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ABSTRACT

Transactional memory is a programming abstraction intended to simplify the synchro-

nization of conflicting concurrent memory accesses without the difficulties associated

with locks. In the first part of this thesis we provide a framework and tools that allow

to formally verify that a transactional memory implementation satisfies its specification.

First we show how to specify transactional memory in terms of admissible interchanges

of transaction operations, and give proof rules for showing that an implementation satis-

fies its specification. We illustrate how to verify correctness, first using a model checker

for bounded instantiations, and subsequently by using a theorem prover, thus eliminating

all bounds. We provide a mechanical proof of the soundness of the verification method,

as well as mechanical proofs for several implementations from the literature, including

one that supports non-transactional memory accesses.

Procedural programs with unbounded recursion present a challenge to symbolic

model-checkers since they ostensibly require the checker to model an unbounded call

stack. In the second part of this thesis we present a method for model-checking safety

and liveness properties over procedural programs. Our method performs by first aug-

menting a concrete procedural program with a well founded ranking function, and then

abstracting the augmented program by a finitary state abstraction. Using procedure

summarization the procedural abstract program is then reduced to a finite-state system,

which is model checked for the property.
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INTRODUCTION

In this thesis we focus on two topics in system verification: verification of transactional

memories, and verification of recursive programs.

Multicore is becoming the mainstream architecture for microprocessor chips and it

requires developers to produce concurrent programs in order to gain full advantage of

the multiple number of processors. Concurrent programs, however, are hard to write

since they require careful coordination between threads that access the same memory

locations. Conventional lock-based solutions are difficult to compose, and when applied

incorrectly may introduce various faulty situations. Transactional memory [HM93b]

simplifies parallel programming by transferring the burden of concurrency management

from the programmers to the system designers, and enables safe composition of scalable

applications.

A transaction is a sequence of memory access operations that appears to be atomic:

the operations either all complete successfully (and the transaction commits), or none

completes (and the transaction aborts). Transactions run in isolation – each transaction

executes as if running alone on the system, without any interleaving with other trans-

actions. A conflict occurs when two transactions access the same memory location and

at least one writes to it. A conflict is resolved by aborting at least one of the conflict-

ing transactions. Implementations of transactional memories are often parameterized by

their properties. These may include the conflicts they are to avoid, when conflicts are de-
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tected, how they are resolved, when the memory is updated, whether transactions can be

nested, etc. Larus and Rajwar [LR07] survey nearly 40 implementations of transactional

memory in their comprehensive book on the subject.

In the first part of this thesis, we define an abstract model for specifying transac-

tional memory, represented by a fair state machine that is parameterized by a set of

admissible interchanges — a set of rules specifying when a pair of consecutive opera-

tions in a sequence of transactional operations can be swapped without introducing or

removing a conflict. We provide proof rules for verifying that an implementation satis-

fies a transactional memory specification. We demonstrate the method by first modeling

a small instantiation of a well-known transactional memory implementation in TLA+

[Lam02] and proving its correctness with the model checker TLC [Lam02]. Subse-

quently we construct a framework that allows for a mechanical formal verification using

the PVS-based theorem prover TLPVS [PA03]. We illustrate how to apply the framework

by presenting TLPVS proofs of three implementations from the literature. Finally, we

extend the model and the framework to allow the verification of transactional memory

implementations that support non-transactional memory accesses.

Procedural programs with unbounded recursion present a challenge to symbolic model-

checkers since they ostensibly require the checker to model an unbounded call stack. In

the second part of this thesis, we explore the integration of ranking abstraction [KP00b,

BPZ05], finitary state abstraction, procedure summarization [SP81], and model-checking

into a combined method for the automatic verification of linear temporal logic (LTL)

properties of infinite-state recursive procedural programs. While most components of
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the proposed method have been studied before, we reduce the verification problem to

that of symbolic model-checking. Furthermore, the method allows for application of

ranking and state abstractions while still relegating all summarization computation to

the model-checker.

The rest of this thesis is organized as follows: Chapter 1 provides a general back-

ground, describing fair discrete systems (FDS), linear temporal logic and temporal testers.

Chapter 2 begins with an overview of the conventional methods for concurrency control

and of transactional memory. It then provides preliminary definitions related to transac-

tions, and presents the concept of admissible interchanges and a specification model of

a transactional memory. It subsequently gives proof rules for verifying that implemen-

tations satisfy their specifications, and illustrates how to apply these rules using a model

checker and a theorem prover. The model is then extended to support non-transactional

memory accesses. Finally, related work, conclusions and future work are discussed.

Chapter 3 begins with an overview of predicate abstraction, ranking abstraction and pro-

grams, which are presented as transition graphs. It then illustrates a method for verifying

termination of procedural programs by computing abstractions and summarization, con-

structing a procedure-free FDS, and finally, model-checking. It also provides a method

for model-checking general LTL properties of recursive procedural programs. Finally, it

discusses related work and conclusions.
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1
BACKGROUND

This section begins by introducing the computational model that is used in this work,

fair discrete systems (FDS), which enables the representation of fairness constraints aris-

ing from both the system and the property. Next we present the specification language

for reactive systems linear temporal logic (LTL). Finally, to allow model checking LTL

formulas, we explain a method to construct temporal testers that is compositional in the

structure of the formula.

1.1 Fair Discrete Systems

The computation model, fair discrete systems (FDS) D : 〈V, Θ, ρ,J , C〉 [KP00a], con-

sists of the following components:

• V – A set of state variables over possibly infinite domains. A state of D provides

a type-consistent interpretation of the variables V . For a state s and a system

variable v ∈ V , we denote by s[v] the value assigned to v by the state s. Let Σ

denote the set of all states over V .

• Θ – The initial condition: An assertion characterizing all the initial states of the

FDS. A state is called initial if it satisfies Θ.

• ρ : A transition relation. This is an assertion ρ(V, V ′), relating a state s ∈ Σ to

4



its D-successor s′ ∈ Σ by referring to both unprimed and primed versions of the

state variables. We assume that every state has a D-successor.

• J = {J1, . . . , Jk} : A set of assertions expressing the justice (weak fairness)

requirements. The justice requirement J ∈ J stipulates that every computation

contains infinitely many J-states (states satisfying J).

• C = {〈p1, q1〉, . . . 〈pn, qn〉} : A set of assertions expressing the compassion (strong

fairness) requirements. The compassion requirement 〈p, q〉 ∈ C stipulates that ev-

ery computation containing infinitely many p-states also contains infinitely many

q-states.

For an assertion ψ, we say that a state s ∈ Σ is a ψ-state if s |= ψ.

Definition 1.1. A run of an FDS D is a possibly infinite sequence of states σ : s0, s1, . . .

satisfying the requirements:

• Initiality — s0 is initial, i.e., s0 |= Θ.

• Consecution — For each ` = 0, 1, . . ., the state s`+1 is a D-successor of s`. That

is, 〈s`, s`+1〉 |= ρ(V, V ′) where, for each v ∈ V , we interpret v as s`[v] and v′ as

s`+1[v].

Definition 1.2. A computation of D is an infinite run that satisfies:

• Justice — for every J ∈ J , σ contains infinitely many occurrences of J-states.

• Compassion – for every 〈p, q〉 ∈ C, either σ contains finitely many occurrences of

p-states, or σ contains infinitely many occurrences of q-states.
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A state s is said to be reachable if it participates in some run of D. An FDS D is said to

be feasible if it has at least one computation.

Definition 1.3. A synchronous parallel composition of systems D1 and D2, denoted by

D1‖|D2, is specified by the FDS D : 〈V, Θ, ρ,J , C〉, where

V = V1 ∪ V2, Θ = Θ1 ∧Θ2, ρ = ρ1 ∧ ρ2, J = J1 ∪ J2, C = C1 ∪ C2

Synchronous parallel composition is used for the construction of an observer systemD2,

which evaluates the behavior of another system D1. That is, running D1‖|D2 allows D1

to behave as usual while D2 evaluates it.

Definition 1.4. An asynchronous parallel composition of systems D1 and D2, denoted

by D1 ‖D2, is specified by the FDS D : 〈V, Θ, ρ,J , C〉, where

V = V1 ∪ V2, Θ = Θ1 ∧Θ2, ρ = (ρ1 ∧ pres(V2 − V1)) ∨ (ρ2 ∧ pres(V1 − V2)),

J = J1 ∪ J2, C = C1 ∪ C2

The predicate pres(U) stands for the assertion U ′ = U , implying that all the variables

in U are preserved by the transition. Asynchronous parallel composition represents the

interleaving-based concurrency which is the assumed concurrency in shared-variables

models.
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1.2 Linear Temporal Logic

As the language for specifying properties of systems we use linear-time temporal logic

(LTL) [MP92]. Assume an underlying (first-order) assertion language. A temporal for-

mula is constructed out of state formulas (assertions) to which we apply the boolean

operators ¬ and ∨ , the basic temporal future operators (Next) and U (Until), and

the temporal past operators, (Previous) and S (Since).

Denote true by T. Other temporal operators can be defined in terms of the basic ones as

follows:

p = T U p: Eventually

p = ¬ ¬p: Henceforth

pW q = p ∨ (pU q): Waiting-for, Unless, Weak Until

p = T S p: Sometimes in the past

p = ¬ ¬p: Always in the past

p B q = p ∨ (pSq): Back-to, Weak Since

A model for a temporal formula p is an infinite sequence of states σ : s0, s1, ... where

each state sj provides an interpretation for the variables of p. We define the notion of a

temporal formula p holding at a position j, j ≥ 0, in σ, denoted by (σ, j) |= p:

7



• For an assertion p,

(σ, j) |= p ⇐⇒ sj |= p

That is, we evaluate p locally on state sj .

• (σ, j) |= ¬p ⇐⇒ (σ, j) 6|= p

• (σ, j) |= p ∨ q ⇐⇒ (σ, j) |= p or (σ, j) |= q

• (σ, j) |= p ⇐⇒ (σ, j + 1) |= p

• (σ, j) |= pU q ⇐⇒ for some k ≥ j, (σ, k) |= q,

and for every i such that j ≤ i < k, (σ, i) |= p

• (σ, j) |= p ⇐⇒ j > 0 and (σ, j − 1) |= p

• (σ, j) |= pSq ⇐⇒ for some k ≤ j, (σ, k) |= q,

and for every i such that j ≥ i > k, (σ, i) |= p

This implies the following semantics for the derived operators:

• (σ, j) |= p ⇐⇒ (σ, k) |= p for some k ≥ j

• (σ, j) |= p ⇐⇒ (σ, k) |= p for all k ≥ j

• (σ, j) |= pW q ⇐⇒ (σ, k) |= pU q or (σ, k) |= p

• (σ, j) |= p ⇐⇒ (σ, k) |= p for some k, 0 ≤ k ≤ j

• (σ, j) |= p ⇐⇒ (σ, k) |= p for all k, 0 ≤ k ≤ j

• (σ, j) |= p B q ⇐⇒ (σ, k) |= pSq or (σ, k) |= p

If (σ, 0) |= p we say that p holds over σ and write σ |= p. Formula p is satisfiable if

it holds over some model. We say that p is valid if it holds over all models.

Formulas p and q are equivalent, denoted by p ∼ q, if p ↔ q is a valid formula.

Namely, p and q have the same truth value in the first position of every model. They are
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called congruent, denoted by p ≈ q, if (p ↔ q) is a valid formula. Namely, p and q

have the same truth value in all positions of every model. Note that p ∼ q does not imply

p ≈ q. For example, T ∼ ¬ T since both are true in the first position of every model

(since all positions satisfy T, ¬ T means that there is no previous position); however,

T 6≈ ¬ T since T holds at all positions of every model, while ¬ T holds only in the

first position.

1.3 Temporal Testers

Every LTL formula ϕ is associated with a temporal tester [KPR98], an FDS denoted by

T [ϕ]. A tester contains a distinguished boolean variable x such that for every computa-

tion σ of T [ϕ], for every position j ≥ 0, x[sj] = 1 ⇐⇒ (σ, j) |= ϕ.

For example, the temporal tester for the basic path formula p is given by:

T [ p] :





V : Vp ∪ {x}
Θ : T

ρ : x = (p ∧ x′)

J : {x ∨ ¬p}
C : ∅

The justice requirement x ∨ ¬p is intended to guarantee that we will not have a compu-

tation in which continuously p = 1, while x = 0.

The following construction is used for model-checking an FDS D:
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• Construct a temporal tester T [¬ϕ] which is initialized with x = 1, that is an FDS

that comprises only ϕ-falsifying computations.

• Form the synchronous parallel composition D ‖| T [¬ϕ], that is an FDS for which

all computations are of D and violate ϕ.

• Check feasibility of D ‖| T [¬ϕ]. D |= ϕ if and only if D ‖| T [¬ϕ] is infeasible.

Next, we present an incremental construction of a tester for a general LTL formula.

We restrict our attention to LTL formulas whose principal operator is temporal (rather

than boolean).

Let f(ψ) be a principally temporal path formula containing one or more occurrences

of the LTL formula ψ. We denote by f(x) the formula obtained from f by replacing all

occurrences of ψ by the boolean variable x. Then the construction principle is presented

by the following recursive reduction formula:

T [f ] = T [f(xψ)] ‖| T [ψ] (1.1)

Namely, we conjoin the tester for ψ to the recursively constructed tester for the simpler

formula f(xψ).

We next illustrate the construction of the LTL formula p for the case that p is a

simple proposition (boolean variable). Application of the reduction formula leads to

T [ p] = T [ x ] ‖| T [ p]

10



Computing T [ p] and T [ x ] separately and forming their synchronous parallel com-

position yields the following tester whose output variable is x .

T [ p] :





V : {p, x , x }
Θ : T

ρ :
(
x = p ∨ x′

) ∧ (x = (x ∧ x′ ))

J : {¬x ∨ p, x ∨ ¬x }
C : ∅

In general, for a principally temporal formula ϕ, T [ϕ] = T1‖| · · · ‖|Tk, where T1, . . . , Tk

are the temporal testers constructed for the principally temporal sub-formulas of ϕ. T [ϕ]

contains k auxiliary boolean variables, and the output variable of T [ϕ] is the output

variable of T1 — the last constructed tester.

In general, the recursive reduction described by Equation (1.1) is carried until we

obtain the tester T1 which is a tester for a basic path formula. We can carry it one

step further and obtain an assertion that contains no further temporal operators. We

refer to this assertion as the redux of the original LTL formula ϕ, denoted by redux(ϕ).

For the case that ϕ is principally temporal, redux(ϕ) is the single output variable xϕ.

If we apply the recursive construction Equation (1.1) to an LTL formula which is not

principally temporal, we may obtain a more complex assertion as the resulting redux.

Consider, for example, the LTL formula ϕ : p ∨ q. The corresponding tester is

given by:

T [ϕ] = T [ p]‖|T [ q]

11



while redux(ϕ) = x ∨ x , where x and x are the output variables of T [ p] and

T [ q], respectively.
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2
VERIFICATION OF TRANSACTIONAL

MEMORIES

Multicore architectures have become common in the design of microprocessor chips,

and they require developers to produce parallel programs in order to gain full advantage

of the multiple number of processors. Parallel programming, however, is very challeng-

ing. It compels programmers to carefully coordinate and synchronize access to shared

data in order to ensure that programs do not produce inconsistent, incorrect or nonde-

terministic results. Locks, semaphores, mutexes, and similar constructs are difficult to

compose, and if applied incorrectly may introduce undesirable effects such as deadlocks,

priority inversion, and convoying.

Transactional Memory avoids these pitfalls, and simplifies parallel programming by

transferring the burden of concurrency management from the programmers to the sys-

tem designers, thus enabling programmers to safely compose scalable applications. A

transaction specifies program semantics in which a computation executes as if accessing

the memory exclusively, thus releasing the programmer from reasoning directly about

concurrency. Consequently, transactional memory is considered to be a promising alter-

native method for coordinating objects. In 1993 Herlihy and Moss [HM93a] introduced

a hardware transactional memory intended to make lock-free synchronization efficient.

Two years later, Shavit and Touitou [ST95] proposed the first software transactional

13



memory, to be applied to existing processors. Since then, numerous new implemen-

tations comprising hardware, software and their integration have been proposed (see

[LR07] for an excellent survey).

Transactional memories are often parameterized by their properties. These include

the conflicts they are to avoid, policies for resolving conflicts, support for nested trans-

actions and non-transactional memory accesses, etc. Each set of parameters defines a

unique set of sequences of events that can occur in the system so as to guarantee atomic-

ity and serializability. We refer to the specification of those allowed sequences of events

as the specification of the transactional memory. A particular implementation need not

generate all allowed sequences, but it should not generate any sequence that is not per-

mitted. In this work we provide a framework and tools that allow to formally verify that

a transactional memory implementation satisfies its specification.

The rest of the chapter is organized as follows: Section 2.1 reviews the traditional

methods for concurrency control and their drawbacks. It also examines different param-

eters of transactional memory implementations. Section 2.2 first defines transactions

and the concept of admissible interchanges of transactional operations. It then presents

a specification model and an implementation from the literature called TCC. Section 2.3

presents a proof rule for verifying implementations using an abstraction mapping, and

applies it to prove TCC’s correctness using a model checker. Section 2.4 generalizes the

proof rule by assuming an abstraction relation and applies the new rule in a hand proof

of TCC. Section 2.5 shows how to mechanically verify correctness of implementations

using a theorem prover, provides a framework for doing so in TLPVS and shows how
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the framework is applied in proving TCC and two additional implementations from the

literature. Section 2.6 extends the model to support non-transactional memory accesses

and provides a correctness proof of a variation of TCC that handles non-transactional

accesses. Sections 2.7, 2.8 and 2.9 discuss related work, conclusions and future work,

respectively.

2.1 Background

2.1.1 Conventional Solutions for Concurrency Control

Concurrent programming is notoriously difficult. Race conditions, in which the output

of concurrent threads is faulty as a result of an unexpected order of memory accesses,

are created easily. In this section we show why some of the well known methods for

coordinating accesses to shared resources in multiprocessor applications are intricate

and make it hard to design computer systems that are reliable and scalable.

Lock Based Mechanisms In lock based mechanisms each process acquires a lock

before accessing the shared resource. The lock then prevents other processes from ac-

cessing the resource until it is released. Coarse-grained locks protect relatively large

amounts of data, even parts that the process does not access, whereas fine-grained locks

protect a single resource (or a small number of them) and are therefore held by the

processes for as little time as possible.

There are many implementations of lock based mechanisms. MUTual EXclusion
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(mutex) algorithms give the process that successfully locks them ownership of the re-

source until it unlocks the mutex. Any process that in the meantime attempts to lock

the mutex must wait until the owner unlocks it. Monitors are abstract data types, i.e.

combinations of data structures and operations, that allow only one operation to be ex-

ecuted at a time. The required protections are enforced by the compiler implementing

the monitor. Semaphores (sometimes referred to as counting semaphores) are counters

that are always greater than or equal to 0. Any process can decrement the counter to

lock the semaphore, but attempting to decrement it below 0 causes the calling process to

wait for another process to unlock it first. No ownership is associated with a semaphore,

namely, a process that never locked the semaphore may unlock it, which could cause

unpredictable application behavior.

Coarse-grained locks are a source of contention since they protect parts of the data

that are not accessed, thus processes cause one another to block even when they do not

really interfere. Fine-grained locks often require sophisticated lock ordering to prevent

deadlock, a state in which the system halts forever and further progress is impossible

because processes are waiting for locks that are never be released. Consider the two

threads of Fig. 2.1. If thread 1 locks x first and immediately after thread 2 locks y

Thread 1:

lock(x)
lock(y)
...
unlock(y)
unlock(x)

Thread 2:

lock(y)
lock(x)
...
unlock(x)
unlock(y)

Figure 2.1: Two threads locking the same data.
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(before thread 1 locks y), then thread 1 must wait until thread 2 unlocks y before it may

lock it. But since thread 2 must lock x before releasing y, both would wait forever.

Most mutual exclusion algorithms have side-effects including starvation, in which a

process never gets sufficient resources to complete its task, priority inversion in which

a higher priority process waits for a lower-priority process that holds the necessary re-

sources, and high latency in which response to interrupts is not prompt.

Locks have other disadvantages. They are vulnerable to failures and faults – if one

process dies, stalls/blocks or goes into any sort of infinite loop while holding a lock,

other processes waiting for the lock may wait forever. Bugs are often very subtle and

may be almost impossible to reproduce. Locks are not compassable. For example,

deleting an item from one table and inserting it into a different table cannot be combined

as one single atomic operation using locks. They also suffer from convoying which

occurs when several processes wait for a process holding a lock that is scheduled due to

a time-slice interrupt or a page fault.

Modern programming languages that have more abstract concurrency control mech-

anisms are error prone as well. Java code enclosed within a synchronized block is guar-

anteed to be executed by a single process at any given time. Internally, the synchronized

keyword is implemented by the run-time machine as a mutex. The process that succeeds

acquiring the mutex, runs the code and releases the mutex only when exiting the syn-

chronized block. Consider the example from [Hol98], provided in Fig. 2.2, of a thread

that consists of two variables that are modified by executing the synchronized procedure

modify().

17



class My_thread extends Thread{
private int field_1 = 0;
private int field_2 = 0;
public void run(){

setDaemon(true);
while(true){

System.out.println("field_1=" + field_1 +
"field_2=" + field_2);

sleep(100);
}

}

synchronized public void modify(int new_value){
field_1 = new_value;
field_2 = new_value;

}
}

Figure 2.2: An example for a concurrency control mechanism in Java.

The user can initialize a thread and modify the variables as follows:

My_thread test = new My_thread;
test.start();
...
test.modify(1);

The only functions executed by the new thread are run() itself and println() (which run()

calls). The method modify() never runs on the same thread as println(); instead, it runs

on the thread that was running when the call to run() was made made (in this case,
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it runs on whatever thread main() is running on). Depending on scheduling, the ear-

lier fragment outputs: field 1=0, field 2=0 or field 1=0, field 2=1

or field 1=1, field 2=1. In the first and last cases, the thread is outside the

println() statement when modify() is called. In the second case, the thread is halfway

through evaluating the arguments to println(), having fetched field 1 but not field 2.

It thus prints the unmodified field 1 and the modified field 2.

