

Statistical Source Channel Models for

Natural Language Understanding

by

Mark E. Epstein

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September, 1996

Approved

c
 Mark E. Epstein

All Rights Reserved 1996

For Mara

iii

Acknowledgments

There are many people who have helped me �nally reach this point. I'd �rst

like to thank Ken Davies. He is the manager that rescued me from a life

in development and hired me into the Thomas J. Watson Research Center.

Ken also helped me get accepted into IBM's Graduate Work Study program

even though he knew that he would lose a good percentage of my time to

coursework. I registered for two courses each semester for several years while

working for Ken, and he never complained (at least not to me).

After leaving Ken, Eddie Epstein, my second manager while in the Gradu-

ate Work Study program, continued to encourage my educational endeavors.

Despite a tight schedule, he never asked me to compromise my studies.

Dr. Salim Roukos, my current manager, deserves special thanks. He not

only continued to support me through the GWS program, but also gave me

ATIS as a research project. For the �rst time in seven years, I was able

to work on a Ph.D. topic at IBM. And while statistical natural language

understanding was (and still is) very important to IBM, Salim had enough

con�dence in me to let me work on it. It is questionable whether or not I

would have completed the degree if Salim had not given me this opportunity.

But Salim's role was not just managerial, it was professional as well. Salim

was always available to answer my questions about the modeling, which often

showed my ignorance in the �eld. He was always patient, and took the time

to explain his answers at a level I could understand.

iv

Dr. Todd Ward, a colleague of mine at IBM, has also \been there" for

me. I cannot count the number of times that Todd helped me �gure out

a solution to a problem, either mathematical or programming. Whenever I

was not sure about a solution to a problem, Todd was my sounding board.

I'm sure that his individual research e�orts were slowed by our meetings, but

that never stopped him from helping me. Todd also acted as a counselor,

providing insight on how to complete a doctorate!

Former IBMer, Dr. Stephen Della Pietra, is without a doubt the brightest

mathematician with whom I have ever worked. Like Salim and Todd, he

knows statistical modeling at a much greater depth than I do, and he never

minded \bringing down" the level of his explanations to one where I could

understand and absorb the material. Stephen was my mentor, and without

his expert tutelage, I would not have learned the mathematical foundations

on which this dissertation is based. His departure from IBM in 1995 did not

terminate his assistance, as I feared it might. He was always available by

phone, e-mail, and on several occasions, at his house. I am sure he thinks he

knows how indebted I am, but he can easily double or triple his best guess.

Without his continued training, I would not have been able to complete this

dissertation.

Dr. Kishore Papineni deserves recognition for all his hard work on the

pattern matcher. This monolithic code had been developed by four di�er-

ent programmers, and was a huge mess. As it became clear that modi�ca-

tions needed to be made to support many features needed for this thesis,

v

Kishore made the necessary adjustments. Without his insight on running

the database tests using di�erential SQL, I'm sure that my test experiments

would still be running!

Lastly, I would like to thank my advisor, Dr. Ralph Grishman. Over the

past several years, our advisor/student relationship has been rather uncon-

ventional. I became a student of Dr. Grishman's in 1989, when we started

working on statistical methods to determine selectional constraints. For

many years, this research progressed at a snail's pace. If I met with Dr.

Grishman more than 5 times a year, that was considered frequent. In 1993,

I abandoned this research topic in favor of statistical natural language un-

derstanding when I joined Salim's group. Dr. Grishman had absolutely no

problem with me switching to a new research area, and in fact encouraged

it. While I have been in \research mode" for the last two years, I continued

my track record of visiting him at NYU intermittently. It would have been

entirely reasonable for him to request a more \conventional" relationship, in

which I would visit him weekly, discuss my research, and co-author papers

with him. But he realized that for the type of research that interested me,

my colleagues at IBM were better suited to assist me. Thus, I did not have to

play the typical \graduate student game", that most Ph.D. candidates have

to play. It is his patience, understanding, and tolerance of the uniqueness of

my situation for which I am most grateful.

vi

Preface

The problem of Natural Language Understanding (NLU) has intrigued re-

searchers since the 1960's. Most researchers working in computational lin-

guistics focus on linguistic solutions to their problems. They develop gram-

mars and parsers to process the input natural language into a meaning rep-

resentation. In this thesis, a new approach is utilized. Borrowing from the

�eld of communication theory[75], an information theoretic approach to nat-

ural language understanding is applied. This is based on the source-channel

model of communication.

The source-channel model of NLU assumes that the user has a meaning

in the domain of the application that he wishes to convey. This meaning

is sent through a noisy channel. The observer receives the English sentence

as output from the noisy channel. The observer then submits the English

sentence to a decoder, which searches the meaning space to try to recover the

initial meaning sent through the channel. The decoder uses mathematical

models of the channel and the meanings to process the English sentence.

Thus, the following problems must be addressed in a source-channel model

for NLU:

� A mathematical model of the noisy-channel must be developed.

� The parameters of the model must be set, either manually or by an

automatic training procedure.

vii

� A decoder must be built to search through the meaning space for the

most likely meaning to have generated the observed English.

This dissertation focuses on the �rst two of these problems. Several math-

ematical models of the noisy channel are developed. They are trained from

a corpus of context independent sentence pairs consisting of both English

and the corresponding meaning. The parameters of the models are trained

to maximize the likelihood of the model's prediction of the observed train-

ing data using the Expectation-Maximization algorithm[20]. Results are pre-

sented for the Air Travel Information Service (ATIS) domain [69].

viii

Contents

Dedication Page iii

Acknowledgments iv

Preface vii

List of Figures xiv

List of Appendices xv

1 Introduction 1

1.1 Statistical Natural Language Understanding : : : : : : : : : : 1

1.2 Statistical Machine Translation : : : : : : : : : : : : : : : : : 4

1.3 Statement of Thesis : 7

1.4 Organization of Thesis : 8

2 Statistical Natural Language Understanding 11

2.1 The Source-Channel Paradigm : : : : : : : : : : : : : : : : : : 11

2.2 Related Work : 14

2.2.1 Source-Channel Modeling of AT&T : : : : : : : : : : : 14

2.2.2 BBN - Hidden Understanding Models : : : : : : : : : 17

ix

2.2.3 Decision Trees : 20

2.2.4 Grammatical Inference : : : : : : : : : : : : : : : : : : 20

2.2.5 Statistical Understanding With Parsers : : : : : : : : : 21

2.2.6 Neural Nets for Understanding : : : : : : : : : : : : : 21

2.3 Maximum-LikelihoodModeling by the Expectation Maximiza-

tion Algorithm : 22

2.4 The Decoder and Language Model : : : : : : : : : : : : : : : 37

3 Air Travel Information Service 39

3.1 The ATIS Corpus : 40

3.2 The ATIS Database : 42

3.3 NL-Parse : 45

4 Statistical NLU for ATIS 47

4.1 Analysis of English : 47

4.2 Synthesis of Meaning : 49

4.3 Hand Alignments : 53

4.4 The ATIS Decoder/Pattern Matcher : : : : : : : : : : : : : : 54

4.5 Evaluation : 57

4.5.1 Evaluation Metrics : 57

4.5.2 Evaluation Test Sets : : : : : : : : : : : : : : : : : : : 58

5 Basic Word Alignment Model 61

5.1 Introduction : 61

x

5.2 Formulae : 64

5.3 Count Derivation : 67

5.4 Training : 68

5.5 Smoothing : 70

5.6 Results : 73

5.6.1 Exact Match Maximum Likelihood Results for DEV94 74

5.6.2 Cross Entropy Results for DEV94 : : : : : : : : : : : : 78

5.6.3 Viterbi Percentage Results for DEV94 : : : : : : : : : 80

6 Basic Clumping Models 83

6.1 Introduction : 83

6.2 Formulae : 88

6.3 Count Derivation : 92

6.3.1 Computing the Clump Probabilities : : : : : : : : : : : 93

6.3.2 Using the Baum-Welch Algorithm For Clump Models : 95

6.3.3 Count Update Formulae for Models A, AHW, and ALM

Using the Chain Rule : : : : : : : : : : : : : : : : : : : 96

6.4 Training : 98

6.5 Smoothing : 100

6.6 Results : 101

6.6.1 Exact Match Maximum Likelihood Results for DEV94 103

6.6.2 Cross Entropy Results for DEV94 : : : : : : : : : : : : 106

6.6.3 Viterbi Percentage Results for DEV94 : : : : : : : : : 106

xi

7 Clumping Models With Fertilities 108

7.1 Introduction : 108

7.2 Formulae : 111

7.3 Count Derivation : 115

7.4 Training : 118

7.5 Smoothing : 120

7.6 Results : 120

7.6.1 Exact Match Maximum Likelihood Results for DEV94 121

7.6.2 Cross Entropy Results for DEV94 : : : : : : : : : : : : 124

7.6.3 Viterbi Percentage Results for DEV94 : : : : : : : : : 125

8 Discussion 126

8.1 Errors Due to the Translation Model : : : : : : : : : : : : : : 131

8.1.1 Substitution Errors : 132

8.1.2 Insertion Errors : 135

8.1.3 Complex Errors : 140

8.2 Reducing the Error Rate : 143

8.2.1 Solutions For the Spurious Word Problem : : : : : : : 145

8.2.2 Reducing Permutation Errors : : : : : : : : : : : : : : 154

9 A Distortion Model 158

9.1 Introduction : 158

9.2 Formulae : 166

9.3 Count Derivation : 169

xii

9.4 Training : 170

9.5 Smoothing : 171

9.6 Results : 171

9.6.1 Exact Match Maximum Likelihood Results for DEV94 172

9.6.2 Cross Entropy Results for DEV94 : : : : : : : : : : : : 174

9.6.3 Viterbi Percentage Results for DEV94 : : : : : : : : : 175

10 Summary 176

10.1 Summary of Results : 178

10.2 How Do the Results Compare to Other ARPA HLT Participants185

10.3 How Portable are These Results : : : : : : : : : : : : : : : : : 187

10.3.1 Formal Language : 188

10.3.2 Synthesis : 189

10.3.3 Training : 190

10.3.4 Modeling : 191

10.4 Final Summary : 192

Bibliography 193

Appendices 207

xiii

List of Figures

1.1 Analysis-Transfer-Synthesis Paradigm : : : : : : : : : : : : : : 5

2.1 Source-Channel Model Paradigm : : : : : : : : : : : : : : : : 12

2.2 A Concave Function : 31

5.1 Example Alignment : 63

xiv

List of Appendices

A Extended Backus-Naur Form Grammar for ATIS 208

B Yacc Grammar for ATIS 210

C More Decoding Results for Model 1 227

D More Decoding Results for Models A, AHW, and ALM 231

E Errors Made in DEV94 Not Due to the Smoothed Model B

De�ciencies 235

xv

Chapter 1

Introduction

1.1 Statistical Natural Language Understand-

ing

The arti�cial intelligence community has long been interested in natural lan-

guage understanding. Initial e�orts in NLU utilized word spotting techniques

(as in ELIZA[80]) or grammars (as in STUDENT[8])1. Researchers knew that

statistical approaches could be used to solve these problems, but these were

considered less glamorous. Consider a quote from Minsky:

Bobrow's program (i.e. STUDENT) does not have any cautious

statistical devices that have to be told something over and over

again, so its learning is too brilliant to be called so. In fact, there

1A brief, but good survey of early NLU systems is given by Bobrow[8].

1

is no explicit use of probabilistic notions anywhere in this book:

It seems that as we incorporate more and more sophisticated

heuristic methods, the need for senseless sources of variation in

behavior become less and less necessary.[56].

Unfortunately, early successes in Computational Linguistics have not

scaled to more general applications. More complex natural language in-

puts were not handled well by the initial algorithms. In 1990 ARPA decided

to sponsor a spoken language understanding competition to objectively mea-

sure the performance of di�erent NLU systems. Di�erent research sites would

work on the identical problem, to see the merits of di�erent approaches. Data

were collected by each of the sites for the selected domain, the Air Travel In-

formation Service (ATIS) domain[69]. Initial results showed a 50-75% error

rate[60], which improved to 30-40% after participants worked on the problem

further[61]. Most of these sites had existing NLU systems that were built for

other domains. But natural language input created by hundreds of real users

revealed the inability of the systems to handle the linguistic phenomena that

occur in spontaneous speech.

Since the mid 1980's, more and more researchers in Computational Lin-

guistics have begun to reconsider statistical or hybrid statistical-linguistic

systems. There are many reasons for this:

� The inherent di�culty in porting broad coverage grammars to speci�c

sublanguage domains.

2

� The increase in compute and disk capabilities of micro-computers.

Years ago, only the simplest of statistical algorithms could be applied.

� The increase in the availability of large corpora for training statistical

models.

� The increase in portability provided by statistical systems.

De�ning what it means to \understand" is a very di�cult and subjec-

tive problem. Many researchers have di�erent opinions. Most AI textbooks

address this issue to some degree, and then they jump into a description

of how syntax, semantics, and pragmatics are used to perform the under-

standing. Indeed, Minsky's quote above seems to summarize the opinions of

many AI researchers with respect to statistical modeling. Elaine Rich men-

tions that understanding is the process of converting an input sentence from

one representation into another[72]. In particular, a user interacting with a

computer expects to receive quick and accurate information in response to a

query. The creation of this response, either by another person or a program,

demonstrates the responder's \understanding" of the user's query. If a pro-

gram or another human consistently gives correct answers, this constitutes

understanding. If the answers are frequently wrong, the user will claim \this

person" or \this system" doesn't understand in frustration.

This de�nition of understanding is important, for statistical systems fre-

quently do not capture \classical" linguistic knowledge. They do not need to

do syntactic or semantic analysis. They do not need the real world knowledge

3

and deduction capabilities of humans. A program can understand natural

language if it is given enough training samples from a bilingual corpus con-

sisting of pairs of English sentences and their meanings. The program uses

these data to train the parameters of a mathematical model according to the

maximum-likelihood criterion. These parameters can then be used to decode

any future English sentence into the most likely meaning that could generate

it. As in other statistical natural language applications, for example detect-

ing word collocations, it is likely that the parameters will implicitly capture

some syntactic, semantic, and lexical knowledge[17].

While it is true that the mathematical models will have tens, or even

hundreds of thousands of parameters, current computer technology has ad-

vanced to the point where these models are trainable in only a few hours.

In fact, IBM has built a machine translation system, capable of translating

French into English using statistical models[13, 7]. This system has millions

of parameters, and is vastly more complex than performing NLU in a sublan-

guage domain. Since NLU for a sublanguage domain has far fewer parameters

than machine translation, the understanding models can be trained with a

reasonably sized corpus.

1.2 Statistical Machine Translation

One paradigm used for machine translation is that of analysis-transfer-synthesis[32].

This is a fancy name for a relatively simple concept, illustrated in �gure 1.1.

4

-

Source
Analysis -

Source'

Transfer -

Target'

Synthesis -

Target

Figure 1.1: Analysis-Transfer-Synthesis Paradigm

The translation from a source language into a target language is per-

formed in three stages:

Analysis This is a pre-processor that converts the input source language

into an intermediate representation that is suitable for transferring into

a target language representation. An example would be a parser that

produces parse trees in some canonicalized deep structure suitable for

the transfer.

Transfer This is the process of converting the analyzed representation into

a representation of the target language.

Synthesis This is a post-processor that converts the representation of the

target language into a natural language sentence in the target language.

Note that this paradigm is very general, and is suited to many applica-

tions. Basically the analysis and synthesis steps are transformations from

the original and target languages into intermediate forms more suitable for

transferring. This paradigm is utilized in this thesis for natural language un-

derstanding. Input English is analyzed using a statistical tagger[18, 49]. This

tagged English is better suited for statistical transfer than the original En-

glish because there are vastly fewer words in the tagged English vocabulary.

5

Hence fewer parameters are needed in the transfer models. The statistical

models transfer the tagged English into a \meaning representation", called

the formal language, which can be subsequently synthesized into a response

for the user. For a database query application, the meaning representation

can be a database query language like SQL, or can be a pseudo-language

that can be processed into a database query.

In statistical machine translation, a bilingual corpus is used to train the

parameters of a statistical model. Millions of sentences that are translations

of each other are used to train the parameters of the model. The model

makes no attempt to do a syntactic or semantic analysis of the data. Instead,

the model learns how to translate by utilizing parameters suitable to map

strings in one analyzed language to synthesized strings in the other language.

Example parameters include the number of words to generate for a given

word, what these words are, and the order these words should be placed in

the synthesized sentence[13].

One problem with the analysis-transfer-synthesis paradigm using a de-

terministic transfer component is that the analysis could introduce an error.

For example, the word \may" can be a name, a modal, or a date. If it is

mistagged, then an error will certainly result. One could allow ambiguous

analyses, but then the transfer and synthesis stages will have to be designed

to handle multiple analyses, and to select the most likely result.

6

1.3 Statement of Thesis

Having introduced natural language understanding and statistical machine

translation, I can now state my thesis. The research presented in this thesis,

contains a hierarchy of statistical models for performing natural language

understanding for ATIS. The goal is to show that statistical models trained

using maximum-likelihood estimation can achieve a reasonable level of un-

derstanding, with minimal linguistic knowledge. While the results will not

\beat" the best systems in the latest ARPA Human Language Technologies

workshop[62], it will attain performance near theirs, yet maintainmore porta-

bility in that no domain speci�c grammar is required. Also, these systems

were built over a �ve year span, using teams of experienced computational

linguists. The ATIS system described in this thesis was built over a two year

period. The system uses very general mathematicalmodels, and has minimal

domain knowledge. Thus, this system could easily be ported to new appli-

cations (provided training data are available). \Beat" is a highly subjective

word.

Simple models will be developed, trained, and tested, and the resulting

parameters will be used to bootstrap more complex models. The parame-

ters of these models will be trained to maximum-likelihood estimates (MLE),

using the Expectation-Maximization (EM) algorithm[20].2 The following fun-

2While research has shown that other estimation procedures might be more power-
ful, for example Maximum Mutual Information Estimation (MMIE)[14], they will not be
investigated in this thesis.

7

damental issues involved in maximum-likelihood estimation will be investi-

gated:

� E�ect of varying the number of iterations of the EM algorithm

� E�ect of providing hand-supervision on a model's performance

� E�ect of the amount of training data used for a model

This thesis will focus on context-independent ATIS queries, the class A

queries[28]. The class D and class X queries are not treated in this thesis.

The models developed here could certainly be applied to these queries, though

slight modi�cations would be required.

In the end, this thesis hopes to convince the reader that statistical natural

language understanding is not only viable, but a reasonable alternative to

the more common \linguistic" approach. Already statistically trained part

of speech taggers have matched or surpassed hand tailored ones in terms

of performance[49, 50]. The same is true for statistical parsing[71, 48, 46]

and machine translation[7]. This thesis intends to convince the reader that

eventually this will be true for natural language understanding as well.

1.4 Organization of Thesis

This thesis is organized as follows:

� Chapter 2 introduces statistical natural language understanding at a

very theoretical level. This chapter also describes the work that others

8

have done in statistical NLU.

� Chapter 3 describes the ATIS domain, the one used in this thesis to

demonstrate the algorithms.

� Chapter 4 revisits statistical natural language understanding, but from

the pragmatic viewpoint of developing an understanding system for

ATIS.

� Chapter 5 presents the �rst of many models for statistical NLU, which

is aptly named model 1. This chapter also discusses many of the issues

involved in maximum likelihood estimation, for example the number

of iterations of the EM algorithm, and cross entropy as a function of

the amount of training data and iteration number. Model 1 generates

English words independently from the formal language representation.

Since this model is relatively simple, this chapter includes a lengthy

discussion of maximum likelihood estimation. The MLE issues are not

addressed to nearly the same depth in the other modeling chapters.

� Chapter 6 presents the basic clumping models, which are generaliza-

tions of model 1, and are named model A, AHW (A with headwords),

and ALM(A with a bigram language model). A clumping model parti-

tions the input English into nonoverlapping substrings or clumps, and

requires each clump to be generated from one formal language word.

9

� Chapter 7 generalizes the basic clumping models by parameterizing the

number of clumps that a formal language word generates. The number

of clumps for each meaning concept is called its fertility. Six models

are discussed in this chapter. Models B , BHW, and BLM assume

that the fertility of each formal language word can be modeled by a

Poisson process. Models C, CHW, and CLM allow general probability

distributions for fertilities.

� Chapter 8 discusses the results in great depth, and suggests modeling

enhancements that could lead to further improvements in performance.

� Chapter 9 presents the �nal model of the thesis, which models the

proximity of clumps aligned to the same formal language word. This

proximity information, called distortion, is introduced to solve a class

of problems due to two di�erent meanings having the same formal lan-

guage representation.

� Chapter 10 summarizes the work presented in this thesis. It begins

by running the o�cial ARPA evaluations using the models described

in the thesis, compares the results to other ATIS solutions, and lists

future work that could improve the results.

In addition, there are several appendices, which are introduced when �rst

referenced.

10

Chapter 2

Statistical Natural Language

Understanding

2.1 The Source-Channel Paradigm

In this thesis, the \transfer" stage of the understanding process of �gure 1.1 is

modeled using the source-channel model of Communication Theory, as shown

in �gure 2.1.

In this model, the speaker conceptualizes a query in the synthesized mean-

ing space. However, he does not express the query in this theoretical space,

but instead \sends" it through a noisy channel. The noisy channel is com-

posed of many complex processes. The meaning is converted into English

words in the speaker's mind, and these words are then output, usually via

speech or typed text. The speech or text is then submitted to a decoder,

11

which searches for the most likely meaning, denoted meaning0, to have gen-

erated the observed English.

Meaning
Source

-

meaning
Meaning-to-English

Channel
-

English

?�English-to-Meaning
Decoder

�meaning'

Figure 2.1: Source-Channel Model Paradigm

Modeling how humans communicate is a very di�cult if not impossible

problem. Once a person decides what they want to communicate, they have

to select words, gestures, expressions, tone, stress to convey. It is in the

selection and enunciation of words that speakers often stutter, use the wrong

words, or say things they did not intend. Internally, they know what they

want to convey, but noise is introduced in generating the speech. In com-

munication and information theory, one focuses on fundamental properties

of channels (e.g. channel capacity) and results about coding given channels

with di�erent properties. In this thesis, the meaning to English channel is

the complex psycholinguistic channel in which our thoughts are converted

into spoken words.

In this thesis, no attempt is made to study the channel with the same

mathematical vigor as done in communication theory. Instead, the channel

is modeled using statistical models whose parameters are set to maximize

the likelihood of the model to predict observed training data. In the source-

12

channel paradigm, the decoder must search for the meaning with the most

probable meaning, namely:

p(Meaning0 j English) � p(Meaningj j English) for all j (2.1)

This is called the ideal-observer or minimum-error rule [81]. Using Bayes

rule, the conditioning can be inverted:

p(Meaning j English) =
p(English jMeaning)p(Meaning)

p(English)
(2.2)

Maximizing p(Meaning j English) for an observed English sentence is iden-

tical to maximizing the numerator of equation 2.2, since the denominator

is a constant for all conjectured meanings. This is well known in statistical

speech recognition systems [2].

In order to use the source-channel model for natural language understand-

ing, one must provide realizations of three components of equation 2.2:

Translation Model This models p(English j Formal).1

Language Model This models p(Formal)

Decoder This is the program that searches the meaning space, scoring can-

didate meanings using equation 2.2.

In the remaining sections of this chapter, the introduction to statistical

1Remember, \Formal" will be used to denote meaning.

13

natural language understanding is concluded. Section 2.2 describes statistical

NLU done by other researchers in the �eld. In section 2.3, the Expectation-

Maximization algorithm[20] is described, which is the algorithm used in this

thesis to perform maximum-likelihood estimation of the model parameters.

Section 2.4 brie
y discusses the components of the source-channel model that

are not investigated in this thesis.

2.2 Related Work

In the last ten years, statistical methods have been used for more and

more problems in computational linguistics. These have ranged from simple

taggers[18] to complex parsers[71, 48, 46]. In addition, there has also been

published work in natural language understanding. Two research e�orts, at

AT&T and BBN, have used the source-channel model, as done in this thesis.

There are also a few NLU projects using di�erent modeling paradigms. In

the following subsections, some of these related areas are brie
y surveyed.

2.2.1 Source-Channel Modeling of AT&T

AT&T has a statistical NLU program named CHRONUS (Conceptual Hid-

den Representation of Natural Language Unconstrained Speech)[65, 63, 66,

64, 45]. The CHRONUS source-channel model uses semantic concepts for

its meaning space. The acoustic signal of speech is the output of the noisy

channel. The decoder must therefore �nd the maximum word string W and

14

concept string C, given acoustic string A according to:

p(~W; ~C j A) = max
W�C

p(W;C j A) (2.3)

Using Bayes rule, CHRONUS searches the concept space in order to maxi-

mize:

p(W;C j A) =
p(A j W;C)p(W;C)

p(A)
(2.4)

Since A is the same for all W and C, the W and C which maximize equa-

tion 2.4 also maximizes:

p(A j W;C)p(W j C)p(C) (2.5)

The p(A j W;C) term is only needed for the speech recognition, and is

represented by a hidden Markov model (HMM). The p(W j C) term is called

the language or syntactic model. The p(C) term is called the conceptual or

semanticmodel. Both the language and conceptual models can be formulated

using conditional probabilities. Assuming that there are M words in the

sentence, W1; � � �WM , each with concept C1; � � �CM , then:

p(W j C)p(C) =

QM
i=2 p(wi j wi�1 � � �w1; C)p(w1 j C) �

QM
i=2 p(ci j ci�1 � � � c1)p(c1)

(2.6)

For practical reasons, order 1 or 2 Markov processes are used to ap-

proximate the products. For example, the conditional probabilities p(wi j

15

wi�1 � � �w1; C) can be approximated by p(wi j wi�1wi�2; ci).

The AT&T researchers discovered that training the Markov process pa-

rameters using the Baum-Welch algorithm[6] did not work for these models.

They found it necessary to manually tag each word with a concept, and then

accumulate the frequency counts of each parameter in the tagged data. This

tagging was called \segmenting", as one can identify substrings of words (e.g.

segments), and then give the segment a class tag. They did come up with

a clever method to facilitate bootstrapping. They initially segmented 547

sentences manually, and attained estimates for the model parameters. They

then used their models to decode each sentence in the corpus, and compared

the database result with the reference result included with the training corpus

(see chapter 3 for more on the types of data included in the ATIS corpus). If

the result matched, they assume that the model's segmentation was correct,

and used it as training data during the next iteration.

The CHRONUS system also uses analyzed English. Three aspects of their

analysis are published:

� They use only word stems. For example, \
ight", \
ights", \
ying",

and \
y" are treated the same.

� Ambiguous tokens are \passed through to the decoder", creating a

lattice of possible tokenizations. They decode all of these in parallel

using a Viterbi decoder, and pick the one that scores the best.

� To make order-1 Markov models more e�ective, they reduce two words

16

to one when possible. For example, determiners are subsumed by the

word that follows them and \one way" becomes \one-way".

2.2.2 BBN - Hidden Understanding Models

The BBN work, named Hidden Understanding Models (HUM)[54, 53, 52],

also uses the source-channel paradigm for NLU. The source sends a meaning

M through a noisy channel, and the observer receives the English sentence

W . The observer then processes the English with a decoder, which uses

Bayes rule to maximize:

p(M jW) =
p(W jM)p(M)

p(W)
(2.7)

Again, p(W) is a constant, so one needs to maximize only the numerator at

decoding time.

The modeling of p(W j M) and p(M) are performed by hidden Markov

models, as in CHRONUS. Semantic concepts (states in the HMM) are con-

nected to each other by arcs. The model is hidden in that the decoder must

�nd the most likely path through the HMM. Unlike CHRONUS, only some

of the concepts are designated as \terminal" concepts, which generate words

in W . The transition probabilities from one concept to another form the

basis for p(M), which they call the semantic language model. The genera-

tion of words at the terminal concepts is the basis for p(W jM), which they

call the lexical realization model. Nonterminal concepts are included as place

17

markers, so that a parse tree can be built automatically from a path through

the HMM. In fact, the HMM consists of a fully connected subgraph for each

semantic concept. Each subgraph contains a unique entry state, that has

arcs into each node in the subgraph. Similarly, each subgraph contains a

unique exit state, that can be reached from any node in the subgraph.

The probability of generating a path is then:

p(Path) =
Y

t2Path

2
664
p(staten j staten�1; context) if in semantic language model

p(wordn j wordn�1; context) if in lexical realization model

3
775

(2.8)

In equation 2.8, context serves as a reminder that the probabilities are

conditioned according to the subgraph or state the system is in. There are

many subgraphs that contain an \origin" and a \destination". The arc prob-

ability from the \origin" state to the \destination" state depends on the

subgraph in which these states appear. If these states are in the \
ight"

subgraph or the \fare" subgraph, the arc probability can have a di�erent

value. These probabilities are part of the semantic language model. In the

lexical realization model, the probability of generating words depends on the

state and the previously generated words for this state.

In fact, p(Path) can be factored as follows:

p(Path) =
Y
state

p(staten j staten�1; context)�
Y

words

p(wordn j wordn�1; context)

(2.9)

This factoring reveals that the semantic language model and lexical realiza-

18

tion models are bigram models (i.e. order-1 hidden Markov models). While

higher order HMMs could be used, due to limited training data, bigrams

are utilized. As in AT&T's CHRONUS system, BBN uses hand segmented

data to train the model parameters. The parameters are smoothed using

techniques found in [38].

The BBN and AT&T work are very similar. The major di�erence is

that BBN produces a conceptual tree as output. Having just terminal nodes

gives the leaves of the tree, but does not indicate how they are connected.

Their HMM has nonterminal states to encode non-terminal nodes in the

parse tree. They do not generate any words, but they are predicted by the

semantic language model. Thus, BBN can output a conceptual tree instead

of simply a segmentation. The fundamental modeling for each system is a

hidden Markov model.

There are two main di�erences between the AT&T and BBN work from

the work in this thesis. The AT&T and BBN statistical systems have models

which require hand aligned training data. The models presented in this thesis

can be trained with no hand aligned/segmented training data. One of the

utility of statistical systems is their ability to be \automatically trained" if

given enough training data. In order to port their systems to a new domain,

one would have to �rst hand align the training data. This thesis assumes

that this alignment is not available, and presents a hierarchy of models which

can be trained without this information. The second di�erence is that the

AT&T and initial BBN systems require grammars or rule based systems to

19

map from the words that align to a particular semantic concept to the actual

SQL query. The meaning space used in this thesis was indirectly derived from

SQL. It maintains enough of the SQL so that this mapping is unambiguous.

Hence, generating the database query does not require a domain expert to

provide rules. A recent BBN paper reveals that they now do this statistically

using decision trees[55].

2.2.3 Decision Trees

Researchers at CRIM have built an understanding system for ATIS using

decision trees[41, 42]. They built 106 decision trees, each responsible for the

inclusion or exclusion of a particular clause in SQL (their meaning space). For

example, to decide whether or not to display the fare id, there is a decision

tree (refer to chapter 3 for a discussion of ATIS). The questions asked at each

node are of the form \does the English sentence match the following regular

expression".

2.2.4 Grammatical Inference

There has been lots of research over the years on building grammars and

transducers. Most of the algorithms developed are deterministic, and use a

corpus only to incrementally modify a set of rules. While they are corpus

driven, they are not statistical approaches. For a good survey of Grammatical

Inference, consult the survey by Fu[22].

20

In a recent paper[15], a CFG is induced, where rules are added not to

cover the observed training data, but to instead maximize the likelihood of

the grammar to produce the data. That is, rules are examined, and the gram-

mar \trained" using the Inside-Outside algorithm[3]. No search procedure is

utilized; the rules are found in a deterministic fashion, and their inclusion is

predicated on the gain in the objective function.

2.2.5 Statistical Understanding With Parsers

The \standard" linguistic approach to natural language understanding, in-

volves parsing an input sentence syntactically and semantically, to produce a

parse tree, using a grammar designed for the domain in question. Recently,

parsers have been developed that use statistical models to produce parse

trees without the aid of a phrase structure grammar[10, 47, 71, 34, 48, 46].

The models are then applied in either a top down or bottom up fashion, to

build a parse tree directly. Semantic actions can then be implemented in a

second pass over the parse tree, and are deterministic.

2.2.6 Neural Nets for Understanding

Neural networks are another mathematical way to model understanding. One

such e�ort by a team at Bell Labs used neural networks for NLU in a call

routing task[25, 23, 24]. The authors used mutual information to establish

the weights between an English word and semantic concepts. What is most

21

novel is that the entire network is built from training data. As new words

are seen, a new input node is added to the neural network input layer and

then the model is retrained.

2.3 Maximum-LikelihoodModeling by the Ex-

pectation Maximization Algorithm

In this thesis, the parameters of a model are trained usingmaximum likelihood

estimation (MLE). What this means, is that the parameters are adjusted so

that they predict the observed training data with the greatest probability

possible. Other parameter estimation techniques can be used, like maximum

mutual information estimation[14], but these are not investigated in this

thesis. In this section, the Expectation-Maximization (EM) algorithm[20] is

described, which is a way of performing maximum likelihood estimation.

To introduce the concept behind MLE, consider a die tossing experiment.

Suppose there is an unfair die with sides A;B; � � �F , which respectively have

the probability p(A); p(B); � � � p(F) of being tossed. The goal is to deter-

mine p(A); p(B); � � � p(F) experimentally. We all know the answer is to toss

the die numerous times, accumulate the frequency counts c(A); c(B); � � � c(F)

associated with each event, and then normalize:

~p(A) =
c(A)

c(A) + c(B) + � � �+ c(F)
(2.10)

22

The computed probability ~p(A) is written with a \tilde" to indicate that it

is not the actual probability, but rather an empirically measured quantity.

