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Abstract

Computational modeling of physical systems is a core task of scientific computing. Machine

learning methods can extend traditional approaches to modeling partial differential equations

and hold the potential to simplify the modeling process and improve simulation accuracy and

performance. In this thesis we explore the use of neural networks to learn the behavior of systems

from data. We evaluate the performance-accuracy tradeoffs involved in their use as emulators, and

use insights gained here to explore a specific application to learning subgrid parameterizations

for climate models in particular. For this task we propose two novel techniques to improve the

accuracy and stability of the learned parameterizations by tailoring architectures to incorporate

favorable inductive biases, and by augmenting training data to encourage stability.
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Chapter 1

Introduction

Modern machine learning and deep learning methods have had a profound impact across a wide

range of application areas, leading to advancements in the ability of computer systems to derive

insights about the world from data. Numerical simulations likewise distill real-world physics and

dynamics into a mathematical form, enabling computational experiments that reflect the behavior

of real-world systems. However, developing these simulations has traditionally required not only

observations of the target system, but also human insight to identify the underlying patterns of

behavior. Just as they have done in other areas, machine learning methods promise to enable new

approaches to simulation problems by learning directly from data.

Specific applications making use of physical simulations are diverse and come with their own

constraints and specific goals [13]. Even so, at a high level we distinguish two broad goals for the

use of machine learning and neural networks in simulation tasks: (1) simplifying the modeling

process and (2) improving simulation accuracy and performance. Many applications may target

some combination of these goals.

Machine learning can simplify the modeling process by learning system dynamics directly

from data. In this case, a machine learning method can be used in place of physics modeling to

learn either how to evolve the state of a full system, or potentially only some subset of unmodeled
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dynamics. With sufficient available data, this provides a shortcut through the model development

process in cases where the target system is not fully understood or where the best theoretical

approach may not be clear. In such applications, the evaluation may more heavily emphasize the

accuracy of the learned model’s behavior, and place less emphasis on the computational costs

involved in its end use.

In many simulation applications, accuracy and performance are in tension. Improved accuracy

can be achieved with more complex models, finer-resolution states, or smaller finer-grained time-

stepping. If carefully applied, machine learning methods can alter the tradeoffs between these

two goals, allowing greater accuracy to be achieved at a lower cost. However, these applications

are challenging, particularly when compared against mature traditional non-learning approaches.

Many such applications pursue a hybrid approach where a learned component is used to improve

the accuracy of a simulation, after simplifying its dynamics to realize performance savings.

In this thesis we will present the results of three projects working in this area. The first,

presented in Chapter 2, investigates the challenges involved in training neural networks to

simulate entire dynamical systems and compares their performance and accuracy against standard

numerical schemes. The insights gained from this work highlight the effects of architectural

choices on the accuracy of the learned simulation, as well as a number of challenges in applying

neural networks to simulation tasks. In the next two projects, detailed in Chapter 4 and Chapter 5,

respectively, we explore ways to improve the application of neural networks to climate model

subgrid parameterizations. Applying machine learning to this task is currently an active area of

research, seeking to use neural networks to improve the accuracy of climate models by representing

the dynamics of unresolved processes and augmenting existing manually-developed approaches.

Further details on this application are included in Chapter 3.

Following an introduction to a few preliminary topics, further discussion of these projects and

a summary of the contributions of this thesis are included below.
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1.1 Preliminaries

Next, we introduce background information for applying machine learning to partial differential

equations (PDEs). In the chapters that follow, we will explore several distinct target applications

including learning to reproduce the dynamics of entire systems from observations of their behavior,

and uses of neural networks to improve the accuracy of existing simulations by approximating

the contribution of unresolved scales. Discussion of each of these particular applications will be

accompanied by further background, but we provide a general overview in this section.

1.1.1 Discretizing PDEs

In this work we consider numerical simulation tasks, originally specified as differential equations.

Generally these are specified as PDEs. As an illustration, consider:

𝜕𝑢
𝜕𝑡

= L𝑢 + f (1.1)

where 𝑢(𝑡, 𝜔) ∈ ℝ𝐷2 is a continuous function defined on a time interval and spatial domain

Ω ⊂ ℝ𝐷1 , f is a forcing function over the same domain, and L is a differential operator which

may be nonlinear [37]. In the remainder of this thesis, we will be concerned with initial value

problems where we are also given an initial state for 𝑢 at time 𝑡 = 0. In our work, we will consider

autonomous systems, in which the updates L𝑢 and forcings f depend only on the current state 𝑢

and have no time-dependence.

For our purposes, we require the ability to compute solutions to the PDEs. To accomplish

this, we will apply the common scheme of discretizing the spatial domain Ω by representing our

solutions on a discrete grid, or approximating 𝑢 on this domain with respect to a chosen basis;

handling any spatial derivatives; and then proceeding to update the states through time using a

choice of numerical integration scheme [37, 96].
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One common choice of representation is to discretize the system with respect to a regular

spatial grid, producing fixed spatial coordinates 𝜔1, … , 𝜔𝑛 with regular spacing 𝛿𝑥 along each grid

axis. Any spatial derivatives required by L can be handled by finite differences in the spatial

grid, applying any standard stencil. This accomplished, we are left with an ordinary differential

equation (ODE) system where we define a vector of system states 𝑥(𝑡) = [𝑢(𝑡, 𝜔1), … , 𝑢(𝑡, 𝜔𝑛)] ∈ ℝ𝑛.

This leaves us with a need to time step our ODE, solely a function of continuous time 𝑡 , with right

hand side function 𝑓 (including the forcing f):

𝑥(𝑡) ∈ ℝ𝑛 (1.2)

̇𝑥(𝑡) ≜ 𝜕𝑥
𝜕𝑡

= 𝑓 (𝑥(𝑡)) (1.3)

Alternatively, if 𝑢 is periodic, we can take a spectral approach, representing it as a Fourier

series. For example in one dimension, on a periodic domainΩ = [0, 𝑅], we can truncate the Fourier

series and obtain:

𝑢(𝑡, 𝜔) ≈
𝑛/2
∑

𝑘=−𝑛/2+1
𝑥̂𝑘(𝑡)𝑒

𝑖2𝜋 𝑘
𝑅𝜔 (1.4)

which represents the state of the system as a vector 𝑥̂ ∈ ℂ𝑛. We can then process any spatial

derivatives in L analytically using the Fourier series representation, and thus we again have an

ODE system 𝑥̂ ∈ ℂ𝑛 over the Fourier coefficients:

𝑥̂(𝑡) ∈ ℂ𝑛 (1.5)

̇𝑥̂ (𝑡) ≜ 𝜕𝑥̂
𝜕𝑡

= ̂𝑓 (𝑥̂(𝑡)) (1.6)

In practice, we will take the discrete Fourier transform of an existing spatial grid representation of

𝑢 to transform the system into spectral representation. It is also possible to mix calculations using

spectral and real-space discretizations of a system for computational efficiency taking advantage

of the Fast Fourier Transform and the convolution theorem (a “pseusospectral” approach) [104].
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We will see an example of such a system in Chapter 3. Other methods to divide the domain Ω and

process the PDE include finite element and volume methods which, while used internally in some

test systems, will not be a major focus of the experiments and projects presented in this work [37,

104].

1.1.2 Time Integration

With the state representations discretized and spatial derivatives handled, in order to simulate

this system, we select time steps 𝑡𝑖 and apply a numerical integration scheme, starting from an

initial condition 𝑥(𝑡0). This procedure rolls out a trajectory of states approximating the evolution

of the continuous time system, and we will generally denote these states with subscripts for the

discrete time intervals: 𝑥𝑖 ≈ 𝑥(𝑡𝑖).

Numerical time integration can be carried out following many different schemes. Some

particular dimensions of this decision are the selection of an explicit or implicit scheme, and the

number of steps (single- or multi-step methods). Explicit schemes are those in which subsequent

time steps are computed using only the state of previous time steps and which do not require

solving an implicit equation. The simplest explicit scheme is the forward Euler method:

𝑥𝑡 = 𝑥𝑡−1 + 𝛿𝑡𝑓 (𝑥𝑡−1) (1.7)

where 𝛿𝑡 is the chosen time step size 𝛿𝑡 = 𝑡𝑖 − 𝑡𝑖−1. The forward Euler method is a single-step

method, and requires only the previous step 𝑥𝑡−1 and a single evaluation of 𝑓 , but other methods

exist that compute multiple sub-steps or that make use of multiple steps of history. For example,

with third-order Adams-Bashforth method:

𝑥𝑡 = 𝑥𝑡−1 + 𝛿𝑡(
23
12

𝑓 (𝑥𝑡−1) −
16
12

𝑓 (𝑥𝑡−2) +
5
12

𝑓 (𝑥𝑡−3)). (1.8)
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a history of the two previous evaluations of 𝑓 can be kept so that each new time step requires

only one new evaluation for 𝑓 (𝑥𝑡−1).

These multi-step methods achieve a higher order of convergence, meaning the trajectory they

generate converges to the continuous time flow of 𝑓 at a faster rate. For example, the third-order

Adams-Bashforth method converges at a rate 𝑂(𝛿4𝑡 ) while the first-order Euler method achieves

𝑂(𝛿2𝑡 ), requiring smaller time steps to achieve equivalent error [37, 96].

Some multistep methods take intermediate time steps of different lengths between times 𝑡𝑖−1

and 𝑡𝑖 and will require multiple evaluations of 𝑓 at each time step which cannot be re-used for

future steps. These methods avoid bootstrapping issues (i.e. the missing evaluations for “previous”

steps at time 𝑡0), but come at a higher computational cost.

Implicit schemes determine future time steps as the solutions to implicit equations. For

example, the backward or implicit Euler method:

𝑥𝑡 − 𝛿𝑡𝑓 (𝑥𝑡) = 𝑥𝑡−1. (1.9)

For scenarios in which the right-hand side function 𝑓 may be partially or entirely composed

of a neural network, implicit schemes would require solving the thus nonlinear function 𝑓 . In

most of the experiments described in this work, we will make use of explicit schemes to avoid

this difficulty. Combining 𝑓 with a numerical integration scheme gives us a mapping 𝑇𝑓 which

advances the state of the resulting discrete dynamical system:

𝑥𝑡+1 = 𝑇𝑓 (𝑥𝑡). (1.10)

Several other integration schemes will be introduced in Section 2.5.
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1.1.3 Learning Simulations

For these types of problems, we distinguish several broad categories of tasks that a neural network

could be trained to perform. First, a network might be trained to emulate the full system. A neural

network 𝑓𝜃 might be trained to approximate the right-hand side function 𝑓 :

𝑓𝜃 (𝑥𝑡) ≈ 𝑓 (𝑥𝑡) (1.11)

which is then combined with a numerical integrator in place of 𝑓 , to produce a new operator

which substitutes for 𝑇𝑓 when advancing the system states. We refer to this task as “derivative

prediction.” Similarly, we might also train 𝑓𝜃 to carry out the numerical integration process as

well, replacing both the dynamics 𝑓 and the numerical integration scheme. That is,

𝑓𝜃 (𝑥𝑡) ≈ 𝑥𝑡+1. (1.12)

In this case, when rolling out a state using the trained networks, we no longer combine 𝑓𝜃 with

a separate numerical integrator and we must necessarily fix a time step size 𝛿𝑡 which cannot be

changed after training. We call this type of task “step prediction.”

In both of the above tasks, the system’s original dynamics, which follow 𝑓 , are entirely replaced

by the trained network 𝑓𝜃 . This network is sometimes referred to as an emulator of the original

system. We also consider hybrid applications in which the original dynamics 𝑓 and a trained

network are combined. In these applications we typically have ground-truth dynamics which

follow 𝑓 , and modified dynamics following some function ̄𝑓 . These dynamics may be different as

a result of some model reduction process, and often evolve states ̄𝑥𝑡 with a coarser resolution on

ℝ ̄𝑛. In these cases we may wish to patch dynamics to approximate as closely as possible those of
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the original system 𝑓 , training a network 𝑓𝜃 to provide this correction.

̄𝑓 ( ̄𝑥𝑡) + 𝑓𝜃 ( ̄𝑥𝑡) ≈ 𝑓 (𝑥𝑡) (1.13)

Specific applications of this type will be further introduced in Chapter 3.

In training networks for these tasks we consider two types of training: online and offline.

In offline training, the network is trained on separate snapshots of simulation states: that is,

observations of a reference trajectory, produced as described in the previous sections. Any

temporal connection between them is lost and the network is not exposed to accumulated errors

during a recurrent rollout. In online training, by contrast, the network is combined, if necessary,

with a numerical integration scheme and used recurrently to produce a short trajectory of steps,

and backpropagation is then done through time. In online training the network does observe

accumulated errors and is exposed to interactions with the time-stepping scheme, generally

incurring a higher training cost. However, in this case all components of the dynamical system

operator 𝑇𝑓 beyond the neural network must also support automatic differentiation. In tasks

which involve existing production models this is not always possible.

Training networks for such tasks usually involves a library of reference trajectories consisting

of states 𝑥𝑡 and any other necessary values such as references values for 𝑓 (𝑥𝑡) in the case of

derivative prediction, or errors to be corrected in hybrid applications 𝑓 (𝑥𝑡) − ̄𝑓 ( ̄𝑥𝑡). The usual set

of training losses may be used for supervised training, including mean squared error (MSE) or ℓ2.

Hybrid model tasks may use these losses as well, but the quality of trajectories produced using a

network is often evaluated using other statistics depending on the requirements of the particular

application.
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1.2 Summary of Contributions

In this thesis we present the results of three research projects pursued with collaborators. These

projects explore several applications of deep learning methods to simulation tasks, including

applications to real world problems arising in climate models.

In Chapter 2 we explore the use of machine learning to derive simulation dynamics directly

from data. To do this we developed a set of PDE benchmark tasks which are usable by other

researchers. We then test a variety of common neural network architectures and other machine

learning methods on these problems. Our results here contribute not only the reusable set of

benchmark problems and baseline results for comparisons, but our thorough analysis of our own

test results and insights drawn from our analysis. In particular, we observed the benefit of selecting

neural network architectures well suited to the target task, as well as issues with stability in some

systems—a problem which recurs frequently in this area. This project also contributes one of

the only careful measurements of the accuracy-performance tradeoff with learning methods and

compares it against the same with traditional numerical integration methods. That is, we do not

measure only the runtime cost of a particular integration scheme or network, but the runtime

cost required to achieve a comparable level of error. This is an important consideration when

evaluating neural networks and had not previously been explored in related work and remains

uncommon in the literature.

Next, using some of the insights gained from this first project, we consider hybrid applications

of neural networks to simulation problems. In particular we examine applications of machine

learning to the subgrid parameterization problem which arises in climate modeling as well as in

other applications. We contribute two novel methods for improving the quality of these learned

parameterizations. The first, detailed in Chapter 4, tailors the neural network architecture to

take advantage of the inherent multiscale structure in the subgrid parameterization problem. In

Chapter 5 we describe a second approach which adapts the training process to increase the stability
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of learned parameterizations. This method gives some of the benefits of online training—namely,

some exposure to errors accumulated over time—but without imposing any requirements on the

target simulation beyond those already required for evaluation. In particular, it does not require

the ability to compute gradients through simulation time steps.

The results presented here provide insights that can guide future developments in this field

and methods to improve the performance of learned subgrid parameterizations which are widely

applicable.
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Chapter 2

Learning Simulations from Data

In this chapter we describe a project developing a benchmark composed of physical systems with

varying state dimensions, initial condition ranges, and dynamics. These systems are intended

to be used to train neural networks to emulate a system: that is, to learn the dynamics of the

system wholesale from observation snapshots. Learning PDE tasks is a rich area of application for

neural network models with a wide range of potential applications [13]. However, this diversity of

application tasks and of applicable machine learning methods makes comparing the performance

of proposed methods difficult. In general, each work in this area tests on different systems, applies

different methods, and measures performance with different metrics. In an attempt to unify some

of this work, we propose a set of physical systems which is representative of some of the range of

systems often studied. Using this set, we evaluate the performance of a set of baseline methods

including several common neural network architectures, other non-neural network learning

methods, and a range of standard numerical integration schemes.

In our analysis we pay particular attention to the computational efficiency of each approach,

measuring the often significant accuracy and performance penalties that arise when using a neural

network as a surrogate model, as well as models’ abilities to generalize to unseen conditions. The

full source code and raw results from each experiment are available online for further analysis
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and testing. We also work to distill some insights from our efforts which may provide some

guidance for future works in this area. The project described in this chapter is “An Extensible

Benchmark Suite for Learning to Simulate Physical Systems” which was completed alongside

several collaborators: Arvi Gjoka, Joan Bruna, Daniele Panozzo, Benjamin Peherstorfer, Teseo

Schneider, and Denis Zorin [64].

Since the publication of this work, the application of deep learning to PDE problems has

continued to be a very active area of research. Continuing in a similar vein to our work, several

other benchmark sets have been developed and proposed for wider application. These include

general application benchmarks with additional and alternative PDE systems and added network

baselines such as Physics-Informed Neural Networks and Fourier Neural Operators [52, 74, 97] and

others which specialize in particular applications such as airfoil design or climate model parame-

terization development and include, importantly, proposed metrics to evaluate performance [9,

109]. Recently, research attention has also turned to developing foundation models, capable of han-

dling multiple physics and providing a starting point for further downstream specialization [59].

This has led to the proposal of larger benchmark sets incorporating a wider range of problem

types [62]. In some respects this variety illustrates the challenges involved in targeting PDE tasks

and the difficulty of scaling benchmark datasets of this type. For example, the largest benchmark

set, compiled at significant cost and effort, includes approximately 20 types of systems. Even

though these are drawn from problems studied across a range of research disciplines, there are still

certainly additional tasks that could be included, and other variations that could be reflected (i.e.

non-uniform grids, etc.), making it difficult to quantify or otherwise assess coverage of potential

applications.

