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Abstract

The creation, manipulation and display of piecewise smooth surfaces has been a

fundamental topic in computer graphics since its inception. The applications range

from highest-quality surfaces for manufacturing in CAD to believable animations

of virtual creatures in special effects, to virtual worlds rendered in real-time in

computer games.

Our focus is on improving the a) mathematical representation and b) automatic

construction of such surfaces from finely sampled meshes in the presence of features.

Features can be areas of higher geometric detail in an otherwise smooth area of

the mesh or sharp creases that contrast with the overall smooth appearance of an

object.

In the first part, we build on techniques that define piecewise smooth surfaces

to improve their quality in the presence of features. We present a crease tech-

nique suitable for real-time applications that increases the perceived visual detail

of objects while maintaining a compact representation and efficient evaluation.

We then introduce a new subdivision scheme that allows the use of T-junctions

for better local refinement. It thus reduces the need for extraordinary vertices,

which can cause surface artifacts especially on animated objects.

In the second part, we consider the problem of building the control meshes

of piecewise smooth surfaces so that the resulting surface closely approximates an

existing data set (such as a 3D range scan), particularly in the presence of features.

To this end, we introduce a simple modification that can be applied to a wide range

of parameterization techniques to obtain an anisotropic parameterization. We

show that a resulting quadrangulation can indeed better approximate the original

surface.
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Finally, we present a quadrangulation scheme that turns a data set into a quad

mesh with T-junctions, which we then use as a T-Spline control mesh to obtain a

smooth surface.
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Chapter 1

Introduction

Smooth surface representations are ubiquitous in the computer graphics industry.

Their uses range from CAD models in manufacturing to digital creatures and props

in the special effects industry and games.

The majority of such models is created by 3D artists, either entirely on the

computer or using reference meshes. Various “retopology tools” (e.g. in 3DCoat)

have been developed to assist the artist in this process. Recently, tools like ZBrush

and Mudbox have emerged that allow artists to “sculpt” models as if with clay

rather than “engineering” them by modifying the vertices of an underlying mesh.

For animation, such models also have to be translated into a smooth base surface,

with the fine-level details added as displacement maps or normal maps.

In contrast, a fully automatic pipeline starts with the acquisition of 3D geom-

etry and outputs a smooth surface closely approximating this data without the

need for any user input. The pipeline consists of the following stages:

The geometry acquisition stage refers to the creation of the raw 3D input

data, usually in the form of a triangle mesh. It can broadly be grouped into
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two categories: scans and isosurface extraction. Scanners are usually based on

laser or structured light measurements, while isosurface extraction converts vol-

umetric data originating from CT scans, fluid dynamics simulations etc. into

triangle meshes. For both categories, the resulting meshes are typically severely

oversampled (they contain significantly more vertices than needed to describe the

geometry) and have many irregular vertices. In contrast, the vertices of a fully

regular triangle mesh away from its boundaries have valence 6, i.e. each vertex

is connected to six other vertices by edges. A semi-regular mesh has predomi-

nantly regular vertices, with comparatively few exceptions; for quad meshes the

regular vertices have valence 4. Meshes with few irregular vertices are desirable

for approximation quality reasons (c.f. the fitting stage below).

The parameterization stage computes a mapping from the plane to the 3D mesh

surface. In general, it is impossible to compute such a mapping without introducing

angular or area distortion, a fact we are all familar with from maps of our Earth:

in the common Mercator projection, Antarctica appears gigantic. Current state-

of-the-art parameterization methods (e.g. [9]) support a number of important

features. They compute a global parameterization, i.e. a single map from the plane

to the mesh surface, as opposed to several local parameterizations that map the

plane to a certain region on the surface. Parameterizations can be feature-aligned,

such that integer parameter lines coincide with creases on the mesh. Cones are

required to accommodate closed surfaces of genus other than 1; at cones, the angles

around a vertex in the plane do not sum to 2π. Introducing further cones also

reduces the distortion in the parameterization. A good parameterization scheme

can automatically determine a small set of cones that results in a mapping with

sufficiently low distortion. Another way to manage area distortion is to allow
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for anisotropy in the parameterization (Chapter 4) by prescribing different scale

factors along the two principal curvature directions.

The quadrangulation stage resamples the input mesh along a grid on the para-

metric plane and turns it into a quad-mesh. This resulting mesh is semi-regular;

most vertices have regular valence 4 with the exception of the cone vertices de-

scribed in the previous paragraph. To keep the quadrangulation as regular as

possible, the parameterization algorithm should therefore introduce as few cones

as possible while still achieving low enough distortion.

In the last stage, the quadrangulation is used as the control mesh structure for

a higher-order surface representation (i.e. a piecewise polynomial surface that is

smoother than piecewise linear elements). Common representations are Catmull-

Clark surfaces and their various patch-based approximations and spline surface

constructions such as T-splines. The surface quality for these schemes is gener-

ally poorer at irregular vertices than in regular areas. For close reproduction, an

optimal fit (with respect to a certain metric) can be computed between the input

mesh and the evaluated higher-order surface [62].

Fully automatic conversion from dense triangle meshes to higher-order surfaces

is a topic of continuing research, and there is still a significant gap in surface qual-

ity between surfaces generated by fully automatic methods and surfaces created

entirely manually or with human assistance.

1.1 Thesis Organization

This work is structured in two parts. The first part deals with the actual represen-

tation of higher-order surfaces. Chapter 2 extends one of the most commonly used
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higher-order surfaces in computer graphics (Catmull-Clark subdivision surfaces) to

allow more control in the mesh resolution of the underlying quad meshes by intro-

ducing T-joints. In Chapter 3, we discuss an extension to a common patch-based

Catmull-Clark surface approximation that allows for selective sharp features such

as creases.

The second part addresses various aspects of a fully automatic pipeline. Chap-

ter 4 introduces a simple way to add anisotropy to existing parameterization tech-

niques, replacing near-square quads by quads that are stretched along principle-

curvature directions. We show that this improves the quality of quadrangulations

when the number of quads is kept constant.

Finally, Chapter 5 discusses a fully automatic pipeline, starting from a densely

sampled triangle mesh. We first compute a fine quadrangulation using a technique

described in [9] and convert it into a coarse T-mesh. We use the T-mesh topology

to define a T-spline surface that we fit to the original triangle mesh using a least-

squares fit similar to [62].
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Part I

Surface Representations
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Chapter 2

Dyadic T-mesh Subdivision

This chapter describes our work in extending quad-based subdivision schemes such

as Catmull-Clark subdivision and NURSS to support T-joints. T-joints allow for

greater local control over mesh density without the need to introduce more ex-

traordinary vertices.

2.1 Introduction

Subdivision surfaces are popular with 3D modeling artists for a variety of reasons.

Most obviously, subdivision surfaces support control meshes of arbitrary topology

and the predominant quad mesh structure is suitable for many modeling needs,

but other, less obvious uses are no less important. Examination of common organic

and mechanical models reveals that two uses are very common:

• Varying the mesh resolution between more and less feature-rich areas.

• Modifying connectivity to align features with control mesh edges;
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These topological challenges are resolved using extraordinary vertices, most

commonly in pairs of valence 3 and 5, redirecting the edge flow (Figure 1).

Figure 2.1: T-joints can be used to keep tessellated faces equal sized and thus
prevent under- or over-tessellation.

At the same time, surface quality at the extraordinary vertices in general can-

not match surface quality of the regular parts of the surface, where it reduces to

polynomial patches (Figure 2.2). Placing extraordinary vertices at perceptually

optimal locations where the reduction in quality is least objectionable is a difficult

manual task. Even if a static mesh with carefully chosen extraordinary vertices

looks fine, it might not behave well if the mesh is animated.

T-joints (Figure 2.3) offer an additional degree of freedom in choosing the

control mesh connectivity. While T-joints do not solve the topology problem (a

closed mesh with T-joints but without extraordinary vertices cannot have genus

other than 1), the number of extraordinary points needed for other reasons can be

greatly reduced.

A significant body of literature (Section 2.2) exists on construction of surfaces

with T-joints, with T-splines being the most common construction. Yet, to the best

of our knowledge, no subdivision schemes were proposed that operate directly on

meshes with T-joints (T-meshes). While patch-based and hybrid patch/subdivision

approaches exist, these are relatively complex and require significant separation

between T-joints and extraordinary vertices.
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Part of the difficulty in integrating T-joints with subdivision is that T-meshes

have far richer space of local connectivity configurations compared to meshes with

no T-joints. Handling these configurations is a challenge, even for subdivision rules

involving few points.

In this chapter, we propose a simple subdivision scheme for dyadic T-meshes,

with at most one T-joint per quad edge. An additional technical requirement on

the connectivity is explained in Section 2.3. The dyadic requirement reduces the

variety of possible local configurations, but still provides a rich space for modeling.

Our main insight is that a subdivision scheme handling all these configurations for

the class of meshes that we consider can be obtained in factorized form, based on

the original Catmull-Clark and NURCC ideas, and only a small number of cases

need to be handled.

We demonstrate that our scheme yields surfaces of good quality for a variety of

local configurations including extraordinary vertices and T-joints (in fact, extraor-

dinary vertices themselves can be T-joints) as shown in Figure 2.19, while treating

the whole surface in a uniform way and imposing no restrictions on proximity of

T-joints and extraordinary vertices.

We conjecture that our surfaces are G1 at extraordinary points based on the

numerical evidence, although a complete analysis is beyond the scope of this work.

We verified the practicality of our algorithm by implementing a plug-in proto-

type for Autodesk’s Maya, together with a set of Maya Python scripts to aid the

artist in the creation and manipulation of T-meshes, which we will make publicly

available. We also include the central MATLAB code for computing the subdivi-

sion masks as an electronic supplement.
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2.2 Related Work

The literature on subdivision surfaces is quite broad, but only few works touch

on the question of T-joints. Similarly, much work has been done on T-splines

and related T-mesh constructions, but with relatively little focus on subdivision

schemes.

We refer the reader to a recent survey [17] for a general overview of recent work

on subdivision; here we focus on most closely related work on subdivision schemes

allowing nonuniform knot spacing on the one hand, and schemes for constructing

smooth surfaces on T-meshes on the other hand.

Nonuniform subdivision schemes. Our work is based on one of the earliest

schemes for extending nonuniform splines to arbitrary meshes [95] (NURSS), and

its restricted version described in [94] (NURCC). In this work, the original factor-

ized form of surface subdivision [20] is extended to arbitrary knot intervals. We

show how to apply this factorization in the context of T-meshes. Alternative ap-

proaches to constructing subdivision surfaces with nonuniform knots are proposed

in [74], [73], and [18]. [74] presents a scheme resulting in stationary subdivision

matrices near extraordinary vertices (which yields explicit limit points formulas)

while handling arbitrary knot intervals on opposite sides of faces. Factorized form

plays an important role in extending higher-order uniform B-Splines to arbitrary

control meshes ([116, 101]). The algorithm of [18], based on the factorized form

of [19], describes a method for extending NURBS of arbitrary degree to arbitrary

meshes with nonuniform knot intervals. In our work, our principal goal is not

to handle arbitrary knots in full generality; rather, we focus on a restricted ver-

sion of knot assignments, with matching knot intervals on opposite sides of faces
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and dyadic relations between knots, making the minimal extension to conventional

subdivision that enable T-mesh refinement.

T-joints on arbitrary meshes. There are several directions of work that in-

troduce T-joints into arbitrary triangle and quad meshes.

Adaptive refinement of basis functions is the most straightforward approach to

adding fine-scale degrees of freedom to the surface and, if we take a patch-based

point of view, can be considered a restricted form of T-mesh constructions. Varia-

tions of this approach were proposed in [38, 117, 69, 55, 5] and many other works,

leading to wavelet and multiscale surface representations.

[94] introduces T-splines, capable of handling a broad range of local T-configurations,

and combines them with subdivision surfaces: a conforming arbitrary mesh can

be refined by inserting T-joints in an arbitrary manner allowed by T-splines suf-

ficiently far from extraordinary vertices – in general two steps of subdivision are

required to achieve the needed separation. The parts of the surface with T-joints

are handled using patches; subdivision is used near extraordinary vertices. The

scheme can also handle T-meshes not originating from conforming meshes as long

as sufficient separation between T-joints and extraordinary vertices is maintained.

A C1 polynomial basis construction for T-meshes (PHT splines) was proposed

in [33], and extended to meshes with extraordinary vertices in [65] (GPT splines).

Due to more local basis function support, this scheme offers greater flexibility and

a purely polynomial basis for T-meshes with few restrictions in the regular case,

and admits simple analysis [32] (the situation with T-splines is far more complex,

e.g., [66, 11, 72]). Extraordinary faces (faces which have at least one extraordinary

vertex) cannot share a T-vertex. As these bases require multiple degrees of freedom
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per vertex, further adaptation is needed in the context of geometric modeling. Our

focus is on designing a scheme that can be easily used in the same context as

Catmull-Clark subdivision is currently used.

An important recent application of T-meshes and T-splines is isogeometric

analysis (see,e.g.,[27]), i.e. methods that use the same high-order basis for geo-

metric modeling and simulation. [3] demonstrates that T-splines have substantial

advantages for isogeometric analysis.

Analysis-suitable T-splines are introduced in [66]; restrictions on the T-mesh

structure are imposed to ensure that the resulting T-spline spaces are linearly inde-

pedent. Local refinement for T-splines for analysis purposes is studied in [91, 36].

[108] proposes a method for conversion of an arbitrary quad mesh to a control mesh

for the analysis-suitable T-spline, which is C2 away from extraordinary vertices but

only C0 at some of the edges at extraordinary vertices. In FEM simulation ap-

plications, lower order of smoothness is acceptable, as long as the approximation

order is maintained; in modeling applications however it is essential to keep the

surface quality high.

Finally, [75] describes a procedure for automatic conversion of an arbitrary

mesh to a coarse T-mesh of quad patches, which often naturally have T-joints

adjacent to extraordinary vertices, and require additional refinement to isolate

them – another motivation for considering constructions with no such restriction.

2.3 Dyadic T-meshes and T-splines

In this section, we define the fundamental concepts we use to construct our subdivi-

sion scheme: dyadic analysis-suitable (DAS) T-meshes, T-spline spaces associated
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Figure 2.2: Local refinement on cylinder surface approximated using redirected
edge flow and T-joints.

with regular DAS T-meshes, and a natural (but not very practical) way to con-

struct subdivision rules for these. In the next section, we will show how NURSS

rules of [95] can be adapted to DAS T-meshes.

Dyadic T-meshes. In a T-mesh, quad faces may have more than 4 vertices: each

face has exactly four corner vertices; the remaining vertices are considered T-joint

vertices with respect to this face. A T-mesh is dyadic if any two corner vertices

are separated by no more than one T-vertex. While dyadic T-meshes restrict the

variety of possible local configurations, the resulting space is still sufficiently rich

for many important modeling tasks. The limitations and possible ways to overcome

them are discussed in Section 2.8.

T-edge
f1

f2 f3

f1

f2

v v

Figure 2.3: a) Vertex v is a T-joint with respect to face f1 and a corner for f2
and f3. b) Vertex v has valence 2 and is a T-joint w.r.t. both f1 and f2.

A T-edge (Figure 2.3a) is a sequence of two edges connecting two corner vertices

separated by a T-joint. A T-joint vertex can be a T-joint with respect to several

faces, and can be regular or extraordinary. A regular T-joint has valence 3 (T-joint
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with respect to one face), or valence 2 (T-joint with respect to both neighboring

faces, see Figure 2.3b). All other T-joints are extraordinary.

For the purposes of constructing patches or subdivision surfaces, the edges of a

T-mesh can be annotated by knot intervals. If there are no T-joints, the surface is

required to be a non-uniform B-spline with the knots determined by knot intervals.

Following T-splines and NURCC, we require knot interval consistency : the sum

of knot intervals on opposite T-edges of a face are equal. Furthermore we assume

that two neighboring edges that form a T-edge to have equal knot intervals. These

two restrictions form a system of linear constraints, the independent degrees of

freedom are the basis of the nullspace of this system; if a user modifies any knot

interval on the mesh, all dependent knot intervals are adjusted. To simplify the

user interface, all knot intervals have values 2k, k ∈ Z.

Analysis-suitable T-meshes and T-splines. Our scheme for regular grids is

constructed to yield a restricted version of T-splines in the limit [94]. We associate

a spline space T with a regular T-mesh by assigning a T-spline basis function

to each vertex. It is constructed as a standard tensor-product non-uniform B-

spline basis function, with the knot sequence determined by extending the edges

at each vertex in four parametric directions by two knot intervals (we count a

knot interval if the extension passes a vertex of the T-mesh or intersects an edge.)

We call two sets of four knot intervals each the knot vectors of a T-spline basis

function. The parametric location on the horizontal and vertical lines through the

vertex constitutes the basis cross (Figure 2.5).

In general, the T-spline basis functions do not sum up to one (i.e. do not

have the partition-of-unity property) and renormalization is required to achieve
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T2

T1

T2

T1

Figure 2.4: Left: T-spline basis function support; Right: Analysis-suitable T-
mesh condition: red and blue extensions of T-joints T1 and T2 intersect, so this
mesh is not analysis-suitable.

affine invariance of the basis. A mesh admits a standard T-spline basis, if the

basis functions constructed as above do sum up to one. The necessary and suf-

ficient conditions for a mesh to be standard formulated purely in terms of mesh

connectivity are not known yet.

A simple sufficient condition for standard T-splines is based on T-joint exten-

sions. A T-joint extension for a regular T-vertex can be regarded as a chain of

3 edges (Figure 2.4, right), one along an existing edge, the other one extending

across the T-face to the opposite edge and the following face. T-meshes for which

the extensions never intersect are called analysis-suitable ([66]) (Figure 2.4, right).

In this work, we consider only dyadic analysis-suitable T-meshes. A simple

property of DAS T-meshes that immediately follows from the the requirement is

that extensions do not intersect:

Proposition 1. Any face of a DAS T-mesh has at most one T-joint.

We call a DAS T-mesh face regular if it has no T-joints, and a T-face if it has

one T-joint.

Analysis-suitable T-splines use the same basis functions and inherit a wealth of

properties from B-splines: linear independence, partition of unity, affine invariance
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and the convex hull property.

Subdivision of T-meshes. The topological subdivision rule on a T-mesh is the

standard quadrisection of faces: every face is split into four quads, and every edge

is split into two edges, with new control points introduced for every edge and face.

Subdivision rules are defined by masks. A mask, supported on a stencil S,

is a collection of weights wi assigned to the vertices of the mesh, that is used to

obtain a new point P ′ from points Pi at vertices: P ′ =
∑

iwiPi. The stencil on

a mesh annotated with knot intervals consists of a set of edges and vertices; the

stencil vertices are vertices of the mesh to which nonzero weights are assigned, and

stencil edges are edges whose knot intervals affect the weights wi. In addition to

subdivision rules, we need to define how knots are assigned to the edges of the

refined mesh. In our case, the two edges obtained by refinement of an edge with

knot interval d receive knot intervals d/2.

In the rest of this section, we only consider subdivision of regular DAS T-

meshes: subdivision rules in this case are naturally derived from the nesting prop-

erty of corresponding spline spaces. The regular case is a foundation of the exten-

sion to general T-meshes.

Nested analysis-suitable T-spline spaces. The subdivision rules in the case

of B-splines are a consequence of the nesting property of the spline spaces defined

for the grid M and once-subdivided grid M1: each basis function Bi on M is a

linear combination of the basis functions B1
j on the grid M1. In the case of T-

meshes, the nestedness property for quadrisection does not always hold. However,

for DAS T-meshes, it does:

Proposition 2. T-spline space T associated with a regular dyadic analysis-suitable
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T-mesh T is contained in the space T 1 associated with the once-subdivided mesh

T 1.

Chapter 2.9 describes the proof.

This property means that subdivision rules abstractly can be defined in the

standard way: given a surface f defined as a linear combination of T-spline basis

functions on the coarse mesh f =
∑

i PiBi, we can replace each coarse basis func-

tion with
∑

j wijB
1
j , a linear combination of basis functions on the refined mesh,

and by rearrangement of terms obtain expressions for control points of the same

surface defined in terms of B1
j :

f =
∑
i

Pi

∑
j

wijB
1
j =

∑
j

(∑
i

wijPi

)
B1

j =
∑

P 1
j B

1
j

where P 1
j are the control points on the fine mesh.

To turn this into a practical scheme, however, we need to obtain the weight

wij of the fine-scale basis function B1
j in the decomposition of every coarse-scale

basis function Bj. Unlike B-splines, for which only few distinct cases need to

be considered, the situation is far more complex for T-meshes, even for DAS T-

meshes. For a general T-mesh (even analysis suitable), the number of different

possible connectivities in the support of a single coarse basis function is infinite.

For DAS T-meshes, however, it is finite; the following proposition holds:

Proposition 3. For a regular DAS T-mesh, the control mesh of a single patch of

a T-spline surface corresponding to a face can only have a finite number of possible

connectivities.

This proposition is proved in the 2.10.
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Computing subdivision coefficients for regular DAS T-meshes. Propo-

sition 2 asserts that the spaces T and T 1 are nested, and Proposition 3 suggests

that a finite number of subdivision rules can be defined, but neither provide a way

to compute coefficients wij for the subdivision rules.

For non-uniform B-Splines, one way to compute the coefficients wij is by per-

forming knot insertion: Starting with a single control value 1 assigned to the vertex

of the coarse-scale B-spline basis function Bi and zeros assigned to all other ver-

tices, we can insert knot lines of a fine-scale basis function B1
j , updating the control

values accordingly. Once all knot lines are inserted, the control value of vj, the

vertex corresponding to the basis function B1
j , will be wij.

For nested analysis-suitable T-meshes, in particular for DAS T-meshes, the

subdivision masks can be computed in the same way ([92]. Section 2.4.2).

These observations give us an initial possible approach to defining a subdivision

scheme for DAS T-meshes: enumerate all control meshes of a patch by Proposi-

tion 3, and then for each pair of a coarse and fine basis functions Bi and B1
j

overlapping the patch, compute the coefficient wij using knot insertion.

However while the number of topologically distinct control meshes is finite, it

is quite large: a scheme attempting to detect the local connectivity and compute

the weights based on this would be quite complex. Even more importantly, it

would be entirely unclear how to extend these rules to arbitrary T-meshes, as each

local configuration in this case would potentially contain multiple extraordinary

vertices.

In the next section we will develop a factorization following the general struc-

ture of Catmull-Clark subdivision, that allows for a compact and efficient evalua-

tion and can be easily extended to support extraordinary vertices (Section 2.5).
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2.4 Factorized Scheme on DAS T-meshes

Our next goal is to describe a small set of practical rules for subdivision of regular

DAS T-meshes, that are equivalent to the rules obtained by knot insertion as

described in a previous section, and that can be extended to arbitrary meshes.

