
Deep Generative Models of Images and Video

by

Emily Denton

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 2018

Professor Rob Fergus

c© Emily Denton

All Rights Reserved, 2018

Dedication

To my best friend and partner Miles Rees-Spear.

iii

Acknowledgements

First and foremost, I would like to thank my advisor, Rob Fergus, for his continu-

ous support and guidance throughout my Ph.D. I have greatly enjoyed working with Rob

over the past 5 years and am sincerely grateful for his patience, immense knowledge and

encouragement. Besides my advisor, I would like to thank the rest of my committee:

Kyunghyun Cho, Yann LeCun, Arthur Szlam and Marc’Aurelio Ranzato. I am espe-

cially grateful for Kyunghyun Cho’s constructive and valuable feedback on my thesis

draft.

I have met many brilliant mentors, collaborators and colleagues through my time at

the NYU CILVR lab, Facebook AI Research and DeepMind. Special thanks to Sain-

bayar Sukhbaatar, William Whitney, Ross Goroshin, Michael Mathieu, Mikael Henaff,

Alexander Rives, Jake Zhao, Martin Arjovsky, Roberta Raileanu, Cinjon Resnick, Wo-

jciech Zaremba, Jordan Ash, Soumith Chintala, Jason Weston, Simon Osindero, and

Oriol Vinyals for many stimulating discussions.

I would like to thank my family for their encouragement and support. I am especially

grateful to my father for his continued confidence in me. Thanks to my partner, Miles,

for his continued love, support and understanding through the course of my Ph.D. This

work would not have been possible without him and I am forever grateful for his patience

and encouragement and for keeping me well fed during deadline crunches.

Finally, I grateful for the financial support of an NSERC fellowship and a Google

Ph.D fellowship.

iv

Preface

The chapters 4, 5 and 6 of this thesis appeared in the following publications respectively:

• Denton, E., Chintala, S., Szlam, A., and Fergus, R. (2015). Deep generative image

models using a laplacian pyramid of adversarial networks. In Advances in Neural

Information Processing Systems (NIPS)

• Denton, E. and Birodkar, V. (2017). Unsupervised learning of disentangled rep-

resentations from video. In Advances in Neural Information Processing Systems

(NIPS)

• Denton, E. and Fergus, R. (2018). Stochastic video generation with a learned

prior. In International Conference on Machine Learning (ICML)

Source code can be downloaded from:

• https://github.com/edenton/drnet-py

• https://github.com/edenton/svg

v

https://github.com/edenton/drnet-py
https://github.com/edenton/svg

Abstract

Deep neural networks have seen wide success in the supervised setting in recent years.

Many of these successes rely heavily on large training sets of manually annotated data.

Given the difficulty of obtaining enough labeled data to scale many deep learning ap-

proaches, it is increasingly important to look for better methods of utilizing large amounts

of unlabeled data.

Building generative models of images and video is a fundamental paradigm of learn-

ing from unlabeled data. Unsupervised criterion based on generating or reconstructing

images drive many representation learning frameworks. Video is a particularly appeal-

ing domain for unsupervised learning due to the inherent temporal structure of the data.

This structure lends itself to representation learning approaches based on extracting in-

variances and predicting future frames, given the past.

Additionally, building accurate models of the world that facilitate future prediction

can be useful for model based reinforcement learning, planning, and more generally,

endowing an agent with the capacity to reason about its environment. Incorporating

predictive models can potentially help alleviate the sample inefficiency of many rein-

forcement learning systems.

In this thesis, we review the challenges associated with generating images and videos.

We then introduce a multi-scale image generation framework that demonstrates impres-

sive performance on real world image datasets. This method was the first to demonstrate

empirically the potential of generative adversarial networks and has since sparked a sig-

nificant interest in this area. We also address two challenging aspects of video genera-

tion: learning a latent space that affords easier prediction and modeling the uncertainty

in video sequences.

vi

Table of Contents

Dedication iii

Acknowledgements iv

Preface v

Abstract vi

List of Figures ix

List of Tables xiii

1 Introduction 1

2 Background 6

2.1 Generative Models . 6

2.2 Variational Autoencoders . 8

2.3 Generative Adversarial Networks . 14

3 Motivation and Related work 19

3.1 Image generation . 19

3.2 Disentangled representations . 24

vii

3.3 Video prediction . 28

4 Multi-scale Image Generation using a Laplacian Pyramid of Adversarial

Networks 35

4.1 Introduction . 36

4.2 Approach . 36

4.3 Model Architecture & Training . 41

4.4 Experiments . 45

4.5 Discussion . 54

5 Disentangling Content and Pose for Video Prediction 62

5.1 Introduction . 63

5.2 Approach . 65

5.3 Experiments . 70

5.4 Discussion . 78

6 Stochastic Video Generation with a Learned Prior 81

6.1 Introduction . 82

6.2 Approach . 83

6.3 Experiments . 91

6.4 Discussion . 103

7 Conclusion 104

Bibliography 108

viii

List of Figures

2.1 Training and generation in a VAE . 14

4.1 Multiscale sampling procedure with LAPGAN. 40

4.2 Summary of training procedure of LAPGAN. 42

4.3 LAPGAN architecture of CIFAR-10 and STL-10 models. 44

4.4 LAPGAN architecture of LSUN models. 44

4.5 Samples from LAPGAN trained on CIFAR-10. 49

4.6 Samples from LAPGAN trained on LSUN dataset. 50

4.7 Samples from LAPGAN trained on LSUN dataset. 51

4.8 STL10 samples: (a) Random 96x96 samples from our LAPGAN model.

(b) Coarse-to-fine generation chain. 52

4.9 Human evaluation of LAPGAN samples. 53

4.10 CIFAR-10 nearest neighbors in pixel space. 56

4.11 CIFAR-10 nearest neighbors in feature space. 57

4.12 LSUN sample from class conditional LAPGAN model (tower) , seeded

with generated 4×4 images (1st columns), with other columns showing

different draws from the model. 58

ix

4.13 LSUN sample from class conditional LAPGAN model (bedroom) , seeded

with generated 4×4 images (1st columns), with other columns showing

different draws from the model. 59

4.14 LSUN sample from class conditional LAPGAN model (church) , seeded

with generated 4×4 images (1st columns), with other columns showing

different draws from the model. 60

4.15 Effect of varying the coarsest input, with fixed noise at subsequent lay-

ers, on (a) tower model, (b) bedroom model and (c) church model. . . . 61

5.1 Disentangling content and pose with DrNET. 68

5.2 Generating future frames by recurrently predicting latent pose vectors. . 69

5.3 Image synthesis by analogy and frame prediction on MNIST. 72

5.4 Image synthesis by analogy on NORB. 73

5.5 Linear interpolation in pose space between SUNCG images. 74

5.6 Quantitative comparison between DrNET frame prediction method and

baselines on KTH. 75

5.8 Classifying KTH actions from DrNET pose vectors. 77

5.7 Long term video generation samples from DrNET model trained on KTH. 79

5.9 Comparison of KTH video generation quality using Inception score. . . 80

5.10 Nearest neighbors of generated frames in KTH dataset. 80

6.1 Graphical model view of inference and generation in stochastic video

generation model. 84

6.2 Stochastic video generation architecture. 90

6.3 Qualitative comparison of video prediction methods on Stochastic Mov-

ing MNIST. 94

x

6.4 Learned prior predicts points of uncertainty in Stochastic Moving MNIST

videos. 95

6.5 Predicted and ground truth distributions of MNIST digit trajectories. . . 97

6.6 Non-uniform Stochastic Moving MNIST 98

6.7 Four examples of our SVG-LP model accurately capturing the distribu-

tion of MNIST digit trajectories following collision with a wall. Digit

trajectory velocity vectors are sampled from a non-uniform distribution

with higher probability given to greater speeds. On the right we show

the trajectory of a digit prior to the collision. Each of the sub-plots

shows the distribution of ∆x,∆y at each time step. In the lower ground

truth sequence, the trajectory is deterministic before the collision (oc-

curring between t = 8 and t = 9 in the first example), corresponding

to a delta-function. Following the collision, the distribution broadens

out and is eventually reshaped by subsequent collisions. The upper row

shows the distribution estimated by our SVG-LP model (after condition-

ing on ground-truth frames from t = 1 . . . 5). Note how our model accu-

rately captures the correct distribution many time steps into the future,

despite its complex shape. The distribution was computed by drawing

many samples from the model, as well as averaging over different dig-

its sharing the same trajectory. The remaining examples show different

trajectories with correspondingly different impact times 99

6.8 Quantitative comparison of video prediction methods on Stochastic Mov-

ing MNIST and KTH. 100

6.9 Quantitative comparison of video prediction methods on BAIR Robot

Push. 100

xi

6.10 Qualitative comparison of video prediction methods on KTH. 101

6.11 Qualitative comparison of video prediction methods on BAIR Robot Push.101

6.12 Sample generations from BAIR Robot Push. 102

6.13 Additional, longer range generations on BAIR Robot Push. 102

xii

List of Tables

4.1 Parzen window based log-likelihood estimates. 47

5.1 NORB classification results. 77

xiii

Chapter 1

Introduction

Deep neural networks have seen great success in a wide variety of domains in recent

years. Convolutional networks have shown to be effective at discriminative tasks such

as image classification (He et al., 2016; Huang et al., 2017; Krizhevsky et al., 2012),

text classification (Zhang et al., 2015a) and image segmentation (He et al., 2017). Re-

current neural networks have been successfully applied to language modeling (Mikolov,

2012), image captioning (Karpathy and Li, 2015; Kiros et al., 2014) machine translation

(Bahdanau et al., 2015; Sutskever et al., 2014), and many other tasks.

The vast majority of these successes involve a fully supervised learning set-up whereby

a target label is given to the learning algorithm. The target may take a different form de-

pending on the application. For example, classification tasks require data points be anno-

tated with class labels, image segmentation necessitates a per-pixel labeling, and trans-

lation typically requires paired source-target language sentences. Many of the successes

outlined above rely heavily on large training sets of manually annotated data. Given the

difficulty of obtaining enough labeled data to scale many deep learning approaches, it is

increasingly important to look for better methods of utilizing large amounts of unlabeled

1

data.

Deep neural networks have also revolutionized the field of reinforcement learning.

Deep reinforcement learning methods have been successfully applied in a variety of

game-playing domains (Mnih et al., 2013, 2015; Silver et al., 2016), continuous con-

trol tasks (Kalashnikov et al., 2018; Lillicrap et al., 2016), and real-world navigation

(Mirowski et al., 2018, 2017). In contrast to supervised learning, reinforcement learn-

ing does not require labeled data. Instead, an agent learns through interaction with an

environment how to take actions that maximize reward. While this type of trial-and-

error learning does not rely on costly human annotated data, unsupervised learning still

plays a crucial role. Video prediction models are particularly relevant to reinforcement

learning since they can be used to build action-conditional forward models of the en-

vironment. In short, this involves predicting how the state of the world changes in

response to different actions. Accurate forward models can facilitate planning (Fragki-

adaki et al., 2016; Gu et al., 2016; Leibfried et al., 2017; Levine et al., 2016; Schmid-

huber, 1990; Weber et al., 2017) and exploration (Oh et al., 2015; Pathak et al., 2017;

Stadie et al., 2015), which in turn can accelerate learning. Incorporating unsupervised

objectives based on predicting various environmental factors can also speed up learning

and improve overall performance even when the predictions are not used for planning

(Jaderberg et al., 2016).

Unsupervised learning aims to characterize the underlying structure or distribution

of unlabeled data. Generative models of images are a fundamental class of unsupervised

learning algorithms. In short, this approach involves learning the data-generating pro-

cess of a collection of training data such that new samples from the same distribution

can be synthesized. Broadly speaking, generative models of images can be viewed from

two different perspectives. On the one hand, they have many direct image processing

2

applications such as super resolution (Ledig et al., 2016), image editing (Brock et al.,

2017; Dolhansky and Ferrer, 2018; Lample et al., 2017; Ma et al., 2017; Perarnau et al.,

2016), image-to-image translation (Isola et al., 2015; Kim et al., 2017; Zhu et al., 2017),

conditional image synthesis (Nguyen et al., 2017; Zhang et al., 2017), etc. On the other

hand, they provide a flexible way of learning representations about the visual world in

the absence of labeled data.

The central aim of an unsupervised representation learning framework is to un-

cover a feature representation that is applicable across a wide range of tasks. This can

be contrasted with supervised feature learning where labeled data is utilized to learn

a representation with a particular task in mind. Unsupervised representation learning

methods may also be combined with supervised training in what is commonly referred

to as semi-supervised learning. This type of learning is useful when a small amount of

labeled data and large reserves of unlabeled data are available.

The ultimate goal of unsupervised learning is to uncover a generically useful repre-

sentation. Since this objective cannot be directly optimized, an unsupervised criterion

must be defined to guide learning. An effective unsupervised objective should extract

meaningful high level features that describe the underlying structure of the data. With

this in mind, the intuition behind generation as an unsupervised training criterion is

simple: a prerequisite to synthesizing new examples is understanding the underlying

structure of the data. Consider a child tasked with drawing a cat. They must first have

an internal representation of the qualities that make up a cat before they can draw a new

example of one. Similarly, a neural network trained with a generative objective must

first learn to represent the data before being able to accurately synthesize new exam-

ples. This involves exploiting structure and redundancy in the input images and learning

salient features of different objects in the data. Many generative models provide an ex-

3

plicit mechanism for extracting a low-dimensional description of an image and are thus

well suited to unsupervised representation learning.

Video data is a particularly well suited domain for learning about the visual world

due to the natural temporal coherence of image frames within video clips. Rather than

relying on costly annotations, this temporal structure provides a type of supervisory

signal for free. One method of utilizing the temporal coherence of video data is to learn

features that exhibit a range of complex invariances (Goroshin et al., 2015; Gregor and

LeCun, 2010a; Jayaraman and Grauman, 2015; Wang and Gupta, 2015; Wiskott and

Sejnowski, 2002; Zou et al., 2012). Another approach considers the problem of frame

prediction: given a sequence of consecutive video frames, predict the next t frames in the

sequence. The importance of accurate prediction abilities for humans and other animals

is obvious. More recently this general idea has been pushed further; current cognitive

science literature argues that the human brain should be viewed as a prediction machine

that is constantly anticipating events at various time scales (Clark, 2013). This motivates

prediction as an unsupervised learning objective.

Accurate prediction also underlies many other abilities we might expect from an in-

telligent agent such as planning, reasoning about and anticipating future events. More

concretely, video prediction methods have clear applications in model-based reinforce-

ment learning, planning and control. Just as with image generation, future frame pre-

diction can be viewed as an unsupervised criterion for representation learning or as a

method of learning a predictive model that is useful in its own right.

Outline and summary of contributions

This thesis is organized as follows. Chapter 2 provides a summary of several gener-

ative modeling frameworks. Chapter 3 outlines prior work related to the methods pre-

4

sented in this thesis. Chapter 4 introduces a multi-scale image generation model based

on Generative Adversarial Networks (Goodfellow et al., 2014). Chapters 5 introduces a

representation learning framework that, when applied to video sequences, learns a disen-

tangled representation of video frames. The learned factorized representation facilitates

downstream tasks such as predicting future frames of a video sequence or classifying an

action sequence. Chapter 6 proposes another video prediction framework that explicitly

models the uncertainty in video sequences. Finally, we conclude the thesis in Chapter 7

and discuss future avenues of research.

5

Chapter 2

Background

In this chapter we review deep generative models. We provide a brief introduction to

the problem and then outline two approaches for learning generative models.

2.1 Generative Models

Generative models are a powerful unsupervised learning tool. In contrast to dis-

criminative learning, whereby a distribution over labels y given input x is of primary

concern, generative models aim to represent p(x) or p(x, y). Throughout the remainder

of this chapter we will assume the data domain is that of natural images, however many

of these approaches can be applied to audio, text, and other domains. We will also limit

our focus in this chapter to a specific class of generative models known as directed latent

variable models. Chapter 3 gives a high level overview of many alternative generative

modeling frameworks for the interested reader.

We assume the data is distributed according to pdata, which we have access to

through a finite training set {x(1), ..., x(N)} of i.i.d samples. Latent variable models

6

assume the existence of additional unobserved or latent variables that explain the under-

lying factors of variation in the dataset. Intuitively, a latent code z ∈ Z can be viewed as

a, typically lower-dimensional, description of an input x ∈ X that summarizes factors

that generated the data point. Latent variables may describe high level semantic con-

cepts or details of a particular scene. For example, the factors of variation underlying

images of human faces might include lighting condition, face orientation, expression,

and hair color.

Directed graphical models express a probability distribution over random variables

in terms of conditional probabilities. Using this framework, we can write the joint prob-

ability of observed variables x and latent variables z as:

pθ(x, z) = pθ(x|z)p(z) (2.1)

The data likelihood can be obtained by marginalizing over z:

pθ(x) =

∫
z

pθ(x|z)p(z) (2.2)

The prior distribution p(z) should, at the very least, be easy to sample from (often ad-

ditional constraints may be required such as a tractable density). pθ(x|z) is commonly

referred to as the observation model and is generally chosen to have a tractable likeli-

hood and easy sampling procedure. In the deep generative models considered in this

thesis, the observation model will be parameterized by a deep neural network.

This structure gives rise to a simple sampling procedure, known as ancestral sam-

pling, where first we sample z ∼ p(z) and subsequently sample x ∼ pθ(x|z). The goal

of learning is to find parameters θ such that pθ is close to pdata. The precise way this is

quantified for training and evaluation may differ depending on the training framework

7

and downstream use of the generative model. Broadly speaking, the aim is for samples

from the true distribution pdata to have high likelihood under pθ and also for samples

from pθ to resemble samples from pdata.

Beyond sampling from, and evaluating likelihood under pθ, there is another com-

putation we might ask of a generative model. Recall, p(x|z) describes how to convert

a latent representation into an image. In contrast, p(z|x) describes the latent factors

underlying an image x. This distribution is known as the posterior distribution over la-

tent variables z and uncovering it is frequently known as inference. Directed generative

models, by design, typically afford easy conditional sampling x ∼ pθ(x|z) but exact

inference is intractable. The existence of an efficient inference schemes will be one of

the key considerations when comparing generative models in Section 3.1.

2.2 Variational Autoencoders

Autoencoders are a simple and fundamental unsupervised learning framework whereby

a neural network is trained to reconstruct the input from a compressed representation.

Specifically, an encoder network f : X → Z maps an image to a dense vector repre-

sentation and a decoder g : Z → X converts back to the input domain. The model is

trained to reconstruct the original input by minimizing any pre-defined reconstruction

error, e.g. `2:

LAE(x) = ‖x− g(f(x))‖22 (2.3)

The latent space Z is typically of lower dimensionality than X and may be referred to

as a bottleneck layer. By compressing the images into a lower dimensional space, the

network is encouraged to discard redundant information and encode the most prominant

8

factors of variation in the dataset, rather than merely copying the input image. Several

alternatives to the bottleneck principle have been proposed to prevent the model from

learning a trivial mapping. For example, denoising autoencoders reconstruct from a

corrupted version of the original image (Vincent et al., 2010), sparse autoencoders in-

duce a sparsity penalty on the latent representation z (Lee et al., 2007; Makhzani and

Frey, 2014), and contractive autoencoders add a regularizing term to the loss function

that penalizes the encoder’s sensitivity to small changes in the input image (Rifai et al.,

2011).

Variational autoencoders (VAEs; Kingma and Welling 2014; Rezende et al. 2014)

are a framework for learning directed generative models. As we will see below, VAEs

share a strong resemblance with traditional autoencoders. However, the motivation and

loss function are derived from a probabilistic modeling perspective. We first review

VAEs from the perspective of directed generative models and then relate the framework

back to traditional autoencoders.

VAEs are an example of a likelihood-based method. This means that parameters θ

are estimated by maximizing the probability of the data under the model pθ:

pθ(x) =

∫
z

pθ(x|z)p(z) (2.4)

Optimizing the marginal likelihood of Equation 2.4 directly is intractable. Instead, VAEs

optimize a bound on the marginal log-likelihood. Before deriving this bound, we first

review the components of a VAE model. Recall the generative process described in

9

Section 2.1:

z ∼ p(z)

x ∼ pθ(x|z)

The prior, p(z) is typically chosen to be N (0, 1). The output distribution pθ(x|z) is

frequently specified as a conditional Gaussian, with mean given by a neural network µθ

and fixed diagonal covariance:

pθ(x|z) = N (µθ(z), σ2 ∗ I) (2.5)

VAEs derive a lower bound on the marginal log-likelihood of the data under the

model pθ by introducing a new distribution qφ(z|x) that is an approximation to the true

posterior. This approximate posterior is typically specified as a conditional Gaussian

with mean and diagonal covariance given by neural networks µφ and σφ:

qφ(z|x) = N (µφ(x), σ2
φ(x) ∗ I) (2.6)

10

We now derive the bound on the log likelihood of the data:

log pθ(x) = log

∫
z

pθ(x|z)p(z) (2.7)

= log

∫
z

pθ(x|z)p(z)
qφ(z|x)

qφ(z|x)
(2.8)

= logEqφ(z|x)
pθ(x|z)p(z)

qφ(z|x)
(2.9)

≥ Eqφ(z|x) log
pθ(x|z)p(z)

qφ(z|x)
(2.10)

= Eqφ(z|x) log pθ(x|z)− Eqφ(z|x) log
qφ(z|x)

p(z)
(2.11)

= Eqφ(z|x) log pθ(x|z)−DKL(qφ(z|x)||p(z)) (2.12)

The loss function optimized by VAEs is given in line 2.12 and is frequently known

as the evidence lower bound or the variational lower bound:

L(x; θ, φ) = Eqφ(z|x) log pθ(x|z)︸ ︷︷ ︸
reconstruction term

−DKL(qφ(z|x)||p(z))︸ ︷︷ ︸
prior term

(2.13)

Variational autoencoders are named as such due to their resemblance to traditional

autoencoders. In particular, qφ(z|x) can be viewed as an encoder whose input is a data

point x and output is a noisy version of latent representation z. Similarly, pθ(x|z) can

be viewed as a decoder that specifies how to convert a latent code z into an image.

In fact, Equation 2.13 can be interpreted as a regularized and stochastic variant of the

reconstruction objective used in a standard autoencoder.

The first term in Equation 2.13 is the expected negative log likelihood of the data

point x under latent distribution given by the approximate posterior qθ(x|z). This cor-

responds to an expected negative reconstruction loss and, in the case of a Gaussian

output distribution, reduces to a simple `2 loss. The second term in Equation 2.13 is

11

the Kullback-Leibler (KL) divergence of the approximate posterior qθ(z|x) from the

prior p(z). When both the prior and posterior distributions are taken to be Gaussian this

term can be computed in closed form and easily optimized. Recall, the encoder com-

putes, as a function of x, the mean and (diagonal) covariance of a Gaussian distribution

N (µφ(x), σ2
φ(x) ∗ I). For aN (0, 1) prior, the KL divergence term simply pushes µφ(x)

towards a zero vector and σ2
φ(x) to a vector of ones. The KL divergence loss can then

be viewed as a regularizing term that limits the capacity of the encoder. Consequently,

the two terms of Equation 2.13 are in opposition with one another and learning involves

a delicate balance between accurate reconstruction and fitting the prior.

