Practical Structures for
Parallel Operating Systems

Jan Edler

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Computer Science
New York University
May 1995

Approved: Allan Gottlieb

© 1995 Jan Edler
Permission granted to copy in whole or in part,
provided the title page and this copyright notice are retained.

Dedication

For my wife, Janet Simmons,
who never gave up hope
and for our children, Cory, Riley, and Cally,
whose interests I've tried to keep first.

Acknowledgments

I have had three employers during the course of this work: Bell Labs for the first 14 months,
NEC Research Institute for the last 10 months, and New York University for more than 11
years in between. The bulk of this work was supported by the following grants and con-
tracts: Department of Energy contract DE-AC02-76ER03077 and grant DE-
FG02-88ER25052, International Business Machines joint study agreement
N00039-84-R-0605(Q), and National Science Foundation grants DCR-8413359,
DCR-8320085, and MIP-9303014. Views and opinions expressed in this dissertation are
solely my own.

The work described here has been done as part of a large ongoing project, spanning
more than a decade, and this dissertation couldn’'t be what it is without the involvement of
many people. The following project participants have had particularly notable influence on
this work: Allan Gottlieb and Mal Kalos lead the project together from before my involve-
ment in 1982 until 1989; Allan has lead it alone since then. In addition, Allan has been my
advisor and guide. Jim Lipkis was a very close collaborator until leaving NYU in 1989.
Edith Schonberg, Jim, and | worked as a team on the early design and implementation of
Symunix-2. Richard Kenner’s contribution was widespread, but his talent for penetrating
complex hardware and software problems was especially valuable. David Wood and Eric
Freudenthal ported Symunix-1 to the Ultra-3 prototype, and David also did lots of low-level
work for Symunix-2. Eric Freudenthal contributed at many levels, but his algorithm design
work deserves special attention. Other notable contributors at NYU included Wayne Berke,
Albert Cahana, Susan Dickey, Isaac Dimitrovsky, Lori Grob, and Pat Teller. In addition to
being valued collaborators on a professional level, all of these people have been good friends.

Another significant force affecting this work came from IBM's RP3 Project [162]; espe-
cially influential were Greg Pfister, Alan Norton, and Ray Bryant, with whom we had many
valuable debates about highly parallel operating systems.

The enthusiastic support of many prototype users was a crucial factor in attaining
acceptable levels of performance, reliability, and robustness; notable among these were Anne
Greenbaum from NYU and Gordon Lyons from the National Bureau of Standards. Mal
Kalos and Jim Demmel led undergraduate courses using the Ultracomputer prototype to
teach parallel programming.

Perhaps underlying everything else technically was the availability of UNIX source
code. Countless programmers at Bell Labs, University of California at Berkeley, and many
other places deserve acknowledgment for that.

My wife, Janet Simmons, has always provided the most crucial support and encourage-
ment. My parents, Barbara and Karl Edler, helped with encouragement and proofreading.

Acknowledgments

The Courant Institute library provided a pleasant atmosphere for literature research and
countless hours of writing.

This dissertation was prepared using a variety of UNIX systems! and a Toshiba
T1000SE laptop computer; the vi text editor [123, 153, 129, 152] was used in all environ-
ments. Some of the figures were produced using the interactive drawing program xfig [181].
Formatting was performed with troff. (I used both AT&T’s Documenter’s Workbench [13]
and the groff package [46], although groff still lacks an implementation of grap [23]. The pri-
mary macro package was —me [3].) Other vital software used includes ghostscript [54], and
ghostview [195]. Cross referencing and indexing was done with packages of my own design,
txr and kwit.

LIBM RT PC, IBM RS/6000, SGI Indy, and NEC 486-based PC running Linux [202].

vi

Abstract

Large shared memory MIMD computers, with hundreds or thousands of processors, pose spe-
cial problems for general purpose operating system design. In particular:

= Serial bottlenecks that are insignificant for smaller machines can seriously limit scalabil-
ity.

= The needs of parallel programming environments vary greatly, requiring a flexible model
for run-time support.

= Frequent synchronization within parallel applications can lead to high overhead and bad
scheduling decisions.

Because of these difficulties, the algorithms, data structures, and abstractions of conven-
tional operating systems are not well suited to highly parallel machines.

We describe the Symunix operating system for the NYU Ultracomputer, a machine with
hardware support for Fetch&® operations and combining of memory references. Avoidance
of serial bottlenecks, through careful design of interfaces and use of highly parallel algo-
rithms and data structures, is the primary goal of the system. Support for flexible parallel
programming models relies on user-mode code to implement common abstractions such as
threads and shared address spaces. Close interaction between the kernel and user-mode
run-time layer reduces the cost of synchronization and avoids many scheduling anomalies.

Symunix first became operational in 1985 and has been extensively used for research
and instruction on two generations of Ultracomputer prototypes at NYU. We present data
gathered from actual multiprocessor execution to support our claim of practicality for future
large systems.

vii

viii

Table of Contents

Dedication iii
Acknowledgments v
Abstract vii

Chapter 1: Introduction 1

1.1 Organization of the Dissertation 1
1.2 Development History 2

1.3 Development Goals 5
1.4 Design Principles 6
1.5 Design Overview 7

1.6 Style and Notation 11

Chapter 2: Survey of Previous Work 15

2.1 Terminology 15

2.2 Historical Development 16
2.2.1 The Role of UNIX in Multiprocessor Research 17
2.2.2 The Rise of the Microkernel 18
2.2.3 Threads 20
2.2.4 Synchronization 20
2.2.5 Bottleneck-Free Algorithms 23
2.2.6 Scheduling 24

2.3 Overview of Selected Systems 26
2.3.1 Burroughs B5000/B6000 Series 26
2.3.2 IBM 370/0S/VS2 26
2.3.3 CMU C.mmp/HYDRA 28
2.3.4 CMU Cm*/StarOS/Medusa 29
2.3.5 MUNIX 30
2.3.6 Purdue Dual VAX/UNIX 31
2.3.7 AT&T 3B20A/UNIX 31
2.3.8 Sequent Balance 21000/DYNIX 32
2.3.9 Mach 33
2.3.10 IBM RP3 33
2.3.11 DEC Firefly/Topaz 34
2.3.12 Psyche 35

2.4 Chapter Summary 36

Chapter 3: Some Important Primitives 39

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8
3.9

Fetch&® Functions 40
Test-Decrement-Retest 42
Histograms 43

Interrupt Masking 44
Busy-Waiting Synchronization 48
3.5.1 Delay Loops 51

3.5.2 Counting Semaphores 54
3.5.3 Binary Semaphores 58
3.5.4 Readers/Writers Locks 59
3.5.5 Readers/Readers Locks 64
3.5.6 Group Locks 68
Interprocessor Interrupts 74
List Structures 77

3.7.1 Ordinary Lists 78

3.7.2 LRU Lists 83

3.7.3 Visit Lists 91

3.7.4 Broadcast Trees 108
3.7.5 Sets 121

3.7.6 Search Structures 126
Future Work 141

Chapter Summary 144

Chapter 4: Processes 145

4.1
4.2

Process Model Evolution 145
Basic Process Control 148

4.3 Asynchronous Activities 150

4.4

4.3.1 Asynchronous System Calls 151

4.3.2 Asynchronous Page Faults 156
Implementation of Processes and Activities 156
4.4.1 Process Structure 157

4.4.2 Activity Structure 160

4.4.3 Activity State Transitions 163

4.4.4 Process and Activity Locking 163

4.4.5 Primitive Context-Switching 165

4.5 Context-Switching Synchronization 166

4.5.1 Non-List-Based Synchronization 168
4.5.2 List-Based Synchronization—Readers/Writers Locks
4.5.3 Premature Unblocking 184

4.6 Scheduling 186

4.6.1 Preemption 186

4.6.2 Interdependent Scheduling 188

4.6.3 Scheduling Groups 189

4.6.4 Temporary Non-Preemption 190

4.6.5 The SIGPREEMPTSignal 191

4.6.6 Scheduler Design and Policy Alternatives 194

170

Table of Contents

Table of Contents

4.6.7 The Ready List 196
4.6.8 The resched Function 197
4.6.9 The mkready Functions 198
4.7 Process Creation and Destruction 199
4.8 Signals 200
4.8.1 Signal Masking 200
4.8.2 Sending Signals to Process Groups 202
4.9 Future Work 205
4.10 Chapter Summary 208

Chapter 5: Memory Management 209

5.1 Evolution of OS Support for Shared Memory 209

5.2 Kernel Memory Model 211
5.2.1 The mapin , mapout , and mapctl System Calls 214
5.2.2 The mapinfo System Call 216
5.2.3 Stack Growth 216
5.2.4 The fork , spawn, exec, and exit System Calls 218
5.2.5 Image Directories 219
5.2.6 Core Dumps and Unlink on Last Close 220
5.2.7 File System Optimizations 221

5.3 Kernel Memory Management Implementation 224
5.3.1 Address Space Management 225
5.3.2 Working Set Management 230
5.3.3 TLB Management 235
5.3.4 Page Frame Management 237

5.4 Future Work 248

5.5 Chapter Summary 250

Chapter 6: Input/Output 251

6.1 Buffer Management 251
6.1.1 The bio Module 252
6.1.2 The bcache Module 256

6.2 File Systems 257
6.2.1 Mountable File Systems 258
6.2.2 File System Resources 258
6.2.3 Thefile Structure 259
6.2.4 Inode Access 260
6.2.5 Path Name Resolution 262
6.2.6 Block Look-Up 263

6.3 Device Drivers 264

6.4 Future Work 266

6.5 Chapter Summary 266

Chapter 7: User-Mode Facilities 269
7.1 Basic Programming Environment 270
7.2 Busy-Waiting Synchronization 271
7.2.1 Interrupts and Signals 271
7.2.2 Preemption 272

Xi

Table of Contents

7.2.3 Page Faults 272
7.2.4 The Problem of Barriers 274

7.3 Context-Switching Synchronization 275

7.4
7.5

7.6

7.3.1 Standard UNIX Support for Context-Switching Synchronization 276
7.3.2 Challenges and Techniques 276

7.3.3 Hybrid Synchronization 278

7.3.4 Ksems 279

7.3.5 Ksem Usage Examples 295

Lists 310

Thread Management 311

7.5.1 Design Space for User-Mode Thread Management 312
7.5.2 Examples 313

Virtual Memory Management 320

7.6.1 Serial Programs 320

7.6.2 Shared Address Spaces 322

7.7 Chapter Summary 326

Chapter 8: Experience with Symunix-1 327

8.1 Ultra-2 327
8.2 Instrumentation 331
8.3 Scalability 332

8.3.1 The fork and spawn System Calls 333
8.3.2 The open and close System Calls 345

8.4 Temporary Non-Preemption 353
8.5 Extended Workload Measurements 354
8.6 Chapter Summary 365

Chapter 9: Conclusion 367

9.1 Contributions 367
9.2 Lessons 368
9.3 Future Work 369

References 371

Index 389

xii

Chapter 1: Introduction

The promise of highly parallel computing, to provide vast improvements in performance and
cost/performance, has been repeated many times over the last few decades, but realization
lags behind. Some of the delay is due to technical difficulties. A central issue is scalability,
the degree to which a given design can be extended to larger numbers of processors without
disastrous consequences in cost or performance. A serial bottleneck is an instance of serial-
ization that materially limits scalability. Serial bottlenecks are the Achilles heel of highly
parallel computing and may be caused by hardware, software, or both in interaction.

Not all serialization causes bottlenecks, however. For example, a serial code section
involving only a sub-linear number of processors may not limit scalability. Furthermore, sys-
tems in the real world do not approach asymptotic limits, allowing solutions that exhibit rea-
sonable cost/performance over a realistic range of sizes to be considered “scalable”. This
observation reduces scalable system design to a problem of “mere engineering” (no mean feat,
to be sure). From a research point of view, we would like to stretch the limits of this engi-
neering technology: we will not ignore a bottleneck simply because it is too small or rare to
matter on current or anticipated real machines.

Our thesis is that careful design can produce operating systems which are free of serial
bottlenecks and support powerful programming models for general purpose computing. Our
approach is to implement, use, and evaluate prototype systems. Ultimately, this involves
nearly every layer of whole system design, from hardware to architecture, OS kernels, run-
time support software, programming languages, compilers, and applications, but the focus of
this dissertation is on OS kernels and run-time support software. At the risk of being
regarded too narrowly, the presentation is based on our existing and planned operating sys-
tems for the NYU Ultracomputer prototypes, but our methods are more general than that.

1.1. Organization of the Dissertation

The remainder of this chapter is organized as follows: We begin in section 1.2 with a narra-
tive history of the project, followed by goals in section 1.3 and a soapbox-style presentation of
design principles in section 1.4. In section 1.5 we give a fairly cohesive overview of our cur-
rent design, and finally we wrap up the chapter in section 1.6 with a guide to the style and
notational conventions used throughout this dissertation.

The rest of the dissertation begins in chapter 2 with a survey of previous and related
work. Chapter 3 deals with basic algorithms and data structures. Chapters 4, 5, and 6
describe the OS kernel while chapter 7 addresses system software issues outside the kernel.
Quantitative data is presented in chapter 8, and we draw conclusions in chapter 9.

Chapter 1: Introduction Section 1.2: Development History

1.2. Development History

Operating system work for the NYU Ultracomputer has always been tightly coupled with the
prototype hardware effort. Even the earliest hardware was largely compatible with our most
ambitious operating system ideas, including direct support for (non-combining) Fetch&Add.
The strategy was to decouple hardware and software so that each could develop at the fastest
possible rate. Advanced software would not have to wait for more sophisticated hardware,
and even the early software could do a reasonable job of exercising advanced hardware. It
was always important to minimize the dangers of debugging new software and new hard-
ware simultaneously.

The first parallel UNIX work at NYU was done by this author in 1982, by modifying
UNIX for a PDP-11/23 (a uniprocessor). Provision was made for sharing memory among pro-
cesses by inheritance. This was done by taking advantage of the existing “shared text” mech-
anism in the kernel. The normal purpose of the shared text mechanism is to allow several
processes running the same program to share their read-only instructions (“text”), effectively
reducing the amount of memory needed for commonly used programs. The choice of whether
to use shared text or not depends on the magic number of a program being processed by the
exec system call. The magic number, which is stored in the first bytes of an executable file,
indicates the file’s format and determines the way in which exec will handle it. The most
common magic numbers on PDP-11 UNIX at that time were octal 407 (non-shared writable
text), 410 (shared read-only text), and 411 (shared read-only text, separate instruction and
data address spaces). Figure 1 (A), on the next page, depicts the traditional virtual memory
layout of a UNIX process.

Our modified system supported a new magic humber (octal 406), which caused a shared
text segment to be set up without the usual write protection and in such a way that another
process exec ing the same file would not share it too. Thus, any variables put into the “text”
segment would be shared by all processes descended from such a process by fork but not
exec . Of course, putting read/write variables into the text segment isn't a normal thing to

do in UNIX,? but it was easy to modify the assembly language output of the C compiler to
accomplish this. Although inelegant, the only serious problems with this approach in prac-
tice are the lack of dynamic allocation for shared variables and the lack of a compact repre-
sentation for uninitialized shared variables in object and executable files, resulting in some
very large files (e.g., typical FORTRAN programs with big arrays).

Our first attempt to address the problem of dynamic allocation for shared variables
foreshadowed the current operating system trend of support for shared address spaces: we
added a system call to append the entire “data” segment to the end of the “text” segment, so
everything allocated up to that point (except the stack) would be shared; this is shown in Fig-
ure 1 (B).® Following this new call, the process had a zero-length data segment. This call

could only succeed when there was no real sharing, i.e., before fork ing, but it afforded the
opportunity to change the data segment size first. This approach wasn't too successful,

2Having data in the text segment, whether read-only or not, is incompatible with use of the sepa-
rated instruction/data address spaces available on larger PDP-11 computers.

®This might not seem like an obvious approach, but it was easy to implement by making use of the
swapping facility.

Chapter 1: Introduction

Section 1.2: Development History

Stack Stack Stack
] V
Growth
Growth Growth area
area area A
Private data
A A

Private data

Shared data

Growth area

Shared data

Shared Shared Shared
text text text
A B C

Figure 1: Text, Data, and Stack layouts in Virtual Memory.

The traditional uniprocessor UNIX layout is shown in (A). We added the ability to
append the data to the text, thus making it shared as well; this is shown in (B).
Note that in (B) there is a zero-sized private data section between the shared data
and the growth area. In (C), we separated the text and private data, allowing room
for text (i.e., shared data) to grow; this represents the situation in Symunix-1.

mostly because of the C library’s tendency to statically allocate global variables that must be
per-process, such as errno and the standard 1/O structures. Similar problems have been
encountered by others working on systems with fully shared address spaces (Jones [121]).
Our approach was to find ways to introduce more flexible sharing mechanisms, which
required having a more flexible hardware MMU than found on a PDP-11.

The next step was to try working on a real multiprocessor. Once the microprocessor to
use had been chosen (the Motorola 68000), we obtained commercial uniprocessor hardware
and a modified version of 7th Edition UNIX that would run on it. (The software came from

Lucasfilm Ltd., the hardware was a SUN processor board from Pacific Microsystems, Inc.*)

We?® put similar modifications into this system as in the PDP-11 UNIX system. We soon aban-
doned the commercial hardware, however, and undertook the major effort to modify the
MMU-sensitive parts of the kernel to match the Motorola 68451, which we had already cho-
sen to be the MMU in our first hardware prototype (88.1/p327), and add master/slave multi-
processor support (Hamel [100]). This operating system, later dubbed MSunix for

“This was back when SUN meant Stanford University Network and Sun Microsystems, Inc. was
merely an interesting startup company.

®The team doing this work consisted of this author, Allan Gottlieb, Jim Lipkis, and Jung Hamel.

Chapter 1: Introduction Section 1.2: Development History

Master/Slave UNIX, was the first to support parallel programs on NYU-developed multipro-
cessor hardware (in 1983).

At some point after moving to a 68000-based machine, with its larger address space,
our method of sharing memory between processes was refined to allow extension of the now-
misnamed “shared text” segment instead of merely appending the “data” segment to it; this
is shown in Figure 1 (C). This approach, which has survived to the present day in the Symu-
nix-1 xbrk system call, proved quite usable, except that dynamic allocation of shared vari-
ables is still only supported at the beginning of a parallel program, before any real sharing
begins. Addressing that limitation was deemed too serious to attempt without adopting a
much more general memory management framework. Our current solution is the subject of
chapter 5.

The next step, eliminating the major serial bottlenecks associated with a master/slave
kernel organization, was done during 1983-84, primarily by this author. Many aspects of
traditional UNIX kernel organization were heavily re-worked to provide synchronization for
safe multiprocessor operation while avoiding serial bottlenecks. The approach taken
included:

= Use of Fetch&Add-based algorithms for semaphores and readers/writers locks (Gottlieb,
et al. [94]), along with new algorithms for readers/readers synchronization (Edler [70])
and events (Edler [71]). Since explicit low-level locking operations were not used in tradi-
tional UNIX Kkernels, their use involved significant changes in some cases. The work was
similar in many ways to that described by Bach and Buroff [14], although they lacked our
emphasis on avoiding serial bottlenecks. Our most recent developments in synchroniza-
tion primitives are described in sections 3.5 and 4.5.

= Incorporation of parallel algorithms and data structures for ordered and unordered lists
(Rudolph [174] and Wilson [204]). Section 3.7 covers our most recent view of this mate-
rial.

= Use of a parallel buddy system memory allocation algorithm (Wilson [203]). Section 5.3.4
on page 244 covers this material as well as subsequent improvements.

= Development of a parallel search and update algorithm to eliminate serial bottlenecks in
the file system. Section 3.7.6 describes this algorithm together with more recent
enhancements.

The goal was to eliminate all serial bottlenecks applicable to a system with hundreds of pro-
cessors, except for physical 1/0. This goal was achieved with only a few exceptions, notably
in the areas of buffer management and group signals (these are addressed in our more recent
work and are described in section 6.1.2 and section 4.8.2). The system, dubbed Symunix
because of its symmetric use of processors, more-or-less replaced MSunix in 1985. (The name
was modified to Symunix-1 when we began to discuss a next generation system in 1986.)
Bits and pieces of Symunix-1 are described throughout chapters 3 through 7. Additional dif-
ferences between the versions of Symunix are described when we present performance data
for Symunix-1 in chapter 8.

Ultra-1 hardware gave way to Ultra-2 (see section 8.1), and the combination of Symu-
nix-1 and Ultra-2 finally provided a truly stable environment. By 1986, the system was in
use by outside programmers, and by fall 1987 it supported a class of undergraduates in a
parallel programming class. Additional classes used it over the next two years. Remote

Chapter 1: Introduction Section 1.2: Development History

logins were available via the Internet,® and mean time between failures was measured in
weeks. One machine was kept running in “production” mode for interactive users, and
another was reserved for pre-arranged use by individuals, such as users needing a whole
machine for timing studies, and OS developers who sometimes needed to reboot or single-
step the machine. Additional machines (with fewer processors) were available for hardware
development and debugging. During this period, many researchers, both at NYU and else-
where, worked on this platform. Significant real use by users outside the development group
continued into the first part of 1990, and one machine is still running and occasionally used
as of this writing.

During 1990, David Wood and Eric Freudenthal ported Symunix-1 to an early version
of the Ultra-3 prototype then under construction (Bianchini, et al. [29]). Regular use of
Symunix-1/Ultra-3 continues to this day.

Design work on a new operating system, to be based on 4.3BSD UNIX rather than 7th
Edition UNIX, began in 1986 as part of a joint study agreement between IBM and NYU, with
the IBM RP3 (Pfister et al. [162]) and Ultra-2 as primary targets. This second generation
operating system became known as Symunix-2. A preliminary version of it ran on Ultra-2
hardware and an RP3 simulator in 1987, but that version was not developed to the degree
necessary for robust operation. Subsequent work has led to the still-incomplete version of
the system described in chapters 3 through 7.

1.3. Development Goals

It should not be surprising that development goals can evolve over time almost as much as
the design itself; as earlier goals are approached, they are replaced by more ambitious ones.

In the beginning, the basic goals were to exercise the prototype hardware and the sim-
plest Fetch&Add-based algorithms. Since then, we broadened our field of hardware interest
somewhat, defining our target class of machines to be those supporting the following:

= MIMD execution’

Shared memory with mostly uniform access times®

Lots of processors, 28 or more

Lots of memory, 224 bytes or more per processor
Hardware implementation of Fetch&Add

Hardware combining of memory references

= Per-processor page-oriented address translation hardware

There are no existing machines that possess all of these properties, although the NYU Ultra-
computer prototypes all support MIMD execution, shared memory, and hardware
Fetch&Add, and the latest, Ultra-3, only falls short on number of processors. Among

®The Ultracomputers were not on the network directly, but it was possible (and easy) to log in re-
motely by use of some magic involving a DECnet connection to the PDP-11 responsible for 1/0O to the
parallel machine (see Figure 16, in section 8.1 on page 328).

"MIMD stands for the class of machines with Multiple Instruction streams and Multiple Data
streams. This terminology was introduced by Flynn [82].

8We will discuss uniformity of access times further in section 2.1.

Chapter 1: Introduction Section 1.3: Development Goals

commercial machines, bus-based systems, such as those made by Sequent [80, 139], Encore,
or Silicon Graphics, are also close, primarily lacking in the number of processors they can
support, but they also vary in the strength of their hardware support for Fetch&Add. Some
non-bus-based commercial machines are also close to our target class, most notably the BBN
Butterfly series [18], which lack full support for Fetch&Add, combining, and uniform memory

access times.® A more recent commercial design close to our target class is the Tera Computer
(Alverson et al. [4]), which has a variable interleaving scheme reminiscent of the IBM RP3,
full/lempty bits on each memory word as in the Denelcor HEP (Smith [182]), non-combining
Fetch&Add, and many other, more unusual, features.

Limited portability to machines outside the target class is a secondary goal, possibly
requiring machine-specific replacements for certain code modules. In the last few years, the
following general goals have emerged:

(1) Scalability. The cost of serial bottlenecks rises linearly with the size of the machine,
so avoiding them is of paramount importance.

(2) High overall performance. Systems without good performance are relatively uninter-
esting to users.

(3) Portability. There is significant room for variation even within the target class of
machines, and many machines outside the target class can also benefit from our
approach.

(4) Modularity. This is not only good software engineering practice, but also aids porta-
bility and encourages experimentation with design alternatives.

It is also useful to identify non-goals, things that are neither pursued aggressively (in
marked contrast to current trends in research and industry) nor opposed. Some of our non-
goals are object-oriented programming, networking, distributed file systems, message pass-
ing, remote procedure call, windows, fault tolerance, real-time processing, and automatic
parallelization. These (and others) are fine goals, but we must limit the scope of our effort.
We have also not tried to fight in the “UNIX wars” (it is not consistent with our role as
researchers) or to promulgate standards (formal standardization in this area is still prema-
ture).

1.4. Design Principles

The most important design principles have been adoption of the general UNIX framework
and self-service implementation structure. Self-service is in contrast to the use of server pro-
cesses. While servers can be multi-threaded to avoid the bottlenecks they would otherwise
impose, such an approach loses one of the original and fundamental reasons for adopting
servers in the first place, namely the implicit serialization, which solves many problems of
concurrency. (There are also other important and valid reasons for using servers, some of
which we accept, but our general approach is self-service.) Additional design principles we
have tried to follow include:

°The last machine in this series, the BBN TC-2000, was built to support memory interleaving as
an option, thus achieving reasonably uniform access times, but the machine was discontinued without
ever being widely used.

Chapter 1: Introduction Section 1.4: Design Principles

= Use highly-parallel data structures and algorithms wherever useful for the target class of
machines.

= Optimize for low resource contention in most cases (e.g., two-stage synchronization func-
tions, §3.5/p50 and §4.5/p167).

= Avoid costly protection domain changes in common operations (e.g., temporary non-
preemption, §4.6.4).

= Allow (limited) duplication of function between kernel and user-mode libraries. This low-
ers overhead in common cases, both by avoiding protection domain changes, and by spe-
cialization (e.g. user-mode thread management, §7.5).

= Avoid interference with applications that require relatively little operating system sup-
port (e.g., permit a non-preemptive scheduling policy, §4.6.3).

= Sacrifice ease of portability for significant performance gains if the beneficiary is a
machine in the target class (e.g., widespread use of centralized data structures rather
than distributed ones).

= Use the least powerful mechanism available to solve a problem (e.g., the proliferation of
list and synchronization types, with different performance/functionality tradeoffs,
§3.5/p49, §3.7.1/p82, and 84.5/p166).

= Make performance-critical decisions at compile time whenever possible, even at the cost
of duplicating and near-duplicating code. Macros and inline functions are valuable tools
for carrying out this design principle (e.g., optional instrumentation support, 83.5.2/p54,
and two-stage synchronization with delayed check function evaluation, §3.5/p50).

= Rely on interrupts and signals to reduce the overhead of frequent operations by eliminat-
ing checks for unusual situations (e.g., softresched , 84.6.1).

= Use lazy evaluation whenever there is significant hope that an operation will turn out to
be unnecessary (e.g., lazy and anonymous file creation, §5.2.7/p221).

= Design new kernel features to be as widely usable as possible, while still meeting their
original needs (e.g., scheduling groups, §4.6.3, families, §4.2/p148, asynchronous system
calls, 84.3.1, and ksems, §7.3.4).

1.5. Design Overview

This section gives a condensed but cohesive overview of Symunix-2, which is presented with
much greater detail in chapters 3 through 7.

Key Abstractions

Broadly speaking, one can divide the features and functions of any operating system into
three general areas: processing, memory, and input/output. For a less trivial overview of
Symunix-2, we can identify several top-level abstractions provided by the kernel and describe
some of their properties and interactions:

= Process. A process is an abstraction of the processor, and may be thought of as a virtual
processor. As such, it inherits the unprivileged computational model of the underlying
real processor (control flow, instruction set, registers, data formats, etc.). This unprivi-
leged computational model is augmented with a set of system calls (analogous to the vari-
ous privileged operations in a real processor) and signals (analogous to interrupts and
traps), that go far beyond what any real processor provides, including even the ability to
create and control new processes. Just as the real processors have MMUSs to provide vir-
tual address spaces by performing address translation, our abstract processes also have
abstract MMUs that provide each process with a private address space. Just as a real

Chapter 1: Introduction Section 1.5: Design Overview

processor can enlist the aid of other real processors, coprocessors, peripheral processors,
or device controllers, a process can invoke asynchronous system calls and page faults to
perform some operations concurrently.

< Memory. The memory abstraction derives most of its key properties from the underlying
hardware. This includes word size, atomicity, ordering of memory accesses, and any non-
transparent cache memory; the programmer or compiler must be aware of these issues.
Accessibility of memory is determined by the abstract MMU of each process; arbitrary
patterns of sharing and protection may be established by setting up the appropriate map-
pings.

= Descriptors. The closest hardware analogue of a descriptor is a capability (Fabry [78]). A
descriptor allows access to an abstract object, usually a file or a communication stream.
Descriptors are unforgeable; they exist in a per-process name space. With kernel assis-
tance, a new descriptor may be created with the same underlying reference and access
rights as another; such copying may be performed within a process or between processes.
Descriptors provide a measure of independence for processes, since the standard opera-
tions read and write can be used on most descriptors without detailed knowledge of the
underlying object.

= File System. The file system is an abstraction of secondary, non-volatile storage devices.
We have adopted the traditional UNIX file system model with no crucial modifications.

Overall Structure

The overall structure of Symunix is the same as that of traditional UNIX: a kernel (divided at
least somewhat into machine-independent and machine-dependent parts), shells, libraries,
and applications. Everything outside the kernel is said to operate in user-mode; everything
inside the kernel operates in kernel-mode, including access to all privileged hardware opera-
tions. The kernel itself can be roughly divided into a top half, consisting of all those parts
executed directly by processes in response to their system calls and exceptions, and a bottom
half, consisting of all those parts executed in response to asynchronous interrupts.

Processes and Activities

Unlike traditional UNIX systems, the active (schedulable) element in the Symunix-2 kernel is
not the process, but a new abstraction called the activity. While superficially similar to ker-
nel threads provided by other systems, Symunix activities are not explicitly visible to the
user-level programmer. Each process has, at any point in time, exactly one activity (known
as the primary activity) that can execute in user-mode. Other activities are created and
destroyed automatically to execute asynchronous system calls and page faults. It is possible
for more than one activity of a process to execute concurrently on different real processors,
but the expected number of activities per process is low, and isn’t closely related to the over-
all parallelism of the application.

Control Flow

As in traditional UNIX systems, a system call or exception, such as a page fault or division by
zero, is executed in the context of the process incurring it, i.e., with the normal set of
resources associated with that process: memory, descriptors, identifiers, etc. Interrupt hand-
lers ignore the current process context and never perform activity context-switches (except
for the rescheduling interrupt, introduced in Symunix-2 and described on the next page).
Except for initialization code and possibly some system processes with no user-mode

Chapter 1: Introduction Section 1.5: Design Overview

component, the only way to execute code in the kernel is by synchronous events (such as sys-
tem calls and exceptions from user-mode) or interrupts.

Scheduling
Context-switching, from activity to activity, happens in one of two ways:

(1) An activity engages in context-switching synchronization and cannot proceed; it then
becomes blocked and another activity is selected to run.

(2) The lowest priority of all interrupts is a software-generated rescheduling interrupt.
When a rescheduling interrupt occurs, a search is made for another activity eligible to
preempt the interrupted one, and, if found, a context-switch is performed. This kind
of preemption can happen whenever the rescheduling interrupt is unmasked,
whether the activity was executing in user- or kernel-mode.

In contrast, traditional UNIX kernels permit preemption only at certain points (generally
right before making the transition from kernel-mode to user-mode, although Lennert [135]
described a more aggressive approach, with multiple preemption points).

The kernel provides several services to allow user control over scheduling, particularly
in support of fine-grain parallel processing:

= Scheduling Groups. Each process belongs to a scheduling group, and a scheduling group
has a scheduling policy. Policies include the traditional UNIX time-sharing policy, in
which each process is treated independently; a completely non-preemptive policy, which
guarantees an approved process the exclusive use of a processor; and a “gang scheduled”
policy, which attempts to run all or none of the group members concurrently. Other poli-
cies could be incorporated as well.

= Temporary non-preemption. Any process may request a fixed amount of time to be guar-
anteed to run without preemption. The mechanism is cheap (typically 3 memory refer-
ences) and cannot be abused for any long-term advantage. Temporary non-preemption is
typically used to avoid performance anomalies when a process might otherwise be pre-
empted while holding a busy-waiting lock for a short critical section.

= Preemption warning. A signal, SIGPREEMPTcan be requested to give a process advance
notice and a short grace period before preemption. This is typically used to save enough
state so that the preempted computation can be resumed by another cooperating process.

User Address Space

The address space of a process consists of all virtual addresses expressible by the underlying
processor, typically 232 or more different addresses. Within this space, some contiguous
address ranges are mapped to contiguous ranges within files; other addresses are invalid and
generate exceptions when used. Files that are the target of such mappings are called image
files, and also serve as backing storage for the corresponding virtual memory. All user-
accessible memory appears in such ordinary files; there are no anonymous “swap partitions”
or “swap files”. This file-mapping approach provides naming and protection mechanisms for
shared memory, by virtue of the file system structure.

Each mapping carries access permissions and attributes that determine what happens
when a child process is created or a process overlays itself with another program (the UNIX
exec system call). Address spaces and their mappings are private to each process, but
proper use of signals and a new file descriptor transfer mechanism allow efficient emulation

Chapter 1: Introduction Section 1.5: Design Overview

of shared or partially shared address spaces, as required by the user’s programming environ-
ment.

Parallel Program Support

The facilities we have just described were designed to support parallel programs. Such pro-
grams are executed initially by an ordinary UNIX exec system call, and thus begin life as a
serial process. A process can create children with the spawn system call, a generalized ver-

sion of the traditional fork that can create more than one child at a time.'® All the processes
related by spawn, but not by exec, are called a family. The family as a whole can be the
recipient of certain signals.

The kernel allows great flexibility on the way a program uses its processes or memory.
For example, there are no predetermined stack areas and no automatic stack growth. This
flexibility is intended to support a wide variety of user-level run-time organizations, such as
user-mode thread systems.

Parallel Implementation

Throughout the system, as indicated in section 1.3, the highest priority has been given to
achieving scalability by eliminating serial bottlenecks. Some of the structural and interface
changes made to further that goal have already been described. Such changes allow the use
of highly parallel algorithms, often based upon combinable Fetch&® operations. Some new
bottleneck-free algorithms introduced in this dissertation include:

= A restricted set algorithm, supporting insertion and arbitrary deletion of integers in a
compact range (83.7.5).

= A structure, called a broadcast tree, which provides atomic semantics for certain opera-
tions on groups of objects, particularly useful for sending a signal to a whole group of pro-
cesses (83.7.4). (cf. multicast in ISIS: Birman et al. [31, 30])

= A structure, called a visit list, which provides a serialization-free way to perform an arbi-
trary operation on a group of objects (83.7.3).

< A mechanism, called random broadcast, that invokes an interrupt handler on a specified
number of arbitrarily chosen processors (83.6).

= A dictionary algorithm for search, insertion, and deletion of objects with reference counts
(83.7.6).

= An algorithm to keep a list of objects in approximate LRU order (§3.7.2).

= A buddy system memory allocator that is more fragmentation-resistant than previous
algorithms (85.3.4/p247).

= A simple approach for combining busy-waiting and context-switching synchronization

into new hybrid synchronization algorithms (87.3.3).

A context-switching algorithm for group lock, with a new variant of fuzzy barrier

(87.3.5/p304).

0 A UNIX-compatible fork call is provided that calls spawn.

" Least Recently Used.

10

Chapter 1: Introduction Section 1.5: Design Overview

1.6. Style and Notation

Program excerpts and certain terms, such as the names of variables, constants, and func-
tions, are presented in a distinct typeface, as in

old = faa (&var, 1);

to emphasize that they're not written in English. Individual identifiers are scattered as
needed in the text, and longer program excerpts are written as blocks of code. Excerpts
using this typeface differ slightly from “real” code that is or could be used: even those that
aren’t contrived are often incomplete, and minor transformations have been made as needed
to improve their readability in the context of this document. Examples of such changes are:

< Elimination or addition of white space, line breaks, register declarations, and some
comments.

= Elimination of some assertions. Assertions are executable statements that perform run-
time-checking to verify conditions assumed true by the programmer. They have no
semantic effect, and are normally disabled at compile time, but can be a valuable debug-
ging tool. In real “production” code, they aid readability, as “living comments”, but offer
little advantage in the context of a document such as this.

< Elimination of conditionally-compiled code that doesn't contribute to the exposition in
this document. Special code for debugging, performance measurement, or special hard-
ware configurations, are examples of such eliminated code. (However, some of this code
is described in section 8.2.)

= Elimination of some optimizations that don't affect correctness.

= Replacement of complex or irrelevant code with words in italic type.

= Elimination of volatile keywords. While most of the algorithms presented here are
well suited to use of a relaxed memory consistency model (see Mosberger’s survey [154]),
we generally assume sequential consistency for simplicity of exposition.

= Breaking complex expressions or statements into several parts, possibly introducing new
variables in the process.

= Use of comments in the style of C++ (Stroustrup [187]), i.e.,

/I to the end of the line.

Of course this convention breaks down inside multi-line macros, in which all but the last
line end with \ . We simply use ordinary C /* comments */ in those cases.

= Allowing variable declarations anywhere a statement may appear, as in C++.

= Elimination of some type conversions (casts).

= As a result of some of these transformations, some variables are eliminated and code
sequences contracted.

Coding Conventions

Code fragments in C follow fairly ordinary coding conventions, but there are a few which
deserve some explanation:

Leading underscores ()
We generally use leading underscores in function or macro names that are “internal”
to a module, such as in the implementation of an abstract data type.

Macros instead of simple #if [/ #else /#endif
C supports conditional compilation, in the form of “preprocessor” directives, such as

11

Chapter 1: Introduction Section 1.6: Style and Notation

#if BW_INSTRUMENT
stuff only when instrumenting busy-waiting
#endif

These surely get confusing when large or nested, but even add a significant clutter
factor when only a single line falls between the two directives. In some cases, we
eliminate these directives by defining a macro, such as

#if BW_INSTRUMENT

#define bw_instrument(x) X

#else

#define bw_instrument(x) /* nothing */
#endif

which evaluates to its argument, or to nothing, depending on whether or not the fea-
ture is enabled. This macro then shows up in usage such as

bw_instrument(stuff only when instrumenting busy-waiting);

This is less disruptive to code readability. Similar constructs are used for other
forms of instrumentation.

do { ... } while(0)
This construct, which might appear baffling, is valuable when constructing macros
with complex expansions. Like many other languages, C has flow-of-control state-
ments such as

if (cond) if (cond) while (cond)
S; sl; S;
else
s2;

The expressions s, s1, and s2 are statements. Compound statements enclosed in {
.} pairs are available and semicolon (;) is a statement terminator, rather than a
separator. It is not unusual to write a macro with an expansion of more than one
statement. One can write

#define FOO(x) sl;s2
but a programmer calling such a macro must know to call it as
if (cond)
{ FOO(x); }

when dealing with such flow control statements. The braces could be put inside the
macro, but then

if (cond)
FOO(x);
else
bar();

fails with a syntax error because of the null statement before the else , unless the

12

Chapter 1: Introduction Section 1.6: Style and Notation

calling programmer knows to leave out the semicolon. We use the subterfuge of
enclosing complex macros in do { ... } while(0) constructs because it works
correctly when followed by a semicolon, and creates a syntax error (generating a
compiler error message) if the programmer omits the semicolon, i.e., it is callable
like an ordinary function. (Of course it still has macro, rather than function, seman-
tics.)

Pseudo-Code

Where minor transformations are insufficient to simplify an algorithm for presentation pur-
poses, we resort to blocks of pseudo-code, which use many C-like operators and keywords, but
are set in the standard Roman typeface with italic variables. To emphasize the more
abstract nature of this code, indentation is significant (rather than relying on begin...end or
{...} to delineate blocks), assignment is indicated by — rather than by = or :=, and semicolons
terminating statements are generally omitted in such pseudo-code blocks.

13

Chapter 1: Introduction Section 1.6: Style and Notation

14

Chapter 2: Survey of Previous Work

Over the years, a great number of computer systems utilizing more than one processor have
been designed (and many of them have been built), representing a wide spectrum of
approaches (see, for example, Enslow [77] and Schwartz [175]).

In line with the target class of machines we identified in section 1.3, we restrict our
focus in several ways:

< MIMD. We pass over the whole range of SIMD machines.

= Shared memory. We ignore designs with only private memory, although this distinction
is not always very clear. In particular, some designs call for a software implementation of
shared memory (see, for example, Li [137], Carter et al. [43], bershad et al. [27]). While
many variations on the software approach have validity, further consideration here would
take this dissertation too far afield.

= General-purpose. This is meant to exclude systems whose only claim to parallelism rests
on architectural features such as dedicated input/output processors, or machines consid-
ered incapable of supporting a “complete” operating system. The latter would disqualify
parallel processors designed to depend on a conventional host computer for most operat-
ing system functions. A “complete” operating system should perform such functions as
process and memory management, input/output and file system management, protection,
resource allocation, and communications.

As might be expected, the number and variety of operating systems for the resulting class of
machines are great.

After a review of basic terminology for shared memory organizations in section 2.1, Sec-
tion 2.2 provides an overall historical survey to put the more detailed descriptions in section
2.3 into perspective.

2.1. Terminology

Two common ways of organizing a large shared memory multiprocessor are shown in Figure
2, on the next page. Assuming the interconnection network paths are the same for all pro-
cessor—-memory combinations, (A) has been called a UMA (Uniform Memory Access) architec-
ture (Rashid [167]). The corresponding term for (B) is NUMA (Non-Uniform Memory

Access).’? These terms only capture a single aspect of the multiprocessor design space,

2Figure 2 (B) is NUMA regardless of the uniformity of network path lengths, while (A) is NUMA
only if the network path lengths vary. Machines without shared memory are called NORMA (No
Remote Memory Access) under this taxonomy. More recently, the term COMA (Cache Only Memory
Access) has been applied to machines such as the Data Diffusion Machine (Hagersten et al. [99]) and

15

Chapter 2: Survey of Previous Work Section 2.1: Terminology

PO P1 P2 Pn [po| |pP1] [P2] Pn
c c c c [cm| [c[m]| [c[m] clm
| | | |

Network Network

R —
wo] [wi] [we]

(A) (B)

Figure 2: Shared Memory Organizations.

In (A), all memory references that aren’t cache hits must traverse the interconnec-
tion network. In (B), references to the locally connected memory module are satis-
fied without using the network. (A) has been called a dance hall model, evoking an
image of a room with boys lined up along one wall and girls along the other.
P=processor, C=cache, M=memory

however they are generally applied much more broadly. For example, it is generally assumed
that NUMA machines employ uninterleaved memory addressing across memory modules;
otherwise it would be more difficult to take advantage of local memory. Indeed, the terminol-
ogy in this case seems to have more to do with how the machine is programmed than with
the distribution of access times.

Recently it has become popular to refer to Figure 2 (A) as a “shared memory” design,
and (B) as a “distributed memory” (or “distributed shared memory”) design, despite the fact
that both employ physically distributed but shared memory. This unfortunate usage has
essentially the same meaning as the UMA/NUMA distinction.

2.2. Historical Development

Early systems were most often the result of adding processors to existing mainframe designs,
but even very early, some machines were carefully designed with symmetric multiprocessing
in mind. The first “true” multiprocessor (with up to four identical processors, shared mem-
ory, and a fairly modern operating system) appears to be the Burroughs D825, introduced in
1960 (Enslow [77]). Other early machines included the Burroughs B5000/B6000 series (the
B5000 was available with two processors in 1963; see Organick [159]), the GE-645 (four pro-
cessors in 1965), the UNIVAC 1108 (three processors in 1965), and the IBM System/360
model 67 (two processors in 1966; see MacKinnon [141]). The goals of these machines were
generally increased throughput, reliability, and flexibility, and, although facilities for parallel
programming were often available on such systems, any such use was secondary.

An early trend was to dedicate processors to specific functions. This could take several
forms, from special-purpose to general-purpose processors, usually dedicated to input/output

the KSR-1 (Rothnie [171]), a class that isn't properly represented by either (A) or (B).

16

Chapter 2: Survey of Previous Work Section 2.2: Historical Development

or other resource management functions. For example, while IBM channels (Blaauw and
Brooks [33], Stevens [186]) are clearly not general-purpose processors, the peripheral proces-
sors (PPs) of the CDC 6600 (Thornton [197]) were powerful and general enough to run the
bulk of the operating system for that machine. Note, however, that the PPs were still
smaller and less powerful than the primary computational engine, and ordinary user pro-
grams were not run on them. The BCC-500 (Lampson [133], Jones and Schwarz [120]) exem-
plified another approach in which several processors of roughly similar power and generality
were dedicated (both by hardware and system software) to specific functions. Of the five pro-
cessors, two were dedicated to running user’s programs and one each to managing the mem-
ory hierarchy, terminal 1/0, and processor scheduling.

As the industry began to deal with the practical problems of parallel programming and
operating systems for parallel machines, it was also developing a general theory and
approach to operating systems. Concepts such as semaphores (Dijkstra [60, 59]), monitors
(Brinch Hansen [40], Hoare [110]), and message passing (Hoare [111], Brinch Hansen [39]),
were developed and treated formally.

In the 1970s, minicomputer technology made experimentation with larger multiproces-
sors more feasible. Two of the more influential research systems were designed and built at
Carnegie-Mellon University: C.mmp, described further in section 2.3.3, and Cm*, described
further in section 2.3.4. Bolt, Beranek, and Newman built the PLURIBUS system (Katsuki,
et al. [126]), and used it as an Arpanet Interface Message Processor (IMP). The Naval Post-
graduate School experimented with interconnected PDP-11 computers running an early ver-
sion of the UNIX operating system, described further in section 2.3.5. Most of the current
generation of multiprocessor systems owe more of their heritage to these kinds of experimen-
tal systems, based on minicomputer technology in the 1970s, than to the multiprocessor
mainframe and supercomputers that preceeded or followed. The primary reason for this has
to do with the rise of UNIX and what has now become the chief slogan of modern computing:
“open systems”.

2.2.1. The Role of UNIX in Multiprocessor Research

Since the early 1980s, a lot of operating systems research and development for uniprocessor
and network environments has taken place within the framework of the UNIX operating sys-
tem. Because of this general popularity in the OS research community and the ease of
adapting UNIX to run in small multiprocessor configurations, the use of a UNIX framework
for multiprocessor OS research became more and more common. Such early parallel UNIX
efforts were generally based on a simple “master/slave” organization, but the limitations of
such an approach became quickly apparent. Today, because UNIX is the basis for the domi-
nant “open systems” movement in large parts of the computer industry,”® a high degree of

UNIX compatibility is considered mandatory for any general purpose multiprocessor to be a
commercial success.

B Of course the commercial UNIX of today is a far cry from the UNIX of yesterday. Consider, for
example, the size of the manuals describing the basic programming interface: the seventh edition UNIX
manual [21] consists of two easily managed volumes, while the latest specification of what constitutes a
“UNIX” system [212] consists of five volumes, with more than 2700 pages.

17

Chapter 2: Survey of Previous Work Section 2.2.1: The Role of UNIX in Multiprocessor Research

Bell Laboratories did some of the earliest UNIX multiprocessor work in a somewhat
indirect fashion by layering the UNIX kernel on top of the vendor-supplied operating system
of a UNIVAC 1100 series (Bodenstab, et al. [37]) or IBM System/370 mainframe (Felton, et al.
[79]), and relying on the “native” operating system to handle low-level operations such as 1/0,
process scheduling, and memory management, while a stripped-down version of the UNIX
kernel was used to emulate the traditional UNIX environment. Later, Bell Labs researchers
developed a complete “symmetric” UNIX system described in section 2.3.7. Some other signif-
icant early UNIX implementations for multiprocessors supported machines by MASSCOMP
(Finger, et al. [81]), Sequent (described further in section 2.3.8), Denelcor (Hoag [109]), Cray
(Reinhardt [168]), Alliant, Convex, Encore, FLEX (Matalan [145]), and Sequoia (Mark [142]),
all with various levels of support for parallel applications. Nowadays, some flavor of UNIX is
standard on essentially every major commercially available multiprocessor.

Some manufacturers, such as Hewlett-Packard (Clegg [47]), ELXSI (Olsen [157]),
Apollo, Microsoft, and IBM have produced new proprietary operating systems, and layered
UNIX compatibility on top (sometimes as an afterthought, sometimes with third-party help).
In the guise of POSIX [113] and many other standards, UNIX has become completely ubiqui-
tous.

2.2.2. The Rise of the Microkernel

Full-function general purpose operating systems are always structured in layers, but the
best division into layers seems always to be a subject for debate. Of particular importance is
the following key question:

What goes into the kernel, the innermost part, of the operating system?

The flip side of the question, “what gets left out”, cannot be answered without also answering
the question, “where does it go?” The issue is a matter of aesthetics as much as science or
engineering.

The traditional UNIX design consists of two main layers: the kernel and everything else.
One of the attractive properties of the system throughout much of its history was its small
size, especially in relation to its functionality. This didn't stop people from complaining that
the system had become bloated, however, and serious hardware limitations (especially the 64
Kilobyte PDP-11 address space) helped to keep the kernel somewhat trim. By the mid 1980s,
with rapid hardware advancement (especially the widespread acceptance of the VAX, with its
larger address space) and accompanying growth of software functionality (e.g., modern net-
working), there was widespread recognition of a kernel size problem.

Systems with more layers have been around much longer than UNIX (indeed, MULTICS
(Organick [158]), with many concentric rings, was an important (negative) influence on
UNIX, and the inspiration for its name). Even within the UNIX sphere of influence, the
MERT system had all the basic qualities of a layered microkernel-based system in the 1970s
(Lycklama and Bayer [140]).

Continuing into the 1980s, research and other advanced operating systems continued to
address the kernel size issue, usually by moving key functionality out into “server” processes.
In most cases, this was driven more by the development of distributed computing than
shared memory multiprocessors. Prime examples include the V system (Cheriton [44]),,
Mach (Accetta et al. [1]), Amoeba (Mullender et al. [155]), and QNX (Hildebrand [108]).

18

Chapter 2: Survey of Previous Work Section 2.2.2: The Rise of the Microkernel

The major barrier to “moving things out of the kernel” is performance: lots of things can
run faster in the kernel, by avoiding the overhead of protection barrier crossings, directly
accessing internal data structures, enjoying favorable scheduling, etc. This remains true
today; the most enduring movement of functionality from the kernel seems to reflect the
needs of network distribution or other functional requirements rather than a sense of design
purity. The most common elements removed from the kernel today are network file systems
and graphical display servers. Some recent systems, most notably Chorus (Rozier et al.
[172]) and Lipto (Druschel et al. [69]), have had some success with the ability to move mod-
ules in or out of the kernel’s protection domain to achieve different configuration and perfor-
mance tradeoffs.

Small size isn’t the only characteristic of a microkernel; exporting a set of simple yet
powerful facilities is also of key importance. Of course there are many different ways to do
this, but two common features stand out:

(1) Dis-integration of the process. The traditional UNIX process includes many
attributes, including address space, flow of control, file descriptors, signal handlers,
umask value, etc. Most recently-designed systems have taken the approach of decou-
pling at least some of these attributes. Some provide a flexible system, where several
different resource types may be selected at thread creation time for sharing or copy-
ing (see, e.g., Barton and Wagner [17], Aral et al. [9], and Pike et al. [164]). Most
attention has fallen on the separation of address space from control flow; the result is
called kernel supported threads, kernel-mode threads, or kernel implemented threads.

(2) Enhanced communication between protection domains. In principle, a microkernel
might not provide any communication facility other than shared memory, but all
microkernels to date have incorporated a carefully designed high performance mes-
saging mechanism. This is a natural approach because distribution across loosely
coupled machines is normally one of the goals of microkernel efforts. The facility
must be carefully designed and optimized because it is heavily used (Bershad, et al.
[26]).

Both of these are old ideas: even IBM’s OS/VS2 system (MacKinnon [141]), later known as
MVS, provided kernel support for multiple threads of control in a shared address space, and
Brinch Hansen’s RC 4000 system [39] was based on a small kernel providing fast IPC in the
1960s.

The Mach project at CMU (Baron et al. [16], Accetta et al. [1], Tevanian et al. [193],
Young et al. [214]; also see section 2.3.9) took a hybrid approach to multiprocessor OS evolu-
tion, in that many of the features of the Accent network operating system (Rashid and
Robertson [166]) were integrated into a traditional UNIX kernel (4.3 BSD). The result,
together with some new features to support parallel applications, has been used to support
many different parallel or distributed OS research projects and several commercial offerings.
Subsequent versions of Mach pushed most of the UNIX heritage outside of the kernel, and
greatly promoted the microkernel concept. The first effort, described by Golub et al. [89], put
most UNIX functionality into a single big multi-threaded server, the so-called single server
system. This work and the subsequent OSF/1 AD system (Zajcew et al. [216]), were driven
more to meet the needs of distributed (non shared memory) systems than the kinds of
machines in our target class. More recent work has emphasized the need for careful imple-
mentation to overcome the negative performance impact of implementing key OS services
outside the kernel. Julin et al. [124] describe the Mach multi server system, wherein a set of

19

Chapter 2: Survey of Previous Work Section 2.2.2: The Rise of the Microkernel

separate servers supply generalized system services and an emulation library linked into
each application program provides a compatible UNIX interface. Ford and Lepreau [83] mod-
ified an OSF/1 single server Mach system to implement remote procedure call more effi-
ciently and dramatically improving performance. Another testimonial to the importance and
difficulty of getting good performance from a Mach system with a UNIX emulator was given
by Wallach [183].

2.2.3. Threads

Programming with multiple threads of control within a single address space has become the
most popular way of writing parallel applications for MIMD shared memory systems. A
number of threads packages have been written, mostly for explicit use by programmers writ-
ing parallel applications in C or C++; they give the programmer some measure of portability
as well as taking care of some of the details of thread management. These include Cthreads
(Cooper and Draves [68]), Brown threads (Doeppner [67]), PCR threads (Weiser et al. [201]),
Ultrix threads (Conde et al. [48]), Firefly/Modula-2 threads (Birrell et al. [32]), FastThreads
(Anderson et al. [8]), QuickThreads (Keppel [127]), and others. In addition, the POSIX set of
standards includes a threads interface, known generally as Pthreads [114], which most par-
allel system vendors can be expected to support.

There are two extreme approaches to implementing threads: in the kernel or outside
the kernel. The former is potentially more robust and better integrated with the overall sys-
tem, and the latter has potentially better performance. As a result, some effort has gone into
the quest for the best of both worlds, generally by implementing threads in user-mode with
some extra assistance from the kernel. Edler et al. [76, 75] argued for this approach in justi-
fying the lack of kernel threads in Symunix-2; Anderson et al. [7] and Marsh et al. [144] also
described systems along similar lines (see section 2.3.11 and section 2.3.12, respectively).

2.2.4. Synchronization
Synchronization between two or more processes can be achieved in two different ways:

= Busy-waiting, also called spinning, in which a process continues to consume processor
cycles whenever it must wait.

= Context-switching, also called blocking, in which a waiting process relinquishes its pro-
cessor while waiting.

It's also possible for a system to select between these two alternatives dynamically, as
described by Ousterhout [160], who called it “two-phase blocking;” we discuss this hybrid
approach further in section 7.3.3.

Busy-waiting synchronization can be achieved with no special hardware support
beyond atomic load and store operations on shared memory (Dijkstra [58], Lamport [131]),
but most practical work is based on the use of additional atomic read-modify-write opera-
tions. The most common such operations are probably Test&Set and Compare&Swap
(Arnold et al. [10], MacKinnon [141]).

An alternative to read-modify-write operations for systems with hardware cache coher-
ence is the load-linked/store-conditional mechanism of Jensen et al. [118], which is supported

20

Chapter 2: Survey of Previous Work Section 2.2.4: Synchronization

by several commercial microprocessors.* A load-linked operation is semantically equivalent
to an ordinary load, but a store-conditional instruction has no effect unless the cache coher-
ence protocol is certain that the target memory location is unchanged since the matching
load-locked instruction was executed by the same processor. The combined effect of load-
linked and store-conditional is similar to ordinary load and Compare&Swap, but is more
powerful since the store-conditional succeeds only if the target location is unmodified,
whereas Compare&Swap succeeds if the location merely has the same value.

Herlihy showed how to construct “non-blocking” and “wait-free” data structures using
Compare&Swap [104] and load-linked/store-conditional [106]. Such data structures have
desirable properties that become apparent when a participating processor is arbitrarily
delayed or halted:

= With a non-blocking data structure, some other processor is guaranteed to make progress
after a finite number of steps.

< With a wait-free data structure, all other processors are guaranteed to make progress
after a finite number of steps.

These are clearly desirable properties, but they do not imply a performance improvement as
the number of processors increases (in particular, updates are generally serialized).

Busy-Waiting

By their very nature, busy-waiting synchronization algorithms will sometimes require a pro-
cessor to wait (by repeatedly reading a memory location) for it to change. Much work has
focused on efficient busy-waiting synchronization for machines with hardware cache coher-
ence or locally-accessible shared memory. The goal is to reduce serialization caused by con-
tention for shared memory.

Rudolph and Segall [173] proposed the use of a “test and test and set” loop for locking
on systems with hardware for cache coherence, the goal being to have processors do most
spinning by referencing only their local cache. Unfortunately, this doesn’t avoid the necessity
of referencing shared memory when the lock is finally released, which can require time linear
or quadratic in the number of waiting processors (depending on cache coherence protocol
details).

A variety of backoff techniques have been applied to reduce memory contention while
locking, and many of these were examined quantitatively by Anderson [6] and Graunke and
Thakkar [95]. In a backoff scheme, explicit delays are dynamically calculated to respond to
the level of contention experienced. There are many variations on this approach, with gener-
ally reasonable performance. Compared to a simple busy-waiting lock, backoff-based locking
typically sacrifices fairness, since, in most such schemes, newly arriving processors poll at a
higher frequency than processors that have already been waiting a long time.

The QOSB primitive proposed by Goodman et al. [90] builds a queue of waiting proces-
sors using the memory of the cache lines located at each processor. A variant of Test&Set
fails when the issuing processor is not at the head of the queue; as a result, spinning is
almost completely local.

“For example, the MIPS R4000 series [151] the DEC Alpha [57], and IBM PowerPC [117].

21

Chapter 2: Survey of Previous Work Section 2.2.4: Synchronization

Anderson [6] gave a software-only lock algorithm with similar behavior on machines
with a hardware cache coherency mechanism. Each waiting processor selects a unique spin-
ning location within an array by using Fetch&Increment (below). Each spinning location is
marked to indicate either “wait” or “proceed”; all but the first entry is initially marked to
wait. Releasing the lock is simply a matter of marking the owner’s array entry to wait and
the circularly next array entry to proceed. By arranging the array elements to fall in differ-
ent cache lines, spin-waiting memory traffic is almost completely eliminated.

