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Abstract

The objective of this thesis is to develop a data-driven, hierarchical clustering method
which is capable of operating on large point cloud datasets, necessitating a runtime
which is sub-quadratic. Hierarchical clustering is noteworthy for its ability to produce
multiscale views of data, allowing for rich and interpretable representations, and for
its ability to cluster when the number of clusters is not specified a priori. To date,
deep learning methods for clustering have primarily focused on a narrower class of
models which cluster using partitioning strategies and require as input the number of
clusters to produce. In this work, we introduce the clustering graph neural network,
extending previous research into graph neural networks to handle large clustering
tasks where the number of clusters is variable and not pre-specified. Our architecture
is fast, operating with O(n log n) time complexity, and we note its amenability to
high levels of parallelization. Because each stage is differentiable, we emphasize that
our architecture is capable of end-to-end training, leveraging signal throughout the
learning pipeline as part of a multi-objective loss function. Finally, we demonstrate
the clustering graph neural network on a challenging particle tracking task, which,
while unable to outperform highly-tuned and domain-specific baselines, nevertheless
achieves high performance while remaining flexible to a wide array of clustering tasks.
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Chapter 1

Introduction

Hierarchical clustering methods offers to provide new and important insights through-
out a variety of scientific and practical fields. Text and speech analysis, image rep-
resentations, latent structure in DNA, and a multitude of tasks in particle physics
and astrophysics are just a few of the areas in the deep learning revolution is trans-
forming as torrents of new data streams become available. While current techniques
provide useful tools for analyzing and detecting underlying structure in data, efficient
methods are needed for handling tasks which offer a form of supervision, such as in
particle tracking.

In this work, we leverage classical hierarchical clustering frameworks with the
emerging field of geometric deep learning to produce the clustering graph neural net-
work. The clustering graph neural network is fast, operating in O(n log n) time, and
easily parallized, efficiently detecting thousands of clusters on a single GPU. Unlike
recent deep learning approaches, which tend to operate with a partitioning strategy
rather than hierarchical, our architecture has no requriement of prior knowledge of
the number of clusters. Thus is capable of handling variable sample sizes, producing a
multiscale view of the data as output. The focal application of this work lies in parti-
cle tracking, and specifically in the TrackML Challenge, a difficult task in which each
sample has two orders of magnitude more clusters than other current deep learning
benchmarks for clustering.

We begin with an overview of particle tracking and TrackML Challenge, with
emphasis placed on traditional physics-based approaches which leveraging domain
structure and expertise to produce efficient and accurate methods. In chapter 2, we
outline the clustering graph neural network in detail, explaining along the way impor-
tant considerations torwards the development of the architecture. Chapter 3 presents
our training strategy and numerical results for the TrackML dataset, including in-
termediate results on the metric learning stage of our pipeline. We briefly mention
several future directions of our work in chapter 4 before concluding in chapter 5.

2



Figure 1-1: A single event from the TrackML dataset, where the orange lines represent
particle trajectories through the detector layers. [24]

1.1 TrackML

Within a particle collider such as the Large Hadron Collider (LHC), streams of proton
bunches circulate very near the speed of light in opposite directions. At specified
locations, such as within the Atlas detector at the LHC, these streams intersect,
resulting in thousands of high-energy collisions between the proton bunches. These
collisions can be thought of as miniature big bangs, and observing the products of
such collisions offers scientists a glimpse into the make-up of our universe.

The primary products of these collisions decay far too rapidly to be observed,
but secondary and later particles spread outward in a shower. Eventually, they come
into contact with the detector cells, which can be considered as a massive and highly
sensitive camera to capture the event. An applied magnetic field bends the trajec-
tory of the particles, which assists in recovering their type and kinematic properties.
The task of TrackML, then, is to recover the trajectory of each particle from the
information recorded by the detector [24].

1.1.1 Dataset and Challenge

Figure 1-1 illustrates a single event within the TrackML detector. Each sample i
within the TrackML dataset consists of N (i) hits - an impact site where a particle
passed through a detector layer. Each hit has an associated set of features, where
consist of:

• An x, y, z coordinate
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• An identifier specifying where in the detector the hit impacted

• A set of cell features that contain information on how the particle passed
through the detector, each of which has a position and magnitude

Hits for sample i can be considered as entities within a general domain:

X(i) = {x(i)1 , . . . , x
(i)
ni
}, x(i)j ∈ X . (1.1)

Every sample i also consists of a variable number of clusters

C(i) = {c(i)1 , . . . , c
(i)
ki
}, (1.2)

and each cluster c
(i)
j is a partition of {1, . . . , ni}. Each sample also has a cluster

weighting for each cluster:

W (i) = {w(i)
1 , . . . , w

(i)
ki
}, (1.3)

and the sum of the weights for the sample sums to 1:

k∑
j=1

|c(i)j | × w
(i)
j = 1. (1.4)

The TrackML challenge consists of finding the true clusters C, given the input
features X. Notably absent from this setup is apriori knowledge of the number or
size of the clusters within each sample. Given the ground truth clusters C and a set
of predicted clusters C ′, the TrackML score R(C,C ′) is computed as follows:

R(C,C ′) =

|C′|∑
i=1

r(C, c′i), (1.5)

where r(C, c′i) is the TrackML score computed on predicted cluster c′i. The score for
each predicted cluster is then computed as follows:

r(C, c′i) =

{
wj × |cj ∩ c′i| if

|cj∩c′i|
|cj | > 0.5 and

|cj∩c′i|
|c′i|

> 0.5

0 else,
(1.6)

where j is set as
j = argmax

k
|ck ∩ c′i|. (1.7)

That is, the score of one predicted cluster is nonzero only if a large majority of
its points belong to the same true cluster, and if the majority of the true cluster is
contained within the predicted cluster. A perfect clustering will thus lead to a score
of 1, while a random clustering will almost certainly have a score of 0.
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1.1.2 Domain and Derived Features

When designing clustering algorithms for TrackML, it is typical to begin by consider-
ing pairwise interactions as a starting point [11]. There are several qualities inherent
to the collision events which provide insight as to which pairs of hits are unlikely to
belong to the same particle track.

Helix radius: Because the detector imposes a magnetic field on the particles, the
particle tracks are helical in shape, with radius proportional to the particle’s kinetic
energy (which remains constant since the detector removes only a negligible amount).
Within TrackML, there is a lower bound of 250 mega electronvolts (MeV) kinetic
energy for every particle. Thus, considering the magnetic field B of the detector,
where B = 2 Tesla for TrackML, the minimum helical radius ρ any particle trajectory
can have is ρmin = 250 mm. Computing the energy pt in MeV of a particle from its
radius in mm and the magnetic field in Tesla is given as

pt =
ρ

0.6
. (1.8)

Considering two points

{v1 = (x1, y1), v1 = (x1, y1)}, (1.9)

and assuming they belong to the same track and that the track passes through the
origin (true for nearly every particle within TrackML), ρ is given by

ρ = 0.5× dr

sin(dφ)
(1.10)

where
dr =

√
(x2 − x1)2 + (y2 − y1)2 (1.11)

and dφ is the positive angle between v1 and v2:

dφ = arccos
(
cos[arctan2(y2, x2)− arctan2(y1, x1)]

)
. (1.12)

Thus if any two points have a ρ value less than 250 mm, it is unlikely that these
points belong to the same track. Figure 1-2 illustrates an exaggerated trajectory as
curved by the magnetic field within the detector.

