessors other than the first. Since they are both basic blocks,

either the second one immediately follows the first one or the first of them must

end with an unconditional brach to the second. In both case, the transformation

fuses the two basic blocks into a single new block. Straightening does not modify

the “shape” of control graph. To be specific, if we represent source and target

as control flow graphs ofmaximal basic blocks, where each block is the longest

sequence of instruction such that only the first instruction may have more than

one entry and only the last instruction may have more than one exit, the two graph

are identical. Thus, we can choose the point right before each maximal basic

blocks as well as the terminating point in source and target as the set of cut-
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if (a>d) {
b = a;
if (a>d) || bool

d = b
else

d = c
}

Figure 4.1: An example with a condition that is a common subexpression

points in source and target, respectively, and establish a one-to-one mapping to

each corresponding pair of cut-points. Together with a trival data mapping and no

invariants, the validity of verification conditions is straightforward.

4.2.3 If simplifications

If simplificationsapply to conditional constructs; these optimizations can reduce

the number of conditional branches in a program. In its simplest form, if simplica-

tion apply toIF constructs with constant-valued conditions and remove the arm of

theIF which is unexecutable. A more complicated form of if simplification is the

occurrence of common subexpressions as conditions in anIF and in a subsequent

dependentIF; of course, the value of the variables involved must not have been

changed between the test. Such a case is illustrated in Fig. 4.1. The secondIF test

(a > d) ∨ bool is guaranteed to be satisfied becausea > d was satisfied in the

first IF test, and neithera nord has been changed in between.

In general, if simplifications apply to conditional jump if (i) the condition is

constant-valued (ii) a static analysis concludes that the condition evaluates to a
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constant every time an execution reaches that conditional jump. Such simplifica-

tions can be viewed as a two-step process: in step one, the conditional jump is

either removed or replaced by an unconditional jump; in step two, the code made

unreachable becaue of step one is removed. Here, we only give the proof of step

one. The proof of step two can be found above inunreachable-code elimination,

and the synthesis of twoVALIDATE proofs can be found in Section 3.4.

Below are the programs describing a transformation that removes a conditional

jump when the condition always evaluates to be false, and proof of the transfor-

mation. The cases where the conditional jump always take the false branch can be

validated analogically.

. . .

Li : truebr cond, Lj

Li + 1 : . . .

Source

. . .

Li : skip

Li + 1 : . . .

Target

To validate this transformation, we choose data abstraction and control ab-

straction to be trivial. We know that the conditioncond atLi is statically decided

to be true, which means there exists an boolean assertionγ being an invariant at
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Li, such thatγ → cond. The non-trivial verification condition, in this cases, is

Ci,i+1 :



α(i) ∧ γ

∧ (pc = i ∧ pc′ = i+ 1 ∧ pres(V
T
))

∧ ((PC = i ∧ PC′ = i+ 1 ∧ cond ∧ pres(V
S
)) ∨

(PC = i ∧ PC′ = j ∧ ¬cond ∧ pres(V
S
)))


→ α′(i+ 1)

Due to the factγ → cond, the second disjunct of source transition relation cannot

be satisfied, andPC′ can only gets(i + 1), hence we havePC′ = pc′ holds in the

right hand side of the implication. This verification condition is valid.

4.2.4 Loop inversion

Loop inversion, in source-language terms, transforms aWHILEloop into a RE-

PEATloop. In other words, it moves the loop-closing test from before the body of

the loop to after it. This has the advantage that only one branch instruction need

be executed to close the loop, rather than one to get from the end back to the be-

ginning and another at the beginning to perform the test. The following programs

demonstrate the transformation fo loop inversion.
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NY

Li : bool?

Li+ 1 : . . .

Lj : goto Li

Lk : . . .

Source

NY

NY

Li : bool?

Li + 1 : . . .

Lj : bool?

Lk : . . .

Target

To apply ruleVALIDATE to verifying this example, we choose the cut-point

sets to consist of every locations for both source and target, and define the control

abstraction as

κ(loc) =


i if loc = j,

l otherwise.

With a trivial data mapping and no invariant, we can obtain a set of verifiaiton

conditions that are valid.

4.2.5 Tail merging

Tail merging, also known ascross jumping, is an optimization that always saves

code space and may also save time. It searches for basic blocks in which the last

few instructions are identical and that continue execution at the same location, ei-
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ther by one branching to the instruction following the other or by both branching

to the same location. What the optimization does is to replace the matching in-

structions of one of the blocks by a branch to the corresponding point in the other.

The transformation is demonstrated as follows:

Li− 1 : . . . Lj− 1 : . . .

Lj : X2 ← exprLi : X1 ← expr

Lk : X3 ← φ(X1, X2)

Lk + 1 : . . .

Source

Lj− 1 : . . .Li− 1 : . . .

Lk : X3 ← expr

Lk + 1 : . . .

Target

To apply ruleVALIDATE to verifying this example, it is crucial to selecting the

right cut points in the source and target programs. LetL
S

andL
T

be the set of

program locations in source and target, respectively. We take

CP
S

= L
S
− {k}

CP
T

= L
T
− {k}

With both the control mapping and the data mapping being trivial and no invari-

ants, we can obtain a set of verification conditions that are all valid.
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4.3 Beyond RuleVALIDATE

Although we have already shown that transformations performed by many control-

flow optimizations are considered structure-preserving by ruleVALIDATE , there

still exist some transformations that modify a program’s structure in one way or

another such that the rule fails to apply. Next, we give two examples of such

transformations.

4.3.1 Loop Simplification

A loop whose body is empty can be eliminated, as long as the iteration-control

code has no live side effects. If the iteration-control code has the side effects, they

may be simple enough that they can be replaced by non-looping code. Following

is an example of such optimization:

L0 : falsebr (N ≥ 0), L1

i← 0

L2 : truebr (i > N)goto L1

i← i+ 1

goto L2

L1 :

Source

L0 : falsebr (N ≥ 0), L1

i← N + 1

L1 :

Target

62



Since, in the source program, the only variable modified in the loop isi, and

value ofi at the point of loop termination must be(N + 1), in the target program,

the loop is replaced byi← N+1. Naturally, the control pointsL0 andL1 in target

corresponds toL0 andL1 in source, respectively. However, there is no control

point in target that can be related toL2, and it is not easy task to automatically

computing the transition relation fromL0 to L1 in source because we do not have

an algorithmic way to compute the transition relation for a loop. RuleVALIDATE

fails to apply to this example.