Despite such challenges, these datasets are a valuable resource and simplify the development

and testing of new approaches to learning PDE dynamics. It is in this spirit that we proposed our

own set of benchmark tasks. In this project, we attempt to cover a range of system dynamics,

including varying simulation structures and complexity of spatial interactions within states, as
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well as examining the impact of varying quantities of available training data, the range of initial

conditions, generalization to out-of-distribution states, and the tradeoff between computational

cost and accuracy of generated trajectories. This last comparison was conducted with particular

care and attention. We evaluated not only the per-step cost of several traditional baseline integra-

tion schemes and machine learning methods, but also the time cost to achieve a particular level of

error. To the best of our knowledge, this error-matched timing comparison remains unique.

2.1 Project Background

Computational modeling of physical systems is a core task of scientific computing. Standard

methods rely on discretizations of explicit models typically given in the form of partial differential

equations (PDEs). Machine learning techniques can extend these techniques in a number of ways.

In some cases, a closed system of analytic equations relating all variables may not be available

(e.g., a constitutive relation for a material may not be known). In other cases, while a full analytic

description of a system is available, a traditional solution may be too costly (e.g., turbulence) or

can be sped up substantially using data-driven reduced-order models. However, despite promising

results, a successful adoption of these data-driven approaches into scientific computing pipelines

requires a solid and exhaustive assessment of their performance—a challenging task given the

diversity of physical systems, corresponding data-driven approaches, and the lack of standardized

sets of problems, comparison protocols, and metrics.

We focus on the setting where the physical model is unavailable during training, mimicking

situations in computational science and engineering with ample data and a lack of models. One

can generally distinguish two different flavors of physical simulation with different associated

computational cost: those that map a high-dimensional state space into another high-dimensional

space (as in temporal integration schemes, mapping the state of the system at one time step to

the next), or from a high-dimensional input space to a lower-dimensional output (as in surrogate
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models, mapping the initial conditions to a functional of the solution). While this distinction

also applies to data-driven approaches, another critical aspect emerges from the choice of input

data distribution. We identify two extremes: the narrow data regime, where initial conditions are

sampled from a low-dimensional manifold (even within a high-dimensional state space), and the

wide regime, where initial conditions span a truly high-dimensional space. As could be expected,

narrow data regimes define an easier prediction task where data-driven methods can potentially

‘bypass the physics,’ whereas wide regimes require models with enough encoded physical priors

in order to beat the curse of dimensionality. Therefore, such choice of data distribution is a critical

component of any data-driven physical simulation benchmark.

In this work, we introduce an extensible benchmark suite, including: (1) an extensible set of

simple, yet representative, physical models with a range of training and evaluation (test) setups,

as well as reference, high-accuracy numerical solutions to benchmark data-driven methods, (2)

reference implementations of traditional time integration schemes, which are used as baselines

for evaluation, and (3) implementations of widely used data-driven methods, including physics-

agnostic multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), kernel machines

and non-parametric nearest neighbors. Our benchmark suite is modular, permitting extensions

with limited code changes, and captures both ‘narrow’ and ‘wide’ regimes by appropriately

parametrizing the set of initial conditions.

Our analysis reveals two important conclusions. First, even in the simplest physical models,

current data-driven pipelines, while providing qualitatively acceptable solutions, are quantitatively

far from directly numerically integrating physical models, and this performance gap appears

unfeasible to close by merely scaling up the models and/or the dataset size. In other words, the

cost of ignoring the physics is high, even for the simplest physics, and cannot in general be

compensated by data, matching insights that have been obtained in other scientific computing

settings [16, 106]. Next, and more importantly, our simple 𝐿2-based nearest neighbor regressor is

used to calibrate how ‘narrow’ the learning task is. Our finding is that even for seemingly complex
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systems, such as the incompressible Navier-Stokes systems, such a naive predictor outperforms

most deep-learning-based models in the narrow regime—thus providing a simple calibration of

the true difficulty of the simulation task, that we advocate should be present in every future

evaluation.

2.2 Related Work

Machine learning is used in physical simulation in a number of interrelated ways. Some important

uses include reduced-order/surrogate modeling, learning constitutive models or more generally

compact analytic representations from data. A unifying theme of these applications of machine

learning is automatic construction of parametric models capable of reproducing the behavior of

physical systems for a sufficiently broad range of initial data, boundary conditions and other system

parameters. The purpose of these representations varies from acceleration (e.g., surrogate machine

learning models are used to accelerate optimization), to automatic construction of multiscale

models (learning macroscopic constitutive laws frommicroscopic simulation), to inferring compact

descriptions of unknown representations from experimental data.

The purpose of our proposed benchmarks is to enable comparisons of different learning-based

methods in terms of their accuracy and efficiency. We briefly review two streams of learning

methods for physical systems. (1) One line of work aims to understand how neural networks

can be structured and trained to reproduce known physical system behavior, with the goal of

designing general methods applicable in a variety of settings [6, 7, 12, 15, 28, 31, 56, 74, 75, 80, 81,

98, 99, 105]. Our benchmark cases fit primarily into this category. (2) Another line of research

aims to develop a variety of techniques to accelerate solving PDEs. Typically, these methods

are developed for specific PDEs and a specific restricted range of problems: for example, fluid

dynamics problems [41, 77, 107], with particular applications to cardiovascular modeling [44,

53] and aerodynamics [101]; or solid mechanics simulation tasks, including stresses [39, 50, 51,
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54, 57, 61]. In cases where the governing equations are not given, the learning task becomes

approximating them from data [2, 3, 14, 18, 30, 46, 60, 65, 72, 82, 83, 84, 85, 100].

2.3 Background and Problem Setup

PDEs, dynamical systems, and time integration Consider a PDE of the form 𝜕𝑢
𝜕𝑡 = L𝑢, where

𝑢 is the unknown function and L is a possibly nonlinear operator that includes spatial derivatives

of 𝑢. By discretizing in space, one obtains a dynamical system

̇𝑥(𝑡) = 𝑓 (𝑥(𝑡)) (2.1)

with an 𝑁 -dimensional state 𝑥(𝑡) ∈ ℝ𝑁 at time 𝑡 ∈ [0, 𝑇 ]. The function 𝑓 is assumed to be

Lipschitz to ensure solution uniqueness and the initial condition is denoted as 𝑥0 ∈ ℝ𝑁 . A PDE

of a higher order in time can be reduced to the first-order form in the standard way, e.g., if we

have a second-order system ̈𝑞(𝑡) = 𝑓 (𝑞(𝑡)), then we consider its formulation via position 𝑞 and

momentum 𝑝 as a first-order system with 𝑥 = [𝑞; 𝑝]: [ ̇𝑞(𝑡); ̇𝑝(𝑡)] = [𝑝(𝑡); 𝑓 (𝑞(𝑡))]. To numerically

integrate Equation 2.1, we choose time steps 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝐾 = 𝑇 . Then, a time integration

scheme (e.g. [32, 33, 96]) gives an approximation 𝑥𝑘 ≈ 𝑥(𝑡𝑘) of the state 𝑥(𝑡𝑘) at each time step

𝑘 = 1, … , 𝐾 . A list of the schemes we use along with details is given in Section 2.5.

Problem setup and learning problems Given 𝑀 initial conditions 𝑥(1)0 , … , 𝑥(𝑀)
0 ∈ ℝ𝑁 and

the corresponding 𝑀 trajectories 𝑋 (𝑖) = [𝑥(𝑖)0 , … , 𝑥(𝑖)𝐾 ] ∈ ℝ𝑁×(𝐾+1), 𝑖 = 1, … ,𝑀 obtained with a

time integration scheme from dynamical system (2.1), we consider the following two learning

problems, both of which aim to learn the physical model of the problem, viewed as unknown,

from trajectory samples: (1) Learning an approximation 𝑓𝜃 of the right-hand side function 𝑓 in

Eq. (2.1). This gives an approximate 𝑓𝜃 (𝑥(𝑡)) ≈ ̇𝑥(𝑡) that is then numerically integrated to produce

a trajectory 𝑋̃ for an initial condition 𝑥̃0 = 𝑥0. The aim is that 𝑋̃ approximates well the true
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Figure 2.1: Representative visualizations of the four systems, depicting the results and ranges of
initial condition sampling. Each has two state components: for the Navier-Stokes system, a flow
velocity and a pressure field, and for the other three a position 𝑞 and momentum 𝑝.

trajectory 𝑋 obtained with 𝑓 from (2.1) for the same initial condition. (2) Directly learning the

next steps in the trajectory from the current one, i.e. predict 𝑥(𝑖)𝑘 given 𝑥(𝑖)𝑘−1.

To assess the learned models, we evaluate them on their ability to produce good approximate

trajectories from randomly sampled initial conditions, by either integration or direct step prediction.

During evaluation, we use initial conditions drawn independently from those used to produce

training data, both from the same distribution as the training samples, as well as from a distribution

with support outside the training range. We train networks on data sets of various sizes. For

details, see Section 2.6.1.

2.4 Benchmark Systems

We consider four physical systems, illustrated in Figure 2.1: a single oscillating spring, a one-

dimensional linear wave equation, a Navier-Stokes flow problem, and a mesh of damped springs.

These systems represent a progression of complexity: the spring system is a linear system with a
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low-dimensional space of initial conditions and low-dimensional state; the wave equation is a

low-dimensional linear system with a (relatively) high-dimensional state space after discretization;

the Navier-Stokes equations are nonlinear and we consider a setup with low-dimensional initial

conditions and a high-dimensional state space; finally, the spring mesh system has both high-

dimensional initial conditions as well as high-dimensional states. Additionally, the proposed spring

system and Navier-Stokes problems represent diffusion-dominated and advection-dominated

(for sufficiently low viscosity) PDE behaviors, as well as variability in initial conditions with

fixed domain (spring system) and variable domain (Navier-Stokes). These varying complexities

provide an opportunity to test methods on simpler systems and the ability to examine changing

performance as system size increases, both in terms of the state dimension, and the initial condition

distribution. The ground truth models for the spring, wave, and spring mesh systems with classical

time integrators are implemented using NumPy [34], SciPy [102], and accelerated, where possible,

with Numba [49]. The Navier-Stokes snapshots are generated using PolyFEM [86], a finite element

library.

These systems were chosen in an effort to reflect the variety of systems used for testing in this

area, while unifying choices of particular formulations. Past works have chosen systems of the

types featured here: simple oscillators (both spring and pendulum [28]), particle systems with

various interaction laws (gravity, spring forces, charges, cloth simulations, etc. [15, 17, 43, 71, 81]),

and fluid-flow systems (with various sorts of obstacles, airfoils or cylinders [71, 99]). We make

particular selections here in an effort to unify systems of interest and facilitate comparisons across

experiments by providing a shared set of tasks which can be used for development and testing of

machine learning methods.

Some examples of initial condition selection for each system are illustrated in Figure 2.1. The

ground truth for the spring, wave, and spring mesh systems consists of the state variables (𝑞, 𝑝)

for position and momentum, and their associated derivatives ( ̇𝑞, ̇𝑝). For the Navier-Stokes system

the state consists of flow velocities, and a pressure field, along with approximated time derivatives
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for each.

Table 2.1 lists the parameters used to generate trajectories for training and evaluation. Training

sets of three sizes are generated, each containing the specified number of trajectories. The systems

are integrated at the listed time step sizes, but the ground truth data is subsampled further by

the factor shown after ÷ in the table: the integration schemes are run at a smaller time step

and intermediate computations are discarded. Each larger training set is a strict superset of its

predecessor to ensure that previous training samples are never removed.

2.4.1 Spring

We simulate a simple one-dimensional oscillating spring. In this system, the spring has zero rest

length, and both the oscillating mass and spring constant are set to 1. The spring then exerts a

force inversely proportional to the position of the mass 𝑞: ̇𝑝(𝑡) = −𝑞 and ̇𝑞(𝑡) = 𝑝.

The energy of the system is proportional to 𝑟 = 𝑞2 + 𝑝2 which is the radius of the circle in

phase space. To sample initial conditions, we first sample a radius uniformly, then choose an

angle theta uniformly. This produces a uniform distribution over spring system energy levels

and starts at an arbitrary point in the cycle. The spring system has a closed-form solution:

(𝑞(𝑡), 𝑝(𝑡)) = (𝑟 sin(𝑡 + 𝜃0), 𝑟 cos(𝑡 + 𝜃0)) where 𝑟 is the radius of the circle traced in phase space

(the energy of the spring) and 𝜃0 is the phase space angle at which the oscillation will start.

While this closed form solution is useful, for consistency with our other systems, we generate

snapshots of the spring system by numerical integration. Simulations of the spring system always

run through one period. For “in-distribution” training values, the radius is selected in the range

(0.2, 1) and “out-of-distribution” radii are chosen from (1, 1.2).
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2.4.2 Wave

This benchmark system is similar to the one used in [69]. Consider the wave equation with speed

𝑐 = 0.1

𝜕𝑡 𝑡𝑢 = 𝑐2𝜕𝑥𝑥𝑢 , (2.2)

on a one-dimensional spatial domain [0, 1) with periodic boundary conditions. We represent this

second-order system as a first-order system and discretize in space to obtain

[
̇𝑞(𝑡)

̇𝑝(𝑡)
] = [

0 𝐼

𝑐2𝐷𝑥𝑥 0
] [

𝑞(𝑡)

𝑝(𝑡)
] , (2.3)

where 𝐷𝑥𝑥 ∈ ℝ𝑛×𝑛 corresponds to the three-point central difference approximation of the spatial

derivative 𝜕𝑥𝑥 and the matrices 𝐼 and 0 are the identity and zero matrix, respectively, of appropriate

size. We discretize in space with 𝑛 = 125 evenly spaced grid points and evolve the system following

the dynamics described above.

Initial conditions are sampled with an initial pulse in the 𝑞 component centered at 0.5. All initial

conditions have zero momentum. The initial pulse is produced by a spline kernel as described

in [69]:

𝑠(𝑥) = 10
𝑝𝑤

⋅ |𝑥 − 0.5| , ℎ(𝑠) = 𝑝ℎ ⋅

⎧
⎪⎪

⎨
⎪⎪
⎩

1 − 3
2 𝑠

2 + 3
4 𝑠

3 if 0 ≤ 𝑠 ≤ 1

1
4(2 − 𝑠)3 if 1 < 𝑠 ≤ 2

0 else

where the width and height of the pulse are scaled by parameters 𝑝𝑤 and 𝑝ℎ, respectively. The

spline kernel pulse is then ℎ(𝑠(𝑥)) for 𝑥 ∈ [0, 1), evaluated at the discretized grid points.

For “in-distribution” samples, parameters 𝑝𝑤 , 𝑝ℎ are both chosen uniformly in the range

(0.75, 1.25) and “out-of-distribution” runs sample uniformly from (0.5, 0.75) ∪ (1.25, 1.5). All
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trajectories are integrated until 𝑡 = 5 when the wave has traveled through half a period.

2.4.3 Spring Mesh

This system manipulates a square grid of particles connected by springs, in a two dimensional

space, and can be considered a simplified version of deformable surface and volume systems

(cf. [71]). The particles all have mass 1, and are arranged into a unit grid. Springs are added along

the axis-aligned edges and diagonally across each grid square, with rest lengths selected so that

the regularly-spaced particles are in a rest position.

In this work we use a 10 × 10 grid where the top row of particles is fixed in place. Initial

conditions are sampled by choosing a perturbation for the position of each non-fixed spring. These

perturbations are chosen as uniform vectors inside a circle with radius 0.35. Out-of-distribution

perturbations are chosen uniformly in a ring with inner radius 0.35 and outer radius 0.45. The

sampled initial conditions all have zero momentum.

In this system, a spring between particles 𝑎 and 𝑏 exerts a force:

𝐹𝑎𝑏 = −𝑘 ⋅ (‖𝑞𝑎 − 𝑞𝑏‖2 − ℓ𝑎𝑏)
𝑞𝑎 − 𝑞𝑏

‖𝑞𝑎 − 𝑞𝑏‖2
− 𝛾 ̇𝑞𝑎 (2.4)

where ℓ𝑎𝑏 is the rest length of the spring, 𝛾 = 0.1 is a parameter controlling the magnitude of an

underdamped velocity-based decay, and 𝑘 = 1 is the spring constant.

2.4.4 Navier-Stokes

We consider the standard Navier-Stokes equation over a domain Ω (cf. [71, 99]):

𝜌 𝜕𝑢
𝜕𝑡

+ 𝜌(𝑢 ⋅ ∇)𝑢 − 𝜈Δ𝑢 + ∇𝑝 = 𝑏

∇ ⋅ 𝑢 = 0

𝑢(0) = 𝑢0

⎫
⎪⎪

⎬
⎪⎪
⎭

on Ω × (0, 𝑇 ) and
𝑢 = 𝑑

𝜈 𝜕𝑢
𝜕𝑛

+ 𝑝𝑛 = 𝑔

⎫

⎬
⎭

on 𝜕Ω𝐷 × (0, 𝑇 ) (2.5)
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Table 2.1: Dataset sizes and simulation parameters

System # Train Trajectories # Eval Trajectories Time Step Size # Steps

Spring 10, 500, 1000 30 0.00781 ÷128 805
Wave 10, 25, 50 6 0.00049 ÷8 10204
Spring Mesh 25, 50, 100 15 0.00781 ÷128 805
Navier-Stokes 25, 50, 100 5 0.08 ÷1 65

where 𝑢∶ Ω × (0, 𝑇 ) → 𝑅2 is the velocity at time 𝑡 ∈ (0, 𝑇 ) of a fluid with kinematic viscosity

𝜈 and density 𝜌, 𝑝∶ Ω × (0, 𝑇 ) → 𝑅 is the pressure and 𝜕Ω𝐷 and 𝜕Ω𝑁 are the Dirichlet and

Neumann boundary conditions, respectively. In our setup we use the finite element method (FEM)

to solve the PDE using mixed discretization: quadratic polynomial for the velocity and linear for

pressure. In our experiment the domain Ω is a rectangle 0.22 × 0.41 with a randomly generated

set of circular obstacles. We start with 𝑢0 = 0 and specify a velocity on the left boundary of

𝑢(0, 𝑦) = (6(1 − 𝑒−5𝑡)(0.41 − 𝑦)𝑦/0.1681, 0), zero on the top and bottom, and zero Neumann on

the right side (𝑔 = 0). We solve the system using PolyFEM [86] using 𝑑𝑡 = 0.08 and backward

differentiation formula (BDF) of order 3 for the time integration.

