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Abstract

Deep Neural Networks are highly over-parameterized and the size of the neural

networks can be reduced significantly after training without any decrease in per-

formance. One can clearly see this phenomenon in a wide range of architectures

trained for various problems. Weight/channel pruning, distillation, quantization,

matrix factorization are some of the main methods one can use to remove the

redundancy to come up with smaller and faster models.

This work starts with a short informative chapter, where we motivate the prun-

ing idea and provide the necessary notation. In the second chapter, we compare

various saliency scores in the context of parameter pruning. Using the insights

obtained from this comparison and stating the problems it brings we motivate

why pruning units instead of the individual parameters might be a better idea.

We propose some set of definitions to quantify and analyze units that don’t learn

and create any useful information. We propose an efficient way for detecting dead

units and use it to select which units to prune. We get 5x model size reduction

through unit-wise pruning on MNIST.
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Introduction

With increasing availability of data and computing power, Neural Networks

became the most successful tool for learning complex functions. Networks with

millions of parameters can be trained through first-order, gradient-based algo-

rithms to minimize a given loss function. In the history of neural networks, many

research proposed various architectures and optimization methods to come up with

better results. With the increasing computation power, researchers were able to try

larger architectures and utilize larger datasets to achieve significant improvements

on many benchmarks and practical problems. A downside of these very successful

and very big networks is that each network needs a considerable amount of storage

and compute power to run. However, we can easily show that the resulting deep

networks are highly redundant and had ill-conditioned parameter matrices. Can

we reduce this redundancy by removing unnecessary parameters? Optimal Brain

Damage paper[23] emphasizes the importance of removing connections (pruning)

as a regularizer and a performance-enhancer. It proposes deleting parameters with

small saliency and shows that second-order approximations might improve over

simple magnitude based saliency measures. It also shows the similarity between

weight decay[13] and pruning.

In order to utilize this very large networks in resource-limited real-world envi-

ronments like mobile devices, we should be able to reduce their storage and energy

requirements. Han showed that the famous ImageNet winner AlexNet could be

compressed up to 40x[12][11]. However since there is no restriction on which con-

nection to remove, pruned parameter matrices do not follow any specific pattern

and therefore require sparse representation to utilize sparsity. One drawback with

this approach is that the current sparse matrix operations are not as fast as their

1



dense counterparts. Attacking this issue, various groups focused on channel prun-

ing and introduced some structured sparsity techniques[37],[26],[39].

It is very interesting to see that one can get around 90% sparsity with retrain-

ing on many different networks and it looks like this number does not depend on

architecture or data. Even a small network with a very small number of convo-

lutional filters end-up having most of its filters dying out during training and we

know that starting the training with an overparameterized network is crucial for

the best performance. It looks like our optimization methods are not perfect and

they are far from utilizing the full power of our networks.

Given a resource and time budget what is the best performance we can get? We

can always use the biggest network we can run and then prune, quantize, distill or

use other techniques to reduce the size of the network for the repetitive inference

task. However, if we know that these low importance connections appear during the

early training, we can prune the network during the training. Doing this would

bring us no advantage in terms of computation time since the dense operations

usually run much faster than the sparse operations below 90% sparsity. So we are

better off keeping the dense representation and doing unnecessary calculations on

the pruned parameters during the training even if we prune the network early in

the training. However, if we prune the whole channels or units at once, we can

reduce the size of the parameter matrices right away and decrease the training

time without harming the performance.

This thesis demonstrates, compares and criticizes the two main pruning ap-

proaches mentioned above: parameter-wise(unconstrained) pruning and unit-wise

pruning. We also focus on findingdead regions: weights/units that are likely

to be pruned that appear the early-training and stay dead after.
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In Chapter 1 , we provide a short introduction to neural networks and provide

a literature review on pruning neural networks. In Chapter 2 we motivate the idea

of dead units by showing that low saliency parameters seem like developing around

some particular units. We also compare various saliency measures and conclude

that the magnitude-based saliency measure performs best at pruning a group of

parameters at once. In Chapter 3 we formally define the dead units as units with

low mean replacement penalty (MRP: defined in Chapter 3). We propose using

the first order approximation in order to detect the dead units efficiently. We

generate dead units by introducing high learning rate for an arbitrary unit during

some training and show that the unit most likely stays dead throughout rest of

the training. After defining and generating dead units, in Chapter 4, we repeat

the experiment in Chapter 2, but this time pruning entire units at once using the

efficient scoring function defined in the previous chapter. As a result, we get a

greater reduction in network size without requiring a sparse format.
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Chapter 1

Background

This chapter introduces necessary notation, concepts and presents the previous

work.

1.1 A Very Small list of Abbreviations

1. ANN: Artificial Neural Network

2. CNN: Convolutional Neural Network

3. GD: Gradient Descent

4. SGD: Stochastic Gradient Descent

5. RNN: Recursive Neural Networks

6. MRP: Mean Replacement Penalty

7. MRS: Mean Replacement Saliency

8. #: number of
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1.2 Artificial Neural Networks and Notation

Artificial Neural Networks (ANN) is a biologically inspired algorithm for trans-

forming numbers from an input space X to an action space A.

Figure 1.1: A very basic illustration of an ANN as a block diagram

With the advancements in Neuroscience and the invention of computers, the

idea of mimicking neurons in our brains with the help of computers attracted quite

a bit attention. In 1958, Rosenblatt introduced the building block of ANN’s: the

Perceptron[33]. In the following years, advancements in the field made it possible

to connect many perceptrons units together and train them jointly. With the

advancements in acceleration hardware and increased availability of data; deep and

large ANN’s became the best performing algorithm in a wide variety of machine

learning tasks. ANN’s can have hundreds to millions of units and they are mostly

trained through backpropagation. I would like to point out Schmidhuber’s review

[35] for further reference on the history of ANN’s.

One can formulate an ANN as a function parameterized with a vector w, map-

ping an input xi to an output ŷi, where i represent the index of the data from a

dataset X [Figure 1.1].
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f(xi;w) = ŷi

Then we would define a loss function with a range of non-negative real numbers

calculated from the individual ŷi’s. Usually there are yi’s we wish ŷi’s to match.

L(w) =
1

m

∑
xi,yi∈D

l(f(xi;w), yi)

where m is the total number of samples and l(·) is a non-negative function penal-

izing bad estimations.

In the supervised setting, this would correspond to the observed target val-

ues. We denote them with yi and the corresponding target dataset as Y . In

unsupervised methods, the loss function would depend on only X with size N .

We represent the loss function as L(w) removing the data that the loss function

intrinsically depends on from the notation.

ANN’s can have many different layers/modules inside them. Recursive Neural

Networks(RNN)’s allow units to have states and those states are used to calculate

the output along with inputs. Units in RNNs learn both how to transform the

input, given the state and how to update its state, given the input. Convolutional

Neural Networks(CNN)’s are able to utilize spatial dependency in inputs. They use

convolution operation and parameter sharing to learn how to extract translation-

invariant features from the inputs. The output of CNN’s and RNN’s are usually

transformed further by some matrix transformation and this simple layer is usu-

ally named as Linear layer. Most of the modules mentioned above would also

have nonlinearities applied to their outputs. There is not a strict line between all

of these definitions and usually real-world architectures include a combination of
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different modules and nonlinearities; but they all have one thing in common: All

the operations used in these networks are sub-differentiable; so that we can apply

chain rule to get ∂L(w)
∂wi

; i.e. gradient of the loss function with respect to every

parameter in the network. Efficient calculation of ∂L(w)
∂wi

for every parameter in

the network is named as backpropagation algorithm [34] and it is a fundamental

method for optimizing ANN’s.

1.2.1 Training DNN’s

Optimizing the loss function of an ANN or in other words training an ANN is

hard due to its non-convex energy landscape and its huge dimensionality. Almost

all ANN’s are trained with some version of gradient descent(GD). GD uses back-

propagation algorithm to calculate ∂L(w)
∂wi

’s and then updates the parameters with

the following formula. The calculation of the f(xi;w)’s for a given dataset is

called forward-pass. Then we would calculate the average loss L(w). Using chain

rule we would then calculate the gradient of the loss ∂L(w)
∂w

and this is called the

backward-pass. After calculating the gradient we would update the parameters

with the following rule.

wti = wt−1i − α∂L(wt−1)

∂wt−1i

where α is a small constant called learning rate and t in the upper-script

denotes the time and we call each of these updates as step. Remember that the

loss above calculated over the entire dataset X. However, the size of a dataset hits

easily millions in today’s problems and calculating the exact gradient at each step

poses technical difficulties. Therefore stochastic version of GD(SGD) is used to
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approximate the gradient direction over a subset of the dataset X instead of the

complete dataset. We name these subsets as mini-batch and denote them as Xt

emphasizing its dependence to step number. Number of elements in Xt is called

as batchsize and denoted with m. At each step optimization algorithm chooses

a random mini-batch Xt and performs the update with the partial derivatives

calculated over this mini-batch. A complete-pass over the dataset is called an

epoch.

1.2.2 Taylor Approximation of Loss

To understand why GD or SGD might work, let’s write down the quadratic

approximation of our loss function around the point w. Assuming the loss value is

calculated each time with the complete dataset (X, Y ) or with a mini-batch (Xt, Yt)

and the parameter set is represented by vector w of size M the approximation of

L(ẇ) would be:

L(ẇ) = L(w) + (ẇ − w)T∇L(w) +
1

2
(ẇ − w)TH(w)(ẇ − w) +O((ẇ − w)3) (1.1)

where H(w) is an M by M matrix with elements hi,j = δL(w)
δwiδwj

.

Let’s imagine we want to calculate how much the loss function will change if

we change some weights by ∆w such that new weights: ẇ = w+∆w. Substituting

above gives us

L(ẇ) = L(w) + ∆wT∇L(w) +
1

2
∆wTH(w)∆w +O(∆w3) (1.2)

and the change in the loss function ∆L = L(ẇ)−L(w)is given by bringing the
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original loss to the left side.