4.3.2 Unswitching

Unswitchingis a control-flow transformation that moves loop-invariant condi-

tional branches out of loops. For example, consider the C programs below. The

IF statement in the source has a loop invariant conditionk = 2, thus is moved

out of the loop in the target. Because theIF conditional has noelse part in the

source, we need to supply one in the target that sets the loop-control variablei to

its final value in case thati is live after the loop. Similar to what happens in loop

simplification, the transformation eliminates the loop in the source whenk = 2 is

not satisfied. Again, this is a transformation that ruleVALIDATE cannot handle.
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for (i=0;i<100;i++)

if (k=2)

a[i] = a[i] + 1;

Source

if (k=2)

for (i=0;i<100;i++)

a[i] = a[i] + 1;

else

i = 100;

Target
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Chapter 5

TVOC-SP: a Tool for Validating

Structure Preserving Optimizations

In Chapter 4, we described how to apply ruleVALIDATE to various structure-

preserving optimizations, given that each of such optimizations is performed in-

dividually. In practice, it is not always possible to have compiler output a trans-

formed program after each individual optimizations is performed. As a matter of

fact, even though compilers perform optimizations in multiple passes, they tend

to perform a group of optimizations in one single pass and leave the users no

clue of what optimiztions are performed and in which order they are applied. For

example, when working withORC compiler, the source and target programs we

take are the intermediate code the compiler produces right before and immedi-

ately after the global-optimization phase. In addition, we obtain a symbol table

from the compiler, which gives type information of program variables. In such
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a case, it is not possible for us to “compose” aVALIDATE proof as suggested in

Section 3.4. Instead, we build a tool calledTVOC-SP that attempts to use various

heuristics to generate proofs for transformations that are concatenation of multi-

ple global optimizations. In this chapter, we describe howTVOC-SP performs

its own control-flow and data-flow analyses to generate the ingredients including

control abstraction, data abstraction and invariants of source and target programs

to establish aVALIDATE proof. We use the source and target programs in Fig. 5.1

as a running example to demonstrate the generation of each ingredient.

L1  :    N 1  ß 5 00 
L2  :    Y 1  ß 0 
L3  :   W 1  ß 1 

L4  :    Y 2  ß !(   Y 1 ,  Y 3 )  
L5  :   W 2  ß !(  W 1 , W 3 )  
L6  :   W 2   "  N 1  

L7  :   W 3  ß W 2  + 2 × Y 2  + 3 
L8  :    Y 3  ß  Y 2  + 1 

L9  :   r etur n Y 2 

Y N  

(a) Source

L3  :     t 2  ß !(  t 1 ,  t 3  )  
L4  :   w 2  ß  !(  w 1 ,  w 3 )  
L5  :   w 3  ß  t 2  + w 2 + 3 
L6  :     t 3  ß t 2  + 2 
L7  :   w 3   "  5 00  

L1  :     t 1  ß 0 
L2  :   w 1  ß  0 

L8  :   y 1  ß t 3 / 2  
L9  :   r etur n y 1 

N  Y 

(b) Target

Figure 5.1: Example: a source program and its target transformed by a series of
optimizations: Constant folding, copy propagation, dead code elimination, control
flow graph optimization (loop inversion), and strength reduction, both in SSA
form.
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5.1 Control Abstraction

Cutpoint set Because global optimizations may add and delete instructions, or

eliminate whole branches, it is often the case that there exists no bijection between

locations in source and target programs. However, for our purposes, it suffices to

find a subset of program locations for the cutpoint set, as long as the symbolic

execution of simple paths between two cut points (i.e., paths that contain no inter-

mediate cutpoints) can be represented as transition relations.

Since all, or almost all, the global optimizations we are dealing with do not

add or eliminate loops, hence, there always is a bijection between the loops in

source and target programs. Besides, most of the global optimizations preserve

the control structure of loops, except for loop inversion where loop-closing test

is moved from the beginning of the loop body to the end. Hence, we chose the

cutpoint sets to consist of the initial and terminal locations of each program, as

well as the beginning of each loop’s body (since we are assuming SSA form, we

stipulate that the latter are chosen to beafter assignments ofϕ- functions).

For our example, the source cut-point set consists of locations{1, 7, 9} (the

initial location, terminal location, and the first location of the loop), while the

target cutpoint set consists of locations{1, 5, 9} (the initial location, terminal lo-

cation, and the first non-ϕ statement in the loop).

Control abstraction Control abstraction establishes one-to-one correspondence

between cutpoints in source and target. Since every program unit can be repre-

sented as a single-entry, single-exit control flow graph, control abstraction maps
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initial and terminal locations of the target to initial and terminal locations of the

source, respectively.

Since we choose a single cutpoint for each loop, the problem of mapping

cutpoints of loops is reduced to finding a mapping between the loops in source

and target. Given two control graphs, the problem of automatically identifying

corresponding loops in the two may be cost prohibitive. However, we assume

that compilers can provide annotations to programs inIR that will indicate the

statement numbers in both codes of loops that are expected to match.

The control mappingκ maps target cutpoints into source cutpoints. In our

example, we haveκ : {1 7→ 1, 5 7→ 7, 9 7→ 9}.

Paths and transition relation After choosing the cutpoint sets for source and

target programs, we compute, for both programs, the sets ofsimple paths, i.e.,

paths of locations that start and end at cutpoints and do not contain as intermediate

cutpoints. For our example, the set of simple paths in the source is:

CP PATHS =



1→ 2→ 3→ 4→ 5→ 6→ 7,

1→ 2→ 3→ 4→ 5→ 6→ 9,

7→ 8→ 4→ 5→ 6→ 7,

7→ 8→ 4→ 5→ 6→ 9


For each simple path, we compute its transition relation using the symbolic

simulator. For example, for the path[7 → 8 → 4 → 5 → 6 → 7] in the source,
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we have the transition relation:

(W ′
3 = W2 + Y2 + 3) ∧ (Y ′

3 = Y2 + 1) ∧ (Y ′
2 = Y ′

3) ∧ (W ′
2 = W ′

3)

∧ (W ′
2 ≤ N1) ∧ (N = N1) ∧ (Y = Y2) ∧ (W = W2)

∧ (N ′ = N1) ∧ (Y ′ = Y ′
2) ∧ (W ′ = W ′

2)

5.2 Data Abstraction

To construct data abstraction, we need to find, for each target cut pointi, a set

of equality relationsV = Ev that relates the value of a source variableV at

source locationκ(i) to the value of an target expressionEv at target locationi.

While this is, in general, a hard problem, we rely again on information supplied by

compilers, mostly in the form of existing annotation that are expressed in terms of

predicates of the form(U = v). To be specific, we noticed that, during compiler

optimizations, the names of program variables preserves inIR, and temporary

varaibles introduced during optimizations are often annotated with variable names

in the source program it corresponds to.

