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Abstract

Productivity languages such as NumPy and Matlab make it much easier to imple-

ment data-intensive numerical algorithms than it is to implement them in efficiency lan-

guages such as C++. This is important as many programmers (1) aren’t expert pro-

grammers; or (2) don’t have time to tune their software for performance, as their main

job focus is not programming per se. The tradeoff is typically one of execution time

versus programming time, as unless there are specialized library functions or precom-

piled primitives for your particular task a productivity language is likely to be orders of

magnitude slower than an efficiency language.

In this thesis, we present Parakeet, an array-oriented language embedded within

Python, a widely-used productivity language. The Parakeet just-in-time compiler dy-

namically translates whole user functions to high performance multi-threaded native

code. This thesis focuses in particular on our use of data parallel operators as a basis

for locality enhancing program optimizations. We transform Parakeet programs written

with the classic data parallel operators (Map, Reduce, and Scan; in Parakeet these are

called adverbs) to process small local pieces (called tiles) of data at a time. To express

this locality we introduce three new adverbs: TiledMap, TiledReduce, and TiledScan.

These tiled adverbs are not exposed to the programmer but rather are automatically gen-

erated by a tiling transformation.

We use this tiling algorithm to bring two classic locality optimizations to a data

parallel setting: cache tiling, and register tiling. We set register tile sizes statically at

compile time, but use an online autotuning search to find good cache tile sizes at runtime.

We evaluate Parakeet and these optimizations on a suite of benchmark programs, and

exhibit excellent performance even compared to typical C implementations.
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Chapter 1

Introduction

Productivity languages such as NumPy [57] and Matlab [53] make it much easier

to implement data-intensive numerical algorithms than it is to implement them in effi-

ciency languages such as C++ [60]. This is important as many programmers (1) aren’t

expert programmers; or (2) don’t have time to tune their software for performance, as

their main job focus is not programming. The tradeoff is typically one of execution time

versus programming time, as unless there are specialized library functions or precom-

piled primitives for your particular task a productivity language is likely to be orders of

magnitude slower than an efficiency language.

A representative example from the NYU computer science department is a computer

vision professor who uses a cluster of computers running Matlab for doing computer

vision computations. These computations can run for days or weeks before producing

a result, but the professor would prefer to wait this long for results rather than spend

the large effort required to write his programs in an efficiency language such as C++ or

a specialty language such as CUDA. He and his graduate students simply have better

uses of their time such as thinking about computer vision. There are many professionals
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who use computers as a tool in this way, and while execution times are indeed of great

concern to them, they’re not willing to divert their attention to tuning efficiency language

versions of their programs.

In this thesis, we present our system Parakeet [66], a just-in-time compiler and run-

time system for an array-oriented subset of Python, a widely used productivity lan-

guage. Parakeet dynamically compiles whole user functions to high performance multi-

threaded native code. In particular, this thesis focuses on our use of data parallel opera-

tors as a basis for locality enhancing program optimizations [44].

The data parallel model allows programmers to express algorithms by creating and

transforming collections using high level constructs. For example, whereas an imper-

ative language would require an explicit loop to sum the elements of an array, a data

parallel language might instead implement summation via some form of reduction op-

erator. The enduring appeal of data parallel constructs lies in the flexibility of their

semantics. A data parallel transformation only specifies what the output should be, not

how it is computed. This makes data parallel programs amenable to parallelization (as

the name suggests), both in terms of coarse-grained data partitioning and fine-grained

SIMD vectorization.

The first language to feature data parallel abstractions was APL [46], whose cen-

tral programming constructs involved high-level manipulation of n-dimensional arrays.

The eminent parallelizability of the language’s core operators inspired early research in

vector processors [76] and parallelization [52]. As computers with massively parallel

hardware became more common in the 1980s, many languages such as C [43], For-

tran [37], and Lisp [73] were retrofitted with data parallel extensions. More recently,

data parallel constructs have appeared repeatedly as core primitives for high level lan-

guages and libraries which compile to FPGA descriptions [41], GPU programs [20, 75],
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and even the coordination of distributed computations [88].

In our system, we transform programs written with the classic data parallel operators

(Map, Reduce, and Scan; in our system these are called adverbs) to process small

local pieces of data at a time [44]. To express this locality we have introduced three new

adverbs: TiledMap, TiledReduce, and TiledScan. These tiled adverbs are not exposed

to the programmer but rather are automatically generated by a tiling transformation.

For programs that exhibit spatial or temporal locality of memory access, applying this

transformation can result in signficant performance gains.

We use this algorithm to bring two classic locality optimizations to a data parallel

setting: cache tiling, and register tiling. Cache tiling is a technique to break up a com-

putation into subcomputations that only operate on amounts of data at a time that can

fit into caches [51, 82]. Our tiled adverbs break up the computations of regular adverbs

into locality-friendly pieces called tiles.

Much work has gone into developing models that attempt to derive good cache tile

sizes statically at compile time [71, 85, 86]. However, the state of the art for achieving

top performance remains offline autotuning of programs to find good tile sizes [6, 81].

Offline autotuning searches across different tile sizes by timing the execution of different

versions of a program on real hardware. This approach burdens programmers in at

least one of two ways: (1) it requires users either to annotate their code manually with

information about its tunable parameters, or to implement by hand the hooks which

an auto-tuner can use to explore different parameter settings; or (2) it involves a time-

consuming offline search that may not be worth the cost for code not reused extensively.

In addition, previous work has shown that a given parallel application – even one as

simple as the embarrassingly parallel Black-Scholes option pricing – can have wildly

varying performance across different input data sets [61]. Thus statically setting all tun-
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ing parameters is not even desirable as performance may not be portable across different

inputs.

For these reasons, and since it also fits the standard rapid prototyping workflow of

productivity languages well, we adopt a strategy of online autotuning. Tile sizes are left

unspecified during compilation. The runtime uses an analytical model similar to those

presented in [71] to guess reasonable initial tile size settings. We then use a Gaussian

sampling method to perform a search across different tile sizes. In contrast with most

offline auto-tuners, every timing run involves useful work that progresses the overall

computation. We evaluate the impact various aspects of this search has on performance,

including e.g. percentage of the runtime time spent searching and the sampling interval.

In addition to cache tiling, we apply our program transformation a second time to

enable another locality optimization called register tiling. The high level concept of

register tiling is similar to that of cache tiling – breaking up a computation into small

pieces that operate on only so much data as can fit in a small fast memory. In this case,

the small fast memory is the set of processor registers, which is typically on the order of

a few dozen bytes’ worth of space.

Register tiling differs from cache tiling in that once the program is broken up into

tiles, a series of further compile-time optimizations are necessary to get the full per-

formance boost. First, the small loops over the data in the tiles need to be completely

unrolled. Loop unrolling is a compiler optimization that replaces a loop with a series

of repeated statements [33]. Second, an optimization called scalar replacement is ap-

plied, whose purpose is to remove direct accesses to memory in these unrolled loop

statements [18]. Instead, reads to memory are performed once at the top of the series of

statements, and partial results are accumulated directly in registers. Only at the end of

the loop are results written back to memory.

4



Since register tiling involves additional compile-time optimizations after the locality

transformation, we would need to compile new version of programs with different tile

sizes at runtime. We thus use a heuristic that takes into account the number of registers

on the processor to set the register tile sizes once at compile time.

We evaluate our system on a range of input programs written in Parakeet, and show

that we can achieve excellent performance as compared with auto-tuned C versions

of the same programs. Our tiling optimizations result in large performance gains in

different benchmarks. In addition, Parakeet programs are concise and easy to write, ab-

stracting away tedious details and enabling programmers to focus on high level concepts

while enjoying excellent performance.

To summarize, the contributions of this thesis are as follows:

1. A novel high-level code transformation that tiles data parallel programs to im-

prove both cache and register usage.

2. An online autotuning search to select tile sizes.

3. Implementation of the above in a just-in-time optimizing, parallelizing compiler

for an array-oriented DSL embedded in Python, which can readily outperform

naive C implementations on a variety of tasks.
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Chapter 2

The Parakeet Language and Compiler

In this chapter, we discuss the Parakeet language and compiler. We first discuss the

current landscape of using Python for high performance computing in order to provide

motivation for our design of Parakeet.

2.1 Using Python for High Performance Computing

Python is an extremely popular language for number crunching and data analysis.

This may come as a surprise, since Python is actually orders of magnitude slower at

simple numerical operations than most lower level languages. If you need to do some

repetitive arithmetic on a large collection of numbers, then ideally those numbers would

be stored contiguously in memory, loaded into registers in small groups, and acted upon

by a small set of native machine instructions. The Python “interpreter” (actually a stack-

based virtual machine), however, uses a very bulky object representation. Furthermore,

Python’s dynamicism introduces a lot of indirection around simple operations like get-

ting the value of a field or multiplying two numbers. Every time you execute simple code
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such as x[i] = math.sqrt(y[i] * z.imag), a large number of dictionary look-ups,

allocations, and other wasteful computations are performed.

The trick, then, to getting good numerical performance from Python is to avoid re-

ally doing your work in Python. Instead, you should use Python’s remarkable capacity

as a glue language to coordinate calls between highly optimized lower-level numerical

libraries. NumPy plays an extremely important role in enabling this style of program-

ming by providing a high-level Pythonic interface to an unboxed array that can be passed

easily into precompiled C and Fortran libraries.

In order to benefit from NumPy and its vast ecosystem, your algorithm must spend

most of its time performing some common operation for which someone has already

written an efficient library – for example, an optimized BLAS such as ATLAS for matrix

multiplication [81], or FFTW for Fourier transforms [38]. If, however, no one has yet

written a library that does the heavy lifting for your particular algorith, the standard

solutions all boil down to “implement the bottleneck in C.” Even then, as we’ll see in

later chapters, naively written C can still greatly underutilize a computer’s resources. For

example, SIMD extensions, multithreading, and general purpose GPU programming are

all very difficult compared to Python programming and only expert programmers with

a lot of time are able to use them well.

Thus, two main goals of the Parakeet project are thus:

• Find a way to accelerate a meaningfully expressive subset of Python, such that

it’s possible to continue using convenient abstractions but without a large runtime

cost. This generally implies a just-in-time compiler of some sort.

• Exploit the high level representation to enable automatic parallelization and other

optimizations.
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To be clear, Parakeet’s goal isn’t to speed up all of Python, though some very excel-

lent work has been done in that area already [15]. Rather, the great thing about many

numerically intensive algorithms is that they are remarkably simple. You might get

away with using some subset of Python for implementing the core of your computation,

and still feel like you are coding at a high level of abstraction (so long as the boundary

between the numerical language subset and the rest of Python is mostly seamless).

2.2 The Parakeet Language

In this section, we introduce the Parakeet language. We keep the discussion here

brief; the purpose is to situate the reader with the rough idea of what programming in

Parakeet looks like. In the next section we walk through a detailed example of how a

program is compiled.

The idea for Parakeet was originally to provide a JIT compiler for all of NumPy.

This proved to be overly ambitious, as NumPy wraps a very large collection of libraries

and Parakeet would have to support all of them. We thus stepped back and carved out

a general-purpose subset of NumPy that is both likely to be useful in high performance

computing and manageable to support. A key aspect of NumPy that we use in parakeet

is its array data type. NumPy arrays form the main data type used throughout Parakeet

Using Parakeet can be as simple as calling a Parakeet library function from within

existing Python code. For example, the first call to parakeet.mean(matrix) will com-

pile a small program to efficiently average the rows of a matrix in parallel. Repeated

calls will not incur further compilation costs. If a Python function is wrapped with the

@parakeet.jit decorator, then its body will be parsed by Parakeet and prepared for

later compilation. When such a function is finally called, its untyped syntax will be

8



@parakeet.jit
def add1(x):

return x+1

Figure 2.1: Simple Parakeet Function

@parakeet.jit
def add1_map(x):

return parakeet.map(lambda xi: xi + 1, x)

Figure 2.2: Add 1 To Every Element of an Array

specialized for the types of the given arguments and then compiled and executed. For

example, consider the simple function shown in Figure 2.13.

If add1 is called with an integer argument, then it will be compiled to return an

integer result. If, however, add1 is later called with a floating point input then a new

native implementation will be compiled that computes a floating point result.

This example does not make use of any data parallel operators, which in Parakeet

we call adverbs (borrowing terminology from the Q programming language [17]). In

fact, it is possible to generate code with Parakeet using only its capacity to efficiently

compile loops and scalar operations. However, even greater performance gains can

be achieved through either the explicit use of data parallel operators or, commonly,

the use of constructs which implicitly generate data parallel constructs. For example,

if you were to call add1 with an array, then Parakeet would automatically generate a

specialized version of the function whose body contains a Map over the elements of x.

This can also be written explicitly, as shown in Figure 2.2.

In addition to its core adverbs Map, Reduce, and Scan, Parakeet also supports de-

rived adverbs. For example, the generalized outer product AllPairs is ultimately trans-

lated into to a nested pair of maps, but can be more covenient to use.

We use adverbs to provide a convenient place to parallelize and optimize user func-
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@parakeet.jit
def count_thresh(values, thresh):

n = 0
for elt in values:
n += elt < thresh

return n

Figure 2.3: Loopy Version of Parakeet Code to Sum The Number of Elements In An
Array Less Than a Given Threshold

tions. We discuss these optimizations and adverbs in general in Section 2.4. The Para-

keet source is available for download at http://github.com/iskandr/parakeet.

We are working toward an official, publicized release in the next few months.

2.3 Journey of a Function Through the Parakeet JIT

In this section, we follow a simple function on its journey through the Parakeet JIT

compiler to elucidate how Parakeet translates high level code into high performance,

native versions. The function we will compile is the count_thresh function shown

in Figure 2.3, which sums up the number of elements in an array less than a given

threshold. We use a loop in this example rather than an adverb for now, as our focus is

on the Parakeet compilation pipeline. We discuss adverbs later on in Section 2.4.

This function is simple, but it’s not an entirely contrived computation. For example,

it forms the core of a decision tree learning algorithm. Before breaking down how Para-

keet compiles count_thresh, let’s first look at how the original gets executed within

the standard CPython interpreter.

The first thing that happens to a function on its way to being executed is parsing. The

source of count_thresh gets read as a string of characters, tokenized, and then turned

into a structured syntax tree as shown in Figure 2.4.

A naive interpreter would then execute the syntax tree directly. Python achieves a
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FunctionDef(
name=’count_thresh’,
args=arguments(args=[Name(id=’values’), Name(id=’thresh’)],

vararg=None, kwarg=None, defaults=[]),
body=[
Assign(targets=[Name(id=’n’)], value=Num(n=0)),
For(target=Name(id=’elt’), iter=Name(id=’values’), body=[

AugAssign(target=Name(id=’n’), op=Add(),
value=Compare(left=Name(id=’elt’), ops=[Lt()],

comparators=[Name(id=’thresh’)]))]),
Return(value=Name(id=’n’, ctx=Load()))])

Figure 2.4: count thresh abstract syntax tree

minor performance boost by instead compiling to a more compact bytecode, as shown

in Figure 2.5.

