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Abstract

There is a growing awareness, both in industry and academia, of the crucial
role of formally verifying the translation from high-level source-code into low-
level object code that is typically performed by an optimizing compiler. Formally
verifying an optimizing compiler, as one would verify any other large program,
is not feasible due to its size, ongoing evolution and modification, and possibly,
proprietary considerationdranslation validationis a novel approach that offers
an alternative to the verification of translator in general and compilers in partic-
ular: Rather than verifying the compiler itself, one constructs a validation tool
which, aftereveryrun of the compiler, formally confirms that the target code pro-
duced in the run is a correct translation of the source program. This thesis work
takes an important step towards ensuring an extremely high level of confidence in
compilers targeted at EPIC architectures.

The dissertation focuses on the translation validatiostafcture-preserving
optimizations, i.e., transformations that do not modify programs’ structure in a
major way, which include most of the global optimizations performed by compil-
ers. The first part of the dissertation develops the theory of a correct translation,
which provides a precise definition of the notion of a target program being a cor-
rect translation of a source program, and the method that formally establishes the
correctness of structure preserving transformations based on computational induc-

tion. The second part of the dissertation describes a tool that applies the theory



of the first part to the automatic validation of global optimizations performed by
Intel's ORC compiler for 1A-64 architecture. With minimal instrumentation from
the compiler, the tool constructs “verification conditions” — formal theorems that,
if valid, establish the correctness of a translation. This is achieved by performing
own control-flow and data-flow analyses together with various heuristics. The ver-
ification condition are then transferred to an automatic theorem prover that checks
their validity. Together with the theorem prover, the tool offers a fully automatic

method to formally establish the correctness of each translation.
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Chapter 1

Introduction

1.1 Motivation

There is a growing awareness, both in industry and academia, of the crucial role
of formally proving the correctness of safety-critical portions of systems. Most
verification methods focus on verification of specification with respect to require-
ments, and high-level code with respect to specification. However, if one is to
prove that the high-level specification is correctly implemented in low-level code,
one needs to verify the compiler which performs the translations. Verifying the
correctness of modern optimizing compilers is challenging because of the com-
plexity and reconfigurability of the target architectures, as well as the sophisticated
analysis and optimization algorithms used in the compilers.
Formally verifying a full-fledged optimizing compiler, as one would verify

any other large program, is not feasible, due to its size, evolution over time, and,



possibly, proprietary consideration$ranslation Validationis a novel approach
that offers an alternative to the verification of translators in general and of com-
pilers in particular. Using the translation validation approach, rather than verify
the compiler itself one constructsvalidating toolwhich, after every run of the
compiler, formally confirms that the target code produced is a correct translation
of the source program.

The introduction of new families of microprocessor architectures, such as the
EPIC family exemplified by the Intel 1A-64 architecture, places an even heavier
responsibility on optimizing compilers. Compile-time dependence analysis and
instruction scheduling is required to exploit instruction-level parallelism in order
to compete with other architectures, such as the super-scalar class of machines
where the hardware determines dependences and reorders instructions at run-time.
As a result, a new family of sophisticated optimizations have been developed and
incorporated into compilers targeted at EPIC architectures.

At first glance, the approach of translation validation is designed to ensure the
correct functioning of compilers. But it also have impact on the testing process
of compiler development. Since the output of compilers is unreadable, people
can recognize a incorrect compilation only by observing an incorrect program
execution. As compiler testers have observed, many times an “incorrect output”
is caused not by the compiler itself, but by the errors in the program it compiles.
As a result, much of the time and efforts in compiler testing is spent in isolating
the bugs in the testing programs from those in the compiler. Since the translation

validation approach checks the output of compilers directly, the error it detects



is guaranteed to be a compilation error, and thus makes the compiler debugging

process more efficient.

1.2 Related Works

This thesis research is an extension of the work on translation validation by Pnueli,
Siegel and Singerman ([PSS98a]), which developed a tool for translation valida-
tion, CVT, that succeeded in automatically verifying translations involving ap-
proximately 10,000 lines of source code in about 10 minutes. The success of
CVT critically depends on some simplifying assumptions that restrict the source
and target to programs with a single external loop, and assume a very limited set
of optimizations.

The work by Necula in [Nec00] covers some important aspects of my work.
For one, it extends the source programs considered from single-loop programs to
programs with arbitrarily nested loop structure. An additional important feature
is that the method requires no compiler instrumentation at all, and applies various
heuristics to recover and identify the optimizations performed and the associated
refinement mappings. But the method used in Necula’s work carries very lim-
ited information in between different check points, hence it cannot validate some
common optimizations such as loop invariant code motion and strength reduction,
which our approach can handle.

Another related work is credible compilation by Rinard and Marinov [RMOO]

which proposes a comparable approach to translation validation, where an impor-



tant contribution is the ability to handle pointers in the source program. However,
the method proposed there assurfiudisinstrumentation of the compiler, which is
not assumed here or in [Nec00].

The work in [LJWF04] presents a framework for describing global optimiza-
tions by rewrite rules with CTL formulae as side conditions, which allow for gen-
eration of correct optimizations, but not for verification of (possibly incorrect)
optimizations. The work in [GGBO02] proposes a method for deploying optimiz-
ing code generation while correct translation between input program and code.

They focus on code selection and instruction scheduling for SIMD machines.

1.3 Overview of the Compiler Validation Project

The ultimate goal of our compiler validation project is to develop a methodology
for the translation validation of advanced optimizing compilers, with an empha-
sis on EPIC-targeted compilers and the aggressive optimizations characteristic to
such compilers. Our methods will handle an extensive set of optimizations and
can be used to implement fully automatic certifiers for a wide range of compilers,
ensuring an extremely high level of confidence in the compiler in areas, such as
safety-critical systems and compilation into silicon, where correctness is of para-
mount concern.

The approach of translation validation is based on the theory of correct trans-
lation. In general terms, we first give common semantics to the source and target

languages using the formalismfansition Systemgs’s). The notion of a target



codeT being a correct implementation of a source c6ds then defined in terms
of refinementstating that every computation dfcorresponds to some computa-
tion of S with matching values of the corresponding variables. In Figure 1.1 we

present the process of refinement as completion of a mapping diagram.

S: Source | Semantics Sem(S)

Mappin
Optimizing Pping
Compiler

Semantics
T: Target : Sem(T)
Mapping

Figure 1.1: Refinement Completes the Picture

|
| Refinement

To apply the general approach of translation validation to verifying compiler
optimizations, we distinguish betwestructure preservin@ptimizations, which
admit a clear mapping of control points in the target program to corresponding
control points in the source program, astducture modifyingpptimizations that
admit no such mapping.

Structure Preserving optimizations cover most high-level optimizations and
many low-level control-flow optimizations. Our approach for dealing with these
optimizations is to establish a correspondence between the target and source code,
based orrefinementand to prove it bysimulation According to this approach,
we establish aefinement mappingorrelating the control points the source and
target, and indicating how the relevant source variables correspond to the target
variables or expressions at each control point. The proof is then broken into a

set ofverification conditiongalso calledoroof obligation3, each claiming that a



segment of target execution corresponds to a segment of source execution.

A more challenging category of optimizations is that of structure modifying
optimizations which includes, e.dqop distributionandfusion loop tiling, and
loop interchange For this class, it is often impossible to apply the refinement-
based rule since there are often no control points where the states of the source and
target programs can be compared. We identify a large class of these optimizations,
namely theeordering transformationsand devise a set giermutation ruleshat

allow for their effective translation validation[ZP®2, ZPFGO03].

Source program
Compiler
|SourceIRS| A file | Target IRT |
L ‘ valid
TVOC Phase 1 - Phase?2
] 1 — Invalid
yesno \ Verification Conditions ‘ yesno
CVC Lite

Figure 1.2: The architecture d3VOC.

A tool for translation validation of optimizing compilers, call@¥OC, has
been developed for Intel's Open Research Compiberd) [CIJWO01]. Fig. 1.2

shows the overall design @ivVOC. TVOC accepts as input a source progr&m



and target prograri. These are provided in theHIRL intermediate representa-
tion, a format used by therc compiler among others. Just as compilers perform
optimizations in multiple passes, it is reasonable to break the validation into mul-
tiple phases, each using a different proof rule and focusing on a different set of
optimizations. CurrentlyTVOC uses two phases to validate optimizations per-
formed by the compiler, with two componeft¥OC-LOOP andTVOC-SP. In

the first phaseTVOC-LOOP attempts to detect loop reordering transformations
and generates an intermediate progrgimhich is obtained by transforming so

that it's loop structure corresponds to that found’inThe equivalence of andsS’

is verified using ruleePERMUTE [ZPG*02, ZPFGO03]. Verification conditions are
submitted to and checked by the automatic theorem pioV& Lite [BB04]. In

the second phas&yOC-SP compares the prografi generated by phase 1 to the
target progran¥’. Since the transformation frosf to 7" is structure-preserving,

the equivalence of these two programs is verified using vuleDATE (as pre-
sented in Chapter 3) Again, verification conditions are submitt€&M@G Lite. If

all verification conditions from both phases succeed, then the source and target
are equivalent an@VOC outputs the result “VALID”. Otherwise[VOC outputs

“INVALID” with a message indicating the stage at which the verification failed.

1.4 Contribution and Thesis Outline

The main goal of this thesis research is to develop theory and tools for validating

structure preserving optimizations. The contribution of my thesis work includes:



e participating in desiging the current version of a proof rule, calledDATE ,

for validating structure preserving optimizations;

e developingl'VOC-SP, atool that automatically generate proofsaf IDATE

rule for structure preserving optimizations of an EPIC compiler;

e modeling memory operations and aliasing information to accomodate pro-

grams with arrays and pointers.

Chapter 2 describes a formal model and theory of correct translation. It also
presents definitions and terms commonly used in the research of compiler opti-
mizations that is later refered in this thesis.

Chapter 3 first describes a general proof rule, calledDATE , for translation
validation of structure preserving optimizations. The proof rule presented in this
thesis succeeds a series of proof rules that were sound but failed to handle some
common optimizations. The current version has the versitility to handle minor
structure changes in transformation, as long as the structure of loops is preserved.
Then | define the well-formedness ofvaLIDATE proof, and show that, given
well-formed proofsP; and P, that establish the refinement betwegrand 77,
and the refinement betweé&h andT5, respectively, we can coOmpoS&4&LIDATE
proof fromP; andP, that establishes the refinement betwé&esndT, directly.

Chapter 4 studies a series of individual compiler optimizations that are candi-
dates for validation with rulgaLIDATE . The study of individual optimizations not
only shows the scope of rulLIDATE , but also gives valuable insights of what

type of the refinement mapping and auxiliary invariants are required to construct



aVALIDATE proof, which lead to the various heuristics used in the validation tool
TVOC-SP.

Chapter 5 presents the heuristics and algorithms in theltd@IC-SP which
automatically generates\LIDATE proofs for global optimizations performed by
the Intel'sorc compiler. When | started building the tool, | had expected that
compiler would provide us with the information of what kind of optimizaitons
are performed and in which order they are performed, and the intermediate code
produced by the compiler would contain program annotations that could be used
as auxiliary invariants. However, it turned out that none of these information is
available fromoRrc, andTVOC-SP ended up performing its own static analyses to
construcALIDATE proofs. One major challenge in the generation @@ DATE
proof is to produce sufficient auxiliary invariants, hence this topic is explored
extensively in Chapter 5.

Chapter 6 discusses the issues in validating programs with aliasing with rule
VALIDATE . The challenge includes how to model program identities that can be
accessed in more than one way and how to represent aliasing information as pro-
gram invariants.

Chapter 7 summarizes the results and discusses possible future works.



Chapter 2

Preliminaries

2.1 Program Representation

The programs we consider are writtenvimiRL [CIJWO01], the intermediate lan-
guage (R) for the orc compiler. As compilation can be viewed as a process of
gradual transition from the high level language constructs to the low level ma-
chine instructions, there are different levelamfpossible. The closer ar is to

the source language, the higher is its level. The mone aesembles the machine
instructions, the lower is its level. TheHIRL IR was designed to be capable of
representing any level aR from Very High to Very Low except the level that
corresponds to the machine instructions. The compiler optimizations we focus on
are the global optimizations, which are performed on High and WhdRL, and

the control-flow optimziations, which are perfomed on LewnIRL.

During the compilation from HighvHIRL to Low WHIRL, high level control
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flow constructs such as the operatay_LOOP, DO_WHILE, WHILD _DO, IF ,etc.
are translated to be uniformly represented VRUEBR, FALSEBR Or GOTO in
Low WHIRL. In addition, the form of array subscription preserved in HighRL
via ARRAY is lowered to address expressions in Mid and LewRL.

For exposition purposes we assume that programs are written iR theer-
mediate language, which is a subset of Mid and LewiRL, whose syntax is
shown in Fig. 2.1. A function body is a sequencerostatements. Among state-
ments, we have direct assignments to symbols, denotéd by cxpr; function
entries, denoted byUNC_ENTRY f,idy,...,id,,, which represents a functiof
with an array of formal parameteig,, . . ., id,,; function return&RETURN id; la-
belsLABEL L :; unconditional jump&0TO; and conditional jJump$RUEBR and
FALSEBR. The expressions in the language contain symbol identitiég con-
stantsc, and composite expressions using a variety of operatqrs, op exprs.

