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Abstract

Abstract Interpretation is a theory of sound approximation of program semantics. In

recent decades, it has been widely and successfully applied to the static analysis of com-

puter programs. In this thesis, we will work on abstract domains, one of the key concepts

in abstract interpretation, which aim at automatically collecting information about the

set of all possible values of the program variables. We will focus, in particularly, on two

aspects: the combination with theorem provers and the refinement of existing abstract

domains.

Satisfiability modulo theories (SMT) solvers are popular theorem provers, which proved

to be very powerful tools for checking the satisfiability of first-order logical formulas with

respect to some background theories. In the first part of this thesis, we introduce two ab-

stract domains whose elements are logical formulas involving finite conjunctions of affine

equalities and finite conjunctions of linear inequalities. These two abstract domains rely

on SMT solvers for the computation of transformations and other logical operations.

In the second part of this thesis, we present an abstract domain functor whose elements

are binary decision trees. It is parameterized by decision nodes which are a set of boolean

tests appearing in the programs and by a numerical or symbolic abstract domain whose

elements are the leaves. This new binary decision tree abstract domain functor provides

a flexible way of adjusting the cost/precision ratio in path-dependent static analysis.

v



Contents

Dedication iii

Acknowledgements iv

Abstract v

List of Tables xi

Introduction 1

I Background 4

1 Abstract Interpretation 5

1.1 Elements of Abstract Interpretation . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Abstractions and Concretizations . . . . . . . . . . . . . . . . . . . 7

1.1.3 Abstract and Concrete Transformations . . . . . . . . . . . . . . . . 9

1.1.4 Fixpoint Computation . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.5 Reduced Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.6 Abstract Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 A Simple Programming Language . . . . . . . . . . . . . . . . . . . . . . . 16

vi



1.2.1 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.3 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.4 Trace Semantics of a Simple Programming Language . . . . . . . . 19

1.2.5 Action Path Semantics: An Example of Abstract Interpretation . . 23

1.3 Numerical Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.1 Discovering properties of numerical variables . . . . . . . . . . . . . 29

1.3.2 Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3.3 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Satisfiability Modulo Theories 35

2.1 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.2 Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.3 Theories and Models . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 The SMT Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Satisfiability and Validity . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 Theories of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 Abstract DPLL(T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.4 Combining Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 SMT-LIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.1 Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.2 Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.3 SMT2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



II SMT-based Abstract Domains 53

3 Affine Equalities 54

3.1 Normal Form of Affine Equalities . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1 Generation from Points P . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 SMT-Based Affine Equality Abstract Domain . . . . . . . . . . . . . . . . 61

3.2.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.2 Binary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.3 Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Linear Inequalities 70

4.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Binary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Inclusion Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.2 Equality Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.3 Meet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.4 Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.2 Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Widening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

viii



4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

III Binary Tree-based Abstract Domains 87

5 Branch Condition Path Abstraction 88

5.1 Branch Condition Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Branch Condition Path Abstraction . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Condition Path Abstraction . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 Loop Condition Elimination . . . . . . . . . . . . . . . . . . . . . . 92

5.2.3 Duplication Elimination . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.4 Branch Condition Path Abstraction . . . . . . . . . . . . . . . . . . 95

6 Binary Decision Tree Abstract Domain Functor 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Binary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.1 Inclusion and Equality . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.2 Meet and Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Loop Test Transfer Function . . . . . . . . . . . . . . . . . . . . . . 105

