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Abstract

Augmented and Virtual Reality (AVR) systems have become increasingly popu-

lar in the worlds of entertainment and industry. However, many current systems

are limited in scope to experiences that isolate a single user within a given phys-

ical space. While many such experiences allow for interactions between remotely

located users, very few experiences allow for multiple users to coexist in the

same physical space while interacting with a consistent world-view of shared vir-

tual objects. Our research has found that by enabling this co-located paradigm,

users are able to have rich interactions that are otherwise impossible. This the-

sis presents a series of experiments that demonstrate the importance of the so-

cial aspects of co-located AVR, a set of solutions that overcome the difficulties

often encountered in such experiences, and directions for future scalability using

forthcoming hardware and technologies.
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Introduction

For as long as computer graphics have been around, the idea of virtual reality

(VR) has been a topic of interest. The concept of graphics becoming seamlessly

integrated with our world has been the focus of research pieces and science fic-

tion stories alike. However, in the past, exorbitant prices for hardware systems

or inscalability of solutions have prevented augmented and virtual reality (AVR)

systems from becoming a mainstream technology.

In recent years, advancements in technologies affecting mobile processing,

screen pixel density, optics, wireless transmissions, and more have pushed AVR

systems into consumer-level viability. These advancements have caused a rapid

acceleration in both interest and funding for AVR systems69. We believe the

current developmental trajectory of these systems points towards widespread

use, much like how advancements a decade ago brought high-power computation

and communication to our pockets in smartphones.

We envision a future where AVR devices are used in everyday communica-
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tion, enabling methods of collaboration, content sharing, and communication

not possible with today’s technological paradigms. In our daily conversations,

we will be able to enhance our discussions with immersive computer graphics

that feel like they are a part of reality. Professionals in education, industry,

medicine, entertainment, and more will all have access to create floating, 3D

visualizations to aid the communication of their ideas.

However, for that growth to continue, we believe that AVR systems must

evolve beyond the current paradigm of isolated experiences. For the past sev-

eral years, my work at the Future Reality Lab (FRL) at New York University

has focused on developing techniques to enable AVR systems that are specif-

ically designed for interpersonal interactions for users within the same space.

This document will discuss the techniques and design decisions our lab has de-

veloped over the past 5 years to enable these systems, as well as our evaluations

of the systems.

In Chapter 1, we will discuss a few examples of systems and experiences we

have developed with this paradigm, focusing on the design choices and evalu-

ations based on user feedback. In Chapter 2, we will cover the algorithms and

techniques used to overcome the problems that arise when building these sys-

tems. Finally, Chapter 3 will discuss emerging technologies and how they will

benefit these systems going forward into the future.
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A Brief Introduction to AVR Systems

While the focus of this dissertation will be on recent AVR systems, it is worth

covering the history of the development of AVR in order to gain context on

what past systems accomplished, as well as the limitations that prevented them

from becoming mainstream technology. There are several devices which could

be considered the first “Virtual Reality” system, depending on definition, but

it is commonly accepted that the first functional Virtual Reality head-mounted

display (HMD) was developed by Ivan Sutherland in 196879. The device, hoisted

above the user’s head by a mechanical arm known as the Sword of Damocles,

was able to render simple vector graphics in front of the user. The mechanical

arm allowed the host computer to track the user’s perspective, thus rendering

the user with the appropriate virtual view. While this served as a first proto-

type of the HMDs that we see today, the sheer size of the device made it impos-

sible to scale to widespread use.

Developments over the next several decades produced many different VR

devices for various applications, but none became a commercially viable main-

stream product. Much like Sutherland’s device, these devices paved the way for

future developments, but hardware limitations made them bulky, expensive, low

quality, or otherwise commercially unviable. Until the 2010’s, very few AVR de-

vices were commercially available, and those that were never found mainstream

success.

The last decade has seen enormous growth in terms of AVR development, at
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both the consumer and industrial levels. Several generations of headsets devel-

oped by Facebook Oculus20, Google31, HTC/Valve38, and others began bringing

virtual reality to widespread viability in 2013 via affordable HMDs. For VR,

early developments saw two branching paths:

• Untethered, 3 degrees of freedom (DOF) headsets. 3DOF refers to track-

ing the three rotational axes. This sort of system is ideal for applications

like 360 video i. Examples of this are the Samsung GearVR58, Google Card-

board31, and Oculus Go19.

• 6DOF headsets that are tethered to an external computer. 6DOF refers

to tracking that supports both position and rotation tracking. Many cur-

rent VR games have moved to 6DOF headsets due to the freedom to move

throughout a room. Examples of this are the Oculus Rift22 and the HTC

Vive38.

Throughout 2016 to 2019, improvements in tracking algorithms began to al-

low for untethered, room-scale experiences, as with the Oculus Quest21, Google

Lenovo Mirage Solo32, and HTC Vive Focus39. However, even at present day,

this technology is still reaching maturation and still has its problems. Many

current 6DOF systems allow a user to walk throughout a space and be correctly

tracked. However, that space can be limited in size. The limitations on the size

of the tracking area varies by device. For augmented reality (AR), 6DOF sys-

tems52,48,54 have reached developmental stages that allow for experimentation

i360 video refers to a video recording in which every direction is recorded simultaneously.
In a 360 video VR experience, a user can virtually view the video at any angle by turning
their head, but they cannot move their virtual head position.
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and content development, but currently are not yet widely accessible to con-

sumers.

Despite the limitations, entertainment studios and research facilities have

not hesitated to take advantage of state-of-the-art hardware, using this hard-

ware to prototype experiences of what the future of media and interaction may

look like. This is akin to the bulky devices like the kinetoscope75 allowing for

glimpses into the possibilities of motion pictures, which would eventually be-

come a widespread cultural phenomena. Similarly, many experiences, ranging

from movies in 360 video64,10 to fully interactive room-scale games have reached

critical acclaim in recent years. These experiences seek to build and evaluate

the paradigms of different VR systems and their role in the entertainment in-

dustry. Similarly, accessibility to these devices has boosted the research output

in fields related to AVR, including human-computer interaction (HCI) and user

experience (UX), hardware, tracking and vision algorithms, and moreii.

Many of the recent developments for AVR systems have focused on logisti-

cal problems that have been common in them since 1968, and have found solu-

tions to these problems in both hardware and algorithm solutions. In the case

of HMDs, recent innovations have allowed users to comfortably view a screen

inches away from their face. Creating screens with high enough pixel denisty,

which is now commonplace in smartphones, and innovations in optics37,61,76

have allowed for these high-resolution, HMD-based VR experiences.

iiThere are many conferences and journals that publish research focused within these areas.
While many exist within the field, examples of notable ones are SIGGRAPH, SIGCHI, UIST,
and IEEE VR. We recommend the reader consults the proceedings of these conferences for
further reading.
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VR Systems and Motion Sickness

For VR systems, poorly designed or calibrated systems can cause a phenomenon

known as simulator sickness or VR sickness 5,45. Humans use several different

systems to coordinate balance. These systems include the proprioception of

muscular movement4, the vestibular system within the inner ear which detects

accleration and rotational movements49, and visual cues. These systems act to-

gether within the human body to create a uniform perception of the world, and

therefore misinformation to one or more systems can cause nausea, vertigo, or

disorientation55. Because many VR systems completely occlude and replace a

person’s vision with a virtualized view, it has been shown that misrepresenting

user acceleration in a virtual environment can cause VR sickness43.

A large amount of research in the space of VR systems has focused on com-

bating and reducing VR sickness. Some research has found that VR sickness

can be reduced with simple changes, such as rendering a shape in the user’s

field of view that represents their nose86. Other studies have found that reduc-

ing a user’s field of view angle can also inhibit VR sickness12, but this reduces

immersion since the virtual rendering mismatches a person’s real field of view

angle. As a compromise, the work of Fernandes and Feiner24 suggests dynami-

cally adapting user field of view angle such that the angle is lowered while the

user’s head is in motion. While some research has shown that slight modifica-

tions to motion trajectories are acceptable78, one of the most important ways to

reduce VR sickness is to ensure that a user’s head motion is accurately repre-
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sented in the virtual world.

Figure 1: The motion-to-photon loop: starting with a user’s head motion, sen-
sors must capture that motion, send that data to a host processor, process that
data, and have a graphics engine render the perceived motion. All of this must
be done with very low latency to prevent motion sickness.

Addressing and resolving VR sickness requires several different components to

be working correctly within the system. First, the graphical rendering proces-

sor must render the user’s perspective at a sufficient frame rate such that their

rendered perspective is not far behind the reality of their motion. This delay is

known as motion-to-photon latency. This latency starts with the user’s motion,

which is then detected by a tracking systemiii, delivered to the AVR device, pro-

iiiTracking systems refer to both internal sensors, such as accelerometers or gyroscopes, and
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cessed by a graphics engine, written into a pixel buffer, and finally displayed

on the screen. This loop is visualized in Figure 1. Large amounts of research

have gone into minimizing motion-to-photon latency, such as the work of Oculus

TimeWarp50,18.

While different systems have different specifications, it is generally believed

that presence, i.e. the feeling of existing inside your virtual environment, re-

quires 20 milliseconds (ms) or less59. Some VR systems require their applica-

tions to run at 60 frames per second (FPS), corresponding to approximately

17ms per frame, while others require 72FPS (14ms per frame)21. This is to en-

sure that the user viewpoint is accurately reflected, and the rendered viewpoint

does not lag behind their head motion. Meeting this requirement comes down to

having a combination of sufficiently powerful hardware coupled with optimized

graphics. This is especially true for mobile VR development, where processors

are much weaker than those of high-powered desktops.