We sample obstacles into two configurations: a single obstacle, or a set of four. In each case,

we sample the obstacles leaving a margin of 0.05 between each circle, and a margin of 0.25 from the

left and right sides, and 0.05 between the top and bottom. Otherwise, each obstacle is determined

by first sampling a radius, then sampling a center from the valid space, respecting the margins. If

the sampled obstacle is too close to an existing circle, it is discarded and a new sample is drawn.

In-distribution obstacles have radii in the range (0.05, 0.1) and out-of-distribution radii are drawn

from (0.025, 0.05).

2.5 Numerical Integration Schemes

We briefly review the time integration schemes that we consider in this study: forward Euler (FE),

leapfrog (LF), Runge-Kutta 4 (RK4), backward Euler (BE), and the second-order backward differen-
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tiation formula (BDF2). Other sources also discuss these integration schemes, for example [32, 33,

96]. In what follows, 𝑓 is the right-hand side function, 𝛿𝑡 > 0 is the time step size of the integrator,

and 𝑥𝑘 , 𝑡𝑘 are, respectively, discrete states and simulation times indexed by 𝑘.

2.5.1 Explicit Methods

Forward Euler (FE) Time integration with the explicit Euler method leads to

𝑥𝑘 = 𝑥𝑘−1 + 𝛿𝑡𝑓 (𝑥𝑘−1). (2.6)

Runge-Kutta 4 (RK4) The explicit Runge-Kutta 4 scheme is

𝑥𝑘 = 𝑥𝑘−1 +
𝛿𝑡
6
(ℎ1 + 2ℎ2 + 2ℎ3 + ℎ4) , (2.7)

where

ℎ1 = 𝑓 (𝑥𝑘−1) ℎ2 = 𝑓 (𝑥𝑘−1 + 𝛿𝑡/2ℎ1)

ℎ3 = 𝑓 (𝑥𝑘−1 + 𝛿𝑡/2ℎ2) ℎ4 = 𝑓 (𝑥𝑘−1 + 𝛿𝑡/2ℎ3)

for 𝑘 = 1, … , 𝐾 .

Leapfrog (LF) For leapfrog integration we separate the components of the state 𝑥 = (𝑞, 𝑝) and

𝑓 (𝑞𝑘 , 𝑝𝑘) = ( ̇𝑞𝑘 , ̇𝑝𝑘) and compute:

𝑝𝑘+1/2 = 𝑝𝑘 +
𝛿𝑡
2

̇𝑝𝑘

𝑞𝑘+1 = 𝑞𝑘 + ̇𝑞(𝑞𝑘 , 𝑝𝑘+1/2)𝛿𝑡

𝑝𝑘+1 = 𝑝𝑘+1/2 +
𝛿𝑡
2

̇𝑝(𝑞𝑘+1, 𝑝𝑘+1/2)

(2.8)
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where the notation ̇𝑞(𝑞𝑘 , 𝑝𝑘+1/2) denotes the ̇𝑞 component of 𝑓 (𝑞𝑘 , 𝑝𝑘+1/2) and analogously for ̇𝑝.

2.5.2 Implicit Methods

Backward Euler (BE) We also consider the implicit Euler method, which is given by the

potentially nonlinear equation

𝑥𝑘 − 𝛿𝑡𝑓 (𝑥𝑘) = 𝑥𝑘−1 (2.9)

that is solved in each time step 𝑘 = 1, … , 𝐾 .

Backward Differentiation Formula (BDF2) We tested another implicit method, BDF2. This

is a second order multistep method with the formula given by:

𝑥𝑘 −
4
3
𝑥𝑘−1 +

1
3
𝑥𝑘−2 =

2
3
𝛿𝑡𝑓 (𝑡𝑘 , 𝑥𝑘) (2.10)

To kickstart this method, which requires two steps of history, we initially do one step of backward

Euler. This maintains the stability and error properties of the method.

2.6 Numerical Experiments

We apply several basic learning methods to the datasets developed in this work: 𝑘-nearest neighbor

regressors, a neural network kernel method, several sizes of feed-forward MLPs, and a variety

of CNNs. Details of the architectures and the training protocol are provided in supplementary

material, Section 2.6.1. Each of the neural networks we consider is implemented using PyTorch [66].

The learning methods considered in this work are each trained on one of the two target task

formulations described in Section 2.3. For derivative-based prediction, the training is conducted

supervised on ground truth snapshots gathered from the underlying models. For each system we

randomly sample initial conditions and each of these is then numerically integrated to produce
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a trajectory. Each trajectory includes state samples 𝑥 as well as target derivatives ̇𝑥 used for

training. For direct prediction, we no longer require numerical integration; instead we directly

predict the trajectory in a sequential fashion. In this setting, we approximate 𝑓𝜃 (𝑥(𝑡)) ≈ 𝑥(𝑡 + 𝛿𝑡)

for a discrete time step size 𝛿𝑡 . For the derivative prediction task we report results using the

leapfrog integrator. Full results using other numerical integration schemes are available in the

supplementary materials.

We pick the same set of learning methods and apply it to both tasks independently to judge per-

formance in each. For many systems the state is divided into position and momentum components:

𝑥 ≡ (𝑞, 𝑝). For the Navier-Stokes problem, the state 𝑥 is made up of the flow velocity field, and the

scalar field for pressure. After training, we produce rolled-out trajectories from held-out initial

conditions, either by combining with a numerical integrator in the case of derivative prediction, or

in a directly recurrent fashion in the case of step prediction. Each neural network is instantiated

in three independent copies, each of which is trained and evaluated across all sampled trajectories.

We compute a per-step MSE against a ground truth value, average these per-step MSEs to produce

a per-trajectory error, and record these errors for analysis. Our experiments are designed to test

several aspects of physical simulation. We highlight the most salient ones below in Section 2.6.2,

and report more extensive results in Appendix A.

2.6.1 Learning Methods

Training

Training for both step and derivative problem formulations is done with the Adam [42] optimizer

for all neural networks, except the neural network kernel which uses standard stochastic gradient

descent with learning rate 0.001 and weight decay 0.0001. With the Adam optimizer, no weight

decay is used, and most networks use a learning rate of 1 × 10−3. Exceptions to this are: CNNs,

MLPs and the u-net for Navier-Stokes, and CNNs and MLPs on the spring mesh. For both of these
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systems the CNNs and MLPs use a learning rate of 1 × 10−4 and the u-net uses 4 × 10−4.

On the Navier-Stokes system we also perturbed each batch of training data with normally-

distributed noise with a variance of 1 × 10−3. For step prediction the previous step was corrupted

and the subsequent step left uncorrupted. For derivative prediction, the derivatives were updated

to correct for the noise (i.e. 𝑥̃ = 𝑥 +N ⟹ ̃̇𝑥 = ̇𝑥 −N where N is the sampled noise). This is

inspired by the approach taken in [71] and we found it to improve stability for neural networks

on the Navier-Stokes system.

The number of training epochs varies based on the target system. On spring, wave, and spring

mesh the networks are trained for 400, 250, 800, and 800 epochs, respectively. When reporting

evaluation errors below, we average errors over all time steps of each randomly-sampled trajectory

in the held-out evaluation set.

We train three independent copies of each neural network. When evaluating these, each

test trajectory is evaluated with each duplicate neural network and the performance results are

collected and processed together. Variance in plots of these results is produced both by the

differences in performance for the three duplicated neural networks, and differing performance

across the sampled evaluation trajectories.

KNN Regressor

We use a 𝑘-nearest neighbors regressor to predict the value of the state derivatives, using 𝑘 = 1.

With this method 𝑓𝜃 (𝑥̃
(𝑖)
𝑘 ) finds the closest matching point in the training set, and uses that point’s

associated derivatives as its approximation, ̃ ̇𝑥(𝑖)𝑘 in the case of derivative prediction. For direct

step prediction, the KNN finds the closest point and returns the next time step from that point’s

trajectory in the training set. We use the KNN implemented in scikit-learn [68], along with its

default Minkowski metric.
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Kernel Methods

Kernel methods provide a nonparametric regression framework [87]. In this benchmark we

consider dot-product kernels of the form 𝑘(𝑥, 𝑥′) = 𝜂(⟨𝑥, 𝑥′⟩), which can be efficiently implemented

in their primal formulation using random feature expansions [73] via the representation

𝑘(𝑥, 𝑥′) = 𝔼𝑧∼𝜈 [𝜌(⟨𝑥, 𝑧⟩)𝜌(⟨𝑥′, 𝑧⟩)] ≈
1
𝐿
∑

𝐿
𝑙=1 𝜌(⟨𝑥, 𝑧𝑙⟩)𝜌(⟨𝑥

′, 𝑧𝑙⟩) ,

where 𝜈 is a rotationally-invariant probability distribution over parameters and 𝑧𝑙 ∼ 𝜈 iid. The

resulting maps 𝑥 ↦ 𝜌(⟨𝑥, 𝑧𝑙⟩) are random features, associated with a shallow neural network with

‘frozen’ weights. While further choices of kernel may be considered in the future, dot-product

kernels have flexible approximation properties and are easily scalable [79].

In our experiments, we use 𝜌 = ReLU and 𝐿 = 32768 random features and train using kernel

ridge regression. We do not apply this approach to our Navier-Stokes system as its large state

dimension makes achieving a sufficiently large set of random features infeasible.

Deep Networks

MLPs We apply simple multilayer perceptron (MLP) networks in a variety of sizes. The config-

uration of the MLPs used varies with the target system. In particular, we divide our two systems

into two classes: those with smaller state dimension (the spring and wave systems), and those

with a larger state dimension (the spring mesh, and the Navier-Stokes problem). We describe these

architectures in terms of “depth” and “width.” The depth denotes the number of fully-connected

operations in the MLP, so that for a depth of 𝑑 there are 𝑑 − 1 hidden layers. The width is the size

of each hidden layer; the input and output dimensions are fixed by the state dimension of the

system. The MLPs use tanh activations.

For the small systems we use three MLP architectures: (1) a depth of 2 and a hidden dimension

(width) of 2048, (2) a depth of 3 and width of 200, and (3) a depth of 5 and a hidden dimension of
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2048. For the large systems, we use two architectures: (1) a depth of 4 and width of 4096, and (2) a

depth of 5 and width of 2048. The 10 × 10 spring mesh merges both sets of MLP architectures.

For the Navier-Stokes and spring mesh systems, the MLP gets as input both the current

network state, and a one-hot mask indicating which points in the discrete simulation space are

“fixed,” meaning either a boundary point, a point in an obstacle, or an immovable, fixed particle.

CNNs We also test several feed-forward convolutional neural networks. These use ReLU

activations and we specify their architectures by a kernel size, and internal channel count. We use

these simple CNNs only on the larger systems: the spring mesh and the Navier-Stokes. For both

of these systems we test two CNN architectures: both have a kernel size of 9 × 9 and, respectively,

32 and 64 channels internally. The number of input channels is fixed by the system. Both systems

have five: for the spring mesh, two channels each for position and momentum; and for the

Navier-Stokes system two channels for velocity, one for pressure field, and two more for one-hot

masks highlighing boundaries and the obstacles.

U-net Finally, we implement another convolutional network—only for theNavier-Stokes system—

a u-net following the architecture tested in [99]. That work applied this architecture to another

Navier-Stokes problem, predicting a single step of flow about an airfoil profile. Here we adjust the

input and output channels of this architecture, and test on our Navier-Stokes problem, performing

several recurrent steps of derivative or step prediction around circular obstacles.

The architecture itself consists of seven convolution operations on both the downsampling

and upsampling side. The convolutions have a mix of 4 × 4 and 2 × 2 kernels, and have strides

of two. The network includes skip connections common to u-net-style architectures. With each

downsampling, the number of channels is doubled starting from an internal channel count of 64.

Our Navier-Stokes system has a grid size of 221×42. To accommodate the amount of downsampling

in this architecture we first upsample to 256 × 256 with bilinear interpolation.
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Other Experimental Details

Our experiments were conducted on NYU’s research HPC system, Greene. Neural networks were

predominantly trained using NVIDIA RTX8000 GPUs, with a few runs on V100 GPUs. CPU-

based runs used Intel Xeon Platinum 8268 CPUs. Our neural networks required, on average,

approximately two hours to train and we consumed in total approximately 1785 hours of GPU

time, across all our experiments, including some early experimental and exploratory runs not

discussed here. Our dataset generation and non-neural network evaluation runs, which do not use

GPUs, consumed approximately 2270 core-hours of CPU time, again including some exploratory

runs. Datasets were generated using CPUs only. Neural network training and evaluation passes

ran using GPUs through PyTorch. Evaluations and trainings of baseline numerical integrators

and KNNs ran on CPU only.

2.6.2 Experiment Results

In this section we present a summary of the main results of our numerical experiments. An

extended version of these results is included in Appendix A.

Training set size In general ML problems, one would expect additional training samples to

systematically improve (in-distribution) evaluation performance. However, Figure 2.2 illustrates a

clear saturation of performance on the simplest systems when using neural networks as function

approximators, in contrast with non-parametric KNNs and the kernel method. We attribute this

saturation to an inherent gap between the training and evaluation objectives. While data-driven

methods are optimized to minimize next-step predictions, the final evaluation requires built-in

stability to prediction errors. Including regularisation strategies to incorporate stability, such as

noise injection [71], is shown to help, but not fully resolve this issue.
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Figure 2.2: Median MSE error with respect to the training set size for each of our system configu-
rations. We show varying architecture choices for each method.

Out-of-distribution evaluation For simplicity, we only examine the out-of-distribution error

for networks trained on the largest training set size. The added challenge of out-of-distribution

samples varies with the construction of each system. It is possible to get some idea of the difficulty

increase by examining the accuracy penalty for the KNNs, and comparing it to how well the more

advanced models are able to generalize.

Benefits of neural networks for generalization over KNN are visible across several systems in

Figure 2.3, particularly in the spring system for small MLPs for derivative prediction and nn-kernel

in both cases. The KNN suffers a significant increase in error while these methods produce only

somewhat worse predictions. Benefits are still present, though less pronounced, for the wave

system derivative prediction where neural networks increase in error, but the kernel method

and small MLP maintain a lower absolute error than the KNN. On the Navier-Stokes systems

none of the methods suffers an increase in error for out-of-distribution evaluation. The change in

radius distribution for the obstacles did not pose an additional challenge sufficient to produce a

measurable change in error distribution. We attribute this to low dimension of the initial condition

space.

Step and derivative prediction The step and derivative prediction instances of each learning

problem lead to different accuracy from the learning methods we test. While most physical systems
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Figure 2.3: Median MSE for in-distribution evaluation sets vs. out-of-distribution evaluation sets
for each system. Colors represent the same method and are varied for different architecture
choices. Marker shapes distinguish step and derivative prediction, and the dotted line is the
identity line. Outliers for the spring mesh and both Navier-Stokes configurations were removed.
Values on both axes were approximately 1013 for the spring mesh and in the range 102–103 for
Navier-Stokes.
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Figure 2.4: Median MSEs for derivative vs. step prediction on the same evaluation set. Results are
displayed for each of our system configurations. The dotted line is the identity line.

are naturally described in terms of their derivatives through corresponding ODEs/PDEs, data-

driven simulations also offer the alternative of bypassing this differential formulation and predict

the next state directly. Such ‘cavalier’ approach avoids the compounding error amplification

effects across integration steps, at the expense of sample efficiency. Figure 2.4 illustrates these

tradeoffs across our systems.

An important example of this effect is the performance of CNNs on the spring mesh system

(Figure A.3 in the Appendix). When working through a numerical integrator and performing

derivative prediction they produce the lowest error of all methods tested, but following the same
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training protocol for step prediction these architectures produce high errors, or are unstable. This

case is likely an interaction of the architecture with the specific learning task. For the spring

mesh, step prediction requires outputting the position of the particle which requires manipulating

its global coordinates, while derivative predictions allow the network to more easily act locally

and compute only a relative motion for the particle. The derivative prediction task better takes

advantage of the spatial invariance of the CNNs. This difference in performance reflects the

importance of tailoring architectures to the specific task, and some potential for neural network

architectures to benefit from incorporating knowledge of a system’s behavior.

System and dataset complexity Several trends we observe correlate with the difficulty of

learning to simulate a system, and the variation in its behavior across the training and evaluation

samples. This is generally a combination of the system’s state dimension, and variation in its

behavior, approximated by the dimension of the distribution from which initial conditions are

sampled.