There is no simple solution to this race condition. The method modify() is indeed

synchronized in the earlier example, but run() cannot be. If it could, the thread would

have started, then entered the monitor and locked the object. Thereafter, any other thread

that would have called any synchronized method on the object (such as modify()) would

have block until the monitor was released. Since run() does not return, the release could

have never happened, and any other thread that would have called any of its synchro-

nized methods, would have been blocked forever. In the current example, the main

thread would have been suspended, and the program would hang. Thus just using the

synchronized keyword in a naive way can get inconsistent results. [Hol98] gives other

examples that lead to faulty results.

Non-Blocking Mechanisms Non-blocking algorithms are an alternative for lock-based

mechanisms as they avoid some of the problems associated with locks; in particular they

ensure one of the following types of progress. Wait-free guarantees that every process

completes its task within a bounded number of steps. Look-free ensures that at least

one process makes progress within a bounded number of steps. And last, obstruction-
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free [HLM03], ensures that if, at any point, a single process executes in isolation for

a bounded number of steps, then it will complete its task. All wait-free algorithms are

lock-free and all lock-free algorithms are obstruction-free. Non-blocking algorithms

use atomic primitives provided by the hardware, e.g., compare and swap (an atomic in-

struction that compares the contents of a memory location to a given value and, if the

same, writes a new given value to that location), however, they are extremely difficult to

implement.

2.1.2 Transactional Memory

Transactional Memory avoids most pitfalls of traditional solutions, and simplifies paral-

lel programming by transferring the burden of concurrency management from the pro-

grammers to the system designers, thus enabling programmers to safely compose scal-

able applications.

A transaction is a sequence of operations that are executed atomically – either all

complete successfully (and the transaction commits), or none completes (and the trans-

action aborts). Moreover, transactions run in isolation – each transaction appears as if

running alone on the system (without interleaving of other transactions). Transactional

memory allows transactions to run concurrently as long as the atomicity and isolation

of each transaction are preserved.

Although transactional memory simplifies parallel programming and avoids many of

the drawbacks that other solutions for concurrency control have, it is still not ideal and
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bool flagA=0, flagB=0;

Thread 1:

atomic {
while(!flagA);
flagB = true;

}

Thread 2:

atomic {
flagA = true;
while(!flagB);

}
Figure 2.3: Example: non-terminating transactions.

could be used incorrectly. Consider the example from [BLM05], provided in Fig. 2.3.

The while loops in both transactions never terminate and thus the transactions never

complete.

2.1.2.1 Comparison to Transactions in Database Systems

Transactions have been used for a long time in database systems and have been proven to

be a good mechanism for constructing parallel computations. Although there are many

similarities, the objectives and the implementation techniques when accessing memory

differ greatly. Database systems store data on discs rather than in memory which re-

quires a much longer time to access, therefore computation time is negligible relative to

access time. Transactional memory implementations do not have to worry about dura-

bility since as opposed to database systems; the data does not last after the program

terminates. This makes the transactional memory implementations much simpler in that

sense. Transactional memory usually has to coexist and support legacy code that access

the memory without using transactions, while database systems are self contained.

Database transactions have four attributes, known as ACID: atomicity, consistency,
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isolation and durability. Atomicity requires that either all the actions in a transaction

complete successfully or none complete. Consistency requires that the changes made

by a transaction leave the data consistent. Isolation requires that the result of each trans-

action is correct regardless of the other transactions executing in parallel. Durability

requires that after a transaction commits, its modifications to the data are permanent

and available to all subsequent transactions. The first three attributes, namely ACI, also

apply to transactional memory – durability is less important since the data does not last

in memory after the program terminates.

2.1.2.2 Implementation Approaches

Transactional memory can be implemented in software (STM), hardware (HTM) or a

hybrid of the two (HyTM).

Software Transactional Memory STM implementations are entirely in software, i.e.,

they are implemented through languages, compilers and libraries. They implement al-

gorithms for updating the memory and detecting conflicts in software using read and

write barriers and software data structures. Therefore they permit a wide variety of al-

gorithms and can be easily modified and enhanced, however there is usually a cost of a

high runtime overhead. STM can be integrated with existing software systems and pro-

gramming languages, and there is usually no inherent limitation on the size of the data

structures or transactions.

STM systems differ in the type of storage unit (sometimes called transaction gran-

ularity) they handle. Systems implemented in object oriented languages, such as Java,
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usually have an object granularity (e.g., see [HLMW03, GHP05, MSS05]). Other sys-

tems have a word granularity [HF03, Fra03] or a block granularity ([DS06] supports all

three types of granularity), depending on whether they reference single words or blocks

of words. Since metatdata is often associated with the referenced unit, in object gran-

ularity systems the objects are simply extended with a field that records the metadata

and which allows quick access to it. Systems with word or block granularity maintain

a separate table that records the metatdata, thus access time is slower. One of the dis-

advantages with object granularity is that conflicts (explained shortly) are detected even

if concurrent transactions access different fields of the same objects. In this work we

assume word granularity.

Hardware Transactional Memory HTM implementation are hardware systems that

have a fairly small software and a large hardware components. These implementations

eliminate most overheads introduced by STM systems and therefore yield a better per-

formance. They use memory consistency models to reason about the ordering of reads

and writes from multiple processes. To enable easy detection of conflicts between con-

current transactions and to store data that is frequently referenced local caches are used.

Thus, there is often more than a single copy for each memory location, and cache coher-

ence protocols are used to keep all of the copies up-to-date. These protocols are able to

locate all copies of a given memory location and ensure that these copies hold the latest

values, and that processes observe updates to the same location in the right order. The

hardware support makes the implementations complex and expensive to modify. Trans-
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action size is limited by hardware resources and overflow of operations is considered a

major challenge of HTM.

Hybrid Transactional Memory HyTM implementations combine HTM with STM so

to maintain the flexibility of STM (e.g. unbounded transactions) while using a hardware

mechanism. Some implementations [DFL+06, Lie04] first try to execute transactions in

hardware and only switch to software when the hardware resources reach their limits or

to detect conflicts. In contrast [SSH+07] proposes to use hardware for optimizing the

performance of transactions that are controlled by software. Other approaches such as

[KCH+06, SMD+06] do not directly integrate STM with HTM and instead provide an

interface for the STM to control specific HTM operations.

2.1.2.3 Correctness Criteria

In this section we give an informal intuition about some of the correctness criteria which

have been considered for transactional memory.

Serializability A concurrent execution is serializable [EGLT76] with respect to spec-

ification S , if there exists a sequential execution (transactions appear one after the other)

of its committed transactions that satisfies S.

Strict Serializability Strict serializability [Pap79] is a restricted variation of serializ-

ability that requires real time ordering of the committed transactions. Namely, a con-
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current execution is strictly serializable with respect to specification S if there exists

a sequential execution of its committed transactions that satisfies S and has the same

order between every two non-overlapping transactions.

Abort Consistent [GK08] studies different correctness criterions and introduces Opac-

ity as a new alternative. Opacity requires that: (i) operations of every committed trans-

actions appear as if they happened at some single point during the transaction duration,

(ii) operations of aborted transactions can not be observed by other transactions and (iii)

transactions (committed and aborted) always observe a consistent state of the memory.

Abort consistency, a product of Opacity’s first and third requirements, requires that in

addition to strict serializability aborted transactions do not observe an inconsistent state

of the memory.

Figure 2.4 illustrates various scenarios that satisfy different correctness criterions,

when read operations are required to return the most recent value written to the refer-

enced location by a committed transaction. Jp, Rt
p(x, v), W t

p(y, v), Ip and 6Ip denote

the transactional operations of client p for opening a transaction, reading v from address

x, writing v to address y, committing a transaction and aborting a transaction, respec-

tively. Detailed semantics are provided later in Subsection 2.2.1. In all scenarios we

assume that x and y are initialized to 0. The first scenario described in Fig. 2.4 is not
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J2 Rt
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transaction 1:

transaction 2:

transaction 3:

transaction 1:

transaction 2:
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transaction 2:

transaction 3:

transaction 1:

transaction 2:

transaction 3:

W t
3 (x, 1)

Rt
2(y, 0)

Rt
3(y, 0)

Rt
1(x, 0) I1

I3

J2

J3

Rt
2(x, 0)

J1 W t
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J3
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1(x, 0) W t
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3 (x, 1)Rt
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First scenario: not serializable.

Second scenario: serializable.

Third scenario: serializable and strictly serializable.

Fourth scenario: serializable, strictly serializable and abort consistent.

Figure 2.4: Various scenarios that satisfy different correctness criterions.
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serializable since neither the first nor the last transaction can appear before the other

in a sequential execution. The second scenario is not strictly serializable since the first

and third transactions do not overlap, thus requiring the third transaction to appear ear-

lier in any sequential execution. Abort consistency is not satisfied by the third scenario

since there is no sequential execution during which y = 0 and x = 1. All correctness

conditions are satisfied by the fourth scenario of Fig. 2.4.

In Subsection 2.2.1 we formally define serializability with respect to a set of admis-

sible interchanges of transactional operations.

2.1.2.4 Design Alternatives

Transactional memory implementations are classified using a number of parameters that

may define the programming model and performance of the system. In this section we

discuss alternatives for some of the parameters.

Version Management An implementation employs eager version management (some-

times called direct update) if it updates the memory immediately when a transactional

write occurs. It uses lazy version management (also called deferred update) if it differs

the update until the transaction commits. There is a tradeoff between the amount of work

and additional data structures that are required when committing and aborting. Under

eager version management aborts may require rolling-back the memory to hold its old

values, which means that transactions have to maintain a log with the original values of

all locations that were modified. Under lazy version management, transactions keep a

private record of all the write events that take place. On commit, the memory is updated

27



based on these records. Aborts require no further ado.

Conflict Detection A conflict occurs when two overlapping transactions (each begins

before the other ends) access the same location and at least one writes to it. An im-

plementation uses eager conflict detection if it detects conflicts as soon as they occur,

and it uses lazy conflict detection if it delays the detection until a transaction requests

to commit. When a conflict occurs, eager conflict detection helps to avoid worthless

work by a transaction that is eventually aborted. Yet, deciding to keep one transaction

(and to cause the other to abort) does not guarantee that the “surviving” transaction can

commit since it may conflict with a third transaction. On the other hand, lazy conflict

detection may allow doomed transactions to perform worthless work. Note that lazy

conflict detection may not be combined with eager version management.

Arbitration A conflict between two transactions is resolved by aborting at least one

of the transactions. Transactional memory systems often have an arbitration mechanism

(sometimes called contention management) that determines which of the two transac-

tions should be aborted. [SS04, SS05a, SS05b, GHP05, GHKP05, GC08] propose sev-

eral arbitration policies and examine their effect on the system’s performance and on

the progress of each process. The arbitration mechanism may implement more than

one policy from which it chooses automatically or based on a predefinition made by the

user.
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2.1.2.5 Non-Transactional Memory Access

Accesses to the memory are not necessarily all transactional and for various reasons

(e.g., legacy code) they can be also non-transactional, i.e., executed not as part of a

transaction. Unlike transactional accesses, non-transactional accesses cannot be aborted.

The atomicity and serializability requirements remain intact, whereas two types of iso-

lation are considered, weak and strong. Transactional memory systems that guaran-

tee weak isolation ensure that isolation is kept only between transactions, namely they

do not guarantee consistency and correctness when non-transactional accesses are exe-

cuted. With strong isolation transactional memory systems assures that isolation is kept

between transactions but also between transactions and non-transactional accesses.

In our work we first consider a model that does not support non-transactional ac-

cesses and later in Section 2.6 extend it to support them under the assumptions of strong

isolation where non-transaction operations are cast as a successfully committed, single

operation, transaction.

Note that implementations that have eager version management, in which aborts may

require rolling-back the memory to hold its old values, can not handle non-transactional

operations. A non-transactional read may obtain a value that was written by a transaction

that is later aborted, thus the value is not valid since the transaction is never committed.

2.1.2.6 Nested Transactional Memory

There are many reasons for supporting nested transactions, for example, a programmer’s

transactional code may use library procedures that contain transactions as well. Another
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reason is to avoid discarding all the operations in very large aborted transactions when

some portions may be committed safely.

There are many issues to consider when allowing nested transactions, for example,

what values are read when referring to locations that have already been updated, when to

update the memory, how conflicts should be defined between sibling transactions, etc.

We shall refer to the transactions’ structure as a tree with the root being the top-level

transaction and the leaves transactions that have no inner nested transactions.

Flat nesting is the easiest way to deal with nested transactions; the inner transaction

is simply merged entirely with the outer one. When a transaction reads, the returned

value is the most recent one written to the same location by any of the transactions

in the same tree, if such exists. There are no conflicts between transactions in the same

tree. Only when the top-level transaction commits the writes of all the inner transactions

become permanent. Aborting a transaction implies that all other transactions in the same

tree are aborted as well.

Two types of more sophisticated nesting have been considered in the literature so

far: closed and opened nesting. We follow the definitions of [MH06]. In closed nesting,

only transactions with no pending inner transactions may access data. The memory is

updated only when the top-level transaction commits. When a transaction attempts to

read, it sees the most recent value it wrote to that location, if such exists; otherwise

it reads the value seen by its parent. A top-level transaction sees the latest committed

value. Two Transactions conflict if they access the same memory location, at least one

writes to it, and neither one is an ancestor of the other. When a nested transaction
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commits, its reads and writes are unioned with those of its parent. When a top-level

transaction commits, all writes become permanent. When a transaction aborts, its reads

and writes (and tentatively written values by its inner committed transactions) are simply

discarded.

Open nesting allows for more concurrency, by releasing resources earlier and ap-

plying conflict detection at a higher level of abstraction (at the cost of both software

and hardware complexity). When a transaction commits the memory is updated im-

mediately and the changes are visible to all other transactions in the system. When a

transaction aborts, the updates made by inner nested transactions remain committed.

Conflict definitions are identical to those of closed nesting.

Most implementations that support nested transactions support flat [HLMW03, HF03,

AR05, MSH+06] or closed nesting [Fra03, GHP05, SATH+06, ATLM+06]. A few

implementations support open nesting, such as [MBM+06b] that extends the original

LogTM [MBM+06a], TCC [Car06, MCC+06] and the Java-based STM of [NMA+07],

which is the first to support open nesting in a software implementation. In our work we

assume that transactions may not be nested.
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2.2 Specification and Implementation

2.2.1 Transactional Sequences

Assume n clients that direct requests to a memory system, denoted by memory. Let the

notation of an invocation begins with an ι. For every client p, let the set of transactional

invocations by client p consists of:

• ιJp – An open transaction request.

• ιRt
p(x) – A transactional read request from address x ∈ N.

• ιW t
p(y, v) – A transactional request to write the value v ∈ N to address y ∈ N.

• ιIp – A commit transaction request.

• ι 6Ip – An abort transaction request.

The memory provides a response for each invocation. Erroneous invocations (e.g.,

a ιJp while client p has a pending transaction) are responded by the memory returning

an error flag err . Non-erroneous invocations, except for ι 6Ip, are responded by abort if

the transaction should abort. Otherwise, non-erroneous invocations, except for ιRt (e.g.,

ι Jp when there is no pending p transaction), are responded by the memory returning

an acknowledgment ack , whereas for ιRt
p(x) the memory returns the (natural) value of

the memory at location x. Since we observe the responses, we assume that invocations
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and responses occur atomically and consecutively, i.e., there are no other operations that

interleave an invocation and its response.

Let Et
p : {Jp, Rt

p(x, u), W t
p(x, v), Ip, 6Ip} be the set of transactional observable

events associated with client p. We consider as observable events only requests that

are accepted, and abbreviate invocation and its response by omitting the ι-prefix of the

invocation. Thus, Jp, W t
p(x, v), Ip and 6Ip abbreviate ι Jp ack p, ιW t

p(x, v)ack p, ι Ip

ack p and ι 6Ip ack p, respectively. For read actions, we include the value read, that is,

Rt
p(x, u) abbreviates ιRt(x) and the response u. When the value written/read has no

relevance, we write the above as W t
p(x) and Rt

p(x). When both values and addresses are

of no importance, we omit the addresses, thus obtaining W t
p and Rt

p. The output of each

action is its relevant observable event when the invocation is accepted, and undefined

otherwise. Let Et be the set of all transactional observable events over all clients, i.e.,

Et =
⋃n

p=1 Et
p. We denote by E the set of all observable events (note, however, that until

Section 2.6, in which the model is extended with non-transactional operations, E = Et.

We use Et when the content refers only to transactional events and E when it refers to

any observable events.

Definition 2.1. Let σ : e0, e1, . . . , ek be a finite sequence of observable Et-events. The

sequence σ is called a well-formed transactional sequence (TS for short) if the following

all hold:

1. For every client p, let σ|p be the sequence obtained by projecting σ onto Et
p.

Then σ|p satisfies the regular expression T ∗
p , where Tp is the regular expression
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Jp (Rt
p + W t

p)
∗(Ip + 6Ip). For each occurrence of Tp in σ|p, we refer to its first

and last elements as matching. The notion of matching is lifted to σ itself, where

Jp and Ip (or 6Ip) are matching if they are matching in σ|p;

2. The sequence σ is locally read-write consistent: for any subsequence of σ of

the form W t
p(x, v) η Rt

p(x, u), where η contains no event of the form Ip, 6Ip, or

W t
p(x, u), we have u = v.

We denote by T the set of all well-formed transactional sequences, and by pref (T )

the set of T ’s prefixes. Note that the requirement of local read-write consistency can be

enforced by each client locally.

Definition 2.2. A TS σ is called atomic if:

1. σ satisfies the regular expression (T1 + · · · + Tn)∗. That is, there is no overlap

between any two transactions;

2. σ is globally read-write consistent: for any subsequence W t
p(x, v)ηRt

q(x, u) in

σ, where η contains Ip, which is not preceded by 6Ip, and contains no W t
k(x)

followed by an Ik, it is the case that u = v.

2.2.2 Interchanging Events

The notion of a correct implementation is that every TS can be transformed into an

atomic TS by a sequence of interchanges that swap two consecutive events. This defi-

nition is parameterized by the set A of admissible interchanges which may be used in
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the process of serialization. Rather than attempt to characterizeA, we choose to charac-

terize its complement F , the set of forbidden interchanges. To simplify the verification

process, we restrict to swaps whose soundness depends only on the history leading to

them.

In all our discussions, we assume commit preserving serializability that implies that

while serializing a TS, the order of committed transactions has to be preserved.

Consider a temporal logic over Et using the past operators (previously), (some-

times in the past), and S (since). Let σ be a prefix of a well-formed TS over E. We

define a satisfiability relation |=end between σ and a temporal logic formula ϕ so that

σ |=end ϕ if at the end of σ, ϕ holds. (The more standard notation is (σ, |σ|−1) |=end ϕ,

but since we always interpret formulae at the end of sequences we chose the simplified

notation.)

F always includes two structural restrictions: The formula Ip ∧ Iq, p 6= q

forbids the interchange of closures of transactions belonging to different clients. This

guarantees that commit order is preserved by the serializability process. The restriction

ep ∧ ẽp, where ep, ẽp ∈ Et
p, forbids interchanging two events belonging to the same

client.

Let F be a set of forbidden formulae characterizing all the forbidden interchanges,

and let A denote the set of interchanges that do not satisfy any of the formulas in F .

Assume that σ = a0, . . . , ak. Let σ′ be obtained from σ by interchanging two ele-

ments, say ai−1 and ai. We then say that σ′ is 1-derivable from σ with respect to A if

(a0, . . . , ai) 6|=end

∨F . Similarly, we say that σ′ is derivable from σ with respect to A

35



if there exist σ = σ0, . . . , σ` = σ′ such that for every i < `, σi+1 is 1-derivable from σi

with respect to A.

Definition 2.3. A TS is serializable with respect to A if there exists an atomic TS that

is derivable from it with respect to A, or, correspondingly, a TS is not serializable with

respect to A if an atomic TS cannot be derived from it with respect to A.

The sequence σ̆ is called the purified version of TS σ if σ̆ is obtained by removing

from σ all aborted transactions, i.e., removing the opening and closing events for such

a transaction and all the read-write events by the same client that occurred between

the opening and closing events. When we specify the correctness of a transactional

memory implementation, only the purified versions of the implementation’s transaction

sequences will have to be serializable.

Definition 2.4. Let TS σ be σ = a0, a1, . . . , an. Event ai precedes event aj in σ, denoted

by ai ≺σ aj , if i < j.

When the TS is clear from the context, we use≺ instead of≺σ. If the order between

events ai and aj is insignificant we simply write ai, aj . Thus, ai, aj ≺ ak means that

both ai and aj precede ak but the order between ai and aj is insignificant.

2.2.2.1 Forbidding Conflicts

Forbidding certain interchanges guarantees the absence of specific conflicts. For exam-

ple, following [Sco06], there is a lazy invalidation conflict (see Fig. 2.5) when commit-

ting one transaction may invalidate a read of another. More formally, there is a lazy

invalidation conflict if for some p, q and a memory address x, Rt
p(x),W t

q (x) ≺Iq≺Ip.
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Ip

W t
q (x)

Rt
p(x)

Iq

Figure 2.5: Conflict lazy invalidation.

We associate conflicts with TL formulae that determine, for any prefix of a TS whether

the last two events in the prefix can be safely interchanged without removing the conflict.

For a conflict c, the formula that, jointly with the structural restrictions ofF , forbid inter-

changes that may remove instances of this conflict is called the maintaining formula for c

and is denoted by mc. For lazy invalidation conflict we define mli to be

Iq ∧ (Rt
p(x) ∧ (¬ Iq)S W t

q (x)) (2.1)

Let Fli be the forbidden set that only includes the basic structural restrictions and mli,

and let Ali be its complement.

Theorem 2.5. A TS σ is serializable with respect to Ali iff there is no lazy invalidation

conflict in σ.

