
Systolic Combining Switch Designs

Susan R. Dickey1

Courant Institute of Mathematical Sciences

New York University

May 17, 1994

1Supported by U.S. Department of Energy grant number DE-FG02-88ER25052.

For my father
John Wilson Dickey

1916{1991

i

Acknowledgments
I have been fortunate to carry out the research for this dissertation in the stimulating and supportive

environment of the Ultracomputer Research Laboratory. I would like to thank my advisor, Allan Gottlieb,
Ultra's director, for his role in creating that environment as well as for his careful reading of several drafts of
my dissertation. As part of my work for Ultra, I have enjoyed fruitful research collaborations with Richard
Kenner, my long-term partner in VLSI design, Ora Percus, my mentor in stochastic analysis and queueing
theory, Yue-sheng Liu, who helped me formalize my thinking about switch types as well as simulating
network behavior, Jan Edler, who was always willing to add another feature to his network simulator, and
Ron Bianchini, who makes hardware work.

In the computer science department as a whole, I would like to thank Alan Siegel, for reading my
dissertation and making helpful comments, Ernie Davis and Richard Wallace, for serving on my committee,
Elaine Weyuker, whose literature review seminar was very helpful in building both my con�dence and
competence to do computer science research, and Anina Karmen-Meade, who often helped me navigate
NYU's bureaucratic labyrinths.

Most of all, my gratitude goes to my husband, Tom Du�, for his faith and support at all times, and to
my children, Rachael Evans, Keelan Evans and Timothy Du�. No matter how the research is going, my
wonderful family always �lls my life with joy.

ii

Contents

1 Introduction 1

1.1 Contributions : 1
1.1.1 Performance analysis of di�erent switch types : 1
1.1.2 An e�cient CMOS implementation of systolic queues : : : : : : : : : : : : : : : : : : 2
1.1.3 Cost and performance of an implemented combining switch : : : : : : : : : : : : : : : 2
1.1.4 Methods for providing greater combining capability : : : : : : : : : : : : : : : : : : : 3

1.2 Related research : 3
1.2.1 Interconnection network topology : 4
1.2.2 Routing protocol : 7
1.2.3 Switching strategy : 8
1.2.4 Non-uniform tra�c patterns : 12
1.2.5 The hot spot problem : 13
1.2.6 Solving the hot spot problem : 15
1.2.7 E�ectiveness of combining : 20
1.2.8 Combining implementations : 21
1.2.9 Summary : 25

2 Performance of Switch Architectures Under Uniform Tra�c 26

2.1 Basic switch architectures : 26
2.1.1 Unbu�ered : 26
2.1.2 k-input bu�ers, one per output port (Type A) : 28
2.1.3 One-input bu�ers, k bu�ers per output port (Type B) : : : : : : : : : : : : : : : : : : 33
2.1.4 One-input bu�ers, one per input port (Type C) : 34

2.2 Switches with �nite bu�ers : 38
2.3 Type A and Type B multistage networks : 43
2.4 Multiple packet messages : 52
2.5 Increasing degree with constant pinout : 52

3 Systolic Queue Designs 56

3.1 Advantages of systolic designs for VLSI : 56
3.2 Systolic queue design of Guibas and Liang : 56
3.3 Snir and Solworth's basic queue design : 57
3.4 A semi-systolic queue with two global control signals : 60

3.4.1 Queue blocked and queue full : 62
3.4.2 Handling messages of odd length : 63

3.5 Implementation using nMOS : 64
3.6 Implementation using NORA CMOS : 65

3.6.1 NORA methodology : 65
3.6.2 Quali�ed clocking in NORA : 66
3.6.3 CMOS non-combining switch : 67
3.6.4 Noise problems of dynamic logic : 67

iii

4 Two-way Combining Switch 70

4.1 Combining switch architecture : 70
4.1.1 Packaging : 70
4.1.2 Packet format : 71
4.1.3 Programming part location and system size : 73
4.1.4 Operations supported : 73
4.1.5 Flow control logic : 74
4.1.6 Arrangement of bu�ers : 75
4.1.7 Arbitration of bu�ers : 76

4.2 Forward path component design : 77
4.2.1 Combining queue : 77
4.2.2 Combining ALU : 81

4.3 Return path component design : 84
4.3.1 Wait bu�er : 86
4.3.2 Decombining ALU : 88
4.3.3 Non-combining semi-systolic queues : 88

4.4 System simulation and veri�cation : 89
4.4.1 Comparison of results from the two simulators : 90
4.4.2 Type A and Type B combining networks : 109

4.5 The cost of combining : 109
4.5.1 Pins : 109
4.5.2 Area and transistor count : 109
4.5.3 Cycle time : 113
4.5.4 Packaging options : 114

5 Providing Greater Combining Capability 116

5.1 Unlimited and two-way combining : 116
5.1.1 Model of a combining switch : 117
5.1.2 Unlimited combining, front of queue can combine : 118
5.1.3 Unlimited combining, no combining at front of queue : : : : : : : : : : : : : : : : : : : 119
5.1.4 Two-way combining, combining at front of queue : 121
5.1.5 Two-way combining, no combining at front of queue : : : : : : : : : : : : : : : : : : : 123
5.1.6 Network performance of combining options : 128

5.2 Implementing queues with greater combining capability : 129
5.2.1 Implementation of a Type A switch : 129
5.2.2 Three-way combining in a Type B switch : 131
5.2.3 Two-and-a-half-way combining : 132
5.2.4 Combining options for 2� 2 switches : 134

5.3 4� 4 Combining Switches : 134

6 Conclusions and Further Work 152

iv

List of Figures

1.1 Three basic switch types : 2
1.2 An 8� 8
-network. : 4
1.3 A non-delta network : 9
1.4 Example of combining fetch-and-add operations. : 17
1.5 NYU Ultracomputer combining switch. : 22

2.1 2� 2 switch with no bu�ers : 27
2.2 Unbu�ered 2� 2 switches, bandwidth and latency. : 29
2.3 Unbu�ered 4� 4 switches, bandwidth and latency. : 30
2.4 2-input bu�ers, one per output port (Type A) : 31
2.5 Distribution of queue lengths, Type A switch, unbounded bu�er size. : : : : : : : : : : : : : : 31
2.6 One-input bu�ers, k bu�ers per output port : 33
2.7 Standard deviation of the waiting time, single stage, Type A and Type B switches, unbounded

bu�er size. : 33
2.8 One-input bu�ers, one per input port (Type C). : 34
2.9 Maximum bandwidth of di�erent size crossbars. : 35
2.10 Distribution of queue lengths, Type C switch, unbounded bu�er size. : : : : : : : : : : : : : : 36
2.11 Latency comparison for Types A, B and C switches, single stage. : : : : : : : : : : : : : : : : 37
2.12 Variant switch architecture. : 38
2.13 Latency for minimum size queues in Type A, B and C switches. : : : : : : : : : : : : : : : : : 42
2.14 Bandwidth and latency values for Type A and Type B networks. : : : : : : : : : : : : : : : : 44
2.15 Normalized standard deviation of network latency. : 45
2.16 Blocking probability, 1024 PEs, small and large queues. : 47
2.17 Latency as function of bandwidth, 1024 PEs, small and large queues. : : : : : : : : : : : : : : 48
2.18 Bandwidth and latency as a function of the number of outstanding requests. : : : : : : : : : : 49
2.19 Blocking probabilities as a function of the number of outstanding requests, 64 PEs. : : : : : : 50
2.20 Blocking probabilities as a function of the number of outstanding requests, 1024 PEs. : : : : 51
2.21 Multipacket messages, 2� 2 switches, 64 PEs and 256 PEs. : : : : : : : : : : : : : : : : : : : 53
2.22 Di�erent switch degrees, constant pinout, 64 and 256 PEs. : 54

3.1 A systolic queue design. : 57
3.2 A queue must unblock an odd number of cycles after the �rst item was inserted. : : : : : : : 58
3.3 Out of order items due to blocking a non-empty queue for an odd number of cycles. : : : : : 58
3.4 A hole in the OUT row due to an odd number of cycles between insertions. : : : : : : : : : : 59
3.5 Illustration of the queue full condition : 63
3.6 nMOS implementation of non-combining queue data cell : 64
3.7 (A) Inverter and transmission gate. (B) C2MOS latch. (C) Notation for C2MOS latch. : : : : 65
3.8 Summary of NORA inversion parity restrictions. : 65
3.9 (A) Quali�ed clock circuits. (b) Parity from a latch of clock quali�er signals in NORA. : : : : 67
3.10 Basic cell of a CMOS queue design with noise problems. : 68
3.11 Corrected CMOS implementation of basic cell : 68

4.1 Block diagram of the combining switch : 71

v

4.2 Packet formats for the interconnection network in a 16� 16 NYU Ultracomputer prototype. : 72
4.3 Design of systolic combining queue. : 78
4.4 Schematic of a single cell of the combining queue in the forward path component. : : : : : : : 78
4.5 Block diagram of a combining queue implementation. : 79
4.6 Combining queue transitions for slot j. : 80
4.7 Behavior of chute transfer signal with IN and OUT both moving, when combining a 4-packet

message . : 81
4.8 Behavior of chute transfer signal with IN moving and OUT not moving, when combining a

4-packet message. : 82
4.9 Behavior of chute transfer signal with OUT moving and IN not moving, when combining a

4-packet message. : 83
4.10 Logic to produce propagate and generate signals. : 84
4.11 Multiple output Domino CMOS gate in carry chain. : 85
4.12 Block diagram of a return path component. : 85
4.13 Block diagram of a wait bu�er. : 86
4.14 Slot of a wait bu�er holding a two-packet message. : 87
4.15 Schematic of a wait bu�er cell. : 88
4.16 Type B switches, molasses and susy simulations, uniform tra�c, memory cycle 2 : : : : : : : 91
4.17 Type B switches, molasses and susy simulations, 0.5 percent hot spot, no combining, memory

cycle 2. : 92
4.18 Type B switches, molasses and susy simulations, 0.5 percent hot spot, combining, memory

cycle 2. : 93
4.19 Type B switches, molasses and susy simulations, 1 percent hot spot, no combining, memory

cycle 2. : 94
4.20 Type B switches, molasses and susy simulations, 1 percent hot spot, combining, memory cycle

2. : 95
4.21 Type B switches, molasses and susy simulations, 5 percent hot spot, no combining, memory

cycle 2. : 96
4.22 Type B switches, molasses and susy simulations, 5 percent hot spot, combining, memory cycle

2. : 97
4.23 Type B switches, molasses and susy simulations, 10 percent hot spot, no combining, memory

cycle 2. : 98
4.24 Type B switches, molasses and susy simulations, 10 percent hot spot, combining, memory

cycle 2. : 99
4.25 Type B switches, molasses and susy simulations, uniform tra�c, memory cycle 4 : : : : : : : 100
4.26 Type B switches, molasses and susy simulations, 0.5 percent hot spot, no combining, memory

cycle 4. : 101
4.27 Type B switches, molasses and susy simulations, 0.5 percent hot spot, combining, memory

cycle 4. : 102
4.28 Type B switches, molasses and susy simulations, 1 percent hot spot, no combining, memory

cycle 4. : 103
4.29 Type B switches, molasses and susy simulations, 1 percent hot spot, combining, memory cycle

4. : 104
4.30 Type B switches, molasses and susy simulations, 5 percent hot spot, no combining, memory

cycle 4. : 105
4.31 Type B switches, molasses and susy simulations, 5 percent hot spot, combining, memory cycle

4. : 106
4.32 Type B switches, molasses and susy simulations, 10 percent hot spot, no combining, memory

cycle 4. : 107
4.33 Type B switches, molasses and susy simulations, 10 percent hot spot, combining, memory

cycle 4. : 108
4.34 Type A and Type B networks, 1 percent hot spot, bandwidth and latency. : : : : : : : : : : : 110
4.35 Type A and Type B networks, 10 percent hot spot, bandwidth and latency. : : : : : : : : : : 111

vi

4.36 Type A and Type B networks, 10 percent hot spot, combining, 1024 PEs, latency as a function
of bandwidth. : 112

5.1 Type A switch with hot spot tra�c. : 117
5.2 Unlimited combining, including combining at the front of the queue. : : : : : : : : : : : : : : 120
5.3 Unlimited combining, no combining at the front of the queue. : : : : : : : : : : : : : : : : : : 122
5.4 Two-way combining, including combining at the front of the queue. : : : : : : : : : : : : : : : 124
5.5 Two-way combining, no combining at the front of the queue. : : : : : : : : : : : : : : : : : : 125
5.6 Analytical estimates of combining performance, 10 percent load, 5 percent hot spot. : : : : : 126
5.7 Analytical estimates of combining performance, 50 percent load, 5 percent hot spot. : : : : : 127
5.8 A two-input combining queue with one CHUTE : 129
5.9 Basic cell for a two-input, one-output queue with one CHUTE : : : : : : : : : : : : : : : : : 130
5.10 A single-input queue capable of combining three requests. : 131
5.11 Two-and-a-half-way combining queue : 132
5.12 Schematic for the basic cell of a two-and-a-half-way combining queue. : : : : : : : : : : : : : 133
5.13 Combining options, 2� 2 switches, 0.5% hot spot, 50% load. : : : : : : : : : : : : : : : : : : 135
5.14 Combining options, 2� 2 switches, 0.5% hot spot, 100% load. : : : : : : : : : : : : : : : : : : 136
5.15 Combining options, 2� 2 switches, 1% hot spot, 50% load. : : : : : : : : : : : : : : : : : : : 137
5.16 Combining options, 2� 2 switches, 1% hot spot, 100% load. : : : : : : : : : : : : : : : : : : : 138
5.17 Combining options, 2� 2 switches, 5% hot spot, 50% load. : : : : : : : : : : : : : : : : : : : 139
5.18 Combining options, 2� 2 switches, 5% hot spot, 100% load. : : : : : : : : : : : : : : : : : : : 140
5.19 Combining options, 2� 2 switches, 10% hot spot, 50% load. : : : : : : : : : : : : : : : : : : : 141
5.20 Combining options, 2� 2 switches, 10% hot spot, 100% load. : : : : : : : : : : : : : : : : : : 142
5.21 Type A 2� 2 switches, two, two-and-a-half and three-way combining, 1 percent hot spot. : : 143
5.22 Type A 2� 2 switches, two, two-and-a-half and three-way combining, 10 percent hot spot. : : 144
5.23 Type A 2� 2 switches, two, two-and-a-half and three-way combining, latency as a function of

bandwidth. : 145
5.24 Type A and Type B 2� 2 switches, latency as a function of bandwidth : : : : : : : : : : : : 146
5.25 Four-input, one-output queue with combining per input. : 147
5.26 Variant Type C 4� 4 combining switch using two-and-a-half-way combining queues. : : : : : 148
5.27 Hybrid Type B 4� 4 combining switch using two-and-a-half-way combining queues. : : : : : 149
5.28 Type A 4� 4 switches, latency as a function of bandwidth. : : : : : : : : : : : : : : : : : : : 150
5.29 Combining options, 4� 4 switches, latency as a function of bandwidth. : : : : : : : : : : : : : 151

vii

List of Tables

1.1 Performance factors for interconnection network topologies : : : : : : : : : : : : : : : : : : : 6
1.2 Performance factors for sample parallel computers : 7

2.1 Arrival probabilities for di�erent output ports. : 35

4.1 ALU operations for the memory requests implemented in the combining switch : : : : : : : : 74
4.2 Control signals for ALU operations. : 84
4.3 Area and transistor cost of combining capability in a switch : : : : : : : : : : : : : : : : : : : 113
4.4 Critical path signal delays. : 114
4.5 Signal pin count, area and transistors per chip for 2 � 2 combining switches to be used in a

256-PE system with a 4 gigabyte address space : 115

5.1 Transitions for unlimited combining, including combining at the front of the queue. : : : : : : 119
5.2 Transitions for unlimited combining, no combining at the front of the queue. : : : : : : : : : 121
5.3 Transitions for a 2-way combining queue. : 123
5.4 Transitions for two-way combining, no combining at the front of the queue. : : : : : : : : : : 128

viii

Chapter 1

Introduction

Communication between hundreds or thousands of cooperating processors is the key problem in building a
massively parallel processor. This thesis is concerned with the best way to design a fast VLSI switch to be
used in the interconnection network of such a parallel processor. Such a switch should handle the \hot spot"
problem as well as provide good performance for uniform tra�c. The switch designs we consider alleviate
the \hot spot" problem by adding extra logic to the switches to combine conventional loads and stores as
well as fetch-and-� operations destined for the same memory location, according to the methods described
in [57].

The goal of this work has been to analyze and design a switching component that is inexpensive compared
to the cost of a processing node, yet provides the functionality necessary for high-bandwidth, low-latency
network performance. The theoretical peak performance of a highly-parallel shared-memory multiprocessor
may be less than that of a message-passing multicomputer of equal component count, in which all nodes
contain a processing element as well as switching hardware. However, the actual performance achieved
per processor on a large class of applications should be much higher in the shared-memory multiprocessor
because the dedicated hardware of the network switches provides greater bandwidth per processing element
and handles communication in a more e�cient way.

The �rst section of this introductory chapter outlines the contributions of this thesis. The second section
discusses related research.

1.1 Contributions

The analyses and simulations reported in this thesis were carried out in support of the design and imple-
mentation of a switching component for the NYU Ultracomputer architecture. The results are generally
concerned with the trade-o� between overall performance and implementation cost. The di�erent areas in
which results have been obtained are described in the following subsections.

1.1.1 Performance analysis of di�erent switch types

Chapter 2 analyzes the e�ect that the arrangement and arbitration of bu�ers and the degree of the crossbar
may have on switch performance and cost.

Switches in interconnection networks for highly parallel shared memory computer systems may be imple-
mented with di�erent internal bu�er structures. For a 2� 2 synchronous switch, previous studies [78, 116]
have often assumed a switch composed of two queues, one at each output, each of which has unbounded size
and may accept two inputs every clock cycle. We call this type of switch Type A; a k� k Type A switch has
k queues, one at each output, each of which may accept k inputs per cycle.

Hardware implementations may actually use simpler queue designs and will have bounded size. Two
additional types of switch are analyzed, both using queues that may accept only one input at a time: for
k � k switches, a Type B switch uses k2 queues, one for each input/output pair; a Type C switch uses
only k queues, one at each input. In both cases, a multiplexer blocks all but one queue if more than one
queue desires the same output, making these models more di�cult to analyze than the previous Type A

1

................

................

................

................
................

................

................

................

................

................

��@@

................

................

(C)

................

................
................

................

................

................

................

................

�
���A
AAU
-

--

-

-

-

-

�
�
��

-

@
@
@R -

-

-

- -

-

-

- -

-

(A) (B)

Figure 1.1: Three basic switch types

model. We have found maximum bandwidth, expected queue length, expected waiting time, and queue
length distribution for the Type B and Type C 2 � 2 switches, with unbounded queue size and with queue
size equal to 1. For 2 � 2 switches we have proved that the bandwidth per port of a Type C switch is
limited to 75 percent. While the Type C switch is less expensive, Type A and B have considerably better
performance.

1.1.2 An e�cient CMOS implementation of systolic queues

Chapter 3 describes an e�cient CMOS implementation for systolic queue designs; the basic queue design is
useful for bu�ered non-combining as well as combining switches.

The timing constraints on blocking and unblocking for the systolic queue design originally developed by
Snir and Solworth [130] are formalized. A proof is given that an implementation of this design using only
two global control signals operates correctly under these timing constraints.

A non-combining switch using this systolic queue design was fabricated by MOSIS in 3 micron CMOS
and used in a 2 processor prototype for over a year. This implementation employed the NORA (no race)
clocking methodology, using quali�ed clocks as the mechanism for distributing global control. NORA allows
the use of compact CMOS circuits with high tolerance for clock skew. Quali�ed clocks provide a natural
way to implement local data movement in a systolic design, but their use with NORA involves certain
complications. A circuit to produce a quali�ed clock for use in the NORA methodology was developed. The
circuit's maintenance of NORA assumptions, as well charge-sharing and noise problems that can arise, are
described.

1.1.3 Cost and performance of an implemented combining switch

Chapter 4 describes the combining switch that we have implemented for use in the 16�16 processor/memory
interconnection network of the NYU Ultracomputer prototype. A 12-processor con�guation using these
switches is currently operational. Packaging, message types and message formats are described. Details are
given about the internal logic of the two component types used in the network. The forward path component
includes a systolic combining queue and an ALU for combining; the return path component includes non-
combining systolic queues, an associative wait bu�er, and an ALU for decombining. A design usable in
networks of size up to 256� 256 has also been prepared for fabrication at a smaller feature size in a higher
pincount package; di�erences in the logic partitioning of the two designs are described.

Simulation results were used to compare the performance of the speci�c switch architecture and
ow
control method actually implemented with performance predicted by analytical models and by simpler
simulation models of queue behavior. The e�ective queue size of our systolic queues, compared to standard
linear FIFOs, was determined through simulation. Performance di�erences between Type A and Type B
combining switches were explored.

Hardware combining is not without cost, but our experience in implementing a combining switch indicates
that the cost is much less than is widely believed. We describe the design choices made in implementing the
switch to keep network bandwidth high and latency low. We compare the cost of a combining switch to that
of a non-combining switch and discuss the scalability of the design we have implemented to large numbers
of processors.

2

1.1.4 Methods for providing greater combining capability

Chapter 5 compares the performance of this design with somewhat costlier switches that provide greater
combining capability.

Small di�erences in the capabilities of combining switch architectures can make a signi�cant di�erence
in their performance. We have studied several such architectures using both analytical techniques and
simulation.

Recurrence relations were constructed for the queue length probability distribution of several di�erent
2�2 combining switch architectures. These recurrence relations were used to compute average queue length
and output rates; results were validated with simulations.

We describe the implementation of one of \two-and-a-half-way" combining, which promises to avoid net-
work saturation at later stages at only slightly greater cost than two-way combining. Two-and-a-half-way
combining switches were simulated and their performance was compared to that of Type A and Type B
switches with two- and three-way combining. Implementation alternatives for some di�erent types and ar-
rangements of bu�ers in a 4�4 combining switch were also simulated to compare their relative performance.

1.2 Related research

This section includes de�nitions of terms used to describe and analyze interconnection networks for parallel
systems, descriptions of the features of the NYU Ultracomputer architecture, and a survey of the literature
on hot spots in interconnection networks, including di�erent schemes that have been proposed to alleviate the
hot spot problem. We are interested in possible architectural di�erences in the broad class of MIMD (multiple
instruction, multiple data stream) architectures, according to Flynn's taxonomy[46]. Although some of the
results about network structure originally arose in the context of SIMD architectures or telephone switching,
that literature will be reviewed only in the context of implementing highly parallel MIMD architectures.

Network architectures may di�er in topology, routing protocol, or switching strategy. Such architectures
may be evaluated according to many di�erent metrics, such as ease of programming, direct mappings between
the architecture and important data structures, fault tolerance, scalability or cost, which may be measured
in wires, pins, physical space or amount of logic. Ease of programming and match between algorithm and
architecture are complicated and somewhat qualitative measures of network performance. Such measures are
beyond the scope of this discussion, though it should be noted that systems that depend on exploiting data
locality and nearest neighbor connections to get good performance are generally more di�cult to program.

The NYU Ultracomputer project began by investigating parallel algorithms on message-passing, staticly
connected shu�e-exchange machines [56, 122] and evolved in the direction of implementing an approximation
to the parallel random access (PRAM) model of computation �rst described in [47], because of the greater
ease and generality of this model for the programmer and implementation of software systems. This evolution
included the construction of bus-based prototypes as well as the design of an interconnection network [16, 54].

The NYU Ultracomputer network has the topology of an Omega network [85] with a bu�ered VLSI
switch at each node (see Figure 1.2). As discussed in the following sections, such a network has

� Bandwidth linear in N , the number of PEs.

� Latency, i.e. memory access time, logarithmic in N , ignoring the e�ects of contention.

� O(N logN) identical components.

� A �xed number of input and output ports for each node.

� Routing decisions local to each switch.

The addition of combining to each node allows concurrent access by multiple PE's to the same memory
cell with no performance penalty.

We evaluate network performance primarily in terms of the quantitative measures of bandwidth and
latency, considered in comparison to the cost of the network, and the way cost and performance scale with
the size of the system.

3

�
�
�
��Q

Q
Q
QQ

Q
Q
Q
QQ�

�
�
��

�
�
�

.

.

A
A
A
A
A
A
AA

�
�
�
�
�
�
��

�
�
�
��

A
A
A
AA

S
S
S

Figure 1.2: An 8� 8
-network.

In [14], bandwidth or throughput in a shared memory multiprocessor is de�ned as the mean number
of memory requests delivered by the network to the memory per cycle. We use the term bandwidth per
processor to refer to the steady-state message generation rate that can be accepted from each processor
by the interconnection network and memory system. Performance is said to be bandwidth-limited if the
processors themselves would be capable of generating a higher rate. In this case, messages are blocked
from entering the network or dropped because of con
icts for resources in the interconnection network or at
memory.

By latency we mean the total time from the cycle a processor issues a request to the network until the
network delivers the response from memory. As a network becomes loaded close to its maximumbandwidth,
latencies increase. Performance may be latency-limited in two ways:

1. The processor may be unable to generate new messages, due to an instruction or data interdependency,
until the response to a previously sent message has been received. How frequently this occurs will
depend on the processor, on the application and on the sophistication of the compiler and cache
technology and of the operating system.

2. The hardware in the processor-network interface may allow only a �xed maximumnumber of messages
outstanding in the network at a time.

In either case, the result will be that the message generation rate may drop as the latency increases, not
because messages are blocked from entering the network, but because the PE must wait for a response to
some previous message before a new message can be generated.

1.2.1 Interconnection network topology

Topology refers to the pattern of interconnections between the processors and other system elements. The
distinction between a static (or direct) topology and a dynamic (or indirect) topology is a fundamental
one, often associated in practice with di�erences in computational model. A direct network may be used
to provide low-latency high-bandwidth direct connections to neighboring nodes, for computations that can
be structured to have such spatial locality, but when destinations are randomly distributed, bandwidth is
limited compared to a multistage indirect network.

The cost of a network depends not only on the total number of wires and nodes in a network, but on this
pattern of interconnections or topology. The number of direct connections or links to a node is the degree
of the node. In practice, the pin-out of the chips or boards containing the processors and switches limit the
number of links of a given width, so that the degree of the node is a major cost factor. The bisection width,
the number of wires which must be cut to divide the network into two equal size pieces, is a measure of wire
density: the denser the wires, the larger the area (or the more layers of wiring) required for layout. Dally

4

[26] used bisection width as the major cost factor, comparing networks of equal bisection width. Under this
metric, networks with low degree nodes could have wider data paths, thus giving lower latency performance
under low tra�c loads than networks with higher degree nodes. The product of degree and bisection width
has also been used to characterize a network's cost [19].

Using the de�nitions in [145], a static topology has each switching point connected to a full processor,
including memory, while in a dynamic network processing elements (PEs) and memory modules (MMs) are
connected only at inputs and outputs of the switching network. This perhaps unintuitive terminology evolved
from the usage in [45], where static means that the links between processors are dedicated, passive buses
and dynamic indicates that the links can be recon�gured by setting active switching elements. Since current
processor-at-a-node \static" architectures may include sophisticated switching hardware at each node (see,
e.g.,[22, 28]) and since architectures that do not have a processor at every node but do not have well-de�ned
network inputs and outputs have been developed [6, 27], the terms direct and indirect network, as used in
[124] and elsewhere may be less misleading.

In a direct network, each switch is directly connected to a single processor; a processor and the switch it
is connected to form a single node. (In a message-passing system like the Cosmic Cube[125], the \switch"
may exist only as software running on the processor.) The most frequently considered direct networks are
the family of k-ary n-cubes [124], in which kn nodes are each labeled with an n-bit radix k number and
connected to nodes that di�er in only one radix k digit. Each node has degree 2n, twice the number of
the dimension. A k-ary n-cube may also be described as an n-dimensional array with k elements in each
direction and end-around connections. Two and three-dimensional mesh topologies are examples of k-ary
n-cubes without the end-around connections.

For direct networks with N nodes, following the notation in [3], if the degree of each node is d and the
data path width has the same number of bits as a single message, the overall message generation rate per
processors at steady state, (when message generation is equal to message arrival) is

mg =
dm

D
(1:1)

where m is the average utilization of each incoming link in steady state and D is the average number
of hops to deliver a message (thus 1=D is the probability that an incoming message terminates). D can
never be less than O(logdN) for any topology [9] if messages are sent from one node to all other nodes
with equal probability. Since m must of course be less than 1, the steady stage message generation rate
of direct networks, assuming uniform distribution of destinations, has an upper bound of O(d= logdN); the
corresponding upper bound on the usable bandwidth per node is d= logdN times the capacity of a link.

Indirect networks contain switches that are not directly connected to a processor. Another way to describe
this is to say that the network contains nodes without a processor at the node. Thus, for the same maximum
node degree, these networks are richer in links per processor and can maintain a higher bandwidth per node.
To �nd the maximum message generation rate per PE for such a network, consider that mg is constrained
by

NDmg � L (1:2)

where L is the total number of links in the system, since at steady state the total amount of tra�c which can
be generated each cycle on average can be no greater than the link capacity. The message generation rate
must also be less than the degree of the connection of the processor node to the network. Clearly, depending
on the speci�c topology and tra�c pattern, not all of the L links may act to add usable bandwidth, but this
constraint provides an upper bound.

The most commonly discussed and analyzed indirect networks are the multistage networks with a log-
arithmic number of stages, such as the Omega network [85], the rectangular SW-Banyan [51], square delta
networks [110], the baseline network [146] and the indirect binary n-cube [113], all of which can be shown
to be essentially equivalent [146] when the number of inputs and outputs to the network and the degree of
the switches is the same. By analogy with the k-ary n-cube direct networks and the butter
y network [90],
such networks are sometimes called k-ary n-
y networks [25], where k is the number of inputs and outputs
for each switch and n is the number of stages in the network, and there are kn inputs to and kn outputs
from the network. Networks in this class have an upper bound on the message generation rate at inputs to
the network equal to the full capacity of the link.

5

No. of Bandwidth Average No. of Bisection
Topology nodes per PE distance links width

k-ary n-
y kn 1 2(n+ 1) 2kn(n+ 1) 2kn

2� 2 Omega N 1 2(logN + 1) 2N(logN + 1) 2N
k-ary n-cube kn 4

k�1
k�1
2 n 2nkn 2kn�1

hypercube N 4 logN
2 2N logN N

2 D torus N 4p
N�1

p
N � 1 4N 2

p
N

3 D torus N 4
3
p
N�1

3(3
p
N�1)
2 6N 2N

2
3

fat tree kn 1 2(n� 1
k�1)

y 2nkn 2kn

Table 1.1: Performance factors for interconnection network topologies

To illlustrate the bandwidth di�erence between direct and indirect networks Table 1.1 shows maximum
bandwidth for a few interconnection networks of interest, assuming a message can be transmitted across a
link in one cycle, and that all destinations for a message are equally likely (thus exploiting locality may allow
some improvement over this \maximum," at a possible cost in software e�ort.) The number of links is the
number of unidirectional links, or twice the number of bidirectional links.

The 2 � 2 Omega network is a special case of k-ary n-
y. For these two networks a \dance hall" model
is assumed, with processors on one side of the network and memories on the other. Even if processors and
memory are co-located and allow local memory access, these networks are generally used in a shared memory
context where the unit of network communication is a memory operation and its acknowledgment, rather
than a processor-to-processor communication. The average distance is the number of links traversed in a
round trip from processor to memory and back to the processor.

The hypercube (the binary n-cube, also called the boolean n-cube [131]), 2D and 3D torus are frequently
encountered special cases of the k-ary n-cube. The formulas for the k-ary n-cube networks are based on the
analysis in [26] and assume a one-way message from processor to processor, with a processor at every node.
The average distance may be an overestimate for practical situations because it assumes random destinations
and does not take locality into account, but may also be an underestimate if adaptive routing is used and
messages do not always follow a shortest path to their destination.

Fat trees are described in [92]. Each of the kn leaves is assumed to contain a processor. Processors
communicate by traversal of the k-ary tree up to the lowest common ancestor and then descending to the
destination; average distance is based on a one-way message, as for k-ary n-cubes. The bandwidth per
processor of the fat tree is limited by the single link out a leaf node, rather than by the constraint of

Equation 1.2. This constraint would give a bandwidth of (k�1)n
(k�1)n�1, which does approach 1 from above as

the tree gets large. A fat tree topology, though having the bandwidth advantage of an indirect network (as
well as its cost), may also take advantage of locality to reduce latency, like the direct networks.

Two interesting metrics for the cost of network are the ratio of the number of links to the total system
bandwidth, which we will call the wire cost ratio, and the ratio of the bisection width to the total system
bandwidth, which we will call the bisection cost ratio. The higher these ratios, the higher the system cost for
comparable bandwidth. For all networks in Table 1.1, the bisection cost ratio is O(1). This corresponds to
the intuition that, for reasonably designed networks, the bandwidth available under uniform tra�c is closely
related to the bisection width. The wire cost ratio, however, varies considerably among these network
topologies.

As long as the constraint from Equation 1.2 is the limiting factor, the wire cost ratio is the same as the
average number of hops a message takes. For the k-ary n-
y, hypercube and fat tree networks, the wire
cost ratio is O(logN). However, for low-dimensional k-ary n-cubes, the wire cost ratio is O(N

1
n), implying

that these networks becomes progressively more costly compared to the indirect networks as the system size
grows. Note, also, that when k-ary n-cube networks of equal bisection width are compared, as is done in
[26], the lower-dimensional networks with wider data paths between nodes have better performance but also
have a greater wire cost ratio.

yPlus an additionalO(1
kn+1

) term

6

No. of Bandwidth Average No. of Bisection
Topology nodes per PE distance wires width
CM-5 256 8 7.3 16,384 2,048
J-machine 512 5.14 10.5 27,648 1,152
NYU Ultra 256 32 18 147,456 8,192
Tera 256 91.02 45 1,048,576 16,384

Table 1.2: Performance factors for sample parallel computers

Table 1.2 shows the same performance factors as Table 1.1 for the interconnection networks of particular
parallel computer architectures, measuring cost in wires instead of links, and maximum bandwidth in bits
per cycle rather than messages per cycle. Number of nodes was chosen to be comparable with the 256
processor nodes in the Tera architecture [6], which has an arrangement of nodes that is not easy to de�ne
for other sizes. Some of these architectures may be implemented by allowing bidirectional data transfer on
a single wire in the same processor cycle [28]; such bidirectional wires are counted as two wires in the total
number of wires. In the descriptions below the degree of the node is the number of bidirectional links, and
the link width is the number of bits that may be transmitted in one direction in one cycle.

The Tera network has 4096 nodes arranged in a 3D torus with sparse links. Each node is connected in
only two of the three possible X, Y or Z directions, so nodes have degree 4 rather than 6. The links each
transmit 64 data bits per cycle, plus an unspeci�ed number of bits for control; only the wires for the data
bits are counted here. Only 256 nodes are populated with processors; the rest are populated with memories
and I/O processors or are available only to add bandwidth. The average distance reported in Table 1.2 is
that for the 3D torus, doubled to allow a round-trip to memory, and is pessimistic in the sense that there
may be considerable opportunity for locality.

For the other three networks, the wires transmit both control and data. The NYU Ultracomputer actually
has 39 bit data paths in the forward path network for a 256 PE machine [17], but only the 32 bits used for
data packets are counted in the link width. Since 2� 2 switches are used, nodes in the network have degree
4.

The J-Machine [108] is a 3D torus architecture with a processor at every node. For ease in computing
the average number of hops, we wish the number of processors to be k3 for some k, so a system with 83

processors was chosen. (The router hardware would allow an ensemble of up to 64K nodes.) Nodes have
degree 6, with a link width of 9 bits.

Only the data network of the Connection Machine CM-5 [93] is shown. This processor-to-processor
network has the topology of a 4-ary fat tree, implemented using nodes of degree 8, with a link width of 8
bits. In theory, the link bandwidth at each node in a fat tree increases at each level approaching the root,
while the number of nodes at each level decreases proportionately; in practice, the number of nodes at each
level in the tree remains the same, as does the link width, so that the \root" of the tree actually consists
of the same number of nodes as all the leaves. The values reported in Table 1.2 were computed under the
assumption that all parent connections are used at every level of the tree. To decrease wiring cost, not all
the possible connections in the CM-5 network are actually used.

The variety of networks that have been chosen for parallel architectures illustrates that cost assessments
in practice are not continuous, based on total quantity of wires or silicon area, but very much dependent
on �tting into constraints. Design costs and the market for components used in the system may be more
important in the short run than the quantity and utilization of hardware. However, in our research, we
are interested in network architectures that provide scalable bandwidth as system size grows, and thus
concentrate our attention on multistage bu�ered networks.

1.2.2 Routing protocol

In SIMD systems, methods for routing permutations of data among the processors may be important for
performance. For MIMD systems, we are primarily interested in routing in a renewal context, i.e., each PE
repeatedly and independently generates messages to be routed to other PEs with some probability. In such

7

a context, distributed routing, with only local decisions, is more appropriate than global control of routing
decisions.

The k-ary n-
y networks have the property that exactly one path connects a given network input to a
given network output, and that routing can be done locally by a simple scheme in which the output at the
ith stage in the network is selected by the ith of n k-ary digits in a routing address. For the round-trip
messages used in a shared memory system, local control on both the forward and return path would seem
to require that both the destination and return addresses must be transmitted with each message. However,
for k-ary n-
y networks, only a single path descriptor �eld which contains an amalgam of the origin and
destination addresses is required [65].

For 2�2 switches, this scheme works as follows: initially, the path descriptor �eld is set to the destination
address. At each switch, the high-order address bit selects the port to which the message is to be routed.
Each switch replaces this bit with the number of the input port on which the message arrived and rotates
the address one bit so that the routing bit for the next switch will be the new high-order bit. When leaving
stage j of an n-stage network, the low-order j bits will be the high-order j bits of the origin address and the
high-order n � j bits will be the low-order n � j bits of the destination address. Thus, when the message
reaches its destination, the path descriptor �eld may be reversed and used in the same way as the return
address to the origin of the message.

Following the de�nition in [76], in a delta network the path descriptors associated with di�erent paths
leading to the same output node are identical, so that, if the inputs are processors and the outputs are
memory modules, each processor uses the same routing tag for a given memory module. Bidelta networks
have this property in the reverse direction as well; that is, each input also has a unique numeric identi�er
than can be used to route in the reverse direction from any output to any input. It was shown in [35] that
any two n-stage bidelta networks composed of k � k switches are isomorphic. The bidelta property, besides
providing a functional description of a unique network of a given size, is of practical value in a shared memory
system since it provides a unique PE or MM number for each module that can be used for interrupts or
other purposes from any location in the system.

However, networks without the delta or bidelta properties can still use digit-controlled routing and create
the return address as the message is routed to its destination, as long as the switches are connected in such
a way that every output can be reached from every input. In such networks, each input may use a di�erent
address for each output of the network. In a shared memory system, a functional mapping or table lookup
to get the correct memory module address would be required at each processor as a part of memory address
translation. Figure 1.3 shows such a \non-delta" network that was considered for use in a 16-PE NYU
Ultracomputer prototype because it allowed short wires on a backplane connecting 4� 4 switch boards that
were all wired identically [16].

For networks with more than one path from source to destination, adaptive routing may improve perfor-
mance [48], at some cost in complicating logic at the switching nodes. We will not consider such networks
here.

1.2.3 Switching strategy

Maximum bandwidth and minimum latency are determined by the number of wires in the network, the
way the wires are connected, and the number of hops a message must take, as discussed in section 1.2.1.
The bandwidth and latency actually experienced are, however, strongly a�ected by the switching strategy
adopted. Circuit switching provides a guaranteed low latency transmission for a message once a circuit has
been established, at the cost of tying up resources (links) that could be used by other messages and thus
limiting bandwidth. Store-and-forward switching (often called message or packet switching) increases overall
network throughput by releasing a link as soon as a message passes through it, at the expense of increasing
latency for individual long messages by only using one link at a time. Cut-through techniques, which include
the recently popular \wormhole routing," can combine some of the advantages of both techniques.

Circuit switching, the standard technique used for telephone switching, requires a set-up period during
which each link used for the transmission must be visited. After the circuit has been set up, all links can be
active simultaneously on a pipelined transmission. Circuit switching is pro�tably used when transmission
times are typically much larger than the set-up time and has seen relatively little use in computer networks
or interconnection networks for multiprocessors, where the set-up time is often substantial compared to the

8

0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

00

01

10

11

00

00

00

11

01

10

00
01
10
11

01

10
11

11
10
01

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

00

01

10

11

+ =

+ =

+ =

+ =

=
=
=

=
=
=

=
=
=

=
=
=

Figure 1.3: A non-delta network, from [16].

length of the message.
Store-and-forward switching has been the standard technique in long-haul computer communications.