Our rules use the factorization structure of Catmull-Clark [20] and NURSS [95]

subdivision (with vertex and edge control points computed as linear combinations

of face points and midpoints). However, unlike these schemes, we need to compute

distinct face points for different vertices of a face (modified face points), as well

as perform an initial step computing control points for half-faces of each T-face,

which we discuss in more detail below. Although the modified face points are

distinct from face points, quite remarkably the weights used in masks are the same

as the NURSS weights, up to elimination of some weights or transfer of a weight

from one point to another.

We construct our scheme so that it satisfies two main requirements:

• (A) on meshes with no T-joints it reduces to NURSS;

• (B) on regular DAS T-meshes, it reproduces analysis-suitable T-splines in

the limit.

2.4.1 NURSS subdivision rules

We first describe the factorized form of the subdivision rules for nonuniform B-

splines on regular grids, identical to the one used in [95] for generalization to

arbitrary meshes. We refer to these rules as NURSS rules for brevity. The basic

formulas for weights will be also used by our scheme.
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The computation proceeds in two steps: first, new face points are computed,

and intermediate points are assigned to edges (edge midpoints). In the second step,

face points and midpoints are combined to obtain new positions of vertices, and

new points for edges.

p4e1n2

p1

n3

e2

d1

d2

d3

n1

p2

p3

n4

P1

P2 P3

P4 P1

P2

e3

e4

Figure 2.5: Knot intervals (blue) used to compute weights for face points (left)
and midpoints (right) on a regular mesh. Knot intervals for w1 in purple.

First stage. At the first stage, face points and edge midpoints are computed.

The face points depend only on the four corner control points on the face, but

the weights of these corners are determined by the knot intervals adjacent to the

vertices of the face.

The edge midpoint is computed as

M =
d2 + 2d3

2(d1 + d2 + d3)
P1 +

2d1 + d2
2(d1 + d2 + d3)

P2 (2.1)

and the face point as

F = w1P1 + w2P2 + w3P3 + w4P4 (2.2)

The mask weight w1 is given in terms of the knot intervals on the crosses through
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d1

d2
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Figure 2.6: Edge (left) and vertex (right) NURSS masks for a regular mesh; knot
intervals in blue (gray for face extents), face points in red, midpoints in purple.

each vertex (Fig. 2.5):

w1 =
(e1 + 2p4)

2(n2 + e1 + p4)

(e2 + 2n3)

2(p1 + e2 + n3)
(2.3)

and the remaining weights w2, w3 and w4 are obtained in a symmetric way. For

regular meshes without T-joints, pi = ni, but we keep the notation separate as we

need distinct values for T-meshes.

Second stage. At the second step, vertex and edge points for the refined mesh are

computed. The edge points are computed using the face points F1, F2 on two sides

of the edge, and the midpoint M :

E =
t2

2(t1 + t2)
F1 +

t1
2(t1 + t2)

F2 +
1

2
M (2.4)

Similarly, we use edge midpoints Mi and face points Fi around the vertex:

V =
1

4
P0+

1

4d13d24
(d2d3F1 + d3d4F2 + d4d1F3 + d1d2F4)+

1

4d13d24
(d3d24M1 + d4d31M2 + d1d42M3 + d2d13M4) (2.5)

where dij = di + dj.
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The full NURSS scheme for arbitrary meshes is discussed in Section 2.5.

2.4.2 Overview of our scheme

We start with an example illustrating the obstacles to applying NURSS rules on

a T-mesh, and explain the intuition behind our modifications.

Recall that for DAS T-meshes (and regular grids in particular) subdivision

rules can be obtained by repeated knot insertion as described in Section 2.3. For

regular meshes or on T-meshes where the local structure is regular, this knot

insertion produces the coefficients for non-uniform spline subdivision.

The coarse mesh in the support of a fine-scale basis function B1
j is shown in

Fig. 2.7a, with a knot grid [s1, s3, s5] × [t1, t3, t5]. Finer knot lines s2 and s4 need

to be inserted into the support of any coarse-scale basis function Bi to determine

the coefficient of control point Pi in the rule for computing P 1
j .

We observe that for the coefficients to be identical to the regular case (because

the knot insertion process would be exactly the same) two conditions need to be

satisfied: (1) The mesh already contains horizontal and vertical coarse knot lines

[s1, s3, s5] and [t1, t3, t5]; (2) the coarse T-mesh does not contain the new knot lines

[s2, s4], [t2, t4].

Q3Q2Q1

s1 s2 s3 s4 s5 s1 s2 s3 s4 s5

t1

t2

t3

t4

t5

f1

f2 f3

f4

P1 P2 P3

P4 P5 P6 P7

f1

f2 f3

f4

t1

t2

t3

t4

t5

Figure 2.7: Knot insertion for a vertex basis function (support and knot intervals
in blue) on a) a regular mesh, b) a T-mesh
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Unfortunately, in general, both assumptions can be violated for a dyadic analysis-

suitable T-mesh. In the T-mesh of Fig. 2.7b, the knot vectors of Bi, i = 1, 2, 3,

associated with vertices vi do not contain the knot line s5. On the other hand, the

knot vectors of Bi, for i = 4 . . . 7 already contain s4. As a result, knot insertion

will yield a non-standard coefficient wij for control points Pi, i = 1 . . . 7.

We use two different mechanisms to adjust the rules for situations of missing

or extra knot lines.

• Accounting for missing knots is relatively easy: we simply perform temporary

knot insertion, resulting in new control points Qi, i = 1, 2, 3. Temporary

points Qi are used instead of corresponding control points Pi for the affected

control point in the edge and vertex rules.

• To deal with fine-scale basis function knots already present in the mesh (s4

w.r.t. support of Bi, i=1. . . 7) we modify the regular and T-face masks

(in this case for f1 and f4). These modifications require no recomputation

of weights – rather some weights are zeroed out, or shifted to a different

location (Section 2.4.4).

The intuition behind the second mechanism is based on the idea of blocking

(Figure 2.8): For a coeffcient wij to be nonzero, the fine-scale basis function B1
j

needs to be a part of the decomposition of Bi, which is only possible if suppB1
j ⊂

suppBi. The presence of a T-joint T on an external edge of the stencil of the

edge point of P , ensures that the basis function of the control point Q, does not

contain the support of P . As a consequence, although the stencil in the absence of

T had Q in it, it cannot be present in the edge stencil. The effects of blocking have

to be propagated to the face points used to compute an edge or vertex point for
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which a vertex in the standard stencil was blocked. This means that modified face

points have to be computed, potentially per corner of a face. All blocking-related

modifications can be summarized as follows:

A T-joint which is not a part of a face stencil, but is adjacent to a vertex v of a

stencil, blocks the vertex of the stencil on the other side of v, and shifts its weight

to v.

E1

F̄1

E1 P4

w3

P3

F̄1

T

P3

Figure 2.8: Left: P3’s basis support (purple) overlaps E1’s basis support. Right:
T blocks P3’s basis support (purple) with respect to edge point E1’s basis support
(blue) – for F̄1 we shift w3 to P4.

We emphasize that our rules were obtained by generalizing from a number of

special cases and applying the blocking heuristics, not by a direct derivation from

the knot-insertion rules. For this reason, our rules still require a proof of validity for

all possible stencils which is briefly discussed in Section 2.7 and more completely

in supplementary material.

We initially present our subdivision rules in the form closest to NURSS; this is

however, not the most efficient way to implement these. In Section 2.6, we describe

the changes needed for the face-centric view of the rules, with each face responsible

for computing its contributions to verices and edges.
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2.4.3 T-mesh subdivision masks

We start with face, edge and vertex masks and then describe face point modifi-

cations. The stencils of all cases remain the same, with two caveats: (1) T-faces

require temporary split into half-faces (2) the edges with knot intervals ni and

pi “sticking out” of the face (Fig. 2.9), may not be present in the mesh. In this

case, consistently with definition of T-splines, we use the knot interval obtained by

extending an edge of the face in the same direction to the next intersection with

an edge (e.g. p3 in Fig. 2.9a).

p1 n1

p2

n2

n3

p4

n4s1

s2

p3

p1 n1

t3

n2p2

n3

p3

n4 p4

n5

p5

s1

s2

t1t2

t4

t5

t1

t3

t2 t4

P1

P2 P3

P4

P1

P2

P3 P4

P5

Figure 2.9: Edge/knot interval labeling on dyadic T-meshes for a) regular faces,
b) T-faces.

Face masks. For regular quad faces, the masks (2.2) remain unchanged. Note

however, that in the presence of T-joints in neighboring faces, ni and pi can in

general be different now (Fig. 2.9a). In a T-face, due to blocking by the T-joint,

P2 and P5 have zero weights w2 and w5. The remaining control points have the
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following weights (see notation in Fig. 2.9b):

w1 =
s2 + 2t4

2(h3 + s2 + t4)

w3 =
(s1 + 2n5)

2(p3 + s1 + n5)

(2p2 + s2)

2(p2 + s2 + n4)

w4 =
(2p3 + s1)

2(p3 + s1 + n5)

(2n1 + s2)

2(n1 + s2 + p4)

(2.6)

where h3 = p1 = n2 (we use a separate notation for h3 as it will be needed for the

extraordinary T-joint case).

The T-face point is given by

F = w1P1 + w3P3 + w4P4 (2.7)

For both edge and vertex points, we first temporarily split all T-faces with T-

joints neighboring the edge or vertex point into half-faces, to which the standard

masks can be applied. The difference to meshes with no T-joint is that the masks

are applied to modified face control points.

Edge masks. For edge stencils on edge e, we first have to compute the auxiliary

control points Qi described in the introduction of this section. Specifically, if

an edge endpoint is a T-joint w.r.t a neighboring T-face, we temporarily split

it into two half-faces, introducing a knot opposite the T-joint, and compute 3

control points Qi opposite the T-edge. The NURSS masks described in Eq.(2.4)

are applied to modified face points of incident edges described in Section 2.4.4.

The edge midpoint is identical to Equation 2.1.
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Vertex masks. For the vertex stencil of a vertex v, we similarly first compute

the auxiliary control points Qi for all T-faces with T-joints adjacent to v, splitting

them into half-faces. Note that two such T-faces may be adjacent, in which case

five points Qi are computed as a result of two knot insertions. We use the NURSS

masks described in Eq.(2.5), and again apply them to modified face points. The

midpoints are defined as in Eq. 2.1, but may use a Qi instead of a Pi, if it is

adjacent to a half-face (Figure 2.18b).

2.4.4 Face point modifications

F̄L
2 F̄R

1
ḞR

5ḞR
1ḞL

1ḞL
2

V1V2

V3 V4

V5E1E2

E3

E4

E5
F

Ḟ3 Ḟ4F̄4

F̄3 F̄5

V1

V2 V3

V4E1

E2

E3

F

F̄3

E4

F̄1Ḟ1 Ḟ4

Ḟ2 Ḟ3

F̄4F̄2

Figure 2.10: Face (blue) and half-face points (purple) and their edge and vertex
modifications.

At the level of edge and face rules described above, there is no change from the

non-T-joint case, except the rules are applied to the modified face points computed

for each vertex and each edge of a face individually (Fig. 2.10). Furthermore, some

face points used in the vertex and edge rules are face points of half-faces. These

modified face points require minimal recomputation: they use the same simple

combinations of NURSS face weights.

Half-face mask for split T-faces. Weights need to be computed for a half-

face resulting from temporarily splitting a T-face. With point labeling shown in
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(Fig. 2.9b), the weights wR
i , w

L
i for the right and left half faces are obtained by the

following substitutions into Equation 2.3:

wR
i : {n2, p2, s1, n4, p4} ← {h1, s1/2, s1/2, ṅ5, p5}

wL
i : {n2, p2, s1, n4, p4} ← {n3, ṗ3, s1/2, s1/2, h2} (2.8)

In the regular mesh case, h1 and h2 are equal to d/2 (we introduce a separate

notation for h1,2 to be able to describe the case of extraordinary vertices). ṗ3 and

ṅ5 are derived from p3 and n5 but take into account a possible knot insertion on

the edge, in which case their knot interval is halved.

Edge-modified face masks F̄. Possible presence of blocking T-joints on the

neighboring edges pi, ni of a face requires a modification of the face mask before

it can be used to compute an edge point. Two representative local configurations

for regular and T-faces are shown in Fig. 2.11.

Tn1

E1

P1

P2

P4

P3
F

F̄1

P2

P4

F

n1
p1

p3

Tn3

P3

F̄3
E3

P1

Figure 2.11: Edge modification for a) regular and b) T-face masks; control points
with non-zero weights shown in red, blocked control points with zero weight in
purple.

The regular face mask modified for edge e1 can be written as

F̄1 = (w1 + T p1w2)P1 + T p1w2P2 +

T n1w3P3 + (T n1w3 + w4)P4 (2.9)
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where T e = 1 if there is a T-joint on edge e (0 otherwise) and T e = 1 − T e. The

modifications for the remaining face edges are cyclically symmetric.

For T-faces, there are three different cases of face mask modifications. For

edge e4 opposite the T-joint, no modification is necessary since analysis-suitable

condition ensures that no T-joint can be on n4 or p4. For edges e1 and e2 on the

T-edge, the modifications are the same as for regular faces, applied to the half-face

weights (2.8). For the side edges e3 and e5 we modify the T-face weights of Eq. 2.6

(Fig. 2.11b):

F̄3 = T n3W1P1 + T n3W1P2 +

(W3 + T p3W4)P3 + T p3W4P4 (2.10)

P1

P2

P4

P3

F

P2

P4

Fn1

Tn3

P3

P1

V1

Ḟ1

T p2

V3
Ḟ3

Figure 2.12: Examples of face mask modifications for vertex stencils: non-blocked
control points are shown in red, blocked control points with zero weight in purple.

Vertex-modified face masks Ḟ. Similarly to the edge mask case, we modify a

face mask in the presence of T-joints on the outer edges of a face 1-neighborhood

which lead to blocking of some of the vertices:

Ḟ1 = w1P1 + (w2 + T p2w3)P2 +

T p2 T n1w3P3 + (T n1w3 + w4)P4 (2.11)
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The modifications for the remaining face vertices are again cyclically symmetric.

For T-faces we again have three different cases: 1) For vertices v2 and v5 we

use the regular vertex modifications in Eq. 2.11 for the respective adjacent half-

faces. 2) For the T-joint v1 we similarly compute the regular vertex modification

for both half-faces. 3) For v3, we have the following modified expression: if there is

a T-joint on n3, P1 no longer contributes to V3 as their respective basis functions

no longer overlap. The weight w1 is shifted to P2 (Fig. 2.12b). (the case for v4 is

symmetric). The modification becomes:

Ḟ3 = T n3w1P1 + T n3w1P2 + w3P3 + w4P4 (2.12)

2.4.5 Boundaries

Our factorized scheme supports boundaries similar to Catmull-Clark. Concep-

tually we mirror the mesh for each border face along the border edge, thereby

definining knot intervals, control points and T-joint tags past the border. In prac-

tice this is equivalent to evaluating non-uniform B-Spline boundary curves along

the border. Note that for the auxiliary control points Qi knot insertion on “both

sides” of the border results in no change for the border vertex, i.e. (with the

notation of Figures 2.7, 2.9) if e3 is a border edge of a T-face, Q1 = P3 .

2.5 Extraordinary Vertices

The support of meshes with arbitrary topology is one of the crucial advantages

of subdivision surfaces: the local, factorized operations make generalization to

29



general meshes possible, while retaining the surface quality of splines for regular

parts of the mesh. We complete our scheme by describing the generalization to

arbitrary mesh topologies. To generalize the factorization to extraordinary vertices,

we again take inspiration from NURSS, but show that it develops tangent plane

discontinuities in certain situations. We then present our modifications that both

restore tangent plane continuity in these cases and extend naturally to T-joints.

Thanks to the factorization, we do not need to impose restrictions on the prox-

imity of T-joints and extraordinary vertices This means that a T-joint can be placed

on an edge between two extraordinary vertices, and in fact can be extraordinary

itself (Fig. 2.17a).

2.5.1 NURSS

We briefly describe the NURSS scheme in a simplified form for meshes with only

quad faces and identical knot intervals for opposite quad edges, as we do not

consider other types of meshes.

Beside the knot intervals on ni and pi we also need intervals on the next and

previous edges (counterclockwise), respectively, labeled qi and mi (Fig. 2.13). Ob-

serve that if e.g. v1 is a valence 4 vertex, q1 = n2 and m1 = p4. The (unnormalized)

NURSS weights are:

w1 = (e1 +m1 + p4 + e3 + q3 + n4) · (e2 + q2 + n3 + e4 +m4 + p3)

w2 . . . w4 are cyclically symmetric. A face point F is then defined as:

F =

∑4
i=0wiPi∑4
i=0wi

(2.13)
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Figure 2.13: a) & c) Knot intervals used in face point weight w1’s two factors
(blue, purple) for original NURSS and our max-modified face masks. b) & d) Knot
intervals used in midpoint’s two control point weights (purple, blue) for P1 and P2.

With knot interval labeling as in Fig. 2.13b), the edge midpoints are computed as

M =
(d2 + q1 +m2)P2 + (d2 + q2 +m1)P1

(d2 + q1 +m2) + (d2 + q2 +m1)

The masks for edge points stay the same as in Eq. (2.4), but use the updated

face and midpoint masks.

P0P0

Ḟi

Mi

ei

ei+1

ei+2 ei

ei�1

ei+1
ei+2

ei�2ei�1

Figure 2.14: Two factors (blue, purple) of face (fi) and midpoint weights (mi)
for NURSS vertex mask.
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Vertex points are built from face points and edge midpoints of all surrounding

faces:

V =
n− 3

n
P0 +

3
∑n

i=1(miMi + fiFi)

n
∑n

i=1(mi + fi)
(2.14)

with n the valence at the vertex and the midpoint weights mi and face weights fi

as follows (using the notation in Fig. 2.14)

mi = (ei+1 + ei−1)(ei+2 + ei−2)/2 (2.15)

fi = ei−1ei+2 (2.16)

2.5.2 Loss of tangent-plane continuity

100 101 102

0.6

0.8

1

Figure 2.15: Modulus of four dominant eigenvectors of NURSS subdivision matrix
for valence n = 6 and unit knot intervals except one varying.

In [95], the authors describe a pinching artifact at extraordinary vertices for

general knot interval assignments due to different magnitudes of first and second

eigenvalues of the subdivision matrix, but conjecture that the construction above

nevertheless achieves tangent plane continuity. Unfortunately, we observe that in

general, tangent plane continuity is not achieved. For analysis, we choose valence
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Figure 2.16: Extr. vertex with n = 6. a) NURSS, b) our MAX modification.

n = 6 with unit knot intervals except at one edge and vary the remaining inter-

val. Figure 2.15 shows the modulus of the first four eigenvalues of the subdivision

matrix. For knot intervals in the range 4-16, we can observe that the first sub-

dominant eigenvalue stays real, while the second and third eigenvalues become

complex. This results in a surface that does not have a unique tangent plane at

the extraordinary vertex. Figure 2.16a clearly shows that there are two separate

tangent planes at the extaordinary vertex. In the next section we describe a mod-

ification of the NURSS extraordinary vertex rules that 1) restores tangent plane

continuity in the above situation (Figure 2.16b) and 2) supports DAS T-meshes.

2.5.3 Maximum formulas for extraordinary vertices

The face and midpoint generalizations in Section 2.5.1 can be viewed as replac-

ing one knot interval with an average over two knot intervals in the vicinity of

extraordinary vertices. The main idea of our maximum modification is to replace

the averaging over two knot intervals with taking the maximum knot interval in

the whole sector spanned by the two respective edges. We can view this also as
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modifying pi, ni into p̃i, ñi as follows:

p̃i = max][mi+1, pi]

ñi = max][qi−1, ni] (2.17)

where max][ei, ej] refers to the maximum over the knot intervals of all edges in the

sector ei to ej, inclusive (Fig. 2.13c). We then substitute the pi and ni in Eq. (2.3)

with p̃i and ñi and re-normalize by the sum of all weights to get affine invariance.

F =

∑4
i=0wiPi∑4
i=0wi

(2.18)

Note that we no longer compute the weight over both parallel edge lines. We

similarly update the midpoint masks (Fig. 2.13d):

d̃1 = max][q1,m2]

d̃3 = max][q2,m1]

M =
d2 + 2d̃3

2(d̃1 + d2 + d̃3)
P1 +

2d̃1 + d2

2(d̃1 + d2 + d̃3)
P2 (2.19)

We keep the edge and vertex masks exactly as described above.

Extraordinary T-joints. Our algorithm can support T-joints with valences >

4. Such configurations turn into T-faces with regular T-joints after one subdivision

step (Fig. 2.17a). To support such T-meshes, we substitute h1, h2 in Eq. (2.8) and
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h̃1

h̃3
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n2
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h̃2

q1

p1

e1

Figure 2.17: a) Extraordinary T-joint with face/edge extensions and subdivided
T-mesh; b) sectors for h̃1(blue), h̃2(purple), and h̃3(red).

h3 in Eq. (2.6) by the following sector maxima, respectively (Fig. 2.17b):

h̃1 = max][e2, q1]

h̃2 = max][m2, e1]

h̃3 = max][n2, p1] (2.20)

2.6 Algorithm

While we stayed close to the NURSS point of view for the presentation of our

edge and vertex masks, a face-centric implementation is both more compact and

faster. Section 2.4.4 already presented the face point modifications in a face-centric

way. Here we outline an entirely face-centric algorithm (see Algorithm 1 for the

pseudocode): the outer loop iterates once over all faces and computes all neccessary

components of face, edge and vertex points. An additional renormalization of all

vertex and edge points completes the computations. We provide a MATLAB

implementation of mask computation in the supplement.
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V1V2 V5
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Figure 2.18: Left: T-face chains. Right: midpoint masks involving auxiliary
points Qi.

Auxiliary control points Qi and T-face chains. In Section 2.4.3 we defined

auxiliary points Qi that are used to make the local configuration around a vertex

or edge regular. These points Qi were defined for each mask separately, and were

always as a result of (one or two) knot insertions. We can collapse the computation

of Qi to once per T-face chain: We call a T-face chain a maximal set of neighboring

T-faces, such that their T-joint is not part of the common edge of two neighboring

T-faces and all T-edges on the same side. As an example, in Figure 2.18a) the left

T-face builds a one-element T-face chain, while the middle and right T-faces build

a two-element T-face chain. Similarly, we call the set of edges in a T-face chain

opposite each T-edge a T-face edge chain. We can avoid the need to compute Qi

for different masks separately if we introduce all knots along a T-face edge chain

simultaneously. This can be done efficiently using Lane-Riesenfeld. We do this in

a pre-processing step at the beginning of the algorithm, and can then access the

three relevant Qi for each T-face without recomputation.