Secondly, ensuring that users are smoothly tracked within the system is criti-

cal. Tracking systems that introduce large amounts of variance will also cause

VR sickness due to the mismatch of perceived and real motion. In order for

the rendered view to accurately reflect the user’s motion, many documents rec-

ommend sub-pixel accuracy to minimize VR sickness59,1. Translating “sub-

pixel accuracy” to rotational and translational error is useful for assessing which

tracking methods are acceptable. If we take the Samsung GearVR, for exam-

ple, which has a field of view angle of 101◦, and a resolution of 1024x1024 pixels

external sensors, such as cameras.
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Figure 2: Understanding sub-pixel accuracy: The Samsung GearVR, with a
specified field of view angle of 101◦, screen resolution of 1024x1024 pixels, and
a pixel density of 33.8 pixels/mm, will require an object 1 meter away from the
viewer to be accurate within 2.4mm and 0.136◦.

per eye at 858 pixels per inch (or approximately 33.8 pixels/mm)72, then we can

calculate exactly how precisely our rendered image must match the user’s head

motion in terms of angular and positional accuracy. The field of view tells us

that our virtual camera is approximately 12.5mm behind the screen. Based on

the pixel density, can see that 1 pixel corresponds to approximately 0.03mm on

the screen. Using these numbers, we can calculate that we must be accurate to

within approximately 0.136◦in terms of angular precision to be within 1 pixel

of accuracy. Because of the mathematics of perspective projection, calculating
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positional accuracy depends on how far away we are looking from the virtual

screeniv. For an object 1 meter away from the user, given the angular accuracy

we need, we can calculate that we will need to be accurate within approximately

2.4mm in terms of positional accuracy. Figure 2 illustrates these calculations.

While nearer objects require higher positional accuracy to be sub-pixel accurate,

we can see that we have much more leeway in the positional tracking than rota-

tional tracking, although both must be accurate.

While these requirements are generally less strict in AR, as those systems do

not completely occlude the user’s vision, they are still important to consider.

Just as the idea of presence applies for transporting a user to another world in

a virtual environment, AR has a concept of presence of the virtual objects; if

the sense of presence is maintained, then it will feel as though those objects are

actually part of the world. Maintaining their position to be accurate within the

world is key to maintaining this presence1, and thus the tracking and rendering

requirements discussed above are still important.

As we discuss the work presented throughout this dissertation, it will be im-

portant to keep these limitations and requirements in mind, as they motivate

many of the techniques employed to make smooth AVR systems.

ivPerspective projection simulates depth and parallax within a virtual environment. This
means that objects that are further away appear smaller, and thus as a user moves, objects
that are further away appear to move less than objects that are close to the user.
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Co-Located AVR

As AVR systems become more and more common, it is only natural that more

and more people will want to use these systems, and in particular, use them to

interact with one another. We can see this evolving paradigm with the evolution

of VR applications such as VRChat84, or AR functionality in social applications

like games57 and communication77.

There are two different ways one can create a multi-user AVR environment.

The first is when each user is in a different physical space, and the AVR systems

are rendered such that the users share their virtual space. This implementation

is known as telepresencev, and a large portion of research and development has

been focused on enabling telepresence92,80. However, this dissertation largely

does not concern itself with implementations for telepresence.

The alternative to users occupying different physical spaces is having multi-

ple people use AVR systems physically within the same room. We call this co-

located AVR. It is important to note that telepresence and co-location are not

mutually exclusive; it is entirely possible to have a system with some users co-

located and others telepresent. The focus of our lab, and this dissertation, is on

how we can develop co-located AVR systems so that we can discover the ben-

efits of such systems while also solving the problems that arise when designing

them.

There have been many demonstrations and experiences that have implemented

vTelepresence was first coined by Marvin Minsky53 as a way for a user to remotely work in
another location as though they were physically present.
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co-located VR. In the 1990’s, the Cave Automated Virtural Environment (CAVE)9,23

implemented this sort of environment by projecting virtual worlds onto the

sides of a room. However, this does not create a unique viewpoint for each user

like HMD-based solutions do. More recent efforts, such as The Void82, Dream-

scape13, and Hologate36 have created co-located, HMD-based experiences for a

small audience, much like some of our early works presented later in Chapter 1.

However, these systems encounter problems when trying to scale up to larger

audiences.

One of the common problems is that each user must be aware of the other

users’ locations. Failure to synchronize these positions across users results in

the danger of collision. If the user trusts that they will not collide into another

user without visual confirmation, then they can act with greater freedom in VR.

Prior work has found that many different avatar styles can work for represent-

ing a person in virtual space while giving sufficient presence for others to not

collide with them34. In our various experiences, we have experiemented with

many different avatar representations. Our standout examples will be discussed

in Chapter 1.

While AR systems do not have these safety concerns, as the users can see

their environment and each other, it is important for users to be able to share

graphics in the same location if desired. Resolving differences in frame, or the

virtual space in which the device exists, allows for users to interact with virtual

objects in the same physical space. This is particularly important for virtual

collaboration, where two or more co-located users may want to manipulate or
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observe the same object. While some research has explored virtual collabora-

tive manipulation without physical co-location89,60, other use-cases require users

to interact within the same physical space. In such applications, coordination

of the virtual spaces is important. Synchronization techniques for AR applica-

tions have been studied and developed by Microsoft51, Google33, and Apple2.

Our techniques for synchronizing difference in user frames will be discussed in

Chapter 2.

Furthermore, many current visual-based tracking algorithms rely on line-

of-sight from a sensor to a tracker. This is true for outside-in solutions where

external sensors, such as motion capture or infrared cameras, are tracking VR

headsets and clients, as well as with inside-out solutions, like common Simul-

taneous Localization and Mapping (SLAM)56,16 techniques. In either case, the

tracking algorithm relies on line-of-sight from some sensor to a target, whether

that target is an explicit tracker, or a landmark feature. When creating a sys-

tem with many users physically inhabiting the space, occlusion becomes a prob-

lem for these visual tracking algorithms.

However, when these problems are addressed, co-located AVR systems can

enable rich interactions between people that would otherwise be impossible.

Collaboration, communication, and entertainment are just some possibilities

of interactions enhanced by co-located virtual graphics. We will explore some

of these interactions in the following chapters. Additionally, we will address the

above problems in the context of the experiences we developed, along with the

solutions we designed to overcome them.
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1
Experiments in Co-Located AVR

Introduction

Starting in 2014, a growing interest in VR coupled with innovations in optics

and mobile technology led to the release of several 360 video HMDs, such as

the Samsung GearVR58 and the Google Cardboard31. While these were by no

means the first attempts at consumer-level VR, they began a new era of VR
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development due to the increase in quality compared to their predecessors.

These devices offered low-cost, untethered 3DOF tracking through the use of

high-quality inertial measurement units (IMU). This meant that users could vi-

sually survey an experience without experiencing VR sickness. However, these

types of experiences were extremely limited in scope due to the lack of posi-

tional tracking.

Over the next several years, our lab developed techniques to create co-located

6DOF VR experiences that used the aforementioned 3DOF headsets enhanced

by external 6DOF tracking systems. As new advances allowed for better track-

ing systems, we adapted our own methods to take best advantage of the current

technologies. The following sections detail the methods we used for each experi-

ence. Table 1.1 is a summary of the different experiences and the headsets used

to run them.

Year Title Headset Hardware Tracking

2015 Holojam GearVR w/ Samsung Note 4 3DOF
2017 I AM ROBOT GearVR w/ Samsung Galaxy S8 3DOF
2017 Holojam in Wonderland GearVR w/ Samsung Galaxy S8 3DOF
2018 CAVE Google Lenovo Mirage Solo 6DOF

Table 1.1: Summary of headsets used in various experiences. While our expe-
riences all enabled 6DOF tracking, each headset aside from the Google Lenovo
Mirage Solo supported only rotational, 3DOF tracking. To support full posi-
tional tracking, we had to combine the headsets with external tracking systems.
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Figure 1.1: Users in the Holojam system. The left image shows users wear-
ing the GearVR hardware with tracked markersets. The right image shows an
example of how the users are rendered within the system.

1.1 Holojam

The first of our experiments to create a 6DOF, co-located VR system was named

Holojam. Developed over the course of late 2014 and 2015, Holojam was first

presented at the SIGGRAPHi 2015 VR Village, a collection of experiences that

demonstrated the power of VR as an emerging technology. At the time, al-

most every HMD that allowed for 6DOF tracking was tethered to a host com-

puter. This made co-location difficult, as users could not freely move around

each other without the danger of interfering with cables. Some experiences, such

as RealVirtuality3, VRcade83, and The Void82 employed backpack-based so-

lutions to allow users to walk around without that danger, but the weight of

these backpacks reduced their practicality. Using our methods, we were able to

present Holojam to 4 people at once, for a total of approximately 200 people

iSIGGRAPH is an annual technical conference focused on innovations in the field of com-
puter graphics.
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over the course of the day at SIGGRAPH.

The Samsung GearVR gave us a lightweight, untethered system that could

be used to run our Unity-based graphics engine81. However, as the device only

offered 3DOF tracking, we needed a way to track a user’s position. To resolve

this, we used a high-quality motion capture system, OptiTrack63, coupled with

a custom network protocol primarily developed by Zach Cimafonte to wire-

lessly transmit the data from the motion capture system to each user’s head-

set. Once the data was received, we used a sensor fusion algorithm, which will

be detailed in Chapter 2, to blend the incoming motion capture data with the

internal IMU. In addition to the markers tracking the user, we also allowed the

user to input button commands with a tracked wand. For this wand, we used

a WiiMote87 connected to the server computer via Bluetooth. Figure 1.2 gives

an outline of the system. Below, we will detail how each component functioned

within this system.