In Chapter 5 of [73], Kleinrock describes both message and packet switching as store-and-forward techniques
in which the unit of transmission (message or packet) is transmitted completely on one link and bu�ered,
if necessary, until the entire unit has been transmitted across the link, before any transmission begins on
the next link. The distinction between the two methods is that in packet switching, a higher level protocol
at the sending node has broken the message into smaller packets, each of which contains a header with all
the addressing information needed to deliver the packet to its destination. Though the duplicated header
information incurs some cost, the latency for message transmission can be greatly reduced because the
packets of a message are pipelined on multiple links. Tanenbaum [134] states that pure message switching
is never used in computer networks because of the overhead in storage and delay at each node.

In virtual cut-through switching (the name \virtual cut-through" is due to Kermani and Kleinrock [69]
and is often abbreviated to \cut-through"), messages are broken into packets that are transmitted in a
pipelined fashion. Unlike store-and-forward message switching, not all the packets in a message need be
bu�ered in a node before the �rst packet may leave; only enough packets to give the routing information
must arrive before the �rst packet may exit. The pipelining advantage of packet switching is obtained without
duplicating the header in each packet. Only the �rst packet(s) of a message contain(s) routing information;
logic in the switches ensures that the remaining packets in a message follow the path of the header. Cut-
through switching avoids the assembly and disassembly of packets into messages by a higher-level protocol
needed in packet switching, while still providing lower latency. Like circuit switching, all the links on a path
from source to destination can be active on a transmission simultaneously, but, unlike circuit-switching, there
is no set-up time and the settings in each switch are not held after the last packet of the message passes
through. As noted in [107], the \wormhole routing" version of cut-through switching has been adopted for
several parallel computer architectures, including the Ametek 2010, the Intel Touchstone Delta, and the Intel
Paragon.

Our designs for switches in the NYU Ultracomputer employ cut-through, which is particularly easy to
implement with systolic switches (see Chapter 3). The switching technique and
ow control protocol we
use was �rst described by Snir and Solworth in [130]. A message is composed of packets; the size of a
packet is the same as the number of bits that can be transmitted on a link in a single cycle. The address
packet contains the header information; a message may also contain one or more data packets. Most of the
implementations discussed in detail in Chapters 4 and 5 have data paths wide enough to contain the network
routing information in a single packet, though conceptually header information could be spread across more

9

than one packet.
A variety of terms have been used to describe units of transmission in the context of cut-through switch-

ing. Our usage of the terms \message" and \packet," with packet as the sub-unit of message that can be
transferred in a single network cycle, follows that of Kruskal and Snir in their analysis of what they called
\pipelined message switching" in [77]. In the original paper [69] in which Kermani and Kleinrock de�ne and
analyze virtual cut-through, \message" and \packet" are used interchangeably to describe the unit of network
transmission that contains routing information. In their paper, whenever the head of a message arrives at a
node and the outgoing link is free, the message is said to \cut through" and begin transmission to the next
node, without being bu�ered. If the outgoing link is busy at the time the head arrives, the message must be
bu�ered. A partial cut is said to occur if a message that has been blocked and partially bu�ered is allowed to
continue transmission as soon as the link is free, without waiting for the message to be completely bu�ered.
No terminology is developed for sub-units of a message; instead the analysis is phrased in terms of the time
it takes for the message to be transmitted across a link.

Dally and Seitz, in [30] and elsewhere, use the term wormhole routing to describe a
ow control strategy
used with cut-through switching that provides only minimal bu�ering. Instead of either providing enough
bu�ering for a complete message or dropping messages when they are blocked (as, e. g., the BBN Butter
y
[24]), only enough bu�ering is provided at each node to make routing decisions; blocked messages are held
in place and tie up links leading back to the tail of the message. Dally and Seitz use \packet" for what we
call \message", the set of bits being routed together to a destination, and have two terms for the sub-units
of a message. Flit (
ow control unit) refers to the smallest sub-unit of a message that a queue can accept
or refuse, while phit (physical transfer unit) refers to the part that can be transmitted across a link in one
cycle, corresponding to our use of the term \packet."

The switching designs we consider in later chapters have a
ow control protocol that allows partial cuts
in the sense that a blocked address packet may start up transmission before the �nal packet in the message
has arrived at that node. Our protocol does not, however, allow the data packets of a message to be blocked
once the address packet has been transmitted to the next node. So there is no sub-unit of our messages
that exactly corresponds to a
it in the sense that it is used in describing wormhole routing, as a part of a
message that can be both accepted and refused independently.

Abraham and Padmanabhan [3] analyze both \full cut-through," in which cuts are allowed only if the
link is free when the head of the message arrives, and \partial cut-through," in which partial cuts are allowed
as well.1 They use \message" in the same sense that we do, but they use the term \nibble" to refer to what
we call a \packet."

Analyzing the relative performance of cut-through switching and store-and-forward switching is a di�cult
problem, and a number of di�erent approaches have been tried. Kermani and Kleinrock analyzed systems
with both single and multiple channels per link and with noisy and noiseless channels, using assumptions
of independence, Markovian distribution and balanced tra�c to make the analysis tractable. In Kermani
and Kleinrock's analysis, the message must be completely bu�ered (partial cuts are not allowed). This
assumption both makes the analysis simpler and is sensible for the data communications application which
they were considering, where it is advantageous in the presence of noisy channels to bu�er a blocked message
in order to perform error checking. For single channel links with noiseless channels, the di�erence between
Tm, the average time to transmit a message under store-and-forwards message switching, and Tc, the average
time to transmit a message using virtual cut-through, is

Tm � Tc = (nh � 1)(1� �)(1 � �)tm (1:3)

where nh is the average number of hops the message must travel, � is the average utilization of a link, � is
the proportion of the message taken up by header, and tm is the average time required to transmit a message
over a single link. When messages are long compared to the capacity of the link, tm will be large and virtual
cut-through can signi�cantly improve performance compared to store-and-forward. Furthermore, virtual
cut-through also provides a substantial savings in storage when tra�c is light. On the other hand, if the
utilization � is high or the average number of hops is small, cut-through will not provide a large performance
gain, even for long messages.

1Since partial cut-through requires greater hardware capability and gives better performance than full cut-through, the
terminology is somewhat unintuitive, since people normally expect \full" to be better than \part."

10

In [77], Kruskal and Snir give the following approximate formula for network delay using cut-through
switching with m packet messages in a delta network with k � k switches:

T = logk N (t+mt
m(1 � 1=k)p

2(1�mp)
) + (m � 1)t (1:4)

where N is the number of network inputs and outputs, p is the number of messages per cycle, and t is the
cycle time of a switch.2 The �rst t in the expression being multiplied by the number of stages in the network
represents the transition time for the head of a message from input to output, assumed to be a single cycle,
and the second term represents queuing delay. The last term accounts for the \pipe-setting" delay. In [79],
this formula was modi�ed by a factor obtained from simulations to account for the changes in queueing delay
at later stages. No analysis was done for the store-and-forward case.

In [3], a delay formula for cut-through was calculated by subtracting the bene�t due to cut-through at
each stage from the store-and-forward delay formula. For the full cut-through case, the bene�t due to less
waiting for all messages that arrive at the same time as a message that cuts through was given as

1� p

1� a0
pmt (1:5)

and an additional bene�t for all messages that arrive at a queue during the time the output link is busy
after a message that cuts through arrives is given as

1� a0 � a1
1� a0

p2mt (1:6)

where ai is the probability that i messages arrive at a queue on a given cycle, and the rest of the notation is
as in Equation 1.4. Their analysis showed a 35 percent improvement for virtual cut-through over store-and-
forward, with about an additional 20 percent additional improvement when partial cuts are allowed, for a
total improvement of 55 percent at moderate tra�c levels, but the �gures given are for long messages issued
at low rates.

Dally's work [25, 31] analyzed the performance of wormhole routing compared to virtual cut-through with
queueing under light tra�c conditions for both indirect k-ary n-
y networks and direct k-ary n-cubes. His
analysis for virtual cut-through with in�nite queues in a k-ary n-
y network, gave the following approximate
formula for network delay

T = logk N (t+mt
m(1 � 1=k)p

2
) + (m � 1)t (1:7)

using the same notation as in Equation 1.4. Omitting the factor (1 � mp) from the denominator in the
expression for queueing delay makes this approximation less accurate as tra�c increases.

Wormhole routing has become very popular in systems where the o�ered load is low, because of its
latency advantages over store-and-forward and its storage advantage over bu�ered cut-through techniques
[107]. However, because messages retain channels when blocked, this technique is particularly susceptible to
problems with deadlock in many network con�gurations. Sophisticated switching hardware may be required
to solve this problem. In a recent study by Adve and Vernon [4], a closed queueing network model was
developed for wormhole routing in k-ary n-cube networks using the non-adaptive deadlock-free routing
scheme of Dally and Seitz [30]. Adve and Vernon found that, when processors are allowed to have multiple
outstanding requests, system performance is bandwidth-limited rather than latency-limited and thus, since
the bandwidth in k-ary n-cubes scales as N

1
k (see 1.1), this con�guration does not scale well with increasing

system size under uniform access patterns. With four outstanding requests per processor, at least 70-80
percent of each processor's tra�c must be directed to its nearest neighbors for system performance to scale
well. They also showed that the deadlock avoidance algorithm places asymmetric loads on the virtual
channels that create di�erences in e�ciencies for processors at di�erent points in the network.

2Kruskal and Snir distinguish between the transmission time and cycle time, but we assume a system in which the cycle
time is the maximum of these two values.

11

1.2.4 Non-uniform tra�c patterns

As discussed in section 1.2.1, multistage interconnection networks can be constructed to have bandwidth
linear in the number of processors under uniformly distributed memory tra�c. However, message tra�c
may depart from uniformity in a variety of ways. Some of these departures from uniformity may actually
increase the available bandwidth, by preferentially accessing closer processors or by creating access patterns
that in which di�erent paths share fewer links than they would be expected to share under uniform tra�c.
Others degrade performance, due to contention at the memory or at links in the network.

A variety of tra�c patterns can cause contention within the network or memory system even if no two PEs
are accessing exactly the same memory addresses. For example, the typical spatial locality in most programs
will cause a memory access bottleneck if consecutive virtual addresses are stored in the same memorymodule.
Using low-order address bits to interleave memory across the modules exploits spatial locality to distribute
the references, thus avoiding this potential bottleneck. Since shared interleaved memory makes it more
di�cult to keep processor local data in the memory module physically adjacent to the processor, caches at
the processor are normally required in such an architecture to allow the exploitation of temporal locality.

Patterns that do not favor any particular memory module can also cause problems. Mitra and Cieslack
[106] studied the behavior of Omega networks under tra�c distributions that satisfy the full � relations:
each processor issues tra�c at a rate � and each memory module receives tra�c at a rate �. They showed
that there are tra�c patterns that satisfy the � relations but induce a tra�c intensity of �2min(i;n�i) on some
links in stage i of an n-stage Omega network. They proposed inserting a scattering network of r stages to
randomize the paths followed through the network, and showed that such a network had a maximum tra�c
intensity, for tra�c distributions that satisfy the full � relations, of �2min(i;n�r�i) on any link in stage i.

Kim and Garcia [70] developed an analytical model of bu�ered banyan networks composed of Type C
switches (see section 2.1) of sizes 1 and 2 and applied the model to non-uniform tra�c patterns, including a
pattern with single-source-to-single-destination with a background of uniform tra�c and a maximum con
ict
pattern similar to those studied by Mitra and Cieslack. They found little improvement due to increasing the
bu�er size, but a more substantial improvement if two parallel bu�ered networks are used.

Lang and Kurasaki [84] evaluated degradation of performance due to non-hot-spot, non-uniform tra�c
patterns that included the bit-reversal permutation pattern, other patterns in which each source favors
a single destination but with source-destination pairs chosen at random, and the EFOS (even �rst, odd
second) pattern, which sends messages from even numbered sources to the �rst half of memory, and from
odd numbered sources to the second half. They found that, for these patterns, the use of diverting switches
and augmenting the network with additional links were successful at reducing performance degradation, but
that randomization and discarding messages were not successful. Diverting switches never block messages
but instead send a message to the wrong output bu�er if the intended output bu�er is full. Messages may
be routed to the wrong destination and must be retransmitted from there to the original destination. They
augmented the of the network with additional links connecting switches in the same stage into rings, thereby
providing additional paths around points of congestion within the network.

Lee, Cheung and Peir [89] considered the consecutive requests tra�c pattern, which can be formed when
each processor issues a sequence of requests to successive memory locations. To avoid the con
icts in the
early stages of the network that can occur if consecutive memory locations are placed in consecutive memory
modules, they suggest a bit reverse mapping. For example, in an 8� 8 system composed of 2� 2 switches,
consecutive requests 0,1,2,3,4,5,6,7 would be mapped to MMs 0,4,2,6,1,3,5,7, and thus (assuming routing at
the �rst stage is done on the high order bits of the MM address) successive requests would go to alternate
outputs. Since even with the bit-reverse mapping, progressively longer sequences requesting the same output
may occur as a result of merging of request streams, they also suggest a dynamic priority scheme, in which
once a message has been sent on output port i from a input port j, messages for output port i arriving on
input port j will have priority over messages for output port i from any other input port, for as long as input
port j continues to have messages for output port i. This dynamic priority scheme has the e�ect, when both
input ports have clusters of messages to be output on port 0, followed by clusters of messages to be output
on port 1, of improving the utilization of the output ports, since one port begins sending a stream on output
0 only after the other has �nished with output 0 and begun to send messages to output 1. Their simulations
showed these techniques to reduce delay by about 20 to 30 percent on a 64 PE system, when all PEs are
performing accesses to vectors of length 256; simulations in which all PEs began access simultaneously to

12

the same memory module naturally showed the most improvement.
Contention patterns like those just described, which arise when di�erent locations are being accessed

by multiple processors, can thus be resolved by interleaving, hashing, or other methods of randomizing the
addresses, or by diversion techniques or other methods of providing alternative paths around congestion in
the network. In this thesis, we are concerned with the kind of non-uniformity in which a disproportionate
number of memory requests are concentrated at a particular memory location, called a hot spot [119]. If these
requests are serviced serially, a bottleneck arises, which cannot be avoided by the techniques suitable for
other forms of non-uniform tra�c. Such hot spots are particularly likely to arise as part of synchronization
or other interprocessor communication, or when many processors working on the same problem are accessing
shared data structures or loading the same code segments into cache.

1.2.5 The hot spot problem

As an example of the hot spot problem, consider a system with a logN stage interconnection network running
a parallel application that uses a single shared queue to implement a workpile. The most straightforward
parallel implementation uses a critical section to protect the insertions and deletions. This critical section
produces a bottleneck, limiting the speed-up of the parallel application as well as creating hot spots at the
variable guarding the critical section.

More sophisticated queue algorithms, described in [59], use a synchronization operation called fetch-and-
add to eliminate the critical section. When these operations are combined in the network, as described in
section 1.2.6, the bottleneck is eliminated. Without combining, these algorithms move the bottleneck from
software to hardware, since the fetch-and-adds to the coordination variable are serialized at the memory
module. If references to a particular hot spot are issued by each processor more often than once every
N cycles, where N is the number of PEs, servicing these references will be the limiting factor on system
performance.

The obvious problem with hot spots is the serial bottleneck at memory. The not-so-obvious problem
is the e�ect this serial bottleneck has on other tra�c. In [119], P�ster and Norton studied these e�ects
with simulations using a simpli�ed single hot spot model in which messages are independently generated
at each node by a steady state renewal process. Messages are generated at an overall rate of p, with some
fraction h of the messages from all processors destined for the hot spot. In simulations of networks with
Type A switches, they showed that hot spot requests not only received slow service themselves because of
serialization at memory, but also cut overall network bandwidth and increased delays for requests destined
for other memory locations through the phenomenon that they called tree saturation. The paths followed by
messages destined for a single hot spot form a tree in any unique path multistage network. Output queues on
these paths become longer than those not on the tree because the tra�c intensity to those outputs becomes
progressively greater: at stage i, with stages numbered from 0, the input rate directed to the hot output will
be

pi(1� h) + 2i+1pih: (1:8)

If the queues are of unbounded size, the queue length will become in�nite as this value approaches 1; if the
queues are of bounded size, blocking will occur and the bandwidth entering the network will be limited.

Messages that enter queues at hot outputs experience increased waiting time, even if not destined for the
hot spot. If the bu�ers holding the queues are limited in size, bu�ers �lling at later stages will block outputs
at earlier stages and can cause all queues on the tree from the hot MM to the PEs to become full, so that
blocking occurs at all inputs to the network.

The time required from the time a hot spot begins to be active until tree saturation occurs was examined
by Kumar and P�ster in [81]. Their results, obtained from an approximate analysis supplemented by
simulation, show that a hot spot tra�c pattern does not need to be sustained for long before tree saturation
occurs. They also studied the recovery time: the time after message generation patterns return to a uniform
distribution when throughput is still depressed, and delay still elevated because of the congestion in the
network caused by the hot spot pattern. Their simulations indicate that the recovery time is much longer
than the time required for onset of tree saturation.

P�ster and Norton claimed that performance degradation due to hot spot tra�c would occur regardless
of topology or queue size. Subsequent studies have supported this, on the whole, although some topologies
and bu�er structures show less degradation to non-hot spot tra�c than others.

13

Hot spots in multistage interconnection networks

Networks containing unbu�ered switches that discard contending messages do not exhibit full tree satura-
tion, since messages to the hot spot do not accumulate in the network, and thus inputs with non-hot spot
messages are never completely blocked. In this sense, such switches have been called non-blocking switches.
Experiments on the BBN Butter
y [136] showed that the access time for a memory that contained a hot
spot was degraded, but showed little e�ect on the performance of programs that avoided the hot mem-
ory. However, the processors of the BBN Butter
y were slow compared to the speed of the network, so
that program bandwidth requirements were low. Liu has shown [99] that even in unbu�ered networks the
bandwidth to memories reached by paths that overlap the hot spot tree is lowered by contention with hot
spot requests. Furthermore, if all processors are jointly cooperating on the same application, it may not be
possible to arrange for them to avoid the hot memory. In addition, Liu's model is optimistic in that the
probability of generating a hot spot request was assumed to be independent of previous requests, whereas in
a real system a rejected hot spot request is likely to be resubmitted the next cycle. Simulations by Lesher
and Thazhuthaveetil [95] con�rm that unbu�ered networks su�er a drastic bandwidth reduction due to hot
spots.

Patel and Harrison have studied tree saturation in circuit-switched delta networks [112]. Using an iterative
method in which sub-networks are replaced by
ow equivalent servers, they were able to compute throughput
as a function of the population of the system and the routing probability to the hot memory module. They
showed that, for a 16-way, 4-stage delta network, the throughput is a maximum for uniform tra�c, and the
throughput curves tend toward 1=�, where � is the total amount of tra�c directed toward the hot memory
module.

Lin and Kleinrock [96] present a method for analyzing �nite-bu�ered multistage interconnection networks
under a general tra�c pattern, allowing the speci�cation of a di�erent distribution of request destination
to each processor, including the speci�cation of a hot spot pattern. Lin and Tantawi [97] use this method
to determine the improvement in the probability of acceptance by adding bu�ers (from unbu�ered to bu�er
size 8) and found an upper bound on the tree build-up time (the time until the saturated tree has formed).

The e�ect of hot spots on bu�ered networks containing Type B and Type C switches (see section 2.1)
has also been studied. Tamir and Frazier [133] simulated the performance of four switch architectures, one
of Type C and three representing di�erent implementations of Type B architectures, in a 64 � 64 Omega
network composed of 4 � 4 switches with bu�ers of size 4, and found that all structures saturated at a
throughput of 24 percent with a 5 percent hot spot rate.

In [10], Atiquzzaman and Akhtar present a method for analyzing the performance of an Omega network
composed of Type C switches with a queue of size one at each input. The iterative Markov chain analysis
they present assumes that a bu�er in a switching element may be in one of four stages: empty, containing
a newly arrived message, blocked for the upper output link, and blocked for the lower output link, and does
not generalize easily to larger queue sizes. As in [66, 135, 150], the stage cycle is split into two phases for
modeling purposes. In the �rst phase, availability of bu�er space at the next stage is determined. In the
second phase, messages may move forward one stage if the next stage bu�ers are ready to accept them.
Under hot spot tra�c, routing probabilities at a switch are determined recursively for each of the i classes
of switches at stage i (see also [99]). Their graph of results for a network of 8 inputs and outputs shows a
maximum bandwidth of around 3.1 (average active memory modules) with the percentage of requests for
the hot module at 30 percent. This compares with a value of approximately 3.3 from Liu's bound on steady
state bandwidth in [99] for the same hot spot rate and network size but with unbounded queue size.

Although assumptions about switch architecture are not given, the 8 � 8 and 16� 16 networks studied
by Sivaram in [128] are apparently composed of Type C switches, since a throughput reduction is observed
under uniform tra�c even with unbounded bu�er size. The throughput is much worse and the delays much
greater when hot spot tra�c is introduced, but it is di�cult to compare the results of this study with other
reported results because the message generation rate is given in terms of messages per microsecond, rather
than messages per switch cycle, and the assumed service rate of the switches is not given in the paper.

Hot spots in direct networks

Full crossbars show no degradation in acceptance probability of other messages due to hot spot tra�c, since
there is no con
ict for resources within the network, but the hot spot tra�c itself is still serialized. Pinsky

14

and Stirpe [120] analyzed a circuit-switched optical crossbar with asynchronous arrivals, taking into account
con
icts for inputs as well as outputs, and found no signi�cant e�ect on uniform tra�c due to small hot
spot percentages. However, their model did not take into account the overall system in which lost hot
spot messages must be regenerated until satisi�ed, e�ectively forming a queue at the inputs. Kurian and
Thazhuthaveetil [82], considering this e�ect, found that the relative bandwidth degradation due to hot spots
is actually higher in crossbars than in multistage networks.

Studies of other direct networks have also shown degradation in performance similar to that in multistage
networks. In simulations on a binary n-cube network done by Abraham and Padmanabhan [2], in a 1024 node
system with hot spots, bu�er sizes of less than �ve always resulted in a deadlock at 100 percent o�ered load
when using dimension-order routing. Even with deadlock-free LR routing, there is a disastrous performance
degradation when a hot spot occurs. Bu�er sizes of 10 were needed to avoid this problem. Their results for
a single synchronization cycle show little degradation of background tra�c due to hot spot tra�c, but hot
spot messages themselves are necessarily serviced quite slowly.

Badouel et. al. [11], in a paper primarily devoted to demonstrating improvement in performance of a
routing algorithmbased on a line drawing technique over dimension-order routing in k-ary n-cubes, simulated
hot spot tra�c within a bu�ered network where blocked messages are discarded and showed a decrease in
saturation throughput from 100 percent of capacity to 65 percent with the introduction of a 1 percent hot
spot using dimension-order routing for a 6-ary 3-cube. However, it is not clear how their production and
reabsorption models of node behavior correspond to the more usual steady-state renewal model.

Dandamundi and Eager [32] simulated binary hypercube networks under a model which considers the
e�ect of both global and local tra�c. For a 256 PE network, with a hot spot rate of 1 percent and local non-
hot spot tra�c at 75 percent of the total tra�c, the saturation throughput was only 76 percent of capacity
using non-adaptive routing, despite the large percentage of local tra�c. With an adaptive routing algorithm
using unbounded bu�ers and allowing messages to choose the shortest queue on a shortest path, the e�ect
of hot spot tra�c on regular tra�c was negligible, but when bu�ers were bounded, there is signi�cant
degradation at hot spot rates greater than 4 percent.

Adve and Vernon's closed queueing network analysis of bidirectional and unidirectional tori and bidirec-
tional meshes, validated by simulations with one and four outstanding requests per processors, showed no
tree saturation due to hot spot tra�c on 64 PE systems, and no signi�cant degradation of response time
from the hot node for hot spot rates of less than 10 percent [4]. They ascribe the di�erence between their
results and P�ster and Norton's results for 64 PE systems to the di�erence between closed and open queue-
ing models, that in a closed system the round-trip delays prevent enough messages being issued to created
the tree saturation e�ect. However, some of the di�erence they observe is due to the di�erence in topology
between direct and indirect networks. For a bidirectional torus, with uniform tra�c and four outstanding
messages, the total e�ective request rate per processor was bandwidth-limited to less than .15 packet per
cycle, according to their results. Thus, even at a hot spot percentage of 20 percent, the highest they exam-
ined, the total rate from all sources to the hot spot would still be less than 64� :15 � :20 = 1:92, and no
individual link would average more than half that tra�c, because of multiple links leading into the hot node.
In a 64 PE multistage indirect network, in contrast, because of both the greater uniform bandwidth and
the limited bandwidth at the single link into a hot node, lower hot spot percentages saturate the link, even
if the number of outstanding messages is limited. Our own simulations show, for example, that with four
outstanding requests per processor and 100 percent o�ered load, e�ective throughput falls from 38 percent
for uniform tra�c to 24 percent for 5 percent hot spot tra�c, while average round-trip delay increases from
18 to 31 switch cycles.

1.2.6 Solving the hot spot problem

Assessing the merits of di�erent solutions to the hot spot problem requires complicated tradeo�s between the
allocation of hardware and software resources. Many solutions have been proposed, but relatively few have
been carried out to the stage of detailed implementation so that relative costs can be assessed. Solutions may
be classifed by the kind of improvement made, and by the kinds of resources dedicated to the improvement.
Performance may be improved in several ways:

1. Software techniques can be used to cut down the number of accesses made to any single memory
location.

15

2. Extra links and bu�ers in the network and at processors and memories may be provided, improving
performance for all types of congestion, including hot spot.

3. Tree saturation may be avoided and the e�ect on background tra�c may be mitigated, by preferentially
dedicating resources to regular rather than hot spot tra�c.

4. Extra service may be provided to hot spot requests, to remove them rapidly from the network, by
combining the requests in hardware as they pass through the network.

Hardware combining provides the most complete solution, since it eliminates the bottleneck at memory for
the hot spot requests and thus avoids tree saturation altogether, but has often been considered to be too
expensive.

In this section we �rst describe hardware combining, and then describe other techniques that have been
proposed to handle the hot spot problem. Some of these techniques can be understood as approximations to
hardware combining in the network using software or hardware local to the processor; others do not eliminate
the bottleneck at memory, but attempt to alleviate the detrimental e�ect of hotspots on overall bandwidth
and on processors not involved in access to hot spot locations. In section 1.2.7 we review studies of the
e�ectiveness of hardware combining and in section 1.2.8 we describe a variety of methods for implementing
hardware combining that have been proposed.

Combining memory requests

Combining of accesses to read-only locations was proposed as part of the CHoPP (Columbia Homogeneous
Parallel Processor) project [131]. To achieve a \stochastically con
ict-free memory/interconnection system"
[72, 71], the CHoPP design included the deliberate random allocation of memory addresses and the inclusion
of cache-like \repetition �lter memories" (RFMs) in the switches of the interconnection network. A read
access in such a network would create an entry in each RFM on the path to the memory module; subsequent
accesses could be satis�ed by the closest RFM. The design assumed that all accesses to shared read/write
data would be made using bu�ers that could be written by only one process and read by only one other
process, and thus no shared read/write item would ever have more than two messages that referred to it
traversing the network at the same time.

The NYU Ultracomputer project generalized this idea to a less restricted model of interprocessor commu-
nications and proposed combining fetch-and-� operations (which include loads and stores) to shared memory
at switches in the interconnection network [58, 57]. Fetch-and-�(X; e), where X is an integer variable and e
is an integer expression, returns the (old) value of a memory location X and replaces it with �(X; e). In early
work by the Ultracomputer project, \add" was the only � considered, and the idea of hardware combining
at network switches was developed in the context of devising an e�cient implementation for fetch-and-add
[54, 55]. Gottlieb and Kruskal [57] showed that this method of combining could be used for any associative
operative �. Snir and Solworth [130] outlined an implementation of a combining switch that was the basis
of the work described in Chapters 3 and 4. Kruskal, Rudolph and Snir [75] extended the class of combinable
read-modify-write operations to include some operations that are not associative.

With read-only shared data, the order of access of di�erent processors never matters. But with read/write
shared data, the result of concurrent fetch-and-� operations to the same variable must satisfy the serialization
principle [83]. Fetch-and-� operations simultaneously directed at X must cause the �nal value of X to be
the same as the result of executing the operations in some serial order, and each operation must return a
value corresponding to an intermediate value of X in a serialized execution.

We illustrate how combining is performed, using the operation of addition as �: When two fetch-and-adds
referencing the same shared variable, say fetch-and-add(X, e) and fetch-and-add(X, f), meet at a switch,
the switch forms the sum e + f , transmits the combined request fetch-and-add(X, e + f), and stores the
value e in its local memory. When the value Y is returned to the switch in response to fetch-and-add(X,
e+f), the switch returns Y to satisfy one request, fetch-and-add(X, e), and Y +e to satisfy the other, fetch-
and-add(X, f). Assuming that the combined request was not further combined with yet another request,
memory location X becomes X + e+ f . If other fetch-and-add operations updating X are encountered, the
combined requests are themselves combined.

The associativity of addition guarantees that this procedure gives a result consistent with the serialization
principle. Other associative operations can be combined in a similar manner. Since combined requests can

16

�

�

�

�

�

-

�

-

-

-

-

-

X=15 (end)

-

�

X:12

X:13

X:0

X:4

FAA(X,1)

FAA(X,4)

FAA(X,8)

FAA(X,2)
1

4

X:12

FAA(X,12)

X:0

FAA(X,3)

12

FAA(X,15)

X:0

X:=0 (start)

Figure 1.4: Example of combining fetch-and-add operations.

themselves be combined, any number of concurrent memory references to the same location can be satis�ed
in the time required for one shared memory access from a single PE.

Figure 1.4 shows a particular example of four fetch-and-add messages combining in two stages of switches
before the destination. The results returned are as if the fetch-and-add (FAA) operations were executed
sequentially in the following order, on a memory location X that was initially zero:

FAA(X,4)
FAA(X,8)
FAA(X,1)
FAA(X,2)

Note that the value saved for decombining may come from either input port, depending on which message
arrived \�rst."

A formal proof of the correctness of combining, in the sense that the observable behavior of a combining
memory system is a behavior that could be observed in a correct non-combiningsystem, is given by Kruskal,
Rudolph and Snir in [75]. They consider a memory system to be \correct" provided that each memory
location receives a sequential stream of requests from processors, obtained by merging the serial streams
of requests directed to that location by individual processors, and that these requests are processed in the
order in which they appear. However, even with such a \correct" memory system, it may be necessary to
fence or delay a processor until some previous memory access has completed, in order to maintain sequential
consistency and prevent hazards due to interdependencies when processors have multiple requests outstanding
to di�erent locations. Analysis of when such fences are needed can be found in [126].

As noted in [75], this method of combining can be used in a variety of interconnection networks, as long
as requests return on the path on which they were sent. Extra logic is required at nodes in the network,
but no additional wires are needed between nodes (though, depending on packaging, additional pins may be
required for intranode wiring).

Avoiding hot spots in applications

As an alternative to hardware combining, a variety of software techniques for avoiding hot spots have been
proposed. Some of these techniques require taking into account both the algorithm to be implemented
and detailed features of the network in the target architecture; see, for example, the discussion of global
summation on mesh architectures in [13]. The problem of mapping algorithms to architectures in such a

17

way as to avoid communication con
icts and bottlenecks has been the focus of a great deal of research in
the context of particular applications.

The prevalence and di�culty of removing hot spots in real applications is still an open question. In
[33], Darema-Rogers et. al. studied the memory access patterns of three scienti�c programs using traces
obtained with the PSIMUL simulator running under the VM/EPEX parallel environment. They found that
the fraction of fetch-and-add instructions executed to shared variables ranged only from 0.0003 to 0.008
percent of instructions. However, even with such low average �gures, tree saturation still occurred when
traces were used to drive a network model.

In [50], Glenn et. al. found three types of hot spots in the applications they studied using the Horizon
simulator:

1. Hot spots due to simultaneous access of shared read-only data.

2. Hot spots due to stride access.

3. Hot spots due to heavy access of test and set variables.

The �rst type of hot spot can be avoided by distributing copies of the data, but, as Glenn and Pryor describe
in [49], identifying the variables responsible for the hot spot is not trivial. The variables that turn out to be
hot spots may be surprising to the programmer and may change as the program is scaled to larger machines.
Like Glenn and Pryor, Bianchini et. al. [15] have also observed that increasing the number of processors
may increase both the number of hot spots and the degree of contention for each hot spot. Using traces from
the Tango simulator and then simulating the contention e�ects of those traces when accessing a distributed
memory, they found that eliminating hot spots on an individual basis can cause other hot spots to worsen.

Glenn et. al. found the second type of hot spot, due to stride access, to be di�cult to eliminate with
software techniques. However, stride access tends to create hot memory modules, rather than hot locations,
and thus can be alleviated with randomized memory bank addresses.

The third type of hot spots, which involve repeated access to synchronization variables, has been the target
of software combining techniques which mimic the e�ect of hardware combining using a tree of locations, each
of which will receive only a constant number of references, to replace each hot spot location [149, 148]. These
algorithms utilize a software tree with each processor assigned to a leaf; logN locations in di�erent memory
modules are used to combine data from a �xed number of processors. Although most processors only ascend
a few levels, all must wait for the tree to be fully ascended and subsequently descended for each access to the
tree. Since traversing each level of the tree requires logN transit time through the interconnection network,
asymptotically each access to the combining tree will require �(log2N) time with software combining, as
compared to �(logN) time for accessing a memory location if all accesses to the hot spot are combined in
hardware and require only one network traversal.

Software combining techniques, assisted by hardware local to the processor, have been used to devise
synchronization techniques that avoid generating hot spots and cut down on tra�c in the network due
to busy waiting. Synchronization primitives that make use of hardware supported syncbits are described in
[53]. Reader-writer synchronization that rely on fetch-and-� operations and on spin-waiting, without network
access, on local shared memory are described in [103]. Such methods are signi�cantly more complicated than
synchronization techniques that rely on hardware combining, such as those described in [59, 75], and show
the same di�erence in performance as that between hardware and software combining.

Adding resources at the memory and network

Making the network faster, in the presence of hot spots, will only deliver messages more quickly to the
bottleneck at memory. However, alternative paths in the network may delay the onset of tree saturation and
allow PEs not involved in the hot spot to make progress. If all PEs are accessing the hot spot in addition
to other locations, they must be able to have multiple outstanding requests in order to take advantage of
alternate paths around the hot spot tree.

Tzeng [138, 139] proposed using Type B switches and multiple queues at inputs to the network to lessen
the impact of tree saturation due to hot spots. The multiple queues at the input are selected based on high
order address bits, and the protocol for sending messages to the switches allows a message to be sent as long
as one of the queues at the input has a message that follows a path through a non-full �rst stage output

18

bu�er. His simulations of a 256 � 256 network composed of 2 � 2 switches, with 2 queues at each input,
show a maximum throughput under uniform tra�c of about 75 percent, and a maximum throughput under 5
percent single hot spot tra�c of close to 40 percent, a considerable improvement over the results for the Type
C switches simulated in [36]. However, this scheme is still subject to input blocking from tree saturation
if there is more than one hot spot in the system and each of the queues at the input has a message at its
head destined for a hot spot. Furthermore, this scheme, especially in the variant with dynamic allocation of
storage to longer queues, requires somewhat complicated
ow control between the stages, since acceptance
of a message depends on its destination in the next stage.

In a 256 PE wormhole-routed k-ary n-cube, under the low tra�c assumption that the injection rate
into the network is much less than the bandwidth of the physical channel, providing multiple consumption
channels at each processor improved hot spot performance considerably with adaptive routing, though the
routing bottleneck dominated when dimension order routing was used [12].

Hardware resources in the network may also be used to support synchronization in a way that cuts
down on hot spot accesses. In [8], Andrews, Beckmann and Poulsen described hardware designs that cut
down on hot spot accesses by allowing noti�cation and multicast to be used instead of polling or spin-
waiting on a synchronization variable. Two hardware designs for implementing noti�cation and multicast
in packet-switched multistage interconnection networks were presented. In each, multicast and noti�cation
are controlled by the memory module using a directory, in a way similar to directory-based cache coherence
schemes, but without implementing all the requirements of a full cache coherence scheme.

The Switch Table Multicast Network (STMN) has an implicit, network-based directory, distributed over
the reverse network switches. The Hybrid Multicast Network (HMN) has an explicit, memory-based direc-
tory, distributed over the memory modules. In both STMN and HMN, the number of simultaneous multicast
trees that can be supported is limited by the size of the directory: for STMN, by the routing tables in the
reverse path switches, for HMN, by the multicast tables at memory. Switches to implement the reverse path
in an STMN must have an additional input to and output from the switch crossbar. The hardware costs
for either scheme are non-negligible, comparable to or greater than that required to implement a combining
network.

Simulation experiments compared the average time to synchronize for a tree barrier with broadcast
exit using HMN and STMN with a symmetric tree barrier using polling. These were the fastest barrier
algorithms for each scheme. The noti�cation barriers outperformed polling by almost a factor of two for
large numbers of synchronizing processors. However, a comparison of the e�ect of synchronization on the
latency of background tra�c, using symmetric tree barriers with HMN and STMN as well as with polling,
showed no improvement over polling in the e�ect on background tra�c, and it is possible that using the
broadcast exit, as in the best algorithm for HMN and STMN, would have a detrimental e�ect on background
tra�c.

Preferential allocation of resources

If messages destined for a hot spot are prevented from tying up resources within the network, tree saturation
can be avoided, and \cold" processors, which do not require service from the hot memory module, will
see improved network performance. However, such methods will do nothing to improve service for \hot"
processors, and may actually make it worse.

Rotating messages to the back of the bu�er and comparing memory addresses to ensure that no bu�er
acquires more than one message destined to the same memory module are techniques suggested by Dias
and Kumar to avoid degradation to uniform tra�c due to hot spots [36]. Simulations of this method, using
Type C 2 � 2 switches with bu�ers of size 4 in a 256 � 256 network, showed a maximum throughput for
uniform tra�c of around 43 percent, compared to 53 percent for Type C switches that do not reject or rotate
messages, and a maximum throughput of 37 percent for 5 percent hot spot tra�c, compared to 8 percent
with the simple switches. Several extensions of their scheme that improved throughput for uniform tra�c
were also studied, including comparing memory addresses only when the queue length is greater than one,
and giving lower priority to messages once they have been rejected. No �gures were given for the increase in
delay experienced by hot spot messages. Their model seems to have assumed no queueing of blocked hotspot
messages at network inputs, and no limit on the number of outstanding requests within the network; thus,
no detrimental e�ect of long delays for satisfying hot spot requests would be seen in the throughput �gures

19

from their simulations.
Ho and Eager [61] proposed simply discarding one of any two messages destined for the same memory

location that contend at a switch. In simulations of a 1024 PE network, they limited the total number of
PEs that may have hot spot messages outstanding to 512 (i.e, when 512 PEs had an outstanding message
to the hot spot, no more hot spot messages would be generated until one of these outstanding requests was
satis�ed.) A PE was allowed to have at most one memory request outstanding at a time. Switch-initiated
retransmission, in which a switch sends a message back to a PE when it discards a message, was used. Under
such conditions, the maximum achieved throughput for all tra�c using the discarding strategy was almost
50 percent, compared to 30 percent when all messages are queued. Simulations of a combining network had
a throughput of around 90 percent. In order to determine when to discard messages, Ho and Eager's scheme
would require the same associative matching as a combining network, but would not require an adder or
decombining logic. It would, however, require logic to send a negative acknowledgement to the processor;
this could have an e�ect on network packaging, since it would require communication between the forward
and return paths of the network, as does combining.

Feedback from the memory modules can be used to block messages destined for a hot memory module
from entering the network, whenever the length of the queue at the memory module is above a certain
threshold. In [123], Scott and Sohi showed that this method can improve bandwidth and decrease latency
for messages destined to cold memory modules, as long as only a fraction of the processors are \hot", that is,
are accessing the hot memory module at a rate greater than that of uniform tra�c. In their simulations of
a 256� 256 network of Type C switches with queue sizes of 4 (or, e�ectively, 5, because of additional input
latches, see section 2.1.4), the most improvement was shown when 50 percent of the processors were hot.
In this case, using a feedback scheme with a threshold of 4 and adaptive backo� when a memory module
changes from hot to cold, bandwidth increased from about 10 percent to about 35 percent for an 8 percent
hot spot rate, compared to a bandwidth under uniform tra�c of 75 percent. However, no improvement is
shown over a regular Omega network when all processors are accessing the hot spot, and improvements for
hot spot rates lower than 8 percent are much more modest.

In a re�nement of Scott and Sohi's ideas, Farrens, Wetmore and Woodru� in [44] explored the use of large
queues at the memory modules combined with a feedback damping scheme that they call bleeding to alleviate
tree saturation and improve e�ective bandwidth. Although their methods show slight improvements over
the results of Scott and Sohi, even in the situation most favorable to feedback schemes, with 50 percent of
the processors accessing the hot spot, the e�ective bandwidth increases by less than 50 percent over the low
bandwidth available from an unmodi�ed Omega network, when the hot spot rate at the hot processors is 2
percent. The cost of their scheme includes queues at memory, a bus to allow the memory network interface
to communicate with all processor network interfaces (PNI), possibly a bu�er at the PNI, and logic at the
PNI to do the damping.