Face-centric midpoint evaluation. Since edge midpoints are shared between

faces, we have to decide which face computes the midpoint contribution to an edge

or vertex mask. We decide this “edge ownership” based on which face (or half-

edge) index is smaller. A subtle complication is that the edge midpoints Ṁ3, Ṁ5
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of e3 and e5 used for the vertex masks of v2 and v5 of a T-face require the control

points Q1, Q3 instead of P3, P4. We make sure these are always computed in the

respective T-face (again using edge ownership if two T-faces in the same T-face

chain share the edge). Lastly, for each T-face we compute the split edge midpoint

Ṁ1 which is used for the vertex point V1 (Fig. 2.18):

Ṁ1 =
s2 + 2t4

2(h̃3 + s2 + t4)
P1 +

2h̃3 + s2

2(h̃3 + s2 + t4)
Q2 (2.21)

2.7 Evaluation

Verifying limit surface in the regular case. We have verified that our sub-

division rules are correct refinement rules for T-splines. For this it was sufficient

to show that for a patch P (u, v) corresponding to a face of a T-mesh, and an

arbitrary valid connectivity of the control mesh around it, refinement using our

rules keeps the surface unchanged, i.e. refining the control mesh once, to obtain a

new T-mesh, and then constructing a T-spline surface from it, produces the same

result as directly constructing the T-spline from the original mesh. As the number

of possible connectivities of the control mesh of a patch on a regular grid is finite,

we simply verified this property for all possibilities.

Surface quality. In Figure 2.19, we show a valence 5 extraordinary vertex with

several possible local T-joint configurations, and compare to Catmull-Clark and

NURSS with unequal knot intervals. We observe that the behavior of surfaces with

T-joints is similar to that of Catmull-Clark, unless the knot spacing is unequal,

in two directions. Then it is slightly worse and comparable to NURSS, inherit-
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Algorithm 1 T-mesh subdivision pseudo-code

1: for all T-face chains do
2: compute auxiliary points Qi

3: end for
4: for all regular faces f = [v1, . . . , v4] do
5: Compute face point F, eq. (2.2)
6: for all i ∈ [1 . . . 4] do
7: compute
8: edge-mod. F̄i for edge ei, eq. (2.9)
9: vertex-mod. Ḟi for vertex vi, eq. (2.11)

10: midpoints Mi if edge owner, eq. (2.1)
11: terms to add Vi and Ei, eqs. (2.4), (2.14)
12: add the weight to total weight of Vi and Ei

13: end for
14: end for
15: for all T-faces f = [v1, . . . , v5] do
16: compute:
17: face points F, eq. (2.7)
18: edge-modofied F̄3, F̄5, eq. (2.10)
19: vertex-modified Ḟ3, Ḟ4, eq. (2.12)
20: vertex-modified (half-faces) ḞR

1 , Ḟ
L
1 and ḞR

2 , Ḟ
L
5 , eq. (2.11)

21: edge-modified F̄R
1 , F̄

L
2 , eq. (2.9)

22: midpoints Mi if edge owner, eq. (2.1)
23: midpoints Ṁ3,1,5 using Q1,2,3, eqs. (2.1), (2.21)
24: terms to add to Vi and Ei, eqs. (2.4), (2.14)
25: add the weight to total weight of Vi and Ei

26: end for
27: for all edge points Ei and vertex points Vi do
28: normalize by vertex’s total weight
29: end for

ing its pinching artifact, a result of two unequal subdominant eigenvalues in the

subdivision matrix. This can be seen in the lower quality of the reflection lines.

In Figure 2.20, we look at the effect of increasing the vertex valence. We observe

that the quality is consistent with the quality of Catmull-Clark. We note that the

quality for standard Catmull-Clark decreases quickly with valence but a variety of

techniques were developed to improve quality, some of which are applicable in our
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Patch layout Reflection lines specular

T1

T2

CC

NU

Figure 2.19: A number of T-joint configurations at a vertex of valence 5: T1,
T2 are different T-joint configurations. CC is the standard Catmull-Clark surface,
and NU is NURSS.

setting (as the scheme is stationary), although with greater difficulty.

Figure 2.1 shows how T-joints can be used to avoid under- or overtessellation

without the introduction of extraordinary vertices, in the case where the control

mesh faces vary greatly in size.

In Figure 2.21, we compare how similar mesh layouts are done with T-joints

and conforming meshes with extraordinary vertices. Typically pairs of vertices of

valence 3 and 5 need to be used to achieve the same layout.

Figure 2.22 shows several extraordinary vertices of valences 5 and 6 neighboring

T-joints, transitioning to a coarser mesh from the fingers to the hand.
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Patch layout Reflection lines specular

Tv3

Tv7

CC

Figure 2.20: Varying the valence: vertices of valence 3 and 7 are shown, with
T-joints in incident edges. The last row shows Catmull-Clark for valence 7 for
reference.

Figure 2.23 highlights all T-joints used in Figure 1 to avoid the extraordinary

vertices found in the original mesh from [7] to coarsen the mesh near the chin/neck

and ear/cheek areas. It also shows an extraordinary T-joint.

2.7.1 Characteristic Maps and Tangent Plane Analysis

A complete analysis of tangent plane continuity at extraordinary vertices is rela-

tively complex, due to the large number of configurations that need to be consid-

ered. However, with one additional assumption, a finite enumeration for moderate

vertex valences is possible.

Recall that for a mesh a number of knot values can be chosen independently,

with the rest determined by compatibility conditions. Specifically, if we assume

that all independent knot intervals are set to 1, then a finite (although very large)

enumeration of cases of self-reproducing connectivities near extraordinary vertex

is possible.
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Figure 2.21: Comparison of similar shapes with a mesh obtained using extraor-
dinary vertices and a T-mesh.

To determine the limit behavior at an extraordinary vertex, we can assume

that enough subdivision steps have occured that the topology around the vertex

is self-similar, i.e. the control mesh of the set of patches around the extraordinary

vertex is the same at all subdivision levels. To characterize these topologies, we

define a spoke to be the edge of the unsubdivided mesh(and all T-joints are regular)

incident at the extraordinary vertex of interest. Then self-similar configurations

are characterized by the following condintions:

• there is a single extraordinary vertex in the control mesh, and it is not a

T-joint;

• knot intervals on spokes are equal;

• there are only T-joints along spokes. A row of faces along a spoke either all

have T-joints on the spoke or none of them does.

These conditions allows us to characterize a configuration by a small number
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Figure 2.22: Examples of subdivided T-meshes.

of parameters (Fig. 2.24): 1) the valence, 2) the knot interval of the form 1/2i for

each spoke (all other knot intervals are determined by compatibilty constraints,

and the intervals on adjacent spokes cannot differ by more than a factor of two)

3) whether there are T-joints on a spoke and to which side it stem is pointing.

The two-ring control mesh for the central ring of patches is obtained by taking

the vertices of the union of quads forming 2 × 2 grids in each of k sectors for a

vertex of valence k. We note that scaling all knots by the same amount does not

change local surface behavior, so one of the knot intervals in the self-similar control

mesh can be always chosen to be 1, and the rest set with respect to it.

We enumerate possible configurations by going over all combinations of param-

eter values and checking the analysis-suitable conditions. Of course the number of

configurations grows exponentially, so the method is practical only for sufficiently

low valences (up to n = 9).

We use the standard approach to verifying C1 continuity for spline-based schemes

[88, 80].

First, we construct the subdivision matrix mapping the control points of the
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Figure 2.23: Bottom right T-joint is an extraordinary T-joint.

b

a

a

b c

c

d d d d

e

e

Figure 2.24: Left: limit topology around an extraordinary vertex. Right: ring of
Bezier patches extracted from the limit stencil.

two-ring to the points of the two-ring on the next refinement level, and compute its

subdominant eigenvalues and eigenvectors x`, ` = 1, 2 with components x`i . The

two-dimensional control mesh with control points (x1i , x
2
i ) define the control mesh

for the characteristic map from the plane to the plane. Nonvanishing Jacobians

and bijectivity of the characterisitic map are sufficient for C1-continuity. The

characteristic map is also self-similar (i.e., its values on a nested sequence of ring

domains are obtained by scaling), so it is sufficient to examine it on a single ring

domain. The ring domain is obtained as a set of patches forming outer rings after
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two subdivision steps (Fig. 2.24). As there are no extraordinary vertices in the

control meshes of these patches, all subdivision rules affecting the limit surface on

these patches are just analysis-suitable T-spline rules, and patches are polynomial.

For each patch, nonegativity of the Jacobian can be verified explicitly, by com-

puting the Jacobian as a polynomial and converting it to the Bezier form. Positivity

of Bezier coefficients of the Jacobian is sufficient. Finally, global bijectivity can be

inferred from local bijectivity by simple winding number tests as shown in [115].

2.8 Conclusions

We have demonstrated that for a restricted class of T-meshes it is possible to

design a set of subdivision rules with a similar support and computation cost to the

Catmull-Clark subdivision, and the complexity of stencils is only moderately higher

compared to NURSS. The quality of surfaces is similar to Catmull-Clark near

extraordinary vertices, although it degrades if knot intervals near extraordinary

vertices vary greatly. Both a version of NURCC and analysis-suitable T-splines

can be reproduced by our scheme.

Limitations. The most significant limitation of the proposed approach is that

the T-mesh is required to be analysis-suitable. Requiring separation between T-

joints limits the flexibility of T-joint insertion. On the other hand, this class

of T-splines is best understood, and has a number of attractive properties not

available for general T-splines.

Just as it is the case with T-NURCC, one can combine our scheme with general

T-spline patching, provided that the separation between non-standard regions on

the regular part of the surface and extraordinary vertices is high; note that no such
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requirement needs to be imposed on the standard regions.

Our analysis of C1-continuity shows that while our modification of NURSS

increases the range of valences for which the scheme is C1, the analysis is performed

only under assumptions on independent knot intervals and for bounded valence.

Even more significantly, for some of the higher-valence configurations C1 conditions

may still fail. Although practical implications of this are not high, this, along with

degradation of surface quality suggests that more work is needed on improving

NURSS rules.

A recent approach developed in [84] suggests that analysis of factorized schemes

may be done without explicit analysis of the characteristic map; this opens up the

possibility of analysis with restrictions on independent knot intervals.

Future work . In the future we want to extend the regular boundary rules of

Section 2.4.5 to extraordinary vertices and define a full set of crease masks. We will

also describe an extension of our scheme to support certain semi-standard T-spline

configurations that will allow T-meshes such as a regular mesh with one quad split

into four.

2.9 Subdivision and Nested Spaces

Proof of Proposition 2. We show that dyadic analysis-suitable T-splines form

nested spaces under face quadrisection.

The extended T-mesh Text is defined as the T-mesh with all extensions included.

We use Corollary 8.10 from [61]:

Corollary 1. Given two analysis-suitable T-meshes, T 1 and T 2, if T 1
ext ⊆ T 2

ext,
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then T 1 ⊆ T 2

We prove that the extended T-mesh and the extensions of its subdivisions

are nested. Let the T-mesh be T 0 and subdivided T-mesh be T 1. Consider a

face of T 0 containing a first-bay T-joint face extension (Figure 2.25a, face f1,

middle extension). In this case, T 1 contains two edges covering the extension in

f1. Suppose a face of T 0 contains a second-bay face extension (e.g., side extensions

in f1 in Figure 2.25a or central extension in f0). By enumerating possible ways to

connect pairs of faces for which the same extension is first- and second-bay, one

can observe that there are only two valid configurations for such pairs of faces in

a DAS T-mesh, identical exactly to these examples: (f1, f0) or (f2, f1). In both

cases, one can verify directly that the extended mesh of T 1 covers the extensions

in f0 and f1.

b)a)

f1

f2 f3

f1

f2

f0

Figure 2.25: a) Extensions in the original mesh (red dashed lines) are present
in the extended subdivided mesh (blue) for DAS T-meshes. b) This is not the case
for a non-nested space with three T-joints per edge in the original T-mesh (see
extensions in f1).

Therefore, the DAS T-spline spaces are nested. As an example of spaces that

are not nested, imagine an analysis-suitable T-mesh that allows three T-joints

per edge (Figure 2.25b). The extended original T-mesh is not contained in the

extended quadrisected T-mesh.
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2.10 Stencil Enumeration

For the original T-mesh T 0 we define the T-spline space T 0, its basis functions

B0
i and control points P 0

i associated with vertex vi and support S0
i = supp(B0

i ).

Analogously we define for the refined T-mesh T 1, T 1, B1
j and P 1

j associated with

vertex vj, S
1
j = supp(B1

j ).

We enumerate a set of neighborhoods in T 0 of a vertex vj from T 1, consisting

of vertices in the stencil of vj (stencil candidates.) In the next section we will show

that the control points P 0
i in these neighborhoods are in fact the only ones needed

to compute P 1
j . We distinguish 5 cases with different neighborhood topology:

1. P 1
j is a face control point;

2. P 1
j is an edge control point and both edge vertices are regular;

3. P 1
j is an edge control point and one edge vertex is a T-joint with respect to

one or both faces bordering the edge;

4. P 1
j is a vertex control point, vj is a regular vertex;

5. P 1
j is a vertex control point, vj is a T-joint in T 0.

These 5 cases require different constructions of neighborhoods.

vj vj

Figure 2.26: Examples of a) T-vertex and b) T-edge stencils.

Cases 1,2 and 4 are similar to Catmull-Clark - we define the stencils as the

vertices of all faces bordering vj. For an edge control point these are the faces
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bordering the edge, while for a face control point it is the surrounding face. For

cases 3 and 5, 1-neighborhood is not big enough: there are stencil control points

outside the 1-neighborhood. For 5, we add the faces neighboring the T-face to the

left and right of the T-joint (Figure 2.26a). Similarly for case 3, we only add the

face on the same side of the T-joint as the edge on which v1j is (Figure 2.26b).

For enumeration of all connectivities we can obtain as 1-neigborhoods (cases

1,2,4) or 1-neighborhod with additional edges specific choice of knot intervals is

irrelevant. For consistency, we fix the basis cross of B1
j to unit intervals. Then any

knot interval incident at v1j (associated with an edge or a face extent) and covered

by the knot grid of B1
j is also fixed. This leads to fixed knot intervals marked

blue in Figure 2.27. It is easy to see that all T-joints in a stencil topology have

to be oriented either all horizontally or all vertically. W.L.O.G., we assume the

orientation is vertical. For cases 3 and 5 the orientation is fixed by the central T-

joint, while for cases 1 and 4 we can choose one orientation (the other is symmetric).

We assume all T-joints are oriented vertically. Only for case 2 do we have to

consider both orientations. Each face in the stencil candidate can have at most

one T-joint, which can be located on one of the two horizontal edges (in case 2, it

can also be on one of the vertical edges) giving 3 possible states for each face (4

for case 2). In cases 1,3,4,5 we iterate for every face through the cases of a T-joint

along the bottom and the top edge, observing all edge length constraints. For case

2, we consider T-joints on every edge (removing combinations that would result in

horizontal and vertical T-joints). This yields a total of 171 stencil candidates. In

the supplement, we explain how we verify that this enumeration is exhaustive.
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f1 f2

Figure 2.27: Edge constraints on opposite sides resulting from the normalized
basis cross.

2.11 Proof of Exhaustive Enumeration of Sub-

division Stencils

To compute the value of P 1
j we need to define a stencil of control points P 0

i that

influence its value. We exhaustively enumerate the 1-ring neighborhood config-

urations (with a suitable extension at T-vertices and T-edges) of a vertex in all

possible T-mesh configurations.

Here we show that such a configuration N in fact covers the stencil, i.e. no P 0
i

outside N can influence P 1
j .

We split the parametric plane outside N into two parts: (1) half-slabs Hk in

which a basis function B0
i cannot affect P 1

j since its cross would have to intersect

two edges in N before S0
i would cover S1

j , and (2) the remaining regions (corner

zones) Ck for which we use a Lemma from [28].

Let

S1
j = [s0 . . . s1]× [t0 . . . t1].

Half-slabs Hk are constructed for each of the four directions t,−t, s and −s.

Consider a line `s in one of these directions (e.g., horizontal direction −s) that

intersects the stencil candidate N . Each such line is intersected by at least two

edges of the stencil (this can be verified for each stencil candidate directly). Con-

sider the set of points on `s separated from the right boundary of S1
j by two stencil
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C1

C2 C3

C4

H1

H2

H3

H4

c3c2

c1 c4

vj

C1

C2 C3

C4

H1

H2

H3

c3c2

c1 c4

H4

vi

R

Figure 2.28: Half-slab Hk (light green) and corner zones Ck (light red), corner
points ck (red), basis support S1

j of vertex vj (blue). Right: minimal rectangle R
that a quadrant of vi’s basis function needs to contain.

edge intersections with `s. These points cannot be control points in the stencil.

The union of such points for all lines `s form the half-slab H1.

For every N there are four corner points where two Hk intersect. They bound

one of the open regions Ck which we will call corner zone. Since the entire plane

is covered by these regions:

R2 = N ∪
t⋃

k=1

Hk ∪ Ck,

all that is left to do is to prove that any B0
i centered in any corner zone Ck can

not contain S1
j . To show this, we use Lemma 4.2 from [28]. The vertex vi is called

an active T-mesh node if it is sufficiently far away from any boundary that there

are enough knots to define its basis function. TF(vi) is the tiled floor of vi, i.e. the

support of B0
i excluding the 5x5 grid of knot lines.

Lemma 4. Let M be an AS T-mesh and vi an active T-mesh node. Then TF(vi)

does not contain any T-mesh node.

As a consequence of this Lemma, in the case of dyadic T-meshes, all T-mesh

vertices vi in a quadrant Q of a basis function B0
i , have to be a subset of one of
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two possible configurations (see Figure 2.29).

Figure 2.29: Possible quadrants for DAS T-spline basis functions: visible part of
the basis cross marked blue.

This can be seen as follows: There can be no vertices or crossing edges on

the basis cross other than the two that define the basis cross (otherwise the basis

cross would be shorter), so the densest regular grid we can define on Q has 3× 3

knots. W.l.o.g. let us assume there are only vertical T-edges in this grid. It

contains at least one T-joint with a horizontal stem – otherwise the support of

the basis function B0
i would be smaller. Wherever the T-joint is located, its face

and edge extension together span the entire s-span of Q, making it impossible to

add a vertical T-joint anywhere without violating the analysis-suitable rule that

no horizontal and vertical T-joint extensions intersect.

So in one quadrant, analysis-suitable T-meshes can only have either horizontal

or vertical T-joints, but not both. Since we are only considering dyadic T-meshes,

there can be at most one T-joint per edge. Hence the densest Q given a fixed basis

cross is defined by the cascaded T-joint pattern shown in Figure 2.29. It is clear

that the s and t knots of any other refinement are contained in the knots of this

Q.

We can hence conclude that there is one dimension along which there can be

no more than 3 knots in Q.

To prove that no vi ∈ Ck exists such that S0
i ⊇ S1

j , we show that the relevant
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quadrant Q of a basis function B0
i associated with such a vi requires at least 4

knots along both dimensions.

A necessary condition for S0
i ⊇ S1

j is that Q contains the rectangle R spanned

by vi and the corner of S1
j diagonally opposite to vi (Figure 2.28 right).

We then collect the knots of all vertices in R, and include the s- and t-extents

of R to ensure that Q indeed contains R. Recall that the total knot count cannot

exceed three in both dimensions simultaneously.

For each previously listed stencil, however, we verified by this simple counting

scheme that for each stencil Ck, the number of knots in R is always ≥ 4 in each

dimension. Hence, there are no vi ∈ Ck such that their support contains S1
j , and

there are no outside control points P 0
i that affect P 1

j .

To verify our factorization reduces to analysis-suitable T-Splines, now all we

have to do is to verify that it yields the same results we obtain with the refinement

formulas in Section 2.3 for every vertex of every stencil connectivity enumerated

above.

2.12 Explicit Enumeration of

Dyadic T-mesh Subdivision Stencils

Figure 2.30: DAS T-mesh face stencils.

Figure 2.31: DAS T-mesh edge stencils.
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Figure 2.32: DAS T-mesh T-edge stencils.

Figure 2.33: DAS T-mesh vertex stencils.
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Figure 2.34: DAS T-mesh T-vertex stencils.
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2.13 Control Meshes of Characteristic Maps for

Dyadic T-meshes

Figure 2.35: DAS T-mesh valence 3 characteristic map.

Figure 2.36: DAS T-mesh valence 5 characteristic maps.

Figure 2.37: DAS T-mesh valence 6 characteristic maps.
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Figure 2.38: DAS T-mesh valence 7 characteristic maps.

56



Chapter 3

Real-Time Creased Approximate

Subdivision Surfaces with

Displacements

Here we extend the patch-based Approximate Catmull-Clark scheme to support

sharp features such as creases and corners and derive stencils for the valence 2

border case.

This work was published as [Denis Kovacs, Jason Mitchell, Shanon Drone,

and Denis Zorin. Real-time Creased Approximate Subdivision Surfaces. I3D 09:

Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, pages

155 160, 2009].
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3.1 Introduction

High-order surfaces are a very compact representation of smooth objects: a small

number of control points completely defines a surface. This feature makes high-

order surfaces appealing when memory is limited, for example, in applications

running on game consoles. High-order surfaces naturally support level-of-detail,

allowing for a flexible quality-performance tradeoff, essential in the cases when

an application must guarantee interactive performance across a variety of target

hardware platforms.

At the same time, high-order surfaces require significantly higher computational

resources for evaluation, which, until recently have limited their use in games. As

graphics processing unit (GPU) compute density continues to outstrip memory and

memory bandwidth, high-order surfaces have become an increasingly attractive

option.

Catmull-Clark subdivision surfaces are the dominant high-order surface type

used in feature films, particularly in the area of character modeling [21] [34]. Mod-

eling with Catmull-Clark surfaces is familiar and intuitive to artists and the limit

surface behaves well when the control mesh is animated. Recently, a simple and

efficient, yet high-quality bicubic approximation of Catmull-Clark surfaces (ACC)

suitable for integration into game engines was introduced [67]. Our goal is to

extend ACC to support piecewise smooth surfaces with creases and boundaries

with corners [56]. Surfaces with crease features are common in applications, which

makes it essential to retain high visual surface quality of ACC near such points.

Loop and Schaefer’s original paper presents a construction for a smooth boundary

(excluding a common situation described in Section 3.5). This construction can be

used anywhere except at vertices where multiple creases meet, near corner vertices
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Figure 3.1: The Heavy Weapons Guy from the game Team Fortress 2 modeled as
a Catmull-Clark subdivision surface and rendered with our technique. The charac-
ter and his weapon contain sharp features which require crease support to render
correctly. In the bottom image, the black lines indicate patch edges with tagged
crease edges highlighted in green.

on the boundaries, or on interior creases.