1.1.1 Motion Capture

While the GearVR offers smooth head orientation tracking, it lacks two core

functions needed for a untethered experience. First, the GearVR has no form

of positional tracking. If a user walks around while wearing the GearVR, no

sensors can report to the application that the transformation in user position

should occur, and so without any sort of controller, the user is in a fixed posi-

tion. Second, there is no ground truth for the rotation. When the user puts on

the headset, the software understands his or her initial orientation as the iden-

17



Figure 1.2: Overview of the Holojam system. Motion from the tracked mark-
ers and input from the WiiMote controller was sent to our server. That data
was then processed and sent over WiFi back to the headsets. That data was
combined with internal sensor data to produce a final render image.

tity rotation. Thus, if two users put on a headset running the same software,

the world for one user could be backwards compared to the other user. Further-

more, if positional tracking were provided to the applications, a rotated user

would observe that the virtual camera would move in a different direction than

his or her physical movement.

Both of the above issues can be resolved by introducing some form of ground-

truth tracking into the system. Many such tracking solutions exist today. While

not the most cost-efficient, we decided that for our research purposes, motion
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capture technology would provide the highest quality data and be the easiest to

set up of the then available solutions. OptiTrack, a well-known motion capture

system, allowed us 6DOF tracking at 240 frames per second, more than suffi-

cient for tracking the HMD.

OptiTrack technology uses an array of cameras and lights to both project

and receive infrared light. The projected light hits retroreflective markers and

bounces back toward the cameras, making the markers appear very bright to

the camera and therefore easy to identify. When sets of at least four markers

are arranged in unique, 3-dimensional configurations, the software can uniquely

identify these configurations and assign positions and orientations to the config-

urations. These configurations can be attached to the headset or other objects

in the room. The tracking images for each camera are processed by the software

to get object poses, and relayed through a central server to each phone client

to get full 6DOF tracking data on the GearVR headsets. We broadcast this in-

formation over our custom real time wireless protocol to GearVR phones using

commodity networking hardware. In order to take full advantage of OptiTrack

and GearVR’s capabilities, we use sensor fusion, which is detailed in Chapter 2.

Using this motion capture software for tracking has both advantages and dis-

advantages. One of the advantages is that the marker sets are relatively cheap

to produce, allowing us to produce many such rigid tracked bodies so that mul-

tiple physical objects can appear in the virtual space with the correct pose.

Holojam’s networking protocol, explained below, is well equipped to transmit

this information effectively. We have used this for many different features, such
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as a movable table, physical controllers that act as magical wands, and for track-

ing joints on a user to recreate an avatar.

The biggest downside to motion capture technology is the cost. High quality

motion capture cameras are widely used in academia and industry but are well

outside of the consumer price range. The overall cost can be reduced to a few

thousand dollars by using as few as two cameras, but fewer camera yields loss

of tracking quality and capture volume. Additionally, motion capture is limited

by visibility and physical interference. If a marker set is blocked, the software

will not be able to report its pose, which means the user loses all positional data

until the marker set is visible again. This will often cause motion sickness for

the user, even if the user loses tracking for as little as half a second. Finally,

because the software must process the markers as raw points and then try and

solve the given positions to match marker sets, the software will have an unac-

ceptable amount of computation latency once a large number of marker sets are

created within the scene. We found that we could support up to about 30 rigid

bodies with less than 3ms of latency, but with more than 30 rigid bodies, the

software began to exhibit more than 10ms of latency.

Some of the above issues, particularly cost, could be solved with alternative

tracking solutions. However, we wanted to primarily focus on the experience of

having a lightweight shared virtual space, rather than solving the entire problem

of tracking. Therefore, for our purposes, we found the OptiTrack cameras to be

more than sufficient. As tracking technologies evolved, we were able to adapt

the Holojam system to use cheaper methods.
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Figure 1.3: An example of a set of tracked markers for a Holojam user. Pictured
here are the headset, gloves, and leg straps that affixed markers to a person.
The gray spheres were made of retroreflective material and assembled as unique
configurations, making them easily identifiable by the OptiTrack system. The
phone below the headset is the Samsung Galaxy Note 4, the device that acted
as the main computer and renderer for the Samsung GearVR system.

In addition to affixing markers to the headset to enable 6DOF tracking, we

also created markers that were attached to the hands and lower legs, as shown

in Figure 1.3. This approach allowed users to interact with accurate hand and

foot motion, enabling interactions such as dancing and hugging.

1.1.2 Networking

When delivering tracking data to wireless headsets, one of the biggest challenges

is to do so with sufficiently low latency. Recall that most VR systems specify

an accurate frame rate of at least 60 frames per second, which is approximately

17ms. For our data to be frame-accurate, we must deliver it within that 17ms

window before the frame renders. Given that this window must also account for

the OptiTrack computation latency and the headset rendering latency, both of
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which were measured to take an average of 2-3ms, we had to design a protocol

which could reliably transmit data in less than 10ms over WiFi.

To better understand our choices in designing the network transport protocol,

it helps to review existing protocols and how they function. Two of the most

commonly used protocols are the Transmission Control Protocol (TCP) and the

User Datagram Protocol (UDP)90,25. TCP, due to its reliability in data trans-

mission, is frequently used for control schemes and other data transfers that

require that all data is received, such as email. UDP has no such guarantees,

but offers greater data throughput and lower latency. Because of our needs for a

low-latency data stream, UDP became a clear choice for our system.

However, there were still some problems with UDP. First, UDP does not

guarantee delivery. This means that if a packet is not initially received, the

client will never receive that packet. If packets are regularly dropped, a par-

ticularly prominent issue in congested networks, these missing frames can ap-

pear as lag. To combat this, we do not send one packet per render frame, but

instead one packet per motion capture frame. This means that every render

frame will receive up to four packets of data, and thus we will only experience

a frame drop if every packet is dropped. Secondly, UDP does not guarantee de-

livery order. This means that in certain cases, we may see older data playing

after newer data, causing artifacts that look like shaking or skipping. The fix for

this is simple: we add the server timestamp to our packets and discard packets

with an older timestamp than the last frame we processed.

The final problem with UDP, particularly with 802.11 WiFi communication,
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is a process known as IP fragmentation. UDP packets, by design, have a max-

imum size of 64 kilobytes. However, many consumer-level WiFi routers have

a maximum transmission unit (MTU) size of 1,500 bytes. This means that most

UDP packets are broken up into smaller fragments and reassembled on the client

side. If any one fragment is missing, then the entire packet is discarded by the

client15. This causes greater packet loss, and thus the appearance of lag. To

prevent this, we designed a compact protocol using Google Protocol Buffers30 to

keep our data packets, including the header, below 1,500 bytes.

With these considerations in mind, we were able to relay tracking data from

the motion capture system through a C++ server to each of the headsets. This

ensured that not only did each client receive their own tracking and interaction

data, but the data from others as well.

1.1.3 Design Choices

Given the above systems and capabilities of those systems, we found certain de-

sign choices to be optimal for the Holojam 2015 system. These design choices

related to virtual environment design, avatar design, and interaction.

To fit within the rendering budget of the Samsung Galaxy Note 4, we found

that we could render approximately 30,000 triangles before we observed perfor-

mance drops in the system. To meet this budget, we chose simplistic and car-

toonish styles that evoked a childhood dollhouse (See Figure 1.1). Both the en-

vironment and character avatars took on this aesthetic. Additionally, we found

that the stylized representations of people allowed us to avoid the trap of the
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uncanny valley ii, a common pitfall when designing avatars.

Furthermore, complex dynamic lighting solutions were completely nonviable

on the hardware. However, the devices were quite proficient in efficiently render-

ing textures, since they were designed to run 360 video applications. Therefore,

we decided to simulate lighting in the texture shaders. Designed by David Lob-

ser, these shaders further reinforced the cartoonish stylization of the room by

adding a randomly-sampled cross-hatch pattern to the shadows, as opposed to a

diffuse shading model commonly seen in standard shading methods.

In order to puppeteer the avatars, we decided to track a user’s head, hands,

and feet. The torso, elbows, and knees were interpreted from the poses of those

5 tracked sets using a 2-link inverse kinematics (IK) chain. We found that this

level of control was sufficient to drive our stylized avatar. Furthermore, while

many IK algorithms require a calibration step to adjust for the differing heights

of users and make appropriate adjustments to the arms and legs, we wished to

avoid this process to minimize overhead for the user. Our IK chain continuously

adjusted the limb lengths to match the height of the user. However, it also ad-

justed at a slow enough rate to accommodate quick gestures, like jumping or

squatting.

Finally, by giving users a simple way to input commands into the system with

a WiiMote, we allowed users to draw lines in 3D space to populate the scene.

Our unique approach to co-located VR not only allowed users to draw with each

iiThe uncanny valley is a phenomenon when simulations of humans are close to realistic,
but not perfect73. Many people describe simulations where the uncanny valley is present as
visually disturbing or unpleasant.
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other in 3D, an experience difficult to replicate outside of VR, but they were

also able to make drawings that surrounded other people, a feature made possi-

ble with our untethered solution.

1.1.4 System Evaluation

Holojam 2015 was successful in enabling people to freely move around in co-

located VR, something that would otherwise have been difficult without our

system. However, it was not without problems. Due to the sensitivity of the la-

tency requirements, any periods of high latency would cause VR sickness for the

users. While this was not a problem for most of the experience’s duration, there

were periods of heavy network traffic due to the crowded SIGGRAPH venue.

Furthermore, the phone hardware was not well-equipped for long-standing VR

experiences, which caused the phones to overheat quickly and have short bat-

tery life. While Holojam 2015 provided a prototype for these sorts of co-located

VR experiences, the current hardware limitations made the system difficult to

use.