∆L = ∆wT∇L(w) +
1

2
∆wTH(w)∆w +O(∆w3) (1.3)

We can similarly write the change in the loss using the first-order approximation

and we would get following.

∆L = ∆wT∇L(w) +O(∆w2) (1.4)

Note that the error term O(∆w2) increases polynomially with ∆w and we

need to ensure that this error term is small if we want to do anything with this

approximation. Let’s pick ∆w as the gradient ∇L(w) itself. Then we would have

a ‖ · ‖2 norm of the gradient which is guaranteed to be positive. However we want

to decrease the loss and ensure that ∆w is small, so let’s scale the direction with

a small negative number α. Then we get what we need.

∆L ≈ α‖∇L(w)‖

∆L < 0

Having a step update rule on the negative gradient direction guarantees a

decrease in the loss for a sufficiently small α. However when we use gradient

calculated over a mini-batch note that our gradient directions are noisy and there

is no such guarantee. However with some tricks and right set of tools SGD is

undoubtedly the most successful tool for optimizing ANN’s.

The goal of optimization is to minimize the loss over a dataset X and we

called this dataset as training dataset. However, we are usually interested in
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minimizing the generalization error, which is usually approximated with a separate

test dataset.

One can use various regularization methods to ensure a good generalization

and it is usually believed/observed that ANN’s trained with SGD generalizes well

through some implicit(e.g. early stopping) and explicit(e.g. Dropout [17]) regular-

izer methods. However, all of these known sources are not enough to completely

explain the generalization performance of neural networks [20] and why ANN’s

generalizes so well is one of the biggest mysteries of the ANN’s.

1.2.3 Units(Neurons): Building block of DNN’s

Parameter Name Tensor Shape W l
i or bli

Linear.weight I ∗O [:, i]
Linear.bias O -

Conv2d.weight I ∗O ∗H ∗W [:, i, :, :]
Conv2d.bias O -

Table 1.1: Tensor shapes of various layer parameters. I: input features, O: output
features, W : width of the filter, H: height of the filter

As mentioned before ANN’s consists of cascaded layers. Lets partition our

parameter vector w into matrices W l and bl for each layer where l denotes the

layer number and b is the bias vector. The shape of W l depends on the type and

size of the layer. By convention, the first two dimensions are used for #input

features (I)and #output features (O) respectively. For convolutional layer, the

third and fourth dimension would represent the filter width (W ) and height (H)

(Table 1.1). Each part in these layers that does a scaled summation of input

features called as a unit(also neuron) and their parameters are denoted as W l
i and
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bli. We denote this summation value with hli

hli = Wi · al−1i + bli

The values generated at each unit is then passed to some non-linearities denoted

with g(·). Value after the nonlinearity called as the activation ali of a unit.

ali = g(hli)

Units are defined to be the independent components of a layer. However, they

might get coupled as a result of some non-linearities which combine outputs from

many units like SoftMax.

1.2.4 Saliency and Pruning

Saliency Si of a parameter wi is used to capture the contribution of individual

parameters to the loss.

Si = L(w−i)− L(w)

where w−i is the same vector as w except wi is replaced with 0. A high saliency

would mean that removing the parameter would introduce a high penalty on the

loss functions, so it has a high contribution. On the other hand, a small saliency

would mean that the contribution of the parameter is small(or even negative!) and

can be safely removed. So basically, saliency captures the penalty for removing

a parameter from the network. Removing a fraction of parameters (setting them

to zero) according to the ranking of saliency scores is called pruning. Pruning

is usually done after training as an inference optimization to make the network
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smaller. However, one can also prune the network during the training to improve

on final performance or reduced the training time. Various saliency measures

trying the approximate the quantity above are compared and explored in the next

chapter(Chapter 2).

Pruning parameters according to the parameter-wise saliency above assumes

independence between parameters. However, this independence assumption is not

correct. Depending on the network architecture pruning a single parameter would

change the saliency ranking of the remaining parameters and therefore make the

initial ranking invalid. To prevent this effect, one can perform iterative pruning,

where each time the parameter with the smallest saliency score( or smallest k of

them) is removed and the saliency scores are calculated again before each pruning

iteration. However, this would be very time consuming considering the size of the

ANN’s in today’s problems.

Another problem with parameter-wise pruning is that the resulting sparse pa-

rameters would be still stored in a dense tensor and the computational speed-up

would not be proportional to the pruning factor. One can decide to represent the

pruned tensors in a sparse format; however, this would not provide speed-up unless

pruning factor becomes considerably high.

An alternative to the parameter-wise pruning is to prune units. If we can

calculate saliencies for units, i.e. penalty of removing the whole unit, we can

remove units from the network. Removing a whole unit would put us in a much

better position at doing iterative pruning (number of units is much smaller than the

number of parameters) and replace the need for fast sparse operations. However,

we can do even better.

In what conditions units end up having a low penalty for removal? This may
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happen when the unit constantly generates 0’s or all the fan-out weights are so

small that the network ignores the unit. It could be also possible that all fan-out

units themselves have very high magnitude. What if the unit generates a value

c with very low variance. If a unit constantly generates similar values then we

can subtract the mean value it generates from its bias and we can propagate the

same value to the fan-out units W l+1
j by updating the bias of the units with the

following rule.

blj = blj − E[yli] (1.5)

bl+1
j = bl+1

j + g(E[yli] ∗W l+1
j ) (1.6)

After doing this bias-propagation we can now have our saliency measures

calculated again and we would get a very low penalty for removing the particular

unit i, since it would generate always zeros. So, we can do better than just re-

moving the units by calculating the mean-replacement penalty for each unit

and applying bias propagation during removal. My thesis focuses on this saliency

measure and we investigate our strategy in Chapter 2 and Chapter 3.

1.3 Literature Review

The magnitude of weights proposed as a simple measure of saliency in the earlier

literature and its connection to the structured weight decay highlighted in [13].

[24] used second-order Taylor approximation at minima along with the diagonal

approximation of the hessian to calculate saliencies for network parameters and

emphasized the importance of pruning as a regularizer and performance-optimizer.
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Later [15] used inverse of the hessian to get a better approximation of saliencies

for network parameters. The experiments performed in these early works were

relatively small tasks like the famous XOR problem.

Later it was the ice age for the neural networks and the majority of the research

focused on the support vector machines(SVM). Various feature elimination meth-

ods are utilized to find out the minimal set of relevant features that give the same

performance on the dataset. For a review on feature elimination and a reference

paper, we would like to direct the reader to [18] and [10].

With increasing computational power, interest in neural networks increased

again towards the second decade of 20th century. Many research attacked the

difficulties we face training the neural networks and come-up with a bag of tools

that helped us training bigger networks. With the increasing amount of data,

tricks, and architecture, neural networks started to dominate the field again.

With the increased size of networks, many research highlighted the redundancy

in the parameters. [5] showed that the whole network can be predicted from a small

fraction of parameters. We can attack this redundancy in various ways and try

to minimize the size of a network. The main motivation for doing so is to make

deep neural networks available in hardware or time-limited platforms/scenarios.

[36] trains very big gated network(Sparsely-gated Mixture-Of-Experts) consists of

many small experts. It is more important now to learn how to make small networks

as efficient as possible and we can always combine them.

One can reduce the size of a network by matrix decomposition [6], pruning [12]

[11], quantized/low precision networks [25], [4], [32], [31] or distillation [8],[16].[6]

reports 2x speedup on forward propagation, [12] reports around 30x compression

through pruning, weight quantization and Huffman coding. [40] performs pruning
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during training and reports similar compression rates. [7] uses custom sparse-

matrix multiplications after decomposition to speed up-convolutional layers. [3]

compares various quantization methods and obtaining upto 50x quantization com-

pression. [1] focuses on pruning bayesian neural networks. [9] shows that stochastic

quantization helps preventing black box attacks on neural networks.

It seems like there is something that is going wrong during the training of neural

networks, which high redundancy in our parameters and enables all the methods

mentioned above to reduce the size of the networks.

[37] uses group lasso penalty to get some structured sparsity that enables re-

ducing the size of dense tensors. [26] focuses on unit-wise pruning in the context of

transfer learning and compared some first-order saliency measures using Spearman

correlation coefficient. Their work focuses on pruning instead of the mean-score-

replacement method, which we define in Section 3.1 formally. [39] proposes the

idea of forcing the units to produce constant values in a neural network and then

does bias propagation to remove them without a loss penalty which is basically the

same idea we are proposing, since it is the generalized version of unit removal.

If a unit stops getting gradient (stuck in local minima) without doing anything

useful. We should be able to detect this. This can help us to detect/find right

architectures that align well with current optimization methods and provide us

good training and validation losses. Therefore we believe that understanding be-

havior of units is crucial for answering other important question in neural network

research. [14] shows that ANN’s with more parameters than the number of train-

ing samples trained with SGD show good generalization behavior. [28] explores

various complexity measures and proposes norm instead of count-based measures.

[27] ablate units (which mimics removal) in various units to understand their gen-
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eralization behaviors. They argue that a high mutual information is crucial for a

good generalization.

We would like to point the reader to [2] for a review of current approaches and

methods on network compression and acceleration.
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Chapter 2

Weight-based pruning and

saliency score comparison

We can measure the contribution of individual parameters to our loss value us-

ing the second order Taylor approximation (Equation 2.1). Following the notation

in Section 1.2, lets denote the change in the loss function with the value ∆L and

lets denote the saliency of the ith parameters with Si where wi is the zero vector

except ∆wi = wi.

∆L = L(ẇ)− L(w) ≈ ∆wT∇L(w) + ∆wTH(w)∆w (2.1)

Si ≈ ∆wi(∇L(w)i + ∆wiH(w)ii) (2.2)

This looks computationally plausible since during back-propagation, we calcu-

late ∇L(w) and we know how to calculate an approximation of diagonal values of

Hessian in O(N) time [21]. However, saliencies calculated with this approximation
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may change if anything in these networks changes (i.e. if we prune one parame-

ter). To be able to use this measure in the context of pruning we need to assume

pairwise independency between parameters, i.e. changing one parameter would

not affect another parameter’s saliency. In this section, we show this is far from

being true. To be able to capture dependencies and improve the saliency score we

propose updating the Hessian part by including the sum of the whole row of the

hessian.