This is particularly visible in Figure 2.5 in the performance of the KNN methods, and, in many

cases, the performance of simpler methods such as the small MLPs. On the simpler systems, such

as the spring and wave, the KNNs generally perform well because even though the wave system

has a relatively large state dimension of 125, like the spring its initial condition is sampled from

only two parameters and its behavior can be readily predicted from these. The Navier-Stokes

system with a single obstacle is another instance of this sort of behavior: the KNN is readily

able to reproduce flows it has not seen because a sampling of 100 obstacle positions is such that

an evaluation sample is close to a trajectory seen at training time. Therefore, small MLPs and

the kernel method produce similar performance. When the difficulty is increased by sampling

four obstacles, the KNN and MLP performances suffer, and larger networks such as the u-net are

needed to maintain approximately the same performance.
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Darker colors denote increasing training set size. The final hatched box is the same network from
the final un-hatched box, tested on an out-of-distribution evaluation set.

Choice of numerical integrator For our derivative prediction tasks we combine our trained

methods with three explicit integrators with orders 1, 2, and 4. In most of our systems these

produce at most a small increase in accuracy, holding all other training and evaluation parameters

equal. However on the Navier-Stokes system the higher order integrators produce somewhat

higher errors, particularly for the u-net and the MLPs. This appears related to the approximated

derivatives used for training this system. The learned derivatives produce some small deviations

which are compounded when combining multiple derivative samples.

Computational overheads Another important aspect to consider when applying learning

methods to physical simulation problems is the time required to compute each step, and the

computational overheads introduced by the lack of knowledge of the true system physics. With

standard numerical integration methods, it is generally possible to improve the quality of generated

trajectories by decreasing the size of the time step used during integration. We take advantage

of this in order to estimate the time overheads of our learning methods relative to our baseline
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Table 2.2: Time comparison for derivative prediction against baseline numerical integrators

System Architecture Euler Leapfrog RK4

Time Ratio Scaling Time Ratio Scaling Time Ratio Scaling

Spring

knn 367.0 1× 405.8 16× 311.3 64×
nn kernel 180.7 1× 198.6 1× 173.3 1×
mlp-2-2048 185.8 1× 191.6 16× 177.7 64×
mlp-3-200 237.6 1× 237.5 16× 227.2 64×
mlp-5-2048 473.8 4× 369.6 64× 360.9 128×

Wave

knn 24,102.7 8× 16,945.1 256× 16,132.0 256×
nn kernel 35.3 8× 22.3 256× 19.9 256×
mlp-2-2048 25.4 8× 16.5 256× 14.2 256×
mlp-3-200 31.0 16× 19.7 256× 17.8 256×
mlp-5-2048 60.5 16× 38.0 256× 34.6 256×

Spring Mesh

knn 708.6 8× 626.1 128× 690.4 256×
nn kernel 5.3 8× 4.4 128× 4.8 256×
mlp-2-2048 3.0 8× 2.6 128× 2.8 256×
mlp-3-200 3.4 8× 3.2 128× 3.4 256×
mlp-4-4096 7.8 16× 7.1 128× 7.7 256×
mlp-5-2048 7.1 8× 6.2 128× 5.3 256×
cnn-9-32 11.0 2× 10.5 32× 11.3 64×
cnn-5-32 7.4 1× 9.2 32× 7.3 64×

numerical integrators at approximately corresponding error levels.

We numerically integrate each system at time step sizes scaled by powers of two. For each

trajectory in the derivative prediction setting, we find the smallest scaling factor at which the

numerical integrator exceeds the learning method’s error at their final shared time step, ap-

proximating the factor by which numerical integration can be made faster until it begins to

underperform the learned method.

Table 2.2 reports the results of these experiments. For each numerical integrator, the “scaling”

column reports the most common scaling factor found for each trajectory. The “time ratio” column

represents the learned method’s evaluation overhead (median times, counting only per-step

network evaluation costs, not numerical integration or data transfers). Note that the numerical

integrator makes fewer steps than the learned method so the overall trajectory time must be

further adjusted by the scaling factor.
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In general, the neural networks are slower per-step by one or two orders of magnitude. KNNs

are slower by significantly larger factors, particularly for the wave system. This is likely partially

due to the default scikit-learn KNN implementation used, and due to the large size of the wave

system training sets (large state dimension and large number of training snapshots). Scaling

factors increase with the order of the integrator as higher-order integrators are more tolerant of

large step sizes and maintain low error.

It is likely that these overheads could be reduced with more optimized implementations of both

the numerical integrators and learned methods. The derivative prediction task is also constrained

by its need to interact with the numerical integrator. In this setting the learned methods cannot be

expected to outperform the quality of the solutions generated by the true system derivatives. This

reflects a penalty resulting from a lack of knowledge of the true underlying system, and a penalty

for learning from observations in this case. Step prediction without involving the numerical

integrator potentially avoids some of these constraints, if learning is successful.

2.7 Conclusions and Limitations

The results in this work illustrate the performance achievable by applying common machine

learning methods to the simulation problems in our proposed benchmark task. We envision three

ways in which the results of this work might be used: (1) the datasets developed here can be

used for training and evaluating new machine learning techniques in this area, (2) the simulation

software can be used to generate new datasets from these systems of different sizes, different

initial condition dimensionality and distribution; and the training software could be used to assist

in conducting further experiments, and (3) some of the trends seen in our results may help inform

the design of future machine learning tasks for simulation.

For the first and second groups of downstream users, we have made available the pre-generated

datasets used in this work, as well as the software used to produce them and carry out our
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experiments. These components allow carrying out the measurements we have made here, and

permit further adjustments to be made.

For the third group, we highlighted a few trends that suggest useful steps to take in developing

new problems and datasets in this area. First, we advise including several simple baseline methods

when designing new tasks. In particular the inclusion of standard numerical integrators (for

derivative-type problems) and KNNs are useful to evaluate the difficulty of the proposed task.

Specifically, KNNs are useful for examining the performance achievable by memorizing the

training set, and are thus witnessing an appropriate design of data distribution that captures the

true high-dimensionality of the prediction task. As an example, in the Navier-Stokes examples

some task formulations may inadvertently be simple to memorize, even if the complexity of the

system itself may not immediately suggest it. The numerical integrators are likewise useful as

baselines both to ensure that the derivative learning is feasible even when achieving no error in

predictions, and also to evaluate the penalty in accuracy which is incurred by operating without

access to the true physics. We believe that in light of these observed trends, including baseline

methods such as standard numerical integration schemes and simple learning methods such as

the KNN is important in understanding tasks in this area. Including these assists in experiment

design by helping to calibrate the difficulty of a target task.

Limitations While our benchmark provides actionable conclusions on awide array of simulation

domains, it is currently focused on temporal integration, and as such it does not cover important

settings in scientific computing. For instance, we do not currently include an instance of a

surrogate model, which could provide different tradeoffs benefiting ML models. Additionally, we

have focused on two setups for data-driven simulation (differential snapshot prediction and direct

snapshot prediction), but other alternatives exist that might mitigate some of the shortcomings

we observed; for instance by considering larger temporal contexts (as in [15]), as well as enforcing

certain conservation laws into the model [15, 28]. Finally, while we report some measurements of
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timings and relative computational overheads, there are other dimensions to the time-accuracy

tradeoff which remain to be explored and further software optimizations are most likely possible.
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Chapter 3

Closure Modeling and Climate

Applications

Having examined the task of modeling entire physical systems using neural networks (using either

step or derivative prediction as defined in Section 1.1), we now turn our attention to a hybrid

application targeting a real world need for improved modeling. In particular, we will examine

the task of learning subgrid parameterizations or forcings for climate models. This is a particular

instance of a closure problem, in which the evolution of a system’s dynamics is not closed—that is,

fully determined—by the state values tracked in the simulation. For example, consider a system

tracking a right-hand side function with the state variable partitioned into two components:

𝑥𝑎𝑏 ≜ (𝑥𝑎(𝑡), 𝑥𝑏(𝑡)) ∈ ℝ𝑛+𝑚 (3.1)

̇𝑥(𝑡) = 𝑓 (𝑥𝑎(𝑡), 𝑥𝑏(𝑡)) (3.2)

In certain situations, we may be interested in projecting the evolution of this system onto only

the portion of the state in 𝑥𝑎:

̇𝑥𝑎(𝑡) = ̄𝑓 (𝑥𝑎(𝑡)) (3.3)
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However, in this simple approach we no longer resolve the portion of the state in 𝑥𝑏 and the

evolution of this system is non-Markovian. Closure modeling is the problem of extending a system

to account for the contribution of these missing states.

Formally, we could account for these interactions and cast this system as a Langevin equation

through Mori-Zwanzig theory [22, 112]

̇ ̄𝑥𝑎(𝑡) = 𝑖Ω ̄𝑥𝑎(𝑡)⏟⏟⏟⏟⏟⏟⏟
frequency term

− ∫
𝑡

0
𝐾(𝜏) ̄𝑥𝑎(𝑡 − 𝜏) 𝑑𝜏

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
memory term

+ 𝐹(𝑡)⏟
random force

(3.4)

where the frequency term tracks the contribution of the resolved variables ̄𝑥𝑎, and the random

force term accounts for the impact of the unresolved (and therefore generally unpredictable) values

from 𝑥𝑏 . The memory term implements the non-Markovian evolution due to the unresolved state

variables.

In practical scenarios the dependence on past history decays rapidly and so only a finite

memory is necessary. This approach lends itself naturally to stochastic closures which can directly

model the noisy impact of the random force term. However, in many cases modeling the closure

as deterministic is sufficient, and it may be acceptable to treat it as Markovian and forgo the need

to maintain any memory.

3.1 Climate Subgrid Forcing

Closure problems arise in a wide variety of settings. Here, however, we consider in particular

those which arise as a result of the limited resolution of numerical simulation grids. Instead of

partitioning a simulation state 𝑥 into separate entries, one could instead imagine partitioning it

into different scales. Specifically, taking a continuous state field and representing it on a discrete

simulation grid will necessarily fail to resolve details finer than the grid’s resolution. This scenario

commonly occurs in climate models where, even with increases in computational resources, it is
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infeasible to simulate the behavior of many parts of the climate system at a fine resolution, across

the full globe, for the time spans required [23, 24].

In the research projects that are discussed in Chapter 4 and Chapter 5, we mainly target

turbulent fluid simulations of the types that arise in models of the atmosphere or ocean. The

subgrid parameterization task arises from the coarsening induced by the simulation’s grid. For

each target system, we consider its true dynamics to be fully defined on a grid with a very fine,

“true” resolution 𝑥 . However, carrying out a simulation at a scale this fine is not possible. Instead

we run a simulation at a “high” resolution with states ̄𝑥 . The overline bar represents a filtered

version of 𝑥 . The specifics of this operation depend on the target system and will be discussed

in Section 3.2. The coarsening operator, by discarding the finer scales at the “true” resolution,

induces a commutation error in the dynamics:

𝑆𝑥 ≜ 𝜕𝑥
𝜕𝑡

− 𝜕 ̄𝑥
𝜕𝑡

. (3.5)

We will seek to model the quantity 𝑆𝑥 (the subgrid closure or forcing) so that it can be added

as a correction term to the “high” resolution models. Traditional approaches exist targeting

this problem [20] which primarily increase dissipation normally provided by the smallest eddies.

However, we will train neural networks 𝑓𝜃 to approximate these forcing values, leaving the

possibility that the networks may learn more subtle relationships between the resolved scales and

the required subgrid forcing terms. While many works produce stochastic models for the subgrid

closure, our networks will be deterministic.

An alternative to this approach is to instead train a network 𝑓𝜃 to drive the entire simulation.

That is, to perform either step or derivative prediction, in the terminology from Section 1.1.3:

𝑓𝜃 ( ̄𝑥𝑖) ≈ ̄𝑥𝑖+1

𝑓𝜃 ( ̄𝑥) ≈ 𝜕𝑥
𝜕𝑡

.
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In this case themodel 𝑓𝜃 is an emulator for the true resolution system, which operates at a coarsened

resolution. Such approaches have the effect of implicitly solving the closure problem, since they

learn all of the system dynamics from the true resolution behavior including the influence of the

small scales. Emulators completely remove the underlying true dynamics. Producing accurate

trajectories requires that the trained network reliably produce accurate outputs. However, as we

have seen in Chapter 2, learning the behavior of simulations from observations is a challenging

task. Such models often have high error, or have difficulty generalizing to states outside of the

training distribution. Even so, recent works have begun to find methods to stabilize such models

for climate applications [19, 67, 94] and emulators have found success when applied to weather

forecasting [47, 48].

3.2 Test Systems

We develop our parameterizations, targeting two simplified models: (1) a quasi-geostrophic system

(QG) and (2) a Kolmogorov flow (KF) system, a Navier-Stokes system configured with a periodic

forcing.

3.2.1 Quasi-Geostrophic System

This system is a two-layer quasi-geostrophic model as implemented in the Python package PyQG.

It provides a simplified approximation of fluid dynamics [1]. For the purposes of our experiments,

we have developed a JAX port of this model [10, 63]. This port is distributed as a standalone Python

package with documentation including worked examples, and has seen some use in projects by

other researchers. This system tracks the evolution of a potential vorticity 𝑞 on a regular grid,

divided into two layers 𝑞1, 𝑞2 with periodic boundary conditions. Corrections 𝑆𝑞 are applied to the

time evolution of this field. Models receive the current potential vorticity state 𝑞 as inputs and

predict 𝑆𝑞 across both layers directly.
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This system is pseudospectral, and a large portion of the numerical calculations for time

stepping are carried out in Fourier space (denoted below by a hat). The evolution of the quantities

follows [78]:

𝜕𝑞̂1
𝜕𝑡

= − ̂𝐽(𝜓1, 𝑞1) − 𝑖𝑘𝛽1 ̂𝜓1 + ŝsd (3.6)

𝜕𝑞̂2
𝜕𝑡

= − ̂𝐽(𝜓2, 𝑞2) − 𝑖𝑘𝛽2 ̂𝜓2 + 𝑟ek𝜅2 ̂𝜓2 + ŝsd (3.7)

The field 𝑞̂ in Fourier space is indexed by 𝑘, 𝑙 which are wavenumbers in the zonal and meridional

directions (the axis-aligned directions in our regular grid). 𝜅 ≜ √𝑘2 + 𝑙2 is the radial wavenumber.

𝐽 is the horizontal Jacobian

𝐽 (𝐴, 𝐵) ≜ 𝜕𝐴
𝜕𝑥

𝜕𝐵
𝜕𝑦

− 𝜕𝐴
𝜕𝑦

𝜕𝐵
𝜕𝑥

. (3.8)

The Jacobian is computed in real space, following which the result is carried back into Fourier

space, making this model pseudospectral. The quantity “ssd” is a small scale dissipation which is

implemented as a spectral filter applied after each time step:

F( ̂x𝑘,𝑙) =
⎧⎪
⎨⎪
⎩

x̂𝑘,𝑙 if 𝜅 < 𝜅𝑐

x̂𝑘,𝑙 ⋅ 𝑒−23.6𝛼(𝜅−𝜅𝑐)
4𝛿4𝑥 if 𝜅 ≥ 𝜅𝑐

(3.9)

In the above, 𝜅 is again the radial wavenumber, and 𝛿𝑥 is the grid spacing determined by 𝐿,𝑊

(described below) and the grid resolution. In our use of this system, all grids are square, so 𝛿𝑥 = 𝛿𝑦 .

The filter cutoff 𝜅𝑐 is set to 0.65𝜋/𝛿𝑥 . The parameter 𝛼 controls the sharpness of the filter. When

generating ground truth data it is fixed as 𝛼 = 1.

The streamfunction 𝜓 is determined by 𝑞 through the system

[
−(𝜅2 + 𝐹1) 𝐹1

𝐹2 −(𝜅2 + 𝐹2)
] [

̂𝜓1
̂𝜓2
] = [

𝑞̂1

𝑞̂2
] (3.10)
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which is solved at each step. Each block in the matrix above is diagonal. The values 𝐹1, 𝐹2 are

configurable system parameters and 𝜅 is again the radial wavenumber.

In our experiments, we use the “eddy” configuration which has also been used in prior works

using this model and implementation [78]. This configuration sets the following values for model

constants:

𝑟ek = 5.787 × 10−7

𝛿 =
𝐻1
𝐻2

= 0.25

𝛽 = 1.5 × 10−11

𝑟𝑑 = 15 000

𝐹1 =
1

𝑟2𝑑 (1 + 𝛿)

𝐹2 = 𝛿𝐹1

𝑊 = 106

𝐿 = 106

where 𝐻1, 𝐻2 are the heights of each of the two layers of 𝑞; 𝐿,𝑊 are the length and width of the

other edges of the grid; 𝑟𝑑 is a deformation radius; 𝑟ek controls drag on the lower layer; and 𝛽 is the

gradient of the Coriolis parameter. For more information on the model configuration, consult [78]

and the documentation for the PyQG package [1].

When generating ground truth data, we use a “true” resolution grid with dimension 256 × 256,

and use the default PyQG Adams-Bashforth method for time stepping (see Equation 1.8). We use a

time step 𝛿𝑡 = 3600 and generate 86400 steps. We skip half of these as a warmup phase, and from

the remaining steps we keep every eighth leaving 5400 per trajectory. Our training set consists of

100 such trajectories, and our evaluation set contains 10.

Each step produces a ground truth potential vorticity 𝑞true along with a spectral time derivative

𝜕𝑞̂true/𝜕𝑡 . From these we apply our coarsening operator as in Equation 3.5 to produce filtered and

coarsened values ̄𝑞true at resolutions of 128 × 128, 96 × 96, and 64 × 64.