6.3.2 Branch Test Transfer Function . . . . . . . . . . . . . . . . . . . . . 105

6.3.3 Assignment Transfer Function . . . . . . . . . . . . . . . . . . . . . 107

6.4 Extrapolation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.1 Widening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.2 Narrowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Other Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

ix



Conclusion 114

A Proof of Theorem 1.2.3 116

Bibliography 126

x



List of Tables

3.1 Comparing SMT-based affine equality abstract domain and Equality ab-

stract domain in Apron abstract domain library . . . . . . . . . . . . . . . 68

4.1 Comparing SMT-based linear inequality abstract domain and Polka ab-

stract domain in Apron abstract domain library . . . . . . . . . . . . . . . 84

4.2 Comparing the join operator in SMT-based linear inequality abstract do-

main and Polka abstract domain in Apron abstract domain library . . . . . 85

xi



Introduction

As computer systems and software grow more and more complex, how to ensure their

correctness is becoming a very important problem and considered a great challenge. In

recent years, more and more time and effort have been applied to find and eliminate bugs,

even much more than the time and effort spent on writing programs. Moreover, as we

rely more and more on software, the consequences of a bug are more and more dramatic,

causing great financial and even human losses. In 1992, the cumulated imprecision errors

in a Patriot missile defense caused a missile hit wrong target which resulting in 28 people

being killed [Ske92]. Another extreme example is the failure of the Ariane 5 launcher in

1996 is caused by the overflow bug [ea96].

In real life, testing is a massively used technique to ensure the correctness of programs.

Unfortunately, it is also very unreliable. This is because it only considers a very small

sample of program behaviors which will easily leave bugs. Moreover, as software complex-

ity grows exponentially with time, testing does not seem to catch up with it giving worse

and worse results while becomes more and more costly. Formal methods, on the other

hand, provide mathematical techniques to cover all program behaviors and use symbolic

representations to achieve efficiency.

Static Analysis is the analysis of computer programs that is able to discover properties

of the analyzed program without actually executing it. It should preferably always ter-

minate in a predictable period. By Rice’s theorem [Ric53], any property on the outcome

1



of a program that is not always true for all programs or false for all programs - which

includes every single interesting property - is undecidable. Hence, it is not possible to

write a program able to represent and to compute all possible executions of any program

in all its possible execution environments which means a perfect static analyzer does not

exist. Thus every static analyzer should make approximations, one way or another.

Abstract Interpretation [CC92b, CC77, CC79b] is a general theory of the sound ap-

proximations of program semantics. The program semantics refers to the mathematical

meaning of computer programs. Here, sound approximation means that it guarantees the

static analysis is correct and exhaustive. A false negative will never be yielded, but by

undecidability false alarms (or false positive) may be produced. An abstract domain, a

key concept in abstract interpretation, is a class of properties together with a set of op-

erators to manipulate them, aiming at collecting information about the set of all possible

values of the program variables. Unlike other formal methods, once an abstract domain

is designed, the static analysis based on it is fully automatic and scalable. Moreover,

abstract interpretation provides a unifying framework for expressing in different level of

abstractions of several different seemingly unrelated program semantics, which are widely

used in different formal methods including proof methods, model checking, type checking,

type inference, and semantic-based static analysis.

In many different formal methods, the program behaviors are often encoded in formulas

over a set of fixed first-order logic theories. Satisfiability Modulo Theory (SMT) solvers

[BSST09] are often used to decide whether these first-order formulas are satisfiable or not

within this set of fixed first-order logic theories. In this thesis, we are going to introduce

logical abstract domains where program properties are represented by first-order logical

formulas over first-order theories and rely on SMT solvers as back-end technology for the

computation of transformations and other logical operations.

Commonly, the abstract domains use convex sets which are conjunctions of linear
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constraints to represent program properties. Normally, the convexity of these abstract

domains makes the analysis scalable (with exceptions, e.g., Polyhedra abstract domain

has exponential complexity). On the other hand, the absence of disjunctions may cause

rough approximations and produce much less precise results, gradually leading to false

alarms or even worse to the complete failure to prove the desired program property. In

this thesis, we will also introduce a refined binary decision tree abstract domain functor

by adding controllable disjunctions to many already existing abstract domains to provide

a flexible way of adjusting the cost/precision ratio in path-dependent static analysis.