Si ≈ ∆wi(∇L(w)i +
∑
j

H(w)ij∆wj) (2.3)

The hessian term in equation 2.3 can be calculated in O(n) time using Hessian-

vector product [30] where n is the number of parameters in the network.

What should we set ∆wi to? In the context of pruning, we remove weights,

i.e. setting them to 0. So we need to set ∆wi = −εwi. When ε = 1, this would

correspond to weight removal. However, if wi is not small the Taylor approximation

may have a high error. Therefore we may introduce an ε term. Note that changing

ε would not affect the ranking in first order approximation and therefore we don’t

include ε in our first order scoring function.

In the case of general sensitivity analysis, we would set ∆wi = ε ∗ sign(wi) to

see how much the loss would change if we make each weight a little closer to zero

by a constant amount.

In this chapter, we show that saliency calculations based on the Taylor approx-

imation fail at pruning a group of parameters at once. Magnitude based saliency

score works better than the rest. We start by comparing the performance of various

first and second order saliency measures used at pruning (Section 2.1). Table 2.1
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Saliency Function Si Runtime
taylor1Scorer ∆wi∇L(w)i 0.088s
taylor2Scorer ∆wi(∇L(w)i + λ

∑
j H(w)ij∆wj) 0.564s

hessianScorer ∆wi(
∑

j H(w)ij∆wj) 0.483s

taylor1ScorerAbs abs(taylor1Scorer) −
taylor2ScorerAbs abs(taylor2Scorer) −
hessianScorerAbs abs(hessianScorerAbs) −
magnitudeScorer abs(wi) 0.00006s

Table 2.1: Summary of various saliency functions and their formula. In the context
of pruning we would set ∆wi = −wi and λ = 1. In sensitivity analysis we would
set ∆w = −sign(w) and λ = ε where ε is a small number ensuring correctness of
taylor approximation. Runtimes are averaged over 10 runs on MacbookPro 2015
calculating scores for all parameters of the network proposed in Section 2.1 using
a validation set of size 1000 from the MNIST dataset.

summarizes these saliency measures derived from the equation 2.3. All the scores

in the table are implemented in the pytorchpruner package (see Appendix A).

Note that our implementation of second order scoring functions takes 6-7 times

more time than a single back-propagation pass on CPU. Run times can be further

optimized, but it is important to understand that the second order approximations

are in the same time complexity as the first order ones due to the hessian vector

product enabled by the auto-grad library of Pytorch [29].

In Section 2.2 we demonstrate pruning a simple network trained on MNIST

using magnitude-based scoring and show that pruned parameters have some kind

of structure. They gather around some particular units and we leverage this ob-

servation and decrease the size of the network by half.
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2.1 Saliency Measures and Comparison

In this section, we compare various saliency scores against each other. In theory,

pruning individual weights can have a negative effect and we observe indeed this is

the case. We then realize that the promised reduction in the loss can be overturned

if we prune many weights together. This effect is observed more dominantly later

in the training. This tells us that dependency among the individual scores increases

over time.

In addition to the scoring functions in Table 2.1 we implemented two addi-

tional scoring functions. lossChangeScorer calculates the empirical saliency for

each parameter by setting them zero one by one and calculating the change in the

loss. This is the value taylor1Scorer approximates. randomScorer assigns random

scores to each parameter sampled uniformly from the range (0, 1), so that we can

compare our saliency functions with random scoring.

Note that our primary goal is not to approximate lossChangeScorer, but to

have a low overall penalty when we prune a fraction f of the parameters at once.

To capture the dependency between parameters, we introduce taylor2Scorer and

hessianScorer. Even though they don’t approximate lossChangeScorer, we hope

these saliency measures would pick the least dependent parameters and therefore

induce a smaller penalty at pruning. Comparing the penalties of various saliency

measures (i.e. taylor1Scorer, taylor2Scorer and hessianScorer) in the context of

pruning, we observe that absolute values of these measures work better at pruning a

fraction of the parameters at once. Finally, we show that magnitudeScorer works

even better than the absolute-valued measures most of the time and has much

better stability.

In each run, we are training our CNN model for MNIST dataset (Appendix C)
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with 0.01 learning rate and 32 mini-batch size for 5 epochs. At every 50 step, we

are calculating the pruning loss without changing the model itself for each scoring

function separately. All data dependent scores are calculated on a validation set

of size 10001. Finally calculated scores are used to determine which parameters to

prune for a given target fraction.

We generated many experiments using various models(i.e. models with ReLU

and Tanh), different layers and various scoring functions. It is not feasible to

share all of the results here; therefore we share only a subset of the results where

we believe represents the whole. All models below uses Relu non-linearity unless

stated otherwise.

2.1.1 Negative Loss Changes and Correlation Between Pa-

rameters

Ideally, we would like to see a positive change in the loss when we prune a

random parameter in a network. This would indicate that each parameter is doing

something right and we can’t give up any parameter. However, when we look

at the results of the lossChangeScorer, we see that constantly around 35% of the

parameters(of the first convolutional layer) cause a negative change in the loss

function when removed (Figure 2.1). This is very interesting since the fraction of

negatively scored parameters stay constantly around 35% throughout the training,

which may hint us that the network can be pruned during the training, without

waiting for the convergence and we may even get some improvements in the loss

1This might seem counter-intuitive since the validation set is not the data that we are directly
optimizing for. However, our experiments and results don’t focus on the comparison of various
function and therefore the data we use doesn’t make a difference and we confirmed that in
separate experiments.
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value. Even more striking, it seems like there are some parameters that are not

getting the error signal they need to improve. There is something preventing them.

Figure 2.1: Horizontal axis represents the number of iterations passed. Vertical
axis is the smoothed version of the fraction of negative saliencies for the first convo-
lutional layer calculated with lossChangeScorer, taylor1Scorer and taylor2Scorer.
C

There might be two reasons for the negative loss change. One is that we are

overshooting the minimum constantly. Which is not likely since we see the fraction

of negative scores even in the early training. More likely is that the path from the

parameter to the calculated loss is blocked and the parameter is not getting any

gradient signal. Remember that the gradient of a parameter is given by

∂L

∂wi
=
∂L

∂yi
al−1i (2.4)

where al−1i is the activation coming from the previous layer or the input tensor.

Looking at the back-propagation rule (Eq 2.4) there might be two reasons

for very small gradient: input al−1i being zero and the output gradient ∂L
∂yi

being

zero. Assuming that the parameter gets some non-zero input across many different
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samples and mini batches, the reason should be that the unit at the other end has

zero gradient itself(i.e. ∂L
∂yi

= 0).

Having no gradient signal cannot be due to converging to a global minima since

a good fraction of the parameters has a negative effect on loss once removed. One

thing to note here that we average gradients over a mini-batch and it is possible

gradients from different samples to cancel each other and get a very small average

gradient. This scenario is possible, however considering we repeatedly calculate

saliencies and see the same picture it is very unlikely. Therefore we argue the

scenario where individual samples introduce zero or close-to-zero gradient.

This may happen again for two reasons. One is that the unit is doing a good job

and have a small gradient. Another reason could be that it doesn’t get any error

signal since outgoing weights are all small and the unit is dead. So how to ensure

the ∂L
∂yi

’s being zero only when the whole network is optimal and we are having

gradient flowing across all connections. One way is to have skip connections [38].

Another possible way is to detect low ∂L
∂yi

regions and check whether this small

gradient is caused by the fact that they learned their tasks or not. In the case

of small mean replacement error, we should fix the problem, since otherwise, we

would have so-called dead units; which doesn’t do anything useful and prevent

learning for its weights.

2.1.2 Pruning can improve loss

Since we get negative empirical saliencies for a good fraction of weights; why

not expect a negative change in the loss after pruning? To demonstrate this idea we

prune the first convolutional layer using the randomScorer and lossChangeScorer

for two fractions at Figure 2.2. When we prune only 2 parameters (f = 0.01) we
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(a) f = 0.01

(b) f = 0.05

Figure 2.2: Small CNN [Appenix C] on MNIST with Tanh non-linearity. y-axis is
the change in the loss if we prune fraction f of the conv1 parameters(200 parameter
total) using randomScorer versus lossChangeScorer. At (b) we can also see that
the dependency increases over time and we start getting positive change in the loss
even though we would get negative change if we prune a single parameter.

observe a constant improvement in the loss value throughout the training. Yes,

we can improve our loss value if we prune some small number of weights together.

However, when we increase the pruned parameters to 10, we start getting into the

positive regime. In some cases, the loss value increases even more than the case

where we randomly prune 10 parameters. This observation shows that one can

improve the loss value, even after 5 epochs if the number of pruned parameters are

small. Note that one can always calculate the saliency again after pruning let say
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2 parameters. We haven’t pursued this idea, however, it would be interesting to

see how much one can improve loss function doing iterative pruning.

2.1.3 Dependency between parameters increases over time

Looking into Figure 2.2.b we see that pruning 10 parameters(out of 200) in-

duces a negative change in the loss at the beginning of the training. However, after

around 1000 steps, we observe that the dependency between scores increases and

we start getting positive changes. This clearly shows that using individual saliency

scores to prune a group of parameters is not a good strategy. We should some-

how find a group of parameters that incur the smallest loss change when pruned

together. This scoring function or approximation is yet to be discovered.

2.1.4 Approximating loss change doesn’t really work

Even though in the previous section we showed that lossChangeScorer works

poorly at pruning group of weights we still like to compare its performance with

the performance of its approximations in the context of pruning. Note that one

can numerically compare the approximations and measure the correlation between

them. We leave this comparison as a future work. In Figure 2.3 we repeat the

experiment in Figure 2.2 replacing the randomScorer with the three approxima-

tions of the saliency score Si mentioned. We observe that these approximations

work quite well early in the training, whereas towards the end of the training we

see a relatively bad performance. We also observe that these approximations have

occasional peaks which may significantly deteriorate the performance of pruning
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(a) f = 0.01

(b) f = 0.05

Figure 2.3: Smoothed loss change after pruning with various fractions using various
scoring functions which approximates the lossChangeScorer. The close relation at
the early training disappears towards the end. The three approximation also posses
some peaks, which challenges the stability of these functions.

if used in practice. Remembering that all of the pruned parameters have negative

scores for f < 0.35, higher changes in the loss value is a sign for increased de-

pendency between the scores of the parameters. The answer to the question why

parameters selected by saliency approximations have higher internal dependency

is yet to be discovered.