VAEs are trained by maximizing Equation 2.13, averaged over the training set. As

mentioned above, the gradient of the KL-divergence term with respect to φ is easily

computable for many common choices of posterior and prior. However, optimizing

the expected negative reconstruction error requires more care since the expectation is

unknown and depends on parameters φ. VAEs address this problem using the reparam-

eterization trick which re-writes the random variable z as a deterministic function of

another random variable ε: z = f(x, ε), ε ∼ p(ε). For example, in the Gaussian case we

have:

z = fφ(x, ε) = µφ(x) + σ2
φ(x) ∗ ε , where ε ∼ N (0, I). (2.14)

Using this reparameterization, the expectation Eqφ(z|x) log pθ(x|z) can be re-written as

an expectation over ε instead of z:

Eqφ(z|x) log pθ(x|z) = Ep(ε) log pθ(x|fφ(x, ε)) (2.15)

The gradient of Equation 2.15 with respect to φ can now be obtained by moving the

12

gradient inside the expectation and using a Monte Carlo estimate of the expectation:

∇φEqφ(z|x) log pθ(x|z) = Ep(ε)∇φ log pθ(x|fφ(x, ε))

' 1

M

M∑
i=1

∇φ log pθ(x|fφ(x, εi)) , where εi ∼ p(ε).
(2.16)

The variational inference tools introduced in this section can also be leveraged to

learn generative models of sequential data. Here, there are two potential tasks of inter-

est: (i) estimating the unconditional distribution p(x1:T) and (ii) estimating the condi-

tional distribution p(x1:c−1|xc:T). The conditional estimation task provides a framework

for video prediction, i.e. predicting a distribution over a future sequence of frames,

conditioned on past observations, and we will consider it in more depth in Chapter 6.

Bayer and Osendorfer (2014) were the first to utilize the VAE framework for stochas-

tic sequence generation. They incorporated stochastic latent variables into a recurrent

neural network to model music and motion capture data. The method is trained analo-

gous to a VAE but with recurrent, rather than feed-forward, encoder and decoder net-

works. Several additional works have built on this framework to model speech, hand-

writing, natural language (Bowman et al., 2016; Chung et al., 2015; Fraccaro et al.,

2016), perform counterfactual inference (Krishnan et al., 2015) and anomaly detection

(Sölch et al., 2016). More recently, these methods have been applied to stochastic video

generation (Babaeizadeh et al., 2018; Denton and Fergus, 2018; Lee et al., 2018). These

sequential models are all trained analogous to a VAE by optimizing a bound on the

data likelihood using an approximate inference network. They differ primarily in the

parameterization of the approximate posterior and the choice of prior model.

In summary, VAEs are a method of learning directed generative models by optimiz-

ing a bound on the marginal log-likelihood. The method is derived from a probabilistic

13

Encoder (q) Decoder (p)

ᶞᶰ(x) ᶥᶰ(x)

 Data: x Reconstruction: x

z ~ N (ᶞᶰ (x) , ᶥᶰ(x))

~

Decoder (p)

 Generation: x

 z ~ N (0, I)

~

Training Generating

Figure 2.1: Training (left) and generation(right) in a VAE.

modeling perspective but has strong similarities with a regularized autoencoder. VAEs

are flexible generative models that have been utilized for semi- and unsupervised learn-

ing (Higgins et al., 2017; Kingma et al., 2014) and extended for sequential modeling

tasks (Bayer and Osendorfer, 2014; Bowman et al., 2016; Chung et al., 2015; Fraccaro

et al., 2016; Krishnan et al., 2015; Sölch et al., 2016). In the next section we introduce

an alternative approach for learning directed generative models.

2.3 Generative Adversarial Networks

Generative adversarial networks (GANs) are a framework for learning directed gen-

erative models proposed by Goodfellow et al. (2014). GANs are implicit generative

models which, in contrast to VAEs, do not explicitly specify a likelihood function. In-

stead, the method pits two networks against one another: a generative model Gθ cap-

tures the data distribution and a discriminative modelDφ distinguishes between samples

drawn fromGθ and images drawn from the training set. AsDφ is trained to discriminate

true data from generated samples, Gθ is trained simultaneously to generate samples that

fool Dφ into thinking they come from the data distribution.

As training progresses, the two networks improve together. As the generator learns

14

how to fool the discriminator, samples shift from mere noise to more structured outputs.

As the generator’s samples begin to mirror the training distribution, the discriminator

must also improve in order to differentiate the real data from generations. Crucially, the

generator does not have direct access to the training data. Rather, it is the discriminator

that defines the loss function for the generator.

More formally, Gθ takes as input a latent code vector z ∈ Z sampled from a prior

distribution p(z) and outputs an image x ∈ X . The GAN generator Gθ is analogous

to the decoder of a VAE. However, in contrast to a VAE, the generator is deterministic,

i.e. the observation model pθ(x|z) is a Dirac delta function with all the probability

mass concentrated on the point x = G(z). Common choices for the prior p(z) include

N (0, 1) and U(−1, 1). The discriminator Dφ takes as input an image x ∈ X from the

training set or sampled from Gθ and outputs a scalar. In the basic GAN formulation

(Goodfellow et al., 2014) the discriminator’s output is viewed as a probability and is

trained to be high if the input was real and low if generated from Gθ. Parameters θ and

φ are estimated simultaneously by optimizing the minimax objective:

min
θ

max
φ

Ex∼pdata(x) logDφ(x) + Ez∼pnoise(z) log(1−Dφ(Gθ(z))) (2.17)

Optimizing Equation 2.17 requires finding a saddle point; this can make stability and

convergence a challenge. Ideally, the discriminator should be optimized to optimality for

each step the generator takes. This is infeasible in practice and Goodfellow et al. (2014)

instead propose to alternate between k updates of the discriminator and one update of

the generator. The number of discriminator updates steps, k, is frequently taken to be 1.

Optimizing Equation 2.17 can provide poor gradients for the generator early in learn-

ing and Goodfellow et al. (2014) also propose an alternate, non-saturating, variant of the

15

loss that is more frequently used in practice:

max
φ

Ex∼pdata(x) logDφ(x) + Ez∼pnoise(z) log(1−Dφ(Gθ(z))) (2.18)

max
θ

Ez∼pnoise(z) logDφ(Gθ(z))) (2.19)

Goodfellow et al. (2014) show that, under ideal conditions, optimizing Equation 2.17

minimizes the Jensen-Shannon (JS) divergence between pdata and pθ. The heuristically

motivated objective of Equation 2.19 is less theoretically grounded but performs better

empirically.

In essence, GANs utilize the power of deep neural networks - which have proved

highly effective in discriminative tasks - to define a loss function over images. GANs

tend to produce crisper, more visually appealing images than VAE models. This has

partially been attributed to the difference in loss functions (Theis et al., 2016). VAEs

maximize a bound on the data log likelihood - or equivalently minimizeDKL(pdata|pθ) -

which encourages the model to put probability mass on every data point, at the expense

of possibly assigning mass outside the data manifold. In contrast, minimizing the JS

divergence encourages the model to only put mass in data regions, at the expense of

possibly missing some data regions. However, GANs trained to minimize alternative

divergences (Nowozin et al., 2016) tend to exhibit behavior similar to the standard GAN,

suggesting the JS divergence minimization is not the primary difference.

GANs have become increasingly popular generative models in recent years. How-

ever, training instability and lack of convergence criteria make GANs notoriously dif-

ficult to train. One common failure case, known as mode collapse, occurs when the

generator produces an extremely restricted set of images. Oscillating behavior is also

common, where the generator cycles between a handful of data modes. Balancing the

16

generator and discriminator can also be challenging. If the discriminator is too good,

training can collapse. GANs are also highly sensitive to initial conditions and hyper-

parameter settings. They also lack a meaningful loss to track throughout training, mak-

ing hyper-parameter tuning difficult. Several architectural and optimization improve-

ments have been proposed to address these stability concerns (Metz et al., 2017; Odena

et al., 2017; Salimans et al., 2016).

Several variants of the training criterion have also been proposed, which we briefly

review. Energy-based GANs (Zhao et al., 2017) cast the discriminator as an energy

function trained to assign low energy to true data and high energy to samples from the

generator. Least Squares GANs (Mao et al., 2017) replaces the binary cross entropy

loss of Equation 2.19 with an `2 loss. The new formulation corresponds to minimizing

a Pearson X 2 divergence. Wasserstein GANs (Arjovsky et al., 2017; Gulrajani et al.,

2017) minimize a smooth distance metric known as the Wasserstein distance. In addi-

tion to improving training stability, this method provides a clear metric to aid in hyper-

parameter searches and test convergence. Boundary Equilibrium GANs (Berthelot et al.,

2017) also minimize a Wasserstein distance. However, they consider the loss distribu-

tion of an auto-encoder on real and generated data, rather than the image distribution

directly. Nowozin et al. (2016) extend the adversarial framework arbitrary f -divergence

minimization. The original GAN objective of Equation 2.17, which minimizes the JS-

divergence, is a special of the more general method. GANs have also been extended to

discrete generation problems (Hjelm et al., 2018) by utilizing policy gradient techniques

from reinforcement learning.

Many of these alternative frameworks have claimed improved stability, robustness

and generation quality over the original GAN framework. While algorithmic advances

have certainly been made, a recent extensive study by Lucic et al. (2017) shows that -

17

with sufficient hyper-parameter tuning - no single method is consistently superior across

a variety of datasets. This study indicates a need for increased rigor when comparing

GAN methods.

Despite training difficulties, GANs have demonstrated impressive image generation

performance and current state-of-the-art image synthesis models rely on this framework

(Karras et al., 2018; Zhang et al., 2018b). They have been utilized for a variety of image

processing applications such as super-resolution (Ledig et al., 2016), image-to-image

translation (Isola et al., 2015; Kim et al., 2017; Lin et al., 2018; Zhu et al., 2017), text-

to-image synthesis (Reed et al., 2016; Zhang et al., 2017), and semantic segmentation

(Luc et al., 2016).

GANs and VAEs represent two alternative approaches for learning directed genera-

tive models. Each model has a different set of strengths and weaknesses. It is difficult

to directly compare generative models in the absence of a particular goal such as image

synthesis, density estimation, or representation learning.

18

Chapter 3

Motivation and Related work

This chapter reviews previous work related to the methods presented in this thesis. Sec-

tion 3.1 summarizes recent advances in image generation. Section 3.2 reviews repre-

sentation learning with a focus on disentangled and invariant representations. Finally,

Section 3.3 reviews video generation approaches.

3.1 Image generation

Generative image models are well studied, falling into two main approaches: non-

parametric and parametric. The former copy patches from training images to perform,

for example, texture synthesis (Efros and Leung, 1999) or super-resolution (Freeman

et al., 2002). More ambitiously, entire portions of an image can be in-painted, given

a sufficiently large training dataset (Hays and Efros, 2007). Early parametric models

addressed the easier problem of texture synthesis (De Bonet, 1997; Portilla and Simon-

celli, 2000; Zhu et al., 1998), with Portilla and Simoncelli (2000) making use of a steer-

able pyramid wavelet representation (Simoncelli et al., 1992), similar to our use of a

19

Laplacian pyramid described in Chapter 4. For image processing tasks, models based

on marginal distributions of image gradients are effective (Olshausen and Field, 1997;

Roth and Black, 2005), but are only designed for image restoration rather than being

true density models (so cannot sample an actual image). Very large Gaussian mixture

models (Zoran and Weiss, 2011) and sparse coding models of image patches (Wright

et al., 2010) can also be used but suffer the same problem.

More recently, deep learning advances have led to a wide variety of powerful para-

metric generative models. Deep generative models are of interest for both representation

learning and image synthesis. Consequently, as we review recent advances in deep gen-

erative models we will consider a given model’s ability to (i) synthesize high quality

images and (ii) infer generative factors for a particular image.

Deep generative models can broadly be categorized into two groups (Mohamed

and Lakshminarayanan, 2016). Prescribed models explicitly parameterize a distribution

over the data and are trained via maximum likelihood estimation. Restricted Boltzmann

machines, variational autoencoders, autoregressive models, and reversible models are

all examples of likelihood-based approaches. In contrast, implicit generative models,

such as generative adversarial networks and moment matching networks, merely define

a generative process and do not require an explicit density function.

Restricted Boltzmann machines (Hinton and Salakhutdinov, 2006; Krizhevsky et al.,

2010; Osindero and Hinton, 2008; Ranzato et al., 2013), and Deep Boltzmann machines

(Eslami et al., 2014; Salakhutdinov, 2015; Salakhutdinov and Hinton, 2009) are likeli-

hood based methods that were the focus of much early work on deep generative models.

Restricted Boltzmann machines (RBMs) are undirected graphical models with a bipar-

tite graph structure that facilitates quick and easy inference (i.e., inferring latent features

given an image) and conditional generation (i.e. reconstructing an image from a latent

20

code). They are capable of extracting high-level representations of images and thus are

suitable for unsupervised representation learning. Indeed, for many years Restricted

Boltzmann machines were utilized for unsupervised layer-wise pretraining of neural

networks (Bengio et al., 2006). However, due to the intractability of the marginal dis-

tribution, sampling from the model requires running a difficult and expensive Markov

chain. Thus, both training and evaluating these models can be challenging in practice.

Recent advances in stochastic variational inference led to the variational autoencoder

(Kingma and Welling, 2014; Rezende et al., 2014) algorithm. Variational autoencoders

(VAEs; see Section 2.2 for detailed overview) are directed generative models with an

efficient approximate inference scheme and simple maximum likelihood based learn-

ing mechanism. The inference network makes VAEs an appealing unsupervised and

semi-supervised representation learning framework (Higgins et al., 2017; Kingma et al.,

2014). Many extensions and variants of VAEs have been proposed. For example, the

DRAW model of Gregor et al. (2015) builds on the VAE framework, introducing an at-

tentional mechanism with an RNN to generate images via a trajectory of patches. More

recently, van den Oord et al. (2017) introduced the Vector Quantised VAE (VQ-VAE)

which uses discrete, rather than continuous, latent codes and a learned, rather than fixed,

prior. The VQ-VAE has demonstrated impressive image generation and density estima-

tion performance.

Autoregressive models are another class of likelihood-based generative models. They

define a tractable density by specifying an ordering on the pixels and modeling the con-

ditional distribution over each pixel given the previous. Early feed-forward autoregres-

sive models show promising results on image generation at low resolutions (Larochelle

and Murray, 2011; Uria et al., 2013). More recently, recurrent and CNN based au-

toregressive models have shown impressive state-of-the-art performance on large scale

21

datasets such as ImageNet (Reed et al., 2017a; Salimans et al., 2017; Theis and Bethge,

2015; van den Oord et al., 2016a,c). Autoregressive models are currently state-of-the-art

density estimators. However, they lack a latent representation limiting their applicability

to unsupervised learning and image manipulation applications. The iterative and com-

putationally intensive nature of generation also makes real-time generation a challenge.

Another class of maximum likelihood models are known as flow-based or reversible

generative models (Dinh et al., 2014, 2017; Kingma and Dhariwal, 2018). This approach

optimizes the exact log-likelihood by defining a generative process as a sequence of in-

vertible transformations. Flow-based generative models allow for exact inference and

have a simple and efficient ancestral sampling procedure. The recent flow-based gen-

erative model of Kingma and Dhariwal (2018) introduces invertible 1× 1 convolutions

and demonstrates impressive high resolution image synthesis.

In contrast to the likelihood-based models described above, generative adversarial

networks (GANs; Goodfellow et al. 2014; see Section 2.3 for detailed overview) do

not explicitly define a density. Rather, a generative network is learned directly by pair-

ing it with a discriminator network in an adversarial game. Goodfellow et al. (2014)

demonstrated fully connected GANs were effective at modeling small low-resolution

images. However, difficulties in training stability inhibited their immediate applica-

tion to large natural images. Our work on multi-scale image generation (see Chapter

4) and subsequent work on improved architectures (Radford et al., 2016) demonstrated

state-of-the-art image synthesis results, prompting significant interest in GANs. Sev-

eral architectural and optimization improvements have been proposed to improve the

stability of GAN training (Metz et al., 2017; Odena et al., 2017; Salimans et al., 2016).

Additionally, many variants of the training criterion have been proposed in recent years

(Arjovsky et al., 2017; Berthelot et al., 2017; Gulrajani et al., 2017; Hjelm et al., 2018;

22

Mao et al., 2017; Nowozin et al., 2016; Poole et al., 2016; Zhao et al., 2017).

The standard GAN setup lacks an inference mechanism, potentially limiting their

application to settings where a meaningful latent representation is required. However,

several works have proposed a method of learning an inference network jointly with

the generator through a combined adversarial training procedure (Belghazi et al., 2018;

Donahue et al., 2017; Dumoulin et al., 2017). Another set of methods forgo an encoder

entirely and instead utilize the representation learned by the discriminator network (Den-

ton et al., 2015; Odena, 2016; Salimans et al., 2016; Springenberg, 2015).

Bojanowski et al. (2018) propose an framework that utilizes the power of a convo-

lutional generator but avoids the training instability inherent in the adversarial training

procedure. This method, known as Generative Latent Optimization (GLO), directly

learns a mapping from latent codes to images via a reconstruction loss. This simple

method learns a semantically meaningful mapping from noise vectors to images and

produces visually appealing samples.

Another approach to learning implicit generative models is based on a statistical

hypothesis testing tool called Maximum Mean Discrepancy (MMD) that describes the

difference between two probability distributions (Gretton et al., 2007). The MMD cri-

terion can be used to specify an objective function for learning generative models based

on minimizing the difference between the data distribution and the model distribution

(Dziugaite et al., 2015; Li et al., 2015). Moment matching networks are an appealing

alternative to GANs due to the principled nature of the MMD criterion and the stability

of training. However, these models have primarily been applied to small resolution toy

datasets. Methods that leverage both GANs and the MMD criterion have shown bet-

ter image generation performance. For example, Li et al. (2017) propose a framework

for combining the discriminative power of neural networks with the MMD criterion by

23

adversarially learning the MMD kernels.

Many of the generative models described in this section lend themselves naturally to

unsupervised representation learning. In the next section we focus more specifically on

methods for learning representations of the visual world.

3.2 Disentangled representations

A fundamental characteristics of human perception is the ability to decompose ex-

periences into semantically meaningful chunks. For example, visual scenes consist of

multiple objects and objects in turn can be described by properties such as pose, texture

and class identity. Humans are easily able to characterize these so-called factors of vari-

ation. This section explores methods of learning disentangled representations with little

or no supervision.

Much early work on unsupervised learning with neural networks involves the au-

toencoding framework (Bengio et al., 2006; Masci et al., 2011; Ranzato et al., 2006;

Vincent et al., 2010). A range of feature learning methods have been proposed that

aim to learn features invariant to local image transformations, e.g. spatial shifts (Gre-

gor and LeCun, 2010b; Kavukcuoglu et al., 2010; Ranzato and LeCun, 2007). Another

set of methods aims to preserve the information discarded by invariant feature learning

methods and instead explicitly seperate what and where representations (Cadieu and Ol-

shausen, 2009; Gregor and LeCun, 2010a; Ranzato et al., 2007; Zhao et al., 2016). The

what-where autoencoder of Zhao et al. (2016) also has similarities to ladder networks

(Rasmus et al., 2015) which have been used for unsupervised and semi-supervised learn-

ing. The capsule model of Hinton et al. (2011) also performs this what and where sep-

aration via an explicit autoencoder structure and more recently the idea of capsules has

24

been extended and applied in a discriminative setting (Hinton et al., 2017; Sabour et al.,

2017).

Another natural way of decomposing images is based on the concept of content and

style. Content is typically specified by class identity (e.g. chair) and style refers to

characteristics that vary within a given class (e.g. wooden, narrow, etc.). Several recent

content and style separation methods have been proposed that rely on weak supervision

in the form of class identities. (Cheung et al., 2014) propose an autoencoder with an

additional regularizing term to disentangle factors of variation. Mathieu et al. (2016b)

combine VAE and GAN tools to train a conditional generative model with a factorized

latent code. Siddharth et al. (2017) extend the VAE framework by adding additional

latent variables for which supervision is available. Bouchacourt et al. (2018) propose

a related VAE model that relies on group level supervision rather than class identies.

InfoGAN (Chen et al., 2016) is an unsupervised disentangling approach based on max-

imizing the mutual information between the images and a subset of latent variables. ?

disentangle content and style in an unsupervised manner by imposing a prior over latent

codes of an autoencoder with a GAN.

Another set of approaches aims to further disentangle the individual factors sum-

marized by style characteristics, such as pose, lighting conditions, etc. One group of

methods learns these factors by predicting transformed verion of image from original

with a gated RBM (Memisevic and Hinton, 2010; Reed et al., 2014; Susskind et al.,

2011). Kulkarni et al. (2015) show how explicit graphics code can be learned from

datasets with systematic dimensions of variation. Whitney et al. (2016) use a gating

principle to encourage each dimension of the latent representation to capture a distinct

mode of variation.

Another approach to disentangling factors of variation involves encouraging inde-

25

pendence between components of a latent code. Independent components analysis (Hy-

varinen and Oja, 2004) is a classic approach for extracting statistically independent com-

ponents of a dataset. Several variants of the VAE framework have been proposed to learn

independent latent codes from unlabeled data (Higgins et al., 2017; Kumar et al., 2018).

Several approaches has utilized adversarial training to induce independence. Schmid-

huber (1992) proposed an early method of learning discrete independent representations

via an adversarial learning procedure. More recently, several adversarial approaches

have been proposed that encourage independence of latent codes within a VAE (Brakel

and Bengio, 2017; Kim and Mnih, 2018).

Beyond disentangling factors of variation, another desirable property of a learned

representation is invariance to certain transformations. For example, in the context of

classification a chair should be recognizable as such regardless of its pose, size, light-

ing conditions, etc. Several recent deep learning methods have utilized video data to

learn invariances of this sort. Wang and Gupta (2015) learn an invariant embedding

for patches taken from object video tracks. Zou et al. (2012) use similar principles to

learn features that exhibit a range of complex invariances. Criterion related to slow fea-

ture analysis (Wiskott and Sejnowski, 2002) have been proposed such as linearity of

representations (Goroshin et al., 2015) and equivariance to ego-motion (Jayaraman and

Grauman, 2015). Gregor and LeCun (2010a) propose a bilinear model that seperates

slow varying features from location features.