Graunke and Thakkar [95] documented the effect of a variety of locking algorithms on
the Sequent Symmetry and describe an algorithm similar to Anderson’s, in which a separate
array element is permanently associated with each participating processor. An atomic
exchange (Fetch&Store) is used to determine the location associated with the previous lock
holder; this is the location for spinning. Releasing the lock is a matter of changing the state
of one’s own permanent location.

The busy-waiting algorithms of Mellor-Crummey and Scott [147, 149] use a linked list
to represent the spinning locations, so each processor spins on a location of its own choosing.
This allows spinning to be local even when the machine has no cache coherency mechanism
in hardware.

A problem with all of these local-spinning synchronization methods is that they impose
some queuing order on processors as they begin to synchronize. While this has the advan-
tage of ensuring fairness, a desirable property, it also makes each waiting processor suffer
from every delay experienced by each predecessor in the queue. Such delays might include
shared memory contention, interrupt, exception, and page fault handling, and preemptive
scheduling in multiprogramming environments. Wisniewski et al. [206] proposed lock algo-
rithms that accommodate preemptive scheduling by skipping over a preempted waiter (and
thus partially sacrifice fairness).

An alternate method of busy-waiting, which avoids congesting the processor-memory
interconnection bus or network with polling traffic, is to stall the processor until the synchro-
nization condition is satisfied. The full/empty bits on memory words of the Denelcor HEP
(Smith [182]) are an example of this kind of synchronization, as is Harrison's Add-and-
Lambda proposal [101], based on a modification to the basic NYU Ultracomputer design.

Fetch&d

The class of Fetch&® operations was introduced by Gottlieb and Kruskal [92] as an improve-
ment and generalization of the Replace-Add operation, upon which the NYU Ultracomputer
design had been based up to that point (Gottlieb et al. [94, 93], Rudolph [174]). Each
Fetch&® operation refers to a specific binary operator, ®, which must be associative. The
action of Fetch&®(v,e) is to atomically replace the variable v with the value ®(v,e) and
return the old value of v. The most used and studied Fetch&® function is Fetch&Add, for
which ®(v,e) is v+e. The older operation, Replace-Add, differs only in that it returns the
new (updated) value of v. Other notable Fetch&® operations include Fetch&Store, also
called swap, for which ®(v,e) is e, and Fetch&Or, which is similar to Test&Set (using a bit-
wise-or for ®). As a special case, a simple load operation can be accomplished with opera-
tions such as Fetch&Add(v,0) or Fetch&Or(v,0); a simple store can be accomplished by dis-
carding the result of Fetch&Store. Other notable special cases include Fetch&lIncrement
(the same as Fetch&Add(v,1)) and Fetch&Decrement (the same as Fetch&Add(v,-1)), which
are more easily implemented on some machines.

22

Chapter 2: Survey of Previous Work Section 2.2.4: Synchronization

One of the most interesting things about Fetch&® operations is the way in which they
can be combined by hardware, as in the NYU Ultracomputer (Gottlieb et al. [91]). In this
way, it is possible for many such operations to take place in the time normally required for
just one, even when they are directed at the same memory location. Although this desirable
property requires hardware not available on most computers, a growing number of machines
support some non-combining variant of Fetch&Add, including the Intel 486 and Pentium
microprocessors [115] and the Cray Research T3D multiprocessor.

2.2.5. Bottleneck-Free Algorithms

In addition to the possibility of combining, Fetch&Phi operations are valuable because they
have been used to construct bottleneck-free solutions for many standard algorithm design
problems. An algorithm is bottleneck-free if it has no heavily contended serial critical sec-
tions when run on a suitable idealized parallel computer. A critical section is heavily con-
tended if the expected waiting time to enter it grows with the number of participating proces-
sors. The idealized parallel computer in this case is Schwartz's Paracomputer [176], aug-

mented with the necessary Fetch&® instructions.*®

Critical sections are a concept normally associated with software, but hardware can
have critical sections too. In particular, read-modify-write memory cycles constitute small
critical sections, as do operations on shared buses. The technique of combining Fetch&®
operations in hardware can avoid serialization caused by such hardware critical sections,
and, when used together with a bottleneck-free algorithm, can eliminate hardware bottle-
necks in some cases.

Quite a few bottleneck-free Fetch&Add-based synchronization algorithms have been
devised. Gottlieb et al. [94, 93] presented algorithms for semaphores and readers/writers
locks, the latter having the property that no critical section is used in the absence of writers.
Bottleneck-free queues were also presented, utilizing sequential memory allocation and a
variety of methods for synchronizing access to the individual cells of the queues. Ordinary
(FIFO) queues, priority queues, and multi-queues were all presented. Rudolph [174]
extended these results to include a fair semaphore, non-sequential queue allocation, a stack

(LIFO), and a barrier.*®

Wilson [205] provided interior access and removal operations for bottleneck-free
gueues, using the same basic internal structure as Rudolph’s non-sequential queues. He also
gave several variations, such as an unordered list, and outlined a number of abstract OS
operations, such as task creation, destruction, scheduling and coordination, and gave several
memory allocation algorithms.

Dimitrovsky [65] introduced parallel hash tables, new queue algorithms (using rather
different data structures from those of Rudolph and Wilson), and the group lock [66], which,
among other things, allows easy construction of bottleneck-free algorithms from some serial
algorithms.

®The Paracomputer is essentially equivalent to Borodin and Hopcrofts WRAM [38], and Snir’s
CRCW version [184] of Fortune and Wyllie’s PRAM [84].

* Barriers were introduced by Jordan [122].

23

Chapter 2: Survey of Previous Work Section 2.2.5: Bottleneck-Free Algorithms

The restrictive special cases of Fetch&Add(v,+1), called Fetch&Increment and
Fetch&Decrement, are of special practical interest, since they can be implemented more
cheaply than general Fetch&Add on some machines. Freudenthal and Gottlieb [86] gave
several algorithms based on these operations, including a readers/writers lock, a group lock,
and a multiqueue.

Fetch&®-based algorithms, although attractive tools for constructing bottleneck-free
systems, are not quite the only game in town. The organization of some software systems
can be altered to adjust the tradeoff between frequency of coordination (low is good for perfor-
mance) and “load balance” (better balance is good, but can require more frequent coordina-
tion). For example, Anderson et al. [8] studied the tradeoffs involved in choosing the
arrangement of queues used by a thread scheduler, with some shared and some private to
each processor. Another approach is to use algorithms that naturally avoid hot spot con-
tention (Pfister and Norton [163]) by distributing computations over multiple memory loca-
tions and combining them in a logarithmic fashion in software with low-contention synchro-
nization, e.g., pairwise. Such software combining algorithms have been proposed and studied
by Yew et al. [213], Goodman et al. [90], Gupta and Hill [98], and Mellor-Crummey and Scott
[148, 147, 149].

2.2.6. Scheduling

Scheduling in parallel systems is more challenging than for uniprocessors. Some important
additional issues are:

= Interdependencies between processes.!” Closely cooperating processes should be scheduled
together as much as possible. This is an issue for general-purpose systems, where unre-
lated parallel jobs are multiprogrammed on a single parallel machine.

= Load balancing. This issue doesn't arise at all for uniprocessors. For multiprocessors, it
is important to avoid having some processors idle while others are busy and also have a
backlog of work to do.

= Management of common resources, particularly memory. In general, processes require
other resources than just processors, and ignoring those requirements when making
scheduling decisions can lead to some processors being unable to make progress for lack
of those other resources. For example, two processes cannot run together, or possibly will
thrash and make poor progress, if their combined need for physical memory exceeds the
total memory size of the machine. This problem is more severe on multiprocessors than
0N unNiprocessors.

< Memory locality. On NUMA machines, the access time to memory will not be the same
for all processor/memory module pairs. Optimally scheduling the placement of many
cooperating processes and the memory they will use isn't always practical, especially
when access patterns aren't fully known in advance. (Memory locality issues are less
severe for the target class of machines we consider in this dissertation.)

= Cache affinity. Most recent designs include a relatively large cache memory at each pro-
cessor. A running process can build up a substantial investment in such a cache, which,
if forfeited unnecessarily at context-switch time, can hurt performance.

"We use the term process here, although terminology for schedulable entities varies from one sys-
tem to another. Thread, task, activity, activation, etc., may be substituted freely in this context.

24

Chapter 2: Survey of Previous Work Section 2.2.6: Scheduling

The effect of multiprogramming (sharing a single machine among unrelated jobs) on synchro-
nization and scheduling has been extensively studied. Ousterhout [160] presented the co-
scheduling policy, whereby the scheduler attempts to run related processes concurrently, and
the two-phase blocking synchronization technique for combining the advantages of busy-
waiting and context-switching. Zahorjan, et al. [215], used analytical methods and simula-
tion to study the serious detrimental effect of frequent “spinning” synchronization in a multi-
programmed environment, along with the benefits of several synchronization-aware schedul-
ing policies. Edler et al. [76] presented some features of Symunix-2 designed to allow
scheduling, synchronization, and management of threads in user-mode. These include a
method whereby a process can usually avoid preemption while executing in a critical section,
one of the effective scheduling policies identified by Zahorjan et al. Anderson et al. [7] and
Marsh et al. [144] also presented systems in which thread management and scheduling take
place largely in user-mode. In the former, the state of a preempted thread is passed to
another cooperating processor, which can run it or enqueue it for later execution. In the lat-
ter, threads are given advance warning (via an asynchronous interrupt or a pollable flag) of
impending preemption; this allows them to save state and arrange for quick resumption on
another cooperating processor. In all three of these systems, the actual scheduling policies,
gueueing arrangements, etc., are under control of the user and may be tailored to meet the
needs of the application.

Leutenegger [136] concluded from simulations that co-scheduling schemes work well
and that, in general, medium and long-term allocation of processors to jobs is at least as
important as interprocess synchronization or choice of preemption frequency.

Markatos et al. [143] and Crovella et al. [52] performed experiments on a BBN Butterfly
to evaluate co-scheduling and relatively long-term hardware partitioning of the machine,
dividing the processors among unrelated jobs; they concluded that partitioning was a gener-
ally superior approach.

Black [34] studied scheduling in Mach and developed a processor allocation mechanism
to allow applications to be allocated processors on a long-term basis.

Tucker and Gupta [198] implemented a central server process to perform long-term pro-
cessor allocation among parallel jobs. Each job periodically examines its processor needs,
polls the server to determine it's fair allocation, and then adjusts the number of underlying
processors it will use for running threads during the next period. The interactions with the
server are handled transparently to the application by the thread package, based on Brown
threads [67]. Tucker and Gupta’s work also includes a low overhead mechanism for prevent-
ing preemption, but unlike the Symunix-2 mechanism, it doesn't provide any protection
against abuse or accidental misuse.

Burger et al. [42] examined issues related to scheduling with a demand-paged virtual
memory system on certain NUMA machines; they got best results with gang scheduling and
busy-waiting, and even decided that context-switching on a page fault was not worthwhile.

Squillante and Lazowska [185] studied the effects of several scheduling policies
designed to improve performance by recognizing the value of a processor’s cache contents to
processes that recently ran there (this is called cache affinity). The idea is to avoid process
migration as much as possible while still employing it where necessary to maintain a good
load balance.

25

Chapter 2: Survey of Previous Work Section 2.3: Overview of Selected Systems

2.3. Overview of Selected Systems

A number of operating systems are especially notable and reviewed in more detail here. In
several cases an important general concept, problem, or solution in parallel systems is dis-
cussed in the context of a particular operating system. This should not be taken to imply
that the situation is not relevant to other systems.

2.3.1. Burroughs B5000/B6000 Series

The operating system for Burroughs'® computers is known as the Master Control Program, or
MCP. The overall design of this family of machines is heavily oriented towards the execution
of programs written in an Algol-like block structured language (Organick [159], Lonergan
and King [138]). Just as the resulting static and dynamic structures of nested activation
records provide a clean model for data sharing within a serial program, they also provide a
simple extension to a model of parallel execution. Burroughs extended its implementation of
the Algol-60 language to include tasks (which are like procedures, but execute concurrently
with their caller) and events. Waiting for an event that has not happened causes a task to be
suspended and placed on a waiting queue associated with the event. Signaling an event
causes all tasks on the waiting queue to be moved onto the system-wide ready queue.

When a task is created, its new activation record is linked into the stack of activation
records in essentially the same way as for an ordinary procedure. This creates an extended
stack known as a saguaro or cactus stack (Hauck and Dent [102]) because of its branching
structure. The sharability of variables between tasks is defined according to the nesting
structure and the hierarchical relationships among tasks, in a natural extension to the way
accessibility is defined for variables in the serial execution environment.

2.3.2. IBM 370/0S/VS2

Following somewhat in the footsteps of earlier IBM multiprocessors such as the 9020A (IBM
[116]) and the System/360 models 65/67, IBM introduced the System/370 models 158/168 MP
(MacKinnon [141]) in 1974. These machines were available in several configurations, but
basically consisted of 2 System/370 processors and memory. Each CPU had its own comple-
ment of 1/O channels, and control units could be configured to be accessible from two chan-
nels, one on each CPU. The instruction set was extended to include several new instructions
including Compare and Swap, used along with the earlier Test and Set for synchronization.
Other extensions to the basic 370 processor model to support multiprocessing included inter-
connections for interprocessor signaling and error handling.

The Compare and Swap instruction compares the contents of a register with the con-
tents of a memory word, and if equal, stores a specified value into the memory word, other-
wise it loads the contents of the memory word into the register. Because this instruction
operates atomically, it can be used, like Test and Set, to implement various mutual exclusion
schemes. It has an advantage over Test and Set in that a whole word can be set, so useful
information can be stored in the memory word (e.g. task identifier). Also, it is possible in
some cases to update data structures with Compare and Swap directly, thus avoiding the
need for a lock. For example, items can be added to or deleted from a linked list safely,

8 Burroughs subsequently merged with Sperry Univac to become Unisys.

26

Chapter 2: Survey of Previous Work Section 2.3.2: IBM 370/0S/VS2

because the new value will not be stored into memory if the old value is changed unexpect-
edly by another processor; if so, the Compare and Swap can be re-executed.

The overall structure of the operating system, OS/VS2 release 2 (later MVS), was sym-
metric. Only one copy of the operating system resided in memory. Almost all of available
main memory was maintained in a common pool, and could be allocated by either processor.
A single set of queues was accessible to either processor. Either processor could perform 1/0,
as long as it had a channel connected to the desired control unit. The system could recover
from the failure of a either processor.

One of the more interesting aspects of this system is the way in which the operating
system was extended to provide mutual exclusion (locking) and avoid deadlock. A set of locks
was defined and arranged in a hierarchy. Each lock was used to serialize operations related
to a particular set of data structures. For example, locks were assigned to the dispatcher,
memory allocation, and input/output functions. Some locks were very static, and others were
more dynamic. For example, there was a single lock for dispatcher functions, but a separate
lock is created with each instance of several different kinds of dynamically-allocated control
blocks (user, channel, device, etc.). In the latter case, all locks of the same type were
assigned the same position in the hierarchy. A set of rules governed when a process could
request a lock:

= A process cannot obtain more than one lock at a given level in the hierarchy at a time.

= A process can obtain an additional lock provided that it is higher in the hierarchy than
any lock already held.

= A process need not obtain locks at all levels up to the highest level desired, but the
desired locks must be obtained in hierarchical order.

The hierarchy was arranged so that most of the time the locking order was natural, corre-
sponding to typical function calling sequences, but in certain cases lower level locks had to be
obtained in advance of actual need in order to comply with the above three rules for deadlock
avoidance.

Several types of locks were supported, the major distinction being between spin locks
and suspend locks, as in other operating systems. When a process attempts to obtain an
already locked spin lock, the processor is not relinquished as it would be for a suspend lock
(the name spin lock probably refers to to the notion that the processor is “spinning its
wheels”, not doing anything useful while waiting for the lock). Often a processor’s interrupts
must be masked prior to obtaining a spin lock and not unmasked until after the lock is
released.

In order to minimize the time interrupts are masked, OS/VS2 release 2 went to great
effort to provide a “window” of enabled interrupts periodically while waiting for a lock with
interrupts masked. This was important because recovery from failure of one processor was a
major requirement, and otherwise a processor looping with interrupts masked would never
receive the special interrupt generated when the other processor failed, and recovery would
be impossible. Other steps taken to enable recovery from processor failures included data
structures to record which locks were held by each processor.

The basic facility for parallel applications is multitasking within a single address space.
The tasks are recognized and scheduled by the operating system, and can use a variant of
suspend locks for synchronization.

27

Chapter 2: Survey of Previous Work Section 2.3.2: IBM 370/0S/VS2

The system described here has evolved over the years, and is similar in many respects
to the current IBM MVS operating system available on current members of the 370 family
(Tucker [199]).

2.3.3. CMU C.mmp/HYDRA

The C.mmp computer (Wulf and Bell [208]) was designed and built at Carnegie-Mellon Uni-
versity starting in 1971. It consisted of 16 DEC PDP-11 processors, each with 8 Kilobytes of
private memory and shared access to 16 memory modules, via a 16-way crossbar switch.
Each processor was further augmented with a writable control store, to support the addition
of special instructions for such purposes as synchronization. The basic synchronization
mechanism was provided by the memory controller’'s implementation of atomic read and
write operations on words, together with a read-modify-write memory cycle. A cache memory
was also planned for each processor, to reduce contention to shared memory, but never imple-
mented. The physical 1/O connections were asymmetric, since peripherals were connected to
individual processors.

The operating system for C.mmp was HYDRA (Wulf et al. [209, 211, 210]). Except for
certain processor-specific data structures and frequently executed kernel code in local mem-
ory, all processors executed a single copy of the kernel. The most important feature of
HYDRA was its adoption of the object model. Objects were variable-sized and contained two
parts: a data part and a capability part. Capabilities are unforgeable pointers to objects,
together with a set of access rights (Fabry [78], Lampson [133]). Possession of a capability
for an object implies the right to perform operations on the object according to the associated
access rights. Some object types and operations were primitive and defined by the kernel,
but others could be defined by users. The primitive object types included process and proce-
dure. The primitive operations on procedures included CALL and RETURN; CALLing a pro-
cedure established a new local hame space, defining the objects accessible within the proce-
dure, similar to but more general than the creation of a new activation record in the Bur-
roughs B5000/B6000 series MCP. Another primitive operation on objects was normal mem-
ory access to the data part. The address space of a process is defined by the set of capabili-
ties that it has; that address space is graph-structured, since objects contain capabilities.
The cost of the kernel CALL function prohibited the realistic use of procedures as a replace-
ment for ordinary subroutine calls, and procedures are more properly regarded as a sort of
module. The HYDRA object system allowed for shared memory and the definition of various
synchronization facilities such as semaphores, messages, and monitors.

Four types of synchronization were commonly used:

= kernel locks

= spin locks

= kernel semaphores (K-sems)*®
= policy semaphores (P-sems)

Kernel locks and semaphores were used in the HYDRA kernel, while spin locks and policy
semaphores were used in user programs. The two kinds of semaphores provided for
rescheduling of the processor, while the locks did not.

¥ Not to be confused with the Ksems of section 7.3.4.

28

Chapter 2: Survey of Previous Work Section 2.3.3: CMU C.mmp/HYDRA

Kernel locks used a special interprocessor interrupt facility. Each lock was a data
structure that included a bit mask indicating the processors waiting for this lock. When a
processor encountered a locked lock, it would set its bit in the mask, and then execute a
“wait” instruction (this instruction does nothing but wait for an interrupt; no memory refer-
ences are made). When a processor unlocked a kernel lock, if any bits were set in the mask,
it would send an interrupt to the indicated processors. A carefully timed sequence of instruc-
tions was executed to insure that the unlocking processor did not read the bitmask before the
waiting processors had time to set the appropriate bit.

The interprocessor interrupt facility was only available within the HYDRA kernel, so
another facility was needed that could by used by applications. Spin locks were much like
those used in IBM’'s OS/VS2; in contrast to the HYDRA kernel locks, memory bandwidth was
consumed while a processor waited for a spin lock.

Kernel semaphores could be used within the HYDRA kernel when expected waiting
times were relatively long, so that the expense of tying up a processor for such a period of
time would be considered too great. Similar to the suspend locks of IBM’s OS/VS2, a proces-
sor encountering a locked K-sem would place the current task on a queue associated with the
semaphore and switch to another task.

Policy semaphores were originally intended to address the synchronization needs out-
side the kernel, but proved too expensive when expected waiting time was low, resulting in
the development and use of spin locks. P-sems are like K-sems in that the processor switches
to another task when a locked semaphore is encountered, but more complicated because of
their interaction with specially-designated policy modules. If a task is suspended for more
than a certain pre-determined amount of time, its memory becomes eligible for swapping to
secondary storage, and a policy module is notified, to make long-term scheduling decisions.
An additional time-out feature was planned but not implemented, which would cause an
attempt to lock a semaphore to fail after waiting too long, rather than just waiting forever, as
a way of dealing with certain kinds of deadlocks.

2.3.4. CMU Cm*/StarOS/Medusa

A second highly influential multiprocessor system from CMU was the Cm* computer (Swan
et al. [189, 188], Jones and Schwarz [120]). The project began in 1975, the machine became
operational in 1976. Whereas the processor/memory relationship was symmetrical in
C.mmp, Cm* had a hierarchical relationship. Each processor (computer module, hence the
name Cm*) was interfaced by a switch (called the Slocal) to a bus connecting all processors of
a cluster and a special microcoded processor called a Kmap, responsible for address mapping
and request routing. Each Kmap was connected to an intercluster bus, so that the hierarchy
has three levels: the processor, the cluster, and the whole machine. Since Cm* was a shared
memory machine, the time to access memory depended on how “far away” the memory was.
The closest memory was local to a processor, the next closest memory would be connected to a
different processor in the same cluster, and the most distant memory was connected to a pro-
cessor in a different cluster. This difference in memory access times had a major influence on
the design of software for the machine. In addition to processing normal memory requests,
the Kmaps were microprogrammed to perform various special synchronization and fre-
guently-executed operating system functions.

Two operating systems were built for Cm*: StarOS (Jones et al. [119]) and Medusa
(Ousterhout et al. [161]). While StarOS concentrated on providing facilities to make the

29

Chapter 2: Survey of Previous Work Section 2.3.4: CMU Cm*/StarOS/Medusa

power of the machine available to the user in a relatively convenient form, Medusa concen-
trated on issues of structure, and rather than trying to hide or compensate for the hierarchi-
cal structure of the machine, it provided facilities that mirrored the underlying hardware.
There were many similarities between them, as well as with HYDRA. Both new systems
were object oriented, relied on capabilities, and supported a programming structure known
as a task force. But since StarOS tried to hide the underlying architectural structure more
than Medusa, its model of a task force was more general. A task force was a collection of

schedulable activities,®® known to the operating system, cooperating on a single task. An
attempt was made to schedule the activities of a task force concurrently onto different pro-
Cessors.

Both systems were structured around multiple task forces, each implementing a partic-
ular system facility, such as memory management, 1/O, or file system. In addition, applica-
tion programs took the form of task forces. Message passing was the primary means of inter-
action between task forces, although shared access to objects as memory was provided as
well.

The expense of accessing non-local memory dominated many of the design decisions of
these systems. For example, the activities of Medusa were restricted to run on processors
containing their code in local memory. While StarOS was less restrictive in theory, the drive
to achieve adequate performance often drove it to adopt similar restrictions in practice. A
further difficulty was the lack of sufficient memory in each computer module to support rep-
resentative activities of all system tasks. This resulted in the need to pass control from pro-
cessor to processor when executing operating system requests.

2.3.5. MUNIX

Possibly the earliest project to modify the UNIX operating system for a multiprocessor was
made at the U.S. Naval postgraduate school (Hawley and Meyer [103]). The machine in
guestion was constructed from two DEC PDP-11 computers by providing a portion of memory
dual-ported to each processor’s bus. In addition, each processor had a certain amount of pri-
vate memory and a set of peripherals. The system was asymmetric in that each peripheral
was connected to only one processor. This hardware asymmetry, together with the presence
of private memory created difficulties; for example, the contents of private memory might not
be accessible to the swapping disk.

The operating system, dubbed MUNIX, was fully symmetric except for 1/0. Only a sin-
gle copy of the kernel resided in memory, and controlled the entire machine. Semaphores
were used for synchronization; the implementation was similar to the kernel locks of HYDRA.
MUNIX used a fairly small number of semaphores to serialize access to important system
data structures; only 7 different locks were used: two to protect the process table, and one
each for scheduler data, the disk buffer pool, the character buffer pool, the free memory pool,
and the swap device. Note that while the system had a symmetric structure, little attempt
was made to avoid serialization of unrelated operations of the same type. In contrast, other
systems (such as IBM’s OS/VS2 and those described below) allocate separate locks to certain
individual data structures, rather than a single lock for the entire collection of similar

% Not to be confused with the Symunix activities of section 4.3.

30

Chapter 2: Survey of Previous Work Section 2.3.5: MUNIX

structures. The coarse-grained approach to locking taken in MUNIX was not much more com-
plicated than a simple master/slave scheme, and allowed a certain amount of concurrent
operation in the operating system kernel.

Apparently no facilities were developed to make shared memory available to the pro-
grammer for parallel applications.

2.3.6. Purdue Dual VAX/UNIX

The Purdue University school of electrical engineering designed a simple scheme for inter-
connecting the buses of two DEC VAX-11/780 computers, together with an equally simple
modification to the UNIX operating system to support it (Goble and Marsh [88]). The operat-
ing system was a classic “master/slave” organization, so only the peripherals of one processor
could be used.

A master/slave organization is the simplest structure for an operating system with a
single scheduler. Only one processor, the master, is allowed to execute most operating sys-
tem functions. All other processors (in the Purdue dual VAX, there is only one other) are lim-
ited to running processes in user-mode only. While this restriction can be a severe bottle-
neck, it may not be, especially if there are only a few processors and if the workload is not
operating system intensive. The chief attraction of a master/slave multiprocessor operating
system is, however, that it is relatively easy to produce by modifying a uniprocessor operat-
ing system. In the case of the UNIX operating system, few modifications are needed other
than to provide mutual exclusion for the process ready queue and some mechanism to mark
processes that cannot be run on a slave.

There are several similarities between the approach taken by this project and the DEC
VMS operating system for the VAX-11/782. There were slight differences between the DEC
and Purdue hardware, but they were minor enough that Purdue UNIX was easily modified to
run on the 782 also. Actually, DEC's VMS was even more master/slave oriented than Pur-
due’s UNIX, since the latter allowed the slave to execute special code to select a process to
run, whereas VMS required the master to perform process selection for the slave. On the
other hand, Purdue did not develop facilities to support parallel applications, while VMS
already had such features as shared memory and synchronization mailboxes (even on unipro-
cessor VAX computers).

2.3.7. AT&T 3B20A/UNIX

Following the already-mentioned mainframe UNIX systems, which were layered on top of
another operating system, Bell Laboratories modified a version of UNIX to run directly on the
dual-processor 3B20A computer. The hardware of this machine is asymmetric, in that one of
the processors cannot do 1/O, but the operating system, described by Bach and Buroff [14], is
much more general and applicable to configurations with symmetric 1/O capabilities and
more processors. Each processor is comparable in power to the DEC VAX-11/780.

Internally, the kernel was changed to use semaphores for synchronization; the basic
form of semaphore is the task-switching counting semaphore, but a variation of the regular
semaphore P operation, called conditional-P, is also provided. When a conditional-P encoun-
ters a locked semaphore, it returns immediately with an indication of failure instead of sus-
pending the process and rescheduling the processor. By calling conditional-P in a loop, a sim-
ple spin lock can be simulated.

31

Chapter 2: Survey of Previous Work Section 2.3.7: AT&T 3B20A/UNIX

Deadlock is avoided through an ordering of lock types, similar in concept to the lock
ordering used in OS/VS2. When a process needs to hold more than one lock at a time, it
must obtain them in the proper order. In some cases, this is not possible, and unlike the situ-
ation in OS/VS2, it is often not possible to request locks in advance of need because the out-
of-order lock is associated with one of many identical data structures and its exact identity is
not known until other locks have been obtained. The solution adopted is to rely on the condi-
tional-P operation: when requesting an out-of-order lock, conditional-P is used; if it fails, the
process must conclude that deadlock is possible and execute recovery code. The recovery
code typically backs out any partially completed work, unlocks semaphores already held, and
starts over at the beginning of the semaphore locking sequence. The cost of recovery has to
be balanced against the benefits of such an optimistic approach when a conflict does not
occur, which is, hopefully, most of the time. In fact, when a collection of data structures is
distributed over a set of locks by some method such as hashing, lock clashes can be expected
to be extremely rare except in the case where multiple processes are concurrently operating
on the very same data structures.

In contrast to MUNIX or the Purdue University Dual VAX UNIX system, the modifica-
tions to the 3B20A kernel were far more extensive, involving not only the addition of
semaphores, but the significant modification of whole data structures and algorithms to min-
imize contention for locks. Nonetheless, many traditional features of the traditional UNIX
kernel (e.g. single monolithic kernel, processes with user/kernel dual existence, and reliance
on self-service) remain.

This operating system is a version of UNIX System V, so parallel applications can be
supported through the standard shared memory and semaphore facilities. There are not,
however, extensive software tools available to assist in the construction of parallel applica-
tions.

2.3.8. Sequent Balance 21000/DYNIX

Sequent Computer Systems was one of the first companies to offer commercially a general
purpose symmetric multiprocessor with more than 4 processors. The Balance 8000 (Beck
and Kasten [19]) consisted of as many as 12 processors based on the National Semiconductor
32032 microprocessor interconnected by a very high performance bus to several memory
modules and peripherals. The system was later extended to accommodate 30 processors with
the introduction of the Balance 21000. Cache memory is included with each processor to
reduce bus contention, and bus-watching logic associated with each cache keeps them consis-
tent. Custom VLSI bus interface chips provide a variety of services, including distributing
interrupts to the least busy processors and providing a special low-overhead mutual exclu-
sion mechanism.

The operating system for the Balance 21000 is a version of UNIX called DYNIX. Itis a
fully symmetric operating system, including fully symmetric 1/0O. The implementation is
similar to the 3B20A UNIX system, although it is based on a different version of UNIX
(4.2BSD). Unlike the 3B20A operating system, DYNIX provides some software tools to sup-
port parallel applications (Beck and Olien [20], Sequent [179]). There are two special hard-
ware synchronization facilities, one called gates and one called Atomic Lock Memory (ALM);
the former is used exclusively in the DYNIX kernel, the latter by user programs (since the
Balance 21000 is a multiuser machine, the kernel provides a special pseudo-device driver to
control the allocation of the ALM). This apparent duplication of hardware facility and awk-
ward programmer interface probably indicates that the designers did not realize the

32

Chapter 2: Survey of Previous Work Section 2.3.8: Sequent Balance 21000/DYNIX

potential attraction users would have for parallel programming until late in the design cycle.

The kernel uses spin locks and process-switching counting semaphores, both multi-
plexed on top of gates. As in the 3B20A UNIX, a conditional form of semaphore is provided,
and a similar approach to deadlock avoidance is used.

2.3.9. Mach

The Mach project at Carnegie Mellon University began as a marriage of the Berkeley UNIX
kernel and the Accent message-oriented operating system (Rashid and Robertson [166]). The
interprocess communication features of Accent were adapted to the UNIX kernel, together
with a new design for the separation of processes into tasks and threads, and a new virtual
memory system designed to provide more flexible sharing along with improved portability
and efficiency (Rashid et al. [165]). Two trends emerged for Mach development:

= The first was the gradual improvement of the system as the new and old components
became better integrated. This trend culminated with Mach 2.5 and variants adopted by
or developed for a number of significant commercial and research systems.

= The second was the move to kernelize Mach, moving as much traditional UNIX functional-
ity as possible into one or more user-mode servers. The culmination of this trend is the
Mach 3 microkernel, which has also been used to support a number of significant pro-
jects.

Mach includes a significant amount of machinery for distributed, loosely-coupled, computing.
It is fundamentally server-based and object-oriented. Messages are typed objects and mes-
sage ports are protected by capabilities, which may be included in messages. Tasks, threads,
and memory objects are all referenced by and controlled with ports and messages.

The Mach implementation of message passing is highly interdependent with that of
shared memory. In some circumstances, each is implemented in terms of the other. Passing
of large messages is implemented with copy-on-write techniques whenever possible, and
memory can be shared between tasks, even on different machines, using external pagers,
which are implemented with message passing.

2.3.10. IBM RP3

The IBM Research Parallel Processing Prototype (RP3), described initially by Pfister et al.
[162], shares a number of attributes with the NYU Ultracomputer, and indeed there was sig-
nificant cooperation and cross-fertilization between the two projects. Both machines have
potentially many processors and support combinable Fetch&® operations, but the RP3
design calls for two separate processor/memory interconnection networks, one with combin-
ing and one without, and sports a unique variable interleaving feature for memory address-
ing. A 64 processor subset, without the combining network, was constructed and used for
over two years.

The initial operating system work for RP3 was carried out jointly between researchers
at IBM and at NYU; many basic design features of Symunix-2 took shape during that period
(for the NYU perspective on the design during this period, see Edler et al. [74]). Eventually,
IBM decided to modify a version of Mach for the RP3, and this was the system that was actu-
ally used. See Bryant et al. [41] for a retrospective view of the Mach effort and the RP3 pro-
ject in general. The version of Mach used for the RP3 work included UNIX compatibility in
the kernel, mostly serialized to run on only one of the processors; this proved to be a bottle-
neck, but few of the workloads studied on the machine were OS-intensive, so it didn't seem to

33

Chapter 2: Survey of Previous Work Section 2.3.10: IBM RP3

matter much.

The RP3 was run as a single-user system, so the full time-sharing and multiprogram-
ming capabilities of the operating system were not utilized. To avoid OS scheduling over-
heads, typical usage tended to allocate enough kernel threads to match the number of proces-
sors being used and perform further scheduling at the user level with the minimum OS inter-
vention possible, i.e., as in a user-mode thread system.

Since Mach was initially developed with uniprocessors and small symmetric multipro-
cessors in mind, the RP3 was one of the first NUMA adventures for Mach, and certainly the
largest until that time. A lot of emphasis was placed on using the variable interleaving fea-
ture of the hardware, but only in its two extreme modes: a page could be interleaved across
all memory modules or fully contained in one memory module; none of the intermediate
degrees of interleaving were used.

2.3.11. DEC Firefly/Topaz

Firefly is a shared memory multiprocessor developed at the DEC Systems Research Center
(Thacker et al. [194]). It usually includes five VAX microprocessors on a bus with caches kept
coherent by hardware, but a few systems with up to nine processors have been built. The
primary operating system for the Firefly is called Topaz, and is written primarily in Mod-
ula-2+. It consists of a small portion, called the nub, which executes in kernel-mode and pro-
vides virtual memory, thread scheduling (multiple threads can run within a single address
space), device drivers, and remote procedure calls. The remainder of the operating system,

including the file system, Ultrix emulator,?* and window system, runs with several threads in
a separate address space. Essentially all OS services are distributed across the collection of
Fireflys on a local area network, because of the fundamental use of remote procedure calls
throughout the system software.

Programs written in Modula-2+ are able to take advantage of a threads module, which
includes fork and join operations, a LOCK statement to provide critical sections, and condi-
tion variables (Birrell et al. [32]).

Anderson et al. [7] used the Firefly and modified Topaz to implement their proposal for
scheduler activations. Scheduler activations are execution contexts for user level threads,
implemented with a threads packages such as FastThreads (see Anderson et al. [8]). Unlike
ordinary kernel threads, scheduler activations come and go, being created and destroyed by
the kernel as needed to provide overall processor allocation to multiple competing jobs. This
is made possible by the use of upcalls to notify the user level thread manager of each event
affecting the allocation of processors to the application. These events include:

= Allocation of a new processor, in the form of another scheduler activation. In this case,
the upcall is essentially just an entry point for the user level thread manager, which can
simply begin running a thread.

= Preemption of a processor. In this case, the upcall is performed on another processor allo-
cated to the same job, or on the first processor reassigned to the job in the case where the
only processor currently allocated to a job is preempted. The upcall includes the machine
state of the preempted processor as a parameter; this allows the thread manager to save

2 Ultrix is a variant of UNIX offered commercially by DEC.

34

Chapter 2: Survey of Previous Work Section 2.3.11: DEC Firefly/Topaz

the state for later execution, according to whatever user level scheduling policy is in
force.

= An activation has blocked in the kernel. In this case, a new activation is created and run
to take the place of the blocked one, and the upcall is basically the same as the allocation
of a new processor upcall.

= An activation has unblocked in the kernel. This upcall is similar to the upcall for pre-
emption, except there are two interrupted machine state parameters: one for the thread

that was running before the upcall, and one for the thread that unblocked.?

Just as the kernel informs the user of certain events, the user-mode thread manager is
expected to inform the kernel as its needs change. There are two such conditions, essentially
corresponding to the need for more or less processors in response to varying application
demand.

The differences between scheduler activations and the activities of Symunix-2, as we

will describe in section 4.3, are more a matter of concept than of implementation. The vir-
tual machine model is somewhat different. With scheduler activations, you get a shared
address space “virtual multiprocessor” with occasional notices (upcalls) from the kernel when
processors are allocated or taken away. With the Symunix-2 approach, the virtual multipro-
cessor is made up of somewhat more independent processes, and you get signals for asyn-
chronous event notification (e.g., preemption, asynchronous 1/0 completion, or page fault)
and return codes for synchronous ones (e.g., blocking in the kernel). In general, we can
expect implementation details to dominate any performance differences between the two sys-
tems.

2.3.12. Psyche

Psyche (Scott et al. [178, 177], Marsh et al. [144]) is an operating system developed at the
University of Rochester for the BBN Butterfly Plus [18]. The primary goals of the project
were to efficiently utilize the NUMA hardware of the Butterfly and to provide as much flexi-
bility as possible to the users, i.e., not to hide or bury the flexibility inherent in the architec-
ture.

Threads, if required in a particular programming model, are implemented in user-
mode, with low-level interactions with the kernel designed to minimize overhead and maxi-
mize user level control. The overall flavor is close to that of the scheduler activations work
and the Symunix-2 work. Like Symunix-2, Psyche uses shared memory to provide some very
low overhead communication between the user and kernel. In particular, Psyche provides
advance notice of preemption to the user, in a manner similar to the Symunix-2 SIGPREEMPT
mechanism; this notice is also available without interrupt, via polling a shared memory loca-
tion. Also like Symunix-2, Psyche provides asynchronous system calls, but notification of
blocking is via upcall, i.e., more in the style of scheduler activations.

ZThis event really occurs only when the scheduler activation is ready to return to user-mode; thus
it could block and run several times entirely within the kernel without any notification to the user
level.

ZFor comparability, we also need to consider the Symunix-2 temporary non-preemption mecha-
nism, in section 4.6.4, and the SIGPREEMPTBignal, in section 4.6.5.

35

Chapter 2: Survey of Previous Work Section 2.3.12: Psyche

Unlike Symunix-2, Psyche is not a very UNIX-like system. The model of protection and
addressing is very much more elaborate and flexible, including the following:

< A uniform address space divided into nestable realms, which are a data abstraction
mechanisms.

< Realms exist within potentially overlapping protection domains; intra-domain realm
operations are much cheaper than inter-domain ones.

= Protection provided by keys and access lists.

= Virtual processors, called activations, which are the execution vehicle for processes, which
move about from protection domain to protection domain.

2.4. Chapter Summary

We have seen a sampling of the number and variety of operating systems designed for shared
memory MIMD computers. A number of trends show themselves to be popular, but in some
cases two or more conflicting models vie for dominance, with no real proof of which is best.
Some of these trends are now reviewed:

Modular Design
All systems strive for this, for basic software engineering reasons. Nonetheless,
some systems enforce modularity at the hardware, firmware, or operating system
kernel level, while other systems leave this issue unenforced, or to be enforced by
compilers. Most of the message passing, object-oriented, and capability-based sys-
tems fall into the former category, while the UNIX systems tend to fall into the lat-
ter.

Lightweight vs. Heavyweight Processes

The term “lightweight process” is not generally well defined, but usually refers to an
implementation which supports very fast context switching from one process to
another, normally by running both processes in the same address space. Tasks
within OS/VS2 are examples of a type of lightweight processes that is recognized
and scheduled by the operating system scheduler. A number of UNIX systems have
been extended along these lines, such as UNIX for the HEP and Cray X-MP, and the
Mach operating system. A yet lighter approach is to manage these lightweight pro-
cesses at the user level, with only indirect support from the operating system. This
is the approach of the Symunix and Psyche operating systems, and of Anderson’s
scheduler activations.

Server vs. Self-Service Model
A design that adopts the self-service model allows processes to perform certain func-
tions directly on shared data rather than requiring them to send messages to special
server processes. The primary arguments in favor of messages over shared data are
that message passing encourages modularity, improves isolation, and is a more
structured form of synchronization. In addition, message passing is naturally
extended to more loosely-coupled environments without shared memory. Arguments
against message passing are generally that it is easier to achieve high performance
with direct sharing of data and explicit synchronization (e.g. via semaphores). For
multiprocessors, the key point is that a single server can become a bottleneck in a
large system. For this reason, many server-oriented multiprocessor systems allow
multiple servers of each type, so called multi-threaded servers. The UNIX kernel
has traditionally adopted the self-service approach. When a process makes a system

36

Chapter 2: Survey of Previous Work Section 2.4: Chapter Summary

call, it is transformed into a privileged process executing specified code within the
kernel. While the lack of support for multiprocessors has long been regarded as a
deficiency in UNIX, its basic self-service orientation is probably one reason why it
has been seen as such an attractive vehicle for multiprocessor research.

37

Chapter 2: Survey of Previous Work Section 2.4: Chapter Summary

38

Chapter 3: Some Important Primitives

We begin our study in a bottom-up fashion, by examining in detail the most fundamental
software primitives used in the operating system kernel. In addition to laying the ground-
work for understanding the material in the following chapters, these primitives (and obvious
derivations thereof) are important for any use of the target architectures, independent of
Symunix itself.

We make two general claims in presenting this material:

= That these primitives, with the algorithms and implementations we suggest, are key ele-
ments of a solution for many problems encountered in highly parallel software systems.

= That these primitives, viewed as modular interfaces, are key to the portability of such
software.

Much of the material in this chapter is the result of our particular approach to highly paral-
lel software development, which we can describe as a 7 step procedure:

(1) Start (at least conceptually) with a traditional serial UNIX kernel implementation.
(2) Apply rudimentary parallelization techniques.

(3) ldentify performance bottlenecks.

(4) Design solutions for the bottlenecks.

(5) Attempt to redefine problems (i.e., design module interfaces) to accommodate highly
parallel solutions, while still admitting serial or “lowly parallel” alternatives.

(6) Implement the highly parallel solutions.
(7) Repeat steps 3 through 6 until satisfied.

Although the resulting modular interface admits significant implementation flexibility, it
cannot accommodate all unanticipated implementations (nor can any other modular inter-
face). The experiments described in section 8.3 provide some evidence of the feasibility of our
approach.

In the remainder of this chapter, we describe modular interfaces designed in the man-
ner just described, together with the current implementation for the target architecture
class. In most cases, we also suggest reasonable alternatives for machines outside that class.

It should be emphasized that most of the details presented in this chapter are entirely
within the context of the Symunix-2 kernel. Chapter 7 covers many of the same topics in the
context of the user-mode environment. Of course there are many other environments where
the same general principles also apply, but we believe in fully exploiting as many as possible
of the subtle factors that distinguish one environment from another. For example, our kernel

39

Chapter 3: Some Important Primitives

environment runs in privileged mode, with access to all hardware capabilities and direct con-
trol over interrupts, scheduling decisions, etc. In contrast, code that runs in an unprivileged
hardware environment must rely on a more privileged layer for any such control, and this
may alter details (such as signal vs. interrupt masking) or general approaches (e.g., hybrid or
“2-phase blocking” techniques may be appropriate (Ousterhout [160]) (Karlin et al. [125]); see
section 7.3.3). As another example, the requirements of real-time systems differ in signifi-
cant ways that would certainly impact both the interfaces and implementation choices
described here. The choice of the C programming language also has enormous influence on
our interface choices, as has the general UNIX model we have adopted. Each system has its
own unique characteristics that must be accommodated and exploited wherever possible.

The remainder of this chapter is organized as follows. We begin by addressing the use
of Fetch&® operations (83.1), followed by some simple composite operations that are useful
enough to be worth treating separately (83.2). Sections 3.3 and 3.4 address the conceptually
minor issues of instrumentation and interrupt masking, which are then used extensively in
the remainder of the chapter. The real meat of the chapter is sections 3.5 and 3.7, which
address busy-waiting and list structures, respectively. Sandwiched between these, in section
3.6, we briefly address the topic of interprocessor interrupts, as they depend on the facilities
described in section 3.5 and are in turn depended upon by those in section 3.7.

3.1. Fetch&® Functions

One of the central features of the target architecture class (81.3) is the availability of combin-
able Fetch&® operations. While the importance of Fetch&Add cannot be over-emphasized,
many of our algorithms also make significant use of other Fetch&®s, especially Fetch&And,
Fetch&Or, and Fetch&Store.

Table 1, on the next page, lists all the Fetch&® functions used in Symunix-2. For
example, the code

i = faa (&x, 1);
atomically copies (the old value of) x toi and adds 1 to x.

The choice of data type is difficult. We have used int , in keeping with the original defi-
nition of int as having the “natural size” for integers on a machine (Kernighan and Ritchie
[128]). The way the industry is evolving, this may be a poor choice. For example, a 64 bit
machine might very reasonably support Fetch&® only for 64 bit integers, but the int type
may be 32 bits. Specifying int for the Fetch&® functions was probably naive; perhaps a
derived type, such as faa_t , would be better. But what about machines with Fetch&® sup-
port for multiple integer sizes?

The functions fai , fad , and their variants require fewer keystrokes and can be slightly
more efficient to execute than the more general faa , even on architectures that support
Fetch&Add well. Furthermore, they are important special cases in their own right (see
Freudenthal and Gottlieb [86]).

Most of the basic functions have variations that operate on unsigned integers. In each
case the basic function name is prefixed with u. The primary advantage of these functions
over their basic counterparts is in allowing the compiler to perform more type checking. On
typical two’'s-complement machines, the underlying implementation will be the same as the
signed variants.

40

Chapter 3: Some Important Primitives Section 3.1: Fetch&® Functions

Function Purpose
int faa(int *a, int i) Fetch&Add
int fai(int *a) Fetch&lIncrement (faa(a,1))
int fad(int *a) Fetch&Decrement (faa(a,-1))
unsigned ufaa(unsigned *a, unsigned i) Unsigned Fetch&Add
unsigned ufai(unsigned *a) Unsigned Fetch&Increment
unsigned ufad(unsigned *a) Unsigned Fetch&Decrement
void vfaa(int *a, int i) Add to memory ((void)faa(a,i))
void vfai(int *a) Increment memory (vfaa(a,1))
void vfad(int *a) Decrement memory (vfaa(a,-1))
void vufaa(unsigned *a, unsigned i) Unsigned add to memory
void vufai(unsigned *a) Unsigned increment memory
void vufad(unsigned *a) Unsigned decrement memory
int fas(int *a, int i) Fetch&Store (a.k.a. swap: ®(x,y)=y)
unsigned ufas(unsigned *a, unsigned i) Unsigned Fetch&Store
void *pfas(void **a, void *i) Fetch&Store for generic pointers
int faseO(int *a, int i) Fetch&Store if old value =0
int fasgeO(int *a, int i) Fetch&Store if old value = 0
void *pfase0(void **a, void *i) pfas(a,i) if old value = NULL
int faand(int *a, int i) Fetch&And
int faor(int *a, int i) Fetch&Or
unsigned ufaand(unsigned *a, unsigned i) Unsigned Fetch&And
unsigned ufaor(unsigned *a, unsigned i) Unsigned Fetch&Or
void vfaand(int *a, int i) And to memory ((void)faand(a,i))
void vfaor(int *a, int i) Or to memory ((void)faor(a,i))
void vufaand(unsigned *a, unsigned i) Unsigned and to memory
void vufaor(unsigned *a, unsigned i) Unsigned or to memory

Table 1: Fetch&® Functions.

Most of the basic functions have variations that return no value at all; the function
name is prefixed with v. Using one of these functions makes clear that only the side effect is
desired, and allows a slightly more efficient implementation on some machines.

Fetch&Store for generic pointers, pfas , is another valuable variation. On architectures
in which a generic pointer has the same size as an integer, pfas may actually be imple-
mented identically to fas . Likewise, pfase0 will be implemented identically to fase0 on

machines where the pointer and integer sizes match.?*

On any given machine, some functions will be supported directly by hardware, and
some won't. There is a compile-time symbol that can be checked for each function to see if it

#Technically, a different implementation could be required for machines where the representation
of a “null pointer” in C is not a bit pattern of all zeros, but this is not a real consideration on most
machines (ANSI C [5]).

41

Chapter 3: Some Important Primitives Section 3.1: Fetch&® Functions

is supported by hardware or emulated in software. This is important because emulated func-
tions aren’t atomic with respect to loads, stores, or other hardware-supported functions.
Such compile-time symbols provide a brute force method of writing “machine-independent”
code by providing alternative implementations.

The compile-time symbols are constructed by taking the name of the function, capitaliz-
ing it, and prepending the string HARD_(for example, faa is supported by hardware if
HARD_FAAs TRUE (evaluates to 1)). When not supported directly by hardware, some of the
functions are emulated by other functions, and some are directly emulated by software. For
example, if fai isn't supported directly by hardware, it is emulated with faa . There are four
cases:

HARD_FAA && HARD_FAI
Both faa and fai are individually implemented using different hardware mecha-
nisms, and it can be assumed that fai(x) is more efficient than faa(x,1)

HARD_FAA && !HARD_FAI
Only faa is implemented directly with hardware, and fai(x) has the same imple-
mentation as faa(x,1)

IHARD_FAA && HARD_FAI
Only fai is implemented directly with hardware; faa is emulated by software. As a
result, faa will not be atomic with respect to loads, stores, fai , or other hardware-
supported Fetch&® functions.

IHARD_FAA && 'HARD_FAI
Both functions are implemented by software emulation. The emulated functions are
atomic with respect to each other, and to other emulated Fetch&® functions, but not
to loads, stores, or hardware-supported Fetch&® functions.

Table 2, on the next page, shows the emulation relationships for all the Fetch&® functions.
Full atomicity will be guaranteed over loads, stores, and all the functions in Table 1, if the
nine functions in the first section of Table 2 are implemented by hardware.

While the HARD_symbols are helpful for writing code that is portable between
machines with differing architectural support for Fetch&® operations, it doesn't indicate
whether or not concurrent accesses to the same memory location are combined. Another set
of compile-time symbols is provided for that. Each function in Table 1 has an associated
symbol constructed by taking the function name, capitalizing it, and prepending the string
COMBINE. The symbol COMBINE FOO evaluates to TRUE if HARD FOO does, and if combin-
ing of concurrent foo operations on the same variable is supported. An example of the use of
HARD_UFASand COMBINE_UFASan be seen in section 3.7.4 on page 119. In addition to
COMBINE_symbols for the functions in Table 1, load and store operations have symbols to
indicate their combinability too (COMBINE_LOARNd COMBINE_STORE An example of using
COMBINE_STORREppears in section 7.3.5 on page 304. Of course, if loads aren’'t combinable,
but Fetch&Add is, the programmer can use faa(addr,0) for a combinable load. Likewise,
(void)fas(addr, value) can be used for a store.

3.2. Test-Decrement-Retest

Gottlieb, et al. [94] identified the Test-Decrement-Retest and Test-Increment-Retest paradigms;
we make use of the former. The basic idea is to decrement a variable (atomically, using

42

Chapter 3: Some Important Primitives

Section 3.2: Test-Decrement-Retest

Function | Emulated by || Function | Emulated by
faa ufai
ufaa ufad
fas vufaa ufaa
pfas yufai
fase0 software ufad
fasge0
pfaseO ufas fas
faor
faand ufaor
vfaor faor
fai ufaor
fad
vfaa faa ufaand
vfai ufaand faand
vfad vufaand

Table 2: Fetch&® function emulations.

Fetch&Add), but to undo the effect if the variable goes negative. To avoid livelock when per-
forming this operation in a loop, the variable is first tested, so the decrement is avoided alto-

gether if success seems unlikely. We have two boolean functions® for this, tdr and tdrl :

int int
tdr (volatile int *a, int i) tdrl (volatile int *a)
{ {
if (*a <) if (*a<=0)
return O; return O;
if (faa (a, -i) <i){ if (fad(a) <= 0) {
vfaa(a,i); vfai(a);
return O; return O;
} }
return 1; return 1;
} }

3.3. Histograms

Histograms, as described here, are not needed for correct system operation. In fact, they are
completely eliminated at compile time unless the symbol INSTRUMENTis defined to the C
preprocessor. Even when not disabled they are inexpensive, and are widely used in the
Symunix-2 kernel. Two types of histograms are supported:

% Normally inlined.

43

Chapter 3: Some Important Primitives Section 3.3: Histograms

Function Purpose

hgraminit(histgram *h, unsigned nbuck, Allocate buckets and initialize
char *name)

ehgraminit(ehistgram *h, char *name) Initialize
hgramabandon(histgram *h) Stop using histgram
ehgramabandon(histgram *h) Stop using ehistgram
hgram(histgram *h, unsigned v) Increment bucket v
ehgram(ehistgram *h, unsigned v) Increment bucket 1 + fdogv
ghgram(histgram *h, unsigned v) Quicker hgram
gehgram(ehistgram *h, unsigned logv) Increment bucket logv

Table 3: Histogram Support Functions.

histgram
These have a variable number of buckets, dynamically allocated when the histogram
is initialized. They are very simple, and suitable for a wide range of purposes.

ehistgram
These are exponential histograms, and have a fixed number of buckets, NEXPHIST.
They are generally used to count values whose frequencies are expected to decrease
approximately exponentially. Examples of exponential histograms usage are given
in section 3.5.1 and in section 3.7.2.

The functions provided to deal with histograms are given in Table 3, above. Each histogram
includes a reference count, incremented by the initialization function with Fetch&Increment
so that only the first call matters for each histogram. As the histograms are initialized, they
are added to a simple linked list. Histograms are never deallocated, but may be abandoned,
which just decrements the reference count.

Output is done externally, with a program using the /devikmem interface to read all
the histograms from the linked list. A separate program can then format the results for
printing or process it in various ways. The name and reference counts have no purpose other
than helping to identify and interpret the data.

The buckets may be incremented in two ways. The “normal” way, using the hgram or
ehgram functions, checks for too-large values, and redirects them to the final bucket. The
“quick” way, using the ghgram or gehgram functions, does no such checking, and, in the case
of gehgram , assumes the logarithm has already been computed.

3.4. Interrupt Masking
The traditional UNIX kernel mechanism for masking interrupts is embodied in a set of rou-

tines spl n, originating from the PDP-11 “spl” instruction,®® to set the processor’s “priority
level” to n, where 0 < n <7; level 0 masks no interrupts, level 7 masks all. More recently,
each UNIX implementation has adjusted the semantics of these routines to suit its own

% gpl stands for “Set Priority Level”.

44

Chapter 3: Some Important Primitives Section 3.4: Interrupt Masking

purposes in various ways, but the notion of a priority-based scheme is still in general use.

Most MIMD designs provide a hardware interrupt mechanism on a per-processor basis.
This means that each processor keeps track independently of which kinds of interrupts are
pending or masked, and a device interrupt request must wait for the attention of a particular
processor. This does not preclude a more sophisticated approach to distribute device inter-
rupt requests to processors in order to achieve certain goals, such as reduced interrupt
latency or meeting real-time constraints. For example, the Sequent Balance [19, 80] and
Symmetry [139] machines have special hardware to distribute interrupt requests to the pro-
cessor running with the least priority. A similar facility is available for multiprocessors built
using some recent Intel Pentium processors [200].

Interface: Overview

The set of functions to manipulate interrupts and their masks in Symunix-2 is summarized
in Table 4, below. The key operations are sending a soft interrupt (setsoft t), masking
interrupt categories (fspl c), and unmasking interrupt categories (fsplO , fsplx). This core
set of functions is slightly complicated by as many as three variant flavors of each masking
function; the purpose of the variants is to improve efficiency through specialization and to

Function Purpose
setsoft t() Issue soft interrupt of type t
fspl ¢ Mask interrupts of category ¢ (Table 5)
spl ¢() Plain: disallow unmasking side effects
and return previous mask
vspl c() \Woid: return nothing
gspl c() Quick: allow unmasking in some cases
and return nothing
fsplO Unmask all interrupts
vsplO() Void: return nothing
gsplo() Quick: omit soft interrupt check
and return nothing
fsplx Restore previous interrupt mask
vsplx() Void: return nothing
gspIx() Quick: return nothing
soft interrupt check optional
rpl() Return current interrupt mask
splcheck x Check functions (§3.5/p50)
splcheckO() Momentarily allow any interrupt
splcheckf(m) Generate custom check function for mask m
issplgeq(M1, m2) Does m1 mask a superset
' of interrupts masked by m2?
fakespl «c() Fabricate interrupt mask for category ¢

Table 4: Interrupt Manipulations.

45

Chapter 3: Some Important Primitives Section 3.4: Interrupt Masking

improve system debuggability by allowing more extensive run-time checks for correct

usage.?’ For example, by using a “quick” function, gspl c, in certain places instead of a
“plain” one (spl c) or “void” one (vspl c), we can avoid unnecessary run-time checks designed
to prevent unmasking side effects.

Interface: Details

The following semantics have been chosen for Symunix-2 to define the limits of portability,
clarify behavior in certain situations, and provide rules for improved run-time checking of
correct usage. While not every detail is fundamental to all highly parallel operating systems,
clearly defined rules of usage are an important tool for construction of correct software in any
environment with interrupts.

General. Interrupt masks are per-activity. They define the categories of interrupts masked
when the activity runs. A single device request for an interrupt eventually generates an
interrupt on a single processor.

Hard and Soft Interrupts. There are two general kinds of interrupts: “hard” and “soft”.
Hard interrupts are the ordinary kind, generally requested by an 1/O device, or clock. Soft
interrupts are requested by software (presumably because that specific kind of interrupt may
be masked, otherwise a function call would suffice). Soft interrupts are per-processor, in the
sense that there is no direct machine-independent way to request a soft interrupt for another
processor.

The main purpose of soft interrupts is to reduce hard interrupt latency, by reducing the
amount of time that hard interrupts are masked. Only the most time-critical functions
should be performed by hard interrupt handlers, deferring as much as possible to soft inter-
rupt handlers.

Interrupt Categories. The machine-independent part of the kernel “knows about” the
interrupt categories given in Table 5, on the next page. There is a partial ordering assumed
among these classes:

resched < {other soft interrupts} < soft < {hard interrupts} < all

So masking any of the hard interrupts is guaranteed to mask all of the soft ones, as will
masking the entire soft category. The resched category must be the lowest; masking any
other interrupt category also masks rescheduling interrupts (84.6.1). Other than that, there
is no guarantee that any particular relationship holds between two soft or two hard cate-
gories. This gives an appropriate degree of flexibility to the implementation, allowing such
possibilities as a single priority system, a dual priority system (with one priority each for
hard and soft interrupts), or unordered independently maskable interrupt types within each
of the hard and soft groups.

#The run-time checks are a kernel compile-time option.

