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Abstract

The maximum entropy (MaxEnt) framework has been studied extensively in the

supervised setting. Here, the goal is to find a distribution p that maximizes an

entropy function while enforcing data constraints so that the expected values of

some (pre-defined) features with respect to p match their empirical counterparts

approximately. Using different entropy measures, different model spaces for p,

and different approximation criteria for the data constraints, yields a family of

discriminative supervised learning methods (e.g., logistic regression, conditional

random fields, least squares and boosting) (Dud́ık & Schapire, 2006; Friedlander

& Gupta, 2006; Altun & Smola, 2006). This framework is known as the generalized

maximum entropy framework.

Semi-supervised learning (SSL) is a promising field that has increasingly at-

tracted attention in the last decade. SSL algorithms utilize unlabeled data along

with labeled data so as to increase the accuracy and robustness of inference algo-

rithms. However, most SSL algorithms to date have had trade-offs, e.g., in terms

of scalability or applicability to multi-categorical data.

In this thesis, we extend the generalized MaxEnt framework to develop a family

of novel SSL algorithms using two different approaches:

• Introducing Similarity Constraints

We incorporate unlabeled data via modifications to the primal MaxEnt ob-

jective in terms of additional potential functions. A potential function stands

for a closed proper convex function that can take the form of a constraint

and/or a penalty representing our structural assumptions on the data ge-

ometry. Specifically, we impose similarity constraints as additional penalties
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based on the semi-supervised smoothness assumption, i.e., we restrict the

MaxEnt problem such that similar samples have similar model outputs. The

motivation is reminiscent of that of Laplacian SVM (Sindhwani et al., 2005)

and manifold transductive neural networks (Karlen et al., 2008), however, in-

stead of regularizing the loss function in the dual we integrate our constraints

directly to the primal MaxEnt problem which has a more straight-forward

and natural interpretation.

• Augmenting Constraints on Model Features

We incorporate unlabeled data to enhance the moment matching constraints

of the generalized MaxEnt problem in the primal. We improve the estimates

of the model and empirical expectations of the feature functions using our

assumptions on the data geometry.

In particular, we derive the semi-supervised formulations for three specific in-

stances of the generalized MaxEnt framework on conditional distributions, namely

logistic regression and kernel logistic regression for multi-class problems, and con-

ditional random fields for structured output prediction problems. A thorough

empirical evaluation on standard data sets that are widely used in the literature

demonstrates the validity and competitiveness of the proposed algorithms. In ad-

dition to these benchmark data sets, we apply our approach to two real-life prob-

lems, vision based robot grasping, and remote sensing image classification where

the scarcity of the labeled training samples is the main bottleneck in the learning

process. For the particular case of grasp learning, we also propose a combination

of semi-supervised learning and active learning, another sub-field of machine learn-

ing that is focused on the scarcity of labeled samples, when the problem setup is
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suitable for incremental labeling.

To conclude, the novel SSL algorithms proposed in this thesis have numer-

ous advantages over the existing semi-supervised algorithms as they yield convex,

scalable, inherently multi-class loss functions that can be kernelized naturally.
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Chapter 1

Introduction

Broadly speaking, machine learning algorithms aim to learn a mapping from ob-

servations x ∈ X , to outputs y ∈ Y . In classification, y consists of discrete values

corresponding to the categories that the inputs are associated with, whereas in

regression y can take arbitrary continuous values. Supervised learning algorithms

infer such a mapping using completely labeled data, where the training set consists

of pairs of inputs and their desired outputs. Unsupervised learning algorithms, on

the other hand, deal with entirely unlabeled training sets.

Unlike the traditional supervised and unsupervised techniques, semi-supervised

learning (SSL) is a relatively new sub-field of machine learning which has become

a popular research topic throughout the last decade. SSL aims to make use of both

labeled and unlabeled data during training. The scarcity of labeled training sam-

ples in a wide spectrum of applications ranging from natural language processing

to bio-informatics has motivated the research on SSL algorithms.

A closely related concept to semi-supervised learning is transduction. Trans-

ductive inference refers to reasoning from observed training samples to unlabeled
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but observed data, as opposed to induction where one aims to extract general

rules from observed training samples so as to perform inference on completely

novel data. Therefore, if an algorithm is designed to use labeled and unlabeled

samples for training, yet if it is limited to assess its performance specifically on

unlabeled samples, it is considered to be transductive.

Machine learning techniques can also be categorized as one of the two main

paradigms, namely generative and discriminative learning, with respect to their

underlying principles. Generative approaches attempt to model p(x, y), the joint

distribution of the inputs and outputs whereas discriminative models aim to learn

a prediction function directly from the inputs to outputs, e.g., a discriminant

function as in SVMs (Bishop, 2006; Schölkopf & Smola, 2001) or conditional prob-

abilities, p(y|x) as in logistic regression. For the purposes of this thesis, we focus on

discriminative semi-supervised learning models only. Discriminative learning mod-

els have the following advantages over generative models (Bishop, 2006; Bishop &

Lasserre, 2007):

• They can incorporate arbitrary feature representations more flexibly.

• Due to the conditional training, they are not affected by any modeling error

of the data distribution.

In many learning problems, the output variables have structural or temporal

dependencies such as class hierarchies, sequences, lattices or trees (Altun, 2005).

When that is the case, we can not predict the outputs in an isolated manner for

individual instances. Structured output prediction algorithms aim to capture such

dependencies, e.g., Structured SVMs (Tsochantaridis et al., 2005) and Conditional

Random Fields (Lafferty et al., 2001).
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In the context of statistical machine learning, the maximum entropy (MaxEnt)

principle (Jaynes, 1957) has long been used in the supervised setting (Berger et al.,

1996; Rosenfeld, 1996). Here, one aims to find a distribution p that maximizes an

entropy function while the data constraints are met, that is the expected values of

some (pre-defined) features with respect to p match their empirical counterparts

approximately. Using various entropy measures, model spaces for p or approxi-

mation criteria yields a family of discriminative supervised learning methods (e.g.,

logistic regression, least squares and boosting) including structured output predic-

tion algorithms (e.g., Conditional Random Fields) (Altun & Smola, 2006; Dud́ık

& Schapire, 2006). This framework is known as the generalized maximum entropy

framework.

This thesis presents a novel semi-supervised approach that incorporates unla-

beled data into the generalized maximum entropy framework. Using unlabeled

data in the primal MaxEnt objective with conditional probabilities yields multi-

class, convex, discriminative loss functions in a principled manner, allowing natural

interpretation of the motivation. Moreover, our approach provides an intuitive way

of imposing balanced label proportions on labeled and unlabeled samples, which

has been successfully used in the earlier semi-supervised learning literature (Col-

lobert et al., 2006; Chapelle & Zien, 2005; Karlen et al., 2008).

1.1 Semi-supervised Learning

Semi-supervised learning (SSL) methods aim to employ unlabeled data together

with labeled data to improve performance. The motivation is the scarcity of labeled

training samples in real life problems, particularly in situations where labels can not

3



be generated automatically and/or human effort is required during data collection.

An extensive literature survey and a taxonomy of the existing techniques can be

found in (Zhu, 2007) and (Chapelle et al., 2006) respectively. We also provide an

overview of the relevant SSL algorithms in Section 1.2.

Generally speaking, unlabeled data gives us a better estimate of the marginal

data distribution p(x). Accordingly, there has to be some relation between p(x)

and the target function that we learn so that we can benefit from unlabeled samples

(Seeger, 2001). This anticipation leads to structural assumptions on the geometry

of the data. For instance, the intuition behind many of the semi-supervised learning

algorithms is that the outputs should be smooth with respect to the structure of

the data, i.e., the labels of two inputs that are similar with respect to the intrinsic

geometry of data are likely to be the same. Most algorithms perform better on

data which conforms to the assumptions they are based on. To date, there is no

SSL algorithm that is universally superior (Chapelle et al., 2006). In a real life

scenario one has to pick a model that matches the problem structure at hand which

is often application specific or data-dependent. The basic structural assumptions

that we employ in this thesis, namely the cluster and manifold assumptions and

how they are integrated in our framework are discussed in Chapter 3.

Below we give a summary of the important criteria for SSL methods.

Convexity

Convex loss functions are often desirable since they guarantee a unique solu-

tion, enable easier theoretical justification and reduce complications such as

the need for heuristics to avoid local minima. Many methods from the SSL

literature have non-convex loss functions, e.g., transductive Support Vector

Machines (TSVM) (Vapnik, 1998), CCCP-TSVM (Collobert et al., 2006),

4



low density separation (LDS) (Chapelle & Zien, 2005) and transductive neu-

ral networks (TNN) (Karlen et al., 2008). As it will become clear in Chapters

4 and 6, our approach yields convex loss functions as it is based on convex

duality.

Capability to incorporate prior knowledge

One desirable feature of an SSL algorithm is its capability to integrate prior

information or domain knowledge without ad-hoc manipulation. Our method

can naturally incorporate such information, e.g., class-proportions or expec-

tations on specific features known a priori by expressing them as constraints

in the primal problem.

Generality

The semi-supervised learning methods introduced in this thesis are easily

applicable to structured prediction problems (Chapter 4), allows kerneliza-

tion (Chapter 5) and can be extended as a general framework using various

information theoretic measures.

Scalability

The main motivation of SSL is to be able to make use of large amounts

of unlabeled data. Therefore, scalability is an immediate concern for semi-

supervised algorithms. However, until recently very few methods could scale

up to millions of samples especially using non-linear models (Karlen et al.,

2008; Fergus et al., 2009; Quadrianto et al., 2009).
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1.2 A Survey of Semi-Supervised Learning

In this thesis, we focus on discriminative semi-supervised learning models. A

general taxonomy of discriminative SSL methods can be given as follows: semi-

supervised and transductive SVM variants, graph-based algorithms, spectral meth-

ods, transductive neural networks, information theoretic approaches and constraint

based methods.

In the rest of this chapter, we provide an overview of the semi-supervised meth-

ods in the literature that are relevant to our work. We aim to investigate the

advantages and disadvantages of these algorithms for a better evaluation of the

experimental results.

1.2.1 Semi-supervised SVM Variants

Transductive SVM (TSVM)

The supervised Support Vector Machine (SVM) solves the optimization problem

below for binary classification. Minimize:

R(λ;D) = γ‖λ‖2 +
l∑

i=1

∆ (f(xi), yi)

with hinge-loss,

∆ (f(x), y) = max (0, 1− yf(x)) .

where D = {(x, y)i=1...l} consists of labeled samples and f(x) = 〈λ, x〉 + b. The

Transductive Support Vector Machine (TSVM) (Vapnik, 1998) aims to assign la-

bels to the unlabeled samples such that the SVM decision function maximizes the
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margin from the separating hyperplane for both labeled and unlabeled samples.

However, solving the original TSVM formulation is NP-hard requiring a search

over all possible labelings. Accordingly, many heuristics have been proposed to

reduce the computational cost of TSVM. In (Bennett & Demiriz, 1998), a mixed

integer programming was proposed to find the labeling with the lowest objective

function. The optimization, however, is intractable for large data sets. Joachims

propose a heuristic that iteratively solves a convex SVM objective function with

alternate labeling of unlabeled samples (Joachims, 1999). However, the algorithm

is capable of dealing with a few thousand samples only.

TSVM loss can be seen as a regularized extension of SVM

R(λ;D) = γ‖λ‖2 +
l∑

i=1

∆ (f(xi), yi) + α
l+u∑
i=l

∆∗ (f(xi)) .

The additional term on unlabeled samples acts as a regularizer that pushes the

unlabeled samples far from the decision boundary using the symmetric hinge loss

∆∗ (f(x)) = max (0, 1− |f(x)|) .

However, this yields a non-convex objective function which arises difficulties in

the optimization procedure. CCCP-TSVM regards the TSVM loss as a sum of

convex and concave parts and solves it using a concave-convex procedure (Collobert

et al., 2006). This method accommodates up to 60, 000 unlabeled samples in the

experiments.
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Low Density Separation (LDS)

Chapelle and Zien propose LDS (Chapelle & Zien, 2005) which is a combination

of two stages. The former, namely the graph SVM, aims to learn an embedding

exploiting the cluster assumption. Then, the ∇TSVM solves the TSVM loss using

gradient descent in the primal in this new embedding space. The authors also

incorporate the following label balancing constraint

1

u

u∑
i=1

f(xi) =
1

l

l∑
i=1

yi,

enforcing that all unlabeled data are not assigned to a single class.

Laplacian SVM (LapSVM)

Laplacian SVM, optimizes an objective function of the following form (Sindhwani

et al., 2005),

R(λ;D) =
l∑

i=1

∆(f(xi), yi) + γ‖λ‖2 +
α

u

u∑
i,j=1

Wij‖f(x∗i )− f(x∗j)‖2,

which introduces an additional regularization term defined over both labeled and

unlabeled samples reflecting the geometry of the data. Several variations have been

proposed for the LapSVM, e.g., by using a sparse manifold regularizer (Tsang &

Kwok, 2006).

1.2.2 Transductive Neural Networks

Karlen et al. train transductive neural networks augmented with a manifold regu-

larizer (Karlen et al., 2008). Their (non-convex) objective, which aims to simulta-
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neously minimize a loss function and learn an embedding of the unlabeled samples,

is given by

R(λ;D) =
1

l

l∑
i=1

∆ (f(xi), yi) +
λ

u2

u∑
i,j=1

Wij∆ (f(x∗i ), y
∗({i, j})) ,

where

y∗(N) = sign

(∑
k∈N

f(x∗k)

)
,

and the weights Wij correspond to the similarity relationships between unlabeled

examples x∗. The authors solve this optimization problem using stochastic gradient

descent. Therefore, this is a highly scalable online semi-supervised method despite

the fact that it is a non-linear model. A balancing constraint is also integrated

during training.

1.2.3 Graph Based SSL Algorithms

Graph based SSL methods impose the smoothness assumption over a graph where

the nodes represent observations and the edges are associated with weights corre-

sponding to their pairwise similarities. Two commonly used similarity graphs are

the k-nearest neighborhood graph (Wij = 1 if xi is among the k-nearest neighbors

of xj or vice-versa and Wij = 0 otherwise) and the similarity graph with respect

to the RBF kernel

Wij = exp

(
−‖xi − xj‖

2

2σ2

)
.
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These graphs have been used in iterative algorithms where each node starts to prop-

agate its label to its neighbors, and the process is repeated until convergence (Zhu

& Ghahramani, 2002; Bengio et al., 2006). Algorithm 1 details the steps.1

Algorithm 1 Label Propagation (Zhu & Ghahramani, 2002)

Compute affinity matrix W .
Compute the diagonal degree matrix D by Dii =

∑
jWij

Initialize labels Ŷ (0) ← (y1, . . . , yl, 0, 0, . . . , 0)
Iterate

1. Ŷ (t+1) ← D−1WŶ (t)

2. Ŷ
(t+1)

1,...,l ← Yl

until convergence to Ŷ (∞)

Label point xi by the sign of ŷi
(∞).

1.2.4 Spectral Methods in Semi-Supervised Learning

In the context of unsupervised data clustering, the spectral properties of the Lapla-

cian matrix have long been used and analyzed in detail (Ng et al., 2001). The

Laplacian matrix is defined as follows

L = I −D−1/2WD−1/2,

where W is the similarity matrix and D is the diagonal matrix Dii =
∑

jWij.

Chapelle et al. propose cluster kernels (Chapelle et al., 2003), to enforce the

semi-supervised cluster assumption. They modify the eigenspectrum of the Lapla-

cian for the original kernel matrix, L = I −D−1/2KD−1/2, where K is computed

over both labeled and unlabeled samples, such that the distance induced by the

1from (Bengio et al., 2006).
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resulting kernel is smaller for samples in the same cluster.

Sinha and Belkin analyze the eigenfunctions of the convolution operator (Sinha

& Belkin, 2009), which is the continuous counterpart of the Gram matrix (Schölkopf

& Smola, 2001), computed over both labeled and unlabeled data. Motivated by

the fact that high density areas correspond to representative eigenvectors when

the cluster assumption holds, the authors treat linear combinations of these bases

as semi-supervised classifiers.

1.2.5 Information Theoretic Approaches

Various techniques with information theoretic justification have been previously

proposed in the SSL literature. Expectation Regularization (ER) (Mann & Mc-

Callum, 2007) augments the negative conditional log-likelihood loss with a regu-

larization term, enforcing the model expectation on features from unlabeled data

to match either user-provided or empirically computed expectations. The authors

provide experimental results for label features minimizing the KL divergence be-

tween the expected class distribution and the desired class proportions.

Information regularization (IR) (Grandvalet & Bengio, 2005) minimizes the

conditional entropy of the label distribution predicted on unlabeled data, favoring

minimal class overlap, along with the negative conditional log-likelihood of the

labeled data

R(λ;D) =
l∑

i=1

log pλ(yi|xi) + γ
n∑
i=l

∑
y

pλ(y|xi) log pλ(y|xi),

where γ is the trade-off parameter to control the impact of unlabeled data. Even

though experimental evidence shows high performance, IR is criticized for its sen-
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sitivity to hyper-parameter tuning to balance the loss and regularization terms.

Furthermore, if the labeled data is very scarce, IR tends to assign all unlabeled

data to the same class.

In their information regularization framework, Szummer and Jaakola enforce

that the labels should be uniform in regions of high density where they regard mu-

tual information as a measure of label complexity (Szummer & Jaakkola, 2002a).

1.2.6 Constraint Driven Semi-supervised Learning

Recently constraint driven SSL approaches have attracted attention, (Bellare et al.,

2009; Chang et al., 2007; Liang et al., 2009; Mann & McCallum, 2007). Chang et al.

were one of the first to guide semi-supervised algorithms with constraints (Chang

et al., 2007). Their model is trained via an EM like procedure with alternating

steps. The authors impose constraints on the outputs y rather than the model

distribution p(y|x), as proposed in this thesis. They also have a constraint violation

mechanism where the hyper-parameters are manually set.

Graca et al. inject auxiliary expectation constraints to the EM algorithm (Graca

et al., 2007). The authors replace the E step with I-projection so that the poste-

rior distribution of the latent variables of a graphical model respects the desired

constraints deliberately chosen for structured output learning.

Bellare et al. impose expectation constraints on unlabeled data (Bellare et al.,

2009). They define an auxiliary distribution that respects general convex con-

straints and has low divergence with the model distribution. The fundamental

difference with our approach is that the authors impose the penalty functions on

the dual objective of the MaxEnt framework. This in turn yields a non-convex

optimization problem which is solved by alternating projections. In contrast, we
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impose constraints on the target distribution directly to the primal problem which

yields convex loss functions.

Measurements

Liang et al. propose measurements (Liang et al., 2009), a mechanism that allows

partial supervision which unifies labels and constraints through constraints. A

measurement is the expectation of some function over the outputs of the unla-

beled samples, e.g., label proportions or output preferences of the user such as at

least 90% of the classes should be classified as category A. This approach allows

fully-labeled examples, partially-labeled examples and general constraints on the

model predictions to be treated similarly as these can be cast as instances of mea-

surements. The authors define a utility function indicating an expected reward or

satisfaction measure for having included a certain type of measurement in the learn-

ing process. Using this utility function, they propose a sequential active selection

mechanism over a large set of potential measurements. However, the measurement

computations become intractable as their expected values require integration over

the parameter space and approximate inference methods are required.