1.2.7 E�ectiveness of combining

Hardware combining has the potential to execute N operations directed to the same location in one network
traversal, but, if PEs are issuing messages asynchronously and combinable messages are mixed with other
tra�c, it is not immediately clear that enough combining will actually take place to improve performance.
A number of studies have shown that asynchronous hardware combining is nevertheless e�ective in both
preventing tree saturation and providing reasonable delays for messages sent to a hot spot. In P�ster and
Norton's paper on hot spots [119], simulations showed combining to be e�ective for networks up to 64 PEs.
Wong [144] also simulated 4 and 6 stage networks and explored the sizes of queues and wait bu�ers needed to
get good combining performance. Simulations by Liu [100] showed the e�ectiveness of a variety of combining
schemes for systems of size up to 1024 PEs. Simulation results showing the e�ectiveness of the combining
switch described in this thesis are given in Chapter 4.

Lin and Tantawi [97] extended Lin and Kleinrock's method [96] to analyze the performance of combining
with various o�ered loads and queue sizes for a 9-stage combining network. Merchant [104] also showed
combining to be e�ective using a Markov chain model for unlimited combining in which messages are dropped
whenever a queue is blocked. This model makes the approximations that the output of the switches is a
Markov chain, that there is no time correlation in the output stream a�ecting the probability that the output
of a switch is combinable, and that if there is a combinable message in a queue, its location in the queue is

20

distributed randomly over the length of the queue.
An important parameter in studies of combining e�ectiveness is the multiplicity of the combiningmethod;

that is, the number of messages that may combine in a single stage. Theoretically, a message could combine
with an unlimited number of other messages in a single stage, but there are two problems with this method: it
is more complicated and expensive to implement, especially for decombining, and the burstiness of multiple
decombines may adversely a�ect performance on the return path from memory. Alternatively, two-way
combining, in which a message combines with at most one other message, provides a simpler implementation.
The results of Lee, Kruskal and Kuck [87], using a model with in�nite queues at the processor (and thus an
inde�nitely large number of messages in the system) indicated that two-way combining is not adequate to
prevent saturation for inde�nitely large networks [86, 87], showing degradation for systems with as few as 8
stages. On the other hand, studies using practical assumptions have shown good performance for two-way
combining networks of 10 stages or more [68, 67, 100]. The question of the need for and implementation of
more than two-way combining is considered at length in Chapter 5.

If combinable messages entering a network are synchronized so that no combines are missed, two-way
combining in a network composed of 2�2 switches is su�cient to combine messages issued from all processors
into a single message at memory. To implement a synchronous PRAM, Ranade [121] proposed sorting
messages by destination before they enter the combining network, and ensuring that they leave switches in
sorted order. This guarantees that messages destined to the same location will meet in a switch and combine,
and obviates the need for greater than two-way combining. However, it increases the minimum latency of a
message and makes pipelining di�cult, as we discuss in section 1.2.8.

Wilson, in [143, 142], studied what he calls opportunistic combining networks in message-passing mul-
ticomputers with hypercube and torus topologies. In opportunistic combining networks, references to dis-
tributed data structures, such as queues and stacks, are done by accessing index servers for each such
distributed data structure through a spanning tree of processor nodes. Messages performing the same op-
eration on the data structure may be combined at any node in the tree. The responses will be decombined
in such a way that the processors originating the messages receive a pointer to di�erent elements of the
distributed data structure, which will be stored in many processor nodes. Simulations of opportunistic
combining networks show greatly improved throughput, especially under heavier loads in torus networks.

Hsu and Yew [62] simulated the performance of barrier synchronization and parallel queue algorithms,
comparing the performance of hardware combining in a multistage network to that of no combining, single-
stage combining and, for barrier synchronization, software combining. They maintained that parallel queue
accesses are not as well structured as for barriers, and that it is not realistic to use software combining in
that case. Hardware combining in a multistage network had the best performance in all cases. Both single-
stage and multistage combining showed considerably better performance than no combining or software
combining.

1.2.8 Combining implementations

The original combining switch implementation proposed for the NYU Ultracomputer [55] allows combining to
be performed on any message routed through a multistage network. In such a scheme, combinable messages
do not need to be separated from the regular tra�c stream, and use the same wires used for all messages.
Instruction fetches, data loads and stores, as well as special fetch-and-� operations, may all be combined
without the programmer or compiler speci�cally indicating that this should be done. Messages may enter
the network asynchronously, without coordination between PEs, and a PE may have multiple messages
outstanding in the network. This implementation, pictured in Figure 1.5, requires comparators within the
ToMM queue to detect messages heading for the same memory address, an ALU to perform the combining
operation as messages exit the ToMM queue, and a wait bu�er to hold information needed for decombining
as well as a ToPE queue. An e�cient implementation and partitioning of this high-level scheme is described
in Chapter 4.

The concern with this scheme is that it would be too expensive, or ine�ective because many combines
are missed due to asynchrony. Many alternative implementations have been proposed.

21

d

dd

d

dd

d -

�

�

-
-

-

d

�

ToMM

�

-

�

��

�

�

� ?

6

?

6

ToPE

ToPE

ToMM

Wait Bu�er

Wait Bu�er

Figure 1.5: NYU Ultracomputer combining switch.

RP3 combining switches

The IBM RP3 (Research Parallel Processing Prototype) [118] was designed to connect 512 microprocessors
through a multistage interconnection network. Processors and memory were co-located, and the memory at
each node was partitionable into shared and private memory. The RP3 project cooperated closely with the
NYU Ultracomputer project, and the two architectures have much in common. The RP3 project, however,
planned a separate combining network, with ordinary tra�c passing through a high-speed water-cooled
bipolar network with 8-bit wide data paths and 4� 4 switches. Since the standard microprocessors used as
PEs could not tolerate much latency to memory, a network design that mimimized latency was considered
to be of paramount importance, and it was not considered possible to implement a combining switch with
low enough latency. The design of a combining switch e�cient enough to carry a large volume of tra�c was
not given high priority, as it was assumed that the volume of tra�c using it would be small. Furthermore,
it was assumed that the percentage of hot spots in the combining network would be quite high.

As part of the RP3 project, Wong [144] simulated a 16 PE network with combining switches, under 50
percent and 90 percent hot spot loads, to determine optimal queue and wait bu�er sizes. The simulated
design was di�erent from that described in Chapter 4 in the following ways:

1. Separate bu�ers at input ports are used to hold messages until they can be inserted in the queues.
Separate simulations were done under the assumption that a messages from each input port could both
be accepted into a queue in a single cycle (equivalent to a Type A switch) or that only one message
could be accepted into a queue per cycle (a variation of a Type C switch; see section 2.1.4).

2. Comparison of an incoming item with all items in the queue must be done before insertion of the item
in the queue.

3. The combining logic was in series with the o�-chip path.

4. Instead of using an associative wait bu�er, a Snir �eld, which contains the stage number and loca-
tion within the wait bu�er, was transmitted with each combined message and used for decombining.
Multiple combines at di�erent stages were handled by storing the Snir �elds from preceding stages
in the wait bu�er and replacing them as part of the decombining operation. The advantage of this
method is that values in the wait bu�er can be accessed by location instead of by associative search.
The disadvantage of this method is that the message returning from memory must have its Snir �eld
altered before continuing on the return path, and thus cannot be inserted in the queue or sent on to
the next stage until wait bu�er access and decombining has completed.

22

No implementation for this design was ever published, though P�ster and Norton [119] at about the same
time period claimed that cost and size estimates, using silicon and packaging data, were made of a combining
switch as part of the RP3 project and indicated that \message combining increases switch size and/or cost
by a factor of between 6 and 32."

In later work by members of the RP3 project, Hsu et. al. [141] described an implementation that include
the combining of heterogeneous op codes and stores messages in central queues as linked lists. Each linked
list is associated with both an output port in this stage and the desired output in the next stage, allowing
the multiple clear-to-send protocol described in [100] to be implemented. Such a shared central queue allows
better utilization of storage space, at the price of considerable complexity in control and delay in insertion.
Like Wong's design, comparison of the incoming message must be done with all elements before insertion.
If the queue is empty, a bypass path allows a message to go directly to the output without being inserted in
the queue. This design was supposed to have been implemented in one micron CMOS, but no clock speeds
for a fabricated chip have been published. The RP3 project was terminated before a combining network was
actually used in the system.

Tree-structured combining networks

If messages likely to combine are a small part of the regular tra�c stream, and if these messages can be sep-
arated from that stream in advance, tree-structured combining networks can be used, since the network does
not require much bandwidth. Lipovski and Vaughn [98] describe a bit-serial circuit-switched implementation
of fetch-and-�, suitable for SIMD systems or synchronized operation in MIMD systems, that requires only 5
gates per node. In their scheme, PEs with associated memory are at the leaves, connected through a fetch-
and-� network very similar to a carry-lookahead adder. All PEs need not be involved in every fetch-and-�
operation, but only one memory location at a time may be the object of an operation.

In Tzeng's [137, 140] more complicated scheme, multiple hot spots may be active concurrently and
asynchronously. Messages that have been designated as combinable are removed from the regular routing
network at the input to stage i, where i is chosen depending on the number of hot spots active in the network,
sent through all or part of a combining tree and reinserted at an input or inputs to stage i of the routing
network. The combining structure must be recon�gured to suit the expected number of hot spots in an
application. In order to have e�ective combining and keep the con�guration unchanged during the course
of a computation, the number of concurrently active hot spots must not vary too greatly. The logic for
components in this scheme is simple, but extra connections are required at each node in the regular routing
network, adding to wiring costs and packaging di�culties.

The tree-structured control network of the CM-5 [93] provides a set of operations useful for synchronous
MIMD operations: broadcasting, four types of combining operations, and global single-bit OR operations.
Separate FIFOs at the network interface are used for each type of control network function, and the network
is pipelined, so that several control messages can be active at once. All PEs are potentially involved in
every operation on the control network, though each PE can choose to abstain from certain control network
operations. The four types of combining operations supported are reduction, forward scan, backward scan
and router done. Reduction can be performed on 32-bit messages from all processors using one of �ve opera-
tors: bitwise logical OR, bitwise XOR, signed maximum, signed addition and unsigned addition. Reduction
returns the result of combining all values using this operator to each processor. Scan operations take a
binary associative operator
 with identity I and an ordered set [a0; a1; : : : ; an�1] and returns the ordered
set [I; a0; (a0
 a1); : : : ; (a0
 a1
 � � �
 an�2] [18]. Such operations could be used to simulate many of the
actions of combinable fetch-and-� operations. In the CM-5, forward and reverse scans can be implemented
for any of the reduction operations, and scans may be segmented.

Combining networks on sorted tra�c streams

If all references to memory in a single time step are sorted in order of lowest memory address before they
pass through a combining network, and if they leave each switch in the network in sorted order, waiting until
they are sure no lower message will arrive on the other port before they leave, then any reference will be sure
to meet any message with which it might combine at the �rst switch that they both traverse. Thus no more
than k-way combining is ever necessary, for k � k switches. By always ordering the inputs of the switch in
the same way when combining is done, a �xed serial order of execution can be given to any set of processors

23

for concurrent operations in a time step. Ranade [121] used these ideas, together with hashing of memory
addresses, to develop a scheme for implementing a synchronous CRCW PRAM in which the probability,
assuming a perfect random address map, that any memory reference takes more than 15 logN steps is less
than N�20, where N is the number of nodes in the butter
y.

As originally described, this scheme involves six passes through a butter
y network, with a processor at
every node. For a multistage interconnection network, multiple passes could be eliminated in favor of sorting
hardware at the inputs to the network. Since messages are kept sorted, replies arrive at a switch in the same
order as the messages were sent out, so decombining can be done in the same order that combining occurred
and does not require an associative memory. However, a high cost is paid both in the minimum latency of a
message, because of the delay induced by waiting to leave in sorted order, and in low utilization of network
links, which remain inactive whenever sending a message might result in messages being sent out of order.
In addition, the destination address of a message must be compared to that of the last message from the
other input port before it can be sent out, even if there are no other messages present in the switch; this
puts a limitation on the switch cycle time, since the comparison cannot be done in parallel with sending the
data o�-chip, as it can for Ultracomputer-style combining (see Chapter 4). Implementations developed by
a group at the University of Saar and described in [1, 42] use pipelining, simpli�ed sorting hardware and
overlapping networks to address some of these problems.

An end-to-end synchronous method using combining in a Batcher double Omega network that is non-
blocking for permutations was developed by Amano and Kalidou [7]. In this circuit-switched network, the
head of a message, as it is routed through the network, creates a virtual circuit for the following data and
also for the return transmission. Combining is implemented by forwarding only one request and holding both
return path circuits. The overall network design consists of a Batcher sorting network followed by a double-
sized
 network used as a \distributor" and another double-sized
 network used as a \concentrator"; adders
at the output of the Batcher network are used to create routing addresses that allow con
ict-free transmission
through the double
 network if all messages are headed for di�erent memory modules. Combining is
implemented for read-read, write-read and test-and-set operations destined for the same location in memory.
Con
icts can occur only if two messages are destined for the same memory module but not for the same
location; in that case, a negative acknowledgment is sent on the return path..

The design for the Batcher double
 network uses the lower-bandwidth but simpler virtual circuit switch-
ing strategy to get switches that are simpler and thus may have a higher frequency clock. To avoid severe
loss of bandwidth due to con
icts, extra switches and stages are added to the network. The Batcher net-
work requires (log2N (log2N + 1))=2 stages, with N=2 switches each stage; the double
 network requires
2(log2N � 1) stages, with N switches each stage. Thus the minimum delay scales as O(log2N) rather than
O(logN) for a simple
 network, and the cost in wires and components scales as O(N log2N) rather than
O(logN).

Combining as part of cache-coherency support

Recent work proposes hardware support for combining in certain cases as part of hardware-supported cache
coherency in shared memory multiprocessors, like that in the Stanford Dash [94] and the MIT Alewife [5].
Bianchini and others [15] propose distributing hot data to multiple memory modules as part of the the cache
coherency protocol, using a combination of eager sharing and combining trees called eager combining to
provide hardware-supported replication. Assuming that certain physical address ranges are marked as hot,
a �xed number of server nodes are designated for each hot physical page. The protocol distributes data to
servers using eager sharing; the servers then satisfy requests from multiple client nodes, combining multiple
requests that cannot be satisifed immediately. On the transition of a hot data block from modi�ed to read-
shared, the block's home node multicasts the data to the block's servers; on the transition from read-shared
back to modi�ed, the clients and servers must have their copies of the block invalidated. While cutting down
on tree saturation at the home block, more messages may be sent on transitions than in a cache-coherency
protocol without eager combining, if data is multicast to locations where it is not actually used. Other
di�culties in practice include methods for designating hot data and for determining the appropriate number
of servers.

24

Other combining schemes

Hsu and Yew [62] propose and evaluate a design for a recirculating single-stage shu�e-exchange combining
network, which would be used just for handling hot spot tra�c, while regular tra�c passes through a high-
bandwidth non-combining network. In an RP3-like environment, with separate networks, their simulation
data makes a good case that a single-stage combining network is more cost-e�ective than a multistage
combining network. However, when the cost of the single-stage combining network is added to the cost of
the network for regular tra�c and compared to a network in which combining is integrated into routing for
all tra�c, the hardware cost advantage is not clear, depending on the relative weights given to wiring and
logic costs. Furthermore, the integrated combining network may provide advantages in combining read-only
instruction fetches and shared data that their simulations of barrier and parallel queue algorithms did not
measure.

Merchant [104] proposed and analyzed a modi�ed combining scheme based on low priorities for hot spot
requests. This scheme is similar to that of Dias and Kumar (see section 1.2.6), except that instead of just
recirculating hot spot messages, they may combine multiple times while waiting in the queue. Though this
scheme was shown to improve throughput, hot spot requests must be identi�able within the network, and
the modi�ed scheme increases delays for the hot spot requests at the same time that it improves throughput
for background tra�c, which may not be desirable for overall code execution. This scheme does not seems
to have any cost advantage over other proposals for combining in multistage networks.

1.2.9 Summary

A number of complicated issues are involved in the design of an interconnection network for a parallel
computer, and a great deal of research has been carried out in this area. Many architectures are reasonable,
and a great deal of implementation experience will be required before realistic cost and performance �gures
can be used to compare di�erent architectures over a range of applications. To acquire this implementation
experience, one needs to pick a promising candidate architecture and construct an e�cient implementation.

To implement a network for the NYU Ultracomputer, we are �rst concerned with providing scalable
bandwidth. As system size grows, multistage networks provide the greatest system bandwidth at the least
cost in wires, for uniformly distributed messages. To maintain bandwidth and limit latency when pinout
considerations will not allow an entire message to be transmitted in a single packet, we use a cut-through
switching strategy.

Hardware combining is provided for all tra�c in the multistage network to avoid tree saturation due to
hot spots and support fetch-and-� operations for synchronization. While software techniques or a separate
combining network could be used for the same functions, they are not likely to be as e�ective and represent
signi�cant recurring software costs.

The combining network must provide good service to all tra�c, not just combinable messages, at ac-
ceptable cost. In the following chapters we analyze and describe the design of a switch for use in such a
combining network.

25

Chapter 2

Performance of Switch Architectures

Under Uniform Tra�c

Our goal has been to design a combining switch that performs well under the expected preponderance of
uniformly distributed tra�c as well as hot spot tra�c, so we have carried out analytical and simulations
studies of the performance of switch architectures under uniform tra�c. The �rst two sections in this chapter
present a taxonomy of switch architectures and review the performance implications of the arrangement of
bu�ers within each switch, summarizing joint work with Yue-sheng Liu [39, 101] and Ora Percus [115]. The
third section explores the e�ect of changing the queue size and the number of outstanding messages on the
performance of the preferred Type A and Type B bu�ered switches. The fourth section compares simulation
results with multiple packet messages and �nite bu�ers to the predicted performance of cut-through switching
with in�nite bu�ers. The �fth section looks at the e�ect of increasing the degree of the switch (from 2� 2
to 4� 4 or 8� 8) with the constraint of a �xed number of pins per node.

2.1 Basic switch architectures

Consider a k�k crossbar switching component in a multistage interconnection network. Its basic function is
to forward messages from any of its k inputs to any of its k outputs. It may include bu�ers to hold messages
in case of con
icts for the output ports or blocking from later stages. These bu�ers may be associated with
either input or output ports and may perform extra functions such as combining messages destined for the
same memory location or sorting messages according to destination in a later stage.

Switches can be classi�ed according to the presence or absence of bu�ers, and according to the location
of the bu�ers [39]. These variations cause di�erences in performance, for the same cycle time and data path
width. The illustrations below show 2� 2 switches, for simplicity.

The interarrival time of requests at the �rst stage of the network is assumed to be geometrically dis-
tributed. The network is assumed to be an N�N square delta network, as de�ned in [111], composed of k�k
switches, with logk(N) = n stages. All performance �gures in this chapter are derived from a tra�c model in
which messages from a given input are uniformly distributed among the outputs of a switch. Such a model
is appropriate for switches in a multistage
 network, if all the memory modules are accessed randomly
and uniformly. However, such a model may not be appropriate for mesh-connected multiprocessors using
dimension order routing, which results in most messages being routed \straight-through" either horizontally
or vertically.

2.1.1 Unbu�ered

The simplest switch design (see Figure 2.1), has no bu�ers at either input or output; such a node was used
in the interconnection network of the BBN Butter
y Parallel Processor [24]. A protocol was used to kill
messages that con
icted for an output port; these messages were retransmitted.

26

.....................

.....................

.....................

.....................

.....................

.....................

-

-

-

-

.....................

.....................

-
��

��
��*

-
-

-

HHHHHHj

Figure 2.1: 2� 2 switch with no bu�ers

The limited bandwidth of networks built from unbu�ered switches is well known. Under the optimistic
assumption, made for analytical tractability, that messages are generated independently to uniformly dis-
tributed random addresses on each cycle, the probability of an output at a switch in the ith stage is

pi = 1� (1� pi�1=k)
k
; (2:1)

where p0 = p is the o�ered load on an input port to the network [111]. This can be approximated by

pn =
2k

(k � 1)n+ 2k=p
(2:2)

(see [77]). Thus for a square delta network with N PEs and N MMs, the throughput at each output port
of the network is limited to O(1= logN), holding k and p constant. The overall bandwidth of the network
is then limited to O(N= logN). Since retransmissions are likely to cause persistence of con
icts at higher
loads, this is probably not an achievable upper bound.

The latency of a message, measured from the time a processor makes a request until it is satis�ed, is
more di�cult to estimate because of transmission. Suppose, following the assumptions in [100, 101], that
the processor can generate new requests at a rate b, independent of any responses it receives. The o�ered
load on the network p will be b plus the rate r of rejected messages. Over time, if b is less than the maximum
bandwidth of the network the network, retransmissions will accumulate until some o�ered load p minus the
rate r of rejected messages produced by that p gives the desired b. At this point, the o�ered load should
stabilize at p = b + r, and the output of the �nal stage pn = b. We make the simplifying assumption that
the tra�c pattern of rejected requests is still uniformly and randomly distribed over the memory modules,
and thus Equation 2.2 may still be applied. A similar tra�c model for crossbars is described in [147]).

If a steady state throughput pn = b can be sustained, the o�ered load p must satisfy:

p =
b

1� nb(k � 1)=2k
: (2:3)

Note that the term 1 � nb(k � 1)=2k above must be greater than zero. This condition is automatically
enforced by the condition that the request rate p � 1. Manipulating equation 2.3, p � 1 is equivalent to the
following condition:

b �
2k

n(k � 1) + 2k
: (2:4)

Equation 2.4 gives the an upper bound for the maximum bandwidth achievable in an n stage unbu�ered
network.

Since to transmit b messages per cycle we need to make p requests per cycle (including re-transmissions),
each message is expected to be transmitted p=b times. Let r be the average retry number (r = 1 for no
retries). Then we have, from equation 2.3,

r = p=b =
1

1� nb(k � 1)=2k
: (2:5)

27

In unbu�ered networks there are no con
icts on the return path, as long as all messages use the same
links on the return path and have equal delays at memory. When a message gets through the network
without being killed during the con
icts on the forward path, the round trip takes d0 = 2n + 1 network
cycles, plus additional time for memory access that we will ignore for simplicity. Hence, if a request does
not return after d0 cycles, it must have been killed due to the con
icts, and must now be re-transmitted.
The expected latency of a message, measured from the time a processor makes a request until it is satis�ed,
depends on the length of the timeout before re-transmission of a lost message; in the BBN Butter
y, the lost
message was transmitted after a random period [23]. Since each message needs to be transmitted on average
r times and each retransmission follows the previous transmission of the same message by at least d0 cycles,
the expected average delay D � rd0. With Equation 2.5 we have the expected average delay

D �
2n+ 1

1� nb(k � 1)=2k
: (2:6)

At the maximum bandwidth from Equation 2.4, the delay is thus

D �
(2n+ 1)(n(k � 1) + 2k)

2k
: (2:7)

This O(log2N) growth in delay at the maximumbandwidth may in practice prevent the request rate from
ever reaching the maximum bandwidth, and may thus be a more severe constraint than the O(N= logN)
bandwidth limitation. For an extreme case of latency limitation, suppose that a processor can only generate
a request after it has received a reply, and that it will always generate a request as soon as the reply is
received. Assuming that receiving a reply or a notice of rejection each takes 2 logN cycles (neglecting all
delay at memory), p, the total tra�c per input port cannot be greater than 1=(2 logN) = 1=2n. From
Equation 2.2, the tra�c per output is limited to

pn =
2k

(k � 1)n+ 4kn
= (

4k

5k � 1
)(

1

2n
); (2:8)

less than one-fourth that of Equation 2.4 for n > 8.
The latency and bandwidth values for unbu�ered networks of up to 1024 PEs with 2 � 2 and 4 � 4

switches are shown in Figures 2.2 and 2.3. As can be seen by comparing these �gures to those for bu�ered
switches in section 2.3, the bandwidth available at the outputs is less than half that available with moderate-
sized bu�ers. Comparing the values for unbu�ered 2 � 2 and 4 � 4 switches, it can be seen that although
increasing the degree of the switch makes only a small di�erence in the maximum bandwidth at the output
of the network, it makes a very signi�cant di�erence in the latency.

To increase bandwidth using an unbu�ered network, the network may be duplicated or dilated [77].
Dilation of a network refers to increasing the number of links at each input and output of a switch. Multipath
multistage networks, in which the connections are not only dilated, but wired in patterns formaximal fan-out,
can show good performance with unbu�ered switches [21]. Such designs pay for the increased performance by
doubling the number of wires in the system; the utilization of the wires at later stages in the network remains
low. Their great advantage is the relative simplicity of the basic switch design. This design simplicity may
allow a network to be designed more quickly (and thus more inexpensively), or it may make it easier for the
designers to pay attention to other issues, such as the fault tolerance and error correction features of the
MIT Transit Network [34, 105].

2.1.2 k-input bu�ers, one per output port (Type A)

For this switch structure, a hardware bu�er capable of accepting k inputs in one cycle is needed (see Figure
2.4). This is the type of switch that has received the most thorough analysis in the literature. Analyzing
Type A switches with queues allowed to grow without bound (\in�nite bu�ers"), Kruskal, Snir and Weiss [79]
�rst found the generating function for the steady state distribution of waiting times in the �rst stage of the
network. Using the same assumptions, Percus and Percus [116] determined the di�erence equations for the
exact probability distribution of the number of waiting messages at the end of the nth input cycle for both
�nite and in�nite capacity output bu�ers, and solved the single queue or one dimensional distribution. The

28

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

Stage

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

L
at

en
cy

Stage

Figure 2.2: Unbu�ered 2�2 switches, bandwidth fromEquation 2.1, dashed line is upper bound on bandwidth
from Equation 2.2. Latency computed as (p=pi)(2n+ 1), dashed line is lower bound from Equation 2.7.

29

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

Stage

0 1 2 3 4 5
0

5

10

15

20

25

30

35

L
at

en
cy

Stage

Figure 2.3: Unbu�ered 4�4 switches, bandwidth fromEquation 2.1, dashed line is upper bound on bandwidth
from Equation 2.4. Latency computed as (p=pi)(2n+ 1), dashed line is upper bound from Equation 2.7.

30

.....................

.....................

.....................

.....................
@
@
@@R
-

�
�
���

-

-

-

-

-

Figure 2.4: 2-input bu�ers, one per output port (Type A)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

Pr
ob

ab
ili

ty

Queue length

20% load
70% load
90% load

Figure 2.5: Distribution of queue lengths, Type A switch, unbounded bu�er size.

31

latter paper also includes results on the output distribution, showing that it does not consist of independent
identically distributed random variables.

In the Type A switch, messages are queued at each output port. If two messages destined for the same
output port arrive in the same cycle, they are assumed to be queued in random order. The assumptions
made in [79, 116] for analyzing bu�ers of in�nite capacity are:

1. At the (�rst stage) input, arriving messages are treated as independent identically distributed Bernoulli
variables. At each cycle, a message arrives with probability p and enters one of the two output queues
with probability 1=2. Hence, the probability that j messages arrive in any cycle at a given queue is

fj =

�
2

j

�
(
p

2
)
j

(1�
p

2
)
2
� j for j = 0; 1; 2: (2:9)

2. Every message requires one time unit (cycle) to be served.

3. If Sn is the number of waiting messages at the end of the nth cycle, and an is the number of messages
arriving at the beginning of the nth cycle, then

S0 = 0 and

Sn = max[0; Sn� 1 + an � 1] for n � 1;

i.e. a single message leaves during the nth cycle if either at least one arrived or the queue was non-empty.

Let pn(j) represent P (Sn = j), the probability of having j messages in the queue at the nth cycle. Under
the above assumptions

p0(j) = �j ; 0;

pn(0) = f0pn�1(1) + (f0 + f1)pn�1(0) for n > 0, and

pn(j) = f0pn�1(j + 1) + f1pn�1(j) + f2pn�1(j � 1) for n > 0, j � 1.

Percus and Percus [116] used generating functions to �nd the steady state limiting distribution p(j) �
limn!1 pn(j):

p(j) =
(1� p)

(1� p=2)2
(

p=2

1� p=2
)2j: (2:10)

The probability of a queue being empty is then

p(0) = (1� p)(1�
p

2
)�2: (2:11)

The mean queue length in steady state is

lim
n!1

E(Sn) = p2=4(1� p) (2:12)

and the variance is

lim
n!1

V ar(Sn) =
p4

16(1� p)2
+

p2

4(1� p)
: (2:13)

The latter two results were �rst obtained by Kruskal, Snir and Weiss [79], who also developed approximate
formulas for the mean and variance of Type A switches of degree greater than 2 (see section 2.4) and for
messages containing multiple packets.

Figure 2.5 shows the probability distribution of queue lengths for input rates of 20 percent, 70 percent
and 90 percent, assuming that the output is never blocked, from equation 2.10. At 20 percent input rate,
the queue is empty most of the time; even at 70 percent it rarely has more than one item.

The di�culties of implementing Type A switches, which require k-input bu�ers, as opposed to Type B
and C switches, which can be built with bu�ers having only one input, are discussed in Chapter 5. The
performance of minimum-sized Type A switches is analyzed, along with minimum-sized Type B and Type
C switches, in section 2.2. The performance of Type A switches is compared under uniform tra�c to that
of Type B switches in section 2.3; Chapter 4 contains simulation data for Type A and B switches under hot
spot tra�c.

32

.....................

.....................
.....................

.....................

.....................

.....................

.....................

.....................

-

�
��@
@@

-

-

-

Figure 2.6: One-input bu�ers, k bu�ers per output port

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

St
an

da
rd

 D
ev

ia
tio

n,
 S

in
gl

e
St

ag
e

L
at

en
cy

Bandwidth

Type A

Type B

Figure 2.7: Standard deviation of the waiting time, single stage, Type A and Type B switches, unbounded
bu�er size. From simulation.

2.1.3 One-input bu�ers, k bu�ers per output port (Type B)

This con�guration (see Figure 2.6) use multiple instances of a simpler type of bu�er to approximate the
performance of the k-input bu�ers discussed above. A packet leaves an output port whenever any of the k
associated bu�ers has data; if more than one has data, arbitration must occur.

Kumar and Jump [80] called called this con�guration \bu�ers within the switches." Their simulations of
Type B switches showed better performance, especially for high loads, than \bu�ers between the switches,"
which correspond to the Type C switches of the next section. In [41], interconnection networks with Type
B switches were called \Split Bu�ered MINS." Tamir and Frazier [132] simulated di�erent implementations
of Type B switches, which they call statically and dynamically allocated multiqueue bu�ers.

If we look at the k bu�ers associated with an output port as a single queueing system with a service rate
of 1 per cycle, then the expected waiting time in the �rst stage is the same as that of the k-input bu�er. In
[114, 115], Percus and Dickey obtained the generating function of the pn(k; j), the probability of k messages
in q1 and j messages in q2 at time n, where q1 and q2 are the two queues paired at an output. Using this
generating function, it was shown that in steady state p(0; 0) for Type B switches is the same as p(0) for
Type A switches, and the probability that a total of l messages are waiting in the 2 queues (q1 and q2),

33

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

--

-

�
�
��A
A
AU
-

-
-

-

-

Figure 2.8: One-input bu�ers, one per input port (Type C).

was shown to be
lX

k=0

p(k; l � k) = (1� p)(1�
p

2
)�2

�
p2

4
(1�

p

2
)�2
�l

: (2:14)

Let E(S) be the expected queue length in the steady state. Then

2E(S) = (1� p)(1 �
p

2
)�2

1X
l=0

l(

�
p2

4
(1�

p

2
)�2
�l

=
p2

4(1� p)
: (2:15)

Notice that the expected queue length for a queue in the Type B switch is half that for a queue in a Type
A switch, (i.e., the expected total number of queued items is the same for switches of Types A and B) and
that the probability that both queues paired at an output port in a Type B switch are empty is the same
as that for the single queue in a Type A switch. This corresponds to the intuitive perception that a Type
B switch will output a message from a given port whenever a Type A switch does, though messages may
be output in a di�erent order, since the service discipline is no longer �rst come, �rst serve. Simulations of
a single stage switch show that a Type B switch has a somewhat greater variance in the waiting time (see
Figure 2.7).

2.1.4 One-input bu�ers, one per input port (Type C)

In this arrangement (see Figure 2.8), outputs of the bu�ers are multiplexed, and a bu�er may be blocked
on output by another bu�er. Though the simplest type of bu�ered switch from the point of view of the
hardware designer, this is the most di�cult to analyze with conventional methods of queueing theory, due
to the blocking which occurs even if \in�nite bu�ers" are assumed.

A simple argument gives an upper bound on the bandwidth. Suppose that � is the probability that a
bu�er is not empty; then, under the assumption that the queue lengths of the di�erent bu�ers in a switch
are independent, and the destinations of items at the head of the queue are uncorrelated,

b = 1� (1� �=k)
k

(2:16)

is the average number of items exiting from each output port each cycle. Since � cannot be greater than
one, the maximum bandwidth per port is bounded by 1 � (1� 1=k)k At k = 2, this is :75; as k gets large,
this approaches 1� 1=e � 0:63.

The above analysis is marred by the assumptions that the queue lengths are independent, when in fact
service at one bu�er depends on the queue length at the others, and that � is independent of the state of the
system on the previous cycle. Yen, Patel and Davidson [147], in the context of a complete crossbar network
between PEs and MMs, with queues at the PE inputs to the network, surveyed possible improvements to
this simple analysis. The conditional probability � for a given load p and system state de�ned by lengths of
queues and output port destinations is di�cult to determine, particularly when �nite bu�er e�ects are taken
into account. Our own simulations show that bandwidth per port out of a k � k crossbar with unbounded
bu�ers is actually less than 1 � (1� 1=k)

k
for k greater than 2 (see Figure 2.9). This is consistent with

results from the improved models in [147].

34

 2 4 8 16 32
0.5

0.6

0.7

0.8

0.9

1

Crossbar Size

M
ax

im
um

 B
an

dw
id

th

Figure 2.9: Maximum bandwidth of di�erent size crossbars. Solid line from simulations, dashed line is
1� (1 � 1=k)

k
).

q2
q1 red blue 0

red
p2

4
p2

4
p
2(1� p)

blue
p2

4
p2

4
p
2(1� p)

0 p
2(1� p) p

2(1� p) (1� p)2

Table 2.1: Arrival probabilities for di�erent output ports at the inputs to a 2� 2 switch.

35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

Pr
ob

ab
ili

ty

Queue length

20% load
70% load

Figure 2.10: Distribution of queue lengths, Type C switch, unbounded bu�er size.

For 2� 2 switches, we have shown in [114, 115] that bandwidth is in fact limited to 75 percent, and that
for loads under 75 percent, Type C switches have a steady state limiting distribution. That is, for 2 � 2
switches, the 1� (1�1=2)2 limitation is a tight upper bound. In the analysis of 2�2 Type C switches given
in [114, 115] and summarized below, q1 and q2 refer to the two queues in the switch, each with its own input
port and each connected to both output ports. Since each message is predestined for a given port by its
address, one may think of them as colored red and blue, with one output port serving red messages and the
other blue messages. Intuitively, if the queues were never empty and all four possible patterns of the two
colors were equally probable at each cycle, one would expect to output two messages half of the time, and
only one message the other half, for a maximum expected output rate per port of 75 percent.

The proof of the 75 percent bandwidth limitation follows from a case by case analysis. Assume that the
messages arrive independently at the 2 queues with probability p at each cycle (i.e. P (red) = P (blue) = p=2).
The service discipline is �rst come, �rst served, but when two identically colored items appear in front of
the 2 queues at the same cycle one item is blocked (i.e, a message is selected for service from one of the two
queues with equal probability).

The nine possibilities for arrivals to the inputs at the �rst cycle (or any cycle when both queues are
empty) are shown in Table 2.1, where 0 indicates no item arrives. The number of items served at the �rst
cycle will be 2 for the cases (red, blue) and (blue,red), 0 for the case (0,0) and 1 otherwise. The number of
items left in the system after the �rst cycle will be 1 for the cases (red, red) and (blue, blue) and 0 otherwise.

In a similar way, the e�ect of the nine di�erent arrival possibilities on the state of the system can be
analyzed for the case when only one queue is empty and the case when both queues are not empty. If
di�erence equations that depend only on the number of items in each queue, and not on the colors of all
items, can be constructed, the output probabilities for a given cycle must be independent of the exact color
pattern in the preceding cycle. For the 2 � 2 switch, it is necessary to show that if items from both input
streams appear at the output on the same cycle, they are equally likely to be of the same color or of di�erent
colors. This can be shown by analyzing the di�erent cases.

Consider the case when both queues are non-empty and exactly one queue, q1, was non-empty on the

36

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Si
ng

le
 S

ta
ge

 L
at

en
cy

Bandwidth

Type A

Type C

Figure 2.11: Latency comparison for Type A and C switches, unbounded bu�er size, single stage. Type B
values are identical to Type A.

preceding cycle. Suppose for de�niteness that the item at the front of q1 was red. Then both queues will be
non-empty only if a red item arriving at q2 was blocked by the item leaving from the front of q1 and another
item either existed in or arrived at q1. The items remaining at the front of the queues will both be the same
color if the next item in q1 was red, and they will be di�erent colors if the next item in q1 was blue; the
item is equally likely to be of either color because the input streams to the two queues are memoryless and
independent. The other cases can be analyzed similarly.

Note that this analysis does not extend easily to switches of size greater than 2, where contention by
more than two input queues for the same output on a particular cycle implies that some contention will
continue to exist on the next cycle, and thus a description of system state must include not just the number
of messages at each output, but their colors as well.

In [114, 115] we also used the case by case analysis to construct the di�erence equations for pn(k; j), the
probability that there are k messages in the �rst queue and j messages in the second. The queue length
distribution values in Figure 2.10 were found be evaluating these equations until convergence; the values
were also checked by simulation.

From these queue length distribution values, we also computed the latency, which is compared in Figure
2.11, for a single stage with unbounded bu�ers, to the latency of Type A and Type B switches.

Figure 2.12 shows a design similar to the Type C switch, but with the two single-input queues preceded
by instead of followed by a crossbar. Such a design, often with a bu�er at the input, has frequently been
proposed (see, e.g., [29, 123, 144]. If data movement from chip to chip takes only a single cycle, this design
shows the same behavior as Type C switches, as can be seen by redrawing the network so that the queues are
part of the same switch as the crossbar (see the dotted box in Figure 2.12. The bu�er at the input increases
the e�ective size of the queues. However, if the multiplexing, routing and queueing logic is fast enough to
input two messages to a queue in series in the time it takes for one message to pass from chip to chip, the
switch will function as in implementation of a Type A switch.

37

.................

.................

..................

..................

...................

.................

�
���A
AAU
-

-

..................

.................
.................

.................

..................

..................

...................

.................

�
���A
AAU
-

-

..................

.................
.................

.................

..................

..................

...................

.................

�
���A
AAU
-

-

-

-

- -

-

-

-

-

..................

.................

-- -

-

-

-

--

- -

-

-

-

-

Figure 2.12: Variant switch architecture, may perform as Type A or Type C.

2.2 Switches with �nite bu�ers

Though networks composed of switches with unbounded bu�er size may be easier to analyze, since one need
not be concerned with blocking by the next stage, when actually building a switch one wishes to make its
bu�er size as small as compatible with good performance. For Type A switches, it is possible to carry out a
complete analysis for a single stage switch with bu�ers of any �nite size, as was done by Percus and Percus
in [116]. For Type B and C switches, Percus and Dickey [114, 115] analyzed single stage switches with the
smallest possible bu�ers, �nding the maximum output bandwidth as well as the queue length distribution.

When analyzing Type A switches for queues with �nite capacity N , the third assumption in section 2.1.2
must be changed. Percus and Percus [116] investigated two models:

Model I : Sn = min[N , max(0; Sn�1+ an � 1)]

Model II : Sn =

�
max[0; Sn� 1 + an � 1] if Sn�1 <= N � 1
N � 1 if Sn�1 = N

The �rst model makes the assumption that messages can continue to be o�ered at the input to a queue on
every cycle, even after it is full, because departures may allow the arriving message to be accepted. This
corresponds to a handshaking protocol, in which the source of the message �nds out after it has been sent
whether or not it was accepted. The second model corresponds more closely to the
ow control protocol
described in section 4.1.5, in which the receiver must guarantee that a message can be accepted before it is
sent.

For Model I, the steady state distribution was found to be

p(j) =
1� �

1� �N+1
�j ; for j = 0; 1; : : :N , where � =

�
p=2

1� p=2

�2

; (2:17)

and the average queue length

E[lim
n!1

Sn] =
NX
j=0

jp(j) =
�

1� �
[1�

(N + 1)(1� �)�N

1� �N+1
]; (2:18)

with a more complicated expression for V ar[limn!1 Sn]. The steady state distribution and mean for Model
II are close in value to these, but yet more complicated and are also found in [116].

38

For comparison with minimum size hardware implementations of the other two types of switches, we are
interested in a Type A switch with N = 2. This is the smallest value for N which allows both messages
arriving at a cycle to be accepted if the queue is not empty on the preceding cycle, and is comparable in
hardware resources to a Type B switch with 4 queues each of size one. It is assumed that a message is lost
if two arrive at a full queue on a single cycle.

