
Tools and Techniques for the Sound Verification of

Low-Level Code

by

Christopher L. Conway

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

January 2011

Clark Barrett—Advisor



c© 2011, Christopher L. Conway

This work is licensed under the

Creative Commons Attribution-Share Alike 3.0 United States License.

To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/3.0/us/

or send a letter to

Creative Commons

171 Second Street, Suite 300

San Francisco, California, 94105

USA

http://creativecommons.org/licenses/by-sa/3.0/us/


Dedication

For Hilleary. And why not?

iii



Acknowledgments

I’d like to express my appreciation to all those without whose mentorship and

support I would not have been able to complete this work: Stephen Edwards,

Dennis Dams, Kedar Namjoshi, Sriram Rajamani, and, of course, my advisor

Clark Barrett. I’m grateful also for the advice and friendship of Al Aho and Amir

Pnueli, who helped me through difficult times with wisdom and grace.

I am in debt to all of the members of the Analysis of Computer Systems research

group at NYU, who contributed enormously with their feedback, questions, and

criticism through every stage of my research. I owe particular thanks to Ittai

Balaban, who was—one day, long ago, in a foreign land—the first to suggest I

become involved with the ACSys group, and to my office mates Dejan Jovanović
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Abstract

Software plays an increasingly crucial role in nearly every facet of modern life, from

communications infrastructure to control systems in automobiles, airplanes, and

power plants. To achieve the highest degree of reliability for the most critical pieces

of software, it is necessary to move beyond ad hoc testing and review processes to-

wards verification—to prove using formal methods that a program exhibits exactly

those behaviors allowed by its specification and no others.

A significant portion of the existing software infrastructure is written in low-

level languages like C and C++. Features of these languages present significant

verification challenges. For example, unrestricted pointer manipulation means that

we cannot prove even the simplest properties of programs without first collecting

precise information about potential aliasing relationships between variables.

In this thesis, I present several contributions to the field of program verification.

The first is a general framework for combining program analyses that are only

conditionally sound. Using this framework, I show it is possible to design a sound

verification tool that relies on a separate, previously-computed pointer analysis.

The second contribution of this thesis is Cascade, a multi-platform, multi-

paradigm framework for verification. Cascade includes support for precise anal-

ysis of low-level C code, as well as for higher-level languages such as SPL.

Finally, I describe a novel technique for the verification of datatype invariants

in low-level systems code. The programmer provides a high-level specification for a

low-level implementation in the form of inductive datatype declarations and code

assertions. The connection between the high-level semantics and the implementa-

tion code is then checked using bit-precise reasoning. An implementation of this

datatype verification technique is available as a Cascade module.
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Introduction

Software plays an increasingly crucial role in nearly every facet of modern life.

Estimates of the total cost imposed by software failures range from nearly USD 60

billion annually in the United States [64] to more than USD 1 trillion globally [61].

Software bugs have been identified as the cause of catastrophic failures, include:

the loss of an Ariane 5 rocket, which cost more than USD 370 million [23]; the 2003

blackout in the United States and Canada, which left more than 50 million people

without power [26]; and the Therac-25 radiation therapy machine malfunction,

which killed at least three patients [5].

For certain pieces of critical software, the ad hoc methods of software engineer-

ing—documentation, code review, testing—are not sufficient. It is necessary to

apply formal methods—tools and techniques that allow us to prove that the code

is correct. In particular we are interested in sound verification—methods that are

guaranteed to find a bug, if one exists. The use of sound analysis means we can

prove the absence of errors in a program. On the other hand, a sound analysis

may not be complete, in the sense that it may produce false alarms (i.e., spurious

errors) on correct programs.

In recent years, great advances have been made in verification technology. Tools

such as SLAM/SDV [6] have brought software model checking to the mainstream.
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The ASTRÉE static analyzer [16] has been used to verify control systems in Airbus

aircraft [19]. However, there are still significant open challenges in verification, par-

ticularly as applied to low-level systems software written in languages like C [4] and

C++ [35]. These languages have features like unrestricted pointer manipulation

that render even the simplest analysis problems undecidable [39].

Due to the central role that pointers play in low-level code, it is impossible to

do any precise analysis of such programs without first obtaining information about

pointer relationships, e.g., from an aliasing or points-to analysis [24, 66, 3, 63, 18].

This means that any sound verification tool must rely on the results of a pointer

analysis, which may not itself be sound. This seems to present a circular dilemma:

how can a sound analysis rely on a potentially unsound input?

In the first two chapters of this thesis, I show how this dilemma can be resolved.

I present a framework for describing conditionally sound analyses and show that

a sound analysis can be built that relies on the results of a conditionally sound

prior analysis. The idea of a conditionally sound analysis is not novel—it is present

in the Cousots’ work on abstract interpretation dating to the 1970s [15, 16, 17].

However, the framework presented here is a convenient way to capture the behavior

of several interesting analyses directly and the combination theorem I present lays

out clearly the relationship between conditionally sound analyses and subsequent

analyses that rely on their results.

In the second chapter of this thesis, I apply the conditional soundness frame-

work to pointer analysis, showing that a set of points-to analyses similar to and

sharing the soundness properties of commonly-used flow-sensitive and insensitive

analyses—such as those of Emami, Ghiya, and Hendren [24]; Wilson and Lam [66];

Andersen [3]; Steensgaard [63]; and Das [18]—provide results that are sound for
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any memory-safe execution of a program. This statement is both stronger and

more precise than the traditional statement that such analyses are sound for “well-

behaved” programs. I also show that this condition on the soundness of the analysis

is tight: given certain reasonable assumptions, no pointer analysis can be sound

under any weaker condition. This more precise characterization of a points-to anal-

ysis, along with the combination theorem for conditional analyses, shows that the

combination of an independent points-to analysis with a memory safety analysis

is conditionally sound.

In the third chapter, I describe Cascade, a multi-platform, multi-paradigm

framework for verification developed at NYU. Cascade is suitable for a broad class

of languages, ranging from low-level implementation languages like C to high-level

modeling languages like Spl [47, 48]. Cascade is open source, extensible, and

available for free download from the NYU Analysis of Computer Systems group

website.

In the final chapter, I describe an application of Cascade to a real, low-level

verification challenge. I propose a novel technique for the verification of datatype

invariants in low-level systems code, one which fuses the power of higher-level

datatypes with the convenience and efficiency of legacy code. The technique makes

use of the theories of inductive datatypes, bit vectors, arrays, and uninterpreted

functions in the Cvc3 SMT solver[7] to encode the relationship between the high-

level and low-level semantics. High-level datatype assertions are then checked using

bit-precise reasoning.

Taken together, the results described in this thesis represent a modest, but

non-trivial improvement on the state of the art in software verification.

3



Chapter 1

A Program Analysis Framework

To present program analysis in a formal setting, we use the framework of abstract

interpretation [13]. A full syntax of program statements is given in Section 2.1.

For now, we are concerned only with the relationship between concrete and ab-

stract interpretations. We omit any discussion of techniques (such as widening and

extrapolation) which serve to make program analyses finite and computable—we

are concerned solely with issues of soundness.

1.1 Program Semantics and Analyses

A partial order (S,v) is a pair, where S is a set and v is a reflexive, transitive,

and antisymmetric binary relation on S. When the meaning is clear, we overload

S to refer to both a partial order and its underlying set of states and we use v or

vS to refer to its ordering relation.

Let S be a partial order and let S ′ be a subset of S. S ′ is downward closed if

a is in S ′ whenever b is in S ′ and a v b. An element a ∈ S is an upper bound

of S ′ if b v a for every element b ∈ S ′; a is the least upper bound of S ′, denoted
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tS ′, if a is an upper bound of S ′ and a v b for every upper bound b of S ′. S ′ is

a directed subset if every pair of elements in S ′ has an upper bound in S ′. S is a

complete partial order if each of its directed subsets has a least upper bound and

there exists a least element ⊥ ∈ S.

Let F : X → Y be a function from the partial order X to the partial order Y .

F is monotone if F (a) vY F (b) whenever a vX b.

Let F : S → S be a function on the partial order S. F is decreasing if F (a) v a,

for all a ∈ S. An element a ∈ S is a fixed point of F if F (a) = a; a is the least

fixed point of F , denoted lfp(F ), if a is a fixed point a of F and a v b for every

fixed point b of F . F is a downward closure for S ′ ⊆ S if: F is decreasing and

monotone; F (a) is in S ′, for all a ∈ S; and every element of S ′ is a fixed point of

F .

Let S be a complete partial order with bottom element ⊥ and F : S → S a

monotone function. The iterates of F are the sequence X0, X1, . . . , Xω, Xω+1, . . .

defined as follows:

X0 = ⊥

Xα+1 = F (Xα), for successor ordinal α + 1

Xλ = t{Xα | α < λ}, for limit ordinal λ

Not every function has fixed points; nor does every function with fixed points

necessarily have a least fixed point. However, monotone functions over complete

partial orders do have least fixed points and, furthermore, the least fixed point can

be reached by iteration.

5



Bourbaki’s1 Fixed Point Theorem [9]. Let (X,v) be a complete partial order

and F : X → X a monotone function. F has a least fixed point and it is equal to

the least upper bound of the iterates of F , i.e., lfp(F ) =
⊔
α≥0Xα

Complete partial orders give us a very general setting for reasoning about the

correctness of analyses. We will define the semantics of a program as an element of

a complete partial order—the least fixed point of a monotone function F computing

the reachable states of the program. Likewise, the result of an analysis will be an

element of a complete partial order—the least fixed point of a monotone function G

over-approximating the reachable states of the program. The standard Abstraction

Theorem tell us that, if F “abstracts” G, then lfp(F ) “abstracts” lfp(G).

Abstraction Theorem [13]. Let X and Y be complete partial orders and F :

X → X, G : Y → Y , γ : Y → X monotone functions. If F (x) vX γ(G(y))

whenever x vX γ(y), then lfp(F ) vX γ(lfp(G)).

Now we will define our analysis framework. Let C be a distinguished set of

concrete states. A domain (D, γ) is a pair, where D is a set of abstract states and

γ : D → 2C is a concretization function. When the meaning is clear, we overload

D to refer both to a domain and to its underlying set of states and use γD to refer

to the concretization function. We lift γD to sets of states: γD(D′) =
⋃
d∈D′ γD(d),

where D′ ⊆ D.

The concrete domain DC is given by the pair (C, γC), where γC is the trivial

1The history of fixed point theorems is long and tangled; variants of the theorem given here
have been variously attributed to Knaster, Tarski, Kleene, and Scott [42, 37]. Bourbaki’s theo-
rem [9] appears to be the first that is substantially similar to the theorem stated here—it requires
F to be “expansive” (i.e., x v F (x), for all x), but the proof is easily modified for the case where
F is monotone. Cousot and Cousot prove a theorem [14, Corollary 3.3] which is essentially
identical to the version we use—it assumes the domain is a complete lattice, but the proof does
not make use of the top element or greatest lower bounds; hence it applies equally to complete
partial orders.

6



concretization function: γC(c) = {c}. We say a set D′ ⊆ D over-approximates

C ′ ⊆ C iff γD(D′) ⊇ C ′. Similarly, a function FD : D → 2D over-approximates

FC : C → 2C iff FD(d) over-approximates FC(c) whenever c is in γD(d).

Every domain D is associated with the complete partial order 2D, ordered by

inclusion. The function γD, lifted to 2D, is trivially monotone.

We define the soundness of a program interpretation in terms of a collecting

semantics. Given a (concrete or abstract) domain D, we will define a semantic

operator J·K which maps a program P to to a set JPK ⊆ D of reachable states.

The semantics JPK is defined in terms of semantic interpretations over D: a set

I[P ] ⊆ D of initial states and a transfer function F[P ] : D → 2D. We lift F[P ]

to sets of states: F[P ](D′) =
⋃
d∈D′ F[P ](d), where D′ ⊆ D—so lifted, F[P ] is

trivially continuous.

An analysis A is represented as a tuple (D, I,F), where D is a domain and I

and F are semantic interpretations over D. We use DA, IA, and FA to denote the

constituents of an analysis A and γA to denote the concretization function of the

domain DA.

Definition 1. Let A = (D, I,F) be an analysis. The semantics J·KA w.r.t. A

maps a program P to a subset of D, the reachable states in P w.r.t. A:

JPKA = lfp(FA[P ]), where FA[P ] = λS. I[P ] ∪ F[P ](S)

Note that FA[P ] is monotone and thus, by Bourbaki’s Theorem, the least fixed

point exists and the semantics is well-defined.

To judge the soundness of an analysis, we need a concrete semantics against

which it can be compared. We assume that a concrete analysis C = (DC, IC,FC)

7



is given. The concrete analysis uniquely defines a concrete semantics J·KC.

Definition 2. An analysis A is sound iff for every program P , JPKA over-approx-

imates JPKC (i.e., γA(JPKA) ⊇ JPKC).

By the Abstraction Theorem, it is sufficient for A to have sound semantic

interpretations.

Definition 3. Let ID be a semantic interpretation over a domain D. ID is sound

iff for every program P , ID [P ] over-approximates IC[P ]. FD is sound iff for every

program P , FD [P ] over-approximates FC[P ].

Theorem 1.1. Let A be an analysis. If IA and FA are sound, then A is sound.

Proof. Theorem 1.4, below, generalizes this Theorem.

1.2 Conditional Soundness

So far, we have defined a style of analysis which is unconditionally sound, mirroring

the traditional approach to abstract interpretation. We will primarily be interested

in analyses that are sound only under certain assumptions about the behavior of

the program analyzed. To address this, we introduce the notion of conditional

soundness with respect to a predicate θ. An analysis will be θ-sound if it over-

approximates the concrete states of a program that are reachable via only θ-states.

We first define a semantics restricted to θ.

Definition 4. Let A = (D, I,F) be an analysis and θ a predicate on D (we view

the predicate θ, equivalently, as a subset of D). The θ-restricted semantics J·KA↓θ
w.r.t. A maps a program P to a subset of D, the θ-reachable states in P w.r.t. A:

JPKA↓θ= lfp(FA[P ] ◦Gθ), where Gθ = λS. θ ∩ S

8



FA[P ] is the same as in Definition 1.