46

Chapter 3: Some Important Primitives Section 3.4: Interrupt Masking

Category Meaning

all all interrupts

clock hard clock interrupts

imp hard network interrupts

apc hard asynchronous procedure calls
soft all soft interrupts

sclock soft clock interrupts

sapc soft asynchronous procedure calls
srbc soft random broadcasts

tty soft tty interrupts

bio soft block 1/O interrupts

net soft network interrupts

log soft log device interrupts

resched soft rescheduling interrupts

Table 5: Interrupt Mask Categories.

Choosing a Category to Mask. When locking is involved, it is best in principle to mask
the lowest (smallest) interrupt category consistent with a deadlock-free solution. Deadlock
can result when an interrupt handler tries to acquire a lock already held by the processor
prior to the interrupt or, more generally, when an interrupt handler forges the last link in a
waits-for chain among processors, leading eventually back to the same interrupted processor.
The standard solution is to mask the relevant interrupt before acquiring the lock in the
main-line code and not to unmask it until the lock is released. Masking a category larger
than necessary can cause a needless increase in interrupt latency.

Although, in principle, this position is correct, there are often conflicting considerations.

e Slow but low priority interrupts can increase lock holding times; this increases lock
latency, damaging performance in a critical area.
= Keeping track of many different interrupt categories is hard, leading to software bugs.

Since the creation of soft interrupts is partially aimed at separating handler functionality
that is more tolerant of interrupt latency from that which is more needful of low latency, the
cost of masking a soft category is effectively quite low. For these reasons, the entire soft
interrupt category is generally used when masking is required for the code sections pre-
sented in this dissertation. As already suggested, a system in which all soft interrupt cate-
gories are assigned the same masking priority may be quite sensible.

Check Functions. The check function splcheckO() momentarily unmasks all interrupts.
The check function generator splcheckf(m) takes an interrupt mask as returned by a plain
spl routine or rpl , and returns a pointer to a check function that momentarily restores the
interrupt mask. The use of check functions will be described in section 3.5 on page 50.

Mask Comparisons. A data type representing an interrupt mask, spl_t is returned by
the spl ¢, rpl , and fakespl c functions (see Table 4). The issplgeq(m1, m2) boolean func-
tion examines two interrupt masks and returns TRUE if m1 masks a superset of the inter-
rupt categories masked by m2. The fakesplc() functions return the same interrupt mask as

47

Chapter 3: Some Important Primitives Section 3.4: Interrupt Masking

the following code would,

{
aspl0();
vspl c();
return rpl();
}

but without actually modifying the processor’s real interrupt mask.”® On most machines,
they should evaluate to a constant of type spl_t that reflects the “absolute” priority of the
interrupt category c.

Several useful constructs are handled simply by these routines. As an example, con-
sider a function designed to be called with a certain category of interrupts masked. A useful
practice is to place an assertion to that effect at the beginning of the function; this provides a
valuable “living comment”, as well as a run-time check that can be disabled at compile time
when one is satisfied with its validity. An assertion tests an expression, causing a descriptive
message and a controlled system crash (“panic”) if it turns out to be false. In this case,

assert (issplgeq (rpl(), fakespl c()));

is appropriate, as it claims that all interrupts of category ¢ are masked by the current inter-
rupt mask.

Another, more essential, use of rpl , fakespl c, and issplgeq will be illustrated in sec-
tion 3.7.3 on page 107.

3.5. Busy-Waiting Synchronization

There are two general kinds of explicit synchronization used within the kernel: busy-waiting
and context-switching. The distinction arises when the semantics of synchronization require
that a processor be delayed. In the busy-waiting case, such a processor continually re-tests
the required condition until it is satisfied; in the context-switching case, a context-switch is
made so that the processor can proceed with other useful work in the meantime. Busy-
waiting methods are always more efficient if waiting times are short. Busy-waiting is also
the primitive mode: the context-switching methods all employ some busy-waiting techniques
in their implementation.

Interface

Table 6, on the next page, lists the kinds of busy-waiting synchronization employed in the
Symunix-2 kernel. Among the semaphore and lock types, a certain uniformity of names,
types, parameters and instrumentation was sought. All the functions begin with bw, to
clearly distinguish them from context-switching functions (84.5), and one or two characters to
identify the specific type of synchronization (e.g. | for binary semaphore (i.e., plain “lock”)
and rw for readers/writers lock). Each semaphore or lock has similarly named functions for
initialization and destruction, and common function variants have similar naming conven-
tions. All initialization functions are declared to return a boolean value, giving the

ZThis is why it is called “fake”.

48

Chapter 3: Some Important Primitives Section 3.5: Busy-Waiting Synchronization

Mechanism Data Type See Key Functions
page
delay loops - 51 BUSY_WAIT FBUSY_WAIT
binary semaphores bwlock 58 bwl_wait , bwl_signal
counting semaphores | bwsem 54 bws_wait , bws_signal
readers/writers locks | bwrwlock 59 bwrw_rlock , bwrw_wlock ,
bwrw_runlock , bwrw_wunlock ,
bwrw_rtow , bwrw_wtor
readers/readers locks | bwrrlock 64 bwrr_xlock , bwrr_ylock
bwrr_xunlock , bwrr_yunlock
group locks bwglock 68 bwg_lock , bwg_sync, bwg_unlock

Table 6: Busy-Waiting Synchronization Mechanisms.

implementation the freedom to perform some additional dynamic resource allocation at that

time (at least in principle).? Instrumentation features, such as histogramming of wait times
(83.3), are completely suppressed if the preprocessor symbol BW_INSTRUMENIE undefined or
defined to 0. For convenience, the macro bw_instrument(x) evaluates to x if
BW_INSTRUMENITS defined to a non-zero value, and evaluates to nothing if BW_INSTRUMENT
is undefined or defined to 0. Using a construction such as

bw_instrument(gehgram(&some_hg);)
is less disruptive to the textual appearance of code than the equivalent

#if BW_INSTRUMENT
gehgram(&some_hg);
#endif

especially when buried inside loops and conditionals.

There is a strict separation of interface and implementation. The most efficient algo-
rithms and/or data structures for a given machine can be used. Taking advantage of this
freedom of implementation is one of the reasons for the richness of the defined interface
(number of synchronization types and function variants): by providing a richer interface, and
writing the machine-independent parts of the kernel to use the least powerful mechanism in
each situation, portability and efficiency are both improved.

Notably missing from the interface is any kind of barrier (Jordan [122]). To date there
has been no need for general barriers within the kernel, but the group lock mechanism
includes barrier as a fundamental operation (83.5.6).

None of the interface functions are designed to mask interrupts or block preemption as
side effects; the caller must generally also use appropriate functions from section 3.4. A gen-
eral problem with busy-waiting is that interrupts must be masked before beginning to wait
for a lock, possibly leading to unnecessarily high interrupt latency. To reduce this impact,

» Unfortunately, making use of dynamic allocation also requires the ability to tolerate its failure.

49

Chapter 3: Some Important Primitives Section 3.5: Busy-Waiting Synchronization

the busy-waiting functions of Symunix-2 are all designed to take a parameter specifying a
check function to be called (with no arguments) periodically while waiting. A typical locking
situation, where no interrupts were previously masked, might be written as

vsplsoft(); /I mask interrupts
bwl_wait(lock,splcheck0); // get lock
critical section

bwl_signal(lock); /I release lock
vsplO();

In this example, all “soft” interrupts are masked (including preemption, §4.6.1); other possi-
bilities are listed in Table 5, in section 3.4 on page 47. The check function splcheckO is
called repeatedly while waiting within bwl_wait , and does nothing but briefly enable all
interrupts, so even if the processor must wait for a long time, interrupt latency will not be

severely affected.*® When the previous interrupt mask is not known to be zero, the typical
locking code looks like

spl_t s = splsoft();
bwl_wait(lock,splcheckf(s));
critical section
bwl_signal(lock);

vsplx(s);

The function splcheckf is a check function generator; it returns a pointer to a function (with
no arguments) that will briefly restore the interrupt mask s. Obviously, the implementation
of splcheckf is machine-dependent (as are all spl functions). In addition to splcheck0 and
splcheckf , a nullf function is available to be used when no purposeful check function is
desired.

Beyond factors specific to the particular algorithms chosen for busy-waiting synchro-
nization, there are two generic issues in minimizing the cost of the common case where no
delays are necessary: subroutine call overhead and unnecessary evaluation of check function
generators, such as splcheckf . Subroutine call overhead is avoided by adopting a two-stage
approach, where the first stage synchronizes in the absence of contention without any calls,
invoking the second stage otherwise. The first stage can be implemented as either a macro

or an inline function,®* and the second stage as an ordinary function. To avoid unnecessary
evaluation of a check function generator without specific compiler optimizations, macros are
used for the first stage, instead of inline functions. In this way, overhead is avoided in the
common case, and “macro bloat” is minimized because the second stage contains the delay
loops. We use the convention of constructing the name of the second stage function by
prepending _ to the first stage macro name.

% As described in section 2.3.2 on page 27, IBM's OS/VS2 release 2 operating system employed a
similar technique while busy-waiting, although the motivation was at least partially for fault tolerance
(MacKinnon [141]).

*The details of inline functions differ among compilers that support them, since they are not part
of standard C [5], but we have developed conventions that allow for reasonable portability, and also
allow suppression of inlining when desired for debugging or for compilers that can’t support it.

50

Chapter 3: Some Important Primitives Section 3.5: Busy-Waiting Synchronization

An alternative to check function generators would be to provide the old interrupt mask
itself instead of a check function. In essence, this would elevate splcheckf to the status of
implied universal check function. Although the specific motivation for check function param-
eters is to handle interrupt masking, they are more general and, in principle, could be used
for other purposes as well. By using macros to avoid needless evaluation of splcheckf , the
cost of the more general mechanism is the same as the less general alternative.

Implementation

For the target class of machine, the algorithms chosen for semaphores and locks are opti-
mized for the common case of no contention. Specifically, this optimization consists of using
an algorithm based on the Test-Decrement-Retest paradigm (Gottlieb et al. [94]), but with the
initial test of the first iteration (performed in the first stage) thrown out.

Most of the busy-waiting algorithms to be presented in the following subsections are
not immune to starvation, but are protected against livelock. The exception is group lock, in
section 3.5.6, which is ticket-based and thus starvation-free. The others would be probabilis-
tically fair if we removed the exponential backoff feature (to be described in section 3.5.1 on
page 53).

We have accepted potentially unfair algorithms for Symunix because we assume that,
most of the time, no delay will occur. The justification for this assumption is based primarily
on the fact that higher level algorithms, described throughout this dissertation, really bend

over backwards to avoid lock contention.®* We believe this rationale is acceptable for general
purpose computing, but not for certain other environments, e.g., real-time.

Rudolph [174] gives fair versions of semaphores and readers/writers locks, but fairness
is sometimes gained only at the cost of additional complexity and overhead.

3.5.1. Delay Loops

Busy-waiting is fundamental to many higher level algorithms for multiprocessors. While the
abstract synchronization types, such as semaphores and readers/writers locks, are commonly
useful, they are ill-matched to the needs of some algorithms. Sometimes what is needed is
the ability to busy-wait until some condition is satisfied. A set of common macros is useful to
ensure that each such instance of busy-waiting is performed in a reasonably efficient man-
ner.

Interface

In Symunix-2, the basic busy-waiting macro is BUSY_WAIT (cond, check, hg) which busy-
waits until the expression cond evaluates to true; check is a pointer to a check function
(83.5/p50), and hg points to an exponential histogram structure (83.3), used to count the num-
ber of times synchronization was achieved after a delay of {1, 2, 4, 8, ..., NEXPHIST or more}

time units.®® Often, cond is a simple expression that tests the value of a memory location, but

% Chapter 8 provides some supporting empirical data.

#The unit of delay is machine-dependent, and need not be precisely defined as long as the his-
togram indicates approximate waiting time.

51

Chapter 3: Some Important Primitives Section 3.5.1: Delay Loops

it can be any integer expression. Clearly, a macro must be used rather than a function (even
an inline one), because otherwise the condition would be evaluated only once.

Several variants of BUSY_WAITare also useful:

FBUSY_WAIT(ond, check, hg)
Like BUSY_WAIT but cond is evaluated before entering the loop (“F” is for “first”).
This is suitable for a one-stage approach, whereas BUSY_WAITis best suited for two-
stage situations (where the condition has already have been checked once). Since
FBUSY_WAITis designed to handle the first condition test, it also handles histogram-
ming for the zero-delay case.

XBUSY_WAITond, check, hg, iter, p)

This version supports situations where multiple conditions must be met successively
before synchronization is achieved. In such cases, the total waiting time his-
togrammed should be the sum of the individual waiting times. XBUSY_WAITmeets
these needs by exposing two internal variables as parameters: iter counts overall
waiting time for histogram purposes, and p is an index into the histogram buckets;
both integer variables should be initialized to 0 before the first call to XBUSY_WAIT
Because of XBUSY_WAIB support for multiple delay loops, it can't increment the
histogram bucket itself; that must be done separately after the final delay loop by
calling XBUSY_FINAL, below. (For examples of the use of XBUSY_ WAIT see
8§3.5.4/p63 and §3.5.5/p67.)

FXBUSY_WAITEond, check, hg, iter, p)
This is like a combination of FBUSY WAIT and XBUSY_WAIT The condition is
checked before the loop, and multiple delay loops may be used in sequence. The
zero-delay case is handled, and XBUSY_FINAL, below, must be called after the final
delay loop. It is okay to mix calls to XBUSY_WAITand FXBUSY_WAIT

XBUSY_FINAL(hg, iter, p)
This macro simply records the histogram value accumulated by the previous
sequence of XBUSY_WAITor FXBUSY_WAITloops.

BUSY_WAIT_NO_INSTEond, check)
This is like BUSY_WAIT but with no instrumentation support.

FBUSY_WAIT_NO_INSTEond, check)
This is like FBUSY_WAIT but with no instrumentation support. The condition is
checked before the first delay.

As with all other primitives described in section 3.5, BUSY_WAITand its variations will avoid
instrumentation altogether if the preprocessor symbol BW_INSTRUMENTs undefined or
defined to 0. (In such a case, the _NO_INST variants are substituted for the others.)

Implementation
There are a variety of ways to implement this kind of busy-waiting. Momentarily ignor-
ing instrumentation, the simplest is probably something like
while (cond)
check();

But such a tight loop will flood the memory system of some machines, reducing performance
by slowing down other processors (including one or more that will eventually make the

52

Chapter 3: Some Important Primitives Section 3.5.1: Delay Loops

condition true). This is certainly the case for machines in which all shared memory accesses
appear on a single bus, but inserting a delay into the loop will reduce the trouble. The situa-
tion is more complicated for machines with cache memories, snoopy caches, directory-based
cache coherence, multiple buses, multistage interconnection networks, or local access to
shared memory. Anderson [6] investigated the effects of several delay alternatives for sev-
eral possible machine organizations. Some backoff strategies are tightly integrated into the
synchronization algorithm itself; delay macros such as our BUSY_WAITare poorly suited to
those situations.

The instrumentation side effect of the BUSY_WAITmacros can be accomplished in vari-
ous ways. Among the most obvious are referencing a high-precision hardware clock and
counting loop iterations.

The current implementation of BUSY_WAITfor the Ultracomputer prototypes is based
on the notion of exponential backoff, inspired by the collision handling mechanism of Ether-
net (Metcalf and Boggs [150]), together with loop iteration counting for instrumentation. At
any given time, the assumption is that the expected additional waiting time is directly pro-
portional to the amount of time already waited, up to some limit. The motivation for expo-
nential backoff is the assumption that the condition to be waited for involves a shared mem-
ory access which will cause memory contention for other processors.

#define BUSY_WAIT(cond,check,hg) \
do {int _iter = 0O; \
unsigned int _p =0; \
while (1) { \
(check)();
if (_iter < (1<<NEXPHIST)) \
_iter++; /* avoid overflow */ \
else \
_iter = (1<<(NEXPHIST-1)) + 1; \
if ((iter&(_iter-1)) == 0 && \
_p < NEXPHIST-1) \
_pt+; \
if ((Liter&(_iter-1)) == 0 || \
(iter&(MAX_BW_DELAY-1)) == 0) &&\
(cond)) { \
gehgram(hg,_p); \
break; \
} \

} while(0) /* require semicolon */

It is assumed that MAX_BW_DELAYsed to limit the exponential backoff, is a power of two.**
The choice of the value (1<<NEXPHIST) to prevent overflow allows us to count high enough

*We have used the value of 128, but this was not the result of extensive testing.

53

Chapter 3: Some Important Primitives Section 3.5.1: Delay Loops

to reach the final bucket of the histogram structure, yet still avoid overflow® and maintain

the maximum delay period.®* The expression _iter&(iter-1)) == tests whether
_iter is a power of 2 or not. The function gehgram (83.3) actually increments the histogram
bucket indicated by its second argument. The shortest waiting time recordable in this man-
ner by BUSY_WAITis 1; a delay of 0 must be recorded by the caller using gehgram(hg,0) .

The macros for FBUSY_WAIT XBUSY_WAIT FXBUSY_WAIT BUSY_WAIT_NO_INST and
FBUSY_WAIT_NO_INSTare all defined in a similar style.

3.5.2. Counting Semaphores

Counting semaphores are more general than the somewhat more common binary semaphores
(83.5.3). A common use for counting semaphores in Symunix-2 is in solving pro-
ducer/consumer problems: by setting the semaphore value to n, it represents n available
units of some resource (e.g. buffers). A wait (or P) operation performs a unit allocation by
waiting until the value is positive, then decrementing it. A signal (or V) operation performs
a unit release by incrementing the value.

Interface

The data type bwsem is operated upon by the functions listed in Table 7, below. The initial-
ization function is implemented as a macro: BWS_INIT(s,v,h,n) , Where s points to the
bwsemstructure to be initialized, v is a non-negative initialization value, h points to an expo-
nential histogram structure for instrumentation purposes (83.3), and n points to a string to

identify the histogram structure.® The reason for the macro is to eliminate the h and n argu-
ments when instrumentation features are not desired, while reducing the need for #ifdef s
whenever counting semaphores are initialized. The macro simply evaluates to a function
call, with either two or four arguments, depending on whether or not instrumentation is
desired. BWS_INIT is the only part of the interface affected by instrumentation. This is

Function Purpose
BWS_INIT Initialize
bws_destroy Un-initialize
bws_wait Semaphore P operation
bws_trywait Conditional P: success/failure, no delay
bws_qwait Quick P: no contention, no delay, no failure
bws_signal Semaphore V operation
bws_value Return semaphore value

Table 7: Busy-Waiting Counting Semaphore Functions.

*® Assuming (1<<NEXPHIST) is representable as a positive integer.
% Assuming MAX_BW_DELAI no greater than (1<<(NEXPHIST-1))

¥ The string is printed out with the histogram values when finally extracted from the kernel by a
utility program using the /dev/kmem interface.

54

Chapter 3: Some Important Primitives Section 3.5.2: Counting Semaphores

important, because initialization is typically done in fewer places than key operational func-
tions like bws_wait and bws_signal

The function bws_trywait returns a boolean result, indicating whether the semaphore
was decremented successfully after a single attempt. The function bws_qwait also makes
only a single attempt, but assumes that failure is impossible (i.e., logic dictates that no other
processor knows about the lock, or that the semaphore value is greater than the maximum
number of processors that could possibly call bws_wait , bws_trywait , or bws_qgwait). The
implementation should cause a system crash (“panic”) if this assumption proves false (and
the kernel was compiled with DEBUGdefined). The only function in this interface that will
actually delay execution is bws_wait ; it should have a two-stage implementation (83.5/p50).

The “current” semaphore value can be obtained by the function bws_value , although it
may have changed even before the function returns. This unsynchronized result is most use-
ful for assertion statements and error messages. As originally defined by Dijkstra [59],
counting semaphores cannot have negative values, but in our interface, negative values are

allowed,*® with the same interpretation as O (i.e., no resource units available).

Implementation: Overview

The current implementation for the target class of machines is based on an algorithm of Got-
tlieb, et al. [94], which can be succinctly expressed in pseudo-code using Test-Decrement-
Retest and Fetch&Add:

void void
P(int *sem) V(int *sem)
{ {
while ('tdri(sem)) fai(sem);
continue; }
}

Our implementation has been extended with several relatively minor enhancements and
stylistic embellishments, but the basic algorithm is only slightly modified. The major
enhancement is to make P optimistic: the initial test of the first Test-Decrement-Retest is
eliminated:

* Dijkstra also allowed negative semaphore values in a later paper [60].

55

Chapter 3: Some Important Primitives Section 3.5.2: Counting Semaphores

void
P(int *sem)
{
if (fad(sem)<1) {
fai(sem);
while ('tdr1(sem))
continue;

}

The modified algorithm requires only a single shared memory access in the absence of lock
contention.

Implementation: Details

To begin with, a typedef is needed to provide some separation between interface and imple-
mentation, and a structure allows the integer semaphore to be accompanied by optional
instrumentation information:

typedef struct {
volatile int val;
#if BW_INSTRUMENT
ehistgram *hg;
#endif
} bwsem;

The initialization macro, BWS_INIT, evaluates a function with either two or four arguments,
depending on instrumentation:

#if BW_INSTRUMENT

#define BWS_INIT(s,v,h,n) _bws_init(s,v,h,n)
#else

#define BWS_INIT(s,v,h,n) _bws_init(s,v)
#endif

The internal function _bws_init , has two alternative definitions:

#if BW_INSTRUMENT

int
__bws_init (bwsem *s, int v, ehistgram *h, const char *n)
{
s->val = v;
s->hg = h;
return ehgraminit(h,n);
}

56

Chapter 3: Some Important Primitives Section 3.5.2: Counting Semaphores

#else /| IBW_INSTRUMENT

int
_bws_init (bwsem *s, int v)
{
s->val = v;
return 1; /l always succeed
}
#endif

As described in section 3.3, reinitialization of a histogram is benign; this allows one to be
shared between multiple semaphores (or perhaps other busy-waiting synchronization mecha-
nisms as well), while avoiding the inconvenience of having to call both ehgraminit and
BWS _INIT. There is no dynamic resource allocation in _bws_init to be undone, so the cur-
rent implementation of bws_destroy only needs to call ehgramabandon (83.3) if
BW_INSTRUMENIE defined.

The almost trivial P algorithm on page 55 becomes fairly complicated when recast into
a two-stage implementation with support for check functions and instrumentation.

#define bws_wait(s,f) /* first stage semaphore P */ \

do { \
if (fad(&(s)->val) > 0) \
bw_instrument(gehgram((s)->hg,0)); \
else \
_bws_wait(s,f); \
} while (0) /* require semicolon */

Note that, in the favorable case where no delay is required, the complete operation requires
only a single Fetch&Decrement (plus histogram overhead, if applicable). It is important for
bws_wait to be a macro, not an inline function; this avoids evaluation of f until the cer-
tainty of delay has been determined (f is a function pointer expression, e.g. splcheckf | a
not-quite-trivial function). The call to gehgram records a no-delay wait in the histogram.
The second stage function is _bws_wait , and handles everything when we aren't lucky:

void

_bws_wait (bwsem *s, void f(void))

{
vfai(&s->val); /I undo failed first stage decrement
BUSY_WAIT (tdr1(&s->val), f, s->hg);

}

Note that all optimism has vanished by the time we get to the second stage function; the
essence of the original algorithm is preserved by using tdrl exclusively from then onward.
The remaining embellishments to the original algorithm (check functions, instrumentation,
and exponential backoff polling) are bundled up in the BUSY_WAITmacro (83.5.1).

Our implementation of bws_signal is almost literally the same as the V algorithm
(p55), but we have not yet finished with our counting semaphore extensions. First, a version
that only tries once: bws_trywait . Such a function is very occasionally useful, e.g. as part
of a deadlock avoidance scheme. In all likelihood, such a function will not be used to simu-
late the general P operation, as in

57

Chapter 3: Some Important Primitives Section 3.5.2: Counting Semaphores

while ('bws_trywait(s))
... code of no consequence ...
but for safety, and because we don't really expect the cost of bws_trywait to be a critical
system performance factor, we choose to implement it faithfully, as a single iteration of the

TDR-based P algorithm on page 55.%

int
bws_trywait (bwsem *s)
{
return tdr1(&s->val);
}

The final variation on the semaphore P operation is an occasional convenience item. There
are times when higher level logic guarantees that bws_trywait could never fail. In such a
case, bws_gwait is appropriate: it can simply use the most efficient method of decrementing
the semaphore value (even a non-atomic one would be acceptable).

void

bws_qwait (bwsem *s)

{
vfad (&s->val);
assert (s->val >= 0);

}

The assertion is present as a simple debugging aid.

3.5.3. Binary Semaphores

Binary semaphores are simple locks, providing mutual exclusion. In any direct sense, binary
semaphores are not useful for developing software that is free of serial critical sections. They
are, however, still valuable for highly parallel software because they can be very efficient
when lock contention is low; all the examples of binary semaphore usage in this dissertation
are excerpted from precisely such situations.

Interface

The data type bwlock is operated upon by the functions listed in Table 8, on the next page.
The same general characteristics apply to these functions as for counting semaphores
(83.5.2/p54). The initialization value passed to BWL_INIT must be either 0 or 1, and the
function to return the current lock status is called bwl_islocked rather than bwl_value

Implementation

The current implementation for the target class of machines is just a special case variant of
counting semaphores (83.5.2/p56), but other possibilities are quite reasonable. The inclusion
of both counting and binary semaphores in the interface allows more flexibility of

% As pointed out by Dijkstra [61] and Gottlieb, et al. [94], such a P algorithm is subject to livelock
without the initial test of the Test-Decrement-Retest.

58

Chapter 3: Some Important Primitives Section 3.5.3: Binary Semaphores

Function Purpose
BWL_INIT Initialize
bwl_destroy Un-initialize
bwl_wait Obtain lock
bwl_trywait Conditional P: obtain lock only if no delay
bwl_qgwait Obtain lock (guaranteed)
bwl_signal Release lock
bwl_islocked Return lock status

Table 8: Busy-Waiting Lock Functions.

implementation. For example, many machines (especially small ones) efficiently support an
operation such as Test-and-Set or Compare-and-Swap; it is almost trivial to implement
binary semaphores with either of these operations, but counting semaphores are harder.

3.5.4. Readers/Writers Locks

Designed to solve the Readers/Writers problem put forward by Courtois et al. [50], this kind
of lock may be held exclusively (a “write lock”) or shared (a “read lock”).

Interface

The supported functions are listed in Table 9, below. The initialization function, BWRW _INIT
is actually a macro, for the same reason as BWS_INIT (83.5.2/p54): to allow conditional elimi-
nation of instrumentation parameters at compile time with a minimum of fuss. For read-
ers/writers locks, two histogram structures are used to separately account for reader and

Function Purpose
BWRW_INIT Initialize
bwrw_destroy Un-Initialize
bwrw_rlock Obtain read lock
bwrw_tryrlock Obtain read lock only if immediate
bwrw_qgrlock Obtain read lock (quick—guaranteed)
bwrw_isrlocked Return read lock status
bwrw_runlock Release read lock
bwrw_wlock Obtain write lock
bwrw_trywlock Obtain write lock only if immediate
bwrw_qwlock Obtain write lock (quick—guaranteed)
bwrw_iswlocked Return write lock status
bwrw_wunlock Release write lock
bwrw_rtow Upgrade read to write lock
bwrw_wtor Downgrade write to read lock

Table 9: Busy-Waiting Readers/Writers Lock Functions.

59

Chapter 3: Some Important Primitives Section 3.5.4: Readers/Writers Locks

writer waiting time.

The basic lock acquisition functions are of the form bwrw_rwlock , where rw is “r” for a
read lock or “w’ for a write lock. A lock is released by the corresponding bwrw_rwunlock
function. The bwrw_try rwlock functions return a boolean result to indicate if the lock was
obtained or not in a single attempt; they never delay execution. The bwrw_qgrwlock func-
tions assume the lock is available; failure or delay “can't happen”. The bwrw_is rwlocked
functions return a boolean result the opposite of what the corresponding bwrw_try rwlock
function would, if it were called instead.

Upgrading a read lock to a write lock is sometimes useful. The semantics adopted here
are designed to allow higher-level algorithms to avoid unnecessary serialization:

= A reader may attempt to upgrade by calling bwrw_rtow , which returns a boolean value.

= In the presence of pending writers, an attempt to upgrade will fail, and bwrw_rtow will
immediately return false, without releasing the read lock.

= If, in the absence of writers, a single reader attempts to upgrade, it will block further
readers and wait for the last remaining reader to unlock before seizing the write lock and
returning true.

= If, in the absence of writers, many readers attempt to upgrade, exactly one will succeed,
as above, while the others fail, without releasing their locks.

The intention is that after failing to upgrade, a reader will release its lock and then immedi-
ately attempt to obtain it again, on the optimistic assumption that the writer is a collabora-

tor and will perform actions relieving the reader’s need for an exclusive lock.*°

The downgrade function, bwrw_wtor , immediately converts a write lock into a read
lock, but if other writers are waiting, an implementation with writer priority will not allow
any other readers to join this one.

In order to achieve highly parallel operation, readers/writers locks are used in situa-
tions where write lock attempts are expected to be rare, but read lock attempts may be
extremely common. For this reason, fairness is less important than preventing readers from
completely starving writers. An implementation that merely achieves the latter is said to
have writer priority, an adequate property for the Symunix-2 kernel.

Implementation: Overview

The implementation for the target class of machines is somewhat different from the read-
ers/writers algorithm of Gottlieb et al. [94]; we use an algorithmic improvement due to
Freudenthal [85]. In either case, the heart of the algorithm is essentially the same:

= An integer is used to maintain a counter initialized to the maximum number of readers
(in our case, NUMPESthe maximum number of processors).

= Readers treat the counter as a counting semaphore (83.5.2/p56), i.e., they try tdrl until
it succeeds.

= Writers try to decrement the counter by NUMPESvith tdr until it succeeds.

“Examples: §3.7.6/p129, §3.7.6/p134, 83.7.6/p137, §6.1.1/p254, §6.1.1/p255, and §7.3.4/p294.

60

Chapter 3: Some Important Primitives Section 3.5.4: Readers/Writers Locks

Unlike the readers/writers algorithm of Gottlieb et al. [94], an additional counter is not
required to ensure writer priority. Here is the pseudo-code:

rlock(int *rw) wlock(int *rw)
{
if (fad(rw)<1) { int old=faa(rw,-NUMPES);
fai(rw); while (cld<NUMPES) {
while ('tdrl(rw)) if (old>0) {
continue; Il first writer
} while (*rw!=0)
} continue;
return;
}

/I not first writer
faa(rw,NUMPES);
while (*rw<=0)
continue;
old=faa(rw,-NUMPEYS);

}
}
runlock(int *rw) wunlock(int *rw)
{ {
fai(rw); faa(rw,NUMPES);
} }

Note that while the initial Fetch&Decrement of rlock is only an optimistic improvement over
the simpler

while (tdr1(rw))
continue;
loop, the initial Fetch&Add of wlock is needed to maintain any semblance of writer priority.
In fact, the writer priority is somewhat weaker in this algorithm than in the readers/writers
algorithm of Gottlieb et al. [94], as it is possible for a reader to sneak in between the last two
Fetch&Adds of wlock. Such a case is only possible when there are multiple writers contend-
ing, and it is still impossible for readers to starve all writers completely.

Implementation: Details The data structure contains the counter and a couple of his-
tograms:

typedef struct {
volatile int c; /I counter
#if BW_INSTRUMENT
ehistgram *hgr, *hgw;
#endif
} bwrwlock;

61

Chapter 3: Some Important Primitives Section 3.5.4: Readers/Writers Locks

Of course BWRW_INITinitializes ¢ to NUMPES

Readers treat the counter exactly the same as a counting semaphore (83.5.2/p57): they
obtain the lock when tdrl succeeds. The first stage of bwrw_rlock , implemented as a
macro to avoid unnecessary evaluation of the check function, looks like this:

#define bwrw_rlock(rw,f) \
do { \
if (fad(&(rw)->c) > 0) \
bw_instrument(gehgram((rw)->hgr,0)); \
else \
__bwrw_rlock(rw,f); \

} while(0) /* require semicolon */

The parameters rw and f point to the lock and the check function, respectively. The second
stage function, _bwrw_rlock , looks like this:

void
__bwrw_rlock (bwrwlock *rw, void f(void))
{
vfai(&rw->c); // undo failed first stage decrement
BUSY_WAIT (tdr1(&rw->c), f, rw->hgr);
}
Writers obtain their lock when tdr(a,NUMPES) succeeds. The first stage looks like this:
#define bwrw_wlock(rw,f) \
do { \
int _x = faa(&(rw)->c,-NUMPES); \
if (x == NUMPES) \
bw_instrument(gehgram((rw)->hgw,0)); \
else \
_bwrw_wlock(rw,_x,f); \

} while(0) /* require semicolon */
and the second stage looks like this:

62

Chapter 3: Some Important Primitives Section 3.5.4: Readers/Writers Locks

void
_bwrw_wlock (bwrwlock *rw, int oldc, void f(void))
{
register int iter = O;
unsigned int p = 0;
while (1) {
if (oldc == NUMPES)
break;
else if (oldc > 0) {
/I first writer, wait for readers to finish
XBUSY_WAIT (rw->c == 0, f, rw->hgw, iter, p);
break; // done; lock obtained
}
else {
I/ wait for another writer
vfaa (&rw->c, NUMPES); // undo failed attempt
XBUSY_WAIT (rw->c > 0, f, rw->hgw, iter, p);
oldc = faa (&rw->c, -NUMPES); // try again
}
}
XBUSY_FINAL(rw->hgwi,iter,p);
}

Note the use of XBUSY_WAIT as described in section 3.5.1 on page 52, to handle waiting and
instrumentation.

In the absence of lock contention, either type of lock can be granted with only a single
shared memory reference; the cost is no higher than a simple lock. One may ask, then, why
support simple locks? The answer is portability and efficiency: machines without efficient
Fetch&Add operations may have another, more efficient, algorithm for mutual exclusion, and
we want to take advantage of the most efficient implementation possible for each machine.

Like the other operations capable of delaying, the upgrade operation is also suitable for
a two-stage implementation. Here is the first stage:
int
bwrw_rtow (bwrwlock *rw)
{
int oldc;
oldc = faa (&w->c, -(NUMPES-1));
if (oldc < 0) { I/ other writers ... give up
vfaa (&rw->c, NUMPES-1);
return O;
}
if (oldc < NUMPES-1) /I other readers ...
return _bwrw_rtow(rw); // succeed after delay
bw_instrument(gehgram(rw->hgw,0));
return 1;

}
The key step is to subtract NUMPES-1 from the counter; recall that it was already

63

Chapter 3: Some Important Primitives Section 3.5.4: Readers/Writers Locks

decremented by 1 when the read lock was obtained. The second stage simply waits for the
other readers to release their own locks:

int

_bwrw_rtow (bwrwlock *rw)

{
BUSY_WAIT (rw->c == 0, nullf, rw->hgw);
return 1;

}

Reversing the process, downgrading from a write lock to a read lock, is accomplished by sim-
ply adding NUMPES-1to the counter; this is the bwrw_wtor operation. If there are no other
writers waiting, this action allows other waiting readers to complete their second stage func-
tions.

The bwrw_tryrlock operation is accomplished with a single tdr1(&rw->c) together
with some debugging assertions. The corresponding function for writers, bwrw_trywlock | is
similar: tdr(&w->c,NUMPES) . As with the the corresponding semaphore operation,
bws_trywait (83.5.2/p58), we chose not to omit the initial test of the Test-Decrement-Retest;
it is unlikely to create a performance bottleneck, and prevents livelock when used in a loop.
Of course, livelock isn't a consideration for bwrw_qgrlock and bwrw_gwlock , which never
require waiting (as we saw in section 3.5.2 on page 55), so those functions consist of a single
Fetch&Decrement and Fetch&Add, respectively.

3.5.5. Readers/Readers Locks

The name of this lock is inspired by readers/writers locks, but instead of enforcing either con-
current (reader) access or exclusive (writer) access, we provide two kinds of concurrent access
(Edler [70]). Processors making accesses of type X may execute together, as may those mak-
ing type Y accesses, but Xs and Ys may never execute together.

Interface

The supported operations are listed in Table 10, on the next page. The flavor of supported
operations is much the same as readers/writers locks (83.5.4). The implementation may
either be fair, or give priority to X lock requests.

Implementation: Overview

The current implementation for the target class of machines gives priority to X lock
requests.*! In the absence of dissimilar lock requests, no serialization is required.

The basic idea is to maintain separate counters of type X and Y readers. Since we allow
for X priority, the algorithm is asymmetric:

“Fair implementations exist; a simple one can be built with the group lock mechanism (83.5.6), as
can an extended version to support N different mutually exclusive classes of access. Special case imple-
mentations are also possible (Freudenthal and Peze [87]).

64

Chapter 3: Some Important Primitives

Section 3.5.5: Readers/Readers Locks

bwrr_isxlocked
bwrr_xunlock
bwrr_ylock
bwrr_tryylock
bwrr_qgylock
bwrr_isylocked
bwrr_yunlock

Function Purpose
BWRR_INIT Initialize
bwrr_destroy Un-initialize
bwrr_xlock Obtain X lock
bwrr_tryxlock Obtain X lock only if immediate
bwrr_qgxlock Obtain X lock (quick—guaranteed)

Return X lock status

Release X lock

Obtain Y lock

Obtain Y lock only if immediate
Obtain Y lock (quick—guaranteed)
Return Y lock status

Release Y lock

Table 10: Busy-Waiting Readers/Readers Lock Functions.

struct rrlock {

int x;
inty;
h
xlock (struct rriock *xy)
{
vfai(&xy->Xx);
while (xy->y 1= 0)
continue;
}

The actual code, given on page 66, includes additional details to support a two-stage imple-

ylock (struct rrlock *xy)

{
retry:
while (xy->x 1= 0)
continue;
vfai (&xy->y);
if (xy->x1=0) {
vfad (&xy->Yy);
goto retry;
}
}

mentation and a more optimistic approach to obtaining a Y lock.

Implementation: Details
The data structure is simple:

typedef struct {
volatile int x, y;
#if BW_INSTRUMENT
ehistgram *hgx, *hgy;
#endif
} bwrrlock;

65

Chapter 3: Some Important Primitives Section 3.5.5: Readers/Readers Locks

Within the bwrrlock structure, the number of X and Y locks held (or requested) is main-
tained in the x and y fields, respectively. Because this implementation always gives priority
to X lockers, they need only declare themselves, by incrementing x, and wait for any Y lock-
ers to unlock. Y lockers, in contrast, must first wait for all X lockers to unlock before even
declaring themselves by incrementing y; in addition they must yield to any X lockers (decre-
ment y and start over) whenever there is a race with an X locker. This approach is similar to
TDR, and to Freudenthal and Gottlieb’s Fetch&Increment-based readers/writers algorithm
[86].

Initialization and destruction are trivial: x and y are initialized to zero by BWRR_INIT,
and bwrr_destroy is an empty function. As usual for Symunix-2, the operations with
potential delays are implemented in two stages.

#define bwrr_xlock(rr,f) /* first stage X lock */ \
do { \
vfai(&(rr)->x); \
if ((rr)->y ==0) \
bw_instrument(gehgram((rr)->hgx,0)); \
else \
__bwrr_xlock(rr,f); \
} while (0) /* require semicolon */

In the absence of any Y lock requests, an X request can be satisfied with only two shared
memory accesses (vfai and testing (rr)->y ==0), not counting instrumentation costs.
Any real difficulties are handled by the second stage function:

void /I second stage X lock
__bwrr_xlock (bwrrlock *rr, void f(void))

{
}

The complementary functions for Y locks are more optimistic, since they treat the initial
attempt differently from subsequent attempts. The first stage macro bwrr_ylock is identi-
cal to bwrr_xlock , except for the swapping of “x” and “y”:

BUSY_WAIT (rr->y==0, f, rr->hgx);

#define bwrr_ylock(rr,f) /* first stage Y lock */ \
do { \
vfai(&(rr)->y); \
if ((rr)->x ==0) \
bw_instrument(gehgram((rr)->hgy,0)); \
else \
_bwrr_ylock(rr,f); \
} while (0) /* require semicolon */

If this fully symmetrical relationship between X and Y lock requests were allowed to con-
tinue, a livelock situation could easily develop. The problem is resolved in the second stage:

66

Chapter 3: Some Important Primitives

Section 3.5.5: Readers/Readers Locks

/I undo failed attempt

XBUSY_WAIT (rr->x==0, f, hg, iter, p);

void /I second stage Y lock
_bwrr_ylock (bwrrlock *rr, void f(void))
{
#if BW_INSTRUMENT
int iter = 0;
ehistgram *hg = rr->hgy;
unsigned p = 0;
#endif
do {
viad(&rr->y);
vfai(&rr->y);
} while (rr->x);
XBUSY_FINAL(hg,iter,p);
}

Note the use of XBUSY_WAITto perform instrumentation across potentially many delays, as

described in section 3.5.1 on page 52.

Remaining functions of interest are rather straightforward:

void
bwrr_xunlock (bwrrlock * rr)
vfad(& rr->x);
}
int
bwrr_tryxlock (bwrrlock * rr)
{
vfai(& rr->x);
if (rr->y==0)
return 1;
vfad(& rr->x);
return O;
}
void
bwrr_qgxlock (bwrrlock * rr)
{
vfai(& rr->x);
assert (rr->y == 0);
}

void
bwrr_yunlock (bwrrlock *

vfad(& rr->y);

int
bwrr_tryylock (bwrrlock *
{
if (rr->x)
return O;
vfai(& rr->y);
if (rr->x == 0)

return 1,
vfad(& rr->y);
return O;
}
void

bwrr_qylock (bwrrlock *

{
vfai(& rr->y);

assert (rr->x == 0);

67

rr)

rr)

Chapter 3: Some Important Primitives Section 3.5.5: Readers/Readers Locks

int int
bwrr_isxlocked (bwrrlock * rr) bwrr_isylocked (bwrrlock * rr)
{ {
return rr->y; return rr->x;
} }

3.5.6. Group Locks

Dimitrovsky's group lock [64, 65, 66] isn't really a “lock” in the same sense as a binary
semaphore, or readers/writers lock. The primary operations are named lock and unlock, but
the number of processors allowed access, and the manner of their accesses, are not controlled
the same way as with other kinds of locks. The group lock operation delays the caller, if nec-
essary, until a new group can be formed. A group is a collection of processors that have not
yet executed the unlock operation. Only one group at a time is allowed to execute; any other
processor invoking the lock operation must wait to join a later group after the current one

completes.*? In addition, the group lock provides operations for barrier synchronization of all
the processors in a group; these are said to divide the group lock into phases.

Interface

The supported operations® are listed in Table 11, below. BWG_INIT is a macro, for the same

Function Purpose
BWG_INIT Initialize
bwg_destroy Un-initialize
bwg_lock Join group
bwg_sync Barrier within group
bwg_gsync Barrier (quick—simplified)
bwg_fsyncl Barrier (fuzzy—part 1)
bwg_fsync2 Barrier (fuzzy—part 2)
bwg_unlock Leave group
bwg_size Return group size
bwg_relock Leave and rejoin next group

Table 11: Busy-Waiting Group Lock Functions.

“2This is somewhat like the N-Step SCAN disk scheduling algorithm [192], in that processors (disk
requests) arriving after a group has formed (sweep has begun) are forced to wait for the next group
(sweep).

“There have been several minor variations in the definition of the basic group lock operations.
The differences concern the way group members may obtain index values within a phase. In Dimtro-
vsky’s original version [64], no special provision was made, but group members could provide their own
indices by using Fetch&Add. In a subsequent paper [66], he defined the gindex operation to provide
indices in a more general manner. Our version provides indices as a side effect of group lock entry and
barrier operations. In addition, we added several barrier variants and the relock operation.

68

Chapter 3: Some Important Primitives Section 3.5.6: Group Locks

reason as BWS_INIT (see section 3.5.2 on page 54). The bwg_lock and bwg_sync operations
return a unique number in {0, ..., (group size)-1}; this number is the index of the processor
within the subsequent phase of the group lock. The implementation must allow some proces-
sors to call bwg_unlock while others may be calling bwg_sync , but there is another opera-
tion, bwg_gsync that isn't required to support this early exit property, and may actually be
slightly cheaper than bwg_sync . To round out the set of barrier operations, a fuzzy barrier is
provided (fuzzy barriers were introduced by Gupta [97]). A fuzzy barrier is accomplished by
making two separate calls: no processor may proceed beyond bwg_fsync2 before all others

in the group have called bwg_fsyncl .** An example of using these functions can be found in
section 3.7.4 on page 118.

The number of processors in the group may be determined at any time by calling
bwg_size , but this number is indeterminate if any processors are calling bwg_unlock con-
currently.

An additional operation, bwg_relock , allows a processor to leave the active group and
join the very next one, with no possibility of intervening groups. An example of such usage
will be given in section 3.7.3 on page 99; the goal is to reduce the average time spent in
bwg_lock .

Implementation: Overview

The algorithm used in the current implementation is based on that of Freudenthal and Got-
tlieb [86]. There are two parts to the algorithm: group formation and barrier synchroniza-
tion. Group formation is based on three shared variables, ticket , group , and exit , all ini-
tialized to 0. At the beginning of bwg_lock , a ticket is issued to each processor by incre-
menting ticket with Fetch&Increment. As a group is being formed, the group variable is
the ticket number of the group leader, the processor responsible for determining the maxi-
mum ticket value admitted to the group. All processors with tickets less than group have
already been admitted to previous groups. When processors leave their group (via
bwg_unlock), the exit variable is incremented; this allows the next group leader to know
when the previous group has finished (when exit equals group , which also equals the group
leader’s ticket). When this happens, the group leader copies ticket to group , thus defining
the size of the group and the next group leader. All non-leaders simply wait until their ticket
is less than group .

In section 7.3.5 on page 307, we will describe another group lock algorithm with a dif-
ferent approach to group formation.

The barrier portion of the algorithm is based on the size of the group, determined by the
difference (group-exit) , and two variables, barcount and barphase , the latter restricted
to values 0 and 1. Before any processor reaches a barrier, barcount is 0. Each processor
reaching a barrier makes a private copy of barphase , and increments barcount with
Fetch&Increment, getting a number that will eventually be returned to the caller as the
index of the processor for the next phase of the group lock. Meanwhile, this index is also
used to identify the last processor reaching the barrier, which occurs when the index is one

“We take a somewhat different approach for a context-switching group lock in section 7.3.5 on
page 304.

69

Chapter 3: Some Important Primitives Section 3.5.6: Group Locks

less than the current group size. The last processor to reach the barrier resets barcount to
0, making it ready for the next barrier, and complements barphase ; the other processors
simply wait until barphase differs from their private copy.

Implementation: Details
Here is the data structure:

typedef struct {
volatile unsigned int ticket,
group,
exit,
barcount,
barphase;

#ifdef BW_INSTRUMENT
ehistgram *hg;

#endif

} bwglock;

The first three variables are unsigned to avoid overflow problems. When they overflow, the
ANSI C standard [5] guarantees the result will be computed by discarding high order bits,
and no exception will be raised. Here is the first stage code for the lock operation:

int
bwg_lock (bwglock *g)
{
unsigned int myt = ufai(&g->ticket);
int x = _bwg_trylock(g,myt);
if (x <0)
x = _bwg_lock(g,myt);
else
bw_instrument(gehgram(g->hg,0));
return x;
}

Unlike the other busy-waiting mechanisms in section 3.5 on page 49, a check function is not
provided. This is because the processor is committed to a group by the initial
Fetch&Increment of g->ticket ; accepting an extra delay while waiting to begin group exe-
cution is just as harmful to group barrier latency as at any other point before leaving the
group. Since the primary use of check functions is to allow interrupts, we simply omitted the
feature in this case.

The basic test condition for completion of bwg_lock is encapsulated in _bwg_trylock
an inline function that is strictly “internal” to the implementation. If the result of
_bwag_trylock iS non-negative, the processor has successfully entered a group, and the
result is the processor’s index for the first phase. The else statement is responsible only for
instrumentation in the case of no delay. In the case that bwg_trylock failed, the second
stage function, _bwg_lock , is called:

70

Chapter 3: Some Important Primitives Section 3.5.6: Group Locks

int

_bwag_lock (bwglock *g, unsigned int myt)

{ .
int x;
BUSY_WAIT ((x=_bwg_trylock(g,myt)) >= 0, nullf, g->hg);
return x;

}

The parameter myt is the all-important ticket of the processor. As soon as _bwg_trylock
returns a non-negative result, we are done.

The condition for completion of bwg_lock is that all members of the previous group
have called bwg_unlock : this is tested by _bwg_trylock

int
__bwg_trylock (bwglock *g, unsigned int myt)
{
unsigned int myg = g->group;
if (myg == myt) {
if (g->exit 1= myt)
return -1,
else {
myg = g->ticket;
g->group = myg;
return (int)(myg - myt - 1);
}
}
else if (udiff(myg,myt) > 0)
return (int)(myg - myt - 1);
else
return -1,
}

The initial test determines if the caller is a group leader or not. If it is, we can proceed if
every member of the previous group has incremented exit ; we then set group to define the
group size and the following group leader. If the caller isn't a group leader, it may proceed
when the group leader advances group to exceed the caller’s ticket. This latter test is per-
formed by the function udiff (for “unsigned difference”), which performs subtraction modulo
2wordsize retyrning the difference as a signed integer. The result produced by udiff is cor-
rect even if its parameters have already “wrapped around”, providing that
—gwordsize=l < myg — myt < 2V0'9size=l “\where myg and myt are the values of myg and myt that
would result if the algorithm were run with arbitrary precision integers. For the group lock
algorithm, this simply requires that the largest possible group size < 2"z~ The follow-

ing suffices for conventional implementations of C on 2's complement machines:*

*This solution is not “strictly conforming” to the ANSI C standard [5].

71

Chapter 3: Some Important Primitives Section 3.5.6: Group Locks

#define udiff(a,b) ((int)((a)-(b)))

The two-stage implementation strategy doesn't work as well with group lock as it does with
regular kinds of locks. As can be seen from the description so far, it is unlikely that a proces-
sor can enter the group without calling the second stage function, except for the first one to
enter when the lock was previously “open” (group ==ticket==exit). The two-stage
approach is probably still worthwhile for uses where the group lock is often available imme-
diately and a group size of 1 is not uncommon. Of course, the caller can recognize when the
group size is 1, and use a purely serial algorithm without barriers to reduce overhead within
the semi-critical section controlled by the group lock (see section 3.7.3 on page 101 for an
example).

The barrier operation comes in several flavors, depending on whether or not early exit
must be supported and on the choice of normal or fuzzy barriers.

int // stage 1, ordinary group barrier
bwg_sync (bwglock *g)

{
unsigned int gsize = g->group - g->exit;
if (gsize == 1) {
bw_instrument(gehgram(g->hg,0));
return O;
}
/I not worth inlining check for barrier reached (?)
return _bwg_sync (g, gsize);
}

A two-stage implementation is employed simply to check for and optimize the case of a group
of only one processor. The second stage function contains the entire barrier algorithm:

int // stage 2, ordinary group barrier
_bwg_sync (bwglock *g, unsigned int gsize)

{
unsigned int phase = g->barphase;
unsigned int count = ufai(&g->barcount);
FBUSY_WAIT (_bwg_trysync(g,gsize,count,phase) ||
((gsize=g->group-g->exit),0), nullf, g->hg);
return count;
}

The group size must be repeatedly recalculated to allow for early exit; this can be avoided in
bwg_gsync , which, for the sake of brevity, we do not present. The barrier completion test is
encapsulated into an inline function, _bwg_trysync , so that it may easily be incorporated
into the fuzzy barrier as well; here it is:

72

Chapter 3: Some Important Primitives Section 3.5.6: Group Locks

int
_bwg_trysync (bwglock *g, unsigned int gsize,
unsigned int count, unsigned int phase)

{
if (gsize == count + 1) {
/I last one to reach barrier
g->barcount = 0;
g->barphase = Iphase;
return 1;
}
if (phase != g->barphase)
return 1;
return O;
}

Note that count and phase are only set at the beginning of the barrier.

Fuzzy barriers are accomplished by a pair of functions, bwg_fsyncl and bwg_fsync2.
The first part of the fuzzy barrier needs to communicate some state to the second part; we
abstract this as a “cookie”, which must be allocated by the caller. The cookie is an int , and
we use it to encode both the group size and phase (gsize from bwg_sync and phase from
_bwg_sync). We omit the details from this presentation for the sake of brevity.

Group exit and size operations are short enough to be implemented with macros:

#define bwg_unlock(g) vufai(&(g)->exit)
#define bwg_size(qg) ((g)->group - (g)->exit)

Of course the true group size is indeterminate if bwg_unlock executes concurrently with
bwg_size .

There are times, such as in the example in section 3.7.3 on page 99, when performance
can be improved by overlapping final computations of one group with the early computations
of the following group. This effect can be achieved with the bwg relock function, which
behaves as a combined bwg_unlock and bwg_lock , but guarantees no intervening groups:

int
bwg_relock (bwglock *g)
{
unsigned int myt = ufai(&g->ticket);
vufai(&g->exit);
int x = _bwg_trylock(g,myt);
if (x <0)
x = _bwg_lock(g,myt);
else
bw_instrument(gehgram(g->hg,0));
return x;

}

This is the same as bwg_unlock and bwg_lock , except we have postponed the action of
bwg_unlock until after the ticket for bwg_lock is obtained.

73

Chapter 3: Some Important Primitives Section 3.6: Interprocessor Interrupts

3.6. Interprocessor Interrupts

The need for interprocessor interrupts can arise in many situations, including processor
scheduling, device management, TLB management, signal delivery, etc. Symunix-1 runs
only on the NYU Ultra-2 prototype (§8.1), which lacks a direct hardware interprocessor inter-
rupt mechanism, so it handles such situations in the worst case by relying on a regular 16Hz
clock interrupt on each processor. One of these situations arises in support of asynchronous
serial communication ports, which are directly connected to processors. Continuous input
and output on these ports is interrupt driven, but a process running on the wrong processor
can’'t physically access the device; this poses a problem especially for starting an output
stream. The Symunix-1 solution is to use an extended version of the traditional UNIX kernel
timeout mechanism, which provides a per-processor time-ordered list of functions to call in
the future. By specifying a time that is 0 clock ticks in the future, a function can be called on
another processor as soon as possible (86.3/p265).

In Symunix-2, which is intended to be portable to a variety of machines, we replace this
peculiar use of the timeout facility with a new abstraction called Asynchronous Procedure
Calls (APCs). We also introduce a new abstraction, Random BroadCasts (RBCs), which
extends the APC mechanism to act on a specified number of randomly selected processors,
thus providing a low overhead way of parallelizing certain fine granularity operations in the
kernel.

APCs are not like Remote Procedure Calls, since the calls are asynchronous; the initia-
tor does not wait for the call to complete, nor is any mechanism built-in for a result to be
passed back. While APCs and RBCs are suitable for many purposes within an operating sys-
tem kernel, they are not intended as a general-purpose parallel or distributed computing
paradigm.

APCs are abstract in two ways:

(1) The implementation hides hardware details. The physical mechanism for interpro-
cessor interrupts is machine-dependent.

(2) A hidden dispatcher is provided to allow each interprocessor interrupt to call a differ-
ent procedure. This is important for kernel modularity, since APCs are a central
facility used by totally unrelated parts of the kernel.

RBCs share these two abstraction properties, and add two more:

(3) The selection of target processors is hidden as a machine detail. Depending on hard-
ware support, the choice may be static or dynamic, and may (but need not) vary from
call to call.

(4) The actual number of interrupts generated by a single RBC call depends on overhead
costs and the number of physical processors running in the machine. The program-
mer specifies only the total amount of work to be done and a rough estimate of the
granularity (see page 76).

APC Interface

The basic interface supplied by the APC facility consists of two functions, corresponding to
one or two interrupt levels:

int apc(int penum, void (*f)(genarg_t), genarg_t arg)
The function f will be called with generic argument arg on the processor indicated
by penum as soon as possible. (genarg_t is a typedef for a union of common scalar

74

Chapter 3: Some Important Primitives Section 3.6: Interprocessor Interrupts

types.) On the target processor, the call will be made in the context of an interrupt
handler, and may be masked by calling splapc() (83.4). The return value indicates
success or failure, to be discussed further below.

int softapc(int penum, void (*f)(genarg_t), genarg_t arg)
This is the same as apc, but the call is executed in the context of a soft interrupt
handler on the target processor, and may be masked by calling splsapc() . Recall
that the priority of this interrupt must be no higher than any hard interrupt, and
that the hard APC interrupt priority must be no lower priority than any soft inter-
rupt (§3.4).

In both cases, if the target processor is the calling processor and the appropriate interrupt is
unmasked, the call is performed at once and without incurring interrupt overhead. There is
no built-in mechanism provided for the caller to synchronize with an asynchronous procedure
call or to obtain status information from it; any such synchronization must be programmed
directly.

On machines with hardware support for only a single interprocessor interrupt, it may
be best used for apc, leaving softapc to be implemented indirectly by using apc to call a
procedure that calls setsoftapc to send the soft interrupt, locally, to the target processor.

The functions apc and softapc dynamically allocate a structure to record the (f, arg)
pair and keep track of each pending call. They also arrange for automatic cleanup of the
structure, making them easy to use but subject to failure if the dynamic allocation fails (this
is the significance of the return value, a boolean). Another disadvantage of this automatic
structure management is that it involves some additional overhead in cases where a proce-
dure is to be called asynchronously many times. To remedy both of these difficulties, an
alternate interface is provided to allow explicit structure management:

apc_pair *apcregister(apc_pair *, void (*f)(genarg_t), genarg_t arg)
Initialize an apc_pair structure for calling f(arg) asynchronously. The caller may
allocate the apc_pair structure itself, e.g. as part of some larger data structure, or
it may pass NULL to let apcregister allocate one dynamically, returning the result-
ing pointer (or NULL, if the allocation fails). A call to apcregister can't fail if the
caller has allocated the structure beforehand.

void apcreregister(apc_pair *, void (*f)(genarg_t), genarg_t arg)
Given an apc_pair structure that has already been initialized by apcregister
this allows changing just the (f , arg) pair, without reinitializing other data internal
to the structure.

void apcunregister(apc_pair *)
Uninitialize the indicated apc_pair structure, and, if it was dynamically allocated

by passing NULL to apcregister , deallocate it.*

void r_apc(int penum, apc_pair *)
Like apc, but using a preregistered (f , arg) pair.

“There is a marker inside each apc_pair to indicate if it was allocated by apcregister or not.

75

Chapter 3: Some Important Primitives Section 3.6: Interprocessor Interrupts

void r_softapc(int penum, apc_pair *)
Like softapc , but using a preregistered (f , arg) pair.

RBC Interface

Random broadcasts are very similar to asynchronous procedure calls, but cause a procedure
call to be executed on a specified number of processors, rather than on a specific one. The
implementation has a fair amount of latitude in how this is done, which is important since
most current machines don't provide direct hardware support (see section 3.8 on page 142).
Only a single interrupt level is assumed for random broadcasts (a soft one), although extend-
ing the system to include another level would not be difficult. The basic interface is modeled
after that of softapc

int softrbc(int howmany, void (*f)(genarg_t, int), genarg_t arg,

int chunksize)

Cause the procedure f to be executed on an appropriate number of processors as
soon as possible. The processors may be randomly selected, and may or may not
include the calling processor. Each target processor calls f(arg, n), where the sum
of all the parameters n is howmany. The number of target processors actually used
isn’'t directly controlled by the caller of softrbc , but the chunksize parameter is
supposed to reflect the relative cost of f, and generally indicates that [how-
many/chunksize [processors can be productively used.