The authors expand the maximum entropy objective using additional penalties

defined on the measurements and then solve the dual of this extended optimiza-

tion problem. Our approach shares the principle to enforce constraints on the

predicted model distribution using Fenchel’s duality and the maximum entropy

framework. Yet, we use such constraints to integrate prior information about the

geometry of the data over local regions using a similarity metric which can also be

interpreted as matching predicted moments of similarity features. Moreover, we

analyze the primal-dual relations of model features in RHKS along with similarity
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features. Also, our loss functions are tractable and can be solved via gradient

descent methods.

Distribution Matching

Quadrianto et al. constrain the learning problem such that the distributions of

the predictor functions on labeled and unlabeled data have the same distribution

(Quadrianto et al., 2009). They solve a problem of the following form

Rtrain[f,X, Y ] + γg(f(X), f(X ′)),

where X and X ′ are sampled from the training and test samples respectively, g

refers to a distance function between the two distributions in an RKHS and γ is

a balancing term. They choose Maximum-Mean discrepancy which in the case of

characteristic kernels define the data distribution uniquely. The authors provide

an online approximation which renders the algorithm highly scalable. However,

the optimization objective is non-convex and requires elaboration. Also the im-

provement over supervised learning across various data sets is not consistent.

1.2.7 Semi-supervised Learning in Structured Output Pre-

diction

Even though semi-supervised learning has been a very active field for over a decade,

research on semi-supervised structured prediction is relatively recent. Mann and

McCallum extend their Expectation Regularization method on standard data

(Mann & McCallum, 2007), which has been mentioned previously in Section 1.2.5,

to linear-chain CRFs in (Mann & McCallum, 2008). The authors use partially
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labeled sequences and enforce the expectations to hold on individual features be-

tween the target values ψ̂ and the model expectations E[ψ(x)].

For the semi-supervised training of CRFs, Jiao et al. (Jiao et al., 2006) use the

information regularization (IR) method by Grandvalet and Bengio (Grandvalet &

Bengio, 2005) mentioned earlier in Section 1.2.5. The following constraint driven

SSL approaches previously mentioned in Section 1.2.6 also apply to CRFs (Bellare

et al., 2009; Chang et al., 2007; Graca et al., 2007; Liang et al., 2009; Quadrianto

et al., 2009).

Other than semi-supervised CRFs, some previous work focus on combining

semi-supervised kernels and standard algorithms for structured output prediction.

Altun et al. propose a max-margin semi-supervised classification method (with

hinge loss) for linear-chain sequences using nonlinear graph-kernels (Altun et al.,

2006). Note that these methods have scalability problems.
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Chapter 2

Background

2.1 Basics

2.1.1 Maximum Entropy and Maximum Likelihood

Probability density estimation using maximum entropy dates back to the late

1950s. Jaynes was the first to point out a correspondence between statical infer-

ence and information theory (Jaynes, 1957). He postulated the maximum entropy

principle which states that, given some testable information on a distribution, e.g.,

in terms of empirical observations, the true distribution is the one that maximizes

the entropy among all the distributions that conform to the available information,

or equivalently, satisfy the desired constraints pertaining to this information. In

other words, the best possible estimate is the one that is as uninformative as pos-

sible apart from the information we are already given and thus does not make any

assumptions about what we do not know.

In statistical inference, the testable information is provided in terms of real

valued feature functions for a given sample and we aim to find the best distri-
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bution that explains the data given the constraints on the expectations of these

features. For the supervised learning scenario, a convex-dual solution of MaxEnt

using Lagrange Multipliers gives the Gibbs distribution. In the machine learning

community, the existence of a primal-dual relation between maximum likelihood

Gibbs distribution and maximum entropy has long been known (Pietra et al.,

1997). Before proceeding further, we introduce some basic concepts in information

theory that will be used in the following sections.

Definition 1 Let X be a discrete random variable with alphabet X and with proba-

bility mass distribution p(x) = Pr{X = x}, x ∈ X . Shannon’s Entropy (Cover

& Thomas, 2006) is given by

H(X)
def
= −

∑
x∈X

p(x) log p(x). (2.1)

Definition 2 Conditional Entropy quantifies the uncertainty of a random vari-

able Y given that the value of a second random variable X is known,

H(Y |X)
def
=
∑
x∈X

p(x)H(Y |X = x),

=−
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x). (2.2)

Definition 3 Csiszár Divergence A divergence is a function D(p ‖ q) that

measures the difference between two probability distributions p and q. Let p and

q be two probability distributions over a space P. Then, for a convex function f

such that f(1) = 0, the Csiszár or f-divergence of q from p is

Df (p ‖ q) =

∫
P
f

(
dp

dq

)
dq (2.3)
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Different f functions lead to different divergence measures. For instance, taking

f(x) = x ln(x) gives the special case of Kullback-Leibler (KL) divergence for the

discrete case

DKL(p ‖ q) =
∑
x

p(x) ln
p(x)

q(x)
. (2.4)

Definition 4 (Convex Conjugate) Denote X to be a Banach space and let X ∗

be its dual. The convex conjugate or the Legendre-Fenchel transformation of a

function h : X → < is h∗ : X ∗ → < where h∗ is defined as

h∗(x∗)
def
= sup

x∈X
{〈x, x∗〉 − h(x)}.

2.1.2 Relation of MaxEnt Regularization and Priors

The duality between maximum entropy and log-likelihood has been well-known

for decades. In its simplest form, the MaxEnt objective is to find a distribution

that satisfies moment matching constraints, yielding an optimization problem of

the following form

max
p∈P

H(Y |X) = min
p∈P

∑
x

π̃(x)
∑
y

p(y|x) log p(y|x)

such that

∀i Ex∼π̃(x)Ey∼p(y|x)[ψi(x, y)] = Ex,y∼π̃(x,y)[ψi(x, y)], (2.5)∑
y

p(y|x) = 1.
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Equality constrained MaxEnt via Lagrangian Duality

In order to show the equivalence of the problem given by Equation (2.5) and

log-likelihood maximization, we are going to derive the Lagrangian dual of this

problem. The Lagrangian corresponding to Equation (2.5) is given by,

L(p, λ, γ;D) =
∑
x

π̃(x)
∑
y

p(y|x) log p(y|x)

+
∑
i

λi
(
Ex,y∼π̃(x,y)[ψi(x, y)]− Ex∼π̃(x)Ey∼p(y|x)[ψi(x, y)]

)
+ γx(

∑
y

p(y|x)− 1).

In the equation above p(y|x) is the primal variable and λis are the Lagrange mul-

tipliers corresponding to the moment matching constraints.1

Solving ∂L(p, λ, γ;D)/∂p(y|x) = 0 gives us optimal p∗

p∗(y|x) =
exp(< λ, ψ(x, y) >)

Z(x;λ)
=

exp(F (x, y;λ))

Z(x;λ)
. (2.6)

Plugging p∗ back in L, we obtain the Lagrange dual,

Q(λ;D) =
∑
x

π̃(x)
∑
y

p∗(y|x) log p∗(y|x)

+
∑
i

λi

(
Ex,y∼π̃(x,y)[ψi(x, y)]− Ex∼π̃(x)[

∑
y

p∗(y|x)ψi(x, y)]

)

= −
∑
x

π̃(x)
∑
y

exp(F (x, y;λ))

Z(x)
logZ(x;λ) +

∑
i

Ex,y∼π̃(x,y)[ψi(x, y)λi]

= − 1

N

N∑
j=1

log(
∑
y

exp 〈λ, ψ(xj, y)〉) +
1

N

N∑
j=1

〈λ, ψ(xj, yj)〉 . (2.7)

1Refer to Table A.1 for further details on the notation.
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The dual objective given by Equation (2.7) is equivalent to the conditional log-

likelihood

L def
= log

N∏
j=1

pλ(yj|xj). (2.8)

Inequality constrained MaxEnt via Lagrangian Duality

Over-fitting is a common issue for problems with high dimensional features espe-

cially when the sample size is small. Among several remedies one is to use relaxed

constraints rather than enforcing them to hold exactly as in Equation (2.5), since

this is often an unrealistic goal for real-world data. Kazama et al. proposed a

relaxation of MaxEnt using inequality constraints (Kazama & Tsujii, 2005). This

form corresponds to an l1 regularized version of the maximum likelihood objective.

MaxEnt objective with inequality type constraints is below

max
p∈P

H(Y |X)

= min
p∈P

∑
x

π̃(x)
∑
y

p(y|x) log p(y|x)

such that

∀i |Ex∼π̃(x)Ey∼p(y|x)[ψi(x, y)]− Ex,y∼π̃(x,y)[ψi(x, y)]| < ε (2.9)

∀x
∑
y

p(y|x) =1 .
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The Lagrangian for the problem is given by

L(p,λ+,λ−,γ;D) =
∑
x

π̃(x)
∑
y

p(y|x) log p(y|x)

+
∑
i

λ+
i

(∑
x

π̃(x, y)ψi(x, y)−
∑
x

π̃(x)
∑
y

p(y|x)ψi(x, y)− ε

)

+
∑
i

λ−i

(
−
∑
x

π̃(x, y)ψi(x, y) +
∑
x

π̃(x)
∑
y

p(y|x)ψi(x, y)− ε

)

+ γx(
∑
y

p(y|x)− 1) .

Here, the need for two sets of constraints arises due to the absolute value on

the inequality constraints. We obtain p∗(y|x) by differentiating the Lagrangian

with respect to the primal variable and setting ∂L(p, λ+, λ−, γ;D)/∂p(y|x) = 0.

Plugging the optimal p∗(y|x), which is of the same form as given in Equation (2.6),

we derive the following dual objective

Q(λ+,λ−;D) =
∑
x

π̃(x)
∑
y

p∗(y|x) log (p∗(y|x))

+
∑
i

(λ+
i − λ−i )

(
ψ̃i −

∑
x

π̃(x)
∑
y

p∗(y|x)ψi(x, y)

)

−
∑
i

(λ+
i − λ−i )εi .

With several terms canceling out, this yields the following convex dual

Q(λ+,λ−;D) =−
∑
x

π̃(x) logZ(x;λ+, λ−) +
〈
λ, ψ̃

〉
−
∑
i

(λ+
i − λ−i )εi.

which is an l1 regularized logistic regression loss function when εi terms are iden-

tical. Goodman pointed out that this inequality type relaxation is equivalent to a
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Laplacian prior (Goodman, 2004) on the estimated distribution. Earlier, Chen et

al. showed that l22 regularization corresponds to Gaussian prior (Chen & Rosen-

feld, 2000). However, unlike l1 regularization an l22 regularized dual corresponds to

penalty functions in the primal problem instead of inequality constraints. We will

need Fenchel’s duality to show that, as will be introduced in the next section.

Dud́ık et al. provide a theoretical analysis of the relaxed formulation with box

constraints and in later work (Dud́ık et al., 2004), the same authors propose a

general treatment for l1, l2, l
2
2 and l1 + l22 style regularization (Dud́ık & Schapire,

2006). Also an analysis for lp norm is provided by (Friedlander & Gupta, 2006).

2.1.3 Generalized Maximum Entropy

When the target distribution is defined on a finite dimensional space and with

specific forms of the constraints, the maximum entropy problem can be solved

using Lagrangian techniques. See (Kazama & Tsujii, 2005; Dud́ık et al., 2004).

However, in the generalized MaxEnt framework with non-differentiable penalty

functions as proposed by (Dud́ık & Schapire, 2006) or with infinite dimensional

spaces as (Altun & Smola, 2006) pointed out, we need Fenchel’s duality for a

proper analysis of the primal-dual space relations. This section briefly introduces

the key concepts related to Fenchel’s duality sufficient to follow the rest of this

thesis. For a broader introduction to Fenchel’s duality for the machine learning

audience and a detailed reference the reader may refer to (Rifkin & Lippert, 2007)

and (Rockafellar, 1996) respectively.

Definition 5 Core The core of a set C, core(C) is the set of points x in C such

that for any direction d in an arbitrary Euclidean space, E, x+ td lies in C for all
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small t. This set contains the interior of C, although it may be larger, (Borwein

& Lewis, 2006).

Theorem 1 (Fenchel’s Duality, Theorem (4.4.3) of (Borwein & Zhu, 2005))

Let X and X ∗ be Banach spaces, f : X → < ∪ {+∞} and g : X ∗ → < ∪ {+∞}

be convex functions and A : X → X ∗ be a bounded linear map. Define t and d as

follows 2,

t = inf
x∈X
{f(x) + g(Ax)} and

d = sup
x∗∈X ∗

{−f ∗(A∗x∗)− g∗(−x∗)}.

Assume that f , g and A satisfy one of the following constraint qualifications,

1. 0 ∈ core(dom g − A dom f) and both f and g are lower semi continuous,

2. A dom f ∩ cont g 6= ∅,

where s ∈ core(S) if
⋃
λ>0 λ(S − s) ⊆ X , X is a Banach space and S ⊆ X. Then

t = d, where the dual solution d is attainable if it is finite.

In our context A is an observation operator, e.g., a map from distributions into a set

of moments. The generalized maximum entropy framework incorporates various

forms of constraints and penalty functions as a potential, h : < → (−∞,∞] to

the maximum entropy objective. (Dud́ık, 2007) provides a theoretical analysis of

the generalized maxent for marginal distributions in supervised settings. In this

thesis however, we focus on loss functions for conditional distributions in the semi-

supervised setting and their empirical evaluation. Therefore, in Section 2.2, we

reformulate the maxent objective for conditional distributions.

2The adjoint transformation A∗ is given by 〈Ap, λ〉 = 〈A∗λ, p〉.
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2.2 Duality of Maximum Entropy for Conditional

Distributions

In this section, we outline a brief summary of duality relation between general-

ized Maximum Entropy on class conditional distributions and various supervised

discriminative learning methods3. We focus on modeling conditional distributions

given by

P = {p | p(y|x) ≥ 0,
∑
y∈Y

p(y|x) = 1, ∀x ∈ X , y ∈ Y},

where Y and X are output and input spaces respectively.

The goal in generalized MaxEnt is to minimize the divergence of the target

distribution p from a reference distribution q while penalizing the discrepancy

between observed values ψ̃ of some pre-defined feature functions ψ : X × Y → B

and their expected values with respect to the target distribution. Here, ψ̃ can be

derived from a sample, e.g., ψ̃ = 1/n
∑n

i=1 ψ(xi, yi). The conditional expectation

is defined as

Ep[ψ]
def
=
∑
x

π̃(x)Ey∼p(y|x)[ψ(x, y)]. (2.10)

Hence, the conditional expectation operator imposes a weighting with respect to

3We use entropy maximization and divergence minimization interchangeably since they are
equivalent up to a constant for a fixed reference distribution.
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the marginal distribution of π̃(x) as shown below

Ep =



π̃(x1)ψ1(x1, y1) ... π̃(xn)ψ1(xn, yc)

...
. . .

π̃(x1)ψi(x1, y1) ... π̃(xn)ψi(xn, yc)

...
. . .

π̃(x1)ψd(x1, y1) ... π̃(xn)ψd(xn, yc)





p(y1|x1)

...

p(yc|x1)

...

p(y1|xn)

...

p(yc|xn)



=



E∼π̃(x)E∼p(y|x)ψ1(x, y)

...

E∼π̃(x)E∼p(y|x)ψi(x, y)

...

E∼π̃(x)E∼p(y|x)ψd(x, y)


, (2.11)

where d refers to the dimensionality of the feature space. The following lemma

shows the duality of generalized MaxEnt for conditional distributions and various

discriminative supervised learning methods.

Lemma 2 (MaxEnt Duality for conditionals) Let p, q ∈ P be conditional dis-

tributions and D be a divergence function that measures the discrepancy between

two distributions

D(p|q) =
∑
x

π̃(x)Dx (px|qx) . (2.12)

Moreover, let ψ : X×Y → B be a feature map to a Banach space B (with dual space

B∗), g be lower semi-continuous (lsc) convex and Ep is the conditional expectation
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operator in Equation (2.10). Define

t := min
p∈P
{D(p|q) + g

(
Ep[ψ]; ψ̃, ε

)
}, (2.13)

d := max
λ∈B∗
{−
∑
x

π̃(x)D∗x(〈ψ(x, .), λ〉); qx)− g∗(λ; ψ̃, ε)}, (2.14)

where q is a reference distribution (reflecting the prior knowledge for target distri-

bution). Then, d = t.

Proof Let fq(p) = D(p|q), Axpx = Epx [ψ] and Ap = Ep[ψ]. Fenchel’s Duality

(Borwein & Zhu, 2005, Theorem (4.4.3)) states that

inf
p∈P
{fq(p) + g(Ap)} = sup

λ∈B∗
{−f ∗(A∗λ)− g∗(−λ)}

via strong duality. For the expectation operator,

〈∑
x

π̃(x)
∑
y

p(y|x)ψ(x, y), λ

〉
=
∑
x

π̃(x)
∑
y

p(y|x) 〈ψ(x, y), λ〉=
∑
x

π̃(x) 〈A∗xλ, px〉

for A∗xλ = 〈λ, ψ(x, .)〉. Then,

f ∗(A∗λ) = sup
p
{〈p,A∗λ〉 − f(p)}

= sup
{px}
{
∑
x

π̃(x) 〈Axpx, λ〉 −
∑
x

π̃(x)f(px)}

=
∑
x

π̃(x) sup
px

{〈A∗xpx, λ〉 − f(px)},

for independent x. This is in turn equal to
∑

x π̃(x)f ∗(A∗xλ). Plugging values to

Fenchel’s duality completes the proof.
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h1(b; a) =
∫
t
b(t) ln b(t)/a(t) h∗1(b∗; a) =

∫
t
a(t) exp(b∗(t)− 1)

h2(b; a, ε) = I(‖b− a‖B ≤ ε) h∗2(b∗; a, ε) = ε‖b∗‖B∗ + 〈b∗, a〉

h3(b; a, ε) = ‖b− a‖2
B/(2ε) h∗3(b∗; a, ε) = ε‖b∗‖2

B∗/2 + 〈b∗, a〉

Table 2.1: Examples of convex conjugacy used in this thesis are KL divergence,
approximate norm constraints and and norm-square penalty functions.

2.2.1 A Unified MaxEnt Framework

Altun and Smola show that divergence measures other than KL-divergence lead to

various algorithms and provide a framework to unify divergence minimization and

statistical inference (Altun & Smola, 2006). Therefore, when p is the conditional

distribution of an output variable y ∈ Y given the input x ∈ X in (2.13), the dual

problems (2.14) correspond to various discriminative learning methods.

Important special cases for classification are listed below:

1. Logistic regression Taking p as the conditional probability distribution, D

as KL divergence and plugging in the Fenchel’s duality machinery gives the

special case of logistic regression loss

R(λ;D) =
n∑
j=1

π̃(xj) log
∑
y

exp (〈λ, ψ(xj, y)〉)−

n∑
j=1

π̃(xj, yj) 〈λ, ψ(xj, yj)〉+ Ω(λ), (2.15)

where Ω(λ) is given by ‖λ‖B when g = h2, and ‖λ‖2
B if g = h3 from Table 2.1.
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The relation between the primal p and dual λ variables is given by

p(y|x;λ) ∝ exp(〈λ, ψ(x, y)〉). (2.16)

2. Kernel logistic regression

When D is KL divergence, p is a conditional probability distribution, g = h3

(see Table 2.1) and B is a reproducing kernel Hilbert space (RKHS) H, the

convex dual of the MaxEnt objective gives kernel logistic regression (KLR).