Note that JPKA↓θ may include non-θ states—the range of FA[P ] ◦ Gθ is not

restricted to θ—but those states will not have an “successors” in fixed point com-

putation. The θ-restricted semantics gives us a lower bound for the approximation

of a θ-sound analysis.

Definition 5. Let A be an analysis and θ a predicate on C. A is θ-sound iff for

every program P , JPKA over-approximates JPKC↓θ.

Note that an unconditionally sound analysis is also θ-sound for any θ. More

generally, any θ-sound analysis is also ϕ-sound, for any ϕ stronger than θ.

This notion of conditional soundness does not just give us a more precise state-

ment of the behavior of certain analyses—it provides us with a sufficient condition

to show an analysis proves the absence of error states. This is a consequence of

the following general property of fixed points.

Theorem 1.2. Let X be a complete partial order; F : X → X a monotone

function; S a downward closed subset of X; and G : X → S a downward closure

for S. An element x of S is the least fixed point of F ◦ G iff x is the least fixed

point of F .

Proof. Since F and G are both monotone, F ◦G is monotone. Hence, both F and

F ◦G have least fixed points, by Bourbaki’s Theorem.

Let x be an element of S. Since G is a downward closure for S, x is a fixed

point of G. Hence, x is a fixed point of F ◦G iff x is a fixed point of F .

Assume that lfp(F ) is in S. Then lfp(F ) is a fixed point for F ◦ G. Hence,

lfp(F ◦G) v lfp(F ). Since S is downward closed, lfp(F ◦G) is also in S. Thus,

9



lfp(F ◦G) is fixed point of F and so lfp(F ) v lfp(F ◦G). Therefore lfp(F ) =

lfp(F ◦G)

A symmetric argument applies if we assume lfp(F ◦G) is in S.

The general theorem applies in our setting, where the downward closed subset

S is defined by the predicate θ.

Theorem 1.3. Let P be a program and A a θ-sound analysis. If there are no

reachable non-θ states in P w.r.t. A, then there are no reachable concrete non-θ

states in P (i.e., if γA(JPKA) ⊆ θ, then JPKC ⊆ θ).

Proof. Since A is θ-sound, and thus JPKC↓θ ⊆ γA(JPKA), we have JPKC↓θ⊆ θ.

Hence, it is sufficient to show JPKC = JPKC↓θ. This follows from Theorem 1.2,

taking F = FC[P ], S = 2θ and G = Gθ.

By the Abstraction Theorem, it sufficient for A to have a θ-sound transfer

function.

Definition 6. Let FD be a transfer function over domain D. FD is θ-sound iff

for any program P , FD [P ](D′) over-approximates FC[P ](C ′) whenever D′ over-

approximates C ′ and C ′ ⊆ θ.

Theorem 1.4. Let A be an analysis. If IA is sound and FA is θ-sound, then A

is θ-sound.

Proof. Let P be a program. By the Abstraction Theorem, taking F = FC[P ]◦Gθ,

G = FA, and γ = γA, it is sufficient to show FA[P ] over-approximates FC[P ] ◦Gθ.

Let C ′ ⊆ C and D′ ⊆ DA such that C ′ ⊆ γA(D′).

10



Then,

(FC[P ] ◦Gθ)(C
′) = IC[P ] ∪ FC[P ](θ ∩ C ′)

⊆ γA(IA[P ]) ∪ γA(FA[P ](D′)) (IA sound, FA θ-sound)

⊆ γA(IA[P ] ∪ FA[P ](D′)) (γA monotone)

= γA(FA[P ](D′))

Thus, FA[P ] over-approximates FC[P ] ◦Gθ.

Note 1.1. Theorem 1.4 generalizes Theorem 1.1: If FA is unconditionally sound,

then it is θ-sound for any θ. Hence, if IA and FA are unconditionally sound, A is

unconditionally sound.

1.3 Parameterized Analysis

Having defined a precise notion of conditional soundness, we now consider how

the results of a θ-sound analysis can be used to refine a second analysis. Suppose

that A is an analysis and we have already computed the set of reachable states

JPKA. We may wish to use the information present in JPKA to refine a second

analysis over a different domain B. For example, we could use the reduced product

construction [15] to form a new domain over a subset of DA×B including only those

states (a, b) where a is in JPKA and the states a and b “agree” (e.g., γA(a)∩γB(d) 6=

∅).

Traditional methods for combining analyses take a “white box” approach—e.g.,

Cousot and Cousot [15] assume that the analyses will be run in unison, allowing a

precise combined analysis to be derived from the two component analyses; Lerner et
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al. [45] assume that analyses can be run in parallel, one step at a time. In contrast,

we will assume that any prior analysis is a black box: we have access to its result

(in the form of a set of reachable abstract states), its domain (which allows us to

interpret the result), and some (possibly conditional) soundness guarantee. This

naturally models the use of off-the-shelf program analyses to provide refinement

advice.

We will define such a refinement in terms of a parameterized analysis which

produces a new, refined analysis from the results of a prior analysis. An analy-

sis generator G̃ is a tuple (D,E, Ĩ , F̃) where: D and E are domains (the input

and output domains, respectively) and Ĩ and F̃ are parameterized interpretations

mapping a set of states D′ ⊆ D to semantic interpretations Ĩ〈D′〉 and F̃〈D′〉

over E. We denote by G̃〈D′〉 the analysis over E defined by the parameterized

interpretations on input D′: G̃〈D′〉 = (E, Ĩ〈D′〉, F̃〈D′〉). As one might expect, the

soundness of G̃〈D′〉 depends on the input D′.

Definition 7. An analysis generator G̃ with input domain D is sound iff for every

set of states D′ ⊆ D, G̃〈D′〉 is θ-sound with θ = γD(D′).

Given an analysis generator, it is natural to consider the analysis formed by

composing the generator with an analysis over its input domain. If A is an analysis

and G̃ is an analysis generator with input domain DA (i.e., the input domain of G̃

is the underlying domain of A), the composed analysis G̃ ◦A is defined by providing

the result of A as a parameter to G̃ (i.e., G̃ ◦A = G̃〈JPKA〉). An important property

of the composed analysis is preservation of soundness. This arises naturally from

a transitivity property of the least fixed points of composed functions.

Theorem 1.5. Let X be a complete partial order; F : X → X a monotone

function; S a subset of X; T and U downward closed subsets of X; and G : X → S

12



and H : X → T downward closures for, respectively, S and T . If lfp(F ◦G) is in

T and lfp(F ◦H) is in U , then lfp(F ◦G) is in U .

Proof. Since U is downward closed, it suffices to show lfp(F ◦G) v lfp(F ◦H). Let

X0, X1, . . . be the iterates of lfp(F ◦G) and Y0, Y1, . . . the iterates of lfp(F ◦H).

By Bourbaki’s Theorem, it suffices to show that Xα v Yα for all ordinals α. We

proceed by induction.

Trivially, X0 = Y0.

Assume Xα v Yα for some ordinal α. Note that Xα is in T , since Xα v

lfp(F ◦G), lfp(F ◦G) is in T, and T is downward closed; and F ◦H is monotone,

since both F and H are monotone. Thus,

Xα+1 = (F ◦G)(Xα)

v F (Xα) (G decreasing, F monotone)

= (F ◦H)(Xα) (H a downward closure for T )

v (F ◦H)(Yα) (F ◦H monotone)

= Yα+1

Now, let λ be a limit ordinal and assume Xα v Yα for all ordinals α < λ. Then,

Xλ =
⊔
α<λ

Xα v
⊔
α<λ

Yα = Yλ

This shows lfp(F ◦G) v lfp(F ◦H)

The general theorem applies in our setting, where the set S is defined by the

predicate θ and T is determined by the result of the input analysis.

13



Theorem 1.6. If G̃ is sound and A is θ-sound, then the composed analysis G̃ ◦ A

is θ-sound.

Proof. Let B be the output domain of G̃ and P a program. Let ψ = γA(JPKA)

and ϕ = γB(JPKG̃◦A). Applying Theorem 1.5 with F = FC[P ], S = 2θ, T = 2ψ,

U = 2φ, G = Gθ, and H = Gψ, we have JPKC↓θ= lfp(FC[P ] ◦Gθ) ⊆ γB(JPKG̃◦A).

Hence, G̃ ◦ A is θ-sound.

It may be helpful to think about Theorem 1.6 informally. The conditional

semantics JPKC↓θ is the set of states that are reachable in P via only θ states. If

a state c is in JPKC↓θ, then there is some sequence c0, c1, . . . , ck of concrete states

from JPKC↓θ such that:

• ck is equal to c;

• ci is in FC[P ](ci−1), for each 0 < i ≤ k;

• c0 is in IC[P ]; and

• each state c0, c1, . . . , ck−1 is in θ.

This guarantees that each ci will appear in the ith iterate of FC[P ].

Since A is θ-sound, we know that JPKA over-approximates JPKC↓θ. Hence, each

of the states c0, c1, . . . , ck is in γA(JPKA) and, thus, each ci is in JPKC↓γA(JPKA). In

particular, the state c (i.e., ck) is in JPKC↓γA(JPKA).

Since G̃ is sound, we know that JPKG̃〈JPKA〉
over-approximates JPKC↓γA(JPKA).

Hence, c is in γB(JPKG̃〈JPKA〉
).

14



Chapter 2

Pointer Analysis

In this chapter, we show that a set of points-to analyses similar to and sharing the

soundness properties of commonly-used flow-sensitive and insensitive analyses—

such as those of Emami, Ghiya, and Hendren [24]; Wilson and Lam [66]; Ander-

sen [3]; Steensgaard [63]; and Das [18]—provide results that are sound for any

memory-safe execution of a program. This statement is both stronger and more

precise than the traditional statement that such analyses are sound for “well-

behaved” programs.

This more precise characterization of a points-to analysis, along with the com-

bination theorem for conditional analyses, shows that the combination of an inde-

pendent points-to analysis with a memory safety analysis is conditionally sound.

The soundness result guarantees that the absence of errors can be proved. Con-

versely, for a program with memory errors, at least one representative error—but

not necessarily all errors—along any unsafe execution will be detected.
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n ∈ Z x, y ∈ Vars

L ∈ Lvals ::= x | *x
E ∈ Exprs ::= L | n | x⊕ y | xE y | &x
S ∈ Stmts ::= L := E | [E]

Figure 2.1: Grammar for a minimal C-like language.

2.1 Concrete Semantics

To make precise statements about program analyses requires a concrete program

semantics. We will define the semantics of the little language presented in Fig. 2.1.

The semantics of the language is chosen to model the requirements of ANSI/ISO

C [36] without making implementation-specific assumptions. Undefined or imple-

mentation-defined behaviors are modeled with explicit nondeterminism. Note that

an ANSI/ISO-compliant C compiler is free to implement undefined behaviors in

a specific, deterministic manner. By modeling undefined behaviors using non-

determinism, the soundness statements made about each analysis apply to any

standard-compliant compilation strategy.

The most important features of C that we exclude here are fixed-size integer

types, narrowing casts, dynamic memory allocation, and functions.1 We also ignore

the “strict aliasing” rule [36, §6.5]. Each of these can be handled, at the cost of a

higher degree of complexity in our definitions.

The syntactic classes of variables, lvalues, expressions, and statements, are

defined in Fig. 2.1. We use n to represent an integer constant and x and y to

1 The omission of dynamic allocation in the discussion of points-to analysis and memory
safety may seem an over-simplification. However, it is not essential to our purpose here. Points-
to analyses typically handle dynamic allocation by treating each allocation site as if it were the
static declaration of a global array of unknown size.
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represent arbitrary variables. We use ⊕ to represent an arbitrary binary arithmetic

operator and E to represent a relational operator. Pointer operations include

arithmetic, indirection (*), and address-of (&). Statements include assignments

and tests ([E], where E is an expression).

Variables in our language are viewed as arrays of memory cells. Each cell may

hold either an unbounded integer or a pointer value. The only type information

present is the allocated size of each variable—the “type system” merely maps

variables to their sizes and provides no safety guarantees.

A program P is a tuple (V ,Γ,L,S, τ, en), where: V ⊆ Vars is a finite set

of program variables ; Γ : V → Z+ is a typing environment mapping a variable

to its allocated size (a non-negative integer); L is a finite set of program points ;

S ⊆ Stmts is a finite set of program statements whose variables are from V ; τ ⊆

L × S × L is a transition relation; and en ∈ L is a distinguished entry point. In

the following, we assume a fixed program P = (V ,Γ,L,S, τ, en).

Example 2.1. Figure 2.2(b) gives a fragment of the program representation for

the code in Fig. 2.2(a), corresponding to the function bad . We have introduced

temporaries t1 and t2 in order to simplify expression evaluation and compressed

multiple statements onto a single transition when they represent a single statement

in the source program.

In order to reason about points-to and memory safety analyses, we need a

memory model on which to base the concrete semantics. The unit of memory

allocation is a home in the set H. Each home h represents a contiguous block

of memory cells, e.g., a statically declared array. A location h[i] represents the

cell at integer offset i in home h. The set of locations with homes from H is

denoted L. The function size : H→ Z+ maps a home to its allocated size. When
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int A[4], c;

void bad(int *p, int x, int y) {

L0: c = 0;

L1: p[4] = x;

L2: if( c!=0 ) {

L3: A[1003] = y;

L4: }

}

void ok(int *q, int n) {

L5: q[0] = n;

}

void main() {

ok(A,0);

bad(A,1,0);

}

(a)

V = {A, c, p, x, y, t1, t2}

Γ(v) =

{
4, if v = A

1, otherwise

ℓ0

ℓ1

ℓ2

ℓ3

ℓ4

c := 0

t1 := p + 4
*t1 := x

[c 6= 0]

[c = 0]

t2 := &A
t2 := t2 + 1003
*t2 := y

(b)

Figure 2.2: An unsafe C program

0 ≤ i < size(h), location h[i] is in bounds; otherwise it is out of bounds. Memory

locations contain values from the set Vals = Z ∪ L. A memory state is a partial

function m : L → Vals . The set of all memory states is denoted M. The set of

concrete states C is the set of pairs (p,m) where p ∈ L represents the program

position and m is a memory state.