We assume that the evaluation of expression does not have side-effect, i.e. none
of the program variables have their values modified in the process of evaluation.
With the set of statements ir as represented in Fig. 2.1, the high level control
constructs such as loops and conditional branches preserved by thevHigh
operatorsbO_LOOP, DO_WHILE, WHILD _DO, IF, etc. are translated to be uni-

formly represented VIi#IRUEBR, FALSEBR Or GOTOin Low WHIRL.

Example 1 Consider the functiorfoo written in C language in Fig. 2.2 and its

translation, by Intel ORC compiler into the intermediate corle

11



Statements stat ::=id < expr | LABEL L : |

FUNC_ENTRY f,idy,...,id, | RETURNid |
GOTO L | TRUEBRexpr,L | FALSEBR expr, L
Expressions expr :=id | ¢ | expry op expry
Operators op =+ | — | x|/ |=]<|<| ...

Figure 2.1: The syntax of th& intermediate language

int k; FUNC_ENTRY foo,n
int foo(int n) { k <-0
int i,j; i <1
k = 0; j <2
i =1 FALSEBR (n>=i),L1
=2 j<-j *2
while (i<=n) { k <- 1
j - ] *2, i <-i+1
k = 1; L1:
i = i+l FALSEBR (k!=0),L2
} <]
if (k) GOTO L3
i = L2:
else i <-i+1
=1+ 1 L3:
return i; RETURN i

Figure 2.2: A C Program and its Intermediate Code

2.2 Control-Flow Analyses

Given a program in its intermediate representation, it is seen as a sequence of
statements with few hints about what the program does or how it does it. It re-
mains for control-flow analyses to discover the hierarchical flow of control within
each procedure and for data-flow analysis to determine global (i.e., procedural-
wide) information about the manipulation of data. Understanding the control-flow

structure of a program is important not only to transforming the program to a more

12



efficient one, but also essential to validating the correctness of the transformation.
Given a program inRr, the program’s control structure is discovered with the

following steps:

1. Identify basic blocks and construct control flow grapbsd). Basic block
is, informally, a straight-line sequence of code that can be entered only at
the beginning and exited only at the end. céntrol flow graphis an ab-
stract representation of a procedure or a program. Each node in the graph
represents a basic block. Directed edges are used to represent jumps in the

control flow.

2. ldentify the relation of dominance for each node in the control flow graph.
We say that nod€ dominatesiode, if every possible execution path from
entry to: includesd. We say thatl is animmediate dominatoof , if every
dominator ofi that is notd dominatesi. Identifying dominance relation is

important for performing further control-flow and data-flow analyses.

3. Identify loops. Without loss of generality, we assume that the programs
we consider only haveatural loops where a natural loop is, informally, a
strongly connected components with a unique entry rfodeo determine
the natural loops in &FG, we first define dack edgess an edge iTFG
whose head dominate its tail. Each back edge~ n characterizes aat-
ual loop as a subgraph consisting of the set of nodes contaimiagd all

the nodes from whichn can be reached in the flowgraph without passing

1A technique callednode splittingcan transform loops that are not natural into natural
ones[JC97]

13



throughn and the edge set connecting all the nodes in its node set. For a

natual loop, we define

¢ loop headetto be the node that dominates every node in the loop.

¢ loop preheadeto be a new (initially empty) block placed just before
the header of the loop, such that all the edges that previously went to
the header from outside the loop now go to the preheader, and there is

a single new edge from the preheader to the header.

Fig. 2.3 presents the control flow graph corresponding tarhgrogram in
Fig. 2.2. In the flowgraph, the set of blockB2, B3} forms a natual loop charac-

terized by the back ed@3 — B2. B2 is the loop’s header, ar®l is the preheader.

2.3 Static Single-Assignment (SSA) Form

Static single-assignment (SSA) fof@FR"™89, CRF 91] is a relatively new in-
termediate representation that effectively separates the value operated on in a pro-
gram from the locations they are stored in, making possible more effective version
of several optimizations.

A procedure is irstatic single-assignment forihevery variable assigned a
value in it occurs as the target of only one assignment. In SSA form du-chains
are explicit in the representation of a procedure: a use of a variable may use the
value produced by a particular definition if and only if the definition and use have

exactly the same name for the variable in the SSA form of the procedure. This

14



func foo,n

Y

return ¢ B7

Figure 2.3: Example 1 represented as Control-Flow Graph

simplifies and makes more effective several kinds of optimizing transformations,
including constant propagation, value numbering, invariant code motion and re-
moval, strength reduction, and partial-redundancy elimination. Thus, itis valuable
to be able to translate a given representation of a procedure into SSA form, to op-
erate on it and, when appropriate, to translate it back into the original form.

In translation to SSA form, the standard mechanism is to subscript each of the
variables and to use so-calledfunctions at join points, i.e. location where two
or more control flows merge, to sort out the multiple assignments to a variable.

Each ¢- function has as many argument positions as there are versions of the

15



variable coming together at that point, and each argument position corresponds to
a particular control-flow predecessor of the point. Thus, the standard SSA-form
representation of our example in Fig. 2.2 is shown in Fig. 2.4.

func foo, ng

Y
k1<—0

il — 1

B1
1o« 2

kg — d)(]ﬁ, /f2)

i3 ¢(i1,42) |B2

Jz < o(j1, J2)
’1:3 S un)

J2
k’g — 1
(5

Y
i < @(is, 15) B7
return ¢

Figure 2.4: Example 1 represented in SSA Form

2.4 Transition Systems

In order to present the formal semantics of source and intermediate code we in-

troducetransition systemgrs'’s), a variant of theéransition systemef [PSS98b].

16



A Transition System§ = (V, O, ©, p) is a state machine consisting of:
e |/ a set ofstate variables
e O C V aset ofobservable variables
e O aninitial condition characterizing the initial states of the system, and
e p atransition relation relating a state to its possible successors.

The variables are typed, andstateof a TS is a type-consistent interpretation of
the variables. For a stateand a variable: € V', we denote by[z] the value that

s assigns tac. The transition relation refers to both unprimed and primed versions
of the variables, where the primed versions refer to the values of the variables in
the successor states, while unprimed versions of variables refer to their value in
the pre-transition state. Thus, e.g., the transition relation may incldde 41"

to denote that the value of the variablén the successor state is greater by one
than its value in the old (pre-transition) state.

The observable variables are the variables we care about, where we treat each
I/O device as a variable, and each I/O operation removes/appends elements to
corresponding variable. If desired, we can also include among the observables
the history of external procedure calls for a selected set of procedures. When
comparing two systems, we require that the observable variables in the two system
match.

A computation of ars is a maximal finite or infinite sequence of states

s0, 81, ... , Starting with a state that satisfies the initial condition such that every

17



two consecutive states are related by the transition relation. sh.e= © and

(s5,8i41) = pforeveryi,0 <i+1 < |of%

Example 2 We translate the intermediate code in Fig. 2.3 inttsa The set
of state variable$” includesi ,j ,k,n, among which the observable varaibles are
global variablek and local variable whose value is returned by functidoo .
We also include i/ the control variable (program countergd that points to the
next statement to be executed. Because the transitions connecting two consecutive
states can represent either a single statement or a sequence of statements, depend-
ing on the intermediate states users care about in the computation, the range of
pc can be the set of all program locations or selective locations. Here we choose
the range opc to be{B1,B2,B4,B7}, whereBi denotes the location right before
basic block:. The initial condition, given by9: = = B1, states that the program
starts at locatioB1.

The transition relatiom can be presented as the disjunction of four disjuncts
p = pi2 V pa V pu V psr, Wherep;; describes all possible moves from

Bi to Bj without passing through locations in the rangerof

E.Q.,p47 iS:

(k20AN7=3VE=0A7=i+1) A pres({j,k,n})

wherepres(V) is an abbreviation of formuld, _, (v = v).

2o, thelength ofc, is the number of states in Wheno is infinite, its length isv.

18



A computation of the program starts wiBi, continues tdB2, cycles toB3
and back toB2 several times, then exits the cycle and brancheBSwr B6,
depending on the value &f and finally terminates @7. The state reached at

each block is described by the values assigned to the variables.

A transition systen? is calleddeterministidf the observable part of the initial
condition uniquely determines the rest of the computation. That i5,h&s two
computations, s1, . . . andty, t1, . .. such that the observable part (values of the
observable variables) of agrees with the observable partgfthen the two com-
putations are identical. We restrict our attention to deterministic transition systems
and the programs which generate such systems. Thus, to simplify the presenta-
tion, we do not consider here programs whose behavior may depend on additional
inputs which the program reads throughout the computation. It is straightforward
to extend the theory and methods to such intermediate input-driven programs.

The translation of an intermediate code intosas straightforward; we there-

fore assume that all code we are dealing with here is described &y a

2.4.1 Comparison and Refinement betweenss

Let P, = (V,,0,,0,,p,) andP, = (V,.,0,,0,,p,) be twoTs's, to which

we refer as thsourceandtarget Ts's, respectively. Such two systems are called
comparablef there exists a one-to-one correspondence between the observables
of P, and those ofP,. To simplify the notation, we denote by ¢ O, and

x € O, the corresponding observables in the two systems. A sourcessisite
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defined to be&eompatiblewith the target statg if s andt agree on their observable
parts. That iss|X| = t[z] for everyxz € O,. We say thatP, is a correct
translation(refinementof P, if they are comparable and, for every : ¢y, ¢4, . ..

a computation ofP, and everyo, : sg,s;,... a computation ofP, such that

so Is compatible witht, o, is terminating (finite) iffo, is and, in the case of

T
termination, their final states are compatible.

Our goal is to provide an automated method that will establish (or refute) that
a given target code correctly implements a given source code, where both are

expressed asss.
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Chapter 3

Validating Structure-Preserving

Optimizations

3.1 RuleVALIDATE

LetP, = (V,,0,,0,,p,)andP, = (V,,O0,,0,, p,) be comparabless, where

P, is thesourceand P, is thetarget In order to establish tha®,. is a correct
translation of P, for the cases thaP’, does not alter the structure éf, in a

major way, we introduce a proof rule that is an elaboration of the computational
induction approach ([Flo67]) which offers a proof methodology to validate that
one progranrefinesanother. This is achieved by establishingoamtrol mapping

from target locations to source locationglaa abstractiormapping from source
variables to target variables, and proving that they are preserved with each step of

the target program.
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Some caution is needed in order to guarantee thatdATE can handle mi-
nor structure changes, for example, as in loop invariant code motion when assign-
ments in the target occur before their counterparts in the source. It is actually a
difficult problem to devise such a proof rule — the current version of the proof rule
succeeds a series of proof rules that were sound but failed to handle some common
optimizations. The version of the proof rule presented here has been successful
in handling numerous examples, and we believe it is capable of handling all the
optimizations that do not involve major structure modifications (as in the various
loop optimizations.)

The proof rule is presented in Fig. 3.1. There, eashs assumed to have a
cutpoint setCP (i.e., a set that includes the initial and terminal block, as well as
at least one block from each of the cycles; note that the cut-point set is a subset
of the data domain of the control variable.) shkmple pathin between nodes in
the cutpoint set refers to a path, in the flow graph of system, that leads in between
two blocks of the cutpoint set and does not include, as an internal node, any other
block of the set. For each such simple path leading from cut pdomtut point
J» pi; describes the transition relation betweeand ;. Note that, when the path
from i to j passes through program locationss that are not in the cutpoini set,
is a compressed transition relation that can be computed by the composition the
intermediate transition relation on the path fromo ;.

The control abstractionin part (1) of VALIDATE is the standard Floyd control
mapping. The target invarianggi) in part (2) and source invariantg:) in part

(3) are program annotations that are expected to be provided by compiler from
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its data flow analysis. Intuitively, their role is to carry information in between cut
points. The data abstractienin part (4) is a variant of the standard Floyd-like
data abstraction. The two differences are that we allovwaftr be partial, and to
be different at each target cut point. The motivation for allowintp be partial
is to accommodate situations, that occur for example in dead code elimination,
where source variables have no correspondence in the target. The motivation for
allowing « to be different at each target cut point is to accommodate situations,
that occur for example in loop invariant code motion, where at some points of the
execution, source variables have no correspondence in the target, while at other
points they do.

The verification conditions assert that at each (target) transition from cutpoint
i to cut pointj?, if the assertionp (i), ¢(x(i)) and the data abstraction hold before
the transition, and the transition takes place, then after the transition there exist
new source variables that reflect the corresponding transition in the source, while
the data abstraction and the assertigg) and«(x(7)) hold in the new state.
Hence,p; andv(k(i)) are used as a hypothesis at the antecedent of the implica-
tion C;;. Inreturn, the validator also has to establish thaandi(x(j)) hold after
the transition. Thus, we do not trust the annotation provided by the instrumented
compiler but, as part of the verification effort, we confirm that the proposed as-
sertions are indeed inductive and hold whenever visited. Since the assgitjon
mentions only target variables, their validity should depend solely on the target

code. Similarly, the validity of)(i) should depend solely on the source code. In

IRecall that we assume path described by the transition is simple.
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most cases, the primed source variables can be easily realized from the code, and
the existential quantification in verification condition (5) can be eliminated, since
the implicationg — 3z’ : (2’ = E) A r is validity-equivalent to the implication

g A (' = E) — r. However, this may not always be the case and we are forced
to leave the existential quantifier in (4). In Section 3.3, we will discuss in which

circumstance we can eliminate the quantifier in verification conditions.