Invariant feature learning methods also have great relevance to the problem of do-

main adaptation. Here, the task is to learn a representation in a source domain that

transfers well to a different, but related, target domain. Several methods utilize an ad-

versarial loss to learn domain-invariant features (Ganin and Lempitsky, 2015; Tzeng

et al., 2015, 2017). This framework involves training a discriminator network to differ-

26

entiate between features in the source and target domains while simultaneously training

the features adversarially to confuse the discriminator.

Adversarial methods have also been adapted to learn fair representations. Rather

than invariance to source/target domain, fair representations seek invariance to certain

protected demographic groups. These methods train a discriminator network to predict

a sensitive attribute (e.g., gender, race, etc.) from an intermediate representation of a

classifier. The classifier features are trained adversarially to confuse the discriminator.

Several adversarial objectives have been proposed to learn representations that achieve

different notions of fairness (Beutel et al., 2017; Edwards and Storkey, 2016; Madras

et al., 2018; Zhang et al., 2018a).

In Chapter 5 we introduce a method that, when applied to video data, learns to

factorize content and pose. Here, content refers to any information that does not change

across a video clip (e.g. background features, lighting conditions, etc.) and pose refers

to frame-specific features (e.g. location of objects). This factorization relates to slow

feature analysis (Wiskott and Sejnowski, 2002) methods in that the content portion of

the representation can be understood as maintaining invariance to local transformations

observed in the video clip. However, instead of throwing this information away, our

method encodes it in the pose portion of the representation. The pose representation is

also trained, via an adversarial loss, to be invariant to the content of the clip. The use of

this adversarial loss induces a clean disentanglement of content/pose. Since high-level

scene semantics tend to change slowly across a video, short video clips provide grouped

data - without the need for manual annotation - that naturally lends itself to this type of

content/pose factorization. However, the method can be applied anywhere group level

supervision is available to disentangle properties constant within a group from those that

vary within a group.

27

In this section we reviewed a set of techniques for learning disentangled, indepen-

dent and invariant representations from weakly or unlabelled data. In the next section

we consider the task of video prediction, where the goal is to predict a future sequence

of frames conditioned on past observations. Video prediction is a challenging and im-

portant problem with applications ranging from unsupervised representation learning to

planning and control.

3.3 Video prediction

The ability to accurately predict the future is fundamental to interacting with and

reasoning about the world. One way of approaching this problem is through video

prediction where the goal is to generate a plausible sequence of future frames given

previously observed frames.

Accurate prediction of future frames requires sophisticated scene understanding as

well as in-depth knowledge of physical and causal rules that govern how objects, light-

ing conditions, etc. change over time. This property, plus the abundance of video data,

makes video prediction a promising framework for unsupervised representation learn-

ing. Indeed, many video prediction methods produce feature representations effective

for downstream tasks such as human action recognition (Denton and Birodkar, 2017;

Srivastava et al., 2015; Vondrick et al., 2016a), face recognition (Lotter et al., 2016) and

other discriminative tasks.

Video prediction methods also have important applications in reinforcement learn-

ing. The vast majority of recent reinforcement learning successes have been in model-

free settings (Lillicrap et al., 2016; Mnih et al., 2013; Schulman et al., 2015) where

learning is known to be incredibly sample inefficient, requiring vastly more experience

28

than humans to achieve comparable performance. One method of improving the sam-

ple efficiency is to utilize a forward model of the environment that specifies how the

state of the world changes in response to different actions. Given an accurate forward

model, model-based approaches can be used that rely more heavily on planning, e.g.

through Monte-Carlo tree search (Browne et al., 2012), and less on trial-and-error (Guo

et al., 2014; Hamrick et al., 2017; Sutton, 1990). Environment dynamics are commonly

unknown and challenging to model, pointing to the need for better methods of learn-

ing action-conditional forward models. Several recent works have proposed model-

based reinforcement learning techniques that utilize learned forward dynamics models

(Fragkiadaki et al., 2016; Gu et al., 2016; Leibfried et al., 2017; Levine et al., 2016;

Schmidhuber, 1990; Weber et al., 2017). Learned forward models can also be used

to guide exploration which in turn can help speed up learning (Bellemare et al., 2016;

Chiappa et al., 2017; Oh et al., 2015; Pathak et al., 2016; Stadie et al., 2015). For-

ward dynamics models can also be used for planning and control outside the context of

reinforcement learning (Henaff et al., 2018; Watter et al., 2015).

Building accurate and robust video prediction models is a challenging and well-

studied problem. A crucial design choice when building generative video models is the

choice of a loss function. A natural choice is to use a mean squared error (MSE) loss,

essentially views frame prediction as a multi-dimensional regression problem. Many

early video prediction methods adopted this approach (Michalski et al., 2014; Srivastava

et al., 2015; Sutskever et al., 2009). Unfortunately, a naive application of MSE for video

prediction can lead to poor results. For example, low prediction errors can be achieved

by a simple copying or blurring of the previous frame. Another challenge arises from the

inherent multi-modality of video data: given a past sequence of frames, multiple future

outcomes may be possible. Unless this multi-modality is explicitly addressed with latent

29

variables, MSE-based models tend to predict an average of multiple possible outcomes.

An alternative approach is to transform frame prediction into a classification, rather

than regression, problem. Ranzato et al. (2014) adopted this approach, proposing one of

the first video prediction methods to scale beyond image patches and synthetic datasets.

Inspired by the effectiveness of recurrent neural networks at modeling sequences of dis-

crete tokens, Ranzato et al. (2014) quantized image patches using k-means and trained

a recurrent network with a cross-entropy loss to predict a 2− d array of centroids.

Video Pixel Networks (VPNs; Kalchbrenner et al. 2016) are another approach to

generation that avoids the blurriness of MSE losses. VPNs discretize pixels and model

the conditional distribution over each pixel given the previous (similar to autoregressive

image generation models of van den Oord et al. (2016b) and Salimans et al. (2017)).

VPNs produce impressive generations but, as with autoregressive models of images,

they are expensive to train and evaluate.

Mathieu et al. (2016a) explore several novel loss functions to improve the crispness

of predicted video frames. By combining MSE, an adversarial loss, and a penalty on

gradient differences between the ground truth and predicted future frame, they demon-

strate improved prediction results beyond MSE alone. Many subsequent models have

adopted the GAN framework and train either entirely with an adversarial loss (Vondrick

et al., 2016b; Vondrick and Torralba, 2017) or with a combined MSE and adversarial

loss (Lee et al., 2018; Villegas et al., 2017a).

Orthogonal to the choice of loss function is the challenge of architecture design. A

wide variety of generation models have been proposed in recent years, many of which

utilize the natural structure and regularity present in video sequences. A key observation

underlying several recent models is that object motion tends to be smooth and continu-

ous. Thus, motion can be modeled via transformations of groups of pixels, rather than

30

generating new future pixels from scratch. One set of approaches predicts optical flows

fields which can be used to extrapolate motion beyond the current frame (Liu, 2009;

Walker et al., 2015; Xue et al., 2016). Finn et al. (2016) use an LSTM framework to

generate convolutional kernels. The kernels are applied to the previous frame and the re-

sulting images are combined via a masked addition to produce the prediction. Vondrick

and Torralba (2017) propose a related approach to transform neighborhoods of pixels

but explicitly generate a different transformation for each spatial location. Video pre-

diction architectures commonly add skip connections between an encoder and decoder

(Denton and Birodkar, 2017; Denton and Fergus, 2018; Finn et al., 2016; Villegas et al.,

2017b). This facilitates direct copying of parts of the previous frame, allowing the rest

of the model to focus on changes.

Another group of approaches factorize the video into static and dynamic compo-

nents. Jojic and Frey (2001) propose a method of inferring masks of moving objects

from unlabelled video sequences. Vondrick et al. (2016b) propose a two-stream convo-

lutional model that separately generates a static background and a dynamic foreground.

Villegas et al. (2017a) propose an LSTM that separates out motion and content in video

sequences. In Chapter 5 we introduce a method that decomposes video frames into

content and pose representations.

Wang et al. (2017) propose a recurrent model with spatial and temporal memory

units in order to better predict far into the future. Wang et al. (2018) extend this model

using the recurrent highway approach of (Zilly et al., 2017) to improve gradient flow.

Another perspective on video prediction involves forgoing pixel-level generation en-

tirely and instead learning a prediction model in an abstract latent space. Predicting

future pixels is a natural objective when no additional annotations or high-level infor-

mation is available. However, accurate pixel-level prediction is often less important

31

than predicting the high-level semantics of future frames. Unfortunately, a high-level se-

mantic representation is not always available, necessitating pixel-level prediction frame-

works. Several methods have proposed high-level representations appropriate for video

prediction. One group of methods predicts future flow fields (Liu, 2009; Walker et al.,

2015; Xue et al., 2016). Another set of methods predict semantic segmentations (Luc

et al., 2017) or instance level segmentations (Luc et al., 2018) of future frames. Other

approaches predict high-level abstractions such as object motion trajectories (Walker

et al., 2014) or visual representations extracted from a discriminative convolutional net-

work (Srivastava et al., 2015; Vondrick et al., 2016a).

Another approach involves predicting high-level structure of future frames and then

decoding the predicted abstractions into pixel space. Villegas et al. (2017b) adopt this

hierarchical approach, using 2−d human poses as the high-level structure. This method

is able to successfully generate complex scenes but requires annotated pose informa-

tion at training time. More recently, Wichers et al. (2018) extended this work to an

unsupervised setting, showing impressive long range generations. Rather than training

end-to-end, another approach involves first discovering high-level features suitable for

video prediction and subsequently training a predictor in the fixed latent space. Fol-

lowing this approach, Chapter 5 introduces a method for learning high-level features

that facilitate video prediction. Our method disentangles static and dynamic aspects of

a video, allowing for stable and coherent long-range prediction. van den Oord et al.

(2017) train a prediction model on discrete codes learned with the VQ-VAE procedure,

generating high quality future predictions on synthetic game environments.

When available, actions can be integrated into prediction models to improve perfor-

mance. Chiappa et al. (2017) and Oh et al. (2015) focus on action-conditional prediction

in video game environments, showing high-quality long rage predictions.

32

One of the most fundamental challenges of video prediction stems from the inherent

uncertainty in the dynamics of the world. For example, consider an unlabeled video

dataset of cars navigating city streets. Upon reaching an intersection a car may drive

straight, turn left or turn right. Typically, a dataset will not contain all possible future

trajectories for a particular past sequence of frames, although collectively all the pos-

sible patterns of motion may be represented. A deterministic model trained with MSE

will penalize a reasonable future prediction (e.g. the car continues straight) if the ground

truth future for that particular training example contained a different outcome (e.g. the

car turns right). Consequently, the model will learn to average multiple possible out-

comes, resulting in blurry predictions. The multi-modal nature must be explicitly taken

into consideration if we want a prediction model that can predict crisp frames and sam-

ple different possible outcomes given an input sequence.

Several more sophisticated approaches have been proposed that focus on addressing

the multi-modality of future prediction. One approach involves finding better methods

of quantifying the loss of a generated sequence of frames so that predictions that de-

viates from the ground truth, but are reasonable given the past, are not penalized. To

this end, the GAN framework has been adopted to define an error metric over images.

The idea is to train a conditional GAN (Mirza and Osindero, 2014a) where the discrim-

inator takes a sequence of predicted or ground truth frames in addition to the previous

frames provided to the generator. Thus, rather than comparing the predicted and ground

truth future frames, the discriminator learns a distribution over possible future outcomes

(conditioned on the past) and assesses the generated future based on this. Mathieu et al.

(2016a) first utilized this type of adversarial loss in the context of video prediction. How-

ever, they combined the adversarial loss with MSE, with the goal of producing crisp

images, rather than modeling multi-modal outcomes. Several subsequent approaches

33

have utilized adversarial losses on their own or in combination with other pixel-wise

objectives (Lee et al., 2018; Villegas et al., 2017a; Vondrick et al., 2016b; Vondrick and

Torralba, 2017). Despite impressive image generation performance, GANs are not yet

a satisfactory method of modeling stochastic videos since training difficulties and mode

collapse often mean the full distribution is not captured well.

Other approaches address uncertainty in predicting the future by introducing latent

variables into the prediction model. Henaff et al. (2017) disentangle deterministic and

stochastic components of a video by encoding prediction errors of a deterministic model

in a low dimensional latent variable. Babaeizadeh et al. (2018) propose a variational

video generation model from which stochastic videos can be sampled. In Chapter 6 we

propose a related variational model that significantly improves upon Babaeizadeh et al.

(2018) both in term of prediction quality and ease of training.

34

Chapter 4

Multi-scale Image Generation using a

Laplacian Pyramid of Adversarial

Networks

In this chapter we introduce a multi-scale image generation model based on GANs. At

the time of publication this work marked a significant advance in deep generative models

of images, producing samples of higher resolution and superior fidelity when compared

with existing approaches. This work was also the first to illustrate the potential of the

GAN framework for generative modeling of high resolution natural images. Since pub-

lication, there has been a surge of interest in GANs. Significant advances have been

made and current GAN models are capable of generating high quality, crisp images at

resolutions up to 1024× 1024 (Karras et al., 2018; Zhang et al., 2018b).

35

4.1 Introduction

Building a good generative model of natural images is a fundamental problem within

computer vision. However, images are complex and high dimensional, making them

hard to model well, despite extensive efforts. Given the difficulties of modeling entire

scenes at high-resolution, we propose an approach that breaks the original problem into

a sequence of more manageable stages. To do this, we exploit the multi-scale structure

of natural images, building a series of generative models, each of which captures image

structure at a particular scale of a Laplacian pyramid (Burt et al., 1983). At each scale we

train a convolutional network-based generative model using the Generative Adversarial

Networks (GAN) approach of Goodfellow et al. (2014). Samples are drawn in a coarse-

to-fine fashion, commencing with a low-frequency residual image. The second stage

samples the band-pass structure at the next level, conditioned on the sampled residual.

Subsequent levels continue this process, always conditioning on the output from the

previous scale, until the final level is reached. Thus, drawing samples is an efficient and

straightforward procedure: taking random vectors as input and running forward through

a cascade of deep convolutional networks to produce an image.

4.2 Approach

The basic building block of our approach is the generative adversarial network

(GAN) of Goodfellow et al. (2014). After reviewing this, we introduce our LAPGAN

model which integrates a conditional form of GAN model into the framework of a Lapla-

cian pyramid.

36

4.2.1 Generative Adversarial Networks

The GAN approach (Goodfellow et al., 2014) is a framework for training genera-

tive models, which we briefly explain in the context of image data (see 2.3 for detailed

overview). The method pits two networks against one another: a generative model G

that captures the data distribution and a discriminative model D that distinguishes be-

tween samples drawn fromG and images drawn from the training data. In our approach,

bothG andD are deep convolutional networks. The former takes as input a noise vector

z drawn from a distribution pNoise(z) and outputs an image x̃. Following Goodfellow

et al. (2014) we used a U(0, 1) noise distribution. The discriminative network D takes

an image as input stochastically chosen (with equal probability) to be either x̃ – as gen-

erated from G, or x – a real image drawn from the training data pData(x). D outputs a

scalar probability, which is trained to be high if the input was real and low if generated

from G. A minimax objective is used to train both models together:

max
G

Ez∼pnoise(z) logD(G(z)) (4.1)

max
D

Ex∼pdata(x) logD(x) + Ez∼pnoise(z) log(1−D(G(z))) (4.2)

This encourages G to fit pData(x) so as to fool D with its generated samples x̃. Both G

and D are trained by backpropagating the loss in Equation 4.1 through their respective

models to update the parameters.

The conditional generative adversarial net (CGAN) is an extension of the GAN

where both networks G and D receive an additional vector of information h as input.

This might contain, say, information about the class of the training example x. The loss

37

function thus becomes:

max
G

Ez∼pnoise(z),h∼ph(h) logD(G(z,h),h) (4.3)

max
D

Ex,h∼pdata(x,h) logD(x,h) + Ez∼pnoise(z),h∼ph(h) log(1−D(G(z,h),h)) (4.4)

where ph(h) is the prior distribution over h. Note that both D and G receive the con-

ditioning variable h. This allows the output of the generative model to be controlled by

h as the discriminator D learns a join distribution over x and h. Mirza and Osindero

(2014b) and Gauthier (2014) both explore this model with experiments on MNIST and

faces, using h as a class indicator. In our approach, h will be another image, generated

from another CGAN model.

4.2.2 Laplacian Pyramid

The Laplacian pyramid (Burt et al., 1983) is a linear invertible image representation

consisting of a set of band-pass images, spaced an octave apart, plus a low-frequency

residual. Formally, let d(.) be a downsampling operation which blurs and decimates a

j × j image x, so that d(x) is a new image of size j/2 × j/2. Also, let u(.) be an

upsampling operator which smooths and expands x to be twice the size, so u(x) is a

new image of size 2j × 2j. We first build a Gaussian pyramid G(x) = [x0,x1, . . . ,xK],

where x0 = x and xk is k repeated applications1 of d(.) to x. K is the number of levels

in the pyramid, selected so that the final level has very small spatial extent (≤ 8 × 8

pixels).

The coefficients hk at each level k of the Laplacian pyramid L(x) are constructed

by taking the difference between adjacent levels in the Gaussian pyramid, upsampling

1i.e. x2 = d(d(x)).

38

the smaller one with u(.) so that the sizes are compatible:

hk = Lk(x) = Gk(x)− u(Gk+1(x)) = xk − u(xk+1) (4.5)

Intuitively, each level captures image structure present at a particular scale. The final

level of the Laplacian pyramid hK is not a difference image, but a low-frequency resid-

ual equal to the final Gaussian pyramid level, i.e. hK = xK . Reconstruction from

a Laplacian pyramid coefficients [h1, . . . ,hK] is performed using the backward recur-

rence:

xk = u(xk+1) + hk (4.6)

which is started with xK = hK and the reconstructed image being x = x0. In other

words, starting at the coarsest level, we repeatedly upsample and add the difference

image h at the next finer level until we get back to the full resolution image.

4.2.3 Laplacian Generative Adversarial Networks (LAPGAN)

Our proposed approach combines the conditional GAN model with a Laplacian pyra-

mid representation. The model is best explained by first considering the sampling pro-

cedure. Following training (explained below), we have a set of generative convolutional

networks {G0, . . . , GK}, each of which captures the distribution of coefficients hk for

natural images at a different level of the Laplacian pyramid. Sampling an image is akin

to the reconstruction procedure in Equation 4.6, except that the generative models are

used to produce the hk’s:

x̃k = u(x̃k+1) + h̃k = u(x̃k+1) +Gk(zk, u(x̃k+1)) (4.7)

39

The recurrence starts by setting x̃K+1 = 0 and using the model at the final level

GK to generate a residual image x̃K using noise vector zK : x̃K = GK(zK). Note

that models at all levels except the final are conditional generative models that take an

upsampled version of the current image x̃k+1 as a condtioning variable, in addition to

the noise vector zk. Figure 4.1 shows this procedure in action for a pyramid with K = 3

using 4 generative models to sample a 64× 64 image.

The generative models {G0, . . . , GK} are trained using the CGAN approach at each

level of the pyramid. Specifically, we construct a Laplacian pyramid from each training

image x. At each level we make a stochastic choice (with equal probability) to either (i)

construct the coefficients hk either using the standard procedure from Equation 4.5, or

(ii) generate them using Gk:

h̃k = Gk(zk, u(xk+1)) (4.8)

Note that Gk is a convolutional network which uses a coarse scale version of the

image lk = u(xk+1) as conditioning input, as well as noise vector zk. Discriminator Dk

takes as input hk or h̃k, along with the low-pass image lk) (which is explicitly added

G
2

~
x
3

G
3

z
2

~
h
2

z
3

G
1

z
1

G
0

z
0

~
x
2

l
2

~
x
0

h
0

~

l
1

l
0

x
0

~
x
1

h
1

~

Figure 4.1: The sampling procedure for our LAPGAN model. We start with a noise sample
z3 (right side) and use a generative model G3 to generate x̃3. This is upsampled (green arrow)
and then used as the conditioning variable (orange arrow) l2 = u() for the generative model at
the next level, G2. Together with another noise sample z2, G2 generates a difference image h̃2
which is added to l2 to create x̃2. This process repeats across two subsequent levels to yield a
final full resolution sample x0.

40

to hk or h̃k before the first convolution layer), and predicts if the image was real or

generated. At the final scale of the pyramid, the low frequency residual is sufficiently

small that it can be directly modeled with a standard GAN: h̃K = GK(zK) andDK only

has hK or h̃K as input. The framework is illustrated in Figure 4.2.

Breaking the generation into successive refinements is the key idea in this work.

Note that we give up any “global” notion of fidelity; we never make any attempt to train

a network to discriminate between the output of a cascade and a real image and instead

focus on making each step plausible. Furthermore, the independent training of each

pyramid level has the advantage that it is far more difficult for the model to memorize

training examples – a hazard when high capacity deep networks are used.

As described, our model is trained in an unsupervised manner. However, we also

explore variants that utilize class labels. This is done by adding a 1-hot vector, indicating

class identity, as another conditioning variable for Gk and Dk.

4.3 Model Architecture & Training

We apply our approach to three datasets: (i) CIFAR10 – 32×32 pixel color images

of 10 different classes, training samples with tight crops of objects; (ii) STL – 96×96

pixel color images of 10 different classes, 100k training samples (we use the unlabeled

portion of data); and (iii) LSUN (Zhang et al., 2015b) – ∼10M images of 10 different

natural scene types, downsampled to 64×64 pixels.

For each dataset, we explored a variety of architectures for {Gk, Dk}. Model selec-

tion was performed using a combination of visual inspection and a heuristic based on

`2 error in pixel space. The heuristic computes the error for a given validation image at

level k in the pyramid as Lk(xk) = min{zj}||Gk(zj, u(xk+1)) − hk||2 where {zj} is a

41

l
2

~
x

3

G
3

 z
0

D
1

D
2

h
2

~
h

2

z
3

D
3

x
3

x
2

x
2 x

3

Real/Generated?

Real/
Generated?

G
1

z
1 G

2

z
2

Real/Generated?

Real/ Generated?

 l
0

x = x
0

 h
0

 x
1

x
1

l
1

~
h

1
h

1

 h
0

~

G
0

D
0

Figure 4.2: The training procedure for our LAPGAN model. Starting with a 64x64 input image
x from our training set (top left): (i) we take x0 = x and blur and downsample it by a factor
of two (red arrow) to produce x1; (ii) we upsample x1 by a factor of two (green arrow), giving
a low-pass version l0 of x0; (iii) with equal probability we use l0 to create either a real or a
generated example for the discriminative model D0. In the real case (blue arrows), we compute
high-pass h0 = I0 − l0 which is input to D0 that computes the probability of it being real vs
generated. In the generated case (magenta arrows), the generative network G0 receives as input
a random noise vector z0 and l0. It outputs a generated high-pass image h̃0 = G0(z0, l0), which
is input to D0. In both the real/generated cases, D0 also receives l0 (orange arrow). Optimizing
Equation 4.3, G0 thus learns to generate realistic high-frequency structure h̃0 consistent with the
low-pass image l0. The same procedure is repeated at scales 1 and 2, using I1 and I2. Note
that the models at each level are trained independently. At level 3, I3 is an 8×8 image, simple
enough to be modeled directly with a standard GANs G3 & D3.