1.2 I AM ROBOT and Holojam in Wonderland

Between 2015 and 2017, an explosion of consumer-level VR devices entered the

market. This growing market created a demand for more robust VR technol-

ogy. Amongst those were better mobile processors and cheaper tracking meth-

ods. Compared to the Samsung Galaxy Note 4 used in Holojam, the Samsung

Galaxy S8 released in 2017 had a much more powerful processor, moving from
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one quad-core 2.7GHz processor to two quad-core processors at 2.3GHz and

1.7GHz70,71.

In 2016, the HTC Vive became publicly available, bringing room-scale VR to

a consumer budget. The Lighthouse tracking technology allowed for a 20 by 20

foot tracking space for approximately $200 USD, as compared to the OptiTrack

system, which cost approximately $50,000 USD in 2015. While the Lighthouse

system could not expand beyond this space like the OptiTrack system could,

it was large enough to enable us to create similar experiences to Holojam on

a much cheaper budget. Shortly after, HTC released lightweight trackers that

allowed for tracking beyond the Vive headset and controllers.

1.2.1 I AM ROBOT

Partnering with DAFFY LONDON11 and the Superbright67 production com-

pany, we developed I AM ROBOT. This experience was similar to Holojam

2015 but with updated technology, combining the new GearVR headsets with

the HTC Vive trackers, as seen in Figure 1.4. Many of the networking consid-

erations were kept the same as above, but differences in mobile graphical pro-

cessing power and tracking technologies made us rethink those systems. I AM

ROBOT was shown over the course of SIGGRAPH 2017.

While the tracking system provided by the HTC Vive allowed us to create

a tracking space much more cheaply than before, the individual trackers were

more expensive than our OptiTrack markers ($100 USD per Vive tracker com-

pared to approximately $5 USD per OptiTrack tracker). Additionally, because
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Figure 1.4: A user in the I AM ROBOT experience. In order to track a user,
we used HTC Vive Trackers attached to the user’s headset and hands. This
solution was much cheaper than our previous OptiTrack method and required
less overhead.

the Vive trackers were connected via Bluetooth, we found a limitation both

in software and hardware that limited us to using fewer trackers. In total, we

found that we could use approximately 12 tracking devices on one machine. By

networking two machines together, we were able to expand that to 24. However,

this additional complexity made us reconsider how many trackers we could use.

Finally, the 2017 Lighthouse system was limited to only two Lighthouse stations

at a time. This meant that we could not place additional stations to cover po-

tential blindspots. Because of these factors, we opted to track fewer user points,

only tracking the headset and two hand poses for each user.

This limited tracking meant that we had to create a different kind of avatar.
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Figure 1.5: Sketches of the six original robots from I AM ROBOT. c©Jakob
Schuh and DAFFY LONDON 201711.

Instead of explicitly tracking the feet, we were able to use IK to solve for foot

positions, automatically moving the feet in a walking motion with a fixed gait.

This caused initial problems with transportation, i.e. the feeling of actually be-

ing within the virtual body, as the feet would not move according to users’ ex-

act motions. In a sense, this perceptual illusion was analogous to the uncanny

valley problem applied to motion.

In addition to addressing the tracking, we wanted to create avatars neutral

to the participant in terms of gender, race, size, and other similar factors. To

solve both of these issues, we created avatars that were very different than the

human body. There were six different avatars designed to look like robots, each

with a very different body shape (see Figure 1.5). Six additional avatars were

designed as color variations of the originals. Upon entering the virtual world, a

user was assigned one of the twelve avatars. Because the robots had signficant

variance in body shape, especially compared to standard human proportions, we

retargeted the trackers to map to offset locations. For example, in one avatar
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seen in Figure 1.6, we remapped the head to be lower since the avatar had a

much shorter torso.

Figure 1.6: A comparison of human proportions to the I AM ROBOT avatar
proportions. Note the significant difference in ratio of limb length to torso
height. These differences required us to retarget some trackers to different
poses.

The affordances of the upgraded phone hardware allowed us to render much

more complex models, allowing the avatars to take on a smoother look. Addi-

tionally, environments could be much more complex. We found our total ren-

dering budget to work with up to approximately 500,000 triangles before we ob-

served a performance decrease, over an order of magnitude more than the previ-

ous Holojam.

Additionally, we opted to not utilize a controller as in Holojam 2015, but

instead to make intuitive interactions based on motion of the arms, head, and

body. Such interactions included bouncing a ball, dancing, and moving through-

out the room based on prompts. The experience cycled through several different
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environments, each persisting for two minutes before switching to the next. To

switch between environments, each client received a synchronization signal from

the main server.

Finally, we experimented with virtual audio within the system. As our prior

experiments had only dealt with virtual visuals, we believed that virtual au-

dio would add an extra layer of immersion. However, we did not want to use

headphones, as they would hinder the participants’ ability to verbally interact

with each other. Instead, we opted to use a sound system in which four speakers

were placed in the corners of the room. The audio server, connected directly to

the speaker system, was synchronized with the main server to play a different

playlist of music for each environment, along with necessary sound effects for

objects within the space, like the bouncing ball.

Like Holojam 2015, I AM ROBOT accommodated four concurrent users at a

time. Each user stayed in the experience for approximately 6 minutes. Over the

course of five days, approximately 1,000 people were able to experience I AM

ROBOT. Some users reported problems with the tracking, which led to cases

of VR sickness. However, aside from those reports, we received largely positive

responses from the majority of participants.

In addition to learning lessons regarding the technology, user feedback helped

us understand the importance of social AVR systems and their unique qualities.

Some users found the feeling of being transported to be extremely powerful, es-

pecially in the physical context of co-located VR. When we asked participants

about the experience, some of their responses enlightened us on this empowering
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aspect:

[1] Once I got into I AM ROBOT, I was really astonished by their very
fluid concept of identity. I was immediately excited to hear that I would
be dancing as a robot and that all those gender stereotypes were out the
door. I wouldn’t have to police my body as I always did, because I was a
robot now, dancing in a room that lived and seemed to interact with us,
with a group of people I had just met twenty minutes ago, that had just
been faces amongst a large array of attendees previously.

[2] My favorite memory is of one woman who did the experience and
danced like no one was watching - enough for me to assume that she was
a party person. When she came outside though, and when asked how she
felt, she said that she was someone who hates being in huge and crowded
parties.

[3] Once inside, it quickly made me want let go of the “physical reality”
tether. I AM ROBOT is easily the most immersive VR [project] I’ve ever
experienced.

To us, these testimonials of the experience were as important as our evalu-

ation of the technology paradigm, as they demonstrated the unique aspects of

systems like ours. Our future developments built upon these concepts to con-

tinue to create enriching VR experiences.

1.2.2 Holojam in Wonderland

Shortly after I AM ROBOT, our lab produced a VR theater short named Holo-

jam in Wonderland, directed by David Gochfield29. It used largely the same

technology as I AM ROBOT, but had a few different design decisions. Instead

of supporting full motion of all avatars, we opted to only track the heads of the

viewing participants. In addition to the viewers, two fully-tracked users partic-

ipated in the experience as live actors. These actors had tracking markers on
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Figure 1.7: User viewpoint from within Holojam in Wonderland, viewing one
of the fully-tracked actors. Character and environmental design c©Kris Layng
2017.

their hands, feet, and head, similar to Holojam 2015. Because there were a lim-

ited number of these fully-tracked avatars, we did not encounter the same issues

as when designing I AM ROBOT. As live actors, these two users acted out a

script based on the characters from Alice in Wonderland 8, taking the other par-

ticipants through a live theater-like experience.

Holojam in Wonderland was shown at the Future of Storytelling Festival in

2017. Taking advantages of the affordances in VR, users were transported from

an ordinary environment into a fantastical one, changing size relative to the

environment, and sharing limited interactions with the characters. Figure 1.7

shows an image from the user’s perspective during the experience. Feedback was

overwhelmingly positive to the experience, adding to the list of experiences that

demonstrate the potential of theater in VR.
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However, a certain issue was common throughout Holojam, I AM ROBOT,

and Holojam in Wonderland. The number of concurrent participants created

problems within the tracking system when users occluded visibility between a

tracker and a Lighthouse or camera. This was particularly problematic when

the head tracker was occluded, as it meant that no perceived motion could oc-

cur, causing confusion and dizziness for the user. It was clear that for us to

scale our experiences up to larger audiences, we would need to investigate dif-

ferent solutions and develop new paradigms.

1.3 CAVRN

Driven by the desire to push audience sizes to larger and larger scales, our lab

began to think of a different approach to the co-located VR paradigm. Instead

of trying to create a highly interactive experience, the lab decided to create a

lean-back experience, named CAVE, where the audiences watched a cinema-

like experience. By reducing the freedom of user motion, we mitigate both the

problems of tracking and collision. Furthermore, unlike Holojam in Wonderland,

the performance was prerecorded and loaded onto each headset to be played

back individually.

Using the Google Lenovo Mirage Solo32, an untethered headset with limited

6DOF tracking enabled users to move their heads and look around the scene,

unlike a 360 video experience. This motion was mirrored in avatars which each

other participant saw. Specifically, by allowing users to see other audience mem-

bers and their body motions, we believed we could create a powerful, shared
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experience for the participants.

In order to explore the paradigm described above, the lab created a system

called the Collective Audience Virtual Reality Nexus (CAVRN), primarily de-

signed by Sebastian Herscher. This system was in charge of synchronizing the

clients so that each person saw the same virtual content rendered from their

own unique viewpoint. Specifically, this required the synchronization of two

components:

• First, the CAVE experience had to be synchronized so that each client

viewed the content at the same experience state at any given moment in

time. This was not only important for ensuring that the audience mem-

bers would react to the content at the same time, and thus share their

reactions with each other, but also to ensure that audio cues on external

speakers would play at the correct moments.

• Second, we received incoming data from each client about their head pose

and broadcast that back to each other client so that the head motion

could be replicated for each audience member’s avatar in the experience.