As with APCs, there is an alternate interface for RBCs to provide explicit control over data
structure allocation and initialization:

rbc_pair *rbcregister(rbc_pair *, void f(genarg_t, int), genarg_t arg,
int smallthresh, int chunksize)
Like apcregister , but the structure type operated upon is rbc_pair rather than
apc_pair . Actually, in the case of RBCs, the structure describes four items rather
than a pair: the procedure, f, the argument, arg , and two numbers to control the
overhead, smallthresh and chunksize . The role of chunksize has already been

described for softrbc , but smallthresh is a parameter that is only available
through the alternate interface. As its name suggests, it specifies the threshold for
“small” RBC requests. A call to r_softrbc (p77) with howmany less than

smallthresh will immediately be fully executed on the calling processor, provided
that the soft RBC interrupt is not masked.

void rbcreregister(rbc_pair *, void f(genarg_t, int), genarg_t arg,
int smallthresh, int chunksize)
Like apcreregister , rbcreregister allows the caller to change only the f, arg ,
smallthresh , and chunksize fields of an already initialized rbc_pair structure.

void rbcretune(rbc_pair *, int smallthresh, int chunksize)

As its name suggests, this is like rbcreregister , but only allows one to retune the
parameters smallthresh and chunksize , while leaving the procedure and argu-
ment alone.

void rbcunregister(rbc_pair *)
Uninitialize the indicated rbc_pair structure, and, if it was dynamically allocated
by passing NULL to rbcregister , deallocate it.

76

Chapter 3: Some Important Primitives Section 3.6: Interprocessor Interrupts

void r_softrbc(int howmany, rbc_pair *)
Like softrbc , but using a preregistered rbc_pair structure.

Joint APC/RBC Modular Implementation

The implementation of the APC and RBC facilities is largely machine-independent, although
the key component that actually requests or emulates an interprocessor interrupt is
machine-dependent. “Hooks” are provided in the form of calls to machine-dependent func-
tions from the machine-independent portion of the implementation:

void md_apc(int penum)
Send, or emulate, an interprocessor interrupt to the processor indicated by penum.

void md_softapc(int penum)
Like md_apc, but for soft APC interrupts.

void md_softrbc(int numpes)
Send, or emulate, soft RBC interrupts to numpes unspecified processors.

In addition, machine-dependent code must be provided to handle the interrupts (or simulated
interrupts) thus generated, and call the machine-independent worker routines:

void doapc(void)
This parameterless function is called, with hard APC interrupts masked, to do all
pending hard APC work for the executing processor.

void dosoftapc(void)
This is like doapc , but for soft APCs.

void dosoftrbc(int nreq)
This function is called, with soft RBC interrupts masked, to do all pending soft RBC
work for the executing processor. But the nature of RBCs and the desire to avoid
serialization create some difficulty in determining just how much work is pending
for each processor. The parameter nreq is supposed to be the number of RBC
requests directed at the executing processor since the last call to dosoftrbc |, but
typical hardware doesn't provide a way to know this number. The caller of
dosoftrbc is machine-dependent, and so can provide an approximation if the exact

number is not maintained by hardware.*

3.7. List Structures

Since the early work of Gottlieb, et al. [94], and Rudolph [174], much software attention for
NYU Ultracomputer-style machines has focused on queues and other list-like structures.
The tradition continues in the current work with some minor improvements to previous algo-
rithms (83.7.1) and some new algorithms for new purposes (§83.7.3, §3.7.4, §3.7.5).

47 All the hardware needs to do is count the received rbc interrupts, and provide an atomic method
of reading and clearing the counter.

77

Chapter 3: Some Important Primitives Section 3.7.1: Ordinary Lists

3.7.1. Ordinary Lists

No single algorithm for parallel list access will ever be truly universal in practice, even for a
single machine. There are just too many important algorithmic properties to optimize, and
they cannot be ignored without sacrificing significant functionality, performance, or

scalability.*® The following paragraphs describe the most significant issues that have arisen
during our experience.

Ordering Discipline.

Probably the most obvious ordering discipline to consider is FIFO, but in our experi-
ence, two others are more valuable: completely unordered, and starvation free. The
former is especially well suited for free lists of available objects, while the latter is
good for most other purposes. With a starvation free discipline, no item can lan-
guish indefinitely on the list while an arbitrary number of other items are inserted
and deleted. A probabilistic solution is generally adequate, where the probability of
an item remaining on the list approaches zero as the number of other items deleted
increases.

In many cases, an unordered list can be more cheaply implemented than either of
the others. Often FIFO is preferable if it is no more expensive, or if guaranteed fair-
ness is important (as, perhaps, in a real-time system).

Contention-Free Execution Time.
An important list algorithm performance measure is the cost of a single insert or
delete, without any competing concurrent accesses. Some solutions achieve the ideal
of a small constant time, but others require time that is logarithmic in the capacity
or current size, or have different best, average, and worst case costs. There are usu-
ally tradeoffs between minimum execution time and other factors, such as worst-
case time, concurrency, memory usage, etc.

Concurrency.
In general, concurrency control costs something. As an extreme example, the cheap-
est possible list algorithms are generally not safe for concurrent execution at all;
such a serially-accessible list might be suitable for use on a uniprocessor, or in inher-
ently serial situations (such as within a critical section), or when the list is private

to a process or processor.** When concurrent access is a possibility, the shortest con-
tention-free execution time is sometimes achieved by using a simple lock in conjunc-
tion with a serially-accessible list. This time-honored approach is, of course, not
highly-parallel, but may still be appropriate if contention is expected to be very rare.
Other techniques can be used to eliminate serialization, with varying costs in terms
of expected execution time, memory usage, etc.; there are many possibilities.

Capacity.
Generally, lists with a fixed capacity have shorter access times than those without
such a limit, but they usually also require an amount of memory that is proportional

“8The same is, of course, also true for serial list algorithms and serial computers.

“9Serially-accessible lists are acceptable for per-processor use only when preemptive scheduling is
inapplicable or disabled.

78

Chapter 3: Some Important Primitives Section 3.7.1: Ordinary Lists

to their capacity rather than their current size. Some data structures have no fixed
capacity, but suffer worse expected execution times as the number of items grows
beyond some point (e.g., an algorithm based on a fixed size hash table). Serializa-
tion may also increase as a list approaches its full or empty condition.

For our purposes, we generally prefer an insert or delete operation to return a fail-
ure indication rather than delaying for a full or empty list, respectively, but the
opposite approach may be more appropriate in some environments.

Memory Usage.
The ideal list requires a constant amount of memory, independent of capacity or
number of processors, plus a constant amount of memory for each item in the sys-
tem. This is important because, in many cases, the number of lists and items are
both proportional to the machine size (number of processors). Greater per-list or
per-item memory requirements can quickly lead to an overall explosion of memory
usage as the system is moved to larger machines (e.g., quadratic growth, if both
sizes and number of lists are proportional to the machine size). Unfortunately,
memory-frugal algorithms sometimes pay a premium in execution time compared to
less scalable alternatives. It is therefore sensible to identify the situations where
the number of lists grows sub-linearly in the machine size. Typical examples are
free lists; often there is one of these for each of several kinds of objects in the sys-

tem, not one per processor.®® Such lists can “get away” with non-constant per-list
memory requirements.

Multiplicities.

An insert with multiplicity m means that an item is inserted onto a list only once,
but tagged in such a way that m consecutive deletes will return a pointer to it before
it is actually removed from the list’s data structure. This usage is explained further
in section 4.6.9. The primary difficulty in designing an algorithm for a list with mul-
tiplicities is arranging for high concurrency of deletes. In particular, we know of no
algorithm that handles a mixture of multiplicities well, and is also competitive with
non-multiplicity algorithms (for multiplicity 1).

Interior Removal.
The idea of interior removal is to remove a given item from a given list; the opera-
tion fails if the item is not, in fact, on the list. Algorithms that support interior
removal are tricky because they must be able to arbitrate contention between an
interior removal and an ordinary delete attempting to operate on the same item.
Additional cost is generally required.

In our experience, it is usually valuable to keep track of holes, placeholders for items
that have been removed. Thus a delete may return any of three kinds of value: a list
empty failure indicator, a valid pointer to an item, or a special value to indicate a
hole. Depending on the ordering discipline chosen, the holes may or may not need to
maintain their position. Making holes visible allows the caller to assume the

® Sometimes per-processor free lists can be used to good advantage, however. A reasonable
approach may be to combine the use of a small-capacity, private list per-processor with a single, highly
parallel list.

79

Chapter 3: Some Important Primitives Section 3.7.1: Ordinary Lists

number of items on the list is unaffected by interior removal. The importance of this
can be seen in the readers/writers unlocking routines given in section 4.5.2.

Parallel-access queues with holes were first introduced by Wilson [205]. It is impor-
tant to realize that a hole left behind by an interior removal operation will increase
the cost of an ordinary delete, when it is eventually encountered. In the most
extreme case, where all items leave the list via removal and none via deletion, the

number of holes will grow without bound.?

Presence Test.
Testing to see if a given item is, at this instant, on a given list is occasionally useful.
Note that this is quite different from any kind of search; the goal is not to locate
anything, but to return a boolean result.

Item Count.
Providing the instantaneous number of items on a list is never an absolutely neces-
sary part of a list algorithm, because it can be simulated by incrementing a count
after each insert and decrementing it before each delete. Many algorithms maintain
the count for internal purposes, however, in which case it costs “nothing” to support.

Deletion from Empty list.
When a delete operation encounters an empty list, there are basically two possible
actions: return an indication of failure or block. We generally take the former
approach, since it is easy to use a counting semaphore to achieve the latter, but
some additional convenience and efficiency could be gained by taking a more inte-
grated approach.

Architectural Support.
Many parallel architectures include special features that can be advantageous in
crafting efficient list algorithms. Some examples include Test&Set, Fetch&Add,
Compare&Swap, and full/empty bits; there are many others. Equally important
may be implementation characteristics that are largely considered to be transpar-
ent, such as cache organization and coherence strategy and the ability (or lack
thereof) to combine concurrent memory requests directed at the same location.

Interface

In the context of an operating system kernel, the potential number of practical list algo-
rithms tends to favor a modular approach, in which the multitude of alternative algorithms
and their data structures can be hidden behind generic operations on list and item types that
are selectable at compile time as configuration choices. The item types contain no data;

rather they are included as members in other structures of interest.> To allow objects to
move from list to list even when the lists are different types, the list item types are designed
to be wunioned together in appropriate combinations, as needed for each object.

L If the holes occupy no real space, but are merely counted, this will “only” lead to integer overflow.

*2In an object-oriented system, the real structures of interest would be derived from the list item
types. In a plain ANSI C environment, the offsetof construct can be used to get a pointer to the
enclosing structure from an item pointer.

80

Chapter 3: Some Important Primitives Section 3.7.1: Ordinary Lists

Reinitialization functions are defined for use when moving from one list type to another.
This allows an object to move among lists of different types with a per-object space overhead
equal to the maximum of the item sizes used.

With this approach, the system may be tuned for a particular workload or machine con-
figuration by choosing the best algorithm for each situation. Disregarding initialization
issues, Table 12, below, gives the complete set of generic operations on ordinary lists used
within the Symunix-2 kernel. The set of operations used is intentionally small, to provide
the greatest implementation flexibility possible. In particular, note the absence of search or
traversal operations (but see sections 3.7.3 and 3.7.6). In addition, not all operations are
required for every list. In particular,

= We do not use both put and mput on the same list.
= We use the operations of remove, puthole, and presence test on a very small number of
lists.

To get the best performance, one must choose, for each list, the least powerful semantics that
meet the requirements.

Implementation

As a result of our highly tailorizable approach, very good solutions are possible for the target
machine class as well as for other, more traditional classes, and there is ample room to exper-
iment with alternatives. Table 13, on the next page, indicates the algorithms chosen initially
for the Ultra-3 prototype, typical of our target class. Table 14, on page 83, shows the perfor-
mance and memory usage of the same algorithms. Similar experimental results for related
algorithms have been obtained by Wood [207].

Three algorithms listed in Table 13 have O(P) memory consumption per list on a P pro-
cessor machine: pool , dafifo , and mqueue. They are used in situations where the number
of such lists is (nearly) independent of P; otherwise they would be unacceptable for our tar-
get class of machines:

= pool s are used almost exclusively as lists of unallocated objects, e.g., process structures,
file structures, etc. The number of different object types is constant, possibly varying
only between different operating system versions.

= The primary use of dafifo s is for waiting lists of interruptible counting semaphores and
readers of readers/writers locks (84.5.2). Traditional UNIX semantics only require

Operation Description
put Insert item on list
get Delete and return “next” item from list
count Return number of items on list
mput Insert with multiplicity
remove Remove indicated item from list
puthole Insert a place marker (a “hole”)
presence test | Determine if item is on list

Table 12: Generic List Operations.

81

Chapter 3: Some Important Primitives Section 3.7.1: Ordinary Lists

List Description _E;;Z !;;ge] Applicability
Linked lists list llitem binary semaphore wait list
riw wait list for writers
same as llist , but
Deluxe linked lists | dllist dllitem supports interior removal for
interruptible synchronization
Un-ordered lists pool poolitem free lists
counting semaphore wait list
Almost FIFO lists afifo afitem riw wait list for readers
event wait list
same as afifo , but
Deluxe almost dafifo dafitem supports interior removal for
FIFO lists interruptible synchronization
ordinary ready list
ready list
Almost FIFO . for spawning processes
. mqueue | mgitem
multi-queues for awakened readers
for awakened event waiters

Table 13: Ordinary List Types for Ultra-3.

interruptible semantics for system calls that access “slow” devices, like terminals; for
computationally intensive workloads we don't expect the number of such devices to grow

with the size of the machine.>®
= mqueues are useful primarily for the ready list. (84.6.9).

The algorithms themselves are derivatives of previously developed ones; llist and dllist
are implemented with fairly ordinary linked lists, singly- and doubly-linked, respectively;
afifo is based on Dimitrovsky's hash table queue algorithm [63], because of its simplicity,

good average performance, and low space usage;** circular array structures are used for
pool , dafifo , and mqueue, because they have advantages of simplicity, lower overhead, and
they handle interior removals well (see Wilson [205] for variations of the circular array list
theme).

% A few other system calls are also interruptible, primarily wait and pause. These do not require
dafifo s.

*But only if a sufficiently large hash table can be statically allocated. See Wood [207] for a
dynamic hash table queue algorithm that may be more appropriate; better alternatives will probably be
discovered over time. Note also that Dimitrovsky’s hash table queue algorithm requires generation of
gueue identifiers; we handle this with a variation of the set algorithm to be presented in section 3.7.5
on page 124.

82

Chapter 3: Some Important Primitives Section 3.7.1: Ordinary Lists

List No Contention 1 Parallel £ Memory *
Put Get Remove Put Get Remove y

llist 7 7 n/a O(N) | O(N) n/a 16L +41
dllist 9 11 10 O(N) | O(N) O(N) 20L +121
pool 8 9 n/a 0o(1) o) n/a (12+12P)L +41
afifo 11 11 n/a o) o) n/a 12+16L +81 +16H
dafifo 12 14 12 0(1) 0(1) 0(1) (12 +24P)L + 161
mqueue | 12 7,19« | n/a o(1) O(1),0(N)= | n/a (16 +20P)L + 161

t Minimum number of shared memory references required for the indicated list operation. It
is achieved when the operation succeeds and there is no contention.

$Time for 1 of N concurrent processors operating on the same list, assuming the list is nei-
ther full nor empty and all processors run at the same speed on a CRCW PRAM.

*Memory requirement in bytes for | items distributed across L lists on a machine with P
processors. H specifies the number of buckets in a hash table, and is proportional to the
maximum expected value of I.

= Time for get depends on average multiplicity; values given represent the extremes, assum-
ing perfect combining.

Table 14: Ultra-3 Asymptotic List Performance.

A uniprocessor can take advantage of the tailorizability to use simple linked list algo-
rithms (perhaps only one) in all cases. Small multiprocessors might take a similar approach
by adding simple locks to the algorithm(s). Machines with hardware support for compare-
and-swap or load-linked and store-conditional instructions will presumably benefit from list
algorithms based on them. Very large machines with no support for combining might get the
best performance from list algorithms that use software combining techniques. any of them
can be used as long as they fit the generic operations given in Table 12.

3.7.2. LRU Lists

We have some ordinary list types, such as afifo , that maintain at least approximate FIFO
ordering under the operations of insertion, deletion, and removal (83.7.1/p82). It might seem
that such lists are suitable for maintaining a list of items in Least Recently Used order, but
we don't consider these lists practical for such usage because each successful removal
increases the cost of a subsequent deletion, and ratio of removals to deletions may be quite
large in LRU lists.

LRU lists are typically used to organize items that are subject to reallocation for other
purposes. The classic application of LRU ordering is in virtual memory page replacement
policies, although explicit lists such as we propose here are not normally used in practice for

paging.
The operations we require for an LRU list are:
= Getlru: Delete and return the least recently used item. The item is then typically reas-
signed, e.g., for another cached object (disk block, etc.).

= Putmru: Insert an item as the most recently used. This makes the item eligible for reas-
signment, but with the expectation that it may be needed again soon.

83

Chapter 3: Some Important Primitives Section 3.7.2: LRU Lists

= Putlru: Insert an item as the least recently used. This makes the item eligible for reas-
signment, with the expectation that it won’t be needed again soon.

< Remove: Remove a specific item from the list, whatever its position. This operation
returns TRUE if the removal is successful (i.e., the item was on the list), and FALSE oth-
erwise (i.e., the item was not on the list). Remove is the mechanism by which a previ-

ously released item is reclaimed for use.*®

To allow sufficient latitude for efficient implementation, we stipulate a requirement only for
approximate LRU ordering.

On the face of it, there is nothing to distinguish these operations from the get, put, and
remove operations in section 3.7.1 on page 81, other than allowing for insertion at the other
end via putlru; in fact, we have simply defined an output-restricted deque (Knuth [130]). The
significant difference lies in expected usage patterns: with LRU lists, it is expected that more
items will come off the list via remove than via getlru. This difference has a significant
impact on the choice of algorithm for use on our target class of machines, along with many
other issues discussed on pages 78-80.

It is required that the LRU list operations be serializable: the outcome of any concur-
rent execution of these operations (getlru, putmru, putlru, and remove) must be the same as
some serial ordering. In particular, it is not permitted to successfully remove an item that is
concurrently returned by getlru.

Interface

Table 15, below, gives the functions for LRU lists. To increase the latitude allowed for imple-
mentation, we impose a restriction that wasn't present on the lists in section 3.7.1: an item is
initialized to interact with a single LRU list; it may not move from list to list. This is
reflected in the Iruiinit function, which specifies the particular Irulist

For the sake of simplicity, we choose not to define list or item un-initialization func-
tions, although it could be done.

Function Purpose
int [ruinit (Irulist *) Initialize LRU list
int Iruiinit (Iruitem *, Irulist *) Initialize LRU item for given list
Iruitem *getlru (Irulist *) Return LRU item or NULL
int [ruremove (lrulist *, lruitem *) Remove item; return success/failure
void putlru (Irulist *, lruitem *) Insert item as least recently used
void putmru (lrulist *, lruitem *) Insert item as most recently used

Table 15: LRU List Functions.

The types lIrulist and lruitem are typedef s for appropriate structure defini-
tions.

It is arguable that a more appropriate term for this operation is use, but our list-centric attitude
inclines us more towards remove.

84

Chapter 3: Some Important Primitives Section 3.7.2: LRU Lists

Implementation: Overview

There are several possible approaches to implementing LRU lists. For uniprocessors, multi-
processors with few processors, or workloads for which LRU operations are known to be very
rare, a doubly linked list is appropriate, with a binary semaphore to protect it on multipro-
Cessors.

One possible approach for larger machines or heavy LRU activity is to use group lock
(83.5.6), a linked list, and an algorithm based on recursive doubling. This requires O(log N)
group lock phases when N processors are performing the same operation concurrently.

The approach we describe here is based on a circular array of linked lists, much as the
parallel access queues of Rudolph [174] and Wilson [205]; these are also the basis for dafifo
and dqueue lists (83.7.1/p82). The central question in such a design is: how to handle
removals? Wilson's queue algorithm records how many items have been removed between
each remaining item in each sublist, skipping over them at deletion time to maintain FIFO
ordering. Instead of keeping counts, we simply mark removed items and leave them on the
list; we can do this because we gave up the requirement to allow items to move from list to
list. When an item is inserted (via putmru or putlru) back on the list, we check to see if it's
still linked into a sublist or if it has been deleted and skipped over. In the former case, we
simply move the item to the proper end of its sublist, and in the latter case we insert it on a
sublist chosen with Fetch&Increment. As a result, what we have is essentially a balanced
collection of FIFO lists.

Implementation: Details
The items, which are to be included in larger objects of interest, look like this:

typedef struct _lruitem {

struct _lruitem *mru; /I more recently used item

struct _lruitem *Iru; /l'less recently used item

int whichlist; // which sublist item is on
} lruitem;

We use whichlist to locate an item’s sublist for the removal operation, and also as a status
indicator:

= If whichlist =0, the item is on no sublist.

= If whichlist > 0, the item is on the sublist with index whichlist -1 (and has not been
removed).

= If whichlist <0, the item is present on the sublist with index —whichlist -1, but has

been removed.

While this status can be determined atomically by examining whichlist , a non-zero value
can change asynchronously unless the indicated sublist is locked.

The structure for an LRU list looks like this:

85

Chapter 3: Some Important Primitives Section 3.7.2: LRU Lists

typedef struct {
struct _lrusublist {
bwlock Ik; /Il serialize access to linked list
Iruitem head; /I list head for items

} sub[LRU_NSUBLISTS]; // sublists
unsigned int dlist; I/ sublist for next delete (getlru)
unsigned int ilist; I sublist for next insert (putmru, putlru)

int n; /I current number of items
} lrulist;

Insertion of an item (with whichlist==0) via putmru or putlru chooses a sublist with
ufai acting on the list’s ilist field; the result is taken mod LRU_NSUBLISTSand overflow
is ignored.®® We require LRU_NSUBLISTSto be a power of 2. Likewise, deletion of an item via
getlru chooses a sublist with ufai acting on the dlist field.

Here is the code for LRU list initialization; we begin with declarations of histograms for
instrumentation:

* In practice, it may be worthwhile to dynamically allocate the array sub. We choose not to do so
in this context for the sake of brevity. An example of our preferred manner for performing such
dynamic allocation is given in section 3.7.4 on page 109.

86

Chapter 3: Some Important Primitives Section 3.7.2: LRU Lists

bw_instrument (ehistgram _Iru_hglk);
bw_instrument (ehistgram _getlru_hgwait);

int
Iruinit (Irulist *Ip)
{ . .
int i;
for(i=0; 1 < LRU_NSUBLISTS; i++) {
if {BWL_INIT (&lp->sub]i].lk, 1, & Iru_hglk,
"lrulist sublist lock™)) {
/I failed lock initialization
while (--i >= 0)
bwl_destroy (&lp->subli].lk);
return O;
}
/I empty list head points to self
Ip->subli].head.mru = &lp->subli].head;
Ip->subli].head.Iru = &Ip->subli].head;
Ip->subli].head.whichlist = i; // not used
}
Ip->dlist = Ip->ilist = 0;
Ip->n = 0;
bw_instrument (ehgraminit (&_getlru_hgwait,
"empty sublist wait time"));
return 1;

}

In an empty sublist, the two link pointers are set to point back to the sublist head itself,
eliminating special cases of insertion into an empty sublist and deletion of the last item in a
sublist. An exponential histogram (83.3), _Iru_hglk , is set up to collect lock waiting times.
The only real complication in LRU list initialization is handling lock initialization failure.

Here is the code for item initialization:

int
Iruiinit (Iruitem *ip, lrulist *Ip)
{
ip->mru = ip->Iru = NULL;
ip->whichlist = 0;
return 1; // no failure possible
}

The Ip parameter is ignored in this version, although we still rely on each item being dedi-
cated to a single list; it could presumably be recorded and checked with an assertion in
getlru , putmru , and putlru functions.

Here is the code for getlru

87

Chapter 3: Some Important Primitives Section 3.7.2: LRU Lists

bw_instrument (ehistgram _getlru_hgempties);
bw_instrument (ehistgram _getlru_hgholes);

Iruitem *
getlru (Irulist *Ip)
{
Iruitem *ip;
spl_ts;
int removed,;
bw_instrument (int empties = 0);
bw_instrument (int holes = 0);

ip = NULL;
while (tdrl (&lp->n)) {
struct _Irusublist *list;
list = &lp->subfufai(&lp->dlist) % LRU_NSUBLISTS];
do { // loop until list is non-empty (optimistic)
s = splall(); // reduce lock holding time
bwl_wait (&list->1k, splcheckf(s));
ip = list->head.mru; // head.mru is LRU
if (ip == &list->head) {
Il list is empty; wait for non-empty
bwl_signal (&list->Ik);
vsplx(s);
BUSY_WAIT(list->head.mru != &list->head,
nullf, & getlru_hgwait);
bw_instrument (empties++);
}
} while (ip == &list->head);
(list->head.mru = ip->mru)->Iru = &list->head;
removed = (ip->whichlist < 0);
ip->whichlist = 0;
bwl_signal (&list->Ik);
vsplx(s);
if ('removed)
break;
[/l found hole -- must retry
bw_instrument (holes++);
ip = NULL;
}

bw_instrument (ehgram (&getlru_hgempties, empties));
bw_instrument (ehgram (&getlru_hgholes, holes));
return ip;

88

Chapter 3: Some Important Primitives Section 3.7.2: LRU Lists

Histograms are used for measuring the time waiting for sublists to become non-empty and
for measuring the number of “holes” (removed items) skipped over.

We can implement both putmru and putlru in a reasonably efficient manner with a
single routine:

#define putmru(lp,ip) _Iruput(lp,ip,1)
#define putlru(lp,ip) _lruput(lp,ip,0)

void // insert as most recently used if most != 0
_lru_put (Irulist *lp, Iruitem *ip, int most)

{

int whlist;

int doinsert;

int mylist = ip->whichlist;

assert (mylist <= 0); // otherwise not yet removed
moved:

int onlist = (mylist < 0);

if (onlist)

mylist = -mylist;
else

mylist = (ufai(&Ip->ilist) % NUMPES) + 1;
struct _Irusublist *list = &lp->sub[mylist-1];
spl_t s = splall(); /I reduce lock holding time
bwl_wait (&list->1k, splcheckf(s));

89

Chapter 3: Some Important Primitives

if (‘onlist) {
Il ip->whichlist must still be 0
doinsert = 1,
whlist = 0;
ip->whichlist = mylist;
}
else {
whlist = ip->whichlist;
if (whlist==0){ // no longer on sublist
bwl_signal (&list->Ik);
vsplx(s);
mylist = 0;
goto moved; // do this at most once
}
assert (whlist == -mylist);
ip->whichlist = mylist;
/l already on list; move to proper position
[ruitem *m = ip->mru;
Iruitem *| = ip->Iru;
if (&list->head == (most ? m : I))
doinsert = 0; // already in proper position
else {
// unlink from interior of list
m->lru = [
I->mru = m;
doinsert = 1,

}

if (doinsert) {
if (most) {// insert as most recently used
ip->mru = &list->head;
(ip->Iru = list->head.Iru)->mru = ip;
list->head.Iru = ip; // head.Iru is MRU

else { I/l insert as least recently used
ip->Iru = &list->head;
(ip->mru = list->head.mru)->Iru = ip;
list->head.mru = ip; // head.mru is LRU

}

}

bwl_signal (&list->Ik);

vsplx(s);

if (whlist ==0) // we did a real insert
vfai (&lp->n);

90

Section 3.7.2: LRU Lists

Chapter 3: Some Important Primitives Section 3.7.2: LRU Lists

The main “trick” of _Iru_put is to get a tentative sublist by examining ip->whichlist ,
and verify it after locking. Because we assume at most one processor will try to insert a par-
ticular item concurrently, we know the item won't be moved from list to list asynchronously.

The final LRU list operation is Iruremove

int
Iruremove (Irulist *Ip, Iruitem *ip)
{
int mylist = ip->whichlist;
assert (mylist >= 0); // else already removed
if (mylist == 0)
return O; /I lost race with Iruget
struct _Irusublist *list = &lp->sub[mylist-1];
spl_t s = splall();
bwl_wait (&list->1k, splcheckf(s));
int whlist = ip->whichlist;
assert (whlist == 0 || whlist == mylist);
if (whlist > 0)
ip->whichlist = -whlist;
bwl_signal (&list->Ik);
vsplIx(s);
return whlist != 0;

}

This straightforward routine checks to see if the item has already been skipped over by
getlru and, if not, locks the sublist and checks again. If it has won the race, the item is
marked as removed by negating the whichlist field.

3.7.3. Visit Lists

The lists described in section 3.7.1 are all similar in that the primary operations supported
are:

* insert an item,
« delete and return the “next” item, and
= remove a specific item.

Of course, “next” may be defined differently for each list type, and remove isn't supported by
all lists. In this section we describe a different kind of list, where the primary operations are:

= insert an item,
= remove a specific item, and
= apply a function to each item on the list.

We call such lists visit lists, and the third operation is called visit. Visit lists are used to
maintain several kinds of process groups in Symunix-2, supporting signal delivery through
the visit operation (§4.8.2).

The basic concept of visit lists is certainly not new; most ordinary list structures are
easy to traverse in a serial computing environment, especially if there is no ordering require-
ment. But a highly parallel system can’t afford the serial solution for two reasons:

91

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

= The insert and remove operations can become a performance bottleneck if one simply pro-
tects a serial list with a lock. This is true even if the visit operation is very rare.

= The visit operation may require work proportional to the size of the machine.*” If per-
formed serially, this can be a scalability problem even when the visit operation is rarely
required, since it directly affects the latency of the higher level operation being per-
formed. For example, the latency of signal delivery is affected.

Visit lists allow insert, remove, and visit operations to be performed concurrently. To strike a
balance between utility and latitude for implementation, we have chosen the following rules:

(1) All items on a visit list for the entire duration of a visit operation will be visited at
least once.

(2) An item might not be visited at all if it is inserted or removed while a visit operation
is in progress.

(3) An item may be visited redundantly.

(4) The visit operation may be performed asynchronously, and on more than one proces-
sor.

(5) If one visit operation begins before another has completed, some items may be visited
only once.

(6) The order in which items are visited is undefined.

(7) The function called for each member may be called from an interrupt handler, so it
must not cause a context-switch.

It should be clear from rules 1, 2, 3, and 5 that each visit operation is “anonymous”. Higher
level application-specific methods must be employed to keep track of the work to be done by
each visit. There is also no built-in mechanism provided for a “visit initiating” processor to
wait for, or be notified of, the visit's completion, but it is simple for higher level software to do
so, e.g., by using a reader/writer lock if necessary to prevent insertions or removals from
interfering, and by counting the items on the list and the items visited with Fetch&Add; this
determines when the work is done, at which point the initiator can be awakened. This, and
other desirable features, may be worth incorporating in the visit list mechanism itself, but
we assume a minimal specification for simplicity of presentation.

Interface

A visit list is represented by an abstract data type, vislist . The data type for a visit list
item, visitem , is designed to be included as an element in some larger structure of interest.
The function to call when visiting each item, which is set when the visit list is initialized, is
called with two parameters: a pointer to the vislist , and a pointer to the visitem

Table 16, on the next page, lists the functions that manipulate visit lists and items.
Functions that may fail, e.g., due to resource shortage, return boolean values; the others
return nothing. The most complicated function is visinit , but only because of the number
of arguments. In addition to the list, and the function to call for each visit, visinit

*This will happen when the size of a particular visit list grows linearly with the size of the
machine, a reasonable expectation for many anticipated uses.

92

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

Function Purpose
void visitinit(void) Overall initialization (boot time)
int visinit (vislist *, List initialization

void f(vislist *, visitem *),
int chunksize)

int visiinit (visitem *) Item initialization
void visdestroy (vislist *) List un-initialization
void visidestroy (visitem *) Item un-initialization
int visput (vislist *, visitem *) Insert item on list
void visremove (vislist *, visitem *) Remove item from list
void visit(vislist *) Initiate visit operation

Table 16: Visit List Functions.

The function to call for each item during a visit operation is specified by the f
parameter to visinit

supports a single tuning parameter: chunksize . Practical considerations often make it
preferable to visit items in chunks, reducing the overhead of distributing work by a constant
factor. Of course, chunksize is only a hint; the implementation is free to ignore it.

Implementation: Overview

While less parallel machines can probably adopt the serial approach, the data structures and
algorithms described here are designed for the target class. Figure 3, below, shows a logical
view of how we use a stack to implement the three main visit list operations. The general
characteristics of our solution are:

Top == Top 3] Top —=
> <=7 Next
N =
Insert Remove Visit

Figure 3: Use of Stack for Visit List Operations.

Insert is simply a push. Removal of the top item is simply a pop; an interior item is
replaced by the top item. Fetch&Add allows visit to be performed without serializa-
tion.

93

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

Work is performed on an appropriate number of processors by random broadcast inter-
rupt handlers (83.6).

Each of the operations (insert, remove, and visit) must execute exclusively from the oth-
ers; this could be called a Readers/Readers/Readers situation, generalizing from section
3.5.5.

The insert and remove operations are each structured as multi-phase group lock algo-
rithms (83.5.6).

A single group lock is used in a stylized manner to manage the coordination without des-
ignating fixed phases for each major operation (insert, remove, and visit).

The conceptual data structure is that of a stack; removal of an item that isn’'t on top of
the stack is accomplished by replacing it with the top item (see Figure 3).

Visitation is performed by dynamically assigning “chunks” of items to each processor’s
interrupt handler. This is accomplished by keeping the stack index of the next item to be
visited, starting at the top, and using Fetch&Add to perform assignment. To initiate a
visit, one simply sets this index to the top, and interrupts the appropriate number of pro-
cessors viarbc .

The stack data structure for each visit list is organized as d direct item pointers to hand-
le common small lists efficiently, plus i indirect pointers to fixed-size arrays of ¢ item
pointers allocated from a common pool. Whereas the purely contiguous array approach
requires L x 1 pointers for L visit lists and | items, our simple strategy requires
Lx(d+i)+Lxc+ 1 pointers (assuming ¢ evenly divides 1). (Cf. traditional UNIX file
block mapping in i-nodes (Bach [15])).

Although we discuss further details below, the need for some of the rules given on page 92
should already be clear. Removal of one item can cause an already-visited item to be relo-
cated on the stack so that it is visited again (redundantly). When one visit operation over-
laps with another, the index of the next item to be visited is simply reset to the top, thus
causing the items closer to the top to be twice visited and items closer to the bottom to be vis-

ited
The
(1)

()

only once.
success or failure of this design for visit lists depends primarily on two factors:

The quality of the random broadcast mechanism, in terms of overhead, latency, and
fairness. The first two factors determine the list size threshold for which the serial
approach is preferred. Maximum latency restricts the degree to which visit lists can
meet real-time requirements. Unfairness affects overhead and latency, and worsens
apparent speed variations among processors in the machine.

The relative priority (importance) of the “visit work”, compared to the work inter-
rupted on the random target processors. This can be controlled somewhat by careful
interrupt masking, but excessive interrupt masking is detrimental to latency.
Another way to sacrifice visit latency to reduce priority inversions is to use visit func-
tions only to generate lower-priority soft interrupts (§83.4/p46) to perform time con-
suming work.

Implementation: Details

The

vislist structure contains the following fields:

94

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

typedef struct _vislist {

int top; /l highest index used + 1
int next; I/l next item to visit, counting down
rbc_pair pair; /[used to send rbc
bwglock g; /I for visput/visremove/visit
int op_pri; Il glock arbitration
int opent[VISIT_NUMOP]; // count visput/visremove/visit
int temp; /I for visremove
visitem *dirfNDIRVIS]; /I direct item pointers
visindir *indirfNINDIRVIS]; // indirect item pointers
int indirn; /I next indir for visput
// function to call for each item
void (*f)(struct _vislist *, struct _visitem *);
} vislist;

As already mentioned, we use direct and indirect pointers to conserve space, because the
indirect pointer blocks can be shared among all visit lists. The indirect pointer blocks are
allocated from a pool (83.7.1/p82):

pool visitfree;
typedef union {
poolitem pi;
visitem *ptr[NVISINDIR];
} visindir;
The constants NDIRVIS, NINDIRVIS , and NVISINDIR determine the maximum capacity of a
visit list:

#define NDIRVIS Number of direct pointers per list
#define NINDIRVIS Number of indirect pointers per list
#define NVISINDIR Number of pointers per indirect block

#define VISLIMIT ~ (NDIRVIS+NINDIRVIS*NVISINDIR)
For positions greater than NDIRVIS, two macros are convenient:

#define _VDIV(pos) (((pos)-NDIRVIS) / NVISINDIR)
#define _VMOD(pos) (((pos)-NDIRVIS) % NVISINDIR)

The items have a structure, too:

typedef struct _visitem {

int index; /I position of item in vislist
int mark; /I for use by visremove
} visitem;

Initialization. Visit lists and items must be explicitly initialized and un-initialized. Some
fields deserve explicit mention now; the others will be described as needed.

= Visit item initialization. The mark field is set to O.

= Visit list initialization. The RBC parameters in pair are set for the internal function
_dovisit , to be described on page 108, with an argument pointing to the visit list itself.
Eventually, _dovisit will call the function pointed to by f, which is also set when the

95

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

visit list is initialized. The visit list field top is set to 0, to indicate an empty list, and
next is set to -1, to indicate no visit operation in progress. The other integer fields
(op_pri ,opcnt , temp, and indirn , are all set to 0.

Arbitration. Coordination of the three main visit list operations, visput , visremove , and
visit , is achieved with a group lock. The algorithms we use require quite a few group lock
phases, so instead of assigning all the phases to one large sequence, we perform dynamic
arbitration to control which of the three operations is being performed at any time. This is
the purpose of the vislist fields op_pri and opcnt . We assign each of the three opera-
tions a number:

#define VISIT_PUT 0

#define VISIT_REMOVE 1

#define VISIT_VISIT 2

#define VISIT_NUMOP 3 // Number of operations

This number is used as an index into opcnt , and to indicate which operation has priority in
op_pri . Each element of the opcnt array indicates how many processors are performing
the corresponding operation. The op_pri field encodes several bit fields:

RN

Priority| Pending Pending

The low-order 6 bits indicate which of the 3 operations are pending; the same information is
recorded twice in two 3 bit fields. The next two bits indicate which operation has priority in
case of contention.

We define an internal function, _visglock to perform this arbitration. In two group
lock phases, _visglock determines which operation may proceed; processors wishing to exe-
cute this operation return so they may perform it (with additional phases as needed), while
processors that must wait use the bwg _relock function to guarantee a place in the very
next group, at which time another arbitration decision is made. Figure 4, on the next page,
shows a transition diagram for group lock phases used by visit operations.

Each of the functions visput , visremove , and visit (and the internal function
_dovisit , acting on behalf of visit), begins with a call to _visglock . Here is the first
phase of _visglock

96

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

Phase 1
announce

bwg_relock bwg_gsync

(low priority)
Phase 2a
priority check

Phase 2b
mark & choose

bwg_sync bwg_sync

Phase 2b
complete

Phase 2b
reserve space

bwg_unlock

Phase 3 Phase 3
complete compress

bwg_unlock

move up | (most) bwg_unlock

some)
sync

bwg_unlock

Figure 4: Group Lock Phase Transitions for Visit List Operations.

The first two levels of the diagram are performed by _visglock . Phases 2a and 2b
are actually part of a single phase; only one of the alternate 2b phases is chosen for
execution by each group.

97

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

Il interrupts are already masked
int /I opis VISIT_PUT, VISIT_REMOVE, or VISIT_VISIT
_visglock (vislist *v, const int op, spl_t s)
{
I calculate my contribution to pending fields of op_pri
int myopbits = (1<<op)|(1<<(op+VISIT_NUMOP));
bwg_lock (&v->g, splcheckf(s));
/I PHASE 1: announce our presence

int gs = bwg_size (&v->Q);
plagain:
if (gs==1) { /I fast path; no contention
v->opcntjop] = 1;
/I set priority for next arbitration round
v->0p_pri = (((op+1)%VISIT_NUMOP) << (2*VISIT_NUMOP));

return O;
}
int pri = faor (&v->op_pri, myopbits) >> (2*VISIT_NUMOP);
int r = fai(&v->opcntfop]); /I return value and index

The pending bits of interest within op_pri depend only on the constant parameter op, so
they are computed before entering the group lock. When there is no contention (the group
size is 1) we avoid all further group lock overhead. Otherwise, we use faor to register our
intent to perform our operation and also to retrieve the current operation priority value from
v->op_pri (during phase 1 the priority bits in v->op_pri are stable, i.e., not changing).
We also use fai to obtain a unique position within the ordering of all processors participat-
ing in our operation.

In the second phase, the pending bits within op_pri will be stable, and we will have
enough information to know whether we may proceed or try again with the next group:

98

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

p2again:
bwg_gsync (&v->g, gs);
/[PHASE 2: may we proceed?

int myop = (myopbits >> pri) & ((1<<VISIT_NUMOP)-1);
int op_pri = v->op_pri; // stable in this phase
if (((op_pri >> pri) & (myop-1)) != 0) {
/l we are unlucky this time
pri = (pri + count_Isz(op_pri) + 1) % VISIT_NUMOP;
bwg_relock(&v->g);
/I PHASE 1: all over again

gs = bwg_size (&v->Q);
if (gs ==1)

goto plagain;
goto p2again;

}
if (r==0) /I set pri for next arbitration round
v->0p_pri = (((op+1)%VISIT_NUMOP) << (2*VISIT_NUMOP)) |
(op_pri & “myopbits & ((1<<(2*VISIT_NUMOP))-1));
returnr;

}

The if expression tests whether there are any other operations with higher priority than
ours and with active processors seeking to perform them; if so, then we must wait for the
next group by calling bwg_relock . We don't need to reference v->op_pri within the next
phase 1, since we compute the next value of pri locally. The function count_Isz returns
the number of least significant zero bits in its argument, i.e., count Isz(x) =
log,(((x XOR (x —1))/2) +1). After calling bwg_relock , we go back to re-execute phase 1 or
phase 2; the reason for the distinction, based on group size, is to avoid repeating our original
affect on v->opcnt or recomputing pri or r. If, on the other hand, we have priority to pro-
ceed, we must set the priority bits within v->op_pri for the next group; the test for r ==

ensures this is done only once.®
The cost of executing _visglock is quite low:

= The common case of no contention (only one processor executing _visglock) costs only 2
shared memory stores plus the cost of bwg_lock and bwg_size .

= When the caller’s operation has priority, the cost is only 3 or 4 shared memory references,
plus the cost of bwg_lock , bwg_size , and bwg_qgsync .

= Each time the caller’s operation doesn't have priority, the additional cost is 1 shared
memory reference plus bwg_relock , bwg_size , and possibly bwg_gsync . This can only
happen twice, since there are only three operation types and bwg_relock doesn’t skip
groups (83.5.6/p73).

®The test for r == 0 could be omitted, because each participating processor would compute the
same new value for v->op_pri . The redundant stores, however, can increase memory traffic severely
on machines without combining.

99

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

The return value of _visglock will be different for each processor executing the same opera-
tion concurrently; the processor receiving 0 is obligated to clear the appropriate element of
v->opcnt before releasing the group lock.

The visput Operation. The management of direct and indirect visitem pointers compli-
cates visput , forcing the use of an extra group lock phase. The initial phase determines
placement of the new item and allocates storage, and the extra phase handles allocation fail-
ure and performs the insertion.

The first part of visput obtains the lock, determines group size, and checks for room
(this check can be eliminated if VISLIMIT is large enough to be irrelevant):

int
visput(vislist *v, visitem *vitem)
{
int t, //index for new item, derived from v->top
r, /I return value
gi, // group index, from [O0,...,gsize-1]
gs; /Il group size
spl_ts;
s = splrbc(); /I visit uses random broadcast
gi = _visglock (v, VISIT_PUT, s);
/I PHASE 2, continued: reserve space, allocate indir pointers
gs = v->opcnt[VISIT_PUT];
if (gi ==0)
v->opcnt[VISIT_PUT] = 0;
t = fai(&v->top);
if (t >= VISLIMIT) { // check for room
vfad(&v->end);
r =0; /I failed
goto done;
}
Note that we both read and write v->opcnt[VISIT_PUT] in the same group lock phase; this

constitutes a race, but one which doesn’t affect correctness: the value of gs is significant only
to the extent that it is 1 or not 1. If the group size is 1, no race occurs. If the race occurs, it is
possible for gs to falsely assume the value 0, but this has the same effect within visput as
any other non-1 value. Tolerating this race is convenient, because it allows us to skip phase
3 in the error case (where we are out of room). Normally, we might avoid use of “early exit”
for the sake of an error condition, since it prevents the use of “quick” barriers elsewhere, but
we already have another instance of early exit from phase 2, when _visglock calls
bwg_relock , so we might as well take advantage of it.

The “fast path” shows clearly what must be done to complete the visput operation,
without concern for parallelization:

100

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

if (gs ==1) // fast path if no contention
r =1,
if (t < NDIRVIS)
v->dir[t] = vitem;
else { [/l use indirect pointers
if (_VMOD(t) == 0) {
/I allocate block of pointers first
I/l note v->indirn equals _VDIV(t)
visindir *x = poolget(&visitfree);

if (x == NULL) {
vfad(&v->top);
r=20; /I failed
goto done;

}

poolidestroy (&x->pi);
v->indir[fai(&v->indirn)] = x;

}

v->indir[_VDIV(t)]->ptr[_VMOD(t)] = vitem;

}

The tricky part of visput involves storage allocation and reclamation; the fast path case
shows that v->indirn is equivalent to _VDIV(t) when things are serialized. The real need
for v->indirn arises when we have to deal with concurrency:

101

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

else { // concurrent visput operations
if (t < NDIRVIS) {
bwg_sync (&v->Q);
/I PHASE 3: store item pointers

r =1,
v->dir[t] = vitem;
}
else { [/l use indirect pointers
if (_ VMOD(t) == 0) {
/ allocate block of pointers
visindir *x = poolget(&visitfree);
if (x 1= NULL) {
poolidestroy (&x->pi);
v->indir[fai(&v->indirn)] = x;
}
}
bwg_sync (&v->Q);
/I PHASE 3: store item pointers
r = 1,
if (v->indir[_VDIV(t)] == NULL) {
/l some allocation failed
vfad(&v->top);
if (VMOD(t) == 0)
vfad(&v->indirn);
r = 0; /I failed
goto done;
}
v->indir[_VDIV(t)]->ptr[_VMOD(t)] = vitem;
}
}
The direct pointer case is no more complicated than in the fast path, in fact the assignment
to v-dir[t] could be moved to phase 2 without harm (but we put it in phase 3 to balance

the greater amount of work performed in the indirect pointer case).

Consider the case where several indirect pointer blocks must be allocated concurrently;
it is possible for some of the allocations to fail. This is the real purpose of v->indirn : to
ensure that any allocation failures affect only the top of the stack, not some middle position.
Thus, the visput operations which ultimately fail may not be the same ones that got NULL
from poolget

The final act of visput is to point each item back to its position on the visit list; this is
for the benefit of visremove

102

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

vitem->index = t;

done:
bwg_unlock (&v->Q);
vsplIx(s);
returnr;

}

The visremove Operation. This is more complicated than visput , requiring 3 new
phases; the last phase is dedicated to storage reclamation for indirect pointer blocks.

The basic strategy for removing an item is to replace it with an item popped from the
stack. Since the algorithm supports parallel execution, many removals may occur concur-
rently. Assume we have d concurrent removals; each of the top d items will be replacements
unless they are to be deleted. The essence of the algorithm is to identify the replacements so
they can be moved to their new locations. This is done by using the mark field in the
visitem structure. Figure 5, below, gives a simplified view of the situation at the end of
each of the main visremove phases. The management of indirect pointer blocks is omitted
from the diagrams for the sake of clarity, but not from the full code for visremove

top

@

—P3

{7}

@
@

3
@
&
@
s
@@

Phase 2b Phase 3 Phase 4

Figure 5: Three Phases of visremove

Processors P1, P2, P3, and P4 are trying to delete items 3, y ¢ n. For simplicity, we
pretend only direct item pointers are used. By the end of the first phase (phase 2b
in Figure 4) each processor has marked its own item with x and chosen an item to be
deleted or moved (indicated with dashed lines). By the end of the next phase top
has been updated to account for all deletes, and items to be moved are now contigu-
ous on the stack (but their order is not preserved, as shown in this example). By the
end of the last phase the items to be moved have reached their final positions. (Use
of indirect pointers force use of a phase 5 in the code on page 106.)

103

Chapter 3: Some Important Primitives

void

visremove(vislist *v, visitem *vitem)

{
intt,

/I early copy of v->top

dl
gi,
n;

/I number removals
/I index of caller in group
/I index of item being removed

visitem *p; // possible item to move up
visindir **xp = NULL;

visindir *x;
spl_ts;

S
gi

d =
t =
n =

The value obtained for d would be the same as bwg_size

splrbc();

_visglock (v, VISIT_REMOVE, s);
/I PHASE 2, continued: mark items and get replacements

v->0pcn
v->top;
vitem->i

t[VISIT_REMOVE];

ndex;

vying for priority in _visglock

Section 3.7.3: Visit Lists

if there were no other operations

The “fast path”, taken when there is no real concurrency to deal with, shows what must
be done in the simplest terms:

if (d

==1){ /I take fast path if no contention
if (n <t-1){
Il identify replacement for item being removed
if (-1 < NDIRVIS)
p = v->dir[t-1];
else
p = v->indir[_VDIV(t-1)]->ptr[_VMOD(t-1)];
/ move up replacement item
if (n < NDIRVIS)
v->dir[n] = p;
else
v->indir[_VDIV(n)]->ptr[_VMOD(n)] = p;
p->index = n;
}

if (t-1 >= NDIRVIS && VMOD(t-1) == 0) {

Il reclaim storage
Xp = v->indir + _VDIV(t-1);
v->indirn = _VDIV(t-1);

X = *Xp;
*xp = NULL;
}
goto done;

104

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

We now expand the code to handle concurrency. Items to remove are marked and potential
replacements are identified:

vitem->mark = 1;
if (t-gi-1 < NDIRVIS)
p = v->dirft-gi-1];
else {
p = v->indir[_VDIV(t-gi-1)]->ptr[_VMOD(t-gi-1)];
Il prepare for storage reclaim, phase 5
if (_VMOD(t-gi-1) == 0) {
Xp = v->indir + _VDIV(t-gi-1);
vfad(&v->indirn);

}

Note that a potential replacement can't be used if it is itself slated for removal. We must
solve a matching problem: removal items that are not replacement candidates must be
paired up with replacement candidates that are not removal items. We do this in two
phases: first we squeeze the removal items out of the set of possible replacements:

bwg_sync (&v->0);
/I PHASE 3: compress unmarked replacements

v->top = t-d;
if (v->next >=t-d) // watch for pending visit
v->next = t-d-1;
if (\p->mark) {
gi = fai(&v->temp);
if (t-d+gi < NDIRVIS)
v->dir[t-d+gi] = p;
else
v->indir[_VDIV(t-d+gi)]->ptr[_VMOD(t-d+gi)] = p;
}

(Note the check for v->next ; this relates to the action of _dovisit (p108).) Once we have
weeded out any removal items from the replacement candidates, it is simple to choose one for
each case where needed. To do this, we use an extra variable, v->temp . This variable was
set to 0 when the list was first initialized, then incremented for each true replacement item
in phase 3. Finally, we decrement v->temp again as we allocate those replacement items in
phase 4:

105

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

bwg_qgsync (&v->g, d);
/I PHASE 4: replace items not at top

if (n <t-d) {
/I choose replacement
gi = fad(&v->temp) - 1;
if (t-d+gi < NDIRVIS)
p = v->dir[t-d+gi];
else
p = v->indir[_VDIV(t-d+gi)]->ptr[_VMOD(t-d+gi)];
/I use replacement
if (n < NDIRVIS)

v->dir[n] = p;
else

v->indir[_VDIV(n)]->ptr[_VMOD(n)] = p;
p->index = n;

}
Thus, v->temp is the only additional storage required, and is self-reinitializing.

We need an extra phase for storage deallocation, since the replacements pointers are
being read from that storage in phase 4. We used the local variable xp to identify the rele-
vant pointer blocks in phase 2; now we set the elements of the v->indir array so we can
release the group lock as soon as possible:

if (xp '= NULL) {
bwg_sync (&v->g);
/I PHASE 5: reclaim storage
X = *Xp;
*xp = NULL;
}

Finally, any pointer blocks deallocated can be returned to the pool without holding the group
lock:

done:
if (d ==0)
v->opcnt[VISIT_REMOVE] = 0;
bwg_unlock (&v->Q);
vsplIx(s);
it (xp) {
pooliinit (&x->pi);
poolput (&visitfree, &x->pi);
}
vitem->mark = 0;

}

We take care to clear v->opcnt only once, although this is not necessary for correctness,
since only the constant O is being stored.

106

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

The visit Operation. Triggering a visit operation isn't nearly as complicated as
visput and visremove , but even though it works in only one group lock phase, it is poten-
tially more expensive.

As soon as we pass _visglock , the size of the list is stable and equal to top ; we can
either do the visitations directly (e.g., if the list is small) or set next to top-1 . Even if we
don’t do the visitations directly, they are scheduled at this point. We force an appropriate
number of processors to work on the visitations via random broadcast, r_rbc , after releasing
the group lock:

void
visit(vislist *v)
{
int th = v->pair.smallthresh;
spl_t s = splrbc();
if (_visglock (v, VISIT_VISIT, s) == 0)
v->opcnt[VISIT_VISIT] = 0;
int top = v->top;

// do small lists now, if interrupt not masked

if (top < th && lissplgeq(s, fakesplrbc()))
_visloop (v, top-1, 0);

else
v->next = top - 1;

bwg_unlock (&v->Q);

vsplIx(s);

if (top >= th || issplgeq(s, fakesplrbc()))
r_rbc (top, &v->pair);

}

We will see the _visloop function on the next page.

Note that visit changes v->next without concern for its previous value. Its value
will be -1, unless visitations are pending. The worst that can happen is some items will be
re-visited, which is allowed under the rules on page 92 (but don't think this was a coinci-
dence).

The internal function _dovisit was registered with the random broadcast rbc_pair
structure at vislist initialization time. It is called by the random broadcast interrupt
handler with a generic argument (which we must convert into a vislist pointer) and a
parameter telling how much work to do:

107

Chapter 3: Some Important Primitives Section 3.7.3: Visit Lists

void
_dovisit(genarg_t vlistp, int howmany)
{
vislist *v = (vislist *)vlistp.vd;
if (v->next < 0)
return; // nothing to do
if (_visglock (v, VISIT_VISIT, rpl()) == 0)
v->opcnt[VISIT_VISIT] = 0;
int next = faa (&v->next, -howmanyy);
int stop = next-howmany;
if (stop < 0)
stop = 0;
_visloop (v, next, stop);
bwg_unlock (&v->Q);
}

The items to visit are assigned to visiting processors by decrementing v->next with faa .

The work of visiting a “chunk” of items is performed by a simple internal routine,
_visloop

void
_visloop (vislist *v, int next, int stop)
{
for (; next>=stop; next--){
if (next < NDIRVIS)
v->f(v, v->dir[next]);
else
v->f(v, v->indir[_VDIV(next)]->ptr[_VMOD(next)]);
}
}

Its only real complication is having to deal with direct and indirect item pointers.

3.7.4. Broadcast Trees

The subject of this section, a structure we call the broadcast tree, was conceived to solve part
of a particular problem: efficient bottleneck-free delivery of signals to process groups (§84.8.2).
We discuss it separately because the approach used is independent of, and more general
than, the subject of signals, and because it is interesting in its own right.

The problem to be solved is to create a bottleneck-free structure that supports a limited
form of broadcast to all members of a group, with well defined semantics even in the face of
concurrent group membership changes. The information to be broadcast is restricted to a
single integer selected from a predetermined range. The method of distribution is to place
the information into a central structure (the broadcast tree), and to rely on group members to
check for recently added data at appropriate times. (As we will describe in section 4.8.2, a
visit list (83.7.3), which in turn relies on random broadcast (§83.6/p76), is used to force polling
and deal with processes that are currently unable to poll, e.g., because they are blocked or
waiting to run. The primary function of the broadcast tree in this case is to provide the
desired signal semantics.) Each member retains sufficient state to allow it to distinguish
new information from old in the broadcast tree.

108

Chapter 3: Some Important Primitives Section 3.7.4: Broadcast Trees

A suitable implementation for a small machine (outside the target class) might use a
linked list of group members, and deliver the information serially, i.e., a special form of visit
list (83.7.3). In that case, a broadcast would be received by all group members, and member-
ship changes couldn’t be concurrent.

With a broadcast tree, a broadcast is guaranteed to be received by all processes that are
group members at the time of the broadcast, but not until they poll for recent broadcasts. A
member leaving the group performs the resign operation, which simply discards all broadcast
information since the last poll; it is the final poll that matters. A process joins the group in
one of two ways: directly, as when changing from one group to another, or in synchrony with
a parent, in the case of fork or spawn. In the latter case, a new child effectively joins the
group immediately after the parent’s previous poll, thus making broadcasts atomic with
respect to child creation. When a new member performs its first poll, it automatically
ignores broadcasts from the time before it joined the group. By decoupling the broadcast ini-
tiation from the data delivery in this fashion, we not only allow for non-serial delivery, but
also provide useful semantics (the traditional ones).

Interface

Table 17, on the next page, lists the function interface for broadcast trees. Because a broad-
cast tree is restricted to handle a range of integers, we provide a macro BCT_DECL(range)
to produce a customized declaration suitable for the range [O,...,range -1]. This approach is
useful since the amount of memory required may be a function of range , and there is no
notion of a variable-sized structure in standard C. Traditionally, this kind of situation has
been dealt with by (1) using a pointer in a fixed-size structure to access the variable-sized
component as a dynamically allocated array, or by (2) putting a small (e.g., 1 element) array
at the end of a fixed-size structure, and taking advantage of the lack of run-time subscript
checking. The solution we adopt here (BCT_DECI is more robust and more conducive to
alternative implementations requiring different data structures than (2), and doesn’t require
the additional memory access to fetch the pointer, as in (1).

In order to provide a single set of functions to operate on different broadcast tree types,
we use an implementation-defined generic broadcast tree declaration, bct_generic; a
pointer to any tree declared with BCT_DECLmay be converted into a generic one by using a
(bct_generic *) cast, and the functions listed in Table 17 operate on such converted
pointers. Of course, any broadcast tree must be initialized; this is accomplished by calling
bct init |, and giving the same range provided in the BCT_DECLmacro call. After initializa-
tion, the other broadcast tree functions must be able to determine the range from the generic
structure.