But why is this the maximum likelihood estimate? The likelihood of the

observed sequence of C tosses is given by:

L = p(A)c(A)p(B)c(B)p(C)c(C)p(D)c(D)p(E)c(E)p(F)c(F) (2.11)

whereC = c(A)+� � �+c(F). The goal is to assign values for p(A); p(B); � � � p(F)

such that L is maximized for the observed sequence, subject to the linear

constraint that p(A) + p(B) + � � � + p(F) = 1. Maximizing L is identical to

maximizing:

1

C
logL (2.12)

since C is a constant and log is monotone increasing. Thus, one has to

maximize:

1

C
logL =

1

C
log(p(A)c(A)p(B)c(B) � � � p(F)c(F)) (2.13)

= ~p(A) log(p(A)) + � � �+ ~p(F) log(p(F)) (2.14)

Since there is a linear constraint, one can use the method of Lagrangian

multipliers to solve for p(A):

@

@p(A)
(~p(A) log(p(A))+ � � �+~p(F) log(p(F))��((p(A)+ � � �+p(F))�1)) = 0

(2.15)

23

The partial derivative leads to:

~p(A)

p(A)
� � = 0 (2.16)

~p(A)

p(A)
= � (2.17)

p(A) =
~p(A)

�
(2.18)

All that remains is to solve for � and substitute into equation 2.18. Applying

this derivation for each of the six unknown variables p(A); p(B); � � � p(F), one

will get six equations in seven unknowns. Fortunately, the linear constraint

gives a seventh equation:

~p(A)

�
+

~p(B)

�
+ � � � +

~p(F)

�
= 1 (2.19)

This means:

� = ~p(A) + ~p(B) + � � �+ ~p(F) (2.20)

= 1 (2.21)

Thus, one discovers that the MLE value for p(A) is indeed ~p(A).

This die example can actually be generalized into a framework suitable

for natural language understanding. Suppose instead of one die, you had

294 di�erent types of dice, with each type being unfair in an identical way.

Instead of being 6-sided suppose each die had 640 sides. Now imagine that

24

you are given the outcomes of a set of experiments. Each experiment can

use any number of dice, usually between 5-10. Each di�erent type can be

used more than once in an experiment if desired. In each experiment, a die is

tossed 0 or more times, and on average, there are 10 tosses per experiment.

You are given the dice that were used, the number of tosses that occurred,

and the outcome of the tosses, but neither the number of times each die was

used nor the outcome of tossing any particular die. The likelihood formula for

this experiment is much more complex than in the single die case. Denote

the observed outcome of an experiment by a tuple E consisting of words

e1; � � � e`(E), where each ei is one of the 640 outcomes. Denote the tuple of

dice used in the experiment by F , where each die fi is one of the 294 types

of dice.2 Lastly, assume that A is a tuple of which die was used for each toss

(e.g. ai 2 f1; 2; � � � `(F)g). If one knew which dies was used for each toss,

then it would be trivial to calculate the likelihood. Remember though, the

data for an experiment consists only of E and F . While A is not known, the

likelihood L for a single experiment can still be expressed in terms of A;F ,

and `(E) . Thus:

p(E j F) =
X
A

p(E;A j F) (2.22)

p(E;A j F) = p(E j A;F; `(E))p(A j F; `(E))p(`(E) j F) (2.23)

2The choice of F to denote \die" will become evident later.

25

If one assumes that all alignments p(A j F; `(E)) are equally likely, then:

p(E;A j F) =
p(`(E) j F)

`(F)`(E)

`(E)Y
i=1

p(ei j fai) (2.24)

Since A is hidden, it is not possible to accumulate the frequency counts

directly, since one does not know which A was used in the generation of E

from F . Intuitively, one could imagine that each A were possible, and use

fractional frequency counts for p(ei j fai) calculated by:

c(E;A0 j F) =
p(E;A0 j F)P
A p(E;A j F)

(2.25)

=
p(E;A0 j F)

p(E j F)
(2.26)

Each parameter used in p(E;A j F), for example p(ei j fai), has a count

value. The count value for each of these parameters would be incremented

by c(E;A0 j F). Of course, this requires initial values for the parameters

p(ei j fj) in order to compute the fractional count in equation 2.26. Upon

accumulating the fractional counts for each parameter across the entire set

of experiments, the parameters are �nally re-estimated by normalizing the

accumulated counts into probability distributions:

p(ei j f) =
c(ei j f)

c(f)
(2.27)

This process can then be iterated using the new parameter estimates. This it-

26

erative procedure is called the Expectation-Maximization algorithm[20], and

is used to performMLE when the likelihood is formulated using hidden states.

The EM algorithm is used as follows:

1. Pick a set of initial statistics for the parameters. Denote these as �0.

Set the iteration number, it to 0.

2. Iterate until the stopping criterion is met:

(a) For each parameter, set its count to 0.

(b) Iterate over each pair of training sentences (E;F):

i. Calculate the expected number of times each parameter is used

in a pair of training sentences. This is done by computing a

fractional count for each of the hidden A as given by equa-

tion 2.26.

ii. Increment the count for each parameter used in (E;F) by the

fractional count.

(c) Increment the iteration number it.

(d) Maximize the likelihood of the training set by re-estimating each

parameter of �it using equation 2.27.

In the previous example, the choice of the number of dice, the number

of sides, and even the variables used to denote these were done to facilitate

the link between the discussion of the EM algorithm and statistical NLU. In

statistical NLU, one is given a training corpus containing pairs of English

27

sentences and their formal language. The English words are denoted E and

the formal language F . Each e 2 E is generated by an f 2 F , but this

information is hidden. That is, there is a hidden alignment A between words

in E and words in F . As it happens, the ATIS corpus (see chapter 3) requires

vocabularies of 640 English words and 294 Formal words. One can use \die

tossing" as the basis for a model, and this leads to the �rst statistical model

presented in this thesis (see chapter 5).

To formally show that the EM algorithm performs MLE, it is necessary

to show that for each iteration, the likelihood has not decreased. Since

the likelihood is bounded above by 1:0, this implies convergence of the EM

algorithm.3 Let E denote some observed event and let F denote the source.

Let � be a vector containing all the parameters of a model that are assumed

to be probabilities. Thus, each �i is between 0 and 1, and
P

i�i = 1. Denote

the probability of generating E from F according to a model with parameters

� by p�(E j F). The log likelihood for a training set of a model with hidden

states is:

logL(�) =
X
(E;F)

~c(E;F) log p�(E j F) (2.28)

=
X
(E;F)

~c(E;F) log
X
A

p�(E;A j F) (2.29)

where ~c(E;F) is the number of times the pair (E;F) of aligned sentences

3The likelihood space can be quite complex, and the EM algorithm might converge to
a local maximum or a saddle point of the likelihood space.[20]

28

appears in the training corpus of n pairs of sentences, and A represents each

hidden way of generating E from F .

Now let's de�ne the objective function as:

O(�) =
1

n
logL(�) (2.30)

=
X
(E;F)

~p(E;F) log p�(E j F) (2.31)

If one shows that O(�) is monotone increasing, then L(�) is also monotone

increasing. It is interesting to note the similarity between O(�) and the

cross-entropy prediction the model gives for the training data. These are

related by a constant �1 factor. Thus, maximizing O(�) is equivalent to

minimizing the model's entropy on the training data.

The proof that O(�) is monotone increasing requires comparing O(�)

for two di�erent sets of parameters, the initial set used to accumulate the

parameter counts, and the subsequent set computed by normalizing these

counts. The initial parameter vector will be denoted by �, while the new

parameter vector will be denoted by �0. In order to show thatO(�0) � O(�),

�rst de�ne the relative objective function as:

R(�0;�) =
X
(E;F)

~p(E;F)
X
A

p�(A j E;F) log
p�0(A;E j F)

p�(A;E j F)
(2.32)

This is very nearly O(�0) � O(�), except the summation over all A is now

done outside the logarithm, and the log probabilities are weighted by p�(A j

29

E;F). Intuitively, R(�0;�) uses the parameter values in vector � to weigh

the log likelihood of a particular alignment proportionally by p�(A j E;F).

To prove that L(�) is monotone increasing, requires two theorems.

Theorem 1 �0 = �) R(�0;�) = 0

Proof:

R(�;�) =
X
(E;F)

~p(E;F)
X
A

p�(A j E;F) log
p�(A;E j F)

p�(A;E j F)
(2.33)

=
X
(E;F)

~p(E;F)
X
A

p�(A j E;F) log 1 (2.34)

= 0 (2.35)

Thus, after performing an iteration of the EM algorithm, should the same

parameter set result, then the relative objective function has value 0.

Theorem 2 O(�0) � O(�) +R(�0;�)

Proof: The key to proving this is the concavity of the logarithm function,

which is known as Jensen's Inequality. For concave functions f :

f(
X
i

pixi) �
X
i

pif(xi) (2.36)

if pi � 0 and
P

i pi = 1. This is illustrated pictorially in �gure 2.2 for two

pi. Basically, any point along a line between two points x1 and x2 lies at or

below the value of the function at that point.

30

X1

X2

f(pi x i)Σ

pi f(xi)Σ

Figure 2.2: A Concave Function

Thus, since log is concave:

log(
X
i

pixi) �
X
i

pi log xi (2.37)

Therefore:

R(�0;�) =
X
(E;F)

~p(E;F)
X
A

p�(A j E;F) log
p�0(A;E j F)

p�(A;E j F)
(2.38)

�
X
(E;F)

~p(E;F) log
X
A

p�(A j E;F)
p�0(A;E j F)

p�(A;E j F)
(2.39)

Borrowing two relations from probability theory, namely:

p(A j B;C) =
p(A;B j C)

p(B j C)
(2.40)

31

X
A

p(A;B j C) = p(B j C) (2.41)

equation 2.39 can be simpli�ed further:

R(�0;�) �
X
(E;F)

~p(E;F) log
X
A

p�0(A;E j F)

p�(E j F)
(2.42)

=
X
(E;F)

~p(E;F) log
p�0(E j F)

p�(E j F)
(2.43)

=

P
(E;F) ~p(E;F) log p�0(E j F) �

P
(E;F) ~p(E;F) log p�(E j F)

(2.44)

= O(�0)�O(�) (2.45)

Thus, the objective function is monotone increasing if the relative objec-

tive function is maximized on each iteration. This is because R(�0;�) attains

a value of 0 if �0 = �. Thus, the maximum over all �0 has to be at least 0.

Fortunately, it is easy to maximize R(�0;�) under the weak constraint that

p�(A;E j F) involves just products of the parameters. That is:

p�(A;E j F) =
Y
i2A

�
Ci;E;A;F
i (2.46)

Equation 2.46 shows that the product is taken of each parameter in the

hidden derivation and each parameter is used Ci;E;A;F times (the number of

times that parameter i is used in hidden derivation A between E and F).

Before showing how to maximize the relative objective function, it is

useful to see how equation 2.46 can be solved for C�i
, the count parameter �i

32

receives when using a hidden model with parameters � over a training corpus.

Ci;E;A;F can be found by taking the logarithm and the partial derivative with

respect to �i of each side of equation 2.46. This then gives:

Ci;E;A;F = �i

@

@�i

log p�(A;E j F) (2.47)

Similar to conditional probabilities:

C�i;E;F =
X
A

p�(A j E;F)Ci;E;A;F (2.48)

C�i
=

X
(E;F)

~p(E;F)C�i;E;F (2.49)

Note that if one sums over all A in equation 2.48, C�i;E;F can be expressed

in terms of p�(E j F):

C�i;E;F =
X
A

p�(A j E;F)Ci;E;A;F (2.50)

=
X
A

p�(A j E;F)�i

@

@�i

log p�(A;E j F) (2.51)

=
X
A

p�(A j E;F)

p�(A;E j F)
�i

@

@�i

p�(A;E j F) (2.52)

=
X
A

p�(A j E;F)

p�(A;E j F)

p�(E j F)

p�(E j F)
�i

@

@�i

p�(A;E j F) (2.53)

=
X
A

1

p�(E j F)
�i

@

@�i

p�(A;E j F) (2.54)

=
1

p�(E j F)
�i

@

@�i

X
A

p�(A;E j F) (2.55)

=
1

p�(E j F)
�i

@

@�i

p�(E j F) (2.56)

33

= �i

@

@�i

log p�(E j F) (2.57)

Using the method of Lagrangian multipliers, R(�0;�) can be maximized

by taking partial derivatives with respect to �0
i and setting to 0. Without loss

of generality, assume �i � 0 and
P

i�i = 1. Allowing partitioned subsets

of � to sum to 1 just adds extra Lagrangian multipliers, but the derivation

remains fundamentally the same. By applying the method of Lagrangian

multipliers:

@

@�0
i

[R(�0;�)� �(
X
i

�0
i � 1)] = 0 (2.58)

Therefore:

� =
@

@�0
i

R(�0;�) (2.59)

=
@

@�0
i

X
(E;F)

~p(E;F)
X
A

p�(A j E;F) log
p�0(A;E j F)

p�(A;E j F)
(2.60)

=
@

@�0
i

X
(E;F)

~p(E;F)
X
A

p�(A j E;F) log p�0(A;E j F) (2.61)

=
X
(E;F)

~p(E;F)
X
A

p�(A j E;F)
@

@�0
i

log p�0(A;E j F) (2.62)

=
1

�0
i

X
(E;F)

~p(E;F)
X
A

p�(A j E;F)�0
i

@

@�0
i

log p�0(A;E j F) (2.63)

Finally, by using equations 2.47, 2.48, and 2.49:

� =
1

�0
i

X
(E;F)

~p(E;F)
X
A

p�(A j E;F)�0
i

@

@�0
i

log p�0(A;E j F) (2.64)

34

=
1

�0
i

X
(E;F)

~p(E;F)
X
A

p�(A j E;F)Ci;E;A;F (2.65)

=
1

�0
i

X
(E;F)

~p(E;F)C�i;E;F (2.66)

=
1

�0
i

C�i
(2.67)

Solving for �0
i and using the fact that

P
i�i = 1, the desired re-estimation

formula for a parameter is attained:

�0
i =

C�iP
iC�i

(2.68)

Setting the new value of a parameter �0
i to the count that it receives in a

training corpus relative to an existing parameter set, normalized by the ap-

propriate denominator, maximizes the relative objective function. Hence, the

likelihood L(�) will either remain the same (in which case all the parameters

retained their original values), or it will increase.

Some care must be taken when using the EM algorithm.

� Since Ci;E;A;F = �i
@

@�i
log p�(A;E j F), this will always be 0 (or un-

de�ned depending on the partial derivative) if �i is 0. Thus, it is

important that the initial values for each �i be non-0.

� While the likelihood L(�) is monotone increasing, there could be many

local maxima. For objective functions that are concave there is a unique

global maximum. In this case, the EM algorithm will converge to this

global maximum. This is true for Model 1 (see chapter 5). But all

35

other models described in this thesis do not have a global maximum.

For these models, the �nal parameter settings to which the EM algo-

rithm converges depends upon the initial parameters. This isn't even

guaranteed to be a local maximum. It is guaranteed to converge to

a critical point of L (all partial derivatives of L with respect to the

parameters �i are 0). A saddle point is an example of critical point

that is not a local maximum.

� Since the EM algorithm converges to one of many possible critical

points, it is important to pick initial parameters using knowledge about

the problem being solved and the models being used. One common

trick is to assign reasonable parameter values by manually aligning

some pairs of sentences (E,F). This is called a hand alignment (see sec-

tion 4.3). A hand alignment exposes the hidden structure so one can

directly accumulate counts for the observed events. In fact, one can use

hand-created alignments for any portion of the training data, and this

does not e�ect the proof that the likelihood will increase. The count

formula for Ci;E;A;F has to be replaced for these sentences of course.

� One problem with the EM algorithm is determining how many times

to iterate. While the likelihood of the training data is guaranteed to

increase, one has to be careful about under and over training. One

could measure the cross entropy on a test set, but this is no guaran-

tee of improvement. The only safe way to know that you have done

36

enough iterations is to try the parameter sets on some held-out data

using a decoder and language model. Dempster, Laird and Rubin dis-

cuss convergence issues in their seminal paper[20]. In particular, they

mention that some parameters may converge rapidly, whereas others

require many iterations. Further convergence issues, including a spe-

ci�c example utilizing hidden Markov models are given by Nadas and

Mercer[58].

� When deriving the count formula for Ci;E;A;F , care must be taken to

ensure there is no division by 0. In particular, it is necessary to con�rm

that p�(A;E j F) is not 0, otherwise the partial derivative of the log

will introduce division by 0.

2.4 The Decoder and Language Model

In the previous section, statistical modeling using a source channel paradigm

was described. To build a complete system, one still has to implement a

decoder and a language model. These are major e�orts unto themselves, and

not undertaken in this thesis. Nevertheless, a few comments are in order.

Generally, the designer of an NLU system writes a decoder that searches

the meaning space for the formal language that maximizes equation 2.2.

The most common search procedures are the stack search[33] and the Viterbi

beam search[44], both variants of the A? search[72].

As the decoder searches the space of F , the translation model parameters

37

are used to calculate either the maximum likelihood value:

p�(E j F) =
X
A

p�(A;E j F) (2.69)

or the Viterbi value:

p�(E j F) � maxAp�(A;E j F) (2.70)

This translation model value is multiplied by a language model score for

the formal language. The search procedure over the space of F is called a

decoder.

Language models are usually implemented as n-gram models, which have

been proven to be successful[2]. Recently researchers have leaned toward

maximum-entropy based language models[67, 71, 40, 73].

One enhancement is that the translation and language model values can

be weighted to increase performance:

p(F)�LM p�(E j F)(1��LM) (2.71)

The weights are calculated empirically using held-out data.

While this section brie
y described the most common decoders and lan-

guage models for statistical NLU, this thesis uses even a simpler search

strategy for ATIS. This is called the pattern matcher, and is described in

section 4.4.

38

Chapter 3

Air Travel Information Service

So far, this thesis has presented statistical natural language understanding in

a very theoretical way. The basic elements of source-channel modeling and

maximum likelihood estimation have been presented, but not applied to a

domain. The domain used in this thesis is the Air Travel Information Service

(ATIS) [69], used by ARPA for the last �ve years in the Human Language

Technology workshops. The primary reasons for selecting ATIS are:

� There has been a concerted e�ort to collect data for this domain, called

the MADCOW initiative[27]. Thus, no additional data collection was

required.

� The results of this thesis can be compared with the results of the other

ARPA participants, most notably AT&T, BBN, CMU, MIT, SRI, and

Unisys.

39

3.1 The ATIS Corpus

The ATIS corpus used in this thesis contains 25,483 sentences, of which there

are 23,412 unique ones. These data do not include three test sets of December

1993, December 1994, or the development test set for the December 1994

evaluation. These test sets are being reserved for testing purposes only, for it

is \cheating" to test a system on data used in its development. The di�erence

between the total number of sentences and the unique ones is some sentences

are ambiguous, and are thus included with more than one interpretation.

For each sentence, the ATIS corpus contains many types of data. The

data relevant to this thesis are:

sro The speech recognition output, which has been hand-annotated to mark

\exceptional" speech events. An example of the text in an .sro �le is:

[pop] . [smack] . [inhale] . i'd like to �nd a f:light . betwee:n,

[um] . Dallas, and Philadelphia

There are two types of acoustic phenomena annotated, the non-speech

phenomena as shown above (e.g. [smack]), and speech phenomena like

false starts. Using lex [39], the data were cleaned to remove the acoustic

and false start annotations, to produce:

i'd like to �nd a
ight between Dallas and Philadelphia

cat The \category" or \class" for this sentence. Each sentence is catego-

rized as being context-independent(A), context-dependent(D), or X [5].

40

Category X queries are unanswerable for a variety of reasons, including

truncated speech (i.e. the user turned o� the microphone too early)

and queries about data not in the database.

win The NL-Parse for the sentence. NL-Parse is an unambiguous English-

like language that can be parsed with a context free grammar[26]. In

fact, NL-Parse can be parsed with an LALR(3) grammar[1]. The corpus

contains NL-Parse for all category A and D queries, but most category

X queries do not have NL-Parse. The NL-Parse for the above query is:

List
ights from Dallas and to Philadelphia

sql SQL for the query that generates the \minimal" answer. The minimal

answer includes all the rows from the appropriate tables that satisfy

the query. Only columns needed to answer the query are displayed.

For example, the minimal answer for the above query would include

just
ight ids.

sql2 Similar to above, this SQL generates the \maximal" answer. This

answer includes more columns than were explicitly requested by the

user, but are reasonable to present. For instance, in the above example,

it would be reasonable to display the departure and arrival airports. If

the user asked for the earliest
ight, then it would be reasonable to

display the departure and arrival times as well.

ref This is the answer from the database if one runs the .sql query. This is

41

stored using a tuple notation similar to a Lisp s-exp [82].

ref2 This is the answer from the database if one runs the .sql2 query, also

stored using tuples.

Unfortunately, not all the data in the corpus have been annotated with

NL-Parse. This is relevant because NL-Parse forms the basis for the formal

language. There are 5627 class A sentences for training and 600 class A

sentences for smoothing. This leaves approximately 6000 sentences that are

class A and lacking NL-Parse.

3.2 The ATIS Database

The ATIS database contains 27 tables. The most important ones are shown

in table 3.1.

Most queries are relatively easy to evaluate, requiring joins between tables

where appropriate. Queries that are di�cult to answer are ones that require

complex grouping in the SQL. For example, asking the busiest hour for

each airport would require grouping the departing and arriving
ights into

airports and hour of departure or arrival, then counting these, then �nding

the hour that has the maximum count for each airport. This is extremely

di�cult to do in SQL.

Since most queries are about
ights and fares, the columns for these are

presented in tables 3.2 and 3.3.

42

Table Name Num Cols Description
aircraft 15 aircraft performance statistics.
airline 3 abbreviated airline codes and o�cial airline names.
airport 7 the airport name and an indication of its location.

an airport may serve more than one city.
airport service 5 a list of the airports that serve a city.
city 5 a description of cities. Cities are distinct from

airports.
fare 9 a table of the fares listed by class,

and where applicable by airline and by restriction.
fare basis 9 a table describing the modi�ed booking classes that

determine a fare.

ight 15 a table containing the primary information for

ights.
food service 4 meals included under meal codes.
ground service 4 fares for di�erent types of ground transportation

between a city and an airport.
restriction 8 this table describes the restrictions that apply to

restricted fares.

Table 3.1: Important ATIS Relations

43

Column Name Description

ight id a unique identi�er for a
ight.

ight days a string of codes for days of the week,

with 'not' to exclude days, and 'daily' for all.
from airport the origin airport for a
ight or fare.
to airport the destination airport for a
ight or fare.
departure time the departure time for a
ight.
arrival time the arrival time for a
ight.
airline
ight the sequence of airline codes and
ight numbers for

a
ight
airline code the code for an airline.

ight number the
ight number for a direct
ight.
aircraft code sequence the sequence of codes for the aircraft used on a
ight.
meal code a code indicating meal service.
stops the number of intermediate stops on a
ight.
connections the number of connections on a
ight.
dual carrier 'yes' if a
ight has a dual carrier, 'no'

otherwise.
time elapsed the total elapsed time for a
ight.

Table 3.2: Columns in the FLIGHTS Relation

Column Name Description
fare id a unique identi�er for a fare.
from airport the origin airport for a
ight or fare.
to airport the destination airport for a
ight or fare.
fare basis code a modi�ed booking class that determines a fare.
fare airline the code for an airline that has its own fare for a fare code.
restriction code the code for a set of restrictions that apply to a fare.
one direction cost the cost of a fare in one direction.
round trip cost the cost of a fare for a round trip.
round trip required 'yes' if a fare applies only to round-trip travel, 'no'

otherwise.

Table 3.3: Columns in the FARES Relation

44

A close inspection of the
ight and fare tables will reveal some interesting

facts. First, the only columns they have in common are from airport and

to airport. In order to do joins[77], there is another table which lists
ight id

and fare id pairs that go together. A
ight can have more than one fare,

and a fare might be applicable to more than one
ight. Second, cities are

not mentioned in either of these, since
ights and fares are between airports.

Thus, if you wish to
y from a city, one must join the airport code from

the
ight or fare table to the city table, using the airport service table as an

intermediate table for the join.

3.3 NL-Parse

NL-Parse is an English-like language for expressing ATIS queries [26] that

is nearly unambiguous. Indeed a yacc [39] program was written to parse

NL-Parse statements, and generate SQL. Yacc can handle LALR(1) gram-

mars. It is well known that LALR(k) grammars are unambiguous[1]. The

LEX tokenizer required 2 additional characters of lookahead, making the

implementation LALR(3). However, yacc found three shift-reduce con
icts.

Fortunately, these ambiguities result from pathological cases, and yacc's de-

fault behavior of preferring a shift action to a reduction is the correct parsing

recovery action[1]. An extended Backus-Naur Form of NL-Parse is given in

appendix A. This appendix also describes the ambiguity in NL-Parse. A

more complete grammar is given in appendix B. This contains the yacc

45

grammar (stripped of the semantic actions that generate SQL and control

the error recovery). In order to understand this thesis, a few example NL-

Parse statements should su�ce:

� List earliest
ights from Boston and to Denver

� List early morning
ights from Boston and to Denver

� List United
ights from Boston and to Denver and whose
ight number

is 201 and serving breakfast

� List food services whose meal description is breakfast and served on

United
ights from Boston and to Denver and whose
ight number is

201

� List fares charged for United
ights (from Boston and to Denver and

whose
ight number is 201)

� List aircraft equipping United
ights from Boston and to Denver and

whose
ight number is 201

46

Chapter 4

Statistical NLU for ATIS

4.1 Analysis of English

In order to reduce the number of parameters in the translation models, the

English is analyzed into tagged English using a statistical tagger[18]. This

did require annotating some of the data manually. The key point is that one

can't possibly train a statistical system with just a few thousand sentences if

the English vocabulary contains an extra 1500 words for city names, airport

names, dates, prices, times and so forth. Too many parameters will not

be seen in the training data, and hence have 0 probability associated with

their events. Parameters can be tied together, but since tagging is better

understood, this was preferred over tieing.

No attempt was made to determine classes automatically. Though the

availability of the SQL and NL-Parse data would make this a much easier

47

Tag Name Description
ACODE an airline code, like DL.
AIR an airline name, like Delta.
ARP an airport name, like LAX.
CITY a city name, like Boston.
CODE a generic code, like DC10.
DATE a date, like 6/21/90.
DAY a day, like Sunday.
NUM a number, like one hundred twenty.
STATE a state, like Texas.
PRICE a dollar amount for a ticket, like four hundred dollars.
TIME a departure or arrival time, like 4 p m.
COUNTRY a country, like Canada.
MONTH a month when not part of a date, like December.

Table 4.1: Tag set for ATIS

problem than determining classes given English only. Upon determining

some basic class instances, this could be used to generate training data for

a statistical tagger. Then, this process could be iterated. Although hand

tagged data were used to train the statistical tagger, this should not be

considered a weak link in the portability claims of this thesis.

The tags used are shown in table 4.1.

Without these tags, there would be vastly too many parameters, and sig-

ni�cantly more training data would be needed. As it is, numerous taggable

classes were not included, and this probably a�ects performance. Examples

include MEALs (breakfast, lunch, etc) and TIMERANGEs (evening, morn-

ing, etc).

The translation models can make valuable use of these tags, besides just

reducing the number of parameters. The tags were designed so that whenever

48

one of these tags appears in the English, the corresponding tag also appears

in the formal language. Thus, these tags are valid in both the English and

formal language vocabularies. One can enforce the constraint that a tag

in the English must be generated from the corresponding tag in the formal

language. This is done at training by setting p(e j TAG) = 0 for all e 6= TAG.

This also helps decoding (see section 4.4).

4.2 Synthesis of Meaning

The formal language used are the nodes contained in the pre-order traversal of

the parse tree for cleaned and tagged NL-Parse. Tagging the NL-Parse is much

simpler than tagging English, as there are strong clues in the highly regular

NL-Parse. For example, a CITY must follow \from", \to", or \stopping in".

Of course, an AIRPORT has the same requirement. Thus, if there were a

CITY and AIRPORT with the same name, then there would be a problem.

Fortunately, it was possible to resolve all ambiguities of this sort.

One issue in tagging the formal language is that improvements can be

attained in most models by adding thematic roles, sense su�xes, or both.

For example, a CITY can be tagged as a FROM CITY or a TO CITY if

this is built into the statistical tagger's training set. For most of the results

presented in this thesis, the tags contain sense su�xes. For example, the �rst

CITY in the English becomes CITY 1, the second one CITY 2 and so forth.

When the NL-Parse is tagged, upon discovering a tag, the association list of

49

CITY names already found in the English is consulted to decide which sense

to use.

An inspection of NL-Parse shows that it highly resembles SQL. Between

tables, there is always an English substring denoting the join, as in \List

aircraft equipping
ights � � �". Often NL-Parse contains constructs which

resemble the derivation from SQL, and leads to NL-Parse which is signi�-

cantly more awkward and verbose than the corresponding English. This does

not lend itself well to a statistical natural language understanding system in

which English words are generated from formal language words, since now

clauses in the formal language will have to generate words in the English.

Thus, the original NL-Parse was cleaned. Some examples of the problems

�xed are:

� Weekday
ights in NL-Parse require the conjunction of each day, for

example, \
ying on Monday and
ying on Tuesday and � � � and
ying

on Friday". This became \
ying on weekdays".

� Arrival days in NL-Parse are handled in an ugly way, for example

\(
ying on Monday and overnight) or (
ying on Tuesday and not

overnight)". This became \arriving on Tuesdays".

� Days mentioned by the user were converted to dates. These were con-

verted back to days. For example, if the user said \give me a
ight on

Saturday", the original NL-Parse might be \
ying on 2/3/96". This

became \
ying on Saturday".

50

� Approximate times are handled by a time interval in NL-Parse. If an

English query asked for a
ight \around noon", the NL-Parse contains

\departing between 1130 and 1230". This became \departing around

1200".

� Flights and fares were merged together. The original NL-Parse made

this distinction even though users do not. For example, if someone

wants a \�rst class
ight from Boston to Denver", original NL-Parse

requires \List
ights from Boston and to Denver and having prices of

�rst class fares". This became \List �rst class
ights from Boston and

to Denver".

The tagged and cleaned NL-Parse is then parsed with the grammar given

in appendix B. The parse tree has some modi�cations to what the \pure"

parse tree would produce:

� Only semantically relevant nodes are kept. Many of the nonterminals

are used to make the rules more compact, and contain no semantic

relevance. For example, the nodes \corpora", \query", and \just" are

all semantically irrelevant. When a semantically irrelevant node is ex-

cluded, one of the children is promoted to the parent location in the

parse tree, and dominates the remaining children.

� NL-Parse requires full Boolean expressions. These are implemented as

binary operators in the grammar, but are converted to n-ary operators

in the parse tree.

51

� Nonterminal nodes that ambiguously accept di�erent children, are given

a su�x to indicate the sense. For example, \from" can be used either

to designate a departure city tag, a departure airport tag, a depar-

ture city expression (e.g. \cities located in Massachusetts"), or a de-

parture airport expression. The created parse tree uses \from:city",

\from:airport", \from:cities", or \from:airports" to distinguish these

cases.

� Default nodes are sometimes inserted when an optional NL-Parse word

is omitted, if convenient to do so in yacc. For example, one can say

\List all departure time of
ights" or \List departure time of
ights".

In either case, the parse tree will have an \all" node as the parent of

\departure time". In addition, all queries that request a column be

displayed, have \Extract" in them in addition to \List" in the cleaned

version.

For statistical NLU to be successful, the synthesized formal language

must contain the semantic concepts present in the English, and not contain

redundant or meaningless words in it. This will become more evident in

chapter 8. Thus, an open area of research is how to get a formal language

representation with minimal human e�ort. One can begin from an SQL

representation, but learning when the SQL is verbose due to the database

design and not the English is a challenge. While not perfect, the formal

language used for ATIS in this thesis is the preorder traversal of the cleaned

52

NL-Parse parse tree.

4.3 Hand Alignments

The models used by AT&T[65] and BBN[54] required hand aligned data for

training. If they trained the models using the EM algorithm without this

supervision, then the resulting parameters did not work nearly as well. In

order to see if the models investigated in this thesis su�er from the same

fate, hand alignments were created manually for 3575 of the 5627 class A

sentences.1 This was done by four di�erent annotators, using a tool that

allows one to connect each English word with the formal word most likely

to generate it. The decisions on how ambiguous words should align were left

to each annotator. One guiding principle was given, basically, to try to keep

strings of words together. Since most of the models used in this thesis are

based on substrings (see chapter 6), one should try to keep consecutive words

aligned to the same meaning word whenever possible. Using this tool, I was

able to align approximately 100 sentences per hour, if an initial alignment is

created automatically from one of the models described in this thesis (trained

on 100% hidden data of course). It should be emphasized that the goal of

this thesis is to �nd a model which works with no hand aligned data. Having

the hand aligned data will facilitate analyzing the strengths and weaknesses

of the models. In particular, one hopes to discover that some models can be

1See section 5.4 for how these hand aligned sentences are used.

53

trained with no hand aligned data at all.

4.4 The ATIS Decoder/Pattern Matcher

Having described the analysis and synthesis stages of the statistical NLU used

in this thesis, this section describes the decoder used in this thesis. The initial

development of a stack or Viterbi decoder for a natural language application

can take one or two man years, and the research to improve the search is

never ending. This e�ort is warranted if a good model is discovered. To

focus on a decoder and LM before �nding such a model would be premature.

A poor man's version of these was implemented for this thesis, which is called

the pattern matcher.

The ATIS pattern matcher simply tries all formal language patterns that

are seen in the training set that have the exact same tags as the English.

Since training requires an English tag to come from the corresponding formal

tag, only patterns that contain the exact same tags will have a non-zero

probability p(E j F). This signi�cantly speeds the pattern matcher, and

reduces the error rate.