Thus, we can assume some base set of candidate dataX mapping of the form

(U = v), from which we choose the maximal subset that holds at target locations,

and takeα(i) to be their conjunction. The computation ofα(i) is described by the

following pseudo code:

{INITIALIZATION}

for each target cutpoint i

γ(i) := X
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α(i) =
∧

E∈X{E}

paths(i) = {set of all simple paths leading into i}

{FIX-POINT COMPUTATION}

repeat

for every path π in path(i)

j := start point of π

γ(i) := γ(i) ∩ {E ∈ γ(i) : ϕ
T
(j) ∧ ϕ

S
(κ(j)) ∧ α(j) ∧

ρ
T

π ∧ ρ
S

κ(j)κ(i) → prime(E) }

α(i) =
∧

E∈γ(i)E

until sets stabilize

Here,prime(E) is the “primed” version ofE, that is, when every variable is

replaced by its primed version.ϕ
T
(j) andϕ

S
(κ(j)) represent the source invariant

at locationj and the target invariant at locationκ(j), respectively. The generation

of invariants will be discussed in the next section. Since invariants are generated

for each program separately, they do not require the control or data mapping that

are inter-programs. Thus, for now we assume that we haveϕ
T
(i) andϕ

S
(j) for

every i ∈ CP
T

and j ∈ CP
S
. Note that while we chose the target transition

function that corresponds to the target pathπ, we take the matching source path

to be any path in between the two matchingπ-endpoints of the source. In fact, if

there is more then one matching source path, we should take the disjunction of the

transition relations of the matching source paths.

The procedure described above can be viewed as an iterative forward data-
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flow analysis operated on a lattice that consists of the powerset ofX ordered by

⊆. The flow functions ofγ can be solved by starting withX and descending

values in the lattice in each iteration until a fixpoint is reached. The validity of

the logic formula in the flow equation ofγ is decided by using a theorem prover.

Unlike iterative data flow analyses used in compiler optimizations, this procedure

applies a joint analysis on source and target programs.

In our example, we obtain in the data abstraction, e.g., e.g.,

α(1) : (W = w) ∧ (Y = y)

α(7) : (W = w)

α(9) : (W = w) ∧ (Y = y)

The data mappings we construct with the above algorithm is in a very restricted

form, i.e., it always maps a source variable to a target variable instead of a target

expression, and it gives rise to the question of whether such a data mappings is

sufficient to establish aVALIDATE proof. The answer is that, the part of data

abstraction that maps a source variable to a target expression (instead of a target

variable) can be encoded as part of the source invariant. For instance, a well-

formed data mapping

α(i) : (X = x) ∧ (Y = y) ∧ (Z = x+ y)

can also be expressed as the conjunction of a data mapping together and a source
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invariant as follows:

α(i) : (X = x) ∧ (Y = y),

ψ(κ(i)) : (Z = X + Y ).
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5.3 Generating Invariants

As mentioned above, invariant generation is the most challenging tasks that are

required in order to applyVALIDATE . In this section, we represent two methods

that both generates invariants: The first one is based on iterative data-flow analy-

sis, which is commonly performed by compilers; while the second one operates

directly on programs in SSA form. We believe it is both more efficient and gen-

erates more information than that data-flow based method. This is due to the fact

that the data-flow based method is purely syntactic, while the SSA-form based

method is also semantic.

5.3.1 Generating Invariants from Data-flow Analysis

Invariants that are generated by data flow analysis are of definitions that are carried

out into a basic blocks by all its predecessors. We outline here the procedure that

generates these invariants.

For a basic blockB, define:

kill(B) : setofB’s assignmentsy = e(x̄) some of whose terms are redefined

later inB

gen(B) : set ofB’s assignments none of whose terms are redefined later inB

Both kill(B) andgen(B) are easy to construct.TVOC-SP constructs two

other sets,in(B), that is the set of invariants upon entry toB, andout(B), that is the
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set of invariants upon exit fromB. These two sets are computed by the procedure

described in Fig. 5.2, wherepred(B) is the set of all basic blocks leading intoB.

For every block B
in(B) init {if BB is initial

then set of u = u0 for every variable u
else emptyset}

out(B) init emptyset

repeat for every block B
out(B) := (in(B) \ kill(B)) ∪ gen(B)
in(B) :=

⋂
p∈predB out(p)

until all sets stabilize

Figure 5.2: Procedure to Compute Invariants

Set operations and comparisons are performed syntactically. An obvious en-

hancement to our tool is perform those operations semantically. Another possible

enhancement is to add inequalities to the computed invariants, which are readily

available from the data flow analysis.

Even with the two enhancement mention above, the algorithm in Fig. 5.2 is

still not able to produce sufficient invariants for some compiler optimizations.

Consider the C programs in Fig. 5.3. Sparse conditional constant propagation

detects thatX = 1 is a constant in the source, hence replaces the use ofX at L2

by 1 and eliminatesX in the target. In order to establish the equivalence between

the source and target, we need to compute(X = 1) as an invariant of the source

program atL2. However, this is not an invariant that can be computed without

trying to evaluate conditionals.
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L0 : I = 1;
if(I==1)

X = I;
else

X = I + 1;
L1 : while (I<100)

I = I * 2;
L2 : Y = I + X;

(a) Source

L0 : i = 1;

L1 : while (i<100)
i = i * 2;

L2 : y = j + 1;
(b) Target

Figure 5.3: An example of sparse conditional constant propagation

5.3.2 Generating Invariants Based on SSA Form

Intuitively, the role of invariants inVALIDATE is to carry information in between

basic blocks. For a program in SSA form, such a task can be performed simply by

collecting all the definitions as well as the branching conditions that reach certain

program points, which can later be fed into theorem provers which are capable of

semantic reasoning to obtain more “hidden” information.

The following is an example that illustrate how invariant generation works on

programs in SSA form.

B0: if ¬c0 goto B2
B1: x1 ← 3

y1 ← 5
goto B3

B2: x2 ← 5
y2 ← 3

B3: x3 ← φ(x1, x2)
y3 ← φ(y1, y2)
z1 ← x3 + y3

B4:

Figure 5.4: An example program
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Observe that, no matter howc0 evaluates at B0,(z1 = 8) at B4. Rather than

attempting to directly detect(z1 = 8) as an invariant at B4, we first check the

assignments appearing in the locations that dominates B4, i.e., the definitions that

hold at B4. This leads us to computing(z1 = x3 + y3) as an invariant at B4, but

not to they desired(z1 = 8), which requires information about the values ofx3

andy3, which, in turn, depends on the branch conditionc0. By backtracking from

B4 to B0, we obtain:

((x3 = x1 ∧ y3 = y1 ∧ x1 = 3 ∧ y1 = 5 ∧ c0) ∨

(x3 = x2 ∧ y3 = y2 ∧ y2 = 3 ∧ x2 = 5 ∧ ¬c0))

∧ (z1 = x3 + y3)

(5.1)

as an invariant at B4, which implies that(z1 = x3 + y3 = 8).