One possible explanation is, even though pruning parameters with negative

saliencies alone would decrease the loss, they may increase the saliencies of other

26



(a) after step 50 (b) after step 9350

Figure 2.4: Ranking of parameters among different scoring functions. Note that
all scoring functions are trying to approximate lossChangeScorer. The first convo-
lutional layer has 8 filters and yellow end of the color scale is used for high saliency
ranking. We note that taylor1Scorer looks like best at approximating

parameters more than the others. It might be the case that pruning negative

saliency parameters make other parameters more important for the network. In

other words, their absence might affect the saliencies of other parameters somehow

more than the others. We may try to find parameters with small effect. In other

words, parameters with close to 0 loss-change might bring better performance. We

argue this idea in Section 2.1.5.

We believe that some parameters are just happened to have a low saliency in

the beginning and they don’t change since they don’t get a proper gradient signal.

In Figure 2.4 we plot the saliencies of the first convolutional layer for the five

scoring functions used in this section. We observe that taylor1Scorer looks like

best at approximating the lossChangeScorer based rankings. taylor2Scorer is a

combination of hessianScorer and taylor1Scorer and we are using λ = 1 in the

formula proposed in Table 2.1. One may get better approximations playing with
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the coefficient λ.

Note that in general, pruning methods use a fraction of the parameters to decide

which connections to prune. Therefore the ranking of a parameter is usually what

only matters. However one can also use a threshold score to decide how much to

prune. This strategy is not used in practice according to our knowledge.

2.1.5 Absolute valued scores works better

(a) relu

(b) tanh

Figure 2.5: Change in the loss value after pruning 160 of 200 parameters of the
first convolutional layer over the training. The x-axis is the iteration number and
y-axis represents ∆L(w). Curves are smoothed.

As observed in the previous section using saliency scores based on the loss-
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change when that individual parameter is pruned away, is a bad idea since we

observe high dependency between selected parameters and get very bad pruning

results. How can we find a scoring function which detects the low saliency and

loosely dependent parameters? In our experiments, we found out that parameters

with low absolute value scores have better results at pruning. We argue that this is

due to the fact that parameters with a small effect on the loss(negative or positive)

also have a weak dependency with other parameters.

Imagine a weight wlij that determines the contribution of al−1j at the summation

happening in unit i, layer l. If the value generated at the unit ui is not used or in

other words the outgoing weights wi· from the ui are small we would have a very

small change in the loss when we prune the wij away, in other words wij would have

a small saliency. One can also expect to see parameter wij having a similar low

magnitude saliency score if we prune some other weights. In other words, wij would

have a very small effect on the saliency score of other weights and therefore one

can prune wij and similar low magnitude saliency parameters together expecting

to see a smaller change in the loss value. This is observed in Figure 2.5 for a

pruning fraction of 0.8. Absolute values of Si and its approximations work much

better than the raw saliency scores in practice when used for pruning. Therefore

we compare absolute valued versions of saliency functions in the next section with

the magnitude based scoring.

2.1.6 Magnitude based scoring works best

We plotted rankings generated by the various scoring functions at the end

of the training in Figure 2.6. We clearly see the resemblance between the loss-

ChangeScorerAbs and its approximations hessianScorerAbs,taylor1ScorerAbs and
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Figure 2.6: Rankings of the parameters of the first convolutional layer determined
with the absolute value based scoring functions. At the end of the training we cal-
culate saliencies of filters of first convolutional layer using various saliency functions
and then rank them. Yellow means high saliency and blue means low.

taylor2ScorerAbs. They also have some similarities with the magnitudeScorer.

In Figure 2.5 we see that magnitudeScorer performs best among all other abso-

lute value based scores. However one can see that other scores occasionally incur

smaller loss change at the beginning and towards the end. The unexpected os-

cillations and peaks are problematic for most of the saliency scores and may be

avoided using a running average or a bigger validation set. However magnitude-

Scorer seems to be quite stable throughout the training and looks like the simplest

and best scoring function we found.

2.2 A Basic Pruning Experiment

Pruning ANN’s is not limited to after training. One can prune a network also

during training as they can do that after the network is trained. To demonstrate
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how pruning works during training we set up an experiment using a small CNN

trained on MNIST dataset (Figure 2.7). The CNN has two convolutional layers

with 8,16 filters respectively followed by max-pooling(stride=2) and Relu nonlin-

earity. Following are the two fully connected layers with 64 and 10 units respec-

tively. Details of this network and all other networks can be found in Appendix

C.

Figure 2.7: some samples from the MNIST dataset[22]

In this example we are using the simple magnitudeScorer(Table 2.1) to prune

a fraction f of the network parameters each time and we are doing it with the

following the schedule in Table 2.2. So after each scheduled epoch is done, we are

setting a fraction f of all parameters with the smallest magnitude to zero. The

gradient of these parameters is removed after pruning at every iteration to ensure

that the weights stay zero and we are simulating weight removal correctly. After

the run with pruning, we repeat the same experiment without pruning using the

same initial random seed.

Epoch 2 3 4 5
Fraction f 0.2 0.5 0.8 0.9

Table 2.2: Pruning schedule for the MNIST experiment Section 2.1
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So overall we perform 10 epochs of training and the loss value is plotted every

50 mini-batch/step(see Figure 2.8a). One can observe fractions smaller then 0.5

doesn’t introduce much of a penalty in the loss. For fractions 0.8 and 0.9 we can

see the jumps in the loss which is recovered during the rest of the training.

(a) loss

(b) fraction of paramaters pruned

Figure 2.8: Loss and fraction of pruned parameters over time. X axis represents
time and parameterized by the step number. Blue curve is the run with scheduled
pruning, where the orange curve is the original run without any pruning done. We
are using the same seed for random number generator to ensure consistency.

After the training is done weights of the trained network are colored with

a colormap; where yellow and dark blue used for high and low values. Before

applying the colormap we normalize all the weights within a layer to the range

[0,1]. Colormaps of the two convolutional layers are plotted in Figure 2.9.

We can see that the high magnitude weights in the original run are mostly
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(a) conv1 (b) conv1-pruned
(c) conv2 (d) conv2-pruned

Figure 2.9: Convolutional filter weight magnitudes with and without pruning.
Yellow is for the maximum magnitude value encountered during training and blue
is for the minimum value. conv1 and conv2 are the first and second convolutional
layers. Each square for conv1 is a unit. Each row for conv2 is a unit and each unit
has 8 kernels for the incoming 8 channels

preserved in the pruned network. This indicates that the regions contributing to

the result most are formed within the first couple of epochs. We can also see in

Figure 2.9b that 2 out of 8 filters are completely pruned; so that the corresponding

filters in the conv2 (column 6 and 7) are also mostly 0. Similarly, all filters in two

units(rows 7 and 9) of conv2 layer seems to be dead. One can also observe that

usually 3-4 out of the 8 input channels for conv2 units are almost all zero. This

shows us the sparse relation between the units of the two layer.

Fully connected layer fc1 takes the flattened output of the conv2 layer. Similar

to the colormaps of the convolutional layers, we can spot the high magnitude

weights mostly appear in the pruned network, even though we start pruning after

the second epoch. We can also detect two vertical stripes at fc1 layer corresponding

to the dead units(7,9) in the conv2 layer. If investigated carefully one can also

relate the horizontal almost all zero(dark-blue) rows in fc1 layer to the vertical

rows in fc2.
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(a) fc1

(b) fc1-pruned

(c) fc2

(d) fc2-pruned

Figure 2.10: Fully connected weight magnitudes with and without pruning. Yellow
is for the maximum magnitude value encountered during training and blue is for
the minimum value. fc1 and fc2 are the first and second fully connected layers.
Each row of the images represent individual units.

At this point, one can expect us to convert the network to the sparse format

and enjoy the storage and computational gains. However, at the time of writing

this thesis, acceleration libraries written for dense operations are much faster than

their sparse counterparts and therefore converting a network with 90% sparsity to

a sparse format would not improve the runtime if not harming it.

As the last part of this experiment, we count non-zero incoming and out-going

weights for each unit. Then we remove the units with less than a fraction fnz of

non-zero incoming or outgoing weights (Figure 2.11). Fraction 0 would correspond

to removing units with all zero incoming or outgoing weights. Note that a unit
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with all zero outgoing weights has no effect on the result and we can safely remove

it. Similarly, a unit with all zero incoming weights would always generate the bias

value and one can remove the unit after propagating the bias to the next layer. In

this experiment, we haven’t implemented the bias propagation and therefore we

get slightly smaller test accuracy with fnz = 0 and this can be easily avoided. We

observe that we can make the dense network half size without any performance

penalty. This shows that parameters pruned using the magnitude score have some

kind of a structure; i.e. they are not completely random.

Figure 2.11: Left axis and blue curves represent the number of parameters after
removing units for the given fnz on the x-axis. The dashed blue line is the pa-
rameters of the original dense network. Right axis with red curves are the test
accuracies of the networks after unit removal.
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Chapter 3

Generating Dead Units Through

High Learning Rate

Pruning individual parameters of an ANN works quite well if we look at the

fraction of parameters that is pruned. However, in practice, 90% pruning does not

correspond to 10x speedup or 10x compression. This is due to the inefficiency of

sparse data structures and operations. However, when we prune the whole unit,

we can remove the whole row or filter from the parameter tensor and reduce the

size of the network without switching to sparse representations.