Percus and Dickey [115] found the expected output per cycle by introducing a tagging variable z in the
di�erence equations of [116] for every term in the equation that results in an output in that cycle. For N = 2
the equations take the form:

p0(0) = 1;

pn(0) = f0zpn�1(1) + (f0 + f1z)pn�1(0);

pn(1) = f0zpn�1(2) + f1zpn�1(1) + f2zpn�1(0);

pn(2) = f2zpn�1(2) + f1zpn�1(2) + f2zpn�1(1);

since the only state which does not produce an output is when the queue is empty and no messages arrive.
Using the generating functions

Fn(x; z) =
2X

k=0

pn(k)x
k; (2:19)

and

F (�; x; z) =
1X
n=0

�nFn(x; z): (2:20)

Then the expected output per cycle, Ep(O), in steady state will be

Ep(O) = lim
�!1

(1� �)2
@

@z
F (�; x; z) j z=1

x=1

= p�
p6

64� 128p+ 112p2 � 48p3 + 12p4

with maxpEp(O) = 11=12.
Note that the expected output per cycle is equal to 1 � f0p(0), that is, the probability that either a

message arrives or the queue was not empty at the start of the cycle.
Although we have not found a general formula for the queue length probability of queues in Type B

switches with �nite bu�ers, the result for queue size 1 was found in [115] to be

p(0; 0) =
32� 48p+ 24p2 � 4p3

32� 48p+ 32p2 � 8p3 + p4
;

p(0; 1) = p(1; 0) =
4p2 � 2p3

32� 48p+ 32p2 � 8p3 + p4
;

p(1; 1) =
p4

32� 48p+ 32p2 � 8p3 + p4
:

Notice that for p = 1; p(1; 1) = 1=9; p(0; 1) = p(1; 0) = 2=9; p(0; 0) = 4=9 and for p = 0; p(0; 0) = 1. Also,
the one-dimensional probability

p(0) = p(0; 0) + p(0; 1) =
32� 48p+ 28p2 � 6p3

32� 48p+ 32p2 � 8p3 + p4
(2:21)

is the probability that q1(q2) is empty, and

p(1) = p(1; 0) + p(1; 1) =
4p2 � 2p3 + p4

32� 48p+ 32p2 � 8p3 + p4
(2:22)

39

is the probability that q1(q2) is not empty, which, since the queue capacity is 1, is also the mean queue
length E(S).

Notice that for p = 1, p(1) = 1=3, so that the average length of q1 is less than 1=3 if p < 1 .
The expected output per cycle of the Type B switch with queues of size 1 was also found in [115] to be

Ep(O) = p

�
1�

p3

p4 � 8p3 + 32p2 � 48p+ 32

�
(2:23)

Note that
Ep(Ojp = 1) = 8=9 (2:24)

gives the maximum bandwidth that can be obtained per output port for this switch structure with queue
size 1. This is lower than the maximum bandwidth of 11=12 which can be obtained from the Type A switch
with queues of size 2.

For Type C switches we were not able to solve the recurrence relations for switches with in�nite bu�ers
or for �nite bu�ers in general, but we were able in [115] to obtain a solution for queues of capacity one.
The conditions under which a message is lost depend for Type C switches on the color of the items in the
queue, as well as their number. For example, suppose q1 has a red item and q2 is empty. If a red item
arrives at q2, it has a 50 percent chance of blocking the item in q1, causing the red item in q1 to remain for
another cycle and any message of either color arriving at q1 to be lost. Considering each such case for all
nine input possibilities and all nine initial queue con�gurations, and consolidating symmetric equations, we
get the following di�erence equations:

p0(0; 0) = 1: (2:25)

For n � 1,

pn(0; 0) = (1�
p2

2
)pn�1(0; 0) + (1� p)(1 �

p

2
)[pn�1(0; 1) + pn�1(1; 0)]

+
(1� p)2

2
pn�1(1; 1);

pn(0; 1) =
p2

4
pn�1(0; 0) + (

5p

4
�
p2

2
)pn�1(0; 1)

+
p

4
(1� p)pn�1(1; 0) +

(1 + p� 2p2)

4
pn�1(1; 1);

pn(1; 0) =
p2

4
pn�1(0; 0) +

p

4
(1� p)pn�1(0; 1)

+(
5p

4
�
p2

2
)pn�1(1; 0) +

(1 + p� 2p2)

4
pn�1(1; 1);

pn(1; 1) =
p2

4
pn�1(0; 1) +

p2

4
pn�1(1; 0) +

p

2
(1 + p)pn�1(1; 1):

The generating function

F0(x; y) = 1;

Fn(x; y) =
1X

k=0

1X
j=0

pn(k; j)x
kyj ; for n � 1;

was then used to de�ne

F (�; x; y) =
1X
n=0

�nFn(x; y)

= (1; x; y; xy)(I � �Q)�1

2
664

1
0
0
0

3
775 ;

40

where

Q =

0
BBBBB@

1� p2=2 (1� p)(1� p=2) (1� p)(1� p=2) (1� p)2=2

p2=4 5p=4� p2=2 p=4(1� p)
(1 + p� 2p2)

4

p2=4 p=4(1� p) 5p=4� p2=2
(1 + p� 2p2)

4

0 p2=4 p2=4
p(1 + p)

2

1
CCCCCA
:

Then F (x; y), the steady state generating function of the limiting distribution, is

F (x; y) = lim
�!1

(1� �)F (�; x; y) =
1X

i=0

1X
j=0

p(i; j)xiyj (2:26)

and we get, after considerable work,

p(0; 0) =
8� 16p+ 7p2 + 2p3 � p4

8� 16p+ 11p2 � 2p4
;

p(0; 1) = p(1; 0) =
2p2 � p3 � p4

8� 16p+ 11p2 � 2p4
; and

p(1; 1) =
p4

8� 16p+ 11p2 � 2p4
:

Since the expected value of the sum of the queue lengths of the two queues paired at an output is the same
as the sum of the expected values,

2E(S) = p(0; 1) + p(1; 0) + 2p(1; 1) (2:27)

hence the average queue length is

E(S) =
2p2 � p3

8� 16p+ 11p2 � 2p4
(2:28)

and the probability that one queue is empty is p(0; 0) + p(0; 1) = 1�E(S).
To �nd the expected output per cycle, Ep(O), from both queues in steady state, we considered the three

cases: both queues empty, one queue empty and neither queue empty. By considering the nine di�erent
input possibilities, we found that

Ep(Oj(0; 0)) =
2p� p2

2
(2:29)

and
Ep(Oj(0; 1)) = E(Oj(1; 0)) = 1 + p=2: (2:30)

When both queues are non-empty, one item is output when the items at the front of each queue are the
same color, and two are output when they are di�erent colors. Since each case is equally likely, as discussed
in the section 2.1.4,

Ep(Oj(1; 1)) = 3=2: (2:31)

Then

Ep(O) = (
2p� p2

2
)p(0; 0) + (1 +

p

2
)(p(0; 1) + p(1; 0)) +

3

2
p(1; 1)

=
3p

2
+
p

2
(1� p)

1� p+ 3
8p

2 + 1
8p

3 � 1
8p

4

1� 2p+ 11
8 p

2 � 1
4p

4
;

with

max
p

Ep(O) =
3

2
; (2:32)

so that the average output per queue (or output port) is less than 3=4. It is interesting that the bandwidth
limitation for a single stage is the same for bu�ers of size 1 as for in�nite bu�ers.

41

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
at

en
cy

Bandwidth

Type A
Type B
Type C

Figure 2.13: Latency for queues of size 2 in Type A switches, and queues of size 1 in Type C and Type B
switches, single stage.

Figure 2.13 shows the single stage latency for minimum size Type A, Type B and Type C switches, as a
function of the actual bandwidth achieved. The rightmost point on a curve represents the bandwidth and
latency achieved at maximum o�ered load (100 percent). The most interesting and unexpected result is
that, while Type A switches achieve a higher bandwidth than Type B switches, the latency of a message in
a minimum size Type B switch is less than that in a Type A switch, for the same achieved bandwidth. This
reduction in latency is somewhat misleading, since we are not accounting for any di�erence in waiting time
at the input before a message is accepted by a switch, but does indicate that a better overall performance
within the network may be sometimes be achieved by more frequent blocking of the inputs.

In [114, 115], only a single stage of a network was analyzed. Theimer, Rathgeb and Huber [135] and Yoon,
Lee and Liu [150] have both done approximate iterative Markov chain analyses of �nite-bu�ered multistage
Type C networks. Both analyses use the optimistic value of b from equation 2.16 as the average number of
messages passing through the output crossbar per cycle. Neither considers possible correlations within the
output stream, as was done for Type A switches in Percus and Percus [116].

In Yoon, Lee and Liu's paper [150], the computation of arrival, departure and queue length probabilities
from k�k switches at each stage in the network are much simpl�ed and assume that the state of the bu�ers
within a switch as well as the state of bu�ers in di�erent stages are all independent. When they checked
their results by simulation (for a six-stage network with 2 � 2 switches), they found that their results were
optimistic for heavy loads and for small queue sizes. For bu�ers of size 1 in a six-stage netowrk, their analysis
predicted a throughput of 50 percent, but simulations showed between 35 and 40 percent. No comparison was
made of the latency from simulation with the predicted latency. Even though the results are approximate,
their analytical comparison of crossbar sizes for a 12-stage network is interesting: at a queue size of 4 or
greater, 2� 2 switches have higher throughput than any other option, including a full crossbar.

Theimer, Rathgeb and Huber [135] �rst presented a simpli�ed analysis for k� k switches similar to that
in [150] and then described a \re�ned analysis" (for 2� 2 switches with bu�ers of size 1) that considers the
mutual dependence of queue length probabilities within a switch and takes some of the dependence between

42

successive stages into account. These re�nements improved the match between simulation and analysis,
though throughput was still overestimated and latency underestimated compared to simulations. For a six-
stage network, their simulations showed a maximum bandwidth of between 35 and 40 percent, and their
analytical prediciton was only a little over 40 percent. At 60 percent o�ered load (which from their graphs
was approximately the lowest load to give the maximum bandwidth), the latency per stage was simulated
at around 9 cycles, while the analytical predictions were around 8.5. The throughput predictions are similar
to that in [150], but the latency values are much higher.

2.3 Type A and Type B multistage networks

To summarize the preceding section, unbu�ered switches cannot be used to construct a network with band-
width linear in the number of PEs. Type C switches have scalable bandwidth, but it is limited to 75 percent
of the wire bandwidth available at the output of a switch. Accordingly, we have directed our e�orts to the
analysis and simulation of Type A and Type B switches, especially the easier-to-implement Type B.

Results in this section are from simulations of entire networks with single packet messages. For these
simulations we have used a simulator called molasses,1 written by Jan Edler, that has been designed to be
used for investigating architectural variations of the NYU Ultracomputer. The network simulator is part of
an overall simulation environment that is planned to include an accurate but e�cient PE simulator that will
allow program segments to be simulated.

Currently molasses simulates k�k switches composed of output queues. The number of inputs per queue
may be speci�ed, and this determines the number of queues per switch. Type A, Type B and hybrid schemes
for greater than 2� 2 switches may be simulated, but a blocking crossbar at the output for simulating Type
C switches is not supported. A variety of input patterns and combining options are shown in Chapters 4 and
5. Executable versions of molasses may be customized for a set of options, so that the simulation executes
more e�ciently. Results for some of these combining switch variations are shown in Chapters 4 and 5.

Unlike some network simulators (see, e.g [87, 100, 119]), which model the processors as an in�nite source
of message requests and allow an inde�nite number of outstanding requests, molasses has speci�ed limits
both for the number of pending requests which are waiting to enter the network and for the number of
outstanding requests which have entered the network but have not yet received a response from memory. In
most of the simulations reported here the number of pending requests has been set to 0, corresponding to a
model of a processor which does not queue requests, but instead issues them with some probability whenever
possible.

By o�ered load we mean the probability that a message will be presented to the network on a cycle at
which the network interface is able to begin transmission of a message. For a particular o�ered load, the
processors actually achieve an average rate of messages issued, after the system reaches a steady state in
which the rate of messages issued by the processor is equal to the rate being serviced at the memory; we refer
to this average rate as the bandwidth per PE. Round trip latency represents only waiting and transmission
time in the network and at the memory. Delay at memory can be set to be more than one switch cycle, but
was simulated as a single switch cycle in this chapter, unless speci�cally noted otherwise. Thus the minimum
latency for a system of size N with single packet messages is 2 log(N)+ 1. If processors are blocked, no new
messages are generated, and no waiting time is added to account for the time the processor remains blocked.
The e�ect of blocking is re
ected in the reduction of bandwidth per PE.

The simulation results in Figure 2.14 show the bandwidth and latency values at 100 percent o�ered load
for Type A and Type B queues of comparable sizes. Single packet messages were used, and 128 outstanding
requests were allowed at each PE, to minimize the reduction in bandwidth due to waiting for requests to
return. Queue sizes of 1, 2, 4, 6, 8, 10 were simulated for Type B, with double those values for Type A,
representing switches with equal storage. Type A switches are shown with solid lines, Type B dashed, as
is done throughout this chapter whenever Type A and Type B results are shown on the same graph. The
results are similar to the results of the analysis for single stages, but there are some di�erences. In Figure
2.14, the bandwidth is higher for minimum-sized Type B switches than for Type A switches. As discussed
by Liu in [100], this is a result of the Model II protocol used in the simulation. In the analysis of section

1A reference to its blinding speed. Actually, it is very fast, but the result of having a faster simulator is that larger simulations
are run, which do not �nish quickly.

43

 2 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

Q=10

Q=1

 2 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

R
ou

nd
 T

ri
p

L
at

en
cy

Q=1

Q=10

Figure 2.14: Bandwidth and latency values for Type A (solid) and Type B (dashed) networks with queues
of comparable sizes. From simulation.

44

 2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

PEs

N
or

m
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n,

 la
te

nc
y Type A

 2 4 8 16 32 64 128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

PEs

N
or

m
al

iz
ed

 s
ta

nd
ar

d
de

vi
at

io
n,

 la
te

nc
y Type B

Figure 2.15: Normalized standard deviation of network latency for systems from 2 to 1024 PEs. From
simulation.

45

2.13, switches accepted as many messages as they had room for. In the simulation, a switch will not accept
any messages from a port on a cycle unless it has room for the maximum number of messages which may
arrive. So a Type A switch of size 2 will block both input ports if either queue has room for only one more
message, while a Type B switch may have one port blocked, but the other free.

By comparison, the optimistic analysis of Type C switches in [150] for queues of size 6, with a ten-
stage network, showed throughput around 70 percent, and one-way latency between 35 and 40 cycles. An
equivalent throughput is achieved by Type B switches of size 4 (for a total storage of 8 items per output),
with a one-way latency of only around 20 cycles.

Figure 2.15 shows the normalized standard deviation (standard deviation divided by the mean) of the
network latency for Type A and Type B switches, for the same set of comparable queue sizes. As in the
single stage simulations, the variance of Type B switches is somewhat larger.

Figure 2.16 shows the blocking probability stage by stage through the network for a system with 1024
PEs, with large queues (10 packets for Type B, 20 for Type A), and and minimum size queues (1 packet
for Type B, 2 for Type A), at 100 percent o�ered load. For minimum size queues, though some additional
blocking occurs at later stages in the network and on the return path from memory, almost all of the
bandwidth reduction occurs in the �rst half of the forward path network. For large queues, only the �rst few
stages show any appreciable blocking, indicating the size of queues needed for good performance is relatively
independent of network size.

Figure 2.17 shows latency as a function of the achieved bandwidth, for large queues and miminum size
queues, for a system of 1024 PEs, as the o�ered load is varied from 10 percent to 90 percent. For minimum
size queues, Type B switches not only achieve a higher bandwidth at maximum o�ered load, but also show
less latency for the same achieved bandwidth. For large queues, Type A switches show a slight advantage
at the heaviest loads.

Figure 2.18 shows the e�ect on bandwidth and latency of varying the number of outstanding requests
each PE may have, with the queue sizes kept large (10 packets for Type B queues, 20 packets for Type A
queues). The number of outstanding requests ranges from 1 to 128; some are marked on the graphs. For
a small numbers of outstanding messages, the possible bandwidth is greatly reduced, and latency remains
close to the minimum value. With small numbers of outstanding messages, a much smaller queue size could
be used without a�ecting performance. The behavior of Type A and Type B switches is virtually identical,
except for the highest number of outstanding requests, which allow a higher rate of messages to enter the
network.

Figures 2.19 and 2.20 show the relative e�ects of the two ways that messages can be prevented from
entering the network. The solid line shows the probability that a PE is blocked from issuing a message by
the �rst stage of a network. The dashed line shows the probability that a PE cannot issue a message because
the maximum number of outstanding requests has been reached. If the delay through the network and
memory were some constant �, and the maximum number of outstanding messages were X, the maximum
latency-limited bandwidth at maximum o�ered load would be X=�. The dotted line shows this predicted
blocking. Allowing more outstanding requests increases the rate at which messages can be entered into the
network, which in turn increases the round trip latency due to blocking within the network. The di�erence
between the dashed line and the dotted line represents the e�ect of the extra blocking.

46

PEs 2 5 8 MMs 8 5 2 PEs
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Stage

B
lo

ck
in

g
pr

ob
ab

ili
ty

1024 PEs, minimum queues

PEs 2 5 8 MMs 8 5 2 PEs
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Stage

B
lo

ck
in

g
pr

ob
ab

ili
ty

1024 PEs, large queues

Figure 2.16: Blocking probability, 1024 PEs, small (Type A 2; Type B 1) and large (Type A 20, Type B 10)
queues. Type A solid, Type B dashed. From simulation.

47

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

R
ou

nd
 T

ri
p

L
at

en
cy

Bandwidth

1024 PEs, minimum queues

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

R
ou

nd
 T

ri
p

L
at

en
cy

Bandwidth

1024 PEs, large queues

Figure 2.17: Latency as a function of bandwidth, 1024 PEs, small (Type A 2; Type B 1) and large (Type A
20, Type B 10) queues. Type A solid, Type B dashed. From simulation.

48

 2 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

X=1

X=2

X=4

X=8

X=16

X=32

 2 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

R
ou

nd
 T

ri
p

L
at

en
cy

X=16

X=32

X=64

X=128

Figure 2.18: Bandwidth and latency values for Type A (solid) and Type B (dashed) networks as a function
of the number of outstanding requests. From simulation.

49

 1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

Number of Outstanding Requests

B
lo

ck
in

g
Pr

ob
ab

ili
ty

64 PEs, Type A

 1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

Number of Outstanding Requests

B
lo

ck
in

g
Pr

ob
ab

ili
ty

64 PEs, Type B

Figure 2.19: Blocking probabilities as a function of the number of outstanding requests, 64 PEs. Type A
solid, Type B dashed, from simulation. Dotted line shows predicted blocking with constant delay

50

 1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

Number of Outstanding Requests

B
lo

ck
in

g
Pr

ob
ab

ili
ty

1024 PEs, Type A

 1 2 4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

Number of Outstanding Requests

B
lo

ck
in

g
Pr

ob
ab

ili
ty

1024 PEs, Type B

Figure 2.20: Blocking probabilities as a function of the number of outstanding request, 1024 PEs. Type A
solid, Type B dashed, from simulation. Dotted line shows predicted blocking with constant delay.

51

2.4 Multiple packet messages

The results in section 2.3 assumed the entire message could be transmitted in a single packet. In practice,
the pinout of chips and boards is limited, and even messages as short as requests to memory must typically
be transmitted as multiple packets. For pure store and forward switching, latency for multipacket messages
can be approximated by multiplying that for single packet messages by m2, where m is the number of packets
in a message, considering that the \cycle" for analysis is m times as long as before, and the probability of a
message arriving in the new `cycle' is m times as great. For cut-through switching, according to the analysis
for switches with unbounded bu�er size by Kruskal, Snir and Weiss [79], the average switch delay at the �rst
stage is

1 + (
m2p(1� 1=km)

2(1�mp)
) (2:33)

and the average switch delay at later stages is approximately

1 + (1 +
4mp

5k
)(
m2p(1� 1=k)

2(1�mp)
); (2:34)

where the additional factor of 4mp=5k was included in the formula to match simulation results. The average
network traversal time T (in one direction) is the sum of the individual stage delays plus the setup time for
the pipe, i.e. (m� 1).

T = 1 + (
m2p(1� 1=km)

2(1�mp)
) + n(1 + (1 +

4mp

5k
)(
m2p(1� 1=k)

2(1�mp)
) +m � 1 (2:35)

For light loads, the extra delay for increasing the number of packets in the message is the pipeline delay
m � 1, but for heavy loads, the increase in delay is dominated by the m2 factor, as for store-and-forward.

Figure 2.21 compares the results of our simulations, which simulated �nite queues, to the delay calculated
fromEquation 2.35. The queue sizes used allowed the storage of 10 messages per queue for Type A, 5 messages
for Type B. Thus the storage per node was kept constant, though the storage per queue measured in packets
increased in proportion to the number of packets per message. The number of outstanding requests was
set at 128, to minimize the limitation on bandwidth due to waiting for a message to return. We show the
latencies for the actual bandwidth, not for the o�ered load; the rightmost point of a curve corresponds to
the maximumbandwith achieved. Solid lines shows results for Type A switches, dashed lines are for Type B
switches, and dotted lines are from Equation 2.35.

Note that, with �nite queues, the network has a capacity of under the theoretical maximum of 1=m
messages per switch cycle per PE. For the queue sizes illustrated, the limitation is about 0.8 messages per
switch cycle for single packet messages, and about 0.4 messages per switch cycle for two packet messages.
This bandwidth limitation does not appear to be very sensitive to network size, as long as su�ciently many
outstanding messages may be generated, as discussed in the previous section. The latency results are quite
close to those predicted by the Kruskal, Snir and Weiss formula, providing both an independent test of the
formula and a validation of our simulator.

The latencies shown in Figure 2.21 indicate the bene�t of making the data path width as large as feasible,
given other architectural constraints. A latency penalty in addition to the m� 1 pipeline delay (which may
already be sizable compared to the network latency) can be seen at bandwidths well under the 1=m limit.

2.5 Increasing degree with constant pinout

As discussed in section 2.1.1, increasing the degree of a switch from 2� 2 to 4� 4 can be very advantageous
for unbu�ered switches. For bu�ered networks, increasing the degree of a switch is also attractive, if it can
be done without increasing the number of packets in a message. However, the limited number of connections
per node is usually a critical constraint on system design, doubling the degree is likely to require doubling
the number of packets per message.

Figure 2.22 shows the results of simulations in which the number of packets increases as the degree of the
node, for systems of size 64 and 256. Like the results in section 2.4, these simulations verify previous analysis,

52

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

Bandwidth (Messages per Cycle)

Fo
rw

ar
d

Pa
th

 L
at

en
cy

64 PEs

1

2
4

8

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

Bandwidth (Messages per Cycle)

Fo
rw

ar
d

Pa
th

 L
at

en
cy

256 PEs

1

2

4
8

Figure 2.21: Multipacket messages, Type A (solid) and Type B (dashed) 2 � 2 switches, 64 PEs and 256
PEs, from simulation. Dotted line shows latency computed from Equation 2.35

53

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

Bandwidth (Messages per Cycle)

Fo
rw

ar
d

Pa
th

 L
at

en
cy

64 PEs

2 X 2

4 X 4
8 X 8

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

Bandwidth (Messages per Cycle)

Fo
rw

ar
d

Pa
th

 L
at

en
cy

256 PEs

2 X 2

4 X 4

Figure 2.22: Di�erent switch degrees, constant pinout, Type A (solid) and Type B (dashed) switches, 64
and 256 PEs, from simulation. Dotted line shows latency computed from Equation 2.35

54

in this case that of Kruskal and Snir [77] comparing the performance of systems with constant pinout per
node. In these simulations, the queue size in messages was kept constant at 10 messages for Type A and 5
messages for Type B. The number of packets per message was taken to be equal to the degree of the switch.
Constant storage per queue means that the storage per node increases as k for Type A k � k switches and
as k2 for Type B switches, and assumes that the nodes are pin-limited rather than storage limited.

As in section 2.4, the number of outstanding messages was 128 for the simulations shown in Figure 2.22,
solid lines represent Type A switches and dashed lines represent Type B.

At these (relatively small) system sizes, 4� 4 switches show a latency advantage over 2 switches only at
bandwidths under 5 percent. In a 64 PE system, 8� 8 switches show no latency advantage at all, since the
pipeline delay is greater than the minimum network latency. However, as is pointed out in [77], the systems
composed of 4� 4 and 8 � 8 switches switches have fewer components and fewer wires, and thus represent
less expensive networks.

Figure 2.22 does not show 8� 8 switches for 256 PEs, since 256 is not a power of 8; the next power of
8 which is also a power of 4 is 4096, which is rather expensive to simulate. For interconnection networks
with multistage delta network topologies, switches of small degree k have the additional advantage that, for
a given maximum system size M , more subsystems with exactly kn < M processors exist. Such subsystems
do not require redundant switches, as do subsystems that are not a power of k.

55

Chapter 3

Systolic Queue Designs

This chapter describes a non-combining systolic queue design and the implementation of this design in nMOS
and in CMOS. The circuits used in this design were the basis for the design of the combining switch. The
CMOS implementation used the NORA clocking methodology with modi�cations we developed for employing
quali�ed clocks. We continued to use this clocking methodology in designing the combining and decombining
components described in Chapter 4.

3.1 Advantages of systolic designs for VLSI

Systolic queue designs, as described in [60], have advantages even for non-combining switches. Memory-based
FIFO designs require that input and output buses be connected to all storage elements; the capacitance on
these buses must be charged and discharged for each insertion and deletion. Systolic designs require external
connections only to the �rst slot in the queue. The semi-systolic design we have implemented requires only
two global control signals distinguishing the four possible states of the queue: normal (both IN and OUT
rows are moving), full, blocked and emptying (see [37]). These global control signals can be pre-computed,
at the expense of an extra message slot to accept messages after the switch tells the preceding stage that
it is full, and can be implemented e�ciently as quali�ed clocks [38]. Furthermore, systolic queue designs
have the advantages of regular layout and limited connections per cell which are characteristic of systolic
structures in general [91]. An additional bene�t is their suitability for cut-through switching, compared to
alternatives such as that mentioned in [3] in which each cell of a shift register is connected to the output to
allow partial cut-throughs.

The systolic combining queue design has the further advantage of distributing the comparison logic that
�nds matching messages so that it does not add signi�cantly to the cycle time of the switch. A memory-based
design, like those described in [141, 144], requires a comparator connecting the input bus to every message
in the queue; such a comparison is likely to be quite slow and must be done in series with insertion, since the
destination of the message on the input bus will be di�erent depending on the result of the comparison. In
a systolic combining queue, matching can be done in parallel with insertion. Comparisons are done within
the systolic queue structure; each comparison requires interconnections between only two adjacent items,
though many comparisons may be performed simultaneously.

3.2 Systolic queue design of Guibas and Liang

The systolic queue design we have implemented is essentially the folded shift register shown in Figure 3.1.
Items enter the IN row at the left and move right until the slot underneath, in the OUT row, is empty. As
items are deleted from the front of the queue, items in the OUT row move to the left.

Guibas and Liang's design [60] is fully systolic, according to Leiserson's de�nition [91], requiring no global
signals except a clock. In their design, as items are inserted into the IN row, they move right whenever the
slot to the right is empty and the slot below in the OUT row is occupied. As an item is deleted from the front
of the OUT row, the cell the item has vacated is left \indisposed" instead of empty. Any item immediately

56

-

?

��

���

IN

?? ??

�

-

432

2

10

4310

OUT

Figure 3.1: A systolic queue design.

to the right of an indisposed cell in the OUT row senses that it may move left on the next cycle, but an
item in the IN row directly above will not move down. In general the OUT row will consist of a string of
occupied and indisposed cells, terminated by a string of empty cells to the right. An item can be deleted or
inserted every second cycle.

There are practical di�culties with using this scheme for the queues in an interconnection network switch.

1. To keep bandwidth up and latency down, the insertion rate should be limited by the o�-chip delays, not
by the characteristics of the internal switch logic. Not allowing insertions and deletions on consecutive
clock cycles is a serious practical defect of this design.

2. The rules governing the movement of items, which are based on the assumption of unlimited size, are
di�erent for the rightmost cells in the IN and OUT rows.

3. Since the OUT row has three states, the representations of its state transitions can be somewhat
complicated.

3.3 Snir and Solworth's basic queue design

Snir and Solworth [130] developed a semi-systolic design that distributes global informationabout whether
the queue is blocked to each cell in order to be able to delete an item every cycle. If the queue is not blocked,
a deletion will always occur and all items in the OUT row simultaneously move left. The global information
allows all the items to move in lock-step into the neighboring location, even though it was not empty on the
preceding cycle, thus providing an unbroken stream of items to be deleted. To handle the problem of �nite
queue size, this design also distributes global information about whether the queue is full. This information
determines whether the items in the IN row move right or retain their position, allowing them also to move
in lock-step as long as the queue is not full.

To describe the queue's operation more precisely, using a standard two-phase clocking scheme like that
in Mead and Conway[102], let in1(j) and in2(j) correspond to the values of the item in slot j of the IN row
at the end of phase 1 and at the end of phase 2. Similarly, out1(j) and out2(j) are the values for slot j of
the OUT row. The Boolean variables valid1(x; j) and valid2(x; j) are true if there is an item in slot j of the
x row at the end of the corresponding phase, false if the slot is empty.

Using this notation, the phase 1 transitions of the Snir and Solworth design when the queue is neither
blocked nor full are

in1(j) := in2(j � 1);

out1(j) := out2(j + 1);

valid1(IN; j) := valid2(IN; j � 1);

57

�

-

�

? ?? ?

� � �

- - - -

�

?

-

-

�

? ?? ?

� � �

- - - -

� �

?

- -

?

��

���

?? ??

�

-

B

-

?

�

���

?? ??

�

-

(d)Cycle 2, unblocked(c) Cycle 2, blocked

(b) Cycle 1, blocked(a) Cycle 0, blocked

B

OUT

OUT

IN

0 1 3 4

0 1

2

2 3 4

C

A

IN

0 1 3 4

0 1

2

2 3 4 432

2

10

4310

IN

AOUT

B

432

2

10

4310

IN

AOUT

C

Figure 3.2: A queue must unblock an odd number of cycles after the �rst item was inserted.

C B

�

-

�

? ?? ?

� � �

- - - -

�

?

-

-

�

? ?? ?

� � �

- - - -

� �

?

- -

?

��

���

?? ??

�

-

A

-

?

�

���

?? ??

�

-

(d) Cycle 2, unblocked, phase 2(c) Cycle 2, unblocked, phase 1

(b) Cycle 1, blocked(a) Cycle 0, unblocked

B

OUT

OUT

IN

0 1 3 4

0 1

2

2 3 4

C

A

IN

0 1 3 4

0 1

2

2 3 4 432

2

10

4310

IN

AOUT

C

B

432

2

10

4310

IN

AOUT

C

B

Figure 3.3: Out of order items due to blocking a non-empty queue for an odd number of cycles.

58

BA

C B-

�

? ?? ?

� � �

- - - -

� �

?

-

A

IN

0 1 3 4

0 1

2

2 3 4

C

C

�

-

�

? ?? ?

� � �

- - - -

�

?

-

(c)

-

?

��

���

?? ??

�

-

-

?

�

���

?? ??

�

-

(d)

(b)(a)

OUT

OUT

IN

0 1 3 4

0 1

2

2 3 4

C

B

432

2

10

4310

IN

AOUT

B

432

2

10

4310

IN

AOUT

Figure 3.4: A hole in the OUT row due to an odd number of cycles between insertions.

valid1(OUT; j) := valid2(OUT; j + 1);

and the phase 2 transitions are

in2(j) := in1(j);

out2(j) := if valid1(OUT; j)

then out1(j)

else in1(j);

valid2(IN; j) := valid1(IN; j) ^ valid1(OUT; j);

valid2(OUT; j) := valid1(IN; j) _ valid1(OUT; j):

Snir and Solworth claim that the following invariants ensure correct operation of the queue:

1. The full slots in the OUT row occupy an initial segment of consecutive locations (i.e., there are no
\holes" in the OUT row).

2. When the queue is neither blocked nor full, the di�erence between the largest index of a valid location
in the OUT row and the largest index of a valid location in the IN row is non-negative and odd. 1

They list the following conditions which must be satis�ed by the control logic to maintain these invariants:

1. The number of cycles with no insertions between two consecutive insertions must be even.

2. When the queue is blocked, it must remain blocked for an even number of cycles.

These constraints are necessary to prevent items from getting out of order. Consider what happens when
the queue is blocked for the �rst time. As long as the queue is not blocked, at the end of phase 2 a single
item will be available for output as out2(0). When the queue is blocked, this item will remain in place and
the IN row will keep moving. Let cycle 0 be the cycle that the item at the front of a queue that has blocked
for the �rst time was inserted. As illustrated in Figure 3.3, if a stream of consecutive insertions is fed to the

1The numbering convention here is di�erent than that in [130], so this di�erence is odd, rather than even.

59

queue while it remains blocked, the rightmost items will be lined up vertically at the end of each odd cycle.
If the queue is then unblocked during the next even cycle, the items in the OUT row will move left during
phase 1 while the items in the IN row move right, and during phase 2 two items will slide down into the
OUT row in the wrong order. Thus correct operation requires that a queue stay blocked for an odd number
of cycles after the �rst insertion.

Figure 3.3 shows the e�ect of blocking a non-empty queue. At cycle 0, the queue is in a legal state, with
both rows moving and an odd di�erence between the highest indices of the IN and OUT rows. At cycle 1,
the queue is blocked for one cycle; the IN row keeps moving but the OUT row is stationary. At cycle 2, both
columns start moving, resulting in items B and C being placed out of order in the OUT row. Note that if
C had not been inserted at cycle 0 there would have been a hole in the OUT row at cycle 2 instead, which
might have taken some later item out of order.

The input stream need not be a continuous stream of consecutive insertions for correct operation, but,
as illustrated in Figure 3.4, there cannot be an odd number of cycles between insertions. In the �gure, there
is only one cycle between B and C; this results in a hole between B and C in the OUT row.

In the Snir and Solworth description of their design, a queue is considered to be in one of three states:
normal (both inserting and deleting messages allowed), blocked (no messages can be deleted, but messages
can be inserted) and full (no messages can be inserted). They assume that a full queue has been blocked, so
that no messages can be deleted. In implementing such a queue, the full signal can be derived from valid bit
of the rightmost slot in the OUT row which can be occupied and still leave room for the rest of the message.
There is a fourth state, which we will call emptying, after the output of the queue has unblocked but before
the IN row can begin moving again. The IN row can begin moving when there is enough space to allow a
complete message to be accepted even if the queue becomes blocked again.

3.4 A semi-systolic queue with two global control signals

As should be clear from the discussion and drawings in the previous sections, holes or out of order messages
can appear in the OUT row only if at some cycle n both rows are \lined up" at the rightmost edge and at
the following cycle n + 1 both rows are moving. For correct operation of the queue, one must ensure that
this situation can never arise.

In the switch, each item in the queue will be a packet of a message. In this section we show that a
two-row semi-systolic queue design based on messages with an even number of packets, two global control
signals and simple restrictions on when these global signals can change satis�es the invariants of the previous
section, ensuring correct operation.

The two global control signals are in moving and out moving. The phase 1 transitions of the queue are:

in1(j) := if in moving

then in2(j � 1);

else in2(j);

out1(j) := if out moving

then out2(j + 1);

else out2(j);

valid1(IN; j) := if in moving

then valid2(IN; j � 1);

else valid2(IN; j) and

valid1(OUT; j) := if out moving

then valid2(OUT; j + 1);

else valid2(OUT; j); (3.1)

and the phase 2 transitions are

60

in2(j) := in1(j);

out2(j) := if valid1(OUT; j)

then out1(j)

else in1(j); (3.2)

valid2(IN; j) := valid1(IN; j) ^ valid1(OUT; j);

valid2(OUT; j) := valid1(IN; j) _ valid1(OUT; j):

Consider that the index j = �1 corresponds to the values of the input port.
The following constraints must be enforced:

1. The �rst packet of a message is accepted only at an even cycle.

2. All messages are of even length.

3. The control signal in moving can change its value only before an even cycle.

4. The control signal out moving can change its value only before an odd cycle.

A cell j in the x row is said to be occupied if valid2(x; j) is true at the end of the cycle. Under the above
constraints, the following can be proved:

Theorem 3.4.1 If the queue is not empty and, at the end of cycle n, the highest index of an occupied cell in
the IN row is equal to the highest index of an occupied cell in the OUT row, then in moving and out moving
cannot both be true during cycle n+ 1.

Proof:
If the queue is empty, the theorem is trivially satis�ed. Let cycle 0 be the �rst cycle that a message enters

an empty queue; in moving must be true to allow a message to enter, and the �rst packet may leave the
queue at cycle 1 if out moving is true. At the end of the �rst cycle the theorem is satis�ed, since the premise
is false, as OUT(0) is the only occupied cell. Assume inductively that the theorem is true for every cycle
through n � 1, and thus at cycle n there are no holes in the OUT row. Assume without loss of generality
that the queue is not empty at any cycle from 0 to n� 1.

At cycle n, for n odd, consider separately the cases when out moving is true and when it is false.

1. out moving is false: Since out moving can only change at the beginning of odd cycles, it will still be
false the next cycle, which is even.

2. out moving is true: Some even number 2j of packets must have entered the queue since cycle 0,
because there have been an even number of cycles and messages have an even number of packets and
can be initiated only at even cycles. Some odd number 2k + 1 of packets must have exited, because
out moving, since it is true now, was false for an even number of cycles from the time packets could
have begun to exit at cycle 1. So 2j � 2k� 1 packets (an odd number) must remain in the queue. Let
m be the highest index of an occupied cell in the OUT row; there are m packets in the OUT row, since
it has no holes. Suppose m were also the highest index of an occupied cell in the IN row. The number
of unoccupied cells to the left of cell m must be 2l for some l, because messages are of even length and
initiated only at even cycles. So there would be m+m�2l or an even number of packets in the queue.
But the number of packets must be odd, so m is not the highest index of an occupied cell in the IN
row.

At cycle n for n even, consider separately the cases when in moving is true and when it is false.

1. in moving is false. Since in moving can only change at the beginning of even cycles, it will still be
false the next cycle, which is odd.

61

2. in moving is true. An even number 2k of packets has exited the queue since the the �rst packet could
exit on cycle 1, as the queue has been blocked for an even number of cycles in that time. At the end
of cycle n, in moving will have been true for an odd number of cycles, so either an even number 2j
of packets has entered and cell 0 of the IN row is not occupied, or an odd number 2j + 1 has entered
and cell 0 of the IN row is occupied (because the queue is in the middle of receiving a message). This
creates two subcases :

(a) There are an even number of packets in the queue, since an even number have entered and an even
number have exited, and cell 0 of the IN row is not occupied. Let m be the number of packets
in the OUT row. There must be some even number 2l, l < m of unoccupied cells in the IN row
with index greater than 0 and less than the highest occupied index in the IN row, so there would
be 2m� 2l � 1 packets in the queue if the highest occupied index were m, which contradicts the
assumption that the number of packets in the queue is even.

(b) There are an odd number of packets in the queue, since an odd number have entered and an
even number have exited, and cell 0 in the queue is occupied. Again, there must be some even
number 2l, l < m of unoccupied cells in the IN row with index greater than 0 and less than
the highest occupied index in the IN row, so there would be 2m � 2l packets in the queue if the
highest occupied index were m, which contradicts the assumption that the number of packets in
the queue is odd.

Corollary 3.4.2 The OUT row in a systolic queue operating according to the constraints given on cycle
parity of message initiation, message length, in moving and out moving will not have holes or out of order
packets.

We implement the parity constraints by tying changes in in moving and out moving and the related
input and output DA (data accept) signals (see section 4.1.5) to the end of a message on the input and
output ports. The input DA must be lowered in time to prevent the queue from �lling, but will not be
noticed by the preceding stage until the end of the message being sent. This means that in the worst case
there must be room for the maximum number of packets in a message in the OUT row when the input DA
is lowered.

3.4.1 Queue blocked and queue full

A queue may be blocked either because a queue in the next stage is full or because of contention for an
output port. To satisfy the constraints on in moving and out moving described in section 3.4, an external
protocol, like that described in section 4.1.5, must make sure that a sending queue does not output a message
unless a receiving queue can take it. Because a queue outputs a message after one cycle, the cycle parity of
a receiving queue is the reverse of that of a queue sending to it.

A queue signals full when it can no longer take any more messages. If there are 2m packets in a message,
then the queue full condition is equivalent to having the mth slot from the right in the OUT row occupied
(see Figure 3.4.1). Data accept (DA) to the sending queue must be lowered when this slot becomes occupied.
When this slot �rst becomes occupied, the parity restrictions ensure that the IN row cannot be receiving
the last packet of a message. In the worst case the queue may be receiving the �rst packet of a 2m packet
message, and the IN row must move 2m � 1 more times. Even if the output is blocked, there will still
be space in the queue for all packets. The sending queue must not initiate a new message after DA has
been lowered. When that slot becomes unoccupied, DA may be raised, and there will be room for any new
message initiated.