Propagation through the z-r plane: Since the magnetic field of the detector
does not affect the trajectory of a particle along the z-axis, the particle follows a
straight path within the z-r plane, where r is given as

r =
√
x2 + y2. (1.13)
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Figure 1-2: A single particle and its trajectory as it passes through the magnetic field
of the detector. [24]
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Figure 1-3: The detector and its layers as viewed from the z-r plane. [24]

The particle’s propagation is then given as

z = z0 − rc, (1.14)

where z0 is the starting location on the z-axis of the track, and c is given between
two hits as

c =
dz

dr
. (1.15)

Because tracks are likely to originate within 200 mm of the origin along the z-axis,
for any z0 given as

|z0| = |z1 + r1c| > 200, (1.16)

the pair of hits likely do not belong to the same track. Figure 1-3 shows the z-r plane
of the detector.

These features form the basis of the baseline methods which perform with high
accuracy in the TrackML competition. For our purposes, they allow for slightly
better accuracy with much faster convergence during the training of our graph neural
network model.

1.1.3 Baseline Methods

We use as points of comparison the methods which have performed best in Kag-
gle’s TrackML accuracy phase competition. These methods tend to follow a similar
strategy:

1. Pairs of hits are scored to identify candidate pairs which have a higher likelihood
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of belonging to the same track.

2. Using these pairwise scores, candidate tracks are constructed.

3. Candidate tracks are iteratively refined through exploitation of domain expertise
and using features specific to the competition.

Specifically, we consider the first and second place strategies as baseline compar-
isons against our method, respectively labeled All Pairs [2] and Layerwise [1] solutions.

Baseline, All Pairs: The All Pairs solution begins by extracting features between
pairs of hits, and predicting the probability of each pair belonging to the same track.
Here, true pairs are those whose hits belong to the same track, and false pairs are those
whose hits do not. This classification task is performed using a multi-layer preceptron,
where training is completed in stages using hard negative mining to offset the fact
that most pairs of false pairs are easy to classify.

Next, the All Pairs solution builds tracks one hit at a time. A hit is seeded which
begins a track, and the track is grown by adding the hit which is closest to the track,
measured by average linkage distance using the multi-layer preceptron to all hits
already contained in the track. Figure 1-4 illustrates the reconstruction process on
one track. No overlap is allowed, so once a hit is inserted to a track, it is unavailable
for use in later tracks. Once the average linkage distance of the next hit falls below
a threshold, the track stops growing.

The track selection is refined by evaluating how much noise is needed for each
candidate track matches a perfect helix pattern. Those which require noise terms
above a specified threshold are rejected, and the hits contained in those tracks become
available again. Tracks are also extended by incorporating hits from rejected tracks
which have a low average linkage distance to the track.

While the All Pairs method does attain an impressive 90% TrackML score, its
reliance upon scoring every pair of hits leads to quadratic complexity, which ultimately
is far too slow for the throughput required by the High Luminosity Large Hadron
Collider (HL-LHC).

Layerwise: The Layerwise solution avoids this quadratic complexity pitfall by scor-
ing only pairs of hits which fall on pairs of detector layers that are considered im-
portant. Which pairs of layers are important is determined through trial and error,
though the majority of important layer pairs are those that are adjacent.

The Layerwise solution thus scores a small (subquadratic) fraction of hit pairs by
again assessing the probability that each pair’s hits belong to the same track. This
scoring is performed using logistic regression on several derived features, including
those mentioned earlier as well as noisy directional information extracted from the
hit’s cell features.

Next, candidate pairs are extended to triplets, again using average linkage to find
for each pair the closest hit. Unlike the All Pairs solution, overlap is allowed at this
point, so one hit may belong to many triplets.
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Figure 1-4: Probabilities, represented as blue dots, that each available hit belongs to
the current track seed. [2]
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Figure 1-5: A representation of the pairwise solution growing a track with leftover
hits. [1]
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The triplets are placed into a priority queue indexed by their average linkage
distance, and grown into tracks. Once a track has been constructed, all the priority
queue is flushed of any triplets which contain hits in the new track. Thus all resulting
tracks are without overlap.

Finally, tracks are again extended with leftover hits that have low average linkage
distance, and by combining nearby tracks which have similar helix patterns. Figure
1-5 gives a visual representation of this reconstruction process.

This method achieves a 92% TrackML score, and does so efficiently, taking ap-
proximately 30 seconds per event using an Intel Core-i5 7th-generation desktop CPU.

1.2 Graph Neural Networks

As graph- and manifold-structured data has become more prevalent with the ubiquity
of social, sensor, and biological networks, a new field which unites the deep learning
methods operating on such data has emerged, called Geometric Deep Learning [5].
Motivated by the remarkable success of deep learning methods in computer vision,
geometric deep learning aims to operate on any such data as well as point clouds,
3D shapes, and molecules, leveraging the non-Euclidean interactions and relations
between objects, or entities [4]. These methods have been successfully applied to a
wide range of tasks within particle physics, quantum chemistry, vision, and computer
graphics, to name just a few.

At the center of geometric deep learning are graph neural networks, which have
become a staple within deep learning in recent years, and are largely responsible
for the many successes on tasks involving non-Euclidean datasets. Graph neural
networks were first formulated close to their current form in [25], proposed as a
learned method for diffusing information across a graph. While a promising first
direction, this method relied on reaching a steady state convergence, the downside of
which is a time consuming process with no guarantee of convergence.

Bruna et al. [6] developed spectral graph neural networks, which operate on
learned filters in the spectral domain, defined by the eigenvectors of the graph Lapla-
cian. This approach takes direct inspiration from convolutional neural networks, per-
forming Fourier decomposition of graph-structured signals, with filtering performed
as multiplication between the Fourier coefficients of the input signal and the learned
spectral filter parameters. A major drawback of this method is that, unlike Euclidean-
structured data where the fast Fourier transform is available, computing the forward
and inverse Fourier transform requires O(n2) time complexity. Additionally, with
no guarantee of spatial localization of the filters, spectral graph neural networks are
sensitive to changes in the domain.

Message-passing neural networks (MPNNs) are, by comparison, a simple method
which has gained considerable popularity as an efficient and effective method for
graph-structured datasets. A wide variety of MPNNs have been proposed [13], all of
which follow a similar overarching strategy made up of layers of graph convolution,
where graph convolution consists of a message passing function and an update func-
tion. The message passing function passes information along the graph, from one
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vertex’s hidden state to another, aggregating information received typically with a
sum or mean operation. Then, the update function concatenates each vertex’s hidden
state with the information sent to the vertex, to transform the features to a new hid-
den state via a learned set of weights. After several layers of graph convolution, the
vertex features enter the so-called readout phase, where the features are combined -
again through a sum or mean operation - to form a single feature vector, the output
of the MPNN.

1.3 Related Work

1.3.1 Clustering

Clustering strategies generally fall into two broad categories: those which are par-
titional, or flat, and those which are hierarchical. The most popular flat clustering
scheme is k-means [20], which is an iterative algorithm that alternates between as-
signing points to the nearest cluster centroid, and updating the cluster centroid based
upon the points assigned to it. k-means requires apriori knowledge of the number
of clusters, and aims to minimize the average distance between data points and their
respective cluster centroids.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [10] is
likewise a flat clustering strategy, but is capable of detecting an arbitrary number of
arbitrarily shaped clusters. Like k-means, it is an iterative method wherein a data
point is seeded which begins a cluster, and nearby points which are not yet assigned to
a cluster are added. This process repeats until there are no additional points nearby
to the cluster. If the cluster is larger than a pre-specified minimum cluster size, the
cluster is output; otherwise the points are not clustered. While DBSCAN is related
to spectral clustering [26], it is far more efficient when compared to the O(n3) runtime
of spectral clustering, and does not require choosing the number of eigenvectors for
the spectral embedding, nor the number of clusters to produce from this embedding
with k-means. DBSCAN thus has both a fast runtime and does not require prior
knowledge of the number of clusters, it serves as a baseline for our experiments with
TrackML.