When coarsening our samples to smaller scales, we apply an operator 𝐶 to the “true” resolution

outputs 𝑞true and 𝜕𝑞true/𝜕𝑡 . This operator implements the scaling denoted by the overline bar in

Equation 3.5 and determines the target forcings 𝑆. This operation is built as a combination of

a spectral filtering step, and a core spectral truncation operation and resampling operation, D.
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When coarsening from a higher resolution grid hr, the operation 𝐷 passes the filtered data to

a coarsened grid with lower resolution lr. For an input resolution hr and an output resolution

lr, this operator truncates the 2D-Fourier spectrum to the wavenumbers which are resolved at

the output resolution, then spatially resamples the resulting signal for the target size lr. These

operators also apply a scalar multiplication to adjust the range of the coarsened values. We define

a ratio 𝜌 ≜ hr/lr.

For the QG system, the filtering operator 𝐶 is “Operator 1” as described in [78]. It is a

combination of the truncation operator D with a spectral filter F :

𝐶 ≜ 𝜌−2 ⋅ F ∘D. (3.11)

The operator F is as described in Equation 3.9, except it operates on the lower resolution grid lr.

For each ground truth sample, we recompute spectral time derivatives in a coarsened PyQG

model 𝜕𝑞̂lr/𝜕𝑡 , and we pass each time derivative to spatial variables and compute the target forcing

for this scale:

𝑆lr = 𝐶lr(
𝜕𝑞true
𝜕𝑡

) −
𝜕𝑞lr
𝜕𝑡

.

These forcings—at each of the three scales—along with the high resolution variables are stored in

the training and evaluation sets for each step.

3.2.2 Kolmogorov Flow System

We also test on a Kolmogorov Flow system which is a single-layer incompressible Navier-Stokes

flow with periodic boundary conditions and a periodic forcing.

sin(4𝑦)𝑥̂ − 0.1𝑢 (3.12)
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We use an implementation from JAX-CFD configured to have Reynolds number 7000 [45]. Net-

works predict output quantities 𝑆𝑢 and 𝑆𝑣 , which are corrections applied to the velocity components.

We generate our ground truth data at a true resolution of 2048 × 2048 on a domain of size

4𝜋 on each side (double the default size of 2𝜋 ). We configure the system to have a viscosity of

1/3500 which, with the domain, produces a Reynolds number of 7 000. States are ported to lower

resolutions using the downsample_staggered_velocity routine in the JAX-CFD package which

computes means of the velocity values along a specific face of control volumes composed of groups

of grid squares.

3.3 Training and Evaluation

In climate modeling applications, existing models generally do not support automatic differentia-

tion, making online training of neural networks infeasible. Therefore, despite the fact that our

testbed models would support it, we do not use online training. Instead we pre-generate training

snapshots for each system and train our networks offline.

For both the quasi-geostrophic and Kolmogorov flow systems, we produce trajectories at the

fully-resolving “true” resolution, and apply the coarsening operators described above to compute

the subgrid forcing values directly as described in Equation 3.5. These snapshots are used for

standard supervised training, providing the coarse-grained reference snapshots as inputs to the

networks, and computing losses against the reference forcing fields. Our experiments train using

mean squared error (MSE) as the target loss, but other standard losses could be used in its place.

After training each network, the networks are combined with the coarsened simulation

dynamics and used to roll out a trajectory online, beginning from a saved reference starting time

step. That is, we simulate a trajectory following:

̇ ̄𝑥 = ̄𝑓 ( ̄𝑥) + 𝑓𝜃 ( ̄𝑥) (3.13)
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where 𝑓𝜃 is the neural network implementing the learned subgrid forcing. In our experiments,

the learned parameterizations provide additive updates to the dynamics of the coarsened models,

effectively performing hybrid derivative prediction as described in Section 1.1. Note that this

approach reflects a few modeling assumptions, namely that our forcings are deterministic and

Markovian. Other approaches are possible, implementing stochastic parameterizations in one of

several schemes, or using a non-Markovian learned parameterization by adding a memory to the

network. This could be done, for example, by adding a hidden recurrent memory state managed

by the network, or by providing some number of previous steps as a reference.

We also make use of relatively compact, feedforward convolutional networks. Because these

networks are integrated as part of an overall climate model, they will have to be evaluated as part of

each time step. Larger networks may be more capable of learning complex dependencies between

the subgrid forcing and the resolvedmodel states, but aremore expensive to deploy and increase the

cost of time-stepping an overall system. In one of the following projects (discussed in Chapter 4),

we explore an approach which appears to produce better-trained small parameterizations without

increasing the cost of evaluation.

3.3.1 Evaluation Metrics

Our test systems model turbulent fluids, and because their evolution is chaotic we do not target

reproducing the exact reference trajectory during online evaluation. Measuring performance at

test time using a loss against the reference states would be overly punitive. Furthermore, for our

climate modeling application we want in particular to correct more statistical properties of the

system over long time horizons. To that end, in the works that follow we will mainly measure the

quality of an evaluation trajectory using non-snapshot metrics. We provide an overview of these

here.
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Kinetic energy In both of our test systems, when generating a reference trajectory, we first

run the system through a warmup phase until it reaches an equilibrium. As a result, even if an

online test trajectory does not pass through the same states, it should generally have a roughly

constant level of kinetic energy. We generally plot these as values across time, which allows

spotting networks which cause the trajectories to be either under- or over-energized, or potentially

unstable.

Decorrelation time We measure the correlation between a derived quantity of the simulation

state and the same quantity from the reference trajectory. As we have noted, we do not expect

our parameterized model to precisely track the reference trajectory. Even so, we expect the

unparameterized model to deviate more quickly due to more significant differences in its behavior.

We quantify this by tracking the correlation coefficient between the vorticity fields for evaluation

and reference trajectories and report the simulation time at which the correlation drops below

0.5 [45, 78].

Spectral error One metric of particular interest in climate modeling is the distribution of energy

across scales [78]. A coarse-grained simulation will have an equilibrium energy distribution which

differs from that of the reference trajectory, even over the scales that the two simulations have in

common. We want, in particular, for our subgrid forcing to correct this distribution, adjusting the

spectral energy distribution to more closely match the reference. We evaluate the performance by

first computing a kinetic energy field 𝐾 for the reference and evaluation trajectories, computing

their discrete Fourier transform 𝐾̂ , and then computing the root mean square error between them:

√

1
|K|

∑
𝑘∈K

(𝐾̂eval(𝑘) − 𝐾̂ref(𝑘))
2 (3.14)

where K is the set of all nonzero wavenumbers in the discrete Fourier transform 𝐾̂ .
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3.4 Project Overview

In the following two chapters, we present research projects investigating two approaches to

improving the accuracy and stability of learned subgrid parameterizations.

In Chapter 4 we present a change to the neural network architecture that more directly incor-

porates the multiscale structure into the network’s inference process. We find that this approach

produces networks that are more stable and accurate, particularly for smaller architectures which

are able to match the parameterization quality of larger, more expensive networks. The architec-

tural change does meaningfully increase the cost of evaluating the network, and uses the same

number of weights.

In Chapter 5 we instead look at the offline training process. Our learned parameterizations

are trained offline on snapshots only, but evaluated online in a recurrent fashion. This leads

to a significant mismatch between the training and evaluation tasks [23, 26]. While we cannot

practically compute gradients through the simulation, we can try to make networks more robust to

the sorts of errors they make during inference, improving stability. One method to accomplish this

is to inject a small amount of noise during training, to ensure the networks are exposed to corrupted

or perturbed data. We extend this approach and use the learned subgrid parameterization itself to

perturb the training inputs, ensuring that the “noise” injected during training corresponds to the

sorts of errors the networks will encounter during online inference.
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Chapter 4

Multiscale Modeling of Climate

Parameterizations

In this chapter we introduce a novel neural network architecture for learned subgrid parameteri-

zations. Our architecture is designed to take advantage of the multiscale structure of the subgrid

forcing problem, as well as self-similar structures common in turbulent fluids. Our approach first

predicts the coarsest resolved scales of subgrid forcing and then, in a separate step, adds finer

details. The architecture incorporates spectral coarsening operations, but otherwise incorporates

no additional layers with significant cost. Evaluating a neural network modified with our approach

should require no greater computational resources than a network that does not make predictions

across scales.

In testing on two testbed fluid models, we observe that this approach enables significantly

smaller models to attain the accuracy of larger networks, which could enable more efficient

architectures in downstream tasks, reducing the cost of deploying a neural network as part of

a production model. We also observe improvements in stability. We believe this is due to an

increased emphasis on coarser-scale features, reducing reliance on fine-scale details which may

not be fully intact after a few recurrent evaluation steps. We believe this approach can support
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more efficient and more successful applications of neural networks to subgrid forcing prediction.

4.1 Project Background

Typical deep learning methods across a wide range of application areas make use of end-to-end

learning. In such approaches, a neural network is trained such that it receives feedback which

matches the requirements of the full task. However, in some applications this sort of training

is impractical or even impossible. Applications of learning to scientific computing tasks—in

particular to simulation problems—frequently involve real-world dynamics which may not be

fully modeled or understood, or existing simulation software which is difficult to integrate with

learned models and which does not admit backpropagation through simulation time steps. In

these cases, training uses strictly offline data (either pre-computed or derived from real-world

observations), while applying the network online after training. As a result, the network may

learn behaviors which are successful on the offline training task, but which are unstable in online

evaluation [26].

In this work we examine an approach to decomposing prediction tasks into separate prediction

problems across scales, encouraging the network to more completely exploit available multiscale

information. Networks making separate cross-scale predictions are trained separately and not

end-to-end. We observe that this approach to offline training improves model stability, and

improves accuracy in smaller architectures, allowing more efficient evaluation when integrated

into end applications. While we believe that our approach may have wider applicability, we

evaluate its performance on a set of subgrid forcing prediction tasks which arise in real-world

climate modeling applications.

Climate models, which simulate the long-term evolution of the Earth’s atmosphere, oceans,

and terrestrial weather, are critical tools for projecting the impacts of climate change around

the globe. Due to limits on available computational resources, these models must be run at a
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coarsened spatial resolution which cannot resolve all physical processes relevant to the climate

system [24]. To reflect the contribution of these subgrid-scale processes, closure models are added

to climate models to provide the needed subgrid-scale forcing. These parameterizations model

the contribution of these fine-scale dynamics and are critical to high quality and accurate long

term predictions [25, 78]. A variety of approaches to designing these parameterizations have been

tested, ranging from hand-designed formulations [91], to modern machine learning with genetic

algorithms [78], or neural networks trained on collected snapshots [29, 58, 70, 110], or in an online

fashion through the target simulation [26].

The problem of predicting these forcings is inherently multiscale; the subgrid dynamics which

must be restored represent the impact of the subgrid and resolved scales on each other. Closure

models for climate are designed to be resolution-aware [38], but even so existing deep learning

subgrid models do not explicitly leverage the interactions between scales, leaving it to the neural

networks to implicitly learn these relationships. Our approach makes these interactions explicit.

4.2 Approach

Recent methods for image generation have made use of diffusion modeling where an image is

sampled from a learned distribution over several steps starting from noise, rather than training a

network to produce the result in one shot [92, 108]. One can view this process as gradually filling

in fine-scale details based on earlier coarse-scale features. This approach has found a wide variety

of successful applications. Many simulation tasks, in which states must be evolved in time, have

dynamics which might benefit from this approach—namely dynamics in which neighboring scales

influence each other and in which coarser-scale features may be easier to predict and slower to

evolve than finer-scale details.

While these approaches have been successful and provide a useful inductive bias, this sampling

method is generally quite expensive. Many applications of machine learning to existing simulation
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tasks insert a learned model as a component of an existing simulation and evaluate the learned

model in each simulation step. In these applications, further adding multiple diffusion steps

may be prohibitively costly. In this work, we try to keep many of the benefits of this generative

approach while reducing the cost of evaluation by reducing the number of inference steps. More

specifically, we divide the state into two scale ranges: a “high resolution” segment containing the

fine scale details and a “low resolution” segment containing only the coarse scales. Our prediction

process first produces a coarse, low resolution version of the target field, then a second step uses

this initial prediction to fill in the fine scale details, yielding a high resolution output.

In particular, when predicting a field 𝑆x we can try to predict the quantity directly, depending

on the current simulation state x. These quantities are often uncertain, but for our purposes, we

will use deterministic models to predict the expectation of our target quantities. However, our

approach could be extended to stochastic models in several natural ways. A deterministic neural

network 𝑓𝜃 can be trained to perform this task directly:

𝑓𝜃 (x) ≈ E[𝑆x|x] (4.1)

In our multiscale approach we first predict a low resolution version of the target field, 𝑆x lr and

condition on this prediction while producing the full resolution output:

𝑓 downscale𝜃1 (x) ≈ E[𝑆x lr|x] (4.2)

𝑓 buildup𝜃2 (x, 𝑆x lr) ≈ E[𝑆x|x, 𝑆x lr] (4.3)

We use the estimated expectation from 𝑓 downscale𝜃1 (x) in Equation 4.2 to provide a realization of

𝑆x lr in Equation 4.3. Further scale segments could be introduced if desirable for a particular task.

For our application, the low resolution field is produced by low-pass filtering the full target, and

resampling at a lower resolution, yielding a field with smaller dimensions. That is, 𝑆x lr ≜ D ∘F(𝑆x)
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for a low-pass spectral filter F and a resampling operation D.

To evaluate our multiscale approach, we consider the problem of learning subgrid forcings for

fluid models, a problem which arises in climate modeling applications. In particular, we use two

idealized simulations, as introduced in Section 3.2: (1) a two layer quasi-geostrophic model QG,

and (2) Kolmogorov flow KF. Each target simulation autonomously evolves a set of state variables

through time and can be evaluated with a configurable grid resolution. We refer to a general state

variable x in the following introduction. In each system states may be ported to lower resolutions

by coarse-graining and filtering.

For each system we generate ground truth data by running the model at a very high (“true”)

resolution. This produces trajectories xtrue(𝑡) and time derivatives 𝜕xtrue(𝑡)/𝜕𝑡 . Next we generate

training data at a high resolution by applying a system-dependent coarsening and filtering operator

𝐶 giving variables x̄ ≜ 𝐶(x). Given nonlinearities in the target simulations, this coarsening does

not commute with the dynamics of the models. To correct for this we must apply a subgrid forcing

term 𝑆x to the evolution of each state variable:

𝑆x ≜
𝜕x
𝜕𝑡

− 𝜕x̄
𝜕𝑡
. (4.4)

Note that formally the forcing 𝑆x is a function of the state xtrue. In a climate modeling application

we do not have access to this variable and so we train a model 𝑓𝜃 ( ̄x) ≈ 𝑆x which may be stochastic.

We continue this process, introducing another downscaling1 operator 𝐷 and upscaling 𝐷+.

See Equation 4.7 for the full definition. Taking xhr ≜ x̄ as our high resolution samples, we produce

low resolution samples xlr ≜ 𝐷(xhr) and 𝑆x lr ≜ 𝐷(𝑆x). This allows a decomposition x = 𝐷+𝐷x+ x′

where x′ are the details removed by 𝐷. Our experiments thus involve three resolutions, from fine

to coarse: a “true” resolution; a high resolution, hr; and a low resolution, lr. The closures 𝑆x try to

update hr to match the “true” resolution.
1We use “downscale” and “downscaling” to refer to coarsening a target variable, removing finer scales.
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Just as predicting 𝑆x from xtrue is fully deterministic, while predicting it from xhr involves

uncertainty, we anticipate a similar trend to hold for 𝐷(𝑆x). In other words, predicting 𝐷(𝑆x)

from xhr should be easier than predicting 𝐷(𝑆x) directly from xlr. Then, using this coarse-grained

prediction 𝐷(𝑆x) as a foundation, we can learn to predict only the missing details and add them.

This process splits the problem of predicting 𝑆x into two phases: (1) a “downscale” prediction

to form 𝐷(𝑆x), and (2) a “buildup” prediction combining xhr and 𝐷(𝑆x) to predict 𝑆x, adding the

missing details. This decomposition takes advantage of self-similarity in the closure problem to

pass information between the coarse and fine scales and improve predictions.

4.3 Experiments

To test this approach to predicting subgrid forcings we compare our multiscale approach against

single-scale baselines. We select the “high” resolution size in each target system (QG or KF) so

that the system requires closure (there are sufficient dynamics below the grid-scale cutoff), but

does not diverge [78]. Further details on each system are provided in Section 3.2.

4.3.1 Test Systems

We carry out our experiments on two systems: a two-layer quasi-geostrophic system, and a

single layer Kolmogorov Flow system which is a configuration of Navier-Stokes as described in

Section 3.2. Using these systems we carry out two sets of experiments: a small set of “separated”

experiments carried out on the QG model only (these neural networks are trained and evaluated

offline both with and without access to the additional multiscale information); and “combined”

experiments which run on both the QG and KF models which provide an implementable closure

model trained end to end. In both cases we compare results against networks of equivalent

architectures without the additional multiscale structure.

For each experiment, a set of feedforward convolutional neural networks is trained and
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evaluated separately. We train several independently-initialized networks to capture the variance

due to initialization. These experiments also compare the performance of two architectures, a

“small” architecture and a “large” architecture which are modifications of networks used in past

research [29]. The small architecture for the combined experiments was chosen as the result of an

architecture search, discussed below. Results are included in Section 4.4, and information on the

network architectures and training procedure is included in Appendix B.

4.3.2 Separated Experiments

We first carry out a set of preliminary tests on the quasi-geostrophic system only. In these

experiments, we examine the accuracy of the learned forcings offline (that is, without rolling out

trajectories) while separating the two steps in our multiscale prediction process. In particular, we

examine the ability of networks to learn the downscale and buildup prediction tasks, and check

for the advantages we intuitively expect from the additional multiscale information.

In these experiments, we train neural networks separately to predict quantities between

different scales. In particular we train “downscale” networks which predict only the low-resolution

components of the target forcing quantity while observing a high resolution state, and “buildup”

networks which work in the opposite direction, predicting higher-resolution forcing details with

access to the low-resolution forcing. These illustrate some of the advantage provided by the

additional information and measure performance on snapshots only (offline testing) as these

separated networks do not provide a fully-implementable closure model, since they require access

to an oracle to provide the additional input features.