As each user was in charge of their own head tracking, we relaxed the require-

ments on the server. Instead of needing ultra-low latency to meet the tracking

needs previously described, the system could send less frequent synchroniza-

tion signals at 20Hz, smoothly interpolating the motions of other users. Fur-

thermore, since the experience was preloaded on the headsets, a 20Hz signal was

more than enough to keep the clients playing at the same time within the expe-

rience.
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Figure 1.8: A scene from CAVE, where a mammoth steps into the environment
between the audience members. Participants could see the reaction of other
participants’ avatars as the experience unfolded. Character and environmental
design c©Kris Layng 2018.

We presented CAVE at SIGGRAPH 2018. Over the course of the week, 1,927

people were able to view the experience. Compared to many other systems pre-

viously designed, our design decisions allowed us to deliver an experience with

much higher participant throughput. While it had less interactivity than our

prior experiences, we believed that the content and the format would be enjoy-

able enough on its own without interactivity.

In order to evaluate the hypotheses of the CAVRN system, we conducted a

mixed methodology study consisting of a survey and semi-structured interview.

The details of this survey can be found in Herscher et. al.iii In particular, we

iiiThis research is currently under peer review and will soon be available.
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sought to discover whether users found the format enjoyable, particularly the

experience of being in a live, co-located audience, and if having less interactivity

was acceptable within the context of VR experiences.

Overall, we found that participants enjoyed the experience, and felt that the

live audience enriched the experience. Additionally, participants appreciated the

unique affordances of VR that would be impossible in live theater or cinema,

such as the appearance of creatures moving between the audience rows, as seen

in Figure 1.8. While some participants did wish for more interactivity, many

participants understood the similarities to live theater and cinema and appreci-

ated the lean-back paradigm.

We believe that CAVE and the CAVRN system, along with our evaluation

of the experience, make a strong argument for physical co-location in VR expe-

riences. As it was both successful in delivering a co-located VR experience to

nearly 2,000 people in less than a week, and very positively received, we believe

that this work can be used as a blueprint for future designs seeking to imple-

ment a similar experience. We hope that others take inspiration in our efforts

to combine the worlds of cinema and VR, and that this will open up the explo-

ration of this new medium of entertainment.
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2
Solutions for Co-located AVR

Introduction

Along with the design innovations made for the experiences described in the

previous chapter, we developed several algorithms to overcome the limitations of

AVR systems designed for a single user. This chapter details these algorithms,

as well as why they were necessary for the systems we designed.
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2.1 Sensor Fusion and Filters for 3DOF Headsets

Many of the early untethered systems came with some sort of 3DOF sensor,

such as a gyroscope, which handles purely rotational tracking. The fidelity of

this sensor varies from system to system. For many of the examples discussed

in the previous chapter, the GearVR that we used sampled its IMU at 1000Hz.

This provides for very smooth rotational tracking, as the device effectively gets

16 frames of IMU data per render frame. However, these IMUs provide angu-

lar velocities, which means that in order to calculate the orientation, the head-

set must perform integration on the IMU readings. This causes two problems.

First, small inaccuracies in the readings, oftentimes due to precision loss or

noise, can build up over time. This is known as drift 14. The second problem

is that as a device launches its application, it will set the forward direction of

the virtual scene to be the initial orientation of the device as the application is

launched. If multiple devices launch an application while facing different direc-

tions, then their virtual world is already mismatched.

To solve these two issues, we use a motion capture system to not only resolve

the user’s head position, but also to correct the user’s head orientation to match

the ground truth. Here, we detail the math behind the sensor fusion first used

in the Holojam system and later applied throughout our other experiences. Let

us define the following unit quaternions representing rotations. Let RG be the

rotation reported by the GearVR IMU and RM be the rotation reported by

the motion capture system. In Unity, the rendered viewport is the product of
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a camera rotation offset and the reported IMU rotation. Let RC be the camera

rotation offset, and RU be the final rotation that the user sees within the head-

set, so RU = RCRG. Finally, let α be a parameter between 0 and 1, which we

will explain later.

Our goal is to have RU to approach RM smoothly over time. Moving RU to

RM will move the user view to the ground truth for initialization and drift cor-

rection, and the smooth movement prevents large, jumpy changes for the user

perspective. We can use a spherical linear interpolation, or SLERP 74, in or-

der to achieve this effect. For quaternions q, r and a real number α ∈ [0, 1],

SLERP (q, r, α) is defined to be equal to (rq−1)αq. So, for interpolating from

RU to RM , we have

RU1 = SLERP (RU0 , RM , α)

= (RMR
−1
U0

)αRU0

Where RU0 is our previous state of RU and RU1 is the updated state of RU that

we are trying to calculate. However, RG and RM are read-only variables, and

RU = RCRG, so the only rotation we can modify is RC . Thus, we can modify

39



the above equation to be:

RC1RG = (RM(RC0RG)−1)αRC0RG

= (RMR
−1
G R−1

C0
)αRC0RG

=⇒ RC1 = (RMR
−1
G R−1

C0
)αRC0

= SLERP (RC0 , RMR
−1
G , α)

By doing this, we make RC asymptotically approach RMR
−1
G , and thus RU will

approach RM .

This approach is known as a complementary filter17, a common filter for both

low-pass and high-pass noise filtering in signal processing, adapted to work with

quaternions. While less accurate overall than the well-known Kalman filter85,

the complementary filter is much easier to implement and execute and delivers

reasonably accurate results41,35. The parameter α defines how much the system

is influenced overall by the ground truth rotation RM . If α is close to zero, we

will primarily rely on the IMU, and if it is close to 1, we will primarily rely on

the motion capture system.

When we rely purely on the IMU, we encounter the integration problems

described earlier. When we rely purely on the motion capture system, we en-

counter rotational jitter due to angular noise reported by the system as well as

slight lag from the transmission time of WiFi. Thus, we want to choose an α

that uses the advantages of each system.

We found the best results by varying α based on the difference between the
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ground truth reports (RM) and the rotation calculated by our algorithm (RU),

with α = 1 at the first frame so that RU initializes as RM . Throughout our

application runtime, if there is a large discrepancy between RM and RU , then

we will quickly adjust to the ground truth. Otherwise, α will be very low, and

thus we will primarily rely on the headset rotation. This allows us to have the

smooth rotations provided by the IMU while also maintaining a known ground

truth.

Later, we discovered a simplification of the algorithm due to an inherent prop-

erty of the IMU. Because many IMUs can detect the downward direction based

on the pull of gravity, the device can utilize that information to accurately solve

pitch and roll. However, as yaw is not affected by gravity, this is the one ax-

ial rotation we must correct. Thus, instead of doing a spherical LERP on the

quaternions, we can do an angular LERP (ALERP ) on the yaw angle. ALERP

is defined as a linear interpolation that correctly accounts for the change from

0◦ to 360◦ radiansi. If we define θC as the camera yaw rotation in a given frame,

and then θD as the yaw rotation of the quaternion RMR
−1
G , then we get a for-

mula similar to the one above:

θC1 = ALERP (θC0 , θD, α)

iFor real values a, b and real value t ∈ [0, 1], we define linear interpolation as LERP =
a(t−1) + bt. However, when considering angles, using this interpolation can produce undesired
results. For example, linearly interpolating between 5◦ and 355◦ would give a result between
5◦ and 355◦. However, frequently we would want the smaller angle that exists between 355◦

and 360◦ or 0◦ and 5◦. Angular linear interpolation can give us this desired result. We first
assume the two angles are between 0◦ and 360◦. Then, if the difference between the two is
greater than 180◦, we subtract 360◦ from the larger value, then linearly interpolate as normal.
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This simplified version allows us to perform effectively the same filter by only

operating on one dimension, as opposed to four dimensions with the quaternion

blending method.

2.2 Synchronizing Independent Co-Located Clients

In prior sections, we have discussed the importance of maintaining the same

sense of where each virtual object is within the room, including other users.

The placement of objects within the virtual scene is defined by the frame, or

the reference position and rotation that the client understands to be the zero

vector and identity quaternion. Every virtual object pose is then defined rela-

tive to that origin. Thus, synchronizing the virtual objects between the different

clients is just a matter of resolving the difference in frame poses.

When the clients are synchronized with a centralized tracking system, that

system is responsible for synchronizing the frames between the clients. Fre-

quently, the tracking system will define its own frame and then communicate

the clients’ poses relative to that frame. The OptiTrack motion capture system

discussed in Chapter 1 for the Holojam 2015 system is one example of this sort

of paradigm.

However, having this sort of centralized tracking server requires a large amount

of overhead. As mentioned in Chapter 1, the OptiTrack system had a large fi-

nancial cost of $50,000. In addition to this, physically setting up the system

within a room is demanding. The room must be appropriately equipped to al-

low for cameras to be mounted with all necessary wiring, and mounting and cal-
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ibrating the cameras takes time. In our experience, setting up a 16-camera sys-

tem in a 25x25 foot room takes between 1 and 2 hours. While this is acceptable

for large productions, it makes it difficult to use in arbitrary locations or within

short time frames. This makes it less than ideal for our vision of ubiquitous co-

located AVR. Thus, it is within our interests to find methods to synchronize

frame poses without an external system.

Without a centralized tracking system, clients typically have their own inter-

nal tracking system. In recent years, inside-out techniques have become more

prevalent amongst AVR systems, frequently using SLAM-based algorithms. For

these systems, it is common to have a calibration step that defines the frame of

the space, as is the case with the Oculus Quest. From that initialized frame, the

clients are free to move about the room, using landmarks and internal sensors to

update their pose. However, for multiple devices, it is necessary to synchonize

their frame since that is calibrated independently per frame.