The kernel K defining H is given by

k(x, y, x′, y′) = δ(y, y′)K(x, x′) = 〈ψ(x, y), ψ(x′, y′)〉 ,

where ψ(x, y) is the kernel induced (joint) feature space of possibly infinite

dimensionality. Representer Theorem (Schölkopf & Smola, 2001) states that

each minimizer of (2.15) admits the form

λ∗ =
∑n

i=1

∑
y αi,yψ(xi, y). (2.17)

Accordingly, when we substitute the solution given by Equation (2.17) to

(2.15), we obtain the KLR loss

R(α;D) =
n∑
i=1

q̃m(xi) log
∑
y

exp(F (xi, y;α))− 1

n

n∑
i=1

F (xi, yi;α) + ε αTKα,

(2.18)

where F (x, y) = 〈λ∗, ψ(x, y)〉 for λ∗ defined above.

3. Boosting when p is an unnormalized conditional distribution (UCD) and D
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is KL divergence. See (Collins et al., 2000).

4. A family of structured prediction algorithms, e.g., Conditional Random Fields

(Lafferty et al., 2001), kernel Conditional Random Fields (Lafferty et al.,

2004), and Boosted Random Fields (Torralba et al., 2005) if feature func-

tions ψ decompose with respect to a graphical model and the conditions in

items 1 or 3 hold respectively. See Section 5.3 for the convex dual derivations

of the l22 regularized linear chain CRFs.

5. Least squares when p is a UCD and D is l2 divergence. Kernel least squares,

when B is RKHS. See (Altun & Smola, 2006).

6. Support Vector Machines when p is a UCD, D is the total variation

distance and B is RKHS. See (Altun & Smola, 2006).
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Chapter 3

A Word on Similarity

3.1 Introduction

In both supervised and semi-supervised learning exploiting the similarities among

pairs of samples is a common approach. Similarity (or inversely distance) metrics

vary from one application domain to another. Depending on the application do-

main, one can come up with various similarity relations among instances such as

the WordNet distance which is a semantic distance for English words (Fellbaum,

1998), edit distance for strings, cosine similarity for high dimensional sparse binary

vectors, the cardinality of the intersection of two sets, etc. On the other hand, it

may also not always be possible to treat all the attributes of an instance uniformly.

In such situations, composite distance metrics may be required. For instance, the

visual descriptors for a robot’s grasp configuration (see Section 7.6.2) are comprised

of attributes corresponding to the location of the actuator and quaternions for its

rotation. Accordingly, the similarity metric we use is a combination of Euclidean

and angular distances.
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Similarities can be incorporated in the learning process as features or one can

regard them as functions embedding the model features into a reproducing kernel

Hilbert space (RKHS) (Schölkopf & Smola, 2001). Chen et al. provide an overview

of classification algorithms using similarities as features and compare the use of

similarity features versus kernels for various kernel based discriminative algorithms

(Chen et al., 2009). The fundamental difference between these two approaches is

that the former searches for a solution in the Euclidean space whereas the latter

maps the inputs to the associated RHKS and requires regularization in this RHKS.

Other than the regularizer, the objective functions are essentially the same.

Note that not all similarity definitions correspond to positive definite kernels.

Indefinite kernel matrices require careful handling as they might lead to non-convex

optimization problems. See (Chen et al., 2009) for remedies to overcome this tech-

nicality. Balcan analyzes theoretical properties of discriminative semi-supervised

algorithms with similarity features (Balcan, 2008).

In this thesis, we utilize similarity functions with two different approaches.

In Chapter 4, we incorporate similarity features into the learning process and

impose additional penalties on the expectations of these features to the generalized

MaxEnt objective. Alternatively, in Chapter 6, we use similarities to get better

estimates of empirical feature expectations, i.e., instead of imposing additional

constraints, we improve the existing constraints on model features. Although based

on different motivations, both approaches use various forms of the smoothness

assumption.
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3.2 Prior Knowledge on Intrinsic Data Geometry

For the purposes of this thesis, we focus on the fundamental assumption on the

relation between the outputs of the learned model and the geometry of the training

samples, which is commonly referred to as smoothness assumption. Generally

speaking, the smoothness assumption states that if two points x1, x2 are close,

their outputs y1, y2 should be close as well. For the semi-supervised setting this is

a bit more specific; if x1, x2 in a high-density region are close, so are y1 and y2. In

other words, the outputs are smoother in denser regions. The question though, of

how to determine whether x1, x2 are close arises naturally, and the answer requires

further elaboration.

The manifold assumption states that the data lies on an embedded lower dimen-

sional non-linear manifold within its actual high dimensional space. The cluster

assumption, on the other hand, states that if two data samples are in the same

cluster, they are more likely to belong to the same class. Low density separa-

tion is a closely related concept which states that a decision boundary preferably

goes through low-density regions. The conceptual equivalence between the clus-

ter assumption and low density separation has been observed by Chapelle et al.

(Chapelle et al., 2006). One interpretation of low density separation is that such

algorithms penalize changes in dense regions. Many discriminative methods such

as the transductive SVM and information regularization exploit the low-density

separation. On the other hand, graph-based SSL methods (Zhu, 2005) are typ-

ically based on the manifold assumption. They utilize the underlying manifold

structure by constructing a similarity graph on the entire data and then diffusing

the labels with various label propagation algorithms on this graph.
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3.3 Defining similarities

In this section, we will describe how the geometry assumptions discussed in the

previous section are integrated into the SSL algorithms developed in this thesis.

Cluster Assumption

In Chapter 6, we impose smoothness assumption, by using the similarities to get

a weighted average of the attributes of a labeled sample with the unlabeled sam-

ple around its vicinity. This way, we get an enhanced estimate of the empirical

feature expectations. To achieve this, following other SSL methods, e.g., (Zhu &

Ghahramani, 2002; Bengio et al., 2006), we construct a k-nearest neighbor graph

over labeled and unlabeled data where the neighbors are restricted to unlabeled

data. The edge weights between node xi and xj are given by a chosen distance d,

e.g., Euclidean distance dij = ‖xi− xj‖. The similarity is defined by the Gaussian

kernel s(xi, xj) = exp(−d2
ij/σ

2).

In Chapter 4, similarity functions are defined likewise, however, unlike the

formulation given in Chapter 6, they are defined either between pairs of train-

ing samples among all data points or local regions centered on both labeled and

unlabeled samples.

Manifold Assumption

The manifold assumption enforces two input points that can be connected via a

path on the data manifold to have the same label. The shorter the path is, the

higher the pairwise similarity becomes. To achieve this, we construct a graph from

the data where the nodes correspond to the samples and each edge is associated

with a weight equal to the distance between the nodes it connects. Then the
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k-nearest neighbors of a labeled instance xi over the manifold are found using

the minimum spanning tree (MST) (Cormen et al., 2001) that connects xi and k

unlabeled nodes in its vicinity. Accordingly the distance d between two points is

the sum of the edge weights along the path. The similarity s is defined by the

Gaussian kernel with respect to d. Here, one can use other criteria instead of

MST, e.g., integrating the volume of paths using Markov random walks (Szummer

& Jaakkola, 2002b). We restrict ourselves to this definition for simplicity.
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Chapter 4

Semi-supervised Learning via

Similarity Constraints

4.1 Introduction

In this chapter, we propose a novel approach to integrate unlabeled data to the

entropy maximization problem via additional penalty functions that restrict the

model outputs to be consistent within local regions. As discussed in Chapter 3,

these local regions can be defined with respect to the assumed data geometry. In

this chapter, we investigate two types of penalty functions. Pairwise penalties aim

to minimize the discrepancy of the conditional class distributions for each sample

pair with respect to their proximity. Expectation penalties, on the other hand, are

a relaxed variant of the former, where the conditional output distribution of an

instance is enforced to match the weighted average of the conditional distribution

over local regions. The proximity of two samples is defined according to a similarity

function that reflects our prior knowledge on the geometry of the data. Augment-
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ing the primal maximum entropy problem and applying convex duality techniques

yields convex semi-supervised objective functions, which we refer as the dual prob-

lems. In particular, we describe two special cases, namely semi-supervised logistic

regression and kernel logistic regression in detail.

The rest of the chapter is organized as follows: Section 4.2 provides the details

of our approach. An experimental evaluation of these algorithms on benchmark

data sets is presented in Section 4.3.1. Comparison to a large number of semi-

supervised learning methods shows that our method performs competitively.

4.2 Similarity Constrained Generalized MaxEnt

In semi-supervised learning, we are given a sample D that consists of labeled data

L = {(xi, yi)}li=1 drawn i.i.d. from the probability distribution on X × Y and

unlabeled data U = {xi}ni=l+1 drawn i.i.d. from the marginal distribution p(x).

Throughout this chapter, we focus on multi-class problems where Y = {1, . . . , C}.

Hence {(x, y)i=1···l, (x)i=l+1···n} denotes all the (labeled and unlabeled) observations

in the sample.

If the optimal classification function is smooth with respect to p(x), i.e., the

outputs of two similar input points xj and xk are likely to be the same, one can uti-

lize unlabeled data points to impose the predictive function to be smooth. Various

approaches to enforce this smoothness assumption have lead to a large collection

of semi-supervised learning methods. For example, (Sindhwani et al., 2005) imple-

ment this assumption by adding a new regularizer

∑
xj ,xk

s(xj, xk)
∑
y

(f(xj, y)− f(xk, y))2,
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to various objective functions where f(x, y) is the predictive function and s(xj, xk)

is the similarity between the samples xj, xk. With the same motivation, we extend

the primal generalized MaxEnt problem to minimize the discrepancy between con-

ditional probability distributions of similar instances. This yields new optimization

methods favoring model outputs that are smooth with respect to the underlying

marginal distribution.

4.2.1 Pairwise Penalties

One way of encoding the smoothness criteria is by augmenting the supervised

MaxEnt problem in (2.13) with a discrepancy for all similar xj, xk pairs.

ts := min
p∈P
{D(p|q) + g

(
Ep[ψ]; ψ̃, ε

)
+ ḡ(p)}, (4.1)

where

ḡ(p) = ĥ(
∑
x,x′

h(px, px′))

for h, ĥ such that ḡ is lsc convex.

Corollary 3 The dual of the semi-supervised MaxEnt objective with pairwise sim-

ilarities in (4.10), is given by

ds := max
λ∈B∗
{−g∗(λ; ψ̃, ε)−

∑
x

π̃(x)(D + ḡ)∗x(〈ψ(x, .), λ〉; qx)}. (4.2)

The equality of ts given in Equation (4.10) and ds in Equation (4.2) follows from

Fenchel’s duality and Lemma (2) by defining fq(p) = D(p|q)+ḡ(p). Note (D+ḡ)∗ =
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D∗�ḡ∗, where � denotes the infimal convolution function1. This term can be solved

when D and g functions are specified.

Theoretically, a penalty function can be any convex proper lsc function. How-

ever, one should consider efficiency, feasibility and compatibility with the diver-

gence function D when choosing ḡ(p). For instance,

ḡ(p) = I
(
s(xj, xk)‖pxj − pxk‖ ≤ ε,∀j, k

)
may lead to infeasible solutions for small ε values or may render unlabeled data in-

effective for large ε values. Adjusting ε for each xj, xk pair, on the other hand, leads

to a very large number of hyper-parameters rendering optimization intractable.

An interesting setting of ts is when g = ḡ is a norm. In this case, the difference

between the model outputs weighted with similarities can be written as a linear

operator Φ which can then be combined with Ep[ψ] given in Equation (2.10). Let

Φp be the expectation operator over similarity feature functions φ,

φj,k,y(xm, y
′) =


s(xm, xk) if xm = xj, xj 6= xk and y = y′,

−s(xj, xm) if xm = xk, xj 6= xk and y = y′,

0 otherwise,

(4.3)

for j, k ∈ {1, . . . , n}. Then,

(Φp)i = s(xj, xk)(p(y|xj)− p(y|xk)),
1The infimal convolution of two functions f and g is defined as

(f � g) (x)
def
= inf

y
{f(x− y) + g(y) | y ∈ <n} .
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where i = (j × |X | × |Y|) + (k × |Y|) + y, i.e.,

Φp =



φ1(x1, y1) ... φ1(x1, yc) ... φ1(xn, y1) ... φ1(xn, yc)

...
. . .

φi(x1, y1) ... φi(x1, yc) ... φi(xn, y1) ... φi(xn, yc)

...
. . .

φd(x1, y1) ... φd(x1, yc) ... φd(xn, y1) ... φd(xn, yc)





p(y1|x1)

...

p(yc|x1)

...

p(y1|xn)

...

p(yc|xn)



=



∑
xE∼p(y|x)φ1(x, y)

...∑
xE∼p(y|x)φi(x, y)

...∑
xE∼p(y|x)φd(x, y)



=


...

s(xj, xk)(p(y|xj)− p(y|xk))
...

 , (4.4)

where d = |X | × |X | × |Y| and c = |Y|. Concatenating Φp to Ep[ψ] and 0 vector

(of size n2C) to ψ̃, by Lemma (2), we get the dual of the semi-supervised MaxEnt

as

ds := max
λ,γ
{−g∗((λ, γ); (ψ̃,0), ε)−

∑
x

π̃(x)D∗x(〈ψ(x, .), λ〉+ 〈φ(x, .), γ〉 ; qx)}.

(4.5)
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The semi-supervised MaxEnt formulation in (4.10) promotes target distributions

that are smooth with respect to the similarity measure s(xj, xk) and remains indif-

ferent to distant instance pairs. As mentioned in Chapter 3, s can be defined with

respect to the manifold distances in order to impose the manifold assumption, with

respect to the Euclidean distances over high density regions in order to impose the

smoothness assumption or with respect to data clusters in order to impose cluster

assumption. We assume that s(xj, xk) ≥ 0,∀j, k.

Investigating the difference between the dual supervised and semi-supervised

formulations given in Equations (2.14) and (4.5) respectively, we observe that D∗x

term is evaluated on both labeled and unlabeled data in the semi-supervised case,

since the empirical marginal distribution π̃ is now measured with respect to D.

Furthermore, the expectation term Epx is evaluated on the similarity features φ

as well as the original model features ψ. This requires n2C additional parameters

in the optimization problem, where n is the total size of the data and C is the

number of classes.

It is important to note that inconsistent constraints are likely to occur, as sim-

ilar samples might have different labels especially when they are close to decision

boundaries. To alleviate the conflicting constraints, we prefer to relax the restric-

tions on the model probabilities with penalty functions instead of box constraints.

The increase in the number of parameters may be prohibitively expensive for

very large data sets. One solution to this problem is to define a sparse similarity

function as the parameters for xj and xk become redundant if s(xj, xk) = 0. Hence,

the number of parameters can be reduced significantly. We now present two special

cases of (4.5), namely Pairwise Semi-Supervised Logistic Regression and Pairwise

Semi-Supervised Kernel Logistic Regression.
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Semi-Supervised Logistic Regression with Pairwise Similarity Penalty

The semi-supervised logistic regression with `2
2 regularization for pairwise semi-

supervised penalty can be derived by setting the divergence function to KL, Dx =

h1 with uniform q, and g to norm-square penalty function h3 (See Table 2.1)

min
p∈P

KL(p||q) +
1

ε
‖ψ̃ − Ep[ψ]‖2

2 +
1

ε
‖Φp‖2

2. (4.6)

Note that

‖Φp‖2
2 =

∑
j,k

∑
y

(s(xj, xk)(p(y|xj)− p(y|xk)))2 , (4.7)

as shown in Equation (4.4). Using Corollary (3), we plug the convex conjugates

of the corresponding functions to Equation (4.5) and negate the result. This gives

us the minimization problem of

R(λ, γ;D) =
∑
x∈D

π̃(x) logZx(λ; γ)−
〈
λ, ψ̃

〉
+ ε‖λ‖2

2 + ε‖γ‖2
2, (4.8)

where

Zx(λ, γ) =
∑
y

exp (F (x, y;λ, γ)) ,

F (x, y;λ, γ) = 〈λ, ψ(x, y)〉+
∑
x̂

s(x̂, x)γx̂xy −
∑
x̄

s(x, x̄)γxx̄y ,

41



and the relation between the primal parameter p and the dual parameters λ, γ is

given by

p(y|x) = exp(F (x, y))/Zx. (4.9)

Here R(λ, γ;D) is no longer the negative log-likelihood term. First, there is no

inner product term on similarity parameters. Second, the log-partition function is

computed for both labeled and unlabeled data. The similarity terms in F can be

seen as a flow problem, where the weighted average of incoming flow from neighbors

s(x̂, x)γx̂xy is matched to the outgoing flow s(x, x̄)γxx̄y.

It is important to note that p(y|x) is well-defined for all x, hence it can be ap-

plied to out-of-sample data. From this perspective, this is a proper semi-supervised

learning method. However, for out-of-sample data the similarity features are all

0 according to the similarity feature definition given in Equation (4.3). Hence,

the penalty function remains ineffective for these instances. From this perspective,

this is a transduction method since the performance is expected to improve from

supervised to semi-supervised optimization only on the in-sample unlabeled data.

The gradients of the objective function with respect to the dual variables are

given by

∂ R(λ, γ;D)

∂λ
=Epx [ψ(x, y)]− ψ̃ + 2ελ ,

and

∂ R(λ, γ;D)

∂ γx̂,x̄,y
=− p(y|x̄) s(x̂, x̄) + p(y|x̂) s(x̂, x̄) + 2εγx̂,x̄,y .
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Any gradient based optimization method that minimizes R can be applied to find

λ, γ. In practice, we use the quasi-Newton method BFGS.

Semi-Supervised Kernel Logistic Regression with Pairwise Penalty

In order to treat the penalty functions on model features and similarity features

uniformly in our MaxEnt objective

ts := min
p∈P
{D(p|q) + g

(
Ep[ψ]; ψ̃, ε

)
+ ḡ (Ep[φ]; ε) , (4.10)

we define the following combined penalty function U that acts on the concatenation

of these two feature spaces

U = ‖Ax− b‖2
2 = ‖

Ep[ψ]p− ψ̃

Ep[φ]p− 0

 ‖2
2.

When each of the individual feature spaces ξ1 = ψ and ξ2 = φ are defined on

RKHS’s H1 and H2 (with kernels K1 and K2 respectively), U takes the following

form

U = ‖

Ep[ψ]p− ψ̃

Ep[φ]p− 0

 ‖2
H

where H = (H1,H2) with kernel K = K1 +K2 (Bach et al., 2004; Sonnenburg

et al., 2006). For our similarity constrained formulations, H1 is any RKHS where

the model features are mapped to and H2 is the linear RKHS where the similarity

features are defined. We can restate our primal and dual objectives accordingly as

43



below

t = inf
x∈X
{D(p|q) + ‖

Ep[ψ]p− ψ̃

Ep[φ]p− 0

 ‖2
H} and

d =
∑
x∈D

π̃(x) log
∑
y

exp (〈λ, ψ(x, y)〉+ 〈γ, φ(x, y)〉)−
〈
λ, ψ̃

〉
+ ε‖

λ
γ

 ‖2
H.