For reasons we will describe in section 4.8.2, we must provide the ability to operate
atomically on more than one broadcast tree. We do this by separating out the synchroniza-
tion component of the broadcast tree into a separate abstract data type: bct_sync . This
allows us to introduce broadcasting and polling functions that operate on more than one
broadcast tree (bct_put nand bct_get n,for1<n<3).

Each member of a group to receive broadcasts is represented by a variable of the
abstract type bct_ memb. This structure contains whatever state is needed by members to
make the correct decision of which broadcast data to ignore when one of the bct_get n func-
tions is called. It is initialized by calling bct_minit

109

Chapter 3: Some Important Primitives Section 3.7.4: Broadcast Trees

Function Purpose
BCT_DECL() Tree declaration (macro)
bet_init(t,r) Tree initialization
bct_destroy(t) Tree un-initialization
bct_sinit(S) Synchronization structure initialization
bct_sdestroy(s) Synchronization un-initialization
bct_ minit(m) Member initialization
bct_mdestroy(m) Member un-initialization
bct_joinl(s, t, m) Join 1 tree group
bct_resignl(s, t, m) Leave 1 tree group
bect_dupl(s, t, m, n) Proxy join for 1 tree (allow bct_mcopy)
bct_mcopy(from, to) Copy member (target pre-initialized)
bet_putl(s, t, i) Broadcast to 1 tree
bect_put2(s, t1, t2, i) Broadcast to 2 trees
bect_put3(s, t1, t2, t3, i) Broadcast to 3 trees
bct_getl(s, t, m,b) Poll for broadcast data from 1 tree
bct_get2(s, t1, t2, m1, m2, b) Poll for broadcast data from 2 trees
bct_get3(s, t1, t2, t3, m1l, m2, m3, b) Poll for broadcast data from 3 trees

r=int (the range of the broadcast tree)

t,t1,t2,t3 = bct_generic * (broadcast tree structure)
s =bct_sync * (synchronization structure)
m,m1,m2,m3 =hct memb* (member structure)
n=int (number of member copies to be allowed)
i=int (item to be broadcast)

b=int* (bit string for result)

Table 17: Broadcast Tree Functions.

For the sake of generality, and the ability to change the underlying implementation,
bct init |, bet_sinit , and bct_minit return boolean values. The primary reason is to
allow them to fail if some needed resource (such as additional memory) is unavailable,
although the current implementation doesn't admit the possibility of any such failure.

Polling is accomplished by calling the aforementioned bct_get n functions, which set
bits in a caller-supplied bit string for each data item broadcast to the indicated tree group(s)
since the last poll. Since each broadcast data item is represented by a single bit, no distinc-
tion is made between one and more than one such item received. The bct_get n functions
return the number of bits set.

In a UNIX-like environment, where broadcast tree members are often processes, we
must make special provision for process fork semantics. This is the purpose of the bct_dupl
function; it provides for clean broadcast semantics in the face of fork and spawn system
calls. After bct dupl is called, direct copies of the parent’s bct_ memb can be made by call-
ing bct_mcopy .

110

Chapter 3: Some Important Primitives Section 3.7.4: Broadcast Trees

Implementation: Overview

The broadcast tree algorithm for the target class of machines is based on the group lock
(83.5.6). The basic idea is due to Eric Freudenthal: For a tree that can handle a range of
integers from 0 to range — 1, build a binary tree with range leaves and record the time of last
broadcast in each leaf. In each interior node, record the maximum of the broadcast times of
its children. Thus, the root node gives the most recent broadcast time for any item. Broad-
cast times are only relative, i.e., they do not correspond to real time. Items broadcast concur-
rently have the same time value. The value 0 is used to represent an infinitely old time.
Each member of the group always remembers the time associated with the last received
item(s).

Any number of broadcast operations can be performed together by working from the
leaves to the root and copying the current time value to each node on the path. Each concur-
rent broadcaster has the same notion of “current time”, so by checking each node before
updating it (or, more surely, by using Fetch&Store), a broadcaster may quit as soon as it

finds a node that has already been updated.*® A natural implementation of this algorithm
uses a group lock to form groups of broadcasters. In parallel, the group can then

(1) Compute the current time as 1 + root node time.
(2) Perform barrier synchronization among themselves (83.5.6/p69).
(3) Update nodes from leaf to root.

A broadcast up B

Figure 6: Broadcast Example.

In this example, A shows a tree after 4 broadcast time steps. We see that item 1
was broadcast most recently during time step 4, items 2, 4, and 5 where broadcast
most recently during time step 2, and item 3 was broadcast most recently during
time step 1. In B, we show the effect of concurrent broadcasts for items 5 and 6.

*The value of this optimization has not been determined. We note that the trees will often be
quite shallow and the number of concurrent broadcast operations may not be large. The availability of
hardware support (for Fetch&Store) and combining (for store or Fetch&Store) is a key factor.

111

Chapter 3: Some Important Primitives Section 3.7.4: Broadcast Trees

No synchronization is necessary during step 3. Figure 6, on the previous page, gives an
example.

Any number of poll operations can be performed together by doing depth-first search for
all leaves marked with a time more recent than that recorded in the relevant bct_ memb
structure, and then updating the time in the bct_memb structure to the current root node
time. This requires no synchronization other than exclusion of broadcasters. Figure 7,
below, gives some examples.

The join, resign, and dup operations require no explicit synchronization, however the
ability to read the root node time atomically is assumed for the join operation, which simply
copies it to the bct_memb structure. The resign and dup operations are empty in the current
implementation, except for diagnostic support code.

A simple overall implementation strategy (the one adopted) is to use a group lock with
the first phase devoted to bct _get n and the first part of bct_put n, and the second phase
devoted to the remainder of bct_put n. There is no need for bct_joinl , bct_resignl |, or
bct dupl to deal with the group lock at all, assuming bct_joinl can read the root node
time atomically. The trickiest part is handling time overflow within the tree nodes, which
could cause loss of broadcast information. We see three attractive approaches:

(1) Panic. If the expected time to overflow is large compared to the expected time
between system reboots, then we need not handle overflow at all, except to detect it as

poll down

A:[0]—= 01111110
B: |2 | —= 01000110
C: |4 |— 00000110
D: | 5 | — 00000000

Figure 7: Poll Example.

Using the tree from Figure 6 B, we see the effect of 4 possible poll operations. Each
member, A-D, is shown as a box with the time stamp from the previous poll opera-
tion. The result of the new poll performed at time 5 is given for each as a binary
string, with the first bit representing item 0 and the last bit representing item 7.

112

Chapter 3: Some Important Primitives Section 3.7.4: Broadcast Trees

an anomaly. In the unlikely event that overflow does occur, the panic function may
be called to crash the system in a somewhat controlled manner. Of course, such a
solution would be inappropriate for many operational environments.

As a concrete example, if time values are represented as 32-bit unsigned integers,
and one broadcast occurs every millisecond, overflow won't occur for almost 50 days.
With 64 bit unsigned integers, panic would probably be an acceptable way to handle
overflow in all but the most unusual environments.

(2) Postpone overflow by increasing the range of time values beyond what is normally
representable as an atomically-accessible integer by the machine. Each time value
could be represented by a multi-word structure, for example. However, this solution
might require additional synchronizing overhead, if the larger values can't be
accessed or modified atomically. Of course, this only postpones disaster, but perhaps
that is enough to make the panic approach acceptable (e.g., using 64 or 128 bit
unsigned integers).

(3) Allow wraparound, using unsigned integers for time values. On a machine with two’s
complement arithmetic, comparison of two time values, whose “true difference” is rep-
resentable as a signed integer, is performed by regarding the result of a subtraction

as a signed number.®® If members never lag behind broadcasts by more than
2wordsize=l _ 1 nothing will be lost. It is necessary, however, to “erase” the memory of
any broadcasts that haven't been superseded in that time. This can be performed by
inspecting the whole tree whenever the most significant bit (MSB) of the root node
time value is about to change, and setting very old nodes, those whose MSB matches
the new root value's MSB, to 0 (infinitely old). It is also important to “skip” the value
0 as wraparound occurs.

Leaving little to the imagination, we include the last (and most complex) of these alterna-
tives in our more detailed presentation.

Implementation: Details
As already explained, we use group lock for synchronization:
typedef struct {

bwglock gl;
} bct_sync;

Within a broadcast tree structure, the nodes are stored as an array, with the children of ele-
ment i stored in positions 2i +1 and 2i + 2. Here is the definition of BCT_DECL

€ See udiff in section 3.5.6 on page 72.

113

Chapter 3: Some Important Primitives Section 3.7.4: Broadcast Trees

#define BCT_DECL(r) \
struct {
int range; \
volatile int period_count[2]; \
volatile unsigned int tree[2*(r)-1]; \
}

A broadcast tree can accept items from O through range-1 .** The two elements of
period_count contain the number of members whose next unreceived broadcast times’
MSB is 0 and 1, respectively. These counts are maintained by bct_joinl | bct_resignl
bct_dupl , and bct_get n, and checked by bct_put n to verify that no periodically discarded
old data remains unreceived (see _GET_CLEANUPon page 117, and _PUT_CAUTION on page
120); period_count and all code references to it can be eliminated if one is willing to sacri-
fice that check. The heart of the algorithm revolves around tree , which stores the time of
last broadcast for each leaf or internal node of the binary tree. The nodes of the tree are ini-
tialized to zeros to indicate that the last broadcast was infinitely long ago.

A rather ordinary definition is all that is needed for members:

typedef struct {
unsigned lastcheck;
} bct_memb;

The single field, lastcheck , is simply a copy of the root time value when the member joined
the group or last executed bct_get n.

Here are definitions for the simplest functions, bct joinl , and bct resignl
bct dupl , and bct_mcopy (BCT_MSBis an unsigned integer constant with only the most
significant bit set):

void
bct_joinl (bct_sync *ts, bct_generic *t, bct_memb *m)
{
unsigned int tstamp;
tstamp = t->tree[0];
m->lastcheck = tstamp;
vfai(&t->period_count[(tstamp&BCT_MSB)!=0]);
}
void
bct_resignl (bct_sync *ts, bct_generic *t, bct_memb *m)
{
vfad(&t->period_count[(m->lastcheck&BCT_MSB)!=0]);
}

1t would be slightly more efficient to pass range as a parameter to the various bct_ functions,
rather than keeping it in the structure itself and fetching it from memory for each operation. The com-
bination of macros and a good measure of discipline can make such an approach reasonable.

114

Chapter 3: Some Important Primitives Section 3.7.4: Broadcast Trees

void
bct_dupl (bct_sync *ts, bct_generic *t, bct_memb *m, int mult)
{
vfaa(&t->period_count[(m->lastcheck&BCT_MSB)!=0], mult);
}
void

bct_mcopy (bct_memb *from, bct_memb *to)

*to = *from;

Because they must operate atomically on more than one broadcast tree, the implemen-
tations of the bct_get n and bct_put n functions are broken up into a series of macro calls;
this allows the important code sections to be written only once. For performance reasons,
macros are used instead of functions.

We begin a detailed presentation of the broadcast tree implementation with bct_getl

int
bct_getl (bct_sync *ts, bct_generic *t1, bct_memb *m1, int *bstring)
{
int nleaves, // number of leaves
r, /I return value: number of items found
sp, /I stak index for fake recursion
i; /I index of tree node to examine
spl_ts;
unsigned int rootvall; / root time value for t1

unsigned int mylastcheckl = m1->lastcheck;
unsigned int stakl MAXBCTLOG+1];

if _GET_CHECK(t1,mylastcheckl))
return O;

An initial check, GET_CHECK(t1,mylastcheckl) , may be performed without synchroniza-
tion:

#define _GET_CHECK(t,mylast) (t->tree[0] != mylast)

This definition assumes that the root node, tree[0] , is read atomically, and compares the
time stored in the root node with the time the member joined the group or last called
bct_get n. If the root time has not changed, the caller can be assured that no broadcasts
have since taken place. However, if the times no longer match, we must not further trust the

exact root time examined; it must be re-read from shared memory after obtaining the group
lock:

115

Chapter 3: Some Important Primitives Section 3.7.4: Broadcast Trees

r=20;
nleaves = t1->range;
s = splsoft();

(void)bwg_lock (&ts->gl, splcheckf(s));

rootvall = t1->tree[0];
_GET_WORK(t1,mylastcheckl);

bwg_unlock (&ts->gl);

vsplIx(s);
_GET_CLEANUP(t1,m1,rootvall,mylastcheckl);
returnr;

}

The depth-first tree search will be carried out iteratively by the _GET_WORMKacro, using an
explicit stack, stak , which must have room for the largest broadcast tree to be encountered
(MAXBCTLOGnNust be defined to log(largest allowable range)). The stak is indexed by sp,
while i contains the tree index of a node to be examined. A push onto the stack can be per-
formed by stak[sp++] = val, and a pop by var = stak[--sp] . Prior to obtaining the
group lock, we initialize stak , sp, and i, so that stak contains the index of one of the root’s
children (1), and i contains the other (2). It will not be necessary to check the root node time
again, since we already know it differs from mylastcheckl , and it cannot represent an older
time than mylastcheckl

The essence of the bct_get n algorithm is implemented within the first phase of the
group lock:

#define _GET_WORK(t,mylast) \
i =2 \
sp=1; \
stak[0] = 1; \
while(1) { \
while (BCT_GT (t->tree[i], mylast)) { \
if (i >= nleaves-1) { /* leaf node */ \

if (lisset(bstring, i-nleaves+1)) { \
setbit (bstring, i-nleaves+1); \

r++; \
} \
break; \
} \
else { [* interior node */\
i = 2%+1; \
stak[sp++] = i++; \
} \
} \
if (sp > 0) \
i = stak[--sp]; \
else \
break; \

}

With current C compiler technology, the nested loops are more efficient than a simpler

116

Chapter 3: Some Important Primitives Section 3.7.4: Broadcast Trees

recursive algorithm. The macro BCT_GTevaluates to TRUE if the time value represented by
the first argument is greater (later) than that of the second argument. The definition is

#define BCT_GT(stamp,thresh) ((stamp) && \
udiff(stamp,thresh)>0)

where udiff (83.5.6/p72) produces the “true” difference between the time values represented
by its unsigned integer parameters, even in the face of wraparound, provided that
—wordsize=l stamp - thresh < 2"°r%ize"1 \where stamp and thresh are the values of stamp and
thresh that would result if the algorithm were run with arbitrary precision integers. For
the broadcast tree algorithm, this means we must be sure that no member ever falls as much
as 2"ordsize=l time stamp values behind the most recent broadcast.

To check whether we are meeting this constraint at run-time, we maintain counts, in
the period_count array, of the members looking for broadcasts in each half of the time
value space. This is done by the _GET_CLEANURmacro as the final step of bct_getl by
looking at the most significant bit of mylastcheckl and rootvall , and adjusting the
counts when each member moves from one half to the other:

#define _GET_CLEANUP(t,m,rootval,mylast) \
if ((mylast&BCT_MSB) != ((rootval+1)&BCT_MSB)) { \
vfad(&t->period_count[(mylast&BCT_MSB)!=0]); \
vfai(&t->period_count[((rootval+1)&BCT_MSB)!=0]); \
} \

m->lastcheck = rootval
where BCT_MSHs an unsigned integer constant with only the most significant bit set.

The other “get” functions, bct_get2 and bct_get3 |, operate in a similar fashion. For
the sake of brevity, we will present only bct_get2 and leave bct_get3 to the reader’s imag-
ination:

int
bct_get2 (bct_sync *ts, bct_generic *t1, bet_generic *t2,
bct_memb *m1, bct_memb *m2, int *bstring)

{
int nleaves, [/l number of leaves
r, /I return value: num items found
sp, /I stak index for fake recursion

i; /I index of tree node to examine
spl_ts;
unsigned int rootvall, rootval2; // root time for each tree
unsigned int mylastcheckl = m1->lastcheck,
mylastcheck2 = m2->lastcheck;
unsigned int stak[MAXBCTLOG+1];

117

Chapter 3: Some Important Primitives Section 3.7.4: Broadcast Trees

if _GET_CHECK(t1,mylastcheckl) &&
| GET_CHECK(t2,mylastcheck?))

return O;
r=20;
nleaves = t1->range; /I must == t2->range
s = splsoft();

(void)bwg_lock (&ts->gl, splcheckf(s));

rootvall = t1->tree[0];

rootval2 = t2->tree[0];
_GET_WORK(t1,mylastcheckl);
_GET_WORK(t2,mylastcheck?2);

bwg_unlock (&ts->gl);

vsplx(s);
_GET_CLEANUP(t1,m1,rootvall,mylastcheckl);
_GET_CLEANUP(t2,m2,rootval2,mylastcheck?2);

returnr;
}
The bet_put n functions operate from leaf to root; we begin with bct_putl
void
bct_putl (bct_sync *ts, bct_generic *t1, int item)
{
unsigned int mytime;
int cookie;
spl_ts;

int nleaves = t1->range;
item = 2*(nleaves+item-1)+1;

The item parameter is recomputed to index beyond the tree array, as a setup condition for
the main loop, PUT_WORKon the next page.

s = splsoft();

(void)bwg_lock (&t1->gl, splcheckf(s));
int seq = bwg_fsyncl (&ts->gl, &cookie);
_PUT_TSTAMP (t1, mytime);
bwg_fsync2 (&ts->gl, seq, cookie);
_PUT_WORK(t1, mytime, item);

The first phase is used only to get a sequence number for later use and to compute the broad-
cast time value, based on the root node; this is compatible with the actions of bct_get n dur-
ing the same phase. We use the “fuzzy” version of group lock barrier (83.5.6/p69): statements
after bwg_fsync2 are not executed until all group participants have executed bwg_fsyncl .

The definition of _PUT_TSTAMHSs simple:

118

Chapter 3: Some Important Primitives Section 3.7.4: Broadcast Trees

#define _PUT_TSTAMP(t,mytime) \
if ((mytime = t->tree[0] + 1) 1= 0) \
else \
mytime =1
The effect of this is to wrap around on overflow, skipping zero. The use of an if with empty

then-part is a crude device to ensure generation of a compiler error message if the macro is
invoked without a following semicolon.

The second phase uses the resulting time value to update the tree; this is embodied in
the PUT_WORMKnacro, for which we provide two versions, depending on the quality of hard-
ware support for Fetch&Store:

I if hardware supports ufas at least as well as stores
#if HARD_UFAS && (COMBINE_UFAS >= COMBINE_STORE)

#define _PUT_WORK(t,mytime,item) \
do { \
item = (item-1)/2; \
if (ufas (&t->tree[item], mytime) == mytime) \
break; /* no need to go further */ \

} while (item > 0)
#else /I not good hardware support for ufas

#define _PUT_WORK(t,mytime,item) \
do { \
item = (item-1)/2; \
t->tree[item] = mytime; \

} while (item > 0)
#endif

By initializing item to point beyond the array, and reducing it at the beginning of the loop,
we remove any dependency on the behavior of the expression (item-1)/2 for loop termina-

tion (when item is 0, the result is “implementation defined” in ANSI C:% some machines and
compilers will give the result 0, and some will give -1). As indicated on page 111, this frag-
ment shows how the algorithm can be adapted to the hardware characteristics of Fetch&®
operations by means of conditional compilation (§83.1/p43).

The last part of bct_putl is concerned with insuring and verifying the safety of time
value wraparound:

2 According to section 3.3.5 of the ANSI C standard [5].

119

Chapter 3: Some Important Primitives Section 3.7.4: Broadcast Trees

if (_ PUT_CHECK (mytime)) {
seq = bwg_fsyncl (&ts->gl, &cookie);
_PUT_CAUTION (t1, mytime);
bwg_fsync2 (&ts->gl, seq, cookie);
_PUT_ADJ (t1, mytime, item, nleaves);

}

bwg_unlock (&ts->gl);

vsplx(s);

}

Wraparound support requires periodically erasing some values from the tree, as discussed on
page 113. The PUT_CHECHKnacro determines when this is necessary:

#define _PUT_CHECK(mytime) \
((++mytime & (BCT_MSB-1)) == 0 && seq == 0)

It checks whether the next broadcast time value will cause a change in the most significant
bit of the time value. It has the side effect of incrementing the local variable mytime , which
is used again if _PUT_CHECkevaluates to TRUE. The additional check for seq==0 serves to
skip the remaining wraparound support code in all but one participating processor.

The macro PUT_CAUTIONis merely a diagnostic test for failure:

#define _PUT_CAUTION(t,mytime) \
if (t->period_count[(mytime&BCT_MSB)==0]) \
; I* okay */ \
else \
panic("bctree member too far behind")

We verify that no group member is still waiting to poll for broadcast times that are about to
be forgotten. This is considered unlikely, so a call to panic seems adequate.

The call to bwg_fsync2 after PUT_CAUTIONserves to gain exclusive access to the tree, so
that any node bearing a time value that will be “reused” during wraparound support is
changed to the infinitely old time, 0. In bct putl , the bwg fsync x calls are rendered
unnecessary, though not harmful, by the seq==0 test in PUT_CHECKbut they are impor-
tant in bct_put2 and bct_put3

Finally, the real work of erasing old time values from the tree is performed by the
_PUT_ADJmacro:

#define _PUT_ADJ(t,mytime,item,nleaves) \
for (item =1; item < 2*nleaves-1; i++) \
if ((t->tree[item]&BCT_MSB) == (mytime&BCT_MSB)) \
t->treefitem] = 0

Similarly with bct_get n, the implementation of bct_put2 and bct_put3 is basically an
expansion of bct_putl with a few more variables and additional macro calls. We present
bct_put2 and leave bect_put3 to the imagination:

120

Chapter 3: Some Important Primitives

void

bct_put2 (bect_sync *ts, bct_generic *t1, bet_generic *t2, int item)

{

unsigned int mytimel, mytime2;
int cookie;
spl_ts;

int nleaves = t1->range;
item = 2*(nleaves+item-1)+1;
s = splsoft();
(void)bwg_lock (&ts->gl, splcheckf(s));
int seq = bwg_fsyncl (&ts->gl, &cookie);
_PUT_TSTAMP (t1, mytimel);
_PUT_TSTAMP (2, mytime?2);
bwg_fsync2 (&ts->gl, seq, cookie);
_PUT_WORK(t1, mytimel, item);
_PUT_WORK(t2, mytime2, item);
intadjl = _PUT_CHECK (mytimel);
int adj2 = _PUT_CHECK (mytime?2);
if (adj1 || adj2) {
seq = bwg_fsyncl (&ts->gl, &cookie);
if (adj1)
_PUT_CAUTION (t1, mytimel);
if (adj2)
_PUT_CAUTION (t2, mytime2);
bwg_fsync2 (&ts->gl, seq, cookie);
if (adj1)
_PUT_ADJ (1, mytimel, item, nleaves);
if (adj2)
_PUT_ADJ (t2, mytime2, item, nleaves);
}
bwg_unlock (&ts->gl);
vsplx(s);

3.7.5. Sets

The need for unique small integers arises often enough in practice that it is useful to define
functions to assist in their allocation and deallocation. For example, Dimitrovsky's hash
table-based parallel queue algorithm [63] requires integer queue identifiers to be dynami-

cally allocated from a restricted range.®

© One of the algorithms in section 3.7.1 on page 82, afifo

Section 3.7.4: Broadcast Trees

, is based on this hash table structure.

The hash table approach is also a good choice for other variations, such as a FIFO list without the
requirement for interior removal.

121

Chapter 3: Some Important Primitives Section 3.7.5: Sets

These and other problems can be solved by using an abstract set type along with three
operations:

= Setadd: add an integer to the set.
= Setarb: take an arbitrary integer from the set.
= Setmemb: return TRUE if a specified integer is currently a set member.

We assume a set initially contains all the integers in a restricted range of interest.

Because the required operations are quite limited (operations such as general union, inter-
section, etc. are not needed in many cases), and the universe of elements is a single range of
integers, we expect to find a solution that is considerably more efficient than general sets.

We consider three approaches to providing at least setadd and setarb, and then consider
some design alternatives and enhancements, such as support for setmemb.

Use a General-Purpose List

A good approach is to use one of the ordinary list algorithms presented in section 3.7.1 on
page 82, such as pool , which is unordered. Initially, all the integers of interest are inserted
into the list, so that setarb is achieved by a delete and setadd is an insert. The complexity of
this solution depends on the underlying list algorithm, but presumably requires at least O(n)
words of storage when the universe consists of the integers from 1 to n. (See Table 14, on
page 83.)

It should be noted that, as a set algorithm, an ordinary list is rather anemic: there is no
built-in mechanism to prevent insertion of duplicates. However, if we add support for set-
memb, which we will consider on page 126, it is easy to prevent duplicates.

Use a Special Algorithm

A general-purpose list is not naturally tailored for use in a set algorithm. Chiabaut [45]
designed and implemented a package of special-purpose set routines for Symunix-1, based on
a binary tree of counters [156]. The n leaves of the tree represent the range of integers upon
which the set is defined. Deletions progress from the root to some leaf, while insertions
progress from a leaf to the root, each adjusting the counter values along the way. Assuming
n is a power of 2, inserts always require log, n Fetch&Add operations, and deletes require at
least that many (up to 3log, n when only right branches are traversed).

The tree is stored as an array, where the children of the node at index i are located at
indices 2i and 2i + 1, and each node is simply a count of the number of items below that node

in the tree that are currently in the set.®* This requires approximately 2n words of shared
memory, but the actual code also provides for a more compact representation in which each
word of the array contains two nodes, thus reducing the memory usage by a factor of 2 when
n is small enough.

With this data structure, setmemb is easy to implement: it is merely necessary to con-
sult the counter for the appropriate leaf. It is also easy to accomplish the removal of a spe-
cific item from the set, by proceeding from leaf to root, although it is necessary to prevent

%The actual code maintains the count as the number of items below the node in the tree that are
not currently in the set.

122

Chapter 3: Some Important Primitives Section 3.7.5: Sets

setarb from executing at the same time.

Use a Restricted List

The ordinary list algorithms we have adopted for our target class of machines in section 3.7.1
all have an underlying structure based on linked lists; one reason for this is the variable
capacity that results. In this section, on the other hand, we are considering a kind of list
with a fixed capacity, so a list based on sequential allocation doesn't have a capacity disad-
vantage. Rather than a special-purpose set algorithm, perhaps we can do better by devising
a list algorithm with certain restrictions that improve its suitability for sets. We adopt two
restrictions:

= fixed capacity and
= restricted range: at least one integer value must be prohibited from insertion.

In all other respects, this list is as ordinary as those in section 3.7.1. Note, we are not ready
to show setmemb support yet; that will come on page 126.

Implementation: Overview. The following C code implements such an algorithm; it was
inspired by the queue algorithm of Gottlieb et al. [94], but resolves cell contention by use of

Fetch&Store, requires at least one special data value, and is not FIFO.® For purposes of pre-
sentation, we assume the restricted value is 0, and the set operates on integers from 1 to n.

The basic idea is to use an array with head and tail pointers updated in a circular fash-
ion. Each cell in the array contains a value in {1,...,n} or O, to indicate an “empty” location.
The idea is to use Fetch&Add with head or tail to choose a cell in the array, then use
Fetch&Store to perform the insert or delete, repeating the operation as necessary when colli-
sions occur. An insert uses Fetch&Store(cell,value) and is complete when Fetch&Store
returns 0; otherwise the returned value must be reinserted (at the same location). Likewise,
a delete is complete when Fetch&Store(cell,0) returns a positive value; otherwise it must be
repeated. In this way, cell contention is more tightly integrated with the insertion and dele-
tion operations than with general-purpose list algorithms.

Herlihy and Wing [107] have a concurrent FIFO queue algorithm that is similar to this,
in that it uses Fetch&Store for the delete operation and a special value for empty cells. They
have no cell contention mechanism in the sense proposed by Gottlieb et al. [94], so their
gueue requires an array large enough for all inserts (i.e., the array never “wraps around”).
Execution time differs as well; their insert requires O(1) instructions, but their delete
requires O(p), where p is the number of previously completed deletes, even in the absence of
contention (the number of instructions is unbounded in the presence of contention). In con-
trast, the set algorithm we present here has the same time requirement for both insert and
deletion: O(1) in the absence of contention, but potentially unbounded time otherwise. These
differences reflect a different purpose: their algorithm was designed to be “non-blocking” and
provably correct, while ours was designed to be compact and fast in the common case, even in
the presence of much concurrency.

¢ This algorithm was originally described by this author in [72], and was subsequently studied by
Wood [207].

123

Chapter 3: Some Important Primitives Section 3.7.5: Sets

Implementation: Details. For the reasons outlined in section 3.7.4 on page 109, we define
a macro to describe the data structure for a set capable of handling integers from 1 to n:

Il set type
#define SET_DECL(n) struct { \

}

int max; Il largest array index (== n-1) \

int size; /I current set size \
unsigned head; \
unsigned tail; \
int g[n]; \

We define a specific generic type, to and from which pointers to other sets can be cast:

typedef SET_DECL(1) set_generic;
and then define functions in terms of that.

/l initialize a new set to hold integers from 1 to n

Int

setinit (set_generic *s, int n)

{

}

if (n <=0 || (n&(n-1)) '=0)
return NULL; /I require n be a positive power of 2
s->max = n-1;
s->size = n;
s->head = 0;
s->tail = 0;
while (n--)
s->q[n] = n+1;
return 1; I/l success

/l add an element to a set
I/l no test for prior membership is made; attempt to add 0O is ignored

void

setadd (set_generic *s, int val)

{

}

int *ip;

if (val == 0)

return;
ip = &s->q[ufai (&s->tail) & s->max];
BUSY_WAIT_NO_INST ((val = fas (ip, val)) == 0, nullf);
vfai (&s->size);

BUSY_WAIT_NO_INSTis defined in section 3.5.1 on page 52.

124

Chapter 3: Some Important Primitives Section 3.7.5: Sets

I/l get an arbitrary element from a set, or O if set is empty

int
setarb (set_generic *s)
{
int *ip;
int val;
if (tdr1 (&s->size))
return O;
ip = &s->q[ufai (&s->head) & s->max];
BUSY_WAIT_NO_INST ((val = fas (ip, 0)) != 0, nullf);
return val;
}

In this code, we have restricted the set capacity to a power of 2; some changes are required to
handle overflow of head and tail if this restriction is to be removed.

This list structure is somewhat interesting in its own right, as it is can be extremely
efficient: the cost of either setadd or setarb is only 4 shared memory accesses in the com-
mon special case of no cell contention. Furthermore, one of those memory accesses is just to
fetch s->max , which is effectively a constant, and another is to maintain s->size , which
higher-level logic might render unnecessary in some situations. So in some cases, the algo-
rithm might be tailored to have a cost as low as 2 shared memory accesses per operation.

Although this list algorithm is not FIFO in general (e.g., Fetch&Store can reverse the
order of inserts), it is FIFO in the absence of cell contention. This “mostly FIFO” property is
similar to that described in section 3.7.1 on page 82, although this algorithm is starvation
prone. The probability of an item being “starved”, i.e., left to languish in the set, decreases
as the number of other items deleted increases, so it is not as bad as a stack (LIFO) organiza-
tion.

Another interesting property is that, although the list's capacity is explicitly fixed, it
isn’'t possible for an insert to fail because of overflow. The storage capacity of the list is inher-
ently extended to include the val variables of the inserting processes, possibly together with
various hidden data paths of the machine. Indeed, the array size can be reduced to 1, and
the algorithm still “works”, regardless of the number of processors involved. Of course, per-
formance will suffer, as all but one inserter will be busy-waiting. In such a degenerate case,
any semblance of FIFO ordering disappears. Deadlock can occur if all processors get
involved in such inserts.

This kind of structure can be trivially extended to support both insertion and deletion
from either end, i.e., to be a deque (double-ended queue; see Knuth [130]). The value of such
an extension may be low, however, considering the lack of true FIFO ordering in the basic
algorithm.

A variant of this algorithm is to use Fetch&Store-if-0 (§3.1/p41) when constructing the
busy-waiting condition for setadd , as follows:

original: (val =fas (ip, val)) ==
alternate: faseO (ip, val) ==

125

Chapter 3: Some Important Primitives Section 3.7.5: Sets

This may have some advantages, but still does not guarantee FIFO behavior.

Incorporating a Bitmap

By using a bitmap together with a general or restricted list algorithm, we can add support
for the setmemb operation and even save memory; the cost is some additional memory
accesses for setarb and setadd.

Simple Approach. The simplest approach is to use a list algorithm (such as that given on
page 124, but almost any will do) together with a bitmap of n bits representing the integers
from 1 to n. A bitis 1 if the corresponding integer is in the set, and 0 if it isn’t. Clearly, this
approach doesn’t save any memory (we will see how to do that below), but it is extremely
simple. The set operations are implemented in the following manner:

= Setadd: use Fetch&Or to set the appropriate bit in the bitmap and (if Fetch&Or shows
that the bit was previously 0) then insert into the list.

= Setmemb: check the appropriate bit in the bitmap.

= Setarb: perform an ordinary deletion from the list and then use Fetch&And to clear the
appropriate bit in the bitmap.

This algorithm takes more memory and runs slower than the one on page 124, but it sup-
ports setmemb and avoids both duplicates and deadlock.

A Compact Approach. We can improve memory utilization by regarding the bitmap as an
integer array and reducing the list size by a factor of w, the number of bits in an integer
(word). The basic operations can be implemented as follows:

= Setadd: use Fetch&Or to set the appropriate bit in the bitmap and (if Fetch&Or shows
that the whole bitmap word was previously 0) then insert the word’s bitmap index into
the list.

= Setarb: perform an ordinary deletion from the list to get the bitmap index of a word con-
taining at least one set bit. Examine the word and use Fetch&And to clear a bit; this
gives the result for setarb. If Fetch&And shows that the word is still nonzero, reinsert
the bitmap index into the list.

= Setmemb: check the appropriate bit in the bitmap.

The parallelism of setarb is reduced by w with this approach.

3.7.6. Search Structures

This section differs from others of this chapter in that it presents not a packaged abstract
data type, but only a general algorithmic technique. This is because there are so many sig-
nificant variations to the basic algorithm, that attempts to abstract and package it tend to
produce a different package for each use or a single package with intolerably many options.

We specifically excluded any kind of searching, traversal, or arbitrary insertion opera-
tions from the lists of sections 3.7.1 and 3.7.2. In section 3.7.3, we described visit lists, which
support a traversal operation, but we have not yet dealt with the important problem of
searching. True, one could perform a search by using visit lists, but the synchronization
required would be awkward at best and the general approach of examining all items on the
list requires too much brute force to be practical.

126

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

What we describe in this section is a general data structure and algorithm supporting
two basic operations:

(1) Search for an item, given a key. If not found, allocate, initialize, and insert a new
item with the key. Return a pointer to the item, after incrementing its reference
count.

(2) Release an item previously returned by search. Decrement its reference count and
destroy it when there are no more references.

This rough specification fits many situations in operating systems design quite well. Our
design is based on a hash table, with the usual advantages and disadvantages thereof:

= The average number of items examined in a search is O(1), but the worst case is O(N) for
a hash table containing N items.

= The hash table size must be determined in advance, unless we are willing to consider an
extensible hashing scheme, such as in the hq algorithm described by Wood [207]. We
don’t consider such algorithms further here, because of their additional complexity and
dynamic storage management needs.

We handle hash collisions by putting such items on linked lists associated with the hash
buckets. The lists are protected by readers/writers locks (83.5.4). The essential parallelism
of the algorithm comes from three sources:

(1) The fundamental concurrency of hashing, which only requires synchronization on col-
lision. An effective hash function will distribute most unrelated operations to distinct
buckets, where they won't interfere with one another.

(2) When the parallelism of (1) can't help, optimistic use of reader locks avoids serializa-
tion whenever the search operation finds the sought-for key. This is true whether
bucket list contention results from coincidental collisions or concurrent accesses of
the same object.

(3) When the parallelism of (2) can't help because an item must be allocated, initialized,
and inserted into the hash table, careful use of the upgrade operation, from reader to
writer (83.5.4/p63), allows processors to cooperate so the total serialization is indepen-
dent of the number of contenders. This effect is similar to that achieved with the
group lock (83.5.6), but the synchronization is weaker and hence cheaper.

When many concurrent search operations conflict, no serialization is required unless the
search fails. In that case, one contender performs the serial work of allocating, initializing,
and inserting a new item while the others wait, then they all proceed without further serial-
ization. There is no problem with many concurrent release operations conflicting, because
serial work is only performed by the last one. A combination of concurrent conflicting search
and release operations requires extensive serialization only in the case where the reference
count oscillates rapidly between zero and positive numbers; this problem appears to be fun-
damental to the general specification given above.

This is essentially the algorithm used in Symunix-1 for managing file system i-node
structures in memory. Although oscillation such as we have just described is rare in practice,
it can be seen under some workloads (e.g., 88.3.2/p350). We outline a more elaborate search
structure that avoids this problem on page 136.

127

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

Data Structures
There are three data structures needed for this algorithm:
= The items. For the sake of exposition, we will assume this definition:

typedef struct _searchitem {
struct _searchitem *next; // linked list pointer
int key; /I search key
int refcnt; I reference count
} searchitem;

Of course, the names searchitem and _searchitem may not good choices in practice.
The searchitem structure should be expanded to include other data of greater interest.
Certainly the key need not be restricted to an integer.

= The hash table. This is an array of buckets, each being the head of a linked list. We use
the simplest such structure possible:

searchitem *hash[NSEARCHHASH];

= The readers/writers locks. The number of such locks can be chosen as a configuration
parameter, similar to, but independent of, the hash table size. For the sake of generality,
we assume there are NRW_SEARCHHASHsuch locks, and stipulate that
0 < NRW_SEARCHHASHNSEARCHHASH If NRW_SEARCHHASHNSEARCHHASHthe two
arrays can be merged into one (as in Symunix-1) but, for the sake of generality, we
assume a separate array:

bwrwlock rwhash[NRW_SEARCHHASH];

The advantage of having NRW_SEARCHHASHNSEARCHHASK space savings. It seems
likely that some such savings can be realized without significant sacrifice of parallelism.

The two hash tables are independent; it is even possible to share the rwhash table among
multiple search hash tables used for entirely different purposes. However, we will assume
the two arrays belong together:

typedef struct {
searchitem *hash[NSEARCHHASH];
bwrwlock rwhash[NRW_SEARCHHASH];
} searchtab;

These data structures should be initialized in the obvious manner. The hash table’s pointers
should be set to NULL, as in

for(i=0; i < NHASH; i++)
stab->hash[i] = NULL;
The items’ next pointers should be initialized to point at themselves (not NULL; we use NULL

to mean “end of list” and a pointer to self to mean “not on any list”; we will make use of this
on page 140).

One detail we have omitted is management of unallocated searchitem structures; per-
haps the next field within searchitem should be contained in a union with a poolitem
(83.7.1/p82); for brevity, we will gloss over such details here.

128

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

Algorithm

We need two hash functions; we will choose the most obvious ones:
#define SEARCHHASH(key) ((key)%NSEARCHHASH)
#define RW_SEARCHHASH(hindex) ((hindex)%NRW_SEARCHHASH)

where hindex is a hash index, 0 < hindex < NSEARCHHASH

The basic search function is:

searchitem *
search (searchtab *stab, int key)

{
int hbuck = SEARCHHASH(key);
int hrw = RW_SEARCHHASH (hbuck);
searchitem *sitem;

again:

spl_t s = vsplsoft();
bwrw_rlock (&stab->rwhash[hrw], splcheckf(s));
for (sitem = stab->hash[hbuck];
sitem != NULL;
sitem = sitem->next) {
if (sitem->key == key) {
vfai (&sitem->refcnt);
Additional acquisition steps;
bwrw_runlock (&stab->rwhash[hrw]);
vsplIx(s);
Final acquisition steps;
return sitem;

}

/I item not found

if (lbwrw_rtow (&stab->rwhash[hrw])) {
/l upgrade failed; start over
bwrw_runlock (&stab->rwhash[hrw]);
vsplIx(s);
goto again;

129

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

[/l upgrade succeeded

sitem = get new item;

if (sitem != NULL) {
sitem->key = key;
sitem->refcnt = 1;
Additional initialization steps;
sitem->next = stab->hash[hbuck];
stab->hash[hbuck] = sitem;

}

bwrw_wunlock (&stab->rwhash[hrw]);
vsplx(s);
if (sitem != NULL)

Final initialization steps;
return sitem;

}
The reader lock prevents the set of items in the bucket list from changing. As soon as
sitem->refcnt is incremented (or set to 1), the item will not be deallocated, even after the

lock is released.

Before going on to present the release algorithm, we will discuss two variations on the
search algorithm. These variations have to do with process blocking (context-switching) for
long delays, a subject generally reserved for chapter 4.

Time Consuming Initialization. In some cases initializing an item can be time consum-
ing. For example, when managing UNIX i-node structures in memory, initialization includes
reading the i-node from disk. Holding the busy-waiting writer lock during that time is
impractical, so we put a context-switching readers/writers lock in each item (84.5.2). We use
this lock in search at three points:

Additional initialization steps
This is where we can't afford to perform expensive initialization steps, such as 1/0.
But since we have just allocated the item in question, we can be assured of obtaining
an exclusive lock on it without blocking; this will prevent any other process from
gaining significant access to the item until we complete initialization, after releasing
the rwhash lock. All that is required before releasing the rwhash lock is setting up
the key, reference count, and linked list pointers, so the item can be properly found.

Final initialization steps
This is where the 1/O or other expensive initialization goes. When complete, the
exclusive item lock can be released.

Final acquisition steps
At this point, we can obtain either a shared or an exclusive item lock, blocking as
necessary. In Symunix-1, where the function corresponding to search isiget , the
choice is based on an additional function parameter.

No action is required at the point indicated for additional acquisition steps.

130

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

Time Consuming Allocation. In many cases, including Symunix-1 i-node management,
allocation of new items can take place from a pool (83.7.1/p82), and an empty pool can be
treated as an error condition returned to the caller (as we provide for in search , which will

return NULL).%® An alternative in some situations is to wait for an item to become available®”
or to take action to find one, such as looking for an unused but allocated item to reallocate
(see page 136). In case item allocation is time-consuming, a dummy item can be used tem-
porarily.

It is most efficient, if possible, to allocate an item without waiting and proceed as we
have already outlined. If a delay is necessary, a dummy item structure can be allocated from
a dedicated pool, or pre-allocated on a per-process basis, or preferably allocated as an auto-
matic variable on the stack when search is called. A dummy item must be distinguishable
from a regular item; a flag in another field of the item or an otherwise impossible value for
some field are reasonable mechanisms for making the distinction. The dummy item need not
be initialized, except for key, refcnt , next , and the aforementioned dummy-detection
mechanism. Even if a context-switching synchronization structure is included in the item as
described on the previous page, it need not be initialized within the dummy, because it will
not be accessed.

We need a way to wait for a dummy to be replaced by a “real” item; this is the subject of
section 4.5, but we will take a leap and assume the existence of a context-switching event
mechanism, csevent , with operations cse_wait , cse_signal , and cse_reset . Again we
will use hashing, and use an array of these events:

csevent dummy_hash[NDUMMY_HASH];
#define DUMMY_HASH(key) ((key)%NDUMMY_HASH)

This array could be globally shared between all searchtab structures, but in this exposition
we will assume it is added to each.

When a dummy is being used, we must augment search at the following four points:

Additional initialization steps
The dummy detection flag, or other suitable mechanism, must be set. The dummy
event must be reset, with

cse_reset (&stab->dummy_hash[DUMMY _HASH (key)]);
(we assume this can be done in constant or near-constant time).

Final initialization steps
The expensive allocation must be performed and, when the real item is available,
the dummy item replaced and the new item initialized, with rwhash[hrw] locked
exclusively. (If allocation should fail at this point, the dummy item must be removed
rather than replaced.) Finally, the dummy event must be signaled, with

 In this case, Symunix-1 also prints the traditional message, i-node table overflow , on the
system console.

5 But watch out for deadlock.

131

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

cse_signal (&stab->dummy_hash[DUMMY_HASH((key)]);
to wake up any other processes waiting for the same item.

Additional acquisition steps
Dummy items must be detected at this point and remembered until the final acqui-
sition steps. It is crucial not to reference the dummy after releasing the
rwhash[hrw] lock. It is not necessary to increment a dummy’s reference count, but
not harmful either, beyond the wasted memory access.

Final acquisition steps
When dealing with a dummy (detected before releasing the rwhash[hrw] lock), we
must wait for the dummy to be replaced, by calling

cse_wait(&dummy_hash[DUMMY_HASH(key)));

and then restart the search algorithm in case of dummy_hash collisions, by using
goto again
Because the events are hashed, it is possible for multiple dummy situations to interfere with
each another. Indeed, a single event may be adequate if delayed allocation is rare enough.
Such interference can cause some processes calling cse_wait to return prematurely, and
some to wait longer than necessary, but none will wait indefinitely.

The techniques we have described for handling time consuming allocation and initial-
ization may be combined and used together.

Release. We now present the release algorithm, which decrements an item’s reference
count and deallocates the item when it reaches zero:

132

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

void
release (searchtab *stab, searchitem *sitem)
{
int key = sitem->key; // may be needed after fad
if (fad (&sitem->refcnt) > 1)
return; // done
Il sitem may be invalid pointer now
int dealloc = 0O;
int hbuck = SEARCHHASH(key);
int hrw = RW_SEARCHHASH (hbuck);
searchitem *sp, **spp;
spl_t s = splsoft();
bwrw_wlock (&stab->rwhash[hrw], splcheckf(s));
for (spp = &stab->hash[hbuck], sp = *spp;
sp !'= NULL,;
spp = &sp->next, sp = *spp) {
if (sp == sitem || sp->key == key) {
if (sitem == sp &&
sp->key == key && sp->refcnt == 0) {
Un-initialization steps;
*spp = sp->next;// remove from list
sp->next = sp; // indicate not on any list
dealloc = 1;
}
break;
}
}

bwrw_wunlock (&stab->rwhash[hrw]);
vsplx(s);
if (dealloc)

Deallocate *sitem;

}

We optimistically decrement the item’s reference count without any locks. As soon as the
count goes to zero, the item pointer becomes invalid; another processor could execute both
search and release , possibly reassigning the old item structure. Although possible, such
reassignment is unlikely, so we take an exclusive rwhash lock, assuming we will find the
item undisturbed in the bucket, waiting to be deallocated. We complete the deallocation only
if three conditions are met:

(1) We must find the very same item.
(2) It must have the same key.
(3) It must have refcnt equal to 0.

Along the way, if we find the same item or the same key without meeting the other two condi-
tions, we can stop searching, safe in the knowledge that some one else found the item and
began using it.

It is unfortunate that we must search the hash bucket in release ; we can avoid the
search at the cost of additional locking in the common case, and a retry loop:

133

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

void /I alternate inferior version
release (searchtab *stab, searchitem *sitem)

{
int hrw = RW_SEARCHHASH(SEARCHHASH(sitem->key));
again:
spl_t s = splsoft();
bwrw_rlock (&stab->rwhash[hrw], splcheckf(s));
if (fad (&sitem->refcnt) > 1) {
bwrw_runlock (&stab->rwhash[hrw]);
vsplIx(s);
return; /I done
}
if ("bwrw_rtow (&stab->rwhash[hrw])) {
vfai (&sitem->refcnt);
bwrw_runlock (&stab->rwhash[hrw]);
vsplx(s);
goto again; // try again
}
I refent is 0 and we have exclusive bucket lock
Un-initialization steps;
Remove item from bucket linked list;
bwrw_wunlock (&stab->rwhash[hrw]);
vsplx(s);
Deallocate *sitem;
}

There are several reasons for regarding this version of release as inferior:

= It can suffer from indefinite delay; there is no limit to the number of times we can goto
again before completing release . On the other hand, our search algorithm can also
suffer from this problem.

= If we assume deallocation is uncommon, this version costs more because it locks the hash
bucket every time.

= Avoiding the hash bucket search requires use of a doubly-linked list, increasing the space
requirements of both the hash table and items, as well as increasing the cost of list opera-
tions by requiring additional memory references.

Time Consuming Un-Initialization. Time consuming un-initialization is a problem for
release , just as allocation and initialization were problems for search . Consider the prob-
lem of managing i-nodes in memory: when no longer needed, they must be written back to
the disk. But such write-back can’t be done at the point indicated for Un-initialization steps
in the code for release , because context-switching might be required, and we cannot allow
context-switching while we hold the busy-waiting bucket list lock. Write-back can’t be done
before obtaining the bucket list lock, because the item could become dirty again by the time
we finally get the lock, and it can’t be done after removing the i-node from the hash list,
because a subsequent search might read stale data from the disk before the write-back is
complete.

To solve this problem, we describe an extended version of release , slightly improved
from that used in Symunix-1 and reported in Figures 35 and 36 in section 8.3.2, on pages

134

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

350-351.

As with time consuming initialization (p130), we assume each item is augmented with a
context-switching readers/writers lock, which must be held exclusively for un-initialization.
We also assume un-initialization can be viewed as dealing with “dirty” data: if the item is not
marked dirty, no time-consuming un-initialization is required. While an exclusive item lock
is held, a clean item will remain clean as long as no explicit action is taken to dirty it.

Given the existence of item locks, the first issue release must address is the item lock
state: does the caller hold a shared lock, an exclusive lock, or no lock on the item? This is
most easily answered by adding a three-valued parameter, locktype , to release . If
refcnt is 1, it makes sense to go ahead and acquire an exclusive item lock right away, if not
already held, because it will probably be needed for un-initialization.

/I enhanced for time consuming un-initialization

Il locktype=0: no item lock; 1: exclusive; 2: shared
void
release (searchtab *stab, searchitem *sitem, int locktype)

if (locktype = 1 && sitem->refcnt == 1 &&
Get exclusive or upgrade item lock successful)
locktype = 1;
int dealloc = 0, doagain = 0;
int key = sitem->key;

The general strategy is to decrement the reference count. If it doesn't go to zero, we are
done. Otherwise, if we don’'t have an exclusive lock, we must find the item in the bucket,
increment the reference count, get an exclusive lock, and start over:

135

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

again:
if (fad (&sitem->refcnt) == 1) {

if (locktype == 1)
Time consuming un-initialization;

Identify and lock bucket;

if (locktype ==1) {
Remove item from bucket list;
dealloc = 1;

}

else {
Search for item in bucket;
if (sitem found in bucket &&

key == sitem->key && sitem->refcnt == 0) {
vfai (&sitem->refcnt);
doagain = 1,

}

}

Unlock bucket;

if (doagain) {
Get exclusive or upgrade item lock;
locktype = 1;
goto again;

}

if (locktype = 0)
Unlock item;
if (dealloc)
Deallocate *sitem;

}

Expensive un-initialization steps are performed on an item with a zero reference count but
with an exclusive item lock. This is safe, because our lock prevents the item from being deal-
located (i.e., by another process calling search and release).

If the bucket list is doubly-linked, removal (at the point specified by Remove item from
bucket list) can be done without searching, otherwise a search is needed, as in the version of
release on page 133.

Searching and LRU Cacheing

As described on page 127 and exhibited in section 8.3.2 on page 350, excessive overhead can
result when reference counted objects oscillate rapidly between counts of zero and positive
numbers. While this is a fundamental problem with reference counted objects, it can be
essentially eliminated by combining reference count management with an LRU replacement
strategy so that objects are not deallocated immediately when their reference counts drop to
zero.

The idea is to use search and release algorithms very similar to those presented on
pages 129 and 133, but also to reference an LRU list (83.7.2). When an object’s reference
count drops to zero, it remains on the search structure while being added to the LRU list. If

136

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

such an object is subsequently searched for and found, it can be reclaimed by incrementing
the reference count and removing it from the LRU list. Alternatively, another search request
needing to allocate space may obtain the object from the LRU list and reassign it's data
structure by removing it from the search structure and reinserting it under a different key.
A race exists between searches needing to reclaim objects from the LRU list, and those need-
ing to reassign the least recently used object. We resolve this race by deferring to the search
structure: before an object can be reassigned, “approval” must be secured from the search
mechanism, but a reclaim is regarded as merely advisory.

We will present three operations:

= Cachesearch: Like plain search, but failed searches are satisfied by reassigning objects
not recently used. This eliminates the need for a separate pool for unallocated object
structures. (As presented here, we assume a fixed total number of object structures, but
the algorithm is readily extended to allow a changing number.)

= Cacherelease: Like plain release, but objects may be reclaimed by cachesearch.

= Cachefree: Like cacherelease, but the object cannot be subsequently reclaimed. This is
useful when an object is to be destroyed (i.e., when the old data should not be found by a
cachesearch with the old key).

Cache Data Structures. For purposes of exposition, we will call this combined mechanism
a cache , and each object will be represented by a cacheitem

typedef struct {
searchtab stab;
Irulist Iru;

} cache;

typedef struct {
searchitem si;
Iruitem [i;

} cacheitem;

Initially, all items should be placed on the LRU list and none should be on the search list.

Cache Search. This is based closely on the search function presented on page 129:

cacheitem *
cachesearch (cache *c, int key)
{
int hbuck = SEARCHHASH(key);
int hrw = RW_SEARCHHASH (hbuck);
cacheitem *citem;
searchitem *sitem;

137

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

again:
spl_t s = vsplsoft();
bwrw_rlock (&c->stab.rwhash[hrw], splcheckf(s));
for (sitem = c->stab.hash[hbuck];
sitem != NULL;
sitem = sitem->next) {
citem = (cacheitem *)((char*)sitem -
offsetof(cacheitem, si));
if (sitem->key == key) {
int rc = fai (&sitem->refcnt);
Additional acquisition steps;
bwrw_runlock (&c->stab.rwhash[hrw]);
vsplIx(s);
if (rc == 0) // advise Iru list
Iruremove (&c->Iru, &citem->li);
Final acquisition steps;
return citem;

}

/I item not found

if (lbwrw_rtow (&c->stab.rwhash[hrw])) {
/l upgrade failed; start over
bwrw_runlock (&c->stab.rwhash[hrw]);
vsplx(s);
goto again;

138

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

[/l upgrade succeeded
do {
Iruitem *litem = getlru (&c->Iru);
if (litem == NULL)
citem = NULL; // failed
else {
citem = (cacheitem*)((char*)litem -
offsetof (cacheitem, li));
if (_cache_reassign(c, citem, hrw)) {
litem = NULL; // success
citem->si.key = key;
citem->si.refcnt = 1;
Additional initialization steps;
citem->si.next = c->stab.hash[hbuck];
c->stab.hash[hbuck] = &citem->si;
}
}
} while (litem != NULL);
bwrw_wunlock (&c->stab.rwhash[hrw]);
vsplx(s);
if (citem != NULL)
Final initialization steps;
return citem;

}
The allocation portion of cachesearch is tricky, but most of the trickiness is buried inside
the internal function _cache _reassign . The job of cache_reassign is to remove an

item from whatever search hash bucket list it is on, if possible. The candidate’s reference
count must be consulted while an exclusive lock is held on the hash bucket list. The need for
a lock raises the possibility of deadlock, because at this point in cachesearch , we are still
holding an exclusive lock. We will describe two deadlock avoidance solutions, and implement
the first:

(1) For aconservative approach, we can implement _cache_reassign to use conditional
locking, i.e., bwrw_trywlock instead of bwrw_wlock (§3.5.4/p64). But first, it must
check to see if the reassignment candidate is on a bucket list protected by the read-
ers/writers lock already held, the one with index hrw; if so, no additional lock is

required:*®

 Checking if the two buckets are the same could be omitted, but would result in some unneces-
sary failures, lowering the algorithm’s efficiency in both space and time. Furthermore, in the degener-
ate case where NRW_SEARCHHASHL, no reassignments would ever occur.

139

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

int
_cache_reassign (cache *c, cacheitem *citem, int hrw_held)
{
searchitem *sp, **spp;
if (citem->si.next == &citem->si)
return 1; // item not in any bucket
int hbuck = SEARCHHASH(citem->si.key);
int hrw = RW_SEARCHHASH(hbuck);
if (hrw != hrw_held &&
Ibwrw_trywlock (&c->stab.rwhash[hrw]))
return O; // avoid deadlock; assume the worst

for (spp = &c->stab.hash[hbuck], sp = *spp;
sp !'= NULL,
spp = &sp->next, sp = *spp) {
if (sp == &citem->si) {
if (citem->si.refcnt = 0)
sp = NULL,;
else {
*Spp = sp->next;
sp->next = sp; // not on any list
}

break;

}

if (hrw != hrw_held)
bwrw_wunlock (&c->stab.rwhash[hrw]);
return sp !'= NULL,;
}

(2) Another approach is to adopt the solution outlined on page 131 for time consuming
allocation. If cache _reassign can't obtain the needed rwhash lock without delay,
a dummy item can be used temporarily. When we get to Final allocation steps, we
can get a lock without concern for deadlock. After determining reassignment, we re-
lock the original rwhash lock and replace or remove the dummy item.

This approach might have merit for another reason: it limits the amount of time the

rwhash locks are held.

Cache Release and Free. The basic idea is to decrement the reference count, and call
putmru when it drops to zero. We handle both cacherelease and cachefree

same function:

#define cacherelease(c,ci) _cacherel(c,ci,0)
#define cachefree(c,ci) _cacherel(c,ci,1)

140

Chapter 3: Some Important Primitives Section 3.7.6: Search Structures

void
_cacherel (cache *c, cacheitem *citem, int makefree)
{
int key = citem->key; // may be needed after fad
if (fad (&citem->si.refcnt) > 1)
return; // done
/I citem may be invalid pointer now
int hbuck = SEARCHHASH(key);
int hrw = RW_SEARCHHASH (hbuck);
searchitem *sp, **spp;
spl_t s = splsoft();
bwrw_wlock (&c->stab.rwhash[hrw], splcheckf(s));

for (spp = &c->stab.hash[hbuck], sp = *spp;
sp != NULL;
spp = &sp->next, sp = *spp) {
if (sp == &citem->si || sp->key == key) {
if (sp == &citem->si &&
sp->key == key && sp->refcnt == 0) {
if (!makefree)
putmru (&c->Iru, &citem->li);
else {
*Spp = sp->next;
sp->next = sp; // noton any list
putlru (&c->Iru, &citem->li);

}
break;
}
}

bwrw_wunlock (&c->stab.rwhash[hrw]);
vsplx(s);

3.8. Future Work

There is a need for more experience with these and other highly parallel algorithms. We
need to understand their performance better under real workloads and learn how well they
may be applied to different kinds of operating systems. The study by Wood [207] and the
data in section 8 are only a start.

Busy-Waiting Synchronization

In section 3.5, we used an exponential backoff technique to reduce memory contention and
interconnection network traffic while busy-waiting. Many busy-waiting algorithms are prob-
abilistically fair with simple busy-waiting, but exponential backoff destroys this: processors
poll at a lower frequency after waiting a long time. It might be useful to consider other forms
of exponential backoff to regain fairness. One possibility is to use a ticket-based algorithm:
this could be fair without regard to polling frequency, but might waste a lot of time since the

141

Chapter 3: Some Important Primitives Section 3.8: Future Work

senior waiter is always polling at the lowest frequency; somehow the opposite order should
be used. Another approach might be to find a way to notify each new waiter of the “oldest”
waiter’s age; the new waiter can then use the same slow polling frequency, restoring proba-
bilistic fairness to the non-ticket-based algorithm.