Proof. In one direction, let p and q be clients, and x be a memory location, such that

Rt
p(x),W t

q (x) ≺σIq≺σIp. Assume, by way of contradiction, that σ is serializable with

respect toAli. Definition 2.3 then implies that there exists TS σ′, which is derivable from

σ with respect to Ali such that all events of one of Tp and Tq appear before all events
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of the other. Since we assume interchanges are commit preserving and thus require Fli

to forbid interchanges of I events, and since Iq≺σIp, it follows that Iq≺σ′Ip, and,

consequently, that in σ′ all of Tq’s events appear before all of Tp’s events. This, however,

implies that the series of interchanges from σ to σ′ must include an interchange between

the pair (Rt
p(x), Iq) which is forbidden by Fli. We therefore conclude that σ is not

serializable with respect to Ali, contradicting our assumption.

In the other direction, assume that TS σ is not serializable with respect toAli. There-

fore, no atomic TS can be derived from σ with respect to Ali. Hence, there are two

transactions, belonging to different clients, Tp and Tq, that (i) are overlapping in σ, (ii)

Iq≺σIp, and (iii) moving the events of one transaction to precede those of the other

involves violation of Ali. From the definition of Ali it now follows that for some x,

Rt
p(x),W t

q (x) ≺σIq≺σIp, and, consequently, σ has a lazy invalidation conflict.

We next provide formulae for each of the other conflicts defined by [Sco06] except

for mixed invalidation which requires future operators.

1. An overlap conflict (see Fig. 2.6) occurs if for some transactions Tp and Tq, we

have Jp≺Iq and Jq ≺Ip. We define the maintaining formula mo to be Iq

∧ Jp, for every p 6= q. Let Fo be the forbidden set that only includes the basic

structural restrictions and mo, and let Ao be its complement.

Theorem 2.6. A TS σ is serializable with respect to Ao iff there is no overlap

conflict in σ.
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Iq

Ip

Jq

Jp

Figure 2.6: Conflict overlap.

Proof. In one direction, let p and q be clients, and x be a memory location, such

that Jp≺σ Iq and Jq ≺σ Ip. Assume, by way of contradiction, that σ is seri-

alizable with respect to Ao. Definition 2.3 then implies that there exists TS σ′,

which is derivable from σ with respect to Ao such that all events of one of Tp and

Tq appear before all events of the other. The series of interchanges from σ to σ′

must include an interchange between either the pair (Jp,Iq) or the pair (Jq,Ip),

which are both forbidden by Fo. We therefore conclude that σ is not serializable

with respect to Ao, contradicting our assumption.

In the other direction, assume that TS σ is not serializable with respect to Ao.

Therefore, no atomic TS can be derived from σ with respect to Ao. Hence, there

are two transactions, belonging to different clients, Tp and Tq, that (i) are over-

lapping in σ, (ii) moving the events of one to precede those of the other involves

violation ofAo. From the definition ofAo it now follows that for some x, Jp≺Iq

and Jq ≺Ip, and, consequently, σ has an overlap conflict.

2. A writer overlap conflict (see Fig. 2.7) occurs if two transactions overlap and one
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writes to any address before the other terminates, i.e., for some Tp and Tq, we have

Jp≺ W t
q ≺Ip or W t

q ≺Jp≺Iq. We define the maintaining formula mwo to

be (Ip ∧ W t
q ) ∨ (Iq ∧ (Jp ∧ (¬ Iq)S W t

q )). Let Fwo be the forbidden

set that only includes the basic structural restrictions and mwo, and let Awo be its

complement.

Iq

Ip

W t
q

Jp

Jq

Figure 2.7: Conflict writer overlap.

Theorem 2.7. A TS σ is serializable with respect to Awo iff there is no writer

overlap conflict in σ.

Proof. In one direction, let p and q be clients, and x be a memory location, such

that Jp≺σ W t
q ≺σ Ip or W t

q ≺σ Jp≺σ Iq. Assume, by way of contradiction,

that σ is serializable with respect to Awo. Definition 2.3 then implies that there

exists TS σ′, which is derivable from σ with respect to Awo such that all events of

one of Tp and Tq appear before all events of the other. If all events of Tp appear

before all events of Tq, it implies that the series of interchanges from σ to σ′ must

include an interchange between the pair (W t
q ,Ip) which is forbidden by Fwo.

If all events of Tq appear before those of Tp then the series of interchanges must
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include an interchange between the pair (Jp,Iq) which is forbidden by Fwo since

W t
q ≺σ Ip. We therefore conclude that σ is not serializable with respect to Awo,

contradicting our assumption.

In the other direction, assume that TS σ is not serializable with respect to Awo.

Therefore, no atomic TS can be derived from σ with respect to Awo. Hence,

there are two transactions, belonging to different clients, Tp and Tq, that (i) are

overlapping in σ, and (ii) moving the events of one to precede those of the other

involves violation of Awo. From the definition of Awo it now follows that for

some x, Jp≺σ W t
q ≺σ Ip or W t

q ≺σ Jp≺σ Iq, and, consequently, σ has a writer

overlap conflict.

3. An eager W-R conflict (see Fig. 2.8) occurs if for some transactions Tp and Tq

a lazy invalidation conflict occurs, or if for some memory address x, we have

W t
p(x) ≺ Rt

q(x) ≺Ip. We define the maintaining formula mewr to be mli ∨ (Rt
q(x)∧

W t
p(x)). Let Fewr be the forbidden set that only includes the basic structural re-

strictions and mewr, and let Aewr be its complement.

Rt
q(x) Iq

W t
p(x) Ip

conflict lazy invalidation, or

Figure 2.8: Conflict eager W-R.
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Theorem 2.8. A TS σ is serializable with respect toAewr iff there is no eager W-R

conflict in σ.

Proof. In one direction, let p and q be clients, and x be a memory location, such

that Tp and Tq have a lazy invalidation conflict or W t
p(x) ≺ Rt

q(x) ≺Ip. Assume,

by way of contradiction, that σ is serializable with respect to Aewr. Definition 2.3

then implies that there exists TS σ′, which is derivable from σ with respect to

Aewr such that all events of one of Tp and Tq appear before all events of the other.

If Tp and Tq have a lazy invalidation conflict, by Theorem 2.5 σ is not serializable

with respect to Ali, and thus not serializable with respect to Aewr, contradicting

our assumption. Otherwise W t
p(x) ≺ Rt

q(x) ≺Ip, and note that Iq≺σIp must

hold. Since we assume interchanges are commit preserving and thus require Fewr

to forbid interchanges of I events, it follows that Iq≺σ′Ip, and, consequently,

that in σ′ all of Tq’s events appear before all of Tp’s events. This, however, implies

that the series of interchanges from σ to σ′ must include an interchange between

the pair (W t
p(x), Rt

q(x)) which is forbidden by Fewr. We therefore conclude that

σ is not serializable with respect to Aewr, contradicting our assumption.

In the other direction, assume that TS σ is not serializable with respect to Aewr.

Therefore, no atomic TS can be derived from σ with respect to Aewr. Hence,

there are two transactions, belonging to different clients, Tp and Tq, that (i) are

overlapping in σ, and (ii) moving the events of one to precede those of the other

involves violation of Aewr. From the definition of Aewr it now follows that for
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some x, either Tp and Tq have a lazy invalidation conflict or W t
p(x) ≺ Rt

q(x) ≺Ip,

and, consequently, σ has an eager W-R conflict.

4. An eager invalidation conflict (see Fig. 2.9) occurs if for some transactions Tp

and Tq an eager W-R conflict occurs, or if for some memory address x, we have

Rt
p(x) ≺ W t

q (x) ≺Ip. We define the maintaining formula mei to be mewr ∨ (Ip

∧ (W t
q (x) ∧ (¬ Ip)S Rt

p(x))). Let Fei be the forbidden set that only includes

the basic structural restrictions and mei, and let Aei be its complement.

Ip

Iq

conflict eager W-R, or

Rt
p(x)

W t
q (x)

Figure 2.9: Conflict eager invalidation.

Theorem 2.9. A TS σ is serializable with respect to Aei iff there is no eager

invalidation conflict in σ.

Proof. In one direction, let p and q be clients, and x be a memory location, such

that Tp and Tq have an eager W-R conflict or Rt
p(x) ≺ W t

q (x) ≺Ip. Assume,

by way of contradiction, that σ is serializable with respect to Aei. Definition 2.3

then implies that there exists TS σ′, which is derivable from σ with respect to

Aei such that all events of one of Tp and Tq appear before all events of the other.
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If Tp and Tq have an eager W-R conflict, by Theorem 2.8 σ is not serializable

with respect to Aewr, and thus not serializable with respect to Aei, contradicting

our assumption. Otherwise Rt
p(x) ≺ W t

q (x) ≺Ip, and note that Ip≺σIq must

hold. Since we assume interchanges are commit preserving and thus require Fei

to forbid interchanges of I events, it follows that Ip≺σ′Iq, and, consequently,

that in σ′ all of Tp’s events appear before all of Tq’s events. This, however, implies

that the series of interchanges from σ to σ′ must include an interchange between

the pair (W t
q (x), Ip (x)) which is forbidden by Fei since Rt

p(x) ≺ W t
q (x). We

therefore conclude that σ is not serializable with respect to Aei, contradicting our

assumption.

In the other direction, assume that TS σ is not serializable with respect to Aei.

Therefore, no atomic TS can be derived from σ with respect to Aei. Hence, there

are two transactions, belonging to different clients, Tp and Tq, that (i) are overlap-

ping in σ, and (ii) moving the events of one to precede those of the other involves

violation of Aei. From the definition of Aei it now follows that for some x, either

Tp and Tq have an eager W-R conflict or W t
p(x) ≺ Rt

q(x) ≺Ip, and, consequently,

σ has an eager invalidation conflict.

2.2.3 Specification

LetA be a set of admissible interchanges which we fix for the remainder of this section.

We next describe SpecA – a specification of transactional memory that generates all
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sequences whose corresponding TSs are serializable with respect to A.

SpecA is a process that is described as an FDS. In every step, it outputs an element

in E⊥ = E ∪ {⊥} where ⊥ indicates no observable event. The sequence of outputs it

generates, once the ⊥ elements are projected away, is the set of TSs that are admissible

with respect to A. SpecA maintains a queue-like structure Q to which elements are

appended, interchanged, deleted, and removed. The sequence of elements removed

from this queue-like structure defines an atomic TS that can be obtained by serialization

of SpecA’s output with respect to A. SpecA uses the following data structures:

• spec mem: N→ N— Persistent memory. Initially for all i ∈ N, spec mem[i] = 0;

• Q: list over Et ∪ {mark p} initially empty (mark p explained later);

• spec out: scalar in E⊥ = E ∪ {⊥} — An output variable, initially ⊥;

• spec doomed: array [1..n] of booleans — An array recording which pending trans-

actions are doomed to be aborted. Initially spec doomed[p] = F for every p.

Table 2.1 summarized the steps taken by SpecA. The first column describes the

value of spec out with each step – it is assumed that every step produces an output.

The second column describes the effects of the step on the other variables. The third

column describes the conditions under which the step can be taken. We use the following

abbreviations in Table 2.1:

• A client p is pending if spec doomed[p] = T or if Q|p is not empty and does not

terminate with Ip;
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• a client p is marked if Q|p terminates with mark p; otherwise, it is unmarked;

• a p action a is locally consistent with Q if Q|p, a is a prefix of some locally con-

sistent p-transaction;

• a transaction is consistent with spec mem if every Rt(x, v) in it is either preceded

by some W t(x, v), or v = spec mem[x];

• the update of spec mem by a (consistent) transaction is spec mem′ where for ev-

ery location x for which the transaction has no W t(x, v) actions, spec mem′[x] =

spec mem[x], and for every memory location x such that the transaction has some

W t(x, v) actions, spec mem′[x] is the value written in the last such action in the

transaction;

• an A-valid transformation to Q is a sequence of interchanges of consecutive Q
entries such that each is consistent with A. To apply the transformations, each

mark p is treated as if it is Ip.

The role of spec doomed is to allow SpecA to be implemented with various arbi-

tration policies. It can, at will, schedule a pending transaction to be aborted by setting

spec doomed[p]to T. The variable spec doomed[p] is reset once the transaction is actu-

ally aborted (when SpecA outputs 6Ip). Note that actions of doomed transactions are not

recorded on Q.

mark p is added to Q just before client p requests to commit its pending transaction.

SpecA considers mark p as a Ip when trying to shift p’s events to the front of Q using
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spec out other updates conditions
a1 Jp append Jp to Q p is not pending
a2 Rt

p(x, v) append Rt
p(x, v) to Q p is pending, unmarked and spec doomed[p] = F;

R(x, v) is locally consistent withQ
a3 Rt

p(x, v) none p is pending, unmarked and spec doomed[p] = T

a4 W t
p(x, v) append W t

p(x, v) to Q p is pending, unmarked and spec doomed[p] = F

a5 W t
p(x, v) none p is pending, unmarked and spec doomed[p] = T

a6 6Ip delete p’s pending transaction fromQ; p is pending
set spec doomed[p] to F

a7 Ip replace markp with Ip p has a consistent transaction at the front ofQ
that ends with markp (p is pending and marked)

a8 ⊥ update spec mem according to p’s p has a consistent committed transaction at the
committed transaction; front of Q (ends with Ip)
remove p’s transaction fromQ

a9 ⊥ set spec doomed[p] to T; p is pending and spec doomed[p] = F
delete all pending p-events from Q

a10 ⊥ apply a A-valid transformation toQ none
a11 ⊥ append markp to Q p is pending and unmarked
a12 ⊥ none none

Table 2.1: Steps of SpecA.

interchanges in A. If it succeeds mark p is replaced by A (a7), otherwise p’s transaction

is aborted.

We assume a fairness requirement, namely, that for every client p = 1, . . . , n, there

are infinitely many states of SpecA where Q|p is empty and spec doomed[p] = F. This

implies that every transaction eventually terminates (commits or aborts). It also guaran-

tees that the sequence of outputs is indeed serializable. Note that progress can always

be guaranteed by aborting transactions.

Definition 2.10. A sequence σ over E is compatible with SpecA if it can be obtained by

the sequence of spec out that SpecA outputs once all the ⊥’s are removed.
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2.2.4 Implementation

An implementation TM : (read, commit) of a transactional memory consists of a pair of

functions

read : pref (TS)× [1..n]× N→ N and

commit : pref (TS)× [1..n] → {ack, err}

For a prefix σ of a TS, read(σ, p, x) is the response (value) of the memory to an

accepted ιRt
p(x) request immediately following σ, and commit(σ, p) is the response

(ack or err) of the memory to a ιIp request immediately following σ.

Definition 2.11. A TS σ is said to be compatible with TM if:

1. For every prefix ηRt
p(x, u) of σ, read(η, p, x) = u.

2. For every prefix ηIp of σ, commit(η, p) = ack .

Definition 2.12. An implementation TM : (read, commit) is a correct implementation

of a transactional memory with respect to A if every TS compatible with TM is also

compatible with SpecA.
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2.2.5 Example: TCC

We now provide an example of transactional memory, which is essentially TCC [HWC+04],

and in the following sections verify it using different proof rules and techniques. Its

specification is given by SpecAli
whereAli is the admissible set of events corresponding

to the lazy invalidation conflict described in Subsection 2.2.2.1. TCC has lazy conflict

detection and lazy version control, namely, transactions execute speculatively in the

clients’ caches and when they commit the memory is updated accordingly. At commit,

all pending transactions that contain some read events from addresses written to by the

committed transaction are “doomed.” A doomed transaction may execute new read and

write events in its cache, but it must eventually abort.

Here we present the implementation, TM1, which uses the following data structures:

• imp mem: N→ N— Persistent memory. Initially, for all i ∈ N, imp mem[i] = 0;

• caches: array[1..n] of list of Et — Caches of clients. For each client p ∈ [1..n],

caches[p], initially empty, is a sequence over Et
p that records the actions of p’s

pending transaction;

• imp out: scalar in Et
⊥ = Et ∪ {⊥} — An output variable recording responses to

clients, initially ⊥;

• imp doomed: array [1..n] of booleans — An array recording which transactions

are doomed to be aborted. Initially, imp doomed[p] = F for every p ∈ [1..n].
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TM1 receives requests from clients, and for each request it updates its state, including

updating the output variable imp out, and issues a response to the requesting client. The

responses are either an err for syntactic errors (e.g., ιI request when there is no pending

transaction), an abort for a ιI request when the transaction is doomed for abortion, or

an acknowledgment whereas for ιRt requests it is a value in N and ack for all other

cases. Table 2.2 describes the acknowledged actions (events) of TM1, where for each

request we describe the new output value, the other updates to TM1’s state, the conditions

under which the updates occur, and the response to the client that issues the request. For

now, ignore the comments in the square brackets under the “conditions” column. The

last line represents the idle step where no actions occurs and the output is ⊥.

Comment: Since the requirement of local read-write consistency can be enforced by

each client locally, for simplicity, we assume that clients only issue read requests for

locations they had not written to in the pending transaction.

Request imp out Other Updates Conditions Response
t1 ιJp Jp append Jp to caches[p] [caches[p] is empty] ack
t2 ιRt

p(x) Rt
p(x, v) append Rp(x, v) to caches[p] v = imp mem[x]; imp mem[x]

[caches[p] is not empty]
(see comment)

t3 ιW t
p(x, v) W t

p(x, v) append Wp(x, v) to caches[p] [caches[p] is not empty] ack

t4 ι 6Ip 6Ip set caches[p] to empty; [caches[p] is not empty] ack
set imp doomed[p] to F;

t5 ιIp Ip set caches[p] to empty; imp doomed[p] = F; ack
for every x and q 6= p such that [caches[p] is not empty];
W t

p(x) ∈ caches[p] and caches[p] is consistent
Rt

p(x) ∈ caches[q] with imp mem
set imp doomed[q] to T;

update imp mem by caches[p]
t6 none ⊥ none none none

Table 2.2: The actions of TM1.
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The specification of Subsection 2.2.3 specifies not only the behavior of the Trans-

actional Memory but also the combined behavior of the memory when coupled with a

typical clients module. A generic clients module, Clients(n), may, at any step, invoke

the next request for client p, p ∈ [1..n], provided the sequence of Et
p-events issued so

far (including the current one) forms a prefix of a well-formed sequence. The justice

requirement of Clients(n) is that eventually, every pending transaction issues an ack -ed

ιI or ι 6Ip.

Combining modules TM1 and Clients(n) we obtain the complete implementation,

defined by:

Imp1 : TM1 ‖| Clients(n)

We interpret this composition in a way that combines several of the actions of each of the

modules into one. Those actions can be described similarly to those given by Table 2.2,

where the first (Request) and last (Response) column are ignored, and the conditions

in the brackets are added. The justice requirements of Clients(n), together with the

observation that both ι 6I and an ack -ed ι I cause the cache of the issuing client to be

emptied, imply that Imp1’s justice requirement is that for every p = 1, . . . , n, caches[p]

is empty infinitely many times.
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2.3 Verification Based on Abstraction Mapping

In this section, we present a proof rule for verifying that an implementation satisfies a

transactional memory specification. The premisses of our proof rule can be checked with

a model checker, and we demonstrate the method by modeling TCC in TLA+ [Lam02]

and proving its correctness with the model checker TLC [Lam02].

2.3.1 A Proof Rule Based on Abstraction Mapping

We start by presenting a proof rule for verifying that an implementation satisfies the

specification Spec. The approach is an adapted version of the rule presented in [KPSZ02].

To apply the underlying theory, we extend the model of FDS with a new component,

O, that defines the observable variables. O ⊆ V and can be externally observed. Also,

we omit dealing with compassion (strong fairness) here since we believe compassion

is not used in the TM framework. We call the extended model observable fair discrete

system (OFDS) and assume that both the implementation and the specifications has the

form D : 〈V,O, Θ, ρ,J 〉.

In the current application, we prefer to adopt an event-based view of reactive sys-

tems, by which the observed behavior of a system is a (potentially infinite) set of events.

Technically, this implies that the set of observable variables consists of a single variable

O, to which we refer as the output variable. It is also required that the domain of O

always includes the value ⊥, implying no observable event. In our case, the domain of

52



the output variable is E⊥ = E ∪ {⊥}.

Let η : e0, e1, . . . be an infinite sequence of E⊥-values. The E⊥-sequence η̃ is called

a stuttering variant of the sequence η if it can be obtained by removing or inserting finite

strings of the form⊥, . . . ,⊥ at (potentially infinitely many) different positions within η.

Let σ : s0, s1, . . . be a computation of OFDS D. The observation corresponding to σ

is the E⊥ sequence s0[O], s1[O], . . . obtained by listing the values of the output variable

O in each of the states. We denote by Obs(D) the set of all observations of system D.

Let D
C

and D
A

be two systems, to which we refer as the concrete and abstract

systems, respectively. We say that system D
A

abstracts system D
C

(equivalently D
C

refines D
A

), denoted D
C
v D

A
if, for every observation η ∈ Obs(D

C
), there exists

η̃ ∈ Obs(D
A
), such that η̃ is a stuttering variant of η. In other words, modulo stuttering,

Obs(D
C
) is a subset of Obs(D

A
).

Based on the abstraction mapping of [AL91], we present in Fig. 2.10 a proof rule

that reduces the abstraction problem into a verification problem. There, we assume

two comparable OFDS’s, a concrete D
C

: 〈V
C
,O

C
, Θ

C
, ρ

C
,J

C
〉 and an abstract D

A
:

〈V
A
,O

A
, Θ

A
, ρ

A
,J

A
〉, and we wish to establish that D

C
v D

A
. Without loss of gener-

ality, we assume that V
C
∩ V

A
= ∅, and that there exists a 1-1 correspondence between

the concrete observables O
C

and the abstract observables O
A

.

The method assumes the identification of an abstraction mapping α : (V
A

= Eα(V
C
))

which assigns to each abstract variable X ∈ V
A

an expression Eα
X over the concrete

variables V
C

. For an abstract assertion ϕ, we denote by ϕ[α] the assertion obtained by

replacing each abstract variable X ∈ V
A

by its concrete expression Eα
X . We say that the
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abstract state S is an α-image of the concrete state s, written S = α(s), if the values of

Eα in s equal the values of the variables V
A

in S.

A1. ΘC → ΘA [α]
A2. DC |= (ρC → ρA [α][α′])
A3. DC |= (OC = OA [α])
A4. DC |= J [α], for every J ∈ JA

DC v DA

Figure 2.10: Rule ABS-MAP.