Here we present a methodology that computes invariant for programs in SSA

representation. Assume we have a control flow graphG of a program in SSA form

whose loops are allnatural, i.e., strongly connected components with single entry

locations. (If some ofG’s loops are not natural,node splittingcan be used to trans-

forms the offensive loops.) We denote the entry node of a loop as a loop header.

We assume that each loop header has only one incoming edge from outside of the

loop. (When this is not the case, we introducepreheaders – new (initially empty)

blocks placed just before the header of a loop, such that all the edges that previ-

ously lead into the header from outside the loop lead into the preheader, and there

is a single new edge from the preheader to the header.)

Thus, we assume aCFGG where each node is a basic block. Since all loops in
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G are assumed to be natural,G’s edges can be partitioned into the set of backward

edges (or back edges) and the set of forward edges. The nodes ofG and the

forward edges define a dag that induces a partial order among the nodes. For a

program in SSA form, a variable’s definition always reaches descendents of the

node where it is defined. Hence, the solution to the equations in Fig. 5.5 results

in a safe propagation of invariants in the ancestor of the node into the node’s

invariant.

We follow the standard notation, and two nodex, y ∈ G, we say thatx domi-

natesy if every path from the entry ofG into y passes throughx. We say thatx is

an immediate dominatorof y if every dominator ofy is eitherx or else is strictly

dominated byx. The immediate dominator of a nodey is denoted byidom(x).

For a nodey ∈ G, we denote byGidom(x) the graph obtained fromG by removing

all edges that lead intoidom(x), and then removing all the nodes and edges that

do no reachx.

Given a CFG G and a nodex ∈ G, let assign(x) be the set of nonφ-

assignments inx. If x is not a loop header, we define:

gen(x) =
∧

(v:=exp)∈assign(x)

(v = exp).

The expressiongen(x) describes the invariants generated byx regardless of its

environment.

For a nodex with an immediate successory, we denote bycond(x, y) the

condition under which the control transfers fromx into y.
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Let x ∈ G be a node that isnot a loop header. Assume thatx hasmx prede-

cessors,x′1, . . . , x
′
mx

. LetVx denote the set of variables defined byφ-functions in

x. Assume that for everyv ∈ Vx, the definition ofv in x by theφ-function, is

vtx0 (v) ← φ(vtx1 (v), . . . , vtxmx
(v)).

Let x ∈ G be now a node which is a loop header. Obviously, ifx is reached

through a back edge, we cannot simply take the definitions of the induction vari-

ables as expressed after theφ-functions, since, together with their entry value, we

may get wrong information. E.g., consider the source program in Fig. 5.1. When

computing the invariant forY2 at the the loop header (the block that starts with

location 4), we have, from the previous iteration,Y3 = Y2 + 1, and from theφ-

function,Y2 = Y3, thus, without further ado, we’ll obtain an invariantY2 = Y2+1,

which is obviously wrong. We remedy this by including the correct information

about the induction variables. That is, ifvx
i , . . . , v

x
K be the basic induction vari-

ables of the loop whose header isx, where each induction variablevx
i is initialized

to bi before entering the loop, and is incremented byci at each iteration, we define:

induc(x) = ∃v̂x ≥ 0.

K∧
i=1

(vi = bi + ci × v̂x) (5.2)

wherev̂x is a new variable. I.e.,̂vx is a loop iteration count, andinduc(x) captures

the values of the induction variables atsome(possibly the0th) iteration of the loop.

We shall return the issue of dealing with the existential variables.
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In Fig. 5.5 we describe data flow equations that allow to compute the asser-

tions in(x) andout(x) for every nodex ∈ G. The former is an invariant at

the beginning ofx, after all theφ-functions, and the latter is an invariant at the

end ofx. The invariantsin(x) andout(x) can be computed for everyx ∈ G

simultaneously by forward traversal of the dag induced by the forward edges of

G.

in(x,G) =



out(idom(x), G) ∧
cond(idom(x), x) ∧ induc(x) if x is a loop header,

out(idom(x), G) ∧∨mx

i=1

(
out(x′i, Gidom(x) ∧ cond(x′i, x)
∧
∧

v∈Vx
(v

tx0 (v)
= v

tx
i
(v)

)

)
otherwise

out(x,G) =

{
in(x,G) ∧ gen(x) if x ∈ G,
true otherwise.

Figure 5.5: Data-flow equations forin(x,G) andout(x,G)

Theorem 3 The data-flow equations computer in Fig. 5.5 are sound, i.e., during

an execution of a program, for every basic blockB represented by nodex in the

CFGG, when the program reachesB (after theφ-functions),in(x,G) holds, and

whenever the program exitsB, out(x,G) holds.

Proof Outline: The proof is by induction on the BFS of theG. The base case

is for the entry node(s). Then, we have the data-flow equation forout, which

is trivially true. For the inductive step, we distinguish between loop headers and

non-loop headers. Suppose thatx is a loop header. Since we assume that all loops
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are natural, the control reaches a loop header either from its immediate dominator

or from a back edge. Since we assume SSA form, we have that all invariants at

the end of the immediate dominator, as well as the condition leading to the loop,

hold. If this is the first entry to the loop, theninduct(x) true with the trivial

v̂x = 0. If the loop header is reached by a back edge, theninduct(x) true with

the trivial v̂x > 0. By the induction hypothesis, theout(idom(x), G) is sound.

We can therefore conclude thatin(x,G) is sound.

If x is not a loop header, thenx is reached through one of its predecessor,x′i,

with cond(x′i, x) holding. Thus, the soundness ofin(x,G) follows immediately

from the induction hypothesis.

Finally, whetherx is or is not a loop header,out(x,G) is a conjunction of

in(x,G) with gen(x), the effect thatB. Since we assume thatin(x,G) is sound,

the soundness ofout(x,G) follows.

Finally, for the invariantϕ(i) we takein(x,G) wherex is the basic block

whose initial location isi in theCFGG corresponding to the program.

Note thatin(x,G) andout(x,G) are mutually recursive function over the

structure of the dag induced byG. Hence, no fix-point computation is necessary

to solve the equations. As a matter of fact, each node and edge ofx’s ancestor

in G is visited only once in the computation ofin(x,G) andout(x,G), thus the

complexity of the computation is linear to the size ofG.

We now return to the issue of existential quantifiers in the invariants generated

by the above computation. SinceVALIDATE requires to have the invariant as both

left and right side of the implication, and since most theorem provers do not accept
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existential formulae as consequents. We can, however, instantiate the offensive

existential quantifier when constructing VCs according toVALIDATE . Suppose

that we are dealing with target invariants. (The case of source invariants is similar.)