The two primary approaches taken in hierarchical clustering are agglomerative, or
bottom-up, strategies [14] [18], and divisive, or top-down, strategies [16]. Agglomer-
ative clustering begins with every data point in its own cluster, and at each iteration
combines clusters which are nearby. This process is repeated until every point belongs
to the same cluster, at which point the algorithm outputs a multiscale clustering in
the form of a binary tree. While fast methods for agglomerative clustering have been
proposed [30], they typically rely on strong assumptions for scoring pairwise cluster
distance, and are sensitive to noise. Without such assumptions, agglomerative clus-
tering runs with O(n2) time complexity, thus is prohibitively expensive for use with
TrackML.

Divisive hierarchical clustering begins with every data point assigned to same
cluster, and at each step divides the current clusters into two subsets. This process
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repeats until every data point lies within its own cluster, though the process may be
stopped prematurely if so desired. Thus with a divide procedure which runs in O(n)
time produces reasonable balanced splits - enough such that the hierarchical tree has
O(log n) depth, this strategy has O(n log n) time complexity. Because hierarchical
clustering does not require a priori knowledge of the number of clusters, and because
divisive clustering is able to run in O(n log n) time with light assumptions, this is the
strategy we adopt for our learned clustering module.

1.3.2 Learned Clustering

Many recent deep learning approaches to clustering focus on finding good representa-
tions for the data points which are then able to be clustered using k-means [32] [31]
[8]. However, as Shaham et al. point out in [27], the use of k-means criterion intro-
duce an implicit bias toward solutions which favor convex-shaped clusters, limiting
their applications to datasets similar to e.g. benchmark datasets such as Reuters and
MNIST. Other methods for learned clustering take a spectral approach. Methods
by Tian et al. [29] and Mishne et al. [21] learn to map the graph Laplacian onto a
corresponding spectral embedding, then use k-means to form the final clusters. These
approaches are successful on standard benchmark datasets, but their reliance on prior
knowledge of the number of clusters prohibits their application to TrackML.

Yang et al. [33] employ a recurrent, agglomerative method for hierarchical clus-
tering which, at each step, learns to merge two clusters. While their implementation
relies on a priori knowledge of the number of clusters, it could be extended with a
method similar to our Stop module, which removes clusters that should not continue
to merge. The hard limitation of this work, and indeed agglomerative clustering
strategies, is the need to iteratively combine clusters, a process which is simply too
time consuming for TrackML.

Advancements on graph neural networks have led to new developments in graph
coarsening strategies, analogous to pooling layers in convolutional neural networks.
Unlike pooling in convolutional networks, recent work in graph pooling aims to adap-
tively coarsen graphs, aimed to handle different graph resolutions and preserve infor-
mation within local neighborhoods. DiffPool [34] achieves this by assigning nt points
to nt+1 pooled units by means of a dense assignment matrix which is encouraged to
be sparse. Cangea et al. [7] score the nodes after a graph convolution layer, select-
ing only the top k to continue to the next layer, where k is a hyperparameter. Gao
and Ji use a simiilar formulation in their work on Graph U-Nets [12]. While these
efforts have achieved performance improvements in graph classification tasks, they
are unable to handle clustering tasks such as TrackML since all rely on setting the
number of pooling units as hyperparameters, and in the case of DiffPool, quadratic
complexity under modest assumptions.
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Chapter 2

Clustering Graph Neural Network

2.1 Problem Setup

Our work focuses on a general clustering task wherein we are given an set of entities
and predict which entities belong together within a cluster. Specifically, we are given,
for each sample i, a set of input entities

X(i) = {x(i)1 , . . . , x
(i)
ni
}, x(i)j ∈ X . (2.1)

Each sample i also consists of a varible number of clusters

C(i) = {c(i)1 , . . . , c
(i)
ki
}, (2.2)

and each cluster c
(i)
j is a partition of {1, . . . , ni}.

A major challenge of this setup is that the variable number of clusters k for
event i is not known at inference time. This is presents two difficulties. First, it
rules out many of the standard clustering algorithms such as k-means, as well as
previous clustering approaches using graph neural networks in which the number of
clusters must be pre-specified [34]. Second, and more subtly, is that there may be a
dependency between the number of clusters k and the number of input points n. Since
this relationship could potentially be k = Ω(n) - this is the case for particle tracking
- the runtime of our clustering graph neural network must not have any stage which
is O(kn). This is largely the constraint which motivates a hierarchical algorithm.

Since we only assume we are given a set of input entities and their ground truth
clustering during training, we note that our model does not require knowledge of hi-
erarchical structure. However, where present, ground truth information on a sample’s
hierarchical structure would greatly simplify training.

2.2 Model Requirements

We consider several important characteristics for our clustering graph neural network:

• Speed: A major challenge lies in handling the torrent of data produced by the
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Figure 2-1: An overview of the clustering graph neural network stages.

High Luminosity Large Hadron Collider. Because of this, our model must be
fast. Specifically, we require the model to operate, at train and test time, with:

1. O(n log n) asymptotic complexity

2. Good constant factors, allowing for high sample throughput, particularly
at inference time

3. Good parallelization, with strong preference toward easy implementation
on GPU hardware

• End-to-end training: We set the requirement for an end-to-end framework to
better optimize each stage of our pipeline toward the prediction we ultimately
care about. This means each stage (except for the last) must produce an output
which is differentiable.

• Inductive bias: Due to the plethora of domain expertise present in particle
physics tasks, we designed our architecture to handle the various features and
representations accessible to us within the particle tracking challenge. The
ability to exploit this domain expertise leads to smaller model classes for faster
training and inference, and potentially superior generalization.

2.3 End-to-end Pipeline

Our clustering graph neural networks consists of three broad stages (figure 2-1), out-
lined as follows:

1. Metric learning: Given an input point cloud, embed the points into a new
space which has a Euclidean distance metric. This metric will be used to build
a sparse graph for use in the graph neural network.

2. Graph neural network: With the previous stage’s graph, use a graph neural
network model to consider higher-order interactions between points. The graph
neural network will output a new representation of the points which is amenable
to clustering.

3. Hierarchical clustering: With an improved representation for clustering, re-
cursively divide the points until final clusters are reached, thus producing the
final output.
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2.4 Metric Learning

Since graph neural networks operate over a graph, but datasets such as TrackML
consist only of points, we need a method for constructing a relational graph from
entities. A simple choice used in recent work on graph neural networks is to use a
dense graph, yet this won’t be feasible in this case since TrackML’s point clouds are
significantly larger - about 3 orders of magnitude - than, say, the jet tagging point
clouds in [9].

Another choice would be to use underlying domain knowledge of the TrackML
detector, which is organized in layers, to find plausible pairs of hits. This is the
approach taken in [1], where nearby layers are manually enumerated before extracting
pairs based on rejection criteria fitting the underlying physics problem. Yet this is
unsatisfying for two reasons. First, it sometimes happens that a particle passing
through a layer is not registered in the detector, creating a hole in the track which
will result in missing edges. It is not entirely impossible for successful reconstruction
to occur, though at greater difficulty since the graph neural network will not provide
communication to the two track halves. The second issue is that this method would
not generalize to new datasets, since it relies on extensive domain knowledge and an
understanding of the detector geometry.

Instead, we consider a more general approach where the objective is to find a good
distance metric between pairs of points, wherein pairs belonging to the same cluster
are nearby, and pairs belonging to different clusters are further apart. Assuming the
cost to compute distance between a pair of points is O(1), we can then construct a
sparse graph efficiently by performing neighbor or neighborhood queries using e.g.
kd-trees.