Premise A1 of the rule states that if s is a concrete initial state, then S = α(s) is

an initial abstract state. Premise A2 states that if concrete state s2 is a ρ
C

-successor of

concrete state s1, then the abstract state S2 = α(s2) is a ρ
A

-successor of S1 = α(s1).

Together, A1 and A2 guarantee that, for every run s0, s1, . . . of D
C

there exists a run

S0, S1, . . . of D
A

, such that Sj = α(sj) for every j ≥ 0. Premise A3 states that the

observables of the concrete state s and its α-image S = α(s) are equal. Premise A4

ensures that the abstract fairness requirements (justice) hold in any abstract state se-

quence which is a (point-wise) α-image of a concrete computation. It follows that every

α-image of a concrete computation σ obtained by applications of premises A1 and A2

is an abstract computation whose observables match the observables of σ. This leads to

the following claim:

Claim 2.13. If the premises of rule ABS-MAP are valid for some choice of α, then D
A

is an abstraction of D
C

.

54



2.3.2 Model Checking Using TLC

We verified the correctness of TCC using the explicit-state model checker TLC, the input

of which are TLA+ programs. Based on the similarity between TLC and the FDS model,

we verified that TCC indeed implements its specification SpecAli
.

2.3.2.1 TLA and TLA+

Both TLA [Lam94] and TLA+ [Lam02] have been introduced by Leslie Lamport for

the description of reactive and distributed, especially asynchronous, systems. TLA is a

logical language for expressing specifications and their properties. It has two levels: a

low level containing formulas that describe states and state transitions, and a high level

consisting of temporal formulas that are evaluated over infinite sequences of states.

Specifications are written by defining their initial conditions and next-state relations,

augmented by liveness and fairness conditions. Abstractness in the sense of informa-

tion hiding is ensured by quantification over state variables. The refinement problem

is solved by allowing stuttering steps that do not modify the values of the state vari-

ables of interest; an implementation is allowed to refine such high-level stuttering into

lower-level state changes.

An action is an expression containing primed (value in the next state) and un-primed

variables. For an action A and a state function t (an expression over constants and

unprimed variables), [A]t denotes A ∨ t′ = t and 〈A〉t denotes A ∧ ¬(t′ = t). Namely,

[A]t requires A to hold only if t changes value during a transition, whereas 〈A〉t requires
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that t changes value while A holds true. Formulas [A]t allow for stuttering: besides state

transitions that satisfy A, they also admit any transitions that do not change the state

function t. In particular, duplications of states can not be observed by formulas of this

form.

TLA+ is a language intended for writing high-level specification of reactive, dis-

tributed, and asynchronous systems. It combines TLA and a set theory with choice.

It also provides facilities for structuring a specification as a hierarchy of modules, for

declaring parameters, and for defining operators. See [Lam02] for a thorough discussion

of TLA+.

2.3.2.2 The Model Checker TLC

TLC [Lam02] is an explicit-state model checker that accepts as an input TLA+ specifica-

tions of the form:

Init ∧ [Next]vars ∧ L

where Init is a predicate that defines the initial condition, Next is the next-state action,

vars is a tuple of all variables, and L is a temporal formula that usually specifies a live-

ness condition. In addition to the TLA+ description, TLC is supplied with a configuration

file that provides the names of the specification and properties to be checked.

To verify that an implementation correctly implements its specification, one has to

provide TLA+ modules for both the specification and the implementation, and a map-

ping associating each of the specification’s variables with an expression over the im-

plementation’s variables. TLC then (automatically) verifies that the proposed mapping
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is a refinement mapping. Success means that, for the bounded instantiation taken, the

implementation module implements the specification, i.e., that every run of the imple-

mentation implements some run of the specification, and that every fair computation of

the implementation maps into a fair computation of the specification. In the first case,

failure is indicated by a finite execution path leading from an initial state into a state in

which the mapping is falsified. In the second case, failure is indicated by a finite exe-

cution path leading from an initial state to a loop in which the implementation meets all

fairness requirements, and the associated specification does not.

Since TLC can handle only finite-state systems, all parameters must be bounded.

2.3.2.3 Model Checking TCC

We verified a bounded instantiation of TCC using TLC. In this subsection we provide

two TLA+ modules: The first describes SpecAli
whereas the second describes TCC. The

refinement mapping that associates each of the specification’s variables with an expres-

sion over the implementation’s variables is given as part of the implementation module.

Specification Module We constructed the specification module from two submod-

ules, Spec and Spec Imp. Spec is the heart of the specification and is uniform for all

transactional memory specifications. It basically describes the specification of Sub-

section 2.2.3. Spec Imp mostly defines features that are unique for each transactional

memory by means of forbidding interchanges.

To reduce the size of the model, we added a new assumption to SpecA: The action

for committing a transaction combines some of SpecA’s actions into one instead of pro-
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module spec (Declaration of Data Structures)

variables spec mem, A persistent memory, represented as an array of naturals;

Q , A queue of pending events;

spec out , The observable effect of the actions;

spec doomed For each client p, spec doomed [p] can be T (doomed), or F ;

1

Figure 2.11: Specification: declaration of data structures.

viding each separately, thus simplifying the proof but preserving the soundness (since

the specification is restricted). At commit the module checks whether legal interchanges

could bring the transaction to the front of Q. If so, the transaction is removed form Q,

conflicting transactions are doomed for abortion, and the memory is updated. This re-

stricts the set of SpecA’s runs but retains soundness. Formally, TM1 v S̃pecA implies

that TM1 v SpecA, where S̃pecA is the restricted specification.

We next present the specification’s sections and provide a detailed analysis of each

one.

In the first part of Spec, Fig. 2.11, the data structures are declared. The second part,

provided in Fig. 2.12, defines the initial condition, Init. Note that there are several

module spec (Initial Condition)

Init
∆

=
∧ spec mem = [x ∈ Adr 7→ DEF VAL]
∧ Q = 〈〉
∧ spec out = 〈“NIL”〉
∧ spec doomed = [p ∈ Clients 7→ false]

1

Figure 2.12: Specification: initial condition.
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module spec (Actions - first part)

IssueOpen(p)
∆

= Open transaction for client p

∧ ¬ClientHasPendingTranscation(Q , p)
∧ spec out ′ = 〈p, “Open”〉
∧ Q ′ = Append(Q , 〈p, “Open”〉)
∧ unchanged 〈spec mem, spec doomed〉

IssueRead(p, x , v)
∆

= Client p reads v from address x , (assuming simplifying assumption)

∧ ClientHasPendingTranscation(Q , p)
∧ ¬QueueIsMarked(Q)
∧ spec doomed [p] = false

∧ spec out ′ = 〈p, “Read”, x , v〉
∧ Q ′ = Append(Q , 〈p, “Read”, x , v〉)
∧ LocalConsistency(Q ′

, p)
∧ unchanged 〈spec mem, spec doomed〉

AttemptRead(p, x , v)
∆

= Client p reads v from address x (not added to Q)

∧ ClientHasPendingTranscation(Q , p)
∧ ¬QueueIsMarked(Q)
∧ spec doomed [p] = true

∧ spec out ′ = 〈p, “Read”, x , v〉
∧ unchanged 〈spec mem, spec doomed , Q〉

1

Figure 2.13: Specification: actions - first part.

constants that were not declared in the first part: Adr, Clients, DEF V AL and NIL.

These, and others, are declared in a separate configuration file and are used to define

the bounds of the data structures. The initial condition sets each location (address) in

spec mem to a default value DEF V AL. It also sets Q to be empty, spec out to NIL,

and for each client, its index in array spec doomed is set to FALSE.

The third, and last part of Spec, is provided in Figures 2.13 and 2.14. It defines the

actions, beside those required for committing a transaction. IssueOpen accepts a client

ID, p, and issues a new open event if p does not have a pending transaction in Q. It sets
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module spec (Actions - second part)

IssueWrite(p, x , v)
∆

= Client p writes v to address x

∧ ClientHasPendingTranscation(Q , p)
∧ ¬QueueIsMarked(Q)
∧ spec doomed [p] = false

∧ spec out ′ = 〈p, “Write”, x , v〉
∧ Q ′ = Append(Q , 〈p, “Write”, x , v〉)
∧ unchanged 〈spec mem, spec doomed〉

AttemptWrite(p, x , v)
∆

= Client p writes v to address x (not added to Q)

∧ ClientHasPendingTranscation(Q , p)
∧ ¬QueueIsMarked(Q)
∧ spec doomed [p] = true

∧ spec out ′ = 〈p, “Write”, x , v〉
∧ unchanged 〈spec mem, spec doomed , Q〉

IssueAbort(p)
∆

= Abort transaction of client p

∧ ClientHasPendingTranscation(Q , p)
∧ spec out ′ = 〈p, “Abort”〉
∧ Q ′ = RemoveClientEvents(Q , p)
∧ spec doomed ′ = [spec doomed except ![p] = false]
∧ unchanged 〈spec mem〉

Idle
∆

=
∧ spec out ′ = 〈“NIL”〉
∧ unchanged 〈spec mem, Q , spec doomed〉

1

Figure 2.14: Specification: actions - second part.

spec out to 〈p, “Open”〉 (Jp) and also appends it to Q. IssueRead accepts a client ID,

a memory address, x, and a value, v. It issues a new read event if the client already has a

pending transaction in Q that is not doomed, Q is not marked (does not contain markp)

and the new event preserves local consistency. It also sets spec out to 〈p, “Read”, x, v〉
(Rt

p(x, v)) and appends it to the end of Q. AttemptRead issues a new read event if

the client’s transaction is doomed for abortion. It sets spec out to 〈p, “Read”, x, v〉 but
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module spec tcc

extends spec

1

Figure 2.15: Specification: TCC specifics.

does not append a new event to Q. IssueWrite issues a new write event if p already

has a pending transaction in Q that is not doomed, and Q is not marked. It also sets

spec out to 〈p, “Write”, x, v〉 (W t
p(x, v)) and append it to Q. AttemptWrite issues

a new write event if the client has a doomed pending transaction. It sets spec out to

〈p, “Write”, x, v〉 but does not append it to Q. IssueAbort issues a new abort event if

the client has a pending transaction (doomed or not). It sets spec out to 〈p, “Abort”〉
( 6Ip), removes all of p’s events from Q and sets the index of p in spec doomed to FALSE.

The last action is Idle. It sets spec out to NIL and preserves the values of all the other

variables.

Fig. 2.15 provides the first part of Spec Imp which defines the module to be an

extension of Spec.

The second part of Spec Imp, Fig. 2.16, defines the action required for committing a

transaction, assuming lazy invalidation conflicts are forbidden. IssueCommit issues a

new commit event if the client already has a pending transaction in Q that is not doomed,

Q is not marked and the read events are consistent with the memory. Note that if these

conditions hold, a transaction may always commit if transactions conflicting with it are

doomed. IssueCommit also sets spec out to 〈p, “Commit”〉 (Ip), update the memory

61



module spec tcc (Actions)

IssueCommit(p)
∆

= Commit transaction of client p

∧ ClientHasPendingTranscation(Q , p)
∧ ¬QueueIsMarked(Q)
∧ spec doomed [p] = false

∧ let readEvents
∆

= ReadEventsOfClient(Q , p)
in IsConsistent(readEvents , spec mem)

∧ spec out ′ = 〈p, “Commit”〉
∧ let writeEvents

∆

= WriteEventsOfClient(Q , p)
in spec mem ′ = (if (Len(writeEvents) > 0)

then UpdateSpecMem(spec mem, writeEvents)
else spec mem)

∧ let MarkedQ
∆

= Append(Q , 〈p, “Commit”〉)
in ∧ Q ′ = RemoveClientEventsAndOfConflicting LIC (MarkedQ , p)

∧ spec doomed ′ = DoomConflictingTransactions LIC (Clients , MarkedQ ,

spec doomed , p)

1

Figure 2.16: Specification: the commit action.

(UpdateSpecMem) according to the write events (WriteEvents), dooms conflicting

transactions (DoomConflictingTransactions LIC where LIC stands for Lazy In-

validation Conflict), and removes p’s events from Q as well as events of transactions

conflicting with it (RemoveClientEventsAndOfConflicting LIC). Note that the

admissible interchange set is not used directly to interchange p’s events to the front of Q

and instead the module uses it to reason which other transactions should be doomed. To

capture lazy invalidation conflicts it uses MarkedQ, which abbreviates 〈p, “Commit”〉
appended to Q.

The third part of Spec Imp, Fig. 2.17, sets the module’s next state transition to one

of the possible actions and defines the fairness condition. Close(p) requires client ID as

an input since the fairness requirement, “eventually every transaction is closed”, may be
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module spec tcc (Transitions)

a1
∆

= ∨ ∃ p ∈ Clients : IssueOpen(p)
a2

∆

= ∨ ∃ p ∈ Clients : ∃ x ∈ Adr : ∃ v ∈ Val ∪ {NoVal} : IssueRead(p, x , v)
a3

∆

= ∨ ∃ p ∈ Clients : ∃ x ∈ Adr : ∃ v ∈ Val ∪ {NoVal} : AttemptRead(p, x , v)
a4

∆

= ∨ ∃ p ∈ Clients : ∃ x ∈ Adr : ∃ v ∈ Val : IssueWrite(p, x , v)
a5

∆

= ∨ ∃ p ∈ Clients : ∃ x ∈ Adr : ∃ v ∈ Val : AttemptWrite(p, x , v)
a6(p)

∆

= ∨ ∃ p ∈ Clients : IssueAbort(p)
a7 a8 a9 a10 a11(p)

∆

= ∨ ∃ p ∈ Clients : IssueCommit(p)
a12

∆

= Idle

Close(p)
∆

= ∨ a7 a8 a9 a10 a11(p)
∨ a6(p)

NextClose
∆

= ∨ ∃ p ∈ Clients : Close(p)

Next
∆

= ∨ a1
∨ a2
∨ a3
∨ a4
∨ a5
∨ NextClose

∨ a12

w
∆

= 〈spec mem, Q , spec out , spec doomed〉

Fairness
∆

= eventually every transaction is closed

∧ ∀ p ∈ Clients : WFw (Close(p))

1

Figure 2.17: Specification: next state transition.

module spec tcc (Specification)

TCC Init
∆

= Init

TCC Next
∆

= Next

TCC Spec
∆

= TCC Init ∧ 2[TCC Next ]w ∧ Fairness

1

Figure 2.18: Specification: the complete specification assertion.
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module imp tcc (Declaration of Data Structures)

variables imp mem, A persistent memory which maintains the values of all

commited transactions.

caches , Array of lists. For each client p, caches[p] keeps the partial

actions associated with the most recent pending transaction of

p, if one exists.

imp out , An output variable recording responses to clients.

imp doomed , An array recording which transactions are doomed to be aborted.

history Q , Used for the refinement mapping - events that are written to

any of the caches[p] are also written to it. When a transaction

is closed, its events are also removed from history Q .

counters counters[p] the number of events in p’s pending transaction

1

Figure 2.19: Implementation of TCC: declaration of data structures.

satisfied by either an abort or a commit, which are implemented separately.

Fig. 2.18 defines the last part of the specification, including the complete specifica-

tion assertion, TCC Spec.

Implementation Module The implementation module Imp synchronously composes

the memory and the clients, such that every request by a client is immediately responded

by the memory.

The abstraction mapping requires that every variable of Spec is expressed over Imp’s

variables. No such expression, however, exists for Q and therefore we add a new aux-

iliary variable, called history Q, which is a queue over Et
⊥ and consists of the un-

doomed pending transactions’ events. When new events are issued they are appended to

history Q, and removed when the corresponding transaction is doomed, committed or

aborted. We next provide a detailed analysis of each of the implementation’s parts.
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In the first part of Imp, provided in Fig. 2.19, the data structures are declared. Note

that there is an additional array called counters. For each client, counters[p] holds the

number of events in p’s pending transaction and is used for bounding the length of each

transaction.

The second part part of Imp, presented in Fig. 2.20, defines the initial condition,

Init. It sets each location in imp mem to the default value DEF V AL, sets the cache

of each client to empty, sets imp out to NIL, sets the relevant index of each client in

array imp doomed to FALSE, initializes history Q to empty, sets imp out to NIL, and

initializes the counter of the number of events in each client’s transaction to 0.

The third section of Imp, provided in Figures 2.21 and 2.22, defines the possible

actions of the memory. AttemptOpen(p) opens a new transaction for client p if the

client’s cache is empty. It sets imp out and caches[p] to 〈p, “Open”〉 and appends it to

history Q as well. AttemptRead(p, x) issues a new read event only if p already has

a pending transaction (i.e. caches[p] is not empty). The value read, locally stored in

u, is equal to imp mem[x] (see comment in Section 2.2.5). AttemptRead(p, x) also

sets imp out to 〈p, “Read”, x, u〉 and appends it to caches[p]. If p’s transaction is not

doomed, i.e. imp doomed[p] = FALSE, 〈p, “Read”, x, u〉 is appended to history Q as

well. AttemptWrite(p, x, v) issues a new write event if the client’s cache is empty.

It sets imp out to 〈p, “Write”, x, v〉 and also appends it to caches[p]. If p’s transac-

tion is not doomed, it appends 〈p, “Write”, x, v〉 to history Q. AttemptCommit(p)

issues a new commit event if the client already has a pending transaction, which is

not doomed and consistent with the memory. It updates the memory according to the
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module imp tcc (Initial Condition)

Init
∆

=
∧ imp mem = [x ∈ Adr 7→ DEF VAL]
∧ caches = [p ∈ Clients 7→ 〈〉]
∧ imp out = 〈“NIL”〉
∧ imp doomed = [p ∈ Clients 7→ false]
∧ history Q = 〈〉
∧ counters = [p ∈ Clients 7→ 0]

1

Figure 2.20: Implementation of TCC: initial condition.

module imp tcc (Memory Actions - first part)

AttemptOpen(p)
∆

= Open cachesaction for client p

∧ caches [p] = 〈〉
∧ caches ′ = [caches except ![p] = Append(caches [p], 〈p, “Open”〉)]
∧ imp out ′ = 〈p, “Open”〉
∧ history Q ′ = Append(history Q , 〈p, “Open”〉)

AttemptRead(p, x )
∆

= Client p requests to read from address x

∧ caches [p] 6= 〈〉
∧ let u

∆

= imp mem[x ]
in ∧ caches ′ = [caches except ![p] = Append(caches [p], 〈p, “Read”, x , u〉)]

∧ imp out ′ = 〈p, “Read”, x , u〉
∧ if (imp doomed [p])

then history Q ′ = history Q

else history Q ′ = Append(history Q , 〈p, “Read”, x , u〉)

AttemptWrite(p, x , v)
∆

= Client p requests to write v in address x

∧ caches [p] 6= 〈〉
∧ caches ′ = [caches except ![p] = Append(caches [p], 〈p, “Write”, x , v〉)]
∧ imp out ′ = 〈p, “Write”, x , v〉
∧ if (imp doomed [p])

then history Q ′ = history Q

else history Q ′ = Append(history Q , 〈p, “Write”, x , v〉)

1

Figure 2.21: Implementation of TCC: memory actions - first part.
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module imp tcc (Memory Actions - second part)

AttemptCommit(p)
∆

= Client p requests to Commit

∧ caches [p] 6= 〈〉
∧ imp doomed [p] = false

∧ IsConsistentWithMem(caches [p], imp mem)
∧ let WriteEvents

∆

= GetWriteEvents(caches [p])
in imp mem ′ = if (Len(WriteEvents) > 0)

then UpdateMem(imp mem, WriteEvents)
else imp mem

∧ imp out ′ = 〈p, “Commit”〉
∧ imp doomed ′ = DoomConflictingTransactions LIC (caches , imp doomed , p)
∧ caches ′ = [caches except ![p] = 〈〉]
∧ history Q ′ = RemoveClientEventsAndOfConflicting LIC (caches , history Q , p)

AttemptAbort(p)
∆

= Abort the transaction of client p

∧ caches [p] 6= 〈〉
∧ imp out ′ = 〈p, “Abort”〉
∧ imp doomed ′ = [imp doomed except ![p] = false]
∧ caches ′ = [caches except ![p] = 〈〉]
∧ history Q ′ = RemoveClientEvents(history Q , p)

Idle
∆

= An idle step

∧ imp out ′ = 〈“NIL”〉

1

Figure 2.22: Implementation of TCC: memory actions - second part.

write events, sets imp out to 〈p, “Commit”〉, initializes the cache of client p to empty,

dooms all other pending transactions that conflicts with that of p, and removes from

history Q all p’s events as well as events of clients which their transactions are doomed.

AttemptAbort(p) issues a new abort event only if the client has a pending transaction.

It sets imp out to 〈p, “Abort”〉, sets its own doomed bit to FALSE, initializes its cache

to empty and removes all its events from history Q. The last action is Idle. It sets

imp out to NIL and preserves the values of the other variables.
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module imp tcc Transitions - first part

t1(p)
∆

= Open transaction

∧ counters [p] = 0
∧ counters ′ = [counters except ![p] = 1]
∧ AttemptOpen(p)
∧ unchanged 〈imp mem, imp doomed〉

t2(p, x )
∆

= Read

∧ counters [p] > 0
∧ counters [p] < TMsize

∧ NoPreviousWriteEvents(history Q , p)
∧ AttemptRead(p, x )
∧ counters ′ = [counters except ![p] = counters [p] + 1]
∧ unchanged 〈imp mem, imp doomed〉

t3(p, x , v)
∆

= Write

∧ counters [p] > 0
∧ counters [p] < TMsize

∧ AttemptWrite(p, x , v)
∧ counters ′ = [counters except ![p] = counters [p] + 1]
∧ unchanged 〈imp mem, imp doomed〉

1

Figure 2.23: Implementation of TCC: transitions - first part.