Consider a VCCij that has a∃v̂x on the r-h-s, thusx is a loop header. Let “the

loop” mean “the loop whose header isx” for this discussion. Assume that on the l-

h-s of the VCs we have the invariantϕ
T
(i). We distinguish between the following

cases:

j is the loop’s header, andi is outside the loop.Thus, the simple path between

i andj is one the corresponds to the first entry into the loop. In this case,

we can instantiatêvx to 0, and replace the existential part ofϕ′
T
(j) with

K∧
i=1

(vi = bi).

j is the loop header andi is in the loop. Thus, the simple path betweeni andj

corresponds to a back edge ofG. We can then “re-use” the value ofv̂x from

the antecedent and replace the existential part ofϕ′
T
(j) with

K∧
i=1

(vi = bi + ci × (v̂x + 1))

Neither of the previous cases.Thus, simple path betweeni andj does not alter

the values of the induction variables, and we can “re-use” the value ofv̂x

81



from the antecedent, thus replacing the existential part ofϕ′
T
(j) with

K∧
i=1

(vi = bi + ci × v̂x)

We note that the method outlined above may not produce sufficient invariants

under all conditions. We are aware of its shortcomings in the cases when opti-

mizations depend on data-flow information. Yet, to the best of our knowledge,

such cases do not exist inIR programs that are derived with the goal of preserving

backward compatibility.

Example Consider the program in Fig. 5.3.2.

B1: n1 ← 100
i1 ← 0
j1 ← 0
s1 ← 1

B2: i3 ← φ(i1, i2)
j3 ← φ(j1, j2)
s3 ← φ(s1, s2)
i2 ← i3 + 1
j2 ← j3 + 2
s2 ← s3 ∗ j2
if (i2 < n1) goto B2

B3:
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For which we have:

gen(B1) : (n1 = 100) ∧ (i1 = 0) ∧ (j1 = 0) ∧ (s1 = 1)

gen(B2) : (i2 = i3 + 1) ∧ (j2 = j3 + 2) ∧ (s2 = s3 ∗ j2)

cond(B1, B2) : true

cond(B2, B3) : ¬(i2 < n1)

The program has a loop{B2} in which there are two induction variables,i3,

which is initialized toi1 before the loop and is incremented by1 at each iteration,

andj3, which is initialized toj1 before the loop and is incremented by2 at each

iteration.

We therefore have:

induct(B2) = ∃v̂.(i3 = i1 + v̂) ∧ (J3 = j1 + 2v̂)
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Solving the equations of Fig. 5.5, we obtain:

in(B1) : true

out(B1) : (n1 = 100) ∧ (i1 = 0) ∧ (j1 = 0) ∧ (s1 = 1)

in(B2) : (n1 = 100) ∧ (i1 = 0) ∧ (j1 = 0) ∧ (s1 = 1)

∧ ∃v̂ : ((i3 = i1 + v̂) ∧ (j3 = j1 + 2v̂))

out(B2) : (n1 = 100) ∧ (i1 = 0) ∧ (j1 = 0) ∧ (s1 = 1)

∧ ∃v̂ : ((i3 = i1 + v̂) ∧ (j3 = j1 + 2v̂))

∧ (i2 = i3 + 1) ∧ (j2 = j3 + 2) ∧ (s2 = s3 · j2)

in(B3) : (n1 = 100) ∧ (i1 = 0) ∧ (j1 = 0) ∧ (s1 = 1)

∧ ∃v̂ : ((i3 = i1 + v̂) ∧ (j3 = j1 + 2v̂))

∧ (i2 = i3 + 1) ∧ (j2 = j3 + 2) ∧ (s2 = s3 · j2)

∧ ¬(i2 < n1)
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We can therefore conclude that:

ϕ(B1) = true

ϕ(B2) = (n1 = 100) ∧ (i1 = 0) ∧ (j1 = 0) ∧ (s1 = 1)

∧ ∃v̂ : ((i3 = i1 + v̂) ∧ (j3 = j1 + 2v̂))

ϕ(B3) : (n1 = 100) ∧ (i1 = 0) ∧ (j1 = 0) ∧ (s1 = 1)

∧ ∃v̂ : ((i3 = i1 + v̂) ∧ (j3 = j1 + 2v̂))

∧ (i2 = i3 + 1) ∧ (j2 = j3 + 2) ∧ (s2 = s3 · j2)

∧ ¬(i2 < n1)
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Chapter 6

Program with Aliases

Aliasesrefer to the phenomenon that, in many program languages, storage lo-

cations can be accessed in two or more ways. Alias information is central to

determining what memory locations are modified or referenced, which can affect

the precision and efficiency of data-flow analyses required for performing opti-

mizations. Similarly, choosing a strorage model on which aliasing information

can be represented effectively is essential to the soundness and completeness for

validating optimizations.

6.1 Modeling Aliases in Transition Systems

Consider the following segment of code that involves access to integer variables

a1, a2 andb:

At the first glance, the value ofb at L2 should be3. However, if the storage
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...
L1: a1 <- 1

a2 <- 2
b <- a1 + 2

L2: ...

Figure 6.1: Example: a program that may have aliases

location ofa1 overlaps with that ofa2, the assignment toa2 simultaneously mod-

ifiesa1 to be2 and, subsequently, the value ofb at L2 is4. So the value ofb at L2

can be either4 or 3, depending on whethera1 anda2 are aliased with each other

or not.

Up till this point, every time we translate a program into a transition system

that represents the program’s formal semantics, we always take the set of pro-

gram variables as state variables and represent reference of a program variable as

accesses to its corresponding state variable. For instance, the transition system

corresponding to the program in Fig. 6.1 has a set of state variables{a1, a2, b, pc}

wherepc is the control variable, and the transition from L1 to L2 is written as

(pc = 1) ∧ (pc′ = 2) ∧ (a′1 = 1) ∧ (a′2 = 2) ∧ (b′ = a′1 + 2)

Such a translation makes an implicit assumption that none of the program vari-

ables aliases with each other and each variable can only be accessed explicitly by

its name. As a result, the transition system above only allows the value ofb at L2

to be3, which is not exactly the case in the original program.

Generally speaking, a program’s state is the state of its memory as well as

the set of registers. If we assume that no inter-procedural optimizations are per-
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formed, the program state that we are concerned with is the value of control vari-

able, the state of memory locations corresponding to global, local variables and

the state of registers as well. If the program has dynamically allocated storage

areas, we also have to consider the state of heaps. For the sake of simplicity, our

intermediate languageIR does not allow operator of dynamic allocation. Natu-

ally, we can choose a control variable, a memory array and program registers as

the set of state variables of the transition system. Although, in the intermediate

language level, we may not know the architecture of the machine that the compiler

targets to, nor do we know the physical location in which each variable resides,

we can still associate each program object with anabstract memory location, e.g.,

the abstract memory location of a variablex is denoted asaddrx. By introduc-

ing a virtual memory arraymem whose indices are abstract memory locations,

we introduce, in the first order logic we use, the following array expressions to

represent accesses to variables:

• sel(mem, loc) returns the value ofmem at locationloc;

• upd(mem, loc, val) returns a new memory array which is the same asmem

except that content ofmem at locationloc is replaced byval.