In this section, we switch our attention to individual units. Units or in other

words neurons are the summing nodes in each layer, where the combination of

previous activations happens. In other words, units are the meeting points where

the information is generated and distributed. The forward information and the

gradient flow through individual units and a flaw might affect the whole group

of parameters connecting the unit. Are there units that are useless, preventing

the network from learning new information? Is it possible that gradient-based
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learning algorithms create these dead units? Are there any tricks we use training

deep networks help individual units to stay alive? In Section 3.1 we introduce mean

replacement penalty and mean replacement score to quantize and approximate the

importance of a unit in terms of their effect on the loss if removed. In Section 3.2

we introduce the dead/frozen unit concept and tie the definition of a dead unit

with mean replacement penalty. Then we argue, that a high learning rate might

one of the reasons causing dead units during optimization and define an attack in

Section 3.3 to simulate high learning rates on individual units. Finally in Sections

3.4,3.5,3.6 and 3.7, we discuss results of our experiments.

3.1 Mean Replacement Penalty and its First Or-

der Approximation

We defined the saliency for a single parameter in Chapter 1 as the change in the

loss value, when the parameter is removed. Now in this section, we would like to

do the same for individual units. [26] defines the saliency of a unit as the change

in the loss when the entire unit is removed. This is equivalent of replacing the

output of a unit with zeros. However, this approach fails for units that generate

constant values.

So how should we define the saliency for units? Following the pruning idea,

we can try to find units which produce zeros most of the time. If the output of a

unit sums to zero for all samples, then we can safely remove it along with all of its

outgoing weights. What if the unit produces a constant value instead of a zero?

This is still okay, since we can propagate this constant value to the next layer(bias

propagation Section 1.2) and remove the unit without introducing any penalty.
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Even if, the unit does not generate a constant value, we can still remove the unit

and propagate its mean to the next layer and expect to see a smaller change in

the loss by doing so compared to the naive zero replacement. We call this removal

process as Mean Replacement and define the Mean Replacement Penalty

(MRP) as the following:

Definition 3.1.1. MRP: Mean Replacement Penalty is the change in our

loss value due to replacing the value [hk]i generated at unit i for the sample k with

its mean value Ek∈Dval
[[hk]i] calculated over a validation set of Dval.

MRPk,i =
∑
k∈Dval

|L(h̃k,i)− L(hk)| (3.1)

where

[h̃k,i]j =


Ek∈Dval

[[hk]i] j = i

[hk]j j 6= i

Note that the definition of MRP involves the absolute value operator, which is

different than the naive sum. This detail is important since it makes our penalty

even more strict and captures the sensitivity against the mean replacement cor-

rectly.

Calculating MRP empirically would require us to run a forward-pass for each

unit. Even though number of units are less then number of parameters, it is not

feasible for deep networks (i.e. AlexNet has almost 300,000 units) to calculate

the MRP for every single unit. Therefore we propose using the first-order Taylor

approximation of the MRP. Like we did in Equation 1.4, we can write down the

Taylor approximation of the loss value using the output of a given layer. Let’s
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denote the output of some layer for the sample k with hk vector.

L(h̃k) = L(hk) + ∆hTk∇L(hk) +O(∆h2k) (3.2)

By setting ∆hk = h̃k,i − hk we get the first order approximation for replacing

the output at unit i with its mean. ∆hk would have zeros in all indices expect the

ith index. We can vectorize this calculation and calculate MRS for every unit of a

given layer by setting ∆hk = h̃k−hk where h̃k is the output vector whose elements

are replaced by the corresponding mean values. Lets formally define this.

Definition 3.1.2. MRS: Mean Replacement Saliency for the units in a given

layer calculated by

MRSk = |L(h̃k)− L(hk)| = |(h̃k − hk)T∇L(hk)| (3.3)

where

[h̃k]j = Ek∈Dval
[[hk]j]

Our implementation of MRS calculates the mean values of all units and saves

the zero-centered output vector(or matrix if it is a minibatch) during the forward-

pass. Then, during the back-propagation, we multiply the output gradient of the

layer with these centered output values to obtain the saliency vector. Note that

since we are taking the absolute values at the end we don’t need to negate the

centered output values.

We would like to put a side note here. We calculate the mean of the output

before the nonlinearity. However, we can also calculate the mean value after the

nonlinearity and this would probably introduce a smaller loss penalty. We replace
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the values with the mean before the nonlinearity, since it was straightforward

to implement and as the variance of the output goes to zero the two different

approaches become equal to each other. Two different approaches become identical

when MRP goes to zero. We also like to point out the possibility of using other

operators than the mean, like median, min, max; etc. For example, using the mean

output value for a unit that uses TanH might not be the best idea.

3.2 Frozen and Dead Units

In this section we are going to introduce two terms, hoping that they would

help us to analyze and understand what is happening in neural networks over the

training.

Let’s imagine a unit in a fully connected layer. This unit generates a number

doing a summation. It scales each of the previous activations, sums them and

passes the result to a non-linearity like rectified unit(ReLU) or sigmoid function.

The value after the nonlinearity is then named as the activation of the unit. These

activations are then used by the units of the next layer in a similar manner.

During the back propagation, the unit gets error signals from the units of the

next layer. The gradient of the unit is calculated by scaling and summing these

signals as follows where hli denotes the output of ith unit in lth layer.

∂L

∂hli
=

∑
j

∂L

∂hl+1
j

wijg
′(hli) (3.4)

We define frozen units as following.

Definition 3.2.1. Frozen Unit
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Unit that receives negligible output gradient ∂L
∂hli

for all different samples of the

distribution.

∂L

∂hli
≈ 0 ∀x ∈ Dval

A unit might be frozen in various situations. Overall loss can be zero and all

network does not get any gradient signal. This would correspond to the first term

in Equation 3.4 being 0 ∀ j. However, this case is not really interesting since a

zero loss would mean we are at the minima and there is not really much we can

do. The interesting case is when the unit does not get any gradient signal even

when there is some gradient signal available in next layers. Thinking the chain

rule this might happen due to weak connections (small weights) that the unit has

with the next layer (second term in Eq. 3.4). And another possibility is when the

third term is zero, which would correspond to the case when the entire hl lies in

the flat region of the activation function. This would make the third term g′(hli)

zero.

It is also possible that the scaled gradients coming from the next layer cancel

each other and the unit gets zero gradient. However, this is also unlikely to happen

thinking there are many mini-batches and different combination of samples.

Note that all the layers except the first layer, get their input from other layers.

Since we are constantly updating parameters during the training, input distribu-

tions of layers may change over time. However, once the input distributions sta-

bilize we know that the frozen units are going to stay frozen. After early training,

we expect the input distribution of a frozen unit not to change much. Therefore

we also expect a frozen unit to stay frozen and we observed such a behavior in our

experiments.

When a unit is frozen, we expect it to stay frozen.
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Lets define the concept of dead units. Dead units are the units that doesn’t effect

the loss value when replaced by a constant. We can employ various strategies at

picking the constant and in our definition we employ the definition at Section 3.1 .

Definition 3.2.2. Dead Unit

Units that are replaceable with a constant.

MRPk,i ≈ 0 ∀k ∈ Dval

Let’s identify the three situations where a unit introduces a low MRP.

1. Unit generates a constant value

2. All values that the unit generates mapped into a constant value by the acti-

vation function.

3. All outgoing weights are zero.

The first situation might happen if we have all near-zero weights or input-

weight combinations that cancel each other in the summation. This situation is

not very stable. The unit might get gradient signal and get out of this situation.

Therefore we don’t expect to see this state often during training.

The second situation is particularly interesting to consider since values at the

flat region of activation functions would also mask the incoming gradient and

therefore the unit would always have zero or near-zero ∂L
∂hi

for every sample. If

a unit gets into this state, it also gets frozen since all the gradient is masked by

the activation function (the third term in Equation 3.4 being 0). So we should

definitely detect these units and either remove or revive since we know they are

frozen and they would most likely stay frozen.
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The third situation might happen when the network ignores the values unit

generates. Assuming the unit generates non-constant values, this situation is stable

only when the units in the next layer are frozen. Otherwise, the weights would get

some gradient and become non-zero.

Units that don’t generate constant values might end up having very low MRP,

if the values created has a low variance or/and the outgoing weights are nearly

zero.

In the remaining of this text we will use these definitions to explain some

concepts and observations efficiently. We omit setting hard thresholds for these

two definitions since thresholds depend on the number of units in a layer or the

loss function used.

3.3 How can a unit die?: High Learning Rate

There could be various reasons why we may end up having dead units. In this

chapter, we would like to investigate one possible reason. We suspect that having

a big step size during the training can put the output distribution of the unit

into the flat region of the subsequent non-linearity. Most of the practical/popular

optimization algorithms use the same learning rate for all the parameters in the

network. During the training, this single learning rate may end up being too much

for some units and cause them to die. We would like to artificially create this

situation by attacking some of our units.

An attack at iteration i on unit j is done by multiplying the default learning

rate for the weight parameters W l
i of unit i without changing the learning rate for

the rest of the network and the bias of the unit.
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Each update on network parameters using the gradient calculated from the

given mini-batch is called an iteration. So we would pick a starting iteration

number S and perform our first attack. Then we would repeat this attack N times

with I many iterations in between. So we basically don’t modify the learning rate

for I − 1 many iterations after each attack.

In the upcoming sections, we are going to investigate various non-linearities

and how they respond to this learning rate attack. For all experiments below we

train a small CNN (Appendix C) with CIFAR10 [19] dataset. We use SGD without

momentum and a constant learning rate of 0.01. We calculate all data-dependent

measures (like the loss and MRS) on a separate validation set of size 1000. We

train the network in each experiment for 10 epochs and 30 epochs for experiments

using TanH. We use PyTorch’s default parameter initialization and initialize the

network with a uniform distribution from a range (−σ2
l , σ

2
l ) where the σl is the

variance calculated for each layer separately and equals to σ2
l = 1

nunit
. nunit is

equal to the number of incoming connections for each unit.

3.4 Killing a Unit with RELU+Batch Norm

Let’s start this section by looking what happens during the training of a small

CNN with RELU non-linearities and batch normalization. All experiments in this

section run for 10 epochs and the networks reach to an accuracy of 67%.