The fourth section of Imp, provided in Figures 2.23 and 2.24, defines the transitions

of the implementation. Each one of these transitions requires a matching enabled ac-

tion of the memory thus when combined together with a client’s request, forms a single

event. t1(p) opens a new transaction for client p if the client does not have a pending

transaction, i.e., the counter of the number of events in the client’s current pending trans-

action is 0. It calls AttemptOpen(p), the matching action of the memory for opening a

new transaction. t2(p) issues a new read transition for client p if it already has a pending

transaction (counters[p] is greater than 0) with less than TMsize events. This restric-
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module imp tcc Transitions - second part

t4(p)
∆

= Abort transaction

∧ counters [p] > 0
∧ AttemptAbort(p)
∧ counters ′ = [counters except ![p] = 0]
∧ unchanged 〈imp mem〉

t5(p)
∆

= Commit transaction

∧ counters [p] > 0
∧ AttemptCommit(p)
∧ counters ′ = [counters except ![p] = 0]

t6
∆

=
∧ Idle

∧ unchanged 〈imp mem, caches , history Q , counters , imp doomed〉

1

Figure 2.24: Implementation of TCC: Transitions - second part.

tion bounds the length of the transactions and allows model checking. t2(p) follows the

simplified assumption of Section 2.2.5, requiring that no write events have been issued

before. It finally increases the counter by 1. The analysis of the other actions is very

similar.

The last part, provided in Fig. 2.25, sets the next state in terms of the possible tran-

sitions and defines the fairness condition. It also issues an instance of the specification

and constructs a abstraction mapping from expressions over Imp’s variables to the vari-

ables of Spec. The mapping used for verifying TCC is the most trivial one – all variables

are mapped one-to-one. The last line of the implementation tells TLC to check that the

specification of Spec’s instance holds when the Spec’s variables are expressed using the

abstraction mapping.
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module imp tcc (Specification)

next
∆

= ∨ ∃ p ∈ Clients : ∨ t1(p)
∨ ∃ x ∈ Adr : t2(p, x )
∨ ∃ x ∈ Adr : ∃ v ∈ Val : t3(p, x , v)
∨ t4(p)
∨ t5(p)
∨ t6

w
∆

= 〈imp mem, caches , imp out , history Q , counters , imp doomed〉

Fairness
∆

= eventually every transaction is closed

∧ ∀ p ∈ Clients : WFw (t4(p) ∨ t5(p))

ImpSpec
∆

= Init ∧2[next ]w ∧ Fairness

ABS
∆

= instance spec tcc with spec mem ← imp mem, Q ← history Q ,

spec out ← imp out , spec doomed ← imp doomed

ABSSpec
∆

= ABS !TCC Spec

1

Figure 2.25: Implementation of TCC: the complete specification assertion.

TLC verified that mapping is a refinement mapping and verified that for the bounded

instantiation taken, the implementation module implements the specification.

2.4 Verification Based on Abstraction Relation

It is not always possible to relate abstract to concrete states by a functional correspon-

dence which maps each concrete state to a unique abstract state. In many cases, we

cannot find an abstraction mapping, but can identify an abstraction relation R(V
C
, V

A
)

(which induces a relation R(s, S)). In this section we present a new proof rule that only

assumes an abstraction relation and shows how it can be used to verify the correctness
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of TCC.

2.4.1 A Proof Rule Based on an Abstraction Relation

In Fig. 2.26, we present proof rule ABS-REL which only assumes an abstraction relation

R(V
C
, V

A
) between the concrete and abstract states.

R1. ΘC → ∃VA : R ∧ ΘA

R2. DC |= (R ∧ ρC → ∃V ′
A

: R′ ∧ ρ+
A
)

R3. DC |= (R → OC = OA)
R4. DC |= (∀VA : R → J), for every J ∈ JA

DC v DA

Figure 2.26: Rule ABS-REL.

Premise R2 of the rule allows a single concrete transition to be emulated by a se-

quence of abstract transitions. This is done via the transitive closure ρ+
A

which is de-

fined as follows. Let S0, S1, . . . , Sk, k > 0, be a sequence of abstract states, such that

〈Si, Si+1〉 |= ρ
A

for every i ∈ [0..k−1], and for some ` ∈ [1..k], for every i ∈ [1..k], if

i 6= ` then Si[O] = ⊥. Then 〈S0, S̃k〉 |= ρ+
A

, where S̃k = Sk[O := S`[O]] is obtained

from Sk by assigning the variable O (the single output variable) the value that it has in

state S`. This definition allows to perform first some “setting up” transitions that have

no externally observable events, followed by a transition that produces a non-trivial ob-

servable value, followed by a finite number of “clean-up” transitions that again have no
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externally observable events. The observable effect of the composite transition is taken

to be the observable output of the only observable transition in the sequence.

Premise R1 of the rule states that for every initial concrete state s, it is possible to

find an initial abstract state S |= Θ
A

, such that 〈s, S〉 |= R.

Premise R2 states that for every pair of concrete states, s1 and s2, such that s2 is

a ρ
C

-successor of s1, and an abstract state S1 which is a R-related to s1, it is possible

to find an abstract state S2 such that S2 is R-related to s2 and is also a ρ+
A

-successor

of S1. Together, R1 and R2 guarantee that, for every run s0, s1, . . . of D
C

there exists

a run S0, . . . , Si1 , . . . , Si2 , . . . , of D
A

, such that for every j ≥ 0, Sij is R-related to sj

and all abstract states Sk, for ij < k < ij+1, have no observable variables. Premise

R3 states that if abstract state S is R-related to the concrete state s, then the two states

agree on the values of their observables. Premise R4 ensures that the abstract fairness

requirements (justice) hold in any abstract state sequence which is a (point-wise) R-

related to a concrete computation. It follows that every sequence of abstract states which

is R-related to a concrete computation σ and is obtained by applications of premises R1

and R2 is an abstract computation whose observables match the observables of σ. This

leads to the following claim:

Claim 2.14. If the premises of rule ABS-REL are valid for some choice of R, then D
A

is an abstraction of D
C

.
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2.4.2 Verifying TCC

The model checker TLC does not enable to apply a relation between the abstract and

concrete systems and therefore the proof rule of Subsection 2.4.1 cannot be applied. As

an alternative we now sketch a proof, using rule ABS-REL, showing that Imp1 v SpecAli
.

Later, in Subsection 2.5.3, we explain how an adjusted version of this rule can be applied

when using a theorem prover.

The application of rule ABS-REL requires the identification of a relation R which

holds between concrete and abstract states. We use the relation R defined by:

spec out = imp out ∧ spec mem = imp mem ∧ spec doomed = imp doomed

∧ ∧n
p=1 ¬imp doomed[p] −→ (Q|p = caches[p])

The relation R stipulates equality between spec out and imp out, between spec mem

and imp mem and between spec doomed and imp doomed, and that, for each p ∈ [1..n]

that its transaction is not doomed, the projection of Q on the set of events pertinent to

client p equals caches[p].

To simplify the proof, we assume (see comment in Section 2.2.5) that all transactions

have the form

Jp Rt
p(x1, u1) · · ·Rt

p(xr, ur)W
t
p(y1, v1) · · ·W t

p(yw, vw){Ip, 6Ip}
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It is not difficult to see that premise R1 of rule ABS-REL holds, since the two initial

conditions are given by

Θ
C

:
∧n

p=1(imp doomed[p] = F) ∧ ∧n
p=1(caches[p] = Λ) ∧

imp mem = λi.0 ∧ imp out = ⊥
Θ

A
:

∧n
p=1(spec doomed[p] = F) ∧ Q = Λ ∧

spec mem = λi.0 ∧ spec out = ⊥

and the relation R guarantees equality between the relevant variables.

We will now examine the validity of premise R2. This can be done by considering each

of the concrete transitions t1, . . . , t6.

t1. Transition t1 appends the event Jp to an empty caches[p] and outputs it to imp out.

Note that caches[p] is initially empty or set to empty only by t4 and t5, whereas a

precondition for t4 is that imp doomed[p] = F and t5 by itself sets imp doomed[p]

to F. Therefore an empty caches[p] implies imp doomed[p] = F. This can be

emulated by an instance of abstract transition a1 which outputs Jp to spec out

and places this event at the end of Q. The precondition for a1 is that client p is

not pending, i.e. spec doomed[p] = F and Q|p is empty, which is guaranteed by

R. It can be checked that this joint action preserves the relation R, in particular,
∧n

p=1 ¬imp doomed[p] −→ (Q|p = caches[p]).

t2. Transition t2 appends to caches[p] (and outputs) the event Rt
p(x, v). The precondi-

tions are that caches[p] is not empty and that v = imp mem[x]. If imp doomed[p] =
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F, this can be matched by an instance of abstract transition a2, if p is unmarked.

The preconditions for abstract transition a2 are that client p is pending, p is un-

marked, spec doomed[p] = F and that Rt
p(x, v) is locally consistent withQ. Since

we assume (in the implementation) that clients only issue read requests for loca-

tions they had not written to in the pending transaction, the requirement for local

read-write consistency is always (vacuously) satisfied. All other preconditions are

guaranteed by R. If imp doomed[p] = T, this can be matched by an instance of

abstract transition a3. The preconditions for a3 are that client p is pending, p is

unmarked and spec doomed[p] = T, which are guaranteed by R. The joint action

preserves the relation R for both cases.

t3. Transition t3 appends to caches[p] (and outputs) the event W t
p(y, v). It is matched

by an instance of either a4 or a5. The rationalization is very similar to the previous

case.

t4. Transition t4 aborts the transaction pending in caches[p] while outputting the event

6Ip. The precondition is that caches[p] is not empty. The transition clears caches[p]

and sets imp doomed[p] = F. It is matched with the abstract transition a6 which

outputs the event 6Ip, removes all of p’s events fromQ and sets spec doomed[p] =

F. The precondition for a6 is that client p is pending, i.e. spec doomed[p] = T or

Q|p is not empty. Since caches[p] is not empty, if spec doomed[p] = F then Q|p
is not empty. If spec doomed[p] = T, the precondition trivially holds. The joint

action preserves the relation R.
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t5. Transition t5 commits the current transaction contained in caches[p] while out-

putting the event Ip. This is possible only if imp doomed[p] = F and p has a

pending transaction, which is consistent with imp mem. Otherwise, if one of the

read events does not match the value of the relevant memory address, there must

have been an update by a transaction that committed after the read, which would

have also set imp doomed[p] = T. Transition t5 also updates imp mem according

to caches[p], clears caches[p] and sets imp doomed[q] = T if there exist W t
p and

Rt
q that access the same location.

The emulation of this transition begins by an instance of a11 which appends mark p

to Q, followed by a sequence of applications of abstract transition a10 which at-

tempt to move all the events of p to the front ofQ, whereA corresponds to the lazy

invalidation conflict, i.e. forbid interchanging a Ip on the right with Rt
q(x) if Q

also contains W t
p(x). To resolve conflicts abstract transition a9 is applied, setting

spec doomed[q] = T for all q such thatQ contains Rt
q and W t

p that access the same

location. When p has a consecutive transaction at the front ofQ, we apply abstract

transition a7 which confirms that Q|p is consistent with spec mem (must be true

due to the R-conjunct spec mem = imp mem), outputs Ip, and replaces mark p

with Ip. Finally we apply a8 which updates spec mem according to Q|p (thus

making it again equal to imp mem), and removes all elements of p from Q, thus

reestablishing the R-conjunct
∧n

p=1 ¬imp doomed[p] −→ (Q|p = caches[p]).

t6. The idling concrete transition t6 may be emulated by the idling abstract transition
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a11.

The R-conjunct spec out = imp out guarantees the validity of premise R3. It re-

mains to verify premise R4. This premise requires showing that any concrete computa-

tion that visits infinitely many times states satisfying ∀V
A

: R → J
A

, where Jp : Q|p =

Λ ∧ spec doomed[p] = F, characterizes the set of abstract states in which the queue

contains no Et
p events and p does not have a pending transaction which is doomed to be

aborted. Since R requires that Q|p = caches[p], we obtain that Premise R4 is valid.

Note that ABS-MAP does not suffice to construct step t5, where the power of ABS-REL

is demonstrated. We obtained a similar proof for a bounded instantiation using TLC,

however, there Spec is defined as performing “meta-steps,” without which TLC, that

uses an ABS-MAP-like rule, cannot construct the relations ABS-REL does.

2.5 Mechanical Verification

In Section 2.3 we described the verification of TCC with the (explicit-state) model checker

TLC. It has several drawbacks: TLC does not allow to specify abstraction relations be-

tween states, but rather mappings between variables thus a proof rule that is weaker than

ABS-REL is used. For example, the relationQ|p = caches[p], that equates the projection

of the specification’s queue on a certain client to the client’s cache in the implementa-

tion, cannot be expressed in TLA+. We consequently use an auxiliary queue to record

the order in which events are invoked in the implementation and map it to Q. Also,

TLC can only verify finite instances of the system, with rather small numbers chosen for
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memory size, number of clients, number of pending transactions, etc. Thus far, we have

no “small number” properties of such systems, and the positive results can only serve as

a sanity check. Hence, to obtain a full mechanical verification we have to use a tool that

is based on deductive techniques.

Our tool of choice is TLPVS [PA03], which was developed to reduce the substan-

tial manual effort required to complete deductive temporal proofs of reactive systems.

It embeds temporal logic and its deductive framework within the high-order theorem

prover, PVS [OSRSC99]. It includes a set of theories defining linear temporal logic

(LTL), proof rules for proving soundness and response properties, and strategies that

aid in conducting the proofs. In particular, it has a special framework for verifying un-

bounded systems and theories. See [OSRSC99] and [PA03] for thorough discussions

for proving with PVS and TLPVS, respectively.

Since, however, TLPVS only supports the model of parameterized fair systems (PFS)

[PA03], we formulate a new computational model in the PVS specification language.

We then define a new version of the rule ABS-REL that is cast in terms of the formal

framework used in TLPVS. We provide a mechanical verification of the adapted proof

rule and of three implementations from the literature, including TCC.

2.5.1 Observable Parameterized Fair Systems

For working with TLPVS we use observable parameterized fair systems (OPFS) as the

computational model. It extends the model PFS with an observation domain. PFS is
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a variation of FDS and the differences are due to the need to embed LTL and its proof

theory within PVS. This representation allows the verification of parameterized systems

where the size of the system is kept symbolic. The change from a PFS to the OPFS

model is to allow verifying refinement relations between concrete and abstract systems

and comparing their observables. Under OPFS, a system D : 〈Σ, dO,O, Θ, ρ,F ,J , C〉
consists of the following components:

• Σ — A non-empty set of system states. Typically, a state is structured as a record

whose fields are typed system variables, V .

• dO — A non-empty observation domain which is used for observing the external

behavior of the states.

• O — An observation function. A mapping from Σ to dO.

• Θ — An initial condition: A predicate characterizing the initial states.

• ρ(s, s′) — A transition relation: A bi-predicate, relating the state s to state s′ – a

D-successor of s. We assume that every state has a ρ-successor.

• F — A non-empty fairness domain which is used for parameterizing the justice

and compassion fairness requirements.

• J — A mapping from F to predicates. For each f ∈ F , J (f) is a justice (weak

fairness) requirement (predicate). For each f ∈ F , a computation must include

infinitely many states satisfying J (f).
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• C — A mapping from F to pairs of predicates, called a compassion (strong fair-

ness) requirement. For each f ∈ F , let C(f) = 〈p, q〉 be the compassion require-

ment corresponding to f . It is required that if a computation contains infinitely

many p-states, then it should also contain infinitely many q-states. We present

compassion so to have a complete model but we omit dealing with it later since

we believe it is not used in the TM framework.

The definitions of a run and computation are the same as those in Section 1.1.

We formulate OPFS in PVS specification language as follows:

OPFS : TYPE =

[# initial : PREDICATE,

rho : BI PREDICATE,

obs : OBSERVABLE,

justice : JUSTICE TYPE #]

where

PREDICATE : TYPE = [STATE→ bool]

BI PREDICATE : TYPE = [STATE,STATE→ bool]

OBSERVABLE : TYPE = [STATE→ OBSERVABLE DOMAIN]

JUSTICE TYPE : TYPE = [FAIRNESS DOMAIN→ PREDICATE]

When importing theory OPFS, the user must instantiate it with STATE, FAIRNESS DOMAIN

and OBSERVABLE DOMAIN. These are uninterpreted types that must be defined by the user

for each system. The other components are identical to those of PFS, and we refer the

reader to [PA03] for further details.
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2.5.2 An Adjusted Proof Rule

Working with TLPVS required us to cast the proof rule in terms of a different formal

framework, and to capture a general stuttering equivalence as opposed of assuming stut-

tering only on the part of the specification.

To apply the underlying theory, we assume that both the implementation and the

specifications are represented as OPFSs. The observation function is then defined by

O(s) = s[O].

R1. ΘC (s) → ∃S : R(s, S) ∧ ΘA(S)
R2. DC |= (R(s, S) ∧ ρC (s, s′) → ∃S′ : R(s′, S′) ∧ ρA(S, S′))
R3. DC |= (R(s, S) → OC (s) = OA(S))
R4. DC |= (∀S : R(s, S) → J (f)(S)), for every f ∈ FA

DC v DA

Figure 2.27: (Adjusted) Rule ABS-REL.

The method advocated by the rule of Fig. 2.27 assumes the identification of an ab-

straction relation R(s, S) ⊆ Σ
C
× Σ

A
. If the relation R(s, S) holds, we say that the

abstract state S is an R-image of the concrete state s.

Premise R1 of the rule states that for every initial concrete state s, it is possible to

find an initial abstract state S |= Θ
A

, such that R(s, S) = T. Premise R2 states that for

every pair of concrete states, s and s′, such that s′ is a ρ
C

-successor of s, and an abstract

state S which is a R-related to s, there exists an abstract state S ′ such that S ′ is R-related
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to s′ and is also a ρ
A

-successor of S. Together, R1 and R2 guarantee that, for every run

s0, s1, . . . of D
C

there exists a run S0, S1, . . . , of D
A

, such that for every j ≥ 0, Sj is R-

related to sj . Premise R3 states that if abstract state S is R-related to the concrete state s,

then the two states agree on the values of their observables. Together with the previous

premises, we conclude that for every σ, a run of D
C

, there exists a corresponding run of

D
A

, which has the same observation as σ. Premise R4 ensures that the abstract justice

requirements hold in any abstract state sequence which is a (point-wise) R-related to

a concrete computation. It follows that every sequence of abstract states which is R-

related to a concrete computation σ and is obtained by applications of premises R1 and

R2 is an abstract computation whose observables match the observables of σ. This leads

to the following claim which was proved using TLPVS:

Claim 2.15. If the premises of rule ABS-REL are valid for some choice of R, then D
A

is an abstraction of D
C

.

A new theory that constructs the proof rule was defined. It assumes two OPFSs, one

for the abstract system (abs) and another for the concrete system (con). We next illus-

trate a couple of the theory’s functions that are used to define abstraction:

observable equivalent(seq c,obs c,seq a,obs a) : bool=

(FORALL t :

obs c(seq c(t)) = obs a(seq a(t)))

Function observable equivalent accepts a sequence and an observable for each of

the systems (concrete and abstract). It then checks if the observables are equal for every
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corresponding (by position) states of the concrete and abstract sequences.

Function abstract accepts two OPFSs, abs and con. It checks whether for each

computation of con there exists a computation of abs such that the observables of every

corresponding states are equal (using observable equivalent).

abstract(con,abs) : bool=

(FORALL seq c : computation(seq c,con) IMPLIES

(EXISTS seq a : computation(seq a,abs) AND

observable equivalent(seq c,con‘obs,seq a,abs‘obs)))

Note that this version of abstraction is simpler since it assumes no stuttering.

TLPVS has all temporal operators implemented, including (Eventually) and

(Always), which are denoted by F and G, respectively. It also has a function called

is P valid that accepts a temporal operator and checks whether it holds in the first

state of every computation. Let f be a FAIRNESS DOMAIN, s c a concrete state, s a an

abstract state and rel a relation between an abstract and a concrete states. The rule of

Fig. 2.27 is defined in TLPVS as follows:
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ABS REL : LEMMA

((FORALL st c :

con‘initial(st c) IMPLIES

EXISTS st a :

rel(st c, st a) AND

abs‘initial(st a)))

AND (is P valid(G(LAMBDA seq c, t :

(FORALL st a, st cp :

((rel(seq c(t), st a) AND

con‘rho(seq c(t), st cp))) IMPLIES

(EXISTS st ap :

(rel(st cp, st ap) AND

abs‘rho(st a, st ap))))), con))

AND (is P valid(G(LAMBDA seq c, t :

(FORALL st a :

((rel(seq c(t), st a) IMPLIES

con‘obs(seq c(t)) = abs‘obs(st a))))), con)))

AND (is P valid(G(F(LAMBDA seq c, t :

(FORALL st a, f :

rel(seq c(t), st a) IMPLIES

abs‘justice(f)(st a)))))), con)))

IMPLIES abstract(con, abs)

The soundness of the rule was proved in TLPVS and is provided in [CPZ08].

2.5.3 Mechanical Verification Using TLPVS

In this section we explain how to use TLPVS for verifying the correctness of transactional

memory implementations. We provide a framework and illustrate how it is applied for
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proving the correctness of TCC. The framework was used to prove the correctness of

additional implementations (Subsections 2.5.3, 2.5.3 and 2.6.2) and may also be used to

verify other implementations from the literature.

Framework for Verifying Transactional Memories

Several theories were defined so to enable the verification of transactional memory im-

plementations in TLPVS. The most basic one is Event which defines a new type for

capturing events and a set of utility functions for getting the event’s ID, type, value etc.

Another theory defines lists and allows to capture the queue-like structures used in both

specification and implementation. This theory requires, in addition to the regular list

operations, the definition of projection (|), which, in turn, requires the proofs of several

auxiliary lemmas. The data structure list is defined as follows:

list : TYPE = [# size : nat, entry : [posnat -> EVENT TYPE]#]

where nat is the non-negative integers, posnat is the positive integers and EVENT TYPE

is a type for transactional events defined in Event. Projection accept a condition and a

list and preserves only those elements which satisfy the condition. It is defined recur-

sively as follows:
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projection(condition : [EVENT TYPE -> bool],l : list) : RECURSIVE list =

IF empty(l)

THEN l

ELSE IF condition(car(l))

THEN cons(car(l),projection(condition,cdr(l)))

ELSE projection(condition,cdr(l))

ENDIF

ENDIF

MEASURE l‘size

where car, cdr, empty and size are the regular list operations. MEASURE l‘size indi-

cates the maximal number of times that projection may be called recursively. Other

operations are provided in [CPZ08].

Verifying TCC

Both a specification that forbids lazy invalidation conflicts and the implementation of

TCC were defined under the same theory.