Furthermore, we augmentIR with the following language elements to allow for

variable of array type and indirect access with pointers:

• expression&id that denotes the address of variableid;

• expression[e] that denotes indirect read from memory location computed in

expressione;
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• statement[e1] ← e2 that denotes indirect write to memory locatione1 with

value ofe2.

For the sake of simplicity, we only allow variables of type integer and array of

integers, and we assume the size of type integer is1. Accesses to an array element

a[i1] . . . [im] of anm-dimensional arraya can be represented, inIR language, as

[e] wheree is an expression that computes the address ofa[i1] . . . [im] using the

array addressing rule. Notice that control variable and program registers do not

have aliases, hence can be accessed directly by their name.

Fig. 6.1 describes the rules to translate from expressions and instructions ofIR

language to terms and predicates in transition relation. We useT(e) to denote the

term corresponding to expressione in transition relation. We useid to represent

a program variable’s name, andreg to represent a program register’s name. The

difference between a program variable and a register is that the former may be

aliased, hence has to be accessed by its address, while the latter has no aliases,

hence can always be accessed by its name. In general, we assume that any variable

whose address is never computed in the program does not have aliases, hence can

be accessed directly by its name.

For the example in Fig. 6.1, a correct definition of the corresponding transition

system hasmem andpc as its state variables, and the transition from L1 to L2 is

(pc = 1) ∧ (pc′ = 2)

∧ (mem1 = upd(mem, addra1, 1)) ∧ (mem2 = upd(mem1, addra2, 2))

∧ (mem3 = upd(mem2, addrb, sel(mem2, addra1) + 2)) ∧ (mem′ = mem3)
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Expressione in IR TermT(e) in Transition Relation
id sel(mem, addrid)
reg reg
&id addrid

[e] sel(mem,T(e))
e1 op e2 T(e1) op T(e2)

Statement inIR Transition Relation
id← e mem′ = upd(mem, addrid,T(e)) ∧ pres(V − {mem})
reg ← e reg′ = T(e) ∧ pres(V − {reg})
[e1]← e2 mem′ = upd(mem,T(e1),T(e2)) ∧ pres(V − {mem})

Table 6.1: Translation fromIR to Transition Relation

6.2 Data Mapping with Aliasing

For programs with aliased variables, the data mapping takes a more complicated

form. Since we do not allow arithmetic on pointers, the layout of variables in

memory does not affect the correctness of program transformation. We can there-

fore safely assume that, for an potentially aliased variablev, it has the same ab-

stract storage location in source and target programs. That is,

addrv
S

= addrv
T

= addrv

. Under this assumption, if every variable located in memory is equivalent in

source and target, we should havemem
S

= mem
T
. However, due to transforma-

tions such as code motion and dead code elimination,mem
S

andmem
T

may only

have some of their elements identical. Consequently, we require a data mapping

that can express the equality between every object in source memory array and its
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counterpart in target. That is, for a variablev stored in virtual memory arraymem,

we define the data mapping ofv as follows:

• sel(mem
S
, addrv) = sel(mem

T
, addrv) if v is a scalar variable;

• ∀i ∈ [0..szv − 1] : sel(mem
S
, addrv + i) = sel(mem

T
, addrv + i) if v is an

array of sizeszv.

As described in Section 3.1, we allow the data mapping ofv be guarded by a

conditionpc ∈ L, wherepc is a target program counter andL is a set of target

program locations.

6.3 Representing Aliasing Information

6.3.1 Aliasing Analysis

Aliasing analysis refers to the determination of storage locations that may be ac-

cessed in two or more ways. High-quality aliaisng information produced by alias-

ing analysis is essential to correct and aggressive optimizations. Taking the pro-

gram in Fig. 6.1 as an example, constant folding can replace the assignment tob

with eitherb← 4 or b← 3 if the aliasing relation betweena1 anda2 is provided.

Without such information, however, neither of the above assignments can replace

the assginment tob. Determining the range of possible aliases in a program is

crucial to optimizing it correctly, while minimizing the sets of aliases found is

important to aggressive optimizations.
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The information computed by aliasing analysis ([And94, Ste96, Cou86, LH88,

Hin01], etc.) can be classified by the following dimensions:

• “May” versus “Must” It is useful to distinguishmayalias information from

mustalias information. The former indicates whatmayoccur on all paths

through the flowgraph, while the latter indicates whatmustoccur on all

paths through a flow graph. Consider the C programs in Fig. 6.2. The pro-

gram in (a) has p = &x on both branches of anIF statement, thus “p points

to x” is must alias information after theIF statement atLi. On the other

hand, the program in (b) has q = &y on one branch of anIF statement and

q = &z on the other, then “q may point toy or z” is may alias information

at Li. Must alias information tells us properties that must hold, and is de-

sirable for aggressive optimizations; may alias information provides range

of possible aliases, and so is important for safe optimizations.
. . .
if (bool) {

. . .
p = &x;

} else {
. . .
p = &x;

}
Li: . . .

(a)

. . .
if (bool) {

. . .
q = &y;

} else {
. . .
q = &z;

}
Li: . . .

(b)

Figure 6.2: Examples of May and Must Alias Information. In both programs,
variablesp,q andbool are not aliased, andbool is not redefined in either branch of
theIF statement.

• Flow-insensitive versus Flow-sensitiveFlow-insensitivealias information
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is independent of the control flow encountered in a

procedure, whileflow-sensitivealias information depends on control flow.

An example of approahces that produces flow-insensitive information is the

minimal pointer analysis in C program, which assumes that only variables

whose address are computed are aliased and that any pointer-valued variable

may point to any of them. On the other hand, the above mentioned “p must

point tox at Li” and “q may point toy or z at Li” are both flow-sensitive

information. By disregarding the control flow information, flow-insensitive

analyses compute a single conservative summary either for the whole pro-

gram or for each procedure, whereas flow-sensitive analyses requires that

one follow the control-flow paths through the flow graph, and computes a

solution for each program point. Flow-insensitive analyses can be more

efficient, but less precise than a flow-sensitive analysis.

The sources of aliases vary from language to language. Generally speaking,

aliases are present because of

1. overlapping of the memory allocated for two objects;

2. references through pointers;

3. references to arrays, array sections, or array elements;

4. parameter passing.

Although the sources of aliases depends on language-specific rules, there is

also a component of alias analyses that is common to every languages. For exam-
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ple, a language may allow two variables to overlay each other or may allow one

to be a pointer to the other or not, but regardless of these language-specific rules,

if a variablea is pointed to by variableb andb is pointed to byc at the same time,

thena is reachable by following pointers fromc. Thus, the alias compuation can

be devided into two parts [Cou86, Muc97]:

1. a language-specific component, called thealias gatherer, that is expected

to provided by the compiler front end;

2. a single component in the optimizer, called thealias propagator, that per-

forms data-flow analysis using the aliasing relations discovered by the front

end to combine aliasing information and transfer it to the points where it is

needed.