There are two important differences between corner points and interior points:

• Catmull-Clark surfaces may not have well-defined tangents at corner points,

and the tangents of modified Catmull-Clark surfaces [6] turn out to be un-

suitable for use in tangent Bezier patches for many meshes;

• Vertices of the control mesh tagged as corners need to be interpolated.

We demonstrate shading artifacts that result from using incorrect tangents at

corner vertices, and present a formula for tangents that leads to good visual quality.
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Interpolation of corner control points may result in artifacts (“overhangs”) both

in subdivision surfaces and their bicubic approximation. We discuss how these can

be avoided. In addition to extending ACC, we discuss integration of our imple-

mentation with a production game engine, Valve’s Source engine (Section 3.7). We

present performance comparisons of instanced versus native tessellation as well as

a comparison with results published by Ni et al. [76] for a C1 scheme in Section 3.8.

3.2 Related Work

Our work is a direct extension of the work of Loop and Schaefer [67] and we refer

the reader to that paper for a more detailed discussion of related work; here we

present a brief summary. The central idea of using separate tangent and posi-

tion fields to define visually smooth geometry without constructing a C1 surface

explicitly was introduced by Vlachos et al. [107]. A number of algorithms were

proposed in the past to generate smooth (typically C1) piecewise polynomial sur-

faces, but few attempted to match the visual quality of Catmull-Clark surfaces.

A C1 (almost everywhere C2) patch approximation of Catmull-Clark surfaces was

proposed by Peters et al. [79], but requires one or two additional subdivision

steps. G2-continuity is achieved by Loop et al. [68] but requires evaluation of rela-

tively complex high-order patches. Techniques for direct evaluation of subdivision

surfaces on GPUs [8, 99] require additional subdivision steps or multiple passes

[12].

An important recent approach for smoothing quad meshes with C1 patches was

presented by Ni et al. [76]. In this work, all extraordinary quads (with at least

one vertex of valence 6= 4) are converted to four triangular patches of total degree
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4 each. As we target relatively low polygon count models common in games, many

faces in such models tend to be extraordinary, which makes the lower complexity

of control point setup and patch evaluation of ACC more appealing in our setting.

Subdivision surfaces with creases were introduced by Hoppe et al. [49], and rules

for interior-independent creases and corners that ensure tangent plane continuity

were introduced by Biermann et al. [6]. As we discuss in Section 3.4, these rules

do not necessarily meet the needs of our application. Boubekeur [10] adds smooth

crease curves to PN triangles as well as additional parameters for crease shape

control, but does not consider corners.

As we discuss in Section 3.7, we have implemented two tessellation schemes

on current hardware: instanced tessellation and ATI native tessellation. In-

stanced tessellation is available in shader model 3.0 hardware with vertex texture

fetch capabilities such as NVIDIA GeForce 8x00 and ATI RADEON HD 2x00

while native tessellation is available on ATI RADEON HD 2x00 and later GPUs

as well as the XBox 360 [60] [103]. In instanced tessellation, rendering multiple

pretessellated meshes containing parametric and index data makes it possible to

use the vertex shader to evaluate tessellated surface position [41]. In Grün as well

as Ni et al., hardware instancing is used to accelerate rendering of PN-triangles

and a patch-based C1 surface construction respectively [44][76]. As we discuss in

Section 3.8, instancing and native tessellation methods suffer from performance is-

sues related to memory usage and memory bandwidth needed to transmit control

point data. In order to eliminate this control point storage and transmission cost,

three pipeline stages are added after the vertex shader in Microsoft’s DirectX 11 as

shown in Figure 3.2: the hull shader, the tessellator and the domain shader [42].

Developers will typically map vertex animation operations such as skinning to the
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vertex shader, basis transformations such as ACC to the hull shader and high

order surface evaluation to the domain shader. Each new stage has remained pro-

grammable so that developers can customize the functionality to suit their needs,

for example extending ACC to support creases as we have done.

Hull Shader

Vertex Shader

Tessellator

Domain Shader

Geometry Shader

Pixel Shader

New
DirectX 11

Pipeline
Stages

Figure 3.2: DirectX 11 Pipeline.

3.3 Bicubic Approximation of Catmull-Clark sur-

faces

We briefly review the construction of [67] to set up the notation. Geometry patches

are Bezier patches of bidegree 3, defined by a grid of 16 control points (Figure

3.3): 4 corner, 8 edge and 4 interior points. Their positions are determined using

fixed-weight masks depending on the valence (see [67] for mask definitions). The

weights are chosen so that each edge point is the midpoint of two adjacent interior

points, and each corner point is the centroid of the adjacent endpoints of all nearby

patches.
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Figure 3.3: Control points of geometry patches and control vectors of tangent
patches.

For boundaries, the weights for corners and edge points on the boundary are

chosen to produce a B-spline curve on the boundary, with the exception of vertices

of valence 2, which are forced to be corners (i.e., have 2 distinct tangents). The

interior points are determined in the same way as for patches non-adjacent to the

boundary, with the boundary vertex regarded as an interior vertex of valence 2k,

where k is the number of incident patches, which we call face valence. Informally,

a smooth boundary vertex is regarded as interior vertex with a half-ring of incident

patches.

Tangent patches are Bezier patches of degree (2,3), with 12 control vectors

(Figure 3.3). Separate patches ∂u and ∂v are defined for parametric directions u

and v; the formulas used for control vectors are the same, so we consider only the

∂v tangent patch. The corner vectors are obtained using Catmull-Clark tangent

mask weights applied to the ring of edge and face neighbor vertices of the corner

point, with signs reversed for corners v02 and v32. For boundary points, tangent
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masks of the modified Catmull-Clark scheme [6] are used.

All edge and interior control vectors are obtained from the geometry patch

directly using the standard formula vij = 3
(
bi,j+1 − bij

)
, excluding edge control

vectors along the edges with two control points. These vectors are defined using

correction factors that ensure tangent field continuity

v1j = 3
(
b1,j+1 − b1j

)
+

1

3

(
2c0u1j − c1u0j

)
v2j = 3

(
b2,j+1 − b2j

)
+

1

3

(
2c0u2j − c1u1j

)
(3.1)

We re-derive these formulas in a slightly more general form to construct tangent

fields at corner vertices in Section 3.4. Interior and edge control vectors are com-

puted in the same way for patches adjacent to creases or boundaries.

3.4 Creases and Corners

A control mesh for a piecewise smooth surface of the type described in [6] has a

number of edges tagged as crease edges. A vertex of a crease edge can be tagged

as either a crease smooth vertex (default), or a crease corner vertex. Crease corner

vertices are interpolated, and the crease curves may have two distinct tangents at

the corner. We consider only the case of interior-independent sharp crease curves,

which are completely defined by the control points on the crease.

If a vertex has more than two incident crease edges, we always tag it as a

corner, so that it is interpolated, although some of the incident crease curves may

have common tangents. In this setup, locally near a crease vertex, we can split the

control mesh into independent parts (sectors), each of which can be treated as a

surface with boundary (Figure 3.4). For smooth crease vertices, the rules of Loop
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Figure 3.4: Three sectors defined at a crease vertex.

and Schaefer are used, excluding the case of face valence 2, for which Loop and

Schaefer use a special-case corner rule.

To define corner rules, we first consider what can be regarded as the desired

behavior at corner vertices.

Surface behavior near crease corners Intuitively, one expects the smooth

surface to “follow” the control mesh; this natural requirement, combined with

crease independence from the interior leads to unexpected difficulties at crease

corner vertices. If one requires the surface to have a well-defined tangent plane

at corners, and the tangent curves do not depend on control points away from

the mesh crease, then the tangents of the two crease curves meeting at the corner

determine the tangent plane of the surface. Furthermore, there are two types of

possible local surface behavior [6]: convex and concave corners (Figure 3.5). One

can observe that neither of these options matches the control mesh behavior: one

intuitively expects the normal to the surface to be as close as possible to being

perpendicular to the incident mesh edges. In contrast, at interior vertices, the

tangent masks effectively average the tangent directions, so the resulting normal

can be regarded as the average of normals of planes spanned by all possible pairs

of incident edges.
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Figure 3.5: Left: concave corner. Right: convex corner. [6]

The situation is substantially different at corner vertices at the crease, as the

crease independence requirement forces a tangent plane independent of interior

control points. For the type of surface shown in Figure 3.5, this results in surface

normals nearly parallel to mesh edges. For Bezier-interpolated normals, the prob-

lem is further exacerbated (Figure 3.6). Two possible approaches to resolving this

contradiction are:

• Relax the tangent plane continuity requirement at crease corner vertices:

introduce cones, so that a different normal corresponds to each edge direction

at the corner vertex, but the normal is continuous everywhere else;

• Allow normal directions that are dependent on interior control points.

Depending on the desired appearance, either option may be suitable. However,

in the context of ACC, the first option turns out to be unusable because of the

limitations of the Bezier representation.

Cones Making corner crease vertices into cones presents two difficulties: first,

there are a few smooth configurations for which a cone is not the best possible

behavior. Second, even more importantly, it is impossible to produce a single-

point normal discontinuity with nondegenerate tangent Bezier patches. Indeed,

tangents ti(s), i = u, v, along the boundary of a patch parametrized by s, are given
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a b

c d

Figure 3.6: Comparison of different tangent definitions for a corner: a,b: Edge
tangents are computed as linear combinations of two crease tangents (modified
Catmull-Clark). c,d: Our scheme used for tangent control vectors for the same
control meshes.

by cubic or quadratic polynomials, so (non-unit length) normal n(u) = tu × tv

is a polynomial of degree 5. The condition that normals on two sides of the

boundary are collinear can be expressed as n(u) × n̂(u) = D(u) = 0, where n̂ is

the normal computed for the same boundary curve for the adjacent patch. D(u) is a

polynomial of degree at most 10. If the normals are not collinear and nondegenerate

at the corner vertex u = 0, then D(u) 6= 0 at u = 0, and can vanish at most at 10

points along the boundary, which makes normal continuity at all boundary points

away from the corner vertex impossible. D(0) = 0 implies either collinear normals

(which means the point is not a cone), or singular parameterization. It is clear

how one can construct cones by collapsing control points of a Bezier patch to a

single control point at one of the patch boundaries.

As singular parametrization is highly undesirable for tessellation (especially

based on instancing as discussed in Section 3.7), and texture mapping, we consider

the latter option impractical.
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Interior-dependent tangent patches We adopt the second possible option,

that is, introduce dependency of normals at crease corners on the mesh interior.

Recall that the primary reason to use an interior-independent construction for

edge and corner points on the crease is to ensure that patches on different sides of

creases match perfectly. At the same time, the normals are discontinuous across

creases, so no such constraint is essential for tangent patches, although it is still

desirable that the normals on the crease depend only on control points on the same

side. This observation leads to the following overall approach:

• Compute geometry patches in the same way as boundary patches in [67], but

make sure that the crease corner point c is interpolated;

• Define a suitable tangent plane P for c;

• Project crease edges incident at c to P , and obtain tangents for interior edges

incident at c by interpolation of two normals.

To define the tangent plane at interior and smooth crease vertices, the tangents

are obtained by applying fixed modified Catmull-Clark tangent weights, and the

normal is computed from the tangents. In the case of corners, this solution is not

available, as the modified Catmull-Clark surface of [6] the tangent plane is spanned

by the two crease tangents, and the original Catmull-Clark surface in general is

not tangent-plane continuous.

Instead, we use the average of the normals to geometry patches directly. If

we choose the indices in each patch so that the crease corner vertex is b00, and

number patches from 0 to k,

n = norm
(k−1∑

i=0

norm
((

b
(i)
10 − b

(i)
01

)
×
(
b
(i)
10 − b

(i)
00

)))
(3.2)
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where norm(x) = x/|x|. In the case when normals average to zero, there is no

meaningful common normal, and we use the cross-product of two tangents.

While this direct procedure is more expensive than computing a linear average

of tangents using fixed weights, we found that the results are substantially better

for all choices of averaging of tangents with which we have experimented. If the

expense of this calculation is a concern, for all control point configurations we

have examined in practical models just averaging the normal to the first and last

geometry patches still yields a tangent plane superior to other alternatives.

Tangent interpolation Once the tangent plane P with unit normal n is defined,

we project the crease tangents tinit0 = p0 − c and tinitk = pk − c, where p0 and pk

are two crease vertices adjacent to c, and k is its face valence, to the tangent plane

P to obtain two basis tangents tPi = norm
(
tiniti − (n · tiniti )n

)
, i = 0, k. Next, we

interpolate these tangents to obtain corner control vectors for each tangent patch

incident at the crease corner vertex, in a way that insures tangent plane continuity.

v00
v10 v20 v30

u00 u10 u20

v00v00 v10v10 v20v20
v30v30

Figure 3.7: Control vectors of tangent fields u(t), v(t) and v̂(t).

We use a slightly more general form of patch continuity conditions of [67] used

to derive (3.1). Consider three tangent fields defined on an edge e shared by

two patches: the quadratic ∂u field u(t), and two cubic ∂v fields v(t) and v̂(t)
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(Figure 3.7). To ensure normal field continuity across the edge, these three fields

have to be linearly dependent at each t. We can multiply u(t) by any linear function

(a+bt) without changing its direction. If three linear polynomials (a+bt)u(t), v(t),

v̂(t) are linearly dependent, but pairwise independent (which is the case whenever

there are no degeneracies in the patches), we can write the dependency condition

as (a + bt)u(t) = cv(t) + dv̂(t), with c, d 6= 0. As a and b are arbitrary, we can

set c to one. As the choice of order between v and v̂ is arbitrary, it is natural to

require that c = d, and c can be chosen to be 1. As for polynomials to coincide,

their Bezier points have to coincide, we arrive at the conditions of a form similar

to [67], but with undefined a and b.

au00 = v00 + v̂00, bu20 = v30 + v̂30 (3.3)

1

3

(
bu00 + 2au10

)
= v10 + v̂10,

1

3

(
2bu10 + au20

)
= v20 + v̂20 (3.4)

As in [67], equations (3.4) can be satisfied by a suitable choice of v10, v20, v̂10,

and v̂20 as functions of other control vectors. We index the edges e incident at the

crease corner c counterclockwise starting with a crease edge. The vectors u00, v̂00,

and v00 are tangents along an edge ej, the previous edge ej−1 and the next edge

ej+1, respectively. If we denote them by tj, tj−1 and tj−1, each of the equations

(3.3) has the form

tj+1 = ajtj − tj−1

j = 1 . . . k− 1, where k is the face valence of c. In [67] two choices of formulas for

tj (Catmull-Clark tangent formulas for interior vertices and smooth boundaries)

satisfy these equations for a fixed a. Three additional natural assumptions deter-
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mine a unique answer: (1) aj = a independent of j; (2) t0 = tP0 and tk = tPk so

that the tangent control vectors on the crease are aligned with the crease curve

tangents as well as possible; (3) if these tangents are of equal length, we expect all

inferred tj j = 1 . . . k are of equal length. In this case,

ti =
1

sin θ

(
sin

(i− k)θ

k
tP0 + sin

iθ

k
tPk
))

(3.5)

where θ is the angle between the tangents t0 and tk. The angle θ is measured in

counterclockwise direction if we look at the tangent plane from the direction of the

averaged normal n. Equation (3.5) leads to numerical difficulties if θ is close to π,

although resulting tangent vectors are well-behaved even in the limit θ = π. If t0

and tk are normalized to be of the same length, which we take to be the average

of their lengths, one can write this expression in a less symmetric but more stable

form as

ti = cos
iθ

k
tP0 + sin

iθ

k
n× tP0 (3.6)

Formulas (3.2) and (3.6) define tangent control vectors at crease corner vertices.

We have found this approach to be quite robust and insensitive to perturbations

and degenerate cases. Examples of applying these formulas are shown in Figures 3.6

and 3.14 (right).

3.5 Smooth Creases for Face Valence 1

Smooth creases can be thought of as boundaries inside the mesh. Loop and Schae-

fer describe geometry patch stencils and limit tangents for boundaries, but choose
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Figure 3.8: Face valence 1 crease vertices.

to define a crease vertex of valence 2 to be a corner, defining a special-case rule.

However, we have observed in practice (Figure 3.8) that it is often desirable to

have smooth boundaries with face valence 1 vertices.

Defining the crease to be a uniform B-Spline curve as in the other cases results

in the problem that now the tangents and bitangents of the geometry patch are

collinear and no longer define a normal.

The limit normal, however, still exists and can be found by considering tangents

along the curve γ(s) = B(s, s) where B(u, v) is the Bezier patch. A direct com-

putation shows that up to higher order terms, the tangent is γ′(s) = st3 + O(s2),

where t3 can be computed from the control points using the mask in Figure 3.8.

This allows us to obtain the normal to the surface at the smooth vertex with k = 1

as the cross product of the tangent to the crease curve and t3.

In practice, one can avoid a special-case code for the normal computation by

perturbing the boundary tangents instead, setting them to t0 + εt3 and t1 + εt3

respectively. We use ε = 10−4. As a result, the tangent control vectors at the

boundary are no longer perfectly collinear; we could not find any cases where a

perturbation of this magnitude would cause artifacts, yet it is sufficiently large to

make the normal computation stable. The result of applying this procedure on a

car model are shown in Figures 3.15 and 3.16.
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3.6 Artifacts and How to Fix Them

Just as for subdivision surfaces, many different types of visual quality defects can

be identified. We address the two most significant types of artifacts that occur

near corners.

Figure 3.9: Left: An ACC surface with an overhang. Right: a modification of
the control mesh eliminating the overhang.

Overhangs Crease corner points are interpolated by an ACC surface, while

nearby noncorner mesh vertices are moved to averaged positions of their neighbors.

This, in turn, affects placement of interior and edge Bezier points near a corner.

As the edge Bezier points determine tangent directions at patch boundaries, for

highly nonuniform meshes, extreme shifts of tangents may result in patches with

angles between tangents exceeding 180 degrees. For reasons discussed in [6], a

Bezier patch, which always has convex corners in the parametric domain, cannot

have a concave corner, so the patch folds over and approaches the boundary curves

from the smaller angle side, developing overhangs shown in Figure 3.9a. The prob-

lem disappears if the designer chooses a more uniform set of quads near the crease
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corner or increases its valence (Figure 3.9b).

Lack of smoothness near convex corners For highly non-planar corners of

low valence, in some cases, the bicubic patches cannot approximate the behavior

of the subdivision surface well, even if a least-squares fit is used as close as possible

to the surface. In this case, the angle between actual normals of geometry patches

is significant and cannot be fully masked by using tangent patches (Figure 3.10).

In this case, increasing the valence of the crease corner or decreasing the size of

adjacent faces solves the problem.

Figure 3.10: Non-smooth appearance near a corner. Note the mismatch between
the Catmull-Clark surface (red) and bicubic patches (blue), and the sharp angle
between parametric lines on adjacent patches.

3.7 Implementation

We have implemented the above extensions to ACC in Valve’s Source engine.

We have mapped the DirectX 11 pipeline onto DirectX 9, including instanced

and native tessellation codepaths where the vertex shader and hull shader are

implemented in software on the CPU and the remaining stages are executed on

the GPU.

The CPU-side vertex shading operations include skinning, vertex morphing and

other operations which are appropriate to perform at the control mesh level. Post-
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Figure 3.11: DirectX 11 pipeline mapped onto instanced and native tessellation
on DirectX 9.

transform control mesh vertices are then sent to the software hull shader where

they are mapped to a set of Bezier patches using our technique. This data is copied

asynchronously to GPU memory. Domain points are instantiated with appropriate

mesh connectivity on the GPU using either hardware instancing or ATI’s native

hardware tessellator. After this on-chip data amplification, the vertex shader—

playing the role of domain shader—evaluates Bezier patch point positions and

tangent frames using Bezier control points fetched from the floating point texture

generated earlier by the CPU-side hull shader.

Native Tessellation ATI’s hardware tessellator instantiates the vertex shader

at u, v points in the [0..1]2 domain and provides the shader with access to all of the

“super-primitive” data from the input vertices [60] [103]. The shader can use the

input super-primitive data and the Bezier patch data to evaluate patch attributes.

The remainder of the graphics pipeline is unchanged, so an implementor need only

alter existing vertex shaders and vertex buffer layouts. In Valve’s Source engine,
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the changes necessary to add this functionality to existing production-tested vertex

shaders were minimal, though we did run into some limitations of the DirectX 9

vertex shader programming model, particularly the size of the general purpose

register file, as we discuss in section 3.8.2.

Instanced Tessellation It is also possible to emulate tessellation by using in-

stancing hardware to replicate a pretessellated patch across the input mesh, one

instance for each ACC patch [44] [76]. The vertex shader then evaluates the bicu-

bic patch in the same manner as in the native tessellated version. Due to some

implementation details dictated by the ATI native tessellator interface, the ver-

tex shader instruction counts are not identical between the two codepaths, as we

discuss in the next section.

3.7.1 Displacement Mapping

In addition to approximating the Catmull-Clark limit surface, it is possible to

compactly represent high frequency detail by displacing the vertices from the ap-

proximate limit surface [26] [58]. We have written an extractor which processes the

Catmull-Clark control mesh and a separate high-resolution detail mesh to generate

a scalar displacement map relative to our approximation to the Catmull-Clark sub-

division surface [23]. Without displacement, each invocation of the domain shader

performs 30 fetches of packed control point data and the inclusion of an additional

data fetch to access a displacement map has negligible incremental performance

impact. Likewise, the handful of arithmetic operations necessary to displace the

vertex relative to the approximate limit surface are insignificant. Since the run-

time cost is essentially free, the real barriers to the adoption of displacement map-
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ping are the additional memory burden of storing the displacement maps and the

tool investment necessary to integrate displacement mapping into a studio’s art

pipeline. There are available commercial tools such as ZBrush, MudBox and others

which can output heightfield textures suitable for use as displacement maps. In

these tools, however, the height maps are computed relative to the Catmull-Clark

limit surface. In our case, of course, we are rendering an approximation made

up of bicubic patches using a separate normal field which is designed to provide

plausible lighting despite the fact that the geometry patches are not necessarily C1

at patch boundaries. As a result, we have written a displacement map extraction

tool which uses the creased ACC geometry and normal fields in the extraction

process to ensure that the displacement maps are computed relative to the ap-

proximate limit surface. In Figure 3.12, we see a Vortigaunt character from the

game Half-Life 2 rendered as an approximate Catmull-Clark subdivision surface.

In the left column of images, we see the smooth approximate limit surface shaded

with a simple Phong shader, using a normal map to provide some detail in the

lighting. In the right column of images, displacement mapping has been applied

to the character to add surface detail.