Example 3 Consider the program of Fig. 3.2 after a series of optimizations: Con-
stant folding, copy propagation, dead code elimination, control flow graph opti-
mization (loop inversion), and strength reduction. The annotatign denoted
phil ) is supplied by the translation validation tool (see Chapter 5).

To validate the program, we use the control mappinrg {0 — 0,1 — 2,2 — 4},

and the data abstraction

(PC = ri(pc)) A (pc # 0 — Y =)
A(pc#0—W=mw)A (pc#0— N=>500)

Note that we always include im the control mappin@C = x(pc).
The verification conditiorCy; obtained for the simple path from0 to B1,

after simplification (including the removal of the existential quantifier), is:

T S
Cor: por N of — Poz N ‘P/l
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wherep,, is defined by:

( (pc=0) A (#1264 =0) A (Y =0) A (W =1) A (pc' =1) )

andp,, is defined by:

o' ( Y =y)ANW=vw)A (N =>500) )

andy : (.t264" = 2 = y') The other verification conditions are constructed simi-

larly. They are all trivial to verify.

3.2 Soundness oVALIDATE

Let P, = (V,,0,,0,p,) andP, = (V,,0,,0,,p,) be two comparable deter-
ministicTss. LetCP_ andCP,. be the sets of cut-points éf, andP,. respectively.
Assume that the control mappirgthe data abstraction, and the invariantg(i)s
andv(i)s are all defined. Assume further that all verification conditiofs(for
every: andj such that there is a simple path# leading fromBi to Bj ) have

been established. We proceed to show fhjais a correct translation o, .
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Let

o 1 51,82,...

be a finite or infinite computation a?,., which visits blocksi,, Bi,, .. ., respec-
tively. ObviouslyBi, is in CP.. and if the computation is finite (terminating) then
its last block is also iitP... According to an observation made in [Flo67], can

be decomposed into a fusibaf simple paths

T

5 : (Bj17'--7Bj2)o(Bj2,...,Bj3)0-~-

(. AN /

Vv Vv
T T
Ty Ty

suchthaBj; = Bi,, everyBij is in the cut-pointse€P", andr.. = Bja, . .., Bjurs

is a simple path. Since all VCs are assumed to hold, we have that

©k) A Y(EGR) A a A p;’rkjk-i-l -

Cj
S . .
V" (Vnepathststornteny P) A @ A @' Gre) A 9 (K1)

kJk+1

holds for everyk = 1,2, .. ..

We can show that there exists a computatio®’af

such thatS; visits cut-pointBx(j,), Se Visits cut-pointBx(jz), and so on, and

such that the source state visiting cut-pd@n{j,) is compatible with the target

2concatenation which does not duplicate the node which appears at the end of the first path and
the beginning of the second path
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state visiting cut-poinsj., for everyr = 0,1, .. ..

Consider now the case that the target computation is terminating. In this case,
the last state, of o' visits some terminal cut-poimj.. It follows that the com-
putationas is also finite, and its last stat&, (¢' and o” are often of different
lengths) visits cut-poinB(«x(j,)) and is compatible with,. Thus, every termi-
nating target computation corresponds to a terminating source computation with
compatible final states.

In the other direction, let” : So, ..., S, be a terminating source computa-
tion. Leto : so,s1,... be the unique (due to determinism) target computation
evolving from the initial state, which is compatible witts,. If o is terminating
then, by the previous line of arguments, its final state must be compatible with the
last state of". If & is infinite, we can follow the previously sketched construc-
tion and obtain another source computation: S, S, . . . which is infinite and
compatible witho”. Since bothS, and S, are compatible withs, they have an
identical observable part. This contradicts the assumptionfthas determinis-
tic and can have at most a single computation with a given observable part of its
initial state.

It follows that every terminating source computation has a compatible termi-

nating target computation.
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3.3 Quantifier Elimination in VALIDATE

As mentioned in Section 3.1, the verification condition in nd@IDATE (4) con-

sists of existential quantifiers that cannot always be eliminated. Elimination of
the existential quantifier is desirable because makes it more likely that the gener-
ated verification conditions can be checked automatically. The following theorem
shows that the rules are equivalent under the assumption that the transition sys-

tems are deterministic.

Theorem 1 The following verification conditions are equivalent:

T S
i Ny NaNp;  — V" ( \/ Pr) NN @; A w;(j)a (3.1)
m1 € Paths(k(i),x(5))

and

T S
©i N Y@y N a A Pij N ( \/ pﬂz) — A 90;' A w;@- (3.2)
mo€Paths(k(i))

Proof:

. . T
In one direction, suppose (3.2) holds and suppose that wehave: A p;;. By
definition of p anda, it follows thatPC = x(i). Without loss of generality, we
can assume that at every non-terminal source cut-point, some transition must

be taken and that at terminal source cut-points, no transitions are enabled. It
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then follows that(\/ ¢ puss(x (1)) p.,) holds. Thus, by (3.2), we havé A @’
. S
Butfromp;; A o, PC’ = £(j) follows. We thus havé\/ . . pun ey niiy) Pr) A

S
o' A ), and so clearly we also had®’,": (/. c paths iy (i) Prm) N @ A O

In the other direction, suppose that (3.1) holds and suppose that we have
0i N A pis A (Ve pammsin(iy) Por)- I PAItiCUlar, one of the transitions, is
true. By (3.1), we havaV,": (V. cpasns(x(i)n (i) pe) A a A ©}. Thus, there
exists some successor state of the current-state named siych that one of
the transitionsofTl is true together withy' and . But because the transition
system is deterministic, the next-state variablgsare uniquely determined by
the present-state variabl€s. In other words, the existence of a successor state
which satisfiesy’ A ¢’ implies that every successor state satisfiesSince

pfr2 names a specific successor state, this successor state satisfies;. 4
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. Establish aontrol abstractions: CP, — CP, that maps initial and termi-
nal points of the target into the initial and terminal points of the source.

. For each target cut poirtin CP,, form antarget invarianty(:) that may
refer only to concrete (target) variables.

. For each source cut poinin CP, form asource invarianty (i) that may
refer only to abstract (source) variables.

. Establish, for each target cut poirin CP ., adata abstraction
aft): (v =FE1) A - A (vy, = Ey)

assigning tasomenon-control source state variables ¢ V, an expression
Ej over the target state variables. Note thdi) is allowed to be partial,
i.e., it may contain no clause for some variables. It is required that,
everyobservablevariableV € O, (whose target counterparti$ and every
terminal pointt, «(t) has a clauséV’ = v).

. For each cut pointsand; such that there is a simple path frarto j in the
control graph ofP,., form the verification condition

( p(i) A G(EG)) A ali) A ply  — >

Cii: . . .
! IV by N @G) A W (RG)) A G).

. Establish the validity of all the generated verification conditions.

for

Figure 3.1: The Proof RuleALIDATE
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BO

Bl
B2

B4

N <- 500 BO .t264 <- 0

Y <-0 y <-0
W <1 w <-1
WHILE (W <= N) Bl {phil: 1264 = 2 * y}
BLOCK w <- .t264 + w + 3
W<-W+ 2+« Y + 3 y<-y+1
Y<-Y+1 1264 <- 1264 + 2
ENDBLOCK IF (w <= 500) GOTO B1
B2
(a) Input Program (b) Optimized Code

Figure 3.2: Example : Source and Annotated Target Programs
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3.4 Transitivity of VALIDATE Proofs

In the previous section, we present ruka IDATE and prove its soundness in es-
tablishing the equivalence between two transition systems. One question people
often ask is the completeness of this proof rule. We claim that this rule can be
applied to validate transformations that ateucture-preserving.e., transforma-

tions that do not modify the structure of the source program in a major way. A
formal description of structure preserving transformations is that, for some cut-
point sets of source and target programs, there exists Floyd-like data mapping
between corresponding cut points in source and target. But this definition is ex-
actly what rulevALIDATE attempt to establish, hence is not helpful in identifying
the scope of rul&ALIDATE .

Although we are cannot precisely characterize the set of transformations rule
VALIDATE is capable of verifying, we can still check whether the rule can be
applied to verifying individual transformations. Our efforts to find out the com-
pleteness of rul@ALIDATE can start with finding out the set of individual opti-
mizations performed by compilers that rueLIDATE can handle. For instance,
copy propagation and constant folding do not modify control flow graph at all,
thus can be verified by rubALIDATE ; if simplifications eliminate a branch im
conditional, with a careful control abstraction, they can still be verified by rule
VALIDATE . A list of individual compiler optimizations that can be handled by
rule VALIDATE will be described in detail in the next chapter. Transformations

performed by compilers consist of a sequence of individual optimizations, not
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necessarily in any particular order, hence it is desirable forvaleDATE to be
transitive, i.e. if each individual optimizations can be handled by valeDATE ,
so should their composition. Having rilgeLIDATE transitive will also meet with
our intuition, because the composition of two structure-preserving optimizations
should also be structure-preserving.

In order to formally define the transitivity ofALIDATE rule, we first define
what avALIDATE proof is. AVALIDATE proofP = (k, a, ¢, ) that establishes

the refinement between a source progrdirand a target prograrR,. consists of
e a control mapping: : CP,, — CP,,
e adataabstraction: /\ (pc=i— a(i)),
i€CP,,

e atargetinvarianp: /\ (pc =i — (i),
i€CP,,

e asourceinvariant : A\ (PC =i — 1)(i)).
ieCPy

The transitivity of avALIDATE proof can be described as follows:
if there exist proofs of rule/ALIDATE for transformations?; and

F,, there also exist a proof of ruALIDATE for the transformation

obtained by performingf; followed by 7.

In general, avALIDATE proof is not transitive. However, we show, some “well
formed” applications of rule/ALIDATE are. Before we formally define “well
formedness”, we make the assumption that the programs we consider are repre-

sented in SSA form, and we defiliee variablesandvisible variablef programs
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in SSA form. In the rest of this section, We define a variable téibeif it con-
tributes to the computation of observable variables. To be presice, thelseat of

variablescan be determined with a recursive approach as follows:

1. mark a variable to be live if it isbservable where a value i®bservable
means that it either is definitely returned or output by the procedure or it

affects a storage location that may be accessible from outside the procedure;

2. mark a variable to be live at locatiarif its value is used to compute the

marked variable.
3. repeat the previous step until the process stabilized.

We define variable to bevisible at location: if the location where is defined
dominates location. We define a/ALIDATE proof P = (k, «, ¢, 1) to bewell

formedif

1. data abstraction(:) at each target cut pointhas the form
a(i): \(u=E,)
uelU

whereU C V, is the set oflive variables that areisible at locations (i),
andF, is an expression over targete variables that areisibleat location

(&

2. target invarianty (i) at a target cut pointis a boolean expression over the

set of targetive variables that areisible at locationi in the target;
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3. source invarianp is T.

In the above definition, we require that the data abstraction correlates every live
source variable to a target expression, since, without having the value of a live
source variable encoded as a target expression at a check point, we may lose track
of its value in the computation after that check point, hence we will not be able
to establish the data abstraction at the next check point. We also require that dead
variables appears neither in the data mapping nor in the target invariant, since
dead variables do not contribute to the computation of “useful” information in the
programs. Finally, we require that the source invariant be trivial because it can
always be encoded as part of the target invariant. That is, for a source invariant
1 (k(7)) at source cut point(i) over the set of live variabléu,, ..., u,  } that are

visible atx (i), and a data abstraction

that maps:, at source location (i) to L, attarget location, we can substitute

eachu, in ¢ (x(7)) with £, and obtain a target invariant

P(R())E,, [ur, - B, [tm].

Theorem 2 Let P, = (V,, 04,0, p5), P, = (V;,,0,,0,,p,)and P, =
(V,, Oy, 0., pp, ) be comparables's, where P is the source’,, is a refine-

ment of P, and P, is a refinement of’,. . If there exist well-formedALIDATE
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proofs that establish the refinement frafp to P, , and fromP,, to P, , then
there also exists a well-formedhLIDATE proof that validates the refinement di-

rectly fromP; to P, .

Proof:

Let P, = (k,,a,,¢,,T) be a well-formed proof for the refinement from,
to P, LetPy = (k,,q,,p,,T) be a well-formed proof for the refinement
from P, to P, . Let(i,,j,) be a pair of cut points i, . Let (i, j,) be the

corresponding cut points if, , and (i, j) be the corresponding cut points in

P,. Thatis,
i, = Ry(1), 3 = £, (4)
and g = K, 0 Kk, (1), Js = K, 0 K,(]).

In proof IP,, if there exists a simple path from to 5, in the control graph of

P, , there exists a valid verification condition

. T.
T Ty 12 (22) A Q, A pi;jQ

igdy * ;S . . (33)
— AV tpi g N og(d) A e, ()

Similarly, in proofP;, for the pair of cut points, (i), x,(j) in P, , there exists

valid verification condtion

. . i

STy | ¥ (21> N a, (Z1) N piljl (3 4)

i1y " s . . ’
— 3V i, A AL(G) A @)
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Combining formula 3.3 and formula 3.4, we obtain a valid formula

Ae,(iy) A p

D) N

ATV (i) A @, (i) A a,(i,)) (3.5)

. S
@, (d.) A p,

ElVS’ :
ATV (@) A @G A @)

Formula 3.5 is similar to our desired form, however, it has two clauses of the

form

Vi, (i) A ay(i) A g, (i) (3.6)

(first in a non-primed, and second in a primed form) that violate the desired
form. Thus, it is suffices to show that formula 3.6 can be separated to a well-

formed data abstraction frof, to V,, and an invariant of°,, .