In our queue implementations, layout considerations cause us to use the valid1 signal from an occupied
slot rather than the valid2 signal to produce the DA signal. Because in the detailed logic of the queue, valid2
becomes true while valid1 is still false, we actually take the valid1 signal from the n+1st slot from the right
of the queue. If there were never any holes in the IN row and the OUT row were blocked, the valid2 signal of
the nth slot would become true one cycle after the valid1 of the n+1st slot; so using this more conservative
signal rarely makes a di�erence. Simulations show no di�erence between the two schemes in the number of
messages contained in the queue when DA is lowered.

62

?

-

?

��

���

IN

?? ??

�

-

Occupied = Queue Full

5

5432

2

10

4310

OUT

Figure 3.5: Illustration of the queue full condition for a systolic queue like that of section 3.4 which can
accept messages of up to 4 packets.

3.4.2 Handling messages of odd length

Two characteristics of our semi-systolic queue design make it impossible for messages to have both even and
odd lengths in packets:

� Both the IN and OUT rows can move at the same time.

� Transmission may not be halted in the middle of a message.

Consider the case when the OUT row has moved out the �rst packet of a message, and IN has accepted
the �rst packet of another. Depending on the parity of length of the message just accepted, the queue may
be put into a situation where the two rows line up, but because it is in the middle of a message in both rows,
neither row may halt.

The requirement that messages be of even length raises the question of how to handle messages of variable
length without undue waste of network resources. In the Ultra III architecture [17] used as the design point
for the switch described in Chapter 4, load requests and store acknowledgements require only one packet for
addressing and control information, while load responses and store requests require two packets, one address
packet and one 32-bit data packet. Fetch-and-� operations require two packets in both directions, and load
double operations (used for instruction fetch) require only one packet on the forward path but three on the
return.

Methods for making all messages of even length include:

Padding Include one extra packet for message that would otherwise be of odd length.

Packetizing Divide the \natural" length of packets in half so that all messages are of even length.

Padding is very simple, and wastes little bandwidth if messages are composed of many packets, but can
be very wasteful if messages are short. Packetizing may complicate the network interface, by requiring
disassembly and assembly of packets prior to connections with the processor bus, and limits the maximum
network bandwidth in messages (see section 2.4), but avoids waste of network bandwidth. The relative
performance of each of these schemes depends on the number of bits in each message and on the frequency
with which each message is issued, which is hard to predict without detailed studies of both instruction and
data cache behavior on a system. For the Ultra III prototype, we have chosen the simpler-to-implement
alternative of padding the messages.

As the ratio of o�-chip to internal logic delay increases with the decreasing feature size of VLSI designs,
the internal logic of the systolic queue may be able to operate at a clock twice as fast as the rate at which
data packets can enter and leave the chip. In that case, a systolic queue design that moved only one of the
IN and OUT rows in a cycle could be used without penalty to allow messages of both even and odd lengths.

63

e

�
��A
AA

e

�
��A
AAe

A
AA�
��

e

A
AA�
��

-

��

FI

-

..

IN

TRV

OUTout2

in2

FOHO

TRH

�2

HI

Figure 3.6: nMOS implementation of non-combining queue data cell

3.5 Implementation using nMOS

In our original nMOS implementation, we controlled movement in the single-bit data cell with quali�ed clocks
derived from two-phase non-overlapping clock signals, as is done in Mead and Conway's stack design [102].
Data movement within a row (IN or OUT) occurs on phase 1 (when clock signal �1 is high); data transfer
from IN to OUT occurs on phase 2 (when clock signal �2 is high). Pass transistors control the horizontal and
vertical data movement from cell to cell in the data path (Figure 3.6). During the periods when both clocks
are low, all pass transistors are turned o�. The decision as to which direction data will move in a phase is
computed in the previous phase; thus data movement and control computations are completely overlapped.

In Figure 3.6, IN and OUT are input signals from neighboring cells; in2 and out2 are output signals to
neighboring cells. The quali�ed clock FI (\Flow In") is high only when �1 is high and items in the IN row
should move to the right; that is, when in moving is high. HI (\Hold In") is high only when �1 is high and
in moving is low. FO and HO are de�ned similarly for the OUT row; HI, FI, HO and FO control the phase
1 transtions described in equation 3.1. TRV (\Transfer Vertical") and TRH (\Transfer Horizontal") are a
pair of �2-quali�ed clocks controlling whether out2 is set from the IN or the OUT row, and are derived from
valid1(OUT; j), corresponding to transition equation 3.2. The OUT row receives the value from the IN row
whenever it is empty, whether or not the slot in the IN row is valid. The pass transistor with gate �2 is used
to transfer the phase 1 value to in2.

In preparation for the design of a complete combining switch chip, we designed several chips which were
fabricated by DARPA's MOSIS facility. In 1986 we received functional 11-bit wide 2x2 non-combining switch
chips containing approximately 7500 transistors and fabricated in 3-micron nMOS. These parts operated at a
clock speed of 23MHz with propagation delays from clock to output of approximately 25ns. Power dissipation
was approximately 1.5W. A 4x4 test network was constructed using four of these parts and functioned as
expected.

A 6-bit wide portion of the FPC (without the adder) for a 2x2 combining switch was also fabricated in
4-micron NMOS. This switch was composed of four 1-input combining queues. These parts also operated as
expected and had performance and power dissipation similar to the non-combining switches.

Since the �nal combining switches were to be at least 32-bits wide and air-cooled, we converted our design
e�ort to the newly available scalable double-metal CMOS process. When we moved to CMOS to obtain a
low-power implementation, we wanted to keep the compactness of the nMOS design.

64

.

..

c

..

.
c

.

..

d

��
HH d

��
HH

.

c

(C)(A) (B)

�

�
�

�

OUT OUTININ IN OUT

�

Figure 3.7: (A) Inverter and transmission gate. (B) C2MOS latch. (C) Notation for C2MOS latch.

��
HH

d

��
HHd

��
HH

d

..

d
Even

..

..

��
HH

�

Even or Odd

�

�

�

��

�

�

�

Precharged
Inversions

Inversions

Even

Inversions

Figure 3.8: Summary of NORA inversion parity restrictions.

3.6 Implementation using NORA CMOS

A direct mapping of this design to CMOS transforms the pass transistors to transmission gates, as in Figure
3.7. However, four basic clocks (�1, �1, �2 and �2) must be provided in order to have non-overlapping
clock phases. As in nMOS, the non-overlap time must be guaranteed in the presence of clock skew, so the
requirement of non-overlapping clock phases can result in considerable dead time in each clock cycle. In
CMOS this problem is compounded by having four clock signals to distribute.

3.6.1 NORA methodology

The C2MOS latch (see Figure 3.7) can be used to replace an inverter followed by a pass transistor in
the nMOS implementation. The key di�erence between the C2MOS latch and the inverter followed by a
transmission gate is that with the latch only one clock controls each transition of the output node, i.e., in
Figure 3.7(B), OUT can be driven low only if � goes high, and it can be driven high only if � goes low. This
is true for every latch: the output of a latch can only be driven low when some clock is driven high and vice
versa.

The NORA (NO RAce) methodology described in [52] uses this latch to construct two-phase pipelined
circuits that use only two basic clocks, � and �. In this methodology, phase 1 corresponds to the time when

65

� is high and � is low, and phase 2 corresponds to the time when � is high and � is low. Therefore, in a
standard NORA system, a phase 1 latch has � on its N transistor and � on its P transistor; a phase 2 latch
has the reverse. Restrictions on the parity of inversions between latches prevent data from
owing through
a pair of latches during overlap periods when both � and � have the same value.

The key to a properly-functioning NORA circuit is what happens during this overlap period. Consider
the trivial circuit of one latch driving another latch and the case when both clocks are low. In that case, all
the N clock transistors are o� and all the P clock transistors are on; there is no path from ground to any
output. During this overlap, the only transition that the output of the �rst latch can make is to go from low
to high. That transition will not a�ect the output of the second latch because only an N transistor can be
turned on and the path from the output to ground has been turned o� by the low clock.

Generalizing, it can be seen that a signal that is an even number of inversions from the output of a latch
on one clock phase can be safely connected to the input of a latch on the opposite clock phase. Similarly,
a signal that is an even number of inversions from the output of an n-type precharged gate controlled by �
cannot cause a transition on the output of a phase 2 latch. The use of precharged gates allows inverting as
well as non-inverting logic between latches.

Goncalves and DeMan [52] developed rules for both n-type and p-type precharged logic blocks, giving
added
exibility. As pointed out in Shoji [127] and discussed in section 3.6.4, this kind of circuit is extremely
sensitive to noise. We use only n-type precharged logic, connecting successive n-type precharged gates with
static inverters, in the style of Domino CMOS [74].

Figure 3.8 summarizes the NORA inversion parity rules developed in [52] that are used in our design
style. There must be an even number of inverting gates between two C2MOS latches on di�erent phases
if only static gates are used. If either a single precharged gate or a series of precharged gates connected
by Domino-style static inverters is used, there must be an even number of inverting gates after the last
precharged gate.

3.6.2 Quali�ed clocking in NORA

A circuit commonly used for producing quali�ed clocks is shown in Figure 3.9(A). � and � are a pair of
clocks denoting a particular clock phase. A, A, A�, and A � are the quali�cation inputs, with the latter two
logically equivalent to the former two. Q and Q are the output quali�ed clocks, which are active only during
the clock phase controlled by � and when A is active. Q will be connected to the gate of an n-transistor in
a latch and Q will be connected to the gate of a p-transistor.

This circuit is often used in preference to static logic to reduce the propagation delay from the clock to
the quali�ed clock. Such a delay is a component of the clock skew of the system, which should be reduced
as much as possible.

The operation of this circuit in an environment with non-overlapping clock phases is straightforward.
In such an environment, A and A are assumed to be stable during the clock phase that is being quali�ed.
Therefore, Q and Q are always deasserted by their respective input clocks being deasserted. Thus, the two
transistors N3 and P3 serve no logical function. When this circuit is used with non-overlapping clocks, these
transistors are included as bleeders to ensure that Q and Q remain quiet, especially if there is a long period
between assertions of A.

The same clock quali�cation circuit can be used in NORA CMOS. In that case, the signals � and �
represent the two clocks used in a NORA design rather than a pair of clocks representing a single clock
phase. A correct NORA clock quali�cation circuit must produce logically correct Q and Q signals during
the two valid clock phases. During the overlap periods, it must not allow Q or Q to change from an inactive
to an active state; i.e., it must produce behavior on Q and Q that is no worse than that of � and �.

For NORA logic, it is important to distinguish signals that are logically identical, but are a di�erent
parity (odd or even) of inversions away from a latch, or are produced from the output of precharged gates.
Our convention is to mark signals that are an odd number of inversions from a latch with a \�"; signals not
so marked are an even number of inversions away from a latch. Although it is possible to use precharged
gates between the � latch and one or more of the qualifying signals, doing so would introduce delays which
would defeat much of the advantage of using a clock-quali�cation scheme in the �rst place. Therefore, only
fully-static logic is used between the latch and the clock quali�er circuit. It is shown in [38] that the signals
with parity as illustrated in Figure 3.9(B) are the ones required for correct operation of the clock quali�cation

66

..

A*
P3

e

..

Q

A

N2

P2

A*

e

��

A �
N3

ss

e

..

(A)

N1

P1

A

A �

Q

���
HHHe

���
HHHe

���
HHH

e

���
HHH e

���
HHH e

e

���
HHH

�

e

���
HHH

e

���
HHH

(B)

A*A

A �A

�

�

�

Figure 3.9: (A) Quali�ed clock circuits. (b) Parity from a latch of clock quali�er signals in NORA.

circuit.

3.6.3 CMOS non-combining switch

Our �rst NORA semi-systolic queue design was fabricated in 3 micron CMOS by MOSIS in 1987. The
non-combining 2� 2 switch containing this queue was a Type B switch, like the combining switch described
in Chapter 4, but instead of packaging each queue separately, all four queues were placed on a single chip.
A full-width data path was implemented internally, to verify the behavior and timing of global signals for
a one-chip implementation of a 2 � 2 switch, but, due to the limitations imposed by the 80-pin maximum
MOSIS package size at that time, only 10 outputs per port could actually be brought to the pads, so that 4
chips were required for a bit-sliced implementation.

This non-combining switch worked correctly at 11 MHz in a test environment, and was used in a func-
tioning 2 PE prototype for over a year. The chip's performance compared favorably to a design of similar
functionality using memory-based FIFOs fabricated in 1 micron CMOS at IBM for the RP3 project at about
the same time. The IBM design operated at 33 MHz but had a three cycle latency between input and output
[63].

3.6.4 Noise problems of dynamic logic

Although the chip tolerated 15ns clock overlaps, either high or low, it was highly sensitive to di�erent values
of the supply voltage and clock timings. We were unable to get the part to operate reliably in a system at
a clock frequency above 4 MHz, although this may have been due to other problems in the system. The
schematic of the basic cell of this systolic queue in this design is shown Figure 3.10.

After analysis of the situation as described in [38], we realized that, when used in a NORA circuit,
C2MOS latches have a low noise immunity during the clock overlap period and can operate incorrectly if
the rise or fall times of the clocks are comparable to the propagation delay of the logic. We therefore revised
our design to include at least one static gate between any two dynamic gates (whether latches or precharged

67

��HH
c

��
HH

c ��HH

c
A
A�
�

c
��
HH

c ��HH
c

��
HH

rr

r

r

r

r

c

-in2

��

-

..

FOHO

TRH

TRV

HIFI

�

IN

OUTout2

Figure 3.10: Basic cell of a CMOS queue design with noise problems.

��HH
c ��HH

c ��HH
c ��HH

cHH��
cHH��

cHH��
cHH��

c ��HH
c

��
HH

c
��
HH

c
A
A�
�

c ��HH

c ��HH

c

OUTc
��
HH

-

�

-

..

�

HIFI

IN

out2

in2

�

TRV

TRH

FOHO

Figure 3.11: Corrected CMOS implementation of basic cell

68

gates). The revised design is shown in Figure 3.11. This was used as the basis of the combining queue design
in Chapter 4.

Our experience in designing with the NORA methodology has been positive overall. Care is required
in using dynamic latches and gates, and design of the control logic that produces the clock quali�ers is
occasionally tricky. Sections of control logic must often be designed double-rail in order to have the clock
qualifying signals the correct number of inversions from a latch. However, the data paths, which take up
most of the area of the designs described in later chapters, are compact and e�cient.

It should also be pointed out that output signals in NORA logic are not glitch-free. Due to precharging,
signals may drop below logic high immediately after a clock transition even when they will return to logic
high by the time the signal is valid. Such glitches on many outputs can create noise on the board, and
require careful board design.

69

Chapter 4

Two-way Combining Switch

In implementing our combining switch, we avoided design choices that would hurt performance for non-
combining tra�c. Our goal was to design a network that provided the highest bandwidth and lowest latency
possible, given packaging, processing, and human resource constraints. In particular, we were careful to
avoid design decisions that would increase latency for light tra�c.

This chapter provides a detailed description of the VLSI design of the combining switch and its packaging,
packet format and protocols.

4.1 Combining switch architecture

The combining switch that we have designed and fabricated for use in the 16 PE NYU Ultracomputer
prototype is a 2� 2 switch node composed of four each of two types of custom VLSI design blocks: forward
path components (FPC) and return path components (RPC) as shown in Figure 4.1. Control for the switch
is distributed as tri-state selection logic in each chip. The routing information is included in the message.
Flow control avoids the necessity of acknowledgement for messages and allows pre-computation of signals
that control data movement from stage to stage. The components accept two and four packet messages and
allow the �rst packet of a message arriving when the queue is empty to exit at the next cycle.

Both the FPC and the RPC have been fabricated in 2� CMOS with 132 pin packages using the MOSIS
service. Both parts run solidly at 10 MHz, the upper limit of performance that can be measured in the
test rig. A 4� 4 combining switch board has been in use in a 4 PE prototype since November of 1992, and
functions correctly at all speeds at which the memory and processors work reliably (up to 15MHz). We are
presently assembling a 16 PE, 16 MM prototype using these switch boards. Currently, in spring 1994, a 12
PE, 4 MM con�guration is operational.

The combining switch components have also been prepared for fabrication by NCR in a 1:4� process
with 208 pin packages. While the MOSIS parts can be used only in systems with no more than 16 PEs,
because only 4 pins are allowed for PE/MM address, the NCR parts can be used in systems of up to 256
PEs. The higher pin count packages also allow the logic from two MOSIS chips that share an output port to
be packaged on a single chip. The di�erences between the two designs are noted as part of the descriptions
in the following sections, and help to illuminate the e�ect of di�erent technologies on design choices.

4.1.1 Packaging

Each of the 132-pin MOSIS parts contains either a single combining queue (FPC) or a return path queue
and its associated wait bu�er (RPC). Four of each type of component are used, one for each input/output
combination. Two components are connected to each input bus; two components share each tri-stated output
bus (see Figure 4.1). The two FPCs that share an output bus to the next stage also share a wait bu�er
bus that sends the information needed to decombine a message to a wait bu�er in the correct RPC at the
same time that a combined message is sent on the output port. The MOSIS FPC has two tri-state output
ports (to the next stage and to the wait bu�er) and one input port, for a total of 113 signal pins, excluding
power, ground and clocks; 74 of these are output pins. The MOSIS RPC has one tri-state output port and

70

u

u

u

u

u

u

u

u

u

�
-

�
-

6

6

-

-

-

-

u

FP OUT1

?

?

�

�

�

�

WB 0

FP IN0

FP IN1

WB 1

RP OUT0

RP OUT1

FPC(0,0)

FPC(1,0)

FPC(0,1)

FPC(1,1)

RPC(0,0)

RPC(0,1)

RPC(1,0)

RPC(1,1)

RP IN1

RP IN0

FP OUT0

Figure 4.1: Block diagram of combining switch showing connections of forward path components (FPC) and
return path components (RPC).

two input ports (from preceding stage and from the forward path), for a total of 108 signal pins; 38 of these
are outputs.

The 132-pin packages allowed three 32-bit ports per component, but not four. At the next level of
integration, there are two choices:

1. FPC(i; j) could be packaged with RPC(j; i),1 so that the connection between the combining queue and
the wait bu�er is on-chip.

2. Components that share an output port could be packaged together, so that no output needs to be
tri-stated and communication between queues sharing an output port can be on-chip.

The �rst choice saves pins, but the second choice allows the parts to operate at a higher clock rate, as
discussed in section 4.5.3, so we have chosen the second alternative.

The NCR FPC has 2 output ports (next stage and wait bu�er) and two input ports, for a total of 165
signal pins, excluding power, ground and clocks; 83 of these are outputs. The NCR RPC has has one output
port and four input ports (two preceding stage and two forward path), for a total of 177 signal pins; 40 of
these are outputs. Though the NCR RPC has �ve ports, while the NCR FPC has four, the ports in the
FPC are wider because of the extra bits needed in the address packet (see next section), so the total number
of signal pins is only 12 greater and, because there are only 40 outputs on the RPC compared to 83 on the
FPC, the power and ground pin requirements are less.

4.1.2 Packet format

Each message consists of an address packet and from zero to two data packets. Data packets are 32 bits
wide, to simplify the interfaces at the processor and memory. Messages with zero or two data packets are
padded with a null packet to be of even length. Packet formats for the MOSIS parts are shown in Figure
4.2. The numbers in parentheses after the �eld names are the number of bits in the �eld.

1The �rst index is the input port number, the second index is the output port number, see Figure 4.1.

71

Forward path address packet

PE/MM address (4) op code (4) memory address (23) ORI (4)

Forward path data packet

Extra (3) Data (32)

Wait bu�er address packet

PE/MM address0 (4) ORI0 (4) PE/MM address1 (4) ORI1 (4)

Return path address packet

MM/PE address (4) op code (4) ORI (4) SWD (1)

Return path and wait bu�er data packet

Data (32)

Figure 4.2: Packet formats for the interconnection network in a 16� 16 NYU Ultracomputer prototype.

In the MOSIS parts, which can be used in a network with a maximum of 4 stages, each forward path
port has 35 bits, with 4 bits used for the PE/MM address. The 4-bit PE/MM address allows 16 MMs to be
addressed by each of the 16 PEs. Since the NCR parts are designed for use in networks of up to 8 stages,
each forward path port has 39 bits, and the PE/MM address �eld is 8 bits wide. On the return path, the
address packet needs fewer bits than the 32 bit data packet because the 23 bits of memory address (i.e., the
address of the referenced word within the speci�ed memory module) are not returned to the processor. Both
the MOSIS and the NCR parts have return path and wait bu�er ports that are 32 bits wide.

At each stage in the network the routing decision is made on the basis of the high-order bit of the PE/MM
address �eld. A port accepts a message as valid if this high-order bit matches the port number; otherwise,
the message is ignored. Before being sent to the next stage, the high order bit is replaced with the address
of the input port at which the message arrived (0 or 1) and the PE/MM address is rotated one bit left. At
the memory this �eld is reversed and used as the MM/PE address �eld on the return path.

A 4-bit �eld is reserved for the op code. In addition to its use at the memory, the op code is used by
the switches to control combining and decombining of messages and to signal the length of a message. The
operations supported are described in section 4.1.4. A single SWD (\store was done") bit is returned to
indicate whether or not a store was actually done for the conditional Fetch and Store operations, as explained
in section 4.3.

The ORI (outstanding request index) �eld contains a number assigned by the PE when the message is
issued. A PE must have only one message with a given ORI in the network at a time; the combination of
PE/MM address and ORI is a unique identi�er for a message at a switch. One such identi�er must be sent
to the wait bu�er in the RPC to identify a message waiting to be decombined and another to identify the
combine message that has been sent on to memory. The RPC needs no other information from the forward
path in order to match and decombine a message. Thus for the MOSIS parts, only 16 bits are needed in the
address packet of a message sent to the wait bu�er in the RPC; the NCR parts need 24 bits. There are 16
extra bits for the MOSIS parts, 8 extra bits for the NCR parts, since the packet size is determined by the

72

32-bit data width. The data width determines the packet size on the return path as well; thus there are 15
unused bits in the MOSIS parts, 7 unused bits in the NCR parts.

The correspondence between �elds in the address packet and the order of data packet bits remains the
same so that both the MOSIS and the NCR parts can be used in the 16 PE Ultra3. The return path
address packet format is designed to be compatible with the 16PE machine, at the expense of making the
correspondence between address �elds and data bit ordering for the 256 PE machine somewhat unintuitive.

For system sizes of less than 16 (for the MOSIS parts) or less than 256 (for the NCR parts), the network
interface at the processor must place the PE/MM address at the high order end of the �eld, since routing
will be done by the network on the logN high order bits of the PE/MM address.

4.1.3 Programming part location and system size

In order to route and match messages correctly, parts must know their location in the system: input number,
output number and stage location. Because of pin limitations, the MOSIS parts are programmed using the
values on certain pins during initialization; this requires external circuitry to multiplex these pins so that
they are sourced from the programmed values during initialization and from their normal source the rest of
the time. The stage mask is the value on the three low order PEtoMM address bits during initialization. If
the value is high during initialization, that bit is masked out of the match logic and will not prevent a match
from occurring if two messages di�er only in that bit. (The high order PEtoMM address bit, which is the
routing bit, need never be masked.) Thus the values these bits should have during initialization of a 4-stage
network are 000 for stage 0, 001 for stage 1, 011 for stage 2 and 111 for stage 3. The In.Rte bit determines
the index (0 or 1) of the input port and the Out.DA bit determines the index of the output port.

The NCR parts have four pins dedicated to programming and no external multiplexing. The input ports
are programmed on-chip; the output port index is a single pin tied to power or ground. The stage mask is
decoded on-chip from three dedicated input pins, whose value in binary is the stage number, counted from
low to high from PEs to MMs.

Since the 16 PE Ultra prototype does not have enough pins available in the connectors on the boards to
transmit the full width of the NCR FPC ports, both the NCR FPC and the NCR RPC will have an input
SYS16 that will be used to treat the MM/PE address bits di�erently when being used in the 16 PE system
with limited connector pins.

In the NCR FPC, bits 0-7 are the PEtoMM address bits in the 256 PE system. In the 16 PE system,
bits 4-7 will hold the \real" address, and will map to the byte encoding bits and D0 in the data packet, as
the PEtoMM address bits do in the MOSIS part. Bits 0-2 must be tied o�-chip to GND; bit 3 must be tied
o�-chip to the input number, so that it will be shifted into bit 4, which is the low order bit of the 16 PE
address. SYS16 set high causes GND to be shifted into bit 0 instead of the input port number. This on-chip
change is needed for addresses sent to the wait bu�er; addresses sent to the wait bu�er will have bits 0-3 of
the PEtoMM address set low. Since bits 4-7 hold the \real" PEtoMM address in a 16 PE system, stages 0,
1, 2 and 3 in a 16 PE machine must be programmed as stages 4, 5, 6, 7 on the forward path.

In the NCR RPC, bits 0-3 are the low order four bits of the MMtoPE address and bits 17-20 are the
high order bits. Bits 17-20 must be set low at the memory for matches in the wait bu�er to work correctly.
SYS16 set high will cause bit 3 of the MMtoPE address to be used as the routing bit from the previous stage
instead of bit 7 and will cause GND, rather than bit 3, to be shifted into MMtoPE bit 4. Also, when SYS16
is high, the routing bit from the forward path (which lets a wait bu�er know whether or not it is supposed
to take this message) will be bit 4 of the PEtoMM address instead of bit 0.

4.1.4 Operations supported

We implement a set of combinable memory requests that have been found useful in the development of
parallel algorithms, including fetch-and-� operations as well as loads and stores. If two messages with the
same combinable op code meet in a queue, they will be combined, as described in [57].

Table 4.1 shows the ALU functions that must be performed on the forward and return paths to implement
combining of this set of memory requests. Descriptions of the meaning of the names of the ALU inputs are
given in sections 4.2.2 and 4.3.2. Only a four-function ALU, performing the functions ADD, OR, SELECT
A and SELECT B on its inputs A and B, is needed for all of these operations. fetch-and-and is performed

73

Memory Operation Forward Path Return Path
Fetch and AndNot OR OR
Fetch and Or OR OR
Store Double SELECT Chute Don't Care
Fetch and Store SELECT Chute SELECT D
Fetch and Store if = 0 SELECT Out if SWD SELECT D

else SELECT RP IN
Fetch and Store if � 0 SELECT Out if SWD SELECT D

else SELECT RP IN
Fetch and Add ADD ADD
Load Double Don't Care SELECT RP IN

Table 4.1: ALU operations for the memory requests implemented in the combining switch

without implementing the AND function in the ALU by transmitting the bitwise complement of the data
value and using the OR function for combining.

A three-function ALU would su�ce for combining in the forward path if the data packet from the OUT
row instead of the CHUTE row were output by the ALU for the fetch-and-store operation; see 4.2.2 for the
problems with this approach. The proper decombining of conditional fetch-and-store operations is explained
in section 4.3.2.

Combinable single word loads are implemented as fetch-and-add of 0, and thus may combine in the
network with other fetch-and-adds. Combinable single word stores are simply fetch-and-store ignoring the
returned value. In addition, the four-bit op code allows eight non-combinable operations that are forwarded
to the MMs without receiving any special processing. The non-combinable operations can include partial
word loads and stores, broadcast and re
ect (see [43] for the use of re
ect in the Ultracomputer architecture).
Only broadcast requires any special processing in the network. Broadcast is done from a memory location
to all processors, after a broadcast request has been received from a processor. A message is inserted in
parallel into both queues connected to an input when the broadcast op code is decoded.

All messages are two packets in length unless the op code is all ones. This op code is used for Store
Double in the forward path and Load Double in the return path; the memory must make the op code change.
Both Store Double requests and Load Double responses are transmitted as four packet messages, with an
empty �nal packet.

4.1.5 Flow control logic

As described in Section 3.4, the construction of the queues requires that there be an even number of packets
per message and that switches distinguish even and odd cycles. A cycle is de�ned to be \even" for a given
switch if the parity of the cycle is the same as the parity of the stage to which the switch belongs. Reception
of messages starts only at even cycles while transmission of messages starts only at odd cycles.

At initialization, the parity of the cycle is set to the parity of its stage, so that cycles that are even for
one switch are odd for its predecessors and successors. In fact, there is no explicit \even" signal for the
queues. End of message (EOM) signals for input and output are generated on-chip in such a way that they
always change at cycles of a given parity and are used to enforce the parity restrictions on operation. An
explicit \even" signal is generated on-chip only for the wait bu�er.

The wait bu�er and the interaction between blocks in the RPC have been designed in such a way that
the cycle parity of the FPC and RPC in the same switch are identical (see section 4.3).

Each port has two protocol bits: a data valid bit (DV) traveling in the same direction as the data and
a data accept bit (DA) traveling in the reverse direction. The two protocol bits, in conjunction with the
routing bit, regulate the transmission of messages through the network. A sender asserts DV when it wishes
to initiate a message transmission. Independently, a receiver asserts DA when it is able to accept a new
message. A message transfer starts only if both DV and DA are asserted and the cycle parity is correct.
Signals controlling the blocking and unblocking of the queue are ignored during cycles when a message

74

transfer cannot be started (that is, they are looked at no more often than every other cycle), so they can be
set ahead of time to overlap data transfer and
ow control operations.

Note that this is not strictly speaking a handshaking protocol: DA is not an answer to DV, nor an
acknowledgment, but is issued independently and simultaneously. The sender is transmitting the data on
the data lines whenever DV is asserted. If it receives DA, it assumes the data has been accepted and proceeds
with the next packet. No provision for retry is necessary.

Since each sender sends to two receiving queues or wait bu�ers, DA must be asserted only when both
can accept data. In the partitioning of Figure 4.1, this requires either an external AND gate for each paired
input (the solution we used with our MOSIS-fabricated parts), or the transmission of two DA signals back
to the source of the message, where the AND gate can be done on-chip (the solution we used with our
NCR-fabricated parts). More complicated protocols could use the DA signals from both receivers to improve
performance; see [100].

The MOSIS parts have a single data accept (DA) signal and a single data valid (DV) signal per port.
The DA signals from two input ports receiving from a single output port are ANDed together o�-chip to
produce the DA to the source output port.

The NCR parts have one DV bit per port, and in addition two decombine queue data valid signals will
be brought out from the RPC for performance monitoring. The input ports have a single DA per port, but
both DAs are sent to the source output port where they are ANDed together on-chip. This requires an extra
pin per output port on the chip and on the connections between stages, but eliminates the need for any
o�-chip logic on boards using the NCR parts.

Our protocol requires that message transmission not be halted once it begins. This requires reserving
enough bu�er space whenever DA is asserted to accept the rest of the message. In our implementation, this
means four packets. (Were these only two-packet messages, the requirement of an even number of cycles
between blocking and unblocking of the queue would require reserving enough space for the second packet,
in any case.)

With the current protocol, to distinguish between two and four packet messages, queues paired at an
input keep track of the length of valid messages sent to the other queue in order to know when to look at the
input for the start of a new message. The op code bits are decoded and either the second or fourth cell of a
shift register is set to 1; the output of this shift register is then used to signal input EOM (end of message).
Whenever input EOM is asserted, and on the next cycle DV is asserted, a new valid message is assumed to
begin for the queue with output port number equal to the routing bit.

In order to block in the middle of a message for messages of 4 or more packets, a change to this input
logic would be necessary. It would no longer be su�cient to decode the op code in the �rst packet of a
message and wait two or four cycles before looking again. A queue must know whether or not the other
queue is blocked in order to know whether a new message may begin. This requires the communication of
the DA signals between the paired queues. In both the MOSIS and the NCR packaging, this would be an
o�-chip communication.

An alternative solution would be to transmit an EOM signal instead of computing the length of the
message from the op code. This would require an additional pin per port on stage-to-stage (o�-board)
communication. To allow pre-computation of chip control signals, it would be best to transmit this signal
not in the last packet but in the second-to-last packet of a message.

4.1.6 Arrangement of bu�ers

We have implemented Type B switches, described in section 2.1.3, for the following reasons:

� Output rate and average queue lengths are equivalent to Type A for uniform tra�c [115].

� Implementing the two-input queues for a Type A switch requires either separate locations for the
insertion of the two inputs, or the serialization of the two insertions. Two input systolic queue designs,
which have 2 IN rows and one OUT row, carry out arbitration for each slot of the OUT column rather
than just at the output and avoid the serialization problem [130]. However, the logic would have been
more di�cult to get right in our initial implementation than that of the Type B switch, which requires
only arbitration of the outputs.

75

� Type B switches, which require only one input, one output, and for combining switches, one port to
the wait bu�er, have greater packaging
exibility than Type A, which require two input ports, one
output port and one wait bu�er port per switch. To implement Type A switches at the level of package
integration available to us would have required increasing the number of packets per message.

A cost of using Type B switches is fewer combines in the earlier stages of the network, since messages
from di�erent PEs that might combine cannot be together in a queue until one stage later than with Type
A switches. According to simulation results in [100], this results in a 13 percent reduction in throughput
from that achieved by Type A two-way combining switches, for systems with 64 PEs and a hot-spot rate of
3 percent. This is still twice the throughput achieved with a non-combining network under those conditions.
For systems of 1024 PEs with a 3 percent hot-spot rate, Type B switches show a 21 percent throughput
reduction compared to Type A switches, but still have 28 times the throughput of a non-combining network.

4.1.7 Arbitration of bu�ers

The arbitration rules for the queues paired at an output in Type B switches must not reduce bandwidth or
starve one of the queues. The analysis described in [115] assumes that if one queue is empty and the other
is not, the non-empty queue will drive the output, and that if both queues are not empty, the queue driving
the output will be selected at random.

In practice, it is not easy to �nd a simple and reliable digital CMOS circuit that will select each output
randomly but with equal probability. Strict alternation of outputs, ignoring whether or not the selected
queue has a message, is easy to implement but increases latency under light load. Our �rst implementation
alternated the selection whenever both queues had messages, chose the non-empty queue if only one was
empty, and remembered which queue was selected last when both queues were empty, in order to give priority
to the queue which had not sent the last message. In pseudo-code, the arbitration logic is

if not empty (0) and not empty (1)
select := not (old-select)

else if not empty (0)
select := 0

else if not empty (1)
select := 1

for queues connected to inputs 0 and 1, where select equal to i corresponds to the control signal for the
tri-state pads selecting the queue connected to input i. We implemented this in CMOS as a single AOI
(and-or-invert) gate with 4 inputs but no more than two transistors on any path between a power rail and
the output, plus the latches necessary to save the old value of select. All logic was carried out double-rail,
for NORA correctness, since the AOI gate required both the old select signal and its inverse.

Unfortunately, as we discovered when simulating the design in a network environment, this logic does
not take into account what happens when the queue is blocked. If the next stage blocks for an odd number
of arbitrations while both queues are not empty, unblocks for long enough to allow one message to exit and
then blocks again for an odd number of arbitrations, the same queue will get repeated service and the queue
associated with the other input will be starved. As we discovered while running a version of the switch
with this arbitration logic, such starvation is not necessarily an uncommon or self-correcting event. Certain
memory behavior can cause it to occur consistently. To prevent this starvation due to arbitration while
blocked, the information about whether the output is blocked or not must be included in the arbitration
logic. While the output is blocked, the selected queue and the priority must not change. Thus no queue will
get repeated service after an interval of blocking if the other queue has a message to send. We implemented
this new arbitration logic by multiplexing the output of the AOI gate producing the new select value with the
old select value, choosing the old value whenever the output is blocked. The control signal on this multiplexer
is the AND of the DA from the next stage and the DA from the wait bu�er.

This logic can be generalized to arbitrate k queues at an output. In that case the input to the logic will
be k empty signals. Selection priority will be given to queue i if queue i� 1 modulo k was the last queue to
send a message. If queue i is empty, the next non-empty queue j obtained by incrementing i modulo k will

76

be selected to send a message, and priority will be given to queue j +1 at the next arbitration. If all queues
are empty, or if the output is blocked, priority will stay at queue i. This generalization was implemented for
k = 4 on the return path, where each RPC has one queue for messages received from the previous stage and
one for decombined messages, making four queues altogether at each output.

Implementing this generalization of the logic required replacing the two AOI gates of the two queue
implementation with 22 inverters, NAND, NOR and AOI gates, all with four or fewer inputs, resulting in
a worst case of four gate delays from the not empty and old-select signals to the input of the multiplexer
controlled by the DA signals.

4.2 Forward path component design

The forward path component in the MOSIS design is essentially a single systolic combining queue, with the
ALU embedded in the �rst packet location of the queue, rather than on the critical o�-chip path. Embedding
the ALU in the �rst slot of the queue allows combining to be done in parallel with data movement o�-chip.
Loss of combining in the �rst slice does increase memory latency due to queueing delay in the presence of
hot spots, as shown in Chapter 5, but the alternative is to increase the latency for all tra�c patterns, either
by degrading the cycle time or losing the property of having single cycle transmission time when the queue
is empty.

Control logic on each component decodes the op code to determine the ALU operation and the length
of the message. The output is blocked if a wait bu�er data accept signal (WB.DA) or a data accept signal
from the next stage (FP OUT.DA) is low. The QNE (not empty) signal from the paired queue is used to
determine which component has priority to drive the output port, as described in section 4.1.7; out moving
is true if the output is not blocked and the component has priority to drive the port. The DA (data accept)
signal sent to the previous stage is derived from the queue full signal and latched on the input end of message
(EOM) signal. The EOM signal is derived from the op code, which can be used to di�erentiate two and four
packet messages.

4.2.1 Combining queue

The semi-systolic combining queue in the forward path component adds another row to the queue design
described in section 3.4 (see Figure 4.3). A non-combining queue has a hardware cost similar to that of
a shift register; the extra row costs about 50 percent more, while the comparator to recognize matching
messages adds only 8 transistors to each cell (Figure 4.4). The comparator consists of a dynamic XOR gate
followed by an inverter whose output can pull down a pre-charged match line which is shared by all the cells
used for the match. These gates form a short chain of Domino CMOS logic, as described in [74, 127].

The comparator checks for equality between every slot in the IN row and the corresponding slot in the
OUT row. As messages move to the right along the IN row they are compared with the messages in the
OUT row below. If a match occurs, data from the IN row moves to the CHUTE. Comparison can be done in
parallel with data movement because the message in the IN row is copied to the the CHUTE as long as the
latter is empty. A valid bit for each row in the slot is set based on the result of the match. The comparator
to recognize matching messages is a few transistors distributed in each cell (Figure 4.4).

If the IN and the OUT row move simultaneously, an entering packet will be matched against alternate
packets. If every message has two packets, an entering address packet will be matched against the address
packet of every message in the queue when it arrives except the �rst (since we have placed the adder in the
�rst slice and do not allow combines there). The systolic design we use, which allows a packet to enter one
cycle and exit the next, already constrains messages to have an even number of cycles between the start of
one message and the start of the next (see [130] and section 3.4), so the addition of combining places no
further constraint on the number of packets in a message. Since messages can be either 2 or 4 packets long,
and the IN and OUT rows need not be moving simultaneously, a match occurs only if both the IN row and
the OUT row contain address packets. To ensure that matches take place only between two address packets,
an internal start of message (SOM) signal enters the queue with the �rst packet of a message.

A block diagram of the combining queue is shown in Figure 4.5. The input to the �rst valid cell is
FP IN.DV; the outputs are FP OUT.DV and WB.DV. HI, FI, HO and FO have the same meaning as in

77

�

�

-

66

��

-

?

�

-

����

6 6

?? ?

� � � � �r

WB

?

6

�

?

-

�

���

XXX
� ALUData

CHUTE

ROW
OUT

ROW
IN

ROW

Out

Chute

Out

FP IN

compare comparecomparecomparecompare

DataAddrData

Addr

Data Addr

Addr

Message
ID

FP OUT

Figure 4.3: Design of systolic combining queue.

HH
���

FO

CHUTE

cHH��

c��HH
c��HH

c
AA��

c��HH
c��HH

c��HH

c��HH
c

��
HH

cHH��
cHH��

c
HH
�� c

HH
��

c

��AA

c
HH
��c

HH
��c

HH
��

cHH��

c
��
HH

c
��
HH c��HH

cHH��
cHH��

s

s s

s

s

s

cs

chute1

s

s

-

-
-
-

-
6

- -

� �

..

-

-

?

6

�

in2

in1

out1

in1

XOR

Dynamic

out1

comp comp

match

�

out2

FOHO

OUT

OTRV

OTRH

out1

HO

�

IN

FI HI

chute2

CTRHCTRV

in1

Figure 4.4: Schematic of a single cell of the combining queue in the forward path component.

78

�

�

??

�

OUT

IN

valid

slice

OTRH,OTRV

�rst

(includes

ALU)

�rstQNE

WB

HI

FI

HO

FO

s s s

666

?

chute

transfer

?

666

transfer

chute

666

?

chute

transfer

sss

s s s

s s s

sss� -

� - � - � -

� -� -� -

�

-

match, SOM,

6

????

.....................

.....................

.....................

-
�

� �

�
-

.....................

.....................

.....................

-.....................

6

????

�

�

.....................

.....................

-
�

�

????