6.3.2 Aliasing Information as Program Invariants

As aliasing analysis is essential to performing most optimizations correctly, being

able to encode aliasing information as program invariant is crucial for establishing

the correctness of translations.

For program variablesx andy whose sizes areszx andszy, respectively, there

are the following basic aliasing relations betweenx andy that we care about:

• The memory locations ofx andy overlap. This scenario can be captured by

the predicateaddrx + c = addry with some integer constant0 ≤ c < szx.

Notice thatx is a composite variable andc > 0 represents the senario of

partial overlapping ofx andy.
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• x points to the memory location ofy. This can be expressed by the predicate

x = addry.

• y is an array, andx points to some element ofy. Because we do not know the

exact position iny thatx points to, we use a quantified boolean expression

∃i ∈ [0..szy − 1].T(x) = addry + i to represent such situation.

• x is an array of pointers, and elements ofx must point to the set of memory

locationL. Again, this is expressed by a quantified boolean expression

∀i ∈ [0..szx − 1].
∨

loc∈L

(
sel(mem, addrx + i) = loc

)
.

• The memory location ofy is reachable through arbitrarily many derefer-

ences fromx. This scenario can not be expressed directly in first order

logic. However, due to the fact that we only have finite memory locations

corresponding to global and local variables in a procedure, the “reacha-

bility” information can be expressed as a conjunction of a set of points-to

predicates, whose number is bounded by the number of different memory

locations.

Any type of aliasing information is based on the above basic relations and can

be expressed as program invariants that are boolean combination of the predi-

cates mentioned above as well as other types of predicates. For instance, a sin-

gle predicate(p = addrx) indicates thatp mustpoint to x, while a disjunction

(q = addry) ∨ (q = addrz) indicates thatq may point toy or z. We can ex-

press flow-sensitive information by taking constraints over the program counter
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and path conditions into account. E.g., in the program in Fig. 6.2 (a), the fact that

p points tox at locationLi can be expressed as

(pc = Li)→ (p = addrx)

and the fact that, at locationLi in program (b),q either points toy whenbool holds

or points toz otherwise can be expressed as

(pc = Li)→
(
(p = addry) ∧ bool ∨ (p = addrz) ∧ ¬bool

)
As described in Subsection 6.3.1, an aliasing analyzer consists of two compo-

nents: a language-specificalias gathererin the compiler front-end and a language

independentalias propagatorin the optimizer. Analogously, part of the invariants

related to aliasing information comes from language-specific rules, and the rest

are generated by propagating language-specific aliasing information along pahts

in the flow graph.

Generating Language-specific Aliasing InvariantsFor theIR language we are

concerned, the following aliasing rules apply:

1. Aliasing between different objects: Memory locations allocated for differ-

ent objects never overlap. For the sake of simplicity, we assume thatIR

language allows either scalar objects or composite objects that are arrays.

Then, for variablesx andy, one of the following constraints holds at every

location in the program, depending on the type ofx andy:
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• addrx 6= addry, if x andy are scalars;

• (addrx < addry) ∨ (addrx > addry + szy), if x is a scalar andy is

an array;

• addrx + szx < addry ∨ addrx > addry + szy, if both x andy are

arrays.

2. References through pointers: In order to perform sound and effective pointer

analysis, we have to restrict the operations allowed over pointers. InANSI C

standard, the behavior of code that has arithmetic on pointers is considered

to be undefined [ANS89]. Since it is meaningless to apply the validation

efforts to the code whose semantics is undefined, we assume that there is

no arithmetics over pointers in programs in the source language. Thus, for

a program variablep that is a pointer, we have

p ∈ {addrv|v ∈ V } ∪ {nil}

whereV is the set of variables in the program andnil represents a null

pointer value which an uninitialized pointer takes. We also assume that a

read through anil pointer returns a null pointer, and a write throughnil

point does not change the memory. That is,

sel(mem, nil) = nil,

upd(mem, nil, val) = mem.
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Besides, since we do not assume any particular layout of the memory, the

only relational operations we allow over pointers the comparison for equal-

ity (and inequality) between two pointers.

3. References to array elements: In the IR language, array elements are ac-

cessed through the virtual memorymem with the appropriate address com-

puted using array addressing rules. In a program that is well behaved, ref-

erences to array elements should have all the array indices within specified

bounds. When a reference to an element of arraya is translated toIR lan-

guage as[e] wheree computes the address of the array element, the value

of e should always within the array bounds. That is, we constraine by

addrx ≤ e < addrx + szx

Such constraints are indispensible to formally establishing alising invariants

since it is not always possible to statically determine whether the indices of

array elements are within specified range and, without such constraints, ac-

cesses to array elements can modify any part of the memory, making alias-

ing analysis impossible.

4. Parameter passing: In the IR language, we assume that parameters are al-

ways passed by value and we do not allow pointers to be passed as parame-

ters. Since we do not have inter-procedural analysis at this moment, we also

assume that function calls do not have side-effect. That is, function calls do

not modify variables in the scope of the calling procedure.
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Propagating aliasing invariants through Flow Graph The algorithmGenInv

presented in Section 5.3 can propagate aliasing infomation as a data flow through

paths in flow graph, being able to generate flow-sensitive aliasing invariants in

most of the cases.

int arith(n)
int n;

{ int i, j, k, * p, * q;
. . .

p = &i;
i = n + 1;
q = &j;
j = n * 2;

Li:
. . .

Lj: k = * p + * q;
. . .

}

Figure 6.3: An example of aliasing invariants generation

. . .
p1 ← &i
mem1 ← upd(mem0,&i, n+ 1)
q1 ← &j
mem2 ← upd(mem1,&j, n ∗ 2)

Li :
. . .

Lj : k ← sel(mem2, p) + sel(mem2, q)
. . .

Figure 6.4:IR code in SSA form for the C code in Fig. 6.3

Here, we present an example of aliasing invariants generated by algorithm
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GenInv. Consider the C code shown in Fig. 6.3 and the correspondingIR code in

SSA form in Fig. 6.4. In the program, only variablesi andj have their addresses

computed, hence they are the variables potentially aliased, while the other vari-

ables can be accessed directly. Applying alogrithmGenInv to the IR code, we

obtain, at locationLi, the invariant

p1 = addri ∧ mem1 = upd(mem0, addri, n+ 1)

∧ p2 = addrj ∧ mem2 = upd(mem1, addrj, n ∗ 2)

If there exists no definition ofp andq in the paths betweenLi andLj, optimiza-

tions will replacek=* p+* q by k=i+j and remove the assignments top andq

completely. This transformation is possible due to the fact that, atLj, p andq

points toi andj, respectively, which is caught by the invariant(p = addri ∧ q =

addrj) propagated fromLi to Lj.