An allocation for V is an injective function home : V → H such that, for all

x ∈ V , size(home(x)) = Γ(x). Given such an allocation, the lvalue of x ∈ V is

lval(x) = home(x)[0]. When the meaning is clear, we write &x for lval(x), m(x)

for m(lval(x)), and m[x 7→ v] for m[lval(x) 7→ v], where m is a memory state. We

say a location h[i] is within a variable x if h = home(x) and h[i] is in bounds.

Figure 2.3 defines the concrete interpretations E and post of, respectively,

expressions and statements. Note that both E and post result in sets of, respec-

tively, values and concrete states—the set-based semantics is needed as undefined
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operations may have a nondeterministic result. E returns the distinguished value

⊥ in the case where an expression is not just ill-defined, but erroneous (e.g., read-

ing an out-of-bounds memory location)—in this case the next state can have any

memory state at any program point.

The operator ⊕̃ is used to denote the semantic counterpart to the syntactic

operator ⊕. The definition of ⊕̃ is as usual for integer values. If an integer j is

added to (alt. subtracted from) a location h[i], where both 0 ≤ i ≤ size(h) and

0 ≤ i + j ≤ size(h) (alt. 0 ≤ i − j ≤ size(h)), then the result is h[i + j] (alt.

h[i − j]). If a location h[j] is subtracted from a location h′[i], where h = h′ and

0 ≤ i, j ≤ size(h), the result is i− j. In all other cases, the result is undefined.

Note that arithmetic on pointer values is only defined for locations within (or

one location beyond) a single home. E.g., adding an offset to a location sufficient

to create an out-of-bounds location does not make the value point to a new home;

subtracting locations from two different homes does not indicate the “distance”

between the homes.

The operator Ẽ is used to denote the semantic counterpart of a relational

operator E. The definition of Ẽ is as usual for integer values. If two locations h[i]

and h[j] have the same home, then Ẽ is equal to the integer comparison i Ẽ j.

The value of Ẽ is otherwise undefined, with the following exception: equality

(resp. disequality) on two in-bounds locations with different homes or between

an in-bounds location and 0 (the null pointer constant) evaluates to False (resp.

True).

We now define the concrete interpretation of a program.

Definition 8. The concrete semantics JPKC of a program P = (V ,Γ,L,S, τ, en)
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ℓ0 : {(p, lval(A)), (x, 1), (y, 0)}

ℓ1 : {(p, lval(A)), (x, 1), (y, 0), (c, 0)}

. . . . . .

c := 0

t1 := p + 4
*t1 := x

Figure 2.4: Concrete semantics for the program in Fig. 2.2(b)

is defined by the analysis C = (DC, IC,FC), where

IC[P ] = {(en,m) | ∀l ∈ L. m(l) is not a location}

FC[P ](p,m) =
⋃

(p,S,p′)∈τ

post(m, p′, S)

If (p, S, p′) is in τ and c′ ∈ post(m, p′, S), we say c′ is an S-successor of (p,m).

Example 2.2. Figure 2.4 gives a subset of the reachable concrete states of the

program in Fig. 2.2(b). At `0, p is lvalA (the base address of the array A), x is 1,

and y is 0. At `1, due to the assignment to out-of-bounds location A[4], the next

state is undefined: every program point is reachable with any memory state.

Note 2.1. The following modifications would allow us to model other aspects of

the C programming language. To model dynamic memory allocation, we could

add a component to the memory state to map locations to their allocation sta-

tus. To model fixed-size integers and narrowing casts, we would need to define

scalar values that span multiple locations (i.e., bytes), which require the modeling

of alignment, padding, and byte order. To model functions, we could add an ex-

plicit representation of the call stack and variable scope. Handling strict aliasing

would require more detailed type information, and would introduce more unde-
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fined behaviors in the case where a location is accessed through an illegal “type

pun”. This would correspondingly weaken the soundness results below, by replac-

ing SafeDeref with a stronger predicate that captures the undefined behaviors

introduced by disallowed casts.

2.2 The Points-To Abstraction

The goal of pointer analysis is to compute an over-approximate points-to set for

each variable in the program, i.e., the set of homes “into” which a variable may

point in some reachable state.

A points-to state is a relation between variables. We denote the set of points-to

states by Pts . When it is convenient, we treat a points-to state also as a relation

between variables and memory locations: for points-to state pts , variables x, y,

and location h[i], we say (x, h[i]) is in pts when (x, y) is in pts and h[i] is within y

(i.e., h[i] is in bounds and h = home(y)). We write pts(x) for the points-to set of

the variable x in pts , i.e., the set of variables y (alt. locations l) such that (x, y)

(alt. (x, l)) is in pts .

The concretization function γPts takes a points-to state to the set of concrete

states where at most its points-to relationships hold. Say that variable x points

to y in memory state m if there exist locations l1, l2 such that l1 is within x, l2

is within y, and m(l1) = l2. Then m is in γPts(pts) iff for all x, y such that x

points to y in m, the pair (x, y) is in pts . Note that there may be other pairs in

pts as well—the points-to relation is over-approximate. Note also that only in-

bounds location values must agree with the points-to state; out-of-bounds locations

are unconstrained.
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Note 2.2. Since the set of variables is known a priori and fixed, we will assume

for convenience that the function home is a bijection. To extend our results to

programs with dynamic allocation, we would have to introduce an inverse map

from homes to abstract variables, such that every allocated block of memory has

some representative in the domain of the points-to relation. For example, we could

introduce a set of variables mallocp, for p in L, such that any memory location

allocated by a call to malloc at program point p is within mallocp. In any case,

we would like to maintain the property: if m(x) is an in-bounds location, then

m(x) is within some (perhaps abstract) variable y.

Figure 2.5 defines the interpretations EPts and postPts for, respectively, expres-

sions and statements in the points-to domain. The interpretations are chosen to

match those used by common points-to analyses. A key feature is the treatment

of the indirection operator *, which assumes that its argument is within bounds.

Without this assumption, the interpretation would have to use the “top” points-to

state (i.e., all pairs of variables) for the result of any indirect assignment.

We lift Pts to the set L × Pts in the natural way.

Definition 9. A flow- and path-sensitive points-to analysis Pts is given by the

tuple (Pts , IPts ,FPts), where

IPts [P ] = {(en, ∅)}

FPts [P ](p, pts) =
⋃

(p,S,p′)∈τ

(p′,postPts(pts , S))

Example 2.3. Figure 2.6 shows a subset of the reachable points-to states for the

program in Fig. 2.2(b). At `0, p points to A. The transition from `1 to `2 causes t1

to point to A as well. The presence of an out-of-bounds array access has no effect
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EPts(pts , n) = ∅
EPts(pts , x) = pts(x)

EPts(pts , *x) = {z ∈ V | ∃y ∈ V : pts(x, y) ∧ pts(y, z)}
EPts(pts , x⊕ y) = pts(x) ∪ pts(y)

EPts(pts , &x) = {x}
EPts(pts , xE y) = ∅

postPts(pts , x := E) = pts ∪ {(x, y) | y ∈ EPts(pts , E)}
postPts(pts , *x := E) =

⋃
(x,y)∈pts

postPts(pts , y := E)

postPts(pts , [E]) = pts

Figure 2.5: Abstract interpretation over points-to states.

on the points-to state: the analysis assumes that evaluating *t1 is safe.

Definition 10. Let Deref be the predicate on C×V that holds for concrete state

(p,m) and variable x if, for some transition (p, S, p′) in τ , S includes an expression

of the form *x. Let SafeDeref be the predicate that holds in a concrete state

(p,m) if, for all variables x such that Deref((p,m), x) holds, m(x) is an in-bounds

location.

To show that Pts is SafeDeref-sound, we must first show that the function

EPts over-approximates the locations given by the function E on concrete states in

SafeDeref. We formalize this with the following Lemma.

Lemma 2.1. For concrete state c = (p,m), points-to state pts, variable x, location

l, and expression E: if (1) SafeDeref(c) holds, (2) m is in γPts(pts), (3) there

exists an edge (p, S, p′) in τ such that E appears in S, (4) l is in E(m,E), and (5)

l is within x, then x is in EPts(pts , E).
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ℓ0 : {(p, A)}

ℓ1 : {(p, A)}

ℓ2 : {(p, A), (t1, A)}

ℓ3 : {(p, A), (t1, A)} ℓ4 : {(p, A), (t1, A)}

ℓ4 : {(p, A), (t1, A), (t2, A)}

c := 0

t1 := p + 4
*t1 := x

[c 6= 0] [c = 0]

t2 := &A
t2 := t2 + 1003
*t2 := y

Figure 2.6: Points-to semantics for the program in Fig. 2.2(b)

Proof. We proceed by cases over E.

• E = n. No l can satisfy (4). The property holds trivially.

• E = y. If m(y) is undefined, then E(m,E) = Z and no l can satisfy (4).

Assume m(y) is defined. Then, by definition, the only value in E(m,E) is

m(y). Assume m(y) is a location within x. Since m is in γPts(pts), (y, x)

must be in pts . Hence, x is in EPts(pts , E).

• E = *y. Since c is a SafeDeref state, m(y) must be an in-bounds location

l′. If m(l′) is undefined, then E(m,E) = Z and no l can satisfy (4). Assume

m(l′) is defined. Then, by definition, the only value in E(m,E) is m(l′).

Assume m(l′) is a location within x. Take z such that l′ is within z: such a

z is guaranteed to exist if home is a bijection (see Note 2.2). Since m is in

γPts(pts), (y, z) and (z, x) must be in pts . Hence, x is in EPts(pts , E).

• E = y⊕z. The only cases where E(m,E) contains a location value is when ⊕

is + or -, one of the operands is location, the other is an integer, and the result

is well-defined. We will consider only the case for +; the case for - is similar.
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Assume, wlog, that m(y) = h[i] (with 0 ≤ i ≤ size(h)) and m(z) = j (with

0 ≤ i + j ≤ size(h)). By definition, the only value in E(m,E) is h[i + j].

Assume h[i+ j] is within x. Then h[i] is within x. Since m is in γPts(pts), x

must be in pts(y). Hence, x is in EPts(pts , E).

• E = &x. By definition, the only value in E(m,E) is lval(x), which is within

x. By definition, x is in EPts(pts , E).

• E = yE z. No l can satisfy (4). The property holds trivially.

Theorem 2.2. The points-to analysis Pts is SafeDeref-sound.

Proof. Applying Theorem 1.4, it suffices to show that IPts is sound and FPts is

SafeDeref-sound.

Take a program P = (V ,Γ,L,S, τ, en). We must show: (1) IPts [P ] over-

approximates IC[P ] and (2) FPts [P ](p, pts) over-approximates FC[P ](p,m) when-

ever (p,m) is a SafeDeref state and m is in γPts(pts).

(1) Let (en,m) be an initial concrete state. By the definition of IC, m(l) is not

a location for any l ∈ L. By the definition of IPts , the only initial points-to

state is (en, ∅). By the definition of γPts , m is in γPts(∅). Hence, (en,m) is

in γPts(IPts [P ]). This shows soundness for IPts .

(2) Take concrete states c = (p,m), c′, points-to state pts , and statement S

such that m is in γPts(pts), SafeDeref(c) holds, and c′ = (p′,m′) is an

S-successor of c. Note that E(m,E) cannot be ⊥, since c is a SafeDeref

state. It suffices to show that c′ is in γPts(FPts [P ](p, pts)). We proceed by

cases on S:
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– S = x := E. By definition, m′ = m[x 7→ v] for some value v in E(m,E).

The only interesting case is when v is an in-bounds location l within

a variable y. It suffices to show y is in EPts(pts , E). This follows from

Lemma 2.1.

– S = *x := E. Since c is a SafeDeref state, m(x) must be an in-

bounds location l. Hence, m′ = m[l 7→ v] for some value v in E(m,E).

Since m is in γPts(pts), if l is within variable y, we must have pts(x, y).

The remainder of the proof is as in the previous case, with S = y := E.

– S = [E]. Since c is a SafeDeref state, E(m,E) cannot be ⊥. Thus,

the only interesting case is where c = c′. By definition, postPts(pts , S)

is equal to pts . Hence, c′ is in γPts(postPts(pts , S)).

This shows SafeDeref-soundness for FPts .

Hence, Pts is SafeDeref-sound.

We can extract more traditional flow-sensitive, global, and flow-insensitive

pointer analyses from JPKPts as follows.

• A flow-sensitive, program-point-sensitive (path-insensitive) analysis is de-

rived by assigning to each program point p the least points-to state (by

subset inclusion) pts] such that, if (p, pts) is in JPKPts , then pts ⊆ pts].

• A flow-sensitive, global (program-point-insensitive) analysis is derived by as-

signing to every program point the least points-to state (by subset inclusion)

pts] such that, if (p, pts) is in JPKPts for any program point p, then pts ⊆ pts].

• A flow-insensitive analysis is derived by replacing τ in Definition 9 with the

relation τ ], where the edge (p, S, q) is in τ ] whenever some edge (t, S, u) is in τ ,
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for any program points t and u. Intuitively, if a statement occurs anywhere

in the program, then it may occur between any two program points—the

interpretation ignores the control-flow structure of the program.

• Flow-insensitive, program-point-sensitive and flow-insensitive, global combi-

nations can be defined as above, substituting the flow-insensitive semantics

for JPKPts .

Theorem 2.3. Each of the flow-, path-, and program-point-sensitive and insensi-

tive variations of the points-to analysis is SafeDeref-sound.

Proof. Take a program P and a points-to analysis Q from among those described

above. It is clear that, for any state (p, pts) in JPKPts , there is a state (p, pts ′)

in JPKQ such that pts ⊆ pts ′. Since γPts is monotonic, any concrete state in

γPts(JPKPts) is also in γPts(JPKQ). By Theorem 2.2, JPKPts over-approximates

JPKC↓SafeDeref. Hence, JPKQ over-approximates JPKC↓SafeDeref: Q is SafeDeref-

sound.

Note 2.3. The flow-sensitive, program-point-sensitive analysis yields a points-to

relation similar to that of Emami et al. [24]. The flow-insensitive, global anal-

ysis procedure yields a points-to relation similar to that of Andersen [3]. The

Steensgaard [63] and Das [18] relations add additional approximation to the global

relation. We claim (but do not prove formally here) that these procedures approx-

imate JPKPts and, thus, are at least SafeDeref-sound.