Because these experiments target the QG system the target quantity is the potential vorticity

𝑞. Each trained network receives a 𝑞 input at the active (high resolution) simulation scale and

predicts an 𝑆𝑞 output at the target scale.
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𝑞hr

≈ 𝑆lr

𝑓 downscale𝜃

𝐷effective

(a) Downscale prediction

𝑞lr ≈ 𝑆lr
𝐷+

𝑓 across𝜃

𝐷
effective

(b) Across prediction

Figure 4.1: Downscale vs. across separated prediction tasks. The networks referenced in Equa-
tion 4.5 are combinations of an inner network 𝑓𝜃 with the fixed rescaling operators 𝐷, 𝐷+. The
overall prediction is indicated with a dashed line.

Downscale Prediction

We compare the task of predicting 𝑆lr ≜ 𝐷(𝑆hr) with access to high resolution information 𝑞hr or

restricted to low resolution 𝑞lr. This provides an estimate of the advantage gained by predicting

the target forcing with access to details at a scale finer than that of the network’s output. We train

two networks 𝑓𝜃 with the same architecture to perform one of two prediction tasks:

𝐷 ∘ 𝑓 downscale𝜃 (𝑞hr) ≈ 𝑆lr and 𝐷 ∘ 𝑓 across𝜃 ∘ 𝐷+(𝑞lr) ≈ 𝑆lr. (4.5)

To ensure that the convolution kernels process information at the same spatial size, and differ only

in the spectral scales included, we first upsample all inputs to the same fixed size using a spectral

upscaling operator 𝐷+ described below. The full prediction process including the re-sampling

operators is illustrated in Figure 4.1.

Buildup Prediction

We also test a prediction problem in the opposite direction, predicting finer-scale details with

access to lower-resolution predictions, similar to a learned super-resolution process used in recent

generative modeling works [35, 90]. We train neural networks:

𝑓 buildup𝜃 (𝑞hr, 𝐷+(𝑆lr)) ≈ 𝑆hr − 𝐷+(𝑆lr) and 𝑓 direct𝜃 (𝑞hr) ≈ 𝑆hr , (4.6)
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𝑞hr
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≈ 𝑆hr𝐷+

𝑓 buildup𝜃

(a) Buildup prediction

𝑞hr ≈ 𝑆hr𝑓 direct𝜃

(b) Direct prediction

Figure 4.2: Buildup vs. direct separated prediction. The networks in Equation 4.6 are combinations
of the networks 𝑓𝜃 with the indicated fixed operations. In Figure 4.2a 𝑓𝜃 predicts the details which
are combined with 𝑆lr from an oracle.

where 𝑆hr − 𝐷+(𝑆lr) are the details of 𝑆hr which are not reflected in 𝑆lr. The additional input 𝑆lr is

given by an oracle using ground truth data in the training and evaluation sets.

This experiment estimates the value in having a high-quality, higher-confidence prediction

𝑆lr, in addition to 𝑞hr, when predicting the details of 𝑆hr. That is, the experiment estimates the

value in starting the prediction of 𝑆hr by first locking in a coarse-grained version of the target,

and separately enhancing it with finer-scale features. The two prediction tasks are illustrated in

Figure 4.2.

Rescaling Operator

In each multiscale prediction task, we apply the same scaling operator𝐷 (with associated upscaling

𝐷+). This operator is built around a core spectral truncation operation, D. For an input resolution

hr and an output resolution lr, this operator truncates the 2D-Fourier spectrum to the wavenumbers

which are resolved at the output resolution, then spatially resamples the resulting signal for the

target size lr. These operators also apply a scalar multiplication to adjust the range of the coarsened

values. Below, 𝜌 is the ratio of the scale dimensions 𝜌 ≜ hr/lr.

𝐷 ≜ 𝜌−2D and 𝐷+ ≜ 𝜌2D𝑇 . (4.7)
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Note that 𝐷+ is a right side inverse 𝐷𝐷+ = 𝐼 , and that 𝐷+ is the pseudoinverse 𝐷+ = 𝐷(𝐷𝐷𝑇 )
−1

because DD𝑇 = 𝐼 . This operator omits the filtering F performed as part of coarsening operator 𝐶

to avoid numerical issues when inverting the additional spectral filtering. This operator was used

for the multiscale experiments with both QG and KF systems and is the operator referenced in

Figure 4.1 and Figure 4.2.

4.3.3 Combined Experiments

In these experiments, we combine the networks trained in the “downscale” and “buildup” experi-

ments, passing the downscale prediction as an input to the buildup network. This removes the

oracle providing lower resolution predictions used to train the separate networks. In each test, we

choose two scale levels and first predict a coarsened version of the subgrid forcing at the lowest

resolution, then gradually enhance it with missing scales using the buildup process discussed

above. These tests are carried out for both the quasi-geostrophic and Kolmogorov flow systems.

The overall flow of this combined approach is illustrated in Figure 4.3 along with the associated

baseline architecture.

Because this configuration yields an implementable closure model, we perform our evaluations

online. That is, while the networks are trained on snapshots, we evaluate the accuracy and

stability of the forcing by rolling out multiple trajectories using the trained networks. As in the

separated experiments we consider two network architectures, a “large” architecture based on

other works and a “small” architecture with fewer layers and smaller convolution kernels. The

small architecture was based on the results of an architecture search discussed in Appendix B.

This allows us to compare how architectural capacity may affect the behavior and benefits of our

multiscale approach.

For these experiments we retrain new neural networks building out the training pipeline

sequentially. We first train the first, downscale, network, and then fix its weights and use its

outputs to train the subsequent buildup network. In this way, later networks see realistic inputs
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xhr

𝑆x lr ≈

𝑓 downscale𝜃1 𝐷
+𝐷+

𝑓 buildup𝜃2

≈ 𝑆x hr

(a) Full combined prediction flow

xhr

+

𝑓 step 1
𝜃1 𝑓 step 2

𝜃2
≈ 𝑆x hr

(b) Structure of the baseline for the combined prediction task

Figure 4.3: Flow for the combined prediction experiments. For the full combined flow each network
𝑓𝜃 is trained sequentially, and earlier weights are frozen and used to train networks later in the
pipeline. The overall flow no longer requires an oracle for any additional inputs. Note also that
the networks in the baseline flow in Figure 4.3b have the same residual prediction structure. The
baseline network is trained end-to-end and differs only in that it misses the additional supervision
from the multiscale training. The variable x represents the differing scalar fields for the QG and
KF systems.
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during training rather than unrealistically clean data from a training set oracle.

For a combined prediction across two scales lr and hr, we predict 𝑆x hr from only xhr following

the procedure below:

̃𝑆x lr ≜ 𝐷 ∘ 𝑓 downscale𝜃1 (xhr) ≈ 𝑆x lr

𝑆x hr ≈ 𝑓 buildup𝜃2 (xhr, 𝐷+( ̃𝑆x lr)) + 𝐷+( ̃𝑆x lr).
(4.8)

The quantity ̃𝑆x lr is an approximate neural network output used in subsequent predictions.

Equation 4.8 composes the prediction tasks described in Equation 4.5 and Equation 4.6. See

Figure 4.3a for an illustration of the above flow. Each network 𝑓𝜃 is trained separately against

either 𝑆x lr or 𝑆x hr as appropriate.

The networks are evaluated on their ability to produce a stable trajectory when rolled out,

and their ability to correct the energy spectrum—adding and removing energy across spectral

scales as needed to correct issues from coarse-graining. For these experiments, we examine the

trends in the system’s total kinetic energy across time and distributions in the spectral error of

the system, computed by adding errors in the average kinetic energy spectrum of a trajectory.

These measurements are distinct from those used to compare the quality of snapshots used for

the offline tests conducted as part of the separated experiments.

4.4 Results

In this section we describe the results of our experiments and measurements. Details of the

approach taken in each experiment are provided in Section 4.3.
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4.4.1 Separated Experiments

For both the downscale and buildup prediction tasks, we train three neural networks. Once trained,

we evaluate their performance on a held out evaluation set measuring performance with three

metrics: a mean squared error (MSE), a relative ℓ2 loss, and a relative ℓ2 of the spectra of the

predictions.

The MSE is a standard mean squared error evaluated over each sample and averaged. The other

two metrics are derived from previous work evaluating neural network parameterizations [70]

(where they were called Lrmse and LS). The metrics in this previous work were originally designed

to measure performance for stochastic subgrid forcings. Here we use the two metrics from that

work which do not collapse to trivial results for deterministic models. These are defined as:

Rel ℓ2 ≜
‖𝑆 − ̃𝑆‖2
‖𝑆‖

and Rel Spec ℓ2 ≜
‖sp(𝑆) − sp( ̃𝑆)‖2

‖sp(𝑆)‖2
(4.9)

where 𝑆 is the true target forcing, ̃𝑆 is a neural network prediction being evaluated, and sp is the

isotropic power spectrum. See calc_ispec in PyQG for calculation details [1]. Each of these

three metrics is averaged across the same batch of 1024 samples selected at random from the set

of held out trajectories in the evaluation set.

Table 4.1 shows the results for the downscale experiments, comparing against “across” pre-

diction which accesses only coarse-scale information. In these results we observe an advantage

to performing the predictions with access to higher-resolution data (the “downscale” columns),

suggesting potential advantages and a decrease in uncertainty in such predictions.

Results for experiments examining prediction in the opposite direction—predicting a high-

resolution forcing with access to a low-resolution copy of the target from an oracle—are included

in Table 4.2. We also observe an advantage in this task from having access to the additional

information. The low resolution input in the buildup experiments yields lower errors on average

at evaluation. This advantage is greater when the additional input is closer in scale to the target
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NN Size Metric 128 → 96 128 → 64 96 → 64

Downscale Across Downscale Across Downscale Across

Small
MSE 0.054 0.072 0.002 0.006 0.032 0.058
Rel ℓ2 0.317 0.364 0.394 0.629 0.348 0.469
Rel Spec ℓ2 0.133 0.145 0.154 0.471 0.154 0.254

Large
MSE 0.038 0.057 0.002 0.006 0.024 0.052
Rel ℓ2 0.259 0.316 0.335 0.595 0.297 0.436
Rel Spec ℓ2 0.092 0.129 0.125 0.443 0.103 0.212

Table 4.1: Evaluation results for downscale vs. across generation. In all metrics, lower is better.
The numbers in the first row of the table heading show the different scales involved in both
prediction tasks. The results contributing to the MSE averages in this table are illustrated in
Figure 4.4a.

NN Size Metric Buildup Buildup Direct Buildup Direct
64 → 128 96 → 128 128 64 → 96 96

Small
MSE 0.094 0.033 0.097 0.060 0.108
Rel ℓ2 0.314 0.187 0.319 0.251 0.333
Rel Spec ℓ2 0.138 0.054 0.139 0.095 0.162

Large
MSE 0.057 0.019 0.062 0.037 0.071
Rel ℓ2 0.242 0.141 0.251 0.195 0.268
Rel Spec ℓ2 0.074 0.029 0.084 0.041 0.091

Table 4.2: Evaluation results from buildup vs. direct experiments. In all metrics, lower is better.
The numbers in the second row of the table heading show the different scales involved in both
prediction tasks. The results contributing to the MSE averages in this table are illustrated in
Figure 4.4b.

output. The predictions building up from 96 × 96 to 128 × 128 have lower errors than those

which access an additional 64 × 64 input. This is not unexpected given that the input with nearer

resolution resolves more of the target value, leaving fewer details which need to be predicted by

the network.

The results for both separated experiments (those reported in Table 4.1 and Table 4.2) for the

MSE metric are illustrated in Figure 4.4.
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Figure 4.4: Evaluation results from both of the separated experiments for the MSE metric. These
are the same numbers which are reported as averages in Table 4.1 and Table 4.2. The plot here
shows the three samples—one from each trained network—used to compute the means.

4.4.2 Combined Experiments

We also carry out tests comparing the performance of networks using our multiscale prediction

approach to a network predicting only at one scale throughout. Figure 4.3 illustrates the overall

flows of these networks. In the combined task, each independent cross-scale network is trained

separately in phases. Earlier networks in the pipeline are trained and have their weights frozen

and these are used to produce inputs during the training of networks later in the pipeline. The

baseline for this configuration is trained end-to-end and has the same residual structure and

number of weights as the multiscale network, but without any enforced predictions across scales.

This setting produces a trained parameterization network which can be applied to a real

simulation and tested online. As a result, we evaluate these networks by rolling out trajectories

from a held out test set. These are compared against a reference trajectory which was originally

produced at a “true” resolution. Because these systems are chaotic we do not expect to reproduce

exact states in these trajectories, particularly over the long time horizons involved in climate

modeling. Consequently, we do not examine snapshot errors over long time horizons. Instead

we compare statistical properties of these trajectories including their total kinetic energy (which

gives a sense of stability), errors in the trajectory’s energy spectrum (providing a sense of the
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quality of the parameterization), and for the KF system, the vorticity decorrelation time. Overall,

we find that the multiscale approach improves the stability of the learned parameterizations while

also permitting smaller neural network architectures to be used for these tasks. Results of our

experiments for the QG and KF systems are described below.

Quasi-Geostrophic Results

For the QG system we simulate the evolution of a held out trajectory and conduct tests over four

independently trained neural networks and 16 held out trajectories for each network. For these

tests we are concerned with two aspects: the stability of the system running with the neural

network closure, and the quality of the resulting parameterization—in particular the extent to

which it improves the energy spectrum of the trajectory.

Figure 4.5 shows variation in the mean kinetic energy over time. We intend this as a rough

measure of the stability of the parameterized system providing a rough idea of whether the system

is under- or over-energized which can lead to instability and eventual collapse in the system. The

QG system is simulated at a grid size of 96 × 96 and 128 × 128 with separate sets of neural networks

trained for each case. The simulations at a size of 96 have a greater range of unrealized dynamics

leading to a more challenging closure problem. We note in particular that the trajectories which

display instability are those using networks without the multiscale component. The smaller

networks for the system at size 128 all display general kinetic energy stability; however, with

only kinetic energy statistics this is difficult to distinguish from a network which applies no

parameterization at all. The QG system is stable without a parameterization due to a fixed spectral

filter which attenuates high frequencies, and the target parameterization values have zero mean

which can in some cases lead a network to learn to apply no correction which still yields a stable

trajectory.

To distinguish these cases we also examine the spectral error of these trajectories, distributions

of which are plotted in Figure 4.6. We also run trajectories with varying values for 𝛼 which
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(a) Scale 96—multiscale networks predict between 96 ← 64
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(b) Scale 128—multiscale networks predict between 128 ← 96

Figure 4.5: Time evolution of mean kinetic energy for the QG system simulated at different scales.
Trajectories are simulated for 16 held out trajectories using 4 independently-trained networks.
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Figure 4.6: Spectral errors for trained architectures averaged over 5 400 steps. Increasing 𝛼 values
reduce the sharpness of the QG model’s filter, which in turn reduces built-in model stability. In
each row, the separate panels show values for the two layers of the QG system.
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controls the sharpness of the QG model’s internal spectral filter (see Equation 3.9). Higher values

of 𝛼 reduce the attenuation of higher frequencies, making the QG model less stable and making

errors in the parameterization more evident over time. The results in this figure suggest that the

multiscale training generally improves model performance. For large architectures on the system

at scale 128, multiscale training reduces instabilities. For the results on scale 96—where more

parameterization is required—adding multiscale training allows the small architecture to achieve

the same results as the large architecture, allowing for a smaller more efficient network to yield a

more accurate and stable parameterization.

Kolmogorov Flow Results

In addition to our experiments on the QG model we also test our method on a Kolmogorov Flow

(KF) system. Unlike the QG model, the KF system does not include an internal filter. This results

in a simulation which can be highly unstable, and many of the learned parameterizations we

trained and tested did not successfully complete a stable trajectory. To reduce this problem we

modify our training procedure to inject Gaussian noise to inputs in order to encourage the learned

parameterizations to be stable to corruptions in the system states. This noise has mean zero and a

configurable scale parameter 𝛽 . Further discussion of our experiments adjusting this parameter

are included later in this section.

Using the best calibrated noise scales, we train a series of small architecture networks both

with multiscale training and with the single scale baseline architecture. The large architectures

displayed very high instability irrespective of the noise level. As a result further results on the KF

in this section are produced for the small architecture only. An illustration of this noise calibration

issue is included in Appendix C. For each of these networks we roll out a series of trajectories

online. Figure 4.7 shows the results of this online testing for the KF experiments. Results are

averaged across 10 trained networks of each type and 16 held out test trajectories for each.

Figure 4.7a reports the observed decorrelation time in the vorticity channel 𝜔 of the KF system.
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(a) Vorticity decorrelation times from online exper-
iments for the KF system. A longer decorrelation
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Figure 4.7: Results of online experiments for Kolmogorov Flow (KF) system. Values are computed
over a collection of 10 trained networks evaluated on 16 reference trajectories each.

Results are in simulation time (out of a full trajectory length of 70.0). Longer decorrelation times

reflect a parameterization which better reproduced the statistical properties of the reference tra-

jectory even though, due to the chaos in these systems, the trajectories will eventually decorrelate.

We note that the multiscale runs have a longer decorrelation time than both the baseline network

and the unparameterized system with the multiscale network using two scales closer in size having

a slightly better performance.

Trends in the evolution of kinetic energy over time are plotted in Figure 4.7b. The lines in

this figure are the mean kinetic energy across the test trajectories and networks and the shaded

regions are a 1𝜎 range. In these results, the multiscale networks remain more stable over time and

show smaller variance at later time steps. All networks prevent the significant energy loss of the

unparameterized trajectories even though the baseline network displays significant instability.