LetU, = {u,,...,u,} CV, bethe setof live variables that are visible at
location:, in program?;. ProofP; is well formed, hence thiafT1 variables that
appear free iny, (i,) andy, (i,) are inU,. ProofP, is also well formed, hence

we have the data mapping

(i) (wy,=E,) A ...(u,=E,) (3.7)

m

whereL, ..., E, are expressions over live variableslif that are visible

at location, .

By substituting, for each = 1..m, v, in a, (i,) andy, (¢, ), with £, we can
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eliminate the quantifiers in formula 3.6 and obtain an equivalent formula

Oél(il)[Eul /uw e ’7Eum/um] N (pl(il)[Eul /u17 e '7Eum/um]

where the first conjunct is a well-formed data mapping friBmrto P, and the

second conjunct is an invariant &%, .

Noticing that

WV, (@) A oy(iy) = o (i)[E, [u,... . E, [u,]

T

and HVTI : ((pl (Zl) /\ 062 (12)) <~ (101 (/L.l)[Eul /u17 ety Eum’ /um,]7

we can construct @ALIDATE proofP = (k, «, ¢, 1) that establishes the refine-

ment fromP; to P, with

e contorl abstractions = k, o k,,

e data abstractionv: /\ (pc =i — afi)) where
i€CPy,

a(i) : 3V, (o, (k(i)) A a,(i)) for eachi € CP,, ,
e target invarianty : /\ (pc =i — ¢(i)) where
i€CPy,

@(i) 1, (i) A 3V, : (i, (k(3)) A a,(i)) foreachi € CP,, ,

e source invariant) = T,
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andP is well formed.
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Chapter 4

Proving Various Optimizations with

Rule VALIDATE

In the previous chapter, we present a proof rule calledDATE for validating
structure preservingptimizations. Essentially, to be able to apply the rule, it re-
quires that the loop structure be the same in the source and target programs. In this
chapter, we show how to apply this rule to validating a set of individual optimiza-
tions that are commonly implemented in compilers. For each optimization that
can be validated by ruleaLIDATE , we give a well-formed/ALIDATE proof. Sec-

tion 4.1 discuss a series of data-flow analyses optimizations that make no changes
to control flow, while Section 4.2 covers a set of control-flow optimizations that
modify control flow but not in a major way. Still, there exist control-flow opti-
mizations that are beyond the capability of rieLIDATE . In Section 4.3, we

give two examples of optimizations that rideLIDATE cannot handle.
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4.1 Global Optimizations

In this section, we discuss a series of optimizations that add/remove/modify in-
structions without changing the data flow of a program.

For transformations that do not change data flow, we can assume that there
exists one-to-one correspondence between the program locations in source and
target programs. This can be achieved by addirgr at the location in source
where an instruction is inserted by the transformation and at the location in target
where an instruction is removed. For such source and target programs, we can use
a trivial control mapping, i.e. we take the set of program locations as cut-point
set for both programs, and hawéi) = i for each cut point. For presentation’s
purpose, we only present the data mapping and the target invariant at the cut points
at which changes happen. The data mapping and the invariant at other cut points
are either trivial, or can be easily obtained by propagating the information from
the point where changes happen. Besides, we assume source and target programs
are written in SSA form. LeV be the set of variables that appear in both source
and target. To simplify the notation, for a variablec V', we denote byX andx

the corresponding variables in source and target systems, respectively.

4.1.1 Algebraic Simplification and Reassociation

Algebraic simplificationsise algebraic properties of operators or particular operator-
operand combinations to simplify expressiof®eassociationefers to using spe-

cific algebraic properties — namely, associativity, commutativity, and distributivity
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— to divide an expression into parts that are constant, loop-invariant(i.e., have the
same value for each iteration of a loop), and variables. In general, this class of
optimizatons can be described as below, where the source and target programs are

the same except that the expressions assgine@tdocation: are different.

Li o X — expry Li DT < expry
Li+1 : ... Li+1

Source Target

To apply rulevALIDATE to this case, we define

a(i) © AV =u)
vey
(@) © T

and the non-trivial verification condition is

Coinr a(i) A (2 = expry) A pres(V, —{z}) i)
A (X" = expry) A pres(V, —{X})

If the transformation is correctxpr, andexpr, evaluate to the same value, which

meang X = x) holds after the transition and this condition is valid.

4.1.2 Constant Propagation

Constant propagatiors a transformation that, given an assignment- ¢ for

a variabler and a constant, replaces later uses afwith uses ofc as long as
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intervening assignments have not changed the value $parse conditional con-
stant propagatiometects variables that are constant by deriving information from
conditionals. The following programs represents a typical scenario of constant
propagation: variablg has a constant valuewhen the execution gets fai,

hence the use gfatLi is replaced by: in the target.

Li : X+—YopZ Li . x<—cop=z
Li4+1 : ... Li+1

Source Target

To apply rulevALIDATE to this case, we define

a(i) + Y=o A N (V=0

veV—{y}

p(d) T
4.1.3 Value Numbering

Value numberings one of the several methods for determining that two compu-
tations are equivalent and eliminating one of them. It associates a symbolic value
with each computation without interpreting the operation performed by the com-
putation, but in such a way that two computations with the same symbolic value
always compute the same value.

Two varaibles are congruent to each other if the computation that define them
have identical operators (or constant values) and their corresponding operands are

congruent.
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Li : A« op(Y?t ..., Y™) Li :a<«—op(yl,....y™)

Lj . B+« op(Z',...,2™m) Lj  be—a
Lji+1 : Lj+1

Source Target

A typical optimization of value numbering is described by the programs be-

low: in source program, variablesandb are found to be congruent, so in target

programb gets the value ofi instead of the expressiap(z', ..., z™). Notice

thata andb being congruent means that the corresponding operands of operator

op in source and target are congruent, which entails that, for gaehl ... m,

(y" =2").

To apply rulevALIDATE to this case, we define

with which we can show tha® = b holds after the transitions ag in source and

target are taken.

4.1.4 Copy Propagation

Copy propagations a transformation that, given an assignment y for some

variablesr andy, replaces later uses afwith uses ofy, as long as intervening
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instructions have not changed the value of eithesr y. Following programs

describe the scenario of copy propagation.

Li : A—XopZ Li S a<yopz
Li+1 : ... Li+1

Source Target

To apply rulevALIDATE to such a transformation, we define

The data abstraction &t maps.X to y and every other source variables
to the corresponding in target. Thus, the right-hand-side expressionkiain

source and target evalute to the same value, and we obtaim atLi + 1.

4.1.5 Redundancy Elimination

The following three optimizations that deal with elimination of redundant compu-

tations are discussed here:

e The first onecommon-subexpression eliminatidimds computations that
are always performed at least twice on a given execution path and eliminate
the second and later occurences of them. This optimization requires data-

flow analysis to locate redundant compuations.
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e The secondloop-invariant code motianfinds computations that produce
the same result every time a loop is iterated and moves them out of the loop.
While this can be determined by an independent data-flow analysis, it is

usually based on using ud-chains.

e The third,partial-redundancy eliminatignrmoves computations that are at
least partially redundant (i.e., those that are computed more than once on
some path through the flowgraph) to their optimal computation points and
eliminates totally redundant ones. It encompasses common-subexpression
elmination, loop invariant code motion, and more. The data-flow analyses
for this optimization is more complex than any other case we consider, and
it requires the computation a series of local and global data-flow properties

of expressions.

As readers may have noticed, to validate an optimiztion, what matters is not
howthe optimization is implemented, bwhatit produces. In the case of redun-
dancy elimination, the first two optimizations mentioned above are both subcases
of the third one. Therefore, even though these the first two optimizations are com-
puted by totally different approaches from the third, for the purpose of validation,
a VALIDATE proof for partial redundancy elimination can also be applied to the
other two optimizations.

We consider the following programs which is a representative case of redun-

dancy elimination.
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v ] ' '

’ L13 skip H Ljo : skip "Lilz’?1<—yopz" Lj2:t2<—yopz‘
| v
’ Lis : skip ‘ ’ Liz: ts < ¢(t1,t2) ‘
| v
| Lj:A—Yopz | | Lj:a <t |
Source Target

In the above control-flow graphs, we assume that execution reachéom
eitherLi; or Li,, andLiz dominated.i. Variablest,, ¢, andts are temporary
variables introduced during optimization. To apply rukeLIDATE to this case,

we define

a(j) : Npew(V =0)

o(j) + (ti=yopz) A (ta=yopz) A (t3=1t1 V t3 =ts)

With the invarianty(7) which implies(t3 = y op z), we can show thatl = «a

holds after taking the transitionsiaj in source and target.

4.1.6 Code Motion

Code motions to move identical instructions from basic blocks to their common
ancestor (known as code hoisting) or descendent in flow graphs (known as code

sinking).
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The transformation of code hoisting is represented in the flowgraphs below,

whereLi is a common ancestor afj; andLjs.

' '

’ Li: skip ‘ ’ Li:x«<yopz ‘
RN
| Lji:Xi—YopZ| |Ljx:Xp—YopZ || Lji:skip | | [Ljp:skip |
Source Target

To apply rulevALIDATE , we define

a(ji) © Nev—ixy(V =10)

¢(j1) © (x=yop2)

It is straightforward to show thaX’; = z holds after the instructions atj; + 1
are executed. Beside&,, = x is not guaranteed along the path fraunto Lj,,
but when the code hoisting is performed safely, there should not exist use of
along the paths, hence not haviAg = = in the data abstraction does not affect
the validity of the verification conditions. The motion of the instructiobjtcan
be validated analogously.

Next, we show the transformation of code sinking in the following flowgraphs,
whereLk is the location where the paths frobi; and fromLi, join, andLk

dominated.j.
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' ' '

’Li1:X1<—YopZ‘ ’LiQ:X2<—YopZH Li; : skip; \ ] Li, : skip \
N // “a ///
| Lk : X — (X4, Xp) | | Lk:skip |
% %
’ Lj : skip ‘ ’Lj tx—yopzlj: ‘
Source Target

To apply rulevALIDATE , we define

a(j) © (X=yop2) A N\pey_x;(V =10)

It is straightforward to show thaX = z holds atLj + 1. The invariantp(j) is
derived from the assertiqiX; =y op 2) A (X = X;) V (Xo=yop 2) A (X =

X,) propagated fronik.

4.1.7 Loop Optimizations

The optimizations covered in this subsection apply directly to the classelbf
behaved loopgMuc97] where the loop’s iterations are counted by an integer-
valued variable that proceeds upward (or downward) by a constant amount with
each iteration. All of the following three optimizations involve manipulation on

induction variablesi.e. those whose value is incremented (or decremented) by a

49



constant amount with each iteration.

Strength Reduction replaces expensive operations, such as multiplications , by
less expensive ones, such as additions. To perform strength reduction for a loop,
one need to devide the loop’s induction variables imégic induction variables
which are explicitly modified by the same constant amount during each iteration
of aloop, anddependent induction variabl@s the class of a basic induction vari-
able, which are computed by adding or multiplying that basic induction variable
by a constant. Assume thats a basic induction variable incremented by a con-
stantd with each iteration, anglis in the class of with linear equation = bxi+c.

Let db be a value of the expressiahn« b. The following programs demonstrate

strength reduction applied to induction variable

To apply rulevALIDATE to this case, we define

veV

e(j) © (t1=bxiy+c) AN (ta=bxig+c) AN (tg=Dbxizg+c)

The three clauses in the invarias(tj) is propagated from the instructiondat-1,
Lk andLi, respectively. With the clause, = b x i3 + ¢) in ©(j), itis straightfor-

ward to see thaf; = j, holds after the instructions ag are executed.

Linear-Function Test Replacement replaces the loop-closing test by another

induction variable in that context. It is beneficial when an induction variable is
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' '

Li— 1:skip ‘ Li—1:t1<—b*i1+c‘

Y v Y Y

Li: 13 « ¢(i1,i2)

Li: Iz« ¢(Iy,1) ty — o(t1,1t2)

T
|

L

Lk: ¢ ; d
Lk:T, — Is+d t2 it

ty « t3 +db
I I
Y Y
Lj:Ji+<bxIy+c Lj:j1+< t2 ‘
I I
| o o o o o - - - - | | o o o o o - - - - 1
Source Target

used only in the loop-closing test, and can be removed after being replaced.

To verify a linear-fucntion test replacement that replacing a loop-closing test
f (@) by g(j) wherei andj are induction variables antlandg are linear functions,
essentially we need to shofi{:) < ¢(j) for the values and; take in the same
iteration. Having and; as induction varialbes, we can always find a linear fucn-
tion h such thatj = h(i) at the point of loop-closing test. If the test replacement
is correct, we should havg(:) < ¢(j) valid under the constraint= h(i).