In summary, we have shown that a set of points-to analyses which share the

assumptions of widely used analyses from the literature are sound for all memory-

safe executions. This claim is both stronger and more precise than any correctness

claims we have encountered: our points-to analyses (and, by extension, those cited
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above) compute a relation which is conservative not only for “well-behaved” (i.e.,

memory-safe) programs, but for all well-behaved executions, even the well-behaved

executions of ill-behaved programs.

By the definition of conditional soundness, it is possible some condition θ weaker

than SafeDeref exists such that some or all of the above analyses are θ-sound.

We will show that this is not the case: no “reasonable” points-to analysis is θ-sound

for any θ weaker than SafeDeref.

We have shown that, if we can prove the absence of non-SafeDeref states in

JPKC, the points-to analyses we have defined above will be sound. It remains to

describe an analysis parameterized by points-to information which can perform a

precise memory safety analysis.

2.3 Optimality of SafeDeref-Soundness

We will show that SafeDeref-soundness is the best we can hope for from any

“reasonable” analysis on the points-to domain. For our purposes a “reasonable”

analysis is one that:

1. Is θ-sound for some computable θ,

2. Has a θ-sound transfer function, and

3. Does not produce trivial results for large classes of non-pathological pro-

grams.

The first requirement prevents us from defining θ to be, for example, “the set of

SafeDeref states plus all non-SafeDeref states that are not reachable in any

computation.” This predicate is clearly weaker than SafeDeref and would allow
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us to define a conditionally sound analysis—however, it would require reference to

a reachability predicate which is only semidecidable [65].

The second requirement means, in essence, that the argument for θ-soundness

must be inductive. While it is possible to imagine an analysis which somehow

achieves θ-soundness in spite of a non-θ-sound transfer function, such an analysis

would be decidedly odd. The standard practice of the static analysis community is

to build sound analyses out of sound components, using syntax-directed inductive

reasoning.

The final requirement means the analysis can’t “cheat” by simply giving up

on programs for which a precise result can be computed. To be more precise, we

say a θ-sound analysis A is trivial for program P if there exists some set of states

D′ ⊆ DA such that JPKC↓θ⊆ γA(D′) 6= C, but γA(JPKA) = C.

Any analysis might be trivial for certain pathological programs. For example,

Pts is trivial for the program

while(1) { x = &x; x = &y; y = x; }

which will have the points-to relation {(x, x), (x, y), (y, x), (y, y)} at every program

point even though y will never point to x in any concrete execution. What we will

attempt to show below is that a non-SafeDeref-sound points-to analysis will

necessarily be trivial for a broad class of non-pathological programs.

To characterize those programs more precisely, we will define a set of states

that are essentially indistinguishable in the points-to domain. First, we note the

following important property of the points-to abstraction. (Note: we use Vals⊥ to

denote the set Vals augmented with the distinguished “undefined” value ⊥; i.e.,

m[x 7→ ⊥] when x is undefined in m.)
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Lemma 2.4. Let (p,m) be a concrete state and x a variable such that m(x) is

undefined, not a location, or out of bounds. Let (p,m′) be a concrete state such that

m′ = m[x 7→ v], for some v ∈ Vals⊥. If points-to state (p, pts) over-approximates

(p,m′), then it also over-approximates (p,m).

Proof. By the definition of γPts , pts over-approximates m iff for all y, z such that

y points to z in m, (y, z) is in pts . Since m and m′ differ only at x, this holds for

all y distinct from x. Since m(x) is undefined, not a location, or out of bounds, it

can’t point to any location. Hence, pts over-approximates m.

If a program has a transition (p, S, p′) where S includes an expression of the form

*x, we call x a SafeDeref trigger at program-point p, denoted xp. The function ρ

maps a set of concrete states C ′ to a set of states which are SafeDeref-equivalent

to C ′. The set ρ(C ′) includes all of the states in C ′ that are also SafeDeref states

and, for every non-SafeDeref state (p,m) in C ′, all of the states (p,m′) that differ

from (p,m) only at a SafeDeref trigger:

ρ(C ′) = {(p,m[xp 7→ v]) | (p,m) ∈ (C ′ − SafeDeref), v ∈ Vals⊥} ∪

(C ′ ∩ SafeDeref)

The function ρ allows us to precisely characterize the problematic programs for

a θ-sound, non-SafeDeref-sound analysis: they are exactly the programs that

reach a state in ρ(θ − SafeDeref). If θ includes a non-SafeDeref concrete

state (p,m), then such an analysis will be trivial for any program P that reaches

p in any state m′—even a SafeDeref state—differing from m only at xp.

Theorem 2.5. Let Q be an analysis over the domain Pts with a θ-sound semantic

interpretation, for some θ 6⊆ SafeDeref. Let P be a program such that:
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1. There exists some P ⊆ Pts such that JPKC ⊆ γPts(P ) 6= C, and

2. JPKC↓θ contains at least one state in ρ(θ − SafeDeref).

Q is trivial for P.

Proof. Let (p,m) be a state in JPKC↓θ ∩ ρ(θ−SafeDeref). Let (p, pts) be a state

in JPKQ that over-approximates (p,m). By the definition of ρ, there is some state

(p,m′) in (θ − SafeDeref) such that m = m′[xp 7→ v] for some v ∈ Vals⊥. Since

(p,m′) is not a SafeDeref-state, m′(x) must be undefined, not a location, or out

of bounds. By Lemma 2.4, (p, pts) also over-approximates (p,m′). Hence, (p,m′)

is in γPts(p, pts) ∩ θ. Since FQ is θ-sound, FQ[P ](p, pts) must over-approximate

FC[P ](p,m′). By definition, FC[P ](p,m′) = C. Hence, γPts(FQ[P ](p, pts)) = C

and, by monotonicity, γPts(JPKQ) = C. But, by assumption, there exists some

P ⊆ Pts such that JPKC ⊆ γPts(P ) 6= C. Hence, Q is trivial for P .

Theorem 2.5 makes a rather modest claim, and we have already discussed

several of its limiting assumptions, but we would like to be the first to point out

two more obvious limitations.

First, it depends strongly on the definition of γPts given in Section 2.2. It is

possible that a different concretization function could yield a tighter soundness

result. It is our belief no such concretization function exists.

Second, the Theorem becomes vacuous if there is no program meeting condi-

tions (1) and (2). Indeed, we can ensure this is the case by choosing θ to be the set

of concrete states such that any program P reaching a state in ρ(θ−SafeDeref)

has JPKC = C. We claim this possibility is ruled out by the assumption that

θ is practically computable. In practice, we expect there to be many programs

satisfying the conditions of the Theorem for any realistic θ.
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2.4 Checking Memory Safety

We wish to define an analysis procedure that will soundly prove the absence of

non-SafeDeref states in the concrete program. Note that the only attributes of

a location value that are relevant to the property SafeDeref are its offset and

the size of its home; if we can precisely track these attributes, we can ignore the

home component of a location (i.e., which variable it is within) so long as we have

access to over-approximate points-to information.

Note 2.4. In our description of the analysis, we will omit the merging, widening,

and covering operations necessary to make the reachability computation tractable.

Our analysis will track abstract values from the set V̂als . An abstract value

is either an integer or an abstract location, a pair (i, n) representing a location at

offset i in a home of size n. Each abstract value v̂ represents a set of concrete

values, according to the abstraction function α : Vals → V̂als . For integer values,

α is the identity (i.e., α(n) = n); for concrete location values, α preserves the offset

and size (i.e., α(h[i]) = (i, size(h))). An abstract location (i, n) is in bounds if it

represents only in bounds concrete locations (i.e., 0 ≤ i < n); otherwise it is out of

bounds. An abstract memory state is a partial function b : L → V̂als . We denote

by B the set of abstract memory states.

The concretization function γB : B → 2C takes an abstract memory state b to

the set of concrete memories abstracted by b. A concrete memory m is in γB(b) iff

for all l either m(l) and b(l) are both undefined or α(m(l)) = b(l).

Figure 2.7 defines the interpretations EB and postB for, respectively, expres-

sions and statements with respect to B. Note that the interpretations rely on

points-to information. In the limiting case, where no points-to information is
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available (i.e., the points-to relation includes all pairs), the expression *x can take

the value of any location abstracted by b(x). As in the concrete interpretation,

EB returns the value ⊥ in the case where expression evaluation is (potentially)

erroneous.

The operator ⊕̂ is used to denote the abstract counterpart to the syntactic

operator ⊕. The definition of ⊕̂ is as usual for integer values. If an integer j is

added to (resp. subtracted from) an abstract location (i,m), where both 0 ≤ i ≤ m

and 0 ≤ i+ j ≤ m (resp. 0 ≤ i− j ≤ m), the result is (i+ j,m) (resp. (i− j,m)).

In all other cases, the result is undefined.

The operator ÊA is used to denote the abstract counterpart to the syntactic

operator E, parameterized by a points-to set A ⊆ V . The definition of ÊA is as

usual for integer values. If two in-bounds abstract location values (i,m) and (j, n)

are compared for equality (resp. disequality) and either i 6= j, m 6= n, or A = ∅,

then the result is 0 (resp. 1). In all other cases, ÊA is undefined.

We lift B to the domain L ×B in the natural way.

Definition 11. The analysis generator B̃ maps a set of states Q ⊆ L×Pts to the

memory safety analysis B̃〈Q〉 defined by the parameterized interpretations

ĨB〈Q〉[P ] = {(en, b) | ∀l ∈ L : b(l) is not a location }

F̃B〈Q〉[P ](p, b) =
⋃

(p,S,p′)∈τ

⋃
(p,pts)∈Q

postB(b, pts , p′, S)

Lemma 2.6. For concrete memory state m, points-to state pts, abstract memory

state b, value v, and expression E: if (1) m is in γPts(pts) ∩ γB(b) and (2) v is in

E(m,E), then α(v) = v̂ for some v̂ in EB(b, pts , E).

Proof. We proceed by cases on E.
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• E = n. By definition, the only value in E(m,E) or EB(b, pts , E) is n and

α(n) = n.

• E = x. Assume b(x) is undefined. Since m is in γB(b), m(x) must also be

undefined. By definition, E(m,E) = EB(b, pts , E) = Z.

Now, assume b(x) is defined. Since m is in γB(b), m(x) must also be defined

and α(m(x)) = b(x). By definition, the only value in E(m,E) is m(x) and

the only value in EPts(b, pts , E) is b(x).

• E = *x. Assume, wlog, that m(x) is an in-bounds location l. Since m is in

γB(b), b(x) = α(l). Since m is in γPts(pts), l must be in pts(x).

If b(l′) is undefined for some l′ in pts(x) such that α(l′) is equal to α(l), then

EB(b, pts , E) = V̂als and the property holds trivially. Assume b(l′) is defined

for all such l′. In particular, b(l) is defined. Since m is in γB(b), m(l) must

also be defined and α(m(l)) = b(l). By definition, the only value in E(m,E)

is m(l) and, since l is in pts(x), b(l) is in EB(b, pts , E).

• E = x ⊕ y. If b(x) ⊕̂ b(y) is undefined, then EPts(b, pts , E) = Z. It suffices

to show that there are no location values in E(m,E). The only case where

E(m,E) contains a location value is when ⊕ is + or -, one of the operands is a

location value, the other is an integer, and the result is well-defined. We will

consider only the case for +; the case for - is similar. Assume, wlog, that m(x)

is an in-bounds location h[i] andm(y) is an integer j, with 0 ≤ i+j ≤ size(h).

By definition, the only value in E(m,E) is h[i] ⊕̂ j = h[i + j]. Since m is

in γB(b), α(m(x)) = b(x) and α(m(y)) = b(y). Hence, b(x) = (i, size(h))

and b(y) = j. But (i, size(h)) ⊕̂ j is well-defined, which contradicts the

assumption that b(x) ⊕̂ b(y) is undefined. Thus, there can be no location

36



values in E(m,E).

Assume b(x) ⊕̂ b(y) is well-defined and both b(x) and b(y) are integers, say

i and j. Since m is in γB(b), m(x) must be i and m(y) must be j. By

definition, the only values in E(m,E) and EB(b, pts , E), respectively, are i ⊕̃ j

and i ⊕̂ j. Since ⊕̃ and ⊕̂ are defined in the same way for integer operands,

α(i ⊕̃ j) = i ⊕̂ j.

Assume b(x) ⊕̂ b(y) is well-defined, one of b(x), b(y) is an abstract location

(i, n) (with 0 ≤ i ≤ n), the other an integer j (with 0 ≤ i+ j ≤ n), and ⊕ is

+. Since m is in γB(b), m(x) must be an location h[i] with size(h) = n and

m(y) must be j. By definition, the only values in E(m,E) and EB(b, pts , E),

respectively, are h[i+ j] and (i+ j, n), and α(h[i+ j]) = (i+ j, n).

The case where ⊕ is - and b(x), b(y) are abstract locations is similar.

• E = &x. By definition, the only values in E(m,E) and EB(b, pts , E), re-

spectively, are lval(x) and (0, size(home(x))). By definition, α(lval(x)) =

α(home(x)[0]) = (0, size(home(x))).

• E = x E y. If b(x) Êpts(x)∩pts(y) b(y) is undefined, then the property holds

trivially.

Assume b(x) Êpts(x)∩pts(y) b(y) is well-defined, and b(x), b(y) are both integers,

say i and j. Since m is in γB(b), m(x) must be i and m(y) must be j. By

definition, the only values in E(m,E) and EB(b, pts , E), respectively, are i Ẽ j

and i Ê j. Since Ẽ and Ê are defined in the same way for integer operands,

α(i Ẽ j) = i Ê j.

Assume b(x) Êpts(x)∩pts(y) b(y) is well-defined, b(x) and b(y) are in-bounds

abstract locations, say (i, n) and (j, r), and E is ==. Since m is in γB(b), we
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have m(x) = h[i] (with size(h) = n) and m(y) = h′[j], (with size(h′) = r).

By definition, the only value in EB(b, pts , E) is 0 and: i 6= j, n 6= r, or

pts(x) ∩ pts(y) is empty. We must show that the only value in E(m,E) is 0:

this will be the case when h[i] 6= h′[j]. If i 6= j, this is immediate. If n 6= r,

then size(h) 6= size(h′) and, thus, h 6= h′. If pts(x) ∩ pts(y) is empty, then,

since m is in γPts(pts), h 6= h′.