In Figure 3.1 we see various plots for the attacks on 3 different units of the first

convolutional layer. Each row represents a different unit. The two orange and the

blue curves in the 3 rows respectively, represent the original training without any

learning rate change. In common, we see that the norms of the weights increase.
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We also see that the MRP generally increases over time. It looks like after around

2000th step, units reach their final MRP values and they oscillate around these

values afterwards.

Three units in Figure 3.1 have different responses to the attack that starts on

50th step and repeats 10 times with 10 step intervals. During each attack, we

multiply the gradient for the attacked unit with 100. This cause unit to follow a

different optimization path. The first thing we notice is various units responded

to the attack differently. Let’s start with common responses we see. As expected

we see a jump in the norm of the weights(column 5). MRP of Unit-0 (first row in

Figure 3.1) reduces significantly without affecting training loss (last column). We

observe that none of the attacks change the loss curves. This is very interesting,

since if these high-learning-rate-updates happen during the training causing units

to die, they pass undetected.

Increased norm of the weights cause output values to increase and we get bigger

values out of the linear part of the ReLU. This will cause the mean and the vari-

ation calculated by the batch normalization to increase. As a consequence, zero

activations and nearby values would squeeze further to the left edge. In a sense,

we might squeeze what unit learned so far towards left due to the increased values

on the linear side(right).

The transformation of the output distributions for a successful and an unsuc-

cessful attack are plotted on Figure 3.2. We see that the same multiplier has two

different effects on the two different units and this is very much expected consid-

ering the differences in gradients and parameters of two different units.

An abruptly shrunk left side of the output distribution is also going to alter
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(a) Histogram of outputs

(b) Histograms after ReLU+BatchNorm

Figure 3.2: Output histograms are created from a validation set of size 1000. First
row of histograms(unit 0) is an example for a unit dying due to the attack. Whereas
the second row(unit 4) doesn’t die after the attack and we can see that the output
distribution of the unit 4 is not changed after attack and looks very similar to the
original distribution.
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the gradients of the outgoing weights since their gradient is given by

∂L

∂wl+1
ij

=
∂L

∂hl+1
j

ali (3.5)

where wij is the weight connecting our unit(i) to the unit(j) in the next layer.

ali is the output of our unit and as reasoned above their distribution is expected to

shift towards the negative side causing the weight wij to receive a smaller gradient

signals. Therefore we expect the outgoing weights in the attacked version to be

smaller. We can see this effect in the third column of the Figure 3.1.

Note that after a successful attack(like unit-0), batch normalization would have

a high variance σ2
i dividing each value and it would shrink the incoming gradient

with the same value σ2
i . This makes ∂L

∂hi
to decrease (column 4 of the Figure 3.1).

As a result ∂L
∂Wi

decreases, too (column 6 of the Figure 3.1). This clearly shows

us that units might not be dead even when they are frozen. Units may have a

small gradient signal coming to them, however they might still create some useful

information used by the rest of the network and therefore having a high mean

replacement penalty.

3.4.1 Effect of the attack is time dependent

In the previous section, we showed the responses of unit 0,4 and 2 of the first

convolutional layer against an attack with an early start (attacks starting at 50th

step). In this section, we like to continue our experiments by changing the time

we start attacking the unit. We are attacking the unit 0 in the first convolutional

layer 10 times with 10 iteration intervals starting from 500th, 1500th, 2500th and

5000th steps in different runs and results are plotted in Figure 3.3a. We clearly see
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(a) Layer-1 Unit-0

(b) Layer-2 Unit-0

Figure 3.3: Various metrics observed during 4 different attacks each starting at a
different time-step. The x-axis represents the time (iteration) and all vector values
are plotted after taking their l1-norm. We can clearly see that there is no clear
relation between time and the success of a learning rate attack. Corresponding
loss curves plotted in Figure D.1 and D.2
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that the most successful attack is the one starting on the 2500th iteration (step)

and the second most successful attack is the one start at 500th iteration, whereas

the attack starting on 5000 and 1500 gets the last two spot. We observe that MRS

does not capture the ordering perfectly even though it is successful at separating

the original unit from attacked ones.

On Figure 3.3b, we have a very similar picture, where the success of an attack

seems to be not correlated to the time we start the attack. However this time we

see that the MRS makes a very good job separating low MRP units from the rest.

Another interesting observation that we can make in Figure 3.3 is the negative

correlation between the weights and gradient signals coming to the unit(output

gradient). It looks like output gradient of a unit decreases proportional to the

increase in the norms of the corresponding weights and this aligns well with our

explanation in the previous section.

3.4.2 Increasing learning rate multiplier causes units to die

In Figure 3.4 we see two groups of plots corresponding to the experiments

where we attack the first units of the first and second layers respectively. Looking

to the Figure 3.4a, one can clearly see that the success of an attack (drop in MRP)

increases with the learning rate multiplier. We don’t see any clear relation between

the MRP and magnitude of the weights. However, an interesting observation is

that the norm of the output gradient is not necessarily small for low MRP units.

Looking to the blue curve we see that the norm of the output gradient exceeds the

original run towards the end of the training despite having a much lower MRP.

In Figure 3.4a, the first unit of the second convolutional layer responds to the

increasing multiplier in a similar manner, i.e. MRP’s drops more, weights jump
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(a) Layer-1 Unit-0

(b) Layer-2 Unit-0

Figure 3.4: Various metrics observed during 4 different attacks with different learn-
ing rate multipliers, each starting at 50th step and repeats 10 time with 100 step
intervals with . X-axis represents the time(steps taken) and all vector values are
plotted after taking their l1-norm. The success of the attack increases with the
multiplier. Corresponding loss curves can be seen in Figure D.3 and D.4
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Figure 3.5: MRP and MRS of various units plotted against time X-axes represents
the number of steps (iteration) taken. We see all attacks are somewhat successful
at limiting the MRP of a unit.

more and MRS do a very good job at approximation the MRP. This time we also

see a very correlated picture between output gradients and weights.

Results of the experiments in this section clearly shows us that that it is the

attack(high learning rate) that makes units die.

3.5 Killing a Unit with Tanh

In this section, we switch to the TanH nonlinearity and perform 10 attacks

starting from the 2000th step with 10 step intervals between each attack and using

a learning multiplier of 1000. Since it takes more time to train network with TanH,

we let the experiment run for 30 epochs instead of 10. The network reaches to an

accuracy of 64%.

Figure 3.5 shows MRP and MRS of four different units from the first convolu-

tional layer with and without the attack performed. The experiments without an

attack labeled as Original. Two of the units have final MRP’s around twice more

than the other two, however, they all drop to an MRP of 0.2-0.3 after the attack
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Figure 3.6: First row shows the normalized histograms of activations of each unit
on the validation set of size 1000 without an attack. Second row is the same
histogram when the unit is attacked 10 times between (2000,2100)th steps. The
z-axes of the histograms represent the iteration number.

and MRS does a very good job approximating the MRP.

As happened before the output distribution of the attacked units scaled con-

siderably due to the relatively large updates caused by the attack. This shifts the

activation distribution to the edges. In other words, most of the input distribu-

tion is mapped into the flat region of TanH. In a very basic sense, the amount

of information available at the end of the layer decreases considerably. We can

see this behavior in Figure 3.6 where we plot the activation distribution’s of the

attacked units using the same units as in Figure 3.5 and same colors. The output

of first three units (0,1,2) in Figure 3.6 shifts toward the left towards the end of

the training. This gives us a clue, that if we perform the attack at a different time

we might end up in an extremely uneven activation distribution and therefore have

even lower MRP’s.

3.5.1 All you need is the right timing

In this section, we attack the unit-0 of the first layer and unit-16 of the third

layer (first fully connected layer) 10 times with different starting times. Results
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taken from these two experiments are plotted in Figure 3.7. Once again we ob-

serve correlation between Output Gradient and Weights after the attack in both

experiments.

In Figure 3.7a we see that all three attacks causes similar drops on the MRP

score. However, we see significant differences on the norms of weights and output

gradients. One subtle observations is that the attack starting at 50th step increases

the MRP at the beginning, however the increase stops after a while (red curve).

However, we observe that MRS captures the ranking perfectly throughout the

training.

In Figure 3.7b attacks starting at 50th step increase the MRP considerably,

however, these effects are fadeout later during the training. We suspect this be-

havior being due to the small-magnitude-gradients. An early attack may not be

enough to saturate the activations. To understand this phenomenon further we

plot the histogram of the unit outputs and activations of unit-16 in Figure 3.8.

The attacks started at 50th step in both experiments doesn’t scale the output

distribution considerably and therefore the MRP of the unit increases. However

attacks performed later (at 2500 and 5000) cause a wider distribution and cause

more outputs to saturate. Note that the attacks starting at 2500th and 5000th

step causes activation distributions leaned towards the right and left respectively.

This shows that the effect of the learning rate attack depends heavily on the step

it is performed.
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(a) Layer-1 Unit-0

(b) Layer-3 Unit-16

Figure 3.7: Various metrics observed during 3 attacks with different starting points.
Each repeats 10 times with 10 step intervals. X-axis represents the time(steps
taken) and all vector values(Output Gradient and Weights) are plotted with l1-
norm. Corresponding loss curves plotted in Figure D.5 and D.6
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(a) Layer-1 Unit-0

(b) Layer-3 Unit-16

Figure 3.8: Output histograms of two units. x-y-z axes of each histogram represents
value, normalized count and step-taken (itereation) respectively. Attacks started
later during the training seems like generating more values on the flat regions(left-
right edges(-1,1) of the histogram).

56



3.6 Killing a Unit with Relu

In the previous two sections, we showed that the learning rate attack disturbs

the activation distribution and often causes a drop in MRP. We also reasoned

that this effect seems like due to the reduced information produced by the unit.

In this section, we would like to remove the batch normalization and repeat our

experiment on a unit with ReLU activation. All experiments in this section run for

10 epochs and the network reaches to an accuracy of 61% independent of whether

an attack performed or not. We perform learning rate attacks starting at 2000th

step of the training again 10 times with 10 iteration intervals.