Some of the specifications steps are combined to simplify the proofs in TLPVS. For

example, when SpecA commits a transaction, we combine the steps of interchanging

events, removing them from Q, and setting spec out to I. This restricts the set of

SpecA’s runs but retains soundness. Formally, TM1 v S̃pecφli
implies that TM1 v

Specφli
, where S̃pecφli

is the restricted specification. We next present the relevant part

of the specification’s transition relation ρ:
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% a7,a8,a9 and a10 were combined into one action - Commit:

(EXISTS (id : CLIENT ID) :

(is pending(st a‘Q,id) AND

st a‘spec doomed(id) = FALSE AND

read events consistent with mem(projection(of id(id))(st a‘Q),st a‘spec mem) AND

stp a = st a WITH

[spec out := (#id := id, act := COMMIT, adr := 0, val := 0#),

spec mem := update mem(st a‘spec mem, st a‘Q, id),

Q := fix Q at commit(is conflict,id,st a‘Q),

spec doomed := doom others(is conflict,id,projection(of id(id))(st a‘Q),

st a‘spec doomed)])

where is conflict consists of the forbidden interchanges corresponding to conflict

lazy invalidation, fix Q at commit(is conflict,id,st a‘Q) removes from st a‘Q the

events of id’s committed transaction and events of other transactions that conflict with it

(i.e. for which is conflict is satisfied), while doom others dooms all the transactions

that conflicts with that of id and sets spec doomed[id] to F. Thus, when a client tries

to commit an undoomed transaction several actions are combined such that its transac-

tion is committed, other transactions that conflict with it are doomed for abortion, the

transaction’s events are removed from Q and the memory is updated according to the

write events.

The implementation’s key component, ρc, is illustrated next:
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rho c : BI PREDICATE C =

(LAMBDA (st c, stp c) :

% t1 - Open:

(EXISTS (id : CLIENT ID) :

empty(st c‘caches(id)) AND

stp c = st c WITH

[imp out := (#id := id, act := OPEN, adr := 0, val := 0#),

caches := st c‘caches WITH

[(id) := append open(id,st c‘caches(id))]])

% t2 - Read:

OR (EXISTS (id : CLIENT ID, adr : MEMORY ADDRESS) :

NOT empty(st c‘caches(id)) AND

NOT some(is write of id(id),st c‘caches(id)) AND

LET read val = get val(adr,st c‘imp mem) IN

stp c = st c WITH

[imp out := (#id := id, act := READ,

adr := adr, val := read val#),

caches := st c‘caches WITH

[(id) := append read(id,adr,read val,

st c‘caches(id))]])

% t3 - Write:

OR (EXISTS (id : CLIENT ID, adr : MEMORY ADDRESS, val : VALUE) :

NOT empty(st c‘caches(id)) AND

stp c = st c WITH

[imp out := (#id := id, act := WRITE,

adr := adr, val := val#),

caches := st c‘caches WITH

[(id) := append write(id,adr,val,

st c‘caches(id))]])
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% t4 - abort:

OR (EXISTS (id : CLIENT ID) :

NOT empty(st c‘caches(id)) AND

stp c = st c WITH

[imp out := (#id := id, act := ABORT, adr := 0, val := 0#),

caches := st c‘caches WITH [(id) := null],

imp doomed := st c‘imp doomed WITH [(id) := FALSE]])

% t5 - Commit:

OR (EXISTS (id : CLIENT ID) :

NOT empty(st c‘caches(id)) AND

st c‘imp doomed(id) = FALSE AND

read events consistent with mem(st c‘caches(id),st c‘imp mem) AND

stp c = st c WITH

[imp out := (#id := id, act := COMMIT, adr := 0, val := 0#),

imp mem := update mem(st c‘imp mem, st c‘caches(id)),

caches := st c‘caches WITH [(id) := null],

imp doomed := doom others(is conflict, id,

st c‘caches, st c‘imp doomed)])

% t6 - idle:

OR stp c = st c WITH [imp out := (#id := 0, act := NULL, adr := 0, val := 0#)])

where stp c is the primed state, some(condition,caches(id)) checks if one of the

events in caches(id) satisfies condition, get val(adr,mem) gets the value of mem

at adr, read events consistent with mem(caches(id),mem) checks if all the read

events in caches(id) are consistent with mem, update mem(mem, caches(id)) updates

mem according to the write events in caches(id) and doom others(is conflict, id,

caches, doomed) dooms all the transactions that conflict with id’s transaction. It is

easy to see that the description matches Table 2.2.

The definitions of the other components, of both the implementation and specifica-
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tion, can be found in [CPZ08].

The abstraction relation R between concrete and abstract states is described in TLPVS

as follows:

rel : RELATION =

(LAMBDA s c, s a :

s c‘imp out = s a‘spec out AND

s c‘imp mem = s a‘spec mem AND

s c‘imp doomed = s a‘spec doomed AND

FORALL (id : CLIENT ID) :

(NOT s c‘imp doomed(id)) IMPLIES

project(id,s a‘Q) = s c‘caches(id)

Given a concrete and abstract states, rel equates the values of the output variable, the

memory and the list of doomed transactions. It also checks that if the transaction of a

client is not doomed, then its projection on the abstract queue equals the client’s cache

in the concrete system

In order to prove that TM1 v SpecA, we checked that abstract(con,abs) holds

by instantiating ABS REL and proving all of its premises. The proof can be found in

[CPZ08].

Verifying Eager Conflict Detection, Lazy Version Management

In this section we prove the correctness of an implementation that supports eager conflict

detection and lazy version management. A representative of this class of implementa-

tions is LTM of [AAK+05]. As in TCC, transactions execute speculatively in the clients’

caches and when they commit the memory is updated accordingly. The definition of
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conflict is slightly stronger than eager invalidation by disallowing writes to the same

memory location. Namely, the memory detects a conflict if it receives Rt
i(x) such that

W t
j (x) is in some open transaction, or W t

i (x, v) such that W t
j (x) or Rt

j(x) is in some

open transaction. In case of a conflict, the transaction that requests the second “offen-

sive” memory access is aborted.

The specification is given by SpecA where A is the admissible set of events cor-

responding to the eager invalidation conflict described in Subsection 2.2.2.1 excluding

also the exchange of write events to the same location. Namely, the corresponding

maintaining formula is mei ∨ (In ∧ W t
m(x) ∧ (¬ In)S W t

n(x)).

We next present the implementation, TM2, which uses the following data structures:

• imp mem : N→ N— Persistent memory. Initially, for all i ∈ N, imp mem[i] = 0;

• caches : array[1..n] of list of Et — Client’s caches. For each p ∈ [1..n], caches[p],

initially empty, is a sequence over Et
p that records the actions of p’s pending trans-

action;

• imp out: scalar in Et
⊥ = Et ∪ {⊥} — An output variable recording responses to

clients, initially ⊥;

The responses to clients requests are either an error err (for illegal syntactical re-

quests, e.g., a request to commit while the client has no pending transaction), an abort

if the request causes the client’s transaction to conflict with another pending transaction,

or an acknowledgment whereas for ιRt requests and non-conflicting ιRt requests it is
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a value in N and ack for all other cases. Note that legal commit requests are always

acknowledged.

We assume a generic clients module, Clients(n), that may, at any step, invoke the

next request for client p, p ∈ [1..n], provided the sequence of Et
p-events issued so far

(including the current one) forms a prefix of a well-formed sequence. The justice re-

quirement of Clients(n) is that eventually, every pending transaction issues an ack -ed

ιI or ι 6Ip. Combining modules TM2 and Clients(n) we obtain the complete implemen-

tation, defined by:

Imp2 : TM2 ‖| Clients(n)

Table 2.3 describes the acknowledged actions (events) of Imp2. The justice require-

ments of Clients(n), together with the observation that ack -ed ι 6I and ack -ed ιI cause

the cache of the issuing client to be emptied, imply that Imp2’s justice requirement is

that for every p = 1, . . . , n, caches[p] is empty infinitely many times.

For simplicity, we again assume that clients only issue reads for locations they had

not written to in the pending transaction.

To prove that Imp2 satisfies its specifications, we used the following abstraction re-

lation R in TLPVS:
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imp out Other Updates Conditions
t1 Jp append Jp to caches[p] caches[p] is empty
t2 Rt

p(x, v) append Rp(x, v) to caches[p] v = imp mem[x];
caches[p] is not empty;
∀q 6= p, W t

q (x) 6∈ caches[q]
t4 W t

p(x, v) append Wp(x, v) to caches[p] caches[p] is not empty
∀q 6= p, W t

q (x), Rt
q(x) 6∈ caches[q]

t6 6Ip set caches[p] to empty caches[p] is not empty
t7 Ip set caches[p] to empty; caches[p] is not empty

update imp mem by caches[p]
t8 ⊥ none none

Table 2.3: The actions of Imp2.

rel : RELATION =

(LAMBDA s c, s a :

s c‘imp out = s a‘spec out AND

s c‘imp mem = s a‘spec mem AND

s c‘imp doomed = s a‘spec doomed AND

FORALL (id : CLIENT ID) :

project(id,s a‘Q) = s c‘caches(id)

Verifying Eager Conflict, Eager Version Control

In this section we prove the correctness of an implementation that supports eager conflict

detection and eager version management. A representative of this class of implementa-

tions is LogTM of [MBM+06a]. The definition of conflict and its resolution are identical

to those of the implementation in Subsection 2.5.3, i.e., the memory detects a conflict

if it receives Rt
i(x) such that W t

j (x) is in some open transaction, or W t
i (x, v) such that

W t
j (x) or Rt

j(x) is in some open transaction. In case of a conflict, the transaction that

requests the second “offensive” memory access is aborted. Since eager version control
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is employed, however, the implementation updates the memory upon a write. If later it is

necessary to abort the transaction, then the memory is rolled back to its previous value.

Since the protocol does not allow for more than one overlapping write, there is no need

to record any information but the previous value of the locations that are updated. The

implementation thus includes an array log [1..n] of tuples from type 〈N,N〉. For client p,

log [p] stores the previous value of every location that has been updated by the client in

its pending transaction.

The specification is given by SpecA where the corresponding maintaining formula is

mei ∨ (In ∧ W t
m(x) ∧ (¬ In)S W t

n(x)).

The implementation, TM3, uses the following data structures:

• imp mem : N→ N— Persistent memory. Initially, for all i ∈ N, imp mem[i] = 0;

• caches : array[1..n] of list of Et — Client’s caches. For each p ∈ [1..n], caches[p],

initially empty, is a sequence over Et
p that records the actions of p’s pending trans-

action;

• log : array[1..n] of〈N,N〉 — Log that stores the previous value of every location

that has been updated by the client in its pending transaction. For each p ∈ [1..n],

log[p], initially empty, is a list of tuples of the type 〈N,N〉, where the first element

is a memory location and the second is the location’s previous value.

• imp out: scalar in Et
⊥ = Et ∪ {⊥} — An output variable recording responses to

clients, initially ⊥;
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The responses to clients requests are either an error err (for illegal syntactical re-

quests, e.g., a request to commit while the client has no pending transaction), an abort

if the request causes the client’s transaction to conflict with another pending transaction,

or an acknowledgment whereas for ιRt requests and non-conflicting ιRt requests it is a

value in N and ack for all other cases. If a transaction is aborted the memory is rolled

back to its previous value based on the client’s log.

Combining module TM3 and the generic clients module Clients(n) we obtain the

complete implementation, defined by:

Imp3 : TM3 ‖| Clients(n)

The justice of Imp3’s requires that for every p = 1, . . . , n, caches[p] is empty in-

finitely many times.

Table 2.4 describes the actions of Imp3. For simplicity we assume that clients only

issue reads for locations they had not written to in the pending transaction.

To prove that Imp3 satisfies its specifications, we cannot use the same R which is

used to verify Imp2; rather, we look at the “rolled back” version of memory values,

which can be determined by log . Formally, for each memory address x ∈ N, we define

rolled back [x] =





v for some j, 〈x, v〉 ∈ log [j]

imp mem[x] otherwise
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imp out Other Updates Conditions
t1 Jp append Jp to caches[p] caches[p] is empty
t2 Rt

p(x, v) append Rp(x, v) to caches[p] v = imp mem[x];
caches[p] is not empty;
∀q 6= p, W t

q (x) 6∈ caches[q]
t4 W t

p(x, v) append Wp(x, v) to caches[p]; caches[p] is not empty
append 〈x, imp mem[x]〉 to log [p]; ∀q 6= p, W t

q (x), Rt
q(x) 6∈ caches[q]

update imp mem[x] to v
t6 6Ip set caches[p] to empty; caches[p] is not empty

∀〈x, u〉 ∈ log [p] set imp mem[x] to u;
set log [p] to empty

t7 Ip set caches[p] to empty; caches[p] is not empty
set log [p] to empty

t8 ⊥ none none

Table 2.4: The actions of Imp3.

The abstraction relation R is then defined in TLPVS as:

rel : RELATION =

(LAMBDA s c, s a :

s c‘imp out = s a‘spec out AND

s a‘spec mem = rolled back(s c‘imp mem) AND

FORALL (id : CLIENT ID) :

s a‘spec doomed(id) = FALSE AND

FORALL (id : CLIENT ID) :

project(id,s a‘Q) = s c‘caches(id)

2.6 Supporting Non-Transactional Accesses

As pointed out in Subsection 2.1.2.5 accesses to the memory are not necessarily all

transactional and for various reasons they can be also non-transactional. In this section
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we show how to extend our model to handle non-transactional accesses. We apply

our proof rule using TLPVS and produce a machine checkable, deductive proof for the

correctness of an implementation that handles non-transactional memory accesses.

Non-transactional accesses cannot be aborted and may not be issued by a client that

has a pending transaction. The atomicity and serializability requirements remain intact,

where non-transaction operations are cast in the specification as a successfully commit-

ted, single operation, transaction. A conflict occurs when two overlapping transactions,

or a non-transactional operation and an overlapping transaction, access the same loca-

tion and at least one writes to it. In case of the latter, it is always the transaction that

is aborted. Our method for handling the non-transactional operations allows using the

same proof rule and the same admissible interchange sets for each one of [Sco06]’s

conflicts, as defined in Subsection 2.2.2.1.

It is important to point out that we make a strong assumption, under which the trans-

actional memory is aware of non-transactional accesses, as soon as they occur. While

the transactional memory implementations cannot abort such accesses, it may use them

in order to abort transactions that are under its control. It is only with such or similar

assumption that total consistency or coherence can be maintained.

2.6.1 Extended Specification

In this subsection we extend the model and the specification to handle non-transactional

memory accesses. We present only the extensions and modifications and do not repeat
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the unchanged definitions. For every client p, let the set of non-transactional invocations

by client p consists of:

• ιRnt
p (x) – A non-transactional request to read from address x ∈ N.

• ιW nt
p (y, v) – A non-transactional request to write value v ∈ N to address y ∈ N.

The memory provides a response for each non-transactional invocation where ιW nt

is responded by an acknowledgment ack and ιRnt
p (x) by the value of the memory at

location x. The memory returns an err if the requesting client has a pending trans-

action. Non-transactional invocations are never responded with an abort . We define

Ent
p : {Rnt

p (x, u),W nt
p (x, v)} to be the set of non-transactional observable events, and

keep the same definition for the set of transactional observable events, namely, Et
p : {Jp

, Rt
p(x, u),W t

p(x, v),Ip, 6Ip}. We define Ent to be the set of all non-transactional events

over all clients, i.e., Ent = ∪n
p=1E

nt
p , and redefine E, the set of all observable events, to

include non-transactional events, namely E = Ent ∪ Et. As with transactional events,

we also abbreviate the pair invocation, non-err response by omitting the ι-prefix of the

invocation for transactional requests. Thus, W nt
p (x, v) abbreviates ιW nt

p (x, v), ack p. For

read actions, we include the value read, that is, Rnt
p (x, u) abbreviates ιRnt(x), ρR(u).

Let σ : e0, e1, . . . , ek be a finite sequence of observable E-events. We say that the se-

quence σ̂ over Et is σ’s transactional sequence, where σ̂ is obtained from σ by re-

placing each Rnt
p and W nt

p by Jp Rt
p Ip and Jp W t

p Ip, respectively. That is, each

non-transactional event of σ is transformed into a singleton committed transaction in
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σ̂. The definitions for well-formed transactional sequence, local read-write consistency,

atomicity and global read-write consistency, remain the same.

Table 2.5 summarizes the new non-transactional steps, a13 and a14, for SpecA.

Request imp out Other Updates Conditions Response
a13 Rnt

p (x) Rnt
p (x, v) append Jp, Rt

p(x, v), Ip to Q p is not pending spec mem[x]

a14 W nt
p (x, v) W nt

p (x, v) append Jp, W t
p(x, v), Ip to Q p is not pending ack

Table 2.5: Non-transactional steps of SpecA.

A non-transactional memory-access ant
p (that can only be accepted when p-has no

pending transaction) is treated by appending Jp, a
t
p,Ip to the queue. (Note that the

non-transactional event is replaced by its transactional counterpart.) These transactions,

corresponding to the non-transactional operations, cannot be “doomed to abort” since

they are not pending by definition. The extended SpecA does not support “eager version

management” that eagerly updates the memory with every W t-action (that doesn’t con-

flict any pending transaction) which is reasonable since eager version management and

the requirement to commit each non-transactional access are contradictory.

2.6.2 Verifying TCC Augmented with Non-Transactional Accesses

We augment the implementation of Section 2.2.5 to support non-transactional accesses

and verify its correctness. As before, transactions execute speculatively in the clients’

caches. When a transaction commits, all pending transactions that contain some read

events from addresses written to by the committed transaction are “doomed.” Similarly,
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non-transactional writes cause pending transactions that read from the same location to

be “doomed.” A doomed transaction may execute new read and write events in its cache,

but it must eventually abort.

The specification is given by SpecA where A is the admissible set of events corre-

sponding to the lazy invalidation conflict described in Subsection 2.2.2.1.

We refer to the implementation as TM4. It uses the following data structures:

• imp mem : N→ N— Persistent memory. Initially, for all i ∈ N, imp mem[i] = 0;

• caches : array[1..n] of list of Et — Client’s caches. For each p ∈ [1..n], caches[p],

initially empty, is a sequence over Et
p that records the actions of p’s pending trans-

action;

• imp out: scalar in E⊥ = E ∪ {⊥} — An output variable recording responses to

clients, initially ⊥;

• imp doomed : array [1..n] of booleans — An array recording which transactions

are doomed to be aborted. Initially imp doomed[p] = F for every p.

Note that caches is over Et, i.e., only over transactional events, whereas imp out is over

E⊥, which consists also of non-transactional events.

The responses are either a value in N for ιRt requests, an err for syntactic errors

(e.g., ιI request when there is no pending transaction), an abort for a ιI request when

the transaction is doomed for abortion, or an acknowledgment ack for all other cases.
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TM4 receives requests from clients, to each it updates its state, including updating

the output variable imp out, and issues a response to the requesting client. The responses

are either a value inN for ιRt or ιRnt requests, an error err for syntactic errors, an abort

for a ι I request when the transaction is doomed for abortion, or an acknowledgment

ack for all other cases. Table 2.6 describes the actions of TM4 (for now, ignore the com-

ments in the square brackets under the “conditions” column).

Request imp out Other Updates Conditions Response
t1 ιJp Jp append Jp to caches[p] [caches[p] is empty] ack
t2 ιRt

p(x) Rt
p(x, v) append Rp(x, v) to caches[p] v = imp mem[x]; imp mem[x]

[caches[p] is not empty]
t3 ιW t

p(x, v) W t
p(x, v) append Wp(x, v) to caches[p] [caches[p] is not empty] ack

t4 ι 6Ip 6Ip set caches[p] to empty [caches[p] is not empty] ack
set imp doomed[q] to F;

t5 ιIp Ip set caches[p] to empty; imp doomed[p] = F; ack
for every x and q 6= p such that [caches[p] is not empty]
W t

p(x) ∈ caches[p] and
Rt

p(x) ∈ caches[q]
set spec doomed[q] to T;

update imp mem by caches[p]
t6 none ⊥ none none none
t7 ιRnt

p (x) Rnt
p (x, v) none v = imp mem[x]; imp mem[x]

[caches[p] is empty]
t8 ιW nt

p (x, v) W nt
p (x, v) set imp mem[x] to v; [caches[p] is empty] ack

for every q such that
Rt(x) ∈ caches[q]
set imp doomed[q] to T

Table 2.6: The actions of TM4.

We assume a generic clients module, Clients(n), that may, at any step, invoke the

next request for client p, p ∈ [1..n]. Combining modules TM4 and Clients(n) we obtain

the complete implementation, defined by:
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Imp4 : TM4 ‖| Clients(n)

The actions of Imp4 can be described similarly to the one given by Table 2.6, where

the first and last column are ignored, the conditions in the brackets are added. The

justice of Imp4 requires that for every p = 1, . . . , n, caches[p] is empty infinitely many

times.

We now sketch a proof, using rule ABS-REL, showing that Imp4 v SpecA (a mechan-

ical proof using TLPVS is provided in [CPZ08]). The application of the rule requires the

identification of a relation R which holds between concrete and abstract states. We use

the same relation R as of Subsection 2.4.2, defined by:

spec out = imp out ∧ spec mem = imp mem ∧ spec doomed = imp doomed

∧ ∧n
p=1 ¬imp doomed[p] −→ (Q|p = caches[p])

Premises R1,R3 and R4 of rule ABS-REL hold for the same reason given in Subsec-

tion 2.4.2. In fact, the justifications for the concrete transitions t1, . . . , t4 and t6 that

were given in Subsection 2.4.2 to verify R2 may as well be used here. It thus remains

only to consider the other transitions for validating premise R2.

t5. Transition t5 commits the current transaction contained in caches[p] while out-

putting the event Ip. This is possible only if p has a pending transaction and

imp doomed[p] = F. The pending transaction must be consistent with imp mem;
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otherwise, one of the read events does not match the value of the referred memory

address, which means that there must have been an update (according to a write

in a committed transaction or to a non-transactional write) that occurred after the

read and implied imp doomed[p] = T. The transition also updates imp mem ac-

cording to caches[p], clears caches[p] and sets imp doomed[q] = T if there exist

W t
p(x) and Rt

q(x).