The case when Ê is != and b(x), b(y) are abstract locations is similar.

Lemma 2.7. Let E be an expression, m a concrete memory state, and b an abstract

memory state such that m is in γB(b). E(m,E) = ⊥ iff EB(b, pts , E) = ⊥, for all

points-to states pts, .

Proof. Assume, wlog, that E is of the form *x. E(m,E) = ⊥ iff m(x) undefined,

not a location, or out of bounds. Similarly, EB(b, pts , E) = ⊥ iff b(x) is undefined,

not a location, or out of bounds, for all points-to states pts . Since m is in γB(b),

m(x) is undefined, not a location, or out of bounds iff b(x) is undefined, not a

location, or out of bounds.

Lemma 2.8. ĨB〈Q〉 is sound for every set of states Q.

Proof. Let P be a program. We must show ĨB〈Q〉[P ] over-approximates IC[P ].

Let c = (p,m) be a state in IC[P ] and let a = (p, b) be an abstract state such

that c is in γB(a). By definition, m(l) is not a location for any l in L. Since,

b(l) = α(m(l)) whenever b(l) is defined, b(l) is also not a location for any l in L.

Hence, a is in ĨB〈Q〉[P ].

Lemma 2.9. F̃B〈Q〉 is γPts(Q)-sound for every set of states Q.
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Proof. Let P be a program. We must show F̃B〈Q〉[P ](p, b) over-approximates

FC[P ](p,m) whenever (p,m) is in γPts(Q) and m is in γB(b).

Take concrete states c = (p,m), c′ = (p′,m′), abstract state a = (p, b), points-

to state (p, pts), and statement S such that m is in both γB(b) and γPts(pts)

and c′ is an S-successor of c. It suffices to show that there is some (p′, b′) in

postB(b, pts , p′, S) such that m′ is in γB(b′). We proceed by cases on S:

• S = x := E. If E(m,E) = ⊥, then EB(b, pts , E) = ⊥, by Lemma 2.7, and

the claim is trivial. Assume E(m,E) 6= ⊥. Then, m′ = m[x 7→ v] for some

value v in E(m,E). By Lemma 2.6, there is some v̂ in EB(b, pts , E) such

that α(v) = v̂. Hence, there is some (p′, b′) in postB(b, pts , p′, S) such that

b′ = b[x 7→ v̂]. By definition, m′ is in γB(b′).

• S = *x := E. If m(x) is undefined, not a location, or out of bounds, then

b(x) is undefined, not a location, or out of bounds, and the claim is trivial.

Assume m(x) is an in-bounds location l. Then, m′ = m[l 7→ v] for some value

v in E(m,E). Since m is in γB(b) and γPts(pts), we have b(x) = α(l) and

pts(x, l). By Lemma 2.6, there is some v̂ in EB(b, pts , E) such that α(v) = v̂.

Hence, there is some (p′, b′) in postB(b, pts , p′, S) such that b′ = b[l 7→ v̂].

By definition, m′ is in γB(b′).

• S = [E]. If E(m,E) = ⊥, then EB(b, pts , E) = ⊥, by Lemma 2.7, and the

claim is trivial. Thus, the only interesting case is when E(m,E) 6= {0} and

c = c′. From Lemma 2.6, it follows that EB(b, pts , E) 6= {0} and (p′, b′) is

equal to (p, b). Hence, m′ is in γB(b′).

This shows γPts(Q)-soundness for F̃B〈Q〉.

Lemma 2.10. The analysis generator B̃ is sound.
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Proof. By Definition 7, Theorem 1.4, Lemma 2.8, and Lemma 2.9.

Corollary 2.11. If a points-to analysis Q is SafeDeref-sound, the composed

memory safety analysis B̃ ◦ Q is SafeDeref-sound.

Proof. By Lemma 2.10 and Theorem 1.6.

Combining Corollary 2.11 with Theorems 2.2 and 2.3, we can compose B̃ with

any of the points-to analyses described in Section 2.2 and the resulting analysis

will be SafeDeref-sound. Recall from Theorem 1.3 that SafeDeref-soundness

guarantees the detection of error states. If any non-SafeDeref state exists in

JPKC, then a non-SafeDeref state is represented by the composed semantics; if

only SafeDeref states are reachable in the composed analysis then no concrete

non-SafeDeref state is reachable—the absence of error states can be proved.

2.5 Related Work

Methods for combining analyses have been described in the abstract interpretation

community, starting with Cousot and Cousot [15]. The focus has been on exploiting

mutual refinement to achieve the most precise combined analyses, as in Gulwani

and Tiwari [30] and Cousot et al. [17]. The power domain of Cousot and Cousot [15,

§10.2] provides a general model for analyses with conditional semantics. We believe

our notion of conditional soundness provides a simpler model which captures the

behavior of a variety of interesting analyses.

Pointer analysis for C programs has been an active area of research for decades

[32, 24, 66, 3, 63, 27, 18, 31, 43]. The correctness arguments for points-to algo-

rithms are typically stated informally—each of the analyses has been developed

for the purpose of program transformation and understanding, not for use in a
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sound verification tool. Although Hind [32] proposes the use of pointer analysis in

verification, the authors are not aware of any prior work that formally addresses

the soundness of verification using points-to information.

Adams et al. [2] explored the use of Das’ algorithm to prune the search space for

a typestate checker and to generate initial predicates for a software model checker.

In both cases, the use of the points-to information is essentially heuristic—the

correctness of the overall approach does not depend on the points-to analysis being

sound.

Dor, Rodeh, and Sagiv [22] describe a variation on traditional points-to analyses

intended to improve precision for a sound, inter-procedural memory safety verifier.

A proof of soundness is given in Dor’s thesis [21]. However, the proof is not

explicit about the obligations of the points-to analysis. We provide a more general

framework for reasoning about verification using conditionally sound information.

Bruns and Chandra [11] provide a formal model for reasoning about pointer

analysis based on transition systems. The focus of their work is primarily com-

plexity and precision, rather than soundness.

Dhurjati, Kowshik, and Adve [20] define a program transformation which pre-

serves the soundness of a flow-insensitive, equality-based points-to analysis (e.g.,

those of Steensgaard [63] and Lattner [43]) even for programs with memory safety

errors. The use of an equality-based analysis is necessary to achieve an efficient

implementation, but it limits the use of the technique in applications where a more

precise analysis may be necessary, e.g., in verification. The soundness results we de-

scribe here are equally applicable to flow-sensitive, flow-insensitive, equality-based

and subset-based pointer analyses.

Our abstraction for memory safety analysis is very similar to the formal models
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used in CCured [53] and CSSV [22]. Miné [50] describes a combined analysis for

embedded control systems which incorporates points-to information. His analysis

makes implementation-specific (i.e., unsound in general) assumptions about the

layout of memory.
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Chapter 3

The Cascade Verification

Framework

Testing the ideas developed in this thesis required access to a flexible, powerful

tool for software verification. In collaboration with other members of the Analy-

sis of Computer Systems group at NYU (particularly Morgan Deters and Dejan

Jovanović), I led the development of Cascade, an open source, multi-language,

multi-paradigm verification platform. Cascade is suitable for a broad class of lan-

guages, ranging from low-level implementation languages, such as C, to high-level

modeling languages, such as Spl [47, 48].

The current version of Cascade is an total rewrite from a previous version

developed by Nikhil Sethi and Clark Barrett [62]. It is implemented in Java using

the Cvc3 SMT solver [7] as the default back-end solver.

Cascade is available for download from:

http://cs.nyu.edu/acsys/cascade
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Figure 3.1: The design of Cascade

3.1 Design Overview

Figure 3.1 illustrates the basic design of Cascade. Source code is processed by a

language front-end—implemented using the Rats! parsing framework [29]—into a

generic control-flow graph (CFG) representation. The analysis algorithms take a

domain-specific input (e.g., a deductive proof script, or a static path specification)

and operate on the CFG. The analysis can make use of a variety of back-end

provers and expression encodings.

The combination of different algorithms and encodings allows Cascade to be

used in a variety of different ways.

3.2 Cascade/C

Cascade/C is a tool for precise static error analysis of C programs, intended

for use in a multi-stage analysis. Since detailed, high-precision analysis scales

relatively poorly with the size of the input program, we assume that a coarse,
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void swap(int*x, int*y) {

*x = *x + *y;

*y = *x - *y;

*x = *x - *y;

}
(a)

<controlFile>

<sourceFile name="swap.c" id="1" />

<run>

<startPosition fileId="1" line="1" />

<endPosition fileId="1" line="5">

<assert><![CDATA[

orig(*x)==*y && orig(*y)==*x

]]></assert>

</endPosition>

</run>

</controlFile>
(b)

Figure 3.2: Example using Cascade/C.

over-approximate analysis will be used to rule out most simple errors, relying on

Cascade/C for errors where more precision is required.

Figure 3.2 illustrates the use of Cascade/C on a simple example. Fig-

ure 3.2(a) show the contents of the file swap.c and Fig. 3.2(b) is a control file

describing a run to check in the code. The control file uses a simple XML syn-

tax [67]. The run starts on Line 1 of the file (as specified by the startPosition

tag) and ends on Line 7 (as specified by the endPosition tag). At the end of the

run, Cascade/C will check the condition contained in the assert tag: that the

final value of *y is equal to the initial value of *x (i.e., the value at the start of the

run) and that the final value of *x is equal to the initial value of *y. The body of

the assertion is embedded in a CDATA section so that it can use standard C syntax

without XML escapes.

Cascade supports several different encodings for expressions and paths. For

example, arithmetic expressions can be encoded using either unbounded integers

or fixed-size bit vectors; the semantics of paths can be encoded using first-order

formulas to represent the strongest post-condition or using functional expressions

to represent a state transformer. The encodings can be combined according to the

user’s preference.
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m1 = m0[m0[&x] 7→ m0[&x] +m0[&y]] ∧
m2 = m1[m1[&y] 7→ m1[&x]−m1[&y]] ∧
m3 = m2[m2[&x] 7→ m2[&x]−m2[&y]] =⇒

m0[m0[&x]] = m3[m3[&y]] ∧m0[m0[&y]] = m3[m3[&x]]

(a) First-order encoding

(λm.m0[m0[&x]] = m[m[&y]] ∧m0[m0[&y]] = m[m[&x]])

((λm.m[m[&x] 7→ m[&x]−m[&y]])

((λm.m[m[&y] 7→ m[&x]−m[&y]])

((λm.m[m[&x] 7→ m[&x] +m[&y]]) m0)))

(b) Functional encoding

Figure 3.3: Cascade encodings of the path in Fig. 3.2

Figure 3.3 illustrates two encodings for the path in Fig. 3.2. We use &x and &y

to denote the location of variables x and y, respectively, in memory. The encoding

of Fig. 3.3(a) represents the path using a first-order formula. The assertion is valid

if it is implied by the strongest post-condition of the path. The changing state

is represented using fresh variables (m0, m1, etc.). The encoding of Fig. 3.3(b)

represents the path as a function encoding the state transformation; the assertion

is valid if it satisfied by any state produced by the transformer. In both cases, we

omit background assumptions necessary to avoid spurious counterexamples (e.g.,

that &x and &y are distinct).

Note that the encodings in Fig. 3.3 are essentially equivalent. However the

back-end prover may treat equalities differently from functional transformations;

this may affect performance. The encoding will also affect the form of the coun-

terexample produced for invalid assertions. For example, in our experience, the
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functional encoding yields better performance and more compact counterexamples

using the Cvc3 back-end.

3.3 Cascade/Spl

Cascade/Spl is a tool for deductive verification of safety and liveness properties

of programs in the Simple Programming Language (Spl). The use of deductive ver-

ification allows the tool the flexibility to support infinite-state and parameterized

Spl programs; it also places some burden on the user to properly direct the tool

using invariants and ranking functions. Cascade/Spl was originally intended to

support a graduate course in deductive verification at NYU, replacing the use of

Tlv in earlier offerings of the course. The tool is unique because it combines the

following three features:

• Automated verification. Cascade/Spl supports fully automatic proof

generation using state-of-the-art SMT solver back-ends. This verification is

performed on high-level Spl programs, rather than low-level models.

• Support for parameterized systems. Cascade/Spl supports param-

eterized systems, in which the number of parallel execution processes is not

known a priori (e.g., a token ring system with N processes, where N is

unbounded).

• Open-source and extensible. Cascade/Spl is implemented as part

of the Cascade platform. Cascade/Spl can serve as an example for the

development of other useful language modules. In our experience, students

have been able to make useful contributions to the system over the course of

a single semester.
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y : integer where y = 1

fN
i=1 P [i] ::


`0 : loop forever do

`1 : Non-critical
`2 : request y
`3 : Critical
`4 : release y




(a)

Ω =⇒ ϕ (I1)

ϕ ∧ ρ =⇒ ϕ′ (I2)

ϕ =⇒ p (I3)
� p

(b)

Figure 3.4: The Mux-Sem program for N processes.

Cascade/Spl currently supports a subset of the SPL language, including

basic types, arrays, parameterized processes and sub-processes. Implementation

of additional features (e.g., modules, lists, and channels) is ongoing work.

3.3.1 SPL

Figure 3.4(a) illustrates a simple parameterized Spl program: Mux-Sem over N

processes. The mutual exclusion property for this program is

∀i, j : i 6= j ∧ at `3[i] =⇒ ¬at `3[j] (3.1)

where at `3[i] is the predicate that holds when the program counter of process i

is at `3. It is well known (e.g., [48, §1.2]) that (3.1) is not an inductive invariant

of Mux-Sem; however, the invariance of (3.1) can be established by an inductive

strengthening, i.e., an inductive invariant ϕ that implies (3.1), using the deductive

rule Inv (Fig. 3.4(b)). The rule states, simply, that if: (I1) ϕ holds in the initial

states, (I2) is preserved by the transition relation, and (I3) implies p, then p is

invariant (� p).
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One possible inductive strengthening of (3.1) is:

y ≥ 0 ∧ [ ∀i, j : i 6= j =⇒ at `3,4[i] + at `3,4[j] + y = 1 ] (3.2)

This invariant has the advantage of belonging to the array property fragment of the

theory of arrays [10], for which there is a complete decision procedure implemented

in Cvc3. (In general, invariants expressed in a complete fragment will guarantee

correct counterexamples, which in turn is crucial in guiding the user toward correct

invariants.)