While there are 25,483 sentences in the ATIS corpus, formal language

exists for approximately 13,000 of them, of which there are approximately

4,000 unique formal language sentences. So, rather than developing a com-

plex search procedure through the meaning space, the pattern matcher scores

each of the 4,000 meanings in its pattern vocabulary using p(E j F) � p(F),

54

where F is the formal language and E is the tagged English. The transla-

tion models provide p(E j F). The language model score for p(F) is just

the unigram probability distribution of the patterns. These two values are

multiplied together to get the �nal score for a pattern. The pattern with the

highest score (and matching tags) is selected. An initial experiment to de-

termine a weighting factor found no improvement over equal weighting (see

section 2.4).

In order to select the best pattern, two techniques are often used:

� Maximum Likelihood Decoding - This considers all possible ways of

generating an English sentence from a formal language pattern. Even

though most sentences have only a few sensible ways of doing this, all

possible ways contribute to the probability. This is only computation-

ally feasible for some of the models.

� Viterbi Decoding - This considers only the most probable way to gen-

erate an English sentence from a formal language pattern. If one has a

well designed formal language and a good model, then most of the max-

imum likelihood probability will come from the Viterbi alignment prob-

ability. But if the modeling has
aws, then summing over all possible

alignments, not just the Viterbi alignment, can lead to improvements

in performance.

There is one disadvantage to using a pattern matcher. The pattern vo-

cabulary will certainly be incomplete. For example, in the DEV94 set of

55

410 class A sentences, 70 of them are missing from the pattern matcher vo-

cabulary. It is possible to solve some of these coverage problems with good

classes. For example, MEALs were not tagged. Thus, there are patterns that

explicitly contain \serving breakfast", \serving lunch", or \serving dinner".

Hence a missing pattern might actually exist, but with a di�erent MEAL in

it. This accounted for 25% of the missing patterns. To reduce the missing

patterns by 75%, it was necessary to allow for the insertion or deletion of

meaning fragments. For example, often a pattern was \close" to the reference

pattern, in that it di�ered by one or two NL-Parse conjuncts. Rather than

trying to spend several weeks making a fragment-based pattern matcher, one

can get an upper bound on performance by augmenting the pattern matcher

vocabulary with the test set pattern if it is missing from the pattern vocabu-

lary. The results will naturally be much better with the augmented pattern

vocabulary. The true measure of performance, unfortunately, has to use the

training pattern vocabulary only. But the results of using the augmented

pattern vocabulary still have value. If one had a decoder that searched the

formal language space in a reasonable way, and used a good language model

for p(F) in equation 2.2, then hopefully the system could get results close to

those attained by using the augmented pattern vocabulary.

56

4.5 Evaluation

Once the pattern matcher has selected the most likely pattern for a test

sentence, this needs to be evaluated according to an evaluation metric.

4.5.1 Evaluation Metrics

There are many ways to evaluate the output of an NLU system. In fact,

throughout the �ve year HLT workshop, this has been an ongoing debate.

In the end, NIST decided to use the Common Answer Speci�cation (CAS)

as its evaluation metric[9]. This requires comparing the output tuples from

the \reference" answer, to the output tuples produced by a system. Of

course, the comparison program must allow for di�erent permutations and

the inclusion of additional reasonable columns. Most of the participants in

the HLT workshops have been unhappy with the CAS. In fact, no fewer than

eleven papers discussed alternate evaluation metrics or argued against using

the CAS metric[69, 28, 4, 68, 70, 79, 59, 29, 31, 36, 57].

This thesis will present the results of the models using using two metrics:

� Exact Match - When a sentence is decoded into its most likelymeaning,

this can be compared for equality to the reference answer. This is a

very strict metric, as often the wrong answer might still have the same

meaning. But nevertheless, there seems to be a correlation between

the exact match scores and the CAS scores. Exact match scores are

presented along with each model.

57

� Common Answer Speci�cation - When a sentence is decoded into its

most likely meaning, the CAS performance is attained as follows:

1. Convert the meaning into tagged NL-Parse.

2. Use an association list obtained during the analysis of English to

�ll in the tag values.

3. Process the NL-Parse by the yacc parser to produce SQL.

4. Submit the SQL to DB2 to produce the answer tuples.

5. Run the NIST comparator to compare the answer tuples to the

reference answer tuples.

Since running the SQL on the database is a lengthy process, this is done

for only a subset of the experiments. The CAS results are presented in

chapter 10.

4.5.2 Evaluation Test Sets

There are three test sets:

� DEV94 - This is the development test set given in mid 1994 to the

participants in the HLT workshop. One can use this set repeatedly to

get results, but the ARPA participants were not allowed to look at the

data. This contains 410 class A sentences.

� DEC93 - This is the o�cial December 1993 evaluation set. This con-

tains 448 class A sentences.

58

� DEC94 - This is the o�cial December 1994 evaluation set. This con-

tains 445 class A sentences.

There are several ways that one could use these three test sets. Most

participants looked at the December 1993 test data, so that it could be

adjudicated for the �nal results. That is, they were allowed to look at the test

data, and report errors they found in the test data to NIST. NIST would then

consider the requests, and when appropriate, modify the reference answer for

re-evaluation. Thus, most participants have had the bene�t of looking at the

DEC93 data while developing their DEC94 systems, even though they could

not look at the DEV94 data that they already had.

In the development of this thesis, I decided to look at the DEV94 data

instead. This allows me to report valid numbers for the DEC93 and DEC94

o�cial evaluations, which can then be compared to other participants.2 The

DEC93 results would not be valid if these data were examined. Thus, while

other research groups had the bene�t of looking at DEC93 in the development

of their DEC94 systems, the development of the models in this thesis was

facilitated by the decision to look at the errors made in DEV94.

In this thesis, DEV94 is used to test each model using maximumlikelihood

decoding using the exact match criterion. These results are presented with

each model using various amounts of training data. In the �nal chapter, CAS

results are presented for all three test sets, with and without augmenting the

2Though technically one could argue that I had the bene�t of looking at DEV94.

59

pattern matcher vocabulary to include missing patterns.

60

Chapter 5

Basic Word Alignment Model

5.1 Introduction

This chapter presents the �rst model, called model 1. Being the �rst model

discussed, model 1 is presented in greater depth than the other models in this

thesis. Notation is introduced, count update formulae for the parameters are

derived, the issues a�ecting the EM algorithm's performance are discussed,

and the results are analyzed with respect to the amount and composition of

the training data. This is not done for subsequent models.

Model 1 is a basic word alignment model, in which each English word is

generated by a formal language word independently from the other English

words, much like the die tossing experiment outlined in section 2.3. This is

the same as model 1 used by IBM in machine translation[11, 12, 13]. There is

a many-to-one mapping from the English words to the formal language. For

61

example, the formal word \
ights" might generate the English words \show

me the
ight".

The generation of English words from formal language yields an align-

ment between the English and meaning. An example alignment is shown in

�gure 5.1. If the English sentence has `(E) words, and the formal language

sentence has `(F), then there are `(F)`(E) possible alignments between words

in E and words in F , since each e 2 E must be generated from an f 2 F .

Each alignment will have a probability associated with it. In �gure 5.1,

\the" is aligned to \List". It is nearly equiprobable for \the" to be aligned

to \
ights". But alignments that have the English word \
ights" aligned to

anything but the formal language word \
ights" have very low probability.

In the source-channel model, the speaker's thoughts in the formal language

space are sent through a noisy channel. The observed English is the output

from the channel. Alignments are the basis of the statistical models for the

channel developed in this thesis. Each alignment is possible; there is no \cor-

rect" alignment. In �gure 5.1, there are two possible alignments that make

sense for this sentence. For other examples, hundreds of alignments make

sense. But for all sentence pairs, each of the exponentially large number of

alignments contribute to the likelihood.

Let E denote an English sentence, which consists of `(E) words, denoted

e1 � � � e`(E). Thus, E is a tuple of order `(E), whose individual elements are

the words ei. Similarly, let F denote the formal language. F is a tuple

of order `(F), whose individual elements are the pre-order traversal of the

62

List

flights

and

arriving

on

DATE_1

from:city

CITY_1

to:city

CITY_2

show

me

the

flights

from

CITY_1

to

CITY_2

arriving

in

CITY_2

on

DATE_1

Figure 5.1: Example Alignment

63

parse tree for the cleaned and tagged NL-Parse. The individual elements of

F are the formal words fi. An alignment A is a tuple of order `(E). The

elements ai are integers in the range 1 � � � `(F). Each ei is aligned to one and

only one formal language node fai. Thus, in �gure 5.1, E = [show, me, the

ights, from, CITY 1, to CITY 2, arriving, in, CITY 2, on, DATE 1]. F = [

List,
ights, and, arriving, on, DATE 1, from:city, CITY 1, to:city, CITY 2

]. A = [1, 1, 1, 2, 7, 8, 9, 10, 4, 4, 10, 5, 6].

5.2 Formulae

For any (E;F), there are `(F)`(E) possible alignments, each of which can have

non-zero probability, though the Viterbi alignment[78, 21] should comprise

the bulk of this probability for a good model. One can derive the formula

for p(E;A j F) by repeated use of Bayes rule[13]:

p(E j F) =
X
A

p(E;A j F) (5.1)

p(E;A j F) = p(E;A j F; `(E))p(`(E) j F) (5.2)

= p(E j A;F; `(E))p(A j F; `(E))p(`(E) j F) (5.3)

The assumptions in model 1 are:

� The length of the English sentence E is determined entirely by the

length of F , not the words in F . Hence, p(`(E) j F) can be modeled

by the parameter p(`(E) j `(F)). Intuitively, the length of E is likely

64

to be proportional to the length of F .

� Each alignment A between E and F is equally likely. Hence p(A j

`(E); F) is replaced by 1
`(F)`(E) . Intuitively, this says that word order

in the English and formal language does not matter. In �gure 5.1,

if the English were permuted to \The
ights arriving in CITY 2 on

DATE 1 from CITY 1 to CITY 2 show me", then model 1 yields the

same likelihood as for the original English. While word order does

matter for virtually all of the sentences, the assumption that it does

not still gives a model that attains reasonable results. This is also

important in order to provide initial statistics for the more powerful

models presented in subsequent chapters.

� The probability of generating E given A and F depends only upon the

words to which E is aligned. Each e 2 E is generated independently.

Hence p(E j A;F; `(E)) is replaced by
Q`(E)

i=1 p(ei j fai). Future models

relax this strong assumption. This assumption would be analogous to a

machine translation system that did word for word translation, yet al-

lowing for di�erent word orders. This approach is clearly insu�cient for

machine translation, as it is for natural language understanding. But

given enough training data, or a limited domain like ATIS, reasonable

results can be attained.[13].

65

Applying these substitutions, model 1 becomes:

p(E;A j F) =
p(`(E) j `(F))

`(F)`(E)

`(E)Y
i=1

p(ei j fai) (5.4)

One particularly nice feature of this model is that:

p(E j F) =
X
A

p(`(E) j `(F))

`(F)`(E)

`(E)Y
i=1

p(ei j fai) (5.5)

=
p(`(E) j `(F))

`(F)`(E)
X
A

`(E)Y
i=1

p(ei j fai) (5.6)

=
p(`(E) j `(F))

`(F)`(E)

`(E)Y
i=1

p(ei j F) (5.7)

p(e j F) =
`(F)X
i=1

p(e j fi) (5.8)

The exchanging of the sum and products between equation 5.6 and 5.7 is

because the sum and the product use all possible alignments. Hence, using

associativity and distributivity of addition and multiplication, the sums and

product can be interchanged[13]. This is important because for a given E

and F , this leads to an O(`(E)`(F)) time algorithm to compute p(E j F).

There are two types of parameters in model 1:

sentence lengths These are the p(`(E) j `(F)) parameters. These are not

hidden, and can be trained to their maximum likelihood estimates by

counting the times that an English sentence of length `(E) occurs with

a formal language sentence of length `(F).

66

translation probabilities These are the p(ei j fai) parameters. These are

hidden parameters (unless the training data are entirely hand aligned).

Using equation 2.57, the count update formulae can be derived, and

the EM algorithm run.

5.3 Count Derivation

To derive the count of a parameter p(e0 j f 0), one can apply formula 2.57 to

equation 5.7:

c(e0 j f 0) = p(e0 j f 0)
@

@p(e0 j f 0)
log p(E j F) (5.9)

= p(e0 j f 0)
1

p(E j F)

@

@p(e0 j f 0)
p(E j F) (5.10)

= p(e0 j f 0)
1

p(E j F)

p(`(E) j `(F))

`(F)`(E)
Y
e 6=e0

p(e j F) (5.11)

= p(e0 j f 0)
1Q

e p(e j F)

Y
e6=e0

p(e j F) (5.12)

=
p(e0 j f 0)

p(e0 j F)
(5.13)

As mentioned in section 2.3, one must be careful when applying for-

mula 5.13. It is tempting to apply this formula blindly. But one must only

accumulate counts for a sentence if p(E j F) is not 0, since this appears in

the denominator in equation 5.10.

67

5.4 Training

The model 1 translation probabilities were trained for 512 iterations. The

sentence length probabilities were trained on one iteration, since they are not

hidden. The initial translation probabilities were set to uniform distributions,

except that p(e j TAG) is set to 0 for all e 6= TAG. This then forces the

EM algorithm to only utilize alignments consistent with the tag constraints.

Hence, bad alignments due to tags being misaligned are excluded. These

zeros also mean that the pattern matcher only needs to try meaning patterns

that have the exact same set of tags as the English, since no other meaning

words can generate the English tags. See section 4.4 for more on the pattern

matcher.

The algorithm to perform an iteration of the EM is trivial:

1. Initialize a two dimensional array holding counts for c(e j f) to 0.

Naturally, this array has size `(V ocE)�`(V ocF), where V ocE and V ocF

denote the size of the vocabularies for values of e and f .

2. For each pair of sentences E and F in the training data, compute p(E j

F), and if non-0, accumulate the counts for the translation probabilities

using:

8e2Ef2Fc(e j f)+ =
p(e j f)

p(e j F)
(5.14)

3. For each e 2 V ocE and f 2 V ocF , normalize the counts back into

68

probabilities using:

p(e j f) =
c(e j f)P

8e02V ocE
c(e0 j f)

(5.15)

In order to examine the performance of the EM algorithm 810 sets of

parameters were generated as follows. The training corpus consists of 5627

sentences, of which hand alignments exist for 3575 of them. The hand and

hidden data were divided into 9 di�erent sets of logarithmic size (all the data,

1
2
� � � 1

128
; none of the data). This leads to 81 separate training experiments,

each using a di�erent amount of hand aligned and hidden data. For each of

these experiments, the parameter sets were saved after exponential numbers

of iterations (1, 2, 4, � � �, 512). Thus, there are 810 parameter sets to test for

model 1. Note that this scheme means that some sentences will be used more

than once, once as hidden data, and once as hand aligned data. This does

have the a�ect of biasing the data in favor in the direction of the sentences

used twice. But since these additional instances have \perfect" alignments,

this additional bias does not pose problems.

Model 1 has a unique global maximum to which the EM algorithm will

eventually converge [13]. This is because log p(E;A j F) is just the sum

of `(E) + 1 logs. Since the log function is concave by Jensen's inequality,

and since the sum of concave functions is concave, Model 1 has a concave

objective function. Thus, the EM algorithm will eventually converge to the

global maximum.

69

5.5 Smoothing

Smoothing is the process of creating a new probability distribution from an

existing one that is less sharp than the original. The probability is increased

for low probability events, and decreased for high probability events. This

is often necessary because of insu�cient training data, over training on the

training data, or a mismatch between the training and test data. The method

used in this thesis for smoothing is called deleted interpolation[2]. The origi-

nal estimate p(e j f) is smoothed by a linear combination:

ps(e j f) = �1;fp(e j f) + �2;fp(e) + �3;f
1

`(V ocE)
(5.16)

Each parameter is smoothed using three �s, and these are conditioned

upon f . For a particular f , �1;f + �2;f + �3;f = 1. To improve smoothing,

the conditioning on f is done by using the count of f , that is, the number of

times f appears in the training and held-out smoothing corpora. The f are

binned so that f that occur approximately the same number of times share

a single set of three alphas. This is intuitively appealing. The more often an

f has occurred, the more reliable the estimate of p(e j f) will be. If f occurs

infrequently, p(e j f) will not be accurate, so the estimate can \back-o�" to

p(e) or a constant.1

The exact algorithm to determine the bins is as follows:

1In order to preserve 0 values created by the tag constraints, p(e) and 1
`(V ocE) have to

also be conditioned on f

70

1. The f are counted for the training set and the held-out smoothing set.

This produces `(V ocF) tuples (Ftraining count; Fheldout count).

2. The tuples are sorted by increasing order of training count.

3. The tuples are then partitioned into bins while satisfying three criteria:

� Tuples with the same training count value must appear in the

same bin.

� If a bin contains tuples with a training count c2 > c1, then all

tuples for training count c3 between c1 and c2 are also in the bin.

� The sum of the heldout counts of the tuples in a bin must be the

minimum possible value � 50.

The binning can be programmed by \visiting" the tuples in increasing order

of training count size. A running sum of the heldout count is accumulated.

When this exceeds 50, the �rst bin is de�ned.2 All subsequent tuples with

the same training count are included in this class, and then the next bin is

started.

This approach to smoothing is similar to the cat-cal method of Church[16].

The idea is that one should decide in which bucket to place an f based on

a large corpus (hence the sorting by training count size). However, to make

sure that the training counts are representative of some new sample, a held-

out corpus is used to determine the cuto� point for the bucket.

250 is selected so that the three alphas have enough smoothing counts so that they are
well estimated.

71

To train the �f values, the 600 held-out smoothing sentences are used.

Uniform values are given to �n;f , and the EM algorithm is run. This time,

the probabilities p(e j f) and p(e) are constants, and the � values are the

parameters.

The count accumulation formula for �1;f is derived by applying for-

mula 2.57 to equation 5.16:

c(�1;f) = �1;f
@

@�1;f
log ps(E j F) (5.17)

= �1;f
1

ps(E j F)

@

@�1;f
ps(E j F) (5.18)

= �1;f
1

Q`(E)
i=1 ps(ei j F)

@

@�1;f

`(E)Y
i=1

ps(ei j F) (5.19)

= �1;f
1

Q`(E)
i=1 ps(ei j F)

`(E)X
i=1

p(ei j f)
Y
e0 6=ei

ps(e
0 j F) (5.20)

=
`(E)X
i=1

�1;fp(ei j f)

ps(ei j F)
(5.21)

An important observation from equation 5.21 is that the counts for �1;f

can be attained by summing over each e in the sentence. The contribution

from each e is:

c(�1;f ; e) =
�1;fp(e j f)

ps(e j F)
(5.22)

=
�1;fp(e j f)

ps(e j F)

ps(e j f)

ps(e j f)
(5.23)

=
ps(e j f)

ps(e j F)
�
�1;fp(e j f)

ps(e j f)
(5.24)

72

Equation 5.24 consists of two terms. The �rst term is nearly identical to that

of equation 5.13. The only di�erence is that the smoothed estimates are used

instead of the unsmoothed ones, as de�ned by equation 5.16. These counts

are then multiplied by the second term, which is the amount of ps(e j f)

that is due to the �1;f component of equation 5.16. This demonstrates the

chain rule principle in count derivations. The alpha update formulae are

derivable from the parameter update formulae by prorating according to

their contribution to ps(e j f).

When all counts have been accumulated for the held-out corpus, the new

estimate for �1;f is attained by:

�n;f =
c(�n;f)P3
i=1 c(�i;f)

(5.25)

Since there are vastly fewer parameters, only 8 iterations of the EM algorithm

are needed to train the �f values.

There are 810 model 1 parameter sets. Rather than smoothing each of

these, only the �nal models after 512 iterations were smoothed. Thus, there

are 81 smoothed parameter sets for model 1.

5.6 Results

As mentioned in the preceding sections, there are 810 unsmoothed model

1 parameter sets and 81 smoothed parameter sets. Each of these was used

73

in the pattern matcher on the DEV94 test set, using both the maximum

likelihood and Viterbi decoding criteria (see section 4.4). This yields 1782

experimental results.

5.6.1 Exact Match Maximum Likelihood Results for

DEV94

Since 1782 results are too many to present, 162 of the experiments are pre-

sented in the form of two tables. The numbers shown in the tables are

the number of times out of 410 class A DEV94 sentences, that the pattern

matcher found the answer given in the DEV94 corpus for the query. The

formal language must exactly match.

In table 5.1, the maximum likelihood decoding results for the DEV94

test set using the smoothed model 1 parameters (512 iterations) are given.

In table 5.2, the maximum likelihood decoding results for the DEV94 test

set using the unsmoothed model 1 parameters (512 iterations) are given. In

order to allow comparison with maximum likelihood and Viterbi decoding,

appendix C contains the Viterbi decoding results for 512 and 2 iterations of

training.

The DEV94 test set has 410 class A sentences. The best result is when

all of the hand data and one sixteenth of the hidden data are used. The

results for this experiment are 284/410, or 69%. This is without augmenting

the pattern vocabulary to include the 70 missing patterns from the DEV94

74

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 283 276 273 273 271 269 270 268 267
2813 282 275 269 272 270 268 267 269 262
1406 282 275 271 266 262 251 249 251 243
703 278 273 264 256 244 242 229 231 235
351 284 278 265 261 255 235 200 209 202
175 275 269 265 259 236 227 204 204 197
87 276 276 268 268 237 215 154 168 149
43 276 270 270 249 235 189 165 168 127
0 274 273 267 259 223 184 116 119 154

Table 5.1: Exact Match Maximum Likelihood Decoding Results for DEV94
Using Smoothed Model 1 as a Function of Amount of Hand and Hidden
Training Data

test set.3

Some general observations from the tables presented in this chapter and

in appendix C are:

� Maximum likelihood decoding does better than Viterbi decoding when

there are � 351 hidden training sentences. This is true for either the

smoothed or unsmoothed parameter sets. This makes sense. The hand

aligned data give one alignment, the correct alignment, which is used

to update counts for the parameters used in the alignment. The hidden

data give counts to all the parameters used in any alignment, which is

equivalent to using the maximum likelihood decoding criterion.

� The unsmoothed parameters generally produce better results when

fewer iterations are run if the amount of hand data is less than 446

3This augmentation is done for the CAS results.

75

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 279 276 266 268 268 265 263 263 261
2813 279 274 264 265 262 260 251 258 252
1406 283 278 266 260 248 247 241 248 235
703 278 270 255 247 222 217 214 217 201
351 277 273 254 251 233 213 154 186 138
175 271 265 254 247 199 207 150 191 111
87 N/A 275 258 247 210 186 114 138 81
43 273 269 261 245 212 184 112 141 47
0 275 269 263 248 207 165 70 112 154

Table 5.2: Exact Match Maximum Likelihood Decoding Results for DEV94
Using 512 Iterations of Model 1, as a Function of Amount of Hand and
Hidden Training Data

sentences. The only exception is if all the hidden data are used. The

fact that many results are better when only two iterations are run im-

plies that the training is probably moving the parameter values away

from their \true" values, even though the likelihood may be improving.

� When� 446 hand sentences were used, adding more hidden data always

helped. In fact, the unsmoothed parameters in table 5.2 still show

a sizeable gain in performance when the amount of hidden data are

doubled from 2813 to 5627 sentences (without using any hand data).

When the number of hand aligned sentences is 3575, the results only

got a little better in going from 0 to 5627 hidden sentence. But if no

hand data are used, the results improve dramatically. As the amount of

hand training data increases, adding more hidden data does not help.

� Smoothing provided little to no advantage when all the hand data were

76

used. This is because the trained parameters are so good. When less

hand data were used, smoothing nearly always helped. In particular,

the worst decoding results were improved the most.

� Smoothed statistics computed with no training data (i.e. a linear com-

bination of p(e) and 1
`(V ocE)

), do better than when just � 87 hidden

training sentences of � 55 hand training sentences are used. This is

probably because the model is overtraining to this limited amount of

training data.

� With smoothing, there is a huge dynamic range in the results for vary-

ing amounts of hand data when little hidden data are included. But

as the amount of hidden data increases, this dynamic range shrunk. If

you look at the last column of the smoothed results, you see that the

increase in the hidden data allows fewer sentences of hand data to be

used. For example, when 5627 hidden sentences and 27 hand sentences

are used, one gets nearly identical performance as to when 3575 hand

sentences and 43 hidden sentences are used. Thus, this lends some

credence to the thesis that completely automatic statistical methods

can do as well has hand supervised statistical methods if given enough

data.

77

5.6.2 Cross Entropy Results for DEV94

The cross entropy[35], which is a measure of a model's uncertainty on some

test data, is calculated as:

H = �
X
E;F

~p(E;F) log2(p(E j F)) (5.26)

= �
1

N

X
E;F

log2(p(E j F)) (5.27)

For each pair of sentences, the sum of the log of the model's prediction

p(E j F) is normalized by the number of sentences N . Often, the cross

entropy is normalized by the number of English words in the test corpus.

In this case, the normalizing denominator N is replaced by the sum of the

lengths of E,
P

E `(E).

The reason that it is useful to display the entropy of the model on the test

data, is that it measures the uncertainty of a model on the test data. The

higher the entropy, the more uncertainty the model contains. The relation-

ship between entropy and decoding performance is tentative at best. While a

model with a signi�cantly higher entropy generally does worse, models with

similar entropies may have very di�erent performance.

The cross entropies of DEV94 using maximum likelihood scores calculated

with smoothed model 1 parameters are shown in table 5.3.

Some observations on using the cross entropy as a qualitative measure of

performance are:

78

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 5.61 5.61 5.62 5.61 5.61 5.60 5.60 5.60 5.60
2813 5.64 5.63 5.64 5.64 5.63 5.63 5.62 5.62 5.62
1406 5.68 5.68 5.71 5.70 5.74 5.74 5.74 5.74 5.73
703 5.69 5.69 5.73 5.73 5.77 5.79 5.80 5.80 5.80
351 5.70 5.71 5.75 5.76 5.81 5.85 5.92 5.92 5.92
175 5.71 5.73 5.78 5.81 5.90 5.98 6.05 6.07 6.13
87 5.71 5.73 5.81 5.81 5.90 6.07 6.18 6.21 6.26
43 5.72 5.74 5.81 5.82 5.95 6.12 6.28 6.28 6.56
0 5.72 5.74 5.82 5.85 5.98 6.22 6.48 6.50 7.19

Table 5.3: Maximum Likelihood Cross Entropy for DEV94 Using Smoothed
Model 1 as a Function of Amount of Hand and Hidden Training Data

� For maximumlikelihood entropy calculations, adding more hidden data

to the training improves the cross entropies. For viterbi entropy calcu-

lations, adding more hidden data to the training hurts the cross entropy

results.

� Adding more hand data improves the cross entropy results when there

are not a lot of hidden training data. But when a lot of hidden training

data are used, using no hand training data is marginally better.

� The Viterbi cross entropies, which are not shown, are about .25-1 bit

worse. When there is little data(the lower right corner of the table),

then maximumlikelihood decoding produces better cross entropies than

Viterbi decoding, which uses a single alignment. As more and more

hand data are used in the training, then the bene�t of using maximum

likelihood over Viterbi cross entropies diminishes.

79

� For both Viterbi and maximum likelihood unsmoothed cross entropies,

the entropies get better for about 8 iterations of training. Then, as

more iterations are done, the cross entropies get worse. These indicate

that the model is probably over training on the training data. The

unsmoothed maximum likelihood cross entropies for 512 iterations are

shown in appendix C. In some cases, the unsmoothed entropies are

over 20 bits worse than the corresponding smoothed ones.

5.6.3 Viterbi Percentage Results for DEV94

Another qualitative measure of performance is how much of the overall max-

imum likelihood probability is given by the Viterbi alignment. If the Viterbi

alignment is a very small percentage, then this could indicate problems with

the model or the training. But if the Viterbi probability is a large percent-

age, this says that the model is learning how to focus probability to the more

likely alignments.

The Viterbi word percentages of DEC94 using smoothed model 1 param-

eters are shown in table 5.4. What this means is that on a per word basis,

the Viterbi probability is n% of the maximum likelihood probability. This is

calculated using:

V it% = 2
V itLogProb�MLLogProb

numWords � 100 (5.28)

where V itLogProb and MLLogProb are the sums of the log of the model's

Viterbi or maximum likelihood prediction of each sentence in DEV94.

80

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 79.0 76.5 74.3 73.5 71.9 69.5 69.0 69.3 67.8
2813 81.5 79.3 76.4 74.5 73.3 71.3 70.0 69.7 68.2
1406 82.6 81.0 78.4 76.3 73.4 72.3 69.9 69.7 68.9
703 83.1 82.1 80.1 78.7 75.8 73.7 72.5 71.1 69.2
351 83.5 82.7 81.2 80.0 76.9 73.6 69.8 68.8 64.2
175 83.8 83.4 82.2 81.2 78.7 74.5 69.9 69.2 59.9
87 84.1 83.6 81.9 81.3 79.1 74.0 68.8 65.3 53.3
43 84.2 84.0 82.7 82.1 79.7 73.6 68.6 67.0 54.5
0 84.2 84.0 83.1 82.1 79.8 72.3 66.3 61.6 19.9

Table 5.4: Viterbi Percentage of Maximum Likelihood Cross Entropy for
DEV94 Using Smoothed Model 1 as a Function of Amount of Hand and
Hidden Training Data

Some observations on Viterbi percentages are:

� The Viterbi percentage increases as the amount of hand training data

increases. This is intuitively obvious, as having more hand data con-

centrates more probability on the correct alignment.

� The Viterbi percentage increases as the amount of hidden data in-

creases, only if there are very little hand training data. If there are a

lot of hand training data, then adding hidden data hurts the Viterbi

percentage.

� The unsmoothed Viterbi percentages show only about a 12% e�ect from

using no hand data to using all the hand data, and this is consistent

regardless of the amount of hidden data. But the smoothed Viterbi

percentages show that there is a large drop when the hidden and hand

81

data are low. This is because the smoothing a�ects the training more

drastically when there are little training data.

� The unsmoothed Viterbi percentages improve as more iterations of the

EM algorithm are run. Though, to have a big a�ect, there needs to be

a large percentage of hidden data.

82

Chapter 6

Basic Clumping Models

6.1 Introduction

In model 1, the English words e are generated independently of each other.

This leads to problems in decoding when one pattern is a subset of the other.

Assuming the sentence length parameter is about the same, the model usu-

ally prefers the longer formal language sentence. This is because the longer

formal language sentence includes additional formal language words, some of

which might help generate rare English words. Consider the sentence \Show

me the
ights out of CITY 1 into CITY 2". The correct formal language

pattern for this is \List
ights from:city CITY 1 to:city CITY 2". But, the

probability distributions for \from:city" and \to:city" are heavily biased to-

ward the English words \from" and to". Some of the unsmoothed translation

probabilities for \from:city" and \to:city" are shown in table 6.1.

83

Parameter Value

p(outjfrom : city) 5:47 � 10�61

p(outjone direction cost) :09
p(of jfrom : city) .097
p(of jequipping) .16
p(fromjfrom : city) .62
p(intojto : city) 3:44 � 10�12

p(tojto : city) .60
p(intojlate evening) .09

Table 6.1: Some Model 1 Translation Probabilities

What has happened here? The EM algorithm has to accumulate counts

whenever it sees \into" and \out of" in the training set. While these are

almost always generated from \to:city" and \from:city", the alignment is

hidden. The EM algorithm accumulates counts for all possible ways of gen-

erating these words, including incorrect paths. Virtually every
ight and

fare query includes two cities, but many include other modi�ers constrain-

ing meals, airlines, aircraft, and so forth. These are much rarer than city

constraints. If the training sentences containing \into" and \out of" also

contain some of these rarer constraints, the EM algorithm can give more of

the counts for these rare words to the rarer formal language word. Thus,

the distributions for \from:city" and \to:city" remain sharp. The model has

learned improperly how to generate \into" and \out of", but does this hurt?

The answer is yes. Suppose in the test data, this same sentence appears.

The pattern matcher has to �nd the most likely pattern to generate the sen-

tence containing these rare words. The correct answer does not contain the

rare formal language words which have learned to generate \into" and \out

84

of". The pattern matcher is free to select a di�erent pattern that contains

additional, super
uous constraints. While there is a slight penalty in terms

of the sentence length and the denominator exponential term, there could be

a large win in term of the p(ejf) translation parameters. Thus, the sentence

is decoded incorrectly. An additional constraint or table like \aircraft equip-

ping" is added so that \equipping" can generate the word \of", even though

\aircraft" generates nothing. This is called the spurious word problem.

So one needs models which are less apt to su�er from spurious words.

Clearly, generating each English word e independently from each formal lan-

guage word f is a bad assumption. The user of a natural language uses syntax

and semantics to generate meaningful phrases, and the words within these

phrases are highly correlated. Thus, the �rst enhancement made to model 1

is to model the English generation in terms of one or more substrings called a

clump. All the words in a clump are required to align to a single f . Clumps

are not prede�ned idioms or positions, rather they are a di�erent way of

viewing the alignments of Model 1. For example, in �gure 5.1, a plausible

10-clump clumping is:

[show me the] [
ights] [from] [CITY 1] [to] [CITY 2] [arriving in]

[CITY 2] [on] [DATE 1]

The hope is that clumping models will help solve spurious word problems,

by forcing substrings of words to align to particular f during training. For

example, if \out of" in the previous example are kept together in a clump, the

85

EM algorithm will have less freedom to give the counts for the occurrences of

\out" and \of" to separate formal language words. Incrementing the counts

of both of these for the same formal language word (hopefully \from:city"),

will decrease the chance of them being spuriously generated later.