2.4.1 Graph quality:

The output of the metric learning stage will be a constructed graph G = (V,E),
where V is the graph’s vertices, one for each point in the point cloud, E its edges.
We consider ei,j ∈ E to be a true edge if, for points xi ∈ cluster ca, xj ∈ cluster cb,
ca == cb. Otherwise we consider ei,j to be a false edge.

Since our graph neural network will be tasked with providing a good representation
of the points for later use in the clustering stage, it is important that G be capable
of allowing such good representations. Concretely, this requirement means the graph
should contain as many true edges as possible, to allow for good communication
among points belonging to the same cluster. Additionally, to keep computational
costs low, the graph should contain as few false edges as possible.

Consider Et and Ef , the true and false sets of edges within E. Graphs are evalu-
ated, then, on two criteria:

• Purity

gpurity =
|Et|
|E|
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• Recall

grecall =
|Et|
Nt

where

Nt =
K∑
i=1

|ci|2. (2.3)

That is, Nt is the total number of true edges discoverable for each sample.

2.4.2 Learning setup:

In constructing a dataset for our metric learning stage, we first extract pairs of points

X = {(x(1)1 , x
(2)
1 ), . . . , (x(1)n , x(2)n )}, x(i)j ∈ X (2.4)

and their true labels
Y = {y1, . . . , yn}, yi ∈ {0, 1}, (2.5)

where pairs of points are sampled uniformly from each of the samples in our dataset,
and an equal number of positive and negative pairs are chosen to ease training.

2.4.3 Learned embeddings:

Rather than learn a distance metric directly, we instead embed our input points
xi ∈ X into a new Euclidean space Rd, where d is low enough that the embedded space
is not too sparse when considering all points within each sample. This formulation
is an effort to leverage existing algorithms which can perform efficient queries using
common distance metrics, something we will need for graph construction.

We embed points using a learned model φ, parameterized by θ, which maps points
into the new Euclidean space

x ∈ X → φ(θ, x) ∈ Rd. (2.6)

In our experiments, φ is implemented as a multi-layer preceptron.
This stage is trained using a hinge embedding loss, pulling together points be-

longing to the same cluster and pushing aparts points which do not. So for a given
sample

si = [(x
(1)
i , x

(2)
i ), yi], (2.7)

we compute loss l as

l(si) = max

(
0, 1− yi ∗

∥∥∥φ(θ, x
(1)
i )− φ(θ, x

(1)
i )
∥∥∥
p

)
. (2.8)

For our implementation, we use p = 2. Figure 2-2 illustrates a mapping which is
successful.
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Figure 2-2: Left: Points in the original space corresponding to TrackML tracks. Right:
Points mapped to the new space which has a Euclidean distance metric.

2.4.4 Initial graph construction:

Let
X ′ = [x′1, . . . , x

′
n] = [φ(x1), . . . , φ(xn)] (2.9)

Then upon completion of the learned embedding’s training, we now have a distance
metric d where for points xi, xj ∈ X ,

d(xi, xj) =
∥∥x′i − x′j∥∥p . (2.10)

With d, we can construct G by querying, for each point xi, the set of points Ni

which are nearby. Then, for every point

xj ∈ Ni, (2.11)

we add a directed edge ei,j which connects vertex vi to vertex vj.
For efficient querying, we construct a kd-tree from the embedded points. Once

built, each point is queried using one of the following two strategies:

• k-nearest neighbors, which finds for each point xi a neighborhood

N i
knn = knnQuery(xi, k), |Ni| = k (2.12)

• ε-ball query, which finds for each point xi a neighborhood

N i
ball = ballQuery(xk, ε), (2.13)

where for each neighbor

xj ∈ N i
ball, d(xi, xj) < ε. (2.14)

While graphs produced with k nearest neighbor queries have the advantage of
being regular, thus allowing for implementation speedups since they allow for grid-
like data structures which GPUS favor, ε-ball queries tend to work better in practice
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Figure 2-3: Graph formation from the embedded point cloud.

with respect to the aforementioned graph quality criteria. This is likely due to a
non-uniform density surrounding each point, allowing ε-ball queries to better adapt
to their surroundings. Figure 2-3 shows a toy visualization of the edge discovery
process.

2.4.5 Edge refinement:

Although graphs produced using the learned embeddings are, in the case of TrackML,
quite sparse, further refinement can yield in still much sparser graphs. Within the
embedding model, we are only able to consider features derived from each point
individually. Since we have now produced a relatively small set of edges, represented
as pairs of points, we can now consider models which take as input pairs of points,
as well as pairwise features derived from domain expertise.

We thus construct an edge refinement model φ′, parameterized by θ′, which oper-
ates on pairs of points xi, xj and their pairwise features zi,j, and outputs the proba-
bility pi,j that the pair belongs to the same cluster.

pi,j = φ′(xi, xj, zi,j) ∈ [0, 1] (2.15)

φ′ is likewise parameterized as a multi-layer preceptron.
With our trained model, we compute pi,j for each ei,j ∈ E produced during the

embedding stage. Then, choosing a threshold hyperparameter t ∈ [0, 1], we are left
with our final edge selection

E ′ = {ei,j|pi,j > t}. (2.16)
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2.5 Graph neural network

The metric learning stage is capable of producing an embedding for each point which
relies on information from that point alone. Although we can refine this metric by
accounting for pairwise information, this is only feasible in special cases in which
we only need to look at a small set of pairs if we want to keep sub-quadratic time
complexity. Ultimately we will need a way of grouping points together to form our
algorithm’s final clustering, and as such it is desireable to start with the best repre-
sentation possible.

Graph neural networks offer a way to improve over the metric learning stage’s
metric and pointwise representation by extracting information from neighborhoods
rather than individual or pairs of points. This is accomplished through the use of rich
filtering operations over irregular grids such as graphs, by means of information aggre-
gation contained in each point’s neighborhood to produce a superior representation.
Additionally, because the graph we use is weighted and directed, the graph neural
network is capable of learning a diverse set of views over each point’s neighborhood,
differing in both density and in reach.

2.5.1 Learning setup:

The input to our network is a sample, consisting of input entities

X = {x′′1, . . . , x′′n}. (2.17)

Each x′′i is a combination of the original input features and the embedded features
from the metric learning stage:

x′′j = [xj, x
′
j]}, xj ∈ X , x′j = φ(x) ∈ Rd (2.18)

where φ(x) is the embedding model used in the metric learning stage, concatenated
to the original features of each point. While the graph neural network is capable of
learning this representation, providing it as input significantly reduces time during
training.

We are also give a graph G = (V,E) from the metric learning stages, where the
input entities are vertices and edges are directed and given as input entity pairs from
the metric learning stage:

E = {e1, . . . , em}, ei ∈ (xj, xk). (2.19)

As in the metric learning stage, we are given the true labels of the edges

Y = {y1, . . . , ym}, yi ∈ {0, 1}, (2.20)

where the edge ei = (xj, xk) has true label yi = 1 if xj and xk belong to the same
cluster, and yi = 0 if not. Since G is output using nearest-neighbor or ε-ball queries,
we choose G to be sparse such that |E| = m = O(n log n). Our task is then to perform
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edge classification on the learned embedding produced by the graph neural network,
resulting in still better representation for presentation to the final clustering stage.

2.5.2 Edge weighting:

At each layer of the graph neural network, we update the geometric representation
of each event by weighting the edges of the input graph G. This weighting can be
thought of as a sparse n × n adjacency matrix AAA, constructed through a learned
kernel d

(k)
ij , belonging to layer k in the graph nerual network. Each kernel consists of

a multi-layer preceptron Φ(k) on pairs of input entities, normalized through a sigmoid
operation to produce the edge weight a

(k)
ij :

d
(k)
ij = Φ(k)([v

(k)
i , v

(k)
j ]) ∈ R,

a
(k)
ij =

1

1 + e−d
(k)
ij

∈ (0, 1),

where v
(k)
i are vertex i’s features at layer k. At the first layer, we set the vertex

features
v
(1)
i = x′′i . (2.21)

We compute a non-zero weight a
(k)
ij for each discovered edge eij ∈ E.