In order to check the invariant (3.1) using Inv, Cascade/Spl first builds the

fair discrete system (FDS) [47, 48] for Mux-Sem, which collects the state variables

of Mux-Sem, its initial state Ω, its transition relation ρ, and the justice (weak

fairness) and compassion (strong fairness) requirements. The components of the

FDS are encoded as first-order formulas. We use the components to construct

queries validating the premises of the Inv rule applied to the given invariant and

inductive strengthening (Fig. 3.5). Cascade/Spl can prove mutual exclusion for

Mux-Sem using the rule Inv with the strengthening (3.2) in less than 5 seconds.

3.3.2 Related work

Cascade/Spl is intended as a successor to Tlv [58]. Tlv allows for both deduc-

tive and algorithmic verification of finite systems expressed as Smv models [49].

Cascade/Spl focuses on deductive verification, and can handle infinite-state and

parameterized systems expressed as high-level Spl programs. Cascade/Spl does

not yet have a high-level scripting language like Tlv-Basic; instead, verification

goals are expressed through a Java API.
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public static ValidityResult inv(StateProperty p,

StateProperty phi,

TransitionSystem tsn) {

StateProperty i1 = tsn.initialStates().implies(phi);

ValidityResult res = tsn.checkValidity(i1);

if (!res.isValid()) {

System.out.println("Premise I1 is not valid.");

return res;

}

StateProperty i2 = phi.and(tsn.transitionRelation()).implies(phi.prime());

res = tsn.checkValidity(i2);

if (!res.isValid()) {

System.out.println("Premise I2 is not valid.");

return res;

}

StateProperty i3 = phi.implies(p);

res = tsn.checkValidity(i3);

if (!res.isValid()) {

System.out.println("Premise I3 is not valid.");

return res;

}

System.out.println("* * * Assertion p is invariant.\n");

return res;

}

Figure 3.5: A portion of the implementation of Inv in Cascade/Spl.
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The STeP [8] and Pvs [56] tools provide deductive verification facilities in

an interactive setting. In contrast, Cascade/Spl is designed to provide fully

automated operation. In practice, this means that the proofs generated by Cas-

cade/Spl are limited by the completeness of the prover’s decision procedures.

Other tools for deductive verification include Krakatoa [25], for Java programs,

and Caduceus [25] and Jessie [52], for C programs. Cascade/Spl handles higher-

level specifications in Spl, which allows for reasoning about parallelism and pa-

rameterized systems.
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Chapter 4

Verifying Low-Level Datatypes

Packet-level networking code is critical to communications infrastructure and vul-

nerable to malicious attacks. This code is typically written in low-level languages

like C or C++. Packet fields are “parsed” using pointer arithmetic and bit-wise

operators to select individual bytes and sequences of bits within a larger untyped

buffer (e.g., a char array). This approach yields high-performance, portable code,

but can lead to subtle errors.

An alternative is to write packet-processing code in special-purpose high-level

languages, e.g., binpac [57], Melange [46], Morpheus [1], or Prolac [38]. These

languages typically provide a facility for describing network packets as a set of

nested, and possibly recursive, datatypes. The language compilers then produce

low-level packet-processing code which aims to match or exceed the performance

of the equivalent hand-coded C/C++. This requires an expensive commitment to

rewriting existing code.

We propose a new approach, one which fuses the power of higher-level datatypes

with the convenience and efficiency of legacy code. The key idea is to use a high-

level description of “packet types” as the basis for a specification, not an imple-
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mentation. Instead of using a compiler to try to reproduce a performant imple-

mentation, we can annotate the existing implementation to indicate the intended

high-level semantics, then verify that the implementation is consistent with those

semantics. We make use of the theories of inductive datatypes, bit vectors, and

arrays in Cvc3 to encode the relationship between the high-level and low-level

semantics. Using this encoding, it is possible to verify that the low-level code

represents, in essence, an implementation of a well-typed high-level specification.

In this chapter, we will present our proposed notation for defining packet

datatypes and stating datatype invariants in C code. We describe the transla-

tion of the datatype definition and code assertions into verification conditions in

the Cvc3 SMT solver. The encoding relies crucially on automatically generated

separation invariants, which allow Cvc3 to efficiently reason about recursive data

structures without producing false assertion failures due to spurious aliasing re-

lationships. Finally, we present a case study applying our approach to real code

from the BIND DNS server. We are able to verify high-level data invariants of

the code with reasonable efficiency. To our knowledge, no other verification tool

is capable of automatically proving such datatype invariants on existing C code.

4.1 A Motivating Example

Figure 4.1(a) illustrates the definition of a simple, high-level list datatype in a

notation similar to that of languages like ML and Haskell. The type has two

constructors: cons, which creates a list node with an associated data array and a

cdr field representing the remainder of the list, and nil, which represents an empty

list. Figure 4.1(b) gives the high-level pseudo-code for a function that computes

the length of a list, defined as the number of cons values encountered via cdr
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type List =

cons {

count: Nat,

data: Int array,

cdr: List

}

| nil
(a)

Nat list_length(List lst) {

Nat count = 0;

while( isCons(lst) ) {

count++;

lst = cdr(lst);

}

return count;

}
(b)

type List =

cons {

tag:1 = 0b1,

count: 7,

data: u_char[count],

cdr: List

}

| nil {

tag:8 = 0x00

}
(c)

u_int list_length(const u_char *p) {

u_int n, count = 0;

while( (n = *p++) & 0x80 ) {

{ isCons(prev(p)) }

count++;

p += n & 0x7f;

{ toList(p) = cdr(prev(p)) }

}

if( n != 0 ) // malformed list

return (-1);

{ isNil(p) }

return count;

}
(d)

Figure 4.1: Defining and using a simple linked list datatype.

“links” before a nil. The code simply checks whether lst is a cons value using

the “tester” function isCons. If it is, it increments the length and updates lst

using the cdr field. If it is not, it returns the computed length.

In a high-level language, the compiler is given the freedom to implement data-

types like List as it chooses, typically using linked heap structures to represent

individual datatype values. The programmer concentrates on the high-level seman-

tics of the algorithm, allowing the compiler to encode and decode the data. By

contrast, in packet processing code, the datatype is defined in terms of an explicit

data layout. The data is “packed” into a contiguously allocated block of memory.
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The high-level algorithm and the encoding and decoding of data are intertwined.

The List type in Fig. 4.1(c) illustrates a simple “packed” linked list implemen-

tation. Like the definition in Fig. 4.1(a), List is a union type with two variants.

However, instead of simply declaring a set of data fields, each variant explicitly

defines its own representation. The representation of a cons value is: a 1-bit tag

field (the highest-order bit of the first byte), a 7-bit count field (the lower-order

bits of the first byte), a data field of exactly count bytes, and another List value

cdr, which follows immediately in memory. The value of tag is constrained by

the constant bit vector value 0b1. The constraint requires the tag bit of a cons

value always to be 1. The representation of a nil value has a similar constraint:

a nil value consists of a single 8-bit tag field, which must be 0x00. The fact that

the tag bit of a cons value must be 1 while the bits of a nil value must all be 0

ensures that we can unambiguously decode cons and nil values. (A full grammar

for “packed” datatype definitions is given in Section 4.2.1.)

Figure 4.2 illustrates the interpretation of a sequence of bytes as a List value.

The first byte (0x82) has its high bit set; thus, it is a cons value. The low-order

bits tell us that count is 2; thus, data has two elements: 0x01 and 0x02. The cdr

field is another List value, encoded starting at the next byte. This byte (0x81) is

also a cons value, since it also has its high bit set. Its count field is 1, its data

field the single element 0x03. Its cdr is the List value at the next byte (0x00), a

nil value.

Figure 4.1(d) gives a low-level implementation of the length function, which

operates over the implicit List value pointed to by the input p. (The bracketed,

italicized portions of the code are verification annotations, which are described

in Section 4.2.3.) Note that the structure of the function is very similar to the
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1 0000010 00000001 00000010 1 0000001 00000011 00000000

cons

cons

tag,count data cdr

tag,count data cdr

nil

Figure 4.2: The layout of a List value.

code in Fig. 4.1(b), but that high-level operations have been replaced by their

low-level equivalents—pointer arithmetic and bit-masking operations are used to

detect constructors and select fields. A notable addition is the if statement that

appears after the while loop. In the high-level code, we could assume that the

data was well-formed, i.e., that every list is either a cons or a nil value. In the

low-level implementation, we may encounter byte sequences which are not assigned

a meaning by the datatype definition—in this case a non-zero byte in which the

high bit is not set, which satisfies the data constraints of neither cons nor nil.

The function handles this erroneous case by returning an error code.

The challenge, in essence, is to prove that the low-level code in Fig. 4.1(d)

is a refinement of the high-level code in Fig. 4.1(b). To this end, we need to

build a bridge between the high-level semantics of the datatype and the low-level

implementation.

4.2 Our Approach

The verification process proceeds in four steps:

1. The programmer provides a datatype declaration, as in Fig. 4.1(c), defining

the high-level structure and layout of the data.
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2. Using the datatype declaration, we generate a set of Cvc3 declarations and

axioms encoding the relationship between the high-level type and its imple-

mentation.

3. The programmer adds code annotations specifying the expected behavior of

the low-level code, in terms of functions derived from the datatype definition.

4. We use the Cascade verification platform to translate the code and anno-

tations into a set of verification conditions to be checked by Cvc3. If all of

the verification conditions are valid, then the code satisfies the specification.

4.2.1 Datatype definition

Figure 4.3 gives the full grammar for datatype definitions. The notation for

datatype definitions is similar to that of disjoint union types in higher-level lan-

guages like ML and Haskell. There is an important distinction: unlike datatype

implementations generated by compilers, it is up to the user to ensure that the

encoding of values is unambiguous and consistent. The declaration should provide

all of the information needed both to encode a datatype value as a sequence of

bytes and to decode a well-formed sequence of bytes as a high-level datatype value.

A type consists of a set of constructors. Each constructor has a set of fields.

A field type is one of four kinds: a bit vector of constant integer size, a plain C

scalar type, an array of C type elements, or another datatype. (The syntax of C

type declarators is that of ANSI/ISO C [4].) Bit vectors and C types may have

value constraints. Bit vector constants are preceded by 0b (for binary constants)

or 0x (for hexadecimal constants). Arrays have a length: either a constant integer

or the value of a prior field—the declaration language supports a limited form of
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Type ::= type Id =Cons (| Cons)∗
Cons ::= Id { Field (,Field)∗ }
Field ::= Id :FieldType

FieldType ::= BvType | CType | ArrType | TypeId

BvType ::= IntConst (=BvConst)?

BvConst ::= 0b[01]+ | 0x[0-9a-fA-F]+

CType ::= CScalarType(=CConst)?

ArrType ::= CType [ArrLength]

ArrLength ::= IntConst | Id

TypeId ::= Id

Figure 4.3: Grammar for datatype definitions.

dependent types.

4.2.2 Translation to Cvc3

It is straightforward to translate the datatype definition into an inductive datatype

in the input language of Cvc3. The translation for the List datatype is given

in Fig. 4.4. We use Z+ to denote the type of natural numbers; BVk to denote

the type of bit vectors of size k (i.e., k-tuples of booleans); and (α, β) array to

denote the type of arrays with indices of type α and elements of type β. We use

N to denote the (platform-dependent) size of a pointer (i.e., the type of pointers

is BVN). For an array a, a[i] denotes the element of a at index i; similarly, for a

bit vector b, b[i] denotes the ith bit of b and b[j:i] denotes the extraction of bits

i through j (the result is a bit vector of size j − i + 1). The size of the result of

arithmetic operations on bit vectors is the size of the larger operand; the smaller

operand is implicitly zero-extended. When used in an integer context, bit vectors

are interpreted as unsigned.

The translation produces a Cvc3 datatype definition reflecting the data layout
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datatype List = cons { count : BV7, data : (BVN ,BV8) array, cdr : List }
| nil

| undefined

toList : (BVN ,BV8) array× BVN → List

sizeOfList : List → Z+

m : (BVN ,BV8) array

` : BVN

let x = toList(m, `) in

isCons(x) ⇐⇒ m[`][7] = 1 (ConsTest)

isNil(x) ⇐⇒ m[`] = 0 (NilTest)

isCons(x) =⇒ count(x) = m[`][6:0]

∧ (∀0 ≤ i < count(x). data(x)[i] = m[`+ i+ 1])

∧ cdr(x) = toList(m, `+ count(x) + 1)

(ConsSel)

sizeOfList(cons(count , data, cdr)) = 1 + count + sizeOfList(cdr) (ConsSize)

sizeOfList(nil) = 1 (NilSize)

sizeOfList(undefined) = 0 (UndefSize)

Figure 4.4: Datatype definition and axioms for the type List

of the declaration augmented with an explicit undefined value. Note that the tag

fields are omitted from the definition—since they are constrained by constants,

they are only needed to decode the high-level data value.

Cvc3 automatically generates a set of datatype testers and field selectors. The

testers isCons , isNil , and isUndefined are predicates that hold for a List value x

iff x is, respectively, a cons , nil , or undefined value. The selectors count , data, and

cdr are functions that map a List value to the value of the corresponding fields.

Note that the definition of List itself does not include any data constraints on

field values. These constraints are introduced by the function toList , which maps

a pointer-indexed array of bytes m and a location ` to the List value represented
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by the sequence of bytes starting at ` in m. The axioms ConsTest and NilTest

enforce the data constraints on the tag fields of cons and nil, respectively. The

axiom ConsSel represents the encoding of the remaining fields of cons. Note that

there is no explicit rule for the value undefined : if the data constraints given in

ConsTest and NilTest do not apply, then the only remaining value that toList

can return is undefined .

The function sizeOfList maps a List value to the size of its encoding in bytes.

By convention, the size of undefined is 0.

4.2.3 Code assertions

The functions generated by the Cvc3 translation are exposed in the assertion lan-

guage as functions that take a single pointer argument. In the case of the function

toList, the additional array argument, representing the configuration of memory,

is introduced in the verification condition translation. The pointer argument of the

other functions is implicitly converted to a List value using toList. The assertion

language also provides auxiliary functions init and prev, mapping variables to

their initial values in, respectively, the current function and loop iteration.