42

large set of noise vectors, drawn from pnoise(z). In other words, the heuristic is asking,

are any of the generated residual images close to the ground truth? For all models, the

noise vector zk is drawn from a U(−1, 1) distribution.

4.3.1 CIFAR10 and STL

Initial scale: This operates at 8 × 8 resolution, using densely connected nets for both

GK and DK with 2 hidden layers and ReLU non-linearities. DK uses Dropout and has

600 units/layer vs 1200 for GK . zK is a 100-d vector.

Subsequent scales: For CIFAR10, we boost the training set size by taking four 28× 28

crops from the original images. Thus the two subsequent levels of the pyramid are

8 → 14 and 14 → 28. For STL, we have 4 levels going from 8 → 16 → 32 →

64→ 96. For both datasets, Gk and Dk are convolutional networks with 3 and 2 layers,

respectively. The noise input zk to Gk is presented as a 4th “color plane to low-pass lk,

hence its dimensionality varies with the pyramid level. For CIFAR10, we also explore

a class conditional version of the model, where a 1-hot vector encodes the label. This is

integrated into Gk & Dk by passing it through a linear layer whose output is reshaped

into a single plane feature map which is then concatenated with the 1st layer maps.

The loss in Equation 4.3 is trained using SGD with an initial learning rate of 0.02,

decreased by a factor of 1e × 10−5) at each epoch. Momentum starts at 0.5, increasing

by 0.0008 at epoch up to a maximum of 0.8. During training, we monitor log-likelihood

using a Parzen-window estimator and retain the best performing model.

43

4.3.2 LSUN

The larger size of this dataset allows us to train a separate LAPGAN model for each

the 10 different scene classes.

Initial scale: This operates at 4 × 4 resolution, using densely connected nets for both

GK & DK with 2 hidden layers and ReLU non-linearities. DK uses Dropout and has

600 units/layer vs 1200 for GK . zK is a 100-d vector.

Subsequent scales: The four subsequent scales 4 → 8 → 16 → 32 → 64 use a

common architecture for Gk & Dk at each level. Gk is a 5-layer convolutional networks

with {64, 368, 128, 224} feature maps and a linear output layer. 7 × 7 filters, ReLUs,

batch normalization (Ioffe and Szegedy, 2015) and Dropout are used at each hidden

layer. Dk has 3 hidden layers with {48, 448, 416}maps plus a sigmoid output. Note that

Gk and Dk are substantially larger than those used for CIFAR10 and STL, as afforded

by the larger training set.

Figure 4.3: LAPGAN architecture of CIFAR-10 and STL-10 models.

Figure 4.4: LAPGAN architecture of LSUN models.

44

4.4 Experiments

We evaluate our approach using 3 different methods: (i) computation of log-likelihood

on a held out image set; (ii) drawing sample images from the model and (iii) a human

subject experiment that compares (a) our samples, (b) those of baseline methods and (c)

real images.

4.4.1 Evaluation of Log-Likelihood

Like Goodfellow et al. (2014), we are compelled to use a Gaussian Parzen window

estimator to compute log-likelihood, since there is no direct way of computing it using

our model. Table 4.1 compares the log-likelihood on a validation set for our LAPGAN

model and a standard GAN using 50k samples for each model (the Gaussian width

σ was also tuned on the validation set). Our approach shows a marginal gain over a

GAN. However, we can improve the underlying estimation technique by leveraging the

multi-scale structure of the LAPGAN model. This new approach computes a probability

at each scale of the Laplacian pyramid and combines them to give an overall image

probability.

To describe the log-likelihood computation in our model, let us consider a two scale

pyramid for the moment. Given a (vectorized) j × j image x, denote by l = d(x) the

coarsened image, and h = x − u(d(x)) to be the high pass. To simplify the compu-

tations, we use a slightly different u operator than the one described in section4.2.2.

Namely, here we take d(x) to be the mean over each disjoint block of 2× 2 pixels, and

take u to be the operator that removes the mean from each 2× 2 block. Since u has rank

3j2/4, we write h in an orthonormal basis of the range of u, then the (linear) mapping

45

from x to (l,h) is unitary. We now build a probability density p on Rj2 by:

p(x) = q0(l,h)q1(l) = q0(d(x), h(x))q1(d(x)) (4.9)

In a moment we will carefully define the functions qi. For now, suppose that qi ≥ 0,∫
q1(l) dl = 1, and for each fixed l,

∫
q0(l,h) dh = 1. Then we can check that p has unit

integral:

∫
p dx =

∫
q0(d(x), h(x))q1(d(x))dx =

∫ ∫
q0(l,h)q1(l) dl dh = 1 (4.10)

Now we define the qi with Parzen window approximations to the densities of each of the

scales. For q1, we take a set of coarsened training samples l1,, lN0 , and construct the

density function q1(l) ∼
∑N1

i=1 e
||l−li||2/σ1 . We fix l = d(x), and using this fixed l, we

sample N0 points h̃1, ..., h̃N1 from the generative model, and define

q0(x) = q0(l,h) ∼
N0∑
i=1

e||h−h̃i||
2/σ0 (4.11)

Note that when defined this way, it is not obvious that q0 is a measurable function, as the

choice of hi by the up-sampling model is different for every l (and in fact depends on

the random seed we used to sample). However, because the mapping from fixed “noise

variable” and coarse image to refinement is the forward of a convolutional net, and so is

continuous, if we use the same random seeds for each x, q1 is measurable. For pyramids

with more levels, we continue in the same way for each of the finer scales. Note we

always use the true low pass at each scale, and measure the true high pass against the

high pass samples generated from the model. Thus for a pyramid with K levels, the

final log likelihood will be: log(qK(lK)) +
∑K−1

k=0 log(qk(lk,hk)).

46

Model CIFAR10 (@32×32) STL10 (@32×32)
GAN (Parzen window estimate) -3617 ± 353 -3661 ± 347

LAPGAN (Parzen window estimate) -3572 ± 345 -3563 ± 311
LAPGAN (multi-scale Parzen window estimate) -1799 ± 826 -2906 ± 728

Table 4.1: Log-likelihood estimates for a standard GAN and our proposed LAPGAN
model on CIFAR10 and STL10 datasets. The mean and std. dev. are given in units of
nats/image. Rows 1 and 2 use a Parzen-window approach at full-resolution, while row
3 uses our multi-scale Parzen-window estimator.

We use this procedure to compute the log-likelihoods for CIFAR-10 and STL-10

images (both at 32 × 32 resolution). The parameter σ (controlling the Parzen window

size) was chosen using the validation set. Our multi-scale Parzen estimate, shown in

Table 4.1, produces a big gain over the traditional estimator.

The shortcomings of both estimators are readily apparent when compared to a simple

Gaussian, fit to the CIFAR-10 training set. Even with added noise, the resulting model

can obtain a far higher log-likelihood than either the GAN or LAPGAN models, or

other published models. More generally, log-likelihood is problematic as a performance

measure due to its sensitivity to the exact representation used. Small variations in the

scaling, noise and resolution of the image (much less changing from RGB to YUV,

or more substantive changes in input representation) results in wildly different scores,

making fair comparisons to other methods difficult. Since publication of this work,

Theis et al. (2016) have further outlined problems with applying the Parzen window

estimate to high dimensional image data.

4.4.2 Model Samples

The Parzen window approach is appealing due to the objective nature of the metric.

However, there is little correspondence between the score and perceptual fidelity of

generated images. To this end, we also also show samples from models trained on

47

CIFAR-10, STL-10 and LSUN datasets.

Figure 4.5 shows samples from our models trained on CIFAR10. Samples from

the class conditional LAPGAN are organized by class. Our reimplementation of the

fully connected GAN (Goodfellow et al., 2014) produces slightly sharper images than

those shown in the original paper. We attribute this improvement to the introduction of

data augmentation. The LAPGAN samples improve upon the standard GAN samples.

They appear more object-like and have more clearly defined edges. Conditioning on

a class label improves the generations as evidenced by the clear object structure in the

conditional LAPGAN samples. The quality of these samples compares favorably with

other generative models of the time (Gregor et al., 2015; Sohl-Dickstein et al., 2015).

Figure 4.8(a) shows samples from our LAPGAN model trained on STL-10. Here, we

lose clear object shape but the samples remain sharp. Figure 4.8(b) shows the generation

chain for random STL-10 samples.

Figure 4.6 shows 64 × 64 samples from LAPGAN models trained on three LSUN

categories (tower, bedroom, church front). Collectively, these show the models captur-

ing complex structure within the scenes, being able to recompose scene elements into

credible looking images. These samples reflect the first instance of a generative model

producing samples of this complexity and quality. The substantial gain in quality over

the CIFAR-10 and STL-10 samples is likely due to the much larger training LSUN

training set which allows us to train bigger and deeper models.

Figure 4.7 shows 128 × 128 samples from LAPGAN models trained on the same

three LSUN categories. Here, we see some detailed structure added, beyond that al-

ready present at 64 × 64. However, many texture artifacts are also evident at this high

resolution.

48

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck GAN, Goodfellow et al. [14] Non-class conditional LAPGAN

Figure 4.5: CIFAR-10 samples: our class conditional CC-LAPGAN model, our LAP-
GAN model and the standard GAN model of (Goodfellow et al., 2014).

49

Figure 4.6: 64× 64 samples from three different LSUN LAPGAN models (top: tower,
middle: bedroom, bottom: church front)

50

Figure 4.7: 128×128 samples from three different LSUN LAPGAN models (top: tower,
middle: bedroom, bottom: church front)

51

(a) (b)

Figure 4.8: STL10 samples: (a) Random 96x96 samples from our LAPGAN model.
(b) Coarse-to-fine generation chain.

4.4.3 Human Evaluation of Samples

To obtain a quantitative measure of sample quality, we asked 15 volunteers to partic-

ipate in an experiment to see if they could distinguish our samples from real images. The

subjects were presented with the user interface shown in Figure 4.9(right) and shown at

random four different types of image: samples drawn from three different GAN models

trained on CIFAR-10 ((i) LAPGAN, (ii) class conditional LAPGAN and (iii) standard

GAN (Goodfellow et al., 2014)) and also real CIFAR-10 images. After being presented

with the image, the subject clicked the appropriate button to indicate if they believed

the image was real or generated. Since accuracy is a function of viewing time, we

also randomly pick the presentation time from one of 11 durations ranging from 50ms

to 2000ms, after which a gray mask image is displayed. Before the experiment com-

menced, they were shown examples of real images from CIFAR-10. After collecting

∼10k samples from the volunteers, we plot in Figure 4.9 the fraction of images believed

to be real for the four different data sources, as a function of presentation time. The

curves show our models produce samples that are far more realistic than those from

standard GAN (Goodfellow et al., 2014).

52

 50 75 100 150 200 300 400 650 1000 2000
0

10

20

30

40

50

60

70

80

90

100

Presentation time (ms)

%
 c

la
s
s
if
ie

d
 r

e
a
l

Real

CC−LAPGAN

LAPGAN

GAN

Figure 4.9: Left: Human evaluation of real CIFAR-10 images (red) and samples from
Goodfellow et al. (2014) (magenta), our LAPGAN (blue) and a class conditional LAP-
GAN (green). The error bars show ±1σ of the inter-subject variability. Around 40% of
the samples generated by our class conditional LAPGAN model are realistic enough to
fool a human into thinking they are real images. This compares with ≤ 10% of images
from the standard GAN model (Goodfellow et al., 2014), but is still a lot lower than the
> 90% rate for real images. Right: The user-interface presented to the subjects.

4.4.4 Sample Variability and Overfitting

Evaluating perceptual fidelity of samples is a crucial, but incomplete, method of as-

sessing generative models. For example, a model that simply retrieves images from a

fixed dataset will produce visually appealing samples and yet remain unsatisfying as a

generative model. Extra care must be taken to ensure a model has truly learned to syn-

thesize new examples, rather than merely memorizing the training set. One common

approach to assessing over-fitting is to compare generated samples with their nearest

neighbor in the training set. Figure 4.10 shows nearest neighbors in the training set,

using `2 distance in pixel space, of generated CIFAR-10 samples. Figure 4.11 shows

nearest neighbors using L2 distance in feature space of a state-of-the-art convnet model2,

of generated CIFAR-10 samples. These figure show that the model is not simply mem-

orizing the training examples.

2Using this Network in Network model: https://gist.github.com/mavenlin/e56253735ef32c3c296d

53

Figure 4.12, Figure 4.13 and Figure 4.14 show samples drawn using the same 4×4

initial image (shown in leftmost column). Specifically, after generating from the 1st

level GAN, the image is fixed and 8 different samples are then drawn, each using a dif-

ferent set of random noise vectors. These samples show that models produce plausible

variations that cannot be the result of trivial copying of the training examples.

We can also condition the generation process on different coarse resolution images

while keeping the noise vectors at each level fixed. Figure 4.15(a), Figure 4.15(b) and

Figure 4.15(c) show samples drawn from our LSUN tower, bedroom and church mod-

els respectively. The coarsest image (leftmost column) in the top and bottom rows of

each figure were sampled from our 4x4 GAN. The intermediate coarse images were

constructed by linearly interpolating between these two images. Each column shows a

sample from a different level of the pyramid conditioned on the coarser image in the pre-

vious column. The same noise vectors were used for each row so that the only source of

variation comes from the 4x4 images. An indication of overfitting would be the presence

of sharp transitions in the generated images, despite the smoothly varying coarse input,

as the model snaps between training examples. But this is not observed: the generations

at each scale smoothly transition. Furthermore, each high resolution image looks like a

plausible natural image, rather than a linear blend between two images. This indicates

our model is moving along the manifold of natural images, rather than on a line between

the start and end images.

4.5 Discussion

Natural images are highly complex and modeling detailed structure at high reso-

lutions is difficult. To address this problem, we have proposed a conceptually simple

54

multi-scale generative model that builds upon the GAN framework of Goodfellow et al.

(2014). This approach, known as the Laplacian pyramid of adversarial networks (LAP-

GAN) decomposes the generation process across multiple image scales. A different

conditional GAN is trained to capture the distribution of natural images at one level of

the Laplacian pyramid, conditioned on coarser resolution images from the level above.

A key point in our work is giving up any “global” notion of fidelity, and instead breaking

the generation into plausible successive refinements. Images can be sampled from the

model in a simple coarse-to-fine fashion.

LAPGAN produces high-quality image samples that, at the time of publication, were

qualitatively superior to alternative deep generative modeling approaches. This work

was the first to demonstrate the effectiveness of convolutional GANs for image gener-

ation. Subsequent work proposed improved convolutional architectures (Radford et al.,

2016) and tricks to improve training stability (Salimans et al., 2016). These early works

demonstrated the potential of the adversarial framework and research has progressed

rapidly in recent years. GAN based models are currently capable of generating crisp,

high quality, high resolution (e.g. 1024 × 1024) images (Karras et al., 2018; Zhang

et al., 2018b). Many of the state-of-the-art GAN generation models utilize a multi-scale

approach similar to our LAPGAN approach (e.g. Karras et al. 2018; Zhang et al. 2017,

2018c).

55

Figure 4.10: Samples drawn from our class conditional CIFAR-10 model, with nearest
neighbors in L2 pixel space shown in adjacent columns (orange).

56

Figure 4.11: Samples drawn from our class conditional CIFAR-10 model, with nearest
neighbors in feature space shown in adjacent columns (orange).

57

Figure 4.12: LSUN sample from class conditional LAPGAN model (tower) , seeded
with generated 4× 4 images (1st columns), with other columns showing different draws
from the model.

58

Figure 4.13: LSUN sample from class conditional LAPGAN model (bedroom) , seeded
with generated 4× 4 images (1st columns), with other columns showing different draws
from the model.

59

Figure 4.14: LSUN sample from class conditional LAPGAN model (church) , seeded
with generated 4× 4 images (1st columns), with other columns showing different draws
from the model.

60

(a) (b) (c)

Figure 4.15: Effect of varying the coarsest input, with fixed noise at subsequent layers,
on (a) tower model, (b) bedroom model and (c) church model.

61

Chapter 5

Disentangling Content and Pose for

Video Prediction

Video prediction is frequently cast at the pixel level where the goal is to predict the pixels

of future frames, conditioned on past observations. Predicting future pixels is a natural

objective, especially when additional annotations (e.g. object trajectories) are unavail-

able. An alternative approach involves first constructing a high level representation

of individual frames and subsequently training a predictive model in this latent space.

Here, the core challenge involves finding a representation effective for the downstream

prediction task. One obvious solution is to use features from a pre-trained discriminative

network (Srivastava et al., 2015; Vondrick et al., 2016a). However, this requires access

to labeled data in the video domain or a close enough correspondence between the video

data and a large labeled dataset. Additionally, without a decoder this method is not ideal

for settings in which pixel level predictions are required.

In this chapter we introduce a method of learning latent representations suitable for

video prediction via an encoder-decoder framework. Our model, Disentangled Rep-

62

resentation Net (DRNET), factorizes a single frame into two components, one that is

roughly constant throughout the video clip and another that captures the dynamic aspects

of the sequence. We refer to these components as content and pose respectively. The

learned content/pose representation affords particularly easy video prediction since only

the pose representation changes across the clip. We train a recurrent model to predict a

future sequence of pose vectors, conditioned on past observations. Content vectors can

be ignored by the recurrent predictor since, by design, they only encode time-invariant

information. The recurrent model is trained entirely in latent pose space but the DRNET

decoder is available to convert latent vectors into images at test time.

5.1 Introduction

Unsupervised learning from video is a long-standing problem in computer vision

and machine learning. The goal is to learn, without explicit labels, a representation that

generalizes effectively to a previously unseen range of tasks, such as semantic classi-

fication of the objects present, predicting future frames of the video or classifying the

dynamic activity taking place. There are several prevailing paradigms: the first, known

as self-supervision, uses domain knowledge to implicitly provide labels (e.g. predict-

ing the relative position of patches on an object (Doersch et al., 2015) or using feature

tracks (Wang and Gupta, 2015)). This allows the problem to be posed as a classification

task with self-generated labels. The second general approach relies on auxiliary action

labels, available in real or simulated robotic environments. These can either be used

to train action-conditional predictive models of future frames (Chiappa et al., 2017; Oh

et al., 2015) or inverse-kinematics models (Agrawal et al., 2016) which attempt to pre-

dict actions from current and future frame pairs. The third and most general approaches

63

are predictive auto-encoders (e.g.(Hinton and Salakhutdinov, 2006; Kalchbrenner et al.,

2016; Mathieu et al., 2016a; Srivastava et al., 2015)) which attempt to predict future

frames from current ones. To learn effective representations, some kind of constraint on

the latent representation is required.

In this paper, we introduce a form of predictive auto-encoder which uses a novel

adversarial loss to factor the latent representation for each video frame into two compo-

nents, one that is roughly time-independent (i.e. approximately constant throughout the

clip) and another that captures the dynamic aspects of the sequence, thus varying over

time. We refer to these as content and pose components, respectively. The adversarial

loss relies on the intuition that while the content features should be distinctive of a given

clip, individual pose features should not. Thus the loss encourages pose features to carry

no information about clip identity. Empirically, we find that training with this loss to be

crucial to inducing the desired factorization.

We explore the disentangled representation produced by our model, which we call

Disentangled-Representation Net (DRNET), on a variety of tasks. The first of these is

predicting future video frames, something that is straightforward to do using our repre-

sentation. We apply a standard LSTM model to the pose features, conditioning on the

content features from the last observed frame. Despite the simplicity of our model rela-

tive to other video generation techniques, we are able to generate convincing long-range

frame predictions, out to hundreds of time steps in some instances. This is significantly

further than existing approaches that use real video data. We also show that DRNET can

be used for classification. The content features capture the semantic content of the video

thus can be used to predict object identity. Alternately, the pose features can be used for

action prediction.

64

5.2 Approach

In our model, two separate encoders produce distinct feature representations of con-

tent and pose for each frame. They are trained by requiring that the content represen-

tation of frame xt and the pose representation of future frame xt+k can be combined

(via concatenation) and decoded to predict the pixels of future frame xt+k. However,

this reconstruction constraint alone is insufficient to induce the desired factorization be-

tween the two encoders. We thus introduce a novel adversarial loss on the pose features

that prevents them from being discriminable from one video to another, thus ensuring

that they cannot contain content information. A further constraint, motivated by the no-

tion that content information should vary slowly over time, encourages temporally close

content vectors to be similar to one another.

More formally, let xi = (x1
i , ...,x

T
i) denote a sequence of T images from video i.

We subsequently drop index i for brevity. Let Ec denote a neural network that maps

an image xt to the content representation htc which captures structure shared across

time. Let Ep denote a neural network that maps an image xt to the pose representation

htp capturing content that varies over time. Let D denote a decoder network that maps a

content representation from a frame, htc, and a pose representation ht+kp from future time

step t+ k to a prediction of the future frame x̃t+k. Finally, C is the scene discriminator

network that takes pairs of pose vectors (h1,h2) and outputs a scalar probability that

they came from the same video or not.

The loss function used during training has several terms:

Reconstruction loss: We use a standard per-pixel `2 loss between the predicted

future frame x̃t+k and the actual future frame xt+k for some random frame offset k ∈

65

[0, K]:

Lreconstruction(Ec, Ep, D) = ||D(Ec(x
t), Ep(x

t+k))− xt+k||22 (5.1)

We find the simple `2 loss to be highly effective but note that more complex loss func-

tions, such as an adversarial (Goodfellow et al., 2014; Mathieu et al., 2016b) or gradient

difference loss (Mathieu et al., 2016b), could be utilized here.

Similarity loss: To ensure the content encoder extracts mostly time-invariant rep-

resentations, we penalize the squared error between the content features htc,h
t+k
c of

neighboring frames k ∈ [0, K]:

Lsimilarity(Ec) = ||Ec(xt)− Ec(xt+k)||22 (5.2)

The similarity loss is related to Slow Feature Analysis (Wiskott and Sejnowski, 2002)

where the rate of change in time-independent components is penalized.

Adversarial loss: We now introduce a novel adversarial loss that exploits the fact

that the objects present do not typically change within a video, but they do between

different videos. Our desired disenanglement would thus have the content features be

(roughly) constant within a clip, but distinct between them. This implies that the pose

features should not carry any information about the identity of objects within a clip.