Broadcast Trees

It is possible to extend the algorithm to count broadcasts, so nothing is lost. Each leaf in the
tree would be augmented with a count of the total number of broadcasts of the corresponding
type. Each member would also remember the counts for all the leaves. This will consume a
lot of memory (exponential in the number of processors) if the number of broadcast types and
the number of members both grow with the size of the machine, but it seems more likely that
the number of broadcast types will remain relatively fixed.

Since our initial application (delivery of traditional UNIX signals to process groups) had
no need for counting, we have not fully investigated such an extension. There are some ques-
tions that arise immediately:

= How do we handle overflow?
< How well does the extended algorithm perform?
< How many broadcast types are needed for various other applications?

A good first step would be to identify specific worthy applications.

Hardware for Broadcast Interrupts

Two possible hardware enhancements are immediately apparent. The first was already men-
tioned in section 3.6 on page 77: the hardware could count RBC interrupts so that the soft
RBC interrupt handler can know exactly how much work to do. Without this information, it
is difficult to balance interrupt level RBC work fairly among the processors.

The second enhancement we propose is to support random broadcast directly in the
hardware. Machines in our target class generally have some sort of interconnection network
for processor—-memory traffic. We want this network to provide a broadcast message capabil-
ity. For concreteness, let us consider an Omega network composed of 2x2 switches. Normal
messages go from one input port to one output port of each switch. In contrast, a full broad-
cast message would go from one input port to both output ports. The Ultra-3 prototype [29]
supports such a full broadcast operation (as part of the “return path” of the network).

A partial broadcast message would not behave the same at every switch. Sometimes it
would go to two output ports, like a full broadcast message, and sometimes it would go to
only one, like a normal message. There are several possible ways of controlling this, and
they differ in their suitability for different switch configurations. Some possibilities worthy
of further study include:

< Full bitmap. If enough bits are available in the right place within a message, it is possi-
ble to specify exactly the set of processors to receive a broadcast interrupt message. The
ability to do this is also limited by details of the routing mechanism used by the switches
for normal messages. For example, the processor bitmap may need to be fully contained
in the first packet of a message. In addition, each switch in the network needs to know
exactly which bits to examine for routing.

= Partial bitmap. A partial bitmap could be provided in a broadcast message to control
broadcast behavior at only certain stages of the network. For example, the first logn

142

Chapter 3: Some Important Primitives Section 3.8: Future Work

stages could be controlled by the n-bit bitmap, and the remaining stages could perform a
full broadcast. This would allow a broadcast initiator to specify which groups of proces-
sors should be recipients.

= Variable-Stage Splitting. With only log N bits for an N processor machine, one could
specify at which network stages broadcasting (or “splitting”) should occur. The other
stages could be controlled by the normal message routing mechanism (also using log N
bits).

= Balanced random. A random broadcast message should contain a count of how many
processors are to receive it. Each switch handling such a message should send it to both
output ports. Along the way, the count is right shifted by one bit position, and the bit
shifted out is added back into only one of the outgoing messages; the choice should be
random. If one of the outgoing messages ends up with a count of zero, it may be dis-
carded. It is easy to see that this scheme distributes the recipients in a balanced fashion
across the machine.

There are many engineering issues to be considered in the possible implementation of these
partial broadcast schemes. We need to know the cost and performance of each, the impact on
normal (non-broadcast) traffic, the frequency of use, and the distribution of broadcast counts
in practice.

So far we have discussed broadcast as an operation in the interconnection network only
for purposes of interrupting processors. Another possible extension is to use it for accessing
memory. In this case, the random aspect doesn’'t seem too useful, but both full and partial
broadcast can have practical applications. We briefly discuss a few possibilities:

< Filling memory. A simple application is clearing blocks of memory, or, more generally,
filling them with a fixed word value. This only has practical value when the memory sys-
tem is finely interleaved, e.g., one or two words. For example, with memory interleaved
across memory modules every 8 bytes, a machine with 1024 memory modules could set
8K bytes of memory in the same time required for a single ordinary memory access (but
with increased use of memory and interconnection bandwidth). Smaller machines would
have a correspondingly smaller benefit. Note that this requires the broadcast message to
contain a partial memory address along with the data to be stored (and possibly partial
broadcast information).

= Broadcast memory modifiers. By specifying an arithmetic or logical operation along with
the broadcast, certain useful functions could be performed by the memory module, rather
than simply storing data. For example, a constant may be added, ORed, or ANDed to
each word of a suitably sized and aligned array.

= “Reverse combining”: vector sum. The normal role for combining in an Ultracomputer is
to take place on the path from processor to memory, and de-combining to take place on
the return path (the same path, in reverse). While it is common to depict an Ultracom-
puter in the manner of Figure 2 (A), in section 2.1, it is also simple (in concept) to fold or
bend the network around so that the processor and memory modules are co-located. If
this is done, one can imagine sending a message in the “wrong” direction. If, as in the
Ultra-3 prototype, we have a network that performs full broadcast on the path normally
taken for traveling from memory to processor, then we can consider traveling in reverse:
do a full broadcast on the way from processor to memory modules, access memory as with
a Fetch&® operation, and perform combining on the way back to the processor. For
example, we could compute the sum of a suitably sized and aligned block of memory in
the same time as a single normal memory access. At least two other enhancements are

143

Chapter 3: Some Important Primitives Section 3.8: Future Work

needed to make it work:

Suppression of the wait-buffer: the operations being combined will never be decombined,
so nothing should be held in the wait buffer for them.

Receiving buffer at processor: when the result arrives back at the originating processor, it
may not yet be reduced to a single message, due to delays in the network interfering with

combining at some point along the way.®® The network interface, which receives the mes-
sages, should combine them. One additional problem is detection of completion: how can
the processor know when all responses have arrived? This may not be possible without
further switch enhancements (such as performing two ALU operations per message com-
bine, so as to count the number of virtual messages combined into one), or using some
additional network traversals.

Again, we need to know the cost, performance, and frequency of this kind of operation to
evaluate it fully.

3.9. Chapter Summary

In the 7 major sections of this chapter we presented, sometimes in excruciating detail, the
underpinnings of Symunix-2. This foundation is shaped primarily by our desire to maximize
performance and scalability for our target class of machines.

One purpose of this chapter is simply to introduce some functions and notation to be
used in code samples throughout the rest of the dissertation. This was our primary motiva-
tion in presenting material on Fetch&®, TDR, histograms, and interrupts, for instance.
Another role played by this chapter is to review previously existing material on
Fetch&®-based algorithms, in order to remind the reader how such algorithms are con-
structed. Our treatment of counting semaphores, readers/writers locks, and group locks, cer-
tainly falls into this category, but at the same time we tried to provide “added value” by
relentlessly structuring the code to emphasize the distinction between interface and imple-
mentation and to maximize performance of the latter.

This attempt to define an interface has a greater goal than just to enlarge the presenta-
tion. In conjunction with the results to be presented in chapter 8, we hope to convince the
reader that the modular interfaces we have chosen are general enough for a wider class of
machines, while still unlocking the potential of our target class. We cannot overstress the
need for careful design of this interface and the implementation(s) beneath it.

We presented several new data structures and algorithms in this chapter: APCs, RBCs,
LRU lists, visit lists, broadcast trees, and search structures. In addition, our algorithms for
readers/readers locks and sets will be new to almost all readers. We introduced several
“minor” techniques that play a crucial role in minimizing overhead; chief among these are
the two-stage implementation strategy for synchronization code, check functions, and the
corresponding interrupt mask manipulating function, splcheckf . This level of detail is not
often presented in the literature, but we presume we were not the first to invent such tech-
nigques.

% Also, with the Ultra-3 network, no combining could occur in the first stage (Dickey and Kenner
[56]).

144

Chapter 4: Processes

This chapter is concerned with issues of process management as performed by the operating
system kernel. We begin in section 4.1 by looking at the development history of the process
abstraction in Symunix. Our process model is an extension of the traditional UNIX process,
so the next two sections are devoted to describing the major attributes we added: section 4.2
is concerned with basic process management in the form of creation, destruction, and error
handling, and section 4.3 presents the activity, a mechanism to harness and control asyn-
chrony within a single process by providing asynchronous system calls and page faults. We
then turn our attention to implementation issues. Sections 4.4-4.8 describe major data
structures, context-switching synchronization, scheduling, process creation/destruction, and
signals, respectively. After looking at a few ideas for future work in section 4.9, we summa-
rize the chapter in section 4.10.

4.1. Process Model Evolution

Following the positive experience with Symunix-1, the general direction of design for Symu-
nix-2 was clear, but one new goal influenced the Symunix-2 design in particularly far-
reaching ways: flexible support for efficient user-mode thread systems.

Symunix-1 showed that the spawn and mwait system calls were an effective means of
creating new processes in parallel (see section 8.3.1). As a result, early plans called for
enhancement of spawn to support additional features such as cactus stacks, to provide a
more direct match for our envisioned programming language constructs. In such a system,
memory sharing and process creation would both closely follow the nesting structure of the
programming language.

But, as time went on, it became clear that no matter how efficient we made spawn and
mwait , there would still be many applications whose parallelism would be dominated by pro-
cess management overhead. Attempting to address this problem, we proposed pre-spawning,
a limited form of what has now generally become known as user-mode thread management.
Under pre-spawning, worker processes would be spawned in advance of need, busy-waiting
and performing work as necessary in response to execution of parallel statements in the pro-
gram. In contrast to pre-spawning, the original model could be called on-demand spawning.

In their simplest forms, the run-time systems for on-demand spawning and pre-
spawning would be quite similar: where the direct system would spawn, the pre-spawned
system would simply engage the services of a worker. In practice, however, both kinds of sys-
tems are complicated by many issues, especially management of memory sharing and excess
parallelism (beyond the obtainable number of processes or processors).

145

Chapter 4: Processes Section 4.1: Process Model Evolution

Pre-spawning was implemented as support for the ParFOR system (Berke [24, 25]), and
was extremely successful, totally eclipsing all other parallel programming models on the
Ultra-2 prototypes.

A more general approach than that taken in ParFOR would be more dynamic: instead
of using a fixed-size pool of worker processes, they might be created on demand as an appli-
cation’s parallelism expands, and destroyed when the supply of idle workers exceeds a
threshold; there are many possibilities. Semantics can be matched to language or applica-
tion requirements by careful selection of shared vs. private memory and other operating sys-
tem state. Each of these possible user-mode thread management systems supports a general
model of execution in which threads of control, with certain well-defined properties, may be
created, executed, and destroyed.

Supporting general thread models presents some difficulties for a user-mode implemen-
tation:

< Input/Output. When a thread waits for 1/0O, it must block. The simplest thread imple-
mentations built on a UNIX-like process model will allow the thread to execute most ordi-
nary UNIX system calls directly. This will often block the process running the thread,
leaving the processor available to run something else. For a single application to utilize a
fixed number of processors continuously, it must have extra processes available to run in
this situation. However, extra processes must be multiplexed onto the same physical pro-
cessors, introducing load balancing problems and increasing overhead through context-
switching and disruption of caches.

= Page Faults. Page fault handling is very similar to supporting synchronous system calls.
The thread which encounters a page fault cannot continue executing until the page is
brought into memory from secondary storage, but other threads could profitably use the
same processor. The simplest potential solution, not having page faults at all, is often
infeasible. Allowing page faults is somewhat akin to preemption.

< Preemption. When running a thread system under a general purpose timesharing OS,
processes are vulnerable to preemption by the system scheduler at any time. The concept
of preemption is reasonable; the problem is that the thread executing on a preempted
process is also unable to run, even if other processes within the same application are idle.
Worse yet, other threads running on other processes may be waiting for the preempted
one, but there is no way to get the preempted thread running again quickly.

< Thread management. The user-mode implementation of thread management itself is
subject to all the problems mentioned above, but in a much more severe form. For exam-
ple, if a process executing a thread management operation (such as thread context-
switch) makes a blocking system call, takes a page fault, or is preempted, there is no
alternative: the process will be unavailable for the entire delay. The processor can switch
to another process, but having extra cooperating processes, beyond the available number
of processors, is counterproductive most of the time because of context-switch overhead.
To make matters even worse, the process may hold critical locks that prevent any cooper-
ating process from performing thread management operations.

As a direct result of these problems, a general trend developed in the research literature: ker-
nel implemented threads, or, simply kernel threads. Kernel threads directly implement the
thread abstraction: the flow of control itself is separated from other process attributes, most
importantly from the address space. In such systems, the kernel directly supports and
schedules threads, with the following advantages:

146

Chapter 4: Processes Section 4.1: Process Model Evolution

= Popular semantics. The common designs share the most important items of traditional
process state, such as the address space and file descriptors. This means that, just as
with a traditional UNIX process, memory allocation and open system calls have an appli-
cation-wide effect.

= Simplicity. When implemented in the kernel, the thread implementation has full control
over the system, and direct access to the algorithms and data structures used for schedul-
ing, etc. This is in contrast to the “arm’s length” relationship available to a user-mode
thread implementation.

= 1/0, page faults, and preemption. The problems faced by user-mode thread implementa-
tions are simply not relevant to kernel threads. When a kernel thread makes a syn-
chronous system call or gets a page fault, it is suspended and another thread is scheduled
onto the otherwise-idle processor. Since all threads are known to the scheduler, it can
always find one to run, if there are any.

= Ease of implementation. Since the thread system is implemented within the kernel, the
implementor has quite a bit of freedom. Algorithms and data structures hidden from the
user process are available, and may be used directly or even redesigned to suit the thread
system better. In general, kernel implementations have much greater control over the
entire system, and enjoy privileges, such as control over preemption and interrupts, that
are often unavailable to user-mode implementations.

= Integration. Because there is a single thread abstraction supplied by the kernel, every
parallel programming environment can use many of the same tools and facilities for
debugging, performance monitoring, etc. The similarity of threads from environment to
environment also benefits programmers who work on multiple environments, or develop
new ones, as there are no thread implementation decisions to make.

Unfortunately, kernel threads are also more expensive than user-mode threads. While creat-
ing, destroying, and context-switching between two kernel threads in the same address space
is generally an order of magnitude cheaper than the corresponding operations upon ordinary
UNIX processes, user-mode thread systems outperform them by about another order of mag-
nitude. Of course, context-switching between different address spaces costs about the same,
whether ordinary processes, kernel threads, or user threads are employed.

Of course, kernel threads can also be used as a basis for user-mode thread implementa-
tions, in almost exactly the same way as UNIX-style processes can, but the run-time cost is
also essentially the same.

For coarse grained applications that don't frequently invoke thread operations, the
advantages of kernel threads may still be attractive. The question may fairly be asked, why
not have both kernel and user-mode thread implementations? This question is hard to
answer, partially because there is still relatively little experience with sophisticated user-
mode implementations, and partially because it is largely a question of design principles. To
some extent, it's a matter of where to put the complexity: in the kernel, outside, or in both
places. Complexity is concerned with implementation cost, run-time cost, and also the con-
ceptual intricacies of the kernel/user and other interfaces. (See the discussion in sections
2.2.3,2.3.11, and 2.3.12 for an overview of other approaches.)

We are hopeful future experience will support a more informed design decision, but the
current approach taken for Symunix-2 is to improve the UNIX process model to support gen-
eral user-mode thread models properly, rather than implementing threads as an alternative
kernel provided service.

147

Chapter 4: Processes Section 4.1: Process Model Evolution

Symunix-2 provides support in the kernel to allow sophisticated applications to do per-
formance critical operations directly. This has two advantages over kernel-based thread
implementations: it avoids the direct overhead of crossing into and out of the kernel’s protec-
tion domain for some very common operations, and it allows economy through specialization,
since few applications need all the generality incorporated in a general purpose OS kernel.

This strategy has determined the shape of the most significant new features of Symu-
nix-2, affecting both the kernel interface and the underlying implementation model.

= Asynchronous system calls (84.3.1) and asynchronous page faults (§4.3.2) form the basis
for thread implementations outside the kernel.

= The scheduler extends limited but direct control over preemption to user-mode programs
via the temporary non-preemption facility (84.6.4) and the SIGPREEMPTignal (84.6.5).

= Since the kernel doesn’t implement multiple threads per process, parallel programs are
executed by collections of processes. As a result, scheduler policy extensions, needed to
efficiently support some applications, apply to a new process aggregate, orthogonal to
sharing of address spaces: the scheduling group (84.6.3).

= Because flexibility is one of the advantages of user-mode thread implementations, the
kernel doesn't directly support shared address spaces since they are rather special pur-
pose. Instead, the memory management model was designed to provide efficient primi-
tive support for a variety of sharing patterns, including shared address space emulation
(87.6).

4.2. Basic Process Control

This section discusses our changes to the basic UNIX process model other than those related
to asynchrony (to be covered in section 4.3). These changes are designed to help an applica-
tion with the most basic management of its processes—creation, destruction, and error hand-
ling.
We retain the spawn operation from Symunix-1, with which many processes may be
efficiently created at once.”
int
spawn (int n, int flags, int* pids)
The parameter n tells how many processes to create, and pids points to a suitably large inte-
ger array, where the process ID of each child is stored. The return value is zero in the parent
and a unique spawn index, s, chosen from the set {1,...,n} in each child, such that, for each
child i,
pids[s;j—1] = pid;
The parameter flags provides several options shown in Table 18, on the next page.
As part of the spawn support for parallel process management, we introduce the notion

of a process family: the collection of processes, related by spawn (or fork), comprising a par-
allel program. A new family is created when a process begins a new program via the exec

® Although the basic function of spawn remains the same, we have modified the details based on
experience. The new spawn is both easier to use and more capable.

148

Chapter 4: Processes Section 4.2: Basic Process Control

Flag Effect
SPAWN_PROGENITOR Children are adopted by family progenitor
SPAWN_N_EXITZ Notify parent on zero exit status

SPAWN_N_EXITNZ Notify parent on nonzero exit status
SPAWN_N_EXITSIG | Notify parent on death by signal
SPAWN_N_SUSPEND| Notify parent on stop signal
SPAWN_N_RESUME | Notify parent on continue signal

Table 18: Flags for spawn.

The flags are integer values which may be or’ed together. The SPAWN_Nx flags (N
stands for “notify”) control generation of the SIGCHLD signal and whether or not
wait returns for child state transitions of type x. In this context, parent is either
the natural parent or the progenitor in the case of SPAWN_PROGENITQR

system call; such a process is called the progenitor of the new family. There are only two
ways in which the family concept affects the kernel:

(1) The SPAWN_PROGENITGRtion flag to spawn allows the role of parent to be concen-
trated in the progenitor, without requiring the progenitor to do every spawn itself.
This feature is relevant to applications in which parallelism changes dynamically
throughout the execution of the program. A spawn with this option proceeds in the
usual way, but the children see the family progenitor as their parent (e.g., via
getppid), rather than their true parent. Once the spawn succeeds, the true parent
has no further role in managing the children. The progenitor will wait for them and
collect error status as appropriate (p150). Because the true parent is free of such
responsibilities, it may terminate before its children, with no risk of them becoming
orphans and being inherited by the system’s init process, which would discard their

exit status.”*

(2) The ability to send a signal to all family members is provided by an extended Kkill
system call. As described in section 4.8.2, signals may be sent efficiently to several
kinds of process aggregates; the family is one of them.

In Symunix-1, the mwait system call was introduced to fulfill the function of wait for
spawned processes, without causing serialization in the common case. The most important
behavioral difference between wait and mwait is that mwait does not actually return status
information for a terminated child, rather it returns the number of spawned children termi-
nated since the last call to mwait . In Symunix-1, one of the arguments to spawn is an array
in which the exit status information for each child is stored when it eventually terminates. If
mwait returns a positive number, it is necessary to search the array to determine if any child
terminated abnormally.

A simpler and more flexible method is used in Symunix-2, eliminating the need for
mwait and the status array argument to spawn. The SPAWN_Nx flags in Table 18 allow the

™ In fact, in our implementation, init is never notified about orphans, completely avoiding any pos-
sibility of init becoming a bottleneck. Orphans’ exit status values are discarded. See section 4.7.

149

Chapter 4: Processes Section 4.2: Basic Process Control

parent to control which child state transitions will report status via wait and SIGCHLD A
call to wait will delay the parent (or progenitor, if SPAWN_PROGENITORas used) until a
reportable condition exists or no such conditions are possible. Typically, spawn will be speci-
fied with SPAWN_N_EXITNZ|SPAWN_N_EXITSIGwhich will cause wait to delay until some
child terminates abnormally or all children have terminated; the latter case is, we hope,
more common.

Exit status information available to parents via wait , together with the SIGCHLD sig-
nal, allow a parent (progenitor) to report abnormal terminations of children reliably, but
some mechanism is also needed to handle abnormal termination of a parent (progenitor).
This is a potentially important error condition because, in some situations, inopportune ter-
mination of a parent (progenitor) is just as likely to result in deadlock among its children as
the death of a child would. To solve this problem, we introduce the SIGPARENTSsignal, auto-
matically delivered to all children of a terminating parent (including any “adopted” children,
in the case of a progenitor’s termination). This signal is ignored by default, but concerned
applications may catch it or have it cause termination.

4.3. Asynchronous Activities

We introduce a major new kernel abstraction, the activity, and transform the process from an
active to a passive entity. Activities are not explicitly visible at the user/kernel interface;
their effect is apparent only in the form of two new features: asynchronous system calls and
page faults. The situation is completely different internally, where activities are central.
The unit of scheduling within the kernel is the activity. Each process has one or more activi-
ties, one of which is the primary activity. Only the primary activity ever executes in user-
mode, and in fact we continue the tradition of using expressions like “user process” to mean
the user-controlled execution path of the primary activity. Logically, activities are created
and destroyed automatically as side effects of asynchronous system calls and asynchronous
page faults, but the implementation can use cacheing techniques to avoid some of the work in
practice. Whenever a new activity is created, it takes over the role of primary activity, mean-
ing that it acquires all necessary user-mode state (such as register values) from the old pri-
mary. The old primary completes its work in the kernel and then vanishes.

Each activity consists of a structure containing various items of state necessary for
scheduling and synchronization, together with a stack for use when executing in kernel-
mode. Other items of process state not peculiar to a single activity are maintained in the
proc structure, which is generally similar to that of traditional UNIX implementations. The
u-block of traditional implementations has been eliminated in favor of the proc and activity
structures; the major impact of this change will be discussed in section 4.4.5.

The main purpose of activities is to allow a user process better control over its own pro-
cessor use. By using the new features of asynchronous system calls and page faults, it is pos-
sible for a user process to maintain control of its processor at times when it would block if
only synchronous mechanisms were used. Of course, maintaining better control takes more
work, and we can expect this to be reflected in larger and more complex applications. We
expect the impact of this extra work to be ameliorated in two ways:

(1) For most applications, the extra work will be done within libraries and programming
language run-time support systems, which only have to be written once. This will
directly reduce the development cost of many applications.

150

Chapter 4: Processes Section 4.3: Asynchronous Activities

(2) Tailoring such libraries and run-time systems to the needs of specific classes of appli-
cations will reduce their complexity and improve performance by eliminating unnec-
essary features. This will make the applications more cost-effective at run-time.

Nevertheless, performance gains come with a price: the old uniprocessor process models do
not yield significant parallel speedups without extension, and extra work is needed to take
advantage of those extensions.

4.3.1. Asynchronous System Calls

The basic UNIX 1I/O model of open, close , read , write , and Iseek operations on byte
streams is simple, powerful, and quite appropriate for the workload to which UNIX systems
have traditionally been applied, but in high performance environments some extensions are
often necessary. One such extension is asynchronous 1/0, which has existed in non-UNIX sys-
tems for decades and even within the UNIX kernel since its inception, but has become
directly available to the user only relatively recently, on some systems such as those from
Cray [51] and Convex [49].

Of course it is possible to obtain a form of asynchronous I/0O on any UNIX system that
has (at least) shared memory, simply by using another process to issue the synchronous 1/0
call. Our objections to such an approach (and similar ones based on kernel threads) are that
it is less efficient, since additional context-switches are needed and more complex
user/library software is required. Asynchronous I/O and interrupts have been used in com-
puter systems for over 30 years, and it is safe to say that they are better understood than
general MIMD shared memory computing (perhaps because interrupts are more “struc-
tured”). The principle of using the least powerful mechanism available to solve a problem
(81.4) would seem to favor use of asynchronous 1/O with interrupts, over separate processes
or threads, in most cases.

In large-scale parallel systems, user access to asynchronous 1/O is desirable not only for
high bandwidth and increased overlapping of processing and 1/O activity, but also to facilitate
the construction of efficient user-mode thread management systems (87.5).

Meta System Calls

Rather than propose individual extensions to allow asynchrony in certain designated 1/0
operations, we propose a general strategy that can be applied to any system call for which
asynchronous operation makes sense, e.g., not only read and write , but also open, close ,
ioctl , mkdir , rmdir , rename, link , unlink , stat , and so forth. The general idea is to
define a control block for asynchronous system calls, containing a specific call identifier, its
arguments, return values, and status (e.g., executing asynchronously, successfully completed,
or completed with an error). Both the user and the kernel have the option to suppress asyn-
chrony, reverting to synchronous behavior.

Three new meta system calls are introduced, each taking a control block pointer as an
argument:

syscall
Issue a system call. The return value indicates whether the call has already com-
pleted; otherwise a signal, SIGSCALL, will be delivered when it is.

syswait
Wait for completion of a system call. The return value distinguishes between control

151

Chapter 4: Processes Section 4.3.1: Asynchronous System Calls

blocks that aren’t pending, those that have completed naturally, and those that have
been canceled.

syscancel
Forcibly cancel a pending system call, if possible.

The control block for the meta system calls, called a metasys structure, is simple:

struct metasys {

unsigned number; /I specific system call
int status; /I done, async, aborted, error
int flags; /I see below
void (*done)(struct metasys *); // func for handler to call
union {
struct { int fd; } close_args;
struct { char *path; int flags, mode, fd; } open_args;
struct { int fd; void *buf; long icount, ocount;
off_t pos; } read_args;
struct { int fd; void *buf; long icount, ocount;
off_t pos; } write_args;
...additional substructures, one for each system call...
} args;

h

/I status and return values (also errno values, all positive)

#define SCALL__DONE 0 /I completed or canceled
#define SCALL__ASYNC (-1) // asynchronously executing
#define SCALL__ABORTED (-2) // canceled

#define SCALL__NOTFOUND (-3) // bad arg for syswait or syscancel

/I flag values
#define SCALL__NOSIG 01 /I suppress signal on async completion
#define SCALL__NOCANCEL 02 // disallow syscancel

/I the following are mutually-exclusive
#define SCALL__SYNC 04 /I synchronous; signal causes cancel
#define SCALL__ AUTOWAIT 010 // implicit syswait

The usage is simple. The user allocates a metasys structure, fills in the number, status
flags , and done fields, as well as the input parameters of the appropriate args union mem-
ber, and finally passes the structure’'s address to syscall . Each member of the args union
is self-sufficient for a specific system call, and contains both input and output parameters.
For example, a read operation uses the read_args structure, in which fd , buf , icount , and
pos are input parameters for the file descriptor, buffer address, number of bytes requested,
and file offset, respectively. If the operation is successful, the number of bytes actually read
is returned in the ocount field. Correct use dictates that users not modify the metasys
structure after calling syscall ; the kernel is allowed to read the structure any time after
the call begins, and to rewrite the structure any time prior to completion.

Once syscall is invoked, subsequent behavior depends on the specific call number, the
flags, signal arrivals, and possibly the dynamic state of the kernel. There are four kinds of

152

Chapter 4: Processes Section 4.3.1: Asynchronous System Calls

return values from syscall

SCALL__DONE
The call completed, successfully. There was no visible asynchronous behavior, for
one of the following reasons:

= The specific call was too simple to justify the extra overhead of an asynchronous
activity. A short non-blocking system call should work this way. (To eliminate
the meta system call overhead for such cheap calls executed by serial programs,
they may also be supported by traditional trapping instruction sequences.)

= The specific call was one of a few that always run synchronously, even if blocking
is required, such as exec . An asynchronous exec would just not be useful.

= The dynamic state of the operating system was such that the call was able to
complete without actually needing to block. This condition, which may be non-
deterministic, requires that no physical 1/O be necessary and that all context-
switching synchronization needed within the kernel be satisfied without delay.
This optimistic strategy avoids activity overhead in common cases.

= One of the flags SCALL__SYNCor SCALL__ AUTOWAITwas specified by the user.
Both cause synchronous behavior, but they differ in their response to signals.
SCALL__SYNCallows a signal to interrupt “slow” system calls, such as reading
from a terminal, as if syscancel were used; it closely models traditional UNIX
system call semantics. SCALL__ AUTOWAITacts as if an implicit call to syswait
was issued right after syscall

The return value, SCALL__DONEIis also stored in the status field of the metasys
structure.

Positive (errno) values
These values indicate failure rather than success, but are otherwise similar to
SCALL__DONE The return value (an errno value) is also stored in the status field
of the metasys structure. None of the other syscall return and status values are
positive.

Note that none of the three meta system calls actually set the global variable errno

and that there are no errors attributable to the meta system calls themselves.”
User-mode system call stub routines are responsible, as in traditional UNIX imple-
mentations, for setting errno appropriately and performing other similar actions to
retain UNIX compatibility.

SCALL__ASYNC
The call has not yet completed, and is progressing asynchronously. When complete,
a SIGSCALL signal will be generated, unless suppressed with the SCALL __NOSIG
flag. The signal handler will be invoked with the address of the metasys structure
as an extra argument. In the meantime, the status field of the metasys structure
may be examined at any time to poll for completion. Polling is best accomplished if
the user stores SCALL__ASYNdnto the status field prior to calling syscall ; when

2The signals SIGSEGVand SIGBUS can be generated, however, if the argument to a meta system
call is an invalid pointer.

153

Chapter 4: Processes Section 4.3.1: Asynchronous System Calls

the call is finally completed, the kernel will update status to a different value.”™

If the SCALL__ AUTOWAITflag was specified, the SCALL__ASYNCreturn value indi-
cates that a signal was caught, and the handler returned.

SCALL__ABORTED
This value indicates the system call was aborted by syscancel . It can only be
returned by syscall if SCALL__SYNCwas specified, but can occur more generally
as a final value for a metasys status field, and can also be returned by syswait

The second meta system call, syswait , allows a process to await the completion of an asyn-
chronous system call. It has the same set of return values as syscall , plus another possibil-

ity:
SCALL__NOTFOUND

The argument to syswait is bad; this usually means the system call has already
completed.

The third meta system call, syscancel , also operates on asynchronous system calls; it
aborts them if possible. The high level view is that certain “slow” system calls, such as read-
ing from a terminal, may be aborted. The low level view is that an activity within the kernel
may be aborted when it performs an interruptible context-switching synchronization
(84.5/p167). The effect of syscancel upon syscall and syswait has already been
described. A call to syscancel never blocks. The return value of syscancel itself indi-
cates the possible success or failure of the cancelation:

SCALL__ABORTED

Steps were taken to abort the system call but, because syscancel never blocks, it
can't know if those steps were successful or not. To find out if the system call was
actually aborted or not, it is necessary to wait for completion of the asynchronous
system call itself (by busy-waiting on the status field, catching SIGSCALL if
enabled, or calling syswait if necessary) and check the status field value; it will
be SCALL DONE or SCALL__ABORTED on completion. Unless suppressed,
SIGSCALL is always delivered upon completion, whether a system call completes
normally or is aborted.

SCALL__ASYNC
The system call couldn't be aborted because it was marked with the
SCALL__NOCANCEiIfflag, or because cancelation is always ignored for that specific
kind of system call.

SCALL__NOTFOUND
As with syswait , this indicates that the metasys pointer is bad; probably the sys-
tem call has already completed.

The SCALL__NOCANCEIllag prevents a particular system call from being aborted, either by
syscancel , or by a signal (if SCALL__SYNGs set).

Since the status is set when syscall returns, there may be no need for the user to set the
value initially. Doing so, however, eliminates any dependency on the atomicity of meta system calls
with respect to caught signals. What if a signal is delivered just as syscall is returning? Does the
user’s handler see the status value set by syscall , or the previous value? We prefer to leave this
undefined, as there are valid implementation strategies leading to either answer.

154

Chapter 4: Processes Section 4.3.1: Asynchronous System Calls

The syscall /syswait /syscancel framework relieves the programmer from having to
know exactly which calls have asynchronous versions and which don't. By default, most calls
can exhibit either kind of behavior, depending on whether or not blocking is actually neces-
sary; the syscall return value lets the user know. By supporting all system calls within
this framework, not just those that currently generate useful asynchronous work, the OS
implementation is free to evolve; the set of useful asynchronous system calls may change as
the system is modified in the future.

In some cases, new specific calls or modified semantics must be introduced to make the
most of asynchrony. For example, versions of read and write are provided with explicit file
position arguments, eliminating the need for separate Iseek calls. This is important for
asynchronous 1/0 since concurrent operations can be completed in any order.

Instead of requiring all uses of asynchronous system calls within a program to use the
same signal handler, we provide the done field in the metasys structure, so that a single
handler, provided by a standard library, can specify separate handlers for each call. Most
programmers will not directly set the signal action for SIGSCALL.

Higher Level Interfaces

As a matter of convenience, we expect the development of a higher level interface to the
asynchronous system calls along the lines of

size_t aread (int fd, void *buf, size_t count, size_t pos,
void (*func)(struct metasys?*));

where the function pointed to by func is called on completion with a pointer to the actual
metasys structure, so that the various fields may be inspected as necessary. The implemen-
tation of this higher level interface is merely a matter of allocating the control block, issuing
the syscall , and, upon receipt of SIGSCALL, calling *func and finally deallocating the con-
trol block.

As already mentioned, the traditional UNIX system call interface is synchronous; emu-
lation of such is also straightforward. The only real source of complication is signal hand-
ling. In 7th Edition UNIX and compatible implementations, when a signal arrives during a
“slow” system call (such as wait , pause , or some cases of read or write on “slow devices”)
and a handler has been set for the signal, the system call is interrupted. If the handler
returns, things are arranged so that the interrupted system call appears to return a special
error, EINTR. Because it is sometimes inconvenient to deal with EINTR, more recent UNIX
systems will automatically restart the system call in some cases. The introduction of asyn-
chronous versions of all interruptible system calls allows us to avoid the problem altogether
(from the kernel’s point of view), by simply not interrupting the system call. If the handler
really wants to interrupt a system call, it can do so by invoking syscancel

Implementation of the traditional synchronous system calls is clearly important, not
only for compatibility with old programs, but also because the synchronous functions are gen-
uinely useful. There are two reasonable implementation paths:

(1) Support the old calls directly in the kernel, alongside the new ones.

(2) Implement the old calls in terms of the newer ones. The main difficulty lies in prop-
erly handling interruption by signals.

155

Chapter 4: Processes Section 4.3.1: Asynchronous System Calls

We have chosen the second approach for Symunix-2, and the SCALL__ SYNCflag was added to
struct metasys to simplify the implementation.

4.3.2. Asynchronous Page Faults

Conceptually, asynchronous system calls and page faults are quite different. an asyn-
chronous system call returns to the application while the operation is still in progress, but a
page fault cannot return until the missing page is fetched from secondary storage. But the
motivation for asynchronous page faults is nearly the same as for asynchronous system calls:
to overlap computation and 1/O, and to provide efficient support for user-mode thread man-
agement. Asynchronous page fault handling is less general than asynchronous system calls,
since the latter are still useful in the absence of threads.

Of course, all page faults on normal machines are asynchronous at the hardware and
operating system level; we are merely extending the technique to the user level. Since a pro-
cess encountering a page fault can't “return” to user-mode until the page fetch is complete,
we avoid blocking by delivering a new signal type, SIGPAGE In a thread environment, the
signal handler can perform a context-switch to another thread.

Clearly, for SIGPAGEto be useful, the handler must not encounter another page fault.
The code of the handler itself, any routines it calls, its stack, and the data structures it may
touch should all be “wired down” to be sure they remain memory resident. However, in some
environments, it may be impractical or impossible to wire down all such pages, and some
faults may occur while the SIGPAGEhandler is running. For this reason, and to support non-
thread applications, page faults are handled synchronously under any of the following condi-
tions:

= If SIGPAGEis not to be caught (action SIG_DFL or SIG_IGN).
= If SIGPAGEis masked.
= If SIGPAGEcan't be delivered due to a second page fault (e.g., accessing the user’s stack).

It is expected that SIGPAGEwill normally be handled on a dedicated stack. Issues of user-
mode thread management with asynchronous page fault handling is discussed in more detail
in section 7.5.

4.4. Implementation of Processes and Activities
Here are some key features of the implementation of processes and activities in Symunix-2:

= Activities are represented in the kernel by a struct activity , containing a stack and
other data structures to allow independent operation of each activity. Activities are fully
autonomous, much as processes are in regular UNIX. They can run, block, and be sched-
uled independently of other activities (but scheduling dependencies for efficient parallel
execution are also accommodated (84.6.3, §4.6.5)).

= Each process, represented by a struct proc , has a pointer to its primary activity. This
pointer changes over the life of a process. Likewise, each activity has a pointer to the
process of which it is a part. In addition, a doubly linked list is maintained for all activi-
ties of each process. Although protected by a lock, the simple structure of this list
exposes a basic assumption of our design for activities: there are never very many of

156

Chapter 4: Processes Section 4.4: Implementation of Processes and Activities

them,” so the list will not become a bottleneck.

e The u-block, present in most other UNIX implementations, has been eliminated. Its
nonredundant contents have generally been divided between the proc and activity struc-
tures. The peculiar one-to-many address mapping of u-blocks has not been retained, so
each activity structure has an ordinary kernel address, and a context-switch does not
need to modify the kernel address space. Since an activity structure contains the kernel’s
run-time stack, it would be difficult to move it around in memory or swap it out, as is
commonly done with u-blocks. This is because stacks typically contain pointers to other
locations within the stack (either explicitly programmed or part of the stack linkage
structure itself). Whereas u-blocks are relocated with the MMU to appear always at the
same address, even after moving, we have chosen to rely on a static memory mapping for
the kernel.

= The way activities are created is different from the way processes are created in other
UNIX systems. The traditional approach is to make a copy of the parent’s entire u-block;
this works because the u-block of the current process is always mapped to the same
address in kernel space, so the validity of pointers within the stack is preserved. Because
of the role activities play in the system, this fork-like method of creation isn't needed.
The individual elements of a new activity are simply initialized as appropriate. A newly
created activity automatically becomes the primary activity of its process, the only activ-
ity entitled to execute in user-mode. The stack is initialized so that when the new activ-
ity first runs it will execute a specified function within the kernel, and then “return” to
user-mode.

= Similarly, the lowest level context-switching facilities have been designed to suit the
nature of activities. In traditional UNIX implementations, kernel execution state is saved
within the u-block in three different places: u.u_rsav , u.u_ssav , and u.u_gsav (see
Bach [15] and Leffler, et al. [134]). With such an approach, a process may block while
still maintaining separate resumption points for swapping (or forking) and error hand-
ling. Multiple resumption points aren’'t needed for each activity, because the structure is
never swapped out, forking is done by giving the new activity a “fresh” stack, and error
handling is done by carefully passing error status back from every appropriate routine in

the kernel.”™

The following sub-sections give additional details.

4.4.1. Process Structure

The proc structure contains all per-process state, except the minimum required to implement
activities. (In this sense, activities are very similar to threads in systems such as Mach,
Topaz, and V.) The contents of the proc structure can be summarized as follows:

Lock A busy-waiting binary semaphore used to serialize critical process manipulation (see
84.4.4/p165).

™ Certainly the number of activities per process is expected to be far less than O(P) for a machine
with P processors.

s But, to make the initial implementation easier, the part of the kernel dealing with terminals still
uses longjmp to handle errors.

157

Chapter 4: Processes Section 4.4.1: Process Structure

Free list item
A list item for the free proc list. Proc structures are allocated from this structure
during spawn and fork .

vislist structure for children
A visit list (83.7.3) for all children (natural or inherited via the progenitor feature of
spawn (84.2/p149)). It is used for sending signals and for dealing with orphaned
children when their parent pre-deceases them.

visitem structure
This item is used with the parent’s (or progenitor’s) visit list for children.

List structure for debuggees
If the process is a debugger, using the ptrace system call, this list contains all pro-
cesses being debugged. The main purpose of the list is to find the debuggees and
terminate them when pre-deceased by the debugger. Because of the fundamentally
serial nature of a single debugger handling multiple debuggees, this list need not be
highly parallel; a dllist (83.7.1/p82) will suffice.

List item for debugger
This item is used when debugging, to place the process on the debugger’s list.

List structure for children to await
A list of children to be waited on by using the wait system call. Such children have
either terminated or stopped.

List item for parent’s await list
This item is used to insert the process on the parent’s (or progenitor’s) await list.

Address space information
A representation of the virtual address space, including machine-dependent data
structures, e.g., pointers to page tables (§5.3).

File descriptors
Data structures to support the UNIX file descriptor abstraction, mapping small inte-
gers to i-node references.

Process aggregate data
Every process is a member of several aggregates, as listed in Table 19, on the next
page. These aggregates are used primarily for sending signals, but the user IDs are
also an important form of access permission. In addition, each process has a set of
access permission groups, but there is no precedent in UNIX to support sending sig-
nals to the processes of such a group. The mechanisms for sending signals to pro-
cess aggregates are described further in section 4.8.2.

Activity information
A list of all activities belonging to the process is kept, ordered by age. This is a sim-
ple doubly-linked list, rather than one of the lists described in section 3.7.1, because
it must support searching, and because its length isn’t expected to grow proportion-
ally to the machine size. This list is searched by the meta-system calls syswait and
syscancel (84.3.1/p152), and when catching a SIGSCALL (84.3.1/p151) or SIGPAGE
signal (84.3.2). Besides the list, the proc structure also has a pointer to identify the
primary activity and a pointer to a reserved activity, unused but ready to assume

158

Chapter 4: Processes Section 4.4.1: Process Structure

Aggregate Purpose

All All non-system processes

Login Processes in same login session

Job Traditional UNIX process group, used for “job control”
Family Processes related by fork and spawn, but not exec
Siblings Children of same parent or progenitor

ulD User ID

Table 19: Process Aggregates.

Of these, only “all” and either “login” or “job” are supported by traditional UNIX sys-
tems. Each process has two user ID group memberships, one for the real user ID
and one for the effective user ID. A signal sent by a non-root process to UID u will
go to all processes with either kind of user ID = u.

primary responsibilities when needed to execute a signal handler while the old pri-
mary continues with an asynchronous system call or page fault.

User/kernel communication addresses

Flags

Certain memory locations in user space are known to the kernel and used as a low
overhead alternative to system calls. Currently this technique is used for temporary
non-preemption (84.6.4), signal masking (§4.8.1), and signal polling (84.8.1/p200).
These addresses are stored in the proc structure, and changed by the setkcomm sys-
tem call.

The flags indicate variations in process status, modify process behavior in some way,
or maintain state for specific operations. For example, there are flags that corre-
spond to the spawn options of Table 18, in section 4.2 on page 149.

Signal information

Structures to keep track of signal status for each defined signal type. This includes
which signals are pending, ignored, masked, or have handlers, some semantic option
flags (e.g. should signals restart interrupted system calls or use an alternate user

stack when caught?),’® and an apc_pair structure used to get the primary activity's
attention if it is running when a signal needs to be handled.

Process ID

The unique identifier for a process, used by a number of system calls.

Resource limits and usage data

Timers

Certain resources, such as memory and processor usage, can be limited. Resource
usage is also recorded separately for each process and its descendents. These things
are handled in the general manner of Berkeley UNIX.

Timer support as in Berkeley UNIX; real, virtual, and profiling timers are provided,
along with the time-out feature of the select system call.

" As described in section 4.3.1 on page 153, interrupting system calls is an optional feature in
Symunix-2; asynchronous system calls are not interrupted by signals.

159

Chapter 4: Processes Section 4.4.1: Process Structure

Profiling data
The traditional UNIX mechanism for collecting a histogram of a user’'s program
counter samples.

Parent pointer
A pointer to the parent process.

Special directories
Each process implicitly holds open its root directory, current working directory, and
image directory (85.2.5). A pointer to each is kept in the proc structure.

Controlling tty pointer
UNIX semantics define the concept of controlling terminal; a pointer in the proc
structure identifies it.

umask The traditional UNIX umask is used to force certain permission bits off when files
are created.

Priority and scheduling data
The traditional externally visible priority in UNIX systems is the nice value. Actual
scheduling relies on an internally generated priority based on recent processor and
memory usage; these are all stored in the proc structure. Scheduling issues are dis-
cussed in section 4.6.

Name The last component of the path name of the running program. It is mostly for
debugging, but can also be examined by system utilities such as ps.

Machine-dependent data
Anything special needed by a particular machine.

4.4.2. Activity Structure
The contents of the activity structure can be summarized as follows:

Lock (a_lock)
A busy-waiting binary semaphore, used to serialize critical manipulation of each
activity (see §4.4.4/p165).

List item (a_li)
A union of item structures described in section 3.7.1. This allows the activity to
move among the free activity list, the ready list, and various waiting lists for the
synchronization mechanisms described in section 4.5 (but not to be on more than
one such list at a time).

Stack A run-time stack to support most operation within the kernel. The organization and
size of the stack are completely machine-dependent, for example, the Ultra-3 activ-
ity stack is actually composed of two separate stacks to support the AMD 29050
microprocessor [2]. Whatever the organization, the stack area is fixed in size (a trait
in common with most other UNIX-like kernels). Determining the correct size for the
stack area is problematic, usually accomplished by making a conservative guess.

Context-switching state
To perform a normal context-switch, in such a way that the previous activity may
eventually run again, some state must be saved. In most machines, this includes
things like register values, program counter, and stack pointer. In Symunix-2 most
of this information can simply be saved on top of the stack, but the top of stack itself

160

Chapter 4: Processes Section 4.4.2: Activity Structure

must still be locatable. For most machines, this simply means the activity structure
must contain a special field to store the stack pointer when the activity isn’t run-
ning.

Process pointer (a_proc)
A pointer to the process to which the activity belongs. The process structure in turn
contains a pointer to the primary activity.

Activity pointers
Each activity contains forward and backward pointers for the list of all activities
belonging to a process. This list is implemented directly rather than as an abstract
list type (83.7.1) because it functions primarily as a search structure, and because
highly parallel properties are not needed.

metasys or page fault address
The user space address of the metasys structure (84.3.1/p152) for the system call
being executed or the virtual address of the page fault being handled. This field
allows the primary activity to identify the target activity for a syswait or
syscancel meta system call, and to generate the argument for a SIGSCALL or
SIGPAGEhandler.

Status (a_status)
The general state of an activity is reflected in the a_status field; values are given
in Table 20, below. There is no state for “executing”; in Symunix-2, that is reflected

in a flag value.”

Flags (a_flags and a_pflags)

The zombie state exists for much the same reason as the traditional UNIX zombie
state for processes: as a holder for information to be passed back to the parent. In
the case of activities, the notion of “parent” is replaced by the primary activity, but
the role remains essentially the same. The information to be passed back is a
SIGSCALL or SIGPAGEsignal, and the accompanying address parameter (metasys

structure or fault address, respectively). Several flags indicate special conditions for
the activity; they are listed in Table 21, on the next page. The difference between
ordinary flags and private flags is that the private ones may be manipulated without
any locking. Typically, the private flags are only manipulated by the activity itself.
A good example is the ACT_RUNNINGlag, which is set by an activity when it begins

State Meaning
ACT_DEAD Terminated—unused structure
ACT_READY Ready to run
ACT_BLOCKED, Blocked
ACT_ZOMBIE | Terminated—waiting to deliver signal

Table 20: Activity Status.

" ACT_RUNNINGsee Table 21.

161

Chapter 4: Processes Section 4.4.2: Activity Structure

Ordinary Flags Meaning
ACT_CANCEL syscancel pending
ACT_NOCANCEL | Disallow syscancel
ACT_SYNC Signal causes syscancel
ACT_SIGPAGE SIGPAGENhas been sent for fault

Private Flags Meaning

ACT_RUNNING Activity is executing
ACT_SPAWNING Activity is spawning
ACT_DISTURBED | Activity prematurely unblocked
ACT_OPTIMASYNC Primary activity doing async work
ACT_AUTOWAIT Implicit syswait

ACT_UPFAULT Activity handling user page fault

Table 21: Activity Flags.

Ordinary flags may only be examined or manipulated under protection of the gen-
eral activity lock. Private flags need no locking because logic guarantees that no
concurrent updates will occur.

to run and cleared as the final step in context-switching away from an activity
(84.4.5).

Processor number
The number of the processor running the activity or last to run it. This is main-
tained for general information, but may also influence scheduling or context-
switching.

Scheduling information
Because each activity is individually schedulable, the priority is maintained on a
per-activity basis. This priority is strictly internal to the kernel, and reflects the
organization of the scheduler (§84.6.6). Additional data is kept as required by the
scheduler, e.g, recent processor usage. The user-visible priority factor, called the

nice value in UNIX systems, is maintained on a per-process basis.™

Blocking information (a_waittype and a_waitfor)
When an activity is blocked, the nature of the blockage is recorded. The primary
purpose is to support syscancel , but additional information is also maintained for
the sake of general status reporting and to aid in kernel debugging. Two fields are
required to record this information fully: a_waitfor , a union of possible blockage
information, and a_waittype , which provides the interpretation for a_waitfor
The possible values for these fields are given in Table 22, on the next page.

8 See section 4.6.3 for extensions to the traditional user-visible scheduling model.

162

Chapter 4: Processes

Section 4.4.3: Activity State Transitions

a_waittype Meaning a_wa|tf(_)r See
value union use

ACT_CSSEM Counting semaphore cssem *
ACT_ICSSEMf Interruptible cssem icssem *
ACT_CSLOCK Binary semaphore cslock *
ACT _ICSLOCKY Interruptible cslock icslock *
ACT_CSRWR Readers/Writers reader csrwlock * §4.5/p166
ACT_ICSRWR Interruptible r/w reader | icsrwlock * '
ACT_CSRWW Readers/Writers writer csrwlock *
ACT_ICSRWW Interruptible r/w writer icsrwlock *
ACT_CSEVENT Event csevent *
ACT_ICSEVENTt | Interruptible event icsevent *
ACT_SYSWAIT Syswait activity * 84.3.1/p151
ACT_KSEM Ksem ksem_wait * §7.3.4
ACT_PSUSPEND | sigsuspend systemcall | NULL 84.5.1
ACT_JSUSPEND | Job control suspension NULL 84.5.1
ACT_TSUSPEND | Tracing suspension NULL 84.5.1
ACT_WAITt wait system call NULL §4.5.1

Table 22: Types of Activity Blocking.

Appropriate values for a_waittype and a_waitfor are indicated. Values marked
with T may be ored with ACT_MAYCANCE(§4.5/p167) if the activity doesn’'t have the
ACT_NOCANCEflag set (Table 21).

4.4.3. Activity State Transitions

The state transition diagram for activities is given in Figure 8, on the next page. The states
and flags are the same as given in Figures 20 and 21, in section 4.4.2 on pages 161 and 162.
Functions for block and unblock transitions n the next page will be given in Figure 23, in sec-
tion 4.5 on page 166. The scheduler transitions will be discussed in section 4.6. The activity
states in Symunix-2 are simpler than those of other UNIX systems for two reasons:

(1) We use the blocked state for many similar purposes, distinguishing them with the
activity’s a_waittype field (Figure 22, in section 4.4.2 on this page).

(2) We handle suspension for job control and debugging mostly at the process level,
rather than the activity level. When the primary activity is ready to go from kernel-
mode to user-mode and the process suspension flag is set, the activity blocks (with
a_waittype flag set to ACT_TSUSPENDr ACT_JSUSPEND With this approach, it is
not necessary to deal with transitions between blocked and suspended states and any
corresponding interference with normal control flow.

4.4.4. Process and Activity Locking

As already indicated, the proc and activity structures each contain a busy-waiting lock. Nei-
ther of these locks represents a serial bottleneck, because there are no natural operations
that generate contention for them in proportion to the machine size.

The proc structure lock provides serialization in several situations:

163

Chapter 4: Processes Section 4.4.4: Process and Activity Locking

exit

unblock
scheduler

block

@

D = Dead

Z =Zombie

RW = Ready (waiting to run)
RR = Ready (running)

B = Blocked

Figure 8: Activity State Transition Diagram.

In the current implementation, all activity structures are created at system boot
time and never destroyed. This is not fundamental, however, and even if the imple-
mentation is ever changed to do true dynamic allocation and deallocation of activity
structures, it will still be worthwhile to keep a certain number of pre-allocated activ-
ity structures around, thus justifying the state “D” and the pseudo-transitions
shown to and from it in the diagram.

= Changing or finding the primary activity. The only way to change the primary is to cre-
ate a replacement (csynth , see 84.4.5). If the primary is running, it alone may do this,
otherwise, it is sometimes possible for another process or even an interrupt handler to do
it.

= Manipulating or searching the list of activities. Additions to the list are done only when
the primary activity changes. Deletions are done by the primary as part of syswait or
delivery of SIGSCALL or SIGPAGEsignals.

= Allocating, deallocating, or examining the file descriptors.

= Changing or examining the list of user/kernel communication addresses, such as for tem-
porary non-preemption (84.6.4) and signal polling (84.8.1/p200).

= Changing or examining the flags of the process (84.4.1/p159).

= Changing or examining signal handling actions or the signal mask. Changing them is
only done by the primary activity, but examining them is part of sending a signal, which
is asynchronous.

The activity structure lock provides serialization in the following situations:

164

Chapter 4: Processes Section 4.4.4: Process and Activity Locking

= Changing or examining the status of the activity (§4.4.3).
= Changing or examining the “ordinary” flags of the activity (84.4.2/p162).

A simple ordered locking protocol is used to prevent deadlocks related to process and activity
locks. In general, only a single lock is held at one time. There are three rules that allow
multiple locks to be held in certain circumstances.

(1) A process may lock its parent while holding a lock on itself.

(2) A process that must be waited-for by its parent may be locked by the parent while the
parent holds a lock on itself. This is permissible, since the child can't run anyway,
and therefore isn't itself entitled to use the previous rule.

(3) If a process lock is already held, any number of activities belonging to the process
may also be locked.

Note that if it is necessary to find and lock the primary activity of a process, the process must
be locked first to prevent the primary from changing or terminating before the lock can be
obtained. This is not a problem if the primary activity wants to lock itself: masking soft APC
interrupts will prevent any asynchronous change of primary.

4.4.5. Primitive Context-Switching

In traditional UNIX kernels, and also in Symunix-1, the most basic context-switch to another
process is performed by the function resume (see, for example, Bach [15] and Leffler et al.
[134]). The corresponding function in Symunix-2 has been simplified, renamed, and is logi-
cally part of a three-function suite:

void cswitch (struct activity *newact)
Save the context of the currently executing activity and switch to the activity indi-
cated by newact . The context saved and restored includes appropriate machine reg-
isters and the current hard and soft interrupt masks, but doesn't necessarily include
the user’s memory mapping: that is set by the asset function (85.3.1/p227).

void cjump (struct activity *newact, int freeit)
Similar to cswitch , but the old context isn't saved. cjump is used when an activity
is terminating. The freeit argument specifies that the function freeact should
be called to dispose of the old activity structure as soon as possible. This option is
needed because an activity cannot dispose of its own structure before termination.
Freeing the activity structure is appropriate at cjump time unless the structure is
needed for syswait , SIGSCALL, or SIGPAGE

void csynth (struct activity *oldact, struct activity *newact,

struct proc *p, int f(genarg_t), genarg_t x)

This is the trickiest of the three context manipulation functions. It initializes (syn-
thesizes) a new activity, based on an old one. The old one must be primary, and must
either be the calling activity or be blocked. Both old and new activities are specified,
as the old one need not be the currently executing one. The proc structure for the
new activity is also specified, as it need not be the same as the old one’s (e.g., for
spawn). The new activity's proc structure must already be locked, since the pri-
mary activity will be changing. The old activity must also already be locked, if it is
not the calling activity, to prevent it from changing significantly while the synthesis
is taking place. The new activity becomes the primary, and is initialized to begin
execution by calling f(x) in such a way that control will “go back” to user-mode

165

Chapter 4: Processes Section 4.4.5: Primitive Context-Switching

upon return, in the same way as the old activity would have (i.e., as a system call or
exception would return). Note that csynth only performs initialization; no actual
context-switch is performed. This allows flexibility in the order of execution of the
two activities, and also allows csynth to be called from interrupt handlers (unlike
cswitch and cjump).

Part of the price paid for the simplicity of cswitch is the delicate nature of the csynth
implementation, which must construct a viable stack for the new activity and arrange for a
fake “return” to user-mode that preserves all user-visible processor state (e.g. registers) in
the general case. Although csynth can be pretty cheap, especially compared to the cost of
copying a whole u-block, it must be intimately related to the first level trap and system call
handlers. Because such code deals with processor concepts beneath the level of abstraction
appropriate to C programming, much of it must be written in assembly language.

4.5. Context-Switching Synchronization

The fundamental mechanisms for context-switching were described in section 4.4.5: the func-
tions cswitch , cjump , and csynth . This section addresses several higher level facilities,
which may be divided in two alternative ways: whether or not waiting lists are used, and
whether or not a blocked activity can be forcibly disturbed (this is called premature

. Non-Interruptible Interruptible
Mechanism - -
Structure Key Functions Structure Key Functions
Non- ad-hoc - dopause - idopause
List unpause iunpause
based
. . icsl_wait
binary csl_wait . =
cslock - icslock icsl_signal
semaphores csl_signal o .
- icsl_trywait
. . icss_wait
counting css_wait . =
cssem - icssem icss_signal
semaphores css_signal = .
- icss_trywait
List- !csrw_rlock
csrw_rlock icsrw_runlock
based — . —
readers/ csrw_runlock . icsrw_wlock
. csrwlock - icsrwlock . -
writers csrw_wlock icsrw_wunlock
csrw_wunlock icsrw_tryrlock
icsrw_trywlock
cse_wait icse_wait
events csevent cse_signal icsevent icse_signal
cse_reset icse_reset

Table 23: Context-Switching Mechanisms.

For list-based synchronization, the relevant structure name is given. For the non-
list-based case, there is no structure.

166

Chapter 4: Processes Section 4.5: Context-Switching Synchronization

unblocking or cancelation, and is generally brought about by syscancel ; see section 4.3.1 on
page 154). Table 23, on the previous page, lists the most important functions for all the con-
text-switching mechanisms used in the Symunix-2 kernel.

The simplest mechanisms are the non-list-based ones, implemented by the dopause

and idopause functions. In either case, the calling activity enters the ACT_BLOCKERtate,”
and is moved back to the ACT_READYstate when some processor calls the corresponding
unpause or iunpause

There are many situations where dopause and idopause would be inadequate because
the code that would have to call unpause or iunpause couldn’t figure out what activity to
awaken. This is the reason for the list-based synchronization mechanisms. Each type of list-
based synchronization is made available through a structure containing the necessary syn-
chronization variables and waiting list(s). Different functions are generally provided to wait
for a resource and to release it. For example, a simple context-switching lock (e.g., cslock)
provides a function to obtain the lock (csl_wait), blocking if necessary, and another function
to release the lock (csl_signal), unblocking the next waiting activity if appropriate. The
same blocked and runnable states are used as with non-list-based synchronization
(ACT_BLOCKERNd ACT_READY, but blocked activities are put on a waiting list.