The simplest way to do this synchronization is to calibrate the clients such

that they have the same initial pose. This typically requires manually plac-

ing each device in the same pose one at a time and performing the necessary

software calibration steps. While this method theoretically works, it has prob-

lems in practice. Primarily, it can be difficult to align the devices such that each

has the same exact pose. While it is not difficult to coordinate the origin po-

sition with reasonable accuracy, the clients must have their rotation calibrated

extremely precisely. Simple calculations yield that even 5◦ of error will cause

objects to have almost 10cm of error per 1m they are positioned away from the
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frame origin.

Given that it is relatively easy to maintain positional accuracy compared to

rotational accuracy while performing this calibration step, we propose a method

that relies on positional calibration to synchronize frame poses amongst clients.

In our calibration step, we create 2 physical markers at fixed, measured points

around the room to form a set P . Then, a user places the headset at each of the

2 points, pressing a button each time to confirm registration. As these positions

are registered, the application creates a set of points Q which represent the vir-

tual locations of the points. Given P and Q, there exists a rotation quaternion

R and a translation vector T such that the difference between P and T + RQ is

minimized. If R and T are found for each client and applied to their frame, then

assuming the systems do not significantly drift from their initial frame, then

each client will have the same frame.

To find R and T , we can make one simplification. Given our prior discussions,

we know that R only needs to be a yaw rotation. Thus, we have four degrees of

freedom that must be solved: the x, y, and z position along with the yaw rota-

tion.

Therefore, we must find the optimal yaw angle θ that rotates each point of Q

to the matching point in P . Known algorithms, such as the Kabsch algorithm42,

can solve this rotation using singular value decomposition, but because we are

only solving for one axis of rotation, we can use a simpler method. For the two

vectors Q[1] − Q[0] and P [1] − P [0], we calculate the signed angle θQ and θP

that represents those vectors’ rotations around the y (yaw) axis. The signed
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difference θ = θP − θQ will tell us the rotation we need to bring the points of Q

into P :

R =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)


To calculate T , and thus solve the remaining 3 degrees of freedom, we calcu-

late the difference in centroids between P and RQ:

T =
P [1] + P [0]

2
−R(

Q[1] +Q[0]

2
)

If the two points form the diameter of the boundary space, then the calibra-

tion error of the space will be bounded by the positional error of the calibrated

points. In other words, if a user can accurately place the headset within 1cm of

each of the fixed points, then there will be no more than 1cm of error through-

out the tracked space. This is because by construction, we choose two points

that are further away from each other than any other two points in the tracked

space. Positional errors from angular differences between the calibrated frame

and the real frame scale linearly with distance from the center of the space, and

positional errors will be constant throughout the space. Thus, the calibration

error of every point closer to the center of the space, and therefore every point

within the space, must be smaller than the error at the two calibration points.
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2.3 A Distributed Tracking System for Co-Located AVR

One common problem we observed throughout our experiences was the lack of

scalability for 6DOF tracking. For different systems, different problems arise.

When using any sort of outside-in tracking method where an external sensor

with a known position is used to track headsets in some way, as with the Op-

tiTrack system for Holojam 2015, the camera must be able to see the headset

tracker. Likewise, for many inside-out systems where a headset-mounted sensor

detects landmarks with known positions, line-of-sight is required between the

sensor and the landmark. For robust inside-out systems that use room-mapping

techniques such as SLAM, this problem is reduced, but nonetheless the sensor

must be able to see several static features to function. Furthermore, many cur-

rent SLAM-based AVR systems do not share discovered landmarks with each

other, thus making co-located tracking difficult. It is noteworthy that some sys-

tems are beginning to do this, such as Microsoft’s Azure-based spatial anchors51

and Google Cloud Anchors33, but this practice is not yet widespread. Other

works, like that of SynchronizAR40, have sought to do similar frame synchro-

nizations, but use an additional ultra-wide bandwidth module attached to the

device. Instead, we look to utilize built-in devices to solve our problem, such as

the camera already required to do SLAM tracking.

We propose a solution that takes advantage of the idea of having multiple

clients in the same physical space instead of being hindered by them. We do

this by combining outside-in and inside-out tracking methods, using each device
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as a method to track other users. In this way, we distribute the tracking proce-

dure instead of relying on one centralized system to coordinate every user.

2.3.1 Resolving Frame Differences

To test our distributed tracking method, we use ARCore33, a SLAM-based track-

ing library for Android phones, and OpenCV62, a well-known computer vision

library. ARCore maintains the client’s localized position and creates a frame

within which the client exists. This frame is established upon application launch,

and is set to the client’s forward facing direction and initial position. ARCore

then adjusts the client’s known position and rotation starting from that initial-

ized pose using SLAM techniques.

Since each client establishes their frame independently, they cannot easily

share information about the poses of their virtual objects. For example, if one

client decides to create an object at their origin and then communicate this,

then a priori the other clients will believe that an object has been created at

their origin. This would be incorrect, unless each client is registered to under-

stand that the same physical location is the world space origin.

We resolve this by allowing clients to track each other, similar to traditional

outside-in approaches. By establishing a relative difference between the two

clients, they can calculate the difference in frame poses. From there, coordina-

tion of virtual object placement is easy.

Let us define (PA
A , Q

A
A) as the position and rotation of client A within its own

frame, (PA
B , Q

A
B) as the position and rotation of client B as observed by client
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Figure 2.1: Transforming one frame to another. The top left shows Client A’s
frame along with Client A’s pose within their own frame. The top right shows
the same for Client B. At the bottom, we see Client B’s pose in Client A’s
frame, along with the transformations necessary to adjust frame B into frame A.

A, and let (PB
A , Q

B
A) and (PB

B , Q
B
B) be defined similarly within client B’s frame.

Client A can calculate the difference between their frame and client B’s frame

by first calculating the difference in rotation between QA
B and QB

B as:

∆QAB = QA
B(QB

B)−1
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This quaternion, ∆QAB, represents the quaternion that rotates client B’s frame

into client A’s frame. Hence, if we rotate any rotation or position reported by

client B by ∆QAB, it will be correctly oriented within client A’s frame. Using

this information, we can calculate the difference in frame position as:

∆PAB = PA
B − (∆QABPB

B )

By applying this positional difference to any object that has been rotated from

client B’s frame into client A’s frame, we correctly position the object within

client A’s frame. This is illustrated in Figure 2.1.

If we have an object created by client B with position and rotation (PB
O , Q

B
O),

then client A can receive that data and put it into its own frame with the fol-

lowing transformations:

QA
O = ∆QABQB

O

PA
O = ∆PAB + ∆QABPB

O

We note that similar to our discussions above for rotational correction, we do

not need to run these computations with full quaternion data, as only the yaw

rotation will differ. Therefore, as opposed to multiplying and inverting quater-

nions, we can simplify our algorithm by calculating angular differences instead.

Finally, it is important to note that this algorithm assumes that the incoming

pose from the other client, (PB
B , Q

B
B), is globally consistent with our view of the

client, (PB
A , Q

B
A). However, due to network latency, the incoming pose will be re-

ceived by our client several frames later, and thus the data should be matched
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with an older pose. To address this, we use a time synchronization server to

gain accurate timestamps throughout the clients and record a history of ob-

served poses for each client. By doing this, we can accurately match the incom-

ing data with an older observed pose based on the incoming data’s timestamp,

and thus have a more accurate frame match.

2.3.2 Tracking Algorithm Implementation

As previously mentioned, we use OpenCV as our primary vision library. To

track other users, we use the ArUco extension27, a library which quickly tracks

the pose of simple markers. ArUco markers have the benefit of providing ID and

pose, while also not encoding excess information that might make tracking more

computationally expensive, as is the case with QR codes46. ArUco markers are

extracted from the image, identified, and located within the camera frame in a

fast and efficient manner, which allows us to use it within our program in real-

time. Full implementation details can be found in the original paper27.

ArUco tracking reports the marker as a set of its four corner locations in

camera frame space. With these four corners, we use the well-known Perspective-

n-Point (PNP) solver provided by OpenCV to find the center of the tracker

along with the orientation of the tracker. Since this pose is in the camera frame

space, we move it into world space by adjusting the position by the camera’s

world position and then rotating the position and rotation by the camera’s world

rotation. When these trackers are placed on a headset or other client, in our

case an Android phone, our other clients can use the above algorithms to deter-
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mine where the clients are within our frame.

To create more robust trackers for a client, we can designate a group of mark-

ers with a known, rigid configuration as a tracker group. This practice gives

greater tracking fidelity for two major reasons:

1. Multiple trackers create redundancy. As ArUco markers are only visible

from the front, additional markers can allow the device to be tracked from

other angles.

2. Multiple trackers stabilize the tracking. ArUco markers are tracked with

a small amount of noise, both in position and rotation. This can be im-

proved with good lighting conditions and larger markers, but the markers

will still not be precisely tracked each frame. Adding multiple trackers can

stabilize the tracking overall by averaging the errors in centroid calcula-

tion. Other solutions in tracking have utilized multiple trackers at differ-

ent angles for this same stability88.

When a tracker group is assembled, giving each tracker a known position and

rotation relative to the client, we can find the disparity between the known and

observed centroids of the visible trackers. For position, calculating this differ-

ence is simply equal to the average of all trackers’ positions. Because quater-

nions cannot be averaged in the same way, we use the Kabsch algorithm42 to

find a rotation that minimizes the positional difference between each trackers’

known and observed position. In this algorithm, we calculate the singular value

decomposition of the cross-covariance matrix of the trackers’ known and ob-
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served positions. If we define P to be the set of known positions and Q to the

be set of observed positions, then the cross-covariance matrix is defined as:

Hij =
∑

P [i] ·Q[j]

We then calculate the singular value decomposition of H as:

H = USV T

Since we do not expect the transformation to include skew transformations, we

are primarily interested in U and V . Due to the nature of the algorithm, there

can be ambiguity between right-handed and left-handed systems. To solve this,

we correct the rotation by flipping the z-axis to ensure we are using a right-

handed system:

d = det(V UT )

Finally, we calculate the optimal rotation R:

R = V


1 0 0

0 1 0

0 0 d

UT

To verify that multiple trackers stabilize the tracked object, we created a few

different tracker sets and measured the reported error. We created a 2-tracker

system where the trackers were connected at the edge at a 135◦ angle, and a
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Figure 2.2: Examples of multiple trackers assembled. The left shows a set with
2 trackers, the right shows a set with 3 trackers. Both of these constructions
were observed to have less overall error than a single tracker.