More formally, a clumping for a sentence E partitions E into a tuple of

clumps C. The number of clumps in C is denoted by `(C), and is an integer

between 1 � � � `(E), inclusive. A particular clump is denoted by ci, where

i 2 f1 � � � `(C)g. The number of words in ci is denoted by `(ci). c1 begins at

the �rst word in the sentence, and c`(C) ends at the last word in the sentence.

The clumps form a proper partition of E. All the words in a clump c must

align to the same f . To capture this notion, A is now rede�ned so that

an alignment position in F is speci�ed for each c. Thus, `(A) is now `(C)

instead of `(E), and each ai denotes the formal language node to which each

e in c aligns.

Model 1 is a special case of model A in which each word is assumed to

be in its own one word clump. Thus, the number of clumps is assumed to be

`(E). Model 1 has `(F)`(E) possible alignments, since each of the `(E) words

has `(F) possible alignments. Model A has many more alignments than

model 1. First consider the case where the number of clumps, `(C) = 1.

There is only one way to clump `(E) words into one substring, namely the

whole sentence. This can be aligned to any of the `(F) formal language

nodes. Hence, there are F ways to align E with F using one clump. For 2

86

clumps, there are

0
BB@
`(E)� 1

1

1
CCA ways to chose 2 clumps, corresponding to

picking one of the `(E) � 1 boundaries between the clumps. Each of these

2 clumps can be aligned to any of `(F) formal language nodes. This leads

to

0
BB@
`(E) � 1

1

1
CCA `(F)2 ways to align E to F using 2 clumps. The number of

ways to clump E in `(C) clumps, and align them to F is:

0
BB@
`(E)� 1

`(C)� 1

1
CCA `(F)`(C) (6.1)

Using the Binomial Theorem:

(1 + x)n =
nX
i=0

0
BB@
n

i

1
CCA xi (6.2)

the sum of these terms using `(C) 2 f1 � � � `(E)g is `(F)(`(F) + 1)`(E)�1.

By introducing clumps, the modeling becomes better in a variety of ways:

� Rather than modeling the number of English words as a function of the

number of formal words, model A allows us to model the number of

English clumps for each formal word. Some formal words like \List" can

generate very long clumps, whereas other formal words, like \to:city",

generate very short clumps. If a particular formal language word likes

to generate long clumps, then it is less apt to be able to generate short

clumps spuriously.

87

� If the formal language only contains words for which there is linguistic

evidence in the English, then it is reasonable to expect each f to gen-

erate at least one clump. Thus, modeling the number of clumps as a

function of the size of the formal language should be more reliable than

modeling the number of English words. Thus, for example, \out" and

\of" may be spuriously generated by di�erent formal language words.

But modeling the overall number of clumps might help to reduce this

e�ect.

� The general notion of a clump will allow modeling p(cijfj), the prob-

ability that formal language node fj generates all the words in clump

ci. This will allow more powerful models that can attack the spurious

word problem.

� Since model A introduces the general notion of a clump, having model

A will facilitate bootstrapping future models that also utilize clumps.

6.2 Formulae

p(E j F) =
`(E)X
L=1

p(L j `(F)) p(E j L;F) (6.3)

where L is the total number of clumps for the sentence E, and:

p(E j L;F) =
X
C

p(E;C j F;L) (6.4)

p(E;C j F;L) =
X
A

p(E;C;A j F;L) (6.5)

88

p(E;C;A j F;L) =
1

`(F)`(C)

`(C)Y
i=1

p(ci j fai) (6.6)

p(c j f) = p(`(c) j f)
`(c)Y
i=1

p(ei j fc) (6.7)

The last formula introduces a change in notation. For all clump based models,

ei denotes the i-th word of clump c, not the i-th word in E.

As in Model 1, the sum and the product can be interchanged, giving:

p(E j L;F) =
X
C

p(E;C j F;L) (6.8)

p(E;C j F;L) =
1

`(F)`(C)

`(C)Y
l=1

q(cl) (6.9)

q(c) =
X
f

p(c j f) (6.10)

This is important because it gives a computationally e�cient algorithm for

computing p(E j F). The q(C) values for all possible clumpings can be

calculated in O(`(E)2`(F)) time if the maximum clump size is unbounded,

and in O(`(E)`(F)) if bounded. The Viterbi decoding algorithm[21] can then

be used to calculate p(E j L;F) from p(E j L� 1; F) in time O(`(E)2) if the

maximum clump size is unbounded, and in O(`(E)) time if bounded. Since

there are `(E) possible values for L, the Viterbi or maximum likelihood

value of p(E j F) can be calculated in O(max(`(E)2`(F); `(E)3)) time if

the maximum clump size is unbounded, and in O(max(`(E)`(F); `(E)2)) if

bounded. The algorithms to achieve these bounds are discussed in the next

section.

89

There are three types of parameters in model A:

translation probabilities These are the p(ei j fc) parameters.

clump lengths These are the p(`(c) j f) parameters.

number of clumps These are the p(`(C) j `(F)) parameters.

All of these parameters are hidden (unless the training data are manually

clumped and aligned), and the values are trained using the EM algorithm.

A variation of model A, called model AHW, is an elegant enhancement

which adds the concept of headwords and nonheadwords to clumps. This

model should make major strides at solving the spurious word problem if

given enough training data. Headwords will hopefully model semantically

relevant words for a formal language word, so semanticallymeaningless words

will have to be generated by nonheadwords. But since each clump is required

to generate a headword,1 this should signi�cantly reduce spurious word er-

rors. Thus, it should be much harder for \of" to be generated spuriously from

\equipping", when \of" has a low headword probability. The headword in

a multi-word clump is hidden and the EM algorithm will hopefully converge

to a solution that learns headwords and nonheadwords well.

In order to implement this model, the translation probabilities are re-

placed by headword and nonheadword probabilities, phead(ei j fc) and pnonhead(ei j

fc). Each clump is required to have a headword, and can also have optional

1When a clump aligns to di�erent f , as is the case in maximum likelihood scoring, each
\f" can select a di�erent word in the clump to be the headword.

90

nonheadwords. Thus, clumps of length one just contain a single headword,

and clumps of length `(c) contain one headword and `(c)� 1 nonheadwords.

Model AHW replaces equation 6.7 with:

p(c j f) =
p(`(c) j f)

`(c)

`(c)X
i=1

phead(ei j fc)
Y
j 6=i

pnonhead(ej j fc) (6.11)

This headword model formula assumes that the headword can appear in

any position within a clump with equal probability (i.e. the 1
`(c) factor). If

desired, one could instead use p(headpos j `(c); f) to allow the probability to

be conditioned upon the length of the clump and the formal language word

to which the clump is aligned.

The headword model appears to add an extra factor of `(E) into the time

complexity of q(c) (if the maximum clump size is unbounded). However, this

is not true. The same dynamic programming algorithm to compute q(c)

e�ciently for model A can be used for model AHW with no increase in time

complexity.

Model A and AHW su�er from their inability to model word order. For

example, in models A and AHW, the clump containing the words \in the

morning" will have the same probability as the word string \in morning the"

and \morning the in". This problem can be �xed by modeling the string

of words using an N-gram language model. In this thesis, due to limited

training data, I consider only bigram models, conditioned by the f to which

the clump is aligned. This model is called model ALM. Model ALM does not

91

model headwords, but for one or two word clumps, a bigram language model

prediction is apt to be just as sharp as a headword/nonheadword model,

and provide the additional power of knowing which words commonly start

and end clumps for a given f . This model is also intended to solve spurious

words. The hope is that spurious phrases like \out of" will align to the same

\f", and given enough training data, this will align to the proper \f".

Model ALM has parameters p(ei j ei�1; f). The �rst word in the clump

uses a special marker called the boundary word (i.e. p(e1 j boundary; f)). The

last word also uses the boundary word (i.e. p(boundary j e`(c); f)). Model

ALM replaces equation 6.7 with:

p(c j f) = p(`(c) j f)p(e1 j boundary; fc)p(boundary j e`(c); fc)
`(c)Y
i=2

p(ei j ei�1; fc)

(6.12)

6.3 Count Derivation

The algorithm to train models A, AHW, and ALM consist of four basic steps:

� Compute the clump probabilities q(c) for all possible clumps.

� Use the Baum-Welch[6] algorithm to compute the counts for each pos-

sible clump, since the hidden clumping can be represented by a hidden

Markov model.

92

� Using the chain rule, distribute the clump counts to the model A, AHW,

or ALM parameter counts.

� Renormalize the counts of the model parameters.

The last of these steps is trivial. Each of the other three steps is discussed

in greater detail below.

6.3.1 Computing the Clump Probabilities

The clump probabilities for model A ,q(c), are calculated by summing the

clump probabilities for each formal word f , as shown below:

q(c) =
X
f

p(c j f) (6.13)

p(c j f) = p(`(c) j f)
`(c)Y
i=1

p(ei j fc) (6.14)

A simple implementation, which examines each possible clump and com-

putes q(c) using the above formulae, will have complexity O(`(E)3`(F)) if

there is no bound on the clump size, since there will be `(E) clumps of size

1, `(E)�1 clumps of size 2, � � �, and 1 clump of length `(E). This can be im-

proved by a factor of `(E), by noticing that a clump of length l beginning at

position n can compute the product in equation 6.14 from the product used

in the computation of the clump of length l � 1 (also beginning at position

n). First, all the products in equation 6.14 using one term are computed in

O(`(E)) time. Then all the products using two terms are calculated from

93

these in O(`(E)�1) time. Then all the products using three terms are calcu-

lated, and so forth. In this manner, all the product terms can be calculated

in O(`(E)2) time. If the maximum clump size is bounded, then this requires

only O(`(E)) time. Once all the product terms have been calculated, q(c)

can be calculated in either O(`(E)2`(F)) or O(`(E)`(F)) time depending on

whether the maximum clump size is bounded. The algorithm is basically

the same for model A or ALM, the only di�erence is that model ALM has

to multiply in the boundary word probabilities, and condition the value for

each subsequent English word in a clump on the previous English word. This

is trivial to do.

To compute the clump probabilities for model AHW, a similar dynamic

programming algorithm can be used, though it is trickier than model A

or ALM. Two temporary values are needed for each clump, the product of

just the nonhead terms and the value p(c j f) in equation 6.11 without the

p(`(c) j f) component. To extend the result from a clump of length l�1 to a

clump of length l, one can then multiply the product of the nonhead term by

the probability that the new word is a head. To this, one adds the adjusted

p(c j f) term multiplied by the probability that the new word is not a head.

94

6.3.2 Using the Baum-Welch Algorithm For Clump

Models

In models A, AHW, and ALM, the clumping and alignment are hidden.

But because of the fortunate interchange of the sum and product terms, the

probability of p(E;C j F) is simply a product of the q(c) values for the clumps

in C, adjusted by a normalizing factor (see equation 6.9). This product can

be computed by creating an order-1 hidden Markov model. In this HMM,

there is a state for each e in E and one for the end of the sentence, giving a

total of `(E) + 1 states. An arc from state ei to state ej j > i, means that

words ei; � � � ; ej�1 are generated in a single clump. The arc has probability

q(c) of being taken, where c is the clump containing words ei; � � � ; ej�1.

Suppose that there is no upper bound on the maximum clump size. Then

state e1 will have `(E) � 1 arcs, one to each of the other `(E) � 1 states.

State e2 will have `(E) � 2 arcs into states e3; � � � ; e`(E), and so forth.

This HMM, with parameters q(c) can be used to run one iteration of

the Baum-Welch algorithm[6], which will compute the counts c(q(c)). One

technical detail is that the Baum-Welch algorithm can only be run for a �xed

number of clumps, say L. Thus, it is necessary to run this `(E) times, for

L = 1; 2; � � � ; `(E). This is really computing c(q(c) j L). Since the number

of clumps for a given p(L j `(F)) is also a hidden variable, it is necessary to

use the chain rule to prorate each c(q(c) j L) according to the overall score

95

for p(E j F;L):

c(q(c)) =

P`(E)
L=1 p(E j F;L)p(L j `(F))c(q(c) j L)
P`(E)

L=1 p(E j F;L)p(L j `(F))
(6.15)

The Baum-Welch algorithm can calculate c(q(c) j L) in time O(`(E)2L).

Since L ranges from 1 to `(E) if the maximum clump size is not bounded,

the overall training time complexity of using the Baum-Welch algorithm is

O(`(E)4). Note that the p(E j F;L) terms in equation 6.15 are the forward

pass scores of the �nal state e`(E) computed by the Baum-Welch algorithm.

For a discussion of how to compute c(q(c) j L) for an HMM, see[2, 44].

6.3.3 Count Update Formulae for Models A, AHW,

and ALM Using the Chain Rule

Having calculated c(q(c)) by normalizing and summing c(q(c) j L) for L =

1; � � � ; `(E), it is straightforward to apply the chain rule to distribute the

counts to the model parameters. The results are stated without derivation.

But the derivation would be similar to the one done for model 1.

For model A, the count update formula for the number of clumps param-

eter for a particular training pair (E;F) is:

c(`(C) = L j `(F))+ =
p(E j F;L)p(`(C) = L j `(F))

p(E j F)
(6.16)

The numerator is the probability of generating E from F using `(C) = L.

96

This is the product of the forward pass score from the Baum-Welch algorithm

p(E j F;L) and the probability of generating a clumping of size L given F of

size `(F). These terms are normalized by the overall probability of generating

E from F . Note that while this formula does not depend on any q(c), it still

requires the Baum-Welch algorithm to compute p(E j F;L) and p(E j F).

The count update formulae for the clump length and translation proba-

bilities distribute the value c(q(c)) via the chain rule. Any parameter used

in the calculation of q(c) will receive a count proportional to its contribution

to q(c):

c(c j f) = c(q(c))
p(c j f)

q(c)
(6.17)

The count of a clump given f is just the normalized value of generating this

clump from a particular f . This value, is �nally given to each parameter:

c(`(c) j f) + = c(c j f) (6.18)

c(e j f) + = c(c j f) (6.19)

Thus, for each clump c, one distributes the value c(q(c)) to all the parame-

ters used in the computation of q(c). There will be `(F) contributions to the

clump length probabilities, one for each f . There will be `(E)`(F) contri-

butions to the translation probabilities, one for each (e; f) pair, where e 2 c

and f 2 F .

For model AHW, the count update formulae for the number of clumps

and clump lengths remain the same. However the translation probabilities

97

must take into account the headword and nonheadwords. One �rst calculates

c(c j f), but using p(c j f) and q(c) calculated according to equation 6.11.

Then, for each di�erent possible headword h 2 c, one calculates:

c(h j c; f) = c(c j f)
phead(h j f)

Q
e6=h pnonhead(e j f)P`(c)

i=1 phead(ei j f)
Q

j 6=i pnonhead(ej j f)
(6.20)

Now, the parameter counts can be updated:

chead(h j f) + = c(h j c; f) (6.21)

cnonhead(e j f) + = c(h j c; f) 8e 2 c; e 6= h (6.22)

In order to e�ciently implement the count updates, many of these nor-

malizing terms are calculated in the computation of q(c). This is tricky to

do for model AHW, but not impossible.

The count update formulae for model ALM are the same as model A,

with one minor variation. The count computed for c(c j f) is given to each

bigram in c, including the two bigrams containing boundary words at the

end points.

6.4 Training

Model A, AHW, and ALM were trained using the same set of experiments

as in model 1. The initial parameter values for model A are bootstrapped

from model 1. The initial parameter values for models AHW and ALM

98

are bootstrapped from model A. The headword distributions are sharpened

by squaring the translation probabilities from model A, and renormalizing.

The nonhead distributions for model AHW are set to uniform. For model

ALM, the bigram distributions are initialized to just the unigram distribution

p(e j f). The counts are accumulated for the bigram events though, so

subsequent iterations make use of the bigram probabilities.

Since the hand alignments contain just the f to which each e aligns, and

neither the clump nor headword information, there are many ways one could

use the hand aligned data in training. The results presented here assume that

any consecutive English words aligned to the same f are in one clump. This

assumption is certainly not valid 100% of the time. For example \Please show

which
ights � � �" will have \Please show which" aligned to \List". There are

many training sentences in which \Please" is a 1-word clump aligned to

\List". Likewise, there are sentences beginning \Show
ights" and \Which

ights". Hence, it might be more reasonable to assume that the clumping

is still hidden, and accumulate counts over clumpings consistent with an

alignment. This was not done though. To a �rst approximation, the \maxi-

mal" clump assumption works most of the time. The hidden headwords are

handled by the EM algorithm. Thus, each time a hand aligned sentence is

processed, each headword and nonheadword is given a fractional count based

on the current parameter values.

Since models A, AHW, and ALM do not have unique global maxima, it

is necessary to get good initial statistics. In order to achieve this, model A

99

is run for 20 iterations with the translation probabilities �xed. This gives

the clump length and number of clump parameters the opportunity to move

to better locations in probability space. At this point, since the parameters

are reasonably estimated, 5 more iterations of the EM algorithm are run, in

which all parameters are allowed to vary.

For models AHW and ALM, the headword/nonheadword and bigram dis-

tributions have poor estimates. Thus, for 20 iterations, the clump lengths and

number of clumps parameters are held �xed, while the headword/nonheadword

or bigram distributions are trained. Then, 5 more iterations are run allowing

the clump lengths and number of clumps parameters to vary.

6.5 Smoothing

The model A and AHW clump length and translation probability param-

eters are smoothed as in model 1. Deleted interpolation is used, allowing

a parameter estimate to backo� to an unconditional estimate. Since these

cannot be directly observed in the training data, like p(e) can, one has to

calculate these values using the training data. For example:

ps(`(c) j f) = �1;fp(`(c) j f) + �2;fp(`(c)) + �3;f
1

M
(6.23)

p(`(c)) =
X
f

p(`(c) j f)p(f) (6.24)

100

where p(f) is computed using the training set, andM is the maximum clump

size. Note that the alphas used to smooth the clump lengths are a di�erent

set than the alphas used to smooth the translation probabilities.

In model ALM, the clump lengths are smoothed in the same way as

models A and AHW. But since model ALM uses conditioning on both f

and the previous e in the bigram models, the binning is conditioned upon

the count of the pair (f; e � 1), and one can back o� to p(ei j f) when

p(ei j ei�1; f) has low count:

ps(ei j ei�1; f) = �1;ei�1;fp(ei j ei�1; f)+�2;ei�1;fp(ei j f)+�3;ei�1;fp(ei)+
�4;ei�1;f

`(V ocE)

(6.25)

6.6 Results

The most interesting observation from models A, AHW, and ALM is that

performance gets worse during the �nal �ve iterations (see appendix D).

Through the �rst 20 iterations, model A holds the translation probabilities

�xed at the model 1 estimates, while the clump lengths and number of clumps

parameters are being trained. For model AHW, the clump length parameters

are �xed, and the headword/nonheadword probabilities are trained during

the �rst 20 iterations. For model ALM, the clump lengths are �xed, while

the bigram probabilities are trained for 20 iterations. From iterations 21

through 25, all model A parameters are re-estimated. Models AHW and

101

ALM �xed the headword/nonheadword or language model probabilities, and

re-estimated only the clump lengths and number of clumps parameters during

the �nal �ve iterations. While the likelihood on the training set is increasing,

this does not generalize to the test sets. It is hard to say why. I don't believe

that the EM algorithm is over training. Two possible explanations are:

� The models themselves might not be su�ciently rich to accurately

model the domain. So as mentioned in [14], MLE is not well suited

for these models.

� The models could be undertrained. When all parameters are allowed

to vary, the EM algorithm �nds a way to maximize the likelihood on

the training data that is \wrong". Some evidence of this is provided by

using hand aligned training data, as this phenomenon does not occur.

The hand aligned data keeps the EM algorithm in check. But, if there

were more training data, then the EM algorithm would not be able to

�nd obtuse ways to make the likelihood better.

The results presented here use the smoothed, 20 iteration parameter sets

using maximum likelihood decoding for models A, AHW, and ALM. The un-

smoothed parameter sets for 20 and 25 iterations are presented in appendix D

for each model. In appendix D, the reader can see the e�ect of allowing a

new set of model parameters to vary for the �nal �ve iterations.

102

6.6.1 Exact Match Maximum Likelihood Results for

DEV94

The following tables contain the exact match results using maximum likeli-

hood decoding for smoothed models A, AHW, and ALM. The unsmoothed

results (shown in appendix D) show the following:

� Models A, AHW and ALM are helped signi�cantly by hand training

data.

� Model A almost always does better than model ALM. The probability

matrix p(ei j f; ei�1) is very sparse for model ALM, and hence does not

do well on test data unless smoothed.

� When all the hidden and no hand training data are used, Model A is

nearly at the limit of its performance. In moving from 2813 to 5627

hidden training sentences, Model A only got 4 more DEV94 sentences

right. Model AHW improved by 28 sentences and model ALM im-

proved by 16. It is clear that models AHW and ALM can bene�t from

more training data.

The smoothed results shown for models A, AHW, and ALM are bet-

ter than their unsmoothed counterparts. The smoothed results shown in

tables 6.2-6.4 also show virtually no di�erence between these models when

using just hidden data (the last column). They all show that the results

can be further improved by more training data. But this is most evident

103

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 283 281 276 274 273 275 272 275 273
2813 285 284 275 275 273 271 269 264 261
1406 283 281 272 274 260 250 245 252 244
703 281 276 267 270 260 248 241 244 235
351 281 282 267 264 251 224 218 218 192
175 282 275 261 263 249 226 204 202 183
87 282 279 258 264 246 202 187 179 155
43 280 282 266 270 254 211 204 194 134
0 279 280 265 263 240 206 173 173 153

Table 6.2: Exact Match Maximum Likelihood Decoding Results for DEV94
Using Smoothed Model A as a Function of Amount of Hand and Hidden
Training Data

for models AHW and ALM, where the unsmoothed results show dramatic

increases in performance as the number of hidden sentences is doubled from

2813 to 5627. In comparison to model 1, the results are 1-1.5% better (in

terms of absolute error rate) when all the hidden and no hand training data

are used. But model 1 shows that it is near its performance limit, as the

accuracy improved by less than 1% when the number of hidden sentences

was doubled from 2813 to 5627. Thus, while models A, AHW, and ALM

appear only minimally better than model 1, and appear virtually identical

amongst themselves, models AHW and ALM clearly have more potential for

improvement if given more training data. Until the data are collected and

the experiments run, the full power of these models will not be known.

104

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 287 283 283 278 277 277 277 274 273
2813 288 285 285 272 270 279 278 262 266
1406 284 282 269 269 254 262 246 248 254
703 277 277 265 279 270 245 260 244 250
351 278 281 272 275 254 226 222 226 167
175 276 276 274 265 254 252 232 211 188
87 274 276 263 273 256 217 201 192 157
43 279 277 266 269 252 211 221 178 129
0 278 278 264 265 253 206 192 168 153

Table 6.3: Exact Match Maximum Likelihood Decoding Results for DEV94
Using Smoothed Model AHW as a Function of Amount of Hand and Hidden
Training Data

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 288 284 290 280 276 279 282 273 273
2813 287 276 279 270 270 277 275 278 263
1406 285 283 273 271 263 252 257 252 251
703 286 280 273 272 260 252 242 244 236
351 286 283 273 257 251 221 209 220 149
175 282 282 269 263 249 216 203 207 189
87 287 282 273 263 247 209 201 173 156
43 283 279 270 268 253 198 198 153 131
0 285 280 269 261 246 196 172 166 50

Table 6.4: Exact Match Maximum Likelihood Decoding Results for DEV94
Using Smoothed Model ALM as a Function of Amount of Hand and Hidden
Training Data

105

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

A 5.63 5.45 5.50
AHW 5.33 5.14 5.27
ALM 5.32 4.93 5.06

Table 6.5: Cross Entropy Results for DEV94 Using Model A Variants and
Di�erent Amounts of Hand and Hidden Training Data

6.6.2 Cross Entropy Results for DEV94

The cross entropy results are shown in table 6.5 using the smoothed models,

for the most important experiments.

The good results of models AHW and ALM using hand aligned training

data are also re
ected in the cross entropy. While not guaranteed to be true,

they are true in these cases.

6.6.3 Viterbi Percentage Results for DEV94

The viterbi percentages for models 1, A, AHW, and ALM are shown in

table 6.6. As expected, model A does better than model 1, and either model

AHW or ALM does better than model A. The Viterbi percentages shown are

calculated using unsmoothed parameter sets.

106

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

1 73.5 80.8 87.5
A 81.0 90.2 92.7
AHW 89.4 93.7 94.7
ALM 86.0 94.4 95.3

Table 6.6: Viterbi Percentages of Maximum Likelihood Cross Entropy for
DEV94 For Various Models

107

Chapter 7

Clumping Models With

Fertilities

7.1 Introduction

The basic clumping model A improves over model 1 in that it models the

English sentence by substrings of words called clumps. By selected a formal

language that contains approximately the semantic concepts mentioned in the

English, one expects that the number of clumps and clump length parameters

of model A will model the length of the English better than the sentence

length parameters of model 1. Using headwords or language models helps to

solve spurious word problems. This modeling is not intuitively satisfying in

that modeling p(`(C)jF) by p(`(C)j`(F)) totally ignores the identify of the

formal words in F . It is easy to see that \from:city" usually generates one

108

clump, where \List" frequently generates 2 or 3 clumps. One should model

the number of clumps in the English by conditioning on the identity of the

formal language words. The number of clumps generated by a formal word is

called its fertility. This is an extension of the word fertility used in machine

translation[13] to clump models.

The hope is that this will better model the number of clumps needed in

the English, and spurious word problems associated with breaking up clumps

will be reduced. One way this happens is that introducing formal language

words will require multiplying the likelihood by their fertility in the English.

Thus, the likelihood is reduced each time a formal language word is added

that does not generate a clump with greater probability than some other

formal language word. For example, to spuriously add \aircraft equipping"

to a
ight query, the fertilities of both \aircraft" and \equipping" are now

multiplied into the likelihood. If these do not generate words with great

enough probability to o�set the fertility, then the model will not insert them.

The hope is that fertilities will be strong enough to compensate for weakly

generated spurious words.

This thesis describes two di�erent ways to model fertility. These two

ways can be used with any of the three ways of generating the translation

probabilities (directly, with headwords/nonheadwords, or with a bigram lan-

guage model). This leads to 6 di�erent fertility models. The general fertility

models, called models C, CHW, and CLM, allow an arbitrary fertility dis-

tribution p(n j f) for the number of clumps n generated by formal word f .

109

Notationally, the fertility of fi is the number of clumps in C that are aligned

to fi in A. That is, the fertility of fi is n if i appears n times in A.

There is one problem in implementing models C, CHW, and CLM how-

ever. In models 1 and A, AHW, and ALM, the summation over all A of

p(E;A j F) was exchangeable with the product used to compute p(E;A j F).

This converted a seemingly exponential problem into a polynomial one. In

models C, CHW, and CLM this exchange can not be done mathematically.

The maximum likelihood training and decoding appear to be exponential.

All hope is not lost though. If one assumes that the fertility n of f is a

Poisson process with parameter �f :

p(n j f) =
e��f�f

n

n!
(7.1)

then a polynomial time algorithm exists. This will become obvious when

the formulae are given in the next section. The fertility models assuming a

Poisson distribution are called models B, BHW, and BLM.

One can still use models C, CHW, and CLM, but it is not possible to

examine every possible alignment. Hence, one can use any of the previous

models to produce a set of \candidate" alignments. These alignments are

then rescored using the model C, CHW, or CLM parameters, and the counts

accumulated for the EM algorithm. In particular, one can use the top-N

Viterbi algorithm[74] to guarantee that the best N alignments according to

the candidate model are used in model C. If the model has a high Viterbi per-

110

centage (see section 5.6.3), then hopefully the millions of alignments omitted

will not contain any appreciable amount of probability. Note that in or-

der for the EM algorithm to produce an MLE estimate, the same candidate

alignments must be used from one iteration to the next. Thus, this top-N

alignment can be done just once, and then used repeatedly for each iteration

of the EM algorithm.

7.2 Formulae

In this section, I �rst give the formulae for the general fertilitymodel C. I then

describe why the \trick" of exchanging a summation and product cannot be

done. While another factorization might exist that can lead to a polynomial

algorithm, I have not found it. Next, the formulae for model B are given,

attained by applying the Poisson assumption to the general fertility term of

model C. The simpli�ed formulae reveal that the polynomial time algorithms

exist to perform the maximum likelihood estimation. I do not give the

formulae for models BHW, BLM, CHW, and CLM. These are straightforward

extensions of the models B and C, and are attained analogously to how

models AHW and ALM are derived from model A (see section 6.2).

The formulas for this model are:

p(E j F) =
X
C;A

p(E;C;A j F) (7.2)

111

p(E;C;A j F) =
1

L!

`(F)Y
i=1

p(ni j fi)ni!
`(C)Y
j=1

p(cj j faj) (7.3)

p(c j f) = p(`(c) j f)
`(c)Y
i=1

p(ei j fc) (7.4)

where p(ni j fi) is the fertility probability of generating ni clumps by formal

word fi. Note that
P
ni = L. The L! denominator is the number of ways of

arranging L clumps. The ni! terms in the numerator are the number of ways

of arranging the ni clumps aligned to an fi. It is not possible to exchange

the sum and products, because each alignment has a di�erent fertility term

Q`(F)
i=1 p(n j fi)n!. In model A, this term is simply a constant, and can be

factored out of the summation. For the exchange to be valid, p(E;C;A j F)

must be expressible as a constant times
Q`(C)

j=1 p(cj j fai).

It appears that the computation of the likelihood for model C, the sum of

`(F)(`(F) + 1)`(E)�1 product terms, is exponential. Dynamic programming

can perform some of the factoring, but because there are an exponentially

large number of di�erent fertility terms (regardless of the clump probability

term), factoring by the fertility terms still leads to an exponential number of

addends. The only hope to reduce the computation to polynomial time would

be to factor according to the clump length and translation probabilities. I

have not discovered how to do this factoring.

If one assumes that the fertility is modeled by a Poisson distribution, then

a polynomial time algorithm exists. The Poisson assumption is motivated

by the intuition that most formal language words have a speci�c number

112

of clumps that they like to generate. Generating more or less clumps has

lower probability. The Poisson distribution is one of an in�nite number of

unimodal distributions that has this property. The selection of a Poisson

distribution was done for its mathematical properties, and has worked well

in practice. While many physical processes are provably Poisson[51, 37], the

underlying assumptions about �xed numbers of events occurring in a limited

time or space do not apply here.

To show that polynomial time algorithms still exist, one substitutes equa-

tion 7.1 into equation 7.3:

p(E;C;A j F) =
1

L!

`(F)Y
i=1

e��f�f
ni

ni!
ni!

`(C)Y
j=1

p(cj j fai) (7.5)

=
1

L!

`(F)Y
i=1

e��f�f
ni

`(C)Y
j=1

p(cj j fai) (7.6)

=
1

L!

`(F)Y
i=1

e��f
`(C)Y
j=1

q(cj j fai) (7.7)

q(c j f) = �fp(c j f) (7.8)

The last simpli�cation moves the �f
n term into the q(c j f) term. This is

because �f
n means that in the alignment, f has n clumps aligned to it. This

means that in the product term of each `(C) clumps, exactly n of these will

be aligned to f . Hence, one can multiply the p(c j f) term by �f . This

will then add a factor of �f
n into the product of the clumps. Now it should

be obvious that the summation and product can be exchanged. The �rst

113

component of equation 7.7:

1

L!

`(F)Y
i=1

e��f (7.9)

is a constant for each �xed L, since the product term uses ALL �f , regardless

of the number of clumps aligned to f . Hence, this can be factored out, and

the polynomial time expressions given:

p(E j F) =
X
L

p(E j F;L)p(L j F) (7.10)

p(L j F) =
e�
P

�f (
P
�f)L

L!
(7.11)

p(E j L;F) =
X
C

p(E;C j F;L) (7.12)

p(E;C j F;L) =
1

(
P
�f)L

`(C)Y
l=1

q(cl j F) (7.13)

q(c j F) =
X
f

q(c j f) (7.14)

This is polynomial time in the same way that model A was. The q(C) values

for all possible clumpings can be calculated in O(`(E)2`(F)) time if the

maximum clump size is unbounded, and in O(`(E)`(F)) if bounded. The

Viterbi decoding algorithm[21] is then used to calculate p(E j L;F). The

score produced by the Viterbi algorithm, which is the sum over all possible

clumpings for a �xed L, is then normalized by the 1
L!

Q`(F)
i=1 e

��fi constant.

In model B, the number of clumps produced by each f is a Poisson process.

Under this assumption, one can mathematically show that the total number

of clumps for a sentence is also a Poisson process, with parameter
P

f �f ,

114

where the summation is taken over the f 2 F . Thus, for any �xed F , if you

consider all possible clumpings of all possible E, the number of clumps will

also be a Poisson process. This is shown in equation 7.11.

There are three types of parameters in either models B or C:

translation probabilities These are the p(ei j f) parameters. For the

headword variants, these are replaced with two distributions, the head-

word and nonheadword probabilities, phead(ei j f) and pnonhead(ei j f).

For the language model variants, these are replaced with bigram lan-

guage models p(ei j ei�1; f).

clump lengths These are the p(`(c) j f) parameters.

fertilities These are the p(n j f) parameters for model C, or the �f param-

eter for model B.

7.3 Count Derivation

The count derivation for model C uses the following steps, since it is not

possible to train model C using all possible hidden alignments:

1. For each sentence in the training corpus, use one of the previous models

and the top-N Viterbi algorithm to compute the 100 most likely align-

ments. Since the hidden clumping model does not know the proper

number of clumps, the top-N algorithm actually produces the 100 most

likely alignments for 1; 2; � � � ; `(E) clumps. Thus, one gets 100`(E)

115

alignments.1 From these 100`(E) alignments, the best 1000 are se-

lected.

2. For each alignment, rescore the alignment with the current model C

parameters, and accumulate the scores in a sum.

3. Create a probability distribution for the alignments by normalizing each

alignment by the total score of all the alignments.