We impose this via an adversarial framework between the scene discriminator net-

work C and pose encoderEp, shown in Figure 6.2. The latter provides pairs of pose vec-

tors, either computed from the same video (htp,i,h
t+k
p,i) or from different ones (htp,i,h

t+k
p,j),

for some other video j. The discriminator then attempts to classify the pair as being from

the same/different video using a cross-entropy loss:

−Ladversarial(C) = log(C(Ep(x
t
i), Ep(x

t+k
i))) + log(1−C(Ep(x

t
i), Ep(x

t+k
j))) (5.3)

66

The other half of the adversarial framework imposes a loss function on the pose encoder

Ep that tries to maximize the uncertainty (entropy) of the discriminator output on pairs

of frames from the same clip:

− Ladversarial(Ep) =
1

2
log(C(Ep(x

t
i), Ep(x

t+k
i))) +

1

2
log(1− C(Ep(x

t
i), Ep(x

t+k
i)))

(5.4)

Thus the pose encoder is encouraged to produce features that the discriminator is unable

to classify if they come from the same clip or not. In so doing, the pose features cannot

carry information about object content, yielding the desired factorization. Note that

this does assume that the object’s pose is not distinctive to a particular clip. While

adversarial training is also used by GANs, our setup purely considers classification;

there is no generator network, for example.

Overall training objective:

During training we minimize the sum of the above losses, with respect to Ec, Ep, D and

C:

L = Lreconstruction(Ec, Ep, D)+αLsimilarity(Ec)+β(Ladversarial(Ep)+Ladversarial(C))

(5.5)

where α and β are hyper-parameters. The first three terms can be jointly optimized, but

the discriminator C is updated while the other parts of the model (Ec, Ep, D) are held

constant. The overall model is shown in Figure 5.1. Details of the training procedure

and model architectures for Ec, Ep, D and C are given in Section 5.3.1.

67

Target 1
(same scene)

Target 0
(different scenes)

Pose encoder: E
p
(x) Scene discriminator:

C(E
p
(x), E

p
(x’))

Target 1
(same scene)

Target 0
(different scenes)

Pose encoder: E
p
(x) Scene discriminator:

D(E
p
(x), E

p
(x’))

...

...

...

...

L
BCE

L
BCE

x
i
t

x
i
t+k

x
i
t

x
j
t+k

Pose encoder: E
p
(x)

L
similarity

L
reconstruction

Content encoder: E
c
(x)

Frame decoder:
D(E

c
(xt), E

p
(xt+k))

xt+k

xt+k’

xt

xt+k

x t+k
~

Target=0.5

(maximal
uncertainty)

L
adversarial

Figure 5.1: Left: The discriminator C is trained with binary cross entropy (BCE) loss
to predict if a pair of pose vectors comes from the same (top portion) or different (lower
portion) scenes. xi and xj denote frames from different sequences i and j. The frame
offset k is sampled uniformly in the range [0, K]. Note that when C is trained, the pose
encoder Ep is fixed. Right: The overall model, showing all terms in the loss function.
Note that when the pose encoder Ep is updated, the scene discriminator is held fixed.

5.2.1 Forward Prediction

After training, the pose and content encoders Ep and Ec provide a representation

which enables video prediction in a straightforward manner. Given a frame xt, the

encoders produce htp and htc respectively. To generate the next frame, we use these as

input to an LSTM model to predict the next pose features ht+1
p . These are then passed

(along with the content features) to the decoder, which generates a pixel-space prediction

x̃t+1:

h̃t+1
p = LSTM(Ep(x

t), htc) x̃t+1 = D(h̃t+1
p , htc) (5.6)

h̃t+2
p = LSTM(h̃t+1

p , htc) x̃t+2 = D(h̃t+2
p , htc) (5.7)

Note that while pose estimates are generated in a recurrent fashion, the content fea-

tures htc remain fixed from the last observed real frame. This relies on the nature of

Lreconstruction which ensured that content features can be combined with future pose

68

Pose encoder: E
p
(x)

L
similarity

Content encoder: E
c
(x)

Frame decoder: D(E
c
(xt), E

p
(xt+k))

L
linearity

xt+k+
2

xt+k+
1

xt

xt+k

x t+k~

Target 1/
2

(maximal
uncertainty)

L
adversary

Scene discriminator not updated, only
used for pose encoder loss

E
c

xt

LSTM

h
c
t

h
c
t

E
p

xt-1

h
p

 t-1

D

h
p
 t

~

LSTM

h
c
t

E
p

h
p
t

h
p

 t+1
~

LSTM

h
c
t h

p
 t+1
~

h
c
t

D

LSTM

h
c
t h

p
 t+2

~

h
c
t h

p
 t+3

~~
h

p
 t+2

D

h
c
t

xt

x t+3~
x t+2~

x t+1~

Figure 5.2: Generating future frames by recurrently predicting hp, the latent pose vec-
tor.

vectors to give valid reconstructions.

The LSTM is trained separately from the main model using a standard `2 loss be-

tween h̃t+1
p and ht+1

p . Note that this generative model is far simpler than many other

recent approaches, e.g. Kalchbrenner et al. (2016). This largely due to the forward

model being applied within our disentangled representation, rather than directly on raw

pixels.

5.2.2 Classification

Another application of our disentangled representation is to use it for classification

tasks. Content features, which are trained to be invariant to local temporal changes, can

be used to classify the semantic content of an image. Conversely, a sequence of pose

features can be used to classify actions in a video sequence. In either case, we train a

two layer classifier network S on top of either hc or hp, with its output predicting the

class label y.

69

5.3 Experiments

We evaluate our model on both synthetic (MNIST, NORB, SUNCG) and real (KTH

Actions) video datasets. We explore several tasks with our model: (i) the ability to

cleanly factorize into content and pose components; (ii) forward prediction of video

frames using the approach from Section 5.2.1; (iii) using the pose/content features for

classification tasks.

5.3.1 Model details

We explored a variety of convolutional architectures for the content encoderEc, pose

encoder Ep and decoder D. For MNIST, Ec, Ep and D all use a DCGAN architecture

(Radford et al., 2016) with |hp| = 5 and |hc| = 128. The encoders consist of 5 convo-

lutional layers with subsampling. Batch normalization and Leaky ReLU’s follow each

convolutional layer except the final layer which normalizes the pose/content vectors to

have unit norm. The decoder is a mirrored version of the encoder with 5 deconvolutional

layers and a sigmoid output layer.

For both NORB and SUNCG, D is a DCGAN architecture while Ec and Ep use a

ResNet-18 architecture (He et al., 2016) up until the final pooling layer with |hp| = 10

and |hc| = 128.

For KTH, Ep uses a ResNet-18 architecture with |hp| = 5. Ec uses the same archi-

tecture as VGG16 (Simonyan and Zisserman, 2015) up until the final pooling layer with

|hc| = 128. The decoder is a mirrored version of the content encoder with pooling lay-

ers replaced with spatial up-sampling. In the style of U-Net (Ronneberger et al., 2015),

we add skip connections from the content encoder to the decoder, enabling the model to

easily generate static background features.

70

In all experiments the scene discriminator C is a fully connected neural network

with 2 hidden layers of 100 units. We trained all our models with the ADAM optimizer

(Kingma and Ba, 2015) and learning rate η = 0.002. We used β = 0.1 for MNIST,

NORB and SUNCG and β = 0.0001 for KTH experiments. We used α = 1 for all

datasets.

For future prediction experiments we train a two layer LSTM with 256 cells using the

ADAM optimizer. On MNIST, we train the model by observing 5 frames and predicting

10 frames. On KTH, we train the model by observing 10 frames and predicting 10

frames.

5.3.2 Synthetic datasets

MNIST: We start with a toy dataset consisting of two MNIST digits bouncing

around a 64x64 image. Each video sequence consists of a different pair of digits with

independent trajectories. Figure 5.3(left) shows how the content vector from one frame

and the pose vector from another generate new examples that transfer the content and

pose from the original frames. This demonstrates the clean disentanglement produced

by our model. Interestingly, for this data we found it to be necessary to use a differ-

ent color for the two digits. Our adversarial term is so aggressive that it prevents the

pose vector from capturing any content information, thus without a color cue the model

is unable to determine which pose information to associate with which digit. In Fig-

ure 5.3(right) we perform forward modeling using our representation, demonstrating

the ability to generate crisp digits 500 time steps into the future.

NORB: We apply our model to the NORB dataset (LeCun et al., 2004), converted

into videos by taking sequences of different azimuths, while holding object identity,

lighting and elevation constant. Figure 5.4(left) shows that our model is able to factor

71

content and pose cleanly on held out data. In Figure 5.4(center) we train a version of

our model without the adversarial loss term, which results in a significant degradation in

the model and the pose vectors are no longer isolated from content. For comparison, we

also show the factorizations produced by Mathieu et al. (2016b), which are less clean,

both in terms of disentanglement and generation quality than our approach.

We also evaluate the learned content and pose representation in a classification task.

We used a two layer fully connected network with 256 hidden units as the classifier.

Leaky ReLUs, batch normalization and dropout were used in every layer. We trained

with ADAM as used early stopping on a validation set to prevent over fitting. Table

1 shows classification results on NORB, following the training of a classifier on pose

features and also content features. A disentangled content/pose representation should

aid in classification by ensuring the content features are invariant to the pose of the

object. Indeed, we see that when the adversarial term is used (β = 0.1) the content

features perform well. Without the term, content features become less effective for

actionDim=5-latentDi
m=128-maxStep=8-a
dvWeight=0-normaliz
e=true-ngf=64-ndf=64
-model=basic-output=
sigmoid-linWeight=0

3 51 9 126 18 2115 50 10024 200 500

...

...

...

...

...

...

Input frames Generated frames

...

Figure 5.3: Left: Demonstration of content/pose factorization on held out MNIST ex-
amples. Each image in the grid is generated using the pose and content vectors hp and
hc taken from the corresponding images in the top row and first column respectively.
The model has clearly learned to disentangle content and pose. Right: Each row shows
forward modeling up to 500 time steps into the future, given 5 initial frames. For each
generation, note that only the pose part of the representation is being predicted from the
previous time step (using an LSTM), with the content vector being fixed from the 5th
frame. The generations remain crisp despite the long-range nature of the predictions.

72

Pose

Co
nt
en
t

Co
nt
en
t

PosePose Pose

Po
se

Content

Figure 5.4: Left: Factorization examples using our DRNET model on held out NORB
images. Each image in the grid is generated using the pose and content vectors hp and
hc taken from the corresponding images in the top row and first column respectively.
Further examples can be found in the supplemental material. Center: Examples where
DRNET was trained without the adversarial loss term. Note how content and pose are
no longer factorized cleanly: the pose vector now contains content information which
ends up dominating the generation. Right: factorization examples from Mathieu et al.
(2016b).

classification.

SUNCG: We use the rendering engine from the SUNCG dataset (Song et al., 2017)

to generate sequences where the camera rotates around a range of 3D chair models.

DRNET is able to generate high quality examples of this data, as shown in Figure 5.5.

5.3.3 KTH Action Dataset

Finally, we apply DRNET to the KTH dataset (Schuldt et al., 2004). This is a sim-

ple dataset of real-world videos of people performing one of six actions (walking, jog-

ging, running, boxing, handwaving, hand-clapping) against fairly uniform backgrounds.

In Figure 5.6 we show forward generations of different held out examples, comparing

against two baselines: (i) the MCNet of Villegas et al. (2017a) which, at the time of pub-

lication, produced the best quality generations of on real-world video and (ii) a baseline

auto-encoder LSTM model (AE-LSTM). This is essentially the same as ours, but with a

single encoder whose features thus combine content and pose (as opposed to factoring

them in DRNET). It is also similar to (Srivastava et al., 2015).

73

Pose

C
o
n
te
n
t

Figure 5.5: Left: Examples of linear interpolation in pose space between the examples
x1 and x2. Right: Factorization examples on held out images from the SUNCG dataset.
Each image in the grid is generated using the pose and content vectors hp and hc taken
from the corresponding images in the top row and first column respectively. Note how,
even for complex objects, the model is able to rotate them accurately.

Figure 5.7 shows more examples, with generations out to 100 time steps. Gen-

erations in movie form are viewable at https://sites.google.com/view/

drnet-paper/. We see artifact emerging frequently in the baseline MCNet (Vil-

legas et al., 2017a), whereas our generations tend to stick to the image manifold. We

hypothesize this is due to the fact that our predictions occur in a low dimensional la-

tent space, rather than pixel space, so small prediction errors in the image do not get

amplified as generations are fed back into the model.

Evaluating samples from generative models is generally problematic. Pixel-wise

measures like PNSR and SSIM (Wang et al., 2004) are appropriate when objects are

well aligned, but for long-range generations this is unlikely to be the case. Instead, we

adopt an approach based on the Inception score (Salimans et al., 2016) as an alternative

to quantify the fidelity of the generations.

The Inception Score of Salimans et al. (2016) utilized a pre-trained Inception net-

work (Szegedy et al., 2016) to evaluate the quality of generative models of images. The

74

https://sites.google.com/view/drnet-paper/
https://sites.google.com/view/drnet-paper/

t = 21

Ground
truth
future

MCNet

AE-LSTM

DrNet
(ours)

Walking

t = 25t = 15 t = 17 t = 27 t = 30t = 12t = 5 t = 10t = 1

t = 21

Ground
truth
future

MCNet

AE-LSTM

DrNet
(ours)

Running

t = 25t = 15 t = 17 t = 27 t = 30t = 12t = 5 t = 10t = 1

Figure 5.6: Qualitative comparison between our DRNET model, MCNet (Villegas et al.,
2017a) and the AE-LSTM baseline. All models are conditioned on the first 10 video
frames and generate 20 frames. We display predictions of every 3rd frame. Video se-
quences are taken from held out examples of the KTH dataset for the classes of walking
(top) and running (bottom).

Inception network is a deep convolutional architecture, designed for large scale image

classification, that predicts a class label y given input image x. The Inception Score

evaluates a generative models by passing a large set of synthesized images through the

network and assessing the predicted distribution over labels. A good generative model

should produce a highly peaked conditional label distribution p(y|x), i.e. given a partic-

ular image the class identity should be certain , and have a marginal distribution equal

to pdata(y). For KTH, pdata(y) is uniform, i.e. all classes should be equally represented

75

in the samples.

We adopt the basic approach of evaluating generations with a pre-trained discrim-

inative convolutional network. However, in our evaluations we tailor the pre-trained

network to our data domain, rather than using a generic off-the-shelf Inception model

trained on Imagenet. More specifically, we first train a classifier network to accurately

predict the action class of a video from a sequence of 10 frames. We employ a convo-

lutional network classification architecture where the video frames are concatenated as

input to the first layer. Once the classifier is trained, we evaluate the samples generated

by DRNET and MCNet by considering the label distribution predicted by the classifier

for generated sequences. As with the original Inception Score, we expect a good gener-

ative model to produce videos with a highly peaked conditional label distribution p(y|x)

and a uniform marginal label distribution p(y). Formally, the Inception Score is com-

puted by first sampling N videos form the model, x1, ...,xN . The empirical marginal

class distribution is given by

p̂(y) =
1

N

N∑
i=1

p(y|xi) (5.8)

The final score is then given by:

IS(x1, ...,xN) = exp(
1

N

N∑
i=1

KL(p(y|xi)||p̂(y))) (5.9)

Figure 5.9 plots the mean Inception Score for generated sequences from our DRNET

model and MCnet (Villegas et al., 2017a). The x-axis indicates the offset, from the final

frame of the conditioned input, of the first generated frame used for the Inception Score.

The curves show the mean scores of our generations decaying more gracefully than

MCNet.

76

A natural concern with high capacity models is that they might be memorizing the

training examples. We probe this in Figure 5.10, where we show the nearest neigh-

bors to our generated frames from the training set. We compute nearest neighbors in

feature space using either the pose representation alone, or the combined pose and con-

tent representation. The nearest neighbors in pose space show similar body positions

but unrelated background, clothing etc. This indicates DRNET has effectively disentan-

gled content and pose. In contrast, the nearest neighbors in combined content and pose

space capture the full range of variation. Crucially though, these nearest neighbors are

not simple copies of the generations indicating that the model has not memorized the

training data.

Figure 5.8 uses the pose representation produced by DRNET to train an action clas-

sifier from very few examples. We extract pose vectors from video sequences of length

24 and train a fully connected classifier on these vectors to predict the action class. We

compare against an autoencoder baseline, which is the same as ours but with a single

encoder whose features thus combine content and pose. We find the factorization sig-

nificantly boosts performance.
Model Accuracy (%)

DRNET β=0.1

hc 93.3

hp 60.9

DRNET β=0

hc 72.6

hp 80.8

Mathieu et al. (2016b) 86.5

Table 5.1: Classification results on
NORB dataset, with/without adver-
sarial loss (β = 0.1/0) using con-
tent or pose representations (hc, hp
respectively). The adversarial term
is crucial for forcing semantic in-
formation into the content vectors –
without it performance drops signifi-
cantly.

Figure 5.8: Classification of KTH
actions from pose vectors with few
labeled examples, with autoencoder
baseline. N.B. SOA (fully super-
vised) is 93.9% (Le et al., 2011).

77

5.4 Discussion

In this chapter we introduced a model based on a pair of encoders that factor video

into content and pose. This separation is achieved during training through novel adver-

sarial loss term. The resulting representation is versatile, in particular allowing for stable

and coherent long-range prediction through nothing more than a standard LSTM. Our

generations compare favorably with leading approaches, despite being a simple model.

The content and pose factorization was motivated by the end goal of video predic-

tion. However, DRNET can be applied to any dataset where group level supervision is

available. Specifically, a dataset should be arranged into groups such that items within

a group share some common factor(s) of variation. For example, a group may consist

of images of the same person with different hairstyle, lighting conditions and facial ex-

pressions. Then, the DRNET model can be directly applied to disentangle the shared

component amongst the grouped elements (i.e. the content) from the factors that differ

within a group (i.e. the pose). Video data provides this group level supervision for free.

Since scenes tend to change smoothly over time, short video clips will naturally share

many underlying factors of variation. These slow changing elements define the content

learned by DRNET . The remaining, fast changing, aspects of the scene define the pose

components.

DRNET can also be leveraged to learn features suitable for discriminative tasks. For

example, when trained on video data, DRNET learns a content representation that is

invariant to natural local transformations. We explored this in a limited setting in our

NORB and KTH classification experiments but leave further exploration as a future

avenue of research.

78

DrNet

MCNet

Figure 5.7: Four additional examples of generations on held out examples of the KTH
dataset, rolled out to 100 timesteps.

79

0 20 40 60 80 100
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

Future time step

In
c
e
p
ti
o
n
 S

c
o
re

DrNet

MCNet

Figure 5.9: Comparison of KTH video generation quality using Inception score. X-axis
indicated how far from conditioned input the start of the generated sequence is.

t = 12 t = 15 t = 17 t = 21 t = 25 t = 27 t = 30

DrNet
generations

Nearest
neighbour in

pose space

t = 12 t = 15 t = 17 t = 21 t = 25 t = 27 t = 30

Nearest
neighbour in
pose+content

space

DrNet
generations

Nearest
neighbour in

pose space

Nearest
neighbour in
pose+content

space

Figure 5.10: For each frame generated by DRNET (top row in each set), we show
nearest-neighbor images from the training set, based on pose vectors (middle row) and
both content and pose vectors (bottom row). It is evident that our model is not simply
copying examples from the training data. Furthermore, the middle row shows that the
pose vector generalizes well, and is independent of background and clothing.

80

Chapter 6

Stochastic Video Generation with a

Learned Prior

In the previous chapter we introduced a method of learning a latent representation of

images that facilitated the downstream task of video prediction. We demonstrated the

utility of the representation by training a simple recurrent neural network to predict

future latent vectors given past observations. This method proved highly effective at

modeling simple video datasets with deterministic motion.

In this chapter we introduce a stochastic video generation (SVG) model. The de-

terministic LSTM network utilized in Chapter 5 produces a single prediction of future

frames, given the past. In contrast, the method presented in this chapter predicts a distri-

bution over possible future frames. We do so by incorporating stochastic latent variables

into a recurrent frame predictor. The latent variables capture non-deterministic elements

of a video sequence that the frame predictor alone cannot handle. Once the model is

trained, different samples from the latent distribution can be understood as correspond-

ing to different possible futures. We utilize stochastic variational inference techniques

81

(see Section 2.2 for details) to train the model.

6.1 Introduction

Learning to generate future frames of a video sequence is a challenging research

problem with great relevance to reinforcement learning, planning and robotics. Al-

though impressive generative models of still images have been demonstrated (e.g. Kar-

ras et al. (2018); Reed et al. (2017b)), these techniques do not extend to video sequences.

A key challenge of video prediction is the inherent uncertainty in the dynamics of the

world. For example, when a bouncing ball hits the ground unknown effects, such surface

imperfections or ball spin, ensure that its future trajectory is inherently random.

Consequently, pixel-level frame predictions of such an event degrade when a deter-

ministic model is trained with MSE, e.g. with the ball itself blurring to accommodate

multiple possible futures. Recently, loss functions that impose a distribution instead

have been explored. One such approach are adversarial losses (Goodfellow et al., 2014),

but training difficulties and mode collapse often mean the full distribution is not captured

well.

We propose a new stochastic video generation (SVG) model that combines a deter-

ministic frame predictor with time-dependent stochastic latent variables. We propose

two variants of our model: one with a fixed prior over the latent variables (SVG-FP)

and another with a learned prior (SVG-LP). The key insight we leverage for the learned-

prior model is that for the majority of the ball’s trajectory, a deterministic model suffices.

Only at the point of contact does the modeling of uncertainty become important. The

learned prior can can be interpreted as a a predictive model of uncertainty. For most of

the trajectory the prior will predict low uncertainty, making the frame estimates deter-

82

ministic. However, at the instant the ball hits the ground it will predict a high variance

event, causing frame samples to differ significantly.

We train our model by introducing a recurrent inference network to estimate the

latent distribution for each time step. This novel recurrent inference architecture facili-

tates end-to-end training of SVG-FP and SVG-LP. We evaluate SVG-FP and SVG-LP on

two real world datasets and a stochastic variant of the Moving MNIST dataset. Sample

generations are both varied and sharp, even many frames into the future.

6.2 Approach

Let x = (x1, . . . ,xT) denote a video sequence composed of T frames. Our task is

to predict frames xc:T given past frames x1:c−1.

We start by explaining how our model generates new video frames, before detailing

the training procedure. Our model has two distinct components: (i) a prediction model

pθ that generates the next frame x̂t, based on previous ones in the sequence x1:t−1 and

a latent variable zt and (ii) a prior distribution p(z) from which zt is sampled at at

each time step . The prior distribution can be fixed (SVG-FP) or learned (SVG-LP).