6

chute transfer
control
ALU

CHR

CHL

CHH

match

slice

valid

32

32

32 32

32

32

32
slice

valid

32

32

CHUTE

OUT

IN

valid

slice

CTRH,CTRV

OTRH,OTRV

vout1

Figure 4.5: Block diagram of a combining queue implementation.

79

in1(j) := if in moving then in2(j � 1) else in2(j),
out1(j) := if out moving then out2(j + 1) else out2(j),

chute1(j) := if out moving then chute2(j + 1) chute2(j),
valid1(IN, j) := if in moving

then valid2(IN, j � 1)
else valid2(IN, j),

valid1(OUT, j) := if out moving
then valid2(OUT, j + 1)
else valid2(OUT, j),

valid1(CHUTE, j) := if out moving
then valid2(CHUTE, j + 1)
else valid2(CHUTE, j),

in2(j) := in1(j),
out2(j) := if valid1(OUT, j) then out1(j) else in1(j),

chute2(j) := if valid1(CHUTE, j) then chute1(j) else in1(j),
valid2(IN, j) := valid1(IN, j) ^ valid1(OUT, j) ^

(:chute transfer1(j) _ valid1(CHUTE, j)),
valid2(OUT, j) := valid1(IN, j) _ valid1(OUT, j),

valid2(CHUTE, j) := (valid1(IN, j) ^ :chute transfer1(j))
_ valid1(CHUTE, j).

Figure 4.6: Combining queue transitions for slot j.

section 3.5. OTRH, OTRV and CTRH, CTRV are the analogues of TRH, TRV for OUT and CHUTE,
respectively. The CHUTE row, like the OUT row, is set from the IN row whenever the slot in the CHUTE
row is empty, so that the setting of the quali�ed clocks CTRH and CTRV does not depend on the match
logic. SOM (start of message) is true if the packet in the slot is an address packet. The combining queue
contains eight slices, corresponding to eight slots in each of the three rows. Each slot holds a single packet
of a message.

The transitions for slice j of a combining queue are shown in Figure 4.6. The chute transfer signal
ags
whether data packets of a message should move into the CHUTE row or not. Chute transfer is a some-
what complicated function of the match line for that slice and the state of the queue, including in moving,
out moving and the parity of the cycle. The chute transfer signal is asserted or deasserted at the start of a
valid message, depending on whether or not a match has occurred. The chute transfer signal must follow the
movement of the each remaining packet in the message as it proceeds along the IN row, so that the packet is
transfered to the CHUTE row if chute transfer is asserted, and to the OUT row otherwise. If both rows are
moving, the chute transfer signal stays in place, and the transfer is made at the point where the match was
detected. (see Figure 4.7). When the IN row is moving and the OUT row is not moving, the chute transfer
signal must move right every second cycle, since the packets are piling up behind the �rst packet (see Figure
4.8). When the IN row is not moving and the OUT row is moving the chute transfer signal must move
left every second cycle (see Figure 4.9). If neither row is moving, the chute transfer signal again stays in
place, until the OUT row starts moving. The CHH, CHR and CHL signals shown in Figure 4.5 control the
movement of the chute transfer signal between slices of the queue.

The matching and chute transfer logic can be modi�ed easily for any even number of packets in a message,
as long as the address information needed to perform the match is contained in the �rst packet. If more than
one packet must be examined before a combine is determined, \partial match" or \temporary valid" signals
must move through both the IN and CHUTE rows following the two possible paths a message might take,
until a combine has been con�rmed or denied. If only two packets are needed for the address information,
this con�rmation can be done using only connections to neighboring slices, but if more than two packets are
needed, the lead packet will not be in a slice adjacent to the slice where the combine is con�rmed, so that
non-local connections (anathema in a systolic design) would be required. Instead, it may be necessary, if the
combining information does not �t in one or two packets, to assemble packets on entry into the queue into
units large enough to hold the combining information, and disassemble these units before sending o�-chip.
Unfortunately, such assembly and disassembly increases minimum chip latency.

80

dd

d

d

d d

dda

d

d

da

d

CT
1 2 3 4 5 6 7

Cycle 2

CT
7654321

a d a

CT

d

a

dd

d d

a

a

d

d

d

d

d dd

OUT

IN

CHUTE

Cycle 1 Cycle 3

1 2 3 4 5 6 7
CT

Cycle 0
1 2 3 4 5 6 7

Figure 4.7: Behavior of chute transfer signal with IN and OUT both moving, when combining a 4-packet
message .

4.2.2 Combining ALU

Inputs to the ALU come from the second slice of the OUT and CHUTE rows of the combining queue. The
next stage output (FP OUT in Figure 4.3) gets address packets from the OUT row, passing through the
ALU unchanged; data packets on FP OUT are the output of the ALU, which simply selects the OUT row
for messages that did not combine. The wait bu�er output (WB) gets message identi�ers from both rows
for the address packet; data packets on WB come from the OUT row without change.

To understand why correct decombining of associative fetch-and-� operations can always be performed
when the wait bu�er receives the data packet from the OUT row, we show that in our design the e�ect of
combining message MOUT from the OUT row and message MCHUTE from the CHUTE row is as if MOUT

arrived at memory �rst, followed byMCHUTE . SinceMOUT arrived at the switch beforeMCHUTE , this is the
\natural" order. Let dataOUT be the data value ofMOUT , and dataCHUTE be the data value ofMCHUTE . As
described in [57], if � is the associative operation to be performed at memory, then �(dataOUT ; dataCHUTE)
is sent to memory as a result of combining, and the operation

�(X;�(dataOUT ; dataCHUTE)) = �(�(X; dataOUT); dataCHUTE) (4:1)

replaces the value X in the memory location. X is returned as a response to MOUT ; in our implementation,
since the address packet for the combined message came from MOUT , the response from memory passes
through the return path stage where it combined without modi�cation. After decombining, �(X; dataOUT)
must be returned as a response to MCHUTE . The presence of dataOUT in the wait bu�er allows this
decombining operation to be done.

The fetch-and-store operation can be considered a fetch-and-� operation where � is the projection of
the second operand (�2(x; y) = y), since the last store made is the value retained in memory. Thus
�2(dataOUT ; dataCHUTE) = dataCHUTE is the correct value to send to memory in order for the opera-
tions to be serialized as MOUT before MCHUTE . Although it would require only three functions in the ALU
on the forward path if dataOUT were sent to memory instead of dataCHUTE, in that case dataCHUTE would
need to be sent to the wait bu�er. Furthermore, the address packet for the combined message would have to
come from MCHUTE in order for the response from memory to pass through the return path stage without
modi�cation.

Except for the conditional fetch-and-store operations, all operations could be implemented with a three-

81

d

d

d da

a

d

a d d

7654321
CT

d

a

a

d

dd

d

a d d

1 2 3 4 5 6 7
CT

Cycle 2

Cycle 3

dda

da

a dd

d d

CT
1 2 3 4 5 6 7

Cycle 6

a d

a

a

d

d

dd

d d

CHUTE

1 2 3 4 5 6 7
CT

a d a d

a

dd

d d

1 2 3 4 5 6 7
CT

Cycle 0

Cycle 1

d

d

d da

a d

a d d

7654321
CT

dda

da

a dd

d

d

CT
1 2 3 4 5 6 7

Cycle 5

Cycle 4

OUT

IN

Figure 4.8: Behavior of chute transfer signal with IN moving and OUT not moving, when combining a
4-packet message.

82

d

d a

d

a

a dd

d

d

CT
1 2 3 4 5 6 7

Cycle 3

Cycle 2

d

d a d

7654321
CT

Cycle 6

a d

a

a

d

d

dd

d d

d a

1 2 3 4 5 6 7
CT

a d a

d

a

dd

dd d d

a

Cycle 1

d

1 2 3 4 5 6 7
CT

Cycle 0

d a dd

d

d

CT
1 2 3 4 5 6 7

dd

d d

d

add

7654321
CT

Cycle 5

Cycle 4

d

a

a

d

dd

d

ad d

d

1 2 3 4 5 6 7
CT

OUT

IN

CHUTE

Figure 4.9: Behavior of chute transfer signal with OUT moving and IN not moving, when combining a
4-packet message.

83

func0 func1 Operation
0 0 ADD
0 1 SELECT Out
1 0 SELECT Chute
1 1 OR

Table 4.2: Control signals for ALU operations.

func0

b.
..

b.
..

b

..
. b

..
FO .

out

func1

chute

func0

out

func1

chute

FO

P

func0 func1 out chute

G

Figure 4.10: Logic to produce propagate and generate signals.

function ALU with the address packet for the combinedmessage always coming fromMCHUTE and dataCHUTE

always going to the wait bu�er, at the cost of making the serialization order of the messages the opposite of
the order in which they arrived at the switch. We require that the operand of a conditional fetch-and-store
not satisfy the condition. Thus, only the �rst conditional fetch-and-store succeeds and receives the return
value from memory; all others combined with this store must receive the value of the successful store. This
means that, for correct decombining, the same value must be sent to memory and saved in the wait bu�er.
Since for regular fetch-and-store di�erent values must be sent to memory and saved in the wait bu�er, no
scheme to implement all these operations can have both a three-function ALU and the same data path to
the wait bu�er, independent of op code. We have chosen to implement the \natural" serial order with a
four-function ALU.

Our four-function ALU has binary carry look-ahead implemented with Domino CMOS precharged logic.
Pre-charged gates on phase 1 compute propagate and generate signals using the logic shown in Figure 4.10.
The signals func0 and func1 represent the op codes as shown in Table 4.2.

During phase 1, the propagate signals, which are inputs to phase 2 dynamic gates at all levels of the
carry tree, are set up. At each level, the generate signal to the next level GG := G1 _ (G0 ^ P1), and the
carry signals C0 := CC and C1 := G0 _ (CC ^ P0) are computed by Domino CMOS gates on phase 2. Multi-
output gates are used to shorten the carry chain; see Figure 4.11. The design is similar to that in [64]. All
of the logic is done double rail; the �nal stage is a static exclusive-or of the carry and propagate signals.

4.3 Return path component design

The return path component in the MOSIS packaging contains a wait bu�er (associative memory array that
contains the data from a pair of combined messages), an ALU, and two non-combining queues (Figure 4.12).
Each of these components was fabricated and tested individually before completing the single-chip return
path component design.

Decombining messages requires an associative matching. For good performance, this matching must be
done in parallel with insertion of arriving messages into the output queue of the RPC. Recall from the

84

G1

b.
..

b.
..

b
...................
....................
...........

b

..
. b

..
.FOTRH

b
...................
....................
...........

PP0

FOTRH

GG1

GG0

G0

P1

PP1

GGG

GG0

GGG

Figure 4.11: Multiple output Domino CMOS gate in carry chain.

�

?

� � .

�

�

�

�

�

�

u

D

RP OUT

WB

Key

RP IN

Bu�er

WaitALU

Queue
Main

Queue
Decombined M

Figure 4.12: Block diagram of a return path component.

85

Selection tree

............
.........

............
.........

............
.........

????????

66666666

slot0

EFE

8

32

32

Kbus

Wbus

Rbus

slot7slot6slot5slot4slot3slot2slot1

Figure 4.13: Block diagram of a wait bu�er.

discussion in section 4.2.2 that data from the OUT row always goes to the wait bu�er and the message ID
from the OUT row always goes on toward memory. With correct decombining, this has the same e�ect as if
the message from the OUT row arrived at the memory �rst, with the message from the CHUTE row following
immediately. Thus the response from memory does not need to wait to �nd out whether it had combined
before entering the Main Queue in Figure 4.12, since the value from memory is the correct response to the
message originally from the OUT row. A delay register at the RP IN input to the ALU holds a copy of this
message until a match can be detected in the wait bu�er, in case the message happens to be a response to
a combined message.

A wait bu�er is associated with each input/output pair, but the wait bu�er input buses associated with a
forward path output port can be tied together since they are driven only when the associated output port is
driven, and thus will never both be driven at the same time. A message received on RP IN starting at cycle
t is sent to the main queue and also to the wait bu�er where its address packet is simultaneously compared
with all the messages currently in the wait bu�er. If a match is found, the wait bu�er asserts its match line
during cycle t + 1. The output of the ALU is sent to the decombined queue at cycle t + 2 so that the two
queues receive the �rst packets of their messages at cycles of the same parity.

The WB input to the RPC begins and ends messages on a cycle of the same parity as the FP OUT
output of the paired FPC. The input D to the Decombined Queue must have the same cycle parity as the
RP IN input, since the Main and Decombined Queues share an output. As a result, the detailed design
of the RPC constrains the parity of the memory delay. As described in the next section, the internal wait
bu�er structure determines whether the di�erence between the cycle a message enters the wait bu�er and
the cycle it exits is even or odd. In the current implementation, the total number of cycles between the time
the �rst packet of a message begins transmission on WB until it appears on D is even. Thus the number of
cycles between the time a message begins transmission on FP OUT and the time it begins transmission on
RP IN must be even as well. The FPCs and RPCs in the same switch must have the same cycle parity for
their queues, and the memory must have a delay which is an even number of switch stages.

4.3.1 Wait bu�er

The wait bu�er is an associative memory that stores information sent by the FPC when combining two fetch-
and-�s into a single request. The wait bu�er inspects all responses from MMs and searches for a response
to a request previously combined by the FPC. When it �nds a response to such a request, it generates a
second response and deletes the request from its memory. Packets are stored in return path format, with the
PE/MM address �eld from the WB port reversed to be a MM/PE address. The structure of a wait bu�er
(WB) is shown in Figure 4.13.

86

s

s

r

?

.
�

.

?

6

-
-
-

�
?

�

?

s

��SS

Areg

�
��

Q
QQ

Kbus

Rbus

Wbus

match
control

compare

Breg

Figure 4.14: Slot of a wait bu�er holding a two-packet message.

A typical message slot is shown in Figure 4.14 and consists of two registers (called Areg and Breg),
compare logic, and a controller. Each register contains the data bits and a data valid (DV) bit. The registers
are connected in a loop of length two, and shift at each cycle. This structure requires each message sent
to the wait bu�er to consist of a single address packet followed by a single data packet. Similar structures
support messages containing a �xed even number of packets. In the combinable operations we support, no
message requires more than one data packet to be stored in the wait bu�er. For the fetch-and-� operations,
the data packet from the OUT row in the forward path is stored. For the store double operation, no value
is returned, and the data packet may be set to any function of the ALU that is convenient. For the load
double operation, the three data packets from the RP IN input are selected by the ALU and placed in the
decombined message; no additional values need to be stored in the wait bu�er.

Each slot connects to the following buses:

� The write bus (Wbus) is used to send data to the wait bu�er from the FPC and connects to a wait
bu�er input port.

� The read bus (Rbus) is used by each slot for transmission of its message out of the wait bu�er.

� The key bus (Kbus) contains the search key received from RP IN.

The �rst-empty (FE) lines are computed in a simple tree structure from the empty lines for each slot.
The empty lines are ORed and the result is transmitted up the tree, with an OR performed at every node.
The FE value for the parent of each sub-tree is set to true if there are no empty slots in any subtree to its left
(ordering the slots from left to right). FE is true not only for the �rst empty leaf slot, but for all non-empty
slots of lower order. This causes no problem in operation: FE causes the slot to receive a new message when
it is asserted, but only if the slot is not already valid.

A schematic of a wait bu�er cell is shown in Figure 4.15. HP (\Hold Packet") is asserted if the cell
already has a message; otherwise AP (\Advance Packet") is asserted. The comparison logic to compute the
match signal is not shown, but is similar to the short Domino CMOS chain in the combining queue cell,
except that a larger dynamic XOR takes the inputs from two bits to produce the comparison signal for the
pull-down transistor. CanRead is computed from the match signal at the cycle of appropriate parity, so that
a read always begins with the �rst packet of the message; the precharged R signal is shared among all slots
of a wait bu�er.

The wait bu�er is designed under the assumption that only one message present in the wait bu�er at
a given stage can match a given response from memory. For regular messages, the combination of rotated
PE/MM address and ORI number used for the match forms a unique key at a given stage. Since our

87

HH��

c��HH
c

��
HH c

HH
��

c
��
HHcHH��

cHH��cHH��
cHH��

cHH��

c
HH
��c

HH
�� c��HH

c��HHs

c

R-

-NOR

b2 b1-

a2a1-

W

CanRead
�

HPAP

�

�

�

Figure 4.15: Schematic of a wait bu�er cell.

processor never issues two messages with the same ORI, no false matches can occur. However, if broadcast
messages are propagated through the return path by sending the message out on both ports, the PE/MM
address and ORI combination can inadvertently match a message in a wait bu�er. To avoid this, the valid
bit on the key input to the wait bu�er is lowered when a broadcast message appears on RP IN. Thus the
wait bu�er never sees a broadcast message.

Since the input to the NOR that pulls down R (see Figure 4.15) comes from the \a2" section of the
recirculating loop, the head packet of a message will always be read out of the wait bu�er an odd number
of cycles after it was read in. An additional cycle is required to pass through the ALU and enter the queue,
giving the total of an even number of cycles from WB to D in Figure 4.12, as mentioned previously. The
input to the NOR could equally well have come from the \b2", which would have changed the parity of the
cycle total and thus changed the parity of the memory delay in switch cycles.

4.3.2 Decombining ALU

A four-function ALU identical in design to the combining ALU described in section 4.2.2 is used to generate
the second response to a fetch-and-� operation by operating on the data packet received from a wait bu�er
slot and the data packet received from RP IN. It passes address packets unchanged, except for replacing the
op code with the one from RP IN. The packet from RP IN is delayed one cycle at the input to the ALU.
The output of the ALU goes to the decombined queue on the cycle after that.

Unlike the forward path, the control signals for the ALU are a function not just of the op codes but of
the SWD (store was done) bit as well. For the conditional fetch-and-store operations, if the store was done
at memory, then any messages waiting to decombine should return the value stored from the wait bu�er,
which was stored in the memory by the combined message. If the store was not done, then the value in the
message that arrived on RP IN (representing the value in memory before this conditional fetch-and-store
was attempted) should be returned by the decombined message as well. Furthermore, when a decombine
occurs, the SWD bit in the message sent to the decombined queue must always be deasserted, since the
decombined message always represents an unsuccessful attempt to store its own value.

4.3.3 Non-combining semi-systolic queues

The decombined queue and the main queue are multiplexed with the queues from the paired RPC for control
of the output port. Each queue is a simple non-combining semi-systolic queue, like those described in Chapter
3. The main queue, like the forward path queue, has eight slices. The decombined queue is only six slices.
Since our longest message is 4 packets, a queue with fewer than six slices can be full with only one message
in it (see section 3.4.1), so six slices is the minimum practical size.

88

The logic to determine the RP IN.DA signal is quite complex. It can be asserted only if there is at least
one empty slot in each of the two queues. In addition, the decombined queue must leave room for a message
coming out of the wait bu�er but not yet added to the queue. Simulation of the component in a network
environment was required to get it right.

4.4 System simulation and veri�cation

A sophisticated simulation methodology ensured that the custom VLSI components functioned correctly
in the system. A three-level simulator, called susy,2 was written in C and used to specify and verify the
behavior of components. At the highest level, a behavioral simulation speci�ed how each switch component
should perform, using high-level modeling of processor and memory module message inputs to the network
and modeling the switches with standard software queues of message. The next level, similar to that of a
register-transfer language (RTL), included data structures in the simulation to represent each cell in the
VLSI design, so that the behavior of the systolic queues, as implemented, was fully and faithfully simulated.
As the simulator executes, outputs from the behavioral simulation are checked cycle by cycle against the
output from the RTL simulation. At the lowest level, routines from the rsim switch-level simulation library
were called to simulate the circuit extracted from the VLSI layout, and all output signals of the component
were checked against the signals of the register-transfer level simulation. Networks of sizes from 4 to 256
were simulated at the behavioral and register-transfer level. Switch-level simulations of individual FPC and
RPC layouts were checked signal by signal against the RTL simulation. Test vectors were generated during
these simulations and used in an IMS tester to test the fabricated parts. The susy simulator, called susy,
has been jointly validated against molasses (described in section 2.3). Molasses is more
exible and much
faster than susy, but does not faithfully simulate the internal systolic structure and
ow control logic of the
VLSI components. One di�erence is in the blocking behavior of the queues. In particular, susy models the
blocking behavior of the systolic queue, lowering DA when the mth slot (where m is the number of packets
in the longest possible message) from the right in the OUT row of the queue is occupied (see section 3.4.1.),
while molasses has �xed size queues which block when fewer than m places are left in the queue. Another
di�erence is in the timing of insertion of a message into the wait bu�ers. Susy has a data structure for the
chute and causes a message to be sent to the wait bu�er on the same cycle that the combined message is sent
to the next stage, while molasses checks for combines when a message enters a switch and places messages
in the wait bu�er immediately. the wait bu�er

All the simulations in this section, for both molasses and susy, are done under the architectural assump-
tions similar to those of the Ultra III design[17], but slightly simpli�ed. All messages are assumed to be two
packets and the network is assumed to be able to begin transmission of a message every even cycle, as long
as DA is being received from the network input port (i.e., the queues in the switches in the �rst stage are
not full). The PE is assumed to allow 16 outstanding requests.

Bandwidth values are given in packets per cycle. The PE may not issue a message more often than every
other cycle. For most simulation experiments, the probability of issuing a message on each even cycle that
the queue was unblocked was varied between 10 and 100 percent. Since the messages are two packets long,
the maximum bandwidth in packets that can be issued is the same as this o�ered load. The bandwidth in
messages is half that shown in the �gures.

The cycle time of the memory also places a limitation on the bandwidth. A memory cycle time of 2
places no further constraint on the bandwidth than that imposed by a two-packet message, but a memory
cycle time of 4 limits the bandwidth in packets to 50 percent. For simulation runs with a memory cycle time
of 4, only o�ered loads up to 50 percent were issued.

The hot spot percent represents the percentage of total tra�c that is directed to the hot spot. For
example, a 20 percent o�ered load with a 5 percent hot spot means that the overall rate of issuing messages
to the hot spot is 0.005 messages per cycle (since a message may be issued only on even cycles) and the rate
of background uniform tra�c is 0.095 messages per cycle.

Round trip latency represents only waiting and transmission time in the network and at the memory. If
processors are blocked, no new messages are generated, and no waiting time is added to account for the time
the processor remains blocked. The e�ect of blocking is re
ected in the reduction of bandwidth per PE.

2\SUper SYstolic" simulator? Or maybe just my namesake?

89

4.4.1 Comparison of results from the two simulators

Comparing the results of the two simulators, with molasses simulating Type B switches, allows us to deter-
mine the e�ective size of our semi-systolic queues. Our queues, which have storage for a maximum of 16
packets, may have as few as 8 and as many as 14 packets when they lower the DA (data accept) signal. The
closest match with the simple array-based queues simulated by molasses occurs for queues with 10 packets of
storage. Recall (see sections 4.2.1 and 4.3.3) that the systolic queues we have implemented have eight slices,
except for the decombined queue in the return path, which has only six slices. Eight slices corresponds to 16
packets, so we are \wasting" about 6 packets of storage in the interest of the simple control logic provided
by systolic queues. With 12 packets, the results from molasses, in the limiting case with 100% o�ered load,
showed higher bandwidth and higher latency than the results from susy; with 8 packets, lower bandwidth
and lower latency were shown.

Figures 4.16 to 4.24 compare round trip latency and e�ective bandwidth results from the two simulators
with a memory cycle time of 2 and a queue size of 10 packets for molasses. Each line represents the results
of a susy simulation with an o�ered load from 10 percent to 100 percent, at 10 percent intervals. A plus sign
(`+') is used to indicate the results of molasses simulations for the same load. The latency and bandwidth
results are quite close, both with and without hot spots.

In our current Ultracomputer prototype, the memory cycle time is four network cycles, not two. Advances
in technology are likely to make processors and switches yet faster compared to memory cycle time. The
hot spot problem is naturally accentuated by slower memories, but combining is still e�ective in relieving
the congestion and maintaining bandwidth.

Figures 4.25 through 4.33 show round trip latency and bandwidth for o�ered loads from 10 percent to
50 percent. The e�ectiveness of combining in reducing latency is even more dramatic than with the faster
memory, since the memory is much more easily saturated. For example, at the low hot spot rate of 0.5
percent, 50 percent o�ered load, the average round trip latency with memory cycle time of 2 increases only
to 32 cycles, compared to 27 cycles with uniform tra�c, even without combining. With a memory cycle time
of 4, the average round trip latency at this load increases from 59 cycles with uniform tra�c to 72 cycles
without combining, but decreases to the uniform value when combining is done. The bandwidth increases
from 26 percent without combining to 38 percent with combining.

90

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

Uniform

 4 8 16 32 64 128 256
5

10

15

20

25

30

35

40

45

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

Uniform

Figure 4.16: Type B switches, molasses and susy simulations, uniform tra�c, memory cycle 2

91

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

0.5 % hot spot, no combining

 4 8 16 32 64 128 256
0

10

20

30

40

50

60

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

0.5 % hot spot, no combining

Figure 4.17: Type B switches, molasses and susy simulations, 0.5 percent hot spot, no combining, memory
cycle 2.

92

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

0.5 % hot spot, combining

 4 8 16 32 64 128 256
5

10

15

20

25

30

35

40

45

50

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

0.5 % hot spot, combining

Figure 4.18: Type B switches, molasses and susy simulations, 0.5 percent hot spot, combining, memory cycle
2.

93

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

1% hot spot, no combining

 4 8 16 32 64 128 256
0

10

20

30

40

50

60

70

80

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

1% hot spot, no combining

Figure 4.19: Type B switches, molasses and susy simulations, 1 percent hot spot, no combining, memory
cycle 2.

94

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

1% hot spot, combining

 4 8 16 32 64 128 256
5

10

15

20

25

30

35

40

45

50

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

1% hot spot, combining

Figure 4.20: Type B switches, molasses and susy simulations, 1 percent hot spot, combining, memory cycle
2.

95

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

5% hot spot, no combining

 4 8 16 32 64 128 256
0

50

100

150

200

250

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

5% hot spot, no combining

Figure 4.21: Type B switches, molasses and susy simulations, 5 percent hot spot, no combining, memory
cycle 2.

96

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

5% hot spot, combining

 4 8 16 32 64 128 256
0

10

20

30

40

50

60

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

5% hot spot, combining

Figure 4.22: Type B switches, molasses and susy simulations, 5 percent hot spot, combining, memory cycle
2.

97

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

10% hot spot, no combining

 4 8 16 32 64 128 256
0

100

200

300

400

500

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

10% hot spot, no combining

Figure 4.23: Type B switches, molasses and susy simulations, 10 percent hot spot, no combining, memory
cycle 2.

98

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

10% hot spot, combining

 4 8 16 32 64 128 256
0

10

20

30

40

50

60

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

10% hot spot, combining

Figure 4.24: Type B switches, molasses and susy simulations, 10 percent hot spot, combining, memory cycle
2.

99

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

Uniform

 4 8 16 32 64 128 256
0

10

20

30

40

50

60

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

Uniform

Figure 4.25: Type B switches, molasses and susy simulations, uniform tra�c, memory cycle 4

100

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

0.5 % hot spot, no combining

 4 8 16 32 64 128 256
0

10

20

30

40

50

60

70

80

90

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

0.5 % hot spot, no combining

Figure 4.26: Type B switches, molasses and susy simulations, 0.5 percent hot spot, no combining, memory
cycle 4.

101

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

0.5 % hot spot, combining

 4 8 16 32 64 128 256
0

10

20

30

40

50

60

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

0.5 % hot spot, combining

Figure 4.27: Type B switches, molasses and susy simulations, 0.5 percent hot spot, combining, memory cycle
4.

102

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

1% hot spot, no combining

 4 8 16 32 64 128 256
0

20

40

60

80

100

120

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

1% hot spot, no combining

Figure 4.28: Type B switches, molasses and susy simulations, 1 percent hot spot, no combining, memory
cycle 4.

103

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

1% hot spot, combining

 4 8 16 32 64 128 256
0

10

20

30

40

50

60

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

1% hot spot, combining

Figure 4.29: Type B switches, molasses and susy simulations, 1 percent hot spot, combining, memory cycle
4.

104

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

5% hot spot, no combining

 4 8 16 32 64 128 256
0

50

100

150

200

250

300

350

400

450

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

5% hot spot, no combining

Figure 4.30: Type B switches, molasses and susy simulations, 5 percent hot spot, no combining, memory
cycle 4.

105

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

5% hot spot, combining

 4 8 16 32 64 128 256
0

10

20

30

40

50

60

70

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

5% hot spot, combining

Figure 4.31: Type B switches, molasses and susy simulations, 5 percent hot spot, combining, memory cycle
4.

106

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

10% hot spot, no combining

 4 8 16 32 64 128 256
0

200

400

600

800

1000

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

10% hot spot, no combining

Figure 4.32: Type B switches, molasses and susy simulations, 10 percent hot spot, no combining, memory
cycle 4.

107

 4 8 16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

B
an

dw
id

th

PEs

10% hot spot, combining

 4 8 16 32 64 128 256
0

10

20

30

40

50

60

70

80

R
ou

nd
 T

ri
p

L
at

en
cy

PEs

10% hot spot, combining

Figure 4.33: Type B switches, molasses and susy simulations, 10 percent hot spot, combining, memory cycle
4.

108

4.4.2 Type A and Type B combining networks

For uniform tra�c, as seen in section 2.3, the di�erence between the performance of networks with Type A
and Type B switches was very minor. For combining networks, however, a signi�cant di�erence can be seen
for larger systems at higher loads and hot spot rates. In Type B switches with combining systolic queues,
only messages that entered the switch from the same input port will be in the same queue and thus eligible
to combine. Two messages destined for a hot spot and entering a Type B switch from di�erent input ports
do not have the opportunity to combine until the following stage. Both messages take up space in the queue,
increasing latency, and the output rate leaving the stage where they �rst meet is not reduced.

Figures 4.34 and 4.35 show the results of simulations at 100 percent o�ered load for Type A and Type B
networks with from 2 to 1024 PEs. These simulations were done using molasses with the same parameters
for the Type B simulations as those used in Figures 4.16 through 4.24, and with the equivalent parameters
for the Type A simulations, using 20 packets as the size of each queue. With no combining, performance with
hot spot tra�c shows close to identical bandwidth at the same o�ered load for Type A and Type B switches,
and a latency slightly but consistently lower for Type B switches. With combining, Type A switches show
higher bandwidth and lower latency, for consistently better performance at larger system sizes and higher
hot spot rates.

Figure 4.36 shows that, with a 1 percent hot spot rate, di�erences between the performance of Type A
and Type B networks become noticable only at an overall bandwidth of greater than 50 percent. However,
for a high hot spot rate of 10 percent, the di�erence in latency is signi�cant even at low loads.

4.5 The cost of combining

The next three sections compare 2� 2 two-way combining switches to 2� 2 non-combining switches where
similar choices have been made about packaging, packetizing and arrangement of bu�ers. The fourth section
discusses the signi�cance of the greater
exibility in packaging options available for non-combining switches.

4.5.1 Pins

At the current level of integration of the design, with a target system of 16 PEs and 16 MMs, the wait
bu�er port, which is needed only for combining, accounts for 34 signal pins out of 120 on the FPC and 34
out of 108 on the RPC. Since the wait bu�er connections are always local to a switch board, they may be
considered to have less cost than stage to stage connections, which may sometimes be from board to board.
In our current implementation, boards contain a 4 � 4 network. Switch boards as well as switch chips are
pin-limited rather than logic-limited or local wiring limited, so at the board level there is no additional wire
cost for combining.

The op code and memory address �elds are independent of system size, if the amount of memory per
memory module is kept constant. The PE/MM address �elds have logN bits. Since the number of possible
outstanding messages must be kept proportional to logN in order to maintain linear bandwidth, the length
of the ORI �eld must be O(log logN). Currently we use a 4-bit ORI, allowing
exibility in the processor
logic that assigns ORIs.

At N = 210, the wait bu�er port would still require only 20 bits for the two address �elds, allowing 6
bits each for ORIs within the 32 bits required for data transmission. Since the wait bu�er address packet
must contain two PE/MM address �elds and two ORIs, for the two combined messages, compared to one
address �eld and one ORI in the stage to stage address packets, the required width of the wait bu�er port
grows twice as fast as that of the stage to stage ports, for system sizes that force the width of the address
packet to be larger than the data width.

4.5.2 Area and transistor count

Table 4.3 shows the cost of combining in on-chip logic as estimated from our current implementation. The
percentage of combining cost for the sub-blocks of each component depend on the sub-block's function.
In the FPC, the combining queue uses about 30 percent of its transistors for matching and the CHUTE
row, which are the additional transistors needed for combining. In the RPC, 50 percent of the control and

109

 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

1% hot spot, 100% load

Combining

No combining

 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

L
at

en
cy

1% hot spot, 100% load

Combining

No combining

Figure 4.34: Type A and Type B networks, 1 percent hot spot, bandwidth and latency.

110

 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

10% hot spot, 100% load

Combining

No combining

 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

L
at

en
cy

10% hot spot, 100% load

Combining

No combining

Figure 4.35: Type A and Type B networks, 10 percent hot spot, bandwidth and latency.

111

0.1 0.2 0.3 0.4 0.5 0.6 0.7
20

25

30

35

40

45

50

55

R
ou

nd
 T

ri
p

L
at

en
cy

Bandwidth

1% hot spot, 1024 PEs

0.1 0.2 0.3 0.4 0.5 0.6
25

30

35

40

45

50

55

60

65

R
ou

nd
 T

ri
p

L
at

en
cy

Bandwidth

10% hot spot, 1024 PEs

Figure 4.36: Type A and Type B networks, 10 percent hot spot, combining, 1024 PEs, latency as a function
of bandwidth.

112

Component Area Transistors
106�2 Combining cost 103 Combining cost

(percent) (percent)
Combining queue 9.0 30 22.4 30
ALU 3.7 100 5.8 100
Control and routing 5.0 0 2.5 0
FPC 17.7 36 29.1 43
ALU 3.1 100 3.9 100
Wait bu�er 5.7 100 14.6 100
Main queue 4.9 0 15.7 0
Decombined queue 3.8 100 12.6 100
Control and routing 15.2 50 3.5 50
RPC 32.7 62 50.3 65
Total 50.4 53 79.4 57

Table 4.3: Area and transistor cost of combining capability in a switch

routing cost is charged to combining, to account for the cost of the internal buses and of multiplexing the
two non-combining queues. The percentage of combining cost per component and for the total switch is
then calculated.

As the number of bits in the PE/MM address and ORI �elds increases, storage space must increase
correspondingly. As in the case of pin cost, for systems where the length of the address packet dominates the
length of the data packet, the wait bu�er storage measured in bits must increase more rapidly than the regular
queue storage. Furthermore, since the number of cycles a message has to wait to be decombined increases
with network transit time, asymptotically the number of messages in the wait bu�er will increase as logN ,
like the number of outstanding messages at the PE. In the current design the wait bu�er is over-engineered,
capable of holding 8 messages in a 16 PE system.

4.5.3 Cycle time

Although we have implemented a non-combining switch and used it in our prototype, direct comparisons
with our combining switch are di�cult, because improvements in the fabrication process and in our design
methodology have made our combining switch more than twice as fast as our non-combining switch! However,
we have used a timing simulator to get process-independent estimates of the critical path delay.

The critical paths in a VLSI design are the slowest connections from an input on a clock phase to an
output on that phase. We have used crystal [109], a timing analysis program developed at UC Berkeley and
distributed as part of the Magic VLSI design tools, to �nd and optimize critical paths in our design. Table
4.4 shows delays for the worst paths in our design and for some other signals of interest as determined by
crystal runs on parameters extracted for a 2 micron CMOS layout of the MOSIS design.

In the FPC, the most critical path during phase 1 is the path from the data valid signal in the �rst slice
of the queue to the QNE (queue not empty signal) sent to the queue paired at an output. Crystal estimates
this delay as 22ns at the output pad; the equivalent signal before bu�ering to the pad, qne, had a delay of 13
ns. The QNE signal is an input to the arbitration logic that produces the output select signals. The worst
path on phase 2 to the OUT.EOM (output end of message) includes the output select signal. So the sum of
these two delays on connected paths give a minimum clock cycle of 46 ns, for an expected maximum clock
frequency of around 20 MHz.

The delay on this path does not show any dependency on the combining logic, but is a�ected by the
partitioning of the node into separate components. If the two FPCs paired at an output were on one chip,
the QNE input to the output select logic would have the 13 ns delay of qne. Furthermore, the phase 2 delay
to the select signals of the on-chip multiplexing between the two queues, illustrated by Addrsel in the table,
would be 14 ns, so that the total delay for both phases, including time driving the output pads, would be
around 37 ns, or around 27 MHz. Note that the pin count required to eliminate this o�-chip delay is smaller

113

Component Phase 1 Phase 2
Signal Delay Signal Delay

FPC PadQne 22ns OUT.EOM 24ns
qne 13ns Addrsel 14ns
v.fo 13ns data.out 14ns
PPPP 10ns WB.30 25ns

IN.DA 17ns
RPC in.qs�rst 19ns RNQ EOM 24ns

PadMqne 19ns padsel 16ns
mqne 10ns IN DA 14ns
full03- 13ns FP DA 18ns

v wb 10ns

Table 4.4: Critical path signal delays.

for non-combining switches than for combining switches.
Looking at the delays in the FPC that depend on the delay of the combining ALU, data.out (the output

of the ALU that is input to the on-chip multiplexing) has a worst case phase 2 delay of 14 ns, for outputs of
the high order bits of the carry lookahead ALU. This results in the worst case phase 2 delay to the output at
WB.30 of 25 ns.(WB.30, an output on the port to the wait bu�er, is connected to an ALU output because
it receives the ORI from the message in the OUT row in its address packet. Thus, when the output of the
ALU is actually selected for this signal, the long delay paths in the CLA are not active. However, other
output signals from the ALU to the NQ (next queue) port have a delay only one or two nanoseconds shorter.)
During phase 1, the worst delays in the ALU chain are to PPPP, the propagate bit at the top of the CLA
tree, and v.fo, the bu�ered data valid signal used to qualify the clock used in the ALU and CLA logic. So
the total delay for both phases is 38 ns. Since this delay is una�ected by chip partitioning, the delay through
the ALU becomes the critical path with the NCR packaging.

The RPC behavior is similar, with PadMQNE to RNQ EOM forming the critical path over both phases,
for a total predicted clock period of 43 ns. The ALU outputs such as in.qs�rst are active during phase 1 on
the return path and show a delay of 19ns. Delays attributable to wait bu�er logic are relatively small. The
worst path is through the wait bu�er full logic, signal full03- on phase 1 with a delay of 13 ns, to the data
accept signal to the forward path, FP DA, with a phase 2 delay of 18 ns, for a total of 31 ns. This delay
would be shortened by packaging the FPC and RPC components together on one chip.

4.5.4 Packaging options

With higher pin count packages, a switch can be implemented with fewer chips; the next level of integration
is achieved by packaging components which share output ports together. Pin counts, area estimates and
transistor counts for these packaging alternatives are shown in Table 4.5. The 8 chip per switch alternative
corresponds to our MOSIS implementation, with higher pin count due to longer PE/MM addresses; the 4
chip per switch alternative is the NCR implementation. Note that area and total pin count for packaging
the entire switch on one chip is well within current technological limits, though such high pin-count packages
are not cheap.

The area estimates include routing for internal buses, but do not include pads. The transistor count is
slightly overestimated for the higher levels of integration because some of the control logic is duplicated in
each part. The switch design is pin-limited rather than area-limited. Even with all the logic on a single chip,
the area for internal logic would only be approximately 6 mm � 6 mm with 0.8 micron feature size.

Including combining in a design does have the additional cost of decreasing the package
exibility available
to the designer. Bit-slicing becomes an undesirable option, because of the larger amount of \horizontal" chip-
to-chip communication required by matching and the ALU operations. Decreasing packet size by pipelining
can also cause di�culties, if the address informationmust be divided into multiple packets (see section 4.2.1).

114

Chips per Transistors Area Signal Pins per Chip
Switch 103 106�2 Input Output Tri-state Clocks Total

8
FPC 29 18 43 2 74 2 121
RPC 50 32 70 4 35 2 111

4
FPC 58 36 82 76 0 2 160
RPC 100 64 134 38 0 2 174
2

FPC 116 72 84 150 0 2 236
RPC 200 128 136 74 0 2 210
1 316 200 152 150 0 2 304

Table 4.5: Signal pin count, area and transistors per chip for 2�2 combining switches to be used in a 256-PE
system with a 4 gigabyte address space

115

Chapter 5

Providing Greater Combining

Capability

Increasing the combining capability of a switch naturally increases its hardware cost. This chapter describes
the results of investigations into the relative performance of switches of di�erent combining capabilities,
and outlines the implementation of some of these alternatives. The �rst section of this chapter compares
the theoretical performance, with unbounded bu�er size, of two-way and unlimited combining, describing
joint work with Ora Percus that was published in [40]. The second section discusses the implementation
and performance of a Type A 2 � 2 switch with \two-and-a-half-way" combining, which promises better
performance at only slightly greater cost than the Type B switch with two-way combining described in
Chapter 4. The third section discusses implementation alternatives and performance for a 4 � 4 combining
switch.