4. For each alignment, give to each parameter used in the alignment a

count equal to the normalized probability of this alignment.

5. Recompute the model C parameters after the counts have been accu-

mulated for the whole training corpus.

6. Iterate.

The count update formulae for model B are the same as model A for the

clump lengths and translation probabilities. The only question is how does

one update the counts for the Poisson parameter �f . Since each �f is used

in the same place that the clump length is (see equation 7.8), the count �f

receives is the same that the clumps lengths do. To compute the MLE of a

Poisson process:

p(n) =
e���n

n!
(7.15)

1If the maximum clump size is �xed, then alignments utilizing few numbers of clumps
might not exist.

116

suppose one has a sequence of observations n1; � � �nk, which gives rise to an

empirical probability estimate ~p(n). As before, one needs to maximize:

1

N
logL =

X
n

~p(n) log p(n) (7.16)

=
X
n

~p(n) log
e���n

n!
(7.17)

=
X
n

~p(n)((n log �� �) � log n!) (7.18)

where N is the total number of observations n that occurred.

To maximize with respect to �, take the partial derivative with respect

to � and set to 0:

X
n

~p(n)(
n

�
� 1) = 0 (7.19)

X
n

~p(n)(n� �) = 0 (7.20)

X
n

~p(n)n = �
X
n

~p(n) (7.21)

� =
X
n

~p(n)n (7.22)

Thus, to maximize the likelihood of a Poisson process to produce the observed

data, one weighs the observed events by their empirical probability, and sets

this to the Poisson parameter �.

Note that equation 7.22 can be rewritten as:

� =
1

N

X
n

~c(n)n (7.23)

117

The value ~c(n)n is the count that a parameter gets, weighted by the number

of times the event occurred in the sentence. This is exactly the accumulated

counts that the EM algorithm produces. Thus, to maximize the likelihood

for the Poisson parameters �f in models B, BHW, and BLM, one divides

the total count accumulated for �f by the number of times f appears in the

training corpus.

7.4 Training

The initial parameter values for models B and C are bootstrapped from

model A. The initial values for the Poisson parameters in model B are set to

1. The model C fertility parameters are trained by running one iteration of

model B, and accumulating counts for the general fertility distributions.

The initial parameter values for models BHW, BLM, CHW, and CLM

are bootstrapped from models B or C. Note that one could also use AHW

or ALM instead. The decision to bootstrap from B or C was done arbitrar-

ily. The headword distributions are sharpened by squaring the translation

probabilities from models B or C, and renormalizing. The nonhead distribu-

tions for models BHW and CHW are set to uniform. For models BLM and

CLM, the bigram distributions are initialized to to just the unigram distri-

bution p(e j f). The counts are accumulated for the bigram events though,

so subsequent iterations make use of the bigram probabilities.

As in model AHW, the headword and nonheadwords are not known, so

118

this hidden event is handled by the EM algorithm. Thus, each time a hand

aligned sentence is processed, each headword and nonheadword is given a

fractional count based on the current parameter values.

As in models A, AHW, and ALM, the model B and C variants do not

have unique global maxima. Thus, in order to get good initial parameter

estimates, models B and C are �rst run with the translation probabilities

�xed. For models B and C, 20 iterations and 10 iterations are run respec-

tively. This gives the clump lengths and fertilities or Poisson parameters the

opportunity to move to better locations. At this point, since the parameters

are reasonably estimated, only 5 more iterations of the EM algorithm are

run, in which all parameters are allowed to vary.

For models BHW, CHW, BLM, and CLM the headword/nonheadword

and bigram distributions have poor estimates. Thus, for either 20 itera-

tions (models BHW and BLM) or 10 iterations (model CHW and CLM),

the clump lengths and fertilities or Poisson parameters are held �xed, while

the headword/nonheadword or bigram distributions are trained. Then, 5

more iterations are run allowing the clump lengths and fertilities or Poisson

parameters to vary.

Model C actually takes a long time to train, because the Viterbi top-N im-

plementation of the Baum-Welch algorithm runs approximately 100 log 100

times slower the standard Baum-Welch algorithm. This is why only 10 it-

erations where run instead of 20. In addition, it would be too expensive to

run all 81 experiments corresponding to using varied amounts of hand and

119

hidden training data. Instead, only the 3 relevant \corners" where run in

which all or none of each of the hand aligned training data or the hidden

training data were used.

7.5 Smoothing

Except for the Poisson and fertility parameters, all the other parameters are

same as in model A, and are smoothed the same way. The Poisson parameters

are not smoothed, since these are well estimated. The model C fertilities are

smoothed in the standard way using deleted interpolation.

7.6 Results

The unsmoothed results for models B, BHW, and BLM also show no im-

provement during the �nal 5 iterations of training. Thus, it is su�cient to

train the clump lengths and Poisson fertilities in model B for 20 iterations,

keeping the translation probabilities (initialized from model A) �xed. These

are used to initialize the clump lengths and Poisson fertilities for models

BHW and BLM. 20 iterations of re-estimating the headword/nonheadword

or language model parameters for models BHW and BLM are su�cient.

Comparing the model B results to model A results, one discovers that

the results are generally 1-2% better. The impact appears to be greatest

when there are few training data, either hand or hidden. When a lot of

120

hand training data are used, model B is 2% better. As for models BHW

and BLM, Poisson fertility generally helps most of the experiments. Poisson

fertility actually hurts the experiments which use a lot of hidden data and

little hand data when compared to models AHW and ALM.

While it is encouraging that Poisson fertility improves model A results,

it is discouraging that it hurts model AHW and ALM results (when there is

mostly just hidden data, which is the goal of this thesis). This is probably

due to a poor training strategy. Models BHW and BLM use the model B

Poisson parameters, and retrain the headword/nonheadword and language

model translation probabilities for 20 iterations. Perhaps it would have been

better to initialize these from model AHW and ALM parameters instead,

and train the fertilities.

7.6.1 Exact Match Maximum Likelihood Results for

DEV94

The following tables contain the exact match results using maximum likeli-

hood decoding for smoothed models B, BHW, and BLM.

As in the model A variants, hand data always help models B, BHW,

and BLM. Smoothed model BLM show a vast improvement in accuracy as

the training data are doubled from 2813 hidden sentences to 5627 hidden

sentences. Again, this shows that more training data are needed to train

model BLM. Models B and BHW can also be improved by more hidden

121

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 290 285 282 280 279 279 276 275 274
2813 286 281 280 281 279 279 270 270 267
1406 287 288 278 278 265 258 251 257 247
703 290 285 273 280 270 251 245 242 239
351 290 286 271 268 257 237 206 224 210
175 291 287 274 271 268 246 218 225 209
87 291 287 272 278 263 243 208 210 194
43 289 287 273 275 261 235 223 227 186
0 289 288 273 273 257 239 211 209 148

Table 7.1: Exact Match Maximum Likelihood Decoding Results for DEV94
Using Smoothed Model B as a Function of Amount of Hand and Hidden
Training Data

training data. Thus, it is premature to draw conclusions about the the value

of fertility and utility of hand aligned training data until more hidden training

data are used and the performance peaks asymptotically.

Table 7.4 gives the results for the \corner" experiments for models C,

CHW, and CLM. A comparison to the model B, BHW, and BLM results

shows that model CHW is better than BHW by about 4% if only hidden

training data are used, 1% if only hand training data are used, and the same

if trained with both hand and hidden training data. Models C and CLM

improve upon B and BLM by about 1% only if the hand data are used, and

they degrade by 4% if no hand data are used. Unfortunately, due to lack of

resources, the experiments were not run to determine the minimum amount

of hand aligned training data needed to guarantee an improvement by the

models C and CLM over B and BLM. But it is encouraging that model CHW

122

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 295 286 282 279 278 273 272 269 269
2813 294 291 288 280 273 270 270 273 261
1406 291 290 283 280 255 251 244 253 248
703 289 287 271 278 269 256 248 242 240
351 286 288 271 271 259 232 221 216 175
175 291 288 275 273 267 239 210 217 159
87 288 289 274 282 262 238 209 202 185
43 291 287 275 275 267 239 231 223 179
0 292 289 275 278 265 241 220 208 148

Table 7.2: Exact Match Maximum Likelihood Decoding Results for DEV94
Using Smoothed Model BHW as a Function of Amount of Hand and Hidden
Training Data

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 290 287 279 280 279 275 276 273 274
2813 292 282 282 278 281 272 266 270 255
1406 291 285 281 279 255 251 252 254 244
703 291 283 281 272 262 234 240 229 237
351 292 287 279 272 256 239 209 225 165
175 291 283 278 272 260 232 195 215 182
87 290 283 280 275 251 243 196 205 178
43 291 284 279 275 262 231 209 192 159
0 289 284 280 271 262 236 197 200 58

Table 7.3: Exact Match Maximum Likelihood Decoding Results for DEV94
Using Smoothed Model BLM as a Function of Amount of Hand and Hidden
Training Data

123

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

C 262 290 293
CHW 286 296 297
CLM 258 291 293

Table 7.4: Exact Match Maximum Likelihood Decoding Results for DEV94
Using Smooth Models C, CHW, and CLM as a Function of Amount of Hand
and Hidden Training Data

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

A 5.63 5.45 5.50
AHW 5.33 5.14 5.27
ALM 5.32 4.93 5.06
B 5.56 5.49 5.52
BHW 5.29 5.19 5.32
BLM 5.25 4.98 5.11
C 5.30 4.93 4.99
CHW 4.81 4.65 4.74
CLM 4.96 4.47 4.58

Table 7.5: Cross Entropy Results for DEV94 For Various Models

showed 4% improvement with no hand aligned training data.

7.6.2 Cross Entropy Results for DEV94

The cross entropy results are shown in table 7.5 for the smoothed A and B

models, for the most important experiments.

These entropies are nearly identical to the corresponding model A en-

tropies. Many of the model C variants show an improvement in half a bit

over the model B variants.

124

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

1 73.5 80.8 87.5
A 81.0 90.2 92.7
AHW 87.0 93.0 93.5
ALM 86.0 94.4 95.3
B 80.0 89.4 91.7
BHW 85.8 92.8 93.3
BLM 85.5 94.2 95.3
C 90.9 93.7 94.8
CHW 90.5 93.9 93.7
CLM 95.5 96.7 96.9

Table 7.6: Viterbi Percentages of Maximum Likelihood Cross Entropy for
DEV94 For Various Unsmoothed Models

7.6.3 Viterbi Percentage Results for DEV94

The Viterbi percentages for models A and B are shown in table 7.6. The

Viterbi percentages shown are calculated using unsmoothed parameter sets.

As can be seen, the results nearly one percent worse for the model B variants.

The model C, CHW, and CLM Viterbi percentages are much better than

model B. Though this should come as no surprise. Models B, BHW, and

BLM are trained to their maximum likelihood estimate using all possible

alignments, whereas models C, CHW, and CLM use only the most likely

alignments to compute the statistics. Hence, one would expect a much better

Viterbi percentage from models C, CHW, and CLM.

125

Chapter 8

Discussion

So far, 10 di�erent models have been presented. In the interest of brevity,

only smoothed model B results are discussed in this chapter. The purpose

is to give the reader insight as to the kinds of errors made by this statistical

approach. Obviously each model will have its own strengths and weaknesses.

Recall the smoothed model B results presented in table 7.1, 290 sentences

exactly matched the reference answer out of 410 for the experiment which

used all the hand and hidden training data. When nothing but hidden data

were used, the accuracy dropped to 274. But the last column of this table

shows that the accuracy is still getting better as more hidden data are added.

Thus, one could reasonably expect better results if more training data were

available.

Also recall that 70 of the 410 sentences do not have the correct answer in

the pattern matcher vocabulary (see section 4.4). Thus, without augmenting

126

Rank Count

1 290
2 22
3 8
4 1
5 1
8 2
12 2
13 1
17 1
22 1
24 1
232 1
1220 1
1407 1
1901 1
3832 1
3833 3
3838 1
3882 1
total > 1 50

Table 8.1: Histogram of Maximum Likelihood Decoding Results for DEV94
Using Smoothed Model B with all the Hand and Hidden Training Data

the pattern matcher vocabulary to include these 70 missing patterns, there

is no way to know whether or not the statistical translation models would

have worked. Thus, there are only 50 errors that can be analyzed from the

experiment using all hand and hidden training data, and 66 errors from the

experiment using just hidden data.

Histograms of the exact match results are given for these experiments in

tables 8.1 and 8.2.

The numbers in the tables give the rank the reference answer receives

127

Rank Count

1 274
2 25
3 13
4 7
5 2
6 1
7 4
8 1
9 1
10 1
16 1
65 1
232 1
1220 1
1407 1
1901 1
3832 1
3833 3
3838 1
total > 1 66
N/A 70

Table 8.2: Histogram of Maximum Likelihood Decoding Results for DEV94
Using Smoothed Model B with just Hidden Training Data

128

when the pattern matcher scores all 3882 patterns using p(E j F)p(F). A

rank of 1 means that the correct answer was found. A rank of 2 meant

that one incorrect answer was found to score better than the correct answer.

While the experiment using hand data has a better exact match result, the

top 5 results are virtually identical. Thus, using nothing but hidden data,

one loses 16 correct answers, but in total, these are shifted to "near misses".

The top 5 exact match accuracy is 78%.

64 of 66 errors from the experiment using smoothed model B trained on

just hidden training data are analyzed.1 The following categories are used.

� Translation Model Error

This is an error due to the smoothed model B parameters. These errors

are analyzed further in the next section.

� Language Model Error

This is an error due to a poor language model estimate. The translation

model actually prefers the reference answer, but the pattern matcher

�nds an incorrect answer that has a higher score due to a better lan-

guage model estimate.

� Bad Formal Design

This is an error due to a poor design of the formal language NL-Parse.

With a formal language better suited to the translation models, this

1Due to a programming bug, 2 of the errors can not be analyzed.

129

type of error might not occur.

� Permutation Error This is when the correct answer and the incorrect

pattern matcher answer contain the same words, but in a di�erent order

(and hence a di�erent meaning). Unless the translation model includes

parameters to disambiguate these cases, the statistical NLU system will

have to rely on the language model to predict the correct answer. This

is intellectually unsatisfying, as the English is unambiguous. This is an

error inherent in the modeling approach.

� Bad Class This error occurs if a sentence is context dependent, and

is accidentally misclassi�ed into the class A test set.

� Tagger Error This error occurs if the tagger generates a bad tag in

the English. Since the pattern matcher only tries patterns that contain

the exact same set of tags, a tagger error will necessarily cause an error.

� Bad City/Airport Tag The English tagger was trained to use ARP

tags for airports that are mentioned by their city. For example, \the

airport in Indianapolis" becomes an ARP as opposed to \the airport

in CITY". The DEV94 test set includes numerous instances of English

like this, and the reference answer uses CITY instead of ARP. The

tagger produces a wrong tag and the sentence is not decoded correctly.

This is not an error by the tagger, but rather the result of a bad design

decision made several years ago.

130

Error Type Count

Translation Model Error 28
Language Model Error 16
Permutation Error 8
Bad Formal Design 5
Bad City/Airport Tag 4
Tagger Error 2
Bad Class 1

Table 8.3: Errors Made by Pattern Matcher in DEV94 Using Smoothed
Model B with just Hidden Training Data

The distribution of the 64 errors into these classes is shown in table 8.3.

Since the translation model is the primary focus of this thesis, the trans-

lation model errors are discussed in greater depth in the next section. The

other errors are described in appendix E. In section 8.2 some strategies for

reducing the error rate are discussed.

8.1 Errors Due to the Translation Model

In the error analysis presented in this section, smoothed model B parameters

are used in a maximum likelihood decoding. This makes it hard to know why

a particular formal language word is included. One would have to examine

all possible alignments. Instead, one can use the Viterbi alignment to �nd

the most likely formal language word to generate each English word. While

this may not be the cause of the error, it often gives insight as to why a

wrong pattern was selected.

In the translation model error list below, each error occurred just once,

131

unless a count is mentioned. The errors are loosely categorized according to

why the error occurred. The pre�x \E:" means \English", \A:" means the

correct answer, and \P:" means the pattern matcher answer.

8.1.1 Substitution Errors

In a substitution error, the correct pattern di�ers from the wrong pattern

found by the pattern matcher in that one formal language word is replaced

by another.

E: what is the cheapest one-way
ight from CITY 1 to CITY 2

A: List
ights cheapest one way from:city CITY 1 to:city CITY 2

P: List fares cheapest one way from:city CITY 1 to:city CITY 2

The scores are very close, the wrong answer has score 7:033� 10�9, while

the correct answer has score 7:004 � 10�9. In both cases, one way generates

\one-way
ight" and
ight and fare generate nothing. Thus, the selection

between
ight and fare is left to the LM and Poisson fertility. While it does

not seem likely, there are many cases in which \one way" should generate the

word \
ight". For example, in \how much does the one way
ight cost", the

formal language word \fare" generates \cost", and it is reasonable to have

\one way" generate \one way
ight". Flight/fare confusion happened in four

sentences.

E: what is the least expensive
ight from CITY 1 to CITY 2 one-way

132

A: List
ights cheapest one way from:city CITY 1 to:city CITY 2

P: List
ights cheapest one direction from:city CITY 1 to:city CITY 2

The language model likes one direction a lot more than one-way, as this is

the default formal language if someone requests the cheapest
ight without

requesting the type fare desired. The translation model score is also better for

the wrong answer, (1:17�10�17 vs 1:10�10�17). This is probably a case that

would not be an error according to the CAS metric. In a similar sentence,

\cheapest one-direction" substituted for \along-with
ights" so that \one-

direction" could generate \is" spuriously.

E: list all AIR 1
ights into CITY 1

A: List
ights AIR 1 to:city CITY 1

P: List
ights AIR 1 from:city CITY 1

In both answers, \into" is generated from \
ights", and both \from:city" and

\to:city" generate nothing. Thus, the language model picks the more likely

pattern. The word \into" appears 48 times out of 58178 words in the training

corpus. p(into j to : city) = 3:55 � 10�5 and p(into j flights) = :0016. The

most common usage for \into" is in queries like \i want to arrive into CITY 1

by � � �".

E: i want to see all
ights arriving and departing ARP 1

A: List
ights or from:airport ARP 1 to:airport ARP 1

133

P: List
ights from:airports airports to:airport ARP 1

This error occurred twice, and contains two substitution errors. In the

wrong answer, \from:airports" spurious generates \see all"; p(seejList) =

:00046 and p(alljList) = :0156 for the correct answer, but p(seejfrom :

airports) = :073 and p(alljfrom : airports) = :079 for the wrong an-

swer. In fact, \from:airport" generates \departing" with greater probability

than \to:airport", which generates \departing" in the wrong answer. Yet

this win from using \from:airport" is not o�set by the spurious inclusion of

\from:airports airports". It should also be pointed out that this sentence is

an example in which there are two formal words for the same English word.

One formal word will generate the English word, and the other will generate

nothing. Since this was a tag, and only formal language patterns that contain

the exact same tags as the English are attempted by the pattern matcher,

this does not lead to an error.

E: i need an AIR 1
ight number from CITY 1 to CITY 2 departing at

about TIME 1

A: List Extract
ights AIR 1 departing around TIME 1 from:city CITY 1

to:city CITY 2 Features all
ight number

P: List Extract
ights AIR 1 departing at TIME 1 from:city CITY 1 to:city

CITY 2 Features all
ight number

In two sentences, \at about" is generated from \at" instead of \around": This

is because p(at j at) = :38 and p(about j flight) = :004, yet p(at j around) =

134

:044 and p(around j around) = :035. When hand aligned training data

are used, p(at j around) = :064 and p(around j around) = :062, and this

error does not occur. But because \about" can be spuriously generated by

\
ights", and since p(at j at) is so sharp, the wrong answer is found.

8.1.2 Insertion Errors

In an insertion error, the incorrect pattern has additional formal language

words besides all the words in the correct answer. These inserted words lower

the likelihood in terms of their fertilities and factorials. But if one of these

words has a much higher probability of generating some of the English words,

then this can compensate. For infrequent English words, the probability

of generating them from formal language words that are used frequently,

but with other English expressions, will be low. But if there is a formal

language word in the training sentence that appears less frequently, the EM

algorithm can improve the likelihood by giving the counts for generating this

rare English word to the less likely formal language word. The more common

formal language words generate the more common English words. But should

a less likely word appear in the test set, then wrong formal language is

introduced just to generate a rare word. This is called the spurious word

problem. The headword variants should help solve this problem if properly

trained with su�cient data.

135

E: i need a
ight from CITY 1 to CITY 2 that stops in CITY 3 what
ight

should i take

A: List
ights from:city CITY 1 stopping-in:city CITY 3 to:city CITY 2

P: List
ights from:city CITY 1 serving:meal lunch stopping-in:city CITY 3

to:city CITY 2

The language model for the reference answer is 30 times more likely than the

wrong answer. But unfortunately, the translation model is 500 times more

likely for the wrong answer. There are a whole lot of spurious word misalign-

ments attained from adding \serving:meal lunch" to the formal language;

\serving:meal" generates \
ight" and \that"; \lunch" generates \should"

and \take"; \
ight" generates nothing.

E: please tell me what
ights leave CITY 1 next DAY 1 and land in CITY 2

A: List
ights
ying-on DAY 1 from:city CITY 1 to:city CITY 2

P: List
ights morning
ying-on DAY 1 from:city CITY 1 to:city CITY 2

In this sentence, the word \morning" spuriously generates the words \leave"

and \in". These English words are rare, and in the reference answer, \leave"

is generated from DAY 1 and \in" is generated from \
ights". Unfortunately,

\leave in the morning" is very likely, and hence \leave" and \in" have high

likelihood of being generated from \morning". The headword models should

help this.

136

E: i'd like to
y from CITY 1 to CITY 2 on AIR 1 and the plane should

arrive around TIME 1

A: List
ights AIR 1 arriving around TIME 1 from:city CITY 1 to:city

CITY 2

P: List aircraft equipping
ights AIR 1 arriving around TIME 1 from:city

CITY 1 to:city CITY 2

The word \plane" is strong evidence that the user wants to know about

aircraft. The only way to ever get this would be to have enough training

data to be able to distinguish \the plane" from \which plane" or \what type

of plane", and have a model powerful enough to condition this usage in an

aircraft and a
ight query. It is unlikely that one could ever get this much

training data.

E: list all
ights out of CITY 1 on AIR 1

A: List
ights AIR 1 from:city CITY 1

P: List
ights AIR 1 or from:city CITY 1 to:city CITY 1

The words \out of" are rare, and are spuriously generated by \or". Though

one can imagine saying \I want to
y into or out of � � �", and this will give

the EM algorithm the opportunity to assign \out of" to \or" to increase the

likelihood. In the correct answer \out of" doesn't even align to \from:city",

\out" aligns to AIR 1 and \of" aligns to \List". p(out j or) = :017, p(of j

137

or) = :026, p(out j from : city) = 2:4 � 10�5, and p(of j from : city) =

:00045.

E: i need a ticket from CITY 1 to CITY 2

A: List
ights from:city CITY 1 to:city CITY 2

P: List
ights round-trip from:city CITY 1 to:city CITY 2

The word \round-trip" is erroneously included to spuriously generate \ticket".

This is because p(ticketjround� trip) = :037, p(ticketjflights) = 2:4�10�5,

and p(ticketjList) = :00044: The high probability is because people often say

\I want a round trip ticket � � �".

E: what
ights leave CITY 1 arriving in CITY 2

A: List
ights from:city CITY 1 to:city CITY 2

P: List
ights arriving afternoon from:city CITY 1 to:city CITY 2

Two formal language nodes are inserted, \arriving afternoon". Since \ar-

riving" appears in the English, this has a strong preference to be gener-

ated from \arriving". Adding afternoon helps to spuriously generate \leave"

and \in" as well, p(leavejafternoon) = :023, but p(leavejflights) = :007,

p(leavejfrom : city) = :00015, p(injafternoon) = :147, and p(injto : city) =

:00066. This happened in two sentences.

E: what
ights leaving CITY 1 arriving in CITY 2 have �rst class seating

138

A: List
ights �rst-class from:city CITY 1 to:city CITY 2

P: List airlines serving:
ights
ights �rst-class morning from:city CITY 1

to:city CITY 2

This time, \morning" is added to generate \leaving" and \arriving", and

\serving:
ights" added to generate \have". The spurious introduction of

\serving:
ights" to generate \have" happened twice.

E: i'd like the
ights from CITY 1 to CITY 2 with a connecting
ight any-

where

A: List
ights connecting from:city CITY 1 to:city CITY 2

P: List airlines serving:
ights
ights connecting from:city CITY 1 to:city

CITY 2 serving:
ights
ights direct from:city CITY 1 to:city CITY 2

More spurious insertions here: \serving-
ights: generates \with" with prob-

ability p(withjserving : flights) = :0688, yet p(withjconnecting) = :00077.

E: i'd like to buy a round-trip ticket
ying into CITY 1 and out of CITY 2

A: List fares round-trip from:city CITY 2 to:city CITY 1

P: List fares cheapest one direction from:city CITY 1 or one way round-trip

to:city CITY 2

More spurious insertions, \or" likes to generate \and" and \into" better than

\from:city" and \to:city".

139

8.1.3 Complex Errors

A complex error is one that involves two or more errors.

E: i wanna
y from CITY 1 to CITY 2 and be there before TIME 1

A: List
ights arriving before TIME 1 from:city CITY 1 to:city CITY 2

P: List aircraft equipping
ights departing before TIME 1 from:city CITY 1

to:city CITY 2

In this sentence, \arriving" was replaced with \departing" and \aircraft

equipping" is inserted. The word \wanna" is unknown, and is spuriously

generated from \equipping" with 3 times greater probability than \before",

the most likely formal language word to generate it in the reference answer.

Also, \
y" is generated from \equipping" with 46 times greater probability

than
ights.

E: i need a round-trip ticket from CITY 1 to CITY 2
ying with AIR 1

A: List
ights AIR 1 round-trip from:city CITY 1 to:city CITY 2

P: List fares AIR 1 round-trip thrift-class from:city CITY 1 to:city CITY 2

This sentence contains an insertion and a substitution. The insertion of

\thrift-class" spuriously generates \with". What is interesting here is that

the wrong answer was actually 9th on the list of answers. In all the 8 patterns

that scored better, each had a di�erent formal language word added to spu-

riously generate \with". This is especially surprising because \
ying" and

140

AIR 1 are both generated from AIR 1. The clumping model could have cho-

sen to align all three words to AIR 1 in a single clump if it were more likely.

Even in the correct answer, \with" is generated from \List", not AIR 1. The

relevant probabilities are: p(withjList) = :00140, p(withjAIR 1) = :00020,

and p(withjthrift� class) = :108.

E: what
ights do you have available on DATE 1 leaving CITY 1 arriving

in CITY 2 by

A: List
ights
ying-on DATE 1 from:city CITY 1 to:city CITY 2

P: List Extract
ights arriving on DATE 1 from:city CITY 1 to:city CITY 2

Features the-number-of entries

In this case, \the-number-of" spuriously generates \have" and \by, and \ar-

riving" generates \arriving" and \in". The last two are reasonable given the

usual meaning for \arriving", but in this case, \arriving" is used in a new

sense.

E: what sort of ground transport is available in CITY 1

A: List Extract ground-services provided-for:city CITY 1 Features all trans-

port type

P: List ground-services provided-for:airports airports serving:city CITY 1

provided-for:city CITY 1

141

Here, \provided-for:city" generates \sort", a rare English word, with 80 times

greater probability than \transport type".

E: what is the quickest
ight
ying from CITY 1 to CITY 2

A: List
ights shortest from:city CITY 1 to:city CITY 2

P: List
ights cheapest one direction from:city CITY 1 to:city CITY 2

This time, \is" is spuriously generated from \one direction" with probabil-

ity p(isjone direction) = :155. This is almost 20 times more likely than

p(isjList).

E: please list
ights from CITY 1 to CITY 2 round-trip whose cost is less

than PRICE 1

A: List
ights from:city CITY 1 less-than round trip cost PRICE 1 to:city

CITY 2

P: List fares round-trip from:cityCITY 1 less-than round trip cost PRICE 1

to:city CITY 2

This sentence contains an insertion and substitution. Fares spuriously gen-

erates \is" with 4 times greater probability than any word in the answer.

Also \cost" is spuriously generated from \fares" instead of \round trip cost"

with 4 times greater probability. Though it is reasonable for \cost" to be

generated by \fares".

142

8.2 Reducing the Error Rate

It is clear from table 8.3, the analysis of the errors in the preceding section,

and the discussion about the pattern match in section 4.4 that the major

errors are:

� Missing pattern errors. This accounts for 70 errors, since missing pat-

terns are automatically counted as an error. One could ignore these 70

test sentences in computing the error rate, but this is unfair. A pattern

that has not been seen in 12000 context independent sentences is likely

to contain rarer phenomena, and hence might not be correctly decoded

by the statistical model. Since this thesis is not focusing on a decoder

or language model, the missing pattern errors are not analyzed further.

Note that chapter 10 does include error rates for DEV94 that use the

pattern vocabulary augmented with any missing patterns.

� Translation model errors, mostly caused by spurious words.

� Language model errors, which are due to the unigram distribution on

patterns seen in the training set. Though in all fairness, if the transla-

tion models were sharper for some of these sentences, then even with

a poor language model prediction, the correct answer might still be

found. It should also be mentioned that the language model helps to

get many sentences correct. Again, since this thesis is not focusing on

language models, this is not considered further.

143

� Permutation errors, in which the pattern matcher has two patterns

that contain the same formal language words, that are permutations of

each other. All the DEV94 permutation errors were due to confusion

between which cities in a sentence are the departure cities, the arrival

cities, and stopover cities.

There are many ways one could try �xing the spurious word and permu-

tation errors. The next subsections describe a few potential solutions to each

of these. Except for the next chapter which describes a new model to help

solve permutation errors, no attempt is made to implement these in order to

present better results. I conjecture that these solutions would help reduce

the errors. To what extent I cannot be certain without implementing each

of them.

Before presenting a discussion on potential solutions to these problems,

one should mention that the modeling presented in this thesis has one poten-

tially large source of error, that surprisingly did not prove to be a problem.

This is the problem of \unknown" words. An unknown word is one that

has never been seen in the training or smoothing data, but then appears in

the test data. No statistics will exist for this unknown word. Consider, for

example, what happens for the word \client" in this statistical NLU system.

The word \client" is never seen in the training or smoothing data. Hence,

\client" is not in the English vocabulary. Should \client" be seen in the test

data, it is replaced by the unknown word, which is represented by ***".

Since all words in the training and smoothing data are known, p(���jf) and

144

p(� � �) are 0. Thus, in computing p(EjF) for a sentence E that contains

the word \client", there is no formal language word that can generate ***"

with non-zero probability. Hence, all patterns have p(EjF) = 0, and the

sentence can not be decoded. Smoothing saves us, but in a very poor way.

The smoothing for a translation probability, given by equation 5.16, for the

unknown word is:

ps(� � � j f) = �1;fp(� � � j f) + �2;fp(� � �) + �3;f
1

`(V ocE)
(8.1)

= �3;f
1

`(V ocE)
(8.2)

Thus, there is now a nonzero probability, and the unknown word can be gen-

erated. But, the formal language words most likely to produce the unknown

words will be the ones for which �3;f is largest, which will include many f

due to the binning strategy based on frequency counts. In this thesis, no

e�ort was made to model unknown words, because this was not a major con-

tributor to the error rate. But in some other domain, or test set, one might

not be as lucky.

8.2.1 Solutions For the Spurious Word Problem

A spurious word error occurs when a formal language word is introduced to

generate an English word because p(e j f) for this f is signi�cantly higher

than p(e j f) for any f in the correct pattern. Some of the reasons spurious

word errors occur are:

145

� If an English word is rare, than p(e j f) will be poorly estimated, and to

a crude approximation, the EM algorithm will give the most probability

to p(e j f) for the rarest \f" that appear with e.

� If an English word e is common and semantically relevant, then the

statistics for p(e j f) should properly train for the semantically correct

f . Suppose e is not semantically relevant. Then it will occur in many

di�erent contexts. If these are not uniform, then an infrequent f may

learn to generate a semantically meaningless e spuriously.

The next subsections propose modeling enhancements to help reduce spu-

rious word errors.

Replacing Rare English Words with the Unknown Word

One way to reduce the spurious word problem for rare English words, and

at the same time provide a solution for the unknown word problem, is to

replace all English words with low frequency counts in the training set with

the \unknown word", denoted canonically by ***". Chances are that if an

English word e appears only once or twice, then the statistics that will be

accumulated for it will be underestimated anyways. Suppose English word

e appears once in the training set, and suppose that the formal language

for this sentence uses an f that rarely appears. The EM algorithm will

make p(e j f) high in order to maximize the likelihood. Now suppose the

test set uses e in a di�erent semantic meaning, then the pattern matcher is

146

likely to incorrectly decode the sentence using the pattern that contains f ,

because p(e j f) is the only way to generate e with high probability. Hence, a

spurious word error results. But had e been replaced with ***", there would

be many instances of ***" in the training set, and p(��� j f) will have non-0

probability for many f since ***" occurs in many senses. Thus, replacing

low count e with ***" serves two purposes. It will allow the generation of

statistics for unknown words conditioned upon f , and it will help improve

the spurious word problem.

Remove Meaningless Words

Another way to reduce the spurious word problem is to use a �lter to re-

move meaningless words from the input. For example, the word \the" rarely

contains semantic information, yet after training model 1, p(thejall) = :38,

p(thejmidday) = :28, and p(thejequal � to) = :28. Yet p(thejList) = :21.

Thus, when \the" appears, there is a chance that a pattern could be selected

which includes one of these formal words so \the" can be spuriously gener-

ated. But if \the" were removed from the English in the analysis, then this

would not be an issue. This is one trick AT&T used in their system[63].