Intuitively, the latent variable zt carries all the stochastic information about the next

frame that the deterministic prediction model cannot capture. After conditioning on

real frames x1:c−1, the model can generate multiple frames into the future by passing

generated frames back into the input of the prediction model and, in the case of the

SVG-LP model, the prior also.

The model is trained with the aid of a separate inference model (not used a test

time). This takes as input the frame xt, i.e. the target of the prediction model, and

previous frames x1:t−1. From this it computes a distribution qφ(zt|x1:t) from which we

83

Figure 6.1: Inference (left) and generation in the SVG-FP (middle) and SVG-LP models
(right).

sample zt. To prevent zt just copying xt, we force qφ(zt|x1:t) to be close to the prior

distribution p(z) using a KL-divergence term. This constrains the information that zt can

carry, forcing it to capture new information not present in previous frames. A second

term in the loss penalizes the reconstruction error between x̂t and xt. Figure 6.1 shows

the graphical model defined by this set-up. Figure 6.1a shows the inference procedure

for both SVG-FP and SVG-LP. The generation procedure for SVG-FP and SVG-LP are

shown in Figure 6.1b and Figure 6.1c respectively.

To further explain our model we adopt the formalism of variational auto-encoders.

Our recurrent frame predictor pθ(xt|x1:t−1, z1:t) is specified by a fixed-variance condi-

tional Gaussian distributionN (µθ(x1:t−1, z1:t), σ
2). In practice, we set x̂t = µθ(x1:t−1, z1:t),

i.e. the mean of the distribution, rather than sampling. Note that at time step t the frame

predictor only receives xt−1 and zt as input. The dependencies on all previous x1:t−2

and z1:t−1 stem from the recurrent nature of the model.

Since the true posterior distribution over latent variables zt is intractable, we rely on

a time-dependent inference network qφ(zt|x1:t) that approximates it with a conditional

84

Gaussian distribution N (µφ(x1:t), σφ(x1:t)).

The model is trained by maximizing a variant of the variational lower bound which

was presented in Section 2.2. We first review the variational lower bound, as it applies

to our sequential data:

Lθ,φ(xc:T ;x1:c−1) = Eqφ(zc:T |x) log pθ(xc:T |x1:c−1, zc:T)−DKL(qφ(zc:T |x)||p(zc:T))

(6.1)

Here, x1:c−1 denote the context frames upon which future frame generation is condi-

tioned.

Analogous to a VAE, the first term maximizes the log-likelihood of a sequence of

frames xc, . . . ,xT given the inferred sequence of latent variables zc, . . . , zT and past

frames x1, . . . ,xc−1. The second term minimizes the KL divergence between the ap-

proximate posterior qφ(zc:T |x) and the prior p(zc:T).

Both terms can be simplified and decomposed across time steps. Recall that the SVG

frame predictor is parameterized by a recurrent neural network. At each time step the

model takes as input xt−1 and zt and through the recurrence the model also depends on

x1:t−2 and z1:t−1. Due to the recurrent nature of our model, the likelihood at time t does

not depend on future latent variables zt+1:T . Then, we can further simplify the bound

with:

log pθ(xc:T |x1:c−1, z) = log
T∏
t=c

pθ(xt|x1:t−1, z1:T)

=
T∑
t=c

log pθ(xt|x1:t−1, z1:t,����zt+1:T)

=
T∑
t=c

log pθ(xt|x1:t−1, z1:t) (6.2)

85

The inference network used by SVG-FP and SVG-LP is also parameterized by a

recurrent neural network that outputs a different distribution qφ(zt|x1:t) for every time

step t. Due to the independence across time and LSTM structure of qφ, we have

qφ(zc:T |x) =
T∏
t=c

qφ(zt|x1:t,����xt+1:T)

=
T∏
t=c

qφ(zt|x1:t)

Here, we note that the approximate posterior at time t does not depend on future frames

xt+1:T due to the recurrent nature of the model. The independence of zc, . . . , zT allows

the DKL term of the loss to be decomposed into individual time steps:

DKL(qφ(z|x)||p(z))

=

∫
z

qφ(z|x) log
qφ(z|x)

p(z)
dz

=

∫
zc

· · ·
∫
zT

qφ(zc|x1:c) · · · qφ(zT |x1:T) log
qφ(zc|x1:c) · · · qφ(zT |x1:T)

p(zc) · · · p(zT)
dzc · · · dzT

=

∫
zc

· · ·
∫
zT

qφ(zc|x1:c) · · · qφ(zT |x1:T)
T∑
t=c

log
qφ(zt|x1:t)

p(zt)
dzc · · · dzT

=
T∑
t=c

∫
zc

· · ·
∫
zT

qφ(zc|x1:c) · · · qφ(zT |x1:T) log
qφ(zt|x1:t)

p(zt)
dzc · · · dzT

And because
∫
x

p(x)dx = 1 this simplifies to:

=
T∑
t=c

∫
zt

qφ(zt|x1:t) log
qφ(zt|x1:t)

p(zt)
dzt

=
T∑
t=c

DKL(qφ(zt|x1:t)||p(zt)) (6.3)

Equation 6.1 can now be decomposed across time using using the simplified likeli-

86

hood and KL divergence of Equation 6.2 and Equation 6.3 respectively:

log pθ(xc:T |x1:c−1) ≥ Lθ,φ(x1:T)

= Eqφ(z|x) log pθ(x|z)−DKL(qφ(z|x)||p(z))

=
∑
t

[
Eqφ(z1:t|x1:t) log pθ(xt|x1:t−1, z1:t)

−DKL(qφ(zt|x1:t)||p(zt))
]

(6.4)

Our final objective function is a re-weighted version of Equation 6.4:

Lθ,φ(xc:T ;x1:c−1, β) =
T∑
t=c

[
Eqφ(z1:t|x1:t) log pθ(xt|x1:t−1, z1:t)

− βDKL(qφ(zt|x1:t)||p(zt))
] (6.5)

Given the form of pθ the likelihood term reduces to an `2 penalty between x̂t and xt.

We train the model using the re-parameterization trick (Kingma and Welling, 2014) and

by estimating the expectation over qφ(z1:t|x1:t) with a single sample.

The hyper-parameter β represents the trade-off between minimizing frame predic-

tion error and fitting the prior. A smaller β increases the capacity of the inference net-

work. If β is too small the inference network may learn to simply copy the target frame

xt, resulting in low prediction error during training. However, test time performance,

i.e. when samples are drawn from the prior, due to the mismatch between the posterior

qφ(zt|x1:t) and the prior p(zt). If β is too large, the model may under-utilize or com-

pletely ignore latent variables zt and reduce to a deterministic predictor. In practice, we

found β easy to tune, particularly for the learned-prior variant we discuss below. For a

discussion of hyperparameter β in the context of VAEs see Higgins et al. (2017).

Fixed prior: The simplest choice for p(zt) is a fixed Gaussian N (0, I), as is typ-

87

ically used in variational autoencoder models. We refer to this as the SVG-FP model,

as shown in Figure 6.2a. A drawback is that samples at each time step will be drawn

randomly, thus ignore temporal dependencies present between frames.

Learned prior: A more sophisticated approach is to learn a prior that varies across

time, being a function of all past frames up to but not including the frame being predicted

pψ(zt|x1:t−1). Specifically, at time t a prior network observes frames x1:t−1 and outputs

the parameters of a conditional Gaussian distribution N (µψ(x1:t−1), σψ(x1:t−1)). The

prior network is trained jointly with the rest of the model by maximizing:

Lθ,φ,ψ(x1:T) =
T∑
t=c

[
Eqφ(z1:t|x1:t) log pθ(xt|x1:t−1, z1:t)

− βDKL(qφ(zt|x1:t)||pψ(zt|x1:t−1))
] (6.6)

We refer to this model as SVG-LP and illustrate the training procedure in Figure 6.2b.

At test time, a frame at time t is generated by first sampling zt from the prior. In

SVG-FP we draw zt ∼ N (0, I) and in SVG-LP we draw zt ∼ pψ(zt|x1:t−1). Then, a

frame is generated by x̂t = µθ(x1:t−1, z1:t). After conditioning on a short series of real

frames, the model begins to pass generated frames x̂t back into the input of the predic-

tion model and, in the case of the SVG-LP model, the prior. The sampling procedure

for SVG-LP is illustrated in Figure 6.2c.

Architectures: We use a generic convolutional LSTM for pθ, qφ and pψ. Frames

are input to the LSTMs via a feed-forward convolutional network, shared across all

three parts of the model. A convolutional frame decoder maps the output of the frame

predictor’s recurrent network back to pixel space.

For a time step t during training, the generation is as follows, where the LSTM

88

recurrence is omitted for brevity:

µφ(t), σφ(t) = LSTMφ(ht) , ht = Enc(xt) ,

zt ∼ N (µφ(t), σφ(t)) ,

gt = LSTMθ(ht−1, zt) , ht−1 = Enc(xt−1) ,

µθ(t) = Dec(gt) .

During training, the parameters of the encoderEnc and decoderDec are also learned,

along with the rest of the model, in an end-to-end fashion (we omit their parameters from

the loss functions above for brevity).

In the learned-prior model (SVG-LP), the parameters of the prior distribution at time

t are generated as follows, where the LSTM recurrence is omitted for brevity:

ht−1 = Enc(xt−1) ,

µψ(t), σψ(t) = LSTMψ(ht−1) , .

6.2.1 Discussion of related models

Stochastic temporal models have also been explored outside the domain of video

generation. Bayer and Osendorfer (2014) introduce stochastic latent variables into a re-

current network in order to model music and motion capture data. This method utilizes

a recurrent inference network similar to our approach and the same time-independent

Gaussian prior as our fixed-prior model. Several additional works train stochastic recur-

rent neural networks to model speech, handwriting, natural language (Bowman et al.,

89

Figure 6.2: Our proposed video generation model. (a) Training with a fixed prior (SVG-
FP); (b) Training with learned prior (SVG-LP); (c) Generation with the learned prior
model. The red boxes show the loss functions used during training. See text for details.

2016; Chung et al., 2015; Fraccaro et al., 2016), perform counterfactual inference (Kr-

ishnan et al., 2015) and anomaly detection (Sölch et al., 2016). As in our work, these

methods all optimize a bound on the data likelihood using an approximate inference

network. They differ primarily in the parameterization of the approximate posterior and

the choice of prior model.

Our model is related to a recent stochastic variational video prediction model of

Babaeizadeh et al. (2018). Although their variational framework is broadly similar, a

key difference between this work and ours is the way in which the latent variables zt are

estimated during training and sampled at test time.

The inference network of Babaeizadeh et al. (2018) encodes the entire video se-

quence via a feed forward convolutional network to estimate qθ(z|x1:T). They pro-

pose two different models that use this distribution. In the time-invariant version, a

single z is sampled for the entire video sequence. In the time-variant model, a differ-

ent zt ∼ qθ(z|x1:T) is sampled for every time step, all samples coming from the same

distribution.

90

In contrast, both our fixed-prior and learned-prior models utilize a more flexible

inference network that outputs a different posterior distribution for every time step given

by qθ(zt|x1:t) (note x1:t, not x1:T as above).

At test time, our fixed-prior model and the time-variant model of Babaeizadeh et al.

(2018) sample zt from a fixed Gaussian prior at every time step. By contrast, our

learned-prior model draws samples from the time-varying distribution: pψ(zt|x1:t−1),

whose parameters ψ were estimated during training.

These differences manifest themselves in two ways. First, the generated frames

are significantly sharper with both our models (see direct comparisons to Babaeizadeh

et al. (2018) in Figure 6.11). Second, training our model is much easier. Despite the

same prior distribution being used for both our fixed-prior model and Babaeizadeh et al.

(2018), the time variant posterior distribution introduced in our model appears crucial

for successfully training the model. Indeed, Babaeizadeh et al. (2018) report difficulties

training their model by naively optimizing the variational lower bound, noting that the

model simply ignores the latent variables. Instead, they propose a scheduled three phase

training procedure whereby first the deterministic element of the model is trained, then

latent variables are introduced but the KL loss is turned off and in the final stage the

model is trained with the full loss. In contrast, both our fixed-prior and learned-prior

models are easily trainable end-to-end in a single phase using a unified loss function.

6.3 Experiments

We evaluate our SVG-FP and SVG-LP model on one synthetic video dataset (Stochas-

tic Moving MNIST) and two real ones (KTH actions (Schuldt et al., 2004) and BAIR

robot (Ebert et al., 2017)). We show quantitative comparisons by computing structural

91

similarity (SSIM) and Peak Signal-to-Noise Ratio (PSNR) scores between ground truth

and generated video sequences. Since neither of these metrics fully captures perceptual

fidelity of generated sequences we also make a qualitative comparison between samples

from our model and current state-of-the-art methods. We encourage the reader to view

additional generated videos at: https://sites.google.com/view/svglp/.

6.3.1 Model architectures

LSTMθ is a two layer LSTMs with 256 cells in each layer. LSTMφ and LSTMψ

are both single layer LSTMs with 256 cells in each layer. Each network has a linear

embedding layer and a fully connected output layer. The output of LSTMθ is passed

through a tanh nonlinearity before going into the frame decoder.

For Stochastic Moving MNIST, the frame encoder has a DCGAN discriminator ar-

chitecture (Radford et al., 2016) with output dimensionality |h| = 128. Similarly, the

decoder uses a DCGAN generator architecture and a sigmoid output layer. The output

dimensionalities of the LSTM networks are |g| = 128, |µφ| = |µψ| = 10.

For KTH and BAIR datasets, the frame encoder uses the same architecture as VGG16

(Simonyan and Zisserman, 2015) up until the final pooling layer with output dimen-

sionality |h| = 128. The decoder is a mirrored version of the encoder with pooling

layers replaced with spatial up-sampling and a sigmoid output layer. The output di-

mensionalities of the LSTM networks are |g| = 128, |µφ| = |µψ| = 32 for KTH and

|g| = 128, |µφ| = |µψ| = 64 for BAIR.

For all datasets we add skip connections from the encoder at the last ground truth

frame to the decoder at t, enabling the model to easily generate static background fea-

tures.

We also train a deterministic baseline with the same encoder, decoder and LSTM

92

https://sites.google.com/view/svglp/

architecture as our frame predictor pθ but with the latent variables omitted.

We train all the models with the ADAM optimizer (Kingma and Ba, 2014) and learn-

ing rate η = 0.002. We set β = 1e-4 for KTH and BAIR and β = 1e-6 for KTH. Source

code and trained models are available at https://github.com/edenton/svg.

6.3.2 Stochastic Moving MNIST

We introduce the Stochastic Moving MNIST (SM-MNIST) dataset which consists

of sequences of frames of size 64 × 64, containing one or two MNIST digits moving

and bouncing off edge of the frame (walls). In the original Moving MNIST dataset (Sri-

vastava et al., 2015) the digits move with constant velocity and bounce off the walls in

a deterministic manner. By contrast, SM-MNIST digits move with a constant velocity

along a trajectory until they hit at wall at which point they bounce off with a random

speed and direction. This dataset thus contains segments of deterministic motion inter-

spersed with moments of uncertainty, i.e. each time a digit hits a wall.

Training sequences were generated on the fly by sampling two different MNIST

digits from the training set (60k total digits) and two distinct trajectories. Trajectories

were constructed by uniformly sampling (x, y) starting locations and initial velocity

vectors (∆x,∆y) ∈ [−4, 4] × [−4, 4]. Every time a digit hits a wall a new velocity

vector is sampled.

We trained our SVG models and a deterministic baseline on SM-MNIST by condi-

tioning on 5 frames and training the model to predict the next 10 frames in the sequence.

We compute SSIM for SVG-FP and SVG-LP by drawing 100 samples from the model

for each test sequence and picking the one with the best score with respect to the ground

truth. Figure 6.8(left) plots average SSIM on unseen test videos. Both SVG-FP and

SVG-LP outperform the deterministic baseline and SVG-LP performs best overall, par-

93

https://github.com/edenton/svg

ticularly in later time steps. Figure 6.3 shows sample generations from the deterministic

model and SVG-LP. Generations from the deterministic model are sharp for several

time steps, but the model rapidly degrades after a digit collides with the wall, since the

subsequent trajectory is uncertain.

We hypothesize that the improvement of SVG-LP over the SVG-FP model is due to

the mix of deterministic and stochastic movement in the dataset. In SVG-FP, the frame

predictor must determine how and if the latent variables for a given time step should

be integrated into the prediction. In SVG-LP , the burden of predicting points of high

uncertainty can be offloaded to the prior network.

Empirically, we measure this in Figure 6.4. Five hundred different video sequences

were constructed, each with different test digits, but whose trajectories were synchro-

nized. The plot shows the mean of σψ(x1:t), i.e., the variance of the distribution over zt

predicted by the learned prior over 100 time steps. Superimposed in red and blue are

the time instants when the the respective digits hit a wall. We see that the learned prior

is able to accurately predict these collisions that result in significant randomness in the

trajectory.

One major challenge when evaluating generative video models is assessing how ac-

curately they capture the full distribution of possible outcomes, mainly due to the high

Deterministic
LSTM

G
ro

un
d

tru
th

Best PSNR

Random
sample 1

Random
sample 2

SVG-LP

Deterministic
LSTM

Figure 6.3: Qualitative comparison between SVG-LP and a purely deterministic base-
line. The deterministic model produces sharp predictions until ones of the digits collides
with a wall, at which point the prediction blurs to account for the many possible futures.
In contrast, samples from SVG-LP show the digit bouncing off in different plausible
directions.

94

dimensionality of the space in which samples are drawn. However, the synthetic na-

ture of single digit SM-MNIST allows us to investigate this in a principled way. A key

point to note is that with each sequence, the digit appearance remains constant with the

only randomness coming from its trajectory once it hits the image boundary. Thus for

a sequence generated from our model, we can establish the digit trajectory by taking

a pair of frames at any time step and cross-correlating them with the digit used in the

initial conditioning frames. Maxima in each frame reveal the location of the digit, and

the difference between the two gives us the velocity vector at that time. By taking an

expectation over many samples from our model (also using the same trajectory but dif-

ferent digits), we can compute the empirical distribution of trajectories produced by our

model. We can then perform the same operation on a validation set of ground truth se-

quences, to produce the true distribution of digit trajectories and compare it to the one

produced by our model.

Figure 6.5 shows SVG-LP (trained on single digit SM-MNIST) accurately capturing

the distribution of MNIST digit trajectories for many time steps. The digit trajectory is

Figure 6.4: Learned prior of SVG-LP accurately predicts collision points in SM-
MNIST. Five hundred test video sequences with different MNIST test digits but syn-
chronized motion were fed into the learned prior. The mean (± one standard deviation)
of σψ(x1:t−1) is plotted for t = 1, ..., 100. The true points of uncertainty in the video
sequences, i.e. when a digits hits a wall, are marked by vertical lines, colored red and
blue for each digit respectively.

95

deterministic before a collision. This is accurately reflected by the highly peaked dis-

tribution of velocity vectors from SVG-LP in the time steps leading up to a collision.

Following a collision, the distribution broadens to approximately uniform before being

reshaped by subsequent collisions. Crucially, SVG-LP accurately captures this com-

plex behavior for many time steps. The temporally varying nature of the true trajectory

distributions further supports the need for a learned prior pψ(zt|x1:t−1).

We also ran this experiment on a more challenging, non-uniform distribution of digit

trajectories. Figure 6.6 plots the distribution of ∆x and ∆y from which velocity vectors

are initially sampled at the start of a video sequence. All subsequent velocity vectors are

sampled from a modified variant of this distribution where invalid directions are given

zero probability and the remaining probabilities are re-normalized. Note that depending

which wall the digit hits, a different subset of velocity vectors will be valid (e.g. if the

digit hits the right wall, ∆x > 0 would be invalid) and so the distribution is dependent

on the precise location the digits hits the wall.

We trained SVG-LP on this non-uniform SM-MNIST dataset and assessed the model’s

ability to capture the digit trajectory using the same technique described above. Fig-

ure 6.7 shows SVG-LP accurately capturing the distribution of MNIST digit trajectories

for many time steps. The digit trajectory is deterministic before a collision. This is ac-

curately reflected by the highly peaked distribution of velocity vectors from SVG-LP in

the time steps leading up to a collision. Following a collision, the distribution broadens

and effectively captures the complex trajectory distribution for many time steps.

6.3.3 KTH Action Dataset

The KTH Action dataset (Schuldt et al., 2004) consists of real-world videos of peo-

ple performing one of six actions (walking, jogging, running, boxing, handwaving,

96

Figure 6.5: Three examples of our SVG-LP model accurately capturing the distribution
of MNIST digit trajectories following collision with a wall. On the right we show the
trajectory of a digit prior to the collision. In the ground truth sequence, the angle and
speed immediately after impact are drawn from at random from uniform distributions.
Each of the sub-plots shows the distribution of ∆x,∆y at each time step. In the lower
ground truth sequence, the trajectory is deterministic before the collision (occurring be-
tween t = 7 and t = 8 in the first example), corresponding to a delta-function. Follow-
ing the collision, the distribution broadens out to an approximate uniform distribution
(e.g. t = 8), before being reshaped by subsequent collisions. The upper row shows the
distribution estimated by our SVG-LP model (after conditioning on ground-truth frames
from t = 1 . . . 5). Note how our model accurately captures the correct distribution many
time steps into the future, despite its complex shape. The distribution was computed
by drawing many samples from the model, as well as averaging over different digits
sharing the same trajectory. The 2nd and 3rd examples show different trajectories with
correspondingly different impact times (t = 11 and t = 16 respectively).

hand-clapping) against fairly uniform backgrounds. The human motion in the video

sequences is fairly regular, however there is still uncertainty regarding the precise loca-

tions of the person’s joints at subsequent time steps. We trained SVG-FP, SVG-LP and

the deterministic baseline on 64×64 video sequences by conditioning on 10 frames and

training the model to predict the next 10 frames in the sequence.

97

Figure 6.6: Initial distribution of ∆x / ∆y in non-uniform experiments.

We compute SSIM for SVG-FP and SVG-LP by drawing 100 samples from the

model for each test sequence and picking the one with the best score with respect to

the ground truth. Figure 6.8(right) plots average SSIM on unseen test videos. SVG-FP

and SVG-LP perform comparably on this dataset and both outperform the deterministic

baseline. Figure 6.10 shows generations from the deterministic baseline and SVG-FP.

The deterministic model predicts plausible future frames but, due to the inherent un-

certainty in precise limb locations, often deviates from the ground truth. In contrast,

different samples from the stochastic model reflect the variability in future frames indi-

cating the latent variables are being utilized even on this simple dataset.

6.3.4 BAIR robot pushing dataset

The BAIR robot pushing dataset (Ebert et al., 2017) contains videos of a Sawyer

robotic arm pushing a variety of objects around a table top. The movements of the

arm are highly stochastic, providing a good test for our model. Although the dataset

does contain actions given to the arm, we discard them during training and make frame

predictions based solely on the video input.