The difference between non-interruptible and interruptible synchronization is that the
latter supports premature unblocking: the function unblock can be called to force the activ-
ity back to the ACT_READYstate. In such a case, the blocking function (e.g., idopause or
icsl_wait) returns zero (FALSE). Generally the FALSE return causes the activity to aban-
don its current objective and clean up as appropriate. We say that the activity has been dis-
turbed or prematurely unblocked, that its wait has been interrupted, and that the system call
it was working on is canceled.

The choice of interruptible or non-interruptible synchronization is made statically, by
the kernel programmer. Interruptible synchronization is used only when waiting time might
be unbounded; all other context-switching synchronization is non-interruptible. (In deter-

mining the potential for unbounded waiting time, we assume no hardware failures.)® Only
true system calls should be cancelable; interruptible synchronization must never be used
when handling exceptions, such as page faults, synchronous or asynchronous. Aside from
such behavior being nonsensical, this restriction is important because such exceptions have
no way to return failure to the user, and the user has no reasonable way to respond.

To reduce overhead in common cases, we use a two-stage implementation for the key
list-based synchronization functions, as we did for some of the busy-waiting synchronization
functions (83.5/p50). The first stage function can be inlined, or integrated into the calling
function, eliminating function call overhead. The second stage is a conventional function, but
is only called in the relatively rare case where blocking (or unblocking) is necessary.

The activity state transition diagram is given in Figure 8, in section 4.4.3.

®\We are only assuming reliability of the processors, memory, and interconnect. 1/O peripherals
can be expected to have higher failure rates, a fact which device drivers should account for, e.g. by set-
ting timers to handle the possibility that an expected interrupt does not occur.

167

Chapter 4: Processes Section 4.5: Context-Switching Synchronization

Some synchronization methods require awakening many activities at once. Indeed,
these methods are preferred because they allow greater concurrency. The mechanisms in
Table 23 with this property are readers/writers locks and events. In both these cases, a sin-
gle processor must be able to awaken many blocked activities. In Symunix-1, the following
approach was used: as each blocked process was awakened, it “helped out” by awakening
other blocked processes, until there were no more. This approach offers, at best, a speedup of
N/log N, for N processors, but the scheduling latency of each wakeup limits the effective-
ness of this technique. In practice, very little helping can go on because it takes too long for
each awakened process to get actually running. Still, the scheme is simple and doesn’t
require a special relationship with the scheduler itself.

In Symunix-2, we use Wilson's approach [205] of developing algorithms that, working in
conjunction with the scheduler, are able to wakeup many activities in a single step: the entire
waiting list of blocked activities is inserted on the multiqueue portion of the ready list. The
remainder of this section provides additional implementation details.

4.5.1. Non-List-Based Synchronization

An activity blocked by dopause is normally unblocked by unpause (a pointer to the activity
is a parameter to unpause). The only difference between dopause and idopause is that the
latter also allows the unblock function to disturb the activity. Before calling any of these
functions (dopause , unpause , idopause , iunpause , or unblock), the activity must already
be locked and soft interrupts must be masked. Those functions that cause blocking
(dopause and idopause) are unusual in that they unlock the activity before returning. This
behavior (releasing a lock passed into a function) is asymmetric, but is deemed natural for a
blocking function, since releasing the lock before a context-switch is crucial. We do not apply
this logic to the handling of the interrupt mask, however: interrupts must be unmasked by
the caller upon return. Aside from being symmetric, the normal strategy for interrupt mask-
ing makes sense because the proper mask to restore is not known inside the blocking func-
tion.

The basic steps in blocking and context-switching are illustrated in dopause :

I/l act is current activity

void

dopause (struct activity *act, int waittype)

{
act->a_waittype = waittype;
act->a_waittime = curticktime();
act->a_status = ACT_BLOCKED;
bwl_signal(&act->a_lock);
cswitch(resched(0));

}

The identity of the current activity could be learned independently (e.g., the curact() func-
tion returns a pointer to the current activity), but the caller of dopause already knows the
activity (recall that the caller must lock the activity before calling dopause) so may as well
pass it to dopause . Recording waittype and waittime for the activity is mostly informa-
tional (e.g., for the UNIX ps utility), although waittype may be examined to decide whether
or not to call unpause for this activity, and the scheduler may make good use of waittime

Once the activity's state is changed, the lock may be released; an unpause will be able to

168

Chapter 4: Processes Section 4.5.1: Non-List-Based Synchronization

succeed at this point. The next activity to run is chosen by resched , and the context-switch
is accomplished by cswitch , which doesn't return until after the activity is awakened by
unpause .

The complementary actions of unpause are even simpler:

void

unpause (struct activity *act)

{
assert (act->a_status == ACT_BLOCKED);
assert ((act->a_waittype & ACT_MAYCANCEL) == 0);
assert (DOPAUSE_TYPES_OK(act->a_waittype));
Imkready (act);

}

We have omitted assertions from most other code sections for brevity, but we include these
here because unpause has no other real reason for being: Imkready (84.6.6), which sets a
locked activity's status to ACT_READYand puts it on the ready list, could just as easily be
called directly. Furthermore, unpause and iunpause differ from one another only in the
second assertion: the former wants the ACT_MAYCANCEflag clear, and the latter wants it
set. The third assertion is programmed with a macro defined at the point where all the
waittype values are defined; it checks all the acceptable values in a single boolean expres-
sion:

#define DOPAUSE_TYPES_OK(waittype) \
(((waittype) & "ACT_MAYCANCEL) == ok valuel ||\
((waittype) & "ACT_MAYCANCEL) == ok value2 ||\
similar tests for other values)

This simple device preserves the independence of unpause from its uses.

The idopause function is basically the same as dopause , but with a return value and
two new tests, for cancelation:

169

Chapter 4: Processes Section 4.5.1: Non-List-Based Synchronization

int
idopause (struct activity *act, int waittype)
{
if (act->a_flags & ACT_CANCEL) {
act->a_flags &= "ACT_CANCEL;
bwl_signal(&act->a_lock);
return O;
}
act->a_waittype = waittype | ACT_MAYCANCEL,;
act->a_waittime = curticktime();
act->a_status = ACT_BLOCKED;
bwl_signal(&act->a_lock);
cswitch(resched(0));

if (act->a_pflags & ACT_DISTURBED) {
act->a_pflags &= "ACT_DISTURBED;
return O;

}

return 1;
}

The ACT_CANCEIflag is set by syscancel (84.3.1/p154) and the ACT_DISTURBELXlag is set
by unblock (84.5.3/p185). Unlike dopause , the setting of waittype is more than informa-
tional here: unblock depends on it.

In both dopause and idopause , we have refrained from checking the
ACT_OPTIMASYNCflag, as we will do for the list-based synchronization mechanisms
(84.5.2/p178). This flag improves the efficiency of asynchronous system calls in common
cases, and there is no reason why it could not apply to dopause or idopause . We ignore it
only because the purposes to which we have put non-list-based context-switching synchro-
nization, such as syswait (84.3.1/p151), tend to preclude asynchronous execution (i.e.,
dopause and idopause would never see ACT_OPTIMASYNGN practice).

4.5.2. List-Based Synchronization—-Readers/Writers Locks

For the sake of brevity, we refrain from a full presentation of all the list-based context-
switching synchronization methods of Table 23; one suffices, as they all share a common
approach. We choose to present readers/writers locks, because it is the most complex and
gives the fullest flavor of the design issues for this class of synchronization mechanisms.
Furthermore, we concentrate on the interruptible version, pointing out only the major differ-
ences in the form of the non-interruptible version.

The basic algorithm, which comes directly from Wilson [205], maintains a counter equal
to MAXREADERS xw +r, where w and r are the numbers of writers and readers, respec-
tively, at any particular time. MAXREADERS is a constant greater than r can ever be,
including would-be readers that would still be waiting if they hadn’'t been disturbed. The
essence of the lock protocol, which gives priority to write lock requests, is to increment the
counter by 1 to get a read lock, or by MAXREADERS to get a write lock. By using
Fetch&Add, the success of this attempt is indicated if the returned value is less than
MAXREADERS (for a read lock) or equal to zero (for a write lock). Likewise, Fetch&Add is
used to subtract the same value when releasing a lock; the presence of waiting readers and

170

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

writers is indicated by the return value. This value alone doesn't reveal when the last reader
releases its lock, this is determined with the help of a “running readers count”, so that the
first waiting writer can be awakened at the right time.

We use the following values for MAXREADERS:

CS_MAXR For csrwlock ; the maximum number of activities allowable in the whole sys-
tem. This number must be < JINT_MAX] i.e. CS_MAXRx CS_MAXRmust be
representable as a positive integer in standard C.

ICS_ MAXR Foricsrwlock ; the maximum number of activities allowable in the whole sys-
tem plus the number of premature unblocks allowed during one “write phase”,
i.e., while writers hold the lock and readers are waiting. We use the largest
acceptable value: [FINT_MAX The consequences of making this number too
small are discussed on page 176.

Here is the icsrwlock structure:

Il interruptible context-switching readers/writers lock
typedef struct _icsrwlock {

unsigned char rpri; // readers priority

unsigned char wpri; // writers priority

int acount; /I counter (MAXREADERS XW + 1)
int rrcount; I/ running reader count
mgitem mqj; // for ready list insertion
dafifo rwlist; Il readers’ wait list
dllist wwlist; Il writers’ wait list
} icsrwlock;

Besides acount and rrcount , the most important fields are the wait lists. The different
kinds of wait lists used are shown in Table 24, below. The primary factor in making these
choices was efficiency: only interruptible locks require “deluxe” wait lists supporting interior
removal, and only the readers’ wait lists require high concurrency. The rpri and wpri fields
specify the scheduling priority to be assigned to readers and writers, respectively. The prior-
ity doesn’t affect the service order for the lock, but does affect the service order in the system
ready queue, to which awakened activities are eventually moved.

The complete list of operations supported is given in Table 25, on the next page.

Non-Interruptible Interruptible
readers afifo dafifo

(almost FIFO) (deluxe almost FIFO)
Writers llist dllist

(linked list) (deluxe linked list)

Table 24: Wait Lists for Readers/Writers Synchronization.
Specific list types are described in section 3.7.1 on page 82.

171

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

. . . . See
Operation Non-interruptible Interruptible Page
Initialize cSrw_init icsrw_init 173
Destroy csrw_destroy icsrw_destroy 173
Obtain read lock csrw_rlock t icsrw_rlock t 174,177
Assured success csrw_grlock - icsrw_grlock - 183
Nonblocking attempt icsrw_tryrlock - 183
Get lock status csrw_isrlocked e | icsrw_isrlocked - | 184
Release read lock csrw_runlock t icsrw_runlock t 175,179
Obtain write lock csrw_wlock ¥ icsrw_wlock T 175,180
Assured success csrw_gwlock e icsrw_gwlock - 183
Nonblocking attempt icsrw_trywlock - 183
Get lock status csrw_iswlocked e | icsrw_iswlocked e | 184
Release write lock csrw_wunlock 7 icsrw_wunlock T 176,181
Special purpose functions
Interrupt waiting reader _icsrw_runblock - | 186
Interrupt waiting writer _icsrw_wunblock - | 185
Wakeup next reader _csrw_rwakeup _licsrw_rwakeup 182

T First stage may be inlined.
< Function may be fully inlined.

Table 25: Context-Switching Readers/Writers Functions.

The “get lock status” functions have no effect other than returning a boolean indica-
tor of whether a normal lock attempt of the corresponding type would block. The
nonblocking attempt is semantically equivalent to a normal attempt that is immedi-
ately disturbed if it blocks. The last category of functions given are not generally
called directly: _icsrw_runblock and _icsrw_wunblock are called only by the
unblock function (84.5.3/p185), while _csrw_rwakeup and _icsrw_rwakeup are
called by the scheduler (84.6.9).

Initialization and Destruction

Initialization and destruction are simple; the former is mostly a matter of assigning values to
fields.

172

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

int
icsrw_init (icsrwlock *rw)

if (!'mqiinit(&rw->mgqi,_icsrw_rwakeup))
return O;

rw->acount = 0;

rw->rrcount = 0;

if (dafinit(&rw->rwilist)) {
mgqidestroy(&rw->maqj);
return O;

}

if (Idllinit(&rw->wwilist)) {
dafdestroy(&rw->rwlist);
mgqidestroy(&rw->maqj);

return O;
}
return 1;
}
Each lock is set up in the unlocked state; this is reflected in the initial values for acount and
rrcount . The major effort of icsrw_init is to initialize the multiqueue list item (mqiinit)

and the wait lists (dafinit and dllinit). The multiqueue list item, mqi, allows an entire
group of blocked readers to be inserted onto the ready list in a single operation (§3.7.1/p81).
Each time the item is “deleted” from the ready list, the function _icsrw_rwakeup (p182) is
called to get the next blocked reader from the readers waiting list, rwlist

While the waiting list implementations described in section 3.7.1 on page 82 and their
underlying busy-waiting synchronization mechanisms (83.5) don't actually admit the possi-
bility of failure during initialization, they allow for it in their interface, and we allow for it
here as well, for the sake of independence.

Lock destruction is very simple, requiring only the destruction of the more complex sub-
components:

void

icsrw_destroy (icsrwlock *rw)

{
mgqidestroy(&rw->mqj);
dafdestroy(&rw->rwlist);
dildestroy(&rw->wwlist);

}

First Stage Reader Lock and Unlock

The most important operations are the acquisition and release of read locks, because they are
the only ones that have a chance to be completely serialization free. Also, recall that read-
ers/writers locks are most appropriate for situations in which one expects the large majority
of accesses to be reads. Fortunately, the overhead of these common operations can be kept
quite low.

173

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

Here is the first stage routine for icsrw_rlock

int
icsrw_rlock (icsrwlock *rw)

{

struct activity *a = curact();

a->a_pri = rw->rpri;
if (a->a_flags & ACT_CANCEL)
return _act_clearcancel(a);
if (fai(&rw->acount) >= ICS_MAXR)
return _icsrw_rlock(rw,a); /I call second stage
return 1;

}

The function curact() is really a macro that returns a pointer to the current activity, the
one requesting the lock. The activity’s scheduling priority is set to rw->rpri regardless of
whether or not the activity must block. This can be important in Symunix-2 since preemp-
tion can be permitted at almost any point in the kernel, even when holding a context-
switching lock.

The basic operation required to obtain a read lock is to increment acount with
Fetch&Increment; the result indicates whether the lock is obtained or blocking is necessary.
Only when blocking is necessary is the second stage, _icsrw_rlock , called.

The ACT_CANCEIflag in the activity structure is set by syscancel (84.3.1/p154) or by
receipt of a signal during certain synchronous system calls (84.3.1/p153). The
_act_clearcancel function clears the ACT_CANCEIflag and returns O; it is a separate rou-
tine simply to minimize the memory expansion cost of inlining the first stage routine:

int

_act_clearcancel (struct activity *act)

{
spl_t s = splsoft();
bwl_wait (&act->a_lock, splcheckf(s));
act->a_flags &= "ACT_CANCEL;
bwl_signal (&act->a_lock);
return O;

}

Clearing of the ACT_CANCElIlflag must be protected by locks (83.5), since it is accessed asyn-
chronously by other activities and interrupt handlers (as are the other bits in
act->a_flags). The use of explicit locking is necessary even if an operation such as
Fetch&And is available (and combinable—as it is on the Ultra-3 prototype), because the
operation must be atomic with respect to activity state changes.

By examining icsrw_rlock , it is clear that, in the absence of write lock requests or
cancelation, only four data memory accesses are required: two loads, one store, and one
Fetch&Increment. (We are assuming curact() is implemented with a single cacheable load
as on the Ultra-3 prototype; other reasonable implementations range from 0 to 2 loads, all of
which could easily be directed to cache or local memory.) For the non-interruptible version,

174

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

csrw_rlock , one of the loads (a->a_flags) is not required, representing a further savings
of 25% or more.

Here is the first stage function to release a reader lock:

void
icsrw_runlock (icsrwlock *rw)
{
if (fad(&rw->acount) > ICS_MAXR &&
fai(&rw->rrcount) == ICS_MAXR-1)
_icsrw_runlock(rw); /I call second stage
}

The Fetch&Decrement of acount simultaneously releases the reader lock and indicates the
presence or absence of waiting writers. The Fetch&Increment of rrcount identifies the last
unlocking reader, with the help of _icsrw_wlock , on page 180. The last unlocking reader
calls the second stage function, on page 179.

First Stage Writer Lock and Unlock
The first stage writer lock functions are complementary to the reader lock functions:

int

icsrw_wlock (icsrwlock *rw)

{
struct activity *a = curact();
intv;

a->a_pri = rw->wpri;
if (a->a_flags & ACT_CANCEL)
return _act_clearcancel(a);
v = faa(&rw->acount,ICS_MAXR);
if (v!=0)
return _icsrw_wlock(rw,v,a); // call second stage
return 1;

}

Comparing icsrw_rlock and icsrw_wlock , we see that there are only three significant
structural differences between the first stage reader and writer lock functions:

(1) The value added to acount is 1 for a reader lock and ICS_MAXR a large constant, for
a writer lock.

(2) For a writer lock, the old acount value must be passed to the second stage function,
_icsrw_wlock , so that it may distinguish the first waiting writer from all others.

(3) The comparison made to determine initial success or failure is more restrictive for a
writer, allowing only exclusive access.

We can see that, in the absence of any other writers or readers, or cancelation, the cost (mea-
sured in shared memory references) of obtaining a writer lock is the same as a reader lock
(four data memory accesses, pl74). In fact, the uncontended cost of our simple binary
semaphores (cslock and icslock) is also the same.

175

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

The first stage function to release a writer lock is very simple:

void
icsrw_wunlock (icsrwlock *rw)
{
int v = faa (&rw->acount, -ICS_MAXR);
if (v > ICS_MAXR)
_icsrw_wunlock(rw,v); /I call second stage
}

Because writers have exclusive access, there is no need to determine the last unlocking
writer, hence there is no equivalent of rrcount for writers.

Second Stage Reader Lock and Unlock

We now turn our attention to the second stage functions to complete the basic operations of
locking and unlocking. Again, the reader functions are the most crucial, since they have the
chance to be completely serialization-free.

Whereas the first stage functions are closely related to the busy-waiting algorithm
(83.5.4) in that a single Fetch&Add operation is generally the center of attention, the second
stage routines are focused on scheduling and context-switching.

Recall that by the time the second stage reader lock routine is called, the decision to
block has already been made (p174). In general terms, all that remains is to get the activity
on the waiting list and reschedule, but certain details complicate things:

= The implementation of asynchronous system calls. Recall from section 4.3.1 on page 152
that a logically asynchronous system call normally executes in a synchronous fashion so
long as blocking is unnecessary. The user may also request that such synchronous behav-
ior continue so long as the process has no signal to handle. In either case, it is possible
that a new primary activity must be set up before blocking.

= The possibility of cancelation. We already saw that the first level locking function checks
the ACT_CANCELflag; this is adequate if the flag is clear or set long before the lock
request. But cancelation must generally be synchronized with activity state changes, so

we have to check again, after locking the activity.®* Likewise, code that sets ACT_CANCEL
does so only with the activity locked.

= Keeping the counter from overflowing, a possibility brought about by premature unblock-
ing. When a blocked activity is disturbed, the initial adjustment made to the counter in
the first stage lock function is not altered, so the state of the lock appears as if the activ-
ity were still blocked. The fact of the interruption is recorded as a “hole” in the waiting
list, and the appropriate compensation is made when the hole is “deleted” from the front
of the list. It is possible for a long sequence of lock attempts to be interrupted while a
single activity holds the lock. It is even possible, although unlikely, for this sequence to
be long enough that the increments in icsrw_rlock would cause acount to overflow.
Our strategy is to detect imminent overflow, and revert to non-interruptible behavior in
such unlikely situations.

8 The activity lock is a busy-waiting lock (84.4.2).

176

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

Here is the code for the second stage reader lock function:

int
_icsrw_rlock (icsrwlock *rw, int old_acount, struct activity *a)
{
struct activity *n;
spl_ts;
int f, pf;
dafireinit(&a->a_li.daf);
a->a_waitfor.irw = rw;
if (old_acount < (ICS_MAXR-ACT_NUMACT)*ICS_MAXR)
a->a_waittype = ACT_ICSRWR | ACT_MAYCANCEL,;
else
a->a_waittype = ACT_ICSRWR,; /l avoid overflow of acount
pf = a->a_pflags; /I private flags; no locking required
s = splsoft();
bwl_wait (&a->a_lock, splcheckf(s));
f = a->a_flags;
if f)&ACT_CANCEL && old_acount < (ICS_MAXR-ACT_NUMACT)*ICS_MAXR) {
a->a_flags =f & "ACT_CANCEL,;
bwl_signal(&a->a_lock);
dafputhole(&rw->rwlist);
vsplx(s);
return O;
}
n = _cs_common (a, pf);
dafput(&rw->rwlist, &a->a_li.daf);
bwl_signal(&a->a_lock);
vsplIx(s);
cswitch(n ? n : resched(0));
if (a->a_pflags & ACT_DISTURBED) {
a->a_pflags &= "ACT_DISTURBED;
return O;
}
return 1;
}
The function dafireinit reinitializes the list item structure for activity so that it can be

used for insertion onto the dafifo waiting list. The activity fields a_waitfor and
a_waittype are set for general information purposes, but mostly to support cancelation.
The value (ICS_MAXR-ACT_NUMACT)*ICS_MAXRIs the threshold for counter overflow detec-
tion; if the value before incrementing in the first stage was above this threshold, we resort to
non-interruptible behavior. Above this level, we can still handle every activity trying to get a
writer lock. The function dafputhole inserts a “hole” onto the waiting list, just as if the
activity were inserted and then removed. In the absence of cancelation, dafput is called for
an ordinary insertion.

177

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

The function _cs_common, which is also used for the other list-based context-switching
mechanisms, sets up a new primary activity, if necessary, allowing the current one to con-
tinue asynchronously handling a system call or page fault. If a new activity is to be started,
it is simply “handed off” to the primitive context-switch function cswitch ; otherwise,
resched is called to choose the next activity to run. Upon being awakened, the
ACT_DISTURBEDflag is checked to see if cancelation occurred after blocking. The code for
_cs_common follows:

struct activity *
_cs_common (struct activity *a, int pflags)
{

struct activity *n;

struct proc *p;

genarg_t x;

if ((pflags & ACT_OPTIMASYNC) ==0 ||
((pflags & ACT_AUTOWAIT) != 0 && lissig(a->a_proc)))
n = NULL,
else if ((n = new_act(p = a->a_proc)) '= NULL) {
if ((pflags & ACT_UPFAULT) !=0) {
x.vd = a;
csynth (a, n, p, retapfault, x);
}
else {
X.i=0;
csynth (a, n, p, retasyscall, x);
}
}
a->a_status = ACT_BLOCKED,;
return n;

}

The activity is marked with the ACT_OPTIMASYNGIlag whenever a system call or page fault
is begun that is logically considered asynchronous. This is essentially a lazy strategy, done
in the hope that the activity’s work can be done without blocking. If blocking eventually
proves to be necessary (i.e., we get to _cs_common), we finally incur the overhead of creating
a new primary activity (84.3.1/p153). A variant of this behavior is available by setting the
ACT_AUTOWAIT flag (corresponding to the meta system call SCALL__AUTOWAIT flag
(84.3.1/p152)), causing the system call to operate synchronously unless a signal is to be hand-
led, indicated here by the issig function.

There is the possibility of failure when allocating a new activity structure, e.g., the
memory available for allocating such structures may be exhausted. In case of such failure,
we revert to synchronous behavior, but this is not acceptable for system calls, where correct
operation may depend on user-level signal handling. We prevent new_act from failing by
pre-allocating an activity structure when the system call is begun, to ensure its availability
when needed. Pre-allocation, e.g., by keeping a few structures associated with each process,
is cheap; most of the expense of setting up new activities is in the csynth function, which
initializes the activity to begin execution by calling the indicated startup function. Different
csynth startup functions are used for page faults and system calls, which can be

178

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

distinguished by checking the ACT_UPFAULTactivity flag. The fifth argument to cssynth is
a union of basic data types; the value passed in each case is expected by the indicated func-
tion.

The final small action of _cs_common is one of the most crucial for the second stage:
setting the activity’s status to ACT_BLOCKED

The second stage function for releasing a reader lock is only called when the first stage
determines that it may be necessary to wakeup a waiting writer. The function is simple:

void
_icsrw_runlock (icsrwlock *rw)
{
dllitem *di;
rw->rrcount = 0;
FBUSY_WAIT ((di = dliget(&rw->wwilist)) = NULL, nullf, &wwakehg);
if (di == &dllhole)
icsrw_wunlock(rw);
else
mkready ((struct activity *)((char *)di -
offsetof(struct activity, a_li)));

}

Because the first stage function has incremented rrcount to identify the last running
reader, we must reset it to zero, for the next cycle of readers. A simple assignment suffices,
since there can be no further modifications by other activities. There are basically two steps
required to complete the lock release:

(1) Obtain a writer to unblock. The most critical work, resolving the race between a
blocking writer and the last running reader, is handled by the FBUSY_WAITmacro
(83.5.1/p52). This macro expands to a loop that executes until the first argument
evaluates to TRUE, in this case until the call to the list deletion function dliget
returns a non-NULL pointer to a blocked writer. The second argument is a pointer to
a check function, to be executed periodically while busy-waiting, but in this case no
function is needed, so we simply pass a special empty function, nullf

(2) Unblock the writer obtained in step 1, or release the write lock just granted to the

interrupted writer, if a hole was found.®?? For a real writer, this is just a call to
mkready (84.6.9). The argument to mkready is a portable way to derive an activity
pointer for the writer from a pointer to the list item structure obtained from dliget

Second Stage Writer Lock and Unlock

Much of the same structure as we have seen in _icsrw_rlock is also applicable for writer
locks. The main difference is the need to deal with the rrcount field, which determines

#Being a first stage function, icsrw_wunlock may be inlined within the second stage function
_icsrw_runlock . Inlining is unlikely to be very helpful in this case, assuming that premature
unblocking is fairly rare, but the expansion cost is small enough that it isn't worth much trouble to
avoid.

179

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

when the last reader has relinquished its lock, so the first writer may proceed:

int
_icsrw_wlock (icsrwlock *rw, int old_acount, struct activity *a)
{

struct activity *n;

spl_ts;

int f, pf;

if (old_acount < ICS_MAXR &&
faa(&rw->rrcount,ICS_MAXR-old_acount) == old_acount)
rw->rrcount = 0;
else {
dllireinit(&a->a_li.dll);
a->a_waitfor.irw = rw;
if (old_acount < (ICS_MAXR-ACT_NUMACT)*ICS_MAXR)
a->a_waittype = ACT_ICSRWW | ACT_MAYCANCEL;
else
a->a_waittype = ACT_ICSRWW;
pf = a->a_pflags;
s = splsoft();
bwl_wait (&a->a_lock, splcheckf(s));

f = a->a_flags;
if f&ACT_CANCEL &&
old_acount < (ICS_MAXR-ACT_NUMACT)*ICS_MAXR) {

a->a_flags =f & "ACT_CANCEL,;
bwl_signal(&a->a_lock);
dllputhole(&rw->wwlist);
vsplIx(s);
return O;

}

n = _cs_common (a, pf);

dliput(&rw->wwilist, &a->a_li.dll);

bwl_signal(&a->a_lock);

vsplIx(s);

cswitch(n ? n : resched(0));

if (a->a_flags & ACT_DISTURBED) {
a->a_flags &= "ACT_DISTURBED;
return O;
}
}

return 1;

}

The basic idea is that when the first writer makes its presence known by adding ICS_MAXR
to acount , the number of currently running readers is also determined (in this function, it is
old_acount , the prior value of acount , returned by Fetch&Add in icsrw_wlock (p175)).

180

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

All of these running readers must release their locks before the first writer may proceed. As
each does so, in icsrw_runlock (p175), it increments rrcount with Fetch&Ilncrement. The
first writer adds ICS_MAXR-old_acount , so the value of rrcount will be ICS_MAXRwhen it
is safe for the writer to proceed. This value may be reached by the last reader or by the first
writer, the race is easily resolved by having both check for the final value. Whoever reaches
the final value resets rrcount to 0.

The second stage writer unlock function is a bit more complicated than the correspond-
ing reader unlock function, because of the need to unblock either one writer or all readers:

void
_icsrw_wunlock (icsrwlock *rw, int old_acount)
{ .
again:
if (old_acount >= 2*ICS_MAXR){ // wake up another writer
dllitem *di;
FBUSY_WAIT ((di = dliget(&rw->wwilist)) = NULL,
nullf, &wwakehg);
if (di '= &dllhole)
mkready ((struct activity *)di);
else {
old_acount = faa (&rw->acount, -ICS_MAXR);
if (old_acount > ICS_MAXR)
goto again;
}
}
else if (old_acount-ICS_MAXR >= MINMKQREADY)
mkgready(&rw->mdi, rw->rpri, old_acount-ICS_MAXR);
else {
do{ // wake up readers one at a time
dafitem *di;
FBUSY_WAIT ((di = dafget(&rw->rwilist)) = NULL,
nullf, &irwakehg);
if (di '= &dafhole)
mkready ((struct activity *)di);
else
icsrw_runlock(rw);
} while (--old_acount > CS_MAXR);

}

Because acount is incremented by ICS_MAXRfor each writer, and by 1 for each reader, it is
easy to determine the number of waiting readers and writers by examining old_acount
There are three cases:

(1) If old_acount is at least 2*ICS_MAXR, at least one other writer is waiting. Since
the algorithm always gives priority to writers over readers, this condition is checked
first. The work to do in this case is essentially the same as in the second stage
reader unlock function.

181

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

(2)

(2B)

If old_acount is less than 2*ICS_MAXR, any excess over ICS_MAXRIis due to wait-
ing readers (note that old_acount must be at least ICS_MAXRdue to the unlocking
writer itself). For efficiency, we treat two separate cases, depending on the number
of waiting readers. (2A) If the number is large enough (MINMKQREADUYr more), the
quickest and most efficient wakeup will be achieved by inserting the entire
icsrwlock structure on a multiqueue component of the global ready list (§4.6.7).
The work is done by a variant of mkready , called mkqgready ; we have already seen
the initialization of the mqi field (p173), including a pointer to _icsrw_rwakeup , a
function to be described below. The number of readers awakened is, as already
explained, old_acount-ICS_MAXR

When the number of waiting readers is small, it may be more efficient to awaken
them one by one. This is because the highly parallel multiqueue algorithms may
have higher overhead than singleton queues (§83.7.1/p82). Serial awakening of read-
ers is accomplished by enclosing within a do loop code similar to that already seen
for unblocking writers.

The multiqueue item structure, mgitem , contains a pointer to a function to be called by
mqgget whenever the item is encountered. The function must return a pointer to another
mgitem structure, and is intended to allow abstract structures to be placed on the system
ready list along with ordinary activities. We have already seen that the readers/writers lock
structure contains an mqitem , and that the function pointer is set to _icsrw_rwakeup dur-
ing lock initialization (p173), and we have seen how the item is inserted onto the global ready
list by calling mkgready . Now we shall examine icsrw_rwakeup itself:

mgqitem *
_icsrw_rwakeup (mgitem *mqi)

{

spl_ts;
icsrwlock *rw;
dafitem *di;
struct activity *a;

rw = (icsrwlock *)((char *)mqi - offsetof(icsrwlock,mqi));
FBUSY_WAIT ((di = dafget(&rw->rwlist)) 1= NULL, nullf, &irwakehg);
if (di == &dafhole) {

icsrw_runlock(rw);

return NULL,;
}
a = (struct activity *)((char *)di -

offsetof(struct activity, a_li.mq));

s = splsoft();
bwl_wait (&a->a_lock, splcheckf(s));
a->a_status = ACT_READY;
bwl_signal (&a->a_lock);
vsplx(s);
return &a->a_li.mq;

182

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

The expression including offsetof is the portable way of obtaining a pointer to a structure
given a pointer to one of its members. The rest of this function resembles the code in
_icsrw_wunlock to awaken a single reader, except that mkready isn't called (because the
activity is ready: it just came off the ready list).

Variant Lock Functions

There are two variants of each basic locking routine, guaranteed and conditional. Guaran-
teed versions are for situations where higher level logic dictates that the lock can always be
granted without delay. The major difference between a normal lock request and a guaran-
teed one is that the latter is unprepared for blocking. The main reason for using the guaran-
teed version instead of the normal one is clarity of purpose: it acts as an assertion of what
the programmer expects. For example, it is safe to hold busy-waiting locks when calling a
guaranteed locking function (this situation will arise in section 3.7.6 on page 130, where
csrw_qgwlock would be appropriate).

void
icsrw_grlock (icsrwlock *rw)
{
if (fai(&rw->acount) >= ICS_MAXR)
panic("icsrw_qgrlock™); /I impossible
}

Because it is guaranteed not to block, we add the letter q, for “quick”, to the function name.
To further exploit the low cost nature of the function, we also omit the check for cancelation,
i.e., we are not viewing the guaranteed lock function as a significant synchronization point,
worthy of also being a failure point. The corresponding write lock function is almost identi-
cal; the major differences are that the increment is ICS_MAXR instead of 1, and the old
acount value must be 0 instead of merely < ICS_MAXR The guaranteed locking functions
for non-interruptible mechanisms are essentially the same.

A conditional synchronization function is one that operates successfully if and only if it
can be done without blocking, otherwise it fails. In general, the requirement to support con-
ditional locking functions constrains the algorithm design space, so we don’t have conditional
locking functions for our non-interruptible mechanisms. Our implementation relies on the
waiting list’s support for explicit hole insertion:

int
icsrw_tryrlock (icsrwlock *rw)
{
if (rw->acount >= ICS_MAXR - ACT_NUMACT)
return O; /I avoid overflow
if (fai(&rw->acount) < ICS_MAXR)
return 1;
dafputhole (&rw->rwlist);
return O;
}
The conditional writer lock is essentially the same. We saw more about how holes are hand-
led in the second stage functions on page 179. Most of the peculiarity of icsrw_tryrlock is

183

Chapter 4: Processes Section 4.5.2: List-Based Synchronization—Readers/Writers Locks

dedicated to avoiding overflow of acount . Imagine, for example, that a writer holds the lock

for a very long time, and at least one potential reader calls icsrw_tryrlock repeatedly, in a
loop (i.e., uses the context-switching conditional lock as a busy-waiting lock). If
icsrw_tryrlock didn’'t have the anti-overflow protection, acount could easily accumulate

enough would-be reader increments to look as though another activity was trying to obtain a
write lock. ACT_NUMACTs the maximum number of activities. The anti-overflow check
ensures that each activity in the system can have at least one additional pending read lock
request, although interruptibility may be sacrificed. Because the check is conservative, it is
possible for a conditional lock request to fail unnecessarily, but this is unlikely if ICS_MAXR
is much greater than ACT_NUMACT This overflow avoidance matches that in the second
stage functions in section 4.5.3 on page 186.

Occasionally it is useful to access the lock value directly; we provide boolean functions for
this purpose, e.g.:

int
icsrw_isrlocked (icsrwlock *rw)
{
return rw->acount >= ICS_MAXR,;
}
int
icsrw_iswlocked (icsrwlock *rw)
{
return rw->acount != 0;
}

4.5.3. Premature Unblocking

We have already seen how the interruptible first stage locking functions check for the
ACT_CANCElIlflag, and how the second stage functions check again after locking the activity.
But what happens if the activity is already blocked when the cancelation is needed? This is
handled by the generic unblock function. This function can prematurely unblock any locked
activity with a_status == ACT_BLOCKED and (a_waittype & ACT_MAYCANCEL) =0 ;
this includes not only the list-based synchronization forms such as readers/writers locks, but
also uses of idopause

184

Chapter 4: Processes Section 4.5.3: Premature Unblocking

int
unblock (struct activity *act)
{ .
intr;
int wtype = act->a_waittype;
if (wtype & ACT_MAYCANCEL) == 0)

return O; /I not cancelable
switch (wtype) {
default:

panic ("unblock™); /I can’t happen
case ACT_MAYCANCEL|ACT_ICSSEM:

r = _icss_unblock(act); break;
case ACT_MAYCANCEL|ACT_ICSLOCK:

r = _icsl_unblock(act); break;
case ACT_MAYCANCEL|ACT_ICSRWR:

r = _icsrw_runblock(act); break;
case ACT_MAYCANCEL|ACT_ICSRWW:

r = _icsrw_wunblock(act); break;
case ACT_MAYCANCEL|ACT_ICSEVENT:

r = _icse_unblock(act); break;
case ACT_MAYCANCEL|ACT_KSEM:

r = ksem_unblock(act); break;
case ACT_MAYCANCEL|ACT_SYSWAIT:
case ACT_MAYCANCEL|ACT_PSUSPEND:
case ACT_MAYCANCEL|ACT_JSUSPEND:
case ACT_MAYCANCEL|ACT_TSUSPEND:
case ACT_MAYCANCEL|ACT_WAIT:

r = 1 break;
}
if (r)

act->a_pflags |= ACT_DISTURBED;
returnr;

}

For activities blocked in idopause (i.e., act->a_waittype is
ACT_MAYCANCEL|ACT_SYSWA)Tthe only thing to do is set the ACT_DISTURBEDprivate flag
in the activity structure, since there is no waiting list or other state to adjust. For list-based
synchronization mechanisms, unblock calls a synchronization-specific function to do the real
work of removing the activity from the waiting list and, if that is successful, sets the
ACT_DISTURBEDflag. The activity's a_waittype field selects the action to be performed,;
every possibility must be represented in the switch statement. We saw how the second stage
lock functions (84.5.2/p177) and idopause (84.5.1/p170) deal with the ACT_DISTURBEL[flag.

The synchronization specific unblock functions are normally inlined for efficiency, since
unblock is the only place they're called. What do these functions look like? Here is the one
for readers; most of the others have a similar structure:

185

Chapter 4: Processes Section 4.5.3: Premature Unblocking

int
_icsrw_runblock (struct activity *a)
{
icsrwlock *rw = a->a_waitfor.irw;
return dafremove (&rw->rwlist, &a->a_li.daf);
}

A more complex example is ksem_unblock , given in section 7.3.4 on page 292.

4.6. Scheduling

In a multiprogrammed operating system, processors are scheduled to run processes (or tasks,
threads, activities, etc., depending on local terminology). The problem can be viewed in dif-
ferent ways but, for most general-purpose operating systems, scheduling can be divided into
at least two phases: short-term and long-term scheduling. Short-term scheduling is con-
cerned with selecting which processes (tasks, threads, activities, ...) are selected to run from
among those that are ready. Long-term scheduling is concerned with selecting which pro-
cesses (tasks, threads, activities, ...) are given a chance to be ready, e.g., admitted to the sys-
tem, swapped into main memory, or simply considered eligible to run. In some cases, one
scheduling phase is degenerate, such as an interactive system that accepts all job submis-

sions, or a first-come first-served batch system.®

Most of our attention to scheduling is directed at short-term scheduling, but the impor-
tance of long-term scheduling should not be dismissed. There are several aspects to short-
term activity/processor scheduling in Symunix-2:

= Selecting another activity to run when an activity blocks or terminates.

=< Maintaining the ready list, a data structure to keep track of all activities that are ready
to run, and arranging for the execution of an activity when it is created or unblocked.

= Preempting a running activity in favor of another with better or similar priority.

= Consideration for the interdependent scheduling needs of the processes comprising a par-
allel application.

Before we can discuss scheduler design and policy alternatives, we must present the basic
mechanisms for preemption and interdependent scheduling.

4.6.1. Preemption

Traditional UNIX kernels, including Symunix-1, use a polling approach for process preemp-
tion: Each processor periodically executes code to check for a possible preemption and choose
a new process to run if appropriate. The check can be performed explicitly at any point, but
usually only after executing a system call or when returning to user-mode after handling cer-
tain device interrupts, such as a clock interrupt. True preemption (preemption at almost any
point) is prohibited within the kernel itself.

8 Some authors reserve long-term scheduling to refer only to admission of new jobs into the sys-
tem, and use medium-term for mechanisms that reduce the effective multiprogramming load of those
already admitted, e.g., swapping. Our notion of long-term scheduling includes both of these categories.

186

Chapter 4: Processes Section 4.6.1: Preemption

Although the preemption mechanism itself is somewhat complicated by the prohibition
against true kernel preemption, the rest of the kernel in a uniprocessor or master/slave sys-
tem can enjoy the benefit of freely ignoring preemption issues. However, some of this advan-
tage disappears from symmetric multiprocessor kernels where most of the kernel must be
aware of the concurrent effects of other processors anyway. Thus, allowing preemption gen-
erally throughout such kernels is not a serious additional complication. Of course preemp-
tion cannot be allowed at any point within the kernel, e.g. when holding busy-waiting locks,
but suppressing it is easy since, by definition, the kernel has full control over the machine.

Following this reasoning, Symunix-2 allows true kernel preemption. The specific

approach used is to implement preemption as the lowest priority soft interrupt.®* In this way,
kernel preemption may be deferred in exactly the same way as other interrupts (83.4/p47),
and because preemption has the lowest priority, it is normally masked and unmasked “for
free” along with other interrupts. Another benefit of making preemption the lowest priority
interrupt is that a single dedicated interrupt stack can still be maintained for each processor:
when preemption does occur, the interrupt stack is empty except for the preemption inter-
rupt itself. In addition, by eliminating one function out of two (preemption and soft inter-
rupts), machine-dependent interrupt and trap handling code is streamlined.

The function to handle soft preemption interrupts is called softresched ; the interrupt
may be masked by splsoftresched , and initiated by setsoftresched . Recall that pend-
ing interrupts and masks in Symunix-2 are considered part of each processor’s state (§3.4);

they do not form a central pool accessed by all processors,® and they don't migrate from pro-
cessor to processor with activities or processes.

Conceptually, softresched is quite simple; it calls resched (84.6.8) and, if resched
returns non-NULL, it calls cswitch (84.4.5).

The implementation of softresched is machine-dependent, to allow reasonable imple-
mentation options such as use of a dedicated interrupt stack for each processor. Reasons for
using an interrupt stack include:

< Minimizing the (fixed) size of the activity stack. Since the activity stack cannot be
swapped out of memory and each activity has one, this can be important.

= Hardware that explicitly maintains a separate interrupt stack, e.g., the DEC VAX.

= The presence of local memory associated with each processor. Such memory may be
faster than global memory, and accesses to it may be contention free, or may impose less
contention on other processors. The memory need not be accessible to other processors.

Whatever the reason, the use of a dedicated interrupt stack requires that softresched be
implemented very carefully. By the time cswitch is called, the portion of the interrupt stack

% Recall from section 3.4 on page 46 that soft interrupts are directly caused by software, rather
than a hardware device such as a disk drive or clock.

& This primarily reflects the way interrupt handling is designed into most, but not all, commercial
microprocessors. Some machines, like the Sequent Balance [19, 80] and Symmetry machines [139], and
some Intel Pentium-based machines [200], have special hardware to distribute device interrupts auto-
matically to the processor running at the lowest priority, but masked and pending interrupt status are
still “per processor” entities.

187

Chapter 4: Processes Section 4.6.1: Preemption

containing the state of the interrupted processor execution of softresched must be moved
to the regular activity stack. (Recall that cswitch saves and restores the processor state to
and from the activity stack (§4.4.5).) Fortunately softresched is the lowest priority inter-
rupt and is thus guaranteed to be the sole contents of the interrupt stack. We assume the
organization of saved state on the interrupt stack is well enough defined to make the writing
of softresched a tractable problem, albeit a delicate machine-dependent one.

4.6.2. Interdependent Scheduling

Scheduling has traditionally been transparent in UNIX, that is, with the exception of the
nice system call (setpriority in 4.2BSD and successors), there have been essentially no
scheduling controls available to the programmer or system administrator. Scheduling has
been performed on the basis of priorities that are adjusted dynamically according to resource
usage and system load. This is a generally good design considering the traditional UNIX
time-sharing workload; unnecessary controls on a system should be avoided. However, with
the introduction of parallel applications, new factors emerge that make the traditional
approach less desirable:

= Frequent synchronization between processes. From the point of view of a single parallel
application running on a multiprocessor, the most efficient way to perform synchroniza-
tion is to run all synchronizing processes simultaneously, and allow them to busy-wait as
necessary during the synchronization. Most parallel architectures directly support an
efficient hardware mechanism to do this, avoiding the overhead associated with blocking
a process and context-switching to another one. Unfortunately, even multiprocessors
don’t always have enough processors, so some form of process preemption is still needed.
The problem is that busy-waiting in the presence of preemption can be very bad for per-
formance. For example, a process might busy-wait a substantial amount of time for
another process that has been preempted, creating a feedback effect by performing use-
less work that effectively raises the system load, in turn causing more preemption. This
problem arises because the scheduler isn't aware of user synchronization (Zahorjan, et al.
[215]).

= Uneven rates of execution. Some parallel algorithms perform poorly when the instruction
streams don't progress at approximately the same rate. While “even” progress is a prop-
erty of any “fair” scheduler over a sufficiently long period of time, some algorithms have
less tolerance and require fairness over shorter time periods. An example is an algorithm
that uses barrier synchronization (Jordan [122]) frequently. In such a situation, the
progress of the overall algorithm is limited by the progress of the last process to reach
each barrier.

= Complete program control over resource scheduling. Beyond the problems we have just
described, where lack of control over preemption can cause serious performance prob-
lems, there are applications that ask almost nothing of the operating system at all,
except that it not interfere. What is often wanted by the users for such applications is a
long-term commitment of resources (e.g. processors, memory), and, given that they are
willing to pay the price for such commitment, they expect to get performance near the
absolute maximum deliverable by the hardware, with no operating system overhead.
Such control may not be appropriate on small machines or uniprocessors, but becomes
increasingly important on large high-performance multiprocessors.

= user-mode thread systems. Some applications and parallel programming environments
benefit from being structured as a set of independent threads of control, operating

188

Chapter 4: Processes Section 4.6.2: Interdependent Scheduling

essentially within a single address space and sharing access to all resources. For funda-
mental reasons, the most efficient implementations of creation, destruction, synchroniza-
tion, and context-switching for threads can only be done primarily in user-mode
(84.1/p147). Such a system can be efficiently implemented in the manner of the previous
bullet, but we will show less drastic alternatives.

The common theme running through all these problems is preemptive scheduling of pro-
cesses, and we now propose three new mechanisms to eliminate or control it: scheduling
groups, temporary non-preemption, and the SIGPREEMPBignal.

4.6.3. Scheduling Groups

We introduce a new process aggregate, the scheduling group, which is identified by a
scheduling group ID. Every process is a member of a scheduling group, although that group
may consist of only the single process itself. In many cases, we expect scheduling groups to
correspond to families (84.2/p148). A scheduling group is subject to one of the following
scheduling policies:

= Fully Preemptable. This is the traditional scheduling policy of UNIX, and is the default.
This policy is appropriate for timesharing and for parallel applications with little or no
synchronization.

= Group Preemptable. The scheduling group members may only be preempted or resched-
uled at (approximately) the same time. This is similar to Ousterhout's coscheduling of
task forces [160], but is concerned with preemption rather than blocking. This policy is
appropriate for parallel applications with moderately frequent synchronization, and a
fairly stable amount of parallelism.

< Non-Preemptable. The scheduling group members are immune from normal preemption.
This policy is appropriate for parallel applications with the primary requirement for
“raw” processors, without interference from the kernel. It is the most “expensive” policy,
because of its unwillingness to share processors among multiple users, but can offer
unequaled performance when combined with long-term memory allocation.

Since it is necessary for all members of a group- or non-preemptable group to execute simul-
taneously, it must be possible to meet their combined resource requirements. It's obvious
that uniprocessors can’t provide these new scheduling policies for groups with more than one
process, but multiprocessors also have only a finite supply of processors and memory and,
since spawning a new process into such a group or requesting more memory are operations
that increase the resource requirements of the group, it is possible for them to fail. To avoid
this problem, we must provide for long-term allocation of processors and memory. Because of
their long-term resource allocations, group- and non-preemptable scheduling policies must be
restricted by system administrative policy and implemented by a long-term component of the
scheduler. In addition to new system calls for manipulation of scheduling group IDs, new
calls are needed to select the scheduling policy of a group and to request long-term allocation
of processors and memory.

These new mechanisms directly support multiprocessor users whose primary objective
is to “get rid of” operating system overhead, and solve the other problems outlined on pages
188-189, provided that the users are willing to pay the cost-which may include restrictions
on resource utilization, increased average turnaround time and, in some cases, a negative
impact on interactive or real-time responsiveness.

189

Chapter 4: Processes Section 4.6.3: Scheduling Groups

The group- and non-preemptable scheduling policies have no effect on voluntary block-
ages (e.g. when a process issues a system call for which it is necessary to block). When a pro-
cess is blocked, other members of the group will continue to be run, preempted, and resched-
uled according to the current policy. Note also that the scheduling policy does not necessarily
affect interrupt processing, so a process may still suffer the overhead of interrupts caused by
some other process doing 1/O; this is an unavoidable overhead of multiuser activity on some
architectures.

4.6.4. Temporary Non-Preemption

Group- and non-preemptable scheduling policies are simple mechanisms for users who need
long-term control over preemption; as such they are expensive because of the long-term com-
mitments required. There are other situations, in which synchronization occurs for short
periods of time, that can be satisfactorily handled by a cheaper mechanism; we introduce the
notion of temporary non-preemption for this purpose. This is a “hook” into the scheduler to
allow processes to accommodate very short-term conditions. An example of typical usage is
to prevent preemption while holding a short-duration busy-waiting lock. The process essen-
tially says, “l don't mind being preempted, but please wait a bit until | say it's ok”. The
mechanism also provides protection against malicious processes that never say “ok”. Unlike
the group- and non-preemptable scheduling policies, it is also useful on uniprocessors as well
as multiprocessors, and doesn't require interaction with the long-term scheduler. Two calls
are provided, tempnopreempt and tempokpreempt . The first notifies the scheduler that
temporary abeyance of preemption is desired, and the second signals a return to normal
scheduling.

Much of the usefulness of this feature derives from the fact that the implementation is
extremely efficient. The scheduler maintains for each process the address of a two word vec-
tor in the user address space; this address is established via a new system call normally
issued by the language start-up code immediately after exec . The first word is for communi-
cation from the user to the scheduler, the second is for communication from the scheduler to
the user. Initially, both words are set to zero. What tempnopreempt does is essentially

wordl++;
while tempokpreempt is approximately

I/l ordinary version
if (--word1 == 0 && (temp=word2) != 0) {

word2 = 0;
yield(0);
return temp;
}
return O;

The yield system call does nothing if there is no preemption pending, otherwise it resched-

ules the processor, temporarily adjusting the external priority® of the calling process by addi-
tion of the supplied argument. When the process next runs, the external priority is restored.

% In traditional UNIX terminology, the external priority is the nice value.

190

Chapter 4: Processes Section 4.6.4: Temporary Non-Preemption

In this case, an argument of 0 causes no external priority change, just as with a normal pre-
emption. By specifying yield to do nothing when no preemption is pending, we close the
window of vulnerability between decrementing wordl and calling yield : if the process is
preempted during this interval, the yield is unnecessary and will have no effect.

Because wordl is incremented and decremented, rather than simply set,
tempnopreempt and tempokpreempt can be safely nested. (An alternate version of
tempokpreempt will be presented in section 4.6.5 on the next page.)

What the scheduler does is complementary. When it wants to preempt a process, code
such as the following is executed on the processor running the process (i.e., the scheduler
runs this as part of the softresched interrupt handler):

if (word1 == 0)
ok to preempt;

else if (preemption not already pending for this process) {
word2 = 1;
note preemption pending;

else if (preemption pending for at least tlim time) {
word2 = 2;
ok to force preemption;

}

Where tlim is perhaps a few milliseconds, and the preemption pending state is maintained
per-process and cleared on actual preemptions and on yield . The purpose of the
tempokpreempt return value is to notify the user (after the fact) if preemption was

requested or forced.?’

Overhead for this implementation is only a few instructions in the common case where
no preemption would have occurred anyway, and only the overhead of the yield otherwise.
The most abusive a user can get with this scheme is to lengthen a time-slice by tlim; it is
easy to prevent any net gain from such a strategy by shortening the next slice by tlim to com-
pensate.

4.6.5. The SIGPREEMPTSignal

We introduce a new signal type, SIGPREEMPTspecifically for user-mode thread systems, but
any preemptable application can use it to keep track of scheduling assignments over time.
The basic idea is to notify the user process before preempting it, and allow a short grace
period for it to put its affairs in order. On receipt of SIGPREEMPTa user-mode thread system
might save the state of the currently executing thread before giving up its processor by call-
ing yield (84.6.4); this makes it possible for another cooperating process to run the thread.
Section 7.5 will describe more details of how a user-mode thread system can use
SIGPREEMPTtogether with asynchronous system calls, asynchronous page faults, temporary
non-preemption, and carefully chosen counting semaphores (87.3.3), in order to retain control
of its threads and processors, as much as possible, even in the face of kernel-initiated

8 Presumably this may be helpful in performance evaluation and tuning.

191

Chapter 4: Processes Section 4.6.5: The SIGPREEMPSignal

preemption.

The grace period for SIGPREEMPTheed not be the same as the time limit for temporary
non-preemption; the choice is up to the system implementor (they could conceivably even be
non-constant). As with temporary non-preemption, the grace period must be enforced in
such a way that no long-term gain can be obtained by abusing it. SIGPREEMPTis easier than
temporary non-preemption in this respect, since the kernel knows explicitly when the grace
period begins. If the process fails to block or call yield during the grace period, its schedul-
ing priority can be temporarily reduced or its next scheduling quantum can be reduced to
compensate for the full grace period consumed.

There are several cases of preemption to consider:

= Preemption of primary or other activities. Only preemption of a primary activity can gen-
erate SIGPREEMPT Other activities are not under direct user control, since they are exe-
cuting “in the background”; there is nothing the SIGPREEMPThandler can do about them.
Although the activity is the unit of scheduling (and hence preemption) within the kernel,
activities are largely invisible to users. At the user level, processes are the relevant unit,
and a process is represented by its primary activity.

= Masking of SIGPREEMPT It is tempting to use the signal masking facility with
SIGPREEMPTinstead of the temporary non-preemption mechanism presented in section
4.6.4. Such an approach would require special case handling compared to other signals
and would lose the functionality of the tempnopreempt return value. Furthermore, tem-
porary non-preemption can be useful even without SIGPREEMPTand, for purposes of pre-
sentation, it is helpful to separate the two mechanisms. Using SIGPREEMPTmasking
instead of temporary non-preemption is likely to add complexity and overhead in the
common case of no preemption. In terms of basic technology, temporary non-preemption
is applicable to any multiprogrammed operating system, while SIGPREEMPThas UNIX
signal semantics built-in (although presumably something similar could be done for sys-
tems with some other form of user interrupt mechanism).

Our choice is to preempt silently (without a signal) if SIGPREEMPTis masked when pre-
emption is required (i.e., the same as SIG_DFL and SIG_IGN). If temporary non-
preemption is in effect, the signal is discarded and preemption is deferred; this reflects
the assumption that the user will call yield soon; if not, silent preemption is appropri-
ate.

e Using SIGPREEMPT with tempnopreempt and tempokpreempt . The version of
tempokpreempt presented in section 4.6.4 calls yield when the kernel desires preemp-
tion; this is inadequate if the user is trying to intervene in all preemptions by catching
SIGPREEMPT The following version is more appropriate in that case:

/I version for users with SIGPREEMPT handlers

temp = 0;

while (--wordl == 0 && (temp=word?2) !=0) {
word2 = 0;
wordl++;
user_sigpreempt_handler(SIGPREEMPT);

}

return temp;

This version re-enables temporary non-preemption and calls the SIGPREEMPThandler to
perform the desired actions and yield . If a natural preemption occurs between

192

Chapter 4: Processes Section 4.6.5: The SIGPREEMPSignal

decrementing wordl to zero and re-incrementing it, the call to yield from within the
user’s SIGPREEMPThandler will do nothing (because no preemption would be pending by
then). Of course the temporary non-preemption time limit must be long enough to allow
the execution of the handler in addition to whatever code originally required temporary
non-preemption.

= Preemption from user-mode or kernel-mode. If the softresched interrupt comes from
user-mode, the activity is already in a state ready to handle a signal. kernel-mode pre-
emption must be further divided into two separate cases: is the activity potentially asyn-
chronous (84.5.2/p178)? If so, receipt of a signal creates a new primary activity to return
to user-mode and handle it, leaving the old activity to finish its system call or page fault
in truly asynchronous fashion. The old activity, no longer primary, is preempted silently.

Otherwise, the activity must be executing a synchronous system call or page fault, or
must be an internal kernel support activity; all such synchronous activities are pre-
empted silently. This represents a loss to a user-mode thread system only when execut-
ing a long but fundamentally synchronous system call such as exec, or incurring a syn-
chronous page fault; the former is unusual for a thread system, and the latter only hap-
pens in rare but unavoidable situations, as described in section 7.5.2 on page 320. The
kernel masks preemption during short synchronous system calls that never block, such
as getpid or gettimeofday

The use of preemption (in any form) adds overhead to any system and to the preempted
applications, compared to a fully non-preemptive system. On the other hand, the use of pre-
emption can improve average response time, increase the overlap of 1/0 with computation,
and make the system more responsive to external process priorities; these are reasons why
the overhead of preemption is considered acceptable. The use of SIGPREEMPTincreases the
overhead somewhat, compared to traditional (silent) preemption, because of signal delivery
and user-level actions taken by the handler. We claim these additional overheads are justi-
fied by the benefits of SIGPREEMPTi.e., the efficiency gains of implementing threads in user-
mode. In either case (with or without SIGPREEMPY, the “ratio” of overhead to benefits is
greatest when a preemption is begun, or SIGPREEMPTis sent, and another processor becomes
idle immediately. This is a fundamental problem of on-line scheduling: future knowledge is
not available. Use of SIGPREEMPTmakes this somewhat more likely, because a full preemp-
tion (including the user-level actions of the SIGPREEMPThandler) takes longer than a silent
preemption. Keeping the grace period short tends to lower the vulnerability.

When should SIGPREEMPTbe delivered? If a primary activity is preempted in favor of
an activity with equal priority, as in round-robin scheduling, it seems fair to delay the benefi-
ciary, while the victim handles SIGPREEMPT This is the most efficient way to deliver
SIGPREEMPT

When the priorities are different, we must be concerned about two problems: priority
inversion and interrupt-to-wakeup latency. Their severity depends on two factors: our level of
commitment to real-time requirements and the actual costs involved (e.g., the maximum
grace period length).

If we delay the higher priority activity while the lower handles SIGPREEMPTwe have
created a priority inversion. Any real system has priority inversions, such as when inter-
rupts are blocked (for however short a time), when a low priority process saves state before
allowing a higher priority process to run, or when a high priority process needs a resource for
which a low priority process holds the lock. The important thing is to keep inversions short,

193

Chapter 4: Processes Section 4.6.5: The SIGPREEMPSignal

so their impact is minimal.

Interrupt-to-wakeup latency is the time from when an external interrupt is raised to
when a blocked activity is unblocked by the interrupt handler and actually begins running on
a processor. This latency is often considered an important component of overall system
responsiveness and a key requirement for real-time systems.

The expected time to execute a SIGPREEMPThandler should not be very large (all it is
really expected to do is save thread state), but the full grace period may be uncomfortably
long, especially for real-time systems. (If the possibility of buggy or malicious programs is
ignored, the expected time may be all that matters.)