For the ease of notation, we combine the feature spaces and rename it as ξ, also

rename the joint vector of optimization parameters as β

d =
∑
x∈D

π̃(x) log
∑
y

exp (〈β, ξ(x, y)〉)−
〈
β, ξ̃
〉

+ ε‖β‖2
H̃ (4.11)

where ξ̃ =

ξ̃1

0

. Representer theorem states that our optimal β∗ is of the following

form,

β∗ =
N∑
x=1

∑
y

αxyξ(x, y). (4.12)

Plugging this optimal β∗ back into Equation (4.11) we get

Q(α;D) =
N∑
j=1

π̃(x) log
∑
y′

exp

〈
N∑
i=1

∑
y

αxi,yξ(xi, y), ξ(xj, y
′)

〉

−

〈
N∑
i=1

∑
y

αxi,yξ(xi, y), ξ̃

〉

+ ε‖
N∑
x=1

∑
y

αxyξ(x, y)‖2
H
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=
N∑
j=1

π̃(x) log
∑
y′

exp
N∑
i=1

∑
y

αxi,y 〈ξ(xi, y), ξ(xj, y
′)〉

−

〈
N∑
i=1

∑
y

αxi,yξ(xi, y), ξ̃

〉

+ ε

〈
N∑
i=1

∑
y

αxi,yξ(xi, y),
N∑
j=1

∑
ỹ

αxj ,ỹξ(xj, ỹ)

〉
. (4.13)

Substituting the kernel property

K((xa, ya), (xb, yb)) = 〈ξ(xa, ya), ξ(xb, yb)〉 ,

the fact that K = K1 +K2 and the definition of ξ̃

ξ̃ =
L∑
l=1

π̃(x̄, y)

ξ̃1(x̄l, yl)

0

,

yields the following kernelized loss function

Q(α;D) =
N∑
j=1

π̃(x) log
∑
y′

exp
N∑
i=1

∑
y

αxi,y [(K1(xi, y), (xj, y
′)) +K2 ((xi, y), (xj, y

′))]

−
L∑
l=1

π̃(x̄l, y)
N∑
i=1

∑
y

αxi,yK1 ((xi, y), (x̄l, yl))

+ ε

N∑
i=1

N∑
j=1

∑
y

∑
ỹ

αxi,yαxj ,ỹ [(K1(xi, y), (xj, ỹ)) +K2 ((xi, y), (xj, ỹ))] .

(4.14)
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4.2.2 Expectation Penalties

As mentioned earlier the number of parameters for pairwise penalties can get

intractable with the increasing size of data. In order to reduce the number of

parameters, we consider a relaxed version of the pairwise penalties. Here, instead

of minimizing the discrepancy of conditional distributions across all xj, xk pairs,

we minimize the discrepancy of distributions over local regions. In particular, we

impose minimization of various norms of the following discrepancy

∑
j

(s(xj, xk)p(y|xj)− s(xj, xk)p(y|xk)) , (4.15)

over (x, y) pairs (See Equation (4.17)). This enforces the conditional output prob-

abilities of an instance xk to be close to the weighted average of the model outputs

of the instances xj within its vicinity.

As in the case of pairwise penalties, we can express the additional penalty term

given in (4.15) in terms of a linear operator Φp over similarity feature functions φ

given by

φk,y(xm, y
′) =


s(xm, xk) if xm 6= xk and y = y′,

−
∑

j s(xj, xm) if xm = xk and y = y′,

0 otherwise,

(4.16)

for m ∈ {1, . . . , n}. Then (Φp)i yields (4.15) for i = k × |Y| + y. Therefore, Φp
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can be given as

Φp =



φ1(x1, y1) ... φ1(x1, yc) ... φ1(xn, y1) ... φ1(xn, yc)

...
. . .

φi(x1, y1) ... φi(x1, yc) ... φi(xn, y1) ... φi(xn, yc)

...
. . .

φd(x1, y1) ... φd(x1, yc) ... φd(xn, y1) ... φd(xn, yc)





p(y1|x1)

...

p(yc|x1)

...

p(y1|xn)

...

p(yc|xn)



=



∑
xE∼p(y|x)φ1(x, y)

...∑
xE∼p(y|x)φi(x, y)

...∑
xE∼p(y|x)φd(x, y)



=


...∑

j (s(xj, xk)p(y|xj))−
(∑

j s(xj, xk)
)
p(y|xk)

...

 , (4.17)

where d = |X | × |Y| and c = |Y|.

We penalize the primal MaxEnt problem with some norm of Φp. Imposing

expectation penalties requires at most nC additional parameters as opposed to

pairwise penalties which requires n2C additional parameters. In addition to the

reduction of optimization parameters, another advantage of these relaxed con-

straints is that they are more robust to conflicting (true but hidden) labels of
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similar samples. Therefore, box constraints or equivalently an l1 regularized dual

objective is less likely to give an infeasible solution.

The semi-supervised logistic regression with `2
2 regularization for expectation

semi-supervised penalty is given by (4.8) with F defined as

F (x, y;λ, γ) = 〈λ, ψ(x, y)〉+
∑
x̂

s(x̂, x)γxy −
∑
x̄

s(x, x̄)γx̄y.

The gradients of γ are given by

∂R(λ, γ;D)

∂γxy
=
∑
x′

p(y|x′)s(x′, x)−
∑
x̂

p(y|x)s(x̂, x).

The kernel version follows as in Section 4.2.1.

4.3 Experiments

4.3.1 Experiments on Benchmark Data Sets

Similarity Metric

For the empirical evaluation we use the following similarity definition

s(xi, xj) =


K(xi, xj) if xj ∈ Nκxi

,

0 otherwise.

(4.18)

where K is a Mercer kernel and Nκxi
is the κ-nearest neighborhood of xi with

respect to K. Note that this similarity metric is sparse and non-symmetric.
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Data Sets

We present experiments on data sets that have been extensively analyzed in pre-

vious SSL work for fair and extensive comparison. We chose Digit1, USPS2 and

COIL data sets among the benchmarks data sets from (Chapelle et al., 2006),

USPS10 and text data sets from (Chapelle & Zien, 2005) and MNIST (LeCun

et al., 1998). Appendices B.1 and B.2 describe the essential properties of the data

sets. For further details see (Chapelle et al., 2006; Chapelle & Zien, 2005).

Model Selection

The hyper-parameters of our algorithm are the neighborhood size κ in (4.18), the

regularization constant ε1 for the model feature parameters and ε2 for the similarity

feature parameters and finally the kernel bandwidth α in the case of a RBF kernel.

We performed cross validation on a subset of labeled samples for model selection.

From each data split we moved 25% of the labeled samples to the corresponding

unlabeled data split and found the model parameters that give the best average

transduction performance on these samples only. In other words, model selection

is completely blind to the true labels of the unlabeled samples in order to reflect the

real-life scenario as closely as possible. We considered a range of hyper-parameters

for model selection, κ ∈ {5, 15, 20, 30} and ε1, ε2 ∈ {e−1, e−2, e−3, e−4}. We set

α = η−2 where η is the median of pairwise distances. Subsequently, we retrained

the algorithm with these parameters on the original set of labeled and unlabeled

samples. In the following section, we report the transductive error on the unlabeled

samples averaged over all splits. Following previous work, we used the cosine

kernel, K(xi,xj) = 〈xi,xj〉 /‖xi‖‖xj‖ for text and the RBF kernel, K(xi,xj) =

exp(−α‖xi − xj‖2) for all other data sets. In all experiments, the same kernel is
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used for the kernel logistic regression (KLR) and the similarity metric.

Results

Tables 4.1, 4.2, 4.3 and 4.4 summarize the empirical evaluation of our algorithm.

In Table 4.1, we report transduction error on Digit 1, USPS2 and COIL data sets

from (Chapelle et al., 2006) for logistic regression (LR) and kernel logistic regres-

sion (KLR) both augmented with pairwise (PW) and expectation (EP) penal-

ties. All results are averages over all splits with the model parameters selected

via cross validation as discussed above. The first four lines correspond to the

supervised methods, namely 1-nearest neighborhood (1-NN), Support Vector Ma-

chine (SVM), LR and KLR, where the algorithms are trained only on the labeled

samples. At the bottom of the table, the performances of the most competitive

semi-supervised algorithms reported in (Chapelle et al., 2006), namely Transduc-

tive SVM (TSVM) (Vapnik, 1998), Cluster Kernel (Chapelle et al., 2003), Discrete

Regularization (Chapelle et al., 2006), Data Dependent Regularization (Chapelle

et al., 2006) and Low Density Separation (LDS) (Chapelle & Zien, 2005). The

reader may refer to (Chapelle et al., 2006) for a comparison with a wider selection

of algorithms.

A comparison of the results of our framework to supervised learning methods

indicates a consistent improvement for all data sets. This is not the case for many

semi-supervised learning methods. Regarding the relative performance with re-

spect to other SSL methods, we observe that our approach is very competitive.

In particular, it yields the best performance in Digit1 data set with 20% error

reduction. For the other data sets, the method achieves the second and third

best results. Interestingly the linear logistic regression algorithm is as good as the
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kernel logistic regression algorithm in most cases, indicating that using similarity

features captures the non-linearities sufficiently. Investigating the differences be-

tween pairwise and expectation penalties, we observe that except for the Digit1

data set, pairwise constraints are almost always more informative.

Table 4.2 reports the 10 class USPS data set and the text data. Performances

of ∇TSVM, a variant of TSVM (Chapelle & Zien, 2005), Laplacian SVM (Sind-

hwani et al., 2005), LDS (Chapelle & Zien, 2005), Label Propagation (Zhu &

Ghahramani, 2002), Transductive Neural Network (TNN) (Karlen et al., 2008)

and Manifold Transductive Neural Network (Karlen et al., 2008) (ManTNN) al-

gorithms are provided for comparison. The comparative analysis yields a similar

pattern to Table 4.1. On text data, the performance of our approach is not as

good as the most competitive methods reported for this data set.

Finally Tables 4.3, 4.4, 4.5 and 4.6 report the transduction performance of

our algorithm on a randomly chosen subset of the MNIST data set with up to

70, 000 samples. The classification error for logistic regression (LR) with pairwise

(PW) and expectation (EP) penalties for increasing number of unlabeled samples

is shown. The supervised test error is given for comparison. Pairwise constrained

LR performs better however, as the number of unlabeled data exceeds 25, 000,

it requires a number of optimization parameters on the scale of millions. The

performance on USPS10, COIL, MNIST data sets indicates that our algorithm can

successfully handle multi-class problems.
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Digit1 USPS2 COIL
1-NN 3.89 5.81 17.35
SVM 5.53 9.75 22.93

LR 7.31 12.83 35.17
KLR 6.02 9.20 24.63

LR+EP 2.35 5.69 15.33
LR+PW 2.27 5.18 12.37

KLR+EP 1.94 6.44 15.22
KLR+PW 2.26 5.54 11.34

TSVM 6.15 9.77 25.80
MVU + 1-NN 3.99 6.09 32.27
LEM + 1-NN 2.52 6.09 36.49

QC + CMN 3.15 6.36 10.03
Discrete Reg. 2.77 4.68 9.61

SGT 2.61 6.80 -
Cluster-Kernel 3.79 9.68 21.99

Data-Dep. Reg. 2.44 5.10 11.46
LDS 3.46 4.96 13.72

Laplacian RLS 2.92 4.68 11.92
CHM (normed) 3.79 7.65 -

Table 4.1: Transduction error on benchmark data sets averaged over all splits.
Here we report only the most competitive results from previous work, for the full
comparison table see the analysis of benchmarks chapter in (Chapelle et al., 2006).
1-NN: 1-nearest neighborhood.
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USPS10 text
SVM 23.18 18.86

NN 24.57 15.87
LR 26.07 15.64

KLR 28.81 15.70
LR+EP 20.02 13.03

LR+PW 14.96 12.87
KLR+EP 19.76 13.20

KLR+PW 16.15 12.06
SVMLight-TSVM 26.46 7.44

CCCP-TSVM 16.57 7.97
∇TSVM 17.61 5.71
LapSVM 12.70 10.40

LDS 15.80 5.10
Label Propagation 21.30 11.71

Graph 16.92 10.48
TNN 16.06 6.11

ManTNN 11.90 5.34

Table 4.2: Transduction error averaged over all splits of USPS10 and text data
sets. Supervised training error for single layer neural network and SVM and other
semi-supervised methods have been provided for comparison. NN stands for neural
network. Results of previous work obtained from (Karlen et al., 2008).
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|U | SUP. 5000 10000 15000 20000 25000

LREP 27.84 19.53 19.74 19.98 20.47 21.08
LRPW 27.84 16.42 14.05 12.98 12.17 11.61

Table 4.3: Transduction error on MNIST data set with |L| = 100 averaged over 10
partitions for logistic regression with pairwise (PW) and expectation constraints
(EP). The neighborhood size, κ is taken as 20 for EP and 10 for PW. SUP. indicates
supervised LR results on all unlabeled data used as test samples.

|U | SUP. 5000 10000 15000 20000 25000

LREP 19.93 13.92 12.84 12.28 12.44 12.28
LRPW 19.93 11.63 9.88 8.98 8.41 8.01

Table 4.4: Transduction error on MNIST data set with |L| = 250.

|U | SUP. 5000 10000 15000 20000 25000

LREP 14.41 8.08 7.01 6.33 5.96 5.70
LRPW 14.41 7.45 6.71 6.13 5.79 5.50

Table 4.5: Transduction error on MNIST data set with |L| = 1000.

L=100 L=1000
SVM 23.44 7.77

NN 25.81 10.70
CNN 22.98 6.45

LR 26.99 14.36
KLR 26.65 9.60

LR+EP70K 20.21 4.87
LR+EP25K 21.08 5.70

LR+PW25K 11.61 5.50
TNN 18.02 6.66

ManTNN 7.30 2.88
TCNN 13.01 3.50

ManTCNN 6.65 2.15
CCCP-TSVM 16.81 5.38

Table 4.6: A comparison of our methods on MNIST with 100 and 1000 labeled
samples to the results reported in the literature. Results obtained from (Karlen
et al., 2008) use an unlabeled sample set of size 70,000.
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4.3.2 Remote Sensing Image Classification Experiments

Joint work with Dr. Gustavo Camps-Valls. 2

In this section, we present the experimental results for the semi-supervised logistic

regression algorithm (with expectation constraints) in several remote sensing im-

age classification problems. Remote sensing is a discipline that studies and models

the processes occurring on the Earth’s surface and their interaction with the at-

mosphere (Lillesand et al., 2004). Images acquired by airborne or satellite optical

sensors measure the emergent radiation at different wavelengths, while active sen-

sors measure the back-scattered energy emitted by the on-board antenna. In both

cases, a pixel in the image can be defined as a potentially very high-dimensional

vector characterizing the observed material. This information allows the charac-

terization, identification, and classification of the land-cover classes. While image

segmentation is the main product in remote sensing data analysis, its success is

limited by the scarcity (and also the quality) of the labeled pixels. Collecting a

sufficient amount of reliable labels requires a very costly terrestrial campaign, both

in terms of time and human resources. As in other application domains, unlabeled

remote sensing data are relatively easier to obtain as it does not require human or

time resources: one can simply select a set of the unlabeled pixels in an image.

The remote sensing images used in the experiments are selected from the fol-

lowing categories: hyperspectral (Salinas, KSC) and multispectral (Naples). The

RGB compositions for the considered scenes are given in Figure 4.1.

2Image Processing Laboratory, Universitat de València, València, Spain, email:

gustavo.camps@uv.es, www: http://www.uv.es/gcamps.
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Salinas Naples Naples KSC
(optical) (SAR intensity)

Figure 4.1: RGB composition of the considered data sets, ranging from multispec-
tral to hyperspectral, radar and very high spatial resolution imagery.

Experimental setup

In our experiments, we have worked with 3 data sets (See Figure 4.1). The prop-

erties of the data sets and the data generation process details are provided in

Appendix B.3. For all considered classification problems, we generated three sets,

training, validation, and unlabeled sets. Training and validation sets contain the

same number of labeled samples (variable in the [100, 500] range) whereas the unla-

beled data set contained a total of 2000 samples (500 for the KSC data). The data

is partitioned into 10 different splits and we report the overall accuracy, OA[%] av-

eraged over these splits. Inductive error is computed on the validation set whereas

the transductive error is computed over the unlabeled sets. Data was scaled in the

[0, 1] range before training.

For the model selection for SLR, we follow Section 4.3.1. We compare SLR

with standard methods in the literature: classical SVM, regularized least squares

SVM (RLSC), Laplacian SVM (LapSVM), and the Laplacian RLSC.

For all the methods mentioned above, we used the RBF kernel. The graph

Laplacian consists of labeled and unlabeled nodes connected using κ nearest neigh-
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bors, and the edge weights are computed using the Euclidean distance among

samples. Two more free parameters are tuned in Laplacian methods: γL is the

standard regularization parameter for the decision function and γM controls the

complexity of the intrinsic data geometry. Both parameters were tuned in the range

[10−4, 104], the number of neighbors κ used to compute the graph Laplacian varies

from 3 to 9, and the kernel width was tuned in the range σ = {10−2, . . . , 10}. The

selection of the best subset of free parameters was carried out by cross-validation

on the training set.

Results

Figures 4.2, 4.3 and 4.4 illustrate the results for the inductive (prediction on the

validation set) and transductive (prediction on the unlabeled set) settings for Sali-

nas, KSC and Naples data sets respectively. For the Salinas data set, we observe

that a clear gain is obtained with respect to all other semi-supervised methods in

the inductive setting, and SLR outperforms the rest with an average gain of +2%

(Salinas). The gain over supervised approaches is more significant with smaller

numbers of labeled training samples. In the transductive setting, a significant

improvement is observed with smaller labeled data sets (n < 300), however perfor-

mance saturates for n > 300. With a sufficient amount of labeled training samples,

the output distribution is modeled fairly well and the introduction of unlabeled

samples may harm rather than help.

In the case of Naples, the SLR transduction error is lower than 1% and largely

outperforms the rest of the methods while the induction accuracy is low. Both

results match with the data characteristics: we are merging features of different

nature (optical and radar) so we observe that, first, the data set is very sensitive
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Figure 4.2: Salinas dataset. Overall accuracy, [%]OA, both inductive (left) and
transductive (right) settings.

to the non-linear similarity features, and second, that a linear logistic regression

may not be sufficient to solve the problem.

Finally, in the case of the hyper-spectral KSC image, we observe poor perfor-

mance in the inductive setting (using unlabeled samples here may even harm the

solution) but significant improvement is reported in transduction, with an average

gain over the (nonlinear) Laplacian methods of around +1.5%.
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Figure 4.3: KSC data set. Overall accuracy, [%]OA, for the considered images in
both inductive (left) and transductive (right) settings.
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Figure 4.4: Naples data set. Overall accuracy, [%]OA, for the considered images
in both inductive (left) and transductive (right) settings.
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Chapter 5

Semi-supervised Structured

Output Prediction

5.1 Introduction

In structured output (SO) learning the goal is to learn a mapping from arbitrary

input spaces to output spaces whose elements are structured objects such as se-

quences, trees, strings and graphs. In other words, SO prediction is the task of

predicting a vector of inter-dependent output variables y = (y1, . . . , yr) given a

vector of observations x = (x1, . . . , xt).

Prior to SO learning, traditional discriminative machine learning algorithms

used to decompose complex outputs into isolated entities and train independent

classifiers on them, losing the knowledge inherent in the output inter-dependencies

(Abney et al., 1999). However, these inter-dependencies or interactions between

different components of complex data might be in fact very rich and informative.

Taking these interactions into account contradicts the assumption of the indepen-
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dent and identically distributed data instances of the majority of classical learning

algorithms. Simply put, a structured model implies restrictions on the possible

outputs reducing the search space. This can improve performance in comparison

to classifiers that are agnostic to the dependency of structures.