Following Babaeizadeh et al. (2018), we train SVG-FP, SVG-LP and the determin-

istic baseline by conditioning on the first two frames of a sequence and predicting the

subsequent 10 frames. We compute SSIM for SVG-FP and SVG-LP by drawing 100

98

Figure 6.7: Four examples of our SVG-LP model accurately capturing the distribution
of MNIST digit trajectories following collision with a wall. Digit trajectory velocity
vectors are sampled from a non-uniform distribution with higher probability given to
greater speeds. On the right we show the trajectory of a digit prior to the collision. Each
of the sub-plots shows the distribution of ∆x,∆y at each time step. In the lower ground
truth sequence, the trajectory is deterministic before the collision (occurring between
t = 8 and t = 9 in the first example), corresponding to a delta-function. Following
the collision, the distribution broadens out and is eventually reshaped by subsequent
collisions. The upper row shows the distribution estimated by our SVG-LP model (after
conditioning on ground-truth frames from t = 1 . . . 5). Note how our model accurately
captures the correct distribution many time steps into the future, despite its complex
shape. The distribution was computed by drawing many samples from the model, as well
as averaging over different digits sharing the same trajectory. The remaining examples
show different trajectories with correspondingly different impact times

samples from the model for each test sequence and picking the one with the best score

with respect to the ground truth. Figure 6.9 plots average SSIM and PSNR scores on 256

99

Figure 6.8: Quantitative evaluation of SVG-FP and SVG-LP video generation quality
on SM-MNIST (left) and KTH (right). The models are conditioned on the first 5 frames
for SM-MNIST and 10 frames for KTH. The vertical bar indicates the frame number the
models were trained to predict up to; further generations indicate generalization ability.
Mean SSIM over test videos is plotted with 95% confidence interval shaded.

Figure 6.9: Quantitative comparison between our SVG models and Babaeizadeh et al.
(2018) on the BAIR robot dataset. All models are conditioned on the first two frames
and generate the subsequent 28 frames. The models were trained to predict up 10 frames
in the future, indicated by the vertical bar; further generations indicate generalization
ability. Mean SSIM and PSNR over test videos is plotted with 95% confidence interval
shaded.

100

G
ro

un
d

tru
th

SVG-FP Random sample 1

Random sample 2

Best PSNR

Deterministic

SVG-FP Random sample 1

Random sample 2

Best PSNR

Deterministic

G
ro

un
d

tru
th

Figure 6.10: Qualitative comparison between SVG-LP and a purely deterministic base-
line. Both models were conditioned on the first 10 frames (the final 5 are shown in the
figure) of test sequences. The deterministic model produces plausible predictions for
the future frames but frequently mispredicts precise limb locations. In contrast, differ-
ent samples from SVG-FP reflect the variability on the persons pose in future frames.
By picking the sample with the best PSNR, SVG-FP closely matches the ground truth
sequence.

B
es

t
PS

N
R

B
es

t
SS

IM

B
ab

ae
iz

ad
eh

et

 a
l.

(b
es

t P
SN

R
)

G
ro

un
d

tr
ut

h

t = 5 t = 7 t = 9 t = 11t = 2t = 1

SVG-LP

B
es

t
PS

N
R

B
es

t
SS

IM

B
ab

ae
iz

ad
eh

et

 a
l.

(b
es

t P
SN

R
)

G
ro

un
d

tr
ut

h

t = 5 t = 7 t = 9 t = 11t = 2t = 1

SVG-LP

Test sequence 6
and 66

Figure 6.11: Qualitative comparison between our SVG-LP model and Babaeizadeh
et al. (2018). All models are conditioned on the first two frames of unseen test videos.
SVG-LP generates crisper images and predicts plausible movement of the robot arm.

held out test sequences, comparing to the state-of-the-art approach of Babaeizadeh et al.

(2018). This evaluation consists of conditioning on 2 frames and generating 28 subse-

quent ones, i.e. longer than at train time, demonstrating the generalization capability of

SVG-FP and SVG-LP. Both SVG-FP and SVG-LP outperform Babaeizadeh et al. (2018)

101

t=1 t=2 t=3 t=4 t=5 t=6 t=14 t=30t=29t=28t=27t=25 t=26t=15 t=16 t=17

Best SSIM
G

ro
un

d
tr

ut
h

Worst SSIM

Random
sample 1

Random
sample 2

Figure 6.12: Additional examples of generations from SVG-LP showing crisp and
varied predictions. A large segment of the background is occluded in conditioning
frames, preventing SVG-LP from directly copying these background pixels into gen-
erated frames. In addition to crisp robot arm movement, SVG-LP generates plausible
background objects in the space occluded by the robot arm in initial frames.

t=1 t=2 t=3 t=4 t=5 t=6 t=36 t=37 t=38 t=39 t=40 t=66 t=67 t=68 t=69 t=70 t=96 t=97 t=98 t=99 t=100

Ground truth Generated

Figure 6.13: Long range generations from SVG-LP. The robot arm remains crisp up to
100 time steps and object motion can be seen in the generated video frames. Additional
videos can be viewed at: https://sites.google.com/view/svglp/.

in terms of SSIM. SVG-LP outperforms the remaining models in terms of PSNR for the

first few steps, after which Babaeizadeh et al. (2018) is marginally better. Qualitatively,

SVG-FP and SVG-LP produce significantly sharper generations than Babaeizadeh et al.

(2018), as illustrated in Figure 6.11. PSNR is biased towards overly smooth (i.e. blurry)

results which might explain the slightly better PSNR scores obtained by Babaeizadeh

et al. (2018) for later time steps.

SVG-FP and SVG-LP produce crisp generations many time steps into the future.

102

https://sites.google.com/view/svglp/

Figure 6.12 shows sample generations up to 30 time steps alongside the ground truth

video frames. We also ran SVG-LP forward for 100 time steps and continue to see crisp

motion of the robot arm (see Figure 6.13).

6.4 Discussion

We have introduced a novel video prediction model that combines a deterministic

prediction of the next frame with stochastic latent variables, drawn from a time-varying

distribution learned from training sequences. Our recurrent inference network estimates

the latent distribution for each time step allowing easy end-to-end training. Evaluat-

ing the model on real-world sequences, we demonstrate high quality generations that

are comparable to, or better than, existing approaches. On synthetic data where it is

possible to characterize the distribution of samples, we see that is able to match com-

plex distributions of futures. The framework is sufficiently general that it can readily be

applied to more complex datasets, given appropriate encoder and decoder modules.

103

Chapter 7

Conclusion

A crucial step towards building intelligent agents is the development of methods for

learning about the rich structure in the visual world, without heavy reliance on labeled

data. In this context, generative models of image and video are of fundamental impor-

tance. Accurate image generation requires an understanding of high level causal factors

that describe the underlying structure of a dataset. Similarly, accurate video prediction

relies on an understanding of object parts and relations, physics, and high level causal

relationships in the world. This makes image generation and video prediction natural

frameworks for learning visual representations in an unsupervised manner.

Accurate video prediction models also have broad applications in reinforcement

learning, planning, and control. Action-conditional environment models can endow re-

inforcement learning agents with the ability to predict the outcome of its actions. This

can significantly improve the sample efficiency of deep reinforcement learning by facil-

itating planning (Henaff et al., 2018; Weber et al., 2017) and exploration (Chiappa et al.,

2017; Pathak et al., 2017; Stadie et al., 2015). Action-conditional models have also been

used for real-world robot control tasks (Agrawal et al., 2016; Ebert et al., 2017; Finn and

104

Levine, 2017).

Motivated by these considerations, this thesis explored deep learning approaches for

building generative and predictive models of the visual world. In Chapter 4 we intro-

duced the Laplacian Pyramid of adversarial networks (LAPGAN), a multi-scale image

generation method based on the GAN framework (Goodfellow et al., 2014). This model

was the first parametric generative model to demonstrate convincing generation results

on complex natural image datasets. LAPGAN, followed shortly after by DCGAN (Rad-

ford et al., 2016), showed the generative modeling potential of convolutional GANs. In

the following years, GANs have revolutionized the field of generative modeling. Rapid

progress has been made and current GAN methods demonstrate extremely high quality

image synthesis results. Several recent state-of-the-art methods also utilize a multi-scale

approach (Karras et al., 2018; Zhang et al., 2017, 2018c), similar to LAPGAN.

In Chapter 5 we introduced Disentangled Representation Net (DRNET), a frame-

work for learning representations suitable for video prediction. By leveraging the tem-

poral structure of video data as group-level supervision, DRNET learns a disentangled

content and pose representation. Here, we defined content as anything which is constant

within a short video clip, and pose as anything which varies across the clip. We showed

the clean disentanglement learned by DRNET allows for image synthesis by analogy, i.e.

combining content and pose of different images, and facilitates video prediction. Video

prediction becomes straightforward using our representation since only the pose features

change across the clip. We train a recurrent model to predict a future sequence of pose

vectors, conditioned on past observations. Content features, by design, remain fixed.

Despite the simplicity, this model generates convincing long-range frame predictions.

In Chapter 6 we introduced a stochastic video generation model that combines a de-

terministic frame predictor with time-dependent stochastic latent variables. Our model

105

learns a prior over latent variables at each time step. We show empirically that the

learned prior can be interpreted as a predictive model of uncertainty. Specifically, the

prior predicts high variance distributions for time steps of high uncertainty and low vari-

ance distributions for points of low uncertainty. We train the model using techniques

from approximate variational inference and show high quality stochastic generation re-

sults. We find the model is easy to train and produces significantly sharper results that

alternative approaches.

The video prediction models presented in this thesis each address a different chal-

lenge. Our DRNET model focuses on learning an abstract representation of images that

facilitates video predication, so as to avoid pixel-level objectives; our stochastic video

generation model addresses the problem of modeling uncertainty in future predictions.

These approaches can also be combined by, for example, using the content/pose repre-

sentation of DRNET as the input to the stochastic generation model.

Despite rapid progress in recent years, video prediction is far from solved. One crit-

ical challenge is developing better methods of evaluation. Current evaluation methods

tend to rely on pixel-level metrics such as PSNR and SSIM. However, these metrics do

a poor job of quantifying perceptual fidelity of predicted frames. To this end, we uti-

lized a metric based on the Inception score (Salimans et al., 2016) in our evaluation in

Chapter 5. This metric has its own suite of problems (Barratt and Sharma, 2018) and

only measures a specific aspect of any prediction model.

Ultimately, we advocate for video prediction methods to be evaluated on a suite of

metrics. Depending on the downstream application of a model, certain metrics are more

relevant that others. For example, for image editing applications, crisp high quality

generations may be more important than accurately predicting the content of a future

frame. For long term planning applications, precise details may be less important that

106

capturing the high level semantic content of a future scene. Alternatively, many control

applications require prediction of precise and accurate object trajectories. This points to

the importance of, when appropriate, evaluating video prediction models in light of the

end goal.

Another major challenge is the development of a standard suite of video datasets

upon which to benchmark models. One promising avenue of future research is the de-

velopment of a suite of video datasets, each reflecting a particular challenge. Such

challenges might include modeling long term dependencies, multiple object interac-

tions, causal relationships, physics, etc. Generating the datasets in a virtual environment

could provide annotations (e.g. object centroids) useful for evaluation metrics. Video

generation models could then be evaluated against such a suite to determine particular

strengths and weaknesses.

107

Bibliography

Agrawal, P., Nair, A., Abbeel, P., Malik, J., and Levine, S. (2016). Learning to poke by

poking: Experiential learning of intuitive physics. Advances in Neural Information

Processing Systems (NIPS).

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan. arXiv 1701.07875.

Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R. H., and Levine, S. (2018). Stochas-

tic variational video prediction. International Conference on Learning Representa-

tions (ICLR).

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly

learning to align and translate. In Proceedings of the International Conference on

Learning Representations (ICLR).

Barratt, S. and Sharma, R. (2018). A note on the inception score. In arXiv:1801.01973.

Bayer, J. and Osendorfer, C. (2014). Learning stochastic recurrent networks.

arXiv:1411.7610.

Belghazi, M. I., Rajeswar, S., Mastropietro, O., Rostamzadeh, N., Mitrovic, J., and

Courville, A. (2018). Hierarchical adversarially learned inference. arXiv:1802.01071.

108

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R.

(2016). Unifying count-based exploration and intrinsic motivation. In Advances in

Neural Information Processing Systems (NIPS).

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2006). Greedy layer-wise

training of deep networks. In Advances in Neural Information Processing Systems

(NIPS).

Berthelot, D., Schumm, T., and Metz, L. (2017). Began: boundary equilibrium genera-

tive adversarial networks. In arXiv:1703.10717.

Beutel, A., Chen, J., Zhao, Z., and Chi, E. H. (2017). Data decisions and theoretical

implications when adversarially learning fair representations. In arXiv:1707.00075.

Bojanowski, P., Joulin, A., Lopez-Pas, D., and Szlam, A. (2018). Optimizing the latent

space of generative networks. In International Conference on Machine Learning

(ICML).

Bouchacourt, D., Tomioka, R., and Nowozin, S. (2018). Multi-level variational autoen-

coder: Learning disentangled representations from grouped observations. In AAAI

Conference on Artificial Intelligence.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio, S.

(2016). Generating sentences from a continuous space. In Proceedings of The

SIGNLL Conference on Computational Natural Language Learning (CoNLL).

Brakel, P. and Bengio, Y. (2017). Learning independent features with adversarial nets

for non-linear ica. Workshop on Implicit Models, ICML.

109

Brock, A., Lim, T., Ritchie, J., and Weston, N. (2017). Neural photo editing with intro-

spective adversarial networks. In International Conference on Learning Representa-

tions (ICLR).

Browne, C., Whitehouse, D., Lucas, S., Cowling, P. I., Rohlfshagen, P., Tavener, S.,

Perez, D., Samothrakis, S., and Colton, S. (2012). A survey of monte carlo tree

search methods. IEEE Transactions on Computational Intelligence and AI in Games,

4(1).

Burt, P. J., Edward, and Adelson, E. H. (1983). The laplacian pyramid as a compact

image code. IEEE Transactions on Communications, 31:532–540.

Cadieu, C. F. and Olshausen, B. A. (2009). Learning transformational invariants from

natural movies. In Advances in Neural Information Processing Systems (NIPS).

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P. (2016).

Infogan: Interpretable representation learning by information maximizing generative

adversarial nets. In Advances in Neural Information Processing Systems (NIPS).

Cheung, B., Livezey, J. A., Bansal, A. K., and Olshausen, B. A. (2014). Discovering

hidden factors of variation in deep networks. In arXiv:1412.6583.

Chiappa, S., Racaniere, S., Wierstra, D., and Mohamed, S. (2017). Recurrent envi-

ronment simulators. In Proceedings of the International Conference on Learning

Representations (ICLR).

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., and Bengio, Y. (2015). A

recurrent latent variable model for sequential data. In Advances in Neural Information

Processing Systems (NIPS).

110

Clark, A. (2013). Whatever next? predictive brains, situated agents, and the future of

cognitive science. In Behavioural and Brain Sciences, 36(3).

De Bonet, J. S. (1997). Multiresolution sampling procedure for analysis and synthesis of

texture images. In Proceedings of the 24th annual conference on Computer graphics

and interactive techniques, pages 361–368. ACM Press/Addison-Wesley Publishing

Co.

Denton, E. and Birodkar, V. (2017). Unsupervised learning of disentangled representa-

tions from video. In Advances in Neural Information Processing Systems (NIPS).

Denton, E., Chintala, S., Szlam, A., and Fergus, R. (2015). Deep generative image

models using a laplacian pyramid of adversarial networks. In Advances in Neural

Information Processing Systems (NIPS).

Denton, E. and Fergus, R. (2018). Stochastic video generation with a learned prior. In

International Conference on Machine Learning (ICML).

Dinh, L., Krueger, D., and Bengio, Y. (2014). Nice: non-linear independent components

estimation. arXiv:1410.8516.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using real nvp.

Proceedings of the International Conference on Learning Representations (ICLR).

Doersch, C., Gupta, A., and Efros, A. A. (2015). Unsupervised visual representation

learning by context prediction. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1422–1430.

Dolhansky, B. and Ferrer, C. C. (2018). Eye in-painting with exemplar generative ad-

111

versarial networks. In The IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR).

Donahue, J., Krhenbhl, P., and Darrell, T. (2017). Adversarial feature learning. Interna-

tional Conference on Learning Representations (ICLR).

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky, M., and

Courville, A. (2017). Adversarially learned inference. International Conference on

Learning Representations (ICLR).

Dziugaite, G. K., Roy, D. M., and Ghahramani, Z. (2015). Training generative neural

networks via maximum mean discrepancy optimization. In Uncertainty in Artificial

Intelligence.

Ebert, F., Finn, C., Lee, A. X., and Levine, S. (2017). Self-supervised visual planning

with temporal skip connections. In Conference on Robot Learning (CoRL).

Edwards, H. and Storkey, A. (2016). Censoring representations with an adversary. In-

ternational Conference on Learning Representations (ICLR).

Efros, A. A. and Leung, T. K. (1999). Texture synthesis by non-parametric sampling.

In International Conference on Computer Vision, volume 2, pages 1033–1038. IEEE.

Eslami, S. A., Heess, N., Williams, C. K., and Winn, J. (2014). The shape boltzmann

machine: a strong model of object shape. International Journal of Computer Vision,

107(2):155–176.

Finn, C., Goodfellow, I., and Levine, S. (2016). Unsupervised learning for physical

interaction through video prediction. In Advances in Neural Information Processing

Systems (NIPS).

112

Finn, C. and Levine, S. (2017). Deep visual foresight for planning robot motion. Inter-

national Conference on Robotics and Automation (ICRA).

Fraccaro, M., Snderby, S. K., Paquet, U., and Winther, O. (2016). Sequential neural

models with stochastic layers. In Advances in Neural Information Processing Systems

(NIPS).

Fragkiadaki, K., Agrawal, P., Levine, S., and Malik, J. (2016). Learning visual predictive

models of physics for playing billiards. In International Conference on Learning

Representations (ICLR).

Freeman, W. T., Jones, T. R., and Pasztor, E. C. (2002). Example-based super-resolution.

Computer Graphics and Applications, IEEE, 22(2):56–65.

Ganin, Y. and Lempitsky, V. (2015). Unsupervised domain adaptation by backpropaga-

tion. In International Conference on Machine Learning (ICML).

Gauthier, J. (2014). Conditional generative adversarial nets for convolutional face gener-

ation. Class Project for Stanford CS231N: Convolutional Neural Networks for Visual

Recognition.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances in

Neural Information Processing Systems (NIPS).

Goroshin, R., Mathieu, M., and LeCun, Y. (2015). Learning to linearize under uncer-

tainty. In Advances in Neural Information Processing Systems (NIPS).

Gregor, K., Danihelka, I., Graves, A., and Wierstra, D. (2015). DRAW: A recurrent

neural network for image generation. CoRR, abs/1502.04623.

113

Gregor, K. and LeCun, Y. (2010a). Emergence of complex-like cells in a temporal

product network with local receptive fields. In arXiv:1006.0448.

Gregor, K. and LeCun, Y. (2010b). Learning fast approximations of sparse coding. In

International Conference on Machine Learning (ICML).

Gretton, A., Borgwardt, K., Rasch, M. J., Scholkopf, B., and Smola, A. J. (2007). A

kernel method for the two-sample-problem. In Advances in Neural Information Pro-

cessing Systems (NIPS).

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016). Continuous deep q-learning

with model-based acceleration. In International Conference on Machine Learning

(ICML).

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017).

Improved training of wasserstein gans. In Advances in Neural Information Processing

Systems (NIPS).

Guo, X., Singh, S., Lee, H., Lewis, R., and Wang, X. (2014). Deep learning for real-time

atari game play using offline monte-carlo tree search planning. In Advances in Neural

Information Processing Systems (NIPS).

Hamrick, J. B., Ballard, A. J., Pascanu, R., Vinyals, O., Heess, N., and Battaglia, P. W.

(2017). Metacontrol for adaptive imagination-based optimization. In International

Conference on Learning Representations (ICLR).

Hays, J. and Efros, A. A. (2007). Scene completion using millions of photographs. ACM

Transactions on Graphics (TOG), 26(3):4.

114

He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017). Mask r-cnn. In International

Conference on Computer Vision (ICCV).

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni-

tion. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Henaff, M., Whitney, W., and LeCun, Y. (2018). Model-based planning with discrete

and continuous actions. arXiv:1705.07177.

Henaff, M., Zhao, J., and LeCun, Y. (2017). Prediction under uncertainty with error-

encoding networks. arXiv:1711.04994.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S.,

and Lerchner, A. (2017). Early visual concept learning with unsupervised deep learn-

ing. In Proceedings of the International Conference on Learning Representations

(ICLR).

Hinton, G., Sabour, S., and Frosst, N. (2017). Matrix capsules with em routing. In

International Conference on Learning Representations (ICLR).

Hinton, G. E., Krizhevsky, A., and Wang, S. (2011). Transforming auto-encoders. In

ICANN.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data

with neural networks. Science, 313(5786):504–507.

Hjelm, R. D., Jacob, A. P., Trischler, A., Che, G., Cho, K., and Bengio, Y. (2018).

Boundary-seeking generative adversarial networks. In International Conference on

Learning Representations (ICLR).

115

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017). Densely con-

nected convolutional networks. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

Hyvarinen, A. and Oja, E. (2004). Independent component analysis: Algorithms and

applications. Neural Networks, 13(4-5).

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv:1502.03167v3.

Isola, P., Zhu, J., Zhou, T., and Efros, A. (2015). Image-to-image translation with

conditional adversarial networks. arXiv:1611.070041.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., and

Kavukcuoglu, K. (2016). Reinforcement learning with unsupervised auxiliary tasks.

In International Conference on Learning Representations (ICLR).

Jayaraman, D. and Grauman, K. (2015). Learning image represen- tations tied to ego-

motion. In International Conference on Computer Vision (ICCV).

Jojic, N. and Frey, B. J. (2001). Learning flexible sprites in video layers. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly,

E., Kalakrishnan, M., Vanhoucke, V., and Levine, S. (2018). Qt-opt: Scalable deep

reinforcement learning for vision-based robotic manipulation. arXiv:1806.10293.

Kalchbrenner, N., van den Oord, A., Simonyan, K., Danihelka, I., Vinyals, O., Graves,

A., and Kavukcuoglu, K. (2016). Video pixel networks. arXiv:1610.00527.

116

Karpathy, A. and Li, F.-F. (2015). Deep visual-semantic alignments for generating image

descriptions. In Computer Vision and Pattern Recognition.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Progressive growing of gans for

improved quality, stability, and variation. Proceedings of the International Confer-

ence on Learning Representations (ICLR).

Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L., Gregor, K., Mathieu, M., and LeCun, Y.

(2010). Learning convolutional feature hierachies for visual recognition. In Advances

in Neural Information Processing Systems (NIPS).

Kim, H. and Mnih, A. (2018). Disentangling by factorising. In Proceedings of the

International Conference on Machine Learning (ICML).

Kim, T., Cha, M., Kim, H., Lee, J. K., and Kim, J. (2017). Learning to discover cross-

domain relations with generative adversarial networks. In International Conference

on Machine Learning (ICML).

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. Proceed-

ings of the International Conference on Learning Representations (ICLR).

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization. In Inter-

national Conference on Learning Representations.

Kingma, D., Rezende, D., Mohamed, S., and Welling, M. (2014). Semi-supervised

learning with deep generative models. In Advances in Neural Information Processing

Systems (NIPS).

Kingma, D. and Welling, M. (2014). Auto-encoding variational bayes. In Proceedings

of the International Conference on Learning Representations (ICLR).

117

Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative flow with invertible 11 con-

volutions. arXiv:1807.03039.

Kiros, R., Salakhutdinov, R., and Zemel, R. (2014). Multimodal neural language mod-

els. In International Conference on Machine Learning.

Krishnan, R., Shalit, U., and Sontag, D. (2015). Deep kalman filters. arXiv:1511.05121.

Krizhevsky, A., Hinton, G. E., et al. (2010). Factored 3-way restricted boltzmann ma-

chines for modeling natural images. In AISTATS, pages 621–628.

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing Sys-

tems (NIPS), pages 1106–1114.

Kulkarni, T. D., Whitney, W. F., Kohli, P., and Tenenbaum, J. (2015). Deep convo-

lutional inverse graphics network. In Advances in Neural Information Processing

Systems (NIPS), pages 2539–2547.

Kumar, A., Sattigeri, P., and Balakrishnan, A. (2018). Variational inference of disen-

tangled latent concepts from unlabeled observations. In International Conference on

Learning Representations (ICLR).

Lample, G., Zeghidour, N., Usunier, N., Bordes, A., Denoyer, L., and Ranzato, M.

(2017). Fader networks: Manipulating images by sliding attributes. In Advances in

Neural Information Processing Systems (NIPS).

Larochelle, H. and Murray, I. (2011). The neural autoregressive distribution estimator.

In AISTATS.

118

Le, Q. V., Zou, W. Y., Yeung, S. Y., and Ng, A. Y. (2011). Learning hierarchical invariant

spatio-temporal features for action recognition with independent subspace analysis.

In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recog-

nition.

LeCun, Y., Huang, F., and Bottou, L. (2004). Learning methods for generic object

recognition with invariance to pose and lighting. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR).

Ledig, C., Theis, L., Huszar, F., Caballero, J., Aitken, A., Tejani, A., Totz, J., Wang, Z.,

and Shi, W. (2016). Photo-realistic single image super-resolution using a generative

adversarial network. https://arxiv.org/abs/1609.04802.

Lee, A. X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., and Levine, S. (2018). Stochastic

adversarial video prediction. arXiv:1804.01523.

Lee, H., Ekanadham, C., and Ng, A. (2007). Sparse deep belief net model for visual

area v2. In Advances in Neural Information Processing Systems (NIPS).

Leibfried, F., Kushman, N., and Hofmann, K. (2017). A deep learning approach for

joint video frame and reward prediction in atari games. In Workshop on Principled

Approaches to Deep Learning, ICML.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep

visuomotor policies. Journal of Machine Learning Research (JMLR).

Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and Pczos, B. (2017). Mmd gan: To-

wards deeper understanding of moment matching network. In Advances in Neural

Information Processing Systems (NIPS).

119

Li, Y., Swersky, K., and Zemel, R. S. (2015). Generative moment matching networks.

arXiv 1502.02761.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and

Wierstra, D. (2016). Continuous control with deep reinforcement learning. In Inter-

national Conference on Learning Representations (ICLR).

Lin, J., Xia, Y., Qin, T., Chen, Z., and Liu, T.-Y. (2018). Conditional image-to-image

translation. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

Liu, C. (2009). Beyond pixels: exploring new representations and applications for mo-

tion analysis. PhD thesis, Massachusetts Institute of Technology.

Lotter, W., Kreiman, G., and Cox, D. (2016). Deep predictive coding networks for video

prediction and unsupervised learning. arXiv:1605.08104.

Luc, P., Couprie, C., Chintala, S., and Verbeek, J. (2016). Semantic segmentation using

adversarial networks. In NIPS Worshop on Adversarial training.

Luc, P., Couprie, C., Lecun, Y., and Verbeek, J. (2018). Predicting future instance

segmentations by forecasting convolutional features. In arXiv:1803.11496.

Luc, P., Neverova, N., Couprie, C., Verbeek, J., and LeCun, Y. (2017). Predicting deeper

into the future of semantic segmentation. In International Conference on Computer

Vision (ICCV).

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bousquet, O. (2017). Are gans

created equal? a large-scale study. In arXiv:1711.10337.

120

Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., and Gool, L. V. (2017). Pose guided

person image generation. In Advances in Neural Information Processing Systems

(NIPS).

Madras, D., Creager, E., Pitassi, T., and Zemel, R. (2018). Learning adversarially fair

and transferable representations. In International Conference on Machine Learning

(ICML).

Makhzani, A. and Frey, B. (2014). k-sparse autoencoders. Proceedings of the Interna-

tional Conference on Learning Representations (ICLR).

Mao, X., Li, Q., Xie, H., Lau, R. Y., and Wang, Z. (2017). Least squares generative

adversarial networks. arXiv:1611.04076.

Masci, J., Meier, U., Ciresan, D., and Schmidhuber, J. (2011). Stacked convolutional

auto-encoders for hierarchical feature extraction. Artificial Neural Networks and Ma-

chine Learning.

Mathieu, M., Couprie, C., and LeCun, Y. (2016a). Deep multi-scale video prediction be-

yond mean square error. In Proceedings of the International Conference on Learning

Representations (ICLR).

Mathieu, M., Junbo Zhao, P. S., Ramesh, A., and LeCun, Y. (2016b). Disentangling

factors of variation in deep representations using adversarial training. In Advances in

Neural Information Processing Systems (NIPS).

Memisevic, R. and Hinton, G. E. (2010). Learning to represent spatial transformations

with factored higher-order boltzmann machines. Neural Computation.

121

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. (2017). Unrolled generative adver-

sarial networks. In Proceedings of the International Conference on Learning Repre-

sentations (ICLR).

Michalski, V., Memisevic, R., and Konda, K. (2014). Modeling deep temporal depen-

dencies with recurrent grammar cells. In Advances in Neural Information Processing

Systems (NIPS).

Mikolov, T. (2012). Statistical language models based on neural networks. PhD thesis,

Brno University of Technology.

Mirowski, P., Grimes, M. K., Malinowski, M., Hermann, K. M., Anderson, K.,

Teplyashin, D., Simonyan, K., Kavukcuoglu, K., Zisserman, A., and Hadsell, R.

(2018). Learning to navigate in cities without a map. In arXiv:1804.00168.

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A. J., Banino, A., Denil, M.,

Goroshin, R., Sifre, L., Kavukcuoglu, K., Kumaran, D., and Hadsell, R. (2017).

Learning to navigate in complex environments. In International Conference on

Learning Representations (ICLR).

Mirza, M. and Osindero, S. (2014a). Conditional generative adversarial nets. CoRR,

abs/1411.1784.

Mirza, M. and Osindero, S. (2014b). Conditional generative adversarial nets. CoRR,

abs/1411.1784.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and

Riedmiller, M. (2013). Playing atari with deep reinforcement learning. In Deep

Learning Workshop, NIPS.

122

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,

Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hass-

abis, D. (2015). Human-level control through deep reinforcement learning. Nature,

518(7540):529–533.

Mohamed, S. and Lakshminarayanan, B. (2016). Learning in implicit generative mod-

els. arXiv:1610.03483.

Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A., and Yosinski, J. (2017). Plug & play

generative networks: Conditional iterative generation of images in latent space. In

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-gan: Training generative neural sam-

plers using variational divergence minimization. In Advances in Neural Information

Processing Systems (NIPS).

Odena, A. (2016). Semi-supervised learning with generative adversarial networks. In

ICML Workshop on Data-Efficient Machine Learning.

Odena, A., Olah, C., and Shlens, J. (2017). Conditional image synthesis with auxiliary

classifier gans. In Proceedings of the International Conference on Machine Learning

(ICML).

Oh, J., Guo, X., Lee, H., Lewis, R., and Singh, S. (2015). Action-conditional video

prediction using deep networks in Atari games. In Advances in Neural Information

Processing Systems (NIPS).

Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete basis set:

A strategy employed by v1? Vision research, 37(23):3311–3325.

123

Osindero, S. and Hinton, G. E. (2008). Modeling image patches with a directed hier-

archy of markov random fields. In Platt, J., Koller, D., Singer, Y., and Roweis, S.,

editors, Advances in Neural Information Processing Systems (NIPS).

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven explo-

ration by self-supervised prediction. In Proceedings of the International Conference

on Machine Learning (ICML).

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and Efros, A. A. (2016). Context

encoders: Feature learning by inpainting. In Computer Vision and Pattern Recogni-

tion.

Perarnau, G., van de Weijer, J., Raducanu, B., and lvarez, J. M. (2016). Invertible

conditional gans for image editing. In Workshop on Adversarial Training, NIPS.

Poole, B., Alemi, A. A., Sohl-Dickstein, J., and Angelova, A. (2016). Improved gener-

ator objectives for gans. In Workshop on Adversarial Training, NIPS.

Portilla, J. and Simoncelli, E. P. (2000). A parametric texture model based on joint

statistics of complex wavelet coefficients. International Journal of Computer Vision,

40(1):49–70.

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised representation learning

with deep convolutional generative adversarial networks. In Proceedings of the Inter-

national Conference on Learning Representations (ICLR).

Ranzato, M., Huang, F. J., Boureau, Y.-L., and LeCun, Y. (2007). Unsupervised learning

of invariant feature hierarchies with applications to object recognition. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

124

Ranzato, M. and LeCun, Y. (2007). A sparse and locally shift invariant feature extractor

applied to document images. In International Conference on Document Analysis and

Recognition (ICDAR).

Ranzato, M., Mnih, V., Susskind, J. M., and Hinton, G. E. (2013). Modeling natu-

ral images using gated MRFs. IEEE Transactions on Pattern Analysis & Machine

Intelligence, (9):2206–2222.

Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. (2006). Efficient learning of

sparse representations with an energy-based model. In Advances in Neural Informa-

tion Processing Systems (NIPS).

Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., and Chopra, S. (2014).

Video (language) modeling: a baseline for generative models of natural videos. arXiv

1412.6604.

Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and Raiko, T. (2015). Semi-

supervised learning with ladder network. In Advances in Neural Information Pro-

cessing Systems (NIPS).

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., and Lee, H. (2016). Gen-

erative adversarial text to image synthesis. In International Conference on Machine

Learning (ICML).

Reed, S., Sohn, K., Zhang, Y., and Lee, H. (2014). Learning to disentangle factors of

variation with manifold interaction. In International Conference on Machine Learn-

ing (ICML).

Reed, S., van den Oord, A., Kalchbrenner, N., Colmenarejo, S. G., Wang, Z., Belov,

125

D., and de Freitas, N. (2017a). Parallel multiscale autoregressive density estimation.

arXiv 1703.03664.

Reed, S., van den Oord, A., Kalchbrenner, N., Colmenarejo, S. G., Wang, Z., Belov, D.,

and de Freitas, N. (2017b). Parallel multiscale autoregressive density estimation. In

Proceedings of the International Conference on Machine Learning (ICML).

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and

variational inference in deep latent gaussian models. arXiv preprint arXiv:1401.4082.

Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011). Contractive auto-

encoders: Explicit invariance during feature extraction. In International Conference

on Machine Learning (ICML).

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for

biomedical image segmentation. In International Conference on Medical Image Com-

puting and Computer-Assisted Intervention, pages 234–241. Springer International

Publishing.

Roth, S. and Black, M. J. (2005). Fields of experts: A framework for learning image

priors. In In Computer Vision and Pattern Recognition, pages 860–867.

Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic routing between capsules. In

Advances in Neural Information Processing Systems (NIPS).

Salakhutdinov, R. (2015). Learning deep generative models. Annual Review of Statistics

and Its Application, 2:361–385.

Salakhutdinov, R. and Hinton, G. E. (2009). Deep boltzmann machines. In AISTATS,

pages 448–455.

126

Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford, A., and Chen, X.

(2016). Improved techniques for training gans. In Advance in Neural Information

Processing Systems (NIPS).

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P. (2017). Pixelcnn++: Improv-

ing the pixelcnn with discretized logistic mixture likelihood and other modifications.

arXiv:1701.05517.

Schmidhuber, J. (1990). An on-line algorithm for dynamic reinforcement learning and

planning in reactive environments. In International Joint Conference on Neural Net-

works (IJCNN).

Schmidhuber, J. (1992). Learning factorial codes by predictability minimization. Neural

Computation, 4(6).

Schuldt, C., Laptev, I., and Caputo, B. (2004). Recognizing human actions: A local svm

approach. In Proceedings of the International Conference on Pattern Recognition.

Schulman, J., Levine, S., Abbeel, P., and Jordan, M. I. (2015). Trust region policy

optimization. In International Conference on Machine Learning (ICML).

Siddharth, N., Paige, B., van de Meent, J.-W., Desmaison, A., Goodman, N. D., Kohli,

P., Wood, F., and Torr, P. H. (2017). Learning disentangled representations with semi-

supervised deep generative models. In Advances in Neural Information Processing

Systems (NIPS).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).

Mastering the game of go with deep neural networks and tree search. Nature,

529(7587):484–489.

127

Simoncelli, E. P., Freeman, W. T., Adelson, E. H., and Heeger, D. J. (1992). Shiftable

multiscale transforms. Information Theory, IEEE Transactions on, 38(2):587–607.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-

scale image recognition. In Proceedings of the International Conference on Learning

Representations (ICLR).

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Ganguli, S. (2015).

Deep unsupervised learning using nonequilibrium thermodynamics. CoRR,

abs/1503.03585.

Sölch, M., Bayer, J., Ludersdorfer, M., and van der Smagt, P. (2016). Varia-

tional inference for on-line anomaly detection in high-dimensional time series.

arXiv:1602.07109.

Song, S., Yu, F., Zeng, A., Chang, A. X., Savva, M., and Funkhouser, T. (2017). Se-

mantic scene completion from a single depth image. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

Springenberg, J. T. (2015). Unsupervised and semi-supervised learning with categorical

generative adversarial networks. arXiv 1511.06390.

Srivastava, N., Mansimov, E., and Salakhutdinov, R. (2015). Unsupervised learning of

video representations using LSTMs. In Proceedings of the International Conference

on Machine Learning (ICML).

Stadie, B. C., Levine, S., and Abbeel, P. (2015). Incentivizing exploration in reinforce-

ment learning with deep predictive models. In Workshop on Deep Reinforcement

Learning, NIPS.

128

Susskind, J., Memisevic, R., Hinton, G., and Pollefeys, M. (2011). Modeling the joint

density of two images under a variety of transformations. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

Sutskever, I., Hinton, G., and Taylor, G. (2009). The recurrent temporal restricted boltz-

mann machine. In Advances in Neural Information Processing Systems (NIPS).

Sutskever, I., Vinyals, O., and Le, Q. (2014). Sequence to sequence learning with neural

networks. In Advances in Neural Information Processing Systems (NIPS).

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based

on approximating dynamic programming. In International Conference on Machine

Learning (ICML).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the

inception architecture for computer vision. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

Theis, L. and Bethge, M. (2015). Generative image modeling using spatial lstms. In

Advances in Neural Information Processing Systems (NIPS).

Theis, L., van den Oord, A., and Bethge, M. (2016). A note on the evaluation of gener-

ative models. In Proceedings of the International Conference on Learning Represen-

tations (ICLR).

Tzeng, E., Hoffman, J., Darrell, T., and Saenko, K. (2015). Simultaneous deep transfer

across domains and tasks. In International Conference on Computer Vision (ICCV).

Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. (2017). Adversarial discrimina-

129

tive domain adaptation. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

Uria, B., Murray, I., and Larochelle, H. (2013). Rnade: The real-valued neural autore-

gressive densityestimator. In Advances in Neural Information Processing Systems

(NIPS).

van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016a). Pixel recurrent neu-

ral networks. In Proceedings of the International Conference on Machine Learning

(ICML).

van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016b). Pixel recurrent neu-

ral networks. In Proceedings of the International Conference on Machine Learning

(ICML).

van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., and

Kavukcuoglu, K. (2016c). Conditional image generation with pixelcnn decoders.

In Advances in Neural Information Processing Systems (NIPS).

van den Oord, A., Vinyals, O., and Kavukcuoglu, K. (2017). Neural discrete represen-

tation learning. In Advances in Neural Information Processing Systems (NIPS).

Villegas, R., Yang, J., Hong, S., Lin, X., and Lee, H. (2017a). Decomposing motion and

content for natural video sequence prediction. In Proceedings of the International

Conference on Learning Representations (ICLR).

Villegas, R., Yang, J., Zou, Y., Sohn, S., Lin, X., and Lee, H. (2017b). Learning to gen-

erate long-term future via hierarchical prediction. In Proceedings of the International

Conference on Machine Learning (ICML).

130

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked

denoising autoencoders: Learning useful representations in a deep network with a

local denoising criterion. Journal of Machine Learning Research (JMLR).

Vondrick, C., Pirsiavash, H., and Torralba, A. (2016a). Anticipating visual representa-

tions with unlabeled video. In Proceedings of the 2011 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

Vondrick, C., Pirsiavash, H., and Torralba, A. (2016b). Generating videos with scene

dynamics. In Advance in Neural Information Processing Systems (NIPS).

Vondrick, C. and Torralba, A. (2017). Generating the future with adversarial transform-

ers. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern

Recognition.

Walker, J., Gupta, A., and Hebert, M. (2014). Patch to the future: Unsupervised visual

prediction. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

Walker, J., Gupta, A., and Hebert, M. (2015). Dense optical flow prediction from a static

image. In International Conference on Computer Vision (ICCV).

Wang, X. and Gupta, A. (2015). Unsupervised learning of visual representations us-

ing videos. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2794–2802.

Wang, Y., Gao, Z., Long, M., Wang, J., and Yu, P. S. (2018). Predrnn++: Towards

a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. In

arXiv:1804.06300.

131

Wang, Y., Long, M., Wang, J., Gao, Z., and Yu, P. S. (2017). Predrnn: Recurrent neural

networks for predictive learning using spatiotemporal lstms. In Advances in Neural

Information Processing Systems (NIPS).

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality

assessment: from error visibility to structural similarity. IEEE transactions on image

processing, 13(4):600–612.

Watter, M., Springenberg, J. T., Boedecker, J., and Riedmiller, M. (2015). Embed

to control: A locally linear latent dynamics model for control from raw images.

arXiv:1506.07365.

Weber, T., Racanire, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J., Badia,

A. P., Vinyals, O., Heess, N., Li, Y., Pascanu, R., Battaglia, P., Hassabis, D., Silver,

D., and Wierstra, D. (2017). Imagination-augmented agents for deep reinforcement

learning. In Advances in Neural Information Processing Systems (NIPS).

Whitney, W. F., Chang, M., Kulkarni, T., and Tenenbaum, J. B. (2016). Understanding

visual concepts with continuation learning. arXiv:1502.04623.

Wichers, N., Villegas, R., Erhan, D., and Lee, H. (2018). Long-term video prediction

without supervision. In International Conference on Machine Learning (ICML).

Wiskott, L. and Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of

invariance. Neural Computation, 14(4):715–770.

Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S., and Yan, S. (2010). Sparse

representation for computer vision and pattern recognition. Proceedings of the IEEE,

98(6):1031–1044.

132

Xue, T., Wu, J., Bouman, K. L., and Freeman, W. T. (2016). Visual dynamics: Prob-

abilistic future frame synthesis via cross convolutional networks. In Advances in

Neural Information Processing Systems (NIPS).

Zhang, B. H., Lemoine, B., and Mitchell, M. (2018a). Mitigating unwanted biases

with adversarial learning. In Conference on Artificial Intelligence, Ethics and Society

(AEIS).

Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. (2018b). Self-attention genera-

tive adversarial networks. arXiv:1805.08318.

Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., and Metaxas, D. (2017).

Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial

networks. In International Conference on Computer Vision (ICCV).

Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., and Metaxas, D. (2018c).

Stackgan++: Realistic image synthesis with stacked generative adversarial networks.

In IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI).

Zhang, X., Zhao, J., and LeCun, Y. (2015a). Character-level convolutional networks for

text classification. In Advances in Neural Information Processing Systems (NIPS).

Zhang, Y., Yu, F., Song, S., Xu, P., Seff, A., and Xiao, J. (2015b). Large-scale scene

understanding challenge. In Computer Vision and Pattern Recognition Workshop.

Zhao, J., Mathieu, M., Goroshin, R., and LeCun, Y. (2016). Stacked what-where auto-

encoders. In International Conference on Learning Representations (ICLR).

Zhao, J., Mathieu, M., and LeCun, Y. (2017). Energy based generative adversarial net-

133

works. In Proceedings of the International Conference on Learning Representations

(ICLR).

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-image transla-

tion using cycle-consistent adversarial networks. In Proceedings of the International

Conference on Computer Vision (ICCV).

Zhu, S. C., Wu, Y., and Mumford, D. (1998). Filters, random fields and maximum

entropy (frame): Towards a unified theory for texture modeling. International Journal

of Computer Vision, 27(2):107–126.

Zilly, J. G., Srivastava, R. K., Koutnk, J., and Schmidhuber, J. (2017). Recurrent high-

way networks. In International Conference on Machine Learning (ICML).

Zoran, D. and Weiss, Y. (2011). From learning models of natural image patches to whole

image restoration. In International Conference on Computer Vision.

Zou, W. Y., Zhu, S., Ng, A. Y., , and Yu., K. (2012). Deep learning of invariant fea-

tures via simulated fixations in video. In Advances in Neural Information Processing

Systems (NIPS).

134

	Dedication
	Acknowledgements
	Preface
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Generative Models
	Variational Autoencoders
	Generative Adversarial Networks

	Motivation and Related work
	Image generation
	Disentangled representations
	Video prediction

	Multi-scale Image Generation using a Laplacian Pyramid of Adversarial Networks
	Introduction
	Approach
	Model Architecture & Training
	Experiments
	Discussion

	Disentangling Content and Pose for Video Prediction
	Introduction
	Approach
	Experiments
	Discussion

	Stochastic Video Generation with a Learned Prior
	Introduction
	Approach
	Experiments
	Discussion

	Conclusion
	Bibliography