While we have experimented with neighborhood normalization through the use
of a softmax operation, we found it to hinder performance since information on the
size of the neighborhood may be quite useful to a layer. This is in contrast to [9],
where neighborhood normalization was absolutely crucial in order for the graph neural
network to converge.

2.5.3 Graph convolution:

There are K layers of graph convolution within our graph neural network, and they
are applied as follows. Layer k takes as input the dk-dimensional feature vector vi
at each vertex, combined with all other vertices into an n × dk matrix VVV (k). Upon
performing graph convolution, the layer outputs an n×dk+1 matrix VVV (k+1), consisting
of vertices, each represented by a dk+1 feature vector.

Graph convolution Ψ is specified by applying the adjacency matrixAAA to the input,
then performing an affine transformation on the one-hop features concatenated with
the input features:

Ψ(VVV (k)) = [AAA(k)VVV (k),VVV (k)](www(k))ᵀ + b(k)111, (2.22)

where www(k) and b(k) are the 2dk+1 vector of weights and scalar bias, respectively.
Finally, the layer output VVV (k+1) is produced by applying a non-linear function ρ

(in our case, the recified linear unit) to the graph convolution output:

VVV (k+1) = ρ(Ψ(VVV (k))). (2.23)
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2.5.4 Evaluation:

Since the desired outcome of the graph neural network is an embedding of the points
such that they may be easily clustered, the natural candidate to evaluate loss is to
reuse the strategy outlined in the embedding metric learning stage.

After the last layer of the graph neural network, we are left with

VVV (K) ∈ Rn×dK , (2.24)

the matrix which holds feature vectors for each vertex. Since we have the true edge
labels Y for all of the edges in our graph, we can define the loss as follows:

L(VVV (K), Y ) =
1

|E|
∑

(vi,vj)∈ek∀ek∈E

l(vi, vj, yk),

l(vi, vj, yk) = max
(

0, 1− yk ∗ ‖φ(θ, vi)− φ(θ, vj)‖p
)
,

where l is the hinge loss. As in the metric learning stage, we use p = 2 for the
Euclidean norm.

2.5.5 Input and evaluation graphs:

Although we aim to provide G to the network such that G is sparse, containing as
many true edges and as few false edges as possible, we may wish to evaluate our
network embedding using a different set of edges. One reason to do this is for the
purpose of including more true edges, which the case of TrackML, only requires adding
only a constant factor of additional edges before every true edge is evaluated. We
may also wish to include a larger neighborhood search to ensure the graph neural
network has a more balanced distribution of true and false edges for evaluation.
Since we already have an inexpensive method for building graphs developed in the
metric learning stage, this extra cost is insignificant when compared with the boost
in performance it offers.

2.6 Hierarchical clustering

Since the graph neural network also represents the input entities as points within
a Euclidean space, a first consideration for the clustering stage could be a classic
algorithm such as k-means. Unfortunately, in the context of TrackML, there are two
significant problems with k-means. For one, we are not given k for each sample a
priori. Thus for algorithms such as k-means or spectral clustering, a small error in an
estimation of k may result in significant reconstruction error. Further, even with an
oracle which provides the true k, because k has - for TrackML - a linear dependency
on the number of entities in each sample n, these algorithms will run in quadratic
time.

Traditional clustering algorithms exist which do not have these problems, and
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one such candidate is DBSCAN. Since DBSCAN builds clusters based upon the ε-
neighborhood of each point, it is unnecessary to know the number of clusters a priori.
Additionally, as long as ε is chosen sufficiently small - and indeed the algorithm
performs best when it is - the runtime of DBSCAN is sub-quadratic. However, because
DBSCAN is not differentiable, we are precluded from training end-to-end as we had
initially desired.

There are many important considerations when choosing a clustering strategy for
the final stage in our pipeline, and we review them here:

• Speed: The clustering strategy must be fast, operating in O(n log n) time, with
good constant factor scaling. It is critical that the clustering strategy respects
this asymptotic runtime requirement both in cases where a cluster of size θ(n),
and in cases where there are θ(n) clusters, each of size O(1). An added bonus
is that the method is easily parallelized, preferably for GPU acceleration.

• Differentiable: Because we aim to perform end-to-end training, the output of
the clustering strategy - as measured by our loss criteria - must be differentiable
with respect to the output of the previous, graph neural network stage.

• Unspecified number of clusters: We must be capable of handling datasets
where, as in the case of TrackML, we are not given the number of clusters a
priori.

• Inductive bias on dataset: While the clusters within TrackML are largely
independent of each other, often times clusters resulting from data generat-
ing processes are done so in either a direct hierarchical fashion, or with some
structure relating clusters to each other. Ideally, our framework should be ca-
pable of discovering such relational structure between clusters, leveraging this
information in the pursuit of improved performance. Likewise, since there may
be additional structure present in the ground truth labels such as a hierarchy,
we prefer a clustering strategy whose evaluation criteria are easily modified to
handle additional information.

• Multiscale resolution: A multiscale view of data can assist not only helping
models to learn, but at inference time when interpretability becomes a more
centralized focus.

These factors naturally lead to consider a learned, hierarchical clustering frame-
work. And while there are formulations for fast agglomerative hierarchical clustering,
the most natural framework for our requirements is that of a divisive, top-down
approach. In this case, every point begins in the same cluster, and clusters are recur-
sively split until each point is within its own cluster.

2.6.1 Learning setup:

The input to our clustering stage is a sample, consisting of input entities

H = {h1, . . . , hn}, hi = v(K) ∈ RdK . (2.25)
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That is, the input to the clustering stage is the set of embedded points as output
from the previous stage’s graph neural network.

The output of the clustering stage is a variable number of clusters

C ′ = {c′1, . . . , c′r}, (2.26)

where c′i is a partition of {1, . . . , n}.
Recall that the true clusters for an event are given as

C = {c1, . . . , ck}. (2.27)

Because we do not know k during inference, there is no requirement that the number
of discovered clusters r is equal to the true number of clusters k, something we must
account for in our evaluation strategy.

2.6.2 Clustering framework:

Our clustering framework consists of two modules, one which we call Split, and one
which we call Stop. The algorithm runs as follows:

1. Assign all points H into one large cluster.

2. Run the Split module on the points within the cluster, outputting for each
point the probability that the point is assigned to split to the right child cluster.
A low probability for a given point hi means that hi will more likely be assigned
to the left child cluster.

3. From the probabilities, assign each point to either the right or left child cluster.

4. For each child cluster, run the Stop module on all points contained within the
cluster.

5. Aggregate the stop probabilities for points contained within each cluster.

6. Continue recursively on all clusters which have a low probability of stopping.
Output all clusters with a high probability of stopping.

Figure 2-4 shows a toy visualization of the clustering processes, wherein different
clusters are allowed to stop at different depths of recursion.

2.6.3 Split, Stop modules:

For both the Split and the Stop modules, we are given a set of input points

Z = {z1, . . . , zM},M = |C ′(l)i |, (2.28)
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Figure 2-4: The hierarchical clustering stage allows for clusters to split to variable
depths of recursion, necessating balanced splits to keep the algorithm’s time complex-
ity sub-quadratic.

where C
′(l)
i is the ith cluster in recursion depth l. For each point, we compute the

probability of taking a binary action to produce the output

P = {p1, . . . , pM}, pi ∈ [0, 1]. (2.29)

In the Split case, pi = 1 implies that point zi will be assigned to the right cluster,
and pi = 0 implies the left. In the Stop case, pi = 1 implies that the point zi votes
for the cluster to stop splitting.