The alternative to discriminative sequence learning methods is generative mod-

els such Hidden Markov Models (HMMs) and its variations. However, HMMs are

known to have to major shortcomings, first they attempt to model the joint distri-

bution of the observations and the labels due to their generative nature. Secondly,

they impose independence assumptions on past and future observations which is

often violated in real-life applications. See (Altun, 2005) for a thorough discussion

on discriminative versus generative SO prediction. Recently SO learning has at-

tracted increasing interest with many potential applications particularly in natural

language processing, bio-informatics and computer vision.

5.2 Background

5.2.1 Conditional Random Fields

A canonical example of SO learning is sequence labeling where the dependency

structure is a simple chain. SO prediction problem can be represented by a Markov

network G = (V,E) where V denotes the variables of x and y, and E represents

the dependencies of the variables. Let C be the set of cliques of G and yc denote the

output variables restricted to the clique c ∈ C (xc defined similarly). We define P

be the set of conditional probability distributions p(y|x) of structured input-output

objects, x ∈ X , y ∈ Y . Then, finding the p ∈ P that has the maximum conditional

entropy while respecting the moment matching constraints for features defined over
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the cliques yields Conditional Random Fields (CRFs) (Lafferty et al., 2001) as we

will show in Section 5.3. Therefore, Conditional Random Fields (CRF) are a

discriminative probabilistic model for structured data. For simplicity, we focus

on linear chain CRFs for the purposes of this thesis. CRFs model the conditional

probability of sequences of feature vectors (observations) and their associated label

sequences (output or target values we predict).

As CRFs directly model p(y|x), they do not have to model the marginal distri-

bution p(x) which is often a much harder task due to higher dimensionality of the

data and the complex inter-dependencies between the features. In addition, CRFs

do not have to make any unrealistic independence assumptions among the data

since they are indifferent to p(x). In contrast, Hidden Markov Models (HMMs)

which can be thought of as a generative counterpart for CRFs, enforce indepen-

dency assumptions on the data as they model p(x, y). HMM graphs are illustrated

with directed edges connecting nodes such as in Figure 5.1(a), indicating that the

outputs generate the inputs. In contrast, a CRF model is depicted using undirected

edges as in Figure 5.1(b).

In a Markov random field, i.e., an undirected graphical model, the Markov

blanket, MB(v) of a graph node v consists of v’s neighbors. All other nodes

in the network are conditionally independent of v when conditioned on MB(v).

Therefore, for nodes vi and vj,

p(vi|MB(vi), vj) = p(vi|MB(vj)), if i 6= j and vj /∈MB(vi).

In other words, apart from the set of nodes in v’s Markov blanket, one’s knowledge

on the rest of the network becomes irrelevant in terms of predicting v’s behavior.
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Accordingly, in CRFs, when conditioned on the observations, X, the random vari-

ables Y obey the Markov property.

With the graphical model formalism, the probability of a label sequence can

be approximated as the normalized product of potential functions of the cliques in

the graph

p(x,y) =
∏
c∈C(x)

Ψ(x,y)c. (5.1)

For instance, for the linear chain CRF model in Figure 5.1(b),

∏
c∈C(x)

Ψ(x,y)c =
∏
t

exp

(∑
j

γjΛj(yt, yt−1) +
∑
k

µkψk(yt, xt)

)
(5.2)

=
∏
t

exp (〈γ,Λ(yt, yt−1)〉+ 〈µ, ψ(yt, xt)〉) , (5.3)

where Λ are transitional features, ψ are state feature functions, and γ and µ are

the model parameters. Then,

p(y|x) =
1

Z(x)
exp

(
T∑
t=1

(〈γ,Λ(yt, yt−1)〉+ 〈µ, ψ(yt, xt)〉)

)
, and

Z(x) =
∑

y∈Y(x)

exp

(
T∑
t=1

(〈γ,Λ(yt, yt−1)〉+ 〈µ, ψ(yt, xt)〉)

)
.

Z(x) is the normalization function (also known as log-partition function) that is

computed per instance x over all possible y values for each state.
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(a) HMM (b) CRF

Figure 5.1: Linear-Chain Conditional Random Fields and Hidden Markov Mod-
els illustrated as graphical models. CRFs are discriminative whereas HMMs are
generative.

5.2.2 Parameter Estimation and Inference for Linear Chain

CRFs

In this section, we will provide the details of parameter estimation and inference

for the specific form of linear chain CRFs. In order to train a CRF, the conditional

log-likelihood of the data

L(γ, µ) =
n∑
i=1

log p(y(i)|x(i))

=
n∑
i=1

[
T∑
t=1

(〈
γ,Λ(yt

(i), yt−1
(i))
〉

+
〈
µ, ψ(yt

(i), xt
(i))
〉)]
−

n∑
i=1

logZ(x(i)),

(5.4)

is maximized.

The gradients of the log-likelihood with respect to the optimization parameters
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are given by

∂L
∂γj

=
n∑
i=1

T∑
t=1

Λj(y
(i)
t−1, y

(i)
t )−

n∑
i=1

∑
y∈Y(x)

T∑
t=1

∑
σ1,σ2∈O

Λj(yt−1 = σ1, yt = σ2)p(y|x(i))

=

n∑
i=1

T∑
t=1

Λj(y
(i)
t−1, y

(i)
t )−

n∑
i=1

T∑
t=1

∑
σ1,σ2∈O

Λj(yt−1 = σ1, yt= σ2)p(yt−1 = σ1, yt= σ2|x(i)),

(5.5)

and

∂L
∂µk

=

n∑
i=1

T∑
t=1

ψk(y
(i)
t , x

(i)
t )−

n∑
i=1

∑
y∈Y(x)

T∑
t=1

∑
σ∈O

ψk(yt = σ, xt)p(y|x(i))

=

n∑
i=1

T∑
t=1

ψk(y
(i)
t , x

(i)
t )−

n∑
i=1

T∑
t=1

∑
σ∈O

ψk(yt = σ, xt)p(yt = σ|x(i)), (5.6)

where O is the output alphabet, d is the number of model features, i ∈ {1, 2 . . . n},

j ∈ {1, 2 . . . |O| × |O|}, k ∈ {1, 2 . . . d × |O|} and t are the indices over the data

samples, transition features, state features and different states respectively. The

first term of the gradient is the empirical expectation of the corresponding feature.

The second term is the expectation of the feature under the model distribution

p(y|x).

The log partition function and the expected values of the features under the

model distribution can be efficiently calculated using a dynamic programming

method, namely the forward-backward algorithm (Rabiner, 1989). Further

details on inference in CRFs can be found in (Sutton & McCallum, 2007).
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5.3 Duality of Chain CRFs

Theorem 4 (Duality of Chain CRFs) Using U1 = U2 = h2 from Table 2.1,

the minimization problem of min
p∈P

KL(p||q0) + U1 + U2 such that

U1 =
1

ε
‖Ex∼p(x)Ey∼p(y|x) [Λ(x,y)]− Ex,y∼p̃(x,y) [Λ(x,y)] ‖2

B

U2 =
1

ε
‖Ex∼p(x)Ey∼p(y|x) [ψ(x,y)]− Ex,y∼p̃(x,y) [ψ(x,y)] ‖2

B,

for Banach Space B has the dual given by,

max
γ,µ

(〈Λ(x,y), γ〉+ 〈ψ(x,y), µ〉)− logZ(x|γ, µ)− ε‖γ‖2
B∗ − ε‖µ‖2

B∗ where,

Z(x|γ, µ) =
∑

y∈Y(x)

q0(y|x) exp (〈Λ(x,y), γ〉+ 〈ψ(x,y), µ〉) .

Proof Sketch The convex conjugate of KL(p‖q0) =
∑
Z q(z) = log( p(z)

q0(z)
)dz where

p is a probability distribution, is given by KL∗(p∗x) = log(
∑
Z q0(y|x) exp(p∗x)) +

e−1, (Rockafellar, 1996). The convex dual of the the potential functions U∗ =

(U1 + U2)∗ is

U∗ =
〈

Λ̃, γ
〉

+
〈
ψ̃, µ

〉
− ε‖γ‖2

B∗ − ε‖µ‖2
B∗ (5.7)

Substituting these relations into Fenchel’s duality yields the claim.
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Figure 5.2: We define similarity constraints over pairs of cliques, i.e., we impose
the semi-supervised smoothness assumption such that the marginalized conditional
probabilities of cliques with similar features are likely to be the same. This can be
achieved via additional constraints in the form given in Equation (5.9) or penalties
as in Equation (5.10) which lead to different regularization schemes in the dual.
In this example, two similar cliques from different sequences are indicated with
yellow shading.

5.4 Semi-supervised CRFs via MaxEnt

5.4.1 Pairwise Similarity Constrained Semi-supervised CRFs

In Section 5.3 we have demonstrated that CRFs are a specific instance of the

generalized MaxEnt framework via Theorem (4). In Chapter 4, we have proposed

an approach to extend the MaxEnt framework to the semi-supervised setting using

additional penalty functions on the objective. Therefore, we can combine these

ideas to derive semi-supervised CRFs. However, at this point the critical issue

becomes the definitions of similarities on structured objects. Defining similarity

relations on the entire sequences corresponds to restricting the conditional output

probabilities on the entire sequence p(y|x). However, this would require a very big

set of samples as the cardinality of output space Y is the exponential in terms of

the cardinality of the output alphabet and the length of the sequences. On the
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other hand, restricting probabilities only on individual nodes, p(yt|xt), would not

be sufficiently informative, as this would ignore all sorts of dependencies between

observations in the sequence. Therefore, we are constraining the marginalized

conditional output probabilities

p(yc = σ|x) =
∑

y∈Y(x):yc=σ

p(y|x) =
∑

y∈Y(x)

p(y|x)δ(yc, σ), (5.8)

which is more informative yet computationally tractable. We are going to introduce

similarity constraints over pairs of cliques as illustrated in Figure 5.2. To be

specific, we would like to have smooth outputs, that is we want our model to favor

pairs of cliques with similar model features to have similar marginalized conditional

probabilities. One way to express this is as a constraint

∀x̂∈D∀ĉ∈C(x̂)∀x̄∈D∀c̄∈C(x̄)∀σ |
∑

y∈Y(x̂)

p(y|x̂)δ(yĉ, σ)−
∑

y∈Y(x̄)

p(y|x̄)δ(yc̄, σ)| < ε

s(x̂ĉ, x̄c̄)
,

(5.9)

such that the discrepancy between conditional marginal output probabilities be-

tween similar cliques are constrained more. Alternatively, we can express this

objective as a penalty function U as follows

U =
∑
x̂∈D

∑
ĉ∈C(x̂)

∑
x̄∈D

∑
c̄∈C(x̄)

∑
σ∈O

(s(x̂ĉ, x̄c̄)p(yĉ = σ|x̂)− s(x̂ĉ, x̄c̄)p(yc̄ = σ|x̄))2 ,

(5.10)

which enforces that the discrepancies between the model outputs for similar cliques

are smaller. The crucial point here is that, as in the case of model features, we

decompose the similarity features over cliques. The MaxEnt primal objective with
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U as an additional penalty including unlabeled samples, can be reformulated as

follows,

min
p∈P

KL(p||q) +
1

ε
‖ψ̃ − Ep[ψ]‖2

2 +
1

ε
‖Λ̃− Ep[Λ]‖2

2 +
1

ε
‖Φp‖2

2. (5.11)

where the similarity feature functions φ are given by

φx̂ĉ,x̄c̄,σ(xc,yc) =


s(xc, x̄c̄)δ(yc, σ) if xc = x̂ĉ,

−s(x̂ĉ,xc)δ(yc, σ) if xc = x̄c̄,

0 otherwise.

(5.12)

Notice the analogies between Equations (4.8) and (5.11) as well as the similarity

feature definitions, (4.3) and (5.19). Similarly, ‖Φp‖2, the norm-square of the

vector resulting from operator Φ acting on our primal variable p(y|x) gives the

penalty in Equation (5.10) since

(Φp)x̂ĉ,x̄c̄,σ = s(x̂ĉ, x̄c̄)

 ∑
ŷ∈Y(x̂)

p(ŷ|x̂)δ(ŷĉ, σ)−
∑

ȳ∈Y(x̄)

p(ȳ|x̄)δ(ȳc̄, σ)

 . (5.13)
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Φp =



φ1 (x1, y1(x1)) ... φ1 (x1, yK1(x1)) ... φ1 (xn, yKn(xn))

...
. . .

φi (x1, y1(x1)) ... φi (x1, yK1(x1)) ... φi (xn, yKn(xn))

...
. . .

φd (x1, y1(x1)) ... φd (x1, yK1(x1)) ... φd (xn, yKn(xn))





p(y1(x1)|x1)

...

p(yK1(x1)|x1)

...

p(y1(xn)|xn)

...

p(yKn(xn)|xn)



=



∑
xE∼p(y|x)φ1(x, y)

...∑
xE∼p(y|x)φi(x, y)

...∑
xE∼p(y|x)φd(x, y)



=


...

s(x̂ĉ, x̄c̄)
(∑

ŷ∈Y(x̂) p(ŷ|x̂)δ(ŷĉ, σ)−
∑

ȳ∈Y(x̄) p(ȳ|x̄)δ(ȳc̄, σ)
)

...

 , (5.14)

where the dimensionality of the feature space is given by

d =
∑
x

|C(x)| ×
∑
x

|C(x)| × |O|,

and the cardinality of the output space for each observation sequence x is Ki =

|Y(xi)|.
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Hence Equation (5.11) can be restated as,

min
p∈P

∑
x∈D

π̃(x)
∑
Y(x)

p(y|x) log p(y|x)+

1

ε
‖
∑
x∈L

p̃(x,y)ψi(x,y)−
∑
x∈D

π̃(x)
∑
Y(x)

p(y|x)ψi(x,y)‖2+

1

ε
‖
∑
x∈L

p̃(x,y)Λi(x,y)−
∑
x∈D

π̃(x)
∑
Y(x)

p(y|x)Λi(x,y)‖2+

1

ε

∑
x̂∈D

∑
ĉ∈C(x̂)

∑
x̄∈D

∑
c̄∈C(x̄)

∑
σ

(s(x̂ĉ, x̄c̄)p(yĉ = σ|x̂)− s(x̂ĉ, x̄c̄)p(yc̄ = σ|x̄))2.

Deriving the convex dual yields the following dual objective,

Q(α, β, γ;D) =−
∑
x∈D

π̃(x) logZx +
〈
α, ψ̃

〉
+
〈
β, Λ̃

〉
+ ε‖α‖2

2 + ε‖β‖2
2 + ε‖γ‖2

2

(5.15)

where

F (x,y;α, β, γ) =π̃(x) 〈α, ψ(x,y)〉+ π̃(x) 〈β,Λ(x,y)〉

−
∑
x̄∈D

∑
c,c̄,σ

s(xc, x̄c̄)γxĉx̄c̄σδ(yc, σ) +
∑
x̂∈D

∑
ĉ,c,σ

s(x̂ĉ,xc)γx̂ĉxcσδ(yc, σ),

and the log-partition function is given by

Zx =
∑

y∈Y(x)

exp(F (x,y;α, β, γ).

Using the Viterbi algorithm, we find y∗ that has the maximum model probability
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for inference,

y∗ = argmax
y∈Y(x)

p(y|x) = argmax
y∈Y(x)

F (x,y;α, β, γ).

Since the dual loss is convex, we can derive the gradients of the parameters and

solve the optimization problem with any gradient descent algorithm. The gradients

are as follows,

∂Q(α, β, γ;D)

∂α
= E[ψ(x,y)]− ψ̃(x,y) + εα, (5.16)

∂Q(α, β, γ;D)

∂β
= E[Λ(x,y)]− Λ̃(x,y) + εβ, (5.17)

∂Q(α, β, γ;D)

∂γxcx̄c̄σ

= s(xc, x̄c̄)p(yc̄ = σ|x̄)− s(xc, x̄c̄)p(yc = σ|x) + εγxcx̄c̄σ. (5.18)

5.4.2 Expectation Similarity Constrained Semi-supervised

CRFs

With the same motivation as in Section 4.2.2 we can define a penalty function U

that imposes smoothness functions over local regions as opposed to pairs of cliques.

We redefine the similarity features and the associated operator as follows,

φx̂ĉ,σ(xc,yc) =


s(xc, x̂ĉ)δ(yc, σ) if xc 6= x̂ĉ,

−
∑

x̄c̄
s(x̄c̄,xc)δ(yc, σ) if xc = x̂ĉ,

0 otherwise.

(5.19)
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Φp =



φ1 (x1, y1(x1)) ... φ1 (x1, yK1(x1)) ... φ1 (xn, yKn(xn))

...
. . .

φi (x1, y1(x1)) ... φi (x1, yK1(x1)) ... φi (xn, yKn(xn))

...
. . .

φd (x1, y1(x1)) ... φd (x1, yK1(x1)) ... φd (xn, yKn(xn))





p(y1(x1)|x1)

...

p(yK1(x1)|x1)

...

p(y1(xn)|xn)

...

p(yKn(xn)|xn)



=



∑
xE∼p(y|x)φ1(x, y)

...∑
xE∼p(y|x)φi(x, y)

...∑
xE∼p(y|x)φd(x, y)



=


...∑̂

xĉ

(
s(x̂ĉ, x̄c̄)

∑
ŷ∈Y(x̂)

p(ŷ|x̂)δ(ŷĉ, σ)

)
−
∑̂
xĉ

s(x̂ĉ, x̄c̄)

( ∑
ȳ∈Y(x̄)

p(ȳ|x̄)δ(ȳc̄, σ)

)
...

,

(5.20)

where the dimensionality of the feature space is given by d =
∑

x |C(x)|× |O|, and

the cardinality of the output space for each observation sequence x is Ki = |Y(xi)|.

Incorporating the associated penalty to the primal loss function given in Equa-

tion (5.11) yields the loss form in Equation (5.15) where the definition of F , p(y|x)
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and Z(x) are given by,

F (x, y;α, β, γ) =π̃(x) 〈α, ψ(x, y)〉+ π̃(x) 〈β,Λ(x, y)〉

−
∑
x̄∈D

∑
c,c̄,σ

s(xc, x̄c̄)γx̄c̄δ(yc, σ) +
∑
x̂∈D

∑
ĉ,c,σ

s(x̂ĉ, xc)γxcδ(yc, σ),

p∗(y|x) = exp (F (x,y;α, β, γ)) /Zx,

Zx =
∑
Y(x)

exp (F (x,y;α, β, γ)) .

The gradients for ∂Q/∂α and ∂Q/∂β are the same as in Equation 5.16 and 5.17.

The gradients of parameters for the similarity features become

∂Q(α, β, γ;D)

∂γxc

=
∑
x̂

s(xc, x̂ĉ)p(yĉ = σ|x̂)−
∑
x̄

s(xc, x̄c̄)p(yc = σ|x). (5.21)

5.5 Experiments

5.5.1 Parts of Speech Tagging

We evaluate our semi-supervised conditional random fields algorithm with the

parts-of-speech (POS) tagging problem. POS tagging is the task of marking up the

words in a text with particular parts of speech such as noun, verb, article, adjective,

preposition, pronoun, adverb, conjunction, and interjection, using features of the

word and its context, i.e., adjacent and related words in a phrase, sentence, or

paragraph. In the supervised context, CRFs have been successfully used for this

well-known structured output prediction problem (Altun, 2005).