Here is an example of linear-function test replacement.
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[1% 1 zl:é
1
Si=0 I 306
I Y
Iy — (11, I) i3 < ¢(i1,12)
J3 = &(J1, J2) Js < o(j1, J2)
Lj: (I3 >100)? Lj: (j3>1)?
Li:... \ Lji+1:... \ Li:... \ Li+1:...
Iy —I3+1 iy — i3+ 1
Jy— Jz3+4 Je—Jst4
Source Target

To apply rulevALIDATE to this example, we define

a(j) = (h=1) A (L=hp/A+1) A (=j/4+1) A N\ (V=0

veV—{i1,i2,i3}

w() = (i =0) A (t=3906)

The claus€l; = j3/4+1) in a(j) implies that the test conditiorig; > 100) and

(j3 > 396) are equivalent, hence the two verification conditiohs.; andC;

are valid. Notice that the data abstractiorn. agtmaps/; to an expression oveg
instead ofi;. This is because, after the test replacemgridan be dead if it is not
used after the loop, while a well-formed data abstraction requires to map source

variables to expressions over live target variables.
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Removal of Induction Variables In addition to strength-reducing induction
variables, we can often remove them entirely when they serve no useful purpose
in the program. There are several situations where induction variables can be

removed:
1. The variable may have contributed nothing to the computation to begin with.

2. The variable may become useless as a result of another transformation, such

as strength reduction.

3. The variable may have been created in the process of performing a strength

reduction and then become useless as a result of another one.

4. The variable may be used only in the loop-closing test and may be replace-

able by another induction variable in that context.

Removal of induction variables is a subcase of dead code elimination that will

be discussed next.

4.1.8 Dead Code Elimination

A variable isdeadif it is not used on any path from the location in the code where

it is defined to the exit point of the routine in question. An instructiodeadif

it computes only values that are not used on any executable path leading from the
instruction. Programs may include dead code beofre optimization, but such code
is much more likely to arise from optimization; removal of induction variables

mentioned in Subsection 4.1.7 is an example that produces dead code; and there
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are many other. Many optimizations creates dead code as part of a division of
labor priciple: keep each optimization phase as simple as possible so as make it
easy to implement and maintain, leaving it to other phase to clean up after it.

The maximal set of dead instructions can be determined with an optmistice

recursive approach as follows:

1. mark all instructions that compute observable values (also knoessas-
tial values where a value i®bservabléf it either is definitely returned or
output by the procedure or it affects a storage location that may be accessi-

ble from outside the procedure;

2. mark instructions that contribute to the computation of the marked instruc-

tions;

3. repeat the previous step until the process stabilized. All unmarked instruc-

tions are dead and may be deleted.

Dead code elimination causes the data mapping to be partial: if a vaziable
has dead value at a set of locatiofsand the instruction that assigns that dead
value toz is deleted in the target program, the mapping frgsmabstract version
to its concrete versioX = x does not hold at any location . However, since
the dead values does not contribute to the compuation of observable values, the
data abstraction can still establish the equality between observable values in the
source and their counterpart in the target and all verification conditions are still

valid.
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4.2 Control Flow Optimizations

Here we discuss optimizations that apply to the control flow of a procedure that
are usually carried out on programs in a low-level intermediate code. Such opti-
mizations often produce longer basic blocks, thus have the potential to increase
available instruction-level parallelism.

In Section 3.1, we claim that ruleaLIDATE is capable of handling all the
optimizations that do not involve major structure modification. Control flow opti-
mizations are a potentially problematic category to apply aleDATE , due to
changes of control flows in the target programs they produce. Surprising, most
of the commonly used control flow optimizations do fall into the category that
rule VALIDATE is capable to validate, which demonstrates the versatility of rule
VALIDATE . In the rest of this subsection, we discuss a list of control flow opti-
mizations that rule’/ALIDATE can be applied to.

In order to apply rulevALIDATE to control flow optimizations that modify
the control flow in the transformation while preserve the data flow, we need an
appropriate control mapping over carefully chosen sets of cut points in source
and target programs, and leave the data mapping to be trivial, i.e., for a program
variablev € V, its abstract version and concrete version are equivalent at every

cut points, and the control variablB§ = x(pc).

4.2.1 Unreachable-code elimination

Unreachable codés code that cannot possibly be executed, regardless of the input
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data. In general, rulgALIDATE is not able to validate unreachable-code elimi-
antion. As a matter of fact, the refinement relation established byru®ATE

allows computations in the target program to be a subset of those in the source,
hence will not detect the elimination of reachable code. However, under the as-
sumption that programs are deterministic, rube IDATE establish the one-to-

one correspondence between computations in source and target. Thus, with a
control abstraction maps each location in the target to its corresponding loca-
tion in the source, and a trivial data mapping, we can establish the correctness

of unreachable-code elimination.

4.2.2 Straightening

Straightenings an optimization that applies, in its most basic form, to pairs of
basic blocks such that the first has no successors other than the second and the
second has no predecessors other than the first. Since they are both basic blocks,
either the second one immediately follows the first one or the first of them must
end with an unconditional brach to the second. In both case, the transformation
fuses the two basic blocks into a single new block. Straightening does not modify
the “shape” of control graph. To be specific, if we represent source and target
as control flow graphs ahaximal basic blocksvhere each block is the longest
sequence of instruction such that only the first instruction may have more than
one entry and only the last instruction may have more than one exit, the two graph
are identical. Thus, we can choose the point right before each maximal basic

blocks as well as the terminating point in source and target as the set of cut-
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if (a>d) {
b = a;
if (a>d) || bool
d=0>b
else

Figure 4.1: An example with a condition that is a common subexpression

points in source and target, respectively, and establish a one-to-one mapping to
each corresponding pair of cut-points. Together with a trival data mapping and no

invariants, the validity of verification conditions is straightforward.

4.2.3 If simplifications

If simplificationsapply to conditional constructs; these optimizations can reduce
the number of conditional branches in a program. In its simplest form, if simplica-
tion apply tolF constructs with constant-valued conditions and remove the arm of
thelF which is unexecutable. A more complicated form of if simplification is the
occurrence of common subexpressions as conditionsin and in a subsequent
dependentr; of course, the value of the variables involved must not have been
changed between the test. Such a case is illustrated in Fig. 4.1. The setestd
(a > d) V bool is guaranteed to be satisfied because d was satisfied in the
first IF test, and neithet nor d has been changed in between.

In general, if simplifications apply to conditional jump if (i) the condition is

constant-valued (ii) a static analysis concludes that the condition evaluates to a
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constant every time an execution reaches that conditional jump. Such simplifica-
tions can be viewed as a two-step process: in step one, the conditional jump is
either removed or replaced by an unconditional jump; in step two, the code made
unreachable becaue of step one is removed. Here, we only give the proof of step
one. The proof of step two can be found abovemeachable-code elimination
and the synthesis of tweALIDATE proofs can be found in Section 3.4.

Below are the programs describing a transformation that removes a conditional
jump when the condition always evaluates to be false, and proof of the transfor-

mation. The cases where the conditional jump always take the false branch can be

validated analogically.

Li: truebr cond, Lj Li: skip

Li4+1: ... Li+1:

Source Target
To validate this transformation, we choose data abstraction and control ab-

straction to be trivial. We know that the conditietnd atLi is statically decided

to be true, which means there exists an boolean asserti@ing an invariant at
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Li, such thaty — cond. The non-trivial verification condition, in this cases, is

a(i) N vy
AN(pc=1 A pc'=i+1 A pres(V,
Oi,i-i-l . T)> — O/(i + 1)
AN((PC=i ANPC=i+1 A cond A pres(V,)) V

(PC=1i A PC'=j A —cond A pres(Vy)))

Due to the facty — cond, the second disjunct of source transition relation cannot
be satisfied, an#8C’ can only getg: + 1), hence we haveC’ = pc’ holds in the

right hand side of the implication. This verification condition is valid.

4.2.4 Loop inversion

Loop inversion in source-language terms, transformsvaiLEloop into aRE-
PEATIoOp. In other words, it moves the loop-closing test from before the body of
the loop to after it. This has the advantage that only one branch instruction need
be executed to close the loop, rather than one to get from the end back to the be-
ginning and another at the beginning to perform the test. The following programs

demonstrate the transformation fo loop inversion.
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Li: bool? ‘ ’ Li : bool? ‘
Y N Y N
Li+1 Li+1

Source Target

To apply rulevALIDATE to verifying this example, we choose the cut-point
sets to consist of every locations for both source and target, and define the control

abstraction as

i if loc=j,
k(loc) =
[ otherwise.

With a trivial data mapping and no invariant, we can obtain a set of verifiaiton

conditions that are valid.

4.2.5 Tail merging

Tail merging also known agross jumpingis an optimization that always saves
code space and may also save time. It searches for basic blocks in which the last

few instructions are identical and that continue execution at the same location, ei-
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ther by one branching to the instruction following the other or by both branching
to the same location. What the optimization does is to replace the matching in-
structions of one of the blocks by a branch to the corresponding point in the other.

The transformation is demonstrated as follows:

¢ ¢

| Li—1:... | [ Lj—1:... |
| Li:Xl%—expr | szxg%—expr || Li—¢1:.,. | Lj—¢1:...
~ 7
[ Lk : X5 — ¢(X1, %) | | Lk:Xs < expr |
| Lk+1:... | | Lk+1:... |

¢ '

Source Target

To apply rulevALIDATE to verifying this example, it is crucial to selecting the
right cut points in the source and target programs. L£etnd £, be the set of

program locations in source and target, respectively. We take

CP, =L, —{k}
CPT = ‘cT - {k}

With both the control mapping and the data mapping being trivial and no invari-

ants, we can obtain a set of verification conditions that are all valid.
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4.3 Beyond RulevALIDATE

Although we have already shown that transformations performed by many control-
flow optimizations are considered structure-preserving by valeDATE , there

still exist some transformations that modify a program’s structure in one way or
another such that the rule fails to apply. Next, we give two examples of such

transformations.

4.3.1 Loop Simplification

A loop whose body is empty can be eliminated, as long as the iteration-control
code has no live side effects. If the iteration-control code has the side effects, they
may be simple enough that they can be replaced by non-looping code. Following

is an example of such optimization:

LO : falsebr (N >0),L1 LO : falsebr (N >0),L1
10 1— N+1

L2 : truebr (i > N)goto L1
1e—1+1
goto L2

L1 : L1

Source Target
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Since, in the source program, the only variable modified in the loepasd
value ofi at the point of loop termination must B&’ + 1), in the target program,
the loop is replaced by« N +1. Naturally, the control points0 andL1 in target
corresponds t@&.0 andL1 in source, respectively. However, there is no control
point in target that can be related i@, and it is not easy task to automatically
computing the transition relation froi® to L1 in source because we do not have
an algorithmic way to compute the transition relation for a loop. RalaDATE

fails to apply to this example.

4.3.2 Unswitching

Unswitchingis a control-flow transformation that moves loop-invariant condi-
tional branches out of loops. For example, consider the C programs below. The
IF statement in the source has a loop invariant conditioa 2, thus is moved

out of the loop in the target. Because tireconditional has ne&lse part in the
source, we need to supply one in the target that sets the loop-control variable

its final value in case thaitis live after the loop. Similar to what happens in loop
simplification, the transformation eliminates the loop in the source viher? is

not satisfied. Again, this is a transformation that ndeIDATE cannot handle.
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for (i=0;i<100;i++) if (k=2)

if (k=2) for (i=0;i<100;i++)
afi] = afi] + 1, afi] = afi] + 1;
else
i = 100;
Source Target
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Chapter 5

TVOC-SP: a Tool for Validating

Structure Preserving Optimizations

In Chapter 4, we described how to apply rieLIDATE to various structure-
preserving optimizations, given that each of such optimizations is performed in-
dividually. In practice, it is not always possible to have compiler output a trans-
formed program after each individual optimizations is performed. As a matter of
fact, even though compilers perform optimizations in multiple passes, they tend
to perform a group of optimizations in one single pass and leave the users no
clue of what optimiztions are performed and in which order they are applied. For
example, when working witlorRc compiler, the source and target programs we
take are the intermediate code the compiler produces right before and immedi-
ately after the global-optimization phase. In addition, we obtain a symbol table

from the compiler, which gives type information of program variables. In such
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a case, it is not possible for us to “composeVAaIDATE proof as suggested in
Section 3.4. Instead, we build a tool callBdOC-SP that attempts to use various
heuristics to generate proofs for transformations that are concatenation of multi-
ple global optimizations. In this chapter, we describe RIOWDC-SP performs

its own control-flow and data-flow analyses to generate the ingredients including
control abstraction, data abstraction and invariants of source and target programs
to establish aALIDATE proof. We use the source and target programs in Fig. 5.1

as a running example to demonstrate the generation of each ingredient.

LO <0
L.O <0
LO K3ln|
L O 0«0
ﬁ l LO &0

}

€00 gOo
Ul [0 000
Lo €«0 O O
LO €0 0 0
| ,
LO &0
L0 5 LO |
(a) Source (b) Target

Figure 5.1: Example: a source program and its target transformed by a series of
optimizations: Constant folding, copy propagation, dead code elimination, control
flow graph optimization (loop inversion), and strength reduction, both in SSA
form.



5.1 Control Abstraction

Cutpoint set Because global optimizations may add and delete instructions, or
eliminate whole branches, it is often the case that there exists no bijection between
locations in source and target programs. However, for our purposes, it suffices to
find a subset of program locations for the cutpoint set, as long as the symbolic
execution of simple paths between two cut points (i.e., paths that contain no inter-
mediate cutpoints) can be represented as transition relations.