This thesis is organized as follows. Chapter 1 recalls some key features and concepts of

the abstract interpretation framework. A simple imperative programming language with

its syntax and formal semantics has also been presented. Chapter 2 gives a brief introduc-

tion of satisfiability modulo theories, including the notion of first-order logic, DPLL(T ),

Nelson-Oppen method and SMT-LIB. The first two chapters will serve throughout the

following chapters. Chapter 3 introduces a logical abstract domain whose elements are

logical formulas involving finite conjunctions of affine equalities. SMT solvers are used for

the computation of transformations and other logical operations in the domain. Chapter

4 introduces another logical abstract domain which is able to represent and manipulate

invariants by finite conjunctions of linear inequalities. SMT solvers are also used for the

computation of transformations and other logical operations in the domain. Chapter 5

introduces the branch condition graph and defines the branch condition path abstrac-

tion. This chapter will also serve throughout the next chapter. Chapter 6 introduces an

abstract domain functor whose elements are binary decision trees. It is parameterized

by decision nodes which are a set of boolean tests appearing in the programs and by a

numerical or symbolic abstract domain whose elements are the leaves.

3



Part I

Background
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Chapter 1

Abstract Interpretation

Abstract Interpretation [CC92b] is a general theory of sound abstraction and approxima-

tion of program semantics. In this chapter, we first recall some of its key features and

concepts. We then present a simple imperative programming language with its syntax

and formal semantics in the abstract interpretation framework. We also discuss numer-

ical program analysis using abstract interpretation framework and present two classical

numerical abstract domains. The material in this chapter will be referenced later in this

thesis.

1.1 Elements of Abstract Interpretation

We recall some core definitions and features of Abstraction Interpretation here. We refer

the interested reader to [CC92b] for more details.

1.1.1 Notations

Partial orders. A partial order v is a binary relation that is reflexive, transitive, and

anti-symmetric. A non-empty set D equipped with a partial order v is called partially
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ordered set (or poset). A reflexive, transitive but not anti-symmetric binary relation is

called preorder. A non-empty set D equipped with a preorder can be easily turned into

a poset by identifying elements in D such that both a v b and b v a. An infimum ⊥ is

the least element in poset and a supremum > is the largest element in a poset. Given a

pair of elements a, b ∈ D, the least upper bound (also called join) is denoted a t b, and

the greatest lower bound (also called meet) is denoted a u b. Note that, the infimum and

supremum, the least upper bound and greatest lower bound do not always exist. But if

any of them exists, it’s unique (by anti-symmetric of v). A complete partial order (or

cpo) is a poset (D,v) such that any increasing chain C of elements of D has a least upper

bound tC in D (we denote the join and meet of D ⊆ D respectively as tD and uD).

Note that an infimum always exists in cpo due to ⊥ = t∅. A lattice is a poset (D,v)

with an infimum ⊥ and a supremum > in D, and least upper bound t and greatest lower

bound u for every pair of elements in D. A complete lattice is a lattice such that any

subset D ⊆ D has a least upper bound tD. Note that, a complete lattice is always a cpo.

Fixpoints. The set of fixpoints of a function f ∈ D→ D is fp(f) , {x ∈ D | f(x) = x}.

We let fpa(f) be the set of fixpoints of f greater than or equal to a. The set of post-

fixpoints of a function f ∈ D → D on a poset (D,v) is postfp(f) , {x ∈ D | f(x) v x}

with postfpa(f) , {x ∈ D | a v x ∧ f(x) v x}. The set of pre-fixpoints of a function

f ∈ D→ D on a poset (D,v) is prefp(f) , {x ∈ D | x v f(x)} with prefpa(f) , {x ∈ D |

x v a∧x v f(x)}. We write lfp(f) for the least fixpoint of the function f , and gfp(f) for

the greatest fixpoint, if such fixpoints exist. Moreover, lfpa(f) is the least fixpoint of f

greater than of equal to a, while gfpa(f) is the greatest fixpoint of f smaller than of equal

to a. We then recall two fundamental theorems about fixpoints of functions in ordered

structures:

Theorem 1.1.1 (Tarski’s fixpoints [Tar55]). The set of fixpoints of a monotonic function

6



f ∈ D
v−→ D on a complete lattice is a complete lattice. Moreover,

lfp(f) = upostfp(f) = u{x ∈ D | f(x) v x}

gfp(f) = tprefp(f) = t{x ∈ D | x v f(x)}

Theorem 1.1.2 (Kleene’s fixpoints [Kle52]). Let a continuous function f ∈ D
v−→ D on a

cpo (D,v,t) and a ∈ D be a pre-fixpoint for f , then lfpa(f) = t{f i(a) | i ∈ N}. Dually,

let a ∈ D be a post-fixpoint for f , then gfpa(f) = u{f i(a) | i ∈ N}.

Tarski’s fixpoints theorem states that any monotonic function in a complete lattice

has least and greatest fixpoints. Kleene’s fixpoints theorem states that those fixpoints are

computable iteratively. More details can be found in [CC79a].

1.1.2 Abstractions and Concretizations

Let (D[,v[) and (D],v]) be two posets used as semantic domains which is a set of elements

carrying the information about programs. d v d′ in a semantic domain means that d

carries less information than d′. A monotonic function γ ∈ D] → D[ is called concretization

function when each element d] ∈ D] represents some information γ(d]) ∈ D[. We call

(D[,v[) the concrete domain while (D],v]) the abstract domain. We say that (D],v]) is

an abstraction of (D[,v[). A monotonic function α ∈ D[ → D] can be defined, which is

called abstraction function, to specify which abstract element α(d[) ∈ D] can be safely

used to represent a concrete element d[ ∈ D[.

In [CC77], Cousot and Cousot introduced Galois connection between (D[,v[) and

(D],v]) by the function pair (α, γ) such that:
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Definition 1.1.1 (Galois connection).

∀x[ ∈ D[, x] ∈ D], α(x[) v] x] ⇐⇒ x[ v[ γ(x])

This is often pictured as follows:

(D[,v[) −−→←−−α
γ

(D],v])

As a consequence, we have:

∀x] ∈ D] : (α ◦ γ)(x]) v] x]

∀x[ ∈ D[ : x[ v[ (γ ◦ α)(x[)

Moreover, α(x[) will be the best, which is the most precise, abstraction of x[ in D].

When γ is injective, or equivalently, α is surjective, we have ∀x] ∈ D] : (α ◦ γ)(x]) = x],

then the pair (α, γ) is called Galois insertion.

When (D],v]) has u], it forms a so-called Moore family [CC79b] and the abstraction

function α can be defined by the concretization function γ as α(x[) , u]{x] | x[ v[ γ(x])}.

Dually, when (D[,v[) has t[, then the concretization function can be defined by the

abstraction function α as γ(x]) , t[{x[ | α(x[) v] x]}. Note that, Moore family and

Galois connection are equivalent.

In practice, a Galois connection does not always exist between the concrete and the

abstract domains. In some cases no α function exists. In those circumstances, Cousot and

Cousot explained in [CC92b] how to relax the Galois connection framework in order to

work only with a concretization function γ, or dually, only with an abstraction function

α. However, concretization-based abstract interpretation is much more used in practice.
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1.1.3 Abstract and Concrete Transformations

Let f [ ∈ D[ → D[ be a concrete transformer on the concrete domain (D[,v[), a transformer

f ] ∈ D] → D] on the abstract domain (D],v]) is called sound abstract transformer for f [

if and only if ∀x] ∈ D] : (f [ ◦ γ)(x]) v[ (γ ◦ f ])(x]), or dually, ∀x[ ∈ D[ : (α ◦ f [)(x[) v]

(f ] ◦ α)(x[). It states that computing in the abstract always yields less or as much

information as in the concrete.