There is an alternative to waiting while a victim handles SIGPREEMPTin user-mode:
the victim can be preempted silently, and SIGPREEMPTcan be delivered when it runs again,
on another processor. To make this an effective solution, it must run again very soon, other-
wise the purpose of SIGPREEMPTwould be defeated. Instead of just waiting for it to run
according to the normal scheduler mechanisms (84.6.6), we can take special action to pre-
empt another activity silently, just long enough to run the SIGPREEMPThandler to the point
of yield . This secondary preemption victim, which must be running on another processor
and should be of equal priority, is an “innocent bystander” and suffers, without notification, a
delay of up to one grace period (plus possible cache effects). The secondary victim’'s delay is
comparable to the delay of arbitrary activities by unrelated interrupts on their processors
and to memory contention between different processors (although the time scale is much dif-
ferent, the cumulative affect over time may be similar).

Assuming the APC mechanism (83.6) uses a hardware interrupt, the secondary preemp-
tion itself will not take long, but choosing the secondary victim quickly and without serial
bottlenecks poses an algorithmic and data structure challenge. The best way to perform sec-
ondary preemption depends on the general organization of the short-term scheduler, dis-
cussed in section 4.6.6.

4.6.6. Scheduler Design and Policy Alternatives

For flexibility, and especially because this is an experimental system, the scheduler is iso-
lated enough so that it may be readily replaced. The concept of separating policy decisions
from mechanisms is well known, but for practical purposes we find it advantageous to
broaden our notion of “policy” in this case. By declaring the design of some major structures,
such as the ready list, to be policy issues, we increase flexibility while maintaining the poten-
tial for high performance.

The scheduler consists of six visible functions:

void mkready(struct activity *)
Change activity state to ACT_READY: f it wasn't already, and arrange for it to run.
In the most common case, mkready is called when a blocked activity is unblocked.
There are other cases where the calling activity already has state ACT_READYsuch
asyield (84.6.4).

void Imkready(struct activity *)
Like mkready , but the activity must already be locked.

void mkgready(mgitem *mgji, int pri, int n)
Make n activities ready with priority pri . The activities are obtained by calling the
function specified when mqi was initialized (84.5.2/p173). There is a status anomaly

194

Chapter 4: Processes Section 4.6.6: Scheduler Design and Policy Alternatives

associated with mkgready : the awakened activities are not handled individually
until they are selected for running; although they are on the ready list, their
a_status fields still show ACT_BLOCKED

struct activity *resched(int isready)

Pick another activity to run instead of the current one. The parameter is a boolean
value that indicates if the current activity can continue running or not; this would
be equivalent to checking the ACT_RUNNINGlag of the current activity, but such a
check would sometimes fail, due to a race with mkready . If isready is true,
resched may return NULL if there is no other activity that should run instead of the
current one, otherwise the caller is expected to pass the return value to cswitch or
cjump (84.4.5). If isready is false, resched will never return NULL since each
processor has a dedicated idle activity that is always ready to run.

The call resched(0) is used when an activity is blocking; resched(1) is used to
attempt a preemption. All preemption attempts are performed by the softresched
interrupt handler, and may be requested at any time by calling setsoftresched
(84.6.1, §3.4/p45).

void setpri(struct activity *)
There are only two ways to set the priority of an activity: by calling one of the con-
text-switching synchronization functions that can block an activity (such as

icsrw_rlock (84.5.2/p174))®® or by calling setpri . The conditions for calling
setpri are:

= After changing the external priority (traditionally called the nice value), as part
of an explicit priority changing system call, i.e., nice or setpriority

= Before returning to user-mode from kernel-mode. This ensures that temporary
priority changes made by context-switching inside the kernel are not propagated
to user-mode.

< When an activity has been running for longer than its run quantum, setpri is
called to recalculate its priority, presumably downwards.

= The scheduler implementation may assign a wait quantum to each activity that
is ready but not running, to place a limit on the amount of time an activity can
languish before having its priority reconsidered. In this case, setpri is called to
recalculate its priority, presumably upwards.

void newrguantum(struct activity *)
When an activity is run (by cswitch or cjump (84.4.5)), newrquantum is called to
compute and establish a run quantum, the maximum time before preemption will be
attempted. When the run quantum expires, setpri and resched(1) are automati-
cally called, and cswitch is called if resched returned a non-NULL value.

By replacing these six functions and changing their data structures we can provide very dif-
ferent schedulers.

% Recall that priorities are not preserved when blocking (84.5.2/p171).

195

Chapter 4: Processes Section 4.6.7: The Ready List

4.6.7. The Ready List

The key data structure of the scheduler is the ready list. There are many possible
approaches to its design, depending on the overall system requirements (e.g., strength of
real-time goals), anticipated workload, and architectural details (e.g., machine size and hard-
ware support for Fetch&® and combining).

One common approach is to implement N distinct priority levels by N ordinary lists (a
highly parallel variety (83.7.1) should be used for our target class of machines (81.3)). A
ready activity goes on the list associated with its priority. A processor looking for work sim-
ply attempts to delete from each list, from the highest to the lowest priority to be considered,
until an activity is found. An idle processor may check all priorities, but a non-idle processor
is checking to see if preemption is appropriate, so it doesn't consider priorities below that of
the currently running activity and only checks the equal priority list when the running activ-
ity's time quantum has expired. There are many possible enhancements to this basic
scheme, including:

= Fast scanning. Schedulers for uniprocessors and small multiprocessors often speed up
the search for the highest priority runnable process by maintaining a bitmap to show
which lists are non-empty at any given moment. By consulting the bitmap, a processor
looking for work can immediately determine the highest priority non-empty list. Unfor-
tunately, manipulation of such a bitmap would cause a serial bottleneck on machines out-
side of our target class. Bottleneck-free parallel algorithms exist to find the highest pri-
ority non-empty list of N lists in O(log N) time, but they are rather complicated (Gottlieb,
et al. [93]).

= Local ready lists. Additional lists can be added on a per-processor basis so that, for exam-
ple, an activity needing access to hardware associated with a single processor can be lim-
ited to run only there. This feature was used in some versions of Mach to limit execution
of most system calls to a single “master” processor (the local scheduling lists are general
enough to use for other purposes as well). Of course the changes associated with adopt-
ing local ready lists can't be confined to the scheduler itself, since other parts of the ker-
nel must also be changed to take advantage of it.

= Use of multiqueues. Symunix-2 includes some operations, notably the spawn system call
(84.2/p148) and certain context-switching wakeups (84.5.2/p179), that involve putting
many activities on the ready list at the same time. An appropriate implementation of
mkgready (84.6.9) can take advantage of multiqueues in the ready list to execute these
operations very quickly. Unfortunately, multiqueue algorithms tend to be more expensive
than their singleton cousins (see Table 13, in section 3.7.1 on page 82). One solution is to
represent each priority with two lists, one multiqueue and one singleton queue. The
order in which they are checked when looking for work determines a sub-priority rela-
tionship between them.

Regardless of any such variations, these kinds of ready lists are rather weak in their ability
to match activities and processors. For example, consider:

= Cache Affinity. The idea that execution threads exhibit cache affinity suggests that extra
effort should be made to schedule an activity on the last processor to run it whenever pos-
sible. The list-per-priority approach to ready list design is not well suited to supporting
cache affinity without adding per-processor ready lists, and that comes at the cost of load
balancing.

196

Chapter 4: Processes Section 4.6.7: The Ready List

e Cascade Scheduling. In a “pure” list-per-priority scheduler, a newly ready activity goes
on the shared ready list, to be picked up by the first processor to find it. But the proces-
sor to find it may not be the “best” choice. Ignoring for a moment the issue of cache affin-
ity, the best choice is the processor running the lowest priority activity (the per-processor
idle activity being the lowest of the low), but there is no mechanism to ensure this choice.
As a result, we observe a cascade scheduling effect, where the first victim preempts a
lower priority activity, which preempts an even lower one, etc. It is easy to fix this prob-
lem when some processors are idle: keep a list of idle processors, and schedule a ready
activity directly to one if available, without going through the ready list itself; the Mach
system uses this approach. Avoiding cascade scheduling in the absence of idle processors
is harder (but see section 4.9 on page 207).

4.6.8. Theresched Function

The purpose of the resched function is to select another activity to run. In addition to
manipulating the ready list, it considers the priority of the currently running activity and
participates in preemption.

As indicated by the usage in _icsrw_rlock (84.5.2/p177) and _icsrw_wlock
(84.5.2/p180), the resched function returns a pointer to the activity chosen to run, assuming
the caller will call cswitch if the chosen activity is non-NULL This not only allows for hand-
off scheduling by simply avoiding the call to resched altogether, but also solves a machine-
dependent problem of relocating the interrupt stack when performing preemption, as dis-
cussed in section 4.6.1 on page 187.

The resched function takes a parameter, isready , to indicate whether or not the call-
ing activity is logically able to continue execution. This parameter is true only when
resched is called from preemption (§4.6.1) and the yield system call (84.6.4). In these
cases, another activity is selected to run only if it has “high enough” priority.

struct activity *
resched (int isready)
{ . .
int pri;
struct activity *oact, // old activity
*nact; // new activity

oact = curact();
if (lisready)
pri = PRI_WORST;
else {
pri = oact->pri;
if (oact->quantum > 0 && ++pri > PRI_BEST)
pri = PRI_BEST;
}

The variable pri is the “good enough” priority value we seek. PRI_WORSTis the worst prior-
ity in the system, and is reserved especially for the idle activities.

197

Chapter 4: Processes Section 4.6.8: The resched Function

nact = rqget (pri);
if (nact == NULL) {
if (isready) {
if (oact->quantum <= 0)
newrguantum (oact);
return NULL,;
}

panic ("resched: no idle act"); // can’t happen

}

if (isready) {
spl_t s = splsoft();
bwl_wait (&oact->lock, splcheckf(s));
rqput (oact);
bwl_signal (&oact->lock);
vsplx(s);

}

md_resched(oact,nact); /I machine-dependent portion
if (nact->quantum <= 0)

newrguantum (nact);
return nact;

4.6.9. The mkready Functions

As shown by the usage in context-switching readers/writers routines (84.5.2), mkready and
the related functions Imkready and mkqready are responsible for moving an activity into
the ACT_READYtate. The three functions are designed to fit different situations efficiently:

mkready Make one unlocked activity ready
Imkready Make one locked activity ready
mkgready Make a whole list of activities ready

The basic mkready function is quite simple:

= Mask interrupts and lock the activity.

= Adjust the system’s instantaneous load average, the number of currently runnable activi-
ties, used for informational purposes.

Change the activity's state to ACT_READY

Call rgput to insert the activity onto the ready list.

Unlock the activity and unmask interrupts.

In the case of Imkready , the locking and interrupt masking are unnecessary, because they
are assumed to have been done by the caller.

The mkqgready variant is even simpler: it simply adjusts the instantaneous load aver-
age and calls rqgput to insert the whole list of activities onto the ready list at once. The
remainder of the work is performed by synchronization-specific routines such as

198

Chapter 4: Processes Section 4.6.9: The mkready Functions

_icsrw_rwakeup , (84.5.2/p182), called as each item is deleted from the ready list. Activity
lock and interrupt mask manipulations are required only in the synchronization-specific rou-
tines, as only they deal with individual activities.

4.7. Process Creation and Destruction

A reference count, p_rcnt , is maintained for each process, primarily to control deallocation
of the most fundamental resources of a terminated process: the proc structure, the process
ID, and the process group ID. In traditional UNIX, final deallocation of a process is done
when a parent makes a wait system call to collect the exit status of a terminated child.
There are several reasons why that strategy is inadequate for a highly parallel operating sys-
tem kernel:

(1) The traditional wait system call is a direct source of serialization, since a parent
must eventually make a separate call to wait for each child. If many processes are to
cooperate in solving large problems, this potential bottleneck must be avoided. We
have introduced the spawn system call to allow creation of many processes at once
without serial bottlenecks (84.2/p148). One of the arguments to spawn is a set of
flags, several of which affect what happens when the spawned children eventually
terminate (84.2/p149). In particular, it can be arranged for the children to take care
of their own deallocation in the absence of errors; this allows the parent's wait to
complete without doing per-child work in the most common case. In case of errors, it
is usually desirable for the parent to investigate them serially.

(2) In UNIX terminology, when a parent process pre-deceases a child, the child is said to
be an orphan. Traditionally, orphans are inherited by the init process, with PID 1. In
particular, a wait system call executed by init will return an orphan’s exit status,
and a getppid (get parent PID) system call returns 1 to an orphan. To avoid the
serial overhead of having init handle orphans, we observed that, in practice, no real
use was made of the exit status returned to init for orphans. In Symunix, orphans
only appear to be inherited by init: getppid returns 1 and orphans are counted to
determine when wait should report “no more children” to init, but an orphan’s
resources are returned to the system when it terminates, without involving init. Con-
sequently, process deallocation for orphans is not performed serially, and init does not
receive their exit status.

(3) To support interactive debugging of parallel programs, the ptrace mechanism is
extended to allow tracing of processes that aren’'t immediate children. As a result of
this extension, debuggers are treated like a second parent, as far as reference count-
ing and resource deallocation on termination are concerned.

The basic idea behind reference counting for a process is to count the number of other pro-
cesses that have pointers to it: its parent, children, non-parent debugger, and, if it is a debug-
ger, each non-child it traces. A zombie process is destroyed when the reference count drops
to zero.

When a process with children terminates, each child is individually orphaned. This is
not considered a serious serial bottleneck, because a parent terminating before its children is

199

Chapter 4: Processes Section 4.7: Process Creation and Destruction

not considered normal behavior for large parallel programs.?® The key steps in orphaning a
child are to destroy its reference to the parent, and decrement both reference counts. Termi-
nation of a debugger with debuggees is handled similarly.

In addition to determining when the final resources of a process are deallocated, the ref-
erence count is also used in the implementation of the wait system call, to decide if there are
live children to wait for.

Since init never terminates, a special case is applied to handling its reference count: it
includes all processes in the system except init itself, and never-terminating internal system
daemons, such as the idle process (which has one activity per processor). When any process
terminates, init's reference count is decremented. Init is awakened when the count reaches
zero if it's blocked in the wait system call. This allows init to wait for termination of all pro-
cesses during a system shutdown, even though orphans aren't really adopted by init. In
addition, init’s reference count is a convenient place for instrumentation programs to look for
the current number of processes.

4.8. Signals

We have already seen that signals play a central role in management of asynchronous sys-
tem calls (SIGSCALL in section 4.3.1 on page 151), page faults (SIGPAGEin section 4.3.2), and
scheduling control (SIGPREEMPTin section 4.6.5). In addition, standard UNIX semantics
require signal support for various (mostly exceptional) purposes. While some of these tradi-
tional uses are not frequent they still present an implementation challenge for highly paral-
lel systems.

4.8.1. Signal Masking

The performance impact of signal masking is considerably greater in a highly parallel envi-
ronment than otherwise because of the need to mask signals in many locking situations. We
can implement the standard Berkeley UNIX signal masking functions without system calls,
in a manner analogous to the implementation of temporary non-preemption described in sec-
tion 4.6.4. In this case, the address of a single word (sigword) and two bitstrings in the user
address space are maintained by the kernel (bitstringl and bitstring2). The user can set sig-
word to a non-zero value to mask all maskable signals, and bitstringl to mask particular sig-
nals with individual bits. (We could eliminate sigword entirely if the bitstrings could be
manipulated atomically, or if we chose not to require atomic signal mask changes.) The ker-
nel examines sigword and bitstringl, and modifies bitstring2 to notify the user of pending
masked signals. The implementation of sigsetmask is essentially

8 perhaps we have simply defined the problem away. The family and progenitor concepts help to
eliminate the need for orphaning children in parallel programs (84.2).

There is no conflict between our claim here that creating orphans is abnormal and our
claim in this section that handling of orphans might cause a serial bottleneck for init, since
they apply to different contexts (a single parallel program and the whole multi-user system).

200

Chapter 4: Processes Section 4.8.1: Signal Masking

sigword++;

oldmask = bitstring1;

bitstringl = newmask;

sigword--;

if (bitstring2 & “bitstringl)
sigcheck();

return oldmask;

where newmask is the argument and sigcheck is a new system call that causes all non-
masked pending signals to be handled. The implementation of sigblock is analogous. In
this pseudo-code, we are treating the bitstrings as if they were simple scalars, although this
is not possible in standard C if they are array or structure types.

Whenever a signal is sent to a process, the kernel examines sigword and bitstringl to
see if it is masked or not, and it adjusts bitstring?2 if necessary whenever a signal is sent or
handled:

if (sigword !'=0 | | (bitstringl & sigbit) !=0) {
// signal is masked
bitstring2 | = sigbit;
}
else { // signal is not masked
if (signal is to be caught) {
bitstring2 &= "sigbit;
arrange to deliver signal
to user’s handler on return;
}
else
take appropriate default action;

}

Here sigbit is a bitstring with only a single bit set, corresponding to the signal being sent.
Note that the pseudo-code is written as if the user variables (sigword and the two bitstrings)
were known and directly accessible; this isn't true. The kernel knows these locations only by
addresses supplied through the setkcomm system call (§4.4.1/p159), usually called by the
user-mode start-up code immediately after exec . If the user-supplied addresses are invalid,
the real code behaves as if sigword and bitstringl are both zero.

To understand the kernel part of this signal masking and delivering code, we need to
know the context in which it executes. Because signals are essentially interrupts in user-
mode and our process model is the traditional UNIX single-threaded one, the primary activity
handles signals in the kernel immediately before “returning” to user-mode. Thus, it is cor-
rect to think of the kernel’s code accessing sigword and bitstringl as a subroutine or an inter-
rupt handler, not as a separate process or thread executing concurrently with the user.

We wrote the pseudo-code as if a single known signal is being sent, but in reality the
kernel keeps a bitstring of pending signals and the real version of this code looks for an
unmasked one from among those pending. Some mechanism must also be provided for the
kernel to gain control to deliver a signal sent after this code has finished and possibly
returned to user-mode. Traditional UNIX kernels sometimes rely on periodic clock interrupts
to cause rechecking for newly arrived signals; Symunix-2 minimizes signal latency by using
interprocessor interrupts (APCs; 83.6) together with careful interrupt masking in the code

201

Chapter 4: Processes Section 4.8.1: Signal Masking

before returning to user-mode.

4.8.2. Sending Signals to Process Groups

Traditional UNIX systems support the concept of process group, which represents either all
processes of a login session or all processes of a “job”, depending on whether “job control” is in
effect. The traditional implementation for sending a signal to a group relies on a serial scan
of all processes, during which time process creation, termination, and other changes are pro-
hibited.

Sending a signal to a group is generally an indication of something abnormal, and
therefore might be considered unimportant as a candidate for parallelization. But consider:

= Signals may be sent to process groups by the kernel, such as when certain special charac-
ters are typed on a terminal (e.g., SIGINT is often sent by typing control-C). In tradi-
tional implementations for directly connected terminals, this signal processing is done by
an interrupt handler within the kernel, with some class of interrupts masked, thus jeop-
ardizing interrupt latency on machines with many processes.

= Signals may be sent to an entire process group by explicit system calls, such as kil and
killpg

= In Symunix-2, parent and child process relationships must be maintained such that when
a process with children terminates, the children are sent the SIGPARENTsignal.

= The maximum number of processes in a group is likely to grow linearly with the maxi-
mum number of processes a system supports. (Linear growth is probably valid for scien-
tific workloads, but possibly not for others.)

= Process group membership changes dynamically, e.g., through process creation and ter-
mination and the setpgrp system call. Sending a signal to a group should be atomic
with respect to group membership changes, otherwise it might be impossible to kill a
group (e.g., with an infinite fork loop). (Some traditional UNIX implementations fail in
this case, as does Symunix-1: it doesn't use the mechanisms described in this section.)

= Even if signals are seldom sent to groups, the group relationships must still be main-
tained in a bottleneck-free fashion, because they change much more often and even with
great synchrony. (Consider the case of many sibling processes being created or terminat-
ing at about the same time.)

Section 3.7.3 and section 3.7.4 showed how visit lists and broadcast trees can be built to help
solve these problems. Broadcast trees help provide the correct (atomic) semantics by defin-
ing which processes should receive a group signal, and visit lists are used to implement sig-
nal polling by group members. We now discuss how these data structures are used to imple-
ment signals efficiently for machines in our target class.

Besides the traditional process group, Symunix-2 supports several additional process

aggregates, as listed in Table 26, on the next page. Each aggregate has broadcast tree,*®
bct_sync, and vislist structures, and each process has bct_memb and visitem struc-
tures. In some cases, this requires the introduction of a structure, not present in traditional
UNIX implementations, to represent the aggregate itself. For example, a new structure type,

% Recall from section 3.7.4 that broadcast trees are declared with a macro, BCT_DECL(n) , where n
is the range of items to be broadcast, in this case NSIG, the number of signal types.

202

Chapter 4: Processes Section 4.8.2: Sending Signals to Process Groups

Aggregate Purpose

All All non-system processes

Login Processes in same login session

Job Traditional UNIX process group, used for “job control”
Family Processes related by fork and spawn, but not exec
Siblings Children of same parent or progenitor

ulD User ID

Table 26: Process Aggregates.

Of these, only “all” and either “login” or “job” are supported by traditional UNIX sys-
tems. Each process has two user ID group memberships, one for the real user ID
and one for the effective user ID. A signal sent by a non-root process to UID u will
go to all processes with either kind of user ID = u. (This is the same as Table 19, in
section 4.4.1 on page 159.)

active_uid , contains the broadcast tree, bct_sync, and vislist structures for each user
ID active in the system; active_uid structures are allocated and deallocated dynamically
according to reference counts, and a searching mechanism is provided along the lines of sec-
tion 3.7.6. There are two additional factors to complicate this basic scheme, however: user 1D
checking and changing group membership, which we discuss in turn.

User ID Checking

When the kernel sends a signal to a traditional aggregate, e.g., because the user typed con-
trol-C, the signal goes to all processes in the group. But when a process uses the kill or

kilpg system call,®* only those group members with a matching user 1D% receive the sig-
nal, unless the sender’s effective user ID is 0, i.e., the super-user, in which case all group
members receive the signal.

The user ID matching requirement only affects the traditional process group (“job” in
Table 26), but significantly complicates the implementation. The other traditional aggregate,
“all” in Table 26, would be affected too, but we have introduced the “UID” aggregate to use
instead of sending unprivileged signals to “all”. A process with different effective and real
user IDs is associated with two different active_uid structures.

We augment the traditional process group’s data structures with an additional broad-
cast tree for each user ID represented among its members,*® arranging them in a simple

“The kill system call sends a signal to a single process when a positive ID is provided, and to a
process group otherwise; killpg only sends signals to process groups.

°2The notion of user ID matching varies between different versions of UNIX. The POSIX standard
accepts any of the four possible matches [113].

® Multiple user IDs can be represented in a process group by execution of programs with the set-
user-id bit asserted, by use of the setpgrp system call, and by various flavors of the setuid system
call.

203

Chapter 4: Processes Section 4.8.2: Sending Signals to Process Groups

linked list protected by a readers/writers lock (83.5.4). Note this is not the kind of list
described in section 3.7.1; it is a simple ad-hoc list used for searching (as in section 3.7.6, but
without the hash tables). The first broadcast tree on the list is special: it references all mem-
bers, regardless of user ID, and is used for signals sent by the kernel itself or by processes
with an effective user ID of 0. The other broadcast trees are used by non-privileged pro-
cesses.

We give each process three bct_memb structures for its process group:

= One for the broadcast tree assigned to the member’s real user ID,
= One for the broadcast tree assigned to the member’s effective user 1D, and
= One for the all-members broadcast tree.

To preserve UNIX signal semantics, we need to ensure that a single signal sent to a process
group isn't received more than once on account of the recipient having two distinct user IDs.
We do this by coordinating actions on 1, 2, or 3 broadcast trees, using bct_putl , bct put2
bct get2 , and bct_get3 (83.7.4/p110):

= Sending a signal to a process group. If the sender’s effective user ID is 0, the sender’s
real user ID is 0, or the sender is the kernel itself, the signal is posted to the all-members
broadcast tree. Otherwise, it is posted to the one or two broadcast trees for the sender’s
user IDs. Posting is performed by calling bct_putl or bct_put2 . It isn’t necessary to
use bct_put3 because a process can have at most two user IDs.

= Receiving a signal as a process group member. One, two, or three broadcast trees must be
checked: the one for all-members and the one or two for the recipient’s user IDs, if they
are non-zero. Checking is performed by calling bct_getl , bct_get2 , or bct_get3

By using the broadcast tree operations that coordinate actions on more than one tree, we
guarantee that if a single signal is both sent and received on two separate trees, it will only
be counted once. (Recall that traditional UNIX signal semantics do not involve counting or

gueuing signals.®*)

Although we must implement separate broadcast trees for each user ID/process group
combination actually in use, the visit lists need not be so duplicated; one per process group is
sufficient. The function executed through the visit list for each process group member checks
the correct broadcast trees, and no significant action is performed unless signals are
received. The potential inefficiency of always visiting all group members doesn’'t seem seri-
ous because most process groups are expected to have only one user ID represented, and
because we assume signal sending is much less common than group membership changes.

Changing Group Membership

Most process aggregates in Table 26 are only subject to changes by process creation and ter-
mination; the exceptions are the “job” and “UID” aggregates. A process can change from one
process group to another via the setpgrp system call, and can change user IDs with system
calls such as setreuid or by executing a file with the set user ID file attribute bit set. Tradi-
tionally, there were no actual kernel resources dedicated to these aggregates, so the

% Some signals, e.g., SIGCHLDand SIGSCALL, may appear to be queued although the implementa-
tion doesn’t usually work by queuing the signal. But note that these signals aren’t sent to groups.

204

Chapter 4: Processes Section 4.8.2: Sending Signals to Process Groups

implementation simply recorded the appropriate 1Ds with each process. With the introduc-
tion of explicit data structures for process aggregates in Symunix, it is possible for these sys-
tem calls to fail due to resource depletion. The addition of new (albeit unlikely) failures is
unfortunate, but these system calls already have other failure modes so robust programs
should be prepared for a failure indication. Furthermore, these system calls are used by rel-
atively few programs other than shells and login programs.

Not only is it possible for a change in aggregate membership to fail, but a naive imple-
mentation could cause the process to be left with membership in neither the old nor the new
aggregate: consider the consequences of resigning from the old one before joining the new
one. We adopt a simple and safe method, which is to join the new aggregate before resigning
from the old one. This is accomplished by using a spare aggregate membership structure
(reserved at system boot time by each processor for this purpose); the spare and the old one
are swapped after a successful join and resign.

4.9. Future Work

Considerable work remains to evaluate the merits of the design we have presented in this
chapter. In this section, we briefly describe some additional ideas worthy of further explo-
ration.

Temporary Interrupt Masking

The temporary non-preemption mechanism described in section 4.6.4 is effective at reducing
the large and unpredictable delays incurred when a user process is preempted at the wrong
time. Unfortunately, most architectures impose other unpredictable delays as well, including
memory contention and hardware interrupt handling. The only real solution to either of
these problems is architecture-dependent, but generally based on optimal assignment of data
to memory modules and instruction streams to processors. Such solutions are well beyond
the scope of this dissertation.

The idea of allowing an unprivileged user process to disable preemption for a short
period of time suggests an analogous approach to dealing with interrupts. A new hardware
facility could be designed to allow unprivileged code to mask hardware interrupts temporar-
ily. The simplest measure of time is instruction execution cycles. There are many possible
designs along these lines, including some that have already been implemented.

A very general design along these lines (but not necessarily the best to implement)
would include two new special processor registers:

= A down counter, giving the number of instruction execution cycles remaining before inter-

rupts are unmasked.”® A value of 0 would disable the counter and unmask interrupts.
This register would be user readable (and writable when zero).

< A maximum count register, to limit the maximum value of the down counter. An attempt
to set the down counter to a value greater than the maximum count register would fail in
some appropriate way. The maximum count register would be user readable but only

® By specifying “instruction execution cycles” instead of “instructions” allows for handling long-
executing instructions, such as vector operations or the classic CISC instructions, such as string opera-
tions, CRC computation, polynomial evaluation, etc.

205

Chapter 4: Processes Section 4.9: Future Work

kernel writable.

This approach would let the operating system decide how much the user may add to inter-
rupt latency.

The biggest problem with any temporary interrupt masking facility is the handling of
exceptions, especially TLB misses and address translation failures (which are the same on
machines with software TLB reload). Not only do these exceptions usually take more cycles
than should probably be allowed for temporary interrupt masking, but they may even allow
interrupts (e.g., a context-switch to a new thread while handling a page fault should unmask
interrupts). Furthermore, it isn't possible to specify a portable method of preventing such
exceptions, except to avoid referencing memory, because of some limiting TLB organizations.
For example, some machines have only 2-way set associative TLBs; some sequences of more
than 2 memory references are impossible on such machines without TLB misses.

Despite these problems, the basic concept of temporary interrupt masking is attractive,
for example, to limit more strictly the execution time of small critical sections. Given a
machine-dependent definition of what code sequences can be executed without TLB misses,
how valuable would such a facility be? How strongly does the usability of such a facility
depend on the TLB organization (e.g., size and associativity)?

The processors in the Ultra-3 prototype include a Field Programmable Gate Array
(FPGA) which can be used to implement a facility along the lines we have just described (see
Bianchini, et al. [29]). Promising results in such an evaluation might help justify inclusion of
similar facilities in more commercial microprocessors.

Limiting Execution Time in User-Mode

As described in section 4.6.4, the temporary non-preemption mechanism depends on an
implementation-defined time limit for delaying preemption. Similarly, the SIGPREEMPTsig-
nal promises a grace period before a user process is preempted (84.6.5). These time limits
must usually be implemented in terms of programmable or periodic clock interrupts. Mem-
ory contention, exceptions, TLB miss handling, and interrupts all contribute to the expected
execution time of a given code sequence, motivating the choice of relatively long time limits.

An alternative approach is to specify the time limits in terms of user-mode instruction
execution cycles. Instead of setting a programmable clock interrupt, or waiting for another
regular clock “tick”, the kernel could set a special register that counts down by 1 for every
user-mode instruction execution cycle completed and generates an interrupt when it reaches
0. This would enable the time limits to be defined in terms the user-level programmer can
easily understand and measure, because it is independent of memory contention, exceptions,
TLB misses, and interrupts.

This kind of hardware facility could be incorporated into most commercial microproces-
sors. The Ultra-3 processor's FPGA can also be used to implement a facility of this type for
evaluation purposes.

Retaining Priority When Blocking

In the tradition of most previous UNIX systems, we use fixed priorities when requesting or
holding context-switching locks. A real-time flavor could be given to the system by replacing
the wait lists with versions that maintain priority order, and implementing a method for
handling priority inversions. When an activity blocks with priority better than the lock

206

Chapter 4: Processes Section 4.9: Future Work

holder, the lock holder’s priority should be temporarily raised to match, until the lock is
released. For binary semaphores, this is not particularly difficult, but those mechanisms
that provide greater parallelism, such as readers/writers locks or even counting semaphores,
must avoid solutions that impose serialization or cost proportional to the number of lock
holders.

Temporary Preemption

Sometimes an activity needs to run for only a very short time before blocking again. This
typically happens when a system call performs many small 1/O operations with a small
amount of computing between each, e.g., when searching directories on a file's path. Such an
activity may need to preempt another when it wakes up after each 1/O is complete. Preemp-
tion may involve delivering the SIGPREEMPTsignal, with attendant overhead that could
exceed the running time of the 1/0-bound activity. Cascade scheduling, described in section
4.6.7, is another problem caused by 1/0-bound activities in systems with certain kinds of
scheduling.

In these kinds of situations, better performance would result from taking the unusually
short running time into account. If activities anticipating short processor requirements
could indicate this prediction when they block, we could use an alternate preemption strat-
egy. For example, we could perform preemption silently and temporarily, restoring the pre-
empted activity to the same processor as soon as possible, without using the ready list to
reschedule the preemption victim. Some method of dealing with inaccurate predictions must
be devised as well.

Priority Scheduling

Cascade scheduling does not always involve short running times. One possible solution to
the more general problem of cascade scheduling is based on using a ready list that always
maintains a totally ordered ranking, by priority, of all ready or running activities in the sys-
tem. Within each priority, activities may be ranked by how long they have been ready or
running. Such a ready list can be maintained by using a group lock (83.5.6) to synchronize
all processors examining or manipulating the ready list. When an activity becomes ready, it
is then immediately determined whether it should run and, if so, which activity to preempt;
an asynchronous procedure call (83.6) can force the preemption.

An algorithm and data structure along these lines has been devised, but not tested.
The group lock uses 6 phases in the worst case. The algorithm makes some effort to respect
cache affinity, but only within the context of a single group lock execution. It remains to be
seen if the algorithm works, or can be “fixed”, and how the increased cost of synchronization
within the scheduler compares with the benefits of precise priority ranking and cache affinity
support thus provided.

Induced System Calls

The meta system call mechanism described in section 4.3.1 on page 151 is well suited for
extension in a direction that is both powerful and dangerous. Whereas syscall can be used
to issue an asynchronous system call for the current process, a new meta system call func-
tion, say induce_syscall , could be introduced to issue an asynchronous system call to run
in the context of another process. Subject to necessary security restraints, such as a require-
ment for matching real and effective user IDs, this would allow things like:

207

Chapter 4: Processes Section 4.9: Future Work

= After-the-fact I/O redirection.

= Improved control for interactive debuggers.

= A simple method of implementing binary compatibility for another operating system by
using a supervisor process that intercepts user traps and exceptions, interprets them,
and issues induced system calls to carry out required native system call actions on behalf
of a compatible application.

There are a number interface and implementation details to resolve in this area.

4.10. Chapter Summary

There are several key elements presented in this chapter: activities (and their embodiment,
asynchronous system calls and page faults), context-switching synchronization routines,
scheduling issues, and signals. Each of these came about because of our commitment to low-
overhead thread management in user-mode (to be elaborated on in chapter 7) and to a UNIX-
like process model. While some of the implementation details are driven by the needs of our
target class of machines, each of these key elements has significant value for other shared
memory systems, and uniprocessors, as well.

Activities bear a superficial resemblance to kernel threads, but our goals for them are
very different and they are visible at the user level only in their effect: they are key to the
implementation of asynchronous system calls and page faults. Introduction of asynchronous
system calls allows us to provide a clean, uniform framework for solving a number of long-
standing problems with UNIX system calls, e.g., interruption by signals. The simple struc-
ture and semantics of activities also provides opportunities to streamline the context-
switching synchronization code; in turn, the context-switching code provides fundamental
support for the implementation of activities, especially automatic creation of new ones.

Parallel programs place unique requirements on the scheduler. Our solution is based
primarily on three techniques: scheduling groups, temporary non-preemption, and the
SIGPREEMPTsignal. We argued for the importance of bottleneck-free signal operations, even
when signals occur only in very unusual circumstances. We then went on to present highly
parallel algorithms to manage groups of processes that may be signal recipients.

208

Chapter 5: Memory Management

The class of computers we consider has two key concepts at its heart: MIMD control and
shared memory. This chapter, Memory Management, is concerned not only with the latter
but also with the relationship between the two. The most important conceptual feature of
the Symunix-2 memory management design is that the memory abstraction is based strictly
on the concept of mappings between files and address spaces. No memory is accessible to a
program that isn't part of a file in the file system. There is no anonymous backing storage for
virtual memory; the files themselves serve this purpose.

It is also important to point out some notable features omitted from the Symunix-2
design. The notions of memory and file are not merged. The decision to design the memory
system around file mappings was motivated by the need for simplicity and flexibility of shar-
ing rather than by a desire to hide ordinary file 1/0. Contrary to contemporary trends, the
kernel doesn’'t provide shared address spaces; it is possible, however, to support shared
address spaces in user-mode (§7.6.2).

After looking at the evolution of operating system support for shared memory in section
5.1, we present the Symunix-2 memory model and its implementation in sections 5.2 and 5.3.
Section 5.4 discusses some ideas for future work and we summarize the chapter in section
5.5.

5.1. Evolution of OS Support for Shared Memory

Operating system kernels for shared memory multiprocessors differ in the address space
model they provide: some provide a shared address space for a collection of execution threads,
and some provide only private address spaces. Parallel program support environments have
their own models for memory and control of parallelism, where “address space” is more often
an implementation concept than a semantic one. In practice there are some advantages and
disadvantages to both shared and private address spaces, i.e., there are common situations
where each is more convenient.

Operating system designers must balance conflicting goals such as performance, porta-
bility, flexibility, compatibility with previous systems, and demand for various features.
While it is clear that many alternate approaches may be viable, we shall concentrate here on
the Symunix-2 operating system. Symunix-2 strives to do well on a specific target class of
machines (§81.3), while still maintaining acceptable performance on a somewhat broader
class. Flexible support for differing parallel program environments has also been a key goal.

Symunix-2 evolved from traditional uniprocessor UNIX systems, especially 7th Edition
and 4.3BSD. As a UNIX system, Symunix-2 must provide all aspects of the traditional UNIX
process environment. Chief among them is the association between a process and an address

209

Chapter 5: Memory Management Section 5.1: Evolution of OS Support for Shared Memory

space. In particular, the fork system call creates a new process with a nearly exact copy of
the parent’s address space. This requirement strongly discourages radically different models
such as a single system-wide address space for all processes. More moderate models with
many shared address spaces have been adopted by most comparable contemporary operating
systems, but the Symunix-2 kernel retains the original private address space design. While
much of the rationale for this approach is given in section 4.1, there are additional perfor-
mance issues to be considered in the implementation of shared address spaces:

1)

()

®3)

For the target class of machines, we seek a bottleneck-free implementation, support-
ing operations such as page fault, page eviction, and mapping changes in a scalable
manner. For example, it is possible for every processor of the machine to be perform-
ing one such operation concurrently, even within a single application. Designing a
kernel implementation of shared address spaces to handle such a situation without
substantial serialization is more difficult than designing one for private address
spaces, and the resulting system can be expected to suffer greater overhead. The
additional overhead provides no corresponding benefit for serial applications, or when
the anticipated flood of concurrent operations doesn't materialize in practice. Of
course, the cost and difficulty of emulating a shared address space, when needed, on
top of a private address space kernel must also be considered.

Private address spaces can be used to emulate shared address spaces. The emulation
can potentially be more efficient than a genuine shared address space, because it can
be tailored to meet the semantic requirements of different parallel program environ-
ments, without paying for unneeded features. For example, many modern virtual
memory systems (including Symunix-2) support sparse address spaces having page
granularity, with potentially many mapped and unmapped regions, each with a vari-
ety of distinct attributes, and the ability to change the mappings dynamically. There
are good reasons for supporting such a rich model, but many applications require
less. A very common usage pattern is to request many shared pages from the kernel
at a time, with contiguous increasing addresses, and never change attributes or
release the pages until program termination. The allocated pages form a pool man-
aged by user-level code in response to application requests to allocate and free mem-
ory. Such an environment can be efficiently created on top of private address spaces
without the difficulties or overhead of supporting more complex operations in a bottle-
neck-free manner. Such an emulation is described in section 7.6.2 on page 323.

Partially shared address spaces can be supported, removing the need for an applica-
tion, library, or run-time support system to emulate private memory in a shared
address space. This situation has been encountered over and over by developers
attempting to use traditional UNIX libraries in parallel applications for shared mem-

ory multiprocessors.®® The most notorious problems are the global variable errno and
the standard 1/O library. As a result, massive changes to the standard UNIX libraries
have been undertaken, including many strange tricks. Some of this effort is

%The author experienced this problem when modifying UNIX on a PDP-11/23 (a uniprocessor) to

run parallel programs for the NYU Ultracomputer project in 1982 (see section 1.2 on page 2). As a
result, the system supported both shared and private data, as did its successors (a master/slave system,
and Symunix-1) running on parallel hardware (§1.2/p4).

210

Chapter 5: Memory Management Section 5.1: Evolution of OS Support for Shared Memory

unnecessary if shared address spaces are implemented at the user rather than kernel
level.

Even in programming environments featuring a shared address space, there is often
need for some memory that is private to each kernel-supported process or thread, e.g.,
control blocks for very lightweight threads, temporary storage, ready lists, interrupt
stacks, etc. By mapping these objects to the same virtual address in each process,
they may be addressed directly, avoiding a level of indirection. Another special use
for partially shared address spaces is to provide access protection for logically private
memory, e.g., for debugging.

(4) There are cases where a system that emulates a shared address space on top of pri-
vate address spaces can be lazier than a genuine shared address space implementa-
tion. The additional laziness can translate into greater efficiency. For example, sup-
pose an instruction stream allocates a new range of memory, uses it, and then deallo-
cates it. In a straightforward kernel implementation of shared address spaces, the
map-in operation can be performed lazily, but the map-out will require an expensive
shootdown step on many systems, especially if the kernel-supported thread has
migrated to another processor (Black et al. [35]). With an emulation of shared
address spaces, it is simple for the map-out to avoid the shootdown if the instruction
stream didn’'t migrate to other processes during the period of usage. Of course if a
shootdown is required under emulation, it may have higher overhead, because of the
extra kernel/user transitions required to send signals and make map-out system
calls. But all these difference may be insignificant in practice, as the most efficient
method of managing dynamic allocation of shared memory is to request rather large
blocks from the kernel, manage them in user-mode, and never return them to the ker-

nel until program termination.®”

Providing a framework in which to evaluate the validity of these arguments is one of the
research goals of Symunix-2. One must consider the cost of each operation, weighed by fre-
guency, but a complete assessment cannot be based on quantitative factors alone. We must
also evaluate, based on substantial experience, how well the system works: reliability, flexi-
bility, portability, and ease of development/maintenance.

In addition to the question of shared versus private address spaces, an operating sys-
tem must deal with the architectural diversity of memory system features such as cache
options (e.g., replacement policies and coherence schemes) and physical memory placement
(e.g., nearby or far away). The approach taken in Symunix-2 is to focus initially on the basic
features common to machines in the target class, and then try to extend the software model
to handle more variation without a fundamental change. This means that each architecture-
dependent feature of the model should have a sensible implementation (such as to ignore it)
even for machines lacking the corresponding hardware feature.

5.2. Kernel Memory Model

This section describes the conceptual model of memory management as presented by the
Symunix-2 kernel to applications. Each process has a private address space that is

¥ Most versions of the standard C malloc routine work this way.

211

Chapter 5: Memory Management Section 5.2: Kernel Memory Model

manipulated primarily by three system calls: mapin, mapout, and mapctl (85.2.1). The
fork , spawn, exec, and exit system calls (85.2.4) also manipulate the address space, but
their operation includes other complex actions as well. The central organizing concept is that
the address space is a set of mappings from virtual addresses to locations in files. Files to
which such mappings are directed are called image files, and they are said to be mapped in.
If two address spaces include mappings to the same image file locations, the result is shared
memory.

In general, any memory access instruction should be equivalent to some sequence of
read , write , and Iseek system calls directed at the appropriate image file. Likewise, any
read or write system call should be equivalent to some sequence of load and store instruc-
tions (assuming the file locations are mapped in).

There are three areas in which an implementation can vary while still complying with this
equivalence requirement:

(1) Other memory-referencing instructions besides load and store. Similar equivalences
apply, but are necessarily implementation-specific. In general, an equivalent
sequence of read , write , and Iseek calls may also need to include ordinary compu-
tation.

(2) Atomicity.®® In this definition of equivalence, we have ignored the issue of atomicity,
since so many machine and OS implementation factors are involved. To give maxi-
mum latitude to the OS and hardware implementations, Symunix-2 does not require
serializability of conflicting concurrent overlapping memory or file accesses. Note
that the POSIX standard [113] doesn't guarantee any such serializability, nor do most
UNIX implementations provide it, even on uniprocessors. Symunix-1 is unusual in
that it does provide such atomicity, except for “slow” devices, e.g., terminals. Our
decision to drop this feature in Symunix-2 was partially motivated by the introduc-
tion of mapped files and the issues discussed in this section. Portable software tends
not to assume read /write system call atomicity.

Semantics of concurrent memory references are a separate issue, normally defined as
part of the machine architecture or of a particular parallel programming model (e.g.,
sequential consistency, weak consistency, release consistency, etc.; see Mosberger’s sur-
vey [154]). Memory consistency semantics are affected primarily by the order in
which serially executed memory access instructions are carried out, and by the cache
coherence scheme employed, if any.

(3) EOF and holes. The effect of a mapin, or memory access, directed to a location
beyond the image file's End-Of-File, or within a “hole”, is not fully defined. (In tradi-
tional UNIX systems, a hole is created by seeking beyond EOF and writing; the area
in between may not be allocated space on the disk, but is guaranteed to read as
Zeros.)

An attractively simple approach would be to carry the equivalence between memory
access instructions and file access system calls as far as possible. For example, a load
directed at a hole would return 0 without allocating any new disk blocks. A store

% Here we refer to atomicity in the absence of hardware or software crashes.

212

Chapter 5: Memory Management Section 5.2: Kernel Memory Model

directed at a hole would allocate a disk block and initialize the rest of it to zeros. A
load directed past the image file's EOF would be treated as an error, but a store would
extend the file and advance the EOF. Unfortunately, these semantics lead directly
into implementation difficulties and efficiency problems. The problems stem from the
byte resolution of a file’s EOF: typical address translation hardware has a minimum
mapping granularity greater than one byte and simulating byte granularity by trap-
ping references near EOF is very slow. It might seem easiest simply to prohibit
mapin of a hole, or beyond EOF, but such mappings can still result from a file trunca-

tion system call®® after the mapin . File truncation has another problem as well: a
requirement for serializability would necessitate invalidation of hardware address
mappings, possibly affecting many processors; this is one aspect of the difficult prob-
lem known as TLB consistency (Teller [191]). Simply outlawing truncation of
mapped-in files is attractive, but leaves the system vulnerable to denial-of-service
security violations.

There are many possible ways of dealing with the problems of holes and EOF, with different
tradeoffs. To allow maximum latitude for the implementation, we specify the mapped file
semantics as little as possible. While this is not meant to be a formal specification, the fol-
lowing minimum requirements are needed for an implementation to be usable:

System integrity must be maintained. (E.g., an in-use page frame must not be reallo-
cated for another purpose as a result of file truncation, without appropriate action to
revoke access.)

At any given time, there must be at most one value associated with an offset into an
image file. (E.g., truncating a file and then re-writing it must not result in two “parallel
versions” of the file.)

Neither mapin nor memory access instructions may directly modify an image file unless
the mapping includes write permission. Filling in holes or changing the file size (EOF)
are considered modifications in this context.

The ability to write zeros implicitly to a file by seeking beyond EOF and calling write
must be preserved. (Whether or not space is allocated for those zeros is up to the imple-
mentation.)

At least for mapin requests with write access permission, it must be possible to map in a
file over a hole or beyond its EOF point. This is important, because mapping in uninitial-
ized portions of a file is the way new memory allocations are performed.

Within these requirements, significant variation is still possible. For example, the following
possibilities all seem reasonable:

A mapin system call for read-only access beyond a file's EOF or spanning a hole may, or
may not, be allowed. Different restrictions might apply than when write access is
requested.

Future memory accesses may, or may not, be denied after a file is truncated. Access may
continue to be denied after the file is extended again.

In a read-only mapping, access to a hole or beyond EOF may succeed (return the last
value stored or zero if none), be ignored (return zero or garbage), or result in a signal.

® An open, creat ,truncate , or ftruncate system call.

213

Chapter 5: Memory Management Section 5.2: Kernel Memory Model

< When an image file is truncated, the data beyond the new EOF may be deallocated

immediately,’® or delayed until the file is finally mapped out. If disk space deallocation
is also delayed, this can temporarily exacerbate the distinction between a file's “size” and

the disk space allocated to it.’®* Note that if disk space deallocation is delayed, a kind of
denial-of-service attack is possible by simply getting a read-only mapping to a file owned
by someone else; as long as the mapping exists, the owner’s disk allocation can not be

decreased.'*

= The handling of 1/O errors and lack of space on the file system are problems that must be
addressed by any virtual memory system that makes use of secondary storage. The
issues are the same in all such systems, including Symunix-2; the details are generally
beyond the scope of this document. An I/O error could happen as a result of a page fault,
in which case a signal can be generated synchronously with program execution. Or, the
1/0 error could be the result of an attempted prefetch or page-out, in which case user

notification is more problematic.’® It is possible to force out-of-space conditions to appear
at mapin time, by reserving the maximum amount of space, or they can be eliminated by
providing an explicit file preallocation capability, either as an extension to open, or as a
new system call.

Rules like these can become very complicated; for practical purposes, it is wisest for an appli-
cation to avoid all these problem areas. Nevertheless, some semantics must be chosen if the
system is to be implemented.

5.2.1. The mapin, mapout , and mapctl System Calls
Mappings are added to an address space by the mapin system call. This call has the form

int mapin (void * vaddr, size t size, int imagefd,
size t imageoffset, int flags)

where vaddr is the beginning virtual address of the new mappings, size is the size of the
address range to be mapped, imagefd is the file descriptor of the image file, imageoffset is the
offset within the image file of the location to be mapped at vaddr, and flags specifies options
that may be or’ed together from the values given in Figure 27, on the next page.

Mappings are deleted from an address space by the mapout system call. This call has
the form

0T B consistency actions may be required, similar to those required for copy-on-write; see sec-
tion 5.3.3 on page 236.

1 These are reported by the stat system call in the structure fields st_size and st_blocks
Traditionally, the only factors that cause these numbers to disagree are the internal fragmentation of
the final block, file system overhead (“indirect” blocks), and holes.

02 A similar attack is available in any UNIX system: as long as a file is open (by any user), its i-
node and disk allocation will not be decreased by removing (unlinking) it, although truncation is still
effective.

3 Many currently available commercial UNIX systems treat 1/O errors while paging or swapping
as fatal to the process; older versions would cause a complete system crash.

214

Chapter 5: Memory Management Section 5.2.1: The mapin , mapout, and mapctl/ System Calls

Flag Meaning
AS_EXECUTE | execute permission
AS_WRITE write permission
AS_READ read permission

AS_CACHE_WT write-through cache
AS_CACHE_WB write-back cache

AS_EKEEP exec action: keep
AS_SCOPY spawnaction: copy
AS_SDROP spawnaction: drop

AS_SSHARE spawnaction: share with parent

Table 27: Flags for mapin and mapout .

Both flags in the middle section request that the mapping be cached; they differ in
suggesting write policy for caches supporting both write-through and write-back.
Specifying neither cache flag stipulates that the mapping must not be cached. The
exec and spawn actions are described in section 5.2.4.

int mapout (void * vaddr, size_t size)
where vaddr and size are as used in mapin .

Mappings have attributes, set initially by the flags parameter of mapin. Some of these
attributes may be changed with the mapctl system call. This call has the form

int mapctl (void * vaddr, size t size, int flags, int how)

where vaddr, size, and flags are as used in mapin . The how parameter specifies the manner
in which the mapin and mapctl flags are combined: by performing or, and-not, or assign-
ment.

The mapin , mapout , and mapctl calls are fairly strict about the addresses file offsets,
and sizes provided by the user. For example, any size and/or alignment restrictions must be
strictly adhered to by the user-supplied parameters; the kernel won't round addresses down
or sizes up. This choice was made simply as a way to discourage “sloppy” practices that are
likely to lead to surprises. Also, the user must provide a virtual address for mapin ; the ker-
nel won't pick one. This restriction, not present in some other contemporary systems, was
made to provide flexibility for parallel program run-time support systems. It would be pre-
sumptuous (at best) for the kernel to make this kind of decision. We could add an option to
mapin’'s flags parameter, to specify that the kernel should choose the virtual address, but
we see no good reason to do so.

The only size and address alignment restrictions defined for mapin , mapout , or mapctl
are those imposed by an implementation. In most cases, on current hardware, this means
that addresses and sizes must be multiples of a single page size. The nature of the file refer-
enced by imagefd can also impact size and alignment restrictions in an implementation
dependent way. Most file systems today require no restrictions beyond respect for a single
minimum block size that is a divisor of the page size, so this is not often a problem. It is pos-
sible, however, to encounter a system with other requirements. To allow programmers to
work in an environment with unknown restrictions, each implementation must provide a

215

Chapter 5: Memory Management Section 5.2.1: The mapin , mapout, and mapctl/ System Calls

function advertising its requirements:

void
sizealign (void ** vaddr, size t* size, int imagefd,
size t* imageoffset, int flags)

This function can revise proposed vaddr, size, and imageoffset parameters for mapin,
mapout , or mapctl to accommodate a wide range of implementation restrictions. The role of
sizealign is purely advisory: the user may alter the modified values or ignore them com-
pletely, but mapin, mapout, and mapctl are allowed to be arbitrarily strict, as long as the
true restrictions are properly documented and fairly represented by sizealign

Although mapin, mapout, and mapctl form the core of the memory management
model, there are some additional services to address certain functional and performance con-
cerns. These are addressed in the following subsections.

5.2.2. The mapinfo System Call

When mapin, mapout, and mapctl were designed, it was assumed that processes would
have some user-level code to “keep track” of their address spaces. For example, the user, not
the kernel, makes the decision of which virtual address to allocate during mapin. This
approach is simple and trouble-free most of the time, but it does result in a duplication of
information between the user and kernel. (The kernel must also “keep track” of the address
space, in cooperation with the hardware, to provide address translation.) The mapinfo sys-
tem call is provided to allow a process to obtain the kernel’s address space mapping informa-
tion, either for itself or for another process (in accordance with suitable security provisions).
For example, it is reasonable to call mapinfo at program start-up time to obtain information
about the initial mappings.

int

mapinfo (int pid, void * start, void* info, size t infosiz, int ninfo)
The pid and start parameters indicate the process and starting virtual address of interest,
respectively, while the info parameter is the address where results should be placed, as an
array of mapinfo structures. The infosiz parameter is equal to sizeof(struct mapinfo) ,
so as to allow new fields to be added over time without affecting binary compatibility with
pre-existing programs; the total amount of space provided by the caller is infosiz * ninfo
bytes.

5.2.3. Stack Growth

In any system supporting a programming language with a run-time stack, the responsibility
for stack growth and stack space management is divided between the compiler, its run-time
support library, the operating system, and the hardware. The language run-time stack is
commonly kept in contiguous virtual memory, and grown by simply extending it in the proper
direction, but there are other alternatives. Stack growth is this process of extending the
stack and allocating the memory to be occupied by the extension. There are several possible
approaches that may be reasonable in certain circumstances:

= Preallocation. The maximum stack space may be preallocated when a program begins
execution. This is the simplest possible approach, but has the highest potential waste.

216

Chapter 5: Memory Management Section 5.2.3: Stack Growth

= Automatic growth. The hardware and operating system can cooperate to produce the illu-
sion of preallocated stack space if memory references to unallocated memory can be
trapped and restarted after extending the stack allocation. (This is the same hardware
requirement as needed to support virtual memory with demand loading of pages or seg-
ments.) This is a popular solution, as there is no execution time overhead when the logi-

cal stack size is within the current stack allocation, and wasted space is minimized.**

= Explicit growth. At every point where the stack may be extended (e.g., in a function or
nested block prologue), a comparison can be made between the logical and allocated stack
sizes, and a system call can be issued to extend the allocation as needed. Depending on
machine details, this can require quite a few extra instructions even in the most common
case, when the current allocation is sufficient and the system call is unnecessary.

< Implicit growth. If the hardware doesn't meet the requirements for automatic stack
growth in general, but can recover from at least one particular memory referencing
instruction (by skipping it if necessary), there is a simple solution that is almost as cheap
as automatic stack growth in the important common case. Each time the stack is to be
extended, the furthest location to be referenced on the stack is simply referenced. If the
current allocation is sufficient, no exception will occur and further action is unnecessary.
Otherwise, an exception will occur and the operating system can interpret this as a spe-
cial request to extend the allocation accordingly, because the faulting address is “close” to

the existing stack.'®

These are all well established solutions that have been used for many years. The related
problem of detecting and handling stack overflow is usually ignored or handled as an error
when the stack allocation can't be further extended. A common method of detecting overflow
is to use a redzone, an unallocated region just beyond the current stack memory allocated.
As the stack grows past the limit, an exception will occur on the first reference within the
redzone. The redzone needs to be at least as large as the largest single growth that will ever
be required, otherwise an attempt to grow the stack could “hop over” the redzone and create
havoc with an unrelated memory area.

In a traditional serial environment, there is one stack and one heap in each address
space. The heap is used primarily for memory not adhering to a stack-like lifetime (last allo-
cated, first deallocated). It is convenient to grow the program’s stack and heap towards each
other from opposite ends of the address space, possibly with a redzone in between. In a par-
allel environment, many stacks may need to coexist in a single address range, making such a
simple solution inapplicable. Having a very large address space helps considerably because a
large maximum space can be set aside for each stack, but it can still be hard to build the sys-
tem without uncomfortable limitations on the number of stacks and maximum size of each
stack.

104 Stack space contraction is also an issue. Some systems never reduce the stack allocation, even if
the stack itself substantially shrinks. Other systems, such as Symunix-1, shrink the allocation only in
restricted circumstances, such as when swapping a process out of memory.

95 The definition of close is system-dependent. Traditional UNIX systems allocate a very large part
of the address space for the stack, and accept any fault in that range as a legitimate stack growth.

217

Chapter 5: Memory Management Section 5.2.3: Stack Growth

An alternative is to place a limit on the size of a single stack frame, and grow the stack
non-contiguously. This approach, often called a spaghetti stack, also lends itself to support-
ing a saguaro or cactus stack organization, where the stack frames of newly forked threads
all emanate from the common parent’s most recent stack frame.

In a system designed to support a variety of parallel and serial programming languages
and models, the simple-minded automatic stack growth so successful in serial environments
is inadequate. Symunix-2 offers each process a choice of using either explicit growth or user-
mode automatic growth, wherein the language run-time system catches the SIGSEGVsignal
generated by a reference to unallocated memory. (Of course, an implementation can also
support traditional kernel-mode automatic stack growth, as an alternative for serial pro-
grams.)

5.2.4. The fork , spawn, exec, and exit System Calls

Most address space changes are made separately for each mapped in region, but there are
three important situations where a more massive change is appropriate: fork /spawn, exec,
and exit . The most severe and trivial is exit , which destroys an address space, along with
the rest of the calling process.

The fork system call in traditional UNIX systems duplicates the address space of the
caller, to establish a new, nearly identical, child process. In Symunix, fork is a special case
of spawn, which creates any number of children (§4.2/p148). In terms of address space hand-
ling, fork and spawn are identical. Within the address space of a single process, each map-
ping includes an attribute called the child action; it specifies what should happen to the cor-
responding virtual address range in a freshly created child process. There are three choices:

= Copy. Like traditional UNIX behavior for read/write memory, the child gets a copy of the
parent’s memory. This is done by implicitly creating a new image file, mapping it at the
appropriate virtual address, and either performing an immediate copy or establishing
copy-on-write (the choice being the kernel’s).

= Share. Inherited shared memory is provided by duplicating the address mapping, includ-
ing the same image file and offset.

= Drop. Itis possible simply to omit a mapping when establishing the child.

The child action is determined by the flags used in mapin and mapctl system calls
(85.2.1/p215).

Another operation with major address space impact is the UNIX exec system call,
which replaces the program running in