Since all, or almost all, the global optimizations we are dealing with do not
add or eliminate loops, hence, there always is a bijection between the loops in
source and target programs. Besides, most of the global optimizations preserve
the control structure of loops, except for loop inversion where loop-closing test
is moved from the beginning of the loop body to the end. Hence, we chose the
cutpoint sets to consist of the initial and terminal locations of each program, as
well as the beginning of each loop’s body (since we are assuming SSA form, we
stipulate that the latter are chosen todfter assignments of- functions).

For our example, the source cut-point set consists of locafiong 9} (the
initial location, terminal location, and the first location of the loop), while the
target cutpoint set consists of locatiofis 5, 9} (the initial location, terminal lo-

cation, and the first nop-statement in the loop).

Control abstraction Control abstraction establishes one-to-one correspondence
between cutpoints in source and target. Since every program unit can be repre-

sented as a single-entry, single-exit control flow graph, control abstraction maps
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initial and terminal locations of the target to initial and terminal locations of the
source, respectively.

Since we choose a single cutpoint for each loop, the problem of mapping
cutpoints of loops is reduced to finding a mapping between the loops in source
and target. Given two control graphs, the problem of automatically identifying
corresponding loops in the two may be cost prohibitive. However, we assume
that compilers can provide annotations to programgRithat will indicate the
statement numbers in both codes of loops that are expected to match.

The control mapping: maps target cutpoints into source cutpoints. In our

example, we have : {1 +— 1,5+ 7,9 — 9}.

Paths and transition relation After choosing the cutpoint sets for source and
target programs, we compute, for both programs, the sessngsle pathsi.e.,
paths of locations that start and end at cutpoints and do not contain as intermediate

cutpoints. For our example, the set of simple paths in the source is:
( 3

1—-2—-3—-4—-5—-6—17,

1-2—-3—-4—-5—-6—9,
CPPATHS =

7—8—4—-5—06—1,

\7—>8—>4—>5—>6—>9 )
For each simple path, we compute its transition relation using the symbolic

simulator. For example, for the path— 8 — 4 — 5 — 6 — 7] in the source,
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we have the transition relation:

Wi =Wo+Ya+3) A (Y5 =Ya+1) A (Y3 =Y5) A (W5 =W5)
ANWL<N)A(N=N) A (Y =Y3) A (W=Wa)
ANN"=N) AN Y'=Y]) N (W =W;)

5.2 Data Abstraction

To construct data abstraction, we need to find, for each target cut panget
of equality relationst’ = E, that relates the value of a source variableat
source locatiork(7) to the value of an target expressién at target location.
While this is, in general, a hard problem, we rely again on information supplied by
compilers, mostly in the form of existing annotation that are expressed in terms of
predicates of the formilU = v). To be specific, we noticed that, during compiler
optimizations, the names of program variables preserver,imnd temporary
varaibles introduced during optimizations are often annotated with variable names
in the source program it corresponds to.

Thus, we can assume some base set of candidateXdatapping of the form
(U = v), from which we choose the maximal subset that holds at target locations,
and takex(i) to be their conjunction. The computationdfi) is described by the

following pseudo code:

{INITIALIZATION}

for each target cutpoint i

) = X
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a(i) = /\EeX{E}

paths(i) = {set of all simple paths leading into i}

{FIX-POINT COMPUTATION}
repeat
for every path 7w in path(i)
j = start point of T
v@) = A0 N AEer) 1 en() A es(k(G) A al) A
e A Py — Prime(E) }
a(i) = Ageyiy B
until sets stabilize
Here,prime(E) is the “primed” version of, that is, when every variable is
replaced by its primed version..(j) andy, (k(j)) represent the source invariant
at locationj and the target invariant at locatiat(;j), respectively. The generation
of invariants will be discussed in the next section. Since invariants are generated
for each program separately, they do not require the control or data mapping that
are inter-programs. Thus, for now we assume that we have) andy’ (j) for
every: € CP, andj € CP,. Note that while we chose the target transition
function that corresponds to the target patlwe take the matching source path
to be any path in between the two matchingndpoints of the source. In fact, if
there is more then one matching source path, we should take the disjunction of the
transition relations of the matching source paths.

The procedure described above can be viewed as an iterative forward data-
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flow analysis operated on a lattice that consists of the powers€tafered by

C. The flow functions ofy can be solved by starting with' and descending
values in the lattice in each iteration until a fixpoint is reached. The validity of
the logic formula in the flow equation ofis decided by using a theorem prover.
Unlike iterative data flow analyses used in compiler optimizations, this procedure
applies a joint analysis on source and target programs.

In our example, we obtain in the data abstraction, e.g., e.g.,

The data mappings we construct with the above algorithm is in a very restricted
form, i.e., it always maps a source variable to a target variable instead of a target
expression, and it gives rise to the question of whether such a data mappings is
sufficient to establish &ALIDATE proof. The answer is that, the part of data
abstraction that maps a source variable to a target expression (instead of a target
variable) can be encoded as part of the source invariant. For instance, a well-

formed data mapping

ai): (X =z) AN Y =y) AN (Z=x+y)

can also be expressed as the conjunction of a data mapping together and a source
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invariant as follows:
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5.3 Generating Invariants

As mentioned above, invariant generation is the most challenging tasks that are
required in order to applyALIDATE . In this section, we represent two methods
that both generates invariants: The first one is based on iterative data-flow analy-
sis, which is commonly performed by compilers; while the second one operates
directly on programs in SSA form. We believe it is both more efficient and gen-
erates more information than that data-flow based method. This is due to the fact
that the data-flow based method is purely syntactic, while the SSA-form based

method is also semantic.

5.3.1 Generating Invariants from Data-flow Analysis

Invariants that are generated by data flow analysis are of definitions that are carried
out into a basic blocks by all its predecessors. We outline here the procedure that
generates these invariants.

For a basic blocB, define:

kill(B) : setofB's assignmentg = e¢(z) some of whose terms are redefined
later inB

gen(B) : setofB’'s assignments none of whose terms are redefined lager in

Both ki11(B) and gen(B) are easy to construcfTVOC-SP constructs two

other setsin(B), that is the set of invariants upon entryBoandout (B), that is the
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set of invariants upon exit from. These two sets are computed by the procedure

described in Fig. 5.2, wheneed(B) is the set of all basic blocks leading irgo

For every block B
in(B) init {if BB is initial
then set of u = ug for every variable u
else emptyset}
out(B) init emptyset

repeat for every block B
out(B) := (in(B) \ kill(B)) U gen(B)
in(B) Moepreas OUL(P)

until all sets stabilize

Figure 5.2: Procedure to Compute Invariants

Set operations and comparisons are performed syntactically. An obvious en-
hancement to our tool is perform those operations semantically. Another possible
enhancement is to add inequalities to the computed invariants, which are readily
available from the data flow analysis.

Even with the two enhancement mention above, the algorithm in Fig. 5.2 is
still not able to produce sufficient invariants for some compiler optimizations.
Consider the C programs in Fig. 5.3. Sparse conditional constant propagation
detects thafX = 1 is a constant in the source, hence replaces the uieaifi.2
by 1 and eliminatesX in the target. In order to establish the equivalence between
the source and target, we need to comgufe= 1) as an invariant of the source
program atL2. However, this is not an invariant that can be computed without

trying to evaluate conditionals.
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LO : I = 1;
if(I==1)
X =1
else
X =1+ 1;
L1 : while (I<100)
Il =1 =
L2 : Y =1+ X
(a) Source

LO : i = 1;
L1 : while (i<100)
=1 * 2
L2 : y=j+1;
(b) Target

Figure 5.3: An example of sparse conditional constant propagation

5.3.2 Generating Invariants Based on SSA Form

Intuitively, the role of invariants IIVALIDATE is to carry information in between

basic blocks. For a program in SSA form, such a task can be performed simply by

collecting all the definitions as well as the branching conditions that reach certain

program points, which can later be fed into theorem provers which are capable of

semantic reasoning to obtain more “hidden” information.

The following is an example that illustrate how invariant generation works on

programs in SSA form.

BO:
B1:

B2:

B3:

B4:

if —=cq goto B2
€Ty < 3

Y1 <5

goto B3

To < D

Y2 3

T3 < ¢($1,5172)
Y3 ¢(y1,y2)
21— T3+ Y3

Figure 5.4: An example program
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Observe that, no matter haw evaluates at BOz1 = 8) at B4. Rather than
attempting to directly detedt:; = 8) as an invariant at B4, we first check the
assignments appearing in the locations that dominates B4, i.e., the definitions that
hold at B4. This leads us to computifg = x3 + y3) as an invariant at B4, but
not to they desiredz; = 8), which requires information about the valuesigf
andys, which, in turn, depends on the branch conditignBy backtracking from

B4 to BO, we obtain:

((xs3=21 Nys=1mp A1 =3 ANy1=5 A ¢g) V
(.Z'g:l'g/\ygzyz/\y2:3/\$2:5/\_\60>> (51)

A (21 =23+ Yy3)

as an invariant at B4, which implies that = z3 + y3 = 8).

Here we present a methodology that computes invariant for programs in SSA
representation. Assume we have a control flow gi@uti a program in SSA form
whose loops are aflatural, i.e., strongly connected components with single entry
locations. (If some of:’s loops are not naturahode splittingcan be used to trans-
forms the offensive loops.) We denote the entry node of a loop as a loop header.
We assume that each loop header has only one incoming edge from outside of the
loop. (When this is not the case, we introdygceheades — new (initially empty)
blocks placed just before the header of a loop, such that all the edges that previ-
ously lead into the header from outside the loop lead into the preheader, and there
is a single new edge from the preheader to the header.)

Thus, we assume@FG GG where each node is a basic block. Since all loops in
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G are assumed to be natur@f's edges can be partitioned into the set of backward
edges (or back edges) and the set of forward edges. The nodesandl the
forward edges define a dag that induces a partial order among the nodes. For a
program in SSA form, a variable’s definition always reaches descendents of the
node where it is defined. Hence, the solution to the equations in Fig. 5.5 results
in a safe propagation of invariants in the ancestor of the node into the node’s
invariant.

We follow the standard notation, and two nodey € G, we say that: domi-
natesy if every path from the entry afr into y passes through. We say that: is
animmediate dominatoof y if every dominator ofy is eitherx or else is strictly
dominated byr. The immediate dominator of a noges denoted byidom(x).
Foranodg, € G, we denote by~ () the graph obtained fror¥ by removing
all edges that lead intaélom(x), and then removing all the nodes and edges that
do no reach.

Given acFG G and a noder € G, let assign(z) be the set of norp-

assignments in. If z is not a loop header, we define:

gen(r) = /\ (v = exp).
(v:=exp)€cassign(x)
The expressiogen(z) describes the invariants generatedzbyegardless of its
environment.
For a noder with an immediate successgr we denote bycond(z,y) the

condition under which the control transfers franmto y.
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Letx € G be a node that inota loop header. Assume thathasm, prede-
cessorsy), ..., r,, . LetV, denote the set of variables defineddsyunctions in

x. Assume that for every € V,, the definition ofv in = by the¢-function, is

Vg (v) < ¢(vtf(v)7 sy Uk (’U))

Letz € G be now a node which is a loop header. Obviously, i§ reached
through a back edge, we cannot simply take the definitions of the induction vari-
ables as expressed after thdunctions, since, together with their entry value, we
may get wrong information. E.g., consider the source program in Fig. 5.1. When
computing the invariant fok; at the the loop header (the block that starts with
location 4), we have, from the previous iteratidofy,= Y5 + 1, and from thep-
function,Y; = Y3, thus, without further ado, we’ll obtain an invaridrit= Y, +1,
which is obviously wrong. We remedy this by including the correct information
about the induction variables. That is.uif, ..., v} be the basic induction vari-
ables of the loop whose headerisvhere each induction variabi€ is initialized

to b, before entering the loop, and is incremented st each iteration, we define:
induc(z) = 3o, > 0. /\(UZ =b; +¢; X V) (5.2)

whered, is a new variable. |.eq, is a loop iteration count, anchduc(x) captures
the values of the induction variablessaimepossibly theé)") iteration of the loop.

We shall return the issue of dealing with the existential variables.
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In Fig. 5.5 we describe data flow equations that allow to compute the asser-
tions in(z) andout(x) for every noder € G. The former is an invariant at
the beginning ofr, after all the¢-functions, and the latter is an invariant at the
end ofz. The invariantsin(z) andout(x) can be computed for every € G

simultaneously by forward traversal of the dag induced by the forward edges of

G.

( out(idom(x),G) A

cond(idom(x),x) A induc(z) if = is aloop header
in(z,G) = out (idom(x)
( out (2}, Gigom(z) N cond(z}, x) )
N /\UEVy t@(v) /Utfb-"‘(v))
\ otherwise
| in(z,G) A gen(z) if z €,

out(z, &) = { true otherwise

Figure 5.5: Data-flow equations fan(z, G) andout(z, G)

Theorem 3 The data-flow equations computer in Fig. 5.5 are sound, i.e., during
an execution of a program, for every basic bl@&kepresented by nodein the
CFGG, when the program reach&s(after the¢-functions),in(x, G) holds, and

whenever the program exigs out(z, G) holds.

Proof Outline: The proof is by induction on the BFS of tlie The base case
is for the entry node(s). Then, we have the data-flow equationdor which
is trivially true. For the inductive step, we distinguish between loop headers and

non-loop headers. Suppose thas a loop header. Since we assume that all loops
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are natural, the control reaches a loop header either from its immediate dominator
or from a back edge. Since we assume SSA form, we have that all invariants at
the end of the immediate dominator, as well as the condition leading to the loop,

hold. If this is the first entry to the loop, themduct(z) true with the trivial

v, = 0. If the loop header is reached by a back edge, thetuct(z) true with

the trivial v, > 0. By the induction hypothesis, theat(idom(z), G) is sound.