5.1 Unlimited and two-way combining

Previous simulation studies have suggested that a two-way combining switch, like that implemented in
Chapter 4, may not be adequate to prevent saturation for inde�nitely large networks [86, 87]. These studies
modeled processors as an in�nite source of requests, and indicated that, for some patterns of tra�c and queue
size, switches at later stages in the network become saturated beyond the capability of two-way combining
to improve, and that combining of mulplicity greater than two was needed for two-way switches. On the
other hand, studies using practical assumptions, like those in the simulations of Chapter 4 have shown good
performance for two-way combining networks of 10 stages or more [68, 67, 100].

In this section we consider two kinds of combining, unlimited and two-way, for Type A switches with
unbounded bu�er size. They correspond to the most expensive and cheapest hardware implementations of
combining. In unlimited combining, any number of hotspot messages which are in a queue at the same time
may join together and exit the queue as only one message. In two-way combining, a hotspot message may
combine with only one other hotspot message at a given switch. Once these two messages have combined, the
resulting message may not combine with any other hotspot message in that switch, though it may combine
again at a later stage in the network. We refer to this type of combining as having a combining multiplicity
of two.

We also study the e�ect of allowing the message at the front of the queue to combine with a new message
before exiting. If such a combine is to occur, the cycle time of the switch must be long enough to allow the
two messages to be combined before the result leaves the switch. If a message at the front of the queue is
not available for combining, the combining logic can be executed in parallel with sending a message to the
next stage, as is done in the switch in Chapter 4. The cycle time of the switch is reduced, but fewer combine
operations take place and the hotspot tra�c leaving the switch is greater.

In all cases, we analyze combining switch behavior under a simple model that assumes there is only a
single active hot spot. While realistic tra�c patterns will certainly be much more complicated, this simple
pattern is useful for acquiring insight into the relevant factors in switch design. We want to know how much

116

................

................
HHHHHHj-��

��
��*
-

-

-

-

-

................

................

r

hot queue

(1-h)r/2

(1-h)r/2+hr

(1-h)r/2

(1-h)r/2+hr

r

Figure 5.1: Type A switch with hot spot tra�c.

each of the di�erent schemes of combining reduces the output rate of hotspot tra�c, and how long the queues
in the switches grow.

5.1.1 Model of a combining switch

We modifying the model of Type A switch behavior presented in section 2.4 by assuming that there are two
classes of message tra�c from processors to memory: the regular (red) tra�c which is distributed uniformly
over the memory modules, and the hotspot (blue) tra�c which is all destined for a single memory location
(the \hot spot"). 1 The hotspot tra�c will ordinarily be a small percentage h of the total message request
rate r from a processor. Messages directed to the hotspot have the property that they may be combined;
messages that have been combined continue through the network as a single message. Because of the way
routing is done in a delta network, one of these queues will receive all the messages directed to the hotspot.

Looking just at this \hot" queue (see Figure 5.1), the input rate of regular tra�c is (1 � h)r; the input
rate of hotspot tra�c to the \hot" queue is 2hr. The expected output rate of regular tra�c will be the same
as the input rate; the expected output rate of hotspot tra�c will be reduced from 2hr by the number of
combines that have occurred. Sn no longer depends just on Sn�1 and the number of arrivals, but also on
the color of the arrivals and on the color of the messages in the queue.

In [68, 67], the authors construct queue size transition probabilities based on a potential combining
probability e which they describe as the probability that the number of combinables in the queue is odd.
The accuracy of the equation they use to evaluate e is discussed in [40]. At best, a single value for the
potential combining probability of a switch can only be an average over the di�erent queue sizes; the actual
combining probability at a given cycle is a function of the length of the queue at that time. The transition
probabilities they construct are thus only approximations.

To track the queue length dependent probability of combining, we rely on the insight that there can
never be more than one message in a queue that has the potential to combine. With unlimited combining,
a combinable message in the queue will absorb all new combinable messages until it departs. With two-way
combining, a combinable message loses its ability to combine in a switch as soon as it combines with another
message, so, though there may be more than one message in the queue destined for the hot spot, at most
one message will still be able to combine. The state of the queue at the end of cycle n can thus be described
by the pair (Sn; Tn) where Sn is the number of non-combinable items in the queue and Tn is the location in
the queue of the combinable item (Tn is 0 if there is no item in the queue which can combine).

The probability pn(k; j), de�ned as the probability that S = k and T = j at cycle n, can be computed from
recurrences whose exact form depends on the details of the combining switch architecture being modeled.
Although these recurrences were too complicated for us to solve in a closed form, as was done for the non-
combining switch, steady state probabilities can be obtained for any values for which the queues are stable,
by computing until pn(k; j) has converged to pn�1(k; j) for all k; j. The details of the recurrence relations
for four possible combining switch architectures are given in the next four subsections.

Changes in S and T for all the combining switch designs described below depend not just on the number
of arriving messages but on their color. At each cycle, at each input port, a red message (from the regular
tra�c stream) arrives with probability (1 � h)r and enters one of the two output queues with probability
1=2; a blue message (from the hotspot tra�c stream) arrives with probability hr and enters the hot output

1We have been told we chose the wrong colors. Try to remember that a blue
ame is hotter than a red one.

117

queue (see Figure 5.1). Hence, the probability that a given pattern of messages arrive in any cycle at a given
queue is

f0;0 = (1�
(1 + h)r

2
)2

fr;0 = f0;r =
(1� h)r

2
(1�

(1 + h)r

2
)

fr;r = (1� h)2
r2

4

fb;0 = f0;b = hr(1�
(1 + h)r)

2
)

fb;r = fr;b =
h(1� h)r2

2
fb;b = h2r2

where the subscript r corresponds to the arrival of a red input, b corresponds to the arrival of a blue input,
and 0 corresponds to no message arriving on that port.

5.1.2 Unlimited combining, front of queue can combine

The recurrence relations for this combining switch are the simplest to formulate. There are essentially three
cases to consider:

1. Tn�1 = 0. (At the start of the cycle, there was no blue message in the queue.) Then any single arrivals
to the queue will simply be added at the end of the queue. Two red arrivals will likewise just be added
to the end of the queue. If two blue messages arrive together, they will combine and one blue message
will be added to the end of the queue. If a red message and a blue message arrive together, they will
both be added to the end of the queue, with each having an equal likelihood of being added �rst. At
the end of the cycle, the message at the front of the queue will be deleted. This will be a red message,
unless the queue was empty at the start of the cycle.

Thus Sn = Sn�1 + 1, if two red messages arrived, or Sn = Sn�1, if one red message arrived or none
arrived when the queue was empty, or Sn = Sn�1 � 1, if no red messages arrived and the queue was
non-empty. Tn�1 was 0, and will be set to Sn if a red and a blue message arrive, and the blue one is
added �rst, or to Sn + 1, if a red and a blue message arrive, and the red one is added �rst. If one or
two blue messages arrive with no red messages, Tn = Sn + 1, unless the queue was empty, in which
case both will exit, leaving Tn = Sn = 0.

2. Tn�1 = 1. (At the start of the cycle, there was a blue message in the queue, at the �rst place.) Then
any blue arrivals to the queue will disappear, being combined with the blue message already in the
queue, and will exit that cycle. Any red arrivals will be added to the queue as in case (1), but since
no red message will exit, Sn = Sn�1 + an, where an is the number of red arrivals. Tn must be zero.

3. Tn�1 > 1. (At the start of the cycle there was a blue message in the queue, not at the �rst place.)
Then any blue arrivals to the queue will disappear, being combined with the blue message already in
the queue. Any red arrivals will be added to the queue as in case (1), and since a red message exits,
Sn = Sn�1 + an � 1. The blue message in the queue will move closer to the output, so Tn = Tn�1� 1.

These transitions are summarized in Table 5.1. If two possible resulting states are listed for a given
arrival pattern, either can occur with equal probability.

Using the function

�x;y =

�
1 if x = y
0 if x 6= y

118

Sn; Tn
Arrivals

0;0 r;0 r; b r; r b;0 b; b

Sn�1; Tn�1 0; r b; r 0; b

0;0 0;0 0;0 0;1 1;0 0; 0 0; 0
1;0

k; 0 k � 1;0 k; 0 k; k k + 1; 0 k � 1; k k � 1; k
(k > 0) k; k + 1
k; 1 k; 0 k + 1; 0 k + 1;0 k + 2; 0 k;0 k; 0

(k � 0)
k; j k � 1; j � 1 k; j � 1 k; j � 1 k + 1; j � 1 k � 1; j � 1 k � 1; j � 1

(k > 0;
j > 0)

Table 5.1: Transitions for unlimited combining, including combining at the front of the queue.

it is possible to write the recurrences for the probability distribution explicitly as

pn(0; 0) = (f0;0 + 2fr;0 + 2fb;0 + fb;b)pn�1(0; 0)

+ (f0;0 + 2fb;0 + fb;b)pn�1(0; 1)

+f0;0pn�1(1; 0);

pn(0; 1) = fr;bpn�1(0; 0) + (fb;0 + fb;b)pn�1(1; 0) + (f0;0 + 2fb;0 + fb;b)pn�1(1; 2)

pn(1; 0) = (fr;r + fr;b)pn�1(0; 0) + (2fr;b + 2fr;0)pn�1(0; 1)

+ fr;0pn�1(1; 0) + f0;0pn�1(1; 1) + f0;0pn�1(2; 0);

pn(k; 0) = fr;rpn�1(k � 2; 1) + (2fr;0 + 2fr;b)pn�1(k � 1; 1)

+ (f0;0 + 2fb;0 + fb;b)pn�1(k; 1) + fr;rpn�1(k � 1; 0)

+ fr;0pn�1(k; 0) + f0;0pn�1(k + 1; 0); for k � 2, and

pn(k; j) = fr;bpn�1(k; 0)�j;k + fr;bpn�1(k; 0)�j;k+1

+ (2fb;0 + fb;b)pn�1(k + 1; 0)�j;k+1

+(f0;0 + 2fb;0 + fb;b)pn�1(k + 1; j + 1)

+ (2fr;0 + 2fr;b)pn�1(k; j + 1) + fr;rpn�1(k; j) for k � 1; j > 1.

The program to do the computation, however, can be written directly from the table with less chance of
error, by accumulating probabilities for each of the four cases corresponding to the rows of the table.

The probability that the queue has length k at time n is given by

pn(k) = pn(k; 0) +
nX

j=1

pn(k � 1; j): (5:1)

If the values of the probability distribution converge, the output rate in steady state

On = 1� (1� f0;0)pn(0; 0): (5:2)

Figure 5.2 graphs the computed values for average queue length and output rate as a function of the hot
spot rate for input rates of 0.1, 0.3, 0.5, 0.6, 0.7, 0.8 and 0.9. The match with simulation values is very close.

5.1.3 Unlimited combining, no combining at front of queue

This di�ers from unlimited combining which allows the message at the front of the queue to combine only in
the cases when the queue is empty or when there is a blue message at the front of the queue. We consider
the same three cases as before, describing only the behavior which is di�erent from section 5.1.2:

119

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hot spot percent

O
ut

pu
t r

at
e

fo
r

ho
t p

or
t

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Hot spot percent

M
ea

n
qu

eu
e

le
ng

th

Figure 5.2: Unlimited combining, including combining at the front of the queue.

120

Sn; Tn
Arrivals

0; 0 r; 0 r; b r; r b; 0 b; b

Sn�1 ; Tn�1 0; r b; r 0; b

0;0 0; 0 0;0 0;1 1;0 0;0 0;1
1;0

k; 0 k � 1; 0 k; 0 k; k k + 1;0 k � 1; k k � 1; k
(k > 0) k; k + 1
k; 1 k; 0 k + 1;0 k + 1; k + 1 k + 2;0 k; k + 1 k; k + 1

(k � 0) k + 1; k + 2
k; j k � 1; j � 1 k; j � 1 k; j � 1 k + 1; j � 1 k � 1; j � 1 k � 1; j � 1

(k > 0;
j > 0)

Table 5.2: Transitions for unlimited combining, no combining at the front of the queue.

1. Tn�1 = 0. If two blue messages arrive when the queue is empty, one of them will be at the front of the
queue, so they will not combine. All other cases are the same as in section 5.1.2.

Thus Sn will behave as previously for this case, but if Sn�1 was 0, Tn = 1 if two blue messages arrive,
instead of remaining 0.

2. Tn�1 = 1. A single blue arrival to the queue will not combine, but will be added to the end of the
queue; two blue arrivals will likewise combine with each other and be added at the end of the queue.
Sn = Sn�1+an, where an is the number of red arrivals, as before. If there are one or two blue arrivals,
and no red arrivals, Tn = Sn + 1. If both a red and a blue arrive, Tn = Sn + 1 or Sn, depending on
which is added �rst.

3. Tn�1 > 1. Since the message at the front of the queue is red and not combinable, behavior is the same
as in section 5.1.2.

These transitions are summarized in Table 5.2.
Average queue length and output rate are shown in Figure 5.3. For a single stage, the values show little

di�erences from unlimited combining including the front of the queue for low hot spot percentages. In order
for combining to occur with a low hot spot percentage, the overall rate must be high enough that the queue
lengths are over 1; thus the combining scheme of this section is not at a disadvantage. For higher hot spot
rates, the queue length naturally has a lower bound at 1 instead of at 0.

5.1.4 Two-way combining, combining at front of queue

For two-way combining, a blue message can be allowed to combine only once with another blue message,
so we will think of it as having turned red when it combines. There can still never be more than one blue
message in the queue, but now blue messages can \disappear" from the queue (Tn becomes 0) when a new
blue message arrives, not just when the blue message exits the queue. Sn will increase whenever a blue
message turns red, as well as when a red message is added.

Considering the three cases as before:

1. Tn�1 = 0. Single arrivals of either color and double red arrivals will be added to the end of the queue
as for unlimited combining. The only di�erence is in the behavior of a double blue arrival. Instead of
adding a blue item to the queue, a red one is added.

Changes in Sn and Tn are the same as for unlimited combining, except that a double blue arrival
behaves like a single red arrival.

2. Tn�1 = 1. Again, the only change from unlimited combining is for double blue arrivals. Instead of
both arrivals combining with the message at the front of the queue and exiting, one will combine and

121

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hot spot percent

O
ut

pu
t r

at
e

fo
r

ho
t p

or
t

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Hot spot percent

M
ea

n
qu

eu
e

le
ng

th

Figure 5.3: Unlimited combining, no combining at the front of the queue.

122

Sn; Tn
Arrivals

0; 0 r; 0 r; b r; r b; 0 b; b

Sn�1; Tn�1 0; r b; r 0; b

0; 0 0; 0 0;0 0;1 1;0 0;0 0;0
1;0

k; 0 k � 1;0 k; 0 k; k k + 1;0 k � 1; k k; 0
(k > 0) k; k + 1
k; 1 k;0 k + 1;0 k + 1;0 k + 2;0 k; 0 k; k + 1

(k � 0)
k; j k � 1; j � 1 k; j � 1 k + 1;0 k + 1; j � 1 k; 0 k; k + 1

(k > 0;
j > 1)

Table 5.3: Transitions for a 2-way combining queue.

exit, and the other will join the end of the queue. So Tn = Sn + 1 for double blue arrivals; other cases
are as before.

3. Tn�1 > 1. A single blue arrival to the queue will disappear, being combined with the blue message
already in the queue, and will cause that message to turn into a red message. A double blue arrival
will both cause the blue message in the queue to turn into a red message, and will add a blue item to
the end of the queue. Any red arrivals will be added to the queue as before.

Sn = Sn�1 in the case of a single red or blue arrival, or a double blue arrival. Sn = Sn�1 + 1 if there
is a double red arrival or a red and a blue arriving together. Tn = 0 if there is a single blue arrival, or
a red or blue arriving together, and Tn = Sn+ 1 if there is a double blue arrival. Other transitions are
as before.

These transitions are summarized in Table 5.3.
Average queue length and output rate are shown in Figure 5.4. For a single stage queue, two-way com-

bining including the front message shows slightly shorter queue sizes and lower output rates than unlimited
combining that does not combine the front message for loads under 0.9.

5.1.5 Two-way combining, no combining at front of queue

This case will be described in terms of its di�erences from section 5.1.4. Considering the three cases as
before:

1. Tn�1 = 0. The only di�erence from section 5.1.4 occurs when two blue messages arrive at an empty
queue. Instead of combining and exiting together, one will exit and the other will remain in the queue.
So in that case Sn = 0; Tn = 1.

2. Tn�1 = 1. The major di�erences from section 5.1.4 are in this case. Instead of combining and exiting,
a single blue arrival or a blue arriving with a red will be added at the end of the queue. A double blue
arrival will combine and add one red message at the end of the queue.

Thus in the case of a single blue arrival, Sn = Sn�1 and Tn = Sn + 1. If a red arrives with a blue,
Sn = Sn�1 + 1 and Tn equals Sn or Sn + 1. If two blue messages arrive, Sn = Sn�1 + 1 and Tn = 0.

3. Tn�1 > 1. Behavior is exactly as in section 5.1.4.

These transitions are summarized in Table 5.4.
Average queue length and output rate are shown in Figure 5.5. Unsurprisingly, this scheme has the worst

performance of the four, though the di�erences for hot spot percentages under 10% are not great.

123

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hot spot percent

O
ut

pu
t r

at
e

fo
r

ho
t p

or
t

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Hot spot percent

M
ea

n
qu

eu
e

le
ng

th

Figure 5.4: Two-way combining, including combining at the front of the queue.

124

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hot spot percent

O
ut

pu
t r

at
e

fo
r

ho
t p

or
t

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

Hot spot percent

M
ea

n
qu

eu
e

le
ng

th

Figure 5.5: Two-way combining, no combining at the front of the queue.

125

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stage Number

O
ut

pu
t r

at
e

fo
r

ho
t p

or
t

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Stage Number

M
ea

n
Q

ue
ue

 L
en

gt
h

Figure 5.6: Analytical estimates of combining performance, 10 percent load, 5 percent hot spot.

126

1 2 3 4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1

Stage Number

O
ut

pu
t r

at
e

fo
r

ho
t p

or
t

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

Stage Number

M
ea

n
Q

ue
ue

 L
en

gt
h

Figure 5.7: Analytical estimates of combining performance, 50 percent load, 5 percent hot spot.

127

Sn; Tn
Arrivals

0;0 r;0 r; b r; r b; 0 b; b

Sn�1 ; Tn�1 0; r b; r 0; b

0;0 0;0 0; 0 0;1 1; 0 0;0 0;1
1;0

k; 0 k � 1;0 k; 0 k; k k + 1; 0 k � 1; k k; 0
(k > 0) k; k + 1
k; 1 k; 0 k + 1;0 k + 1; k + 1 k + 2; 0 k; k + 1 k + 1; 0

(k � 0) k + 1; k + 2
k; j k � 1; j � 1 k; j � 1 k + 1;0 k + 1; j � 1 k; 0 k; k + 1

(k > 0;
j > 1)

Table 5.4: Transitions for two-way combining, no combining at the front of the queue.

5.1.6 Network performance of combining options

It is di�cult to extend analytical results from our analysis of a single switch to that of a multistage network
for several reasons:

� The output stream from the �rst stage switch no longer conforms to the model of independent trials
assumed as input to a switch. As shown in [116] for non-combining queues, the output becomes more
clustered than the input as the input rate approaches 1. This results in longer queue length at later
stages, as noticed from simulation in [78, 119] and shown analytically in [117].

� In a real system, queues are �nite. The analysis we use for a single stage combining switch can be
extended to �nite queues, but the details are messy and depend on assumptions about how the input
process behaves when it is blocked by a full queue (see the description of the two models of a �nite
non-combining queue in section 2.2).

� Blocking at later stages causes more combining at earlier stages which in turn will lower the input rate
to the later stages, as can be seen in the simulations of two-way combining in Chapter 4. The attempt
to model this feedback in [68, 67] uses blocking probabilities that assume the queue lengths at a stage
are independent of those at the preceding and following stages, a poor approximation for high message
rates.

Nevertheless, the output rate from our analysis of a single switch gives the input hotspot rate for the
next stage, since the regular tra�c rate can be assumed to remain the same, as long as no blocking occurs.
These rates can be used to compute f0;0, fr;0, fr;r , fr;b, fb;0, and fb;b, and the recurrences can be computed
using these input probabilities to get the output rates from the next stage.

This stage by stage computation provides an approximation of network behavior that is reasonable under
certain assumptions: that the input rate and the hot spot rate are not too high, and that the queue lengths
are large enough that blocking seldom occurs. These assumptions are reasonable in situations where the
input rate from the processor is limited by latency on the round-trip response rather than by blocking.

Figures 5.6 and 5.7 show average queue length and output rate for all four types of switches. Two-
way combining switches with no combining at the front of the queue are shown with a solid line, two-way
combining switches with combining at the front are shown with a dashed line. Unlimited combining switches
with no combining at the front of the queeu are shown with a dotted line, unlimited combining switches
with combining at the front are shown with a dash-dot line. With a low input load at the �rst stage of 10
percent with 5 percent hot spot tra�c, for 8 network stages, the analytical results show a good match with
simulations. At an input load of 50 percent with 5 percent hot spot, the queue length match with simulations
is a serious underestimate at later stages for two-way combining.

The general shape of the results is not surprising. They agree with the results in [87] that show switches
with a combining multiplicity of two unable to handle the tra�c at later network stages. They also indicate

128

IN

ROW
CHUTE

IN
ROW

6 66

� � � �

- - - - -

�

6 6

AddrData

Addr

compare compare compare comparecompare

r

6666

�

�

-

�

?

�

?? ?

� � �

ROW

�

WB

�

?

�

? ���

XXX
�

??

�

����

? ??

�

-

-

Chute

FP IN1

FP IN0

ALUData
ROW
OUTOut

Out

DataAddrDataAddr

Message
ID

FP OUT

compare comparecomparecomparecompare

Addr

Data Addr

Figure 5.8: A two-input combining queue with one CHUTE

that the loss of combining at the front of the queue is not important for later stage results.

5.2 Implementing queues with greater combining capability

In section 4.4.2, the performance disadvantages of Type B switches compared to Type A switches were
illustrated. One disadvantage of the combining switch described in Chapter 4 is that requests in queues
paired at an output port cannot be combined; in this section we show how to collapse these two queues
into a single systolic combining queue with two inputs and one output. A further limitation of the design
in Chapter 4 is the limitation of combining to pairs of requests. We describe how to implement three-way
combining, or combining with multiplicity three, in which a given message may combine with two others at a
stage, discuss implementation costs, and consider the performance of a limited form of three-way combining,
which we call \two-and-a-half-way" combining.

5.2.1 Implementation of a Type A switch

Starting with the combining queue shown in Figure 4.3, we add a second IN row and a second row of
comparators to the bottom of the OUT row, to form the two-input queue illustrated in Figure 5.8. This
implementation was �rst suggested by Snir and Solworth in [129].

There is actually only one CHUTE; the dashed row on the bottom is the same as the top row. Since the
vertical lines from IN1 to CHUTE are actually wires passing through several rows, the VLSI layout would
be poor. The arbitration that is performed between the outputs of two queues in a Type A switch must be
performed twice for every column, once for the OUT row and once for the CHUTE row.

Figure 5.9 shows the schematic of the basic cell for this design. The two inputs are labeled INX and
INY to avoid confusion with the numerical designations for clock phase. The quali�ed clocks OTRVX and
OTRVY are no longer derived just from the valid1(OUT; j) signal. The valid bits from the IN rows are used

129

HH
���

FO

CHUTE

c��HH
c��HH

c��HH

c��HH
c

��
HH

c
HH
�� c

HH
��

c

��AA

c
HH
��c

HH
��c

HH
��

cHH��

c��HH
c��HH

cHH��
cHH��

c
��
HH

c
��
HH c��HH

cHH��
cHH��

c
��
HH c

��
HHcHH��

cHH��
c
HH
��

c
��
HH c

��
HH

c

��AA

c
AA��

c
AA��

cHH��

cHH��

s

s s

s

ss

s

s s

s

s s

-

�

c

iny1

�

?

6

�

-

..

-

-

..

-

-
-
-
-

-
6

- -

-
-
-

-
6

- -

out2

FOHO

OUT

OTRH

out1

HO

�

chute2

CTRH

chute1

FI HI

INX

INY

OTRVX

OTRVY

inx1

HIFI

iny1

inx1

CTRVY

CTRVX

iny2

inx2

out1

XOR

Dynamic

out1

�

inx1

inx1

compx compx-

matchx

out1

XOR

Dynamic

out1

�

iny1
compy compy-

matchy

Figure 5.9: Basic cell for a two-input, one-output queue with one CHUTE

in selection logic like that described in section 4.1.7 to compute these OUT transfer signals. The CTRVX
and CTRVY signals controlling data movement into the CHUTE are derived from selection logic based on
the result of both match computations. The match signals are precharged on �, the base clock of CTRVX
and CTRVY, so signi�cant delay will be introduced (see the discussion of quali�ed clock generation in section
3.6.2). Since the delay for selection logic is already long compared to other delays in the design (see section
4.5.3), this may well be the critical path of the design.

Although the control logic for each slice is more complicated, the number of transistors for this cell is
much less than twice that of the basic cell of the single-input combining queue, 117 as compared to 154.
Ignoring edge e�ects due to the exact derivation of the queue full signal (see section 3.4.1), a two-input
systolic queue needs 4

3
Q slices to have the same total storage as two one-input systolic queues of Q slices

each, so that the number of transistors used for equal maximum storage, is almost the same, 156Qb for the
two-input queue (where b is the number of bits in a slice and control logic is ignored) and 154Qb for the
single-input queue. The storage in the Type A switch is also likely to be more e�ciently utilized (see the
comparison of dynamic and static multiqueues in [132].)

With only a single CHUTE, three-way combining is impossible (the CHUTE entry �lls when a pair
combines) but the restriction that both partners come from the same input port has been eliminated. As
shown by Liu's simulations [100] as well as by the molasses simulations whose results are given in Figures
5.13 to 5.20, eliminating the same input port restriction and implementing a Type A switch with two-way
combining gives a more signi�cant improvement than adding three-way combining to a Type B switch, for
the system sizes we have simulated.

The packaging for a Type A FPC with two-way combining and a single CHUTE can be identical to the
packaging of the NCR FPC described in section 4.1. The RPC logic need not be changed at all, since the

130

CHUTE0r

r

�

�

..

.�

�

6 6 6 6 6

�

�

-

66

-

?

�

-

6 6

?? ?

� � � � �

?

6

�

?

-

ROW

���

XXX

ROW

�

� ����

� � � ���

�
Chute0

Chute1

Chute0

CHUTE1

Data

Addr

Addr

Addr

ALUData
ROW
OUT

ROW
IN

Out

FP IN

compare comparecomparecomparecompare

DataAddrData

Data Addr

AddrFP OUT

AddrWB
ID

Message

Out

Message
ID

WB

Figure 5.10: A single-input queue capable of combining three requests.

behavior of the Type A FPC is identical to that of the Type B FPC, except for blocking behavior and order
of outputs. Non-combining multi-input queues could be used, though a four-input queue would be required
to replace each main queue/decombined queue pair in the RPC.

5.2.2 Three-way combining in a Type B switch

The design of Figure 4.3 can be extended to support three-way combining by adding a second CHUTE
as shown in Figure 5.10. When an entry in the IN row matches one in OUT, the �rst entry moves to a
CHUTE unless the corresponding entries in both CHUTEs are full, which means that three items have
already combined.

This design presents several complications over the two-way combining design for a Type B switch:

� Logic is needed to decide which CHUTE is to obtain a matched entry. Unlike the arbitration logic
required for the CHUTE in the two-input queues of section 5.2.1, such logic is relatively simple,
depending only on the CHUTE valid bits, and not on the match logic.

� Two messages must be sent to the wait bu�er. If they are sent on the same cycle, more pins may be
needed if the FPC and RPC are packaged separately. If the two messages are sent serially, consecutive
triple combines create a problem for
ow control, possibly requiring output from the queue to halt
until the messages sent to the wait bu�er catch up.

� The wait bu�er must be able to output two messages destined for the same return path output port as
the result of matching a single message returning from memory. The same
ow control problem exists
as when sending messages to the wait bu�er from the forward path, and, in addition, the internal wait
bu�er logic may become more complicated.

� The ALU in the FPC must now accept three inputs, to produce the correct result to forward to memory.
Furthermore, for correct decombining, either the ALU in the RPC must accept three inputs, so that
both the Out data packet and the Chute0 data packet can be used for decombining with the the data
packet from memory, or the Out and Chute0 data packet must be added together before being stored
in the wait bu�er. If this addition is done on the FPC, both a three-input and a two-input ALU are
needed. If done on the return path, an additional ALU is needed at the input to the wait bu�er.

131

-

�
�

-

�

�WB
ID

Message

Out

FP IN0

?

�����

?? ? ?

6 6 6 6

Addr Data Addr Datar

r

�
���

XXX

?

� �
�

�

�

FP OUT OutData ALU

Chute0

Chute1

�

-

?

�

-

���

XXX
��

WB

compare

FP IN1

ALU

Message
ID

Chute0

Out

compare

CHUTE
ROW

??

� � �

- - - -

�

? ?

AddrData

Addr

compare compare compare compare

ROW
IN

IN
ROW

OUT
ROW

ROW
CHUTE

6 66

� � � �

- - - - -

�

6 6

AddrData

Addr

compare compare compare compare

Figure 5.11: Two-and-a-half-way combining queue

� Bursts of three messages may increase delays on the return path[88].

One can use still more CHUTEs to support higher levels of combining but the VLSI layout becomes less and
less planar and the proliferation of multi-input adders is expensive. Simulation results in [87, 100] comparing
three-way combining with unlimited combining indicate that, for two-way switches, combining multiplicity
greater than three is not needed.

A two-input queue capable of combining three requests to the same memory location can be obtained
by doubling both IN rows, as in section 5.2.1, as well as both CHUTEs. With two IN rows each able to
shift to either of two CHUTEs, the queue can combine three requests regardless of their input ports. This
implementation has all the di�culties of the single input queue with three-way combining, and also has the
problem, as for the Type A switch design described in section 5.2.1, that the CTRV signals depend on the
match logic.

5.2.3 Two-and-a-half-way combining

We propose \two-and-a-half-way combining" as an alternative with better layout and decombining prop-
erties than three-way combining that still shows good performance for large networks. As shown in Figure
5.11, two-and-a-half-way combining limits the connections of the IN rows to the neighboring CHUTE rows.
Three messages can combine as long as the second and third messages come from di�erent inputs.

The logic to do two-and-a-half way combining, like that for full three-way combining, whether in a Type
A or Type B switch, requires additional ALU operations on the Out and two Chute outputs, either with
a tree of two-way ALUs or with a three-input ALU. Since the intermediate result combining the data of
Out and Chute0 is required anyway, feeding the output of the lower two-input ALU in Figure 5.11 into the
upper ALU, so that it requires only two inputs, may be somewhat more e�cient in transistor count than
implementing both a three-input and a two-input adder, and could be pipelined deeper into the queue to
prevent delay through two ALUs from limiting the clock rate. Alternatively, as illustrated, a three-input

132

��HH
c��HH

c��HH

c��HH
c

��
HH

c

��AA

c��HH
c��HH

cHH��
cHH��

c
��
HH

c
��
HH c��HH

cHH��
cHH��

c
��
HH c

��
HHcHH��

cHH��
c
HH
��

c
��
HH c

��
HH

c

��AA

c
AA��

cHH��

cHH��

c
AA��

c��HH
c��HH

c��HH
c��HH

c��HH

c
��
HH c��HH

c
HH
�� c

HH
�� c

HH
��c

HH
��c

HH
��

cHH��
c
HH
��

s

s s

s

s s

s

s s

s

ss

s

ss

-

�

c

chutey1

�

?

6

-

..

-

-

..

-

-
-
-
-

-
6

- -

-
-
-

-
6

- -

� �

� �

out2

FOHO

OUT

OTRH

out1

�

FI HI

INX

INY

OTRVX

OTRVY

HIFI

iny1

CTRVY
iny2

inx2

out1

XOR

Dynamic

out1

�

inx1

inx1

compx compx-

matchx

out1

XOR

Dynamic

out1

�

iny1
compy compy-

matchyiny1

inx1

inx1

CTRVX

CTRHX

chutex2

HO FO

CHUTEX

chutex1

CTRHY

HO

chutey2

FO

CHUTEY

Figure 5.12: Schematic for the basic cell of a two-and-a-half-way combining queue.

carry-save ALU can be implemented in parallel with a two-input ALU. A three-input carry save adder has
only slightly increased delay, with no signi�cant complication of the carry lookahead tree that forms the
greater part of the ALU logic (see [90] for a textbook description of carry-save addition).

The basic cell of the two-and-a-half-way combining queue is illustrated in Figure 5.12. The additional
CHUTE row costs about 20 more transistors than the design of Figure 5.9, but the connection from one IN
row to two CHUTE rows is eliminated. More important, the CTRV signals no longer depend on the match
logic. Since only one IN row ever sends data to a CHUTE, the CHUTE data values can be set to the IN row
values whenever the CHUTE is empty, and only the CHUTE valid bit depends on the match logic.

The same number of wait bu�er input ports to the RPC are needed as for the design of Chapter 4.
However, the buses cannot be tied together, since they may both be active simultaneously, and thus more
pins would be required for the forward path to wait bu�er connections in the 4 chip and 2 chip designs
of Table 4.5. Since the combined messages came in on di�erent input ports on the forward path, they are
guaranteed to exit from di�erent wait bu�ers on the return path. Therefore, decombining is unlikely to
create a problem with bursty tra�c. Furthermore, if the combination of the data packets from the OUT row
and one of the CHUTE rows is done on the forward path, the wait bu�er design can remain simple. With
one wait bu�er for each input-output pair, the two combined messages will be in di�erent wait bu�ers, and

133

can be matched and queued in parallel.

5.2.4 Combining options for 2 � 2 switches

We have used molasses to simulate the performance of two-and-a-half-way combining as well as Type A and
Type B switches with two- and three-way combining, for systems of size up to 1024 PEs. Figures 5.13 to 5.20
use the same assumptions of queue sizes of 10 for Type B and 20 for Type A, and 16 outstanding requests
at the PE, that were used in the simulations in Chapter 4. In these �gures, solid lines show Type A, for
both 2 and 3 way combining, dashed lines show Type B, for both 2 and 3 way combining, and dash-dot
lines show two-and-a-half way combining. The dotted line showing worst case performance is the result of
simulation with Type B switches with no combining; the dotted line showing best case performance is the
result of simulation under uniform tra�c with Type A switches.

In all cases, the performance of Type A switches, whether with two-way, two-and-a-half way, or full three-
way combining, is very close. For the moderate load and low hot spot rate of Figure 5.13, all combining
options are virtually identical in performance to the bandwidth and latency of uniform tra�c, even though
systems with more than 128 PEs show sign�cant performance degradation without combining. As the load
and hot spot rate increase, Type B switches, whether with two-way or three-way combining, begin to show
consistently poorer performance than Type A switches. For 1024 PEs, with a 10 percent hot spot rate and
100 percent o�ered load, Type B switches with three-way combining showed a bandwidth in packets per
cycle of only around 45 percent. Twenty-one percent of this loss in bandwidth was due to blocking at the PE
inputs to the network, and thus could not be improved by increasing the number of outstanding requests.
In contrast, for Type A switches with three-way combining, bandwidth of 60 percent was achieved, with less
than 0.5 percent blocking on the part of the PEs, indicating that bandwidth could be improved by increasing
the latency tolerance of the PEs and allowing more outstanding requests.

A slight consistent di�erence is shown between the performance of Type A switches with two- and three-
way combining, but it amounts to only a few percent in bandwidth and a few cycles in latency. Figures
5.21 and 5.23 show just Type A switches with two-, two-and-a-half- and three-way combining. Two-way
combining is shown with a solid line, two-and-a-half-way with a dash-dot line, and three-way with a dotted
line. Two-and-a-half-way combining actually appears to perform better than three-way combining for 1024
PEs in Figures 5.21 and 5.22, but the graph of bandwidth versus latency for 1024 PEs in Figure 5.23, as
well as a more detailed examiniation of the simulations shows that this is just random variation.

To test whether or not increasing the queue size and allowing more outstanding requests would signi�-
cantly change the relative performance of the di�erent combining architectures, we simulated systems with
single packet messages and 128 outstanding requests. The queue sizes are still 10 and 20 in packets, but the
queue size measured in message units has doubled. Figure 5.24 shows the results of these simulations with
round trip latency as a function of bandwidth. The vertical line at around 10 percent shows a Type B switch
with no combining. The dashed line represents a Type B switch with two-way combining, the solid line
represents a Type A switch with two-way combining, and the dash-dot line represents two-and-a-half-way
combining. A dotted line representing Type A switches with three-way combining is almost invisible, due to
the close overlap with two- and two-and-a-half-way combining. The larger queue size and increased number
of outstanding requests allows a much higher peak bandwidth, but there is still no appreciable di�erence
between the Type A combining switches, as is consistent with the results reported in [100].

In none of these simulations do we see the kind of catastrophic saturation and increase in latency in later
stages predicted by the analysis with in�nite bu�ers and unlimited outstanding requests. Instead, blocking
in the early stages of the network causes increased combining as messages wait. Blocking at the inputs
and increased latency due to con
icts in the early stages cause a gradual decrease in bandwidth, for larger
system sizes and heavier loads, but performance is always much better than predicted by a model in which
in�nite bu�ers allow messages to proceed through the early stages of the network without combining until
they saturate later stages. Our simulations show blocking probabilities at later stages in the forward path
and on the return path are uniformly low (under 1 percent), again con�rming results in [100].

5.3 4� 4 Combining Switches

Networks composed of 4� 4 switch nodes have two important advantages over networks with 2� 2 switches:

134

 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

0.5% hotspot, 50% load

 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

L
at

en
cy

0.5% hotspot, 50% load

Figure 5.13: Combining options, 2� 2 switches, 0.5% hot spot, 50% load.

135

 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

0.5% hotspot, 100% load

 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

L
at

en
cy

0.5% hotspot, 100% load

Figure 5.14: Combining options, 2� 2 switches, 0.5% hot spot, 100% load.

136

 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

1% hotspot, 50% load

 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

L
at

en
cy

1% hotspot, 50% load

Figure 5.15: Combining options, 2� 2 switches, 1% hot spot, 50% load.

137

 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

1% hotspot, 100% load

 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

L
at

en
cy

1% hotspot, 100% load

Figure 5.16: Combining options, 2� 2 switches, 1% hot spot, 100% load.

138

 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

5% hot spot, 50% load

 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

L
at

en
cy

5% hot spot, 50% load

Figure 5.17: Combining options, 2� 2 switches, 5% hot spot, 50% load.

139

 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

5% hot spot, 100% load

 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

L
at

en
cy

5% hot spot, 100% load

Figure 5.18: Combining options, 2� 2 switches, 5% hot spot, 100% load.

140

 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

10% hot spot, 50% load

 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

L
at

en
cy

10% hot spot, 50% load

Figure 5.19: Combining options, 2� 2 switches, 10% hot spot, 50% load.

141

 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

10% hot spot, 100% load

 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

L
at

en
cy

10% hot spot, 100% load

Figure 5.20: Combining options, 2� 2 switches, 10% hot spot, 100% load.

142

 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

1% hot spot, 100% load

 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

L
at

en
cy

1% hot spot, 100% load

Figure 5.21: Type A 2� 2 switches, two, two-and-a-half and three-way combining, 1 percent hot spot.

143

 4 8 16 32 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

PEs

B
an

dw
id

th

10% hot spot, 100% load

 4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

PEs

L
at

en
cy

10% hot spot, 100% load

Figure 5.22: Type A 2� 2 switches, two, two-and-a-half and three-way combining, 10 percent hot spot.

144

0.1 0.2 0.3 0.4 0.5 0.6 0.7
20

25

30

35

40

45

R
ou

nd
 T

ri
p

L
at

en
cy

Bandwidth

1% hot spot, 1024 PEs

0.1 0.2 0.3 0.4 0.5 0.6 0.7
20

25

30

35

40

45

50

55

R
ou

nd
 T

ri
p

L
at

en
cy

Bandwidth

10% hot spot, 1024 PEs

Figure 5.23: Type A 2 � 2 switches, two, two-and-a-half and three-way combining, latency as a function of
bandwidth.

145

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

R
ou

nd
 T

ri
p

L
at

en
cy

Bandwidth

2x2 architectures, 1024 PEs, 1% hot spot

Figure 5.24: Type A and Type B 2� 2 switches, latency as a function of bandwidth

1. Only half the number of stages in a network, reducing the mimimum latency experienced by the head
of the message passing through the network.

2. Only a quarter the number of components in the network, and only half the number of wires, if the
same width of data path is used.

But constructing a network out of 4� 4 switches also has certain disadvantages:

1. The increased degree of the node requires either more expensive, higher pin-count packaging or nar-
rowing the data path width, which has the unpleasant e�ects on bandwidth and latency described in
section 2.5. For combining switches, narrowing the packet width may have the additional unpleasant
e�ect of complicating the matching logic (see section 4.2.1).

2. The internal VLSI design of the nodes becomes signi�cantly more complicated. Fair four-way arbi-
tration analysis must be provided, which is more costly than two-way arbitration , as discussed in
section 4.1.7. The total amount of logic area needed for a node increases at least linearly, and possibly
quadratically for any structures where a separate structure is desired for each input/output port pair.