3.8 Performance

We have analyzed the performance of both the CPU conversion of the Catmull-

Clark quad mesh to the bicubic approximation and the GPU evaluation of the

resulting bicubic patches. In our case, the Catmull-Clark to ACC evaluation was

done on the CPU, though it can be performed on the GPU instead [76]. Naturally,

the patch evaluation is handled on the GPU, after the data has been amplified
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Figure 3.12: Left column: A Vortigaunt from Half-Life 2 rendered as an ap-
proximate Catmull-Clark subdivision surface. Right column: The Vortigaunt
rendered with displacement mapping. The bottom images show wireframe to illus-
trated the post-tessellated mesh density.

either through instancing or using ATI’s native tessellator.
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3.8.1 CPU Performance

The primary bottleneck in the CPU conversion from Catmull-Clark to ACC is the

computation of the tangent patches, accounting for more than half of the total

CPU time. We can avoid this cost on regular patches since these patches do not

necessarily require separate tangent patches. Hence, the performance is dependent

on the mix of valences in the mesh being converted, where a mesh consisting of

only regular patches could see as much as a twofold performance increase over a

wholly extraordinary mesh. We then vectorized the conversion math using CPU

SIMD operations. In addition we created lookup tables for commonly computed

values and unrolled much of the looping math. This roughly doubled perfor-

mance over our original implementation. Third, we parallelized the computation.

Since each patch evaluation is independent of all other patch evaluations, it splits

across multiple cores easily. Using parallelization, we achieved an additional per-

formance improvement of around 3.5x on 4 cores for meshes between 1000 and

10,000 patches.

3.8.2 GPU Performance

We now compare performance of instanced tessellation and native tessellation for a

variety of datasets and analyze GPU bottlenecks at various stages of the pipeline.

In Table 3.1, we compare instanced and native tessellation performance of the

datasets shown in Figure 3.13 using the ATI RADEON 4870 X2, which is able

to run both codepaths. Due to differences in the hardware interfaces, the native

tessellation shader uses roughly 16% more instructions than the instanced patch

shader. In our measurements, we have seen that the instanced patch performance is
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frequently as much as twice as fast as the native hardware tessellation performance.

We conclude that the performance improvement seen when using instanced patches

is not entirely related to shader length, but rather, related to driver or hardware

implementation. (Both perform the same number of texture operations.) We

have also compared our system’s performance to that of Ni et al. [76] as shown

in Table 3.2. (In this case, we have used a GeForce 8800 GT in order to remain

consistent with the hardware used by Ni et al.)

Table 3.1: Performance Comparisons - The Car, Ship and Poly models
contain 1164, 5180 and 10618 quad faces. Performance numbers are in frames per
second, measured on an Intel Quad Core Q9450 2.66GHz and ATI RADEON 4870
X2. N = number of tessellated vertices per control mesh edge.

Native Tessellation Instanced Tessellation

Mesh N=3 N=9 N=15 N=3 N=9 N=15

Car 1344 1296 589 1550 1301 846

Ship 1245 326 137 1196 473 222

Poly 747 160 65 532 304 132

We have also found that ATI’s native tessellation path seems to be more im-

pacted by the rest of the pipeline state, notably the number of interpolators output

from the vertex shading unit to triangle setup, as well as the complexity of the

pixel shader. The numbers in Table 3.1 were generated with a vertex shader which

outputs two interpolators to a trivial pixel shader. If we output five interpolators

to a 22 instruction pixel shader, we measure a 1.8x to 2x performance hit when

using native tessellation. The instanced tessellation path sees no such performance

penalty.

Using NVPerfHUD, we have determined that both the instanced and native

hardware tessellation shaders are vertex texture fetch bound. Each invocation of
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Table 3.2: Instanced results using our technique for the Sword and Frog datasets
which contain 138 and 1292 quad faces respectively. Performance data from [Ni et
al. 2008] is shown on the right.

Instanced Results Ni et al.

Mesh N=9 N=17 N=33 N=9 N=17 N=33

Sword 1480 1480 539 965 965 703

Frog 728 256 63 392 226 87

Figure 3.13: Car, Sword, Ship, Rocket Frog and Poly models.
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the domain shader performs 30 fetches of packed control point data (12 for the

control points, and 9 for each of the two tangent patches). For regular patches

(with all vertices of valence 4), we can avoid fetching the tangent patch control

points and use the de Casteljau algorithm to compute both positions and normals.

This saves 18 texture fetches for these patches at the expense of drawing regular

and extraordinary patches with two API calls rather than one. In this case, we

measured a 20% (1.9ms) performance improvement in GPU evaluation cost at N

= 33 for the rocket frog mesh by splitting evaluation of regular and extraordinary

patches. In addition, we avoid calculating tangent patches for regular patches when

converting from Catmull-Clark to ACC in the hull shader. In our implementation,

this saves an additional 0.26 ms on the rocket frog.

In practice, care should be taken with small meshes (<2000 patches) with few

regular patches. Separating regular and extraordinary vertices requires two API

calls—as opposed to just one—and the CPU-side overhead of this extra API call

can outweigh the savings gained by reducing the shader load for regular patches.

Additionally, we found it advantageous (and in some cases necessary) to keep the

use of vertex shader general purpose registers (GPRs) to a minimum, particularly

when combining patch evaluation with some of the more advanced vertex shaders

that we have used in shipping games such as Team Fortress 2, Portal, Left 4 Dead

and the Half-Life 2 series. To reduce the number of GPRs, we split the loading

and evaluation of the control point patch and the loading and evaluation of the

tangent patches, allowing GPRs to be reused between position evaluation and

tangent evaluation. This made the implementation somewhat awkward, but the

DirectX 9 vertex shader programming model simply exhausted its general purpose

register bank without such shader massaging.
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Figure 3.14: Top: an example of corner artifacts on the spaceship model (left)
eliminated by our technique (right). Bottom: an example of face valence 1 smooth
crease vertex with vanishing normal (left) and with the normal computed using our
technique (right).

3.9 Future Work

In the future, we intend to address the topic of adaptive subdivision, which is critical

for performance and LOD, particularly as we move beyond isolated character and

object meshes and to complex terrain geometry. Given the new programming

model introduced in DirectX 11, we expect that it will be necessary to develop

new error metrics and schemes for determining the appropriate level of detail for

a given primitive or primitive edge, particularly when performing displacement

mapping. In addition to the optimizations described in Section 3.8, we would

like to explore culling operations appropriate to a displaced patch representation.

Compelling speedups have been reported by Lee et al. through the use of normal

masks [58] [114].

Overall, we have obtained high quality results with our extensions to ACC,

although the artifacts (Section 3.6) require designers to adapt the models. While

83



Figure 3.15: Top: A car model rendered with smooth ACC. Bottom: The same
model with creases and corners added using our method.

some of the limitations are fundamental (it is impossible to create cones or approxi-

mate well the subdivision surface near certain types of corners without refinement),

one can hope to design techniques to deal with some of these problems automati-

cally; this is a promising direction for future work.

We have integrated our technique with the Source engine’s skeletal and facial

morphing systems as shown in Figure 3.1. Going forward, we plan to explore

additional animation techniques including fluid simulation, cloth simulation and

free-form deformation (FFD) of the low-resolution quad mesh. We anticipate hav-

ing to make changes to such simulations based on the fact that we are animating

a subdivision surface control mesh rather than the final polygonal primitives to be

displayed.
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Figure 3.16: Top: The dashboard of our car model rendered with ACC. Bottom:
The same model with creases and corners added using our method.
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Part II

Mesh Generation
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Chapter 4

Anisotropic Quadrangulation

In this chapter, we present a simple and efficient technique to add curvature-

dependent anisotropy to harmonic and feature-aligned parameterizations and im-

prove the approximation error of the resulting quadrangulations. We use a metric

derived from the shape operator that results in a more uniform error distribution,

decreasing the error near features.

This work was published as [Denis Kovacs, Ashish Myles, and Denis Zorin.

Anisotropic quadrangulation. Computer Aided Geometric Design, 28(8):449 462,

2011. Solid and Physical Modeling 2010].

4.1 Introduction

Most common techniques for generating meshes from range scans and volumetric

data produce irregular meshes with complex connectivity. A surface can be stored

in a much more compact form, simplifying and speeding up rendering and process-

ing if it is converted to a predominantly regular mesh, with only a small number

of irregular vertices and faces. It is desirable to minimize the number of vertices
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in the semiregular mesh, while keeping it close to the original mesh.

Recent quadrangulation algorithms use a global parameterization of a mesh;

the new mesh is obtained using a regular sampling pattern in the plane. Quite

often, the parameterization is optimized to be as isometric possible. However,

isometric parameterizations may be far from optimal for surface remeshing, if

the goal is to obtain a surface as close as possible to the original for a given

number of faces. For example, a cylinder can be mapped isometrically to the

plane, resulting in a uniform sampling pattern on the surface. It can, however,

also be meshed with single long quads stretched along the axial direction, with the

original anisotropicisotropic

Figure 4.1: Quadrangulations of a lion head model. Left: the original model;
middle: isotropic feature-aligned quadrangulation (25% reduced); right: anisotropic
feature-aligned quadrangulation.
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same approximation error. We call quadrangulations that adapt the quad aspect

ratio to the surface shape anisotropic. We present a simple and robust method for

computing anisotropic quadrangulations with quad aspect ratios adapted to local

curvature, obtaining a good surface approximation with fewer quads.

Our method utilizes a curvature-based surface metric and computes the param-

eterization using this metric, rather than the Euclidean metric. Our approach is

compatible with most parameterization methods that only rely on intrinsic quan-

tities and vector fields on the surface.

Defining a metric for meshes is conceptually simple: we assign a new length to

each edge. However, each edge length has to satisfy local triangle inequality con-

straints. It is a surprisingly difficult task to ensure that no inequality is violated,

and while it may still be possible to compute a parameterization, the results may

not have the desired anisotropic behavior (Section 4.5). We solve this problem us-

ing the idea of a high-dimensional embedding [82, 14]: the Euclidean metric in the

higher-dimensional space defines the new edge lengths for the mesh. The embed-

ded vertex coordinates consist of the original positional and normal coordinates,

making the new edge length computation straightforward.

4.2 Related Work

The literature on parameterization, remeshing and quadrangulation is vast; [82],

[14] and [31] are the most closely related to our work. Our key observation is that

the high-dimensional embedding proposed in [14] to obtain anisotropic quadrangu-

lations with the quad aspect ratio determined by the ratio of principal curvatures

can be applied in the context of a particular class of parameterization techniques,
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and yields robust results while preserving fine surface features.

There are many related works considering optimal anisotropic meshes in func-

tion approximation context (some recent work includes [1] [15] and [71]). Starting

from [31], anisotropic mesh generation is often based on defining a suitable metric

for the desired approximation measure, so that the isotropic triangulatulation in

this metric results in optimal approximation. Our approach can be viewed as an

application of the same general idea to the surface quadrangulation problem for a

particular choice of error measure.

Many recent quadrangulation methods (in contrast to the work based on the

construction of base complexes by simplification [39, 59, 54, 30]) have similar struc-

ture: a global parameterization is obtained by solving equations for gradients of

parametric functions, and a new mesh is generated by following parametric lines.

The two main categories of methods of this type are harmonic and feature-aligned.

Harmonic and conformal methods (for brevity we will we refer to both as har-

monic) are robust, efficient and typically produce good results even for complex

meshes for a suitable choice of singularities and boundary conditions. Some quad-

rangulation methods use harmonic maps directly [35, 105]. These methods can be

viewed as minimizing nonconformality of the map, while allowing significant area

scaling; nonlinear methods such as [96, 100] are needed to guarantee a one-to-one

parameterization. Extreme area distortion is reduced by adding singularities (or

“cones”) to the parameterization, with several methods for automatic placement

of singularities proposed in [35, 4, 100]. These techniques allow explicit user con-

trol over the number of irregular points on the mesh. The downside of harmonic

techniques, especially in the context of remeshing, is that non-intrinsic shape in-

formation is not used directly.
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Figure 4.2: Quad alignment and anisotropy.

The shape information can be taken into account in two distinct ways to min-

imize the approximation error. Locally, a smooth shape can be characterized by

its shape operator. Figure 4.2 show two ways of taking the shape operator into

account (with principal curvature directions scaled by inverse principal curvatures

shown in red).

A “perfect” quad of a given area approximating a surface is aligned, i.e., has

edges parallel to principal curvature directions and anisotropic i.e., has aspect ratio

inversely proportional to the ratio of principal curvatures. This corresponds to two

classes of feature-aware parameterization techniques.

Feature-alignment methods [85, 52, 9] adapt the parameterization to the shape

by aligning new mesh elements with a feature field, typically derived from the

principal curvature direction field, either by smoothing, or interpolation of salient

features. The singularities of the parameterization are determined by the singu-

larities of the field, so the feature field cannot match the actual curvature field

too closely: substantial smoothing is needed to keep the number of singularities

small. The shape of the quads generated by these techniques tends to be uniform,

rather than anisotropic: one can view these techniques as minimizing non-isometry,

while aligning with the feature field. [9] permits a degree of anisotropy, penalizing
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changes in length less than changes in the direction, but without relating these to

curvature.

In geometric modeling, anisotropic parameterization was introduced as signal-

specialized parameterization [90, 104]. This work uses a metric derived from the

Hessian of the signal to adapt the parameterization to a signal defined on the

surface; in particular, the surface itself can be used as the signal. Zayer et al.

[112, 110, 111] describe a general class of parameterization methods based on solv-

ing a generalized Laplace or Poisson equation using a tensor field, which can be

interpreted as a metric tensor. An elegant formulation for related quasi-conformal

maps based on Beltrami factors described in [113]. The interpolation and stiffness

properties of anisotropic linear triangles in finite-element context are discussed in

detail in [98].

[22] derives bounds on the Haussdorf-distance approximation of manifolds using

a metric closely related to the one that we use.

We show how to use a metric defined on a surface to obtain anisotropic ver-

sions of global quadrangulation algorithms, both harmonic and feature-aligned,

and demonstrate the improvements in surface approximation that can be obtained

in this way. To the best of our knowledge, metric-based techniques were not yet

applied to quadrangulation, although [105] suggests that this is possible by altering

the Laplace equation coefficients without suggesting a specific way to compute the

metric.

We emphasize that we view using anisotropic metric as complementary to

curvature-alignment approaches, rather than alternative to these. Curvature-

alignment methods allow to obtain a geometrically meaningful set of singularities

and coarse alignment with the shape; anisotropy helps to resolve sharp features

92



locally with fewer vertices, and allows to keep the number of parameterization

singularities low.

4.3 Anisotropic Metric

The main idea of our approach is to define a new metric (that is, new edge lengths)

on a mesh, and use an isometry-approximating parameterization based on these

edge lengths for quadrangulation. The discrete metric is given by Equation (4.12).

Our goal in this section is to explain the motivation for this choice. First, we

discuss the local error and the choice of the best approximating quad; under the

assumptions that we make, and similarly to previous work, the optimal quad is

aligned with principal curvature directions, and has aspect ratio proportional to

the ratio of principal curvatures.

Second, we discuss how local errors can be combined together to obtain equa-

tions for the parameterization of the whole surface. We show that isometry in the

shape-operator corresponds to optimal equidistributed error.

Definitions Important local properties of a parameterization are captured by

the metric tensor. Suppose a surface A is defined by a function b : R2 → A ⊂ R3

(Figure 4.3).

A

PQ

parametric plane

f g

Figure 4.3: Notation
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A surface parameterization is the inverse map from the surface to the plane

g : A → R2. In our exposition, it is convenient to fix a surface point p and the

tangent plane P at this point. We assume that an orthonormal coordinate system is

fixed in the tangent plane. Unless otherwise noted, all tangent vectors are expressed

in this coordinate system. We denote the 2 three-dimensional coordinate vectors

of this system D = [d1,d2]. Then a two-dimensional vector v in the coordinate

plane corresponds to three-dimensional vector w = Dv, and conversely, v = DTw.

The differential ∇b is a linear map from the parametric plane to P .

∇b defines the metric tensor in the parametric plane representing the metric

of the surface. The dot product of two vectors in the parametric plane is given by

the Euclidean dot product in the tangent plane P :

〈u,v〉b := (∇bu,∇bv)P = uT (∇b)T∇bv (4.1)

i.e. the metric tensor is given by the 2× 2 symmetric matrix

M(b) = (∇b)T∇b (4.2)

For a vector v = q2−q1 in the parametric domain defined by a pair of close points

q1 and q2, the quadratic form vTM(b)v is, in the limit, the squared length of the

image of v: |b(q2)− b(q1)|2.

4.3.1 Normal approximation error

The local normal approximation error measure (e.g. [24]) is similar to the gradi-

ent error measure in finite elements [31]. This error corresponds more closely to
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the perceived visual quality of an approximation, compared to, for example, the

distance between points on the surface. For the purposes of defining a pointwise

error, we consider an idealized setting: (1) The surface has well-defined curvature,

with nonvanishing Gaussian curvature. (2) For a parameterization g, we consider

the approximation of the surface by a collection of small quads. Each quad Q is

a parallelogram obtained by mapping a square Qp of edge length h from a regular

grid in the plane to the tangent plane of the surface at a point g−1(c) = b(c), using

∇b. (3) We assume the surface to be well-approximated by a quadratic function

over the tangent plane over each quad.

We define the error for a quad Q in the tangent plane P with normal nQ as

the square of the average of the deviation of the normal on the part of the surface

A(Q) projected to the quad Q along nQ.

E2
Q =

1

Area(Q)

∫
A(Q)

‖nS(q)− nQ‖2dq (4.3)

Next, we show how in the limit of small quads this error measure is related to

the shape operator. Let (u, v) be local coordinates in the parametric plane centered

at a point g(p0), corresponding to p0 on the surface. The linear approximation

to the surface normal over A(Q) is n0 + D∇n p, where p is the vector in the

parametric plane in (u, v) coordinates. The∇n is the differential of the unit normal

n = n(u, v); as any directional derivative of the unit normal is perpendicular to

it, it is in the tangent plane, so we assume ∇n expressed in the tangent plane

coordinates D. Let n0 be the normal at p0; we assume that quad Q is tangent

to the surface at p0, i.e. n0 = nQ. We express the shape operator S as a 2 × 2

matrix mapping vectors in the parametric plane to vectors in the tangent plane,

in D coordinates. By definition of the shape operator, S∇b = −∇n. We rewrite
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the expression for the normal as n0 −DS∇bp. Then the pointwise squared error

is given by

E2
pt = (n− n0)

2 = pT∇bTSTS∇bp (4.4)

where we used frame orthonormality DTD = I to eliminate D.

We assume that the surface is tangent to the quad at the center, (we need

to expand the quad in two directions to make this true for an arbitrary tangent

point), integrating Ept over the quad Q in the tangent plane, we obtain

E2
Q =

1

Area(Q)

∫
Q

(n− n0)
2 det∇b dudv

=
h4

12
Tr(∇bTSTS∇b) =

h4

12
Tr(STS∇b∇bT )

=
h4

12
Tr(S2M(g)−1), (4.5)

where we use det∇b = Area(Q) and ∇b = ∇g−1.

We conclude that

E2
Q =

h4

12
Tr
(
S2M(g)−1

)
, (4.6)

approximates the integral of previously defined quad error up to O(h5) for each

quad.

EQ is highly similar to the gradient interpolation error for linear elements [98],

yet there is an important distinction. As discussed in [98, 13], that error has a

strong dependence on the shape of the element in the physical space (in our case,

the shape of the approximating quad).

Specifically, if a square is mapped to the tangent plane using a map b with
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metric S−2, and the edges of the quad form a large angle in the tangent plane,

the error, instead of being independent of curvature as suggested by (4.6) and

(4.8) may be of order ah2, where a is the ratio of max to min curvature; so the

error distribution over the surface is clearly nonuniform. The fact that the quads

we consider are tangent to the surface changes this behavior. However, in this

work we are primarily concerned with the case when arbitrary anisotropy is not

allowed. Rather we limit it to moderate values (typically no more than 5). We

also note that under our assumptions, differing from those in e.g. [31], the error is

the same for hyperbolic and elliptic points with identical principal curvatures. If

the vertices of quads are expected to interpolate the surface, optimality conditions

in the hyperbolic case are different.

Uniform-error parameterization and shape operator metric A natural

approach to define an optimal parameterization given a pointwise local error is to

require the error to have the same value ε over the whole surface, and minimize ε.

This is however distinct from most common methods that define a global energy as

an integral measure of a local error over the surface. Integrating the local error EQ

over the surface results in difficult-to-solve equations. Remarkably, equalizing the

error in our case leads to a simple condition on the error, if one of the constraints

of the problem is relaxed.

Denote H = M(g)−1. Then the optimal uniform-error parametrization solves

the following constrained problem:

Minimize ε, subject to TrS2H = ε, and H = M(g)−1 everywhere. (4.7)

97



This problem is difficult to solve directly; instead, one can define an “ideal” metric

H, solving the minimal uniform-error density optimization problem with H as a

free variable, without the constraint H = M(g)−1.

In addition, to the constraint above, we constrain the total area the image of

the surface has in the parametric plane. This additional constraint is necessary as

otherwise the trivial solution of the problem is to set H to zero. This constraint

has the following form:

∫
A

det∇gdA =

∫
A

detH−
1
2dA.

Then the Lagrange function with multipliers λ and µ for the constrained min-

imization of ε is

ε+

∫
A

λTr(S2H) + µ detH−
1
2dA.

We compute the L2-gradient of this expression with respect to H, using the iden-

tities ∂TrATB/∂A = B, and ∂ detA/∂A = detA(A−1)T , and symmetry of H, we

get

λS2 +
1

2
µH−1 detH−

3
2 = 0

i.e., H = kS−2. Substituting into TrS2H = ε, we get k = ε/2, i.e., the scale factor

is independent of H.

We conclude that the “ideal” parametrization has metric given by

M(g) = cS2, (4.8)

with c independent of the point. In particular, the error bound is the same (under
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Figure 4.4: Top left to right: a conformal map, a map with a small amount of
anisotropy added (α = 3), and large amount of anisotropy (α = 0.1), where the
metric tensor for the parameterization is α2I + S2. Bottom left to right: corre-
sponding uv maps color-coded by inverse parametric triangle area.

restrictive assumptions on approximating quads outlined below) for all parameter-

ization differing by a rotation of the parametric plane (Figure 4.5).

In general, S2 may have small or zero eigenvalues, and using it alone as a metric

is not desirable, as this would result in infinitely long or thin quads. We can limit

the possible quad aspect ratios by using G(α) = α2I + S2 as the metric.