Since the decision to stop splitting is made once per cluster, we aggregate the stop
probabilities by computing the mean probability, though other aggregation tactics
may be used such as the max. The probability of stopping cluster i at recursion
depth l is then given as

P
(l)
i =

1

M

M∑
j=1

pj. (2.30)

Because the modules are intended to operate over clusters which may be quite
different in shape and size, it is necessary to share global information with each point
when determining the probability assigned to the point. We take inspiration from
the Split model used in [22], which similarly aims to divide a set of points into two
exclusive sets.

Our Split and Stop modules are thus similar to a multi-layer preceptron with
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T layers, but with the following modification. Before each layer t, we have a set of
feature vectors for each point:

H(t) = {h(t)1 , . . . , h
(t)
M }, h

(t)
j ∈ Rdt , (2.31)

where H(1) is the set of input points Z, and for all other layers, H(t) is the output
of the previous layer t− 1. In order to share global information with each point, we
perform aggregation over the feature vectors by computing the mean

h̄(t) =
1

M

M∑
j=1

h
(t)
j (2.32)

and the variance

ĥ(t) =
1

M

M∑
j=1

(h
(t)
j − h̄(t))2. (2.33)

To compute the output of the layer for each point, we concatenate the global infor-
mation with the individual point’s feature vector, then pass this new representation
through a dense neural network layer:

h
(t+1)
j = ρ

(
[h

(t)
j , h̄

(t), ĥ(t)]ᵀW (t) + β(t)
)
, (2.34)

where W (t) is a learned 3dt×dt+1 parameter matrix, β(t) is a learned dt+1 bias vector,
and ρ is a non-linear function - in our case, the rectified linear unit.

To compute a probability for each point, first compute an output logit for each
point:

oj = (h
(T )
j )ᵀwww + b, (2.35)

where www is a dT × 1 weight vector and b is a scalar bias. Then we apply the sigmoid
function to produce a probability:

pj =
1

1 + e−oj
. (2.36)

2.6.4 Split supervision:

The Split module takes as input the set of feature vectors associated to the entities
within a recursion tree cluster, and outputs the probability that each entity is assigned
to the left or right child subcluster. If one has access to a dataset consisting not only
of the ground truth clusters, but also to the underlying hierarchical structure which
defines how to split the entities within each parent cluster, training the Split module
simply becomes a binary classification task. However, in many scenarios, including
that of TrackML, we have access only to the final clusters, and as such must use a
more sophisticated training strategy.

Keeping with the desiderata outlined earlier, the output of the Split module
should have the following characteristics:
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1. Separability: The purpose of the Split module is to divide the input points
along the ground truth cluster boundaries. Doing so recursively will eventually
lead us to recover the true clusters, so we must ensure our training strategy
selects for this.

2. Balance: Since the Split module affects the depth of recursion reached, it
has a major influence on the runtime of our clustering framework. Unbalanced
splits will quickly lead to quadtratic complexity, or large constant factors in less
severe cases. Therefore, we would also like a method for penalizing unbalanced
splits during training.

Because we ultimately assign a binary action to each point, sending the point
either left or right, a first possibility is to score the module’s performance based
upon the final clustering and runtime, as defined by a reward function which we
implement. We can use REINFORCE [28] to train the Split module until the desired
performance characteristics are met. Unfortunately, while this approach works well
for small sample sizes, our experiments resulted in poor convergence as the number
of points in the sample becomes large.

Thus we have developed a supervision strategy which works on principles of en-
tropy. At a high level, we seek to minimize the entropy of points belonging to the
same ground truth cluster, and to maximize the entropy of points belonging to dif-
ferent ground truth clusters. Computing these entropy losses is done in the following
manner.

We again consider a cluster C
′(l)
i , the ith cluster at recursion depth l. The set of

points assigned to C
′(l)
i are

Z = {z1, . . . , zM},M = |C ′(l)i |, (2.37)

and each point has a probability computed as

P = {p1, . . . , pM}, (2.38)

where pj is the probability that point j is assigned to the right child subcluster. We
are also given access to the ground truth cluster information for the points, which we
consider as

C̃ = {c̃1, . . . , c̃N} (2.39)

and each cluster c̃j is a partition of {1, . . . ,M}. As an intermediate step, we must
also compute the average probability for each ground truth cluster:

p̃j =
1

|c̃j|
∑
k∈c̃j

pk, (2.40)

and we will also need the mean probability across all ground truth clusters:

P̄ =
1

N

N∑
j=1

p̃j. (2.41)
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The first entropy term seeks to ensure points belonging to the same ground truth
cluster are assigned to the same child subcluster. We compute one entropy term per
cluster as follows:

sj = −pj log pj − (1− pj) log pj, (2.42)

where sj is the within-cluster entropy for ground truth cluster j. The total within-
cluster entropy is taken as the average within-cluster entropy across all ground truth
clusters:

Swithin =
1

N

N∑
j=1

sj. (2.43)

Minimizing Swithin on its own will almost certainly result in the trivial behavior of
all points being assigned to the same child subcluster. Thus our second entropy term
aims to maximize entropy between ground truth clusters, and compute it as follows:

Sbetween = −P̄ log P̄ − (1− P̄ ) log P̄ . (2.44)

Sbetween is maximized when P̄ = 0.5. If Swithin is minized, this means exactly half
of the ground truth clusters will be assigned to each child subcluster, and all points
within each ground truth cluster will stay together. We note that our formulation
is invariant to the size of the ground truth clusters, placing an equal importance on
each - something desirable for achieving the best TrackML performance.

Finally, we compute loss as the difference between entropy terms:

l(C
(l)
i ) = Sbetween − Swithin. (2.45)

This loss formulation allows for fully supervised training, and because it is differen-
tiable with respect to the output from the graph neural network stage, we are also
able to train in an end-to-end fashion.

2.6.5 Stop supervision:

The Stop module takes as input the set of feature vectors associated to the entities
within a recursion tree cluster ci,

Z = {z1, . . . , zM},M = |ci|, (2.46)

and outputs the probability that the cluster has finished dividing

pi = Stop(ci). (2.47)

Once the cluster has stopped dividing, a new cluster label is created, to which all
entities within the cluster are assigned. Then the labeled entities are returned by the
algorithm.

A major challenge in developing a training strategy for the Stop module lies in
the fact that its input depends on the performance of the Split module. Should
the Split module perform perfectly, training the Stop module would be a simple
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task, wherein it learns to stop splitting once a ground truth cluster has been reached.
However, since the Split module will produce some amount of error, determining
when to stop splitting depends on how the final clustering is scored. Our training
strategy should thus seek to stop splitting when the clustering score is maximized.

Because the output of the Stop module is the probability of taking a binary ac-
tion, a natural first candidate for training is the REINFORCE algorithm, using the
non-differentiable clustering score as reward. However, similar to the Split mod-
ule, convergence only reliably occurs for small sample sizes with few clusters; as the
number of clusters approaches even a small fraction of those in TrackML samples,
convergence is poor and simple heuristics (e.g., stop splitting once cluster size is below
a certain threshold) typically provide better performance.

We instead have developed a method for fully supervised training, which rests on
our ability to score each cluster independently of the remaining clusters. Given a set
of recursion tree clusters cp, cl, and cr, where cl and cr are the left and right subcluster
of parent cluster cp, respectively, we assume that each cluster has an associated score

si = scoreCluster(ci) ∈ (0, 1]. (2.48)

Because the child subclusters may be unbalanced, we also assume each cluster ci has
a weight wi, and that

wp = wl + wr. (2.49)

We can now assign a recursive score to each cluster, which is the highest score achiev-
able by the cluster itself, or of its weighted descendants:

s′p = max(spwp, s
′
lwl + s′rwr). (2.50)

Ground truth labels yi are then generated on-the-fly for each cluster as follows:

yi =

{
1 if spwp ≥ s′lwl + s′rwr

0 else
(2.51)

That is, splitting ends when no further splitting leads to a higher weighted score
among the parent cluster’s descendants.