The results above were produced using separately chosen values of the training noise level 𝛽 ,

one noise level for each network architecture and set of predictino scales. The values of 𝛽 were

set as a fraction of the empirical standard deviation of input values from the training set. Higher

noise levels injected during training reduce instability but decrease parameterization accuracy,
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Figure 4.8: Offline noise calibration for the Kolmogorov Flow (KF) system. Solid lines are a mean
validation loss observed during network training and shaded regions show a 1𝜎 range. The large
architecture shows significantly greater variance than the small architecture. Increasing noise
scale during training increases the validation loss but can improve robustness against noise during
online rollouts.

while lower noise levels fail to correct the problem of instability during online rollouts.

Figure 4.8 and Figure 4.9 show measurements used in this calibration. We select our target

noise level based in part on the offline network validation losses and online kinetic energy errors

observed after training. We also show results for a system scale of size 64 as larger state sizes did

not have sufficient unresolved dynamics to close on the KF system. Each network is provided the

two velocity components 𝑢, 𝑣 as well as a vorticity 𝜔 computed from these two.

Based on the results in Figure 4.8 we see that higher noise levels reduce variance in offline

validation quality, but can increase instabilities in online testing as evidenced by the kinetic energy

errors in Figure 4.9. As a result we selected a noise level of 0.035 for baseline runs, 0.075 for

multiscale runs between scales 64 ← 48 and 0.1 for 64 ← 32 runs (the lowest kinetic energy

error point in each curve). These values were used to train the networks used in the further KF

experiments discussed earlier in this section.
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Figure 4.9: Online noise calibration for the KF system (small architecture only). Increasing noise
scale eventually reduces the networks’ ability to correct kinetic energy. We select the lowest
online kinetic energy error point on each curve for each network as the noise scale used during
training.

4.5 Conclusion

Our experiments in this work illustrate the potential advantages resulting from decomposing

the subgrid forcing problem into one across scales. In particular, our results show that this

decomposition improves stability and accuracy, especially for smaller network architectures. Such

improvements could support the deployment of machine learning methods to tasks which are

constrained by available computational resources, as is common in climate applications. Our

results show improvements made possible by structuring prediction tasks to expose important

structures of the task. For the fluid problems considered here, and in other tasks, a multiscale

decomposition is natural and makes use of links between scales in the model dynamics, and better

handles underlying uncertainty in the parameterization task.

In addition to using a multiscale decomposition in future learned parameterizations, future

work could explore other applications of this approach. In particular, this decomposition could be

advantageous for stochastic parameterizations; perhaps using a deterministic downscale prediction

as a foundation for later stochastic or generative outputs or further integrating the multiscale
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prediction into the network architecture to realize greater efficiency.
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Chapter 5

Live Offline Resampling for Stability

Despite recent projects to develop new models in frameworks supporting automatic differenti-

ation [88, 103] most production climate and ocean models do not support computing gradients

through simulation steps [27]. As a result, neural network models trained to interact with these

simulations in online rollouts must nevertheless be trained offline on ground truth snapshots [76].

This results in a fundamental mismatch between the task at training time, and the task at evalu-

ation. In particular, networks trained offline are often only exposed to clean ground truth data

and never to errors which will certainly accumulate over multiple time steps when rolling out a

trajectory. For many tasks, this can lead to instability as the neural networks may produce lower

accuracy results when exposed to these out-of-distribution samples, compounding the problem by

pushing the states further out of distribution [26, 55].

One approach which has long been used is to regularize training by adding noise to training

inputs [8, 21, 89]. This approach has been used in a variety of learned parameterization works

and has been applied to simulation problems more broadly [5, 71, 93]. In this approach a dataset
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𝐷base of input and target pairs (𝑥, 𝑦) is augmented to include additional samples

𝐷base = {(𝑥𝑖, 𝑦𝑖)}
𝑁
𝑖=1 (5.1)

𝐷noise = {(𝑥𝑏(𝑖) + 𝜖𝑖, 𝑦𝑏(𝑖))}
𝑁 ′

𝑖=1 (5.2)

where the datasets have 𝑁 and 𝑁 ′ samples, respectively, and each 𝜖𝑖 is an independently sampled

noise mask. Often a single data point in 𝐷base may be used multiple times with separate masks 𝜖.

The mapping 𝑏 selects the base sample from 𝐷base. Depending on the task, different distributions

for 𝜖 may be chosen; however, a common choice is an isotropic Gaussian 𝜖 ∼ N (0, 𝜎2𝐼 ) with the

variance tuned for the specific problem. The augmentation detailed in Equation 5.2 is the approach

used in Section 4.4.2 to stabilize the learned parameterizations for the Kolmogorov Flow problem.

In numerical simulation problems, if a network has been trained to apply additive updates to the

right-hand side function of a model (that is 𝑦𝑖 = ̇𝑥𝑖, see Section 2.3) we might also want to model

outputs to correct for these perturbations and drive the simulation to remove them:

𝐷correcting = {(𝑥𝑏(𝑖) + 𝜖𝑖, 𝑦𝑏(𝑖) − 𝛼𝜖𝑖)}
𝑁 ′

𝑖=1 (5.3)

where 𝛼 is a scaling parameter affecting how aggressively the noise is removed. It is often chosen

as a fraction of the time step of the system’s numerical integrator, so that the network is trained

to remove these errors over a chosen number of time steps [71].

The structure of errors produced by rolling out a simulation with a neural network parameter-

ization does not follow a Gaussian distribution. Furthermore, these errors may also be dependent

on the simulation states themselves, with certain simulated behaviors leading to higher errors

than others. One method we consider here to capture this effect is to perturb the training inputs

using the neural network itself. That is, given a neural network 𝑓𝜃 trained to parameterize a

simulation, we can combine it with the base model and a time-stepping scheme to produce a
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combined operator 𝑇𝜃 to advance the resulting dynamical system through discrete time steps:

𝑥̃𝑖,𝑡+𝐿 ≜ 𝑇 𝐿𝜃 (𝑥𝑖,𝑡) ≈ 𝑥𝑖,𝑡+𝐿 (5.4)

where 𝑥𝑖,𝑡 is a simulation state from a reference trajectory 𝑖 and discrete time step 𝑡 , and the

superscript 𝐿 represents 𝐿 successive applications of the operator 𝑇𝜃 . Using this we can produce a

dataset augmented with neural network perturbations:

𝐷net = {(𝑇 𝐿𝜃 (𝑥𝑏(𝑖),𝑏′(𝑖)−𝐿), 𝑦𝑏(𝑖),𝑏′(𝑖))}
𝑁 ′

𝑖=1
(5.5)

where 𝑏 and 𝑏′ are mappings which select the base trajectory index and ending time step in this

trajectory, respectively. The augmentations here can be computed starting from any trajectory

and step such that necessary reference data exists at both the start and end of the length 𝐿 rollout.

We propose a method of constructing datasets of this type during neural network training,

and keeping them updated as the network itself is trained. We find in experiments that using

the network’s own errors to perturb training data results in improvements in online evaluation

stability over the more common technique of adding Gaussian noise. This method provides some

of the benefits of online training, even in cases where the target simulation makes actual online

training infeasible.

Our approach of using the network’s own errors to augment training is similar in spirit to

the “pushforward trick” [11]. In that approach, stability is encouraged by taking short, two step

online rollouts during training. A stability loss term is added consisting of:

L(𝑇𝜃 (𝑥𝑡 + 𝜖), 𝑥𝑡+1) (5.6)

where 𝜖 is chosen such that

𝑥𝑡 + 𝜖 = 𝑇𝜃 (𝑥𝑡−1). (5.7)
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That is, the first time step is used to compute a perturbation of the state 𝑥𝑡 and the second is used

to compute the training sample. Gradient updates are propagated only through the second time

step.

Our technique is also related to previous experiments with coupled learning [76]. In previous

work a pre-trained learned subgrid closure is updated in a separate training phase making reference

to a ground truth simulation (running at the “true” resolution as described in Section 3.1). The

forcing added by the network is supervised so that it more closely matches the evolution of the

true-resolution model, which is also stepped forward. In addition to different treatment of the

updates during training, this approach requires time-stepping the ground truth model, which

significantly increases the cost in many applications. By contrast, the method proposed here uses

only the coarsened, parameterized model making it possible to gather a larger number of samples

more efficiently, and without requiring a separate non-augmented pre-training phase.

The approach we consider here permits the use of significantly longer rollouts, and does not

require the ability to propagate gradients through the model time steps. This latter advantage

makes our approach usable with existing climate models and other simulations which are not

automatically differentiable.

5.1 Approach

In implementing this network perturbation and constructing a training set 𝐷net there are a few

concerns which must be addressed. In particular: (1) the cost of computing a large, diverse range

of perturbed samples usable for training, and (2) the “freshness” of these samples. The freshness

concern arises from the fact that the behavior of the neural network evolves during training. As a

result, errors made by the network early on in learning will not be as relevant toward the end.

Therefore very old samples may no longer help improve—and could even harm—stability and

generalization. In this section, we detail our approach to implementing this perturbation scheme
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and how we attempt to address these concerns.

In order to ensure good coverage of a representative range of inputs, typical neural network

training tasks compile relatively large datasets 𝐷base. This process is typically completed once,

often at significant upfront cost. Attempting to construct a network-perturbed set 𝐷net of a

similar size during training is likely to be prohibitively expensive, even with a relatively short

rollout length 𝐿. To reduce this cost we do not fill the set 𝐷net at once, but instead add samples to

it gradually, computing a few rollouts after each training epoch and drawing training samples

uniformly from the union of the base dataset and perturbed dataset: 𝐷 = 𝐷base ∪ 𝐷net.

Even so, if 𝐷base is very large, or if the computational cost of adding a sample to 𝐷net is high,

it may still be impractical to achieve a proportion of network-perturbed samples in each training

batch sufficient to have a meaningful impact on training. We reduce this cost by treating both𝐷base

and 𝐷net as multisets and adding samples to 𝐷net with a multiplicity such that a batch sampled

uniformly from its multiset union with 𝐷base features a significant number of elements drawn

from 𝐷net.

Adding samples to 𝐷net gradually over the course of training already ensures the presence of

at least some samples drawn after more recent training epochs. However, we further enhance this

ratio by periodically removing old samples from 𝐷net. To simplify the implementation and avoid

the need to track the age of each sample independently, we implement this by splitting 𝐷net into

two multiset pools 𝐷net = 𝐷net1 ∪ 𝐷net2. We begin by first inserting samples into one of these

subsets and periodically we switch the active subset receiving new samples. When we switch

to a new active set we first clear it, deleting all samples it contains. In this way we periodically

clear the subset containing the oldest samples and gradually replace them with fresher data. This

also produces, effectively, an annealing schedule, altering the proportion of clean and perturbed

samples in each batch as training progresses.

In order to evaluate the impact of the network perturbations, we compare the evaluation

performance of networks trained using our new approach against that of networks trained with
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Figure 5.1: Observed error variances for each input channel as a function of rollout length. Values
were computed using a set of calibration networks. Variances are computed separately for 𝑢 and
𝑣 , the two directional components of the velocity state.

Gaussian noise and with no perturbations. We inject Gaussian noise as in Equation 5.2, but

we choose the variance 𝜎2 such that it matches the empirical variance of errors produced by

fully-trained networks after a rollout of length 𝐿. In this way we attempt to compare the impact

of the structure of the noise and not its scale. With this calibration, we can view the rollout length

𝐿 as determining a noise level. Longer rollouts are expected to produce larger errors both for

network and Gaussian perturbations.

5.2 Experiments

We evaluate performance on the Kolmogorov flow dataset used in Chapter 4 and described in

Section 3.2.2, using the small network architecture described in that section and detailed as

“psm4pmd8” in Section B.2 without the internal multiscale prediction. We follow the same training

procedure described in Section B.2, namely each network is trained for 150 epochs, each consisting

of 374 training steps of 32 samples each. We use the Adam optimizer with 𝜖 = 0.001 and follow a

cosine annealing schedule for the learning rate of 7.5 × 10−4.
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Figure 5.2: Sample counts in each portion of the training set, both base and network-perturbed as
a function of the training epoch. At the peak of the network sample counts each training batch is
expected to be two-thirds perturbed samples.

Using this procedure we train a set of 10 networks, with Gaussian noise of variance 0.035

injected into 75% of training samples. This corresponds to the best-performing non-multiscale

networks selected in Section 4.4.2. From our validation set we select 75 time steps at random,

and compute rollouts from these steps using each network for 50 steps. Because each observed

simulation step is computed using 15 substeps at a smaller time step for purposes of numerical

integration, computing this trajectory involves 750 neural network evaluations. We gather all

perturbed states at each of these rollout time steps and compute empirical variances of their errors

against the reference trajectory. We use these calibrated variances as the corresponding noise

scale for a given network-perturbation rollout length. The results of these measurements are

plotted in Figure 5.1.

During training with network perturbations we add 375 perturbed steps after each training

epoch to 𝐷net with a multiplicity of 32. We begin adding perturbed samples after 6 warmup epochs

and every 50 epochs thereafter we switch underlying noise sample pools, emptying the pool with

the oldest samples. The number of samples in 𝐷base (575,064 samples) and the changing size of

𝐷net are plotted in Figure 5.2. This schedule leads to a sawtooth annealing schedule where at its
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peak two-thirds of samples in each training batch are expected to be perturbed. We follow this

same sample count schedule when training using Gaussian noise perturbation. That is, in place of

𝐷net we use a Gaussian-perturbed set 𝐷noise where each sample drawn from 𝐷noise is perturbed

with an independently-sampled Gaussian mask. Finally, we also train a family of networks with

no perturbations added. These networks follow the same training procedure, except samples for

each training batch are drawn only from 𝐷base.

Following these training procedures we train networks using both network and Gaussian

noise perturbations for rollout lengths and noise levels corresponding to 1, 5, 10, 25, and 50

steps. All networks are provided the two directional components of velocity 𝑢, 𝑣 and produce

parameterization corrections to be applied at each time step. For each noise level we train 5

networks from independent initialization. Once each network is trained it is evaluated on a

held-out set of 19 trajectories of 1141 steps each, corresponding to a range of 7.5 simulated seconds.

The results of these experiments are reported below.

5.3 Results

For each network we measure its performance on the set of evaluation trajectories by examining

the distribution of vorticity decorrelation times, and the error in its energy spectrum vs. the

spectrum of the reference trajectory.

The distribution of vorticity decorrelation times is plotted in Figure 5.3. At each evaluation

trajectory time step computed online with each trained network, we compute the correlation

coefficient of the vorticity field with that of the reference trajectory. The decorrelation time is the

number of simulated seconds after which this correlation drops below 0.5. A longer decorrelation

time indicates a parameterization which has succeeded to correct the dynamics to more closely

track those of the original ground truth simulation through a longer length of time. The set

of results for networks trained with no perturbations added is repeated in both the network
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Figure 5.3: Distribution of vorticity decorrelation times for networks trained with different noise
types and levels, as well as results for an unparameterized simulation. Higher values are better.

and Gaussian perturbation groups as an entry with a rollout length of 0. The unparameterized

simulation is an evaluation trajectory computed with no neural network parameterization of any

kind (or equivalently a parameterization which is zero at each step).

From the results in Figure 5.3 we observe that—regardless of perturbation type and noise level—

all parameterizations increase the decorrelation time. We also observe that the best-performing

noise levels for the network perturbations slightly outperform the best performance of the Gaussian

noise networks. The network perturbation’s maximum benefit appears to appear to have fully-

accrued at a relatively short rollout length of 5 steps, and even the longest rollout lengths do not

appear to harm performance in these measurements. For the Gaussian noise training, however,

achieving the peak benefit requires a relatively high noise level with values past that point harming

performance.

We also measure the error in the energy spectrum of each evaluation trajectory. For each

trajectory we average energy spectra across the first 1000 time steps. We then compute the

mean error between these and the analogous spectra of the reference trajectories and record the

distributions of these errors. These measurements reflect the errors both in total energy of the

trajectory and its misallocation across spectral scales. Errors in this measurement can be due to
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Figure 5.4: Mean spectral error distributions for networks trained with varying noise levels (rollout
lengths) and noise types, as well as an unparameterized simulation. Spectra are averaged across a
trajectory of 1000 steps and errors are computed against the reference spectra. Lower values are
better.

a trajectory having too much or too little energy, or accumulating it too heavily at a particular

wavenumber.

The distributions of these errors are plotted in Figure 5.4 divided by perturbation type and

noise scale. First we note spectral error of the unparameterized trajectories. These errors are

largely due to the uncorrected simulation becoming under-energized as illustrated in Figure 5.5.

We also note that parameterization networks trained without noise often harm the spectral error,

with large outliers. Some of these trajectories become unstable by the end of the rollout.

For the Gaussian noise training, we require a relatively high noise level before obtaining

improved errors, with the best performance being reached only at a level corresponding to 25

steps and with the highest noise level significantly increasing errors. We also note that the

Gaussian-trained networks persistently have some trajectories with large, outlier spectral errors

regardless of noise level.

By contrast, the network perturbation training reaches its peak error reduction for relatively

short rollouts of 5 steps, and even at the lowest nonzero noise level outliers are much better
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Figure 5.5: Kinetic energy time evolution for each noise type with the noise level chosen as that
yielding the best mean spectral error (see Figure 5.4). Gaussian noise uses a level of 25 steps and
the network sampling uses 5 steps. Solid lines are means over test trajectories and networks while
shaded regions represent 1𝜎 bounds.

controlled, with none observed to significantly exceed the median spectral error of the unparame-

terized system. This suggests that the network perturbation training does in fact improve network

stability and the quality of the parameterization at evaluation time. The best spectral error results

observed in our experiments come from network perturbation training.