3-tracker set where a center tracker was bordered by two trackers on the left

and right at a 135◦ angle. These sets are pictured in Figure 2.2. In our tests,

we placed a camera with resolution 1280x720 pixels approximately 1.5 meters

away from the tracker sets and recorded the error of the trackers’ position. We

found that the 1-tracker had a median error of 33mm (variance of 0.91mm), the

2-tracker system had a median error of 8.0mm (variance of 0.038mm), and the

3-tracker system had a median error of 5.2mm (variance of 0.055mm). Figure

2.3 shows scatter plots of the reported error. Most notably, we can see that one

tracker has a large amount of jitter, whereas 2 and 3 trackers are much more

stable. We can also see that the difference between 2 and 3 trackers is largely a

stabilization of the Z-axis, or the depth axis.
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Figure 2.3: Error of the three tracker sets we used, measured in meters. Each
scatter plot is a sampling of data points reported from the tracker sets, cen-
tered around the average position. The single tracker reported a large amount
of instability along all axes. With two trackers, the error is reduced, but still
persists around the Z-axis, or the axis pointing out of the camera frame. The
three tracker set saw a great reduction in error in all three axes.

2.3.3 Networking Algorithm Implementation

Because we do not use a centralized server to synchronize our clients, each client

is responsible for communicating their data to each other client. To model the

communications, we take inspiration from ad hoc decentralized networks7. Due

to a variety of open problems with ad hoc networks47,6, we did not want to in-

54



tegrate them into our system, but we found some of the core concepts useful.

Instead of directly sending messages from client to client, we still use a router to

maintain our connections, but we establish a network topology to determine to

which clients a given client should send and forward data.

Our network topology is determined by client visibility. In other words, each

client will send data to the clients it can see. We make this choice based on our

algorithm for frame synchronization: since the clients’ data is only valid when

the frames are synchronized, and the frames are only synchronized through vis-

ibility, we only want to send data to visible clients. Because we use ARCore,

which uses a variant of the SLAM algorithm to maintain its pose as it moves,

we can slightly relax our requirement of strict visibility. Instead, we can send

data to clients when we are confident our last frame synchronization is still

correct. In systems with little drift, we can maintain this confidence for a long

period of time after losing tracking, but systems with greater drift must re-

establish visibility more often to maintain confidence. Overall, each system

must be evaluated individually to measure drift over time.

We can further enhance the overall architecture by allowing clients to for-

ward data they receive, propagating that data throughout the network. Each

packet maintains a list of clients C that has seen this data, starting with the

original sender. When a client receives a packet, it first transforms the data into

its frame using the algorithm described above. Then, it forwards it to all of its

edges, or visible clients, as long as that client is not included in C. This for-

warding method propagates the data in a manner similar to breadth-first search
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algorithms, so it is known that the maximum number of hops required is lin-

ear with the number of edges and clients. By doing this, clients within the con-

nected graph structure can communicate with each other throughout a room,

even if they are not directly visible to one another.

2.3.4 Applications of this Method

This method has several applications in the context of co-located AVR. First,

it allows for two or more clients to collaborate and communicate shared graph-

ics with consistent poses. As described before, this method makes it simple to

broadcast object data throughout our network and have each client observe the

object in its correct position within their frame.

Additionally, this method can be used to combat the problem of occlusion

that has been previously mentioned. If we use this method coupled with an-

other tracking method, such as the ones described in Chapter 1, then the ground

truth established by devices such as the OptiTrack cameras or Lighthouse sta-

tions only need to see some of our clients. Those clients can then distribute the

ground truth frame throughout the network. In doing this, a client that may be

occluded from the ground truth devices can still obtain the ground truth data.

Finally, we believe this distributed tracking method can be combined with

other tracking algorithms to improve their performance. Many tracking algo-

rithms rely on room-mapping, where the device generates a set of trackable

feature points throughout the room. As mentioned earlier, some systems re-

solve frame differences between clients by independently calculating and com-
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paring feature points. However, this requires each client to scan the room for

feature points individually, and upload a large data set to a cloud server. In-

stead, if we can resolve frame differences ahead of time, separate clients can

map different parts of the room and easily combine the feature sets, thus dis-

tributing the problem. In this way, our method does not seek to replace other

established methods, but instead augment them for the context of multiple, co-

located users. In future work, we plan to look into integrating our methods with

these other systems.
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3
Future Development of Co-Located AVR

Introduction

Now that we have discussed the capabilities of co-located AVR and solutions to

make these systems work, it is important to consider how we can adapt them to

utilize future technologies on the horizon. Throughout our previous chapters, we

have discussed problems brought about by network connectivity, optical track-
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ing, and mobile rendering. While our solutions and paradigms have been able to

create co-located AVR environments despite these limitations, new technologies

may allow us to scale to larger systems with greater ease.

Many of these improvements will change the fundamental paradigms of AVR.

However, the insights and algorithms from the previous chapters will not be ob-

soleted by these developments. Instead, it is important to understand how our

work will fit into the evolving AVR paradigms with each of these advancements.

We will discuss some of the upcoming technologies, how they will impact AVR

systems, and how our work can integrate with them.

3.1 Robust Tracking Methods

The next generation of AVR devices will arrive with improvements to tracking

algorithms within the following years. In particular, many devices are beginning

to use robust inside-out tracked methods, like the SLAM-based algorithms men-

tioned in earlier chapters. As opposed to relying on external tracking systems to

track and relay pose data to them, these devices calculate their own local pose

internally. This sort of tracking has already been seen in certain devices, such

as the forthcoming Oculus Quest21 and Microsoft Hololens52. While CAVE was

run using an inside-out tracked system, it had limited capability and did not

allow the user to move around a room, unlike some of the newer systems.

Many of our experiences described in Chapter 1, particularly the active par-

ticipation experiences, would benefit from this model of tracking. As we dis-

cussed, those experiences saw issues when trying to relay tracking data over a
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busy network. Allowing the local tracking to be computed within the device

would reduce instances of VR sickness, even in high latency situations. While

we would use the networks to communicate ground truth data such that the

clients all exist within the same virtual frame, this synchronization does not

need to be computed every render frame, especially if the devices do not incur

large amounts of drift.

Furthermore, many of the algorithms discussed in Chapter 2 were designed

with these sorts of inside-out tracking methods in mind. The algorithms for

client frame synchronization are most useful when clients can track themselves

without an external system, and only need to solve the difference between each

others’ frames.

Finally, as discussed at the end of Chapter 2, the distributed tracking method

works well within these sorts of methods. Many of these methods use landmarks

throughout the room to understand their position. Through our method, sepa-

rate devices could combine their landmark sets to create even more robust room

mappings.

3.2 5G Networks

Within the next few years, we can expect to see 5G wireless networks, the suc-

cessor of the 4G networks that are common today68. These networks promise

higher bandwidth, lower latency, and higher reliability than existing genera-

tions. For comparison, 4G networks offer a data rate of approximately 20 megabits

per second (Mbps) at 60ms of latency, while 5G networks can practically of-
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fer up to about 1 gigabit per second (Gbps) at 1ms latency26. These enormous

jumps will enable paradigms previously impossible. In the context of the AVR

systems we have discussed, 5G can provide several considerable benefits.

3.2.1 Reliable Low Latency Networks

A large portion of our earlier discussion on AVR systems focused on limitations

imposed by latency and network reliability. Throughout several of our SIG-

GRAPH experiences, we encountered problems with WiFi connectivity due to

congested WiFi bands at the busy venue. Higher reliability and performance in

dense networks granted by 5G28 would solve some of these problems, making

the use of networked AVR systems much more viable in busy areas. Addition-

ally, some of the tracking paradigms we discussed in earlier systems were depen-

dent on network connectivity. Having this reliability in those sorts of systems

will lead to smoother tracking experiences.

Finally, while our systems have been able to function on dedicated WiFi net-

works, the current latency of 4G means that they could not function properly

over 4G. The ability to function outside of dedicated WiFi networks is necessary

for AVR systems to be ubiquitously used.

3.2.2 Edge Compute Nodes

With greater bandwidth, entirely new paradigms could be imagined for AVR

tracking, processing, and rendering. Current HMDs must accommodate mobile

processors, batteries, and other such hardware, making them bulky. A common
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concept discussed with 5G networking is the idea of an edge compute node91.

This node would serve as a powerful data processor for a low-powered device,

with data being streamed between the device and server over the 5G network.

We could imagine the above applying to an AVR device. Suppose the AVR

device functions with a camera-based inside-out tracking solution, such as the

SLAM methods previously discussed. Then, instead of processing the costly

SLAM algorithm on the device itself, the device could send its camera stream

to an edge compute node, which can process the data much quicker than a mo-

bile device, and send the tracking results back to render. Even further, we could

imagine that the edge compute node could fully render the proper image itself

and send it back to the device. This sort of paradigm of offsite rendering has

been explored for video streaming contexts66, but could easily apply to AVR. In

this system, the AVR device would need barely any processing power, and thus

the size and weight of the device could be greatly reduced.