For our experiments, we have used a subset of the Penn TreeBank corpus which

originally consists of approximately 7 million words of Part-of-Speech tagged Wall
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Street Journal articles. We used Sections 24 for labeled and unlabeled data, Section

23 for the test data in particular. A list of observation attributes are provided in

Table 5.1. There are 45 different categories of speech tags. Table 5.2 shows a

subset of these word level POS tags. The average number of words in a sentence

is around 22.

5.5.2 Similarity Metric

Our data features are represented as sparse binary vectors. In order to reflect the

word based similarities, we experiment with the RBF kernel as in our multi-class

experiments in Chapters 4 and 6, and the Tanimoto coefficient, which is also known

as the extended Jaccard coefficient as our distance metric. The Jaccard coefficient

J(A,B) =
A ∩B
A ∪B

, (5.22)

is a statistic that indicates the similarity between two sets as the ratio of the

common attributes and the union of the two sets. The Tanimoto coefficient extends

this metric to binary vectors as below

T (A,B) =
〈A,B〉

‖A‖2 + ‖B‖2 − 〈A,B〉
, (5.23)

which is reminiscent of the cosine similarity

cos(θAB) =
〈A,B〉
‖A‖‖B‖

. (5.24)

However, in our experiments we have observed that Tanimoto coefficient works

better than cosine similarity in practice.
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CAP INI SENT INI ENDS WITH ING
CAP INI DOT END ENDS WITH ED
CAP INI CONTAINS DOT ENDS WITH EN
CAP INI CONTAINS HYPEN ENDS WITH LY
CAP INI CONTAINS DIGIT ENDS WITH ER
CONTAINS DOT CONTAINS DIGIT ENDS WITH EST
CONTAINS DOT CONTAINS HYPEN ENDS WITH TH
CONTAINS DIGIT CONTAINS HYPEN BEGINS WITH WH
CONTAINS DIGIT DOT END
CUR WORD SENT INI
TYPE FIRST LETTER ENDINGS ONE
ALL CAPS CAP INI

Table 5.1: Attributes used in the parts-of-speech tagging experiments.

CC Coordinating conjunction CD Cardinal number
DT Determiner EX Existential there
FW Foreign word IN Preposition
JJ Adjective JJR Adjective, comparative
JJS Adjective, superlative LS List item marker
MD Modal NN Noun, singular or mass
NNS Noun, plural NNP Proper noun, singular
NNPS Proper noun, plural PDT Predeterminer
POS Possessive ending PRP Personal pronoun
PRP Possessive pronoun RB Adverb
RBR Adverb, comparative RBS Adverb, superlative
RP Particle SYM Symbol
TO to UH Interjection
VB Verb, base form VBD Verb, past tense
VBG Verb, gerund VBN Verb, past participle
VBP Verb, non-3rd person present VBZ Verb, 3rd person present

Table 5.2: A subset of the word level Penn Treebank POS labels.
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Sup. CRF PW-SSCRF EP-SSCRF
L tst σtst td σtd tst σtst td σtd tst σtst td σtd

10 51.8 5.54 51.4 5.77 45.8 3.11 45.6 3.29 46.4 3.44 46.6 3.29
20 42.0 4.00 41.8 3.56 37.2 0.84 37.4 1.14 37.8 0.84 38.2 0.84
30 35.4 1.67 35.2 1.30 32.2 0.84 33.0 0.71 32.8 0.84 33.6 0.55
40 31.4 1.82 31.2 1.10 29.2 1.48 30.6 1.14 29.4 1.14 31.0 1.22
50 28.6 1.95 28.4 1.82 26.8 0.84 28.6 0.55 26.8 0.84 29.2 0.45
100 21.0 1.00 21.2 0.84 21.0 0.00 24.6 0.55 21.4 0.55 24.8 0.84

Table 5.3: Token error % for supervised, pairwise constrained (PW-SSL) and ex-
pectation constrained (EP-SSL) CRFs in parts of speech tagging experiments av-
eraged over 5 realizations with RBF similarity. The neighborhood size is taken
as κ = 5 and the number of unlabeled sentences are 1000. tst indicates error on
the test set with 4293 sentences. td indicates the error on unlabeled sentences, i.e.,
transductive error for PW and EP.

Sup. CRF PW-SSCRF EP-SSCRF
L tst σtst td σtd tst σtst td σtd tst σtst td σtd

10 26.2 3.63 26.6 3.78 33.6 3.91 33.6 3.58 32.6 4.28 32.8 3.70
20 35.2 3.49 35.4 3.58 41.8 1.92 42.4 2.51 41.4 2.19 41.8 2.28
30 41.6 2.07 42.2 2.39 47.6 1.82 47.8 1.79 47.0 1.41 47.2 1.79
40 47.0 2.35 47.2 3.11 53.0 1.58 52.8 1.10 52.4 1.67 52.4 1.14
50 50.2 2.68 50.0 3.16 55.8 2.59 55.6 1.67 55.2 2.17 55.2 1.64
100 61.2 1.30 60.8 1.10 63.8 2.39 62.0 1.00 63.6 2.70 62.0 1.00

Table 5.4: Macro-averaged F1 score for RBF similarity
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Sup. CRF PW-SSCRF EP-SSCRF
L tst σtst td σtd tst σtst td σtd tst σtst td σtd

10 51.8 5.54 51.4 5.77 46.0 3.24 46.0 3.32 45.6 3.36 45.8 3.03
20 42.0 4.00 41.8 3.56 37.0 0.71 37.8 0.84 37.0 0.71 37.8 0.84
30 35.4 1.67 35.2 1.30 32.0 0.71 33.2 0.84 31.8 0.84 33.4 0.55
40 31.4 1.82 31.2 1.10 28.6 1.14 30.4 0.89 28.6 1.14 30.6 0.89
50 28.6 1.95 28.4 1.82 25.8 1.10 28.4 0.55 26.4 1.14 28.6 0.55
100 21.0 1.00 21.2 0.84 20.2 0.45 24.2 0.84 20.2 0.45 24.2 0.84

Table 5.5: Token error % for supervised, pairwise constrained (PW-SSL) and ex-
pectation constrained (EP-SSL) CRFs in parts of speech tagging experiments av-
eraged over 5 realizations with Tanimoto Coefficient similarity. The neigh-
borhood size is taken as κ = 5 and the number of unlabeled sentences are 1000.
tst indicates error on the test set with 4293 sentences. td indicates the error on
unlabeled sentences, i.e., transductive error for PW and EP.

Sup. CRF PW-SSCRF EP-SSCRF
L tst σtst td σtd tst σtst td σtd tst σtst td σtd

10 26.2 3.63 26.6 3.78 32.0 3.81 32.6 3.91 33.0 3.81 33.2 3.70
20 35.2 3.49 35.4 3.58 40.8 1.92 40.8 2.28 41.4 2.30 41.8 2.59
30 41.6 2.07 42.2 2.39 46.6 1.95 47.0 1.58 47.2 1.79 47.0 1.58
40 47.0 2.35 47.2 3.11 52.4 2.07 52.4 1.95 53.0 2.00 52.6 1.14
50 50.2 2.68 50.0 3.16 55.6 2.61 54.8 2.17 55.8 2.39 55.0 1.58
100 61.2 1.30 60.8 1.10 63.8 2.17 62.0 1.22 64.0 2.55 62.2 1.30

Table 5.6: Macro-averaged F1 score for Tanimoto coefficient similarity
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5.5.3 Results

Tables 5.3, 5.5, 5.4 and 5.6 illustrate the experiment results for supervised con-

ditional random fields (CRF), pairwise constrained semi-supervised CRF (PW-

SSCRF) and expectation constrained semi-supervised CRF (EP-SSCRF) algo-

rithms. We demonstrate the improvement in terms of both token error and macro-

averaged F1 measure.

Macro-averaged F1 measure is an overall average of the local F-measures for

each class. Since it neglects the class frequencies, it gives equal importance to

the infrequent classes unlike the token error. In case the class distributions are

significantly unbalanced, e.g., majority of the true labels belong to a single or

default category such as unknown, macro-F1 gives a better insight. Therefore,

given

qi =
TPi

TPi + FPi

, ρi =
TPi

TPi + FNi

and Fi =
2qiρi
qi + ρi

, (5.25)

the macro-averaged F1 is computed as below

F (macro-averaged) =

∑C
i Fi
C

, (5.26)

where the acronyms TP, FP and FN stand for true positives, false positives and

false negatives respectively.

Tables 5.3 and 5.5 demonstrate the token error for the RBF kernel similarity,

s(xi, xj) = e−‖xi−xj‖
2

and Tanimoto Coefficient respectively s(xi, xj) = T (xi, xj).

The results of CRF, PW-SSCRF and EP-SSCRF algorithms with respect to in-

creasing numbers of labeled sentences over five random splits of training data are
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demonstrated for both unlabeled (indicated with td for transductive) samples and

an out-of-sample test (indicated with tst) set of size 4293. In all semi-supervised

experiments, five randomized sets of unlabeled sentence sets of size 1000 are used.

We have taken the neighborhood size as five throughout all our experiments. The

standard deviations, σ, over five splits are also provided.

Note that the number of labeled training instances is given in terms of sen-

tences. As each sentence contains an average of 22 words, the unlabeled data set

contains over 20, 000 unlabeled cliques. To reduce the computational burden, we

have introduced very sparse similarities; we generated symmetric links only be-

tween labeled cliques and their five nearest neighbors. Therefore, for the case of 10

labeled sentences, around 200 labeled cliques are associated with similarity features

with their neighboring five unlabeled cliques each. Accordingly, with the pairwise

constrained formulation, enforcing symmetricity yields a total ∼ 200× 5× 2 sim-

ilarity features. As the table indicates, the semi-supervised formulations achieve

better token error consistently. Note that there are 45 categories possible for each

token. Tables 5.4 and 5.6 show the corresponding macro-averaged F1 scores. The

improvement here is more significant as macro-averaged F1 score weighs rare cat-

egories equally. In other words, although the improvement in token error becomes

less obvious as the number of labeled samples get higher, the improvement in F1

score stays consistent for higher values of L.

Note that these experiments are mainly for the proof of concept as NLP re-

searchers can design more sophisticated feature representations and application

specific similarity metrics for this complex problem. Figure 5.3 illustrates the re-

sults for all four variations of the semi-supervised algorithm against the supervised

CRF.
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Figure 5.3: Token Error and Macro-averaged F1 score on test samples.
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Chapter 6

Semi-supervised Learning via

Constraint Augmentation

6.1 Introduction

In this chapter, we present an alternative approach to incorporate unlabeled data

to the MaxEnt framework. Here, the main motivation is to enhance the data

constraints of generalized MaxEnt directly in the primal rather than modifying

the dual objective in an ad-hoc manner. Therefore, we propose improving our

estimations on both the model and empirical expectations of the feature functions.

In particular, the feature expectations predicted by the model are computed over

both labeled and unlabeled data as these statistics do not require the labels. On the

other hand, in order to improve the accuracy of the empirical feature expectations,

we employ the smoothness assumption. We carry out this assumption by enhancing

the empirical feature expectations obtained from labeled samples using unlabeled

data that is in the vicinity of each labeled instance. Deriving the dual using these
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new estimates in the data constraints yields a convex optimization problem. Hence,

this framework provides a principled way of combining the ideas of information

theoretic SSL methods with ideas of geometry based SSL method.

6.2 Generalized MaxEnt with Augmented Data

Constraints

As stated in Chapter 2, the generalized MaxEnt objective is to minimize the di-

vergence of the target distribution p from a reference distribution while penalizing

the discrepancy between the empirical feature values ψ̃ of some pre-defined fea-

ture functions ψ : X × Y → B and their expected values with respect to the

target distribution. We assume that we are given a sample D that consists of

labeled data {(xi, yi)}li=1 and unlabeled data {xi}ni=l+1. In supervised learning,

both the empirical joint distribution π̃(x, y) and the marginal distribution π̃(x)

are derived from labeled data that is assumed to be sampled from a fixed but

unknown distribution π∗. Intuitively, generalized MaxEnt can yield more accurate

estimates of the target model distribution p, as empirical feature expectations given

by ψ̃ = E∼π̃(x,y)[ψ(x, y)], and model feature expectations, E∼π̃(x)Ey∼p(.|x)[ψ(x, y)]

approach their counterparts with respect to the true underlying distributions, or

equivalently as the empirical joint π̃(x, y) and empirical marginal distributions π̃(x)

approach their true values. This can be seen by the risk bounds of the negative

dual problem given by

R(λ;D) := min
λ

Ex∼π̃(x) [b(x;λ)]−
〈
λ, ψ̃

〉
+ ε‖λ‖B∗ . (6.1)
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where b(x;λ) is the convex conjugate of Dx and g = h2 (see Table 2.1) and

Lemma (2).

Lemma 5 Let ψ∗ = E(x,y)∼π∗ [ψ(x, y)] denote the true statistics of the features, λ∗

and λ̃ denote the minimizers of R(.; π∗)1 and R(.;D). The difference between the

optimal and the empirical risk is given by

R(λ̃;D)− R(λ∗; π∗) ≤ ‖λ∗‖B∗
∥∥∥ψ∗− ψ̃∥∥∥

B
+
∑
x

|π∗(x)− π̃(x)|b(x;λ∗) (6.2)

Proof

R(λ̃;D)− R(λ∗; π∗)

= R(λ̃;D)− R(λ∗; π∗) + R(λ∗;D)− R(λ∗;D)

≤R(λ∗;D)− R(λ∗; π∗)

=
〈
λ∗, ψ∗ − ψ̃

〉
+ Ex∼π̃(x) [b(x;λ∗)]− Ex∼π∗(x) [b(x;λ∗)]

The equalities hold by basic algebra. The inequality holds by construction R(λ̃;D) ≤

R(λ∗;D). We get the claim using Hölder’s Inequality and a ≤ |a| for any a.

The risk bound can be further analyzed in terms of complexity measures such as

Rademacher averages (Bartlett et al., 2003). However, Lemma 5 is sufficient to

show that the empirical risk approaches to the optimal risk as empirical means ψ̃

and marginal distribution π̃ approach their true values. In the following sections,

we propose improving these estimates by with the help of unlabeled data.

1with slight abuse of the notation for simplicity
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6.2.1 Improving Expected Feature Values

In order to achieve better expected feature values E∼π̃(x)Ey∼p(.|x)[ψ(x, y)], we make

the simple observation that these estimators do not require labeled data. Thus,

one can simply use the marginal distribution obtained from both labeled, L and

unlabeled U data {xi}ni=1, denoted by q̃m. Then, the empirical means of features

on labeled data are forced to approximately match their expected values on the

whole data set, both labeled and unlabeled. If L and U are coming from the same

distribution, which is a basic yet commonly used assumption in inference problems,

q̃m is closer to the true marginal than the empirical marginal distribution estimated

using labeled data only. This yields more accurate expected feature values.

Studying the convex dual problem, we see that only the first term of (6.1)

changes to Ex∼q̃m [b(x;w)] and the risk bound of Lemma 5 holds with respect to

q̃m and can render empirical risk closer to the optimal risk.

In practice, instead of a uniform distribution over labeled and unlabeled data,

we define q̃m by splitting the probability mass into two parts and assign uniform

distribution over the labeled and unlabeled splits individually,

q̃m(xi) =


1/2l 1 ≤ i ≤ l

1/2(n− l) l < i ≤ n

.

Since number of labeled data is smaller than unlabeled data, this definition places

higher importance to labeled data and the resulting optimization problem is not

heavily driven by unlabeled data.

85



6.2.2 Improving Empirical Feature Values

In Section 6.2.1, we used unlabeled data in order to improve the expected values

of the features. We now investigate employing unlabeled data to augment their

empirical counterparts.

In semi-supervised learning, the size of the labeled data is typically quite small.

If the empirical feature means ψ̃ is derived from only labeled data, the estimation

error ‖ψ∗− ψ̃‖ can be very large leading to a large difference between the empirical

and optimal risk (6.2).

The estimation error of ψ̃ is especially problematic for semi-supervised learning

methods that enforce empirical feature values to match their expected counterparts

over unlabeled data either by imposing minimal divergence in the primal as out-

lined in Section 6.2.1 or by adding a regularization term in the dual problem as in

(Mann & McCallum, 2007). In particular, if the features are binary and sparse,

which is commonly observed in natural language processing and information re-

trieval, many features may never be observed in a small labeled sample. If the

divergence is imposed via constraints, i.e., g = h2 (see Table 2.1), then the ap-

proximate moment matching constraints of Section 6.2.1 can become infeasible.

This in turn can lead to over-fitting in the dual problem. One possible solution

is to relax these constraints by making ε larger. However, this may render the

unlabeled data ineffective. Alternatively, one can augment the empirical values

of the features using unlabeled data. To this extent, we propose employing the

smoothness assumption which enforces observations that are close to each other

with respect to the intrinsic geometry of the data to have the same label.

There are various ways to improve the empirical means. We employ the sim-

plest option and aggregate a weighted average of the unlabeled instances that are
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adjacent to each labeled instance and the labeled instance itself

x̂(xi) =
ni
∑n

j=l+1 s(xi, xj)xj + xi

ni
∑n

j=l+1 s(xi, xj) + 1
, (6.3)

where ni is the number of neighbors of xi and s(xi, xj) denotes the similarity of xi

and xj.
2 Here the denominator enforces proper normalization and ni guarantees

that the unlabeled data is emphasized proportionally with the density of the neigh-

borhood region. This corresponds to placing a distribution around each labeled

instance with respect to the intrinsic geometry of the data and computing the em-

pirical means from this new distribution. We call these new statistics augmented

means.

We use the augmented means along with the new marginal distribution q̃m in

the generalized MaxEnt framework as

tu := min
p∈P
{Ex∼q̃m [Dx(px|qx)] + g

(
Ep[ψ];Ex,y∼π̃(x,y)

[
ψ(x̂(x)), y)

]
, ε
)
}.

If the smoothness assumption holds with respect to the employed similarity met-

ric, it can be argued that augmented means are better estimates of ψ∗ than the

standard empirical means and this can lead to better generalization properties.

2Refer to Chapter 3 for a discussion on similarity functions.
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6.2.3 Special Cases

Semi-supervised Logistic Regression

Using standard convex duality techniques yields the following optimization prob-

lem for logistics regression

R(λ;D) =
n∑
j=1

q̃m(xj) log
∑
y

(exp 〈λ, ψ(xj, y)〉)− 1

l

l∑
j=1

〈λ, ψ(x̂(xj), yj)〉+ Ω(λ),

(6.4)

as a special case of our semi-supervised learning framework. Equation (6.4) gives a

convex optimization problem which can be solved using standard gradient methods.

The relation between the primal p and dual λ variables is given by

p(y|x;λ) ∝ exp(〈λ, ψ(x, y)〉). (6.5)

It is worthwhile to point out that Equation (6.5) also holds for out-of-sample input

points, thus our framework naturally extends to new test data unlike transductive

algorithms. Once the augmented empirical feature expectations are computed,

the computational complexity of optimizing R(λ;D) becomes the same as the

complexity of logistic regression over both labeled and unlabeled data. Hence,

SSLR can scale to large unlabeled data sets.
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Semi-supervised Kernel Logistic Regression

Representer Theorem states that (6.4) (the sum of a loss function over labeled and

unlabeled data and the RKHS norm) admits the form

λ∗ =
∑n

i=1

∑
y αi,yψ(xi, y) +

∑l
i=1 ᾱiψ(x̂(xi), yi).