When both α and γ exist, the best abstract transformer f ] of f [ can be defined as

f ] , α ◦ f [ ◦ γ. Ideally, we would have f [ ◦ γ = γ ◦ f ]. This means that the abstract

computation does not lose any information with respect to the concrete one. We call f ]

the exact abstract transformer of f [. Unfortunately, exact abstract transformers seldom

exist. However, when a Galois insertion exists between the concrete domain and the

abstract domain, the exact abstract transformer do exist and it is also the best abstract

transformer.

Note that all these definitions and properties apply to n-ary operators as well.

Let f [1, f
[
2 ∈ D[ → D[ be two monotonic concrete transformers on the concrete domain

(D[,v[) and f ]1, f
]
2 ∈ D] → D] be two monotonic abstract transformers on the abstract

domain (D],v]). f ]1 is the sound abstract transformer of f [1 while f ]2 is the sound abstract

transformer of f [2. Then the composition of f ]1 ◦ f ]2 is still a sound abstract transformer of

the composition of f [1◦f [2. Moreover, the composition of exact abstract transformers is still

an exact abstract transformer, but the composition of best abstract transformers is not

necessarily a best abstract transformer. Hence, the result of an analysis by combining a set

of abstract transformers, even each abstract transformer is the best abstract transformer,

could still be very poor (imprecise).

In abstract interpretation, a core principle is that all kinds of semantics are expressed as

fixpoints of monotonic functions (or transformers) in posets. Given a semantics expressed

9



as lfpa[(f
[) in concrete domain (D[,v[), what we need is to abstract it as lfpa](f

]) in

abstract domain (D],v]).

Let us first consider the case of (D[,v[) and (D],v]) are linked by a Galois connection

by the function pair (α, γ). In [Cou02], Cousot presented the following two fixpoint

transfer theorems:

Theorem 1.1.3 (Tarski’s fixpoint transfer). Let (D[,v[) and (D],v]) are both complete

lattice and a ∈ D], f [ ∈ D[ → D[ and f ] ∈ D] → D] are two monotonic functions, then

we have

lfpγ(a)(f
[) v[ γ(lfpa(f

])).

Theorem 1.1.4 (Kleene’s fixpoint transfer). Let (D[,v[) and (D],v]) are both cpos and

a ∈ D], f [ ∈ D[ → D[ and f ] ∈ D] → D] are two monotonic functions, If γ is continuous,

then

lfpγ(a)(f
[) v[ γ(lfpa(f

])).

Moreover, if f ] is the exact abstract transformer, then

lfpγ(a)(f
[) = γ(lfpa(f

])).

More commonly, we may have f ] 6= α ◦ f [ ◦ γ as the latter is too difficult to compute

or does not exist at all (such as that there is no abstraction function α); or even worse

where f ] does not admit a least fixpoint (or any fixpoint at all). In all those cases, where

no optimal fixpoint abstraction can be defined or computed, we abstract a concrete least

fixpoint to an abstract post-fixpoint instead of a least fixpoint.
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1.1.4 Fixpoint Computation

Assume we have designed an abstract domain where all elements are computer repre-

sentable and all the abstract transformers we need are computable. We then need to

consider how to efficiently compute fixpoints in the abstract domain.

When the elements in the abstract domain satisfy the ascending chain condition (i.e.,

no infinite strictly increasing chain), then Kleene’s theorem (Theorem 1.1.2) gives a con-

structive way to compute the least fixpoint in the abstract domain:

Theorem 1.1.5. Let (D],v],t]) be a cpo and f ] ∈ D] → D] is monotonic, x] is a pre-

fixpoint for f ], if D] has no infinite strictly increasing chain, then the Kleene iterations

x]i+1 , f ](x]i) will converge in finitely many steps towards lfpx](f
]).

One of the simplest case of theorem 1.1.5 is the sign domain (see [CC76]) which is a

finite domain. A more complex case is the constant domain (see [Kil73]) which is infinite

but satisfies the ascending chain condition.

For those domains that are containing infinite strictly increasing chain, normally the-

orem 1.1.5 can not guarantee the termination of iterations except some rare cases. In

[SW04] and [RCK04], the authors introduce non-standard iteration schemes as well as

sufficient conditions on the abstract functions for the iterates to converge in finite time

within, respectively, the interval domain and the domain of varieties.

In [CC76], Cousot and Cousot introduced a more general way of dealing with domains

with infinite strictly increasing chains, which is called widening.

Definition 1.1.2 (Widening). A widening O] ∈ (D] × D])→ D] is satisfying:

- ∀x], y] ∈ D] : x] v] x] O] y] ∧ y] v] x] O] y];

- for any sequence (x]i, i ∈ N), the sequence defined as y]0 , x]0 and y]i+1 , x]i O] y]i

converges in finite time.

11



The following theorem shows that we can compute the Kleene’s fixpoint with finite

iterations:

Theorem 1.1.6 ([CC92c]). Let f ] be a sound abstraction of f [, γ(x]) is a pre-fixpoint for

f [, then the sequence defined as y]0 , x] and y]i+1 , y]i O] f ](y]i) reaches a stable iterate

y]n such that f ](y]n) v] y]n in finite time. Moreover, lfpγ(x])(f
[) v[ γ(y]n).

Note that the output of the iterations with widening is generally not a monotonic

function of x]. Thus, it does not make any guarantee on the precision of the computed

approximation, but only ensures soundness and termination.

Sometimes, the result of widening y]n = y]n O] f ](y]n) is a strict post-fixpoint of f ] :

f ](y]n) @] y]n. Thus, the approximation y]n can be refined by applying f ] some more times

without widening: z]0 , y]n, z
]
i+1 , f ](z]i ). Unfortunately, there is no guarantee that this

process will terminate due to D] may have infinite strictly decreasing chains. In [CC76],

Cousot and Cousot also introduced a narrowing operator M to enforce the termination of

such refinement.

Definition 1.1.3 (Narrowing). A narrowing M]∈ (D] × D])→ D] is satisfying:

- ∀x], y] ∈ D] : x] u] y] v] x] M] y] v] x];

- for any sequence (x]i, i ∈ N), the sequence defined as y]0 , x]0 and y]i+1 , y]i M] x]i+1

converges in finite time.

The following theorem shows that we can refine an approximate fixpoint using de-

creasing iterations with narrowing in finite time:
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Theorem 1.1.7 ([CC92c]). Let f ] be a sound abstraction of f [, if lfpγ(x])(f
[) v[ γ(y]),

then the sequence defined as z]0 , y] and z]i+1 , z]i M] f ](z]i ) reach a stable iterate z]n

such that z]n+1 = z]n in finite time. Moreover, we have lfpγ(x])(f
[) v[ γ(z]n) v[ γ(y]).

In fact, widening and narrowing are very general methods. They can also be useful

in domains satisfying ascending chain condition or descending chain condition (i.e., no

infinite strictly decreasing chain). In case when efficiency is much more important than

precision, we can design such domains by computing a fixpoint abstraction with much

fewer steps than the classical Kleene’s iterations (theorem 1.1.5). As proved by Cousot

and Cousot in [CC92c], more precision can always be obtained by using widening and

narrowing on an abstract domain with infinite chains than by further abstracting this

domain into a domain satisfying the ascending chain condition.

Recently, a new method called policy iteration (see [CGG+05], [GGTZ07] and [GS07]),

which comes from Game Theory, has been studied in fixpoint computation. It divides the

fixpoint computation into several simple steps that can be easily and efficiently calculated.

Policy iteration can guarantee the termination of computation. Compare to widening

/ narrowing, policy iteration sometimes is more efficient and precise. Unfortunately, it