Figure 5.5 illustrates the evolution of total kinetic energy across evaluation time steps. The

values for network and Gaussian perturbations are chosen at the optimal noise level based on

results shown in Figure 5.3 and Figure 5.4. From these results we see that networks trained with

either type of perturbation are relatively stable, but the network perturbation results track the

reference energy level more closely. The Gaussian noise-trained networks more significantly add

excess energy to the evaluation trajectories.

Finally, we examine the costs of these two perturbation approaches. In the Gaussian noise

injection method, the necessary noise masks are inexpensive to apply, and the computational costs

are invariant with respect to the noise level. However, this is not the case for the network noise
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Noise Type Rollout Length

1 2 5 10 25 50

Gaussian Sampling 61 61 66 60 58 63
Network Sampling 113 131 141 169 241 378
None 60

Table 5.1: Training costs in minutes for each combination of noise type and rollout length
determining the noise level. Note that the “none” noise type is an exception as it does not follow
the noise level and adds no noise. These values are illustrated in Figure 5.6.
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Figure 5.6: Training time costs by noise type and rollout length. This illustrates the dependence of
the network sampling type on the rollout length as well as the fixed costs for each noise sampling
method. The values plotted are those reported in Table 5.1.
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perturbation. In this method there are significant costs involved in performing the rollouts in

between each training epoch, and these rise with length of the rollout. To examine these impacts,

we record the median time for the training runs of each type, for each possible noise level. These

measurements were collected for training runs using NVIDIA RTX 8000 GPUs and are recorded

in Table 5.1 and plotted in Figure 5.6. Because our approach affects only the training process, it

has no impact on the cost of evaluating the network and rolling out test trajectories.

From these measurements we observe that there are significant fixed costs to enabling the

network noise perturbation even for a rollout of a single step. One significant component of these

costs is the added overhead of loading samples from two different datasets. In particular, there

are significant optimizations which could be applied to the simpler data loader used to sample

from 𝐷net which is not as well optimized in our current implementation as the data loader used to

sample from 𝐷base. We believe that optimizations here could significantly reduce these fixed costs.

Even so, there also remain significant variable costs which depend on the length of the rollout.

However, given our experimental results above it appears that the benefit of network perturbation

is already achieved even with very short rollouts with a lower impact on training time.

5.4 Conclusion

In this chapter we have introduced an approach to inject perturbations to training data which

closely reflect the real errors made by a neural network parameterization as well as techniques

to reduce the cost of this data generation. Our results suggest that this method produces neural

network parameterizations that are more stable, and more accurate than those trained using

Gaussian noise. Our method is flexible and has no more requirements for the target simulation,

than is required to evaluate a neural network with it. In particular, we do not require the ability to

backpropagate gradient information through any simulation time steps. This makes our approach

generally applicable to a wide variety of target simulations and tasks.
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There remain, however, a many extensions which could be explored to further distinguish

which aspects of this method contribute the most to improved performance. In particular, one

might consider injecting Gaussian noise with a dynamic noise level tuned based on a smaller

population of rollouts after each training epoch. This would help to further distinguish how

much of the improved results is due to state-dependent structures from the network rollouts and

how much is due to the adaptation of the perturbations as network training progresses. Other

extensions for suitable tasks could include applying the network perturbations to the output

values as well, in a style similar to 𝐷correcting in Equation 5.3. This might produce further stability

improvements by training the parameterizations to correct small errors in the trajectories but may

require additional tuning for the scaling parameter 𝛼 .
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Chapter 6

Conclusion

In this thesis we have presented several projects exploring different ways that machine learning

methods can support simulation tasks. We have evaluated their usefulness both in simplifying

the modeling process and in improving model accuracy and performance. These works include a

first project in which we presented a large suite of benchmark simulation tasks and evaluated the

performance of a set of neural network architectures for their ability to learn these problems. We

tested multiple configurations of each target task and reported the effects on the accuracy and

stability of the resulting models. This project also included an evaluation of the accuracy and

performance tradeoffs involved with neural networks and compared these against the capabilities

of traditional numerical integration approaches. To the best of our knowledge, prior to this project

this type of evaluation had not been systematically conducted.

Using several insights derived from this first project—such as results indicating potential

benefits from tailoring neural network architectures to the target problem—we presented in this

thesis two further projects involving novel techniques for improving the stability, accuracy, and

efficiency of neural networks for the subgrid parameterization problem which arises in climate

models. Our first proposed technique was a neural network architecture that directly takes advan-

tage of the inherent multiscale structure involved in the subgrid closure task, making it possible
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to produce smaller, more efficient networks that nevertheless preserve higher accuracy. Second,

we also presented a novel adjustment to the training process, performing data augmentation such

that a network being trained offline is exposed to the types of errors that will be accumulated

during an online rollout. Our approach imposes few requirements on the target simulation, only

requiring the ability to carry out online evaluation, with no need to backpropagate gradients

through time steps.

Applications of machine learning to PDE problems remains an active area of research, and

there will undoubtedly be further innovations in this area which will contribute to real world

modeling improvements across a wide range of disciplines. Continuing in the same vein as our

benchmark project, there is ongoing work to expand the capabilities of learned simulations and to

improve the training process. Among these are efforts to develop large training sets useful for

general pretraining, with the goal of using these to yield foundation models which can, thanks to a

facility with a variety of simulation types, be more cheaply fine-tuned to adapt them to particular

problems [62, 95]. The overall success of these methods remains somewhat unclear, but efforts in

this direction have already contributed larger and more diverse training sets which also streamline

the work of testing machine learning methods on a range of target systems.

Applications to climate models are also progressing. In addition to general improvements in

learned subgrid parameterizations such as those we have explored in previous chapters, efforts

to deploy these parameterizations to production climate models are ongoing [111]. Efforts to

develop new full Earth system models using modern numerical environments may also streamline

these deployments and enable computational improvements by allowing both the learned and

non-learned components to be developed using the same numerical software toolkit [103]. Deep

learning has also found applications to improving weather forecasting, using a neural network

system to produce forecasts at a lower computational cost over medium-term time horizons [47,

48]. Further developments here may improve the accuracy of these models over longer time

spans and support their use as core parts of real world forecasting. Efforts are also ongoing to
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explore similar emulation methods for climate modeling applications, using neural networks to

predict climatological quantities over long time spans [19, 94]. Improvements to these methods

may come from a variety of techniques to stabilize these networks (such as those explored in

Chapter 5) or by taking advantage of more recent deep learning methods such as diffusion

modeling [67]. The project discussed in Chapter 4 takes some inspiration from diffusion modeling.

Better understanding of these methods will support more extensive production deployments,

and techniques such as those explored in this thesis can help improve the efficiency of these

architectures and provide possible methods to improve learned model stability.

It is our hope that the results presented in this thesis will be useful for other researchers

working in this area. The results from our benchmark experiments in the first project presented

here provide general guidance for applications of machine learning to simulation tasks. In the

second and third projects discussed in this thesis, our techniques for improving neural network

parameterizations have applications to closure models in other settings.
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Appendices

A Extended Results for Chapter 2

To illustrate the error distribution for each neural network over the evaluation sampling distri-

bution, we plot the errors as a box plot. Figures A.1, A.2, A.3, A.4, and A.5 show these error

distributions, one plot for each system configuration.

Each plot is divided into two panes: one for derivative, and the other for step prediction. The

datasets and training protocols followed are identical between the two task formulations. In each,

the boxes are grouped first according to learning method, labeled at the bottom on the 𝑥-axis. For

derivative prediction, the boxes are assembled into sub-groups according to the integrator applied

(forward Euler/FE, leapfrog/LF, RK4, backward Euler/BE, or BDF2). These integrators are also

indicated by the color of the box. In each group, from left to right the boxes become darker; this

indicates the increasing training set size (see Table 2.1). The final box is hatched; this shows the

evaluation results on the out-of-distribution set for the network exposed to the largest training

set.

The boxes illustrate the distribution over per-trajectory average errors. For each system

configuration (a system, derivative/step prediction, learning method, integrator, and particular

training set size) we compute the per-step MSE against a ground truth result; these per-step errors

are averaged to produce an error estimate for the trajectory. We also train three independent

instantiations of each neural network architecture and evaluate each of these on all trajectories
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independently. These three repetitions of each trajectory for each network are included as part

of the distribution in the box plot. The KNNs and numerical integrators are run a single time

each. The errors of these different sampled trajectories form the distribution summarized by the

box plot. The variance in the results is produced by a combination of the training results for the

three copies of each network, and by the varying performance on each of the sampled evaluation

trajectories. These plots were generated using Matplotlib’s [36] box plot routines. The box itself

ends at the first and third quartiles of the data and the line in the middle is placed at the median

of the data. The whiskers extend past the box by 1.5 times the size of the box. Circles are plotted

for outlier points which lie outside the range of the whiskers. The plots here have a logarithmic

𝑦-axis to accommodate the wide range of error values, thus the boxes do not appear symmetric.

A.1 Weighted errors

Inmost cases, due to accumulated errors, per-step errors increase as numerical integration proceeds

away from the initial condition. To compensate for this trend and in an effort to explore the impact

of early vs. late step errors, we include several plots of error distributions for which each time

step’s MSE has been weighted. To produce these weights, each step’s MSE is scaled by a value

1/ exp(ln(102) ⋅ 𝑝𝑡) where 𝑝𝑡 ∈ [0, 1] is a scalar representing the proportional time of the step (zero

at start of the trajectory, and one at the end). This produces an exponential decay from the initial

steps to the end and reduces the contribution of the final steps by two orders of magnitude. These

scaled MSEs are then averaged for each trajectory and each neural network retraining as in the

plots above.

The results of these distributions for the Navier-Stokes system—both single- and multi-obstacle

forms—are included in Figure A.6 and Figure A.7 below. A change in the relative behavior of the

learned methods is most visible in the step prediction results in Figure A.7. Without the weighting,

many of the learning methods perform comparably to the KNN; however when emphasizing early

steps, these methods demonstrate improved errors relative to the re-weighted KNN errors. This
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Figure A.1: Error distribution for spring system for multiple training set sizes as well as out-of-
distribution results.
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Figure A.2: Error distribution for wave system for multiple training set sizes as well as out-of-
distribution results.
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Figure A.3: Error distribution for 10 × 10 spring mesh system for multiple training set sizes as well
as out-of-distribution results.
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Figure A.4: Error distribution for Navier-Stokes system for multiple training set sizes, and out-
of-distribution results. Each trajectory has a single randomly-positioned obstacle. Note that this
system does not have results for plain numerical integration.

94



FE LF RK4 FE LF RK4 FE LF RK4 FE LF RK4 FE LF RK4 FE LF RK4

10 1

101

103

105

107

109

M
SE

Derivative

NUL NUL NUL NUL NUL NUL

10 2

10 1

100

M
SE

knn mlp-4-4096 mlp-5-2048 cnn-9-32 cnn-9-64 unet

Step

Figure A.5: Error distribution for Navier-Stokes system for multiple training set sizes, and out-of-
distribution results. Each trajectory has four randomly-positioned obstacles.
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indicates that the learned methods outperform the accuracy of the KNN on the early steps, but

are somewhat unstable as the simulation progresses.

For other systems, we did not observe significant changes in relative performance of the learned

methods. MSE distributions shifted, but roughly in proportion to each other. This represents

a greater general stability in the learned methods on other systems, likely reflecting the more

predictable long-term behavior of the other systems. The spring system is periodic, the wave

system is stable over time, and the spring mesh system has an energy decay term which simplifies

and stabilizes its long-term evolution. As a result, in most cases, successfully learning the target

task permits the learned methods to maintain some stability over time, which decreases the relative

effect of the per-step weighting.
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Figure A.6: Error distribution for Navier-Stokes system for multiple training set sizes, and out-of-
distribution results. Each trajectory has a single randomly-positioned obstacle. Per-step errors
are weighted to decrease the contribution of later time steps with higher errors.
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Figure A.7: Error distribution for Navier-Stokes system for multiple training set sizes, and out-of-
distribution results. Each trajectory has four randomly-positioned obstacles. Per-step errors are
weighted to decrease the contribution of later time steps with higher errors.
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B Closure Modeling Network Architecture and Training

The network architectures used in this paper are all feedforward convolutional neural networks.

The structure and training parameters of each network vary with the target system and were

adjusted for the online combined experiments using the results of the offline separated experiments.

B.1 Separated Experiment Architectures

For our separated experiments on the QG system we use two different feedforward CNN architec-

tures from previous work without batch norm [29]. We take the architectural parameters from

this work as our default “small” architecture, while the “large” architecture for these experiments

roughly doubles the size of each convolution kernel. This produces the architectures listed in

Table B.1. We use ReLU activations between each convolution. Each convolution is performed

with periodic padding, matching the boundary conditions of the system. All convolutions are with

bias. The input and output channel counts are determined by the inputs of the network. For the

QG system each input has two layers, each of which is handled as a separate channel. Quantities

for the KF system have only a single layer each. These parameters are adjusted for each task to

accommodate the inputs and make the required predictions. We implement our networks with

Equinox [40].

We train each network with the Adam optimizer [42] as implemented in Optax [4]. The

learning rate is set to a constant depending on architecture size: the small networks use 5 × 10−4,

while the large networks use 2 × 10−4. The networks are trained to minimize MSE loss. Large

chunks of 10 850 steps are sampled with replacement from the dataset which is pre-shuffled

uniformly. Then each of these chunks is shuffled again and divided into batches of size 256

without replacement. One epoch consists of 333 such batches. We train the small networks for

132 epochs, and the large networks for 96 epochs. We store the network weights which produced

the lowest training set loss and use these for evaluation.
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Conv. Layer Chans. Out Small Kernel Size Large Kernel Size

1 128 (5, 5) (9, 9)
2 64 (5, 5) (9, 9)
3 32 (3, 3) (5, 5)
4 32 (3, 3) (5, 5)
5 32 (3, 3) (5, 5)
6 32 (3, 3) (5, 5)
7 32 (3, 3) (5, 5)
8 out layers (3, 3) (5, 5)

Table B.1: Architecture specifications for each neural network used in the separated experiments.
Convolution kernel sizes vary between the architecture sizes. The channel counts are adjusted to
accommodate the inputs and outputs of each task.

For all input and target data, we compute empirical means and standard deviations and

standardize the overall distributions by these values before passing them to the network. The

means and standard deviations from the training set are used in evaluation as well.

B.2 Combined Experiment Architectures

For our combined experiments, which carry out online tests on both the QG and KF systems, we

made somemodifications to the tested architectures in order to explore the efficiency improvements

which could be realized by our multiscale approach. We kept the same “large” architecture as

was used in the separated experiments, but carried out an architecture search to select a “small”

architecture.

Because each overall parameterization combines two sub-networks (see Figure 4.3) we describe

each network by giving a description of the architectures of each component network. These are

described by the sizes of the convolution kernels (“pure small (psm),” “small (sm),” “pure medium

(pmd),” and “medium (md),” respectively) and the number of convolution layers, either 4 or 8. The

“large” architecture described in Table B.1 would be described as “md8” and the combination of

two of these is “md8md8.”

Using these options, four networks of each architecture were trained on the QG system and
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Figure B.1: Architecture selection by scale size on QG system for the combined experiments.

tested online for the resulting spectral errors. The results of each of the two network scales are

reported in Figure B.1. These were ranked by increased spectral errors separately for each layer,

then each architecture choice was ranked by the worst of these two layer ranks.

Conv. Layer md8 psm4 pmd8

Chans. out Kernel Chans. out Kernel Chans. out Kernel

1 128 (9, 9) 128 (3, 3) 128 (5, 5)
2 64 (9, 9) 64 (3, 3) 64 (5, 5)
3 32 (5, 5) 32 (3, 3) 32 (5, 5)
4 32 (5, 5) out layers (3, 3) 32 (5, 5)
5 32 (5, 5) 32 (5, 5)
6 32 (5, 5) 32 (5, 5)
7 32 (5, 5) 32 (5, 5)
8 out layers (5, 5) out layers (5, 5)

Table B.2: Architecture specifications for each neural network used in the combined experiments
including those selected through the architecture search.

The winning “small” architecture for both QG scales was “psm4pmd8.” Details of these

parameters are provided in Table B.2.

The training parameters also varied from the separated experiments due to the new end-to-end

training configuration. For the QG system training was conducted using the Adam optimizer
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following a cosine annealing schedule with one epoch of linear learning rate warmup. The “md”

and “pmd” networks were trained for 50 epochs at a learning rate of 0.0004 while the “psm”

network was trained for 100 epochs (with 374 batches per epoch) with a learning rate of 0.001. All

batches had size 64.

For the KF system, training was carried out using the Adam optimizer with 𝜖 = 0.001 (modified

from the default). These networks followed the same cosine annealing with warmup schedule as

the QG systems but had an ending learning rate of 0.0001 and a peak learning rate of 7.5 × 10−4

for 150 epochs with batches of size 32. Each epoch consisted of 374 batches. Each training run

selected the network with the best validation loss.
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C Extended Online Results for Chapter 4

Extended KF calibration results for large architectures are presented in Figure C.1 and Figure C.2.

The large architectures had persistent stability problems on the KF system that could not be

resolved with added noise during training.
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Figure C.1: An extended version of Figure 4.9 including results for the large network architecture.
These architectures show significant instability, particularly for the baselines, even with significant
added noise.
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Figure C.2: An extended version of Figure 4.7b including results for the large network architecture
which produced generally unstable results even with attempts to improve stability. However even
here it appears that the added information from a scale of size 48 may help improve network
stability.
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