How does one recognize meaningless words? This is a research topic unto

itself, though here are some ways:

� Use a lexicon to �lter out words according to their parts of speech. For

example, determiners and articles are apt to be semantically meaning-

less in ATIS.

147

� Use a statistical measure like mutual information[17]. The mutual in-

formation of two words e and f is de�ned as:

I(e; f) = log
p(e; f)

p(e)p(f)
(8.3)

This captures the notion of how often e and f occur together versus

how often they occur by themselves. If e and f are independent, then

p(e; f) = p(e)p(f) and I(e; f) = 0. If e and f occur together frequently,

then I(e; f) >> 0. If e and f rarely occur together, then I(e; f) << 0.

The idea behind using mutual information is that if I(e; f) is low for all

f given an e, then this gives some evidence that e could be meaningless.

Determining appropriate thresholds can be tricky. Measuring the mu-

tual information on a sentence basis seems more robust than on a word

alignment basis. One could consider e having occurred with f if either

they occur in the same sentence, or if e is generated from f in a Viterbi

alignment. Another enhancement is to make use of the negative evi-

dence I(e; �f), how often e occurs and f does not. If e is semantically

relevant for f , then I(e; �f) should have low mutual information.

� Use the parameters of a trained translation model. This is closely

related to mutual information. If one uses the headword/nonheadword

models, the most probable headwords should be semantically relevant.

The nonheadwords might contain both relevant and irrelevant words.

For example, the formal language word \
ights" has headword and

148

Headword p(Headwordjflights)

ights 0.76754

ight 0.12155
there 0.0238927
list 0.0231245
leaving 0.0112259
that 0.0106361
in 0.0074895
leave 0.00465136
go 0.00407161
all 0.00396288

Table 8.4: Unsmoothed Model AHW Headword Probabilities for the Formal
Word \
ights" Trained On Just Hidden Training Data

nonheadword probabilities shown in tables 8.4 and 8.5.

The nonheadwords are all words that tend to be next to the English

word \
ights". Hence, the clumping model �nds clumps that include

these words, but they are appropriately given to the nonheadword dis-

tribution instead of the headword distribution. While \from" is a prob-

able nonheadword for \
ights", it has probability .81 of being a head-

word for \from:city" and .68 of being a headword for \from:airport".

Not surprisingly, the following four words account for .992 nonhead-

word probability for \from:city": \
y", \going", \travel", and \go".

All of these words can precede \from". This leads to another approach

to reducing the spurious word problem.

149

Nonhead Word p(Nonheadwordjflights)
all 0.173597
are 0.170147
the 0.132664
available 0.0827668
list 0.0685069
of 0.0565241
any 0.041508
there 0.0373753
from 0.0333291
go 0.0238467

Table 8.5: Unsmoothed Model AHW Nonheadword Probabilities for the For-
mal Word \
ights" Trained On Just Hidden Training Data

Constrain English Words to Align to Particular Formal Words

Often, the relevance of an English word depends on the context. In \show

me the
ights from Boston to Denver departing before noon", \departing" is

semantically relevant in that it is the only English word that indicates that

\before noon" is a departure time. But in \show me the
ights departing

from Boston to Denver", \departing" is semantically irrelevant. While one

cannot remove \departing" from the English, perhaps one can constrain \de-

parting" to come from a small set of formal language words. If one is using a

headword model, one can do even better by allowing departing to be a head-

word for a small set, and a nonheadword for a di�erent set. It makes sense

to allow \departing" to be generated from the formal words \departing",

\departure time", and \
ying-on" as a headword. It also makes sense to

allow \departing" as a nonheadword for \from:city", \from:airport", AIR 1,

150

etc. Using the trained parameter values and mutual information, it might be

possible to force many probabilities to be zero, and hopefully guide the EM

algorithm to better parameter settings.

Tie Semantically Similar Words

A common morphological technique is to replace words like \
y", \
ying",

\
ight", \
ies", and \
ights" with a canonical stem. While these words are

indeed used in di�erent contexts, it is exactly these contexts that can lead to

spurious word problems. For example, \
ight" and \
ights" tend to be used

in
ight queries, where \
y", \
ies", and \
ying" are used in airline queries.

Consequently, the rare formal language words used in airline queries learn

to spuriously generate these forms of the verb \to
y". This is another trick

used by AT&T.

Use Di�erent Senses for Words When Appropriate

Often an English word has more than one sense, and the translation models

are unable to distinguish between the senses. While there are 123 instances of

\to
y" in the English training set, there are 3800 instances of \to CITY *"

and 100 instances of \to ARP *" (� = 1; 2; 3 : : :). While the clumping models

are intended to help recognize that \to" is sometimes an in�nitival marker,

the maximum likelihood estimation gives so much probability to p(to j to :

city), that almost always the word \to" is aligned to \to:city". This can

then lead to a spurious insertion of a \to:city CITY 1". For example, in the

151

sentence \I would like to
y from CITY 1", the pattern matcher might select

\List
ight to:city CITY 1". If \to" were sensed however, then p(toinfinitival j

to : city) will not be high, and this type of spurious error avoided.

Remove Unneeded Formal Language Words

So far, the proposed solutions for reducing the spurious word errors have

all focused on the English. The formal language used for ATIS has design

de�ciencies that also contribute to the spurious word problem. If there are

infrequent \f", and one of these is used in the formal language for an English

sentence that contains a rare word or a semantically meaningless word, then

the EM algorithm will give most of the count for seeing the rare or mean-

ingless e to the rare f . So, if one removes redundant or super
uous f , then

there is less of a chance that when a rare e occurs, that there will be a rare

f that can absorb its count. Given enough training data, the EM algorithm

will learn which of the available f should generate this e. Here are several

ways that the ATIS formal language needs to be cleaned:

� Operators between tables are almost always redundant. For example,

\List aircraft equipping
ights" could be replaced with \List aircraft

ights". This is less \pretty", but the presence of equipping allows it

to absorb the probability for less frequent English words. One could

achieve the same result by setting p(e j equipping) = 0 for all e.

152

� Remove super
uous formal words used to make the formal language

more canonical. For example, the word \all" is added before every

column request that doesn't request the \minimum" or \maximum"

operator. For example, the NL-Parse for \List
ight numbers of
ights"

and \List all
ight numbers of
ights" both have the word \all" in the

formal language. This was done to provide symmetry, as they have an

identical meaning. But introducing \all" into the sentence gives a new

formal language word that learn to generate infrequent e, and hence

lead to spurious word errors later.

� Tie together di�erent pre-terminal operators. For example, the decision

was made to distinguish between the following di�erent uses of \from"

in NL-Parse:

List
ights from Boston

List
ights from cities named Boston

List
ights from JFK

List
ights from airports abbreviated JFK

This leads to 4 di�erent \from" nodes in NL-Parse, \from:city", \from:cities",

\from:airport", and \from:airports". The \from:cities" and \from:airports"

are very rare and consequently lead to spurious word errors. But if

these similar words were replaced with one word, then this would be

less likely to happen.

153

8.2.2 Reducing Permutation Errors

In order to provide a di�erent translation model score for two formal language

sentences that contain the same words, but in a di�erent order, it is neces-

sary to reformulate one or more components of the analysis-transfer-synthesis

paradigm so that two permuted F generate the same E with di�erent prob-

abilities. Consider the two formal language sentences:

List
ights from:city CITY 1 to:city CITY 2

List
ights from:city CITY 2 to:city CITY 1

The current models make no use of the implicit tree structure that was used

to generate these formal language sentences. In one tree, the \from:city"

node is the parent of CITY 1. In the other tree, it is the parent of CITY 2.

This relevant parent-child (predicate-argument) structure can be utilized in

a variety of ways.

Use Thematic Roles for Tags

The reason that permutation errors exist, at least for the ATIS domain,

is because the English tags contain a sense su�x. If the sensed tag were

replaced with a thematic role tag, then the two formal language sentences

would be replaced by one:

List
ights from:city CITY FR to:city CITY TO

This places the burden of identifying thematic roles on the English analysis.

While this probably works very well for ATIS, it is not a very general solution.

154

Perhaps in other domains, other permutations not related to tags exist.

Use a Divide and Conquer Approach

In the formal language tree, \from:city" is a nonterminal node, which has

either CITY 1 or CITY 2 as a child. Instead of training the models in this

thesis using the tags, one could use a two pass strategy for training and de-

coding. The �rst pass would ignore the tags, and the second pass would then

use the tags. If the formal language tags are removed, the English CITY tags

would now have to be constrained to come from any formal language word

that could be the parent of a CITY tag. This includes \from:city", \to:city",

and \stopping-in:city". Now, the clumping models should hopefully learn

that \from:city" generates clumps that resemble \from CITY 1", \out of

CITY 2", and so forth. The strings that could align to \from:city" could be

very complex though, and one would have to write rules on how to map these

strings to a meaning. This is in fact what AT&T and BBN have done. How-

ever, there is another solution. Upon determining what aligns to \from:city"

and \to:city", one could then rescore the model now including the tags at

the leaves, subject to the constraint that the tags can only align to words

that formerly aligned to the parent. For example, in the English sentence

\Show me the
ights to CITY 1 from CITY 2", one would expect that the

\from:city" will initially align to \from CITY 2". But upon implementing

divide and conquer, the English words \from CITY 2" will now have to be

realigned with the original subtree and tag constraints, so \from CITY 2"

155

can only align to the subtree that contains \from:city CITY 2" and not the

subtree containing \from:city CITY 1". Thus, the permutation problem is

avoided.

This solution requires the clumping models. For model 1, there is no

reason that \from CITY 2" should both align to \from:city". The EM algo-

rithm might choose to give more probability to CITY 2 aligning to \to:city",

even though CITY 2 is adjacent to \from".

The divide and conquer approach seems very general, and a reasonable

question to ask is why not do this from the highest level of the the formal lan-

guage tree down. In fact, this was tried. At the highest level, the meanings

were replaced with \List TABLE", where TABLE is \
ights", \fares", \air-

lines", etc. The idea was that the EM algorithm should learn that \Please

show me", \I would like to see", and \What" align to \List". In model 1 how-

ever, this was not the case. Consider for example, the English tag CITY 1.

CITY 1 always occurs with \List". But not all
ights mention cities, some

mention airports. And, other queries like ground service queries, use cities.

Thus, model 1 learns that CITY tags like to be generated from \List". The

model does learn the other strings, but it unfortunately makes mistakes for

common words like CITY tags. Perhaps if one used a clumping model, and

constrained the number of clumps to be a small number, say just 1-3, then

maybe a divide and conquer approach for the whole tree could be integrated

into the model.

156

Use A Distortion Model

Another way to score two di�erent permutations, is to use the heuristic that

formal language words that are close in the formal language tree, should align

to English clumps that are close in the English. This heuristic was applied

in statistical machine translation, and called distortion[13]. One expects

with high probability, that a clump aligned to the formal word \from:city"

should be very close, if not adjacent to, the clump aligned to its child formal

language word in the formal language tree. Thus, one can model the clump

distortion between a child clump and its parent clump. The distortion p(d)

will then provide di�erent scores for permuted formal language sentences, as

the distortions will be di�erent. Distortion is the most elegant solution to

the permutation problem, and is investigated in chapter 9.

157

Chapter 9

A Distortion Model

9.1 Introduction

All the models to this point have used a formal language that is the preorder

traversal of the parse tree of the cleaned and tagged NL-Parse. This preorder

traversal throws out valuable information, in particular, the parent-child re-

lationship between nodes. The two formal language sentences:

List
ights from:city CITY 1 to:city CITY 2

List
ights from:city CITY 2 to:city CITY 1

cannot be distinguished by any of the models presented so far. This is because

clumps are generated independently by each f . One way for a translation

model to give two di�erent scores for these two formal language sentences is

to model the proximity of the clumps aligned to each f . If the tree struc-

ture of the formal language is preserved, then a model can parameterize the

158

proximity of a child's clumps to its parent's. The parameters that model

the proximities are called distortions[13]. In this chapter, the foundations of

distortion modeling are presented, along with one distortion model, named

model DIS.

To see how distortions might help disambiguate these two patterns, con-

sider a model that models the distortion between the �rst clump of a CITY

tag, and the �rst clump of its parent, from:city or to:city in particular.

Since the �rst clump of the parent is being used as the reference location

for the distortion, this is called the anchor. Denote the distortion prob-

ability as panchor(d), where d can be either positive or negative. One can

choose to condition this upon the parent formal language word if desired,

panchor(d j from : city) for example. For this illustrative example, assume

that there is only one distribution for distortion. One expects that panchor(d)

is greatest for d = 1, and much lower for any other number. In the English

sentence \Show me the
ights to CITY 1 from CITY 2", \from" will align

to \from:city" and \to" will align to \to:city" in either of the two formal

language sentences:

List
ights from:city CITY 1 to:city CITY 2

List
ights from:city CITY 2 to:city CITY 1

But in the �rst formal language sentence, when the formal word CITY 1 gen-

erates CITY 1 in the English, it will have to use a distortion of panchor(�1);

when CITY 2 generates CITY 2 in the English it will have to use a distortion

159

of panchor(3). In the second formal language sentence, the distortions will use

panchor(1) and panchor(1). The latter will be much more likely, and hence the

correct permutation is found.

Modeling distortions introduces many new complexities into maximum

likelihood estimation. The distortion model is like all the previous models in

that each clump is generated by a formal language word which is a hidden

state of the model. But unlike the other models, the order the clumps are

generated will a�ect the probability, as distortion models parameterize the

probability of generating a clump given some other clumps that have already

been generated. For lack of a better way, it seems reasonable to assume

either a post-order or pre-order generation order.

Now that the order clumps are generated for formal language words is

de�ned, a generation order for multiple clumps aligned to the same word

needs to be de�ned. If there are n clumps, then there are n! ways this

ordering can be done, and each could lead to a di�erent distortion value for

the sentence generation, based on how distortions are modeled. To make the

computation polynomial, a model should prescribe a speci�c generation order

of clumps aligned to the same f , for example decreasing order of probability

p(c j f) or in left to right order. Assume the clumps are generated in left

to right order, using a distortion to relate the distance between the previous

clump generated and the current clump being generated. Again, this can

be conditioned upon the formal language word, but assume that there is a

second distribution pwithin(d). These distortions are only de�ned for d > 0.

160

Denote the position of the i-th clump of a formal word in the clumping

C as posi, posi 2 f1; 2; � � � `(C)g. Denote the position of the �rst clump of a

parent formal word as posanchor . If the parent formal language word does not

generate any clumps, then recursively visit parents until one is found that

generates clumps. This model computes the distortion score for a formal

language word as:

d = panchor(pos1 � posanchor)
nY
i=2

pwithin(posi � posi�1) (9.1)

If posanchor is unde�ned1, then the �rst factor is replaced by 1
N
, where N is

the number of clumps that have not yet been generated.

This appears to be a perfectly �ne model. The formal language words

are visited in a pre-order fashion. The �rst formal language word to generate

a clump generates its leftmost clump with uniform probability. Remaining

clumps for this word are generated according to pwithin in a left-to-right

order. The remaining formal words are visited in pre-order fashion, and the

�rst clump of each is generated according to panchor or a uniform probability,

based on whether or not it has an ancestor that has generated a clump.

This model has a few problems with it, that are not readily apparent:

� If f generates n clumps, which are placed into the clumping in left-to-

right order, the �rst clump can only be placed in the �rst N � n + 1

1An anchor is unde�ned if no ancestor for which distortions are being applied has
generated a clump.

161

available clump positions. If it is placed any further to the right, then

there will not be enough available positions to place down the remaining

n� 1 clumps.

� The probability distributions panchor and pwithin are improperly condi-

tioned. Since clump positions may already be full for f already vis-

ited in the pre-order traversal, not all slots are vacant. Thus, even

if
P

i panchor(i) and
P

i pwithin(i) sum to 1, not all these positions are

vacant. Also, the distortions might refer to clump positions that are

beyond the end of the clumping. For example, pwithin(i) for i � 2 refer

to invalid positions if the �rst clump of a formal is in position `(C)�1.

These problems cause the model to be de�cient[13]. A de�cient model is

one in which some of the probability distributions model events that cannot

occur. For example, modeling the probability that a new clump is placed

2 positions to the right of the previous clump is an impossible event if this

position has already been �lled. In a de�cient model,
P

E;C;A p(E;C;A j F) 6=

1. One might propose removing the de�ciency by having panchor and pwithin

represent distortions in terms of available slots. For example, pwithin(1) would

mean the �rst available slot to the right of the �rst clump generated for f .

This removes the de�ciency that gives probability to placing a new clump in

a �lled position. But this does not get around the problem of running o�

the end of the clumping. If one conditions panchor and pwithin on the number

of available slots, then this would be a non-de�cient model. For example,

162

pwithin(1 j av) would be the probability of placing a clump in the �rst available

slot to the right of the �rst clump generated for f, given that there are av slots

available. Now, pwithin(i j av) will be non-0 only for events that can occur,

and
P

i pwithin(i j av) will be 1. The model is now non-de�cient. This model

can be trained just like the model C variants. Model B is used to unhide

the alignments. Each alignment is then visited in turn, and the clumps are

placed down in the prescribed order, accumulating the score for the sentence

in the process.2 The scores for these alignments are then normalized, and

then each alignment is revisited, accumulating a fractional count for each

event that occurred.

There are two problems with this model. Conditioning the distortions

on av is strange. One expects pwithin(1 j av) to be the same for all av. But

conditioning upon av could lead to undertrained results. Another problem

is that pwithin(1 j av) or panchor(1 j av) might actually place a clump very

far away from the previous clump being used to model the distortion, if all

available slots in between are already �lled. Thus, this distortion is not really

measuring proximity, it is measuring proximity conditioned upon the order

that the clumps are generated.

A better solution is to make use of an auxiliary distribution. Suppose one

keeps panchor and pwithin as originally de�ned. These are only valid proba-

bility distributions when all potential distortion values i are in the sentence

2The score includes the translation probabilities, clump length probabilities, fertility
probabilities, and the distortion probabilities.

163

and available, which rarely occurs. Thus, it is not even appropriate to call

these probability distributions. But, whenever a distortion is needed, if one

divides this auxiliary distribution's value for the distortion by the sum of the

auxiliary values that are de�ned, this leads to valid probability distributions

p�within and p�anchor :

p�anchor(i) =
panchor(i)�(position i is in sentence and available)P
j panchor(j)�(position j is in sentence and available)

(9.2)

Basically, this is making a probability distribution p� from the auxiliary dis-

tribution p by considering only the available slots.

This is also a non-de�cient model, as p�(i) will always sum to 1 for avail-

able positions during the generation of the clumps of a sentence. Unfortu-

nately, the EM algorithm cannot be used to perform maximum likelihood

estimation for this model. The problem is that the denominator can be dif-

ferent each time an event associated with a parameter is observed. Thus

one cannot simply remember the counts for the observed events, the denom-

inator counts must be remembered too. For each parameter panchor(i), one

accumulates two counts, ~canchor(i) which is the number of times a particular

distortion between the �rst parent clump and the �rst child clump is observed

in the training data, and canchor(j), which is the model's prediction for the

count for each available distortion j. Consider an example in which three

positions are available in which the �rst clump of a child can be generated.

Suppose these are in distortion positions -2, 3, and 4, and that position 3 is

164

the one that is actually �lled. The following counts would be accumulated:

~canchor(3) + = 1 (9.3)

canchor(�2) + =
panchor(�2)

panchor(�2) + panchor(3) + panchor(4)
(9.4)

canchor(3) + =
panchor(3)

panchor(�2) + panchor(3) + panchor(4)
(9.5)

canchor(4) + =
panchor(4)

panchor(�2) + panchor(3) + panchor(4)
(9.6)

Now remember, the goal in maximum likelihood estimation is to set the

model's prediction to match the training data. It is intuitively reasonable to

re-estimate a parameter using:

panchor(i)� =
~canchor(i)

canchor(i)
(9.7)

If a parameter is observed more often in the training data than the model

predicts, the parameter for this event is scaled by the ratio of the observed

count to the expected count. This iterative procedure is called generalized it-

erative scaling, and was shown to produce a maximum likelihood estimate by

Darroch and Ratcli�[19]. The proof of convergence to a maximum likelihood

estimate is not presented here.

165

9.2 Formulae

There are many possible distortion models one could implement using the

strategy described in the previous section. The steps in designing a distortion

model are:

� Pick a speci�c order in which to generate the clumps. Generally this is

done by picking a speci�c order to visit the formal words according to

the tree structure of the formal language, and then picking a speci�c

order to generate the clumps aligned to each formal word.

� Pick the set of formal words for which distortions will be used.

� Determine the auxiliary distributions to be used based on the condi-

tioning that is desired. A distortion value for generating a clump can

be conditioned upon any one or more clumps that have already been

generated. The anchor for the distortion could be any parent clump

or previously generated clump for this formal word for example. The

auxiliary distribution would be used to get a fractional count for each

potential anchor. These fractional counts are then distributed to the

auxiliary distribution for each potential distortion position according

to what is available at the time the clump is generated.

To illustrate this principle, the following distortion model is implemented

in this thesis:

166

� Distortions are generated for subtrees dominated by \from:city", \to:city",

\stopping-in:city", \from:airport", \to:airport" and \stopping-in:airport"

in the order they are visited in a preorder traversal. Before this pre-

order traversal is done, all clumps generated by formal words for which

distortions are not used are generated �rst.

� Once the clumps are generated for formal words not utilizing distor-

tions, the remaining formal words are visited in preorder fashion. The

clumps aligned to formal subtrees dominated by \from:city", \to:city",

\stopping-in:city", \from:airport", \to:airport" and \stopping-in:airport"

are then generated according to a distortion probability.

� The �rst clump aligned to each formal language word uses a distortion

panchor(i j fpreorder). That is, the previous formal word to generate

clumps is used as the anchor. The distortion is conditioned upon the

identity of the anchor formal word. If this is the �rst clump to be

generated for the subtree, then the clump is generated with uniform

probability over all available clump positions. Using the previously

visited word in the preorder traversal instead of the parent allows for

situations when a parent has 2 children, the parent generates no clumps,

and each child does generate clumps. Then the �rst clump of the

leftmost child serves as the anchor.

� Any formal language word for which distortions are being used generate

the subsequent clumps after the �rst one by distorting positions using

167

pwithin(i j f). The remaining clumps are distorted according to the pre-

vious clump generated for the f , and a separate auxiliary distribution

is kept for each f .

The formulae for this model are very similar to the ones for model C.

Some random variables in model C will now be subscripted by d or nd to

indicate whether or not they are being generated by a formal word for which

distortions apply or not apply. The conditioning is rather complex, as all the

formal words that do not utilize distortions generate their clumps �rst. For

example, the probability of generating Cd must be conditioned upon Cnd.

Also, there are new anchor points each time a new subtree is encountered.

Formally showing all the formulae will make them appear more complex than

they really are. Thus, in the formulae below, I omit some of the conditioning

involving the distortions and instead opt for a less formal notation. Assume

that the preorder representation for Fd has already been generated, so that

the formal word fi is the i-th word in the preorder traversal. The distortion

model presented in this thesis is:

p(E j F) =
X
C;A

p(E;C;A j F) (9.8)

p(E;C;A j F) = p(End; Cnd; And j Fnd)p(Ed; Cd; Ad j Fd) (9.9)

p(End; Cnd; And j Fnd) =
(L� Lnd)!

L!

`(Fnd)Y
i=1

p(ni j fi)ni!
niY
j=1

p(cj j fi)(9.10)

p(Ed; Cd; Ad j Fd) =
`(Fd)Y
i=1

p(ni j fi)
niY
j=1

p(cj j fi) � d(cj) (9.11)

168

p(c j f) = p(`(c) j f)
`(c)Y
i=1

p(ei j fc) (9.12)

These formulae contain another notation change, each clump cj is now the

j-th clump generated by formal word fi instead of the j-th clump in C. With

this in mind, it is easy to verify that if all f 2 F do not utilize distortions,

than Lnd = L and these formulae compute the exact same value as model C.

Thus, model C is really a special case of model DIS in which no f are de�ned

with distortion handling.

One term is not yet de�ned in the above formulae, that is the distor-

tion term d(cj). This is where I opt for non-mathematical notation. The

distortion value for a clump takes one of three values:

d(c) =

2
666666666666664

1
Lopen�ni+1

if j = 1 and the �rst clump

being generated for a subtree

panchor(posc1 � posanchor j fanchor) if j = 1 and not the �rst clump

for the subtree

pwithin(poscj � poscj�1 j fi) if j > 1

3
777777777777775

(9.13)

9.3 Count Derivation

The count accumulation formulae for the translation probabilities, clump

lengths, and fertilities are the same as in model C. That is, the score of

169

a candidate alignment is calculated (using the model DIS formulae). The

score for each candidate alignment is then normalized, and the fractional

count accumulated for each of these parameters.

For the distortion auxiliary distributions, the fractional count is accu-

mulated in ~canchor(i j fanchor) for the anchor distortion events observed in

the candidate alignment. This fractional count is then further prorated

to each potential anchor distortion j that is available and accumulated in

canchor(j j fanchor).

The maximization step of the EM algorithm for the translation prob-

abilities, clump lengths, and fertilities uses standard frequency count nor-

malization. The maximization of the auxiliary distributions uses generalized

iterative scaling.

9.4 Training

The DIS distortion parameters are started from uniform initial statistics.

The rest of the DIS model parameters are initialized from model C. The

translation probabilities, clump lengths, and fertilities are held �xed for 10

iterations while the distortion parameters are trained. Then �ve more it-

erations are run in which other parameters are varied and the distortion

parameters �xed.

170

9.5 Smoothing

Smoothing is only done for the model C parameters: the translation prob-

abilities, clump lengths, and fertilities. These are smoothed for 8 iterations

starting from uniform statistics.

9.6 Results

The results from this distortion model show a slight improvement over the

model C results. Unfortunately, not all of the 8 permutation errors were

corrected due to the language model still being too strongly in favor of the

wrong permutation. Two slight changes that could easily �x all 8 permuta-

tion errors are:

� The most common distortion error is when the departure and arrival

city are \toggled" between the correct answer and the incorrect per-

mutation. Because the model presented in this chapter generates all

clumps for formal language words that do not utilize distortions �rst,

when the �nal subtree's last clump is generated, there are no other

available positions to contribute to the denominator of equation 9.2.

For example, the motivating example given at the beginning of this

chapter showed the correct permutation will use panchor(1) and panchor(1)

versus panchor(�1) and panchor(3) for the incorrect permutation. But

because the �nal clump only has one available slot, p�anchor(1) for the

171

correct permutation and p�anchor(3) for the incorrect permuation will

both have the value 1.0. If one generated the clumps �rst for the nodes

utilizing distortions, and then the remaining clumps, then there would

be other denominator values, and true distortion values would be used,

and p�anchor(1) >> p�anchor(3).

� Rather than changing the model, one should really use a distortion

model only for what it is intended, to help disambiguate two permu-

tations. One could thus rebuild the pattern matchers vocabulary of

patterns, and tie together permuted patterns and their counts. This

reduced set of patterns would be used to �nd the most likely pattern.

Upon discovering that this pattern is a canonical example of a tied

set of permutations, one could apply the distortion model without the

language model to disambiguate the two permutations.

9.6.1 Exact Match Maximum Likelihood Results for

DEV94

The smoothed model DIS results are shown in the following table, along with

smoothed model C results for comparison.

As mentioned in the preceding section, only 1 of the 8 permutation er-

rors was corrected. Though for all 8, the translation model scores became

vastly better for the correct answer. They just were unable to overcome the

language model score. To illustrate the point, here is what happened for one

172

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

C 262 290 293
DIS 263 293 294

Table 9.1: Exact Match Maximum Likelihood Decoding Results for DEV94
Using Smooth Models C and DIS as a Function of Amount of Hand and
Hidden Training Data

of the 7 permutation errors that was not corrected.

E: the
ight going to CITY 1 from CITY 2 should stop in CITY 3

A: List
ights from:city CITY 2 stopping-in:city CITY 3 to:city CITY 1

W1: List
ights from:cityCITY 1 serving:meal lunch stopping-in:city CITY 3

to:city CITY 2

W2: List
ights from:city CITY 1 stopping-in:city CITY 3 to:city CITY 2

The language model scores are .000231642 for A, the correct answer.

Incorrect answers W1 and W2 have language model scores .00030886 and

.0100378 respectively. When run with smoothed model C, W1 was found as

the most likely answer, with a translation model score of 1:76674 � 10�18,

giving a total score of 2:33596 � 10�11. Smoothed model C gives incorrect

answer W2 a translation model score of 4:46201 � 10�20 for a total score of

2:11634�10�11 . The correct answer has translation model score of 4:46201�

10�20 for a total score of 3:21495 � 10�12. Thus, for smoothed model C, the

incorrectly found answer is 7.27 times more likely than the correct answer.

173

When run with smoothed model DIS, the correct answer has translation

model score 1:39921 � 10�18 for a total score of 1:80033 � 10�11. Incorrect

answer W1 has a translation model score of 1:31229� 10�17 for a total score

of 6:3664 � 10�11. Incorrect answer W2 has a translation model score of

9:30566 � 10�19 for a total score of 9:66482 � 10�11. Thus, smoothed model

DIS selects incorrect answer W2 as the most likely answer, which is 5.37

times more likely than the correct answer. But a closer inspection of the

translation model and language model scores between the correct answer

and incorrect answer W2 shows that the distortion model is doing its job.

The distortion model score for the correct answer is 1.5 times more likely than

the incorrect answer W2. But unfortunately, the language model estimate

of incorrect answer W2 is 43 times more likely. Hence an incorrect answer is

still selected.

Also note that distortions help to reduce spurious word errors. For a word

to be spuriously produced, it must be done so by a formal language word for

which distortions are not being used, otherwise a distortion penalty will be

introduced. Thus, the incorrect answer W1 found by model C was replaced

by a di�erent incorrect answer, that is \closer" to the correct answer in that

it doesn't contain any spurious word errors.

9.6.2 Cross Entropy Results for DEV94

The cross entropy results are shown in table 9.2 for smoothed models C and

DIS.

174

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

C 5.30 4.93 4.99
DIS 5.14 4.93 4.99

Table 9.2: Cross Entropy Results for DEV94 For Smoothed Models C and
DIS

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

C 90.9 93.7 94.8
DIS 91.0 94.9 94.8

Table 9.3: Viterbi Percentages of Maximum Likelihood Cross Entropy for
DEV94 For Unsmoothed Models C and DIS

9.6.3 Viterbi Percentage Results for DEV94

The Viterbi percentages for models C and DIS are shown in table 9.3. The

Viterbi percentages shown are calculated using unsmoothed parameter sets.

175

Chapter 10

Summary

In this thesis, a framework for performing statistical NLU using the source-

channel model paradigm has been developed. English is analyzed with a

tagger to reduce the parameter set. The formal language is derived from

NL-Parse, which although not perfect for statistical understanding, was con-

venient to use. Statistical models were designed to generate each English

word from a formal language word using various parameters. The parame-

ters found to be most valuable were:

� Translation probabilities p(e j f).

� Clump length probabilities p(`(c) j f).

� Poisson fertilities �f .

� Fertility probabilities p(n j f).

� Distortion probabilities panchor(d) and pwithin(d).

176

It is hard to compare the results of this research to others, since a large

percentage of the errors are due to aspects of NLU not examined by this

thesis: the decoder and the language model. In DEV94, the smoothed model

B parameters trained using all the hand and hidden training data get 290

of 410 sentences correct. But 70 of the 120 incorrect sentences are due to

missing patterns and 16 are due to a bad language model prediction.1 One

potential way of measuring model performance, factoring out the e�ect of the

decoder and language model, is to augment the pattern vocabulary with the

missing patterns, and see if the translation models are good enough to pick

the correct pattern, which is guaranteed to be in the search set. Augmenting

the pattern matcher vocabulary in this manner will certainly the performance

one could hope to get with a real decoder. A real decoder will still have search

errors, and will also search many additional confusable patterns, much more

so than in the pattern matcher vocabulary. In section 10.1, the CAS results

are given for all the models using DEV94, DEC93, and DEC94, with and

without augmentation. Section 10.2 compares these results to the other

ARPA HLT participants. Since one goal of performing NLU statistically is

to provide a more portable alternative to traditional linguistic approaches,

section 10.3 examines the results with respect to portability. Then, a few

�nal words conclude the thesis in section 10.4.

1Though as noted in chapter 8, with a sharper translation model prediction, this might
have overcome a poor language model prediction.

177

10.1 Summary of Results

To this point, all results have used the DEV94 test set and the exact match

evaluation metric. In this section, the results are presented for three test

sets, DEV94, DEC93, and DEC94. The latter two are o�cial ARPA test

sets that were used to compare competing systems from the participants in

the HLT workshop.

The following 6 tables contain the results for these 3 test sets, with and

without augmenting the pattern matcher vocabulary to include the correct

answer. From the tables, the following conclusions are drawn:

� Using just hidden training data introduces a 2.5% - 5% degradation in

performance between the best models for each training scenario.

� The best augmented results are 88.05% for DEV94, 87.28% for DEC93,

and 84.27% for DEC94.

� Augmented results are 3.5% - 7.5% better than the unaugmented re-

sults.

� The model DIS, CHW, and CLM results are usually the best. Since

model DIS is a generalization of model C, this implies that potentially

models DISHW and DISLM could improve the CHW and CLM re-

sults. Thus, future work should include developing and testing models

DISHW and DISLM.