The inefficiency of tree-walking interpreters (which evaluate syntax trees) compared

with bytecode execution is one of the reasons that Ruby has generally been slower than

Python. Though an improvement over a naive interpreter, trying to execute this byte-

code directly still results in terrible performance. If you inspect the behavior of the

above instructions, you’ll discover that they involve repetitive un-boxing and re-boxing

of numeric values in and out of their PyObject wrappers, wasteful stack manipulation,

and a lot of other very wasteful computations. If we’re going to significantly speed up

the numerical performance of Python code, it’s going to have run somewhere other than

the CPython bytecode interpreter.

2.3.1 What Does Parakeet Do?

Compared with the many other run-time compilation techniques that have been de-

veloped over the past decade, Parakeet is a relatively modest function-specializing com-

piler. If you want Parakeet to compile a particular function, then wrap that function with

the @jit decorator as shown in Figure 2.3. The job of @jit is to intercept calls into the
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0 LOAD_CONST 1 (0)
3 STORE_FAST 2 (n)

6 SETUP_LOOP 30 (to 39)
9 LOAD_FAST 0 (values)
12 GET_ITER
13 FOR_ITER 22 (to 38)
16 STORE_FAST 3 (elt)

19 LOAD_FAST 2 (n)
22 LOAD_FAST 3 (elt)
25 LOAD_FAST 1 (thresh)
28 COMPARE_OP 0 (<)
31 INPLACE_ADD
32 STORE_FAST 2 (n)
35 JUMP_ABSOLUTE 13
38 POP_BLOCK

39 LOAD_FAST 2 (n)
42 RETURN_VALUE

Figure 2.5: count thresh Python bytecode

wrapped function and then to initiate the following chain of events:

1. Translate the function into an untyped representation, from which we’ll later de-

rive multiple type specializations.

2. Specialize the untyped function for any argument types which get passed in.

3. Aggressively optimize the typed code, and translate abstractions such as tuples

and n-dimensional arrays into simple heap-allocated structures with low-level ac-

cess code.

4. Translate the optimized and lowered code into LLVM, which we use to perform

lower-level optimizations and to generate architecture-specific native code.

The @jit cannot be used on any arbitrary Python function to generate an efficient

version, since Parakeet is not a general-purpose compiler for all of Python. Parakeet only
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supports a handful of Python’s data types (numbers, tuples, slices, and NumPy arrays –

notably not dictionaries). To manipulate these values, Parakeet lets the programmer use

any of the usual math and logic operators, along with some, but not all, of the built-in

functions. Functions such as range are compiled to deviate from their usual behavior

– in Python their result would be a list but in Parakeet such functions create NumPy

arrays.

If your performance bottleneck doesn’t fit neatly into Parakeet’s restrictive universe

then you might benefit from a faster Python implementation such as PyPy, or alterna-

tively you could outsource some of your functionality to native code via Cython.

Let’s continue with the count_thresh compilation example.

2.3.2 From Python into Parakeet

When trying to extract an executable representation of a Python function, we face

a choice between using a Python syntax tree or the lower-level bytecode. There are

legitimate reasons to favor the bytecode – the syntax tree isn’t saved anywhere and must

instead be regenerated from source. However, the bytecode is littered with distracting

stack manipulation and doesn’t preserve some of the higher-level language constructs.

Though it’s a better starting point than the bytecode, an ordinary syntax tree is still

somewhat clunky for program analysis and transformation. So, Parakeet starts with a

Python AST and quickly slips into something a little more domain specific.

2.3.3 Untyped Representation

In Figure 2.6, we show the count_thresh function’s internal representation in Para-

keet. Notice that the loop counter n has been split apart into three distinct names: n, n2,
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def count_thresh(values, thresh):
n = 0
for i in range(0, len(values), 1):

(header)
n_loop <- phi(n, n2)

(body)
elt = values[i]
n2 = n_loop + (elt < thresh)

return n_loop

Figure 2.6: count thresh Untyped Intermediate Representation

and n_loop. This is because we translate the program into Static Single Assignment

form. SSA is often used in compiler IRs because it allows for simplified analyses and

optimizations. The most important things to know about SSA are:

• Every distinct assignment to a variable in the original programs becomes the cre-

ation of distinct variable. This is similar in style to functional programming.

• At a point in the program where control flow could have come from multiple

places (such as the top of a loop), we explicitly denote the possible sources of a

variable’s value using a phi-node.

In Figure 2.7, we show a formal version of the entire IR syntax of Parakeet.

Another difference from Python is that Parakeet’s representation treats many array

operations as first-class constructs. For example, in ordinary Python len is a library

function, whereas in Parakeet it’s actually part of the language syntax and thus can

be analyzed with higher-level knowledge of its behavior. This is particular useful for

inferring the shapes of intermediate array values.
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statement ::= if e then statement+ else statement+

| while econd do statement+

| for x in range (estart, estop, estep) do statement+

| pattern = e
| return e

pattern ::= x | x[eidx] | pattern1, . . . , patternn

expression ::= x | const | prim(e1, . . . , en) | none
| e1 × e2 | proj(etuple, elt)
| [e1, . . . , en] | index(earray, eidx) | slice(estart, estop, estep)
| λx1, ... , xn.statement+

| Mapα(ftransform, e1, . . . , en)
| Reduceα(ftransform, fcombine, einit, e1, . . . , en)
| Scanα(ftransform, fcombine, femit, einit, e1, . . . , en)

Figure 2.7: Parakeet’s Internal Syntax

2.3.4 Type-specialized Representation

When you call an untyped Parakeet function, it gets cloned for each distinct set of

input types. The types of the other (non-input) variables are then inferred and the body

of the function is rewritten to insert casts wherever necessary.

A type-specialized version of count_thresh is given in Figure 2.8. Observe that the

function has been specialized for input types array1(float64), float64 and that its

return type is known to be int64. Furthermore, the boolean intermediate value produced

by checking whether an element is less than the threshold is cast to int64 before getting

added to n2.

If you use a variable in a way that defeats type inference (for example, by treating it

sometimes as an array and other times as a scalar), then Parakeet treats this as an error.

15



def count_thresh(values :: array1(float64), thresh :: float64) =>
int64:
n :: int64 = 0 :: int64
shape_tuple :: tuple(int64) = values.shape
for i in range(0, shape_tuple[0], 1):

(header)
n_loop <- phi(0 :: int64, n2)

(body)
elt :: float64 = values[i]
less_tmp :: bool = elt < thresh
n2 :: int64 = n_loop + cast<int64>(less_tmp)

return n_loop

Figure 2.8: count thresh Type-Specialized Representation

2.3.5 Optimization

Type specialization already gives us a big performance boost by enabling the use of

an unboxed representation for numbers. Adding two floats stored in registers is orders

of magnitude faster than calling Python’s __add__ operation on two PyFloatObjects.

However, if all Parakeet did was specialize your code it would still be significantly

slower than programming in a lower-level language. Parakeet includes many standard

compiler optimizations, such as constant propagation, common sub-expression elimina-

tion, and loop invariant code motion. Furthermore, to mitigate the abstraction cost of

array expressions such as 0.5*array1 + 0.5*array2 Parakeet fuses array operators,

which then exposes further opportunities for optimization. In this case, however, the

computation is simple enough that only a few optimizations can meaningfully change

it, as shown in Figure 2.9.

In addition to rewriting code for performance gain, Parakeet also ”lowers” higher-

level constructs such as tuples and arrays into more primitive concepts. Notice that the

code in Figure 2.9 does not directly index into n-dimensional arrays, but rather explicitly

computes offsets and indexes directly into an array’s data pointer. Lowering complex

language constructs simplifies the next stage of program transformation: translating
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def count_thresh(values :: array1(float64), thresh :: float64) =>
int64:
shape_tuple :: struct(int64) = values.shape
data :: ptr(float64) = values.data
base_offset :: int64 = values.offset
for i in range(0, shape_tuple.elt0, 1):

(header)
n_loop <- phi(0 :: int64, n2)

(body)
offset :: int64 = offset + i
elt :: float64 = data[offset]
less_tmp :: bool = elt < thresh
n2 :: int64 = n_loop + cast<int64>(less_tmp)

return n_loop

Figure 2.9: count thresh Optimized Parakeet Version

from Parakeet into LLVM.

2.3.6 LLVM

LLVM is a well-engineered compiler toolkit which that comes with its a powerful

arsenal of optimizations and generates native code for a variety of platforms. To get

LLVM to finish the job of compiling count_thresh, we need to translate into LLVM’s

assembly language, shown in Figure 2.10. Once the Parakeet representation has been

typed, optimized, and stripped clean of abstractions, the translation to LLVM turns out

to be surprisingly easy.

2.3.7 Generated x86 Assembly

Once we pass the torch to LLVM, Parakeet’s job is mostly done. LLVM performs

its own array of optimization passes on the assembly version we give to it. Then LLVM

uses a platform-specific back-end to translate from its assembly language into native

instructions. And thus, at last, we arrive the native code shown in Figure 2.11.
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%ArrayT = type { double*, %PyCStructType*, %PyCStructType*,
i64, i64 }

%PyCStructType = type { i64 }

define i64 @count_thresh(%ArrayT* nocapture %values.21,
double %thresh.22) nounwind {

entry:
%shape_ptr = getelementptr %ArrayT* %values.21, i64 0, i32 1
%shape_value = load %PyCStructType** %shape_ptr, align 8
%data_ptr = getelementptr %ArrayT* %values.21, i64 0, i32 0
%data_value = load double** %data_ptr, align 8
%offset_ptr = getelementptr %ArrayT* %values.21, i64 0, i32 3
%offset_value = load i64* %offset_ptr, align 8
%elt0_ptr = getelementptr %PyCStructType* %shape_value,

i64 0, i32 0
%elt0_value = load i64* %elt0_ptr, align 8
%enter_cond = icmp sgt i64 %elt0_value, 0
br i1 %enter_cond, label %loop_body, label %after_loop

loop_body: ; preds = %entry, %loop_body
%n_loop.2.0 = phi i64 [ %add_result5, %loop_body ], [ 0, %entry ]
%i.2.0 = phi i64 [ %incr_loop_var, %loop_body ], [ 0, %entry ]
%add_result = add i64 %i.2.0, %offset_value
%elt_pointer = getelementptr double* %data_value, i64 %add_result
%elt = load double* %elt_pointer, align 16
%less_result = fcmp olt double %elt, %thresh.22
%less.2_val.cast_int64 = zext i1 %less_result to i64
%add_result5 = add i64 %less.2_val.cast_int64, %n_loop.2.0
%incr_loop_var = add i64 %i.2.0, 1
%exitcond = icmp eq i64 %incr_loop_var, %elt0_value
br i1 %exitcond, label %after_loop, label %loop_body

after_loop: ; preds = %loop_body, %entry
%n_loop.2.1 = phi i64 [ 0, %entry ], [ %add_result5, %loop_body ]
ret i64 %n_loop.2.1

}

Figure 2.10: count thresh LLVM Assembly Version
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count_thresh:
;; %entry

movq 8(%rdi), %rax
movq (%rax), %r8
xorl %eax, %eax
testq %r8, %r8
jle .LBB0_3

;; %loop_body.preheader
movq 24(%rdi), %rax
movq (%rdi), %rdx
leaq (%rdx,%rax,8), %rdx
xorl %eax, %eax
.align 16, 0x90

;; %loop_body
.LBB0_2:

ucomisd (%rdx), %xmm0
seta %cl
movzbl %cl, %esi
addq %rsi, %rax
addq $8, %rdx
decq %r8
jne .LBB0_2

.LBB0_3:
ret

Figure 2.11: count thresh x86 Assembly Version
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def numpy_count_thresh(values, thresh):
return np.sum(values < thresh)

Figure 2.12: count thresh NumPy Assembly Version

CPython NumPy Parakeet
3.7205s 0.0036s 0.0025s

Table 2.1: Execution Time of different versions of count thresh

Notice that we end up with the same number of machine instructions as we originally

had Python bytecodes. It’s safe to suspect that the performance might have somewhat

improved.

2.3.8 Execution Times

In addition to benchmarking against the Python interpreter (an unfair comparison

with a predictable outcome), let’s also see Parakeet stacks up against an equivalent func-

tion implemented using NumPy primitives, shown in Figure 2.12.

On 1 million randomly generated inputs, the average the time over 5 runs each of

the Python, NumPy, and Parakeet versions took is given in Table 2.1.

Parakeet is about about 1500 times faster than CPython and even manages to edge

out NumPy by a safe margin. However, the NumPy code in Figure 2.12 is much more

compact than the explicit loop we’ve been working with throughout this post.

In order to allow Parakeet to compile programs that look more like the NumPy ver-

sion of count_thresh, we add adverbs to the Parakeet language. In fact, adverb use

is encouraged not only because it allows the programmer to write code in a high-level

array-oriented style. In addition, Parakeet is able to optimize and parallelize adverbs in

ways that it cannot do on loops.
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2.4 Adverbs

The utility of data parallel language constructs has been demonstrated by their use in

a long history of collection-oriented languages [72], as well as more recently in embed-

ded domain-specific languages [20, 75] and distributed computing frameworks [32, 88].

Parakeet uses higher order data parallel array operators, more succinctly named ad-

verbs, for several important purposes. First, adverbs simplify the expression of an array-

oriented programming style by providing language-level constructs for structured array

traversal. Second, they allow the Parakeet compiler to perform specialized optimizations

on array expressions. Lastly, adverbs are the basic unit which enables parallel execution

within Parakeet.

Parakeet’s adverbs are exposed to the user as the following Python functions:

# transform elements of the input arrays to create a new array
map(transform, a, ..., z, axes = axes)

# combine the elements of the input array into a single value
reduce(combine, x, axes = axes, init = init)

# collect all the sub-results as you combine the elements of x
scan(combine, x, axes = axes, init = init)

# transform all pairs of elements of the two inputs
allpairs(transform, x, y axes = axes)

Figure 2.13: Adverbs in Python

Each adverb takes as its first argument a parameterizing function, some number of

arrays to be transformed, and an optional axes argument. An adverb’s axes indicate

along which dimension the adverb should traverse each of its array arguments. For ex-

ample, applying parakeet.mean to a matrix along axis 0 would yield the average row,

whereas the mean along axis 1 is the average column. Internally, each adverb is repre-

sented with a fixed sequence of axes, thus the Python values used for the axes argument
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must be statically/syntactically computable. The two combining adverbs, Reduce and

Scan, both also take init arguments, which are the initial values before any array ele-

ments have been incorporated into the result.

A programmer uses these adverbs either directly as Python functions or indirecly

either through Parakeet’s library functions or due to the implicit insertion of Map op-

erators as part of the representation of elementwise operations. For example, imagine

a programmer were to implement the following function to compute the squared Eu-

clidean norm of a vector.

@parakeet.jit

def sqr_norm(x):

return parakeet.sum(x**2)

Listing 2.1: Definition norm using implicit adverbs

The library function parakeet.sum is implemented in terms of the Reduce adverb.

Ignoring some details (such as the axis of iteration), the definition of sum would look

like: parakeet.reduce(lambda acc, xi: acc+xi, x). In addition, the elementwise

exponentiation x**2 will be transformed into a Map when the function is converted into

Parakeet’s typed representation. Thus, the same function could, for the sake of peda-

gogy, be made more explicit in its use of adverbs had it been written like:

@parakeet.jit

def sqr_norm(x):

squares = parakeet.map(lambda xi: xi**2, x)

return parakeet.reduce(lambda acc, xi: acc+xi, squares)

Listing 2.2: Definition norm using explicit adverbs
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Though the meaning of adverbs is often intuitive, it is important to better formalize

their semantics, especially to clarify the handling of edge cases such as arguments of

different ranks. For example, since Parakeet treats array “broadcasting” as an implicit

use of adverbs, we would like the expression map(add, vector, 2.0) to yield the

same result as vector + 2.0. What does it mean to map a function over a vector and a

scalar? To properly describe the behavior of adverbs, we will first introduce two useful

type-level operations:

1. JτK�: Turns an n dimensional array into an n − 1 dimensional array, with scalars

treated as if they were 0 dimensional.

2. JτK�: Collect a set of lower rank n dimensional values into an n + 1 dimensional

array.

A more formal definition of these operations is given in Figure 2.14.

Rank Decrease

JσK� = σ, where σ is a scalar type
Jarray(σ, 1)K� = σ
Jarray(σ, k)K� = array(σ, k − 1)
Jτ1 × . . .× τnK� = Jτ1K� × . . .× JτnK�

Rank Increase
JσK� = array(σ, 1)
Jarray(σ, k)K� = array(σ, k + 1)
Jτ1 × . . .× τnK� = Jτ1K� × . . .× JτnK�

Figure 2.14: Type semantics of array element operations
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Untyped representation
Mapα(ftransform, e1, . . . , en)

Simplified semantics
Map(f, e1, . . . , en)[i] ≡ f(e1[i], . . . , en[i])

Typed representation
Map(ftransform, e1 : τ1 . . . en : τn) : JτoutK�

where
ftransform : Jτ1K� . . . JτnK� → τout

Figure 2.15: Internal Representation of Map

2.4.1 Map

Map is the simplest and most common data parallel operator, and its internal rep-

resentation is very similar to the external API exposed in Python. To Map a function

ftransform over n array arguments means to extract their elements, call ftransform with each

n-tuple of elements, and to collect the results in an array.

The axes argument from Map’s external interface is preserved as the α parameter of

the internal representation. This parameter tells the Map which axis of each of the input

arguments be iterated over. For example, imagine that a user wants to map across every

3D element along the second dimension of a single 4D array X . In this case, the user

would set the axes parameter to be [1], as dimensions are 0-indexed and there is only

one array. Every argument to an adverb must have the same number of elements along

its axis of iteration (unless it is a scalar).
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2.4.2 Reduce

The most well-known Reduce is probably the sum operation, which adds up all the

elements of an array. In general, a Reduce takes a function argument ⊕ and returns

the results of applying ⊕ iteratively to an accumulated value and each element of the

array. The accumulated value is initialized to the Reduce’s argument einit. A sum of a

1D array can be represented by a Reduce with addition as the ⊕ function, and 0 as the

initial accumulator value. To enable pervasive parallelization we assume that the binary

operator ⊕ is both commutative and associative. If a programmer wishes to expresses a

Reduce-like computation which would be invalid if parallelized, they must do so using

an explicit loop instead.

The internal representation of Reduce is slightly more complicated than its external

interface. Whereas in Python Reduce takes only one function argument, internally

it is represented as using both ftransform (which is a mapping from n arrays to a single

accumulator type), as well as a binary combining operator ⊕.

Untyped representation
Reduceα(ftransform,⊕, einit, e1, . . . , en)

Simplified semantics
Reduce(f,⊕, einit, e1, . . . , en) ≡
einit ⊕ f(e1[0], . . . , en[0])⊕ · · ·⊕
f(e1[m− 1], . . . , en[m− 1])

Typed representation
Reduceα (ftransform,⊕, einit : τacc, e1 : τ1 . . . en : τn) : τacc

where
ftransform : Jτ1K� . . . JτnK� → τacc

⊕ : (τacc, τacc)→ τacc

Figure 2.16: Representation and Semantics of Reduce
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The extra higher order parameter ftransform is used during type specialization for the

insertion of any coercions necessary to convert inputs to the same type as the result of

⊕. Additionally, Parakeet use this extra function when combining adverbs that share

iteration spaces to remove the overhead of having multiple loops [80]. The function

parameter of a Map applied to the input of Reduce can be inlined directly into ftransform.

For example, the inner product of a matrix multiplication can be represented by a single

Reduce that has as its ftransform function the multiplication of the rows’ and columns’

elements, and as its ⊕ function addition of these partial results.

2.4.3 Scan

A Scan is reminiscent of a Reduce, but rather than returning a single accumu-

lated result, it instead collects every partial accumulator value into an array. While the

Scan operator may at first seem like a strange choice for inclusion in Parakeet’s core

primitives, it has been shown to be very useful as a building block in parallel algo-

rithms [13, 69]. It can, for example, be used to implement any cumulative operators (i.e.

cumsum and cumprod), operations involving neighboring elements of data, and certain

sorting algorithms.

In addition to Reduce’s input transformer ftransform, Scan is also equipped with an

output transformer femit. For example, when computing the cumulative argmax of an

array, the accumulated value will be a pair containing both a maximum value and the

index of that value. The final result of the computation, however, should be an array of

indices. The job of femit is to extract from the accumulator whatever information should

be stored by Scan in an array. The reason Parakeet isolates the combining operator ⊕

from ftransform and femit is that it’s important for ⊕ to have a uniform type signature. If
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Untyped representation
Scanα(ftransform,⊕, femit, einit, e1, . . . , en)

Simplified semantics
Scan(f,⊕, g, einit, e1, . . . , en)[i] =
g(einit ⊕ · · · ⊕ f(e1[i], . . . , en[i])

Typed representation
Scanα (ftransform,⊕, femit, einit : τacc, e1 : τ1 . . . en : τn) : JτoutK�

where
ftransform : Jτ1K� . . . JτnK� → τacc

⊕ : (τacc, τacc)→ τacc

femit : τacc → τout

Figure 2.17: Internal Representation of Scan

the inputs and output of ⊕ weren’t all the same type, it would not in general be possible

to parallelize Scan and Reduce, which brings us to our next topic.

2.4.4 Parallelization of Adverbs

The most dramatic gain Parakeet gets from the pervasive use of adverbs is the ability

to predictably parallelize code without any form of loop analysis. Since adverbs are

defined as declarative data transformations, they don’t specify the order in which their

operations are to be performed. The implementation of an adverb is free to split up the

iterations of an adverb among different threads of execution. Parakeet parallelizes the

outermost adverb in any nesting of adverbs in this way, and sequentializes any inner

adverbs into loops. This alone results in a very large performance gain over NumPy on

general-purpose array code.
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Chapter 3

Tiling

When the data access pattern of a program involves significant locality – temporal,

spatial, or both – this enables a number of different performance optimizations. Tempo-

ral locality enables much better data cache behavior, as accesses to a data item after the

first can result in relatively cheap cache hits as opposed to expensive reads from RAM.

Spatial locality can also improve cache performance, as data is stored in caches in units

called cache lines that are typically on the order of 16 words of memory. When data is

accessed in a pattern that uses entire cache lines at a time, all but the first read to an item

in the line is serviced by a cheap cache hit. Locality is also important for good use of

processor registers. It is often very beneficial for performance when data is reused re-

peatedly in the inner loop of a computation to load a small amount of data into registers

and then to perform the inner loop on the registers. This way, every access after the first

involves using a register as opposed to a trip to slower levels of the memory hierarchy.

Locality can also make SIMD vectorization possible [3, 89], and can enable better use of

software-managed fast memories such as shared memory in GPUs [67] or local memory

in Cell processors [35]. Chen et al. recently presented a modified MapReduce system
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void mm(double *A, double *B, double *C, int m, int n, int rowLen) {
int i, j, k;
for (i = 0; i < m; ++i) {
for (j = 0; j < n; ++j) {

C[i*n + j] = 0.0;
for (k = 0; k < rowLen; ++k) {

C[i*n + j] += A[i*rowLen + k] * B[j*rowLen + k];
}

}
}

}

Figure 3.1: Untiled Matrix Multiply

that uses tiling for better distributed computing performance [25].

In this chapter, we discuss in detail two such locality optimizations: cache tiling and

register tiling. In addition, we describe tiled adverbs, a new set of adverbs we introduce

to group adverb computations into locality-friendly pieces.

3.1 Cache Tiling

Cache tiling is a classic performance optimization that exploits temporal reuse of

data to get maximal benefit from data caches [51, 82]. Many numerical computations,

including e.g. dense matrix multiplication, involve significant data reuse.

For example, consider the C code for matrix multipication given in Figure 3.1. This

is often referred to in the literature as the “naive C” version – i.e., the version one would

write most naturally when not thinking explicitly of tuning for performance.

If the A and B matrices are large, then this code will have poor cache behavior and

thus suboptimal performance. To understand why, consider the data access pattern. The

columns of B are accessed repeatedly, and thus could benefit from being cached to lower

their access times. However, between each repeated access to a specific element of B, the

entire rest of B is accessed, in addition to an entire row of both A and the output matrix
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Figure 3.2: Untiled Matrix Multiply, Data Accessed Per Row of Left Matrix

C. This set of data is shown in yellow in Figure 3.2. Since per hypothesis B is large and

doesn’t fit entirely in cache, each column of B will be evicted from the cache between

each use, and it will have to be read from a slower level of the memory hierarchy.

A better access pattern is one that accesses pieces (called tiles) of the input data at a

time such that as much data as possible remains resident in cache between repeated uses.

Consider the visualization of a tiled organization of matrix multiply in Figure 3.3. The

rows of the A matrix are grouped into tiles, and each A tile is entirely consumed before

moving onto the next one. An analagous grouping is done with B’s columns. Finally, the

iteration through each group of rows and columns is broken up into tiles as well. Code

for this tiled version is given in Figure 3.4, where we see that each loop in the original

code is broken up into both an outer loop that iterates across tiles and an inner loop that

iterates across elements of the current tile.

Consider the data access pattern in this version. Now rather than the entire matrix

B being accessed between each access to a given element of B, only an entire tile of B

is accessed. If the tile size is small enough that this tile fits in cache, repeated accesses

to elements of B will be much faster in this version as the elements will stay resident in

cache. The tile size that works best depends on the size of the cache, the size of the data,

and the particular code being executed.

Cache tiling need not be for a single level of cache; tiling loops can be added for each

level of cache in which to keep data resident between accesses. In addition, tiling can

be used to keep data resident in other levels of the memory hierarchy such as registers.
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Figure 3.3: Tiled Matrix Multiply, Data Accessed Per Row of Left Matrix Tile

const int tileSize = 60;

void mm(double *A, double *B, double *C, int m, int n, int rowLen) {
int it, jt, kt, i, j, k;
for (it = 0; it < m; it += tileSize) {
for (jt = 0; jt < n; jt += tileSize) {

for (kt = 0; kt < rowLen; kt += tileSize) {
for (i = it; i < it + tileSize; ++i) {

for (j = jt; j < jt + tileSize; ++j) {
C[i*n + j] = 0.0;
for (k = kt; k < kt + tileSize; ++k) {

C[i*n + j] += A[i*rowLen + k] * B[j*rowLen + k];
}

}
}

}
}

}
}

Figure 3.4: Tiled C Matrix Multiply with Constant Tile Size
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3.2 Register Tiling

Register tiling is very similar in spirit to cache tiling, but instead of tiling to get

better reuse of data in caches, we tile so as to get better reuse of data in processor

registers [19, 55]. Even though L1 data caches have very low latencies compared to

RAM, their latencies are still considerably worse than processor registers. Thus, for

tight inner loops it can be very beneficial for performance to tile data for processor

registers as well.

Tiling for registers involves similar steps to cache tiling, but then requires further

compile-time optimizations to work. We still divide the input data into tiles, but we

have to fix these tile sizes at compile time. A typical Intel processor has roughly 16

floating point registers, and our goal is to have the inner loop fill as many of these

registers as possible without using any extras. This way, the compiler won’t have to

spill the registers onto the stack, which would defeat the purpose of the tiling procedure.

Reference code for a register tiled C implementation of matrix multiply is shown

in Figure 3.5. In this example, the register tile sizes for the two outer loops are each

3, while the register tile size for the inner loop is set to 1. Thus the outer loops sweep

across the rows of each of the A and B matrices 3 at a time, while the k loop that iterates

through the rows has step 1.

Recall from the cache tiling example in Figure 3.4 that there were 3 outer loops for

the tiles, and 3 inner loops to perform a miniature matrix multiply on the tiles. In register

tiling, we perform an additional compile-time optimization called loop unrolling on the

miniature matrix multiply’s loops [33]. Loop unrolling takes some number of iterations

of a loop and creates separate, explicit statements for each of these iterations rather than

leaving them in the loop. There are many benefits of loop unrolling, including reduced
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void register_tiled_mm(double *A, double *B, double *C,
int m, int n, int rowLen) {

int i, j, k;
for (i = 0; i < m - 2; i += 3) {
double *Arow = A + i*rowLen;
double *Orow = O + i*n;
for (j = 0; j2 < n - 2; j += 3) {

double *Brow = B + j*rowLen;
double *Ocol = Orow + j;
double c0, c1, c2, c3, c4, c5, c6, c7, c8;
c0 = c1 = c2 = c3 = c4 = c5 = c6 = c7 = c8 = 0.0;
for (k = 0; k < rowLen; ++k) {

double a0 = Arow[k];
double a1 = Arow[rowLen + k];
double a2 = Arow[2*rowLen + k];
double b0 = Brow[k];
double b1 = Brow[rowLen + k];
double b2 = Brow[2*rowLen + k];
c0 = c0 + (a0 * b0);
c1 = c1 + (a0 * b1);
c2 = c2 + (a0 * b2);
c3 = c3 + (a1 * b0);
c4 = c4 + (a1 * b1);
c5 = c5 + (a1 * b2);
c6 = c6 + (a2 * b0);
c7 = c7 + (a2 * b1);
c8 = c8 + (a2 * b2);

}
Ocol[0*n + 0] = Ocol[0*n + 0] + c0;
Ocol[0*n + 1] = Ocol[0*n + 1] + c1;
Ocol[0*n + 2] = Ocol[0*n + 2] + c2;
Ocol[1*n + 0] = Ocol[1*n + 0] + c3;
Ocol[1*n + 1] = Ocol[1*n + 1] + c4;
Ocol[1*n + 2] = Ocol[1*n + 2] + c5;
Ocol[2*n + 0] = Ocol[2*n + 0] + c6;
Ocol[2*n + 1] = Ocol[2*n + 1] + c7;
Ocol[2*n + 2] = Ocol[2*n + 2] + c8;

}
/* Cleanup code for the j tile goes here. */

}
/* Cleanup code for the i tile goes here. */

}

Figure 3.5: Register Tiled C Matrix Multiply
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loop overhead (updating the index variable and potential missed branch predictions) as

well as allowing better pipelined use of the processor’s functional units. All modern

production compilers such as gcc include support for loop unrolling.

In this case, we unroll the loops to try to keep the data they access explicitly in

registers. For example, in Figure 3.5, notice how we read the three values from each of

the A and B arrays’ tiles into the registers a0, a1, a2, b0, b1, and b2. Then these

registers are used instead of direct reads to the A and B array elements in memory.

In reality, after unrolling each of the statements computing a partial inner product

such as c0 = c0 + (a0 * b0) would still contain a direct read to memory after the

unrolling step. This statement would look like Ocol[0*n + 0] = Ocol[0*n + 0]

+ Arow[k] * Brow[k] after the unrolling step alone. In order to push the memory

accesses to before and after the inner loop as they are in the figure, we need to apply

another compile-time optimization called scalar replacement. Scalar replacement scans

a loop body for loop-invariant memory accesses and moves them outside the loop. It also

replaces repeated reads to a single memory location by one read that stores the value in

a register, and then repeated reads from the register. Scalar replacement succeds in

moving the stores to the output array to after the loop and the reads from the A and B to

be done only once.

The final version of the code as shown in Figure 3.5 is tiled perfectly for registers

after these two steps. We initialize the 9 running partial sums in registers before the

inner loop begins. We read each of the three values from the A and B arrays’ tiles into

6 registers, and then we compute the partial results of the inner product using these

registers. The running sum is kept entirely in registers for the duration of the loop. Only

after the loop are the partial sums added to the output array.
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X:

Tiled X: 0, 1, . . . , n,

Figure 3.6: Decomposition of an Array X Into n k-length Tiles Plus An s-length Strag-
gler Tile

3.3 Tiled Adverbs

In order to provide a convenient single abstraction for dividing adverb computations

into locality-friendly pieces, we introduce tiled adverbs, one for each regular adverb.

Tiled adverbs are a natural generalization of adverbs that, rather than applying their

transform function to each element of their input arrays, instead break their input arrays

up into groups of elements of bounded size called tiles and execute their transform func-

tions on these tiles. Users never program directly with tiled adverbs – they are strictly

internal syntax for use in locality optimizations. The Parakeet compiler automatically

generates them from untiled code via a tiling transformation described later in Chapter

4.

Figure 3.6 shows the decomposition of an array X into n tiles each of length k, with

an additional tile of length s that contains the leftover elements of X if its length isn’t

evenly divisible by k. Figure 3.7 gives a visualization of the semantics of tiled adverbs.

Tiled adverbs can take multiple arguments and axes just like regular adverbs, but we

omit them from this picture for clarity. As an example, a TiledMap decomposes its

input arguments into tiles, executes its transform function on each tile (including the

straggler tile), and then concatenates the results. The semantics of TiledReduces and

TiledScans are similarly direct generalizations of their untiled counterparts.

Tiled adverbs also take two versions of their transform functions – one specialized

for the specific tile size k (denoted fk), and one generic to array length (simply denoted
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• TiledMap(f , fk, X):

fk( 0) ++ . . .++ fk( n) ++ f( )

• TiledReduce(f , fk, ⊕, X):

fk( 0)⊕ · · · ⊕ fk( n)⊕ f( )

• TiledScan(f , fk, ⊕, X):

result0 := fk( 0)

resulti=1..n := last el. of resulti−1 ⊕ fk( i)

resultn+1 := last el. of resultn ⊕ f( )
return result0 ++ . . .++ resultn+1

Figure 3.7: Visual Semantics of Tiled Adverbs. For TiledMap, partial results of tiles
are concatenated with the ++ operator. For TiledReduce, partial results of tiles are
combined with the ⊕ function. The semantics presented for TiledScan are inherently
sequential as given, but a parallel algorithm is used internally.

f ) which is used to process the straggler tile. Knowledge that the fk transform function

will be called only on arrays of a fixed size allows Parakeet to optimize it in various

ways, for example by removing boundary checks. In addition, register tiling optimizes

the fk functions even further.

In the cases of TiledReduce and TiledScan, we make integral use of the fact that

the transform functions and combine functions for adverbs are separated, as discussed

in Section 2.4. The transform functions f and fk are the ones used to perform the

computation on each tile, while the combine functions⊕ are used to combine the results

of computing on each tile. Thus our internal representation for adverbs already lends

itself naturally to locality considerations.

Decomposing adverbs in this way allows the Parakeet compiler to perform both

cache tiling and register tiling via the same abstraction. The decomposition step alone

is enough to enable cache tiling, provided that the values of k are chosen properly such
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that the working set of each function call fits into cache. When Parakeet tiles for cache

locality, the values of k are left undetermined until runtime when an online search is

performed to choose good values for them.

By contrast, in order for Parakeet to use tiled adverbs to perform register tiling, we

fix the k values to small compile-time constants based on a heuristic that takes into ac-

count the number of registers on the target machine (discussed in more detail in Chapter

5). Parakeet then lowers fk into a loop and completely unrolls it, which is possible due

to its fixed length. Afterward, scalar replacement is applied to remove as many direct

memory accesses to the tile’s elements as possible, instead keeping them in registers.

Implementing tiling via tiled adverbs was relatively simple and required only roughly

500 lines of Python code. Tiled adverbs have simple, high level semantics that allowed

us to reason easily about the tiling process. By contrast, tiling methods that operate di-

rectly on loops, such as the polyhedral method, are typically much more cumbersome to

implement as they involve a lot of complex machinery [9, 11, 16, 42, 59]. We prefer to

take advantage of the high level of our intermediate representation to make optimization

easier rather than first lower the adverbs to loops and then perform a loop tiling pass on

them.

An additional benefit of tiling using tiled adverbs rather than tiling lowered loops

is that it allows us to perform adverb fusion on the tiled versions of the code. Adverb

fusion is a well known optimization technique to combine data parallel operators that

share iteration spaces [80]. Our tiling algorithm (as described in the next chapater) can

generate new adverbs for statements in a function that gets tiled, and adverb fusion can

help optimize these generated adverbs to be more efficient. Again, we could perform

such optimization on lowered loop versions of the adverbs. However, this would require

a complicated dependence analysis pass. Our adverb fusion optimization required only
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150 lines of Python to implement.

We envision more uses of tiled adverbs in the future, some of which we describe in

Chapter 9.
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Chapter 4

Algorithmic Tiling of Adverbs

In this chapter, we present our algorithm for automatically translating a Parakeet

function with adverbs into a version with tiled adverbs. The basic idea should be in-

tuitive: we wrap adverbs in tiled versions of themselves (say, a Map in a TiledMap),

and in this way use the tiled adverb to break up the original adverb’s computation into

locality-friendly pieces. The original adverbs become the transform functions of the

tiled adverbs, so that the original computation is performed on each tile.

Our approach will be first to present a subset of our algorithm that is able to tile

only simple nestings of functions that contain a single adverb statement each. After this

exposition, we expand our algorithm by adding machinery for tiling more general code.

4.1 Tiling Simple Adverb Nestings

In this section, we describe our algorithm for tiling simple nestings of functions with

adverbs, a formal description of which is given in Figures 4.5 and 4.6. In presenting our

algorithm for tiling simple adverbs nestings, we will use a program that sums the rows
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of a 2D matrix as a simple running example. Parakeet code for this is given in Figure

4.3. The iteration pattern through the elements of the array for this version is shown on

the left side of Figure 4.2 – the Reduce iterates over each row in its entirety before the

Map moves on to the next row.

Such a program has the potential to benefit from cache tiling due to the cache line

effect discussed in Chapter 3. For example, imagine that the data of variable Xs is laid

out such that adjacent elements of columns (rather than rows) are adjacent in memory.

In this case, whenever an element of the array is read (and thus brought into cache),

some number of neighboring elements in its column will also be brought into cache as

they’ll be in the same cache line. If the rows are at least roughly the size of the cache

however, these neighboring elements will have been evicted by the time it is their turn to

be read. Thus what could have been a cheap cache hit if the program were tiled instead

becomes a costly trip to RAM.

In Figure 4.1, we show the performance of the tiled Parakeet version of this pro-

gram as compared to a NumPy version. The top graph shows the runtimes of the row

sums program on data laid out in row-major order. This is the cache-friendly layout, as

adjacent elements in the cache lines are also adjacent elements read by the program’s

Reduce. The runtimes for all array sizes shown are below 0.5 seconds. Tiling doesn’t

do much to alter the runtime of this version, and Parakeet outperforms NumPy by a

factor of 2 on 20000x20000 arrays.

On the bottom of Figure 4.1, we show the performance of the program on data

laid out in column-major order. Here, the tiled Parakeet version performs significantly

better than the untiled version, with tiling speeding the computation up by 4.7X for a

20000x20000 array. The tiled version is 8.3X faster than the NumPy version.

Our strategy is to break up each adverb’s computation into cache-friendly pieces by
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(a) Runtimes with row-major layout

(b) Runtimes with column-major layout

Figure 4.1: Rows Sums Performance with Two Different Memory Layouts
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Figure 4.2: Iteration Order of Untiled (left) and Tiled (right) 2D Row Sums

def add2(a, b):
return a+b

def sum_row(row):
return parakeet.reduce(add2, row, init=0, axes=[0])

def sum_rows(Xs):
return parakeet.map(sum_row, Xs, axes=[0])

Figure 4.3: Sum Each Row Of A 2D Array

adding tiled versions of them. To break up the Map, we wrap the entire computation in

a TiledMap that groups the rows of the array into tiles. These row tiles are represented

on the right side of Figure 4.2 by the bold boxes around groups of rows. To tile the

Reduce, we then break these row tiles further via the use of a TiledReduce that divides

the rows in each row tile into a sequence of partial rows. The divisions added by the

TiledReduce are represented in the figure by the dashed lines. Thus the final tiles are

2D pieces of the original 2D array Xs. The iteration order through each of the final tiles

is represented by the arrows on the right side of Figure 4.2. Note that this procedure

lets us break every dimension of the input into pieces of bounded size. Thus regardless

of the size of any of the dimensions of the input array, with properly chosen tile sizes

we can ensure that the amount of data in the smallest tiles fits into whatever size cache

is being targeted for optimization. Another way of viewing this is that the working set

of the innermost computation fits entirely in cache, and thus its memory accesses to (1)

elements in the same cache lines; and (2) elements that are accessed multiple times are
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float -> float
def identity(x): return x

float -> float -> float
def add2(a, b):

return a+b

array1<float> -> float
def sum_row(row):

return reduce(identity, row, init=0, combine=add2, axes=[0])

array2<float> -> array1<float>
def sum_rows(XsRowTile):

return map(sum_row, XsRowTile, axes=[0])

array1<float> -> array1<float> -> array1<float>
def tiledadd2(accumulatorTile, reduceTile):

return map(add2, accumulatorTile, reduceTile, axes=[0,0])

array2<float> -> array1<float>
def tiledsum_row(XsTile):

return tiledreduce(sum_rows, XsTile, init=0,
combine=tiledadd2, axes=[1])

array2<float> -> array1<float>
def tiledsum_rows(Xs):

return tiledmap(tiledsum_row, Xs, axes=[0])

Figure 4.4: Type-Annotated Pseudocode for Tiled Sum Each Row of a 2D Array

much more efficient.

Pseudocode for the tiled version of this code is given below in Figure 4.4. Remember

that tiled adverbs aren’t exposed to users, and thus one need not (and indeed can not)

program in this way directly. In addition, recall that in Parakeet’s internal representation

of Reduces and Scans, these adverbs have additional slots for the transform and emit

functions. These default to the identity function, as shown in the figure.
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α ::= Axes along which an operator slices
each of its arguments

∆ ::= Maps variables to the list of axes remaining
of the original variables of which they
are a piece

ε ::= Maps variables to their number
of expansions

ε[x] ::= 0 if x /∈ ε

Jf = λx1, . . . , xn.bodyK 7−→ f ′ = λx1, . . . , xn.body′

where
∆[xi] = 〈0, 1, . . . , rank(xi)− 1〉
ε = {}
body′ = 〈〉
for each statement s ∈ body:

if s contains an adverb a:
s′ = s with a replaced by JaK∆,ε,f

body′ = body′ ++ 〈s′〉
else:
body′ = body′ ++ 〈s〉

JblockK∆,ε,g 7−→ 〈s′〉
where

if block contains a single statement s:
if s contains an adverb a:
s′ = s with a replaced by JaK∆,ε,g

else:
s′ = s

else:
Abort tiling transformation and
return original function g

Figure 4.5: Simplified Tiling Transformation Algorithm, Part 1
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Adverb Transformations

BuildTree(l, x1, . . . , xn, block) ::= Map〈0,...,0〉(args, λargs.
Map〈0,...,0〉(args, λargs.
. . .

Map〈0,...,0〉(args, λargs.block) . . .))
where
args = x1, . . . , xn
number of Maps = l

JMapα(v1, . . . , vn, f)K∆,ε,g 7−→ TiledMapα′ (v1, . . . , vn, f
↑)

where
x1, . . . , xn = args(f)
ε′[xi] = ε[vi] + 1
α′i = ∆[vi][αi]
∆′[xi] = ∆[vi] with element

∆[vi][αi] removed
If f contains adverbs,
f ↑ = λx1, . . . , xn.Jbody(f)K∆′,ε′,g

Otherwise,
f ↑ = g

JReduceα(v1, . . . , vn, f,⊕)K∆,ε,g 7−→ TiledReduceα′(v1, . . . , vn, g,⊕↑)
where
α′i = ∆[vi][αi]
l = maxi(ε[vi])
⊕↑ = BuildTree(l, args(⊕), body(⊕))

JScanα(v1, . . . , vn, f,⊕)K∆,ε,g 7−→ TiledScanα′(v1, . . . , vn, g,⊕↑)
where
α′i = ∆[vi][αi]
l = maxi(ε[vi])
⊕↑ = BuildTree(l, args(⊕), body(⊕))

Figure 4.6: Simplified Tiling Transformation Algorithm, Part 2
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4.1.1 Algorithm Walkthrough using 2D Row Sums as an Example

In this section, we break down the formal algorithm description by describing all

of its parts as applied to tiling the program in Figure 4.3. The purpose of this section

is largely to provide clarity to the formal description given in the figures. A more in-

formal discussion that includes justifications for the algorithm’s design choices follows

in Section 4.1.2. Our tiling algorithm is called with a top-level function as its input.

Throughout this exposition, we refer to this initial function as the outermost function,

and we refer to its arguments as the outermost function arguments or outermost argu-

ments. In the current example, the outermost function is the sum_rows function in Figure

4.3.

• α. We use the variable α to compactly represent the axes parameter of both

regular and tiled adverbs. In our example in Figure 4.3, both the Map and the

Reduce have axes = [0], and so α = 〈0〉 for both of them. Thus the Map iter-

ates across the rows, and the Reduce iterates across the elements of each row.

• ∆. The ∆ variable stores a mapping from program variables to the dimensions

remaining of the outermost arguments of which they are a part. For example, the

row variable in the sum_row function is a 1D row that is a part of the outermost

argument Xs. This 1D row has had the 0th dimension of Xs removed by the itera-

tion of the Map over that dimension in sum_rows. Thus ∆[row] is equal to the list

〈1〉, as only the 1st dimension of Xs remains out of the original dimensions 〈0, 1〉

(we use the notation 〈〉 to represent a list). We use this information to translate the

axes parameters of the original adverbs into those used for the tiled adverbs. We

expand on this when we discuss the steps of the algorithm that tile adverbs.

• ε. The ε variable is another mapping, this time from program variables to the
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number of times they were an argument to a tiled adverb. This includes the number

of times that the variables of which they are a sub-part were arguments to tiled

adverbs. We call this the number of times that the variable was expanded. To

continue the example, we assign ε[row] = 1 for the row variable in the sum_row

function, as Xs was expanded once by the Map in the sum_rows function and row

is a part (viz. a row) of Xs. This information is used in generating tiled combine

functions for TiledReduces and TiledScans. We set ε[x] = 0 when x /∈ ε.

• Jf = λx1, . . . , xn.bodyK. The JK operator represents a call to some step of the

tiling algorithm on some piece of syntax. In the case of this step in the algorithm,

the call is on an entire outermost function f , and in our example, this outermost

function is the sum_rows function in Figure 4.3. The compiler calls the tiling

algorithm via this entrypoint, after type-specializing sum_rows for its specific ar-

guments (i.e a single 2D array of floats). The algorithm sets up the values of ∆[xi]

for each input argument xi to be the list 〈0, 1, . . . , rank(xi)〉, where by rank we

mean the variable’s dimensionality. The reason is that each outermost argument

has all of its dimensions remaining. In the example, ∆[Xs] is set to 〈0, 1〉, as Xs is

2D. We also set the ε map to be empty, as no variables have yet been tiled. Then,

for each statement in sum_rows’s body, we tile any adverbs in the statement using

these values of ∆ and ε. The only statement in sum_rows is the one that returns

the call to the Map, and this Map is recursively tiled. If there are no adverbs

in a statement, we keep the statement unchanged. We also pass along the whole

outermost function sum_rows to subsequent parts of the algorithm, as we eventu-

ally need to splice sum_rows in as the innermost computation that consumes the

smallest tiles. The tiled version of sum_rows with the TiledMap replacing the

Map (shown in Figure 4.4 as the tiledsum_rows function) is then returned as the
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final output of the tiling algorithm.

• JblockK∆,ε,g. This step processes an entire block of statements, and is called as

a sub-step of the tiling procedures for the adverbs to perform the recursive tiling

of adverbs in transform functions. It takes as input parameters the block, as well

as the current values of ∆ and ε and the outermost function g. Since our sim-

plified algorithm can only handle tiling transform functions that contain a single

statement it checks that the block meets this constraint; if not then the tiling pro-

cedure is aborted and the original untiled function g is returned. If there is a single

statement with an adverb, the procedure continues by calling a function to tile the

adverb. If the single statement has no adverb, the single statement is returned un-

changed. In our example, this step is called on the body of the sum_row function

in order to allow its Reduce to be recursively tiled.

• BuildTree(l, x1, . . . , xn, block). BuildTree is a helper function that is used in gen-

erating a combine functions for TiledReduces and TiledScans. It wraps a block

of code in l Maps, each of which takes as input the same variables x1, . . . , xn and

iterates over axis 0 on each such input variable. The purpose of BuildTree is to

peel off extra dimensions added to partial results by tiling, and it is explained in

more detail in the discussion of tiling Reduces.

• JMapα(v1, . . . , vn, f)K∆,ε,g. This step tiles a Map expression, returning a TiledMap to

be added to the tiled version of the program we generate. In the example, it takes

the map(sum_row, Xs, axes=[0]) expression in the sum_rows function, and re-

turns the tiledmap(tiledsum_row, Xs, axes=[0]) expression generated for

the tiledsum_rows function shown in Figure 4.4. Let us walk through the steps

of this function one by one as they pertain to tiling this Map.
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– x1, . . . , xn = args(f ). This is simply a convenience definition - each xi is an

input argument to the function f .

– ε′[xi] = ε[vi] + 1. Here, we add the arguments to the Map’s transform

function sum_row to a new version of the ε map that tracks the number of

times each of these variables has been expanded. This new version ε′ will be

used in recursively tiling sum_row. For each argument xi to sum_row, we add

1 to the number of expansions ε[vi] of the respective argument to the Map.

Thus we set ε′[row] = ε[Xs] + 1 = 1. This way, the number of expansions for

a variable is maintained as the total number of expansions of the outermost

argument of which it is a part.

– α′i = ∆[vi][αi]. Here we generate the axes parameter α′ for the TiledMap.

To do this, for each index i we pull out the list of remaining dimensions in

the ∆ map for the input variable vi to the Map. We then index into this list

with the axis parameter αi of the original Map. In our example, we look up

∆[Xs] and find the list 〈0, 1〉. Next, we index into this list at the value of the

axes parameter for this variable, i.e. α0 = 0. Thus we set α′0 =

∆[Xs][α0] = 0. This translates the local axis variable of the Map to a global

axis parameter suitable for the TiledMap. Since this is the only input vari-

able, α′ = 〈0〉, and we use α′ as the axes parameter for the generated

TiledMap.

– ∆′[xi] = ∆[vi] with element ∆[vi][αi] removed. Next we generate an up-

dated ∆′ that removes the dimensions from each variable vi that are sliced

away by the Map. In our example, the Map in sum_rows slices away dimen-

sion 0 of the Xs variable, passing the rows one at a time into its transform

function sum_row. We thus need to generate an updated ∆′ that reflects these
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missing dimensions for use in tiling sum_row. We thus remove ∆[Xs][α0] =

0 from ∆[Xs] = 〈0, 1〉, and are left with 〈1〉. We thus set ∆′[row] = 〈1〉.

As expected, we see that this value for row stores the information that row

consists only of the 1st dimension of the variable of which it is a part, viz. Xs.

– Finally, we check whether the transform function sum_row contains any ad-

verbs. Since it does, we recursively tile its body via a call to the block

tiling function, using the updated parameters ∆′ and ε′ and still passing

the outermost function sum_rows through. The result of this tiling call on

sum_row’s body becomes the body of the transform function of the gener-

ated TiledMap. If the transform function f didn’t contain any adverbs, we

would be finished tiling the tree. In this case we would use the original func-

tion g as the transform function of the TiledMap, and the algorithm would

terminate.

• JReduceα(v1, . . . , vn, f,⊕)K∆,ε,g. This step tiles a Reduce expression, returning

a TiledReduce. In our example, it takes as input the

reduce(identity, row, init=0, combine=add2, axes=[0])

expression in the sum_row function and returns the tiled version

tiledreduce(sum_rows, XsTile, init=0, combine=tiledadd2, axes=[1])

used in the tiledsum_row function shown in Figure 4.4. Note that the tiling algo-

rithm always terminates upon reaching a Reduce, splicing in the outermost func-

tion g (sum_rows in our example) as the transform function of the TiledReduce.
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The reason for this is explained in the next section. Again, let’s walk through each

of its substeps.

– α′i = ∆[vi][αi]. This step generates the axes parameter α′ of the TiledReduce in

exactly the same way as we did for the TiledMap as described in the pre-

vious step. In our example, we set α′0 = ∆[row][α0] = 〈1〉[0] = 1. Thus,

we set the axes parameter for the tiled version of row in the TiledReduce to

be 1, not 0 as in the original reduce. The reason is that we need to translate

the local axis of the original Reduce (which only operated on 1D rows at a

time) into a global axis which picks the right dimension out of an entire 2D

tile.

– l = maxi(ε[vi]). Here, we find the maximum number of expansions for any

of the input variables to the Reduce. In this case, there is only one input

variable row, and it was exanded once. Thus l = 1. We use this value of l in

the next step.

– ⊕↑ = BuildTree(l, args(⊕), body(⊕)). In this step, we generate a tiled com-

bine function⊕↑ for the TiledReduce. In Figure 4.4,⊕↑ = tiled_add2. We

can’t use the original combine function add2 directly, because the partial re-

sults of the TiledReduce will be results of calling a transform function on

entire tiles, and thus they will have larger rank than the arguments to add2.

Specifically, they will have rank exactly l larger. This is where we use the

expansion information. Each expansion adds a rank to the tiles that form the

inputs to the TiledReduce. Thus the partial results of the TiledReduce will

be 1 rank larger than those of the regular Reduce, and we need to alter the

combine function so as to accept arguments of this rank. We do this by
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calling a helper function called BuildTree that wraps the combine function

in l Maps. Each such Map removes a rank from the partial results of the

TiledReduce. In this case, l = 1, and so we wrap add2 in 1 extra Map.

These Maps each take as input all arguments to the combine function, thus

peeling off a rank from each. Afterward, we can call the original combine

function add2 directly on each pair of elements of the tiled partial results,

and notice that by design this nesting of Maps iterates over every such pair

in tiles. Thus we call the combine function on exactly the same elements as

the original program did.

• JScanα(v1, . . . , vn, f,⊕)K∆,ε,g. This step tiles a Scan, returning a TiledScan.

Its substeps are otherwise identical to those for tiling a Reduce, so we omit any

further discussion of them.

Thus we have covered all of the parts of the algorithm that were used to gen-

erate the code given in Figure 4.4. The TiledMap groups rows into tiles, and the

TiledReduce slices these tiles further into 2D groups of partial rows, following the

iteration order shown on the right side of Figure 4.2. The original sum_rows function

is called on each of these 2D tiles, which generates a 1D partial result consisting of

the partial sum for each of the partial rows in the 2D tile. A tiled combine function

tiledadd2 is used to combine these 1D partial results in the proper way, such that

the TiledReduce’s output is a 1D tile of single sums, one for each of the rows in the

TiledMap’s tile. Thus, we see that the tiled computation produces the same results as

the original computation. We are then free to set the sizes of the tiles to whatever is best

for the cache for which we are optimizing.
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4.1.2 Tiling Algorithm Design Breakdown

We now expand on this walkthrough of the algorithm with a high level discussion of

the features of the algorithm in order to provide the intuition behind the design choices

we made in developing our tiling algorithm.

4.1.2.1 Outer Nesting of Tiled Adverbs

First, notice that the final nesting of adverbs in the tiled code is

TiledMap(TiledReduce(Map(Reduce(...)))).

Another option, rather than generating an outer nesting of tiled adverbs that matches

the nesting of regular adverbs, would have been to wrap each adverb directly in a tiled

version of itself. In this case, the final nesting of adverbs would have been

TiledMap(Map(TiledReduce(Reduce(...)))).

Much of the complexity of our algorithm – for example, the translation of the axes

necessary for the tiled adverbs – revolves around producing a nesting that collects all of

the tiled adverbs on the outside.

To see why we nonetheless opt for this, imagine the iteration order for the latter

nesting. The TiledMap would group some number of rows of Xs into a tile. Next, the

Map would iterate over each row one at a time. Thus the TiledReduce would execute

on only one row at a time in a tiled fashion. This means that the final tiles would have an

arbitrary size along the second dimension of Xs, but would be fixed at having only a size

of 1 along the first dimension. This in turn means that the TiledMap isn’t really serving
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much function in slicing up the innermost computation’s working set in this version of

tiling – in the end, only the innermost tile size will matter much for locality. Hence, we

opt for the approach discussed in the previous paragraph.

4.1.2.2 Axes of Tiled Operators

The TiledReduce’s iteration axis for the XsMapTile is 1, not 0 as in the original

Reduce. To understand why, look again at the iteration order shown in Figure 4.2 and

the type-annotated version of the tiled code in Figure 4.4. Notice that each XsMapTile

is a two dimensional group of rows, whereas the original reduce iterated over single 1D

rows. A key difference between tiled adverbs and regular adverbs is that tiled adverbs

always operate on pieces of the outermost arguments (Xs being the only such outer argu-

ment in this case) that are the same rank as the entire outermost arguments themselves.

In contrast, regular adverbs operate on pieces of the outermost arguments with progres-

sively decreasing rank, as each regular adverb “slices away” one entire dimension by

pulling out each single element of the variable at a time and passing these elements to

the adverb’s transform function. Thus the axes of iteration for regular adverbs have a

local view on the outermost arguments – they see only the dimensions of the outermost

arguments that remain after any previous adverbs have sliced some dimensions away.

Therefore, even though the Reduce in the original code iterates over the rows that form

axis 1 of the outermost 2D input argument Xs, its axis of iteration over its single 1D row

is 0, as axis 0 is the only possible axis of iteration for a 1D array. What we need to do in

order to retain the original semantics of the untiled program is to have the tiled versions

of adverbs iterate over the same elements as their untiled counterparts. In this way, the

tiled adverbs perform the desired function, viz. splitting up the iterations of their untiled

analogues. For this, we need to translate the local views on axes that regular adverbs
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have into global views that reflect the dimensions as situated in the entire tiles/outermost

arguments.

In order perform this translation, we need to keep around some state for each vari-

able we encounter as we walk the function tree. Specifically, for each array variable that

is a piece of an outermost function argument, we store a list of the dimensions that re-

main of the original outermost argument. In the formal description of the algorithm, this

mapping from variables to their remaining dimensions is denoted by ∆. In addition, we

initialize this list of remaining dimensions to be 〈0, ..., n − 1〉 for n-dimensional outer-

most arguments. For example, when we tile the sum_rows function from Figure 4.3, we

mark the Xs variable as having dimensions 〈0, 1〉 remaining, since no dimensions have

yet been sliced off of it by adverbs. Next, when we traverse into the Map’s transform

function sum_row, we mark its argument row to have all of these dimensions except the

one sliced away by the Map. Since the Map iterates over axis 0, we mark row as having

only axes 〈1〉 remaining of the original input argument Xs.

Using these lists of axes, we can translate the local axes of the adverb back to the

global axes of the entire outermost function argument. Since tiles of an outermost ar-

gument always have the same rank as that argument, this translation accomplishes what

we’re really after, which is translating the local axis into an axis that fits the tile that

the tiled adverb we’re generating takes as an input. We do this by looking up the value

in the list of remaining dimensions at the index equal to the axis value for the regular

adverb. This tells us which of the original dimension’s elements are stored at the re-

spective locally-viewed axis. To finish the example, we see that the original Reduce it-

erates over axis 0 on variable row. We look up which value is at index 0 in the list of

remaining dimensions 〈1〉, and find the value 1. Thus we know that the Reduce iter-

ates over dimension 1 of the original input argument, and we set the axis value of the
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TiledReduce to be 1 for its tile of this variable.

4.1.2.3 Tiled Combine Functions

Recall that the purpose of a combine function is to provide a way to combine two

partial results of a reduction into a meaningful result, such that we are free to split the

reduction into sub-reductions of any length. For a TiledReduce or a TiledScan, we

need the combine function to combine two partial results of executing the transform

function on tiles.

We create this tiled combine function by altering the original combine function to

operate on tiles rather than arguments of the original ranks. To do this, we introduce

the notion of variable expansions. Whenever we tile an adverb, we create a version

of the adverb whose transform function takes arguments of one higher rank than the

transform function of the original adverb. This is again because regular adverbs “slice

away” one entire dimension from a variable. Tiled adverbs, on the other hand, don’t slice

away any dimensions, rather creating pieces of their inputs with equal rank to the inputs

themselves. We thus say that these tiled counterparts of the transform function’s input

arguments have been expanded by the tiling. The number of expansions a variable has

undergone is equal to the number of extra ranks that the tiled analogue of that variable

has compared with the variable itself. We keep track of this number of expansions for

each variable in another mapping, which in the formal algorithm is represented by ε.

Let’s walk through how we use expansions to generate the TiledReduce’s combine

function in the tiledsum_row function in Figure 4.4. We use the original combine func-

tion to perform the heart of the combine operation between two of the TiledReduce’s

partial results, but we need somehow to break apart these partial results into values that

are of the rank that the original combine function can accept. We do this simply by
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wrapping the combine function in a number of Maps equal to the greatest number of

expansions that any input variable to the Reduce has undergone, which in turn is equal

to the number of extra ranks that the TiledReduce’s partial results have compared to

those of the original Reduce. (In the formal presentation of the algorithm, the helper

function BuildTree performs this wrapping in Maps.) Each input variable of the com-

bine function is passed as an argument to each of these Maps. This procedure gives us

exactly what we want, as each of these Maps “peels off” a rank from a variable. Once

all of the extra ranks have been so peeled off, we are left with elements that have the

ranks that the original combine function expects, and we can call that function to com-

bine the elements. The nesting of Maps also by design traverses every element of the

TiledReduce’s expanded partial results, ensuring that we call the combine function on

everything that the original code did.

To get back to our example, let’s walk through maintaining the expansions map ε

and how we use it to generate the combine function for the TiledReduce. When we

tiled the Map in the sum_rows function, we marked the argument row to the sum_row

function as having been expanded once. When we tile the Reduce, we thus have to

wrap its combine function in a single Map in order to peel off the extra rank added by

this expansion. Notice that the original Reduce’s partial results are scalar floats, and

its combine function add2 thus combines two scalar floats into one via summation.

The TiledReduce’s partial results, on the other hand, are partial sums for some number

of different rows, this number equal to the number of rows in each tile of the TiledMap.

Thus the TiledReduce’s combine function needs to add each of these partial sums to-

gether across two tiles. We see that a single Map does the job, mapping across each pair

of partial sums, adding them together with the original combine function add2.
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def add2_tuple(acc, (val, idx)):
return (acc + val, idx)

def test_max((best_max, best_idx), (val, idx)):
if val > best_max:
return (val, idx)

else:
return (best_max, best_idx)

def max(xrow):
return parakeet.reduce(test_max, xrow, init=(-1,-1))

def sum_maxes(Xs):
return parakeet.reduce(add2_tuple, Xs, init=(0,0))[0]

Figure 4.7: Two Nested Reductions

4.1.3 Termination Upon Reaching a Reduce or a Scan

The algorithm as described in the formal description only recursively tiles the trans-

form functions of Maps, and terminates the tiling transformation upon encountering a

Reduce or a Scan. The reason for this is that, in general, it isn’t safe for an outer

computation to operate on a partial result of a reduction. Consider for example the code

given in Figure 4.7. This somewhat contrived example takes as input a 2D array Xs, finds

the maximum value of every row, and sums these maximum values. If we were to tile

this code, we would generate two nested TiledReduces. The outer TiledReduce would

group the rows of Xs into tiles, while the inner TiledReduce would take a split a group

rows of Xs into a group of partial rows and it would call the original function sum_maxes

on that tile. This sum_maxes would find the maximum value in each of these partial rows

in the tile, and then it would compute the sum of these maxima. This one scalar value

would form the partial result for the entire tile, and then the TiledReduce would move

on to the next tile.

This is clearly incorrect. The final sum for the entire inner TiledReduce includes a

sum of maxima for each of its tiles (a group of partial rows). However, these maxima
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needn’t have been the final maxima for the entire rows, which are the only things that

should have been included in the final sum. In addition, we don’t want to add up all of

these partial maxima, thus contributing a value to the sum for each partial row, but rather

want a single global maximum to be added to the sum for each entire row. A key reason

why tiling these two nested Reduces doesn’t work is that the partial maxima don’t

have any meaning outside the context of the inner Reduce. Using their partial values

elsewhere in the computation in the hope that they will compose isn’t valid. For this

reason, we terminate the tiling algorithm upon reaching a Reduce or a Scan. Thus, the

partial results of a TiledReduce or a TiledScan are consumed by that TiledReduce or

TiledScan directly before passing up the chain to any surrounding TiledMaps.

4.2 The Full Algorithm: Tiling Nested Scalar Statements

Our simplified version of the tiling algorithm can handle tiling only simple nestings

of adverbs where each adverb’s transform function, if it contains a statement with an

adverb, has only that statement as its entire body. If this constraint doesn’t hold, we abort

the tiling operation and return the original untiled version of the code. Our full algorithm

includes extensions that allow it to tile functions that contain multiple statements, so

long as only one of them contains an adverb. We discuss the changes necessary to

support this in this section. A formalized description of our entire algorithm is given in

Figures 4.8, 4.9, and 4.10.

Let us consider an example. In Figure 4.11, we present a modified version of the

program that sums rows of a 2D array. In this version, everything is identical to that in

the previous section, except that the sum_row function slices off the first element of each

row before summing it. This may seem contrived, but similar things are often done in
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α ::= Axes along which an adverb slices
each of its arguments

σ ::= Ordered sequence of visited adverbs
∆ ::= Maps variables to the list of axes remaining

of the original variables of which they
are a piece

ε ::= Maps variables to the nesting depths
at which they were tiled

ε[x] ::= 〈〉 if x /∈ ε or if x is a constant
FV(e) ::= The set of free variables in expression e

BuildTree(σ, ε, x1, . . . , xn,
block) ::= σ0(vars0, λvars0.

σ1(vars1, λvars1.
. . .
σd(varsd, λvarsd.block) . . .))

where
d = |σ|
varsi = {xj|i ∈ ε[xj]}

Jf = λx1, . . . , xn.bodyK 7−→ f ′ = λx1, . . . , xn.body′

where
σ = 〈〉
∆[xi] = 〈0, 1, . . . , rank(xi)− 1〉
ε = {}
body′ = JbodyKσ,∆,ε

Figure 4.8: Full Tiling Transformation Algorithm, Part 1
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Statement and Expression Transformations

Jreturn eKσ,∆,ε 7−→ ε, return JeKσ,∆,ε

Jx=eKσ,∆,ε 7−→ ε′, x = e′
where
ε′[x] =

⋃
{ε[y] | y ∈ FV(e)}

if e contains an adverb:
e′ = JeKσ,∆,ε

else:
σ′ = 〈Map0,Map0, . . .〉 such that

|σ′| = |ε′[x]|
e′ = BuildTree(σ′, ε′,FV(e),

〈return e〉)

JblockKσ,∆,ε 7−→ block′

where
block′ = 〈〉
ε′ = ε
for s ∈ block :
ε′, s′ = 〈JsKσ,∆,ε′〉
block′ = block′ ++ s′

JeKσ,∆,ε 7−→ e (if e is not an adverb)

Figure 4.9: Full Tiling Transformation Algorithm, Part 2
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Adverb Transformations

JMapα(v1, . . . , vn, f)Kσ,∆,ε 7−→ TiledMapα′ (v1, . . . , vn, f
↑)

where
x1, . . . , xn = args(f)
d = |σ|
ε′[xi] = ε[vi] ++ 〈d〉
σ′ = σ ++ 〈Mapα〉
α′i = ∆[vi][αi]
∆′[xi] = ∆[vi] with element

∆[vi][αi] removed
If f contains adverbs,

body↑ = Jbody(f)Kσ′,∆′,ε′

Otherwise,
body↑ = BuildTree(σ′, ε′, x1, . . . , xn,

body(f))

f ↑ = λx1, . . . , xn.body↑

JReduceα(v1, . . . , vn, f,⊕)Kσ,∆,ε 7−→ TiledReduceα′(v1, . . . , vn, f
↑,⊕↑)

where
x1, . . . , xn = args(f)
d = |σ|
ε′[xi] = ε[vi] ++ 〈d〉
σ′ = σ ++ 〈Reduceα〉
α′ = ∆[vi][αi]
body↑ = BuildTree(σ′, ε′, v1, . . . , vn,

body(f))

f ↑ = λx1, . . . , xn.body↑

σ′′ = 〈Map0,Map0, . . .〉
such that |σ′′| = d

c1, . . . , ck = args(⊕)
l = maxi(ε[vi])
ε′′[cj] = 〈0, 1, . . . , l − 1〉
⊕↑ = BuildTree(σ′′, ε′′, args(⊕),

body(⊕))

JScanα(v1, . . . , vn, f,⊕)Kσ,∆,ε 7−→ Same as Reduce but with
Scan and TiledScan

Figure 4.10: Full Tiling Transformation Algorithm, Part 3

62



def add2(a, b):
return a+b

def sum_row(row):
rowPart = row[1:]
return parakeet.reduce(add2, rowPart, init=0, axes=[0])

def sum_rows(Xs):
return parakeet.map(sum_row, Xs, axes=[0])

Figure 4.11: Indexed Sum of Rows of a 2D Array

real code. For example, consider a particle simulation in which we need to store each

particle’s mass as well as its (x, y, z) coordinates. In such a scenario we might need to

slice off the mass component in order to do spatial calculations.

Our simple algorithm would not be able to tile this code, as it has no rule for what

to do with the non-adverb statements in the transform functions of adverbs. One op-

tion – adding the indexing statement row[1:] both to the transform function of the

TiledReduce we generate while also keeping it in the original function that we splice

into the innermost tiled adverb – would slice off too much. First we would slice off

the first column of the tile of the TiledMap, which would amount to slicing off the first

element of each row in the tile (so far so good). However, once we got to the spliced-in

original computation, the sum_row function would slice its partial row again. Thus, too

many elements will have been slice out of the rows, and we would get incorrect results.

To solve this issue and allow us to tile such code, we do two things. First, we disallow

control flow in functions being tiled; if control flow is found, the tiling transformation

is undone and the code is left untiled. Previous work has shown that ontrol flow can

be handled in these cases by predication [11]; we could do something similar, but as

discussed in Chapter 8, we leave this for future work.

Next, we execute each non-adverb statement only once, rather than both in the tiled
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float -> float
def identity(x): return x

float -> float -> float
def add2(a, b):

return a+b

array1<float> -> float
def sum_row(row):

return reduce(identity, row, init=0, combine=add2, axes=[0])

array2<float> -> array1<float>
def sum_rows(XsRowTile):

return map(sum_row, XsRowTile, axes=[0])

array1<float> -> array1<float> -> array1<float>
def tiledadd2(accumulatorTile, reduceTile):

return map(add2, accumulatorTile, reduceTile, axes=[0,0])

array1<float> -> array1<float>
def index1D(array1D):

return array1D[1:]

array2<float> -> array1<float>
def tiledsum_row(XsTile):

tiledRowPart = map(index1D, XsTile, axes=[0])
return tiledreduce(sum_rows, tiledRowPart, init=0,

combine=tiledadd2, axes=[1])

array2<float> -> array1<float>
def tiledsum_rows(Xs):

return tiledmap(tiledsum_row, Xs, axes=[0])

Figure 4.12: Type-Annotated Pseudocode for Tiled Indexed Sum Each Row of a 2D
Array

and original versions of the program’s functions. Specifically, we keep these statements

in the tiled versions of the functions, and remove them from a copy we generate of the

original program that includes the original adverbs. In the case of indexing such as

in Figure 4.11, this is the only legal possibility, as if the indexing were delayed until

the inner regular adverbs executed, portions of the original variables could be present

and iterated over that weren’t visible the original program. Note that we only remove
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statements that have an adverb in the same scope. The transform function of the inner-

most adverb, which can contain arbitrary non-adverb code including control flow, is left

unchanged.

Note, of course, that these two added restrictions also apply to the simplified algo-

rithm, since there we require that every tiled function have a single statement with an

adverb.

A type-annotated pseudocode version of this program is given in Figure 4.12. No-

tice how the indexing is only done in the tiled function tiledsum_row, and not in the

function sum_row that contains the regular reduce. In addition, this indexing has been

wrapped in a Map, as we need to index into a tile, not just a single row. In order to

facilitate these changes, we alter our simplified algorithm in various ways. Let’s cover

them one by one.

• σ. First, we add another state variable σ that contains the list of adverbs tiled thus

far in the algorithm. In our example program, σ will be 〈Map0〉 after tiling the

Map, and will be 〈Map0, Reduce0〉 after tiling the Reduce. We use σ to generate

the copy of sum_row that has the offending indexing statement removed. We do

this by altering the BuildTree function to take a list of adverbs rather than always

wrapping a function in Maps - we discuss this new BuildTree function in detail

later on. We wrap the innermost transform function identity in this series of

adverbs in order to generate versions of the functions with only the single adverb

statements as desired.

• ε. In the full version of the algorithm, we alter the use of ε. Now, rather than

simply storing the number of expansions for each variable, we store the list of

nesting depths (starting at index 0) at which each variables was expanded. For
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example, the row argument variable to the sum_row function now gets the list 〈0〉

when we tile the Map in sum_rows, as this is the first adverb in the nesting. We

use these nesting depths to determine which variables need to be arguments to

which adverbs when reconstructing the tree of regular adverb functions that have

the non-adverb statements removed.

• FV(e). This helper function returns a list of all the free variables in the expression

e. This is used in building the tiled versions of the non-adverb statements placed

inside the tiled transform functions, as described next.

• BuildTree(σ, ε, x1, . . . , xn, block). The heart of the changes for supporting nested

non-adverb statements is the new version of the BuildTree function. BuildTree

now takes a list of adverbs σ and a list of nesting depths ε, whose meanings are

described above. In this way, we can use BuildTree for three separate purposes:

1. Generating tiled combine functions, as in the simplified algorithm.

2. Generating versions of the non-adverb statements in transform functions that

can operate on tiles for use in the tiled versions of the transform functions.

3. Generating versions of the transform functions in the original program that

have the non-adverb statements removed.

The first use is the same as in the simplified algorithm.

The second use is very similar to the first. When we add the non-adverb statements

to the tiled versions of the transform functions, these statements need to be altered

so as to take as arguments entire tiles rather than arguments of the original rank.

Thus we need to peel off the extra ranks added by tiling, just as in the combine

function case. In our example, we first call FV(row[1:]) and get back the list

66



〈row〉. This becomes the list of variables that we use as inputs to the Map s with

which we wrap the indexing expression. We then call BuildTree to add a single

Map to peel off the one rank added from the expansion of the row variable.

The third use of the new BuildTree function is to generate the versions of the

transform functions that have the regular adverb statements, but all non-adverb

statements removed. BuildTree uses the ε parameter to determine which variables

from x1, . . . , xn need to be arguments to which of the adverbs in σ. Specifically,

BuildTree only passes the variables that were expanded at nesting depth i to as

arguments to the adverb σi. In our example, we pass the arguments σ = 〈Map0,

Reduce0〉, ε = 〈0, 1〉, x1 = x, and body = 〈return x〉 as the arguments to

BuildTree to create the sum_rows and sum_row functions. BuildTree then wraps

this function body (the body of the identity function, the innermost transform

function) in a Map and a Reduce. The only argument to identity is the variable

x, and it was expanded at both depths 0 and 1. Thus it is passed as an argument to

each of these adverbs, and the desired function nesting is created.

• Jreturn eKσ,∆,ε. This step of the algorithm simply makes explicit the tiling of

the expression e. If e is an adverb, it is recursively tiled; otherwise, it is simply

returned.

• Jx = eKσ,∆,ε. This new step of the algorithm captures adding non-adverb state-

ments to tiled transform functions. For example, when we encounter the statement

rowPart = row[1:] in the program, we need to create a version of this statement

than can handle a tile of rows at a time. To do this, we collect all of the depths at

which any of the free variables of e were expanded. In this case, row is the only

free variable, and it was expanded at depth 0, so this list is 〈0〉. We create a new
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version of the ε map ε′, and set ε′[rowPart] = 〈0〉. This way, rowPart inherits the

expansions of the expression row[1:], and these get propagated in the right way

later on when rowPart is passed to the Reduce.

Next, we call BuildTree on with σ′ = 〈Map0〉, ε′, the list of free variables 〈row〉,

and a block with a single statment 〈return row[1:]〉. BuildTree wraps the block

in the single Map, with the result being the map(index1D, XsTile, axes=0)

expression in the tiledsum_row function.

• JMapα(v1, . . . , vn, f)Kσ,∆,ε. The tiling procedures for adverbs are largely the same.

The only differences are that we update σ and the new ε that stores lists of expan-

sion depths rather than numbers of expansions. We also use the BuildTree func-

tion as described above to generate the innermost transform functions and we still

use it to generate the tiled combine functions.

This method of dealing with scalar statements has the potential to be wasteful in

that it generates array temporaries when originally there were none. It has the benefit of

making the algorithm simpler as roughly the same unpacking logic can be applied to all

cases of extra ranks due to tiling. If many of these expanded scalar statements exist in a

function, adverb fusion is able to combine them all into a single tree of Maps, mitigating

some of this cost.
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Chapter 5

Selecting Tile Sizes

5.1 Register Tile Sizes

Register tile sizes need to be selected at compile time, as register tiling requires

loop unrolling and scalar replacement to be performed after the tiling step itself. Thus,

we cannot leave register tile sizes unspecified until runtime. Some previous work has

explored using iterative compilation techniques to try different register tile sizes at run-

time [50], and other work has used offline searching to exhaustively try out all different

possible register tile sizes [81]. Still further work has developed models of the register

tiling problem that cast it as an optimization problem [63].

We use a simple heuristic to set the register tile sizes once at compile time. We

always set the innermost register tile size to be 1, and we evenly divide the remaining

registers on the processor among the other adverbs’ tiles. To do this, we assume that

each iteration of an adverb consumes 2 registers, one for the array element read and one

for the array element written. This heuristic is very simplistic, but works well on the

benchmarks and machines we tried. The key thing with register tiling is not to use too
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many registers, and this heuristic does well in ensuring that.

5.2 Cache Tile Sizes

There are two methods used to set cache tile sizes in the literature: statically via

models, and empirically via autotuning. We discuss both methods in this chapter. We

opt for an online autotuning approach in Parakeet.

5.2.1 Statically Estimating Cache Tile Sizes

A large body of work exists on using models for general tiling or tiling for specific

domains that allow for good static setting of tile size parameters [14, 27, 36, 85, 86].

The general-purpose models typically involve a simplified model of cache replacement

for predicting cache performance. Special-purpose models exist for common, important

problems such as Matrix Multiplication [85, 86] that incorporate specific aspects of

the problem domain. While these models tend to perform reasonably well, empirical

autotuning of tile sizes is still considered the best way to get optimal performance on a

wide range of problems [6].

5.2.2 Online Autotuning Cache Tile Sizes

Autotuning tile sizes can be done either offline via an exhaustive search, or online

while the program is running. Offline autotuning is the standard approach for highly-

tuned problem-specific libraries such as FFTW [38] or ATLAS [81]. However, the of-

fline approach isn’t suitable for Parakeet, as we want to keep the dynamic flavor of

Python as much as possible. A big part of what makes a dynamic language like Python

so easy and convenient to use is the instant feedback and lack of an explicit compilation
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step. In addition, for programs that aren’t run multiple times, an offline search would

only add overhead. For these reasons, we are unwilling to add a time-consuming ex-

haustive search to our pipeline and opt for an efficient online search that tries different

tile sizes during an actual run of the program.

In our setup, we use the DL and ML algorithms from [71] as low and high initial

guesses for tile sizes. The DL algorithm is designed to provide a pessimistic estimate of

cache behavior and thus minimum values for tile sizes, while the ML algorithm provides

optimistic maximum tile size estimates. These algorithms take as inputs the cache and

cache line sizes, as well as information about how the array accesses are nested. The

output of each of these algorithms isn’t a specific set of tile sizes, but rather an equation

for a surface of tile sizes that is meant to serve as the boundary of admissible settings.

The focus of the work in [71] is to provide an algorithmic way to bound the search space

for an offline exhaustive search.

We use these algorithms to provide initial tile settings to seed our online tile size

search rather than to provide bounds for an exhaustive search. Thus we need to pick

some specific points on these surfaces to use. We opt for cubic tile sizes for our initial

guesses.

A common algorithm for searching across tile sizes used in the literature is the Par-

allel Rank Ordering algorithm (PRO), similar in flavor to the Nelder-Mead method [74,

78]. In this method, a simplex of tile sizes is maintained with 2 points in the tile space

for each tile parameter. In each step of the algorithm, a reflection through each point of

the simplex is evaluated by executing the program with the tile sizes corresponding to

the point. As many such points are evaluated as possible in parallel. Then the reflec-

tion is either accepted or rejected, and further shrinking or expanding of the simplex is

potentially done.
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Figure 5.1: Matrix Multiply Performance vs Tile Size

In our experiments, we weren’t able to get this method to work well enough as it

had too high overhead compared to the benefit of reaching better tile sizes. In our setup,

we aren’t trying to find the best possible tile size, as we’re tuning tiling online for user

code rather than tuning it offline for a reusable library. Thus, we need our algorithm to

converge quickly to a fairly good tile size, and then stop searching and exploit the good

tile size for the rest of the run. Each set of tile sizes tested is relatively expensive, as

when the sizes tested are bad they slow down the whole run. Further, for many of the

benchmarks we tested, the performance relative to tile size settings involved a region of

tile size settings that had good performance, surrounded by settings where performance

was bad (shown for matrix multiplication in Figure 5.1). The performance variation

within the good region wasn’t high enough to justify further tuning once it was reached.

Thus we opted for a different search algorithm that required fewer samples to reach

the good region of the tile size space. In each time step, we take the current best per-

forming point, initialized to the average of the DL and ML estimates discussed in the

previous section. For each tile size, we take a Gaussian sample with standard deviation

equal to one fourth the difference between these estimates. A sample for each tile size
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forms a candidate tuple of tile sizes, and a number of these tuples is evaluated in parallel

on different cores of the machine. If any perform better than the previous best point,

they become the new best.

We set tried various settings for the following parameters of the search:

• Percentage of the runtime (in terms of number of iterations of the outermost ad-

verb) to spend searching before switching to using the current best-found tile

sizes.

• How long to wait between taking performance readings and trying out new candi-

date tile sizes.

• How many times that sampling doesn’t result in a new best tile setting before the

search terminates.

In the benchmarks we tried (matrix multiplication, K-Means clustering, and Gaus-

sian Blur), we found that our search algorithm has very little variation in performance

for different settings of these parameters. If we spend less than 20% of the runtime

searching, then the overhead of searching tends to be greater than the benefit the search

provides as the search doesn’t have enough time to find good tile sizes. Otherwise,

the time spent searching doesn’t impact performance much, so we set it heuristically

to 50%. We also found that if we set the number of tries to find new best tile settings

needs to be at least 2 for good settings to be found consistently. We evaluate the search

in somewhat more detail in the following chapter.
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Chapter 6

Experimental Evaluation

In this chapter, we evaluate our cache and register tiling optimizations on Matrix

Multiplication, K-Means Clustering, and Gaussian Blurring. We have implemented a

number of different programs in Parakeet, but use these as a representative sample.

We evaluate our benchmarks on a system with an Intel i7 960 3.2GHz processor and

16GB of RAM. This processor has 4 hyperthreaded cores, each with a 32KB L1 data

cache with 64 byte cache lines. Parakeet reads these hardware characteristics from the

/proc and /sys/devices filesystems and uses them to configure both the cache

tiling and register tiling optimizations.

Unless otherwise noted, we turn cache and register tiling on and off together. In

addition, unless otherwise noted all performance numbers don’t include compilation

times. We assess compilation time in Section 6.4.
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def dot(x, y):
return sum(x*y)

def mm(Xs, Ys):
return parakeet.allpairs(dot, Xs, Ys, axes=[0,1])

Figure 6.1: Parakeet Matrix Multiply

6.1 Matrix Multiplication

In this section, we present results for a 2D matrix multiplication benchmark, the

actual Parakeet code for which is in Figure 6.1. Recall that AllPairs is Parakeet syntactic

sugar for two nested Maps each of which iterates over one of the two arguments to the

AllPairs.

6.1.1 Performance On Arrays with Row-Major Layouts

In Figure 6.2, we present performance results when running this matrix multiplica-

tion program on arrays that are both laid out in row-major order. In this case, the right

matrix suffers from the same problem that the row sums program did from the previous

chapter: without tiling, the locality within cache lines is not exploited.

We compare Parakeet’s performance against NumPy’s. NumPy can use any imple-

mentation of BLAS, a standard linear algebra interface, installed on a user’s computer

to perform matrix multiplications. We configure NumPy to use two different BLAS

versions – one written as naive C consisting of three nested for loops; and a stock

ATLAS [81] implementation that comes with Ubuntu Linux. ATLAS is a heavily hand-

tuned matrix multiplication library that uses a number of optimizations, including both

cache and register tiling. For optimal performance, one needs to perform a lengthy au-

totuning step to configure ATLAS for the particular target machine. We use a stock

version rather and autotuned one as we simply want to provide a rough reference point
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for calibrating the meaning of our results, and we want to simulate an environment of a

typical user who installs programs “off the shelf”. In each of these graphs, we used our

online autotuner to find good cache tile sizes.

6.1.2 Performance On Arrays with Cache-Friendly Layouts

In Figure 6.3, we present performance results when running this matrix multiplica-

tion program on arrays that are laid out perfectly for cache: the left array is laid out in

row-major order, while the right array is laid out in column-major order. Thus in this

case, tiling has the least opportunity for improving performance.

On the top of the figure, the number of rows in the left-hand matrix vary along the X

axis. The length of rows and the number of rows in the right-hand matrix are held fixed

3000. In this figure, we see that our tiling optimization improves performance between

26.3% and 30.8% over not tiling. On the bottom the figure, we fix the number of rows

in both matrices to be 3000 and vary the length of the rows. Here, the tiling speedup

varies between 21.1% and 24.8%. In both cases, Parakeet is around 2 times slower than

our ATLAS version, which recall has been heavily hand-optimized.

6.1.3 Cache and Register Tiling

In this section, we break down the Parakeet performance on matrix multiply for the

two different memory layouts by separating out the performance of cache tiling from

that of register tiling.

In Table 6.1, we present the performance for the cache-friendly memory layout.

Here, we see that while cache and register tiling together result in a performance gain

over no tiling, cache tiling alone actually leads to a significant slowdown. We not certain
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(a) Runtimes with varying rows in left-hand matrix

(b) Runtimes with varying lengths of rows and columns

Figure 6.2: Matrix Multiply Runtimes with Row-Major Layouts
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(a) Runtimes with varying rows in left-hand matrix

(b) Runtimes with varying lengths of rows and columns

Figure 6.3: Matrix Multiply Runtimes with Cache-Friendly Layouts
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Rows in Left Array No Tiling Cache Tiling Cache+Reg Tiling
1000 1.98s 2.54s 1.65s
2000 3.91s 4.68s 3.11s
3000 5.77s 6.76s 4.58s
4000 7.70s 9.36s 6.02s
5000 9.61s 11.39s 7.59s
6000 11.52s 13.46s 9.01s
7000 13.44s 16.19s 10.58s
8000 15.30s 17.78s 11.82s

Table 6.1: Matrix Multiply Cache-Friendly Layout Cache and Register Tiling Perfor-
mance

Rows in Left Array No Tiling Cache Tiling Cache+Reg Tiling
1000 22.40s 2.80s 2.57s
2000 43.56s 5.69s 4.95s
3000 65.10s 7.90s 6.68s
4000 86.73s 10.68s 8.66s
5000 110.10s 13.22s 10.91s
6000 128.81s 15.71s 12.16s
7000 150.81s 18.41s 14.61s
8000 172.84s 20.55s 17.26s

Table 6.2: Matrix Multiply Row-Major Layout Cache and Register Tiling Performance

what causes this – perhaps added loop overhead – but with the data laid out in this way,

we wouldn’t expect much gain from cache tiling.

In Table 6.2, we present a similar breakdown for the row-major layout. In this case,

we see that cache tiling provides a very large – between 8.0 and 8.4X – speedup over

no tiling. This is exactly as we would expect, as the data is laid out in such a way that

there is far more cache pressure. Register tiling adds an additional 30-200% speedup

over cache tiling alone.
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Parakeet Parakeet Avg of DL
Array Size (with search) (cached sizes) DL sizes ML sizes & ML sizes
3000x3000 4.58s 4.45s 5.03s 4.55s 4.61s
10000x3000 15.16s 15.11s 16.89s 15.33s 15.51s
10000x500 2.57s 2.57s 2.99s 2.67s 2.72s

Table 6.3: Matrix Multiply Cache-Friendly Layout Autotuner Performance

6.1.4 Autotuning Performance

In Figure 6.3, we break down the performance of the autotuner by showing Parakeet

times both with the autotuning search as well as Parakeet times using the fixed tile sizes

found in a previous search. We compare these with using the fixed tile sizes for the DL

and ML algorithms from [71], as well as the performance when using the average of the

DL and ML estimates as the fixed tile sizes.

By comparing the difference between the runtime with the search and with cached

tile sizes, we see that the overhead of performing the search is very small. The time to

switch between different tile sizes during a search is close to 0, and so any overhead is

almost entirely due to the penalty from running worse tile sizes than those that are even-

tually found. We also see that, while the autotuner leads to the best runtimes especially

on larger data sizes, the performance boost it adds over the ML estimates in particular

isn’t very large. On average, the autotuner increases performance around 2.3% for all

benchmarks and data sizes we tried. While this is only a modest performance boost, it

is consistent, and if there are any other programs for which the tile estimates perform

badly, the autotuner should be able to increase performance even more by finding better

tiles.
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Figure 6.4: Matrix Multiply Performance Compared To C

6.1.5 Performance vs. Other Compilers

To provide a test of Parakeet’s performance relative to other compilers, we compare

Parakeet’s performance to a hand-optimized C version with manual cache and regis-

ter blocking compiled with both gcc and clang (the LLVM C compiler), including all

relevent optimization flags. We also include a naive for loop C version with only the

-O3 flag for reference. All of these versions were launched on 8 threads on the Para-

keet runtime’s backend. In practice of course, a programmer would have to manually

parallelize the C versions, while the Parakeet version is automatically parallelized. The

results are shown in Figure 6.4.

First, notice that Parakeet’s performance roughly matches that of clang, while both

are roughly 1.5X slower than gcc. We take this as evidence that we are approaching

a performance wall due to the underlying performance of LLVM. We discovered that
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Number of NumPy Parakeet Parakeet
Data Points (No Tiling) (Tiling)

10000 48.01s 12.91s 12.46s
12500 59.95s 16.05s 15.51s
15000 71.83s 19.16s 18.51s
17500 83.78s 22.28s 21.40s
20000 97.61s 25.53s 24.45s
22500 107.62s 28.54s 27.35s
25000 119.56s 31.66s 30.41s
27500 131.57s 34.82s 33.37s
30000 143.32s 37.89s 36.42s

Table 6.4: K-Means Performance with k = 1000, 500 features, and 10 iterations

roughly half of gcc’s relative performance gain over clang is due to gcc having a better

vectorizer.

6.2 K-Means Clustering

We present results for K-Means Clustering in Table 6.4. Here we see that Parakeet

is dramatically faster than NumPy, with almost a 4X performance improvement. The

performance benefit of tiling on this benchmark is only 4% on average however. This

is due to Parakeet’s spending a lower percentage of its computation in operations with

much data reuse, and the length of its rows (equal to k, or the number of centroids) being

smaller than in much of the matrix multiply benchmark. A lower k value means that the

amount of data accessed between repeated accessed to the same data points is lower,

reducing the cache pressure.
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6.3 Gaussian Blur

In this section, we present performance results for a Gaussian Blur kernel, a standard

computer vision algorithm for blurring images [70]. This benchmark sweeps across

every pixel of an image, and returning a new pixel value that is a Gaussian-weighted

combination of every pixel in some nxn neighborhood of the original pixel. This results

in a blurred-looking image. Our Parakeet code for an 11x11 Gaussian Blur of a 2D

image is given in Figure 6.5.

def gaussian_kernel(size):
x, y = np.mgrid[-size:size+1, -size:size+1]
g = np.exp((-pow(x,2) + pow(y,2)) / float(size))
return g / g.sum()

s = 5
gaussian = gaussian_kernel(s)

def gaussian_conv(img, i, j):
window = img[i-s:i+s+1, j-s:j+s+1, :]
red = 0.0
green = 0.0
blue = 0.0
for it in range(0,2*s+1,1):
for jt in range(0,2*s+1,1):

red = red + window[it,jt,0] * gaussian[it,jt]
green = green + window[it,jt,1] * gaussian[it,jt]
blue = blue + window[it,jt,2] * gaussian[it,jt]

return [red, green, blue]

def blur(img):
def conv_closure(i, j):
return gaussian_conv(img, i, j)

iidxs = np.arange(s, len(img)-s)
jidxs = np.arange(s, len(img[0])-s)
return parakeet.allpairs(conv_closure, iidxs, jidxs)

Figure 6.5: Gaussian Blur Parakeet Code

The main loop of this program is implemented by the call to AllPairs in the blur

function. We create two arrays of indices, one for each of the x and y dimensions of the
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image, and the AllPairs calculates a new pixel value for each pair of indices. Note that

this code doesn’t handle the boundary region for positions within 5 pixels of the edge

of the image. Boundary regions are typically handled by some separate cleanup code

which we omit here.

We were curious whether cache tiling would improve the performance of this kernel.

There is the potential for the cache tiling to allow for better exploitation of reused data

within the windows, as both horizontally and vertically adjacent nxn windows have

many pixels of overlap.

The results for the 11x11 kernel are given in Figure 6.6. We don’t include the results

for the NumPy version, as it is so much slower than Parakeet that it would skew the

chart. For example, on a 300x300 pixel image, NumPy takes 272.1s while the untiled

version of Parakeet takes 0.84s. The reason for this is that there is no suitable NumPy

precompiled primitive to use for this benchmark, and so the majority of the work is

done in Python for loops which are extremely slow. This illustrates well the motivation

behind Parakeet – we want to make all high level code fast, not just code for which

someone wrote a hand-tuned library.

We see that for this kernel size, tiling actually hurts performance. Cache tiling alone

is on average 4.8% slower than no tiling. In this case, it appears that the added overhead

of the nested loops overwhelms any benefit from the cache reuse behavior. In the untiled

version, there is plenty of cache benefit already, as the horizontal sweep of the window

still involves plenty of data overlap between neighboring 11x11 windows. Interestingly,

our online search moves toward final tile sizes that are roughly the size of the entire

image as a way to compensate for the fact that tiling is a performance loss.

In addition, we wouldn’t expect register tiling to be beneficial in this case, and on

average it leads to an additional 2.8% slowdown. Recall that the purpose of register
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Figure 6.6: Impact of Tiling on 11x11 Gaussian Blur Kernel

tiling is to keep the working set of a small inner loop inside registers for as long as

possible. Matrix multiplication is a benchmark where the inner loop is a simple scalar

computation (multiplication and addition), and thus the data used by a few iterations of

it can fit entirely inside processor register. In the Gaussian blur case, the innermost ested

function is the much more complicated gaussian_conv function, which contains two

nested for loops inside it.

6.4 Compilation Time

In Figure 6.5, we give the Parakeet compilation times for the benchmarks without

tiling, with only cache tiling, and with both cache and register tiling. Cache tiling adds

a modest amount of compilation time, while register tiling adds around 1 second for
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Matrix Multiply K-Means Gaussian Blur
No Tiling 0.19s 0.10s 0.21s

Cache Tiling 0.27s 0.31s 0.47s
Cache Tiling +
Register Tiling 1.26s 1.29s 0.72s

Table 6.5: Parakeet Compilation Times

each benchmark. We believe that the extra loop unrolling accounts for most of this

added time. Our compiler was written entirely in Python and we haven’t spent any

effort optimizing its compile times, so we are hopeful that these numbers can be brought

down in the near future. In addition, we imagine a common use case for Parakeet to be

repeated calls to a Parakeet function inside a large numerics computation. In these cases

such compile times would only contribute a tiny fraction of overall program runtimes.
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Chapter 7

Related Work

Our work builds upon a range of existing fields of study including data parallel pro-

gramming, just-in-time compilation, acceleration of high level array languages, tiling

optimizations, analytic performance modeling, and autotuning.

Data Parallelism. The first language to feature data parallel abstractions was APL [46],

whose central programming constructs involved high-level manipulation of n-dimensional

arrays. The eminent parallelizability of the language’s core operators inspired early re-

search in vector processors [76] and parallelization [52]. As computers with massively

parallel hardware became more common in the 1980s, many languages such as C [43],

Fortran [37], and Lisp [73] were retrofitted with data parallel extensions. More recently,

data parallel constructs have appeared repeatedly as core primitives for high level lan-

guages and libraries which compile to FPGA descriptions [41], GPU programs [20, 75],

and even the coordination of distributed computations [88]. The functional skeletons

community has a body of work that deals with generalizing the traditional set of data

parallel operators to be able to express the core loops of more algorithms via the use of
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simple operators [26, 30]. Recently, DryadLINQ has used data parallelism as a useful

abstraction for distributed computing [87, 88].

Just-In-Time Compilation. Translation of a running program into a more efficient rep-

resentation has a long history [7] reaching back to the LC2 programming language [54]

and early efforts to accelerate APL [2]. The modern age of just-in-time compilation be-

gan with the seminal work on the dynamic object-oriented language SELF [22], which

pioneered techniques such as polymorphic inline caching [45]. Dynamo [8] introduced

the concept for trace-based compilation, which was quickly adapted for use on top of

the JVM [5]. Trace-based compilation for dynamic languages [39] has recently gained

popularity and is the basis for many widely used language implementations.

Parakeet eschews tracing in favor of preserving high-level language constructs and

instead peforms run-time type inference when a function is called from Python. This

approach falls within the paradigm of Selective Embedded JIT Specialization [21].

High Level Language Acceleration. Much work has been done on accelerating high

level data parallel languages via compilation. MaJIC was an early project that paral-

lelized array computations in Matlab [4].

A large number of projects exist that try to accelerate Python. NumPy is a widely-

used toolkit for scientific computing that largely relies on hand-written library functions

for accelerating common tasks [34]. NumPyPy is an attempt to reimplement all of

NumPy in Python and then let PyPy act as a meta-tracing JIT optimizer [1]. Numba is

a project that’s just getting off the ground whose main purpose, for the most part, is to

unbox numeric values and make looping fast in Python [29]. Blaze is a new project by

the creator of NumPy whose goal is to work with more complex data types than arrays
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as well as to handle larger-than-memory and streaming datasets [28].

Copperhead takes the direct route to parallelism by forcing you to write your code

using data parallel operators which have clear compilation schemes onto multicore and

GPU targets [20]. To further simplify the compiler’s job, Copperhead forces adverbs’

nested functions to be purely functional, while Parakeet supports mutable state.

Cache and Register Tiling. There has been much work on automating the process of

tiling, including both generating the tiled loops as well as automating tile size selection

given a tiled loop nest [51, 82].

It might appear at first glance that determining good tile sizes for a given loop nest

might be easy to do analytically. Much work has been done on designing analytic mod-

els to estimate good cache tile sizes [23, 27, 40, 51]. In addition, domain-specific mod-

els have been developed for problems such as matrix multiplication for estimating both

cache and register tile sizes [85, 86]. Wolf et al. developed an analytic model for use in

a compiler to determine tiling and loop unrolling settings statically for sequential C and

Fortran programs [84].

However, while these models often perform fairly well, the state of the art for achiev-

ing the best performance is still offline autotuning to find the best settings for a particular

target architecture, even for a problem as well-studied as matrix multiplication [71, 81].

A special problem here is how to generate loops with parameterized tile sizes that can be

set at runtime, and much work has been done on that problem for loops [9, 42, 49, 65].

Register tiling is a classic optimization and has been well-studied [19, 55]. This

includes work on extracting inner loops from code for register tiling [42, 47, 64, 62],

register tiling code generation [68], models for selecting tile sizes [63, 68, 85, 86], and

autotuning register tile sizes [50, 81].
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The Polyhedral Model. The polyhedral model is a well-studied method for model-

ing the iteration spaces and data dependencies of statements in loop nests. The model

represents these by a series of matrices and uses algebraic transformations on them to

enable performing various loop optimizations including tiling, skewing, and automatic

parallelization [9, 11, 16, 42, 59, 82, 83].

The polyhedral model requires that the indexes into arrays in loops that it tiles all

be affine functions of the index variables. This makes it largely more general than our

tiling algorithm, which is tailored specifically for the case of tiling uniform multidi-

mensional arrays and the simple iteration patterns of adverbs. However, here are some

particular cases where our algorithm can tile code that the polyhedral model can’t. Our

algorithm can tile adverb nestings where arrays are indexed in arbitrary ways including,

for example, with indices that are themselves values read from some other array. The

only restriction is that the computation be expressed as a nesting of functions with one

adverb each.

Another benefit of our limited-domain approach over the polyhedral model is that

code generation in the model is highly nontrivial [10], and it is only recently that tech-

niques for bringing polyhedral optimizations to mainstream compilers have started being

developed [16].

Just as in Parakeet, arbitrary control flow in loop nests is not directly representable

in the polyhedral model. A solution given in [11] enables control flow in loop nests to

be representable in the polyhedral model via the use of predication, which could be used

to extend our tiling algorithm in largely the same fashion.

Autotuning and Iterative Compilation. In recent years, offline autotuning has emerged
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as the accepted best practice for optimizing numerical code [6, 12]. Libraries such as

ATLAS for dense linear algebra [81] and FFTW for Fourier transforms [38] deliver the

best performance available across a wide range of architectures and platforms for their

specific problem domains via an extensive offline search performed at installation time.

Other recent work on offline autotuning includes that for stencil computations [31, 48].

While this technique is useful for either basic computational building blocks that are

reused extensively (ATLAS and FFTW) or in the hands of expert programmers that are

able to hand-program efficient low-level code with autotuning hooks inserted, our sys-

tem expands the usefulness of autotuning to a broader audience and to rapid prototyping

scenarios. Active Harmony is a system for performing online autotuning that exposes a

constraint specification language (CSL) for expressing tuning parameters [78]. Tiwari

et al. presented a system that combines Active Harmony and Chen’s system to autotune

loop-based C and Fortran programs offline [77].

Another body of work that uses autotuning for program optimization is that of Itera-

tive Compilation. Many compiler optimizations beyond tiling have parameters that can

be tuned for particular programs, but most compilers simply use heuristics for setting

these parameters for all programs. Iterative compilation uses autotuning at compile time

to try to better tune these optimizations for particular programs. The ADAPT system

was an early entrant into this space [79]. Chen et al. developed a system that automat-

ically generates multiple candidate versions of C and Fortran programs by analyzing

array references in loops and performing unroll-and-jam, cache tiling, copying, and

TLB-oriented optimizations [24]. Knijnenburg et al. presented a system for combining

analytic models with offline autotuning to improve parameter settings of cache tiling and

unrolling optimizations [50]. Pouchet et al developed systems that use the polyhedral

model to generate candidate versions of a program, and then use iterative compilation
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to find good loop transformations [58, 59].
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Chapter 8

Future Work

Our goal with Parakeet is to create a useful system that will enable real programmers

to simplify their jobs and to achieve good performance. As such, we plan to continue

working on it and to publish an official release in the near future. There are a number of

ways we hope to improve Parakeet, and our tiling optimizations in particular.

Our current algorithm disallows control flow in tiled adverb nestings. A solution

given in [11] enables control flow in loop nests to be representable in the polyhedral

model via the use of predication, which could be used to extend our tiling algorithm in

largely the same fashion. We have worked out the details of how this could be done,

and it would be interesting to investigate in which cases this would lead to performance

gains.

An alternative to expanding all non-adverb statements in tiled functions would be to

keep the statements for which it is safe (such as scalar operators) in the inner functions

of the tiled computation so as not to generate the temporaries. We have also worked out

the details of this, but haven’t had time to implement it or explore how much it would

benefit performance.
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In the future, we hope to use iterative compilation methods to try different compiled

versions of programs with different register tile sizes at runtime, or to more methodically

explore heuristics for setting register tile sizes at compile time.

While the version of Parakeet discussed in this thesis supports multicore CPUs, we

have published a previous version of Parakeet that included a backend for NVIDIA

GPUs [66]. In the future, we hope to revive our GPU backend. In order to get good

performance on a GPU, it is very important to make good use of fast, software-controlled

memories, particularly one called shared memory [56]. Shared memory is used in much

the same way as a cache on a CPU, except that the programmer has to manually fill it

with data. We believe our tiled adverbs abstraction would make automating this process

in our compiler much easier.

Another case where our tiled adverbs might help is in enabling SIMD vectorization.

Since a big part of the performance gap between LLVM and gcc is vectorization, SIMD

optimizations could lead to large performance gains.

We would like to explore adding an additional adverb to directly support stencil

computations. This would allow us to have simple innermost transform functions in

stencil such as the Gaussian Blur and increase the opportunities for tiling, while also

making expressing stencils with adverbs more natural.

Lastly, we would like to optimize our compilation times. Thus far all of our effort

has been devoted to implementing new features.
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Chapter 9

Conclusion

In summary, we have presented tiled adverbs, natural generalizations of classical

data parallel operators that are used for breaking up data parallel programs into locality-

friendly pieces. Our tiling transformation automatically generates tiled versions of pro-

grams from programs written using regular adverbs in Parakeet, a high level array-

oriented DSL embedded in Python. This transform simplifies the job of the compiler

writer for data parallel languages by enabling tiling at a much higher level of abstrac-

tion than that of loops. We apply this transformation twice, once to enable cache tiling

and a second time to enable register tiling. Our system includes an autotuner that, after

estimating candidate tile sizes using published algorithms, tunes these while the pro-

gram runs, resulting in a modest performance boost. We evaluate our optimizations

on benchmark programs and show significant performance improvements over untiled

code and favorable performance compared to C versions. We thus bring cutting-edge

performance to non-expert programmers and to a rapid prototyping environment.
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