We conclude that a uniform normal error parameterization g of a surface with

nonzero Gaussian curvature has a metric tensor coinciding with the square of the

shape operator up to a globally constant scale factor, in other words, it is isometric

in the metric defined by the shape operator.

Embeddings The Nash embedding theorems state that every Riemannian mani-

fold can be isometrically embedded into a (sufficiently high-dimensional) Euclidean
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Figure 4.5: The right model shows the result of rotating the anisotropic parame-
terization 45 degrees. Observe that the mesh elements remain stretched along the
features.

space, no matter what the metric might be.

The direct approach (cf. [110]) to obtain parametrizations with respect to

modified metric is to derive the equations for the parametrization directly in terms

of the metric tensor, and choose discretizations for the tensor and the parametric

functions.

However, any surface equipped with an arbitrary metric can be embedded in

a (usually higher-dimensional) Euclidean space in which the metric coincides with

the induced metric (see Figure 4.6). This allows us to recast the problem of

computing an isometric parameterization g of A with a given metric to that of

computing an isometric parameterization ḡ of the embedded surface Ā in the stan-

dard metric. Explicitly constructing such an embedding for a general tensor may

be difficult. Fortunately, for the specific tensor we use a direct embedding con-

struction is possible, and yields substantially better results as we demonstrate in

the next sections.
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Figure 4.6: An embedding h which has the desired metric G makes it possible to
replace construction of g as close as possible to metric G with construction of ḡ as
close as possible to isometry.

4.4 Anisotropic Parameterization

The observation of the previous section reduces the problem of finding an equidis-

tributed error parameterization to that of finding an isometric parameterization in

a different metric. Most currently used techniques can be regarded as approxima-

tions to the isometric parameterization in Euclidean metric, and can be naturally

generalized if the shape-operator metric can be computed robustly and accurately,

as discussed in Section 4.5.

We present anisotropic extensions for two parameterization techniques, har-

monic, following [100] and feature-aligned, following [9]. As we have discussed in

Section 4.2, the advantage of the former is more direct and explicit control over

the number of singularities, while the latter yields parameterizations better aligned

with mesh features, and typically closer to isometric.

We regard both harmonic and feature-aligned parameterizations as two types

of efficient approximations to isometric maps (in the latter case with additional
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condition of feature alignment) and demonstrate how these can be combined with

anisotropy.

Isometric parameterization and harmonic maps Isometric parameteriza-

tions do not exist for surfaces with nonzero Gaussian curvature: at best, we can

hope to approximate an isometric parameterization. Minimizing the deviation of

the metric tensor from identity leads to nonlinear systems of equations for which no

robust and efficient solvers are available. For this reason, many techniques replace

direct isometry optimization with various types of factorizations.

Most commonly, harmonic maps, leading to linear systems, are used to mini-

mize the angle distortion, subject to the boundary conditions; harmonic param-

eterizations often result in high area distortion. The idea of a number of recent

methods [45, 35, 4, 100] is to use harmonic maps with singularities to define a

parameterization, and to reduce the area distortion by introducing singularities

and optimizing the singularity placement.

For the simplest case of a surface with disk topology, a harmonic map minimizes

the Dirichlet energy

E =

∫
A

(∇u)2 + (∇v)2dA (4.9)

where u and v are parametric coordinates, and ∇ is the surface gradient. Com-

puting u and v requires solving the linear Laplace-Beltrami equations ∆u = 0 and

∆v = 0.

Anisotropic harmonic maps In case of isometry, conformal maps are defined

by the condition M(g) = cI; they preserve the ratio of the singular values of the

identity tensor I exactly. Anisotropic conformal maps satisfying M(g) = cG(α)
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have similar behavior in the shape operator metric. Intuitively, an anisotropic

conformal map takes a small circle in the parametric plane to an ellipse in the

tangent plane of the surface, with axes aligned with the principal curvature direc-

tions, and its aspect ratio is determined by the ratio of principal curvatures. The

effects of such a map, compared to a conformal map, are illustrated in Figure 4.4.

The anisotropic harmonic map is a least-squares approximation to the anisotropic

conformal map.

Isometric feature-aligned maps Feature-aligned maps [52, 9] use a feature

cross-field, which locally can be regarded as a pair of orthogonal unit vectors (u,v)

to define the target directions for the surface gradients of parametric coordinates

∇u and ∇v. If the desired gradient directions for coordinate functions are fixed,

finding the as-isometric-as-possible parameterization can be formulated as a linear

optimization problem minimizing misalignment with the feature field and deviation

of the gradient magnitude from the unit length:

E =

∫
A

(∇u− u)2 + (∇v − v)2dA (4.10)

As u and v are orthogonal, perfect minimization of this energy corresponds to an

isometric parameterization.

To obtain the anisotropic feature-aligned parameterization, we remap the fea-

ture field on the original surface A to be orthogonal in the new metric M(g) =

cG(α) and compute a feature-aligned least-squares isometric (w.r.t. this new met-

ric) parameterization of A.
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4.5 Discrete Metric

To complete our construction, it remains to define a discrete metric G(α) by as-

signing new lengths to each edge (4.12). While a variety of techniques can be used,

we found that the results can be quite sensitive to the choice of technique.

There are two approaches to discretize the continuous theory described in the

previous section:

• we can either work on the original surface A (Figure 4.6) and change the

metric according to a discrete estimation of the shape operator,

• or we can construct the embedding Ã explicitly and use the actual edge

lengths as the discrete metric.

Using the metric G(α) directly The shape operator S can either be estimated

per vertex [25, 83, 53] or per triangle [89, 43].

For example, to discretize the Laplace-Beltrami equation that needs to be

solved to find the minimum of the Dirichlet energy (4.9), one can use piecewise-

linear elements for the parametrization, and constant metric tensors defined per

triangle (for vertex-based shape operator estimators, we can average the tensors

at the three vertices).

To simplify the derivation, we assume that the embedding realization h of the

metric G(α) is known (the equations we obtain will depend on the metric tensor

only, so h is not used for discretization). This means that the differential of h

satisfies ∇hT∇h = G(α). As before, we assume that an orthonormal frame is

defined on the tangent planes of A and Ã, and all differentials are expressed in in

these coordinates.
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We express the parameterization differential ∇ḡ on Ã in terms of the parame-

terization differential of the original surface ∇g as ∇ḡ = ∇g∇h−1 (see Figure 4.6).

The Dirichlet energy density ∇u2 +∇v2 can be written in matrix form for the map

g = (u, v) as Tr∇g∇gT . Then for the Dirichlet energy density of the map ḡ we

have

Tr∇ḡ∇ḡT = Tr∇g∇h−1(∇h−1)T∇gT = Tr∇gG(α)−1∇gT (4.11)

The last equation can be expanded as ∇uG(α)−1∇uT + ∇vG(α)−1∇vT . ( Note

that we consider ∇u and ∇v row vectors, so the terms in the this expression are

norms with respect to metric G(α)−1.)

Minimizing this energy leads to the generalized Laplacian equations for parametriza-

tion of the form div(G(α)−1∇g) = 0, identical to the equations obtained in [110]

with C = G(α)−1. Finite-element discretization of (4.11) is essentially identical to

the Euclidean metric case, if G(α) is constant per triangle.

We can show that this discretization reduces to simply rescaling edge lengths

per element using the metric tensor for this triangle, and computing the element

matrix based on these new lengths.

As the metric tensors assigned to two adjacent triangles do not necessarily yield

identical results for scaling of the common edge, each edge has two distinct scaled

lengths; the examples in Section 4.7 demonstrate the effect of this mismatch.

We can instead enforce consistent edge lengths by averaging the two lengths

obtained by using either per-vertex or per element shape operators. However, it

proves to be fundamentally difficult to achieve a consistent discrete metric in this

way which satisfies the triangle inequality for general meshes. The reason for this

105



can be seen from Figure 4.7. Suppose a triangle has bad alignment (long edge

along principal direction with larger curvature). If the metric length of each edge

β is determined as the average of two lengths (
√
βTM1β +

√
βTM2β)/2, and the

singular values of Mi are 1 and k2, except M3 for which they are 1 and (1 + a)k2,

then for large l, a can be at most 4/(lk) before the triangle inequality is violated.

So any averaging method is likely to fail even for small curvature variation: for

k = 10 and l = 10, for instance, only 4% variation is possible across an edge.

Constructing an embedding An attractive alternative is to define an embed-

ding of the surface such that the Euclidean metric on the surface for this embedding

yields an approximation to the desired metric [13]. For the shape operator, the

relevant embedding is the Gauss map: f(p) = n(p) ∈ R3, because S = ∇n, i.e.

S2 is exactly the metric tensor of the Gauss map.

M1 M2

M3

l

1

Figure 4.7: A triangle with aspect ratio l, with 3 metric tensors Mi at its vertices.

The shape operator satisfies Sv = ∇vn for a tangent vector v. Applied to

edge vectors βij = pi − pj on a triangle mesh (in a coordinate frame D on the

triangle) expressed in a local orthonormal frame D, it can be discretized by Sβij =

DT (nj − nj) = DT∆nij. Then the squared shape operator metric S2 is given by

βT
ijS

2βij = |∆nij|2
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In other words, the optimal metric edge length is simply the distance between end-

points of the edge in the Gauss map image of the mesh. Note that so far, we

only considered the embedding of the mesh into a two-dimensional sphere given by

mapping each vertex vi to its normal ni. This, however, is not sufficient to obtain

the metric G(α) = α2I + S2.

We therefore embed the mesh into R6, with a vertex vi mapped to the point

(αpi,ni), where α is a scale factor controlling the aspect ratios. In this case, the

Euclidean metric in R6 yields

l2ij = (αpi − αpj)
2 + (ni − nj)

2

= βT
ij(α

2I + S2)βij = βT
ijGβij (4.12)

i.e. it corresponds to a linear combination of isometry and normal error metrics.

This defines the metric tensor G in terms of metric edge lengths lij. Since every

mesh triangle is embedded in Euclidean space, the metric edge lengths satisfy the

triangle inequality by construction.

Remapping the cross-fields Conceptually, parametrizing the surface Ã em-

bedded in six dimensions is not different from parametrizing a surface in three

dimensions. One could remap the salient points on A to Ã, using the natural map

p → (p,n), and then compute the feature cross-field directly on Ã. However, in

practice we observe that the surface Ã is much “bumpier” (Figure 4.8) i.e., has

greater oscillations of the Gaussian curvature, due to higher variation of the shape

operator included in the metric. The cross-field optimization procedure of [9] tends

to place cones at Gaussian curvature extrema, which results in large numbers of
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Figure 4.8: Left: Standard Gaussian curvature distribution in R3 yields a cross-
field with fewer singularities on the head of the Julius model. Right: Gaussian cur-
vature of the six-dimensional embedding exhibits too many peaks and yields large
clusters of singularities on the head. For visualization, the crossfield has been lin-
early mapped from the tangent space of the six dimensional manifold back to that
of the three-dimensional manifold.

cones. Instead, we perform cross field optimization in three dimensions as before,

and remap the resulting cross field to Ã.

Say for a triangle T the linear transform from T to T̃ in some two-dimensional

local coordinate systems is C, and the two orthogonal directions of the cross-

field are u and v = u⊥. First, we obtain a nonorthogonal cross field on the

six-dimensional surface using vectors ±Cu and ±Cv. However, to achieve near-

isometry, the crossfield needs to be orthogonal. We consider normalized vectors

u′ = Cu/‖Cu‖ and v′ = Cv/‖Cv‖, and compute an orthonormal pair ū and v̄,

such that (u′ − ū)2 + (v′ − v̄)2 is minimized. We observe that if we combine u′

and v′ into a matrix Q, this is equivalent to finding the closest rotation matrix R

to Q.

In the case of general matrices Q with entries qij, the angle α between the x

axis and the direction of u is given by

α = arctan
q21 − q12
q11 + q22
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In the case of columns of unit length, this expression can be further simplified, and

the resulting construction admits the following simple geometric interpretation.

Consider bisectors of the two pairs of angles formed by u′ and v′. This bisectors

are perpendicular (and in fact represent the rotation with the largest deviation

from Q). The smallest deviation from Q is obtained by π/4 rotation.1

Controlling aspect ratios The parameter α can be used to control the maximal

distortion either globally or locally. We found that the method is stable even for

very small values of α, which allow quads to stretch a lot. The singular values of

the tensor are α+κ21 and α+κ22, and the aspect ratio of the images of infinitesimal

quads is
√

(α + κ21)/(α + κ22),where we assume |κ1| > |κ2|. By choosing

α =

√
rmax κ2 −min κ2

r − 1
(4.13)

globally, we can keep the aspect ratio below r. This is, however, a very conservative

choice, which may eliminate the advantages of the method for surfaces with very

nonuniform curvature.

4.6 Implementation

The idea of using a shape-operator metric can be integrated with any quadrangu-

lation approach that only relies on the surface metric: the main change required

is to modify the metric-dependent quantities to use (4.12); additionally, for meth-

ods using vector or tensor fields on surfaces, the fields need to be remapped as

described in the previous section.

1In [78], it was observed that cross-fields are most naturally interpreted as symmetric 4-tensors;
this yields an alternative approach to remapping fields.
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The standard linear FEM discretization of the Laplace-Beltrami operator L

involves the computation of cotangent weights. These weights can be derived

using only edge lengths: for a triangle with sides a, b, c and angle γ = ∠(a, b) we

can compute

cot(γ) =
a b cos(γ)

a b sin(γ)
=
a b cos(γ)

2 A

We can then write the triangle area A as

A =
1

4

√
(a+ b− c)(a− b+ c)(−a+ b+ c)(a+ b+ c)

and use the cosine rule cos(γ) = (a2 + b2 − c2)/(2 a b) to arrive at the final form:

cot(γ) =
(a2 + b2 − c2)√

(a+ b− c)(a− b+ c)(−a+ b+ c)(a+ b+ c))

The details of both harmonic and feature-aligned mixed-integer parameteriza-

tion can be found in [4, 100] and [52, 9] respectively. Here we present only a brief

overview, to point out the aspect of algorithms that were modified.

For both methods, we start with computing a normal field (we use the robust

method of [53]) and compute and smooth the scaling function α, followed by

evaluating the metric lengths lij using (4.12). Once the global parameterization is

computed, we generate a quad mesh by tracing parametric lines u = i, and v = i

where i is an integer, and determine quad vertex positions at integer u/v locations

by linearly interpolating the original mesh vertices.

Anisotropic harmonic parameterization The main steps in this case are:

• iteratively optimize cone locations solving the Laplace equation for the scale

110



factors using metric edge length lij, or specify singularity locations manually;

• cut the mesh into a disk;

• quantize singularity indices to kπ/2 (if not specified by hand), and singularity

positions to integer locations;

• use harmonic parameterization with cotangent weights computed from lij to

obtain a global mesh parameterization matching across the seams of the cut.

The main distinction compared to the original method is computing all metric

quantities (cotangent weights in particular) using lengths obtained in (4.12).

Anisotropic feature-aligned parameterization In this case, we start with

constructing the 3D feature cross-field:

• identify salient triangles and fix their cross-field directions;

• compute a global smooth feature cross-field using the quadratic mixed integer

optimization of [9];

• detect singularities and cut the mesh into a disk so that the cut passes

through all singularities;

• label globally consistent u and v directions on the cut mesh;

• minimize the fit energy for parameterization gradients to u and v, enforcing

constraints along the cuts and constraining the changes in coordinates across

cuts to be integer.

The last step may be repeated multiple times with increasing weights in the

energy to eliminate inverted triangles in the parameterization (stiffening).
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For anisotropic feature-aligned parameterization, we remap the cross-fields on

each triangle to the new metric to the using the approach described in Section 4.4.

Each triangle T of the mesh for surface A corresponds to a triangle T̃ on the

mesh for surface Ã, with rescaled edge lengths lij. The linear transformation C is

uniquely determined by the affine transformation mapping T̃ to T .

4.7 Results

Comparison of different metric discretizations First, we demonstrate the

robustness and feature sensitivity of our technique (Figure 4.9). We compare to an

approach similar to that of [110] described in Section (4.5). This method results

in significant smoothing of the metric, and, as a consequence, sharper features are

not captured (Figure 4.9b.)

We attempt to set the scaled edge lengths again by averaging the lengths com-

puted using per-vertex shape operators at two endpoints (Figure 4.9d,e). We

observe that even for modest anisotropy, for a large number of facets the trian-

gle inequality is violated; refining the mesh in most cases eliminates the triangle

inequality violations, but a large number of iterations may be needed and result-

ing quadrangulation suffers from metric smoothing similar to the per-triangle case

(Figure 4.9e).

Figure 4.5 shows the effects of rotating parametric axes for anisotropic har-

monic parameterization of a shape which does not require adding cones or cuts.

Note that the parameterization automatically squeezes quads to the lines of high

curvature: the mesh elements appear to preserve their orientation, while rotating

in the parametric domain.
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Figure 4.9: Comparison of different ways of specifying metric lengths (a) the orig-
inal face mesh; (b) face-tensor-based; (c) our method; (d) vertex-tensor averaging,
triangles not satisfying metric inequality; (e) after refinement, metric inequality is
satisfied, but quadrangulation misses some features.

Impact of α Figure 4.10 demonstrates the effect of decreasing the scale factor α.

Smaller α improve the normal error distribution by permitting quads with larger

aspect ratios.

Comparisons with isotropic quadrangulation Our primary comparison is

to the mixed-integer quadrangulation of [9] with no anisotropy. Figure 4.11, Fig-

ure 4.14, and Figure 4.15 show feature-aligned quadrangulations for a number of

models.

For two models, we also compare to the periodic global parameterization (PGP)
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Normal error Aspect ratio

Figure 4.10: Impact of α on the normal approximation error and the quad aspect
ratios observed on the Julius model shown in Figure 4.15, top-left. Left: In log
scale for a given abscissa β (in % of max. normal error) the fraction of vertices
with error above β. Right: In log scale the fraction of quads with aspect ratio above
the abscissa.

isotropic PGP anisotropic harmonic

Figure 4.11: Periodic global parameterization and (unaligned) harmonic
anisotropic parameterization. Normal error distribution is shown in pseudocolor.

(Figure 4.11 and Figure 4.12). We observe that under some conditions, unaligned

anisotropic harmonic quadrangulation produces better results compared to aligned

but isotropic quadrangulation.

As our main target application is approximating the original meshes with

semiregular meshes with good visual quality, the ultimate criterion in this case

(vs., for example, remeshing for finite element simulation) is the appearance of

the resulting models. For this reason, we present smoothly shaded images of the
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remeshed models in Figure 4.15, along with a pseudocolor rendering of the point-

wise normal error (dark red corresponds to maximal error, dark blue to no error).

We choose relatively coarse quadrangulations to make the errors more apparent.

The number of facets in the original models, the number of quads as the fraction

of the original model size, and the number of singularities are summarized in the

following table.

model facets reduced to cones

lion head 16674 17% 41

Julius 39168 28% 25

screwdriver 54300 3% 20

Stanford bunny 111364 3.5% 32

rocker arm 20088 8% 26

Omotondo 10000 25% 36

Max Planck 50790 35% 15

We emphasize that our technique aims to make the error distribution more

uniform, not to minimize an integral error measure, hence it is difficult to quantify

the relative quality of the result by a single number. In pseudocolor visualizations

in Figure 4.15, one can observe greater uniformity in pointwise error. A consistent

increase in uniformity is also confirmed by the plots of the pointwise error distri-

bution: these plots show, for a given abscissa β, (in percent of the max possible

error in normal), the fraction of vertices with error above β in log scale. Plots for

anisotropic models are in red and for isotropic in blue. Higher slope corresponds

to more even error distribution.
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Sharp features As Figure 4.12 demonstrates, anisotropic harmonic quadrangu-

lation can handle models with sharp features robustly, even with no feature align-

ment. The mesh for the fan disk model has only 8 singularities, i.e., the whole

surface is mapped to the surface of the cube. Although for noise-free the quality of

the result is inferior to the one that can be obtained by explicitly constraining the

parameterization to be aligned with sharp edges as described in [9], for scanned

meshes similar to the screwdriver example (Figure 4.15) when the edges of the

mesh are not aligned with sharp features of the underlying geometry.

Figure 4.12: Quadrangulation of a model with sharp features. From left to right:
the original model, remeshing using PGP, and remeshing using anisotropic har-
monic map. Both remeshed models retain approximately 20% of faces of the orig-
inal model. 8 singularities are used for the anisotropic map, i.e., the model is
parametrized over the surface of a cube.

For certain types of models, it may be highly desirable to preserve sharp fea-

tures. For feature-based parameterization, one can explicitly integrate perfectly

sharp feature edges into the process, by forcing the field to be aligned with these

edges and forcing one of parametric coordinates to be constant along these edges.

This typically requires introducing a sufficient number of singular vertices.

In the context of our method, one can introduce parameterization discontinu-

ities along sharp edges without introducing extraordinary vertices, at the expense
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of introducing collapsed quads on a regular mesh. Figure 4.13 shows a case where

sharp features were tagged along the connection of the model to the plane, and

degenerate triangles were inserted along these creases. For normal calculations the

creases were treated as internal boundaries.

Figure 4.13: Quadrangulation of a model with sharp features, with additional
edges inserted at creases; no singularities are used. Top: the original model and our
quadrangulation with 25% of faces. Bottom left: a harmonic map quadrangulation
with the same number of faces; Bottom right: the original mesh in the parametric
domain. Note the extremely stretched bands of triangles: these are thin triangles
inserted along the sharp feature.

4.8 Conclusion

The most appealing features of the proposed method are its robustness, its sim-

plicity and its compatibility with a number of other approaches.
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original anisotropic isotropic anisotropic error isotropic error

Figure 4.14: Anisotropic quadrangulation preserves essential features even for
extreme simplification (3%). The two rightmost images show the normal error
distribution.

As we generate quads with possibly large angles the resulting meshes are in gen-

eral not suitable for solving equations on surfaces, unless the aspect ratio is limited

to a moderate value; even with this restriction we can still expect a reduction in

the number of quads needed for a given approximation quality (Figure 4.10).

While we do provide control over maximal aspect ratios, it is far from a complete

solution, especially in cases of rapid edge length variation.

The method takes advantage of the possibility of discretizing the shape operator

metric using a high-dimensional embedding. We would like to extend this to

approximate embedding discretizations for arbitrary metric tensors.
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Figure 4.15: Isotropic and anisotropic feature-aligned quadrangulations and error
visualization. Error plots show in log scale for a given abscissa β (in % of max.
normal error) the fraction of vertices with error above β.
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Chapter 5

Feature-Aligned T-meshes

This chapter describes a fully automatic pipeline to parameterize and remesh an

arbitrary triangle input mesh into a quad mesh with T-joints. The T-mesh is used

as the control mesh for a smooth T-spline surface, which is then least-squares-fit

to the original input mesh.