The emulation of this transition begins by the instance of a11 which appends mark p

to Q, followed by a sequence of applications of abstract transition a10 which at-

tempt to move all the events of p to the front of Q, where A corresponds to the

lazy invalidation conflict, i.e. forbids interchanging Ip on the right with Rt
q(x)

if there also exists a W t
p(x). If there are conflicts we apply abstract transitions

a9 and set spec doomed[q] = T for all q such that Q contains Rt
q(x) and W t

p(x).

As we shall see next, during the emulation for transition t7 all read events that

are added to Q as a result of a non-transactional read are removed from it be-

fore any other client tries to commit its pending transaction. Thus all read events

in Q, when p tries to commit, are originally transactional and belong to trans-

actions that may be aborted. After aborting conflicting transaction, and when p

has a consecutive transaction at the front of Q, we apply abstract transition a7

which confirms that Q|p is consistent with spec mem (must be true due to the

R-conjunct spec mem = imp mem), outputs Ip, and replaces mark p with Ip. Fi-

nally we apply a8 which updates spec mem according toQ|p (thus making it again

equal to imp mem), and removes all elements of p from Q, thus reestablishing the
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R-conjunct
∧n

p=1 ¬imp doomed[p] −→ (Q|p = caches[p]).

t7. Transition t7 outputs the non-transactional event Rnt
p (x, u). The preconditions

are that caches[p] is empty and that u = imp mem[x]. The emulation of this

transition begins by an instance of a13 which appends Jp, R
t
p(x, v), Ip to Q and

outputs Rnt
p (x, v), where v equals spec mem[x]. This is followed by a sequence

applications of abstract transition a10 which attempt to shift all the events of p to

the front ofQ. SinceA corresponds to the lazy invalidation conflict, and there are

no W t
p(x), this is feasible. Next we apply abstract transition a8 which confirms

that Q|p is consistent with spec mem (must be true since v = spec mem[x]), and

removes all events of p from Q, thus reestablishing the R.

t8. Transition t7 outputs the non-transactional event W nt
p (x, v). The only precondi-

tion is that caches[p] is empty. The emulation of this transition begins by an in-

stance of a14 which appends Jp,W
t
p(x, v), Ip to Q and outputs W nt

p (x, v). This

is followed by a sequence applications of abstract transition a10 which attempt to

shift all the events of p to the front of Q, without interchanging Ip on the right

with Rt
q(x). Since they are forbidden, to avoid such interchanges we apply ab-

stract transitions a9 and set spec doomed[q] = T for all q such that Q contains

Rt
q(x). Next we apply abstract transition a8 which confirms that Q|p is consistent

with spec mem (obvious since the transaction consists only of W t
p(x)), updates

spec mem[x] to v (thus making it again equal to imp mem), and removes the events

of p from Q, thus reestablishing R.
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2.7 Related Work

To the best of our knowledge, the work presented here is the first to verify the cor-

rectness of transactional memories. A very recent work [GHJS08] presents a model

checking technique for verifying safety and liveness properties of software transactional

memories. It considers strict serializability and abort consistency as safety requirements,

and obstruction freedom and livelock freedom as liveness requirements. By exploiting

symmetries in STM implementations they reduce the verification problem of unbounded

state to a problem that involves only two threads and two shared variables. For veri-

fying safety, they first define a finite state transition system that generates exactly the

permitted executions of programs with two threads and two shared variables. Next, a

transition system is defined also for the implementation, and a check for the existence

of a simulation between the two transition systems is performed. The liveness proper-

ties are checked over the implementation’s transition system, by trying to detect a loop

which violates the relevant property.

The work of [AMP00] studies the model checking of serializability, linearizablity

[HW90] and sequential consistency [Lam79]. Most relevant to our work is the veri-

fication of serializability, which they show to be PSPACE-complete. They generate a

nondeterministic finite state automaton for the implementation and another automaton

that accepts only strings that are not serializable with respect to the specification. They

then check whether the intersection of the automata is empty. Their method is intended

for verifying serializability in its most general form and does not capture any special as-
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pects of transactional memory. It also may be used only to verify bounded instantiations.

They do not report whether their method was implemented or not.

2.8 Conclusions

In this work we developed an abstract model for specifying transactional memory and

a methodology for verifying the correctness of transactional memory implementations

against their specifications. The first essential contribution of this work is the notion of

interchangeable events which allows to specify correctness criteria and to model differ-

ent conflicts. We constructed a proof rule based on abstraction mapping for verifying

that an implementation satisfies its specification and applied it using model checker TLC

for verifying a bounded instantiation of TCC. Since it is not always possible to relate

abstract to concrete states by a functional correspondence, we constructed a new proof

rule which only assumes an abstraction relation. We provided a mechanical verifica-

tion of the new proof rule and applied it by using TLPVS to mechanically verify three

transactional memory implementations drawn from the literature.

Since practical transactional memory implementations are expected to deal with mem-

ory accesses that occur outside of transactions, we extended our initial specification to

support non-transactional memory accesses, based on the assumption that the imple-

mentation can detect them. We then proved the correctness of an implementation that

accommodate non-transactional memory accesses.

We provided a framework that enables to verify the correctness of other transactional
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memory implementations, to be used in the theorem prover TLPVS.

2.9 Future Work

While our model captures the important algorithmic aspects of the implementations, it

is still quite a bit more abstract than implementations written in C++, Java etc. One

obvious next step is to formally analyze more detailed models of the implementations.

The extension for supporting non-transactional accesses is based on the assumption

that an implementation can detect them. We would like to weaken this assumption

and extend our framework to enable the verification of implementations that cannot

distinguish between transactional and non-transactional accesses. It would also be quiet

interesting to extend our model to support nesting transactions, since transactional code

may use library procedures that also contain transactions.

We would like to harness the power of new verification technologies like satisfia-

bility modulo theories (SMT) that have already shown so much potential for software

verification. Interesting questions are whether SMT and other software verification tech-

nologies provide us additional leverage for efficient reasoning about transactional mem-

ory, and whether there are theories and decision procedures specific to transactional

memory that could be added to the SMT arsenal.

We are planning as well to study liveness properties of transactional memory, while

considering different arbitration policies.
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3
RANKING ABSTRACTION OF

RECURSIVE PROGRAMS

Procedural programs with unbounded recursion present a challenge to symbolic model-

checkers since they ostensibly require the checker to model an unbounded call stack. In

this chapter we propose the integration of ranking abstraction [KP00b, BPZ05], finitary

state abstraction, procedure summarization [SP81], and model-checking into a com-

bined method for the automatic verification of LTL properties of infinite-state recursive

procedural programs. The inputs to this method are a sequential procedural program

together with state and ranking abstractions. The output is either “success”, or a coun-

terexample in the form of an abstract error trace. The method is sound, as well as

complete, in the sense that for any valid property, a sufficiently accurate joint (state and

ranking) abstraction exists that establishes its validity.

The method centers around a fixpoint computation of procedure summaries of a

finite-state program, followed by a subsequent construction of a behaviorally equivalent

nondeterministic procedure-free program. Since we begin with an infinite-state program

that cannot be summarized automatically, a number of steps involved in abstraction and

LTL model-checking need to be performed over the procedural (unsummarized) pro-

gram. These include augmentation with non-constraining observers and fairness con-
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straints required for LTL verification and ranking abstraction, as well as computation of

state abstraction. Augmentation with global observers and fairness is modeled in such

a way as to make the associated properties observable once procedures are summarized.

The abstraction of a procedure call is handled by abstracting “everything but” the call

itself, i.e., local assignments and binding of actual parameters to formals and of return

values to variables.

The method relies on machinery for computing abstractions of first order formulas,

but is orthogonal as to how an abstraction is actually computed. We have implemented

a prototype based on the TLV symbolic model-checker [Sha00] by extending it with a

model of procedural programs. Specifically, given a symbolic finite-state model of a

program, summaries are computed using BDD techniques in order to derive an FDS free

of procedures to which model-checking is applied. The tool is provided, as input, with a

concrete program and with predicates and ranking components. It computes a predicate

abstraction [GS97] automatically using the method proposed in [BPZ05]. We have

used this implementation to verify a number of canonical examples, such as Ackerman’s

function, the Factorial function and a procedural formulation of the 91 function.

While most components of the proposed method have been studied before, our ap-

proach is novel in that it reduces the verification problem to that of symbolic model-

checking. Furthermore, it allows for the application of ranking and state abstractions

while still relegating all summarization computation to the model-checker. Another ad-

vantage is that fairness is supported directly by the model and related algorithms, rather

than it being specified in a property.
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The rest of the chapter is organized as follows: Section 3.1 provides an overview

of predicate abstraction and ranking abstraction, and formalizes procedural programs as

flow-graphs. In Section 3.2 we present a method for verifying the termination of pro-

cedural programs using ranking abstraction, state abstraction, summarization, construc-

tion of a procedure-free FDS, and finally, model-checking. In Section 3.3 we present a

method for LTL model-checking of recursive procedural programs. Finally, Section 3.5

concludes and discusses future work.

3.1 Background

In this subsection we provide background necessary for constructing our technique, and

which was not already given in Chapter 1. It includes predicate abstraction to deal with

the infinite domains, ranking abstraction to preserve program termination which might

disappear once predicate abstraction is applied and an overview of programs with and

without procedures presented as transition graphs.

3.1.1 Predicate Abstraction

LetD : 〈V, Θ, ρ,J , C〉 be an FDS and let VA = {u1, . . . , un} be a set of abstract variables

that range over finite domains. An abstract state is an interpretation that assigns to each

variable ui a value in its domain. We denote by ΣA the set of all abstract states. An
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abstraction mapping is defined

αε : u1 = E1(V ), . . . , un = En(V )

where each E i is an expression over V ranging over the domain of ui.

When the abstract variables are boolean, and E i are predicates over V , the abstrac-

tion is often referred to as predicate abstraction. The abstraction mapping αε can be

expressed by:

VA = E(V )

From here on, we shall refer to αε as α. For assertion p(V ), we define its α-abstraction

by:

α(p) : ∃V.(VA = E(V ) ∧ p(V ))

The semantics of α(p) is ‖α(p) ‖ : {α(s) | s ∈ ‖ p ‖}. Note that an abstract state S

is in ‖α(p) ‖ iff there exists a concrete p-state that is abstracted into S. A bi-assertion

β(V, V ′) is abstracted by:

α2(β) : ∃V, V ′.(VA = E(V ) ∧ V ′
A = E(V ′) ∧ β(V, V ′))

The dual contracting abstraction α is defined by:

α(p) : α(1) ∧ ¬α(¬p)
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where α(1) restricts the range of α to contain only abstract states that have at least one

concrete state mapped by α into S.

For a temporal formula ψ in positive normal form, ψα is the formula obtained by

abstracting every maximal state sub-formula p in ψ into α(p).

The abstraction of D by α is the FDS

Dα = 〈VA, α(Θ), α2(ρ), {α(J) | J ∈ J }, {〈α(p), α(q)〉 | (p, q) ∈ C}〉

Theorem 3.1. For a system D, abstraction α, and temporal formula φ:

Dα |= φα =⇒ D |= φ

3.1.2 Ranking Abstraction

A well-founded domain is a pair (W ,Â) such thatW is a set, andÂ is a partial order over

W that does not admit infinite Â-decreasing chains. A ranking function maps program

states into some well-founded domain.

Ranking abstraction is a method of augmenting the concrete program by a non-

constraining progress monitor, which measures the progress of the program relative to a

given ranking function. Once a program is augmented, a conventional state abstraction

can be used to preserve the ability to monitor progress in the abstract system. This

method was introduced in [KP00b] and further clarified in [KPV01].

Let D : 〈V, Θ, ρ,J , C〉 be an FDS, (W ,Â) be a well-founded domain and δ be a
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ranking function over the domain. Let dec be a fresh variable. The augmentation of D
by δ, written D+δ, is the system

D+δ : 〈V ∪ {dec}, Θ, ρ ∧ ρδ,J , C ∪ {(dec > 0, dec < 0)}〉

where ρδ is defined by:

ρδ : dec′ =





1 δ > δ′

0 δ = δ′

−1 otherwise

D+δ acts like D but also keeps track of the changes in δ’s value. The new compassion

requirement restricts δ from decreasing infinitely often without increasing infinitely of-

ten (well-foundedness of W). The behavior of D+δ is exactly like D’s, and therefore

any property is valid over D iff it is valid over D+δ. In order to a verify liveness of D,

predicate abstraction is applied to D+δ and the satisfiability of the abstracted property

is checked.

3.1.3 Programs

Our programming language will be based on transition graphs. Some of this material is

taken from [Pnu05] and is provided here for convenience.
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3.1.3.1 Procedureless Programs

We assume a set of typed program variables V .

A transition graph is a labeled directed graph such that:

• All nodes are labeled by locations `i.

• There is one initial node, usually labeled by `0, and having no incoming edges.

• There is one terminal node, labeled `t with no outgoing edges.

• Nodes are connected by directed edges labeled by an instruction of the form

c → [~y := ~e]

where c is a boolean expression over V , ~y ⊆ V is a list of variables, and ~e is a list

of expressions over V . In cases the assignment part is empty, we can abbreviate

the label to a pure condition c.

• Every node is on a path from `0 to `t.

Example 3.1 (Integer Square Root Program).

Program INT-SQUARE presented in Fig. 3.1 computes in y1 the integer square root of the

input variable x ≥ 0.

States and Computations: For simplicity, we assume that all program variables range

over the same domain D. For example, for program INT-SQUARE, D is the domain of
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`0

`2

`1

`3

(y1, y2, y3) := (0, 0, 1)

y2 > x?

y2 ≤ x →
[(y1, y3) := (y1 + 1, y3 + 2)]

y2 := y2 + y3

Figure 3.1: Integer square root program.

integers. We denote by d = (d1, . . . , dn) a sequence of D-values, which represent an

interpretation (i.e., an assignment of values) of the program variables V .

A state of program P is a pair 〈`, d〉 consisting of a label ` and a data-interpretation d.

A computation of program P is a maximal sequence

σ : 〈`0, d0〉, 〈`1, d1〉, . . . , 〈`k, d
k〉 . . . ,

such that

• `0 = `0.

• For each i = 0, 1, . . . , there exists an edge connecting `i to `i+1 and labeled by

the instruction c → [~y := ~e], such that di |= c and di+1= di with ~y := ~e(di).

We denote by Comp(P, d) the set of computations of program P starting at data-state d.

Example 3.2 (A Computation). Reconsider program INT-SQUARE. The computation
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generated for x = 5 is:

〈l0; (−,−,−)〉,
〈l1; (0, 0, 1)〉, 〈l2; (0, 1, 1)〉, 〈l1; (1, 1, 3)〉, 〈l2; (1, 4, 3)〉,
〈l1; (2, 4, 5)〉, 〈l2; (2, 9, 5)〉, 〈l3; (2, 9, 5)〉

3.1.3.2 Recursive Programs

A program P consists of m+1 modules: P0, P1, . . . , Pm, where P0 is the main module,

and P1, . . . , Pm are procedures that may be called from P0 or from other procedures.

P1(in ~x; out ~z) Pm(in ~x; out ~z)P0(in ~x; out ~z)

Each module Pi is presented as a flow-graph with its own set of locations Li =

{`i
0, `

i
1, . . . , `

i
t}. It must have `i

0 as its only entry point, `i
t as its only exit, and every

other location must be on a path from `i
0 to `i

t. It is required that the entry node has no

incoming edges and that the terminal node has no outgoing edges.

The variables of each module Pi are partitioned into ~y = (~x; ~u; ~z). We refer to ~x, ~u,

and ~z as the input, working (local), and output variables, respectively. A module cannot

modify its own input variables.
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General Format: Edges in the graph are labeled by an instruction which must have

one of the following forms:

• A local change d(~y, ~y ′), where d is an assertion over two copies of the module

variables.

`v`u

d(~y, ~y ′)

It is required that d(~y, ~y ′) implies pres(~x). That is, all ~x variables are preserved

by this transition.

• A procedure call din(~y, ~x2); Pj(~x2, ~z2); dout(~y, ~z2, ~y
′), where ~x2 and ~z2 are fresh

copies of the input and output parameters ~x and ~z, respectively.

`u `v

Pj(~x2, ~z2) dout(~y, ~z2, ~y
′)din(~y, ~x2)

This instruction represents a procedure call to procedure Pj . Assertion din(~y, ~x2)

determines the actual arguments that are fed in the variables of ~x2. It may also

contain an enabling condition under which this transition is possible. The asser-

tion dout(~y, ~z2, ~y
′) updates the module variables ~y based on the values returned

by the procedure via the output parameters ~z2. It is required that dout(~y, ~z2, ~y
′)

implies pres(~x). Unless otherwise stated, we shall use the following description
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as abbreviation for a procedure call.

`v`u

din(~y, ~x2); Pj(~x2, ~z2); dout(~y, ~z2, ~y
′)

Example 3.3 (The 91 Function). Consider the functional program given by

F (x) = if x > 0 then x− 10 else F (F (x + 11)) (3.1)

We refer to this function as F91. Fig. 3.3 shows the procedural version of F91 given in

general format.

0 2

1

x > 100 ∧ z := x− 10

x ≤ 100 ∧ x2 = x + 11;
P (x2, z2);
u := z2

x2 = u;
P (x2, z2);
z := z2

Figure 3.2: Procedural program F91. Note that z := x − 10 is an abbreviation of
x′ = x ∧ y′ = y ∧ z′ = x− 10.

Deterministic Format: Conventional procedural programs are usually deterministic.

The more general non-deterministic form arises only due to the process of abstraction.
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We therefore introduce also the deterministic notation and show how it can be viewed

as a special case of the general form. Edges in the deterministic format are labeled by

an instruction which must have one of the following forms:

• An assignment c(~y) → [~v := f(~y)], where the left-hand side variables ~v ⊆ {~u, ~z}
may not include any member of ~x.

`v`u

c(~y) → ~v := f(~y)

An assignment can be viewed as a special case of a local-change statement where

d(~y, ~y ′) = c(~y) ∧ ~v ′ = f(~y) ∧ pres(~y − ~v)

• A deterministic procedure call c(~y) → Pj(~e;~v), where ~e is a list of expressions

over ~y, and ~v ⊆ {~u, ~z} is a list of distinct variables not including any member of

~x. We refer to ~e and ~y as the actual arguments of the call.

`v`u

c(~y) → Pj(~e;~v)

This statement can be viewed as a special case of a procedure call, where

din(~y, ~x2) = c(~y) ∧ ~x2 = ~e(~y), dout(~y, ~z2, ~y
′) = ~v ′ = ~z2 ∧ pres(~y − ~v)

Example 3.4. Fig. 3.3 shows the procedural version of F91 given in deterministic form.
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0 2

1

x > 100 → z := x− 10

x ≤ 100 → P (x + 11, u) P (u, z)

Figure 3.3: Procedural program F91 in deterministic form.

3.1.3.3 Computations

A computation of a program P is a maximal (possibly infinite) sequence of states and

their labeled transitions:

σ : 〈`0
0; (ξ,

~⊥, ~⊥)〉 λ1−→ 〈`1;~ν1〉 λ2−→ 〈`2;~ν2〉 · · ·

where each ~νi = (ξi, ηi, ζi) is an interpretation of the variables (~x, ~u, ~z). The values ~⊥
denote uninitialized values. Labels in the transitions are either names of edges in the

program or the special label return. Each transition 〈`;~ν〉 λ−→ 〈`′;~ν ′〉 in a computation

must be justified by one of the following cases:

Assignment: There exists an assignment edge e, such that ` = `a, λ = e, `′ = `c and

〈~ν, ~ν ′〉 |= d(~y, ~y′).
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Procedure Call: There exists a call edge e, such that ` = `a, λ = e, `′ = `j
0, and

~ν ′ = (ξ′, ~⊥, ~⊥), where 〈~ν, ξ′〉 |= din(~y, ~x2).

Return: There exists a procedure Pj (the procedure from which we return), such that

` = `j
t (the terminal location of Pj). The run leading up to 〈`;~ν〉 has a suffix of the form

〈`1;~ν1〉 λ1−→ 〈`j
0; (ξ;

~⊥; ~⊥)〉 λ2−→ · · · λk−→ 〈`; (ξ; η; ζ)〉︸ ︷︷ ︸
σ1

such that the segment σ1 is balanced (has an equal number of call and return labels),

λ1 = e is a call edge, where `′ = `c, λ = return, and 〈~ν1, ζ, ~ν ′〉 |= dout(~y, ~z2, ~y
′).

This definition uses the computation itself in order to retrieve the context as it was before

the corresponding call to procedure Pj .

For a run σ1 : 〈`0
0; (ξ,

~⊥, ~⊥)〉 λ1−→ · · · λk−→ 〈`;~ν〉, we define the level of state 〈`;~ν〉,
denoted Lev(〈`;~ν〉), to be the number of “call” edges in σ1 minus the number of “return”

edges.

3.2 Verifying Termination

This section presents a method for verifying termination of procedural programs. Ini-

tially, the system is augmented with well-founded ranking components. Then a finitary

state abstraction is applied, resulting in a finite-state procedural program. Procedure

summaries are computed over the abstract, finite-state program, and a procedure-free

121



FDS is constructed. Finally, infeasibility of the derived FDS is checked, showing that it

does not possess a fair divergent computation. This establishes the termination of the

original program.

3.2.1 A Proof Rule for Termination

The application of a ranking abstraction to procedures is based on a rule for proving ter-

mination of loop-free procedural programs. We choose a well founded domain (D,Â),

such that for each procedure Pi with input parameters ~x, we associate a ranking function

δi that maps ~x to D. For each edge e in Pi, labeled by a procedure call we generate the

descent condition De(~y) : din(~y, ~x2) =⇒ δi(~x) Â δj(~x2).

The soundness of this proof rule is stated by the following claim:

Claim 3.2 (Termination). If the descent condition De(~y) is valid for every procedure

call edge e in a loop-free procedural program P , then P terminates.