To score a cluster c, we begin by determining the ground truth cluster cgt which
has the highest number of entities in c. We then compute several quantities:

• Nc = |c|, the number of entities in the cluster c,

• Ngt = |cgt|, the number of entities in the ground truth cluster cgt,

• Nt, the number of entities belonging to both c and cgt.
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With this information, we compute a precision and recall score for c:

sprecision =
Nt

Nc

srecall =
Nt

Ngt

Finally, the score s for cluster c is computed as

s = sprecision × srecall. (2.52)

Note that this score is never zero, and equals its maximum value of one exactly when
the ground truth cluster is recovered. In our experiments, because TrackML requires
clusters of at least size three, we assign a score of zero to any clusters containing fewer
than three points.

A consequence of computing ground-truth labels on-the-fly with recursion is that
simply because a cluster achieves a higher score than its immediate descendants does
not preclude further descendents from achieving a higher yet aggregate score. It is
therefore necessary to consider, during training, the entire recursion tree to ensure
our scoring is accurate. Assuming the Split module produces reasonably balanced
subclusters, there is no additional asymptotic cost occurred, though the increased
constant factor can be significant.
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Chapter 3

Experimentation

Our target application is the TrackML challenge, and as such the experiments we
run to demonstrate the clustering graph neural network test various aspects of the
dataset. Because previous deep learning approaches are not capable of operating
on TrackML data, due either to quadratic time complexity, sub-quadratic time with
unfeasibly large constant factors, or to an a priori requirement to specify the number
of clusters, we do not compare our architecture to previous work within geometric
deep learning. Rather, we compare our model with the best performing TrackML
entries, and give as points of reference baseline, traditional clustering methods.

3.1 Training

All stages of our pipeline are trained using PyTorch and Nvidia P40 GPUs, and
optimized with Adam [17]. Each stage is first trained individually, before training
jointly in an end-to-end fashion, providing for marginally better final performance
over pure end-to-end training. Learning rates are specified for each section, but all
stages use a ten-fold reduce-on-plateau learning rate decay, invoked when validation
loss does not improve for ten epochs.

3.1.1 Metric Learning

The metric learning stage as described in section 2.4 uses, for the embedding stage,
a three-layer MLP, where the first two layers contain 256 hidden units, and the final
layer embeds into each point into R4, and is trained with a starting learning rate
of 0.001. The edge refinement stage consists of four layers, the first three of which
contain 2048 hidden units, and the last of which embeds to one hidden unit for edge
prediction. The starting learning rate is likewise 0.001.

10 TrackML events are mined to form the training dataset used in both the em-
bedding module and the edge refinement module. All true hit pairs are included
from these events, 10 million total, and 10 million false pairs are randomly selected
to form a balanced dataset. Once the embedding model has begun to converge, 10
more events are mined in a similar fashion, but the false pairs are chosen as the ones
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most difficult for the embedding module to correctly place. Training then continues
for both the embedding and edge refinement with the combined 40 million samples.

3.1.2 Graph Neural Network

The graph neural network stage as described in section 2.5 consists of six layers of
graph convolution, each with their own learned MLP kernel. The first five stages
contain 192 hidden units, while the final stage embeds each hit to R8. Each kernel is
a two-layer MLP, where the first layer has 32 hidden units and the final layer outputs
one value as input to a sigmoid activation. Training begins with a learning rate of
0.0005.

The graph neural network is trained using 4000 TrackML events, where each
event is randomly sub-sampled to contain only 10% of the original clusters. This sub-
sampling is necessary to handle the large event sizes of TrackML, and will in future
work be replaced with graph sampling techniques. Since the graph neural network
and the hierarchical clustering stage are ultimately trained end-to-end, this dataset
is also applied when training the following stage.

PyTorch is at-present limited in handling minibatches and backpropagation with
the use of sparse adjacency matrices, and as such, we implement the graph neural
network stage using Deep Graph Library (DGL) [3] with PyTorch as backend.

3.1.3 Hierarchical Clustering

The hierarchical clustering network contains a Split module and a Stop module, each
of which is a modified MLP as described in section 2.6. Both modules are identical
in network architecture, each consisting of four layers with 256 hidden units each,
before performing a binary prediction as output. The initial learning rate for the
Split module is 0.01 and for the Stop module, 0.001.

A major challenge in this form of hierarchical training lies in parallelization. Be-
cause the number of clusters for TrackML is O(n), and because divisive clustering
requires to start with one cluster of size O(n), few assumptions on the distribution of
points can be exploited. Additionally, some clusters may be ordered to stop splitting
before others, as illustrated in figure 2-4.

Although this stage does not operate over graph-structured data, we again use
DGL for training the hierarchical clustering stage. DGL’s abaility to batch non-
uniform sets of entities, combined with its ability to aggregate information over such
sets, allow for a simple relatively implementation, where the different aggregation
strategies are tracked using permutations. Figure 3-1 shows a typical grouping of
clusters as represented during recursive training, where color labels the true clusters,
and the black vertical line divides the points into two higher-level recursive tree
clusters. Figure 3-2 shows an aggregation strategy for computing measures such as
the entropy loss for the Split model.
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Figure 3-1: A set of points after one application of Split module. Node color rep-
resents true clusters, while the vertical black bar divides the current recursive tree
clusters.

Figure 3-2: Permuting the set of points by their true clusters allows the DGL frame-
work to aggregate information for loss terms, handling in parallel the variable-sized
groups.

3.2 Results

As mentioned in section 2.4, the two metrics used for scoring graph quality are that
of purity and recall, where purity measures the proportion of true edges among the
edges discovered, and recall measures the proportion of true edges discovered of all
true edges available. Because the baseline methods rely upon an ability to score pairs
of points, we demonstrate the effectiveness of our metric learning stage here. Table
3.1 shows a comparison of the different methods’ ability to discover true edges, and
the number of edges required to evaluate in order to produce these edges.

Notable in this comparison is the number of pairs required for the All Pairs base-
line, which produces a dense scoring matrix for later use during track generation. The
Pairwise baseline requires computing over far fewer pairs of points - only 4% f the
dense All Pairs method - but still falls short in terms of recall at only 24%, something
the Pairwise method must make up for with superior track generation. Our embed
module is capable of a three-fold increase in recall over the Pairwise method, with a
two-fold increase in purity. Passing these recovered pairs through our pairwise mod-
ule results in a small drop in recall, with a five-fold increase in recall, allowing for
extremely sparse graphs as input to the graph neural network, while retaining most
of the true pairs of points.