This work was published as [A. Myles, N. Pietroni, D. Kovacs, and D. Zorin.

Feature-aligned T-meshes. ACM Transactions on Graphics (TOG), 29(4):117,

2010].

5.1 Introduction

Subdivision surfaces, surface splines, and related multiresolution and regularly

sampled surface representations are far more compact and efficient than general

meshes and simplify many geometric modeling and processing algorithms. Con-

verting arbitrary meshes to this type of representations is difficult because of many

conflicting requirements for such conversions.

Most regularly-sampled surface representations consist of patches forming a
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domain mesh, with a regular pattern of samples for each patch. We focus on

quadrilateral patches, as these are most commonly used.

Important requirements include (cf. [9]):

1. Patch quality: Patches should be well-shaped, with minimal skew and

bounded aspect ratio.

2. Approximation: Each patch should approximate the original mesh well.

3. Mesh complexity: The domain mesh should have as few vertices as possi-

ble, while satisfying other constraints.

4. Orientation and Alignment: In areas with well-pronounced consistent

curvature directions, patch parametric lines should follow the curvature;

patch boundaries should be aligned with sharp features and smooth surface

boundaries.

Existing techniques offer a tradeoff between alignment with features and isom-

etry and the number of patches in the domain mesh. Techniques allowing to keep

the number of patches small have only restricted forms of alignment control, while

many recent algorithms with good alignment control often yield a larger number

of patches in the domain mesh.

Quite often the tradeoff between the number of patches in the coarse mesh and

alignment is fundamental, and not a feature of any specific algorithm: the maximal

patch size in a local area is determined by the distance between nearby feature

lines, which can be quite small. This local size restriction propagates globally

(Figure 5.2) if the patch boundaries are aligned with feature lines, resulting in
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original mesh

T-spline fitDomain T-mesh

global parametrization

Figure 5.1: Transforming the joint mesh into a T-spline surface.

domain meshes with numbers of patches growing far larger than the complexity of

the object suggests.

In this work, we propose an approach to constructing domain meshes consisting

of small numbers of patches while maintaining good feature alignment. Our ap-

proach is based on using domain T-meshes, in which the intersection of two faces

may be not the whole edge or vertex, but a part of an edge. T-meshes dramati-

cally change the relation between the total number of patches needed and the local

feature size making it possible to align patches with the field without restricting

their size. Thus we generate one-to-two orders of magnitude fewer patches than

the coarsest quadrangulations aligned to the same features.

We show that feature-aligned coarse T-meshes are naturally obtained using

recently developed global parametrization techniques for quadrangulation [52, 9].
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While T-meshes offer more flexibility, they also retain many desirable features

of domain meshes with no T-joints (conforming meshes). Several high-order con-

structions (T-splines/NURCCs [94] and PT-splines [64, 33]) are available, with

natural refinement structure allowing for multiresolution [93]. Adaptive structured

meshes, a subset of T-meshes, are widely used in simulation; many local con-

structions developed for adaptive meshes, such as finite-volume and finite-element

discretizations, can be transferred to general T-meshes ([2]).

Overview. Our approach consists of the following main components: (1) global

parametrization construction; (2) constrained parametrization optimization, aim-

ing to improve T-mesh structure while maintaining field alignment; (3) construc-

tion of an initial patch layout and its optimization, and optionally, reconstruction

of a T-spline approximation to the original mesh.

We use a global parametrization method closely following [9], with some impor-

tant changes discussed in Section 5.4, aiming to improve the quality of the feature

cross-field guiding the parametrization.

The parametrization optimization step aims to reduce the number of T-joints in

the domain mesh, by changing the global parametrization so that more singularities

are on the same parametric lines. (Section 5.6).

We construct an initial patch layout with a number of patches within a constant

factor from the minimal possible for a given number singularities. This initial

layout may contain patches with bad approximation quality, unnecessary T-joints,

and with unbalanced areas. We use a greedy constrained optimization strategy to

move the patch boundaries while maintaining alignment to obtain the final layout

(Section 5.5).
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Finally, we fit a T-spline approximation to the surface, using the optimized

domain T-mesh as the T-spline domain. The resulting surface can be either used

directly (if the original mesh is well approximated by a piecewise-smooth surface),

or used as the base for a displaced surface.

5.2 Related Work

The literature on parameterization, quadrangulation and conversion to high-order

surfaces is quite extensive, and we survey only the most closely related work.

Broader reviews can be found in [50, 97].

A number of methods [39, 59, 54, 70, 30, 29, 81, 102] use simplification tech-

niques for constructing a conforming domain mesh. These techniques make it

possible to obtain very coarse domain meshes, with good user control over the

domain mesh size. While some degree of feature alignment is possible (cf. [59],

[70]), it is limited by the difficulty of preserving features in simplification. Other

methods use global harmonic or conformal parametrizations with singularities

[45, 35, 105, 4, 100, 57]. While some of these methods offer a degree of con-

trol over the size and structure of the domain mesh (e.g., [35]), feature alignment

is limited to determining positions of parametrization singularities. [51] describes

an algorithm for adding alignment and orientation control to the parametrization,

but the domain mesh is still constructed independently of geometry features.

Field-alignment techniques [85, 52, 9] adapt the parameterization to the shape

by fitting the parametrization gradient to smoothed principal curvature directions,

or more generally, to a smooth cross-field capturing surface features. The topolog-

ical structure of the field (singularities and separating lines) indirectly determines
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how fine the domain mesh can be. Reducing the number of singularities is often

difficult without significant smoothing of the field. Furthermore, as the examples

in Figure 5.2 show, even sparsely placed singularities do not guarantee that they

are connected together in a way that allows constructing a coarse domain mesh.

The method that we propose is based on field alignment. However, similar to

simplification-based methods, we aim to produce coarse domain meshes, even for

geometry with relatively complex features, while maintaining alignment.

In geometric modeling, T-meshes were considered primarily in the context of

T-splines, T-NURCCs [94, 93], and PT-splines [64, 63, 33]. [62] demonstrated how

to use periodic global parametrization (PGP) of [85] to fit T-spline surfaces to

meshes. An important feature of PGP is its ability to introduce T-joints during the

parametrization process. However, the complexity of the resulting domain mesh is

still determined by the topological structure of the field, with significant smoothing

required to make it simpler. [40] demonstrate how to use motorcycle graphs to

partition a quad mesh into rectangular patches allowing T-joints, and prove bounds

on the possible number of patches, but the quality of the patch layout cannot be

controlled. [16] constructs rectangular geometry images (effectively, a T-mesh) by

partitioning a mesh into approximately rectangular patches and parametrizing each

on a rectangle, but the patches are not adapted to the geometry. [46] constructs a

T-spline from an arbitrary mesh using global conformal parametrization. In this

extreme case it is possible to have effectively a single-patch domain mesh for an

arbitrary surface. As is the case with other harmonic methods, feature alignment

control is limited to parametrization singularity placement.

The quality of the feature-aligned quadrangulation depends on the quality of

feature detection, a difficult problem for many classes of meshes. A number of
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techniques for defining and detecting feature lines were proposed: [77, 48, 109].

We use ridges and valleys computed from smoothed curvature values obtained

using the robust estimation of [53] to determine which curvature directions should

be considered salient (Section 5.4).

5.3 Field-aligned Quadrangulations

To motivate our approach, we consider constraints imposed on a conforming quad-

rangulation by field alignment. These considerations are not specific to any partic-

ular quadrangulation method. Recall that a cross-field (4-rosy field or 4-symmetry

field) [47, 78, 86] is a quadruple of tangent vectors assigned to each surface point.

A quadrangulation algorithm aligns the edges of the quad with the vectors of this

field, so that no quad has singularities in the interior. As a consequence, a field

singularity has to be a quad vertex, and there are quad edges following field inte-

gral lines starting at singularities (separating lines) (Figure 5.2, right). Chains of

quadrangulation edges starting at singularities have to end at singularities, as we

can always extend a chain past a regular vertex.

Figure 5.2: Left: close singularities result in a strip of small quads. Right: a
singularity close to separating line.

The most fundamental restriction on the size of mesh patches is imposed by

the distance between field singularities, as no quad can contain singularities inside.
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In many cases, it is essential to place singularities close to each other for the field

to follow features (Figure 5.2, left). If the quad size changes smoothly and is close

to constant over the mesh, a local size restriction becomes global.

More generally, it is not essential for two singularities to be close to each other

for the quad size to be constrained: it is sufficient for two separating lines starting

at these singularities to be close (Figure 5.2, right). As there have to be quad edges

along each separating line, at best, we can produce long and thin quads bounded

by these lines.

Both cases can be either due to the structure of surface features (like singu-

larities at two close corners) or be an artifact of constructing a smooth field from

the salient feature lines. In the first case, a coarse mesh may be fundamentally

incompatible with being aligned with features. In the second case, the feature field

can be changed to improve the parametrization without changing the quality of

the alignment.

By allowing T-joints in the domain mesh, we make it possible to switch to

larger-size quads away from closely spaced singularities, and terminate chains of

quad edges following separating lines early, removing both restrictions. Section 5.5

describes our algorithm for T-mesh construction. By detecting closely spaced sep-

arating lines and adding constraints to parametrization to snap them together,

we reduce the number of nonessential T-joints in the resulting domain mesh (Sec-

tion 5.6).

The need for rounding. For a general cross-field it is possible that integral lines

starting at singularities may pass arbitrarily close to each other, or any integral line

may pass arbitrarily close to itself. For example, if we tilt the natural parametric
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lines on the torus so that the slope is irrational, any integral line of this field will

be an infinite spiral around the torus.

To be able to obtain a valid quadrangulation, we need to ensure that the integral

lines are closed or end at singularities. In [52, 9] this is ensured by a rounding

procedure we discuss in greater detail in Section 5.4, which requires deviation

of the quadrangulation lines from the original field. Creating larger quads for

the domain mesh requires moving singularities further, resulting in non-aligned

quadrangulations and higher distortion. T-meshes avoid the need for extreme

rounding while still allowing to obtain large patches.

5.4 Feature-aligned Parametrization

The starting point for our T-mesh construction is the global parametrization of

[9]. We briefly summarize the algorithm and the main differences in our version,

as the structure of the algorithm is essential for introducing singularity constraints

described in Section 5.6.

The algorithm computes a global parametrization of a mesh M , i.e., an assign-

ment of planar (u, v) coordinates to each triangle corner (A triangle corner is a

pair (f, w) where f is a triangle of the mesh and w is one of f ’s vertices). The

mapping to the plane defined by these coordinates is one-to-one and orientation-

preserving on each triangle. In addition, we assume that the whole mesh is mapped

to a topological disk. More precisely, each vertex gets the same (u, v) coordinates

in all incident triangles, excluding vertices along a cut, a connected graph C of

mesh edges, such that M \ C is topologically equivalent to a disk. The algorithm

proceeds in several steps:
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Figure 5.3: Matchings between cross-fields in adjacent triangles.

1. The shape operator is estimated on all triangles, and salient triangles are

detected. For a salient triangle, principal curvature directions are likely to

correspond to a feature; we discuss how salient triangles are detected below.

2. A cross-field, represented on each triangle T by the angle θT between one

of four field directions and a reference edge of T , as well as integer match-

ings (Figure 5.3) on each edge, is optimized to minimize a measure of field

smoothness. A matching determines corresponding directions on two trian-

gles. Matching -1 means that direction 4 in triangle 2 corresponds to 1 in

triangle 1. Matchings can be arbitrary (i.e., not necessarily mapping closest

directions to each other). The directions are fixed on salient triangles, and

the matchings are restricted to be integers. [9] describes an efficient greedy

mixed-integer solver that we use to solve the optimization problem.

3. The cut C passing through all singularities of the field is computed.

4. The cross-field is made consistent: the angles representing the field are

changed so that the matchings across all non-cut edges are zero. It is possible

to achieve this if the cut passes through all singularities (we refer to [86, 9]

for details).

5. As the matchings are all zero at non-cut edges, if we arbitrarily label one
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of the directions of the field on a triangle To uT0 (the target vector for ∇u),

the label can be consistently propagated to all other facets. The 90-degree

rotated vectors of the cross-field are labeled vT . The vectors uT and vT

are the target values for the gradients of the parametric coordinates on the

triangle T .

6. The parametrization is computed as a solution to the constrained minimiza-

tion problem

∑
triangles T

area(T )
(
‖∇u− huT‖2 + ‖∇v − hvT‖2

)
→ min (5.1)

where the scale factor h sets the correspondence between the length scale of

the parametric domain and the surface.

The constraints imposed on (u, v) values correspond to transitions across

seams: we want the match across seams to be the same as for the guiding

cross-field: if the uT direction across a seam is transformed to a vT direction,

then the parametric directions are transformed in the same way. More pre-

cisely, if two triangles T and T ′ share a cut edge e, with parametric positions

of endpoint corners p1 = (u1, v1) and p2 = (u2, v2) on one side of the cut, and

p′1 and p′2 on the other side, these are related by

p′1 = Rep1 + te, p′2 = Rep2 + te

where Re is a keπ/2 rotation defined by the matching ke of the cross-field on

the edge, and te is an unknown translation.

For models with sharp features, apart from transition constraints, constraints
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are imposed on parametric coordinates of vertices on sharp edges: for example, if

the direction of a sharp edge is close to uT , its vertices are constrained to have the

same v coordinates.

To make a conforming quadrangulation possible, [9] require that the transla-

tional parts of transition maps te to be integers. In addition, all parametrization

singularities are required to be at integer locations. These constraints ensures that

the cross field formed by ∇u and ∇v does not have infinite separating lines of the

type discussed in Section 5.3. When the quadrangulation is generated by tracing

the integer parametric lines on the surface, rounding ensures that the field singu-

larities are at quad corners and that quad edges are continued seamlessly across

cut edges of the mesh. Note that compared to “unrounded” global parametrization

that minimizes (5.1) with no constraints, for large values of h rounding forces the

parametric line directions further away from the cross-field directions.

Figure 5.4: Facet-based (left) vs. vertex-based cross-field optimization (right).
For close salient fields, the vertex-based field optimization produces 34 singularities
vs. 139 for facet-based.

Quite often, the algorithm described above yields parametrizations with in-

verted triangles; as a result the parametrization has more singularities than the

original field, and these singularities are not at integer locations. To solve this

problem, following [9], constrained energy optimization is repeated several times
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(a) (b) (c) (d) (e) (f)

Figure 5.5: Main steps of the T-mesh patch layout construction. (a) An initial
set of vertices are placed at singularities. (b) Cells with field-aligned edges are
uniformly expanded from singularities, until no further expansion is possible. (c)
Holes between cells are closed by adjusting cell boundaries. (d) Cells are split
into quad patches. (e) T-joints are eliminated whenever possible by moving cell
boundaries. (f) The number and shape of the cells are optimized to minimize an
energy and satisfy the constraints.

with gradually increasing (stiffened) weights assigned to the terms corresponding

to triangles in areas with high parametric distortion.

Our algorithm differs from the algorithm of [9] in three main respects.

Salient feature detection. In [9], salient feature detection is based on thresh-

olding per-triangle total curvature and shape operator anisotropy (the ratio of

principal curvatures). Instead, following [77, 48] we use ridges and valleys, com-

puted from a smoothed curvature field to identify salient facets and vertices. Ridges

also require thresholding, and we use ridge strength as described in [77].

Field optimization. While we found that the triangle-based cross-field opti-

mization produces good results in the case of meshes with well-shaped triangles,

we also observed that a large number of singularities is often formed for surfaces

with lower triangle quality. Instead of using tangent vectors at facets, we define a

tangent plane at each vertex v, and a cross-field at v, with a reference direction for
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the angle θv chosen to be the projection of an edge connected to v to the tangent

plane. Similarly to the triangle cross-field case, we define matchings on edges,

but this time these indicate correspondences between cross-fields at two incident

vertices, rather than triangles. For subsequent parametrization, the cross-field at

vertices is converted to a facet-based field by averaging the cosines and sines of

quadruple the angles in a common reference frame; this is justified by the 4th-order

tensor formulation of [78].

Translation rounding. For T-mesh construction, rounding of translation vari-

ables and singularity positions is not fundamentally required, as the separating

lines starting at singularities can be terminated at T-joints. However, we do per-

form a modest amount of rounding (on the order of triangle size of the original

mesh) to make it possible to generate a fine-scale conforming quadrangulation

that we use to implement our T-mesh construction algorithms, as explained in

Section 5.5. As all singularity position changes are relatively small, we do not

need to use the mixed-integer solver for setting singularity positions: they are all

adjusted simultaneously as in [52].

5.5 Construction and Optimization of Domain

T-meshes

Our goal is to construct a T-mesh with a small number of faces, with edges follow-

ing the parametric lines of the global parametrization constructed in Section 5.4

and satisfying a number of quality constraints. In this section for simplicity we

assume that the parametrization is fixed, and describe how the T-mesh can be con-
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structed. In the next section we discuss a method for adjusting the parametrization

to eliminate some non-essential T-joints.

The main steps of the construction are summarized in Figure 5.5. All steps in

this section use the fine quadrangulation generated in the previous section.

5.5.1 Field-aligned T-meshes and operations on them

stem

edge
non-stem

T-edge edge
non-stem

f
2

  f3
 

f
1

 

v

Figure 5.6: Notation. Vertex v is a T-joint with respect to face f1, but a corner
for f2 and f3.

To describe our algorithms we introduce the basic terminology for T-meshes.

We consider quadrilateral T-meshes: Conceptually, every face of this mesh is a

quad, but some of the quad edges may be split into several subedges by T-joints.

Each vertex is one of three types: labeled T-joint (always of valence 3), regular

(valence 4 in the interior, 3 on the boundary) or extraordinary (non-T-joint interior

vertices of valence different from 4). For exactly one edge incident at a T-joint

vertex v we mark its endpoints at v as stem, and the other two as nonstem. Thus,

we say that a vertex is T-joint with respect to a face if it is incident to two non-stem

edges comprising the face (Figure 5.6).

We distinguish between mesh edges and T-edges. Each face has exactly four

corner vertices – those that are not T-joint with respect to the face; T-edges are

unions of edges between two sequential corner vertices of a face. We assume that

no face is glued to itself: the starting and ending vertices of a T-edge are always

distinct.
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Suppose we have a global parametrization defined. A field-aligned T-mesh is a

mesh whose edges are curves on the surface satisfying two requirements: (a) each

is a subset of a parametric line; (b) the field is nonsingular on each face, except

possibly at the corners.

Field-aligned edge moves. The most basic operation used by our algorithms is

moving a T-edge or edge along the field of parametric lines. For a parametrization

with no cuts, this corresponds to simple translation of the edge in the parametric

plane. For each endpoint w of an edge e not located at a singularity, there is

a unique parametric line `(w) passing through w and orthogonal to the line of

the edge in the parametric domain. We define a valid move to be a repositioning

of the T-edge on the surface so that the new endpoints w′1 and w′2 are on `(w1)

and `(w2), and move by the same amount along these lines, and the edge remains

aligned with a parametric line. Furthermore, no singularity is contained in the

curvilinear rectangle with corners w1, w2, w
′
2 and w′1.

Attached sets of T-edges. For a given T-edge e, we call a T-edge e′ attached to

e, if their intersection contains at least one edge. If E is a set of edges, then A(E)

is the set of all edges attached to edges in E. The attached set Ac(e) (Figure 5.7) is

the transitive closure of A for an edge e. If a T-edge e is moved while maintaining

alignment with the parametrization, all T-edges in Ac(e) need to be moved by the

same amount if no new faces in the T-mesh are created.

In addition to simple attachment, we define regular attachment. An edge e′ is

regularly attached to e if it is attached to it, or it is on the same parametric line

and shares a regular endpoint with e. Similarly, the regularly attached set of edges

RAc(e) is defined as the transitive closure of the regular attachment relation.
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Figure 5.7: The attached set of an edge (marked in red).

Implementation. While all operations with T-edges can be implemented by

tracing parametric lines on the surface, the implementation is considerably simpli-

fied by generating a fine (with quad size on the order of triangle size or smaller)

quadrangulation of the original surface using the global parametrization. The

downside of this approach is that it requires a moderate amount of rounding at

the parametrization stage. In practice, we found that the quadrangulation can be

chosen to be sufficiently fine for this not to lead to folds not removable by stiffening

(see Section 5.7). In this case, the edge moves are no longer continuous but are

discretized at the resolution of the fine quad mesh.

5.5.2 Initial T-mesh construction

As singularities of the field have to be vertices of the mesh, it is natural to start the

construction using singularities as the initial set of vertices with no faces attached.

Singularity cell expansion. In the absence of parametric lines to align with, a

natural and commonly used approach would be to use a Voronoi partition on the

mesh to get a mesh of k-gons, and apply one step of Catmull-Clark subdivision.

We mimic a simple Voronoi partition construction but force the edges of cell to be

field-aligned. An initial curved k-gonal patch is defined by tracing integral lines of

the parameterization gradient very close to singularity. (On the quad mesh, this
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tracing reduces to following edges along the fine quadrangulation in 1-neighborhood

of the singularity.) If the singularity index is i/4, i ≤ 2 then k = 4 − i. We refer

to k as singularity valence. As a result we get a set of field-aligned edges, which

are moved away from the singularity at a constant speed in parametric units, until

the T-edges of the cell become attached to other T-edges and cannot be moved

without shrinking other cells, or reach the mesh boundary.1

Unlike Voronoi cells, the field-aligned cells need not fill the whole mesh, leaving

some hole quads uncovered. It is possible to show (see the Electronic Appendix)

that the local configuration of edges at any hole quad is of the type shown in

Figure 5.8a.

a b

Figure 5.8: (a) Closing a hole in the initial mesh; (b) regularization step.

Hole closing. Most of these holes can be eliminated by moving some of the cell

boundaries. For the hole-elimination step, the hole quads are sorted by size, with

1Note that while the shape of an initial cell of this type on a regular grid is identical to an
L∞ disk (i.e. a square), resulting cells are not Voronoi cells with respect to L∞ metric: Our cells
always have coordinate-aligned edges, while the L∞ metric cells may have diagonal edges.
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small holes first. A single hole-closing operation, shown in Figure 5.8a, proceeds

as follows. First, a pair (e1, e2) of opposite edges bounding the hole is selected. We

select the pair of edges along the longer parametric dimension of the hole quad,

with parametric distance d between them. The attachment sets Ac(e1) and Ac(e2)

are either disjoint or coincide, as they are defined as transitive closures. In the

latter case, we say that this pair of edges fails the loop condition (Figure 5.9), and

consider the other pair of edges of the hole quad.