We can therefore conclude thiat(x, G) is sound.

If = is not a loop header, thenis reached through one of its predecessfr,
with cond(z}, z) holding. Thus, the soundnessf(z, G) follows immediately
from the induction hypothesis.

Finally, whetherz is or is not a loop headesut(x, &) is a conjunction of
in(z, G) with gen(z), the effect thaB. Since we assume that(z, ) is sound,
the soundness efut(z, ) follows. a

Finally, for the invariantp(:) we takein(z, G) wherez is the basic block
whose initial location ig in theCFG G corresponding to the program.

Note thatin(z,G) andout(z, G) are mutually recursive function over the
structure of the dag induced lay. Hence, no fix-point computation is necessary
to solve the equations. As a matter of fact, each node and edge ahcestor
in G is visited only once in the computation ofi(x, G) andout(z, G), thus the
complexity of the computation is linear to the sizeCaf

We now return to the issue of existential quantifiers in the invariants generated
by the above computation. SingeLIDATE requires to have the invariant as both

left and right side of the implication, and since most theorem provers do not accept
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existential formulae as consequents. We can, however, instantiate the offensive
existential quantifier when constructing VCs according/aoIDATE . Suppose

that we are dealing with target invariants. (The case of source invariants is similar.)
Consider a VCC;; that has av, on the r-h-s, thus is a loop header. Let “the
loop” mean “the loop whose headeuisfor this discussion. Assume that on the I-

h-s of the VCs we have the invariapt (i). We distinguish between the following

cases:

j is the loop’s header, and is outside the loop. Thus, the simple path between
i andj is one the corresponds to the first entry into the loop. In this case,

we can instantiaté, to 0, and replace the existential partgf(;) with

j isthe loop header and; is in the loop. Thus, the simple path betweeémnd ;
corresponds to a back edge@fWe can then “re-use” the value of from

the antecedent and replace the existential part ¢f ) with
K

i=1

Neither of the previous cases.Thus, simple path betweerand; does not alter

the values of the induction variables, and we can “re-use” the value of
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from the antecedent, thus replacing the existential pagt ¢f) with

K
/\(’Ui = bl + ¢ X ?A)x)

i=1

We note that the method outlined above may not produce sufficient invariants
under all conditions. We are aware of its shortcomings in the cases when opti-
mizations depend on data-flow information. Yet, to the best of our knowledge,
such cases do not existiiR programs that are derived with the goal of preserving

backward compatibility.

Example Consider the program in Fig. 5.3.2.

B1. n; < 100
il — 0
J1<0
s1 1
B2: 13 < Qb(il, Zg)
Jja < ¢(j1, J2)
S§3 ¢(31, 52)
iz — ’ig +1
J2 < J3+2
Sg «— 83 * Jo
if (15 < ny) goto B2
B3:

82



For which we have:

gen(B1) : (np=100) A (i1=0) A (1 =0) A (s1=1)
gen(B2) po(l2=1i3+1) A (Ja=1Js+2) A (s2=53%)2)
cond(B1,B2) : true

cond(B2,B3) : —(iy < nq)

The program has a loofB2} in which there are two induction variables,
which is initialized toi; before the loop and is incremented byt each iteration,
andjs, which is initialized toj; before the loop and is incremented byt each
iteration.

We therefore have:

induct(BQ) = Elf)(lg = il + QA}) AN (J3 = jl + 2@)
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Solving the equations of Fig. 5.5, we obtain:

in(B1) : true

out(Bl) : (m1=100) A (i1 =0) A (ji =0) A (s =1)

in(B2) : (ny =100) A (i1 =0) A (j1=0) A (s1=1)
AT ((is =141 +0) A (Js = Jj1 + 20))
out(B2) : (n; =100) A (i1 =0) A (j1=0) A (s1=1)

ATo: ((is =14, +0) A (J3 = j1 + 20))

A(ig=13+1) A (Jo=1Js+2) A (s2=153"J2)

in(B3) : (ng =100) A (i1 =0) A (j1=0) A (s1=1)
ATo: ((is =14, +0) A (J3 = j1 + 20))
Az =1d3+1) A (ja=J3+2) A (s2=153"J2)

N _\(2'2 < nl)

84



We can therefore conclude that:

©(B1) = true

p(B2) = (ng=100) A (i1 =0) A (j1 =0) A (s, =1)

( 1
ATo:((i3=11+0) A (J3 =1+ 20)
©(B3) : (m (s1=1

A0 ((i3 =141 +0) A (J3 = J1 +20))

100) A (i =0) A (j1=0) A (51 =1)

A(ig=1i3+1) A (Jo=1Js+2) A (52 =153 Ja)

N _\(ig < nl)
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Chapter 6

Program with Aliases

Aliasesrefer to the phenomenon that, in many program languages, storage lo-
cations can be accessed in two or more ways. Alias information is central to
determining what memory locations are modified or referenced, which can affect
the precision and efficiency of data-flow analyses required for performing opti-
mizations. Similarly, choosing a strorage model on which aliasing information
can be represented effectively is essential to the soundness and completeness for

validating optimizations.

6.1 Modeling Aliases in Transition Systems

Consider the following segment of code that involves access to integer variables
ai, as andb:

At the first glance, the value éfat L2 should be3. However, if the storage
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L1: al <- 1

a2 <- 2

b <-al + 2
L2: ...

Figure 6.1: Example: a program that may have aliases

location ofa; overlaps with that ofi;, the assignment te@, simultaneously mod-
iflesa; to be2 and, subsequently, the valuelodt L2 is4. So the value ob at L2
can be eithed or 3, depending on whether; anda, are aliased with each other
or not.

Up till this point, every time we translate a program into a transition system
that represents the program’s formal semantics, we always take the set of pro-
gram variables as state variables and represent reference of a program variable as
accesses to its corresponding state variable. For instance, the transition system
corresponding to the program in Fig. 6.1 has a set of state varigbles,, b, pc}

wherepc is the control variable, and the transition from L1 to L2 is written as
(pc=1) A (pd =2) A (d)=1) A (ay=2) A (b =d| +2)

Such a translation makes an implicit assumption that none of the program vari-
ables aliases with each other and each variable can only be accessed explicitly by
its name. As a result, the transition system above only allows the valuataf2
to be3, which is not exactly the case in the original program.

Generally speaking, a program'’s state is the state of its memory as well as

the set of registers. If we assume that no inter-procedural optimizations are per-
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formed, the program state that we are concerned with is the value of control vari-
able, the state of memory locations corresponding to global, local variables and
the state of registers as well. If the program has dynamically allocated storage
areas, we also have to consider the state of heaps. For the sake of simplicity, our
intermediate languag® does not allow operator of dynamic allocation. Natu-
ally, we can choose a control variable, a memory array and program registers as
the set of state variables of the transition system. Although, in the intermediate
language level, we may not know the architecture of the machine that the compiler
targets to, nor do we know the physical location in which each variable resides,
we can still associate each program object witlabstract memory locatigre.g.,

the abstract memory location of a variables denoted asddr,. By introduc-

ing a virtual memory arraynem whose indices are abstract memory locations,
we introduce, in the first order logic we use, the following array expressions to

represent accesses to variables:

e sel(mem, loc) returns the value ahem at locationloc;

e upd(mem, loc, val) returns a new memory array which is the samenam

except that content ahem at locationloc is replaced byal.

Furthermore, we augmerm with the following language elements to allow for

variable of array type and indirect access with pointers:

e expressiorksid that denotes the address of variahle

e expressiorje] that denotes indirect read from memory location computed in

expressior;

88



e statementie;] < e, that denotes indirect write to memory locatienwith

value ofes,.

For the sake of simplicity, we only allow variables of type integer and array of
integers, and we assume the size of type integerAgcesses to an array element
ali1] ... [i,,] of anm-dimensional array. can be represented, iR language, as
le] wheree is an expression that computes the addressiof. . . [i,,] using the
array addressing rule. Notice that control variable and program registers do not
have aliases, hence can be accessed directly by their name.

Fig. 6.1 describes the rules to translate from expressions and instructiens of
language to terms and predicates in transition relation. W& (19eto denote the
term corresponding to expressiefn transition relation. We usgl to represent
a program variable’s name, aneg to represent a program register’'s name. The
difference between a program variable and a register is that the former may be
aliased, hence has to be accessed by its address, while the latter has no aliases,
hence can always be accessed by its name. In general, we assume that any variable
whose address is never computed in the program does not have aliases, hence can
be accessed directly by its name.

For the example in Fig. 6.1, a correct definition of the corresponding transition

system hasnem andpc as its state variables, and the transition from L1to L2 is

(pe=1) A (pd =2)
A (mem; = upd(mem, addr,,,1)) A (memy = upd(mem;y, addr,,,?2))

A (memg = upd(memy, addry, sel(memsy, addr,,) +2)) A (mem’ = memy)
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Expressiore in IR TermT(e) in Transition Relation

id sel(mem, addr;;)
reg reg
&id addr;g
€] sel(mem, T(e))
ey op ey T(ey) op T(ez)
Statement inrR Transition Relation
id—e mem’ = upd(mem, addr;s, T(e)) A pres(V — {mem})
reg «— e reqg' =T(e) A pres(V —{reg})

le1] « ey mem’ = upd(mem, T(e;), T(e2)) A pres(V — {mem})

Table 6.1: Translation fronr to Transition Relation

6.2 Data Mapping with Aliasing

For programs with aliased variables, the data mapping takes a more complicated
form. Since we do not allow arithmetic on pointers, the layout of variables in
memory does not affect the correctness of program transformation. We can there-
fore safely assume that, for an potentially aliased variablehas the same ab-

stract storage location in source and target programs. That is,
addr, = addr, = addr,
S T

Under this assumption, if every variable located in memory is equivalent in
source and target, we should hawem, = mem,.. However, due to transforma-
tions such as code motion and dead code eliminatiem, andmem, may only
have some of their elements identical. Consequently, we require a data mapping

that can express the equality between every object in source memory array and its
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counterpart in target. That s, for a variablstored in virtual memory arrayiem,

we define the data mapping ofs follows:
e sel(memg, addr,) = sel(mem_., addr,) if v is a scalar variable;

e Vi € [0..5z, — 1] : sel(memg, addr, + i) = sel(mem_., addr, + i) if v is an

array of sizesz,.

As described in Section 3.1, we allow the data mapping bk guarded by a
conditionpc € L, wherepc is a target program counter addis a set of target

program locations.

6.3 Representing Aliasing Information

6.3.1 Aliasing Analysis

Aliasing analysis refers to the determination of storage locations that may be ac-
cessed in two or more ways. High-quality aliaisng information produced by alias-
ing analysis is essential to correct and aggressive optimizations. Taking the pro-
gram in Fig. 6.1 as an example, constant folding can replace the assignnient to
with eitherb — 4 or b «— 3 if the aliasing relation between andas is provided.
Without such information, however, neither of the above assignments can replace
the assginment t6. Determining the range of possible aliases in a program is
crucial to optimizing it correctly, while minimizing the sets of aliases found is

important to aggressive optimizations.
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The information computed by aliasing analysis ([And94, Ste96, Cou86, LH88,

Hin01], etc.) can be classified by the following dimensions:

e “May” versus “Must” Itis useful to distinguisimayalias information from
mustalias information. The former indicates whatyoccur on all paths
through the flowgraph, while the latter indicates whatstoccur on all
paths through a flow graph. Consider the C programs in Fig. 6.2. The pro-
gram in (a) has p = &x on both branches ofiarstatement, thusy‘points
to x” is must alias information after thie statement ati. On the other
hand, the program in (b) has q = &y on one branch ofrastatement and
g = &z on the other, thengd‘may point toy or z” is may alias information
atLi. Must alias information tells us properties that must hold, and is de-
sirable for aggressive optimizations; may alias information provides range

of possible aliases, and so is important for safe optimizations.

if (bool) { it (bool) {
S e
} else { } else {
p = &X; q = &z;
} }
Li Li:
(a) (b)

Figure 6.2: Examples of May and Must Alias Information. In both programs,
variablesp,q andbool are not aliased, an@ol is not redefined in either branch of
theIF statement.

e Flow-insensitive versus Flow-sensitivElow-insensitivalias information
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is independent of the control flow encountered in a

procedure, whildlow-sensitivalias information depends on control flow.

An example of approahces that produces flow-insensitive information is the
minimal pointer analysis in C program, which assumes that only variables
whose address are computed are aliased and that any pointer-valued variable
may point to any of them. On the other hand, the above mentignauist

point tox atLi” and “g may point toy or z atLi” are both flow-sensitive
information. By disregarding the control flow information, flow-insensitive
analyses compute a single conservative summary either for the whole pro-
gram or for each procedure, whereas flow-sensitive analyses requires that
one follow the control-flow paths through the flow graph, and computes a
solution for each program point. Flow-insensitive analyses can be more

efficient, but less precise than a flow-sensitive analysis.

The sources of aliases vary from language to language. Generally speaking,

aliases are present because of
1. overlapping of the memory allocated for two objects;
2. references through pointers;
3. references to arrays, array sections, or array elements;
4. parameter passing.