Returning to the code in Fig. 4.1(d), the bracketed, italicized assertions state

the expected high-level semantics of the implementation. Specifically, they assert:

• The loop test succeeds only for cons values.

• The body of the loop sets p to the cdr of its initial value in each loop iteration.

• If the value is well-formed, then p points to a nil value when the function

returns.
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The functions representing testers rely on the data constraints of the type, e.g.,

p points to a cons value iff the byte sequence pointed to by p satisfies the data

constraints of cons (i.e., the high bit of *p is set). The functions representing

testers rely on the structure of the type, e.g., toList(q)==cdr(p) iff p points to

a cons value and q==p+count(p)+1.

Loops can be annotated with invariants: we can separately prove initialization

and preservation of the invariant, and that each assertion in the body of the loop

is valid when the invariant is assumed on entry.

4.2.4 Verification condition generation

The final verification step is to use the Cascade verification platform to translate

the code and assertions into formulas that can be validated by Cvc3. Verification

is driven by a control file, which defines a set of paths to check and allows anno-

tations and assertions to be injected at arbitrary points along a path. Each code

assertion is transformed into a verification condition, which is passed to Cvc3 and

checked for validity. For each condition, Cvc3 will return “valid” (the condition

is always true), “invalid” (the condition is not always true), or “unknown” (due to

incompleteness, Cvc3 could not prove invalidity). Cascade returns “valid” for

a path iff Cvc3 returns “valid” for every assertion on the path. If Cvc3 returns

“invalid” or “unknown” for any assertion, Cascade returns “invalid”, along with

a counterexample.

Note 4.1. Since the background axioms that define datatypes are universally quan-

tified, deciding validity of the generated verification conditions is undecidable in

general. Cvc3 will never return “invalid” for any verification condition that it

cannot prove valid; instead, it will return “unknown” when a pre-determined in-
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stantiation limit is reached. There are fragments of first-order logic that are decid-

able with instantiation-based algorithms [28]. Encoding the datatype assertions in

a decidable fragment of first-order logic is a subject for future work.

Cascade supports a number of encodings for C expressions and program se-

mantics. For datatype verification, we make use of a bit vector encoding, which is

parameterized by the platform-specific size of a pointer and of a memory word.

An additional consideration is the memory model used in the verification con-

dition. The memory model specifies the interpretation of pointer values and the

effect of memory accesses (both reads and writes) on the program state. A mem-

ory model may abstract away details of the program’s concrete semantics (e.g.,

by discarding information about the precise layout of structures in memory) or

it may refine the concrete semantics (e.g., by choosing a deterministic allocation

strategy). We discuss the memory model in detail in the next section.

4.3 Memory Model

In order to accurately reflect the datatype representation, we require a memory

model that is bit-precise. At the same time, to avoid a blow-up in verification

complexity and overly conservative results, we would like a relatively high-level

model that preserves the separation invariants of the implementation. To this end,

we define a memory model based on separation analysis [33, 59] that we call a

partitioned heap.

The flat model. First, we will define for comparison a simple model which is

self-evidently sound. A flat memory model interprets every pointer expression as

a bit vector of size N . Every allocated object in the program is associated with a
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region of memory (i.e., a contiguous block of locations) distinct from all previously

allocated regions. The state of memory is modeled by a single pointer-indexed

array m. The value stored at location ` is thus m[`].

Using the flat memory model, we can translate the first assertion in Fig. 4.1(d)

into the verification condition

m1 = m0[&p 7→ m0[&p] + 1] ∧

m2 = m1[&n 7→ m0[m0[&p]]] ∧m2[&n][7] =⇒

isCons(toList(m2,m0[&p]))

where we use &x to denote the location in memory of the variable x (i.e., its lvalue)

and a[i 7→ e] to denote the update of array a with element e at index i. Assuming

&p, &n, and m[&p] are distinct, the validity of the formula is a direct consequence

of the axiom ConsTest.

The flat model accurately represents unsafe operations like casts between in-

compatible types and bit-level operations on pointers. However, it is a very weak

model—its lack of guaranteed separation between objects makes it difficult to prove

strong properties of data-manipulating programs.

Example 4.1. Consider the Hoare triple

{ toList(q)==cdr(p) } i++ { toList(q)==cdr(p) }

where p and q are known to not alias i. In a flat memory model, this is interpreted
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as

toList(m0,m0[&q]) = cdr(toList(m0,m0[&p])) ∧

m1 = m0[&i 7→ m0[&i] + 1] =⇒

toList(m1,m1[&q]) = cdr(toList(m1,m1[&p]))

Since toList is defined axiomatically using recursion (see Fig. 4.4), it is not imme-

diately obvious that the necessary lemma

toList(m0,m0[&p]) = toList(m1,m1[&p])

is implied (similarly for q). Even if p and q can never point to i, we cannot rule

out the possibility that the List values pointed to by p and q depend in some way

on the value of i. Now, suppose we add the assumption

allocated(p,p+sizeOfList(p)),

where allocated(x,y) means that pointer x is the base of a region of memory,

disjoint from all other allocated regions, bounded by pointer y. Even then, the

proof of the assertion relies on the following theorem, which is beyond the capability

of automated theorem provers like Cvc3 to prove:

(∀y : x ≤ y ≤ x+ sizeOfList(toList(m0, x)) : m0[y] = m1[y]) =⇒

toList(m0, x) = toList(m1, x)

What we require is a separation invariant allowing us to apply the “frame rule”
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of separation logic [60, 54]:

{ toList(q)==cdr(p)*i==v } i++ { toList(q)==cdr(p)*i==v + 1 }

where * denotes separating conjunction: A*B holds iff memory can be partitioned

into two disjoint regions R and R′ where A and B hold, respectively.

The partitioned model. The separation invariants we need can be obtained

using separation analysis [33, 59]. The analysis can be understood as the inverse

of may-alias analysis [40, 41]: if pointers p and q can never alias, then the objects

they point to must be separated (i.e., they occupy disjoint regions of memory).

The output of the separation analysis is a partition P = {P1, . . . , Pk}, where

each Pi represents a disjoint region of memory, and a map from pointer expressions

to regions—if expression E is mapped to partition Pi, then E can only point to

objects allocated in region Pi. If the separation analysis maps pointers expressions

E and E ′ to different partitions, then E and E ′ cannot be aliased in any well-

defined execution of the program.

A P -partitioned memory model for partition P = {P1, . . . , Pk} interprets every

pointer expression as a pair (`, i) ∈ BVN × Z+, where ` is a location and i is

a partition index. The state of memory is modeled by a collection of pointer-

indexed arrays 〈m1, . . . ,mk〉. The location pointed to by pointer expression (`, i)

is the array element mi[`].

Example 4.2. The program in Fig. 4.1(d) can be divided into two partitions. The

first partition contains the parameter p and local variables n and size. The second

partition contains the object pointed-to by p. We represent the two partitions by

two memory arrays, s and h, respectively. Thus, the value of the variable n is

represented by the array element s[&n]; the value of the expression *p is represented

by the array element h[s[&p]].
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A partitioned memory model solves the problem of Example 4.1 by isolating

the List value in its own partition:

h0 6= s0 ∧ toList(h0, s0[&q]) = cdr(toList(h0, s0[&p])) ∧

s1 = s0[&i 7→ s0[&i] + 1] =⇒

toList(h0, s1[&q]) = cdr(toList(h0, s1[&p]))

Given that &p, &q and &i are distinct, the formula is trivially valid.

We say a program is memory safe if all reads and writes through pointers occur

only within allocated objects. Like pointer analysis, the soundness of the separa-

tion analysis is conditional on memory safety. Thus, the soundness of verification

using a partitioned memory model will likewise be conditional on memory safety.

It may seem questionable to attempt to verify a program using information

which depends for its correctness on prior verification of the same program. In the

next section, we will show that a SafeDeref-sound combination is possible. It is

thus essential that the verification conditions include assertions that establish the

memory safety of the statements along each path in the program.

In our experience, a partitioned memory model can make an order-of-magnitude

difference in verification time compared to a flat memory model—indeed, proper-

ties are provable by Cvc3 using a partitioned model that cannot be proved using

a flat model (see Section 4.5.1).
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4.4 Soundness

We will now consider the soundness of the partitioned memory model. For the

purposes of this section, we will set aside the bit-precise semantics and return to

the more abstract semantics of Section 2.1.

We will define a partitioned analysis which takes as input the results of a

separation analysis. The separation analysis will be used to split the memory

state into a collection of distinct memories and to assign each pointer expression

in the program a unique memory to which it refers. We can thus isolate the effects

of memory operations and simplify the verification process.

Note 4.2. Demonstrating the soundness of the bit-precise interpretation is a sim-

ple matter of projecting the set Vals to bit vectors of size N in both the concrete

and abstract semantics. Since integers and locations would not necessarily be

structurally distinct, this would require stricter type safety assumptions. Since

the projection would not necessarily be injective in the case of out-of-bounds lo-

cations, SafeDeref would be a trace property, ensuring that no location value is

computed using ill-defined operations. We beg the reader’s indulgence in eliding

these complex but inconsequential details.

4.4.1 Separation Analysis

A separation environment R is a triple (R, region, rpoint), where:

• R is a finite set of memory regions ;

• region : H→ R maps homes to regions; and

• rpoint : V → R is a partial function mapping variables to the regions they

point to.
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We lift region to map locations in the natural way: region(h[i]) = region(h).

When it is convenient, we use regionR and rpointR to refer to the respective

components of the separation environment R. We denote the set of separation

environments by Sep.

The concretization function γSep maps a separation relation to the set of mem-

ories where the separation invariants hold.

γSep(R) = {m | ∀x, r, l : rpointR(x) = r ∧m(x) = l ∧ l is in-bounds =⇒

regionR(l) = r}

The set of separation states is the set of pairs (p,R), where p ∈ L represents

a program position and R is a separation environment. The result of a separation

analysis is a set of separation states.

We say a set of separation states Q is well-formed if the following properties

hold:

• The set of regions R is the same for every environment in Q.

• The map region is the same for every environment in Q.

• There is at most one separation state for each program position in Q.

Well-formedness guarantees that the set of states is consistend—for example, it

prevents the analysis from “moving” a variable from one region to another at

different program locations. In the remainder of this chapter, we will assume that

all sets of separation states are well-formed.
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4.4.2 The Partitioned Analysis

The partitioned analysis will take as input set of separation states Q and will use

as its state, instead of a single memory, a vector of memories, one for each region

r in the separation environments of Q. We denote by ~mR
h the memory associated

with the region regionR(h) in vector ~m. We extend this notation to locations and

variables in the natural way, e.g., ~mR
l and ~mR

x . We denote by ~mR
*x the memory

associated with the region rpointR(x) in ~m.

The concretization function γR maps a vector of memories ~m to the set of

memories that agree with ~mR
l at all in-bounds locations l. I.e.,

γR(~m) = {m | ∀l ∈ L : l is in-bounds =⇒ m(l) = ~mR
l (l)}

Figure 4.5 defines the interpretations EK and postK of, respectively, expressions

and statements. The operators ⊕̃ and Ẽ denote the semantic operators, just as in

Fig. 2.3 (page 20).

We now define the partitioned analysis, parameterized by a set of separation

states.

Definition 12. The analysis generator K̃ maps a set of separation environments

Q to the partitioned analysis K̃〈Q〉 defined by the parameterized interpretations

ĨK〈Q〉[P ] = {(en, ~m) | ∀l ∈ L,m ∈ ~m : m(l) is not a location}

F̃K〈Q〉[P ](p, ~m) =
⋃

(p,S,p′)∈τ

⋃
(p,R)∈Q

postK(~m,R, p′, S)

The concretization function for the resulting analysis, γK̃〈Q〉(~m), is defined as
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the sum of the concretizations defined by the separation environments in Q:

γK̃〈Q〉(p, ~m) =
⋃

(p,R)∈Q

{(p,m) | m ∈ γR(~m)}

Lemma 4.1. Let R be a separation environment, ~m a vector of memories, m a

(single) memory, and x a variable. If m is in both γSep(R) and γR(~m) and m(x)

is an in-bounds location l, then m(l) is equal to ~mR
*x(l).

Proof. By the definition of γSep , regionR(l) must be equal to rpointR(x). Hence,

~mR
*x is equal to ~mR

l . By the definition of γR, m(l) must be equal to ~mR
l (l). Hence,

m(l) is equal to ~mR
*x(l).

Lemma 4.2. Let R be a separation environment, ~m a vector of memories, and m

a (single) memory. If m is in both γSep(R) and γR(~m), then EK(~m,R,E) equals

EC(m,E).

Proof. We proceed by cases on E:

• E = n or E = &x. These cases are trivial.

• E = x, E = x ⊕ y, or E = x E y. By the definition of γR, m(x) and m(y)

must be equal to ~mR
x (x) and ~mR

y (y), respectively. Hence, EK(~m,R,E) will

always be equal to EC(m,E) in these cases.

• E = *x. By the definition of γR, m(x) must be equal to ~mR
x (x). If m(x) is

undefined, not a location, or out of bounds, then the property holds trivially.

Assume that m(x) is an in-bounds location l. By the definition of γSep ,

regionR(l) must be equal to rpointR(x) (and, thus, rpointR(x) must be

defined). It suffices to show that ~mR
*x(l) is equal to m(l). This follows from

Lemma 4.1.
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This shows equality for EK(~m,R,E) and EC(m,E).

Lemma 4.3. ĨK〈Q〉 is sound for every set of separation states Q.

Proof. Let P be a program and Q a set of separation states. Let c = (en,m) be a

concrete state in IC[P ]. We must show that there is a state (en, ~m) in ĨK〈Q〉 that

over-approximates c.

Let ~m be a vector of memories, with each component of ~m equal to m. Since

m and ~m agree at all locations—in particular, all in-bounds locations—(en, ~m)

over-approximates c. Since the state c is in IC[P ], m(l) is not a location, for all

locations l. Hence, ~mR
l (l) is not a location, for all locations l, and (en, ~m) is in

ĨK〈Q〉. This shows soundness for ĨK〈Q〉.