If the attachment sets are distinct, we determine the maximal valid move dis-

tances dmax
1 and dmax

2 for Ac(e1) and Ac(e2), in the direction towards the interior

of the quad, defined as minima of the valid move distances of the edges in each

set. If dmax
1 + dmax

2 ≥ d, we set d1 = min(dmax
1 , d/2), and d2 = d − d1, and move

the attached sets Ac(e1) and Ac(e2) to close the hole. If dmax
1 + dmax

2 < d, no valid

move in this direction closes the hole, and we consider the opposite pair of edges.

If neither pair can be used, we create an additional cell to fill the hole. The result

of the initial T-mesh construction is a parametrization-aligned T-mesh, but with

k-gonal faces.

Figure 5.9: Loop condition.

Once all cells are expanded to the maximal extent, and all holes are filled, the
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k-gonal cells are split into parametrization-aligned quads, by tracing k parametric

lines from the central singularity to the boundaries of cells. All three-valent vertices

of the resulting mesh with two incident edges along the same parametric line

become T-joints. If there are no holes in the mesh, the total number of cells in the

mesh we obtain is
∑

singularity v(4− 4iv), where iv is the index of the singularity at

v. The number of holes is bounded from above by the same number, as there is at

most one hole at each k-gonal cell corner.

T-mesh regularization. The regularization step reduces the number of T-joints

in a mesh by an operation similar to closing holes, collapsing some edges separat-

ing two T-joints (Figure 5.8b). We find all edges in a mesh with two non-stem

endpoints w1 and w2 at T-joints, such that the stem edges at these T-joints are on

opposite sides of the edge. These edges are sorted by length, with shorter edges

eliminated first. Let e1 and e2 be the stem edges at w1 and w2. Then we apply the

same procedure as for the hole filling to the pair (e1, e2) except we use the regularly

attached sets RAc(e1) and RAc(e2) instead of the attached sets, to avoid creating

new T-joints in the process of removing old. A similar RAc(e1) 6= RAc(e2) needs

to be checked to verify validity of the move.

5.5.3 T-mesh optimization

The operations used in construction of the initial mesh are pure connectivity opera-

tions, not taking into account any quality criteria, other than reducing the number

of T-joints at the regularization step. As the next step we optimize the patch lay-

out. Our overall goal is to create the largest possible patches, while maintaining

good patch quality. Our approach is similar to mesh simplification and improve-
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ment techniques: we define a set of operations on the set of faces of the T-mesh

preserving the validity of mesh, and define an energy we want to minimize by a

sequence of these operations, while satisfying a set of constraints.

Energy and constraints. We choose an energy favoring larger well-shaped

patch sizes; for an individual patch, we use its perimeter-area ratio to balance the

priorities of avoiding small patches while favoring square-shaped patches. Since

we quadrangulate finely to minimize distortion due to rounding, we approximate

actual lengths by parametric lengths. The energy of individual patches needs to

be combined in a global energy function; we found that the `1 norm of the vector

of parametric perimeter-area ratios yields the best results compared to `2 and `∞:

Earea =
∑
P

1

L(P )
+

1

W(P )
=
∑
P

P(P )

2A(P )

where the summation is over patches P ; and L, W , P , and A are the parametric

length, width, perimeter, and area operators, respectively. The constraints are as

important as the energy itself: the T-mesh is likely to be useful in a much more

limited context with no constraints on patch quality. The choice of constraints

depends on the goal of constructing the T-mesh. If the primary goal is to partition

the surface into a small number of logically rectangular domains, similarly to [16]

or [40] the optimization can be done without constraints. If, however, we would

like to use the T-mesh as a coarse control mesh for a high-order or multiresolution

surface representation, controlling the approximation error and patch aspect ratios

are likely to play an important role.

This leads us to our two main constraints (additional optional constraints, e.g.

maximal patch size can be imposed if desired).
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Geometric approximation constraint. For each face of the T-mesh, we esti-

mate how well the surface can be approximated by a smooth piecewise polynomial

surface on this patch. While we could use a globally smooth surface approximation

directly (T-NURCCs or PT-splines), determining the precise approximation error

is expensive as it requires solving a global linear system. Instead, we use a simple

Bezier curve network fit to approximate the per-patch error locally and efficiently.

For each face, we fit 8 Bezier curves (4 aligned with each parametric direction)

to surface points uniformly sampled in the parametric domain (we use an 8 × 8

grid of samples). Each Bezier curve interpolates the boundary samples, so the fit

reduces to solving a 2 × 2 system of linear equations per curve. We compute the

approximation to L2-norm of the error εP of the fit, as the sum

ε2P ≈
1

2

A (P )

n2

3∑
i=0

7∑
j=0

(bi(hj)− p2i,j)
2 +

3∑
j=0

7∑
i=0

(bj(hi)− pi,2j)
2

where pij are the samples, and bi(t) and bj(s) are the Bezier curves along two

parametric directions, with parameters t and s in the range [0, 1] on the face, and

h = 1/7.

Patch aspect ratio constraint. While in many cases constraining geometric

error results in automatic restrictions on the aspect ratio, the patches on nearly

cylindrical areas of the surface may become very long. In other cases, the energy

may favor creating very thin and narrow patches in flat areas to increase the area

of nearby patches. To limit these effects we impose an additional constraint on the

patch aspect ratio.
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T-mesh modification operations. We use three operations for T-mesh modi-

fication: two connectivity-modifying, and one only affecting the patch size, two of

which have a single length parameter.

refinement extension relocation

Figure 5.10: Refinement, extension, and relocation operations.

The Refinement operation acts on a (T-edge,face) pair (e, f), splitting the face

f into equal halves by inserting a new edge along the parametric direction per-

pendicular to e, generally creating two T-joints (Figure 5.10). Refinement always

decreases the patch size, and increases the number of patches.

The Extension operation acts on a T-edge/face pair (e, f), extending the face

f across the edge e into adjacent faces. It increases the size of one patch, while

other patches shrink, or even eliminated. A face f (Figure 5.10) is extended to the

maximal length possible across the T-edge e, so that we do not modify faces with no

T-edges attached to the T-edge e. Depending on local connectivity, it may increase

or decrease the number of patches, although it most commonly decreases the energy

most when it reduces to a merge of several faces. We define this operation in a

more general way, as we found that in some cases this less constrained operation

produces better quality T-meshes.

The Relocation operation acts on an edge e. The attachment set RAc(e) is

found and all edges in the set are moved by the same distance a, positive or

negative, not exceeding the maximally valid distance in this direction.
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(a) (b) (c) (d) (e) (f) (g)

Figure 5.11: Singularity alignment process: (a): detecting a mismatch between
adjacent singularities; (b): a part of the singularity adjacency graph (observe “near-
misses”); (c): T-mesh before alignment; (d): singularities and separating lines
after alignment; (e): T-mesh after alignment; (f): holes3 before alignment; (g):
holes3 after alignment with no T-joints.

Complete optimization algorithm. We impose the constraints using a multi-

plicative penalty method (cf. [106]) by combining them with the energy function:

Etotal =
∑
P

P
2A(P )

(1 + w(αP/α0 − 1)) (1 + w(εP/ε0 − 1))

where αP is the parametric domain aspect ratio of patch P , εP is the geometric

error estimate described above, α0 and ε0 are user-specified upper bounds for the

constraints. The function w(t) is chosen to be zero if t < 0, and increases rapidly

for t > 0, we use t3. Multiplicative penalty functions are similar to the more

common additive penalties (taking log of the energy converts them to additive)

but have the advantage of not requiring to choose a proper scale factor.

The complete optimization algorithm proceeds as follows.

For each (edge,face) pair of the T-mesh, we consider Refinement and Extension

operations, and for each edge the Relocation operation. For each parametrized op-

eration (Extension and Relocation) we determine the parameter range correspond-

ing to valid moves, and find the parameter value corresponding to the maximal

decrease in energy. Among all operations, we choose the operation that results

in the maximal decrease in energy, and perform this operation. The process is
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iterated until the energy cannot be further decreased. Since the energy decreases

at every step, the algorithm always terminates.

Reevaluating all possible operations at every iteration would be prohibitively

expensive. Instead, we update the invalidated operations incrementally.

We assign a timestamp to all edges and faces of the mesh (initially zero). In the

beginning for all faces and edges, we generate all potential operations, compute

the energy change resulting from each operation, and place the operations on

the priority queue, with the energy decrease as the priority (energy-increasing

operations are discarded). All operations are also given a timestep zero.

Then we repeatedly perform the operation with highest priority, unless the

faces and edges it affects have a later timestamp than the operation, in which case

it is discarded. All edges and faces modified as a result of the operation get a new

timestamp t, and a new set of operations is generated for these facets and edges

and pushed on the priority queue with timestamp t, if they decrease the energy.

5.6 Singularity Alignment

The T-mesh construction algorithm of Section 5.5 is limited by the fact that the

parametrization is fixed, and patch boundaries stay aligned with parametric lines.

However, only important feature lines (sharp edges in particular) are fixed by the

geometry. The cross-field and the parametric lines of the global parameterization

away from features can be modified to improve the quality of the mesh, and de-

crease the number of T-joints. The problem of separating lines passing within

short distance of each other, (discussed in Section 5.3; Figure 5.2, right), can be

reduced by adjusting the global parameterization.
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Overview. We observe that ideally we want the separating lines starting at a

singularity to terminate at a nearby singularity, if it passes sufficiently close to

it. The algorithm that we describe in this section identifies close singularities and

detects “near-misses”, constructs the singularity adjacency graph, and solves for a

new parametrization with additional constraints that force perfect alignment for

identified pairs; the steps of the process are shown in Figure 5.11.

Defining a singularity adjacency graph. We observe that the first step of

the initial T-mesh construction algorithm, with minor modifications, provides a

mechanism for detecting “near-misses” of field separating lines. As before, we

expand a cell from each singularity. However, instead of growing all cells at once,

we expand the cell, until each edge reaches an adjacent singularity, a boundary,

or another edge of the same cell. Singularities on the boundary of the maximally

expanded cell for a singularity c are considered adjacent to c. This relation is

not necessarily reciprocal. We construct a singularity adjacency graph connecting

by edges all adjacent singularities. Example graphs are shown in Figure 5.11

and 5.18. Each edge (c1, c2) is annotated with a separating line mismatch (the

parametric length from the singularity c2 to the closest parametric line starting at

c1) and distance (the parametric L∞ distance between the singularities) illustrated

in Figure 5.12.

We want to change the parametrization so that a parametric line starting at c1

passes through c2 i.e., so that the mismatch becomes zero at a maximal number

of edges of the adjacency graph.

Constructing constraints. If a mesh can be parametrized without seams, the

requirement of singularity alignment easily translates into a constraint on parametriza-
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misaligned pair parametric domain after alignment

Figure 5.12: A path connecting two misaligned singularities before and after
alignment.

tion: two singularities should be on the same parametric line, i.e. share the same u

or v value. The constrained optimization framework of [9] that we are using makes

adding such constraints easy.

For parametrizations with cuts, the situation is more complicated. A para-

metric line on the surface undergoes a jump to a different point and direction in

the parametric space when it crosses a cut (Figure 5.12). While the rotation is

entirely determined by the cross-field to which the parametrization is aligned, the

positional jump depends on the parametrization itself. When we add a constraint

on singularity coordinates, the parametrization may change, changing the jumps

at cut edges. The resulting constraint will depend not only on the pair of singu-

larities (c1,c2), but also on the (variable) translational parts of the transforms at

the cut edges we cross, te in Section 5.4. E.g., if the cut is crossed once, and the

crossing is at a cut edge e with associated transform p′ = Rep+te, where p = (u, v)

is a parametric point, then the constraint is (Rep
1 + te)u = p2u, if the aligned pa-

rameter line at c2 is along the u coordinate direction, and p1 and p2 are parametric

positions of c1 and c2), and the subscript u means taking the u coordinate.

In the general case, consider a path crossing cut edges ei i = 0, . . .m between c1
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and c2. Assuming the final direction of the path is u, then the complete constraint

has the form (
(Πm

i=0Rm−i)p
1 +

m∑
i=1

Πm
j=iRm−jti

)
u

= p2u

R1,t1
R2,t2

p1

p2

Figure 5.13: Forming a constraint for a pair of singularities.

we still have a single linear constraint, but involving a larger number of variables

ti, p
1 and p2 (Figure 5.13).

We observe that the form of the constraint depends on the choice of path

between singularities. One can show that for two paths P1 and P2 connecting

two singularities and such that the loop formed by P1 and P2 does not enclose

any singularities and encloses a topological disk, the constraints are equivalent

This allows us to choose a path between singularities consisting of two segments

of parametric lines, one passing through c1 and the other through c2, tracing the

boundary of the rectangle with c1 and c2 at diagonal corners.

Filtering singularity constraints. The singularity constraints can be redun-

dant. As these are homogeneous constraints with zero right-hand side, they cannot

be incompatible, so we eliminate the redundant ones with Gaussian elimination.

We choose a threshold for the minimal aspect ratio of the rectangle for an
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adjacent pair of singularities, and remove all constraints exceeding this threshold

(we set it in the range 5-10); choosing this threshold high enough ensures that

the field does not deviate too far from soft creases. A singularity can satisfy only

a single constraint along each outgoing parametric line, so if several constraints

correspond to a direction, we choose the one with the closest singularity (smallest

parametric L∞ distance). The singularity constraints can interact with sharp edge

constraints: if a singularity has a sharp edge constraint in a particular parametric

direction, we remove singularity constraints in this direction.

5.7 Results and Comparisons

Our algorithm is automatic once various thresholds are set. Other than mixed

integer quadrangulation parameters, we use (1) aspect ratio threshold for cone

alignment pair selection, (2) desired max aspect ratio of T-patches, and (3) max

geometric approximation error. Optionally, manual adjustments can be made to

singularity placements as described in [9]. This was done for the maxplanck head

to make the placement of singularities more symmetric.

We evaluate the results of our algorithm in several ways. The main criterion is

the number of patches in the final mesh subject to the constraints on aspect ratio

and geometric approximation quality.

For several meshes, we compare domain T-meshes we obtain to the minimal

number of patches we could obtain in a conforming mesh using mixed-integer

quadrangulation, with the same feature field and the number of stiffening iterations

bounded by 40. We observe that in most cases, especially involving alignment, the

main restriction on quad size is due to the lack of robustness with respect to large
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rounding. Numerical data on the number of faces in different meshes are presented

in Table 5.1, and Figures 5.16 and 5.15 show the results for several meshes. We

emphasize that these coarsest meshes are not necessarily suitable as control meshes

for a T-spline or other fit. Rather, these are useful as seamlessly and smoothly

aligned rectangular geometry images, for texturing, or solving equations on the

surface.

Periodic Global Parametrization (PGP) [85], does not have a target quad size

limitation due to foldovers PGP avoids the need for rounding, and the need for

stiffening, but as the target quad size becomes coarser, the quality and alignment

of the mesh rapidly deteriorates. Figure 5.14 shows a parametrization obtained

using PGP with approximately the same number of quads as our T-mesh shown

in Figure 5.16. (Caveat: the best effort was made to smooth the field for the PGP

parametrization, but it is unclear if the quality of the field matched the quality of

the cross-field we used for our result.)

For high-order approximation, the geometric error constraint has to be taken

into account. Figure 5.17 shows the effect of decreasing the geometric error con-

straint for one model and decreasing the aspect ratio constraint.

In Figure 5.18 we show the full singularity adjacency graph and its pruning.

Singularity alignment is highly useful for eliminating most of the near misses in

matches. At the same time, we observe that one cannot expect to eliminate most of

the T-joints in the mesh using this method due to two reasons. First, we filter the

singularity alignment constraints by feasibility and by the mismatch-to-distance

ratio, to avoid deviation from the feature field. As a result, the total number

of valid alignments we enforce is relatively small, compared to the total number

of T-joints. Second, the resulting mesh is optimized using our general T-mesh
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Figure 5.14: PGP parameterization with target size chosen to match our number
of patches in Figure 5.16

optimization procedure, which has to trade T-joint creation for better geometric

approximation or aspect ratio.

We observe that the number of control points in the T-mesh and the number of

patches is within a factor of 2-4 of the number of singularities in the original mesh.

We believe that with constraints imposed on patches it is difficult to improve on

these numbers: the best possible number one can expect is approximately equal

to the number of singularities. In this case, every quad of the mesh is supposed to

have corners at singularities, which is extremely difficult to achieve for typically

highly nonuniform singularity locations produced by feature-aligned fields.

Fitting T-splines. Once the T-mesh is constructed it can be used to define

a T-spline/T-NURCCs surface which can be fitted to the original mesh. Our

approach to fitting T-spline surfaces is identical to that of [62], with two important

differences. Because our T-mesh is constructed by tracing parametrization lines,
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the sums of parametric intervals on the opposite sides of each face are guaranteed

to be equal if we simply use parametric length to determine the knot interval for

each edge. This eliminates the need to introduce the extraordinary vertices at

T-joints which were necessary to handle the T-meshes constructed using PGP.

The second difference is that we pass the information about sharp edges to the

T-spline construction, and insert degenerate faces with zero knot intervals along

sharp edges.

We obtain meshes suitable for fitting in our framework by setting the geo-

metric error to 0.02 of the model diameter. Figure 5.19 shows the fit for several

models. The L2/L∞ relative errors for the models shown in the figure are: for

joint, 0.08%/2%, for sculpt, 0.1%/2%, for botijo, 0.1%/1% and for fertility,

0.06%/0.5%.

Performance. Performance numbers for different stages of the process are in-

cluded in Table 5.1. The time needed for construction of the initial T-mesh patch

layout is negligible in all cases and we ignore it. For larger meshes, in general, the

dominant cost is mixed-integer field optimization (vertex-based version is more ex-

pensive than facet, and the running time of mixed-integer optimization increases

faster than linearly due to correlation in the number of vertices and number of

integer variables). This potentially may be alleviated by rounding in groups or

the method described in [87]. For some meshes, the parametrization cost domi-

nates, because of a large number of stiffening iterations. For smaller meshes, the

cost of field optimization is far lower, and T-mesh layout may be the most signif-

icant expense. The cost of T-mesh optimization strongly depends on the number

of patches produced, so it raises substantially, when lots of small patches are re-
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quired. For example, for the maxplanck mesh, which has a lot of geometric detail

at different scales, a very large number of patches is needed to obtain the same

error. For this type of meshes, direct high-order patch approximation is not ap-

propriate, and a displacement map or a hierarchical approximation is needed so

that fewer patches can be used. The cost also raises if a very fine quad mesh is

used (as it was necessary for casting). This is not a fundamental problem of the

method, and it is primarily due to a suboptimal implementation of searching for

an optimal parameter values for the parametrized optimization. We note that this

numbers are strongly implementation, compiler and hardware dependent: for ex-

ample, in our setup we were unable to match field optimization timings presented

in [9], although the same MI code was used. The T-mesh optimization algorithm

complexity is hard to estimate theoretically, so its scaling is difficult to predict. We

have observed that it does not depend much on the number of singularities, but

has a stronger dependence on geometric complexity of the shape (as more complex

shapes require finer patches).

Limitations. There are several important limitations to our method.

Field quality. To the greatest extent, the quality of the T-mesh is determined by

the quality of the field. Current techniques do not allow automatic enforcement

of symmetries, and in many cases lead to unnecessary bending and twisting of

patch boundaries. (often observed for organic shapes lacking sharp edge alignment

constraints).

In an effort to eliminate unnecessary T-joints, our technique for singularity

alignment changes parametric placement of singularities, but does not alter their

position on the surface. Adjusting singularity positions whenever possible (if a sin-
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gularity is located in an isotropic flat area) has potential for considerably improving

the quality of the layouts.

Optimality. There is no guarantee that our result is close to the global optimum.

For smaller meshes, the results seem hard to improve. For more complex meshes

better quality seems possible. In all cases, a significant reduction in energy was

achieved.

Robustness. There are three limiting factors in robustness of our method. The

most substantial restriction is the need to obtain a locally one-to-one parametriza-

tion. Even with no rounding, for complex models with sharp features, foldovers

in the parametrization are common, and stiffening iterations are not guaranteed

to eliminate these. Another problem is detection of sharp features. In this work,

we relied on the ability to tag sharp features based on the dihedral angles, or on

having relatively rounded features. Finally, the global impact of sharp edges and

cone alignment is difficult to predict as these constraints could force the param-

eterization to collapse due to global dependencies. The T-mesh construction is

quite robust, but can produce excessive number of small patches for low-quality

input fields.

Scalability. While we were able to obtain parametrizations for meshes of moderate

size (approximately 100 thousand triangles), the main scalability bottleneck is the

field optimization. The running time of the mixed-integer solver for larger meshes

is dominated by the Gaussian elimination step for the constraints. Furthermore

the number of iterations of the solver is proportional to the number of singularities,

which, in turn, grows with geometric complexity of the model.
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Figure 5.15: The screw and screwdriver with patches of maximal size and obey-
ing geometric error constraints; the elephant with geometric error optimization.

5.8 Conclusions

The method presented in this work demonstrates the possibility of constructing

coarse domain meshes while maintaining feature alignment, if T-joints are allowed

in the mesh. Domain meshes constructed in this way are a natural fit for T-spline

surfaces and related high-order constructions. Clearly, our T-mesh construction

algorithm can be improved and extended in many ways to achieve more compact

T-mesh structures with fewer nonessential T-joints. Furthermore, we observe that

in many ways the quality of patch layouts is determined by the initial cross-field,

and improving the quality of these fields is an important direction for future work.

While many algorithms and constructions for conforming meshes can be easily

extended to T-meshes, overall, the theory and algorithms for this type of meshes

is far less developed, presenting many interesting questions for future research.
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Figure 5.16: Maximal patch sizes obtained by our algorithm while maintaining
aspect ratio constraint 2.5. From left to right: rockerarm, fandisk, maxplanck,
and casting. Smaller images show the coarsest quad meshes we could obtain.

ε0 = 2 ×
10−4, α0 = 4

ε0 = 1 ×
10−4, α0 = 3

ε0 = 5 ×
10−5, α0 = 2

ε0 = 2.5 ×
10−5, α0 = 2

ε0 = 1.25×
10−5, α0 = 2

ε0 = 5 ×
10−6, α0 = 2

Figure 5.17: Effects of changing the minimum thresholds for geometric error ε0
and aspect ratio α0 for the fertility mesh. Geometric error is measured relatively
to the diameter of the bounding box of the mesh.

Figure 5.18: From left to right: a full singularity adjacency graph for 72 singu-
larities for the botijo mesh (209 edges); adjacency graph pruned by compatibility
criterion (120 edges); adjacency graph pruned by aspect ratio 3 followed by com-
patibility (94 edges); comparison of aligned and non-aligned T-meshes.
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Figure 5.19: Several T-spline models obtained by least-squares fitting from T-
meshes generated by our algorithm.
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