In a network with ReLU nonlinearities, it is harder to lose information since one

side of the activation function is not bounded. If our output distribution is centered

around 0, a learning rate attack would not saturate the non-zero activations; it

would only scale them such that the information is preserved. Moreover increased

magnitudes may generate bigger gradients on the outgoing weights and make the

information provided by the unit more important for the task. We may even see

faster convergence (for real).

3.6.1 Whatever doesn’t kills you make you stronger

Due to its unbounded nature, we had hard time attacking ReLU. Often, we

observed that attacking a ReLU unit cause an increase in MRP. An example of this

effect is given in Figure 3.9a. The attack on Unit-0 of Layer-2 reduces the output

gradient, however, increases the MRP. Most of the units we attacked responded

the attack in this manner.

However, we observed some units(2 out of 4 at second layer) responded to
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(a) Layer-2 Unit-0

(b) Layer-2 Unit-4

Figure 3.9: Various metrics observed during an attack on 2 different units. Both
attacks start on 2000th step. The attack on unit 0 makes the unit more important
for the network (increased MRP), whereas unit 4 is completely dead after attack
with 0 MRP.
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Figure 3.10: x-y-z axes of each histogram represents value, normalized count and
step-taken respectively. The attack on the unit makes the original distribution
wider with a factor of roughly 2, whereas the attack on unit 4 has a different
effect, where the whole distribution is shifted to the negative side.

the attack in a different way. In Figure 3.9b we see a unit that died completely

after a learning rate attack. This is extremely interesting since the whole output

distribution of the unit is shifted to the negative side after the attack (see Figure

3.10).

This shows us that even though it is less likely to see a successful learning rate

attack in networks with ReLU, it is still possible. It is all possible.
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3.7 Dead units may develop and MRS is an effi-

cient measure to detect them

In this section, we observed unit with 3 different activation functions. For all of

them, we were able to perform successful attacks where we see a considerable drop

in MRP. Except for couple instances, MRS did a very good job approximating the

MRS and never failed at choosing the smallest MRP unit. We expect MRS to

perform even better with smaller MRP’s due to the decreased error term in the

Taylor decomposition.

We showed that ReLU+Batch Normalization activation behaves like a bounded

activation function similar to TanH. Therefore their units are more likely to get

affected by the learning rate attack. On the other hand, ReLU units are harder to

harm with learning rate attack, however possible. We suspect that increased MRP

on the attacked units causes slight decrease on MRP of other units. However, we

haven’t experiment with this hypothesis.

Measures like Output gradient and l1-norm of the weights are definitely related

to the MRP, however, they are worst than the MRS at predicting low MRP units.

Contrary to our expectations, we showed that a low MRP unit might have a very

big norm (of weights) and pruning a unit according to its norm might be a very

bad idea.

We also showed that the success of an attack is very related to the iteration it

is made and the learning rate multiplier. We haven’t investigated the effect of the

outgoing connections on the success of an attack.

Note that we investigated only a small subset of all possible learning rate at-

tacks. However, we believe that our findings are enough to convince the reader
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that a fix learning rate might cause some units to die and we may detect them

efficiently using MRS.
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Chapter 4

MRS based pruning with bias

propagation

In Chapter 2 we defined and compared various saliency scores for individual

parameters. However, when we look at the parameters of the pruned network,

we observed that the individual units gather around some specific units. That

motivated us to focus on units rather than the individual parameters. In Chap-

ter 3 we defined the dead units and the Mean Replacement Penalty(MRP). Our

motivation was that the MRP is the right measure for detecting units that either

doesn’t create any useful information or ignored by the rest of the network. We

argued that the dead units are unlikely to change over the course of the training

and we empirically observed this behavior. We also mentioned that replacing a

unit with its mean and propagating that to the next layer is better than a bare

removal. MRP directly measures this penalty of replacing a unit with its mean.

Calculating MRP for all units in a network is not feasible for large networks.

However, we can calculate the MRS, first-order approximation of MRP, quite ef-
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ficiently and use it to prune units. We can calculate MRS during the backward

pass in linear time and in Chapter 3 we observed that MRS works pretty good at

approximating the MRP, at least for the experiments we performed. In Section

4.1 we would like to compare MRS with norm-based saliency scores using the ran-

domScorer as our baseline. In Section 4.2 we demonstrate unit pruning using the

MRS and get superior results compare to the results of Chapter 1.

4.1 Comparing MRS with norm-based saliencies

In this section, we compare MRS saliency score with MRP and norm-based

scoring functions. Our investigation is somehow limited since we only compare the

scoring functions on a small network trained for MNIST classification. However,

we believe that MRS would perform as good as norm-based saliency measures if

not better in other networks and settings, too.

[26] compares various saliency scores in the context of unit pruning without

bias propagation and concludes first-order Taylor approximation performs best.

[39] uses bias propagation(explained in Chapter 1) idea to remove units which

generate constant values. As stated earlier, mean replacement is a better way of

removing units and should be employed. Combining the idea of mean replacement

and the superiority of first-order Taylor approximation, we expect the MRS to

perform better than the rest.

Saliency measures considered in this section are MRS, MRP and L1 and L2-

squared based norms of the parameter tensors. Table 4.1 summarizes these scores

along with their function names in pytorchpruner.unitscorers module. We

included MRP to see how well the MRS approximates the MRP.
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Saliency Score Definiton
mrpScorer see Chapter 3
mrsScorer see Chapter 3

normScorerL1 ||w||1
normScorerL2 ||w||22
randomScorer uniform

Table 4.1: Saliency scores that we compare in Section 4.1.

In our experiments we use the same experimental setup as the one in Section 2.1:

small CNN on MNIST trained with SGD, batch-size of 32, the constant learning

rate of 0.01 and without using momentum or weight decay for 10 epochs (18k+

iterations). We use ReLU as our activation function unless stated otherwise. We

calculate the loss changes after performing the bias propagation calculated on a

subset of the training set with size 1000. We expect these 1000 random samples

to successfully approximate the training set accurately. Our small CNN reaches

to 0.046 training loss and shows a pretty good generalization with 0.039 test loss

and 98.8% accuracy. After every pruning followed by the calculation of the loss

change, we revert all the changes such that the network trains as normally.

4.1.1 If you have few units, there is not much difference

We would like to start our comparison by looking at the very first convolutional

layer. Since MNIST is a relatively easy task, even a small CNN with 8 units in

the first layer obtains a pretty good accuracy. We prune 4 out of 8 units and

calculate the change in the loss every 100 iterations. After every measurement,

we revert the changes so that our measurement address the question of what if

we prune at given iteration using a particular saliency measure. Changes in the

training loss measured every 100 iterations during the 10 epochs of training for

64



the first convolutional layer plotted in Figure 4.1a. Since there are only 8 units in

the first layer, we don’t see much difference between different saliency measures.

They all seem like selecting the same 4 units during the entire training. But there

is a significant difference between the randomScorer and the rest (Figure 4.1b).

Some units have a very significant influence on the result and therefore pruning

them with mean replacement causes a very significant change in the loss value(up

to 100x more).

(a) randomScorer included (b) randomScorer not included

Figure 4.1: Change in the loss after replacing half of the units with their mean
values in the first convolutional layer according to various measures explained in
Section 4.1. Figure (a) is the same as the (b) except it includes our baseline
randomScorer in addition to the other four.

4.1.2 Dead units having small norm

The results in 4.1a also suggests that units with low MRP also have small

norm. In Section 3.2, we argued that dead units would most likely also be frozen

(having no gradient signal). We also know that the parameters of the neural

network tend to increase during the training and we also confirmed this tendency

in our experiments. These two observations lead us to the opinion that the dead

units(low MRS) score units may prevent the norm to increase and therefore making
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the norm-based saliency scores selecting the same units as the MRP selects.

4.1.3 MRP and MRS works better in general with ReLU

We see a more meaningful picture when we repeat the comparison we made

in the previous section for the third layer(first fully connected layer). The results

are plotted in Figure 4.2. Again in 4.2a we see a significant difference between the

baseline and the rest. So our saliency measures all kind of work and we expect

them to give reasonable results. However, if we look closely to 4.2b, we all see

that MRP claims the lowest penalty in general and it is followed by the MRS. We

also see that all the scoring functions performs quite similarly within the first 5000

iterations and then the norm based scoring functions start to diverge.

(a) randomScorer included (b) randomScorer not included

Figure 4.2: Change in the loss after replacing half of the units with their mean
values in the first fully connected layer according to various criteria. Measurements
are made over the course of the training at every 100 iteration(step).

Since there are more units(256 units) in the third layer, selected units diverge

more compare to the first layer and therefore it is a good candidate for perform-

ing additional experiments. In Figure 4.3 we compare the saliency measures for

different pruning factors. Pruning factor is a number between 0 and 1 telling us

the fraction of the parameters to be pruned. If we have 256 units and a pruning
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factor of 0.1, we prune b256/10c = 25 units with lowest saliency scores.

The first thing to observe is that occasionally we improve the loss value through

pruning (negative loss change). When the pruning factor is 0.1, we observe the

norm-based scoring functions working significantly worst at the beginning, how-

ever, they catch up towards the end and we don’t see any significant difference

between the 4 saliency measures. Increasing the pruning factor we observe the su-

periority of the MRP and MRS(blue and orange curves) at pruning. They almost

constantly get the lowest scores.

Figure 4.3: We calculate the change in the loss value after pruning the third
layer(first fully connected layer) using various saliency measures. Each plot em-
ploys a different pruning factor, i.e. fraction of parameters in that layer to be
pruned. ∆ Training Loss is calculated on a randomly sampled training set of size
1000.
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4.1.4 Mean replacement might not be the best strategy for

Tanh

In the rest of this section, we continue our comparison with Tanh activation

function (it was ReLU in the previous subsections). The small convolutional net-

work with Tanh activation gets 0.053 training loss at the end of the training and

gets a loss value of 0.056 and an accuracy of 98.31% on the test set.