When we substitute the solution to (6.4), we obtain our semi-supervised KLR

(SSKLR) loss function given by

R(α;D) =
n∑
i=1

q̃m(xi) log
∑
y

exp(h(xi, y;α))− 1

l

l∑
i=1

h(x̂(xi), yi;α) + ε αTKα,

(6.6)

where h(x, y) = 〈λ∗, ψ(x, y)〉 for λ∗ defined above and K is the gram matrix over

both labeled and unlabeled data. In general k((x, y), (x′, y′)) = δy,y′ k̄(x, x′) for

any Mercer kernel k̄. Note that the kernel is evaluated over all data pairs in the

sample. This enables capturing kernel-induced nonlinearity over unlabeled data

as well as labeled data. This is an advantage over other information theoretic

approaches where unlabeled data is employed only in an entropic regularization

term. The disadvantage is the computational complexity of SSKLR, which is the

same as the computational complexity of supervised KLR on data of size n.
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6.3 Incorporating class distributions into gener-

alized MaxEnt

Often one can assume that the class distributions in labeled and unlabeled data

are similar. In fact, explicitly imposing balanced label proportions on labeled and

unlabeled samples has been successfully used in semi-supervised learning litera-

ture (Collobert et al., 2006; Chapelle & Zien, 2005; Karlen et al., 2008). Such con-

straints can be naturally imposed in our maximum entropy framework by defining

binary features of the form ψσ(x, y) = δy=σ, that are only a function of the output

variable as used in (Mann & McCallum, 2007). These features are commonly called

label features. Adding them to the existing feature vector ψ(x, y) corresponds to

imposing the expected label distribution on unlabeled data to match the (aug-

mented) empirical distribution on labeled data. We will refer to such constraints

as label balancing constraints.

6.4 Experiments

In this section, we provide an empirical evaluation of the SSLR (Section 6.2.3)

and SSKLR (Section 6.2.3) algorithms. In our experiments we use data from two

different origins, that have been extensively analyzed in previous SSL work. The

first two data sets (referred as small data sets), g50c and text, are provided by the

authors of (Chapelle & Zien, 2005), whereas the rest of the data sets are from the

benchmarks provided in (Chapelle et al., 2006). See Table B.1 for the geometry

assumptions as well as other properties of each data set.

The hyper-parameters of our algorithm are the neighborhood size κ, the regu-
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Table 6.1: MTE on small data sets.

g50c text
SVM 8.32 18.86
Neural Net 8.54 15.87
LR 7.96 16.64
SSLR 7.96 16.87
SSLR+LB 7.84 9.95
SSLR+Aug 5.58 13.82
SSLR+Aug+LB 4.94 9.62
SVMlight TSVM 6.87 7.44
CCCP-TSVM 5.62 7.97
TSVM 5.80 5.71
LapSVM 5.40 10.40
LDS 5.40 5.10
Label Propagation 17.30 11.71
Graph 8.32 10.48
TNN 6.34 6.11
ManTNN 5.66 5.34

larization constant ε1 for the model feature parameters and ε2 for the label feature

parameters, and finally the kernel bandwidth σ in the case of a RBF kernel. We

considered a range of hyper-parameters for model selection, κ ∈ {10, 25, 50, 100}

and ε1, ε2 ∈ {e−1, e−2, e−3, e−4}. We set α = η−2 where η is the median of pairwise

distances. In order to reflect the real-life scenario as closely as possible, we per-

formed cross validation on a subset of labeled samples following the experimental

setup described in Section 4.3.1.

Table 6.1 and 6.2 present the experimental results from the small data sets

and SSL benchmark data sets. We report the error both with (denoted by +Aug)

and without augmented empirical feature expectations which are computed over

{x̂(x)i=1...l} given by Equation (6.3) and {(x)i=1...l} respectively. Additionally, we

investigate the effect of label balancing constraints (denoted by +LB) which were

introduced in Section 6.3. The first three lines report the supervised performance of
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Table 6.2: MTE on SSL benchmark data sets.

Digit1 USPS COIL g241c
1-NN 6.12 7.64 23.27 40.28
SVM 5.53 9.75 22.93 23.11
KLR 5.25 9.20 24.63 22.28
SSKLR 4.26 6.43 22.28 23.50
SSKLR+LB 4.32 6.30 21.48 21.88
SSKLR+Aug 3.69 7.71 16.48 21.03
SSKLR+Aug+LB 3.59 6.18 16.08 15.31
TSVM 6.15 9.77 25.80 18.46
MVU + 1-NN 3.99 6.09 32.27 44.05
LEM + 1-NN 2.52 6.09 36.49 42.14
QC + CMN 3.15 6.36 10.03 22.05
Discrete Reg. 2.77 4.68 9.61 43.65
SGT 2.61 6.80 - 17.41
Cluster-Kernel 3.79 9.68 21.99 13.49
Data-Dep. Reg. 2.44 5.10 11.46 20.31
LDS 3.46 4.96 13.72 18.04
Laplacian RLS 2.92 4.68 11.92 24.36
CHM (normed) 3.79 7.65 - 24.82

various methods, SVMs, single layer neural networks, 1-Nearest Neighborhood(1-

NN) and (kernel) logistic regression. At the bottom of the tables, the perfor-

mances of the most competitive semi-supervised algorithms reported in (Chapelle

et al., 2006), namely Transductive SVM (TSVM) (Vapnik, 1998), Cluster Ker-

nel (Chapelle et al., 2003), Discrete Regularization (Chapelle et al., 2006), Data

Dependent Regularization (Chapelle et al., 2006), Low Density Separation (LDS)

(Chapelle & Zien, 2005) among others. The reader may refer to (Chapelle et al.,

2006) for a comparison with a wider selection of algorithms.

Analyzing results, we observe that our semi-supervised learning approach al-

most always yields improvement over supervised learning. Even without feature

augmentation, we may observe significant error reduction, for example on Digit1
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data set (20%). When both augmentations are used (when the optimization corre-

sponds to (6.4) or (6.6).), our method becomes competitive ranking in the middle

across most data sets. When label balancing constraints are also included the

results improve further. Perhaps the most attractive property of this approach

is its generality. In particular, it provides natural means to incorporate different

geometry assumptions of the data and thus performing compatible across all data

sets. This is not the case for other SSL methods since they incorporate a single

geometry assumption. Comparing different settings of our algorithm, we conclude

that imposing label balancing constraints always perform preferably. We observed

that manifold data sets prefer κ to be small (25, 50) whereas the other data sets

prefer larger κ. We conjecture that with large κ the MST can jump across classes,

which might be improved with a less noisy estimate for example by using random

walks.
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Chapter 7

Combining Semi-Supervised and

Active Learning Paradigms

Joint work with Oliver Kroemer †, Renaud Detry ‡, Yasemin Altun †, Justus

Piater ‡, and Jan Peters †

7.1 Introduction

In this chapter, we propose an approach to combine active learning with our SSL

algorithm with constraint augmentation introduced in Chapter 6. Active learning

refers to the learning paradigm where an algorithm has the means to query the

supervisor, which is often referred to as the oracle, for labels. Although it is

motivated by the scarcity of labeled training data as SSL, active learning primarily

focuses on the questions of which data to label, particularly the selection criteria.

† Max Plank Institute for Biological Cybernetics, Spemannstraße 38, Tuebingen Germany
{oliverkro,altun,jan.peters}@tuebingen.mpg.de
‡ Department of Electrical Engineering and Computer Science Montefiore Institute, Univer-

sité de Liège 4000 Liège Sart Tilman Belgium, {renaud.detry,justus.piater}@ulg.ac.be
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Unlike SSL, active learning applies only to incremental learning setups as the

system is expected to be retrained or updated with results of the queries.

We evaluate our synergistic method in the context of robot grasping, a real-

life problem where the number of labeled grasps is extremely scarce. Therefore,

our goal is to learn discriminative probabilistic models of object-specific grasp

affordances despite limited supervision. Another concern is that the proposed

method does not require an explicit 3D model but rather learns an implicit manifold

defining a probability distribution over grasp affordances.

We obtain a large set of hypothetical grasp configurations from visual descrip-

tors that are associated with the contours of an object. While these automati-

cally generated hypothetical configurations are abundant, labeled configurations

are very scarce as these are acquired via experiments carried out by the robot as

executing and labeling grasps of novel objects is a time-consuming process that

requires human monitoring as otherwise the robot may damage the objects. How-

ever, a vast number of hypothetical grasp configurations can be generated by a vi-

sion model, in our context the Early Cognitive Vision reconstructor. Even though

they are suggested as potentially stable grasps based on heuristics, the hypothet-

ical configurations can not be given any confident labels, as they have not been

empirically tested, and are therefore effectively unlabeled.

Kernel logistic regression (KLR) via joint kernel maps is trained to map these

hypothesis space of grasps into continuous class conditional probability values in-

dicating their achievability. We propose a soft-supervised extension of KLR and

a framework to combine the merits of semi-supervised and active learning ap-

proaches to tackle the scarcity of labeled grasps. Experimental evaluation shows

that combining active and semi-supervised learning is favorable in the existence of
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an oracle. Furthermore, semi-supervised learning outperforms supervised learning,

particularly when the labeled data is very limited.

7.2 Motivation

Grasping is a fundamental skill for robots that need to interact with their environ-

ment in a flexible manner. A wide spectrum of tasks (e.g., emptying a dishwasher,

opening a bottle, or using a hammer) depend on the capability to reliably grasp

an object or tool as part of a larger planning framework. It is therefore imperative

that the robot learns a task-independent model of an object’s grasp affordances in

an efficient manner. Given such a flexible model, a planner can be used to grasp

and manipulate the object for a wide range of tasks. In this chapter, we investi-

gate learning probabilistic models of grasp affordances for an autonomous robot

equipped with a 3D vision system (see Figure 7.1).

Until recently, the most predominant approach to grasping has been construct-

ing a full 3D model of the object and then employing various techniques such as

friction cones (Mason & Salisbury, 1985) and form- and force- closures (Bicchi &

Kumar, 2000). Given the difficulties of obtaining a 3D model with sufficient ac-

curacy to reliably apply these techniques, designing statistical learning methods

for grasping has become an active research field (Detry et al., 2009a; de Granville

et al., 2006; Saxena et al., 2008a; Saxena et al., 2008b). These new learning

methods often employ efficient representations and vision based models, without

requiring full 3D reconstruction, in order to provide a more robust alternative

to traditional approaches. Most of the previous work focuses only on learning

successful grasps (Detry et al., 2009a; de Granville et al., 2006).
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The investigation of discriminative learning methods for grasp affordances pre-

sented in this work continues on from previous approaches of probabilistic grasp

affordance models, namely (Saxena et al., 2008a) and (Saxena et al., 2008b).

In (Saxena et al., 2008a), the authors propose extracting a set of 2D image features

and apply a discriminative supervised learning method to model grasp affordance

probabilities given the 2D image. In (Saxena et al., 2008b), this approach is ex-

tended with a probabilistic classifier using a set of arm/finger kinematics features

in order to identify physically impossible 2D points for the robot to reach. The

strength of their approach comes from the combination of two important sources

of information, image and kinematic features, in a probabilistic manner.

To incorporate unlabeled grasp configurations in the discriminative learning of

grasp affordance probabilities, we use the semi-supervised kernel logistic regres-

sion (SSKLR) algorithm introduced in Section 6.2.3. SSKLR method provides a

principled way of combining information from the object as well as from the robot

hand via joint kernels (Bakir et al., 2003). By training a single classifier using a

joint kernel, as opposed to training two separate classifiers, e.g., (Saxena et al.,

2008b), our approach can capture the non-linear interactions of the morphology of

the robot hand and the surface characteristics of the object implicitly. The system

therefore does not have to rely on explicit representations such as closed form ge-

ometric descriptions or libraries of feasible grasps. We investigate using unlabeled

data in our KLR approach to reduce the number of labeled grasps needed. In

particular, we combine a novel semi-supervised KLR method with active learning

in the context of robot grasping.

As mentioned earlier, active learning assumes the existence of an annotator,

commonly referred to as the oracle, that can provide labels to queries. In a robotics
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Figure 7.1: Three-finger Barrett hand equipped with a 3D vision system. A table
tennis paddle is used in the experiments.

context, the annotator corresponds to the robot attempting to perform new grasps.

The goal of active learning is to guide the robot to evaluate the most informative

grasps so that the classification error is reduced with the fewest queries possible.

This framework enables the robot to learn grasp affordances by autonomously

evaluating new grasps in an incremental manner. We provide comparisons between

supervised, semi-supervised as well as a hybrid of semi-supervised and active learn-

ing setups, as minimizing the need for large amounts of labeled data is the primary

concern. Our experimental evaluation shows not only that the proposed active

learning and semi-supervised learning methods individually improve the system’s

performance, but the fact that the amount of necessary annotated data is also

significantly reduced when supervised learning is combined with active learning.

This chapter is organized as follows. Section 7.3 gives a detailed explanation

of the machine learning techniques evaluated in the context of robot grasping.

Section 7.5 overviews relevant work in the literature. In Section 7.6, we describe the
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details regarding the acquisition of the visual features and the joint kernel designed

for this particular application. Then, we introduce the experimental setup, give

empirical results and provide a comparison of supervised, semi-supervised and

active learning approaches. Finally, Section 7.7 provides a discussion and directions

for future work.

7.3 Learning Probabilistic Grasp Affordances Dis-

criminatively under Limited Supervision

For training, we use the SSKLR loss given in Equation (6.6) so that the learning

process can accommodate unlabeled data. SSKLR models the conditional distribu-

tion p(y|x) enabling the probabilistic interpretation of the outputs. Such a natural

interpretation is advantageous for the particular application of grasp affordance

learning as the grasp affordances can be easily compared and easily mapped to

policies by the robot’s motion planner.

We use a joint kernel as a distance metric between pairs of grasp configura-

tions. This kernel decomposes into separate distance measures on the position

and rotation parameters as described in Section 7.6.2. We use this kernel both

in the SSKLR algorithm and as the distance metric the compute the augmented

empirical expectations. In the next section, we describe the uncertainty criterion

to select grasps for the queries in the active learning setting.
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7.4 Uncertainty based active learning

Active learning algorithms differ based on their assumptions on the potential merit

of samples. For instance, in the uncertainty sampling approach which we employ

here, the algorithm queries the sample for which the classifier generates the most

uncertain outputs at a given time. On the other hand, query-by-committee ap-

proaches decide on the queries based on the disagreement of a set of classifiers on

the unlabeled samples. The higher the disagreement measure on a sample, the

more beneficial it is to know its actual label. Other approaches favor querying

samples which have the biggest potential impact on the model parameters or high-

est estimated error reduction (Zhu et al., 2003) in case its label is acquired. A

thorough literature survey can be found in (Settles, 2009).

We can employ active learning in scenarios where the robot has the means to

choose what to learn. For the active selection of grasps, we use uncertainty sam-

pling (Lewis & Catlett, 1994) which is straightforward for probabilistic models. In

this method, the algorithm queries for the grasps on which it is the least confident.

Therefore, at each iteration, the algorithm requests the true label for the grasp, x∗

that has the highest class conditional entropy among the set of unlabeled grasps

x∗= argmax
x∈U

H(p(y|x)).

In turn, the robot carries out the configuration that corresponds to x∗ and labels

it accordingly.
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7.5 Related Work

Efficient representation and vision based modeling of grasp configurations is an

active research field (Detry et al., 2009a; Saxena et al., 2008a). We follow the

methodology in (Detry et al., 2009a) to obtain grasp pose candidates and orien-

tations. However, the authors learn grasp densities using successful grasps only,

whereas here, we model the class conditional probabilities of both successful and

unsuccessful grasp configurations in a discriminative manner. Furthermore, we

focus on the scarcity of the labeled data points and evaluate active and semi-

supervised learning algorithms with the smallest number of annotated experiences

possible.

De Granville et al. present a method where the robot learns a mapping from

object representations to grasps from human demonstration (de Granville et al.,

2006). They cluster the orientations of grasps and each cluster is associated with a

canonical approach orientation. The authors indicate that limiting the encoding to

orientations or excluding position knowledge, is due to their underlying assumption

that orientation and position are independent.

As labeled data collection is expensive for most robotics tasks, active learning

techniques have already been considered. (Salganicoff et al., 1996) proposed some

of the earliest work on uncertainty based active learning for vision-based grasp

learning by modifying the ID3, a decision tree algorithm. (Montesano & Lopes,

2009) also propose a method to learn local visual descriptors of good grasping

points via self-experimentation. Their method associates the outputs with confi-

dence values. Morales et al. propose an active learning method for grasp reliability

(Morales et al., 2004). They use a k-nearest neighbors approach to learn grasp af-

fordance probabilities whereas we propose an information theoretic approach and
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kernel methods extended to semi-supervised learning.

In machine learning, various methods to combine semi-supervised and active

learning have been proposed to exploit the merits of both approaches (Zhu et al.,

2003; Tür et al., 2005). We attempt to be the first in the context of robotics. The

active learning methodology proposed in (Tür et al., 2005) is similar to ours, as the

authors employ confidence sampling for active learning based on the probabilistic

outputs of a logistic regression classifier. Their method differs from ours since

they perform semi-supervised learning via self-training, whereas we propose a soft-

labeling approach motivated by the maximum entropy framework.

7.6 Empirical Evaluation

We have empirically evaluated the methods described in Section 7.3 on a 3-finger

Barrett robot with simple objects such as a table tennis paddle and a watering can.

For supervised learning, we have used a Kernel Logistic Regression classifier and the

joint kernel defined on position and orientation features. The labels were collected

by a human demonstrator. For the semi-supervised experiments we have used

SSKLR loss given in Equation (6.6) in Section 6.2.3. Details on the experimental

setup such as data collection, preprocessing, model selection and the results are

given below.

7.6.1 Visual Feature Extraction For Grasping

The inputs of our learning algorithm are represented as grasp configurations gener-

ated from Early Cognitive Vision (ECV) descriptors (Krüger et al., 2004; Pugeault,

2008), which represent short edge segments in 3D space, as described in (Detry
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et al., 2009a). Accordingly, an ECV reconstruction is performed. Next, pose

hypotheses for potential grasps are generated from pairs of co-planar ECV de-

scriptors. The grasp position is set to the location of one of the ECV descriptor

pairs whereas the grasp orientation is computed from the normal of the plane on

which these descriptors lie. The assumption is that two co-planar segments con-

stitute a potential edge of the object that the robot hand can hold. However,

this is quite optimistic as many infeasible edges and orientations will be included

in the hypothesis space, see Figure 7.2. Hence, we need a learning algorithm to

discriminate between the feasible and infeasible grasps contained in this set.

7.6.2 Joint Kernel

Each grasp configuration x = (v, r) consists of seven parameters, three from the

3D position v of the robot hand in the object’s reference frame,1 and four from the

unit quaternions r defining the rotation.2 These values have different coordinate

systems and have to be treated separately in order to obtain a proper distance

metric. This distance metric, which indicates the similarity of two configurations,

is employed for both the kernel computation and the similarity measure required

by semi-supervised learning (see Section 6.2.2). We define the joint kernel as

K (xa, xb) = exp

(
−‖va − vb‖

2

2σ2
v

− f(θab)
2

2σ2
f(θ)

)
,

1The object relative reference frame is a coordinate system that is attached to the object such
that any rigid body transformation applied to the object will also be applied to the coordinate
system and objects therein.