Table 3.2 displays the performance of our clustering graph neural network, com-

Method # Edges (million) Purity Recall
Baseline, All Pairs 10000 0.001 1.00
Baseline, Pairwise 400 0.02 0.24
Ours, Embed Module 200 0.04 0.81
Ours, Pairwise Module 35 .21 0.78

Table 3.1: Comparison of the various methods and their ability to discover true edges.
The purity and recall scores used here are defined in section 2.4.
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Method TrackML Score
Baseline, All Pairs 0.90
Baseline, Pairwise 0.92
Baseline, Pairwise (10% tracks) 0.93
DBSCAN 0.20
DBSCAN (10% tracks) 0.26
Clustering GNN (10% tracks) 0.91

Table 3.2: Results of several methods for TrackML track reconstruction, with
TrackML’s scoring function

pared with the TrackML baselines, and DBSCAN as a point of reference. We report
the performance of our method as evaluated using 10% of each sample’s tracks, due
to current performance limitations of graph neural networks on GPUs. While the
baseline methods are capable of outperforming the clustering graph neural network,
we emphasize that its performance is still high for the TrackML challenge, and note
that its strength lies in its flexibility to adapt to many different regimes, something
which the highly-tuned TrackML baselines are unable to do.
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Chapter 4

Future Directions

4.1 Graph Sampling

One of the primary limitations of our architecture lies in the graph neural network’s
O(nmp) memory complexity, where n is the number of entities to be clustered, m
is average number of neighbors between entities, and p is the number of hidden
units in a given layer. Since changing the size of the neighborhood can have severe
consequences on the communication between entities, and assuming we do not wish
to use a prohibitively small network, the only reasonable method for reducing this
memory cost is to reduce the number of entities n.

In practice, this amounts to implementation of a graph sampling strategy, which
would aim to reduce the overall graph size while retaining the local neighborhood
structure of a node or set of nodes in question. There are many basic strategies to
produce such a sampling [19], and several recent advances in graph sampling offer
still more advanced methods for creating unbiased samples [15] [23].

4.2 Enhanced Parallelism

In tandem with graph sampling are enhanced parallelization methods by means of
distributed computing. While GPU architectectures are remarkably efficient when
it comes to dense matri multiplication, they are typically on par or slower than
CPUs when it comes to the sparse message passing operations central to our method.
Thus a move to CPU operations would allow for far greater memory allocations with
little cost in efficiency, while distributed computing would result in greater training
and inference speeds. These efficiency gains would be further enhanced with an
implementation of graph sampling.

4.3 Iterative Clustering

Finally, a weakness of our higherchical clustering stage is its inablility to recover once
a mistake has been made by the Split module. Because each data point is assigned a
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probability by the Split module, it is possible to score each of the final clusters based
upon the aggregate and intermediate probabilities assigned throughout inference. It
may thus be beneficial to output clusters with only the highest aggregate scores, re-
running data points belonging to clusters with lower aggregate scores, in an iterative
fashion until some cutoff has been met. This type of strategy results in a yet wider
class of models, one which has the representational power to reproduce the TrackML
baseline methods.
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Chapter 5

Conclusions

This thesis has introduced the clustering graph neural network, a novel and fast
architecture for data-driven hierarchical clustering with end-to-end training. Com-
pared with previous deep learning efforts to cluster on graph and point-cloud data,
our method is capable both of operating in sub-quadratic time, and in producing
a variable number of clusters which does not need to be pre-specified. We likewise
emphasize the ability of our architecture to be heavily parallelized, handling datasets
for which each sample is two or more orders of magnitude than those presented in
previous work on clustering with graph neural networks.

To demonstrate the clustering graph neural network, we have evaluated its per-
formance on the TrackML Challenge, a particle tracking task which requires efficient
and accuracte methods to handle the torrent of data produced by the forthcoming
HL-LHC. We have noted the key difficulties within this domain, including a number
of clusters which is proportional to the number of data points, and lack of a priori
knowledge of the number of clusters. We have presented encouraging, if not state-of-
the-art, performance which motivates future research in extending our architecture
to incorporate graph sampling and model parallelism.
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Lio. Towards sparse hierarchical graph classifiers, 11 2018.

[8] Gang Chen. Deep learning with nonparametric clustering. CoRR,
abs/1501.03084, 2015.

[9] Nicholas Choma, Federico Monti, Lisa Gerhardt, Tomasz Palczewski, Zahra Ron-
aghi, Mr Prabhat, Wahid Bhimji, Michael Bronstein, Spencer R. Klein, and Joan
Bruna. Graph neural networks for icecube signal classification, 09 2018.

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters a density-based algorithm for discover-
ing clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD’96,
pages 226–231. AAAI Press, 1996.

38

https://www.kaggle.com/c/trackml-particle-identification/discussion/63249#latest-376771
https://www.kaggle.com/c/trackml-particle-identification/discussion/63256#latest-458122
https://github.com/dmlc/dgl


[11] Steven Farrell, Paolo Calafiura, Mayur Mudigonda, Prabhat, Dustin Anderson,
Jean-Roch Vlimant, Stephan Zheng, Josh Bendavid, Maria Spiropulu, Giuseppe
Cerati, Lindsey Gray, Jim Kowalkowski, Panagiotis Spentzouris, and Aristeidis
Tsaris. Novel deep learning methods for track reconstruction, 2018.

[12] Hongyang Gao and Shuiwang Ji. Graph u-net, 2019.

[13] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and
George E. Dahl. Neural message passing for quantum chemistry. CoRR,
abs/1704.01212, 2017.

[14] K. Chidananda Gowda and G. Krishna. Agglomerative clustering using the
concept of mutual nearest neighbourhood. Pattern Recognition, 10(2):105–112,
1978.

[15] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation
learning on large graphs. CoRR, abs/1706.02216, 2017.

[16] Leonard Kaufman and Peter Rousseeuw. Finding Groups in Data: An Introduc-
tion To Cluster Analysis. 01 1990.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[18] Takio Kurita. An efficient agglomerative clustering algorithm using a heap. Pat-
tern Recognition, 24(3):205 – 209, 1991.

[19] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceed-
ings of the 12th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’06, pages 631–636, New York, NY, USA, 2006.
ACM.

[20] J. MacQueen. Some methods for classification and analysis of multivariate ob-
servations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics, pages 281–297, Berkeley, Calif.,
1967. University of California Press.

[21] Gal Mishne, Uri Shaham, Alexander Cloninger, and Israel Cohen. Diffusion nets.
CoRR, abs/1506.07840, 2015.

[22] Alex Nowak and Joan Bruna. Divide and conquer with neural networks. CoRR,
abs/1611.02401, 2016.

[23] Jihun Oh, Kyunghyun Cho, and Joan Bruna. Advancing graphsage with a data-
driven node sampling, 2019.

[24] David Rousseau. Participant document: Particle tracking and the trackml chal-
lenge, 2018.

39



[25] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 2009.

[26] Erich Schubert, Sibylle Hess, and Katharina Morik. The relationship of dbscan
to matrix factorization and spectral clustering, 2018.

[27] Uri Shaham, Kelly Stanton, Henry Li, Ronen Basri, Boaz Nadler, and Yuval
Kluger. Spectralnet: Spectral clustering using deep neural networks. In Inter-
national Conference on Learning Representations, 2018.

[28] Richard S. Sutton and Andrew G. Barto. Reinforcement learning i: Introduction,
1998.

[29] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep
representations for graph clustering. In AAAI, 2014.

[30] Bruce Walter, Kavita Bala, Milind Kulkarni, and Keshav Pingali. Fast agglom-
erative clustering for rendering, 2008.

[31] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. Unsupervised deep embedding
for clustering analysis. CoRR, abs/1511.06335, 2015.

[32] Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, and Mingyi Hong. Towards
k-means-friendly spaces: Simultaneous deep learning and clustering. CoRR,
abs/1610.04794, 2016.

[33] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsupervised learning of
deep representations and image clusters. CoRR, abs/1604.03628, 2016.

[34] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton,
and Jure Leskovec. Hierarchical graph representation learning with differentiable
pooling. CoRR, abs/1806.08804, 2018.

40


	Introduction
	TrackML
	Graph Neural Networks
	Related Work

	Clustering Graph Neural Network
	Problem Setup
	Model Requirements
	End-to-end Pipeline
	Metric Learning
	Graph neural network
	Hierarchical clustering

	Experimentation
	Training
	Results

	Future Directions
	Graph Sampling
	Enhanced Parallelism
	Iterative Clustering

	Conclusions