Proof. A non-terminating computation of a loop-free program must contain a subse-

quence of the form

〈`0
0; (ξ0, ~⊥, ~⊥)〉, . . . , 〈`0

i0
; (ξ0, η0, ζ0)〉, 〈`j1

0 ; (ξ1, ~⊥, ~⊥)〉, . . . , 〈`j1
i1

; (ξ1, η1, ζ1)〉,
〈`j2

0 ; (ξ2, ~⊥, ~⊥)〉, . . . , 〈`j2
i2

; (ξ2, η2, ζ2)〉, 〈`j3
0 ; (ξ3, ~⊥, ~⊥)〉, . . .

where, for each k ≥ 0, Lev(〈`jk
0 ; (ξk, ~⊥, ~⊥)〉) = Lev(〈`jk

ik
; (ξk, ηk, ζk)〉) = k. If the

descent condition is valid for all call edges, this leads to the existence of the infinitely
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descending sequence

δ0(ξ0) Â δj1(ξ1) Â δj2(ξ2) Â δj3(ξ3) Â · · ·

which contradicts the well-foundedness of the δi’s.

3.2.2 Ranking Augmentation of Procedural Programs

Ranking augmentation was suggested in [KP00b] and used in [BPZ05] in conjunction

with predicate abstraction to verify liveness properties of non-procedural programs. In

its application here we require that a ranking function be applied only over the input pa-

rameters. Each procedure is augmented with a ranking observer variable that is updated

at every procedure call edge e, in a manner corresponding to the descent condition De.

For example, if the observer variable is inc then a call edge

din(~y, ~x2); Pj(~x2; ~z2); dout(~y, ~z2, ~y
′)

is augmented to be

din(~y, ~x2) ∧ inc′ = sign(δ(~x2)− δ(~x)); Pj(~x2; ~z2); dout(~y, ~z2, ~y
′) ∧ inc′ = 0

All local assignments are augmented with the assignment inc := 0, as the ranking does

not change locally in a procedure. Well foundedness of the ranking function is captured
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0 2

1

x > 100 ∧ ((z, inc) := (x− 10, 0))

x ≤ 100 ∧ ((x2, inc′) = (x + 11, ∆(x, x2)));
P (x2, z2);
(u, inc) := (z2, 0)

(x2, inc′) = (u,∆(x, x2));
P (x2, z2);
(z, inc) := (z2, 0)

Figure 3.4: Program F91 augmented by a ranking observer. The notation ∆(x1, x2)
denotes the expression sign(δ(x2)− δ(x1))

by the compassion requirement (inc < 0, inc > 0) which is being imposed only at a

later stage.

Unlike the termination proof rule, the ranking function need not decrease on every

call edge. Instead, a program can be augmented with multiple similar components, and

it is up to the feasibility analysis to sort out their interaction and relevance automatically.

Example 3.5 (Ranking Augmentation of Program F91). We now present an example of

ranking abstraction applied to program F91 of Fig. 3.3. As a ranking component, we

take

δ(x) = if x > 100 then 0 else 101− x

Fig. 3.4 presents the program augmented by the variable inc.
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3.2.3 Predicate Abstraction of Augmented Procedural Programs

We consider the application of finitary abstraction to procedural programs, focusing on

predicate abstraction for clarity. We assume a predicate base that is partitioned into ~T =

{~I(~x), ~W (~y), ~R(~x, ~z)}, with corresponding abstract (boolean) variables~b
T

= {~b
I
,~b

W
,~b

R
}.

For each procedure the input parameters, working variables, and output parameters are

~b
I
,~b

W
, and~b

R
, respectively.

An abstract procedure will have the same control-flow graph as its concrete counter-

part, where only labels along the edges are abstracted as follows:

• A local change relation d(~y, ~y ′) is abstracted into the relation

D(~b
T
,~b′

T
) : ∃~y, ~y ′ : ~b

T
= ~T (~y) ∧~b′

T
= ~T (~y ′) ∧ d(~y, ~y ′)

• A procedure call din(~y, ~x2); Pj(~x2, ~z2); dout(~y, ~z2, ~y
′) is abstracted into the abstract

procedure call Din(~b
T
,~b2

I
); Pj(~b

2
I
,~b2

R
); Dout(~bT

,~b2
R
,~b′

T
), where

Din(~b
T
,~b2

I
) : ∃~y, ~x2 : ~b

T
= ~T (~y) ∧~b2

I
= ~I(~x2) ∧ din(~y, ~x2)

Dout(~bT
,~b2

R
,~b′

T
) : ∃~y, ~x2, ~z2, ~y

′ :




~b
T

= ~T (~y) ∧~b2
R

= ~R(~x2, ~z2) ∧~b′
T

= ~T (~y ′)∧
din(~y, ~x2) ∧ dout(~y, ~z2, ~y

′)




Example 3.6 (Abstraction of Program F91). We apply predicate abstraction to program
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F91 of Fig. 3.3. As a predicate base, we take

~I : {x > 100}, ~W : {u = g(x + 11)}, ~R : {z = g(x)}

where

g(x) = if x > 100 then x− 10 else 91

The abstract domain consists of the corresponding boolean variables {BI , BW , BR}.

The abstraction yields the abstract procedural program P (BI , BR) which is presented in

Fig. 3.5.

0 2

1
¬BI ; P (B2

I , B2
R); BW := B2

R

BI ∧ (BR := 1)

P (B2
I , B2

R); BR := ¬BW ∨BI 6= B2
R

Figure 3.5: An abstract version of program F91.

Finally we demonstrate the joint (predicate and ranking) abstraction of program F91.

Example 3.7 (Abstraction of Ranking-Augmented Program F91). We wish to abstract

the augmented program from Example 3.5. When applying the abstraction based on the
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predicate set

~I : {x > 100}, ~W : {u = g(x + 11)}, ~R : {z = g(x)}

we obtain the abstract program presented in Fig. 3.6, where

f(BI , BW , B2
I ) = if ¬BI ∧ (B2

I ∨ ¬B2
I ∧BW ) then −1

else if BI ∧B2
I then 0

else 1

0 2

1

BI ∧ ((BR, inc) := (1, 0))

¬BI ∧ (B2
I , inc′) = (?,−1);

P (B2
I , B2

R);
(BW , inc) := (B2

R, 0)

(B2
I , inc′) = (?, f(BI , BW , B2

I ));
P (B2

I , B2
R);

(BR, inc) := (¬BW ∨BI 6= B2
R, 0)

Figure 3.6: An abstract version of program F91 augmented by a ranking observer.

Note that some (in fact, all) of the input arguments in the recursive calls are left

non-deterministically 0 or 1. In addition, on return from the second recursive call, it is

necessary to augment the transition with an adjusting assignment that correctly updates

the local abstract variables based on the returned result.

127



It is interesting to observe that all terminating calls to this abstract procedure return

BR = 1, thus providing an independent proof that program F91 is partially correct with

respect to the specification z = g(x).

The analysis of this abstract program yields that ¬BI∧BW is an invariant at location

1. Therefore, the value of f(BI , BW , B2
I ) on the transition departing from location 1 will

always be−1. Thus, it so happens that even without feasibility analysis, from Claim 3.2

we can conclude that the program terminates.

3.2.4 Summaries

A procedure summary is a relation between input and output parameters. A relation

q(~x, ~z) is a summary if it holds for any ~x and ~z iff there exists a run in which the

procedure is called and returns, such that the input parameters are assigned ~x and on

return the output parameters are assigned ~z.

Since procedures may contain calls (recursive or not) to other procedures, deriving

summaries involves a fixpoint computation. An inductive assertion network is generated

that defines, for each procedure Pj , a summary qj and an assertion ϕj
a associated with

each location `a. For each procedure we construct a set of constraints according to the

rules of Table 3.1. The constraint ϕj
t(~x, ~u, ~z) =⇒ qj(~x, ~z) derives the summary from

the assertion associated with the terminating location of Pj . All assertions, beside ϕj
0,

are initialized FALSE. ϕj
0, which refers to the entry location of Pj , is initialized TRUE,

i.e. it allows the input variables to have any possible value at the entry location of proce-
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dure Pj . Note that the matching constraint for an edge labeled with a call to procedure

Pi(~x2; ~z2) encloses the summary of that procedure, i.e. the summary computation of one

procedure comprises summaries of procedures being called from it.

Fact Constraint(s)
ϕj

0 = true

ϕj
t(~x, ~u, ~z) =⇒ qj(~x, ~z)

`a `c
d(~y, ~y ′)

ϕj
a(~y) ∧ d(~y, ~y ′) =⇒ ϕj

c(~y
′)

`a `c
din(~y, ~x2)

ϕj
a(~y) ∧ din(~y, ~x2) =⇒ ϕj

c(~y, ~x2)

`a `c
Pi(~x2; ~z2)

ϕj
a(~y, ~x2) ∧ qi(~x2, ~z2) =⇒ ϕj

c(~y, ~z2)

`a `c
dout(~y, ~z2, ~y

′)
ϕj

a(~y, ~z2) ∧ dout(~y, ~z2, ~y
′) =⇒ ϕj

c(~y
′)

Table 3.1: Rules for constraints contributed by Procedure Pj to the inductive assertion
network.

An iterative process is performed over the constraints contributed by all procedures in

the program, until a fixpoint is reached. Reaching a fixpoint is guaranteed since all

variables are of finite type.

Claim 3.3 (Soundness). Given a minimal solution to the constraints of Table 3.1, qj is a

summary of Pj , for each procedure Pj .

Proof. In one direction, let σ : s0, . . . , st be a computation segment starting at location

`j
0 and ending at `j

t , such that ~x[s0] = ~v1 and ~z[st] = ~v2. It is easy to show by induction

on the length of σ that st |= ϕj
t(~x, ~u, ~z). From Table 3.1 we obtain ϕj

t(~x, ~u, ~z) =⇒
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qj(~x, ~z). Therefore st |= qj(~x, ~z). Since all edges satisfy ~x = ~x ′, we obtain [~x 7→
~v1, ~y 7→ ~v2] |= qj(~x, ~y).

In the other direction, assume [~x 7→ ~v1, ~y 7→ ~v2] |= qj(~x, ~y). From the constraints

in Table 3.1 and the minimality of their solution, there exists a state st with ~x[st] = ~v1

and ~z[st] = ~v2 such that st |= ϕj
t . Repeating this reasoning we can, by propagating

backward, construct a computation segment starting at `0 that initially assigns ~v1 to

~x.

3.2.5 Deriving a Procedure-Free FDS

Using summaries of an abstract procedural program PA, one can construct the derived

FDS of PA, labeled derive(PA). This is an FDS denoting the set of reduced computations

of PA, a notion formalized in this section. The variables of derive(PA) are partitioned

into ~x, ~y, and ~z, each of which consists of the input, working, and output variables of all

procedures, respectively. The FDS is constructed as follows:

• Edges labeled by local changes in PA are preserved in derive(PA)

• A procedure call in PA, denoted by a sequence of edges of the form

din(~y, ~x2); Pj(~x2, ~z2); dout(~y, ~z2, ~y
′) from a location `a to a location `c, is trans-

formed into the following edges:

– A summary edge, specified by
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`c`a

∃~x2, ~z2.din(~y, ~x2) ∧ qj(~x2, ~z2) ∧ dout(~y, ~z2, ~y
′)

– A call edge, specified by

`j
0`a

din(~y, ~x′)

• All compassion requirements, which are contributed by the ranking augmentation

and described in Subsection 3.2.2, are imposed on derive(PA).

The reasoning leading to this construction is that summary edges represent proce-

dure calls that return, while call edges model non-returning procedure calls. Therefore,

a summary edge leads to the next location in the calling procedure while modifying its

variables according to the summary. On the other hand, a call edge connects a calling lo-

cation to the entry location of the procedure that is being called. Thus, a nonterminating

computation consists of infinitely many call edges, and a call stack is not necessary.

We now prove soundness of the construction. Recall the definition of a computation

of a procedural program given in Subsection 3.1.3.3. A computation can be terminat-

ing or non-terminating. A terminating computation is finite, and has the property that

every computation segment can be extended to a balanced segment, which starts with a

calling step and ends with a matching return step. A computation segment is maximally

balanced if it is balanced and is not properly contained in any other balanced segment.
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Definition 3.4. Let σ be a computation of PA. Then the reduction of σ, labeled reduce(σ),

is a sequence of states obtained from σ by replacing each maximal balanced segment by

a summary-edge traversal step.

Claim 3.5. For any sequence of states σ, σ is a computation of derive(PA) iff there

exists σ′, a computation of PA, such that reduce(σ′) = σ.

Proof of the claim follows from construction of derive(PA) in a straightforward

manner. It follows that if σ is a terminating computation of PA, then reduce(PA) con-

sists of a single summary step in the part of derive(PA) corresponding to P0. If σ is an

infinite computation of PA, then reduce(σ) (which must also be infinite) consists of all

assignment steps and calls into procedures from which σ has not returned.

Claim 3.6 (Soundness – Termination). If derive(PA) is infeasible then PA is a termi-

nating program.

Proof. Let us define the notion of abstraction of computations. Let σ = s0, s1, . . . be a

computation of P , the original procedural program from which PA was abstracted. The

abstraction of σ is a computation α(s0), α(s1), . . . where for all i ≥ 0, if si is a state in

σ, then α(si) = [~bI 7→ ~I(~x),~bW 7→ ~W (~y),~bR 7→ ~R(~x, ~z)].

Assume that derive(PA) is infeasible. Namely, every infinite run of derive(PA) vio-

lates a compassion requirement. Suppose that P has an infinite computation σ. Consider

reduce(σ) which consists of all steps in non-terminating procedure invocations within

σ. Since the abstraction of reduce(σ) is a computation of derive(PA) it must be unfair
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with respect to some compassion requirement. It follows that a ranking function keeps

decreasing over steps in reduce(σ) and never increases – a contradiction.

3.2.6 Analysis

The feasibility of derive(PA) can be checked by conventional symbolic model-checking

techniques. If it is feasible then there are two possibilities: (1) The original system

truly diverges, or (2) feasibility of the derived system is spurious, that is, state and

ranking abstractions have admitted behaviors that were not originally present. In the

latter case, the method presented here can be repeated with a refinement of either state

or ranking abstractions. The precise nature of such refinement is outside the scope of

this dissertation.

3.3 LTL Model Checking

In this section we generalize the method discussed so far to general LTL model-checking.

To this end we adapt to procedural programs the method discussed in Section 1.3 for

model-checking LTL by composition with temporal testers [KPR98]. We prepend the

steps of the method in Section 3.2 with a tester composition step relative to an LTL

property. Once ranking augmentation, abstraction, summarization, and construction of

the derived FDS are computed, the resulting system is model-checked by conventional

means, verifying absence of feasible initial states that do not satisfy the property.

The main issue is that synchronous composition of a procedural program with a
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global tester, including justice requirements, needs to be expressed in terms of local

changes to procedure variables. In addition, since LTL is modeled over infinite sequences,

the derived FDS needs to be extended with idling transitions.

3.3.1 Composition with Temporal Testers

A temporal tester is defined by a unique global variable, here labeled t, a transition rela-

tion ρ(~z, t, ~z ′, t′)1 over primed and unprimed copies of the tester and program variables,

where t does not appear in ~z, and a justice requirement. In order to simulate global

composition with ρ, we augment every procedure with the input and output parameters

ti and to, respectively, as follows:

• An edge labeled by a local change is augmented with ρ(~z, to, ~z
′, t′o)

• A procedure call of the form din(~y, ~x2); Pj(~x2, ~z2); dout(~y, ~x2, ~y
′) is augmented to

be din(~y, ~x2) ∧ ρ(~z, to, ~x2, t
2
i ); Pj((~x2, t

2
i ), (~z2, t

2
o)); dout ∧ ρ(~z2, t

2
o, ~z

′, t′o)

• Any edge leaving the initial location of a procedure is augmented with to = ti

Example 3.8. Consider the program in Fig. 3.7. Since this program does not terminate,

we are interested in verifying the property ϕ : ( z) ∨ at−`2, specifying that

either eventually a state with z = 1 is reached, or infinitely often location 2 of P1 is vis-

ited. To verify ϕ we decompose its negation into its principally temporal subformulas,

¬z and ¬at−`2, and compose the system with their temporal testers. Here we

1We assume here that the property to be verified is defined over the output variable only.
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demonstrate the composition with T [ ¬z], given by the transition relation t = ¬z ∧ t′

and the trivial justice requirement true. The composition is shown in Fig. 3.8.

2

10 3

0 1

init

init

x2 = x + 1;P1(x2; z2); z := z2

x2 = x− 1;P1(x2; z2); z := z2

P0(x; z) :

P1(x; z) :

x = 0 ∧ z := 1

x ≥ 0 ∧ x2 := x; P1(x2; z2); z := z2

Figure 3.7: A divergent program. init represents x > 0 ∧ z := 0.

As a side remark, we note that our method can handle global variables in the same

way as applied for global variables of testers, i.e., represent every global variable by a

set of input and output parameters and augment every procedure with these parameters

and with the corresponding transition relations.

3.3.2 Observing Justice

In order to observe justice imposed by a temporal tester, each procedure is augmented

by a pair of observer variables that consists of a working and an output variables. Let

135



2

10 3

0 1

init

init

(x2 = x + 1) ∧ to = ti2;P1(x2, ti2; z2, to2); dout

(x2 = x− 1) ∧ to = ti2;P1(x2, ti2; z2, to2); dout

P0(x, ti; z, to) :

P1(x, ti; z, to) :

x = 0 ∧ ti = to ∧ (z, to) := (1, 0)

x ≥ 0 ∧ (x2 = x) ∧ (to = ¬z ∧ ti2);P1(x2, ti2; z2, to2); dout

Figure 3.8: The program of Fig. 3.7, composed with T [ ¬z]. The assertion dout repre-
sents to2 = (¬z2 ∧ t′o) ∧ z := z2, and init represents x > 0 ∧ ti = to ∧ z := 0.

J be a justice requirement, Pi be a procedure, and the associated observer variables be

Ju and Jo. Pi is augmented as follows: On initialization, both Ju and Jo are assigned

TRUE if the property J holds at that state. Local changes are conjoined with Ju := J ′

and Jo := (Jo ∨ J ′). Procedure calls are conjoined with Ju := (J ′ ∨ J2
o ) and

Jo := (Jo ∨ J ′ ∨ J2
o ), where J2

o is the relevant output observer variable of the

procedure being called.

While Ju observes J at every location, once Jo becomes TRUE it remains so up to the

terminal location. Since Jo participates in the procedure summary, it is used to denote

whether justice has been satisfied within the called procedure.

136



3.3.3 The Derived FDS

We use the basic construction here in deriving the FDS as in Section 3.2.5. In addition,

for every non-output observer variable Ju we impose the justice requirement that in any

fair computation, Ju must be TRUE infinitely often. Since LTL is modeled over infinite

sequences, we must also ensure that terminating computations of the procedural pro-

gram are represented by infinite sequences. To this end we simply extend the terminal

location of procedure P0 with a self-looping edge. Thus, a terminating computation is

one that eventually reaches the terminal location of P0 and stays idle henceforth.

3.4 Related work

Recent work by Podelski et al. [PSW05] generalizes the concept of summaries to cap-

ture effects of computations between arbitrary program points. This is used to formulate

a proof rule for total correctness of recursive programs with nested loops, in which a pro-

gram summary is the auxiliary proof construct (analogous to an inductive invariant in an

invariance proof rule). The rule and accompanying formulation of summaries represent

a framework in which abstract interpretation techniques and methods for ranking func-

tion synthesis can be applied. In this manner both [PSW05] and our work aim at similar

objectives. The main difference from our work is that, while we strive to work with

abstraction of predicates, and use relations (and their abstraction) only for the treatment

of procedures, the general approach of [PSW05] is based on the abstraction of relations
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even for the procedure-less case. A further difference is that, unlike our work, [PSW05]

does not provide an explicit algorithm for the verification of aribtrary LTL properties.

Instead it relies on a general reduction from proofs of termination to LTL verification.

Recursive State Machines (RSMs) [AEY01, ABE+05] and Extended RSMs [ACEM05]

enhance the power of finite state machines by allowing for the recursive invocation of

state machines. More precisely, the RSMs model consists of a set of component ma-

chines where each has a set of nodes (atomic states), boxes (each mapped to a specific

component machine), and edges which connect them. An edge entering a box models

the invocation of the corresponding component, while an edge leaving a box models

the return from that component. RSMs are used to model the control flow of programs

containing recursive procedure calls, and to analyze reachability and cycle detection. In

[ACEM05] they proposed algorithms for model checking and an implementation of an

on-the-fly model checker using augmentation of RSMs, called Extended RSMs. Using

this model checker they were able to check safety and liveness properties of recursive

boolean programs. They are, however, limited to programs with finite data. On the other

hand, the method that we present in this paper can be used to verify recursive programs

with infinite data domains by making use of ranking and finitary state abstractions. In

[AEM04] they introduced a temporal logic of calls and returns (CARET) for the speci-

fication and verification of structural programs. The basic concept of CARET is that the

formulas are tagged with special symbols in order to allow a path to jump from a pro-

cedure call to its matching return. This feature can be used to specify regular properties

of local runs within a procedure which skips over calls to other procedures.
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In [BR00], an approach similar to ours for computing summary relations for pro-

cedures is implemented in the symbolic model checker Bebop. However, while Bebop

is able to determine whether a specific program statement is reachable, it cannot prove

termination of a recursive boolean program or of any other liveness property.

3.5 Conclusions

We have described the integration of ranking abstraction, finitary state abstraction, pro-

cedure summarization, and model-checking into a combined method for the automatic

verification of LTL properties of infinite-state recursive procedural programs. Our ap-

proach is novel in that it reduces the verification problem of procedural programs with

unbounded recursion to that of symbolic model-checking. Furthermore, it allows for ap-

plication of ranking and state abstractions while still relegating all summarization com-

putation to the model-checker. Another advantage is that fairness is being supported

directly by the model, rather than being specified in a property.

We have implemented a prototype based on the TLV symbolic model-checker and

tested several examples such as Ackerman’s function, the Factorial function and a re-

cursive formulation of the 91 function. We verified that they all terminate and model

checked satisfiability of several LTL properties.

As further work it would be interesting to investigate concurrency with bounded con-

text switching as suggested in [RQ05]. Another direction is the exploration of different

versions of LTL that can relate to nesting levels of procedure calls, similar to the manner
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in which the CARET logic [AEM04] expresses properties of recursive state machines

concerning the call stack.
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