Finally, edge compute nodes can act as cloud storage for large databases, such

as AR landmark anchors. These landmark databases are important for storing

persistent tracking models of rooms. In current AR paradigms, it is common

to establish these anchors to maintain persistence of tracked spaces and share

these persistent models with other users. However, storing these anchors often

requires large amounts of data transfer and storage. Dedicated 5G-enabled edge

compute nodes that interface with the cloud could reduce some of the upload

and download times of these anchors, allowing spaces to be reestablished and

shared faster, especially in locations without dedicated WiFi networks.
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3.3 The NYU Holodeck

While much of the work we have discussed has focused on co-located AVR sys-

tems, telepresence is undeniably an important consideration when discussing

the powers of AVR. However, co-located AVR and telepresent AVR are not

mutually exclusive. Analogously to how we commonly see video conferencing

where some members of the conference are physically seated in one room, we

could imagine an AVR experience where several remotely located clusters of co-

located users are joined together through high speed networks.

The NYU Holodeck is an ongoing development to create a platform that al-

lows users to combine the paradigms of co-located and telepresent AVR. We

seek to apply the lessons we learned from the experiences developed throughout

Chapters 1 and 2 to enable an AVR system that enables entirely new forms of

interaction, collaboration, and learning. This platform will be used as a super-

computing infrastructure for NYU students, faculty, and researchers to develop

new ideas through our techniques. As the system develops, we envision it as a

powerful tool that could be distributed out to other communities as field kits,

allowing them to utilize the same interactions.

Developing these kinds of collaborative interactions and learning techniques

has been studied in other AVR systems, such as the data visualization and ma-

nipulation tools available in the CAVE systems9. We seek to create similar ca-

pabilities within the context of our own AVR systems, as well as to further aug-

ment them with the infrastructure for research in audio, human cognitive and
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affective states, and other fields.

3.3.1 High Speed Research Network

Communications throughout the Holodeck are driven by a high-speed research

network enabled by NYU Research Technology (NYU RT). This network offers

up to 1Gbps network speeds to endpoints with a 10ms wireless latency44. Sim-

ilar to the discussion regarding 5G above, this bandwidth and latency greatly

improves the possibility of interaction compared to many current network hard-

ware architectures.

In order to facilitate connections throughout the Holodeck system, we use a

relay server named CoreLink. This server uses a TCP control stream to initiate

connections with various clients, allowing them to log into the system and des-

ignate which types of data they intend to send and receive. These data streams

can use UDP, TCP, or WebSocket protocols. From there, the relay can connect

multiple nodes by matching sending data streams to the clients that have sub-

scribed to that type of data stream.

Furthermore, the relay can forward data from clients into custom plugins that

process the data. For instance, a client could send an audio stream to a speci-

fied plugin to process voice commands. The result of that processing is then dis-

tributed out to the appropriate subscribers. In doing this, we can offload expen-

sive computations to a dedicated server. To facilitate large transmissions, com-

munications between the internal servers of the network have 100Gbps network

speeds, which allows the relay to quickly distribute data across several compute
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nodes if needed.

3.3.2 Applications and Modules

While the Holodeck seeks to be flexible enough to accommodate any number of

different applications, it is useful to talk about the ones we have implemented

and the experiences we have developed. Our current software currently focuses

on sending 3D data, such as avatar tracking data, audio data, such as voice

chat, and affective data, such as heart rate sensors. Using these capabilities,

we have constructed a virtual conference room. Users wearing tracked mark-

ers, like Vive trackers, can send their 3D data to the relay, which then sends the

data to a plugin to construct an avatar using an IK system similar to Holojam.

This avatar data is forwarded to all other members of the virtual conference

room, and the avatar is rendered. Additionally, we forward audio data in a sim-

ilar matter, combining it with the head pose to correctly position the spatialized

audio source at the user’s head. In this way, multiple people can sit in the same

virtual space with limited motion and speak with each other. As this system is

developed, we plan to add capabilities for more interactivity, such as Holojam-

like line drawing or Chalktalk65.

Additionally, the Holodeck software has been used to create two distributed

concerts, where musicians in separate physical locations performed together.

This sort of performance required extremely low latency for musical coordi-

nation, which was enabled by our network. Additionally, dancers on the stage

performed with motion captured dancers at another location. For the remote
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dancers, we used a similar software paradigm to the one described above to ren-

der the avatars, except we used full motion capture suits as opposed to a few

tracked points. The avatars were rendered onto a projection screen on stage,

which allowed for the physically present and remote dancers to synchronize a

performance.

3.3.3 Future Work

As the Holodeck develops, we will seek to add more interactivity into the sys-

tem, as well as enabling many of the paradigms we discussed in previous chap-

ters within the system. Development of software applications will allow for users

to perform richer interactions with each other, view and analyze complex visual-

izations, and complete collaborative simulations. Users will be able to join in as

passive observers, and will be able to spectate the interactions live without the

need for tracking setups. While our initial groundwork has built a few simple

demonstrations, we see boundless possibilities for the Holodeck system.
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Conclusion

Co-located AVR systems have the potential to revolutionize how we think about

interactions and communication. Over the past 5 years, we have sought to demon-

strate the power of co-located AVR and prototype the new forms of interaction

enabled by these systems. To do this, we have designed a set of co-located VR

experiences to test different forms of interaction, evaluated the successes of each

of these experiences, and resolved issues that have made co-located AVR diffi-

cult to implement.

Overall, we found that people responded very positively to our experiences,

whether they were doodling 3D art, dancing as colorful robots, or watching a

lean-back experience together. In our observations and collection of user feed-

back, we found that people appreciated the co-located format, being able to in-

teract with strangers and friends alike in VR. Most of the negative feedback was

in response to failures of the tracking systems, typically either due to network-

ing failure or occlusion.
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However, the future is bright. Promising solutions will provide clients with

room-scale tracking without the need for external software or network-based

tracking. While many of these systems do not account for client frame synchro-

nization, we have developed solutions that allow users to coexist in the same

physical and virtual space. Our solutions are lightweight, simple, and do not

require hardware other than the cameras and sensors frequently found on the

devices.

We look forward to the coming years of AVR, where the lessons we learned

and algorithms we have developed can empower these future systems. Within

the next decade, we expect AVR to become a powerful upgrade to human inter-

action, just as our prototypes have demonstrated. The work presented here is a

toolkit for implementing compelling co-located AVR systems and experiences.

We hope that the ideas we have documented will be used in further research to

push co-located AVR forward as a world-changing paradigm.

While this research document concludes here, we believe that we are just at

the beginning of a new technological era.
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A
Glossary of Terms

In this appendix, we define and detail some of the terms commonly used through-

out this dissertation.

360 Video - Video recordings where an omnidirectional camera captures a

360◦ view of its surroundings. These recordings are mapped to the inside of a

sphere and rendered such that the user is placed in the middle of the sphere.
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In these experiences, users can rotate their head to view any angle of the video

capture, but the user cannot move their head position through the virtual space.

Also known as 360◦ video.

Augmented Reality (AR) - A system that allows a real-world environment to

be augmented with virtual graphics. Similar experiences are also commonly re-

ferred to as mixed reality. Examples of augmented reality include the Microsoft

Hololens52 and Mira Prism54.

Co-location - Users of an augmented or virtual reality system existing within

both the same physical and virtual space.

Degrees of Freedom (DOF) - While this has many definitions depending on

context, within this document we use it to describe tracking capabilities of a

system. A 3DOF system supports tracking of a user’s head rotation, and a 6DOF

system supports tracking of a user’s head rotation and position.

Drift - Inaccuracies in pose reporting due to integration or numeric precision

errors.

Frame - This term can have many definitions, but within Chapter 2, it is

most commonly used to describe the origin and forward vector of a virtual world.

Frames Per Second (FPS) - The frequency of render updates made within a

virtual system.

Head-mounted Display (HMD) - A display device that is mounted on a user’s

head that places a screen in front of one or both of the user’s eyes. These de-

vices are common for powering current augmented and virtual reality systems.

Inertial Measurement Unit (IMU) - An electronic sensor that measures a va-
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riety of forces, frequently to calculate acceleration and angular velocity. These

sensors are common within augmented and virtual reality headsets to calculate

a user’s head pose.

Inside-out/Outside-in Tracking - A pair of terms that categorize tracking sys-

tems. Inside-out tracking describe systems in which sensors are placed on an

augmented or virtual reality device, and these sensors track features within the

environment. Outside-in tracking describe systems in which trackable features

are placed on the device, and external sensors, such as cameras, detect these

features and report the device pose to the device. Outside-in systems are cur-

rently used when ground-truth tracking or highly accurate tracking systems are

desired. However, inside-out tracking solutions are becoming more and more

common as the technology evolves, as they allow for larger tracking volumes

and do not require external infrastructure.

Inverse Kinematics - A method for simulating the motion of a digital char-

acter based on a set of target positions, such as a character’s hands, head, and

feet. These methods are useful in virtual reality systems for creating an avatar

without full motion tracking.

Motion-to-photon Latency - A term used to describe the delay between mov-

ing and seeing that motion rendered within a virtual environment. Minimizing

this latency is important in virtual reality systems.

Pose - A position and orientation. A pose is frequently defined using a three-

dimensional vector and a quaternion.

Simultaneous Localization and Mapping (SLAM) - An inside-out tracking
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algorithm that combines data from internal sensors with room-mapping tech-

niques to resolve a user’s head pose. Some examples of current SLAM algo-

rithms are ORB-SLAM56 and LSD-SLAM16.

Telepresence - A term used to describe a system that allows for a user to in-

teract within a remote location as though they were physically present.

Virtual Reality (VR) - A system where a user is placed within a virtual en-

vironment. In many contemporary VR systems, these environments are com-

pletely immersive, such as the headsets produced by Oculus22, HTC38, and

Google32.

Virtual Reality Sickness (VR Sickness) - A term used to describe the motion

sickness or vertigo experienced within virtual reality systems. Also known as

simulator sickness.
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