A greater variety of switch architectures are possible than for a 2 � 2 switch. Interesting designs using
two-input queues must be considered, as well as the Type A, Type B and Type C designs using one-input
and four-input queues. In analogy with two- and three-way combining for 2 � 2 switches, the multiplicity
of combining in a 4 � 4 switch may vary from two to �ve. We refer to the analogue of two-and-a-half-way
combining as combining per input, recalling the implementation in which each queue IN row has an associated
CHUTE. With combining per input, in a 4�4 switch, a message may combine with four additional messages,
for a total combining multiplicity of �ve, as long as each of those messages come from a di�erent input port.

Some of the implementation alternatives for a 4� 4 switch include:

� A Type A switch with four four-input, one-output combining queues. A design similar to that in
Figure 5.11 can be used with four IN and four CHUTE rows and four-way arbitration logic at each
slot. Such a design is illustrated in Figure 5.25, with a sample adder tree that implements combining
per input with two stages of two- and three-input ALUs. To implement full �ve-way combining, much

146

A
L
U

..........................

..........................

A
L
U

..........................

..........................

A
L
U

..........................

..........................

A
L
U

..........................

..........................

A
L
U

� � � �

� � � �

� � � �

� � � �

- - - -

- - - -

- - - -

-- -

-- -

-- -

-- -

ROW

ROW

ROW

ROW

ROW

OUT

IN1

CHUTE1

IN0

CHUTE0

ROW

ROW

ROW

ROW

CHUTE3

IN3

CHUTE2

IN2

d

d

d

d

d

..........................

..........................

d

WB0

�

�
�

�
�

�

�

�

�

�

�

�

�

�

- - - -

� � � �

�

�

�

�

�WB3

FPIN3

WB2

FPIN2

FPIN1

OUT

WB1

FPIN0

Figure 5.25: Four-input, one-output queue with combining per input.

147

-

-

-

-

-

-

-

-

-

-

-

-

�
�
�@
@
@

�
�
�@
@
@

Figure 5.26: Variant Type C 4� 4 combining switch using two-and-a-half-way combining queues.

more complicated multiplexing of the ALU inputs would be required, as well as connections from all
IN rows to all CHUTE rows.

� A Type B switch with sixteen one-input, one-output combining queues, like those used for the design
in Chapter 4.

� A Type C switch, with four one-input, one-output combining queues, again like the design in Chapter
4.

� A hybrid Type B switch, with two `two-and-a-half-way' combining queues paired at each output, for a
total of eight queues (see Figure 5.27).

� A variant Type C switch, with the two 2 � 2 crossbars at the input, using one `two-and-a-half-way'
combining queue at each output (see Figure 5.26). If the crossbars are fast enough, such a switch
can approximate the performance of a Type A switch with two-and-a-half-way combining (see section
2.1.4).

We have simulated some of these alternatives using molasses, using parameters that are comparable to
those of the 2� 2 switch in Chapter 4. Messages are assumed to be composed of four packets, to model the
pin limitation constraint. Storage per queue is kept at 5 messages for a Type B switch, corresponding to 20
messages per output port. Sixteen outstanding requests are allowed at each processor.

Figure 5.28 shows latency as a function of bandwidth for Type A switches capable of combining 2,3,4
and 5 messages, from any combination of inputs, for a 5 percent hot spot rate. The dotted line represents
performance under uniform tra�c. Figure 5.29 shows results from simulations of Type B switches capable of
two-way combining in each queue (dashed line), hybrid switches capable of two-and-a-half way combining in
each of the two queues at an output port (dotted line), Type A switches capable of full �ve-way combining
(solid line), and Type A switches able to perform combining per input (dash-dot line). Latency values for
switches without combining are not shown because they are o� the chart, over a hundred cycles for 256 PEs
and over 1000 cycles for 1024, even at the lowest o�ered load of 10 percent.

For 1024 PE systems, full �ve-way combining and combining per input Type A 4 � 4 switches do show
improved performance compared to the 2 � 2 switches simulated in section 4.4.2. At a 5 percent hot spot
rate, the network with 2 � 2 switches has a maximum bandwidth of about 65 percent and latency of 45
cycles, compared to a maximum bandwidth of 75 to 80 percent for the \high-end" 4� 4 switches.

The spread between the combining switches with the most and the least combining capability is much
greater for 4 � 4 than for 2 � 2 switches. Two-way combining gives comparatively very poor performance,
whether in Type A or Type B switches. The hybrid Type B architecture of Figure 5.27 shows much bet-
ter performance, but is still signi�cantly worse than that of the �ve-way and combining per input Type A

148

.............
............

.............
............

-

.............
............

.............
............

-

.............
............

............
.............

-

.............
............

.............
............

-

Figure 5.27: Hybrid Type B 4� 4 combining switch using two-and-a-half-way combining queues.

switches. We have not yet simulated the variant architecture of Figure 5.26. If the crossbars in that archi-
tecture can be made fast enough to approximate the performance of a Type A architecture, its performance
should approximate that of the Type A switch with three-way combining, making it a cost-e�ective choice
for reasonable performance.

149

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

R
ou

nd
 T

ri
p

L
at

en
cy

Bandwidth

4x4 Type A, 256 PEs, 5% hot spot

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

R
ou

nd
 T

ri
p

L
at

en
cy

Bandwidth

4x4 Type A, 1024 PEs, 5% hot spot

Figure 5.28: Type A 4� 4 switches, latency as a function of bandwidth.

150

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

R
ou

nd
 T

ri
p

L
at

en
cy

Bandwidth

4x4 architectures, 256 PEs, 5% hot spot

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

R
ou

nd
 T

ri
p

L
at

en
cy

Bandwidth

4x4 architectures, 1024 PEs, 5% hot spot

Figure 5.29: Combining options, 4� 4 switches, latency as a function of bandwidth.

151

Chapter 6

Conclusions and Further Work

We have implemented a switch design using systolic queues that includes message combining. This switch
has been designed to handle all tra�c to memory in a processor-to-memory interconnection network. A
4 � 4 combining switch board has been in use in a 4 PE prototype since November of 1992, and functions
correctly at all speeds at which the memory and processors work reliably (up to 15MHz). At this writing,
we are completing the construction of a 16-PE machine using these components and will undertake a 2-year
e�ort to measure the characteristics of the resulting system.

Our implementation experience indicates that the cost of combining is modest, certainly much lower
than the estimate of between 6 and 32 times greater cost given for memory-based switch designs in [119].
Consider the three major cost factors of VLSI design area, packaging and cycle time:

� The cost of the combining logic in area and transistors was between 35 and 45 percent of the total chip
cost for the FPC and between 50 and 60 for the RPC, in a switch design that, except for the inclusion
of combining, was very simple. As part of a design including fault-tolerance features, for example, the
combining logic would be proportionately much less.

� Combining increases the packaging cost of a node, because of the need for extra pins connecting the
FPC to the RPC, and because of the increased di�culty of bit-slicing a design that does combining
compared to a design that does not. In a packaging technology allowing the fabrication of an entire
switch in a single package, this cost of combining goes to zero. In any case, extra stage-to-stage wires
are not required.

� Most important, the cycle time of the switches need not be increased to include combining. In the
CMOS technology we used for our implementation, the delay for the ALU operations required to
combine and decombine messages is of roughly the same magnitude as the delay required to arbitrate
and route messages, while the delay for the associative matching was not signi�cant. By including
the comparators as part of the queues and pipelining the ALU operations within the �rst slot of the
queue, the logic for combining was done in parallel rather than in series with arbitration and routing,
causing no increase in cycle time over that for a non-combining bu�ered switch. If changing to a
di�erent technology causes the ALU operations to have greater relative delay compared to arbitration
and routing, the ALU operations can be further pipelined.

The inclusion of combining capability in the switches has little impact on the cost of scaling the network
to larger sizes. Pin counts per component grow as logN in both combining and non-combining bu�ered
networks. Cycle time is not a�ected by the number of stages in the network. Wait bu�er storage in bits
does grow as log2N , but the chip area required for this storage is not likely to be the critical resource on
these pin-limited components.

The combining queue design we implemented is an instance of a family of systolic designs with varying
amounts of combining capability. Such designs can be included in a variety of switch architectures. We have
investigated a number of such architectures, using both analytical techniques and simulation. Conclusions
about the best switch for a parallel network are heavily dependent on characteristics of the overall architec-
ture, such as the system size and the latency tolerance of the processor, as well as on the implementation

152

technology. Our results should be useful to computer architects making implementation decisions in the
context of a speci�c system design.

Future research building on the results in this dissertation could be continued in many di�erent directions.
We list some of the more important of these below.

Transfering the design from custom CMOS to other technologies.

A standard cell implementation should be carried out to increase the ease of implementation of architectural
variations. A data path compiler could be designed to produce systolic queue designs with varying number
of bits per item and number of items per queue. A very high performance implementation, using circuit
techniques similar to those used for ECL SRAMs [20], is also of interest.

Implementing more complicated systolic queue designs.

Our simulations show that two-and-a-half-way combining queues used in Type A switches give better per-
formance than the Type B switches. Implementing this option should be done to verify that including
arbitration in each slice of the queue can be done without unacceptable costs in either area or critical path
delay. The cost of pipelining the match and chute transfer logic over multiple packets, necessary if packets
smaller than the size of the memory address are to be used, should also be determined by implementation.

Re�ning and expanding the analysis of combining queues.

The techniques developed in Chapter 5 can easily be extended to three-way combining (by assuming that
a hot item turns green when one item has combined with it, and red when two have combined), and to
�nite queues (by including separate transition tables for the case when the queue is blocked or unblocked at
the output). The �nite queue analysis will only be interesting if used with iterative techniques to estimate
performance in the presence of blocking, and must be checked by simulation.

Extension of design and analysis to other network topologies.

Combining can be used in any network where the message follows the same path on the return frommemory,
but some of the design considerations may be di�erent. In meshes using simple dimension-order routing,
inputs will have a preferred output. In fat trees, a number of di�erent alternatives for combining on the
way up or down the tree are possible. Analysis and simulation of behavior with di�erent combining schemes
needs to be done. Carrying out detailed designs for combining switches for such network architectures would
illuminate the cost tradeo�s involved.

Simulation of more realistic patterns and program segments.

Most of the simulations of the e�ectiveness of combining, by ourselves and others, have been carried out
using a single hot spot model. Using molasses, we plan to investigate multiple hot spot and partitioned
models more thoroughly, and eventually to simulate short code segments.

Observation of combining in a system environment.

While the 16 PE Ultra III prototype is not large enough to show signi�cant degradation from hot spots
on real applications, memory tra�c behavior from applications can be measured and synthetic applications
created that stress the network in a similar way. The Ultra III prototype includes a XILINX coprocessor in
the switch nodes to gather and measure information about switch behavior (see [17]).

In conclusion

We hope that our work will help to convince system designers to regard hardware combining within the
interconnection network as a reasonable support for software e�orts, like caches or TLBs, rather than as an
option too expensive to consider.

153

Bibliography

[1] Ferri Abolhassan, Jorg Keller, and Wolfgang J. Paul. On the cost-e�ectiveness and realization of the
theoretical PRAM model. Technical report, Universitat des Saarlandes, 1-6600 Saarbrucken, Germany,
September 1991.

[2] Seth Abraham and Krishnan Padmanabhan. Performance of the direct binary n-cube network for
multiprocessors. IEEE Transactions on Computers, 38(7):1000{1011, 1989.

[3] Seth Abraham and Krishnan Padmanabhan. Performance of multicomputer networks under pin-out
constraints. Journal of Parallel and Distributed Computing, 12:237{248, 1991.

[4] Vikram S. Adve and Mary K. Vernon. Performance analysis of mesh interconnection networks with de-
terministic routing. Technical Report 1001b, Computer Science Department, University of Wisconsin-
Madison, July 1993.

[5] Anant Agarwal et al. The MIT Alewife machine: A large-scale distributed memory multiprocessor.
In M. Dubois and S. Thakkar, editors, Scalable Shared Memory Multiprocessors. Kluwer Academic
Publishers, 1992.

[6] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter�eld, and Burton
Smith. The Tera computer system. International Conference on Supercomputing: ACM SIGARCH
Computer Architecture News, 18(3), September 1990.

[7] Hideharu Amano and Gaye Kalidou. A Batcher double Omega network with combining. International
Conference on Parallel Processing, I:718{719, August 1991.

[8] John B. Andrews, Carl J. Beckmann, and David K. Poulsen. Noti�cation and multicast networks for
synchronization and coherence. Journal of Parallel and Distributed Computing, 15, August 1992.

[9] Bruce W. Arden and Hikyu Lee. A regular network for multicomputer systems. IEEE Transactions
on Computers, C-31(1), January 1982.

[10] M. Atiquzzaman and M. S. Akhtar. Performance of bu�ered multistage interconnection networks in
non-uniform tra�c environment. Proceedings of the 7th International Parallel Processing Symposium,
pages 762{767, April 1993.

[11] Didier Badouel, Charles A.Wuthrich, and Eugene L. Fiume. Routing strategies and message contention
on low-dimensional interconnection networks. Technical Report 258, Computer System Research In-
stitute, University of Toronto, December 1991.

[12] Shobana Balakrishnan and Dhabaleswar K. Panda. Impact of multiple consumption channels on
wormhole routed k-ary n-cube networks. International Parallel Processing Symposium, pages 163{167,
April 1993.

[13] M. Barnett, R. Little�eld, D. G. Payne, and R. van de Geijn. Global combine on mesh architectures
with wormhole routing. Proceedings of the 7th International Parallel Processing Symposium, pages
156{162, April 1993.

154

[14] Laxmi N. Bhuyan, Qing Yang, and Dharma P. Agrawal. Performance of multiprocessor interconnection
networks. IEEE Computer, 22(2):25{37, February 1989.

[15] Richardo Bianchini, Mark E. Crovella, Leonidas Kontothanassis, and Thomas J. LeBlanc. Memory
contention in scalable cache-coherent multiprocessors. Technical Report 448, University of Rochester,
Rochester, New York, April 1993.

[16] Ronald Bianchini. Packaging Ultracomputers and implementing Ultracomputer prototypes. Ultracom-
puter Note #177, New York University, May 1992.

[17] Ronald Bianchini, Susan R. Dickey, Jan Edler, Gabriel Goodman, Allan Gottlieb, Richard Kenner,
and Jiarui Wang. The Ultra III prototype. Proceedings of the 7th International Parallel Processing
Symposium Parallel Systems Fair, pages 2{9, April 1993.

[18] Guy Blelloch. Scans as primitive parallel operations. International Conference on Parallel Processing,
pages 355{362, August 1986.

[19] Kevin Bolding and Smaragda Konstantinidou. On the comparison of hypercube and torus networks.
International Conference on Parallel Processing, I:62{66, August 1992.

[20] Barbara A. Chappell et al. A 2-ns cycle, 3.8-ns access 512-kb CMOS ECL SRAM with a fully pipelined
architecture. IEEE Journal of Solid-State Circuits, 26(11), November 1991.

[21] Frederic T. Chong and Thomas F. Knight, Jr. Design and performance of multipathMIN architectures.
Transit Note #64, MIT Transit Project, March 1992.

[22] Intel Corporation. Paragon XP/S Supercomputer. Product description, 1992.

[23] W. Crowther et al. Performance measurements on a 128-node Butter
y parallel processors. Interna-
tional Conference on Parallel Processing, pages 531{540, August 1985.

[24] W. Crowther, J. Goodhue, R. Gurwitz, R. Rettberg, and R. Thomas. The Butter
y (TM) parallel
processor. IEEE Computer Architecture Technical Committee Newsletter, pages 18{45, September
1985.

[25] William J. Dally. Network and processor architecture for message-driven computers. In Robert Suaya
and Graham Birtwistle, editors, VLSI and Parallel Computation, pages 140{222. Morgan Kaufman,
1990.

[26] William J. Dally. Wire e�cient VLSI multiprocessor communication networks. In P. Losleben, editor,
Proceedings of the Stanford Conference on Advanced Research in VLSI, pages 391{415. MIT Press,
March 1987.

[27] WilliamJ. Dally. Express cubes: Improving the performance of k-ary n-cube interconnection networks.
IEEE Transactions on Computers, 40(9):1016{1023, September 1991.

[28] WilliamJ. Dally et al. Design and implementation of the Message-Driven Processor. In Thomas Knight
and John Savage, editors, Proceedings of the 1992 Brown/MIT Conference on Advanced Research in
VLSI, pages 5{25, March 1992.

[29] William J. Dally and Charles L. Seitz. The Torus routing chip. Journal of Distributed Systems,
1(3):187{196, 1986.

[30] WilliamJ. Dally and Charles L. Seitz. Deadlock-free message routing in multiprocessor interconnection
networks. IEEE Transactions on Computers, C-36(5):547{553, May 1987.

[31] William J. Dally and P. Song. Design of a self-timed VLSI multicomputer communications controller.
International Conference on Computer Design, pages 230{234, 1987.

[32] Sivarama P. Dandamudi and Derek L. Eager. Hot-spot contention in binary hypercube networks. IEEE
Transactions on Computers, February 1992.

155

[33] F. Darema-Rogers, G. F. P�ster, and K. So. Memory access patterns of parallel scienti�c programs.
Performance Evaluation Review, 15(1):46{57, May 1987.

[34] Andr�e DeHon. Robust, high-speed network design for large-scale multiprocessing. Master's Thesis,
MIT, February 1993.

[35] Daniel M. Dias. Packet Communication in Delta and Related Networks. Ph. D. thesis, Rice University,
1981.

[36] Daniel M. Dias and Manoj Kumar. Preventing congestion in multistage networks in the presence of
hotspots. International Conference on Parallel Processing, August 1989.

[37] Susan R. Dickey and Richard Kenner. A combining switch for the NYU Ultracomputer. Ultracomputer
Note #178, New York University, February 1992.

[38] Susan R. Dickey and Richard Kenner. Using quali�ed clocks in the NORA clocking methodology to
implement a systolic queue design. Proceedings of the Brown/MIT Conference on Advanced Research
in VLSI, pages 165{179, March 1992.

[39] Susan R. Dickey and Yue-sheng Liu. Simulation and analysis of enhanced switch architectures for
interconnection networks in massively parallel shared memory machines. Proceedings of the Second
Symposium on the Frontiers of Massively Parallel Computation, pages 487{490, October 1988.

[40] Susan R. Dickey and Ora E. Percus. Performances di�erences among combining switch architectures.
International Conference on Parallel Processing, August 1992.

[41] Jianxun Ding and Laxmi N. Bhuyan. Performance evaluation of multistage interconnection networks
with �nite bu�ers. International Conference on Parallel Processing, August 1991.

[42] Reinhard Drefenstedt and Dietmar Schmidt. On the physical design of butter
y networks for prams.
Proceedings of the Fourth Symposium on the Frontiers of Massively Parallel Computation, pages 202{
209, 1992.

[43] Jan Edler et al. Issues related to MIMD shared-memory computers: the NYU Ultracomputer approach.
Proceedings of the 12th Annual International Symposium on Computer Architecture, pages 126{135,
June 1985.

[44] Matthew Farrens, Brad Wetmore, and Allison Woodru�. Alleviation of tree saturation in multistage
interconnection networks. Supercomputing '91, pages 400{409, November 1991.

[45] Tse-yun Feng. A survey of interconnection networks. IEEE Computer, 14(12):12{27, December 1981.

[46] Michael J. Flynn. Some computer organizations and their e�ectiveness. IEEE Transactions on Com-
puters, C-21:948{960, 1972.

[47] S. Fortune and J. Wyllie. Parallelism in random access machines. Tenth ACM Symposium on the
Theory of Computing, pages 114{118, 1978.

[48] Patrick T. Gaughan and Sudhakar Yalamanchili. Adaptive routing protocols for hypercube intercon-
nection networks. IEEE Computer, pages 12{24, May 1993.

[49] R. R. Glenn and D. V. Pryor. Instrumentation for a massively parallel MIMD application. Journal of
Parallel and Distributed Computing, 12(3):223{236, July 1991.

[50] R. R. Glenn, D. V. Pryor, J. M. Conroy, and T. Johnson. Characterizing memory hot spots in a
shared-memory MIMD machine. Proceedings of Supercomputing '91, pages 554{566, November 1991.

[51] L. Rodney Goke and G. J. Lipovski. Banyan networks for partitioning multiprocessor systems. Pro-
ceedings of the 1st Annual Symposium on Computer Architecture, pages 21{28, 1973.

156

[52] Nelson F. Goncalves and Hugo J. DeMan. NORA: A racefree dynamic CMOS technique for pipelined
logic structures. IEEE Journal of Solid-State Circuits, SC-18(3):261{266, June 1983.

[53] James R. Goodman, Mary K. Vernon, and Philip J. Woest. E�cient synchronization primitives for
large-scale cache-coherent multiprocessing. In Proceedings of the ASPLOS III, pages 64{73, April 1989.

[54] Allan Gottlieb. An historical guide to the Ultracomputer literature. Ultracomputer Note #36, New
York University, October 1981.

[55] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuli�e, Larry Rudolph, and Marc Snir.
The NYU Ultracomputer{designing an MIMD shared memory parallel computer. IEEE Transactions
on Computers, C-32(2), February 1983.

[56] Allan Gottlieb and Clyde P. Kruskal. Complexity results for permuting data and other computations
on parallel processors. Journal of the ACM, 31(2):193{209, April1984.

[57] Allan Gottlieb and Clyde P. Kruskal. Coordinating parallel processors: A partial uni�cation. Computer
Architecture News, pages 16{24, October 1981.

[58] Allan Gottlieb, Boris Lubachevsky, and Larry Rudolph. Coordinating large numbers of processors.
International Conference on Parallel Processing, 1981.

[59] Allan Gottlieb, Larry Rudolph, and Boris Lubachevsky. Basic techniques for the e�cient coordination
of very large numbers of cooperating sequential processors. ACM TOPLAS, 5(2):164{189, 1983.

[60] Leo J. Guibas and Frank M. Liang. Systolic stacks, queues and counters. MIT Conference on Advanced
Research in VLSI, pages 155{164, 1982.

[61] Wing S. Ho and Derek L. Eager. A novel strategy for controlling hot spot congestion. International
Conference on Parallel Processing, I:14{18, August 1989.

[62] William Tsun-Yuk Hsu and Pen-Chung Yew. An e�ective synchronization network for hot-spot ac-
cesses. ACM Transactions on Computer Systems, 10(3):167{189, August 1992.

[63] Yarsun Hsu, C. Benveniste, J. Ruedinger, and C. J. Tan. Design of VLSI switch for highly parallel
multiprocessor system. IEEE Custom Integrated Circuits Conference, pages 24.4.1{24.4.4, May 1990.

[64] Inseok S. Hwang and Aaron L. Fisher. Ultrafast compact 32-bit CMOS adders in multiple output
Domino logic. IEEE Journal of Solid-State Circuits, 24(2):358{369, April 1989.

[65] P. G. Jansen and J. L. W. Kessels. The DIMOND: A component for the modular construction of
switching networks. IEEE Transactions on Computers, C-29(10), October 1980.

[66] Yih-chyun Jenq. Performance analysis of a packet switch based on single-bu�ered Banyan network.
IEEE Journal on Selected Areas in Communications, SAC-1(6):1014{1021, December 1983.

[67] Byung-Chang Kang, Gyung Ho Lee, and Richard Kain. Performance of multistage combining networks.
International Conference on Parallel Processing, pages 550{553, August 1991.

[68] Byung-Chang Kang, Gyung Ho Lee, and Richard Kain. A performance bound analysis of multi-
stage combining networks using a probabilistic model. In Conference Proceedings: 1991 International
Conference on Supercomputing, pages 448{457, Cologne, Germany, June 1991.

[69] P. Kermani and Leonard Kleinrock. Virtual cut-through: A new computer communication switching
technique. Computer Networks, 3:267{286, 1979.

[70] Hyong Sok Kim and Alberto Leon-Garcia. Performance of bu�ered banyan networks under nonuniform
tra�c patterns. IEEE Transactions on Computers, pages 648{658, May 1990.

[71] David Klappholz. An improved design for a stochastically con
ict-free memory/interconnection system.
Fourteenth Asilomar Conference On Circuits, Systems and Computers, pages 443{448, November 1980.

157

[72] David Klappholz. Stochastically con
ict-free data-base memory systems. International Conference on
Parallel Processing, pages 283{289, August 1980.

[73] Leonard Kleinrock. Queueing Systems, Volume 2: Computer Applications. John Wiley & Sons, Inc.,
1976.

[74] R. H. Krambeck, C. M. Lee, and H. S. Law. High-speed compact circuits with CMOS. IEEE Journal
of Solid-State Circuits, SC-17(3):614{619, June 1982.

[75] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. E�cient synchronization on multiprocessors with
shared memory. ACM Transactions on Programming Languages and Systems, 10(4):579{601, October
1988.

[76] Clyde P. Kruskal and Marc Snir. A uni�ed theory of interconnection network structure. Theoretical
Computer Science, 48(1):75{94, 1986.

[77] Clyde P. Kruskal and Marc Snir. The performance of multistage interconnection networks for multi-
processors. IEEE Transactions on Computers, 32(12):1091{1098, December 1983.

[78] Clyde P. Kruskal, Marc Snir, and Allan Weiss. On the distribution of delays in bu�ered multistage
interconnection networks for uniform and nonuniform tra�c. International Conference on Parallel
Processing, pages 215{219, 1984.

[79] Clyde P. Kruskal, Marc Snir, and Allan Weiss. The distribution of waiting times in clocked multistage
interconnection networks. IEEE Transactions on Computers, November 1988.

[80] Manoj Kumar and J. R. Jump. Performance enhancement in bu�ered Delta networks using crossbar
switches and multiple links. Journal of Parallel and Distributed Computing, 1:81{103, 1984.

[81] Manoj Kumar and Gregory F. P�ster. The onset of hotspot contention. International Conference on
Parallel Processing, August 1986.

[82] LizyammaKurian andMatthew J. Thazhuthaveetil. E�ect of hot spots on multiprocessor systems using
circuit switched interconnection networks. International Conference on Parallel Processing, August
1991.

[83] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Transactions on Computers, C-28(9):690{691, September 1979.

[84] Tomas Lang and Lance Kurisaki. Nonuniform tra�c spots (NUTS) in multistage interconnection
networks. Journal of Parallel and Distributed Computing, 10:55{67, 1990.

[85] Duncan H. Lawrie. Access and alignment of data in an array processor. IEEE Transactions on
Computers, C-24:1145{1155, December 1975.

[86] Gyung Ho Lee. A performance bound of multistage combining networks. IEEE Transactions on
Computers, 38(10):1387{1395, October 1989.

[87] Gyung Ho Lee, Clyde P. Kruskal, and David J. Kuck. The e�ectiveness of combining in shared memory
parallel computers in the presence of `hot spots'. International Conference on Parallel Processing, pages
35{41, August 1986.

[88] Gyungho Lee. Another combining scheme to reduce hot spot contention in large-scale shared memory
parallel computers. In Lecture Notes in Computer Science, Vol 297: Supercomputing, pages 68{79.
Springer-Verlag, 1988.

[89] Yann-Hang Lee, Sandra E. Cheung, and Jih-Kwon Peir. Consecutive requests tra�c model in mul-
tistage interconnection networks. International Conference on Parallel Processing, I:534{541, August
1991.

158

[90] F. Thomson Leighton. Introduction to parallel algorithms and architectures: arrays, trees, hypercubes.
Morgan Kaufman Publishers, Inc., 1992.

[91] Charles E. Leiserson. Area E�cient VLSI Computation. MIT Press, Cambridge, Massachusetts, 1983.

[92] Charles E. Leiserson. Fat-trees: Universal networks for hardware-e�cient supercomputing. IEEE
Transactions on Computers, C-34(10):892{901, October 1985.

[93] Charles E. Leiserson et al. The network architecture of the connection machine CM-5. ACM Symposium
on Parallel Algorithms and Architectures, pages 272{285, 1992.

[94] Daniel Lenoski et al. The Stanford Dash multiprocessor. IEEE Computer, pages 63{79, March 1992.

[95] R. L. Lesher and M. J. Thazhuthaveetil. Hotspot contention in non-blocking multistage interconnection
networks. International Conference on Parallel Processing, pages 401{404, 1990.

[96] T. Lin and L. Kleinrock. Performance analysis of �nite-bu�ered multistage interconnection networks
with a general tra�c pattern. Proceedings of the 1991 ACM Sigmetrics Conference, May 1991.

[97] T. Lin and A. Tantawi. Performance evaluation of packet-switched multistage interconnection networks
under a model of hot-spot tra�c. ORSA/TIMS Joint National Meeting, October 1990.

[98] G. J. Lipovski and Paul Vaughan. A fetch-and-op implementation for parallel computers. Proceedings
of the 15th Annual International Symposium on Computer Architecture, pages 352{372, May 1988.

[99] Yue-sheng Liu. Delta network performance and \hot spot" tra�c. Ultracomputer Note #132, New
York University,, January 1988.

[100] Yue-sheng Liu. Architecture and Performance of Processor-Memory Interconnection Networks for
MIMD Shared Memory Parallel Processing Systems. Ph. D. Dissertation, New York University, De-
partment of Computer Science, September 1990.

[101] Yue-sheng Liu, Susan R. Dickey, and Allan Gottlieb. Interconnection network switch architectures and
combining strategies. Ultracomputer Note #186, New York University,, January 1988.

[102] Carver A. Mead and Lynn A. Conway. Introduction to VLSI Systems. Addison-Wesley, Reading,
Massachusetts, 1980.

[103] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21{65, February 1991.

[104] Arif Merchant. Analytical models of combining banyan networks. Performance Evaluation Review,
20(1):205{211, June 1992.

[105] Henry Minsky. A parallel crossbar routing chip for a shared memory multiprocessor. Master's Thesis,
MIT, January 1991.

[106] Debasis Mitra. Randomized parallel communications on an extension of the Omega network. Journal
of the ACM, 34(4):802{824, October 1987.

[107] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing techniques in direct networks.
IEEE Computer, pages 62{76, January 1993.

[108] M. O. Noakes and William J. Dally. System design of the J-machine. In Proceedings of the 6th MIT
Conference on Advanced Research in VLSI, pages 179{194. MIT Press, 1990.

[109] John K. Ousterhout. Switch-level delay models for digital MOS VLSI. Proceedings of the 21st Design
Automation Conference, pages 542{548, June 1984.

[110] Janak H. Patel. Processor-memory interconnections for multiprocessors. In Proceedings of the Sixth
Annual Symposium on Computer Architecture, pages 168{177. ACM SIGARCH, April 1979.

159

[111] Janak H. Patel. Performance of processor-memory interconnections for multiprocessors. IEEE Trans-
actions on Computers, C-30(10):771{780, October 1981.

[112] N. M. Patel and P. G. Harrison. On hot-spot contention in interconnection networks. Performance
Evaluation Review, 16(1):114{123, May 1988.

[113] M. C. Pease. The indirect binary n-cube microprocessor array. IEEE Transactions on Computers,
C-26(5):548{573, May 1977.

[114] Ora E. Percus and Susan R. Dickey. Performance analysis of clock-regulated queues with output
multiplexing in 2 by 2 crossbar switch architectures. Proceedings of the Twenty-First Annual Pittsburgh
Conference on Modeling and Simulation, (3):1225{1233, May 1990.

[115] Ora E. Percus and Susan R. Dickey. Performance analysis of clock-regulated queues with output
multiplexing in three di�erent 2 by 2 crossbar switch architectures. Journal of Parallel and Distributed
Computing, 16(1):27{40, September 1992.

[116] Ora E. Percus and J. K. Percus. Elementary properties of clock-regulated queues. SIAM Journal on
Applied Mathematics, 50:1166{1175, 1990.

[117] Ora E. Percus and J. K. Percus. Times series transformations in clocked queueing networks. Commu-
nications on Pure and Applied Math, 44:1107{1119, 1991.

[118] Gregory F. P�ster et al. The IBM Research Parallel Processor Prototype (RP3): Introduction and
architecture. International Conference on Parallel Processing, pages 764{771, 1985.

[119] Gregory F. P�ster and Allan Norton. `Hot spot' contention and combining in multistage interconnection
networks. IEEE Transactions on Computers, C-34(10):943{948, 1985.

[120] Eugene Pinsky and Paul Stirpe. Modeling and analysis of `hot spots' in an asynchronous n�n crossbar
switch. International Conference on Parallel Processing, I:546{549, August 1991.

[121] Abhiram G. Ranade. The Fluent abstract machine. In Jonathan Allen and F. Thomson Leighton,
editors, Proceedings of the Fifth MIT Conference on Advanced Research in VLSI, pages 71{93, 1988.

[122] Jacob T. Schwartz. Ultracomputers. ACM Transactions on Programming Languages and Systems,
2:484{521, 1980.

[123] Steven L. Scott and Gurindar S. Sohi. The use of feedback in multiprocessors and its application
to tree saturation control. IEEE Transactions on Parallel and Distributed Computing, 1(4):385{398,
1990.

[124] Charles L. Seitz. Concurrent VLSI architectures. IEEE Transactions on Computers, C-33(12):1247{
1265, 1984.

[125] Charles L. Seitz. The Cosmic Cube. Communications of the ACM, 28(1):22{33, January 1985.

[126] Dennis Shasha and Marc Snir. E�cient and correct execution of programs that share memory. ACM
Transactions on Programming Languages and Systems, 10(2):282{312, April 1988.

[127] Masakazu Shoji. CMOS Digital Circuit Technology. Prentice Hall, Englewood Cli�s, New Jersey, 1988.

[128] Rajgopalan Sivaram. Queuing delays for uniform and non-uniform tra�c patterns in a MIN. Simulation
Digest, 35:17{27, Summer 1992.

[129] Marc Snir and Jon Solworth. Switch digest. Ultracomputer Hardware Note #27, New York University,
1984.

[130] Marc Snir and Jon Solworth. The Ultraswitch { a VLSI network node for parallel processing. Ultra-
computer Note #39, New York University, January 1984.

160

[131] Herbert Sullivan and T. R. Bashkow. A large scale, homogenous, fully distributed parallel machine, I.
Proceedings of the 4th Symposum on Computer Architecture, pages 105{117, March 1977.

[132] Yuval Tamir and Gregory L. Frazier. High-performance multi-queue bu�ers for VLSI communication
switches. Journal of Parallel and Distributed Computing, 14:402{416, 1992.

[133] Yuval Tamir and Gregory L. Frazier. High-performance multi-queue bu�ers for VLSI communication
switches. Proceedings of the 15th Annual International Symposium on Computer Architecture, pages
343{354, May 1988.

[134] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, Inc., 1981.

[135] Thomas H. Theimer, Erwin P. Rathgeb, and Manfred N. Huber. Performance analysis of bu�ered
banyan networks. IEEE Transactions on Communications, 39(2):269{277, February 1991.

[136] Robert H. Thomas. Behavior of the butter
y parallel processor in the presence of memory hot spots.
International Conference on Parallel Processing, pages 46{50, August 1986.

[137] Nian-Feng Tzeng. Design of a novel combining structure of shared-memory multiprocessors. Interna-
tional Conference on Parallel Processing, I:1{8, August 1989.

[138] Nian-Feng Tzeng. An approach to the performance improvement of multistage interconnection net-
works with nonuniform tra�c spots. International Conference on Parallel Processing, I:542{545, Au-
gust 1991.

[139] Nian-Feng Tzeng. Alleviating the impact of tree saturation on multistage interconnection network
performance. Journal of Parallel and Distributed Computing, pages 107{117, June 1991.

[140] Nian-Feng Tzeng. A cost-e�ective combining structure for large-scale shared-memory multiprocessors.
IEEE Transactions on Computers, 41(11):1420{1429, November 1992.

[141] Shiwei Wang, Yarsun Hsu, and C. J. Tan. A novel message switch for highly parallel systems. Inter-
national Conference on Computer Design, pages 150{155, 1989.

[142] Gregory V. Wilson. Implementing distributed queues on multicomputers without polling or contention.
Technical Report 9125, University of Edinburgh, November 1991.

[143] Gregory V. Wilson. Using opportunistic combining networks to reduce contention in multicomputers.
Technical Report 9127, University of Edinburgh, November 1991.

[144] Monica C. Wong. A combining Omega network: Performance vs. implementation. Technical Report
RC 11977, IBM Research Report, June 1986.

[145] Chuan-linWu and Tse-yun Feng. IEEE Tutorial: Interconnection networks for Parallel and Distributed
Processing. IEEE Computer Society Press, 1984.

[146] Chuan-linWu and Tse-yun Feng. On a class of multistage interconnection networks. IEEE Transactions
on Computers, C-29(8):694{702, August 1980.

[147] David W. L. Yen, Janak H. Patel, and Edward S. Davidson. Memory interference in synchronous
multiprocessor systems. IEEE Transactions on Computers, C-31(11), November 1982.

[148] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing hot-spot addressing in large-
scale multiprocessors. IEEE Transactions on Computers, C-36:486{493, April 1987.

[149] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing hot-spot addressing in large-
scale multiprocessors. International Conference on Parallel Processing, pages 51{58, August 1986.

[150] Hyunsoo Yoon, Kyungsook Y. Lee, and Ming T. Liu. Performance analysis of multibu�ered packet-
switching networks in multiprocessor systems. IEEE Transactions on Computers, March 1990.

161

Index

k-ary n-cube, 19
k-ary n-cube network, 11, 15, 5
k-ary n-
y network, 11, 5, 8
ALU, 84

FPC, 81
RPC, 88
operations, 73

BBN Butter
y, 14, 26
CHoPP, 16
CM-5, 23, 7
IBM RP3, 22-23
J-machine, 7
MIMD architectures, 3, 7
MIT Alewife, 24
MIT Transit Network, 28
NORA (no race) clocking, 65

noise problems, 67
quali�ed clocks, 66

Omega network, 20, 3, 5-6
SIMD architectures, 23, 3, 7
Standford Dash, 24
Tera architecture, 7
Type A switch, 109, 28, 32, 43, 46

combining, 117, 129
minimum size, 39

Type B switch, 109, 14, 18, 33-34, 43, 46, 75, 90
minimum size, 39

Type C switch, 12, 14, 19-20, 34, 36-37, 42, 46
minimum size, 40

bandwidth, 4
bidelta network, 8
bisection cost ratio, 6
bisection width, 5
bu�er arbitration, 76
cache coherency, 24
chute transfer, 80
circuit switching, 14-15, 24, 8
combining, 16-18

bit-serial, 23
eager, 24
e�ectiveness, 20
hardware, 16, 20, 25
multiplicity, 21
opportunistic, 21
single-stage, 21, 25

software, 17-18, 21
synchronous, 21, 24
tree-structured, 23

combining cost, 113
area, 113
cycle time, 113
pins, 109
transistors, 113

combining queue, 77, 80
combining switch, 70

4� 4, 146
initialization, 73-74
operations, 73
packaging, 114, 70-71

constant pinout, 55
crossbar bandwidth, 34
crossbar network, 15
cut-through switching, 10-11, 52, 8-9

full, 10-11
partial, 10-11

data accept (DA), 62, 74, 89-90
data valid (DV), 74, 80
decombining, 81, 84
delta network, 11, 8
direct network, 15, 5
discarding messages, 12, 14-15, 20
diverting switches, 12
dynamic network, 5
fat tree, 6-7
feedback, 20
fence, 17
fetch-and-�, 16, 18
fetch-and-add, 13, 16-18

it, 10

ow control, 74-75
forward path component (FPC), 64, 70, 77
hot spot, 13
hot spot tra�c, 13-15, 18
hypercube network, 15, 21, 6
indirect network, 5
lambda relation, 12
latency, 4
mesh network
message switching, 8-9
molasses, 43, 89

162

multicast, 19
multiple packet messages, 52
non-combining switch, 67

CMOS, 67
nMOS, 64

non-uniform tra�c, 12
bit-reversal permutation, 12
consecutive requests, 12
even �rst odd second, 12
maximum con
ict, 12
single source to single desgination, 12

noti�cation, 19
odd length messages, 63
outstanding request index (ORI), 72
outstanding requests, 46
packet format, 71
packet switching, 8-9
phit, 10
randomization, 12, 16, 18
repetition �lter memories, 16
return path component (RPC), 70, 84
routing, 8

\non-delta" network, 8
adaptive, 15, 19, 8
bidelta network, 8
deadlock-free, 11, 15
delta network, 8
dimension-order, 15, 26
distributed, 8

scan operations, 23
scattering network, 12
semi-systolic queue, 57

full signal, 62
invariants, 59
nMOS implementation, 64
states, 60

semi-sytolic queue, 61
constraints, 61

serialization principle, 16
spin-waiting, 18-19
static network, 5
store-and-forward switching, 10, 8-9
susy simulator, 89
syncbits, 18
systolic queue, 56
systolic structures, 56
three-way combining, 131
torus network, 15, 21, 6-7
tree saturation, 13-14, 16, 18
two-and-a-half-way combining, 132
two-way combining, 116

at front, 121
no front, 123

unbu�ered switch, 14, 27-28

unlimited combining, 116
at front, 118
no front, 119

wait bu�er, 86-87
wire cost ratio, 6
wormhole routing, 10-11, 8-9

163