Figure 4.4: This plot has the exact same setting as the Figure 4.3 expect activation
function is changed to Tanh. We calculate the change in the loss value after pruning
the third layer(first fully connected layer) using various saliency measures. Each
plot employs a different pruning factor and ∆ Training Loss is calculated on a
randomly sampled training set of size 1000.

Figure 4.4 shows how our saliency measures perform at pruning the first fully

connected layer(256 units). For pruning factors of 0.1 and 0.2 MRP and MRS
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seem like working better. However, for 0.4 and 0.5 norm-based pruning seems like

inducing less loss penalty. The picture is slightly different in the last two plot,

where the MRP gets the first place and MRS being the last.

More important than the rankings, the main observation here is that we get

up to 7x more loss penalty (the positive change in the loss after pruning) compare

to Figure 4.3(ReLU activation). This result is very striking since the final training

and test loss values are pretty similar after 10 epochs for both networks. These

results suggest that maybe the mean replacement is not the best removal method

for all kind of activations. Maybe we shouldn’t replace a mostly saturated Tanh

unit that generates zeros or ones consistently with a value in the middle.

4.1.5 Units with Tanh activations are more tolerating

Figure 4.5 shows how our saliency measures perform at pruning the first fully

connected layer(256 units) with a pruning factor of 0.5. Compare to Figure 4.2,

our baseline(randomScorer) induces much smaller loss penalty (around 3x less)

when we use Tanh. Our network with Tanh tolerates the absence of a random half

of the units much better than the network with ReLu.

We also see that our saliency measures somehow have higher loss penalties

over the course of the training. Our saliency measures do not perform significantly

better than the baseline (random selection). This observation further supports

our previous claim that the removal after bias propagation might not be the best

method of pruning for networks with Tanh.
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(a) randomScorer included (b) randomScorer not included

Figure 4.5: Change in the loss after replacing half of the units with their mean
values in the first fully connected layer according to various saliency measures.
Measurements are made over the course of the training at every 100 iteration(step)
using a randomly selected subset of the training data(size 1000).

4.2 Pruning a small network with MRS

In this section, we perform unit pruning using the MRS saliency measure. We

use the same experimental setup in Section 2.2 (same learning rate, model,random

seed,etc.). We slightly changed our pruning schedule reducing the target pruning

factors(see Table 4.2). We perform bias propagation before removing units at every

pruning round. Removal of a unit is simulated through masking the parameters

of the units. We calculate the MRS score using a randomly sampled subset of the

training data.

Epoch 2 3 4 5
Fraction f 0.1 0.2 0.4 0.6

Table 4.2: Pruning schedule for the unit pruning experiment on MNIST

Figure 4.6 shows the training loss and pruning fractions for 2 different runs of

the same experiment: one with pruning(red) and another without(blue). Right

after the last two pruning round (fractions 0.4 & 0.6), we observe small peaks
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in the loss curve (Figure 4.6a). However, both runs approach to zero after 10

epochs and get 98.42% accuracy on the test set. The pruned network has only

4019 parameters, where the original network has 20522 (5x reduction!). Note that,

since we remove entire units, pruned parameter tensors can be copied into smaller

ones. Therefore pruning units don’t require sparse representations and therefore

we expect to see greater speed ups and smaller memory footprint.

(a) loss (b) fraction of parameters pruned

Figure 4.6: Loss and fraction of pruned parameters over time. The x-axis represents
time and parameterized by the iteration (step) number. The red curve is the run
with scheduled pruning, where the blue curve is the original run without any
pruning done. We are using the same seed for random number generator to ensure
consistency and reproducibility.

4.2.1 Magnitude Colormaps of Parameters

As we did in Section 2.2, we plot the magnitude colormaps of our layers. Since

we use the same exact random seed, the original colormaps should match with the

ones in Chapter 2. The reader is encouraged to compare the two pruning strategies

and enjoy similarities between the two experiment.

Colormaps in Figure 4.7,4.8,4.9 and 4.10 depict magnitudes after the training

for the the first four layers of our network. We observe that the magnitudes of the

parameters in the surviving units seem unaffected by the pruning.
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Figure 4.7: Magnitude colormaps of the weight tensor of the conv1 layer with(right)
and withoutleft pruning. Colormaps are generated after the training and all values
are normalized such that yellow represents the max-value and blue represents the
minimum value.
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Figure 4.8: Magnitude colormaps of the weight tensor of the conv2 layer with(right)
and withoutleft pruning. Colormaps are generated after the training and all values
are normalized such that yellow represents the max-value and blue represents the
minimum value.
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Figure 4.9: Magnitude colormaps of the weight tensor of the fc1 layer with(right)
and withoutleft pruning. Colormaps are generated after the training and all values
are normalized such that yellow represents the max-value and blue represents the
minimum value.
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Figure 4.10: Magnitude colormaps of the weight tensor of the fc2 layer with(right)
and withoutleft pruning. Colormaps are generated after the training and all values
are normalized such that yellow represents the max-value and blue represents the
minimum value.
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Appendix A

a Pytorch Pruner Library:

pytorchpruner

pytorchpruner is a pytorch package for pruning neural networks. It is intended

for research and its main objective is not to provide fastest pruning framework,

however, it is relatively efficient and fast. It uses masking idea to simulate pruning

and supports two main pruning strategies. It also implements various second-order

functions to calculate Hessian and Hessian-vector products.

https://github.com/evcu/pytorchpruner

There are 5 main parts of this library.

1. Parameter Pruning (pytorchpruner.scorers): has saliency measures

that return a same-sized-tensor of scores for each parameter in the provided

parameter tensor.

2. Unit Pruning (pytorchpruner.unitscorers): has saliency measures that

return a vector of scores for each unit of the provided parameter tensor.
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3. Pruners (pytorchpruner.pruners): has two different pruner engine for

the two different pruning strategies (parameter vs unit). remove empty filters

function in this file reduces the size of the network by copying the parameters

into smaller tensors if possible.

4. Auxiliary Modules (pytorchpruner.modules): implements meanOutputReplacer

and maskedModule, the two important wrappers for torch.nn.Module in-

stances. The first one replaces its output with the mean value if enabled.

And the second one simulates the pruning layers.

5. Various first/second-order functionality (pytorchpruner.utils): im-

plements hessian calculation, Hessian-vector product, some search function-

ality and some other utility functions.
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Appendix B

Experiment Bootstrapper Library

This package includes the bootstrap code for generating experiments and in-

cludes helper functions/scripts/examples for pytorch training and slurm job schedul-

ing. The release can be cloned from the following public GitHub repo.

https://github.com/evcu/exp.bootstrp

The very basic/main idea is:

• Create a python script(experiment) which accepts command line arguments

• Provide some argument lists and generate SLURM jobs using the cross prod-

uct of the given argument lists.

• Make all above with ease and allow easy reproducibility.

A quick walkthrough of library can be found in the repository above.

B.0.1 Features

• read yaml args reads conf.yaml and creates a type-checked argParser out

of the definition. Write the conf, read and overwrite with CLI args.
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• Customizable eval-prefixes inside yaml file, which enables defining pro-

gramatic eval-able arguments. i.e. the string ‘+range(5)’ would be evaluated

and read as a list.

• Current configuration of the experiment is copied to the experiment

folder such that you can always change experiments default args after sub-

mission

• ClassificationTrainer/ClassificationTester which wraps the main train-

ing/testing functionalities and provides hooks for loggers.

• tensorboardX logging utils and examples.

• convNetGeneric implementation

• Multiple experiment definitions through yaml lists.
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Appendix C

Model Definitions

C.1 small CNN for MNIST

Following model is used for experiments in Chapter 2 and Chapter 4. Note that

the first layer is wrapped with meanOutputReplacer wrapper to simulate mean-

replacement during forward pass and/or calculate MRS score.

ConvNet generic (

( conv1 ) : meanOutputReplacer (

module=Conv2d (1 , 8 , k e r n e l s i z e =(5 , 5 ) , s t r i d e =(1 , 1 ) )

, i s mean r ep l a c e=False

, enabled=False )

( conv2 ) : Conv2d (8 , 16 , k e r n e l s i z e =(5 , 5 ) , s t r i d e =(1 , 1 ) )

( f c 1 ) : L inear ( i n f e a t u r e s =256 , o u t f e a t u r e s =32)

( f c 2 ) : L inear ( i n f e a t u r e s =32, o u t f e a t u r e s =10))
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C.2 small CNN for CIFAR

Following model is used for experiments in Chapter 3

ConvNet generic (

( conv1 ) : Conv2d (3 , 8 , k e r n e l s i z e =(5 , 5 ) , s t r i d e =(1 , 1 ) )

( conv2 ) : Conv2d (8 , 16 , k e r n e l s i z e =(5 , 5 ) , s t r i d e =(1 , 1 ) )

( f c 1 ) : L inear ( i n f e a t u r e s =400 , o u t f e a t u r e s =64, b i a s=True )

( f c 2 ) : L inear ( i n f e a t u r e s =64, o u t f e a t u r e s =10, b i a s=True )

)
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Appendix D

Loss curves of attacked units

In this section we provide the loss curves of the experiments shared in Chapter

3. Each plot has a caption telling which figure they match in Chapter 3.

Figure D.1: Loss curves of the Figure 3.3a
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Figure D.2: Loss curves of the Figure 3.3b

Figure D.3: Loss curves of the Figure 3.4a

Figure D.4: Loss curves of the Figure 3.4b
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Figure D.5: Loss curves of the Figure 3.7a

Figure D.6: Loss curves of the Figure 3.7b
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Appendix E

Unit Saliency Measure

Comparison: Additional Plots

In this section we provide additional results for Section 4.1. We
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Figure E.1: We calculate the change in the loss value after pruning the second
convolutional layer using various saliency measures. Each plot employs a different
pruning factor, i.e. fraction of parameters in that layer to be pruned. ∆ Training
Loss is calculated on a randomly sampled training set of size 1000.
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Figure E.2: Same setup as the Figure E.1 except units have Tanh activation.
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