178

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

1 71.22 76.10 74.88
1 - sm 74.15 77.80 75.61
A 70.73 76.83 75.12
A - sm 75.12 77.07 77.07
AHW 75.12 77.56 74.39
AHW - sm 74.63 78.05 76.59
ALM 70.73 75.85 73.41
ALM - sm 75.37 79.76 79.51
B 71.95 76.83 76.10
B - sm 75.61 78.29 77.56
BHW 69.02 78.54 76.34
BHW - sm 74.15 80.00 79.02
BLM 71.95 76.83 76.10
BLM - sm 75.61 78.29 77.56
C 71.46 77.32 76.83
C - sm 75.37 77.56 78.29
CHW 70.24 78.54 77.56
CHW - sm 76.83 79.27 79.02
CLM 65.37 78.29 75.61
CLM - sm 72.68 80.49 79.76
DIS 69.02 78.78 78.05
DIS - sm 75.85 78.29 78.78

Table 10.1: CAS Results for DEV94

179

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

1 78.54 82.93 81.22
1 - sm 80.24 83.90 81.95
A 78.54 83.90 81.46
A - sm 81.46 84.39 83.90
AHW 82.44 83.90 80.49
AHW - sm 82.20 85.85 82.93
ALM 77.56 84.15 80.49
ALM - sm 82.20 86.59 86.34
B 78.54 84.15 82.68
B - sm 81.46 85.61 85.12
BHW 78.78 84.39 82.93
BHW - sm 81.71 85.85 85.37
BLM 78.54 84.15 82.68
BLM - sm 81.46 85.61 85.12
C 79.02 85.12 83.41
C - sm 81.95 85.85 86.10
CHW 78.54 85.85 84.15
CHW - sm 83.90 87.07 86.34
CLM 72.68 86.34 81.95
CLM - sm 79.51 88.05 87.07
DIS 76.59 86.59 85.12
DIS - sm 82.93 86.59 87.32

Table 10.2: CAS Results for DEV94 With Pattern Vocabulary Augmented
with Correct Answer

180

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

1 73.66 75.67 77.23
1 - sm 75.00 75.22 78.35
A 73.88 75.45 75.89
A - sm 74.78 77.01 77.90
AHW 73.44 75.22 75.67
AHW - sm 75.89 78.35 78.35
ALM 74.33 76.34 75.00
ALM - sm 76.79 78.12 78.79
B 76.12 79.91 76.79
B - sm 78.12 81.25 79.91
BHW 76.12 79.91 76.79
BHW - sm 78.12 81.25 79.91
BLM 76.12 79.91 76.79
BLM - sm 78.12 81.25 79.91
C 75.45 80.80 78.12
C - sm 79.91 82.59 81.70
CHW 75.45 80.58 77.90
CHW - sm 79.91 79.91 81.25
CLM 70.09 82.37 79.02
CLM - sm 73.21 83.04 82.37
DIS 75.89 81.25 78.35
DIS - sm 78.35 83.04 82.37

Table 10.3: CAS Results for DEC93

181

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

1 78.12 79.91 81.47
1 - sm 77.68 78.79 81.92
A 78.79 80.36 79.91
A - sm 78.57 80.80 81.25
AHW 79.02 80.36 80.13
AHW - sm 79.69 82.59 81.92
ALM 79.02 81.25 78.79
ALM - sm 80.58 82.59 82.59
B 81.03 85.04 81.47
B - sm 82.14 85.27 84.15
BHW 81.03 85.04 81.47
BHW - sm 82.14 85.27 84.15
BLM 81.03 85.04 81.47
BLM - sm 82.14 85.27 84.15
C 81.03 85.27 81.92
C - sm 83.48 85.71 85.27
CHW 79.91 85.04 81.70
CHW - sm 82.81 83.93 84.82
CLM 75.00 87.28 82.81
CLM - sm 76.79 87.05 86.16
DIS 80.58 85.94 82.37
DIS - sm 81.92 86.38 86.16

Table 10.4: CAS Results for DEC93 With Pattern Vocabulary Augmented
with Correct Answer

182

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

1 70.34 73.93 71.69
1 - sm 71.91 76.18 73.48
A 70.11 73.26 71.69
A - sm 73.71 75.73 74.61
AHW 71.46 73.93 73.26
AHW - sm 75.28 77.08 76.18
ALM 70.56 72.13 72.58
ALM - sm 74.83 75.51 76.40
B 69.66 73.26 71.24
B - sm 74.16 75.51 74.38
BHW 69.66 73.26 71.24
BHW - sm 74.16 75.51 74.38
BLM 69.66 73.26 71.24
BLM - sm 74.16 75.51 74.38
C 68.76 72.36 70.34
C - sm 72.13 75.51 75.28
CHW 65.39 76.18 72.36
CHW - sm 72.81 77.08 77.30
CLM 65.17 73.26 71.46
CLM - sm 72.13 77.08 76.63
DIS 68.09 73.48 71.69
DIS - sm 74.61 76.85 76.85

Table 10.5: CAS Results for DEC94

183

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

1 76.40 80.90 77.98
1 - sm 77.08 81.80 79.78
A 76.18 80.22 77.30
A - sm 78.65 81.12 79.78
AHW 78.65 81.35 79.33
AHW - sm 81.12 83.37 82.25
ALM 77.75 80.45 79.78
ALM - sm 81.12 82.70 82.47
B 75.96 80.00 77.08
B - sm 79.55 81.12 80.22
BHW 75.96 80.00 77.08
BHW - sm 79.55 81.12 80.22
BLM 75.96 80.00 77.08
BLM - sm 79.55 81.12 80.22
C 75.73 80.00 76.85
C - sm 77.98 82.02 81.80
CHW 72.58 83.37 79.10
CHW - sm 79.33 84.04 84.27
CLM 72.58 81.12 78.88
CLM - sm 78.20 83.15 83.15
DIS 75.96 81.35 78.65
DIS - sm 80.45 83.60 83.60

Table 10.6: CAS Results for DEC94 With Pattern Vocabulary Augmented
with Correct Answer

184

System DEC93 DEC94

AT&T 92.6 96.2
BBN-Delphi 90.4 N/A
BBN-HUM 83.9 90.5
CMU 94.0 96.2
MIT 90.0 95.5
Paramax/Unisys 71.4 76.4
SRI 89.5 93.0

Table 10.7: ARPA HLT Accuracy Rates

10.2 How Do the Results Compare to Other

ARPA HLT Participants

The o�cial CAS test results for the DEC93 and DEC94 test sets for the

ARPA HLT participants are given in table 10.7. While not shown, the par-

ticipants agreed at the January 1995 meeting that the DEV94 test set was a

hard test set, and most participants scored approximately 85% on this test.

While this is a hard test set, it was also never adjudicated. Adjudication

on the previous test sets changed approximately 10% of the test data. This

would certainly �x the 2 errors in which sentences were incorrectly labeled

class A instead of class D. The augmented test results for DEV94 and DEC93

shown in tables 10.2 and 10.4 are comparable to the ARPA HLT participants

when some hand training data are used.

The DEC94 results in this thesis are several percent worse than DEV94

and DEC93. I have no explanation for this, since DEC94 is a hidden test

set. The problem could be due to unknown words, tagger errors, more com-

185

plicated formal language, permutation errors, spurious words, the language

model, or any combination of these.

In comparing the results of this thesis to the work of others, one needs

to remember that for most of these sites, DEC93 was their third or fourth

evaluation, and DEV94 was their fourth or �fth. In this thesis, DEV94 was

my �rst evaluation. From this, some problems discovered were:

� The pattern matcher coverage leads to a large percentage of errors.

� Spurious word problems are the next largest source of error.

� The language model is the third largest source of error.

� Permutation errors are the last signi�cant source of error.

One or two iterations of this research would help reduce these errors sig-

ni�cantly. The distortion model presented in chapter 9 always prefers the

correct permutation to an incorrect one. However, because all patterns are

searched with the distortion model, incorrect patterns are still found because

favorable distortions outweigh incorrect translation probabilities. One could

�rst use another model to select the most likely pattern. One could then

easily generate permutations from this pattern, for example the cities could

be switched. Then the distortion model could be used to select the most

likely permutation. This approach will remove all the permutation errors in

DEV94. Numerous suggestions were given in section 8.2 to reduce spurious

word errors. A decoder and improved language model are needed to remove

186

the �nal sources of errors. I'm convinced that another turn or two of the

crank and the results would improve signi�cantly.

In addition, the results given for DEV94 in each chapter show that many

of the models can bene�t from more training data. Thus, the inclusion of

additional training data should also help improve the results of these models.

10.3 How Portable are These Results

The statistical approach in this thesis, based on the source-channel paradigm,

is similar to the work done by AT&T in their CHRONUS system, and BBN

in their hidden understanding models. However, the work presented in this

thesis is more portable in that:

� The formal language is very close to NL-Parse (and hence SQL). Thus

the synthesis of the formal language into an answer is deterministic.

No domain expert is required to write rules or grammars on how to

extract the relevant SQL clauses from the strings of words aligned to

a semantic concept. Though recent BBN work has accomplished the

same e�ect using decision trees[55].

� The models can be trained with little or no hand aligned training data.

If little training data are available, then hand alignments are needed.

But if ample training data exists, the models in this thesis can be

trained with no hand alignments. For ATIS, most models still see sig-

187

ni�cant bene�t when trained with 5627 instead of 2813 hidden training

sentences.

10.3.1 Formal Language

The formal language used in this thesis is the pre-order traversal of the

cleaned and tagged NL-Parse. In the AT&T and BBN systems, concepts are

used instead. For example, \from:city CITY 1" might be replaced by \DE-

PART LOC" in the other systems. If the formal language for each English

sentence is entered manually, than the formal language in this thesis has

no advantage over the others. Since the formal language used in this thesis

is derived from SQL, I claim a slightly higher degree of portability should

SQL translations of the input exist. In porting a natural language system

to a new domain for a customer, it would be entirely reasonable to require

the customer to provide English and SQL. It would be less reasonable to re-

quire the customer to annotate their data with a formal language suited for

a statistical system. The latter requires additional work. The former might

already be available. Given the English and the SQL, it might be possible to

derive an NL-Parse like formal language automatically. I'm sure that some

problematic sentences might exist, but most queries without complex table

recursion within the SQL should be easily convertible.

188

10.3.2 Synthesis

In the AT&T and BBN systems, the formal language concepts are aligned to

strings of English words. These words are then passed through a grammar

for each concept, to convert the English words to a meaning. For example,

departure locations need to be recognized as either cities or airports, and then

the SQL fragment to access the ATIS database needs to be generated. Thus,

for each new application domain, new grammars will have to be written for

each formal language concept.2

In this research, the formal language is directly mappable into SQL. No

grammar needs to be written. It is true that a �lter to convert the formal

language into SQL needs to be written, but being deterministic, it does not

depend on the identity of the English words that it is parsing. Hence, it is

easier to write and their is no chance of ambiguity introducing an error.

On the other hand, this research requires the English to be tagged. To

the extent that taggers for the lexical items shown in table 4.1 are portable,

then the tagger can be ported from other domains. Even if a new application

domain requires a new tagger, bracketing English words and giving them a

tag in order to train a statistical tagger is a relatively fast procedure, and does

not require a domain expert. I'll also conjecture that given the availability

of SQL, one might be able to develop a statistical algorithm for doing the

bracketing automatically. The SQL will indicate the presence of a time, city,

2As already mentioned, the most recent BBN work does this mapping statistically.[55]

189

airport, and so forth somewhere in the query. Given this information and the

identity of the tags, it should be possible to build models to �nd the most

probable words in the English to give rise to these tags.

10.3.3 Training

The AT&T and BBN systems are basically model ALM, except they include

a bigram language model to parameterize which formal language concept is

likely to generate a clump given the formal language word that generated

the previous clump. This parameter is similar to distortions. In one sense

it is weaker in that it makes no use of the structure of the parse tree. But

it is stronger in that it will most likely remove many spurious word errors.

A spurious word error causes a single word clump to be inserted in between

two other clumps, solely because the translation probability is better. With

a language model parameter to regulate this, spurious word errors can only

occur that are consistent with probable bigrams. This additional power pro-

vided by this parameter also causes problems when trained from uniform

initial statistics. The model quickly overtrains to the training data. Hence,

both AT&T and BBN found it necessary to do their training using 100%

hand-aligned training data. Aligning pairs of English and formal language

sentences does not take too long to do, but it is less portable than not requir-

ing aligned training data. Most of the models presented in this thesis bene�t

from using hand aligned data, but the degradation is only a few percent.

Further, many of the models have not even reached their peak performance

190

as a function of training data. Thus, in terms of portability, if very little

training data are available, then one will have to align the data by hand.

But if 5000 or more training data are available, then no hand alignments are

necessary for the models in this thesis. However, it would be interesting see

if their model, bootstrapped from one of the models in this thesis, leads to

an increase in performance.

10.3.4 Modeling

In this thesis, �ve di�erent models were developed, model 1, A, B, C, and

DIS. Each of the clumping models in addition allows the translation prob-

abilities to be generated by unigram distributions, bigram distributions, or

headword/nonhead word unigram distributions. For any new application do-

main, any one of these models might be \best". For example, in examining

the augmented and unaugmented results earlier in this chapter, one discovers

the best models for each test set shown in table 10.8.

Models CHW, CLM, and DIS are always the best when hand training data

are used. But when using nothing but hidden training data, models AHW,

ALM, C, and CHW are each better for di�erent test sets. Thus, it appears

necessary to have many di�erent models. Each has its own strengths and

weaknesses, which may or may not be relevant for a new application domain.

In porting to a new domain, one should hold out a test set of at least 1000

sentences, and use this to determine which model works best.

191

Model 5627 Hidden Sent. 5627 Hidden Sent. 0 Hidden Sent.
0 Hand Sent. 3575 Hand Sent. 3575 Hand Sent.

DEV94 CHW CLM CLM
76.83% 80.49% 79.76%

DEV94 CHW CLM DIS
w/aug. 83.90% 88.05% 87.32%
DEC93 C/CHW DIS/CLM DIS/CLM

79.91% 83.04% 82.37%
DEC93 C CLM DIS/CLM
w/aug. 83.48% 87.28% 86.16%
DEC94 AHW AHW/CHW/CLM CHW

75.28% 77.08% 77.30%
DEC94 AHW/ALM CHW CHW
w/aug. 81.12% 84.04% 84.27%

Table 10.8: Best CAS Results for each test set

10.4 Final Summary

This thesis has investigated using the source-channel paradigm for statis-

tical natural language understanding. A high degree of accuracy has been

attained by utilizing a hierarchy of models. The results are better than the

Paramax/Unisys system in the ARPA HLT workshop, but are 5-10% worse

than the other participants. Yet these systems were developed over 4-5 year

periods, and had the advantage of numerous evaluations and iterations of

improvements. The research presented by this thesis was performed over a

2 year period, and the �rst results are being presented now. The results are

very promising, but show that more work is needed to achieve state of the

art performance. Future work should focus on the following areas:

� The design and development of a decoder and language model.

192

� Reduction of spurious word errors, by one or more of the suggestions

mentioned in section 8.2.

� The implementation of more models. In particular, the AT&T and

BBN model that includes bigram parameters to model the probability

that a clump aligned to one f follows a clump aligned to another f

seems worth trying. While AT&T and BBN needed hand aligned data

to train the model, it might be that this model can be bootstrapped

by initializing from one of the models presented in this thesis.

All the models presented in this thesis assume that the p(c j f) is calcu-

lated independently for all c aligned to an f . While the fertility models

parameterize the number of c aligned to f , they do not adjust the

statistics used in the calculation of p(c j f). One way to do this would

be to use a link grammar[76, 43]. This might help catch some linguistic

phenomena like embedded clauses, as in \late DAY 1 evening", where

\late" and \evening" have to align to the single formal language word

\late evening".

� Try building a system to handle context dependent sentences by train-

ing on context dependent formal language fragments, and including

fragments into the pattern matcher vocabulary.

193

Bibliography

[1] Alfred V. Aho and Je�rey D. Ullman. Principles of Compiler Design.

Addison-Wesley, Reading, MA, 1977.

[2] Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer. A maximum

likelihood approach to continuous speech recognition. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, PAMI-5(2):179{

190, March 1983.

[3] J.K. Baker. Trainable grammars for speech recognition. In Proceedings

of the Spring Conference of the Acoustical Society of America, pages

547{550, Boston, MA, June 1979.

[4] M. Bates and D. Ayuso. A proposal for incremental dialogue evaluation.

In Fourth DARPA Workshop on Speech and Natural Language, pages

319{322, Paci�c Grove, California, February 1991. Morgan Kaufmann

Publishers, Inc.

[5] M. Bates, S. Boisen, and J. Makhoul. Developing an evaluation method-

ology for spoken language systems. In Proceedings of the DARPA Speech

194

and Natural Language Workshop, pages 102{108, Hidden Valley, PA,

June 1990. Morgan Kaufmann Publishers, Inc.

[6] L.E. Baum. An inequality and associated maximization technique in

statistical estimation of probabilistic functions of a Markov process. In-

equalities, 3:1{8, 1972.

[7] Adam Berger, Peter Brown, Stephen DellaPietra, Vincent DellaPietra,

John Gillett, John La�erty, Harry Printz, and Lubos Ure�s. The Candide

system for machine translation. In Proceedings of the ARPA Human

Language Technology Workshop, pages 157{162, Plainsboro, NJ, March

1994. Morgan Kaufmann Publishers, Inc.

[8] D. Bobrow. Natural language input for a computer problem-solving

system. In M. Minsky, editor, Semantic Information Processing, pages

135{215. MIT Press, Cambridge, MA, 1968.

[9] S. Boisen, L. Ramshaw, D. Ayuso, and M. Bates. A proposal for SLS

evaluation. In Proceedings of the DARPA Speech and Natural Language

Workshop, pages 135{146, Cape Cod, MA, October 1989. Morgan Kauf-

mann Publishers, Inc.

[10] Eric Brill, David Magerman, Mitchell Marcus, and Beatrice Santorini.

Deducing linguistic structure from the statistics of large corpora. In

Third DARPA Workshop on Speech and Natural Language, pages 275{

282, Hidden Valley, PA, June 1990. Morgan Kaufmann Publishers, Inc.

195

[11] Peter F. Brown, John Cocke, Stephen A. DellaPietra, Vincent J. Del-

laPietra, Frederick Jelinek, Robert L. Mercer, and Paul S. Roossin. A

statistical approach to French/English translation. In E. Clementi and

S. Chin, editors, Biological and Arti�cial Intelligence Systems, pages

547{562. ESCOM Science Publishers, B.V., Leiden, The Netherlands,

1988.

[12] Peter F. Brown, John Cocke, Stephen A. DellaPietra, Vincent J. Del-

laPietra, Frederick Jelinek, John D. La�erty, Robert L. Mercer, and

Paul S. Roossin. A statistical approach to machine translation. Com-

putational Linguistics, 16(2):79{85, June 1990.

[13] Peter F. Brown, Stephen A. DellaPietra, Vincent J. DellaPietra, and

Robert L. Mercer. The mathematics of statistical machine translation:

Parameter estimation. Computational Linguistics, 19(2):263{311, June

1993.

[14] P.F. Brown. The Acoustic-Modeling Problem in Automatic Speech Recog-

nition. PhD thesis, Carnegie-Mellon University, May 1987. Also IBM

Research Division Technical Report RC 12750.

[15] S. Chen. Bayesian grammar induction for language modeling. In Pro-

ceedings of the 33rd Annual Meeting of the Association for Computa-

tional Linguistics, pages 228{235, Cambridge, MA, June 1995. Morgan

Kaufmann Publishers, Inc.

196

[16] K. Church and W. Gale. Enhanced Good-Turing and cat-cal: Two new

methods for estimating probabilities of English bigrams. In Proceedings

of the DARPA Speech and Natural Language Workshop, pages 82{91,

Cape Cod, MA, October 1989. Morgan Kaufmann Publishers, Inc.

[17] K. Church and P. Hanks. Word association norms, mutual information,

and lexicography. In Proceedings of the 27th Annual Meeting of the

Association for Computational Linguistics, pages 76{83, Vancouver, BC,

June 1989. Morgan Kaufmann Publishers, Inc.

[18] Kenneth Church. A stochastic parts program and noun phrase parser for

unrestricted text. In Proceedings of the Second Conference on Applied

Natural Language Processing, pages 136{143, 1988.

[19] J. N. Darroch and D. Ratcli�. Generalized iterative scaling for log-linear

models. Annals of Mathematical Statistics, (43):1470{1480, 1972.

[20] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical

Society, 39(B):1{38, 1977.

[21] G. David Forney. The Viterbi algorithm. Proceedings of the IEEE,

61:268{278, March 1973.

[22] K. Fu and T. Booth. Grammatical inference: Introduction and survey

- part i and ii. IEEE Transactions on Systems, Man, and Cybernetics,

5:95{111,409{423, 1975.

197

[23] A. Gorin. Semantic associations, acoustic metrics and adaptive language

acquisition. In Proceedings of the 1994 International Conference on Spo-

ken Language Processing (ICSLP), volume 1, pages 79{82, Yokohama,

Japan, September 1994. The Acoustical Society of Japan.

[24] A. Gorin, H. Hanek, R. Rose, and L. Miller. Spoken language acquisition

for automated call routing. In Proceedings of the 1994 International

Conference on Spoken Language Processing (ICSLP), volume 3, pages

1483{1486, Yokohama, Japan, September 1994. The Acoustical Society

of Japan.

[25] A. Gorin, S. Levinson, A. Gertner, and E. Goldman. Adaptive acquisi-

tion of language. Computer Speech and Language, 5:101{132, 1991.

[26] C. Hemphill, J. Godfrey, and G. Doddington. The ATIS spoken lan-

guage systems pilot corpus. In Proceedings of the DARPA Speech and

Natural Language Workshop, pages 96{101, Hidden Valley, PA, June

1990. Morgan Kaufmann Publishers, Inc.

[27] L. Hirschman. Multi-site data collection for a spoken language corpus.

In Proceedings of the DARPA Speech and Natural Language Workshop,

pages 7{14, Harriman, NY, February 1992. Morgan Kaufmann Publish-

ers, Inc.

[28] L. Hirschman, D. Dahl, D. McKay, L. Norton, and M. Linebarger. Be-

yond class A: A proposal for automatic evaluation of discourse. In Pro-

198

ceedings of the DARPA Speech and Natural Language Workshop, pages

109{113, Hidden Valley, PA, June 1990. Morgan Kaufmann Publishers,

Inc.

[29] L. Hirshman, M. Bates, D. Dahl, W. Fisher, J. Garofol, D. Pallett,

K. Hunicke-Smith, P. Price, A. Rudnicky, and E. Tzoukermann. Multi-

site data collection and evaluation in spoken language understanding. In

Proceedings of the ARPA Human Language Technology Workshop, pages

19{24, Princeton, NJ, March 1993. Morgan Kaufmann Publishers, Inc.

[30] John E. Hopcroft and Je�rey D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison-Wesley, Reading, Mas-

sachusetts, 1979.

[31] K. Hunicke-Smith and J. Bernstein. Annotation of ATIS data. In Pro-

ceedings of the ARPA Human Language Technology Workshop, page 412,

Princeton, NJ, March 1993. Morgan Kaufmann Publishers, Inc.

[32] W.J. Hutchins. Machine Translation: Past, Present, Future. Ellis Hor-

wood Limited, West Sussex, England, 1986.

[33] F. Jelinek. Fast sequential decoding algorithm using a stack. IBM

Journal of Research and Development, pages 675{685, November 1969.

[34] F. Jelinek, J. La�erty, D. Magerman, R. Mercer, A. Ratnaparkhi, and

S. Roukos. Decision tree parsing using a hidden derivational model. In

Proceedings of the ARPA Human Language Technology Workshop, pages

199

272{277, Plainsboro, NJ, March 1994. Morgan Kaufmann Publishers,

Inc.

[35] Frederick Jelinek. Self-organized language modeling for speech recogni-

tion. Unpublished IBM-Internal Report, 1985.

[36] K. Sparck Jones. Towards better NLP system evaluation. In Proceedings

of the ARPA Human Language Technology Workshop, pages 102{107,

Plainsboro, NJ, March 1994. Morgan Kaufmann Publishers, Inc.

[37] Wilbur B. Davenport Jr. Probability and Random Processes. McGraw-

Hill, New York, NY, 1970.

[38] Slava M. Katz. Estimation of probabilities from sparse data for the

langauge model component of a speech recognizer. IEEE Transactions

on Acoustics, Speech and Signal Processing, ASSP-35(3):400{401, March

1987.

[39] Brian W. Kernighan and Rob Pike. The UNIX Programming Environ-

ment. Prentice-Hall, Englewood Cli�s, NJ, 1984.

[40] Joshua Koppelman. A statistical approach to language modelling for

the ATIS problem. Master's thesis, MIT, January 1995.

[41] R. Kuhn and R. De Mori. Learning speech semantics with keyword clas-

si�cation trees. In Proceedings of the IEEE International Conference on

200

Acoustics, Speech and Signal Processing, volume 2, pages 55{58, Min-

neapolis, MN, April 1993.

[42] R. Kuhn and R. De Mori. The application of semantic classi�cation

trees to natural language understanding. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 17(5):449{460, May 1995.

[43] J. La�erty, D. Sleator, and D. Temperley. Grammatical trigrams: A

probabilistic model of link grammar. In Proceedings of the AAAI Fall

Symposium on Probabilistic Approaches to Natural Language, Cam-

bridge, MA, October 1992.

[44] Kai-Fu Lee. Automatic Speech Recognition: The Devlopment of the

SPHINX System. Kluwer Academic Publishers, Boston, MA, 1989.

[45] E. Levin and R. Pieraccini. CHRONUS, the next generation. In Pro-

ceedings of the Spoken Language Systems Technology Workshop, pages

269{271, Austin, TX, January 1995. Morgan Kaufmann Publishers, Inc.

[46] D. Magerman. Statistical decision-tree models for parsing. In Proceed-

ings of the 33rd Annual Meeting of the Association for Computational

Linguistics, pages 276{283, Cambridge, MA, June 1995. Morgan Kauf-

mann Publishers, Inc.

[47] D. Magerman and M. Marcus. Parsing a natural language using mutual

information statistics. In Proceedings of the AAAI, Boston, MA, 1990.

201

[48] D.M.Magerman. Natural Language Parsing as Statistical Pattern Recog-

nition. PhD thesis, Stanford University, February 1994.

[49] Bernard Merialdo. Tagging text with a probabilistic model. In Proceed-

ings of the IBM Natural Language ITL, pages 161{172, Paris, France,

March 1990.

[50] Bernard Merialdo. Tagging text with a probabilistic model. Technical

Report RC 15972, IBM Research Division, 1990.

[51] Paul L. Meyer. Introductory Probability and Statistical Applications.

Addison-Wesley, Reading, MA, 1970.

[52] S. Miller, M. Bates, R. Bobrow, R. Ingria, J. Makhoul, and R. Schwartz.

Recent progress in hidden understanding models. In Proceedings of the

Spoken Language Systems Technology Workshop, pages 276{280, Austin,

TX, January 1995. Morgan Kaufmann Publishers, Inc.

[53] S. Miller, R. Schwartz, R. Bobrow, and R. Ingria. Hidden understanding

models of natural language. In Proceedings of the 32nd Annual Meet-

ing of the Association for Computational Linguistics, pages 25{32, Las

Cruces, NM, June 1994. Morgan Kaufmann Publishers, Inc.

[54] S. Miller, R. Schwartz, R. Bobrow, and R. Ingria. Statistical language

processing using hidden understanding models. In Proceedings of the

ARPA Human Language Technology Workshop, pages 278{182, Plains-

boro, NJ, March 1994. Morgan Kaufmann Publishers, Inc.

202

[55] S. Miller, D. Stallard, R. Bobrow, and R. Schwartz. A fully statisti-

cal approach to natural language interfaces. In Proceedings of the 34th

Annual Meeting of the Association for Computational Linguistics, pages

55{61, Santa Cruz, CA, June 1996. Morgan Kaufmann Publishers, Inc.

[56] M. Minsky. Introduction. In M. Minsky, editor, Semantic Information

Processing, page 14. MIT Press, Cambridge, MA, 1968.

[57] R. Moore. Semantic evaluation for spoken-language systems. In Pro-

ceedings of the ARPA Human Language Technology Workshop, pages

126{131, Plainsboro, NJ, March 1994. Morgan Kaufmann Publishers,

Inc.

[58] A. Nadas and R. Mercer. Hidden markov models and some connections

with arti�cial neural nets. In P. Smolensky, M. Moser, and D. Rumel-

hart, editors, Mathematical Perspectives on Neural Networks, pages 1{

54. 1993.

[59] L. Norton, D. Dahl, and M. Linebarger. Recent improvements and

benchmark results for the Paramax ATIS system. In Proceedings of

the DARPA Speech and Natural Language Workshop, pages 89{94, Har-

riman, NY, February 1992. Morgan Kaufmann Publishers, Inc.

[60] D. Pallett. DARPA ATIS test results. In Proceedings of the DARPA

Speech and Natural Language Workshop, pages 114{121, Hidden Valley,

PA, June 1990. Morgan Kaufmann Publishers, Inc.

203

[61] D. Pallett. DARPA resource management and ATIS benchmark test

poster session. In Fourth DARPA Workshop on Speech and Natural

Language, pages 49{58, Paci�c Grove, California, February 1991. Mor-

gan Kaufmann Publishers, Inc.

[62] D. Pallett, J. Fiscus, W. Fisher, J. Garofolo, B. Lund, A. Martin, and

M. Przybocki. 1994 benchmark tests for the ARPA spoken language

program. In Proceedings of the Spoken Language Systems Technology

Workshop, pages 5{36, Austin, TX, January 1995. Morgan Kaufmann

Publishers, Inc.

[63] R. Pieraccini and E. Levin. Stochastic representation of semantic struc-

ture for speech understanding. In EUROSPEECH 91, pages 383{386,

Genova, Italy, September 1991.

[64] R. Pieraccini and E. Levin. Stochastic representation of semantic struc-

ture for speech understanding. Speech Communication, 11:283{288,

1992.

[65] R. Pieraccini, E. Levin, and C. Lee. Stochastic representation of con-

ceptual structure in the ATIS task. In Fourth DARPA Workshop on

Speech and Natural Language, pages 121{124, Paci�c Grove, California,

February 1991. Morgan Kaufmann Publishers, Inc.

[66] R. Pieraccini, E. Tzoukermann, Z. Gorelov, E. Levin, C. Lee, and

J. Gauvain. Progress report on the CHRONUS system: ATIS bench-

204

mark results. In Proceedings of the DARPA Speech and Natural Lan-

guage Workshop, pages 67{71, Harriman, NY, February 1992. Morgan

Kaufmann Publishers, Inc.

[67] Stephen A. Della Pietra and Vincent J. Della Pietra. Statistical mod-

elling with maximumentropy. Technical report, IBM Research Division,

1994.

[68] J. Polifroni, L. Hirschman, S. Sene�, and V. Zue. Experiments in evalu-

ating interactive spoken language systems. In Proceedings of the DARPA

Speech and Natural Language Workshop, pages 28{33, Harriman, NY,

February 1992. Morgan Kaufmann Publishers, Inc.

[69] P. Price. Evaluation of spoken language systems: the ATIS domain.

In Proceedings of the DARPA Speech and Natural Language Workshop,

pages 91{95, Hidden Valley, PA, June 1990. Morgan Kaufmann Pub-

lishers, Inc.

[70] P. Price, L. Hirschman, E. Shriberg, and E. Wade. Subject-based evalu-

ation measures for interactive spoken language systems. In Proceedings

of the DARPA Speech and Natural Language Workshop, pages 34{39,

Harriman, NY, February 1992. Morgan Kaufmann Publishers, Inc.

[71] A. Ratnaparkhi, S. Roukos, and R. Todd Ward. A maximum entropy

model for parsing. In Proceedings of the 1994 International Confer-

205

ence on Spoken Language Processing (ICSLP), volume 2, pages 803{806,

Yokohama, Japan, September 1994. The Acoustical Society of Japan.

[72] Elaine Rich. Arti�cial Intelligence. McGraw-Hill, New York, NY, 1983.

[73] R. Rosenfeld. Adaptive Statistical Language Modeling: A Maximum

Entropy Approach. PhD thesis, Carnegie-Mellon University, April 1994.

[74] R. Schwartz and Y. Chow. The N-best algorithm: An e�cient and

exact procedrure for �nding the N most likely sentence hypotheses. In

Proceedings of the IEEE International Conference on Acoustics, Speech

and Signal Processing, volume 1, pages 81{84, Albuquerque, NM, April

1990.

[75] C.E. Shannon. A mathematical theory of communication. Bell Systems

Technical Journal, 27:379{423, 1948.

[76] D. Sleator and D. Temperley. Parsing English with a link grammar.

Technical Report CMU-CS-91-196, Dept. of Computer Science, Carnegie

Mellon University, 1991.

[77] Je�rey D. Ullman. Principles of Database Systems. Computer Science

Press, Rockville, MD, 1982.

[78] Andrew J. Viterbi. Error bounds for convolutional codes and an asymp-

totically optimum decoding algorithm. IEEE Transactions on Informa-

tion Theory, IT-13:260{267, 1967.

206

[79] S. Walter. Neal-Montgomery NLP system evaluation methodology. In

Proceedings of the DARPA Speech and Natural Language Workshop,

pages 323{326, Harriman, NY, February 1992. Morgan Kaufmann Pub-

lishers, Inc.

[80] J. Weizenbaum. ELIZA - a computer program for the study of natural

language communication between man and machine. Communications

of the ACM, 9(1):36{44, Jan. 1966.

[81] Dominic Welsh. Codes and Cryptogrophy. Oxford Science Publications,

Oxford, England, 1988.

[82] Patrick Henry Winston and Berthold Klaus Paul Horn. LISP. Addison-

Wesley, Reading, MA, 1981.

207

AppendixA

Extended Backus-Naur Form

Grammar for ATIS

This appendix gives an extended Backus-Naur Form [30] for most of NL-

Parse. Uppercase words will denote non-terminals, lowercase words will de-

note terminals.