As discussed in Subsection 5.3.2, algorithmGenInv does not propagate data-

flow information iteratively, thus it cannot proceed around cycles in flow graphs.

For example, consider the following fragment of a program in C:

int * p, * q;

. . .

for (q = p; q == NIL; q = * q) {

. . .

}

We need to perform iterative data-flow analysis to discover that, when execut-
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ing the loop, pointerq may point to any memory location reachable fromp before

the loop. Thus, any memory location reachable fromp may be modified through

q in the loop. An algorithm that is able to deal with this type of scenario is de-

scribed in [Muc97], and we can use the same algorithm to generate the invariants

of aliasing information generated by loops.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In the previous chapters, we describe a general ruleVALIDATE and its applica-

tion towards the automatic validation of compiler optimizations that are structure-

preserving. As part of theTranslation Validation of Optimizing Compilerproject

that is being carried on at New York University, the prototype toolTVOC-SP is

successful in verifying various optimizations performed by the global optimizer

of Intel’s ORC compiler with very little instrumentation from the compiler. The

success is attributed to the following aspects:

A versatile proof rule To compare two programs that terminate, what we care

about is essentially the matching of their final states, which is established through

a set of inductive steps along the execution. Refinement mapping that correlates
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the cut points in the middle of programs is only the result of an inductive step

towrads the end of programs. Therefore, the refinement mapping established be-

tween source and target programs can be flexible in several dimensions. First,

the control mapping is allowed to correlates particular locations instead of every

location in the programs, and the criteria is that at least one control point is re-

quired for each loop. Second, data abstraction is allowed to be partial, because

after all some of the variables are dead and others that are not mentioned in the

data abstraction can have their data information carried to the final states as pro-

gram invariants. That is, The invariants of source and target programs serve as

a supplement of data abstraction: it captures and propagates the information that

is indispensible to the matching of final states, but is missing in data abstraction.

Still, since each inductive step can only be taken within one iteration of a loop, this

method requires that each iteration of the corresponding loops in the source and

target have more or less the same effect, and that is why ruleVALIDATE cannot

apply to optimizations that transform loops’ structure.

Various program analysis techniques Studies of compilers’ individual opti-

mizations indicate that the auxiliary invariant necessary in the validation a partic-

ular optimizationc can also be detected by the same static analysis performed for

the optimization. However, different optimizations call for different static analy-

sis techniques, each of which exploring some aspect of the program’s semantics

[SS98], and it will be costly to repeat every single data-flow analysis performed

for global optimizations, considering that many of them involve iterative fix-point
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computation. As a matter of fact, the first invariant generation method we de-

signed (see Subsection 5.3.1 for details) attempts to mimic the iterative data flow

analyses performed by compilers and managed to produce necessary invariants for

some common optimizations such as constant folding, common expression elim-

ination, etc. But there is other data flow information this first method fails to cap-

ture, among which there are constant variables recognized by sparse conditional

constant folding [WZ91], and equality between variables detected by global value

numbering [AWZ88]. Then we designed the second invariant generation method

GenInv (see Subsection 5.3.2) based on the following observation: although it

requires basically the same amount of data flow information to perform an opti-

mization as to validate it, the compiler optimizer requires the information to be

explicitlywhile the validator allows for the same information hiddenimplicitly in

the auxiliary invariants, because later a theorem prover will “rediscover” the in-

formation when it checks the validity of verification conditions. Thus, since the

theorem prover serves as an information interpreter and theGenInv procedure

merely as an information collector, the procedure to generate invariants becomes

much more efficient.

In addition to auxiliary invariants over the variables of a single program, we

also construct data abstraction that correlates variables in source and target pro-

grams, by performing an iterative data flow analysis operated on both programs

at the same time (see Section 5.2 for details). We made such an analysis possible

by choosing a fairly simple lattice (where the elements are a set equality between

source and target variables) and computing the flow functions using a theorem
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prover.

Limitation The current invariant generation algorithmGenInv still has two

drawbacks: first, it fails to carry information along backward edges inCFG, thus

is not as powerful as the iterative data flow analyses which can proceed infor-

mation around cycles in control flow graphs; second, the invariants it produces

for a cut point includes definitions of almost every SSA variables that appear in

the program before that cut point, sometimes carrying too much unnecessary data

information, which will slow down the theorem prover. The possible improve-

ment for the first drawback can be aGenInv algorithm augmented with iterative

analysis, and the improvement for the second one is to apply “program slicing”

techniques [Tip95] to eliminate irrelavent SSA definitions.

Because of the impotence of the static analysis techniques, a translation val-

idator can produce “false alarms”, which means, for a source and its correct trans-

lation, the validator may construct a set of verification conditions, some of which

are invalid. A false alarm is caused either by the incompetence of the validator,

i.e. it does not find the right refinement abstraction, or does not produce sufficient

auxiliary invariants; or by the incompleteness of the proof ruleVALIDATE , i.e., it

cannot be applied to establish the correctness of structure modifying transforma-

tions.
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7.2 Future Work

There are many directions for future work. We list a few as follows:

• Procedures and inter-procedural optimizationsTo deal with programs with

procedures, we need to extend the current proof rule. If inter-procedural op-

timizaitons are involved, extra auxiliary invariants will be required to serve

as a “summary” of the procedure, under which the inter-procedural opti-

mizaitons are possible.

• Exception handlingOur current notion of a correct translation does not con-

sider programs with exceptions. There are surely issues of exceptions that

affect the correctness of a translation. E.g., translation that introduces ex-

ceptions is considered to be incorrect. The current theory need to be ex-

tended to deal with exceptions.

• Hardware related optimizationsThis is a category that is of particularly im-

portance to the performance of EPIC architecture, where instruction schedul-

ing is performed by compilers. The validation of hardware related optimiza-

tions is still a big challenge.

• Counter examplesThe counter-examples obtained from toolTVOC-SP are

the states of source and target programs that invalidate a verification condi-

tions. When a translation cannot be established to be correct, we hope the

validator to provide a “witness” that are unmatching program executions in

source and target.
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• Sefl-certified compilerOne of the side-products we anticipate from this

work is the formulation of validation-oriented instrumentation, which will

instruct writers of future compilers how to incorporate into the optimiza-

tion modules appropriate additional outputs which will facilitate validation.

This will lead to a theory of construction ofself-certifyingcompilers. Some

work in this area has been done in this thesis research, including how to con-

struct well formedVALIDATE proofs for a set of individual optimziaitons,

and how to compose two well formed proofs. Still, there is more work to

do in this area.
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