Although the sources of aliases depends on language-specific rules, there is

also a component of alias analyses that is common to every languages. For exam-
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ple, a language may allow two variables to overlay each other or may allow one
to be a pointer to the other or not, but regardless of these language-specific rules,
if a variablea is pointed to by variablé andb is pointed to by at the same time,
thena is reachable by following pointers from Thus, the alias compuation can

be devided into two parts [Cou86, Muc97]:

1. a language-specific component, called dhas gatherer that is expected

to provided by the compiler front end;

2. a single component in the optimizer, called #hi@s propagator that per-
forms data-flow analysis using the aliasing relations discovered by the front
end to combine aliasing information and transfer it to the points where it is

needed.

6.3.2 Aliasing Information as Program Invariants

As aliasing analysis is essential to performing most optimizations correctly, being
able to encode aliasing information as program invariant is crucial for establishing
the correctness of translations.

For program variables andy whose sizes arez, andsz,, respectively, there

are the following basic aliasing relations betweeandy that we care about:

e The memory locations af andy overlap. This scenario can be captured by
the predicateiddr, + ¢ = addr, with some integer constant< c < sz,.
Notice thatz is a composite variable and> 0 represents the senario of

partial overlapping of andy.
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e 1 points to the memory location gf This can be expressed by the predicate

x = addr,.

e yisan array, and points to some element gf Because we do not know the
exact position iny thatz points to, we use a quantified boolean expression

Ji € [0..sz, — 1].T(z) = addr, + i to represent such situation.

e 1 is an array of pointers, and elementscahust point to the set of memory
location £. Again, this is expressed by a quantified boolean expression

Vi € [0..52, — 1]. \/ (sel(mem, addr, + i) = loc).

loceL

e The memory location ofy is reachable through arbitrarily many derefer-
ences fromz. This scenario can not be expressed directly in first order
logic. However, due to the fact that we only have finite memory locations
corresponding to global and local variables in a procedure, the “reacha-
bility” information can be expressed as a conjunction of a set of points-to
predicates, whose number is bounded by the number of different memory

locations.

Any type of aliasing information is based on the above basic relations and can
be expressed as program invariants that are boolean combination of the predi-
cates mentioned above as well as other types of predicates. For instance, a sin-
gle predicate(p = addr,) indicates thap mustpoint to z, while a disjunction

(¢ = addr,) V (q = addr,) indicates thay may point toy or . We can ex-

press flow-sensitive information by taking constraints over the program counter
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and path conditions into account. E.g., in the program in Fig. 6.2 (a), the fact that

p points tox at locationLi can be expressed as

(pc =Li) — (p = addry)

and the fact that, at locatiary in program (b)g either points ta; whenbool holds

or points toz otherwise can be expressed as

(pc =Li) — ((p = addry) A bool V (p=addr,) A —bool)

As described in Subsection 6.3.1, an aliasing analyzer consists of two compo-
nents: a language-speciéiias gathereiin the compiler front-end and a language
independenalias propagatolin the optimizer. Analogously, part of the invariants
related to aliasing information comes from language-specific rules, and the rest
are generated by propagating language-specific aliasing information along pahts
in the flow graph.

Generating Language-specific Aliasing Invariants=or thelrR language we are

concerned, the following aliasing rules apply:

1. Aliasing between different objectdemory locations allocated for differ-
ent objects never overlap. For the sake of simplicity, we assumarhat
language allows either scalar objects or composite objects that are arrays.
Then, for variables: andy, one of the following constraints holds at every

location in the program, depending on the type @indy:
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e addr, # addr,, if z andy are scalars;

e (addr, < addry) V (addr, > addr, + sz,), if z is a scalar ang is

an array,

e addr, + sz, < addr, V addr, > addr, + sz,, if both z andy are

arrays.

2. References through pointeis order to perform sound and effective pointer
analysis, we have to restrict the operations allowed over pointersi3nC
standard, the behavior of code that has arithmetic on pointers is considered
to be undefined [ANS89]. Since it is meaningless to apply the validation
efforts to the code whose semantics is undefined, we assume that there is
no arithmetics over pointers in programs in the source language. Thus, for

a program variable that is a pointer, we have

p € {addr,|v € V} U {nil}

whereV is the set of variables in the program amtl represents a null
pointer value which an uninitialized pointer takes. We also assume that a
read through ail pointer returns a null pointer, and a write througti

point does not change the memory. That is,

sel(mem,nil) = nil,

upd(mem,nil, val) = mem.
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Besides, since we do not assume any particular layout of the memory, the
only relational operations we allow over pointers the comparison for equal-

ity (and inequality) between two pointers.

. References to array element the IR language, array elements are ac-
cessed through the virtual memanem with the appropriate address com-
puted using array addressing rules. In a program that is well behaved, ref-
erences to array elements should have all the array indices within specified
bounds. When a reference to an element of asrgs/translated tor lan-
guage ase] wheree computes the address of the array element, the value

of e should always within the array bounds. That is, we consur&in

addr, < e < addry, + sz,

Such constraints are indispensible to formally establishing alising invariants
since it is not always possible to statically determine whether the indices of
array elements are within specified range and, without such constraints, ac-
cesses to array elements can modify any part of the memory, making alias-

ing analysis impossible.

. Parameter passingln the IR language, we assume that parameters are al-
ways passed by value and we do not allow pointers to be passed as parame-
ters. Since we do not have inter-procedural analysis at this moment, we also
assume that function calls do not have side-effect. That is, function calls do

not modify variables in the scope of the calling procedure.
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Propagating aliasing invariants through Flow Graph The algorithmGeninv
presented in Section 5.3 can propagate aliasing infomation as a data flow through
paths in flow graph, being able to generate flow-sensitive aliasing invariants in

most of the cases.

int arith(n)
int n;
{ inti, j, k, *p, *qQ;
p = &
i =n + 1;
q = &j
j=n x 2
Li:

Figure 6.3: An example of aliasing invariants generation

y4

— &
mem; <« upd(memg,&i,n+ 1)
0 — &j
memy <« upd(memy, &j,n * 2)
Li:
Lj: k — sel(memy, p) + sel(memy, q)

Figure 6.4:IR code in SSA form for the C code in Fig. 6.3

Here, we present an example of aliasing invariants generated by algorithm
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Genlnv. Consider the C code shown in Fig. 6.3 and the correspondingde in

SSA form in Fig. 6.4. In the program, only variableand; have their addresses
computed, hence they are the variables potentially aliased, while the other vari-
ables can be accessed directly. Applying alogritBeninv to the IR code, we

obtain, at locatior.i, the invariant

p1 = addr; A mem; = upd(memg, addr;,n + 1)

A po = addr; A memy = upd(memy, addr;,n * 2)

If there exists no definition gf andq in the paths betweeli andLj, optimiza-
tions will replacek=* p++* q by k=i+j and remove the assignmentspt@ndq
completely. This transformation is possible due to the fact thatjap andg
points to; andy, respectively, which is caught by the invaridpt= addr; N ¢ =
addr;) propagated fromhi to Lj.

As discussed in Subsection 5.3.2, algoritG@ninv does not propagate data-
flow information iteratively, thus it cannot proceed around cycles in flow graphs.

For example, consider the following fragment of a program in C:

int *p, *qQ;

for (@ = p; g == NIL; q = *q) {

We need to perform iterative data-flow analysis to discover that, when execut-
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ing the loop, pointeg may point to any memory location reachable frpinefore

the loop. Thus, any memory location reachable frpmay be modified through

g in the loop. An algorithm that is able to deal with this type of scenario is de-
scribed in [Muc97], and we can use the same algorithm to generate the invariants

of aliasing information generated by loops.

101



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In the previous chapters, we describe a general valeDATE and its applica-
tion towards the automatic validation of compiler optimizations that are structure-
preserving. As part of théranslation Validation of Optimizing Compilgroject

that is being carried on at New York University, the prototype {BdDC-SP is
successful in verifying various optimizations performed by the global optimizer
of Intel's orC compiler with very little instrumentation from the compiler. The

success is attributed to the following aspects:

A versatile proof rule To compare two programs that terminate, what we care
about is essentially the matching of their final states, which is established through

a set of inductive steps along the execution. Refinement mapping that correlates
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the cut points in the middle of programs is only the result of an inductive step
towrads the end of programs. Therefore, the refinement mapping established be-
tween source and target programs can be flexible in several dimensions. First,
the control mapping is allowed to correlates particular locations instead of every
location in the programs, and the criteria is that at least one control point is re-
quired for each loop. Second, data abstraction is allowed to be partial, because
after all some of the variables are dead and others that are not mentioned in the
data abstraction can have their data information carried to the final states as pro-
gram invariants. That is, The invariants of source and target programs serve as
a supplement of data abstraction: it captures and propagates the information that
is indispensible to the matching of final states, but is missing in data abstraction.
Still, since each inductive step can only be taken within one iteration of a loop, this
method requires that each iteration of the corresponding loops in the source and
target have more or less the same effect, and that is whyru@®ATE cannot

apply to optimizations that transform loops’ structure.

Various program analysis techniques Studies of compilers’ individual opti-
mizations indicate that the auxiliary invariant necessary in the validation a partic-
ular optimizationc can also be detected by the same static analysis performed for
the optimization. However, different optimizations call for different static analy-
sis techniques, each of which exploring some aspect of the program’s semantics
[SS98], and it will be costly to repeat every single data-flow analysis performed

for global optimizations, considering that many of them involve iterative fix-point
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computation. As a matter of fact, the first invariant generation method we de-
signed (see Subsection 5.3.1 for details) attempts to mimic the iterative data flow
analyses performed by compilers and managed to produce necessary invariants for
some common optimizations such as constant folding, common expression elim-
ination, etc. But there is other data flow information this first method fails to cap-
ture, among which there are constant variables recognized by sparse conditional
constant folding [WZ91], and equality between variables detected by global value
numbering [AWZ88]. Then we designed the second invariant generation method
Genlnv (see Subsection 5.3.2) based on the following observation: although it
requires basically the same amount of data flow information to perform an opti-
mization as to validate it, the compiler optimizer requires the information to be
explicitly while the validator allows for the same information hiddeplicitly in

the auxiliary invariants, because later a theorem prover will “rediscover” the in-
formation when it checks the validity of verification conditions. Thus, since the
theorem prover serves as an information interpreter and>#gr@nv procedure
merely as an information collector, the procedure to generate invariants becomes
much more efficient.

In addition to auxiliary invariants over the variables of a single program, we
also construct data abstraction that correlates variables in source and target pro-
grams, by performing an iterative data flow analysis operated on both programs
at the same time (see Section 5.2 for details). We made such an analysis possible
by choosing a fairly simple lattice (where the elements are a set equality between

source and target variables) and computing the flow functions using a theorem
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prover.

Limitation  The current invariant generation algorith@eninv still has two
drawbacks: first, it fails to carry information along backward edgesAag, thus

is not as powerful as the iterative data flow analyses which can proceed infor-
mation around cycles in control flow graphs; second, the invariants it produces
for a cut point includes definitions of almost every SSA variables that appear in
the program before that cut point, sometimes carrying too much unnecessary data
information, which will slow down the theorem prover. The possible improve-
ment for the first drawback can beGeninv algorithm augmented with iterative
analysis, and the improvement for the second one is to apply “program slicing”
techniques [Tip95] to eliminate irrelavent SSA definitions.

Because of the impotence of the static analysis techniques, a translation val-
idator can produce “false alarms”, which means, for a source and its correct trans-
lation, the validator may construct a set of verification conditions, some of which
are invalid. A false alarm is caused either by the incompetence of the validator,
i.e. it does not find the right refinement abstraction, or does not produce sufficient
auxiliary invariants; or by the incompleteness of the proof KAEIDATE , i.e., it
cannot be applied to establish the correctness of structure modifying transforma-

tions.
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7.2 Future Work

There are many directions for future work. We list a few as follows:

e Procedures and inter-procedural optimizatiohs deal with programs with
procedures, we need to extend the current proof rule. If inter-procedural op-
timizaitons are involved, extra auxiliary invariants will be required to serve
as a “summary” of the procedure, under which the inter-procedural opti-

mizaitons are possible.

e Exception handlin@ur current notion of a correct translation does not con-
sider programs with exceptions. There are surely issues of exceptions that
affect the correctness of a translation. E.g., translation that introduces ex-
ceptions is considered to be incorrect. The current theory need to be ex-

tended to deal with exceptions.

e Hardware related optimizationBhis is a category that is of particularly im-
portance to the performance of EPIC architecture, where instruction schedul-
ing is performed by compilers. The validation of hardware related optimiza-

tions is still a big challenge.

e Counter example§he counter-examples obtained from tdMOC-SP are
the states of source and target programs that invalidate a verification condi-
tions. When a translation cannot be established to be correct, we hope the
validator to provide a “witness” that are unmatching program executions in

source and target.
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o Sefl-certified compile©One of the side-products we anticipate from this
work is the formulation of validation-oriented instrumentation, which will
instruct writers of future compilers how to incorporate into the optimiza-
tion modules appropriate additional outputs which will facilitate validation.
This will lead to a theory of construction e€lf-certifyingcompilers. Some
work in this area has been done in this thesis research, including how to con-
struct well formedvALIDATE proofs for a set of individual optimziaitons,
and how to compose two well formed proofs. Still, there is more work to

do in this area.
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