2Unit quaternions are widely used in the context of robotics to represent spatial rotations in
three dimensions. As well as their convenience as a mathematical notation, they are preferred as
they avoid the problem of gimbal lock.
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(a) Feasible configurations (b) Infeasible configurations

(c) Hypothesis space

Figure 7.2: Kernel logistic regression algorithm is used to discriminate the success-
ful 7.2(a) and unsuccessful grasps 7.2(b) lying on separable nonlinear manifolds.
The entire hypothesis space 7.2(c) of potential grasp configurations extracted from
pairs of ECV descriptors contains feasible grasps as well as infeasible configura-
tions.
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where f(θab) is the rotational distance between xa = (va, ra) and xb = (vb, rb), and

σv and σf(θ) are the standard deviation of the pose and rotation distances of all pairs

of samples respectively. In order to cope with the double cover property (Kuffner,

2004) of quaternions, we compute the rotational distance f(θab), as the smaller

angle between the two unit length quaternions ra and rb. This definition allows us

to use a Gaussian distribution on this rotational distance metric. Here, θab is the

angle of the 3D rotation that moves ra to rb, i.e., θab = θ(ra, rb) = arccos(rTa rb),

and

f(θab) = min{θ(ra, rb), θ(ra,−rb)}.

For further details on distance computations between unit quaternions see (Kuffner,

2004). This joint kernel is similar to that in (Detry et al., 2009b) in the way it

decomposes into kernels on position and rotation features. However, there the

authors employ a Dimroth-Watson distribution to get the rotational kernel as

whereas we use the Gaussian distribution, which is preferable due to the compu-

tational complexity of the former.

7.6.3 Experimental Setup

We collected 200 samples, 100 successful (positive labels) and 100 unsuccessful

(negative labels) grasps. We preprocess the data by normalizing the position pa-

rameters to zero mean and unit variance. The unit quaternions do not require

preprocessing. In all experiments, we fix the hyperparameters at the initial step

using fourfold cross validation. The model variance in semi-supervised and ac-

tive learning can be high as the training set is typically very small. In order to
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compensate for the resulting high variance, we have generated 20 random training

sets with equal numbers of positive and negative samples and corresponding test

partitions. We report the average classification error on these random test sets.

For the active learning scenario, we used a separate active learning pool.

Our framework has two hyper-parameters which are to be set during the model

selection. The first parameter, κ is the size of the neighborhood. The second pa-

rameter, ε is the regularization constant of the kernel logistic regression algorithm.

We sweep over a grid of values κ = {10, 20, 30, 50}, and ε = {10−2, 10−3, 10−4}.

7.6.4 Evaluation on collected data sets

We evaluate the supervised and semi-supervised models as the amount of labeled

data increases. When additional data is selected with uncertainty sampling, we

assess the active supervised and active semi-supervised performances. In all ex-

periments, we train initial models with 10 randomly selected labeled samples. We

perform model selection in this setup and fix the value of the hyper-parameters

for the following experiments. The semi-supervised algorithm uses an additional

unlabeled set of size 4000. All results are the averages over the models trained

over 20 realizations of the training set and the fourfold cross validation.

First, we empirically evaluate the performance of semi-supervised learning ver-

sus supervised learning. Figure 7.3 shows the improvement of classification error

as randomly selected samples are added to the training sets one at a time (i.e.,

classification error of KLR and SSKLR with respect to increasing labeled data

size). As expected, when the size of the labeled data is small, semi-supervised

learning is advantageous over supervised learning. The difference diminishes as

the data set gets larger.
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An alternative evaluation measure is the perplexity of the data,

2H(p) = 2(
∑

x

∑
y −p(y|x) log2 p(y|x)),

which measures the uncertainty of the predictions of the trained models. This

information theoretic measure is commonly used for probabilistic models in fields

such as speech recognition and natural language processing (Jurafsky & Martin,

2000). In Figure 7.5(a), we plot the perplexity of KLR and SSKLR. This figure

shows that the semi-supervised model is more confident (smaller perplexity) of

its predictions than the supervised model, and thus yields preferable results. We

also note that the variance of perplexity across different validation sets are smaller

in the case of SSKLR, when the dataset is small. This renders semi-supervised

learning more robust compared to supervised learning in real-life scenarios.

Secondly, we comparatively demonstrate the impact of active learning. Fig-

ure 7.4 illustrates the performance of both KLR and SSKLR as they are incremen-

tally retrained with uncertainty based sampling. The corresponding perplexity

plots are shown in Figure 7.5(b). The comparison of KLR and SSKLR in the

active learning setting shows a similar behavior to that of random selection, Fig-

ure 7.3 and 7.5(a).

Figure 7.6 illustrates the classification error rate for all four scenarios together.

For the supervised classifier, the improvement rate is clearly faster with active

learning than random selection. A 10% error rate is achieved with 17 samples

whereas to get the same error rate 40 samples are required for the random selection

case.
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Figure 7.3: Supervised and semi-supervised logistic regression error on the vali-
dation sets versus the number of randomly selected labeled samples added to the
initial training of size 10. Model selection is carried out at the initial step with 10
samples. 50 samples are added in an incremental manner and all models are re-
trained at each iteration. SSKLR uses an unlabeled training set of size 4000. The
neighborhood size for the similarity based augmentation, κ, is set to 30. Semi-
supervised is learning is advantageous at the initial stages.
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Figure 7.4: Supervised and semi-supervised classification error on the validation
sets as actively selected samples are queried via uncertainty sampling. The error
bars indicate one standard deviation over 20 realizations. The initial 10 labeled
samples are randomly selected. Later, at each iteration the unlabeled sample with
the highest class conditional entropy is queried from the active learning pool and
inserted to the training set. The models are retrained with this augmented set.
With active learning a 10% error is reached with 17 labeled samples in total whereas
with random sampling 40 samples are needed to reach the same performance.
The semi-supervised curve corresponds to the hybrid of semi-supervised and
active learning approaches. SSKLR uses an unlabeled training set of size 4000.
The neighborhood size for the similarity based augmentation, κ, is set to 30.
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(a) Perplexity in random sampling.
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(b) Perplexity in active sampling.

Figure 7.5: Perplexity versus the number of iterations shown for the random sam-
pling in (a) and active sampling in (b). Semi-supervised learning reduces perplex-
ity significantly in both settings. Error bars indicate one standard deviation of
perplexity over 20 data splits.
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Figure 7.6: Classification error rate for KLR, SSKLR, active-KLR and active
SSKLR.
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7.6.5 On-Policy Evaluation

In order to test our approach on the robot, we have used a second object, the

watering can shown in Figure 7.7(b). For the experiments we have collected a

total of 20 labeled instances of 10 successful and 10 unsuccessful configurations.

Figure 7.8(b) illustrates these initial training set of data samples where green

indicates feasible grasps whereas red indicates infeasible ones. Next, we trained

the system incrementally with 15 more samples twice, first with random (RS)

and then with actively sampled (AS) data. After we stopped training we have

identified 10 test configurations on which the AS and RS algorithms disagree the

most. When we carried out these configurations on the robot, in 10 out of 10

configurations the decision of the AS was correct and RS failed validating that the

AS is stronger in the decision boundaries.

7.7 Conclusion

We have presented a probabilistic approach to model the success likelihoods of

grasp configurations from a pool of hypothetical configurations extracted from

ECV descriptors. The main bottleneck in the learning process is the scarcity

of labeled data due to time-consumption of annotating grasps. Therefore, we

have used semi-supervised and active learning approaches in the context of robot

grasping. We have experimentally evaluated these approaches in two settings, in

the former the data is provided only once as a batch whereas in the latter the

agent has the means to query new labeled samples incrementally. We provided the

results for three-finger Barrett hand and simple objects. Experimental evaluation

demonstrates that combining semi-supervised and active learning approaches is
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(a) Watering can

(b) Another feasible grasp

Figure 7.7: The watering can used for the on-policy evaluation is shown. There
are various potential stable grasp points as demonstrated in (a) and (b).
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(a) Initial set of training samples

   

(b) Iteratively selected training points

Figure 7.8: The training grasp configurations are demonstrated along with the 3D
model of the watering can. We initiate the incremental algorithm with 20 labeled
training data shown in (b) with 10 feasible and 10 infeasible grasp configurations
illustrated in green and red respectively. (c) Iteratively added training samples;
pink indicates randomly sampled, blue indicates actively sampled data.
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effective in improving the robot’s performance with limited supervision. However,

it may not always be possible to incrementally train a system. In such situations,

semi-supervised learning is advantageous.

The future direction is to learn visual cues that are shared among various

objects so that the grasp affordance models are not object-specific but can be

generalized to many object categories.
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Chapter 8

Conclusion

In this thesis, we have presented two novel approaches to integrate unlabeled data

within the generalized entropy framework. In the similarity constrained SSL ap-

proach, one incorporates unlabeled samples in the learning process through mod-

ifications to the potential functions. We demonstrated two such modifications

through pairwise and expectation penalties on the MaxEnt objective. These penal-

ties restrict the entropy maximization problem using the similarity relationships

between data samples reflecting our prior knowledge. In the augmentation ap-

proach, one exploits unlabeled data to improve the estimates on the model and

empirical expectations of the features. We have carried out an extensive empirical

analysis of both approaches using standard benchmark data sets from the SSL

literature as well as real-life problems from robotics and remote sensing. We have

also analyzed the approach on sequential data deriving semi-supervised variants of

the CRF algorithm.

Our approach offers a number of advantages over previous methods.

1. Using various entropy measures, we obtain a family of semi-supervised algo-
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rithms.

2. These algorithms can be kernelized allowing the model to exploit unlabeled

data in a nonlinear manner as opposed to other information theoretic semi-

supervised learning methods such as (Grandvalet & Bengio, 2005; Mann &

McCallum, 2007).

3. The resulting objective functions are convex since the unlabeled data is in-

corporated in the primal MaxEnt problem and the objective functions are

then derived using convex duality techniques.

4. Another key advantage is that our method is inherently multi-class. This is

often not the case for discriminative semi-supervised classifiers, e.g., Trans-

ductive Support Vector Machines (TSVMs), as in multi-class settings they

require further elaboration in inference such as the one-vs-rest error assess-

ment scheme.

5. The approach proposed in this thesis yields scalable SSL algorithms. For

instance, in Chapter 4, we report experimental results on the MNIST data

set with up to a total of 70,000 samples. This number can be improved by

defining sparser similarity features.

6. In the case of the similarity constrained SSL introduced in Chapter 4, our

motivation is reminiscent of the SSL methods in the literature that are based

on the smoothness criterion. However, we treat similarities as features and

associate them with unique optimization parameters, enabling the algorithm

to choose which similarities are salient. This is not the case for many SSL

algorithms that treat the similarities uniformly such as the Laplacian SVM.
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This is a significant advantage of encoding the similarities in the primal

problem via features, as opposed to encoding them within a regularization

term in the dual.

8.1 Future Directions

In this thesis, we have derived and analyzed the semi-supervised formulations for

three specific cases of the generalized MaxEnt framework. This approach can be

extended to other instances mentioned in Section 2.2.1.

There is a lot of potential in terms of the applications of semi-supervised (ker-

nel) CRFs for structured prediction problems in robotics, computer vision and

natural language processing. One future direction that is the application of the

semi-supervised loss functions to CRFs with general graphical models. This re-

quires the integration of variational approximation methods to our current frame-

work. Large scale variants of these algorithms are also a potential direction of

research. Hierarchical methods proposed in (Cai & Hofmann, 2004) and (Seeger,

2008) are also instances of structured output prediction. Their convex duals are

explained in (Altun, 2008) in detail. Therefore, investigating the semi-supervised

extensions of hierarchical classification methods is also a promising direction.

Another potential direction of research is the definition and evaluation of sim-

ilarity metrics for semi-supervised learning. Designing similarity metrics is par-

ticularly challenging for structured prediction problems. As the similarity metrics

often represent our assumptions about the geometry on the data, the choice of the

metric is crucial. Answering questions such as the following are promising research

directions for SSL for structured problems: How accurate are the approximations
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we can get if we assume the similarity features decompose over (combinations of)

the cliques of a graphical model? With such a compromise can we still effec-

tively perform semi-supervised structured prediction and if so, when? What kind

of (geometry) assumptions do semantic similarity metrics impose, e.g., WordNet

distance for natural language processing applications?

Combining semi-supervised learning and active learning effectively is a funda-

mental AI problem on the way towards self-sufficient autonomous systems that

supervise their own learning.
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Appendix A

Notation and Terminology

Table A.1: Notation and Terminology

D {(x, y)i=1···l, (x)i=l+1···n} where y ∈ {σ1, . . . , σk}

X Input space (set of observations)

Y Output space

Y(x) Output space for observation x

C(x) The set of cliques of observation x

L Set of labeled samples, {(xi, yi)}li=1

U Set of unlabeled samples {xi}ni=l+1

l Number of labeled samples, |L|

u Number of unlabeled samples, |U |

n Number of all samples, n = l + u

p(y|x) Predicted (model) conditional distribution

π̃(x) Empirical marginal distribution of the observations
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π̃(x, y) Empirical joint distribution of the observations and the labels

over (only) labeled data, π̃(x, y) = 1
l

∑
xl∈L δ(xl, x)δ(yl, y)

ψ(x, y) Real valued feature vector defined on x and y

ψ̃ Empirical expectation of the model features over labeled data,

ψ̃ =
∑

xl∈L π̃(xl, yl)ψ(xl, yl)

s(xi, xj) Similarity between samples xi and xj

R Risk

D Divergence

H (Conditional) Entropy

L Log-likelihood

E Expectation

Q Dual objective

λ, φ, γ, µ Dual variables

K(xi, xj) A Mercer kernel

K(xi, yi, xj, yj) Joint kernel representation K(xi, yi, xj, yj) = δ(yi, yj)K(xi, xj)

P Set of (class) conditional probability distributions defined on

X × Y , P = {p | p(y|x) ≥ 0,
∑

y∈Y p(y|x) = 1,∀x ∈ X , y ∈ Y}

L Lagrange function

IC(x) Indicator function of a convex set C,

IC(x) = 0 on dom IC = C, IC(x) =∞ otherwise

δ(a, b) Kronecker-δ, δ(a, b) = 0 if a 6= b and δ(a, b) = 1 if a = b

〈a, b〉 Dot product,
∑

i aibi
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Appendix B

Data Sets

B.1 Small Data Sets

These data sets are previously used by (Chapelle & Zien, 2005; Collobert et al.,

2006; Karlen et al., 2008). A summary table of the performance values of previous

methods are taken from Karlen et al.’s work (Karlen et al., 2008).

g50c

This is an artificial data set originally created by Chapelle and Zien (Chapelle

& Zien, 2005). The data is generated such that it comes from two standard

normal multi-variate (50 dimensional) Gaussians. The means are chosen such

that the Bayes error is 5%. Therefore, the cluster assumption holds for

this data set perfectly. We use 10 splits of 50 labeled and 500 unlabeled

samples.

text

This data set consists of the mac and mswindows classes of the News-
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C |U | |L| Dimensions Splits
g50c 2 500 50 50 10

Digit1 2 1400 100 241 12
COIL 6 1400 100 241 12

USPS2 2 1400 100 241 12
USPS10 10 1957 50 256 10

text 2 1896 50 7511 10
MNIST 10 5000 100/250 784 10

Table B.1: Properties of multiclass data sets. See (Chapelle et al., 2006; Chapelle
& Zien, 2005) for more details. C stands for the number of classes.

group20 data set. The data is sparse with 7511 features. There are 10

splits of 50 labeled and 1896 unlabeled samples.

USPS

This is the well known USPS data for hand digit recognition with 10 classes

and 256 dimensions. The data consists of 10 splits of 50 labeled and 1957

unlabeled samples.

B.2 Benchmark Data Sets

These are the data sets used in the SSL benchmark experiments (Chapelle et al.,

2006) which are available online.1 The datasets are standardized so that they all

have 241 data features and 100 labeled, 1400 unlabeled samples.

g241c

This is an artificial data set generated so that the cluster assumption holds.

750 points sampled from each of two Gaussians with unit variance such that

1http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html
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‖µ1 − µ2‖ = 2.5 where all dimensions are shifted and rescaled to zero mean

and unit variance. The classes are the Gaussians themselves.

g241d

This is again an artificial data set drawn from two Gaussian distributions,

however this time the data distribution is manipulated such that the cluster

assumption does not hold and is in fact misleading. Details and a two

dimensional projection can be found in (Chapelle et al., 2006). Manifold

assumption does not hold as well.

Digit1

Artificially generated images of the digit 1 so that the data lies in a five

dimensional manifold which correspond to different tilt angles of the digit.

Details can be found in (Chapelle et al., 2006). The classification problem is

to identify the upright digit vs the rest.

USPS

This data set is also derived from the well known USPS data set with two

classes such that digits 2 and 5 constitute the first class and the rest of the

10 digits from the original data set form the second class.

COIL

This data comes from The Columbia object image library (COIL-100) so

that the 24 original classes are grouped to form six classes of four objects

each. For further details the reader may refer to (Chapelle et al., 2006).

The number of labeled and unlabeled samples, data dimensions, classes and data

splits can also be found in (Table B.1). Note that while the labeled and unlabeled
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Salinas Naples Naples KSC
(optical) (SAR intensity)

Spatial resolution [m] 3.7 30 100 18
Spectral channels 224 7 3 176

Table B.2: Spatial (in meters) and spectral resolution (number of considered chan-
nels).

samples for a particular split are entirely distinct, there are overlaps between dif-

ferent splits for both small data sets and benchmark data sets.

B.3 Remote Sensing Data Sets

We considered different kinds of remotely sensed images in the experiments:

Salinas

The Salinas AVIRIS data set, collected over Salinas Valley, California. A

total of 16 crop classes were labeled. However, we selected the 8 most

representative classes (‘Broccoli’, ‘Celery’, ‘Corn’, ‘Fallow’, ‘Lettuce’, ‘Soil’,

‘Stubble’, and ‘Vinyard’) in the image to conduct the experiments. This is

a high-resolution scene with pixels of 3.7 meters and the spectral similarity

among the classes is also very high. This hyperspectral image is 217×512

and contains 224 spectral channels.

Naples99

Images from ERS2 synthetic aperture radar (SAR) and Landsat Thematic

Mapper (TM) sensors were acquired in 1999 over Naples (Italy). The avail-

able features were the seven TM bands, two SAR backscattering intensities

(0–35 days), and the SAR interferometric coherence. Since these features
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come from different sensors, the first step was to perform a specific pro-

cessing and conditioning of optical and SAR data, and co-registered them

(Gómez-Chova et al., 2006). After pre-processing, all features were stacked

at a pixel level.

KSC

The image was acquired by the AVIRIS instrument over the Kennedy Space

Center (KSC), Florida, on March 23rd, 1996. A total of 224 spectral bands

of 10 nm width with center wavelengths from 400-2500 nm is acquired. The

image was acquired from an altitude of 20 km and has a spatial resolution

of 18 m. After removing low SNR bands and water absorption, a total of

176 bands remains for analysis. A total of 13 classes of interest were labeled

representing the various land cover types of the environment. Classes were

highly unbalanced, and different marsh subclasses were labeled which makes

it a difficult classification problem.
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Appendix C

Optimization Software

C.1 Gradient-Based Optimization

To train our classifier we are using the Toolkit for Advanced Optimization(TAO)

software (Benson et al., 2007) which is designed for large-scale optimization prob-

lems. For the l22 regularized loss function we have used limited memory variable

metric (LMVM) algorithm (also known as L-BFGS). The algorithm requires a loss

function value and a gradient vector.
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