Lemma 4.4. F̃K〈Q〉 is γSep(Q)-sound for every set of separation states Q.

Proof. Let P be a program and Q a set of separation states. We must show

F̃K〈Q〉[P ](p, ~m) over-approximates FC[P ](p,m) whenever (p,m) is in both γSep(Q)

and γK̃〈Q〉(p, ~m).

Take concrete states c = (p,m), c′ = (p′,m′), abstract state a = (p, ~m), and

statement S such that c is in both γK̃〈Q〉(p, ~m) and γSep(Q) and c′ is an S-successor

of c. Since Q is well-formed, there is exactly one separation state in Q for location

p. Let R be the separation environment associated with that state. By definition,

m is in both γR(~m) and γSep(R).

It suffices to show that there is some ~m′ in F̃K〈Q〉[P ](~m,R, p′, S) such that m′

is in γK̃〈Q〉(~m
′). We proceed by cases on S:

• S = x := E. By Lemma 4.2, E(m,E) and EK(~m,R,E) are equal. If they are

both ⊥, then the property is trivial. Assume they are not both ⊥. Then,
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m′ = m[x 7→ v] for some value v in E(m,E) and there exists some ~m′ equal

to ~m[~mR
x 7→ ~mR

x [x 7→ v]]. By definition, m′ is in γK̃〈Q〉(~m
′).

• S = *x := E. Assume that ~mR
x (x) is an in-bounds location value l, regionR

is defined for x, and EK(~m,R,E) is not equal to ⊥; otherwise, the property

is trivial. By the definition of γR, m(x) must also be l. Since m is in γSep(R),

we have also that regionR(l) is equal to rpointR(x).

By the definition of postC , m′ must be of the form m[l 7→ v], for some v

in EC(m, p,E). By Lemma 4.2, there exists some ~m′ of the form ~m[~mR
*x 7→

~mR
*x[l 7→ v]] in F̃K〈Q〉[P ](~m,R, p′, S) . By definition, m′ is in γR(~m′) if m′(l′)

is equal to ~m′Rl′ (l′) for all in-bounds locations l′. Since m is in γR(~m), it

suffices to show that ~m′R*x is equal to ~m′Rl . This is immediate, since regionR(l)

is equal to rpointR(x).

• S = [E]. By Lemma 4.2, E(m,E) and EK(~m,R,E) are equal. The property

holds trivially.

This shows γSep(Q)-soundness for F̃K〈Q〉.

Theorem 4.5. The analysis generator K̃ is sound.

Proof. By Definition 7, Theorem 1.4, Lemma 4.3, and Lemma 4.4.

4.5 Case Study: Compressed Domain Names

To demonstrate the utility of our approach, we will describe a more complex appli-

cation, taken from real code. We will show the definition of a real-world datatype,

the annotations for a function operating on that datatype, and the results of using

Cascade to verify the function.
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type Dn =

label {

tag:2 = 0b00,

len:6 != 0b000000,

name:u_char[len],

rest:Dn

}

| indirect {

tag:2 = 0b11,

offset:14

}

| nullt {

tag:8 = 0x00

}

Figure 4.6: Definition of the Dn datatype.

A definition for the datatype Dn, representing an RFC 1035 compressed domain

name [51], is given in Fig. 4.6. Dn is a union type with three variants: label,

indirect, and nullt. The representation of a label value is: a 2-bit tag field

(which must be zeroes), a 6-bit len field (which must not be all zeroes), a name

field of exactly len bytes, and another Dn value rest, which follows immediately

in memory. An indirect value has a 2-bit tag (which must be 0b11) and a 14-bit

offset. A nullt value has only an 8-bit tag, which must be zero. The constraints

on the tag fields of label, indirect, and nullt allow us to distinguish between

values.

Consider the function ns name skip in Fig. 4.7. The low-level pointer and

bit-masking operations represent the traversal of the high-level Dn data structure.

The correctness of the implementation is properly expressed in terms of that data

structure.

In terms of the type Dn, the code in Fig. 4.7 is straightforward. The pointer

cp, initialized with the value pointed to by the parameter ptrptr, points to a Dn
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1 #define NS_CMPRSFLAGS (0xc0)

2

3 int

4 ns_name_skip(const u_char **ptrptr, const u_char *eom) {

5 { allocated(*ptrptr, eom) }

6 const u_char *cp;

7 u_int n;

8

9 cp = *ptrptr;

10 { @invariant: cp ≤ eom =⇒
11 cp + sizeOfDn(cp) = init(cp) + sizeOfDn(init(cp)) }

12 while (cp < eom && (n = *cp++) != 0) {

13 /* Check for indirection. */

14 switch (n & NS_CMPRSFLGS) {

15 case 0: /* normal case, n == len */

16 { isLabel(prev(cp)) }

17 cp += n;

18 { rest(prev(cp)) = toDn(cp) }

19 continue;

20 case NS_CMPRSFLGS: /* indirection */

21 { isIndirect(prev(cp)) }

22 cp++;

23 break;

24 default: /* illegal type */

25 __set_errno (EMSGSIZE);

26 return (-1);

27 }

28 break;

29 }

30 if (cp > eom) {

31 __set_errno (EMSGSIZE);

32 return (-1);

33 }

34 { cp = eom ∨ cp = init(cp) + sizeOfDn(init(cp)) }

35 *ptrptr = cp;

36 return (0);

37 }

Figure 4.7: The function ns name skip from BIND
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value. The loop test (Line 12) assigns the first byte of the value to the variable

n and advances cp by one byte. If n is 0, then cp pointed to a nullt value and

the loop exits. Otherwise (Line 14), the switch statement checks the two most

significant bits of n—the tag field of a label or indirect value. If the tag field

contains zeroes (Line 15), cp is advanced past the label field to point to the Dn

value of the rest field. If the tag field contains ones (Line 20), cp is advanced past

the offset field and breaks the loop. The default case of the switch statement

returns an error code—the tag field was malformed. At the end of the loop, if cp

has not exceeded the bound eom, the value of cp is one greater than the address

of the last byte of the Dn value that cp pointed to initially. This is the contract

of the function: given a reference to a pointer to a valid Dn value, it advances the

pointer past the Dn value or to the bound eom, whichever comes first, and returns

0; if the Dn value is invalid, it returns -1.

Annotating the source code. The datatype definition is translated into an

inductive datatype with supporting functions and axioms, as in Section 4.2.2. The

translation generates testers isLabel , isIndirect , and isNullt ; selectors len, name,

rest , etc.; and the encoding functions toDn and sizeOfDn. Each of these functions

is now available for use in source code assertions, as in the bracketed, italicized

portions in Fig. 4.7.

The annotations in Fig. 4.7 also make reference to some auxiliary functions:

init(x) represents the initial value of a variable x in the function; prev(x) rep-

resents the previous value of a variable x in a loop (i.e., the value at the beginning

of an iteration).

On entry to the function (Line 5), we assume that the region pointed to by

*ptrptr and bounded by eom is properly allocated. To each switch case (Lines
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15 and 20), we add an assertion stating that the observed tag value (i.e, n &

NS CMPRSFLGS) is consistent with a particular datatype constructor (i.e., label or

indirect). (Note that prev(cp) refers to the value of cp before the loop test,

which has side effects). The loop invariant (Lines 10-11) states that cp advances

through the Dn data structure pointed to by init(cp)—in each iteration of the

loop, if cp has not exceeded the bound eom, it points to a Dn structure (per-

haps the “tail” of a larger, inductive value) that is co-terminal with the structure

pointed to by init(cp). On termination, the loop invariant implies the desired

post-condition: if no error condition has occurred, *ptrptr will point to the byte

immediately following the Dn value pointed to by init(cp)—the pointer will have

“skipped” the value. Note that we do not require an assertion stating that cp is

reachable from init(cp) via rest “pointers” to prove the desired property—the

property is provable using purely inductive reasoning.

Using the code annotations, Cascade can verify the function by generating

a set of verification conditions representing non-looping static paths through the

function. Fig. 4.8 gives an example of such a verification condition. It represents

the path from the head of the loop through the 0 case of the switch statement (Line

15), ending with the continue statement (Line 19) and asserting the preservation

of the loop invariant. (Note that we assume here that pointers are 8 bits. Larger

pointer values are easily handled, but the formulas are more complicated.) As in

Section 4.3, the verification condition uses a partitioned memory model with two

memory arrays, s and h: the values of local variables and parameters are stored

in s while the Dn value pointed to by cp is stored in h. Proposition (4.1) asserts

the loop invariant on entry. Propositions (4.2)–(4.5) represent the evaluation,

including effects, of the loop test. Proposition (4.6) represents the matching of the
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s0[&cp] > s0[&eom]

∨ s0[&cp] + sizeOfDn(toDn(h0, s0[&cp]))

= init(&cp) + sizeOfDn(toDn(h0, init(&cp))) (4.1)

s0[&cp] < s0[&eom] (4.2)

s1 = s0[&cp 7→ s0[&cp] + 1] (4.3)

s2 = s1[&n 7→ h0[s0[&cp]]] (4.4)

s2[&n] 6= 0 (4.5)

s2[&n][7 : 6] = 0 (4.6)

is label(toDn(h0, s0[&cp])) (4.7)

s3 = s2[&cp 7→ s2[&cp] + s2[&n]] (4.8)

rest(toDn(h0, s0[&cp])) = toDn(h0, s3[&cp]) (4.9)
s4[&cp] > s4[&eom]

∨s4[&cp] + sizeOfDn(toDn(h0, s4[&cp]))

= init(&cp) + sizeOfDn(toDn(h0, init(&cp))) (4.10)

Figure 4.8: The verification condition for preservation of the loop invariant in the
0 case of ns name skip.

switch case. Propositions (4.7)–(4.9) capture the body of the case block. Finally,

Proposition (4.10) (the proposition we would like to prove, given the previous

assumptions) asserts the preservation of the loop invariant.

4.5.1 Experiments

Table 4.1 shows the time taken by Cvc3 to prove the verification conditions gener-

ated by Cascade for ns name skip, using both the flat and partitioned memory

models. The times given are for a Intel Dual Core laptop running at 2.2GHz with

4GB RAM and do not include the time needed for separation analysis or verifi-

cation condition generation (which is trivial). Each VC represents a non-looping,

non-erroneous path to an assertion. The two Term VCs represent the loop exit

paths: Term (1) is the path where the first conjunct is false (cp >= eom); Term
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Table 4.1: Running times on ns name skip VCs.
Time (seconds)

Name Lines Flat Part.

Init 5–12 0.34 0.03
Case 0 (1) 12-16 13.94 0.05
Case 0 (2) 12-28 33.42 0.06
Case 0 (3) 12-19 * 0.12

Case 0xc0 (1) 12–14, 20–21 6.14 0.04
Case 0xc0 (2) 12–14, 20–23, 30, 34 * 0.07

Term (1) 12, 30, 34 0.63 0.06
Term (2) 12, 30, 34 * 0.05

(2) is the path where the first conjunct is true (cp < eom) and the second is false

(n == 0). The verification conditions marked with * for the flat memory model

timed out after two minutes—we believe that these formulas are not provable in

Cvc3 (indeed, they may not be valid in the flat model). All of the verification

conditions together can be validated using the partitioned memory model in less

than one second.

4.6 Related Work

Some early work on verification of programs operating on complex datatypes was

done by Burstall [12], Laventhal [44], and Oppen and Cook [55]. Their work

assumes that data layout is an implementation detail that can be abstracted away.

Our work here focuses on network packet processing code, where the linear layout

of the data structure is an essential property of the implementation.

More recently, O’Hearn, Reynolds, and Yang [54] have approached the problem

using separation logic [60, 34]. Given assumptions about the structure of the heap,

the logic allows for powerful localized reasoning. In this work, we use separation

analysis in the style of Hubert and Marché [33] and Rakamarić and Hu [59] to
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establish separation invariants, thus “localizing” the verification conditions.
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Conclusions

The work in this thesis grew out of a simple desire to incrementally improve the

state of the art in program verification. In order to do so, I first had to solve

several preliminary problems.

First came the question of soundness. In developing a verification tool for

C code, I soon came to realize I would need pointer analysis to make the tool

effective. In reviewing the literature on pointer analysis, I was frustrated to find

the soundness claims vague and imprecise. After careful study, I was able to

describe precisely the conditions under which a typical pointer analysis would

be sound, but this notion of conditional soundness did not correspond to any

notion of soundness commonly used in the static analysis community. This led to

the development of the framework presented in Chapter 1. In this thesis, I have

used the conditional soundness framework to precisely describe pointer analysis

combined with memory safety analysis (Chapter 2) and a memory partitioning

analysis combined with datatype analysis (Chapter 4). But the framework is by

no means restricted only to these domains. Many, if not most, program analyses

are sound only under certain assumptions about program behavior—for example,

many analyses assume the program is sequentially consistent, that integer overflow

does not occur, or that the program is free of floating point exceptions. The
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soundness claims of such analyses could be refined using the conditional soundness

framework I have described—it would be of significant benefit to the community

if they were.

Next came the issue of tool support. To advance the research and educational

goals of the Analysis of Computer Systems research group, Clark Barrett and Amir

Pnueli saw the need for a flexible, powerful, open source verification platform with a

state-of-the-art SMT solver back-end. With the help of other members of ACSys,

most especially Morgan Deters and Dejan Jovanović, I led the development of

Cascade to meet this need. The result is a software framework that enabled me

to pursue the research described in Chapter 4. I hope it will prove to be as useful

to future students and researchers.

With soundness results and tool support in hand, I began to experiment with

adding high-level datatype assertions to C code. The approach I took depended

crucially on the features of Cvc3—in particular, being able to the combine induc-

tive datatypes, bit vectors, arrays, and uninterpreted functions in a single formula.

Although the examples in Chapter 4 are modest, I believe this technique can scale

to several hundreds or thousands of lines of code. This research shows there are

real benefits to utilizing the full expressive power of SMT solvers in verification.

We are still a long way from push-button verification tools that can guarantee

that rockets, energy management systems, or medical devices will never fail in

harmful and costly ways. Indeed, tools of such power are a practical impossibility.

However, every day progress is being made in improving software quality using

formal methods. It is my hope that the work described in this thesis represents

some small contribution to that progress.
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