QUERY ::= list (COLUMN of)? TABLE

(along with (COLUMN of)? TABLE) ? nl

COLUMN ::= column_name (and column_name)*

TABLE ::= (premodifier)* table_name (MODIFIERS)?

208

MODIFIERS ::= (MODIFIERS or)? AND_PHRASE

AND_PHRASE ::= (AND_PHRASE and)? MOD_ITEM

MOD_ITEM ::= ``(`` MODIFIERS ``)''

| table_operator TABLE

| terminal_operator terminal_value

The ambiguity in NL-Parse results from the fact that the MODIFIER

strings do not require parentheses around table operators. Thus, a MOD ITEM

can modify any of the preceding table names. Yacc points this out, as the

grammar has 3 shift/reduce errors [1]. It resolves this by shifting the next

modi�er onto the parse stack, which has the e�ect of making modi�ers modify

the previously mentioned table. Note that most table operators and termi-

nal operators can modify only one table. Thus, using yacc error recovery,

one can undo the e�ect of an erroneous shift action. This was a lot of work,

that could have been solved had the designers of NL-Parse made one minor

modi�cation, namely:

MOD_ITEM ::= (table_operator TABLE)

That is, the parentheses encapsulate all the modi�ers for a table, hence there

is no ambiguity.

209

AppendixB

Yacc Grammar for ATIS

This chapter contains the yacc grammar for ATIS. I have omitted the se-

mantic actions, some of which control the error recovery. Since the semantic

actions are complex, I instead just include comments describing what needs

to be done in the action. This way, the grammar is more readily visible.

Nonterminals are written in lower case, and terminals in uppercase. The

grammar includes some of the error recovery needed to handle the ambigu-

ity in attaching modi�ers to tables. Any post modi�er item that recursively

calls a table, will also have a second rule that uses \error". If an attachment

error is discovered in processing the recursive table, it signals \YYERROR",

which is caught by these rules.

corpora : query | corpora query

210

query : just LIST column_table NL

| error NL

{/*A syntax or semantic error was found*/}

| NL

column_table : column table alongwith

alongwith : /* empty */ | ALONG WITH column_table

column : /* empty */ | column_last

| column_start AND_T column_last

table : flights | flight_legs | cities | days

| date_days | class_of_serv | ground_serv

| food_services | airport_serv | flight_stops

| airports | fare_bases | aircraft

| airlines_query | restrictions | fares

| equipment_seq | dual_carriers | time_zones

| intervals | comp_classes | column_tables

| table_tables | states | months | code_desc

| flight_fares

column_last : THE NUMBER OF | column_item_number of_for

211

column_start : colitem_num | column_start AND_T colitem_num

colitem_num : THE NUMBER OF column_token

| max_min column_token

| column_token

/* Table rules */

aircraft : size AIRCRAFT {/*save table on stack*/}

fares : pre_fltfare FARES {/*save table on stack*/}

flights : pre_fltfare FLIGHTS {/*save table on stack*/}

cities : CITIES {/*save table on stack*/}

| city_state_country

flight_legs : FLIGHT_LEGS {/*save table on stack*/}

days : DAYS {/*save table on stack*/}

date_days : DATE DAYS {/*save table on stack*/}

class_of_serv: CLASS OF SERVICES {/*save table on stack*/}

ground_serv : GROUND SERVICES {/*save table on stack*/}

food_services: FOOD SERVICES {/*save table on stack*/}

airport_serv : AIRPORT SERVICES {/*save table on stack*/}

flight_stops : FLIGHT STOPS {/*save table on stack*/}

airports : AIRPORTS {/*save table on stack*/}

| airport

212

restrictions : RESTRICTIONS {/*save table on stack*/}

equipment_seq: EQUIPMENT SEQUENCES {/*save table on stack*/}

dual_carriers: DUAL CARRIERS {/*save table on stack*/}

time_zones : TIME ZONES {/*save table on stack*/}

intervals : INTERVALS {/*save table on stack*/}

comp_classes : COMPARTMENT_CLASSES {/*save table on stack*/}

column_tables: COLUMN TABLES {/*save table on stack*/}

table_tables : TABLE TABLES {/*save table on stack*/}

states : STATES {/*save table on stack*/}

months : MONTHS {/*save table on stack*/}

code_desc : CODE_DESCRIPTIONS {/*save table on stack*/}

flight_fares : FLIGHT FARES {/*save table on stack*/}

airlines_query : AIRLINES {/*save table on stack*/}

fare_bases : FARE BASES {/*save table on stack*/}

suffix : grouped_by ordered_by post_modifiers

ordered_by : /* empty */

| ORDERED updown BY night_coltok_list

grouped_by : /* empty */

| GROUPED_T BY night_coltok_list

| MAXIMUM GROUPED_T BY night_coltok_list

213

night_coltok_list : night_col_tok

| NUMBER_T

| LPAREN night_coltok_list2 RPAREN

night_coltok_list2 : night_col_tok

| NUMBER_T

| night_coltok_list2 AND_T night_col_tok

| night_coltok_list2 AND_T NUMBER_T

/* Some pre-table modifiers */

size : /* empty */ | SMALLEST | LARGEST | FASTEST

| SLOWEST | LIGHTEST | HEAVIEST

| LONGEST_AIRCRAFT | SHORTEST_AIRCRAFT

pre_fltfare : pre_fltfare2

| pre_fltfare2 airlines pre_fltfare2

pre_fltfare2 : /* empty */

| pre_fltfare2 pre_fltfare_item

pre_fltfare_item : pre_cost pre_dir | pre_time | class

| SHORTEST | LONGEST | CHEAP

pre_time : MORNING | AFTERNOON | EARLIEST | LATEST

| LATEST ARRIVING | LATEST DEPARTING

| LATE_AFTERNOON | LATE_MORNING | LATE_NIGHT

214

| LATE_EVENING | EARLIEST ARRIVING

| EARLIEST DEPARTING | EARLY_MORNING | AM

| PM | EARLY | EARLY_AFTERNOON | EVENING

| DAILY | OVERNIGHT | NIGHT | REDEYE | DAY

| MID_MORNING | MID_AFTERNOON | MIDDAY | LATE

pre_cost : /* empty */ | CHEAPEST | MOST EXPENSIVE

pre_dir : ONE_DIRECTION | ONE_WAY | ROUND TRIP

| NONSTOP | DIRECT | CONNECTING

/* Some time related rules */

arrival_time_meal : meal | arrival_time

arr_time_del : /* empty */ | arrival_time

arrival_time : MORNING | AFTERNOON | LATE_AFTERNOON

| LATE_MORNING | LATE_EVENING | AM | PM

| EARLY_MORNING | EARLY | EARLY_AFTERNOON

| EVENING | NIGHT | COLUMN_T | DAY

| MID_MORNING | MID_AFTERNOON | MIDDAY | LATE

/* The Boolean rules for standard operator precedence */

post_modifiers : /* empty */

{/*pop table off of stack*/}

| post_modifier_expr

{/*pop table off of stack*/}

215

post_modifier_expr : post_modifier_expr OR_T

{/*save some error recovery info here*/}

post_modifier_term

{/*save modifier table as the logical

AND of the modifier tables for

post_modifier_expr and

post_modifier_term.*/

/*save some error recovery info here*/}

| post_modifier_term

{/*set modifier table as the modifier table of

post_modifier_term*/

/*save some error recovery info here*/}

post_modifier_term : post_modifier_term AND_T

{/*save some error recovery info here*/}

post_modifier_factor

{/*save modifier table as the logical

AND of the modifier tables for

post_modifier_term and

post_modifier_factor.*/

/*save some error recovery info here*/}

| post_modifier_factor

216

{/*set modifier table as the modifier table of

post_modifier_factor*/

/*save some error recovery info here*/}

post_modifier_factor : not LPAREN

{/*save some error recovery info here*/}

post_modifier_expr RPAREN

{/*save some error recovery info here*/

/*set modifier table as the modifier

table of the post_modifier_expr*/

/*See if the modifier table for the

post_modifier_expr matches the

table at the top of the stack.

If not, raise an error.*/}

| not post_modifier_item

{/*save some error recovery info here*/

/*set modifier table as the modifier table

of the post_modifier_expr*/

/*See if the modifier table for the

post_modifier_expr matches the table

at the top of the stack.

If not, raise an error.*/}

217

/* The post table modifiers */

post_modifier_item : ASSOCIATED WITH class_of_serv

{/*save the modifier table that this

can modify in this post_modifier_item

and all the follow*/}

| ASSOCIATED WITH error

{/*in this post_modifier_item and all that

follow that contain ``error'' in the

rule, perform error recovery. These

rules are needed for post_modifier_items

that recurse into a table.*/}

| ASSOCIATED WITH class2 SERVICE

| ASSOCIATED WITH fare_bases

| WITH ARRIVALS ON WORD_T

| WITH ARRIVALS ON day_modifier

| AVAILABLE ON WORD_T

| AVAILABLE ON WORD_T also_else WORD_T

| AVAILABLE ON day_modifier

| AVAILABLE ON day_modifier also_else

day_modifier

| AVAILABLE ON days

| AVAILABLE ON error

| AVAILABLE FOR fares

218

| AVAILABLE FOR fare_bases

| AVAILABLE FOR error

| BELONGING TO fares

| BELONGING TO error

| CHARGED FOR flights

| CHARGED FOR error

| EQUIPPED WITH aircraft

| EQUIPPED WITH error

| EQUIPPING flights

| EQUIPPING error

| FLYING ON WORD_T flying_on_del

| FLYING ON day_modifier

| FLYING ON day_modifier also_else day_modifier

| ARRIVING ON WORD_T

| ARRIVING ON day_modifier

| FLYING ON days

| FLYING ON error

| FOR flight_stops

| FOR error

| FOR flights

| HAVING PRICES OF fares

| HAVING PRICES OF error

| HAVING restrictions

219

| HAVING error

| CONTAINING cities

| CONTAINING airports

| CONTAINING error

| FOUND IN time_zones

| FOUND IN error

| IN cities

| IN airports

| IN error

| LOCATED IN states

| arr_dep IN MONTH_T

| NUMBERED comp_op_del NUMBER_T

| LOCATED IN error

| OF class2 SERVICE

| OFFERED BY flights

| OFFERED BY error

| OFFERING class2 SERVICE

| OFFERING fare_bases

| OFFERING error

| ON days

| ON error

| PRIMARILY SERVED BY airlines_query

| PRIMARILY SERVED BY error

220

| PROVIDED for_by airports

| PROVIDED for_by error

| PROVIDED FOR cities

| PROVIDED WITH airport_serv

| PROVIDED WITH ground_serv

| PROVIDED WITH error

| PROVIDING airport_serv

| PROVIDING error

| SECONDARILY SERVED BY airlines_query

| SECONDARILY SERVED BY error

| SERVED BY airlines_query

| SERVED BY airports

| SERVED BY error

| only SERVING food_services

| SERVED ON flights

| SERVED ON error

| only SERVING meal

| only SERVING error

| only SERVING cities

| only SERVING flights

| only STOPPING IN airports

| only STOPPING IN cities

| only STOPPING IN error

221

| THAT ARE LEGS FOR flights

| THAT ARE LEGS FOR error

| THAT ARE STOPS FOR flights

| THAT ARE STOPS FOR error

| from_to airports

| WHOSE night_col_tok IS A STRING not

CONTAINING number_misc_string

| WHOSE night_col_tok IS BETWEEN NUMBER_T

arr_time_del AND_T NUMBER_T arr_time_del

| WHOSE night_col_tok IS comp_op_del max_min

night_col_tok OF table

| WHOSE night_col_tok IS comp_op_del max_min

night_col_tok OF error

| WHOSE night_col_tok IS comp_op_del NUMBER_T

| WHOSE night_col_tok IS not_yes_no

| WHOSE night_col_tok IS not misc_string

| SCHEDULED FOR flights

| SCHEDULED FOR flight_stops

| SCHEDULED FOR error

| WITH LEGS THAT ARE flights

| WITH LEGS THAT ARE error

| WITH SCHEDULED flight_stops

| WITH SCHEDULED error

222

| WITH arr_dep flights

| WITH arr_dep fares

| WITH arr_dep error

| from_to cities

| from_to error

| ABBREVIATED number_misc_string

| NAMED misc_string

| NAMED A STRING not CONTAINING

number_misc_string

| NAMED comp_op_del ANY_T night_col_tok OF table

| NAMED comp_op_del ANY_T night_col_tok OF error

| airlines

| CHEAP

| arr_dep BETWEEN NUMBER_T arr_time_del AND_T

NUMBER_T arr_time_del

| arr_dep time_op NUMBER_T arr_time_del

flying_on_del

| arr_dep time_op NUMBER_T arr_time_del

also_else time_op NUMBER_T arr_time_del

| arr_dep time_op_del arrival_time_meal

| class2

| pre_dir

| column_token

223

| pre_time

/* City rules */

city_state_country : city_state | city_state COUNTRY_T

city_state : CITY_T | CITY_T STATE_T | STATE_T

/* String rules */

misc_string : city_state_country | class2 | DAILY

| CLASSES | FIRST_T

number_misc_string : NUMBER_T | misc_string

| FARE | FLIGHT | COLUMN_T | string3

| AIRPORT_T | meal

string3 : WORD_T | WORD_T WORD_T

| WORD_T WORD_T WORD_T | QUOTE_T

/* Classes */

class : COACH | COACH CLASS | FIRST_T CLASS

| ECONOMY_CLASS | THRIFT ECONOMY_CLASS

| THRIFT CLASS | BUSINESS_CLASS

class2 : class | COACH ECONOMY_CLASS

/* Operators */

comp_op : not GREATER THAN | not EQUAL TO

224

| not LESS THAN | not LESS THAN OR_T EQUAL TO

| not GREATER THAN OR_T EQUAL TO

comp_op_del : not | comp_op

time_op_del : /* empty */ | time_op

time_op : BEFORE | AFTER | FROM | AT | BY | AROUND

/* Miscellaneous */

not : /* empty */ | NOT

only : /* empty */ | ONLY

also_else : ALSO | ELSE

night_col_tok: NIGHT | column_token

column_token : COLUMN_T | STOPS | COLUMNS

not_yes_no : not YES | not NO | not KNOWN | not UNKNOWN

from_to : FROM | TO

for_by : FOR | BY

airport : AIRPORT_T

just : /* empty */ | JUST

of_for : OF | FOR

updown : /* empty */ | UP | DOWN

airlines : string3

day_modifier : TODAY plus_minus NUMBER_T | TODAY

flying_on_del: /* empty */ | also_else else_chain

else_chain : also_chain | else_chain ELSE also_chain

225

also_chain : chain_item | also_chain ALSO chain_item

chain_item : WORD_T | pre_time

plus_minus : PLUS | MINUS

meal : BREAKFAST | LUNCH | DINNER | SNACK

max_min : THE | ANY_T | ALL_T | THE MAXIMUM

| THE MINIMUM | THE AVERAGE

arr_dep : ARRIVING | DEPARTING

| ARRIVING AND_T DEPARTING

| ARRIVING OR_T DEPARTING | LEAVING

226

AppendixC

More Decoding Results for

Model 1

This appendix contains a few more results for model 1. It is included to facil-

itate comparison with the maximum likelihood results for the smoothed and

unsmoothed parameters presented in chapter 5. This contains the Viterbi de-

coding results for the smoothed and unsmoothed parameters. It also presents

the unsmoothed results after just 2 iterations of the EM algorithm are run.

As in chapter 5, the results are for DEV94, which has 410 class A sentences.

227

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 265 266 263 261 258 258 258 257 255
2813 266 264 260 262 261 259 257 258 254
1406 277 273 268 261 257 246 241 249 245
703 278 274 267 266 255 244 246 241 244
351 275 276 256 253 243 231 191 203 196
175 272 267 265 259 238 232 194 213 201
87 272 274 264 260 232 221 156 170 157
43 271 267 263 257 232 215 182 175 140
0 271 268 265 259 223 187 119 142 154

Table C.1: Exact Match Viterbi Decoding Results for DEV94 Using
Smoothed Model 1 as a Function of Amount of Hand and Hidden Train-
ing Data

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 265 261 254 254 253 254 251 251 249
2813 263 259 251 252 252 251 246 250 241
1406 280 270 260 257 240 240 237 245 236
703 275 265 258 254 231 224 221 220 216
351 274 271 250 244 224 207 154 184 133
175 273 266 253 244 210 206 149 193 113
87 N/A 269 253 248 214 192 114 135 84
43 272 266 254 240 203 189 110 143 49
0 272 269 260 244 204 161 71 126 152

Table C.2: Exact Match Viterbi Decoding Results for DEV94 Using 512
Iterations of Model 1, as a Function of Amount of Hand and Hidden Training
Data

228

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 266 264 264 254 251 244 243 242 242
2813 267 263 261 261 260 249 243 244 241
1406 276 272 267 262 258 244 231 224 221
703 275 266 262 256 249 246 236 226 211
351 272 269 249 243 228 226 190 205 158
175 272 267 251 246 213 217 177 201 153
87 274 269 253 243 227 205 133 155 83
43 272 269 254 241 208 190 139 152 80
0 272 269 260 244 204 161 71 126 152

Table C.3: Exact Match Viterbi Decoding Results for DEV94 Using 2 Iter-
ations of Model 1, as a Function of Amount of Hand and Hidden Training
Data

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 280 272 273 267 269 269 264 259 259
2813 279 276 273 275 271 268 267 264 261
1406 280 269 266 258 257 254 250 247 247
703 274 267 261 259 245 238 237 238 228
351 280 277 254 248 239 229 206 213 201
175 271 265 254 250 221 218 196 205 175
87 278 276 259 246 216 195 136 157 113
43 277 270 263 244 215 185 128 152 88
0 275 269 263 248 207 165 70 112 154

Table C.4: Exact Match Maximum Likelihood Decoding Results for DEV94
Using 2 Iterations of Model 1, as a Function of Amount of Hand and Hidden
Training Data

229

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 6.29 6.39 7.83 7.79 8.37 8.16 8.71 8.69 8.72
2813 5.49 5.77 7.14 7.99 8.19 8.44 8.02 8.82 8.78
1406 5.59 5.83 6.22 7.02 9.85 8.49 10.59 10.96 11.17
703 5.62 6.64 5.84 6.55 8.94 10.17 11.37 11.70 12.30
351 5.54 6.02 5.87 6.97 8.83 11.23 13.18 13.08 16.38
175 6.13 6.06 6.44 7.25 9.02 9.08 11.80 10.51 24.11
87 N/A 5.51 5.51 5.72 6.57 6.42 8.63 11.52 13.65
43 5.80 5.57 5.53 5.79 5.69 6.68 6.57 7.18 16.12
0 5.55 5.54 5.57 5.58 5.66 6.18 6.58 6.81 10.62

Table C.5: Maximum Likelihood Cross Entropy for DEV94 Using 512 Iter-
ations of Model 1, as a Function of Amount of Hand and Hidden Training
Data

230

AppendixD

More Decoding Results for

Models A, AHW, and ALM

This appendix contains a few more results for models A, AHW, and ALM.

This is primarily so one can see the e�ect of allowing all the model A param-

eters to vary versus keeping one set of parameters �xed.

231

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 283 277 270 273 266 267 264 264 260
2813 282 279 269 265 261 259 253 257 256
1406 277 276 266 266 245 242 229 235 223
703 271 268 255 252 231 228 213 221 196
351 274 274 260 256 230 202 184 200 131
175 276 270 252 250 219 199 147 179 101
87 274 272 254 246 208 173 139 124 82
43 273 273 254 255 222 178 138 139 19
0 272 271 257 251 214 176 103 122 152

Table D.1: Exact Match Maximum Likelihood Decoding Results for DEV94
Using 20 Iterations of Model A, as a Function of Amount of Hand and Hidden
Training Data

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 283 279 268 269 264 259 259 263 244
2813 283 280 271 254 256 261 253 249 256
1406 283 276 261 272 245 243 237 240 232
703 276 266 251 255 234 224 211 211 187
351 275 272 259 259 233 196 185 205 119
175 276 272 250 251 217 196 145 179 89
87 276 272 254 245 209 173 138 124 81
43 273 271 254 253 220 181 129 132 23
0 273 271 257 251 214 176 103 122 152

Table D.2: Exact Match Maximum Likelihood Decoding Results for DEV94
Using 25 Iterations of Model A, as a Function of Amount of Hand and Hidden
Training Data

232

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 286 280 278 277 277 279 269 272 276
2813 283 280 275 268 267 269 264 255 248
1406 279 277 260 256 239 245 211 240 222
703 269 264 251 255 225 202 202 209 185
351 272 271 256 260 220 182 177 196 115
175 271 271 260 253 216 182 138 176 100
87 268 270 252 242 215 156 135 108 64
43 272 269 255 248 217 178 134 103 19
0 273 270 260 246 218 151 98 95 152

Table D.3: Exact Match Maximum Likelihood Decoding Results for DEV94
Using 20 Iterations of Model AHW, as a Function of Amount of Hand and
Hidden Training Data

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 280 261 264 277 271 258 259 259 262
2813 256 254 263 270 264 260 261 247 244
1406 260 258 258 253 234 235 212 223 217
703 246 236 251 258 229 207 190 202 192
351 249 234 259 259 226 180 172 197 108
175 254 255 260 253 214 181 133 171 95
87 240 240 257 244 217 156 131 99 62
43 258 254 258 251 212 160 131 104 19
0 257 259 261 251 218 150 98 95 152

Table D.4: Exact Match Maximum Likelihood Decoding Results for DEV94
Using 25 Iterations of Model AHW, as a Function of Amount of Hand and
Hidden Training Data

233

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 275 268 264 271 268 268 262 262 258
2813 276 268 265 250 246 252 244 258 242
1406 271 269 260 250 231 233 227 232 219
703 269 262 250 237 220 204 184 193 160
351 269 265 252 236 211 182 155 182 95
175 269 260 244 236 204 170 108 141 85
87 269 262 246 235 205 146 103 83 64
43 267 259 241 233 202 144 116 57 11
0 268 262 251 238 203 140 78 62 0

Table D.5: Exact Match Maximum Likelihood Decoding Results for DEV94
Using 20 Iterations of Model ALM, as a Function of Amount of Hand and
Hidden Training Data

Hidden Amt Hand Amt
3575 1787 893 446 223 111 55 27 0

5627 274 262 258 268 263 262 255 257 259
2813 274 264 260 247 242 249 236 254 245
1406 272 269 259 250 225 231 228 235 215
703 268 261 248 232 218 201 182 192 174
351 269 262 249 231 209 182 153 177 89
175 269 260 244 234 204 165 99 137 82
87 269 261 246 232 205 149 99 81 63
43 267 259 241 233 202 143 115 55 10
0 268 262 251 238 203 140 78 62 0

Table D.6: Exact Match Maximum Likelihood Decoding Results for DEV94
Using 25 Iterations of Model ALM, as a Function of Amount of Hand and
Hidden Training Data

234

AppendixE

Errors Made in DEV94 Not

Due to the Smoothed Model B

De�ciencies

This appendix shows the errors made in DEV94 that were not due to a

problem with smoothed model B. The pre�x \E:" means \English", \A:"

means the correct answer, and \P:" means the pattern matcher answer. If

there are two \E:" lines, this means that one is the tagged English, and

the other is the untagged English. These results were generating using a

maximum likelihood decoding. This makes it hard to know why a particular

formal language word is included. One would have to examine all possible

alignments. Instead, one can use the Viterbi alignment to �nd the most likely

235

formal language word to generate each English word. While this may not be

the cause of the error, it often gives insight as to why a wrong pattern was

selected.

Tagger Error

This error occurs when the English tagger makes an error. In DEV94, this

happened in three sentences.

E: i need a
ight from CITY 1 to CITY 2 on AIR 1 that gets into CITY 2

at about NUM 1 in the evening

A: List
ights AIR 1 arriving around TIME 1 from:city CITY 1 to:city

CITY 2

P: List
ights AIR 1 evening
ying-on today+1 from:city CITY 1 numbered

NUM 1 serving:meal dinner to:city CITY 2

In this case, NUM 1 should be a TIME 1.

E: how much does the
ight m g NUM 1 cost from CITY 1 to CITY 2 on

DAY 1 morning

E: how much does the
ight m g three hundred cost from new york to los

angeles on monday morning

A: List fares ACODE 1 morning available-on DAY 1 from:city CITY 1 num-

bered NUM 1 to:city CITY 2

236

P: List fares morning available-on DAY 1 from:cityCITY 1 numberedNUM 1

to:city CITY 2

In this case, \m g" should be an ACODE. Since it is not, a pattern is found

that contains just one NUM, two CITY, and one DAY tags.

Language Model Error

This error occurs when the pattern matcher �nds an incorrect pattern whose

language model score is better than the reference answer, and whose trans-

lation model score is worse than the reference answer. Thus, the translation

model prefers the correct answer, but the language model causes the wrong

answer to be selected. This happened in 16 errors, which is 25% of the er-

rors. Though it should be pointed out that in many of these, if the translation

model had an even higher score for the correct answer, this could compen-

sate for the language model. This is tough to diagnose without having a real

language model. One might suggest decreasing the language model weight

(see section 4.4), but this hurt results. The language model, while often a

problem, more often helps.

E: i need to
y from CITY 1 to CITY 2 one-way what are the
ights

A: List
ights one way from:city CITY 1 to:city CITY 2

P: List
ights cheapest one way from:city CITY 1 to:city CITY 2

237

In this case, the language model notices that when \one way" usually ap-

pears, so does \cheapest". However, in �ve sentences, the word \cheapest"

did not generate any words, and hence the alignment was the exact same as

if \cheapest" was not there. If \cheapest" generated a word, then the trans-

lation model would penalize it. The language model score for the wrong

answer is preferred .00525 to .00170. The translation model score prefers the

correct answer by 1:5� 10�20 to 7:53 � 10�21.

E: please show me which
ights
y fromCITY 1 to CITY 2 between TIME 1

and TIME 2 next DAY 1

A: List
ights departing between TIME 1 TIME 2
ying-on DAY 1 from:city

CITY 1 to:city CITY 2

P: List
ights arriving between TIME 1 TIME 2
ying-on DAY 1 from:city

CITY 1 to:city CITY 2

It is not entirely fair to blame the language model for not being able to dis-

tinguish between \arriving" and \departing", as arriving generates nothing

in the incorrect answer. If there were a high penalty for adding formal words

with 0 fertility, then this would not be found. The language model score for

the wrong answer is preferred .00085 to .00038. The overall weighted score

prefers the wrong answer by 5:13�10�15 to 4:00�10�15. This error happened

in two sentences.

E: show AIR 1
ights to CITY 1

238

A: List
ights AIR 1 to:city CITY 1

P: List
ights AIR 1 from:city CITY 1

In this case, the correct answer is 2 times more likely for the correct answer,

but the language model is 3 times more likely for the wrong answer. This

error occurred twice.

E: please list airfares from CITY 1 to CITY 2

A: List fares from:city CITY 1 to:city CITY 2

P: List
ights from:city CITY 1 to:city CITY 2

In three sentences, the pattern matcher incorrectly selected a
ight query

to a fare query. In this case, the LM is 8 times stronger for
ights than

fares, and this outweighs the 6 times score the translation model gives to the

correct answer.

E: show the
ights from CITY 1 to CITY 2 and show the price

A: List along-with
ights from:city CITY 1 to:city CITY 2 fares

P: List
ights from:city CITY 1 to:city CITY 2

In four sentences, the pattern matcher made an error on queries that asked

for both
ights and fares. The translation model is four times more likely for

the reference answer, but the wrong pattern is 8 times more likely. In one

sentence, the word \costs" was used. The probability of generating \costs"

239

from \fares" was 3 times higher than generating \costs" from \List", but one

would expect this to be higher. Unfortunately, the word \costs" is rare. If

one tied together \cost" and \costs", this would solve some of the spurious

e�ects of rare words.

Bad Formal Language Design

This error is due to a bad formal language representation, for one of many

possible reasons:

� The formal language contains too many words to represent a single

semantic concept. Thus, the generative assumption is invalidated, and

the model does not know how to distinguish between two similar pat-

terns. This happens in the �rst and third examples in the section.

� The formal language contains semantically relevant words that do not

generate any semantic concepts. This happens in the second example

in this section.

These errors make it clear that it is necessary to have the formal language

be as close to the English as possible, yet still be unambiguous and easy to

convert to an SQL query. NL-Parse is close, it just has a few problems that

need to be �xed.

E: are there any
ights from CITY 1 to CITY 2 that arrive within thirty

minutes of TIME 1 next DAY 1

240

A: List
ights arriving around TIME 1 arriving on DAY 1 from:city CITY 1

to:city CITY 2

P: List
ights arriving around TIME 1
ying-on DAY 1 from:city CITY 1

to:city CITY 2

In this one sentence, the formal language has a de�ciency. The NL-Parse

requires each departure or arrival day, date, and time to be preceded by

either \arriving" or \departing/
ying". This makes it impossible for the

model to know how to generate English sentences that contain only one word

to indicate a departure or arrival. The formal language needs to be �xed so

that one can have \List
ights arriving around TIME 1 DAY 1 DATE 1".

Note that unless the
ight is an overnight
ight that does not
y all days

of the week, and the user happened to pick the day for which this did not

apply, then this is not going to be a CAS error.

E: tell me what a CODE 1 is

E: tell me what a d nine s is

A: List Extract aircraft abbreviated CODE 1 Features all aircraft desc

P: List Extract fare-bases abbreviated CODE 1 Features all entries

In this case, \d nine s" is properly tagged as a CODE. But there is no way

to distinguish between aircraft and fare bases codes. If the user said \tell

me what aircraft d nine s is", then all would be well. This de�ciency can be

241

�xed in a variety of ways. One way is to have a di�erent type of code for each

table. Another is to have a generic formal language pattern that contains

\De�ne CODE 1", and the back end can decide if the query is about aircraft

or fare bases.

E: please list
ights for CITY 1 from AIR 1

A: List
ights AIR 1 or from:city CITY 1 to:city CITY 1

P: List
ights AIR 1 from:city CITY 1

In this sentence, the annotator decided that a
ight \for" a city meant that

it could be either to or from the city. Extra formal language nodes, \or",

\from:city", and CITY 1 make it hard for the translation model, which adds

penalties when formal language words do not generate English words. If

indeed this concept needs to be handled, then one should have a \from-or-

to:city" formal language node, and this can be used. If it is used enough in

the training data, then it will train properly. One could reasonably justify

the claim that the formal language is wrong, and that the correct formal

language should be \List
ights AIR 1 to:city CITY 1".

E: please show me all
ights from CITY 1 to CITY 2 and return

A: List
ights or from:city CITY 1 to:city CITY 2 from:city CITY 2 to:city

CITY 1

P: List
ights from:city CITY 1 to:city CITY 2

242

The formal language has no concept of a return
ight. Hence, English queries

necessitate verbose formal language. This makes it hard for a generative

translation model. In this case, the LM also gives strong preference to the

wrong answer, as it is 350 times more likely. If the formal language had a

\return" word in it, then perhaps p(returnjreturn) might be strong enough

to overcome the language model. The back end would have to implement

this though.

E: how much is the fare limousine CITY 1 to downtown

A: List Extract ground-services equal-to transport type LIMOUSINE provided-

for:airports airports serving:city CITY 1 provided-for:city CITY 1 Fea-

tures all ground fare

P: List Extract ground-services equal-to transport type LIMOUSINE provided-

for:city CITY 1 Features all ground fare

In this case, the correct answer contains redundant formal language in it.

The CAS answer would produce the correct result.

Permutation Error

This is an interesting type of error. Since all the models presented in this

thesis use just the identities of the formal language words to model the gener-

ation of English words, the words can be entirely rearranged. In particular,

if one reverses the usual meaning of CITY 1 and CITY 2, the translation

243

model will still predict the exact same score. The pattern matcher will then

pick the more likely pattern according to the language model. The only way

to overcome this is to model the order in which clumps are generated. This

can be done by distortions[13], or by n-gram modeling in the meaning space,

as done by AT&T[63] and BBN[54]. This type of error happened eight times.

E: i want to go to CITY 1 on DATE 1 leaving from CITY 2

A: List
ights
ying-on DATE 1 from:city CITY 2 to:city CITY 1

P: List
ights
ying-on DATE 1 from:city CITY 1 to:city CITY 2

E: CITY 1 to CITY 2 and then to CITY 3

A: List
ights from:city CITY 1 stopping-in:city CITY 2 to:city CITY 3

P: List
ights from:city CITY 1 stopping-in:city CITY 3 to:city CITY 2

Notes:

Bad Class

E: how much do those NUM 1
ights cost

A: List fares arriving between TIME 1 TIME 2 from:city CITY 1 to:city

CITY 2

P: List fares equal-to
ight id NUM 1

244

In this lone sentence, the DEV94 annotators called this a context independent

sentence. Obviously wrong. The pattern found by the pattern matcher,

curiously enough, is a reasonable interpretation for the query. If you were

talking to a travel agent, and they told you \there are 3 United
ights, 2313,

2314, and 2441, which are you interested in?" Your response, \...how much

do those 2314
ights cost?"

Bad City/Airport Tag

This type of error is due to an unfortunate design decision made years ago,

when ATIS consisted of only one airport per city. The decision was made to

tag expressions like \the Indianapolis airport" with an ARP tag. It would

be better to tag this with \the CITY airport". The problem is that there

is usually more than one airport servicing a city. Thus, the English tagger

produces an ARP tag incorrectly, though by design. The reference answer

properly uses a CITY tag. But since English tags must be generated by the

same formal tag, the pattern matcher �nds a pattern that matches. As it

happens, this will produce the same CAS answer if there is only one airport

for the speci�ed city. This happened in four sentences.

E: how do i get from ARP 1 into the city

E: how do i get from the indianapolis airport into the city

245

A: List ground-services provided-for:airports airports serving:city CITY 1

provided-for:city CITY 1

P: List ground-services provided-for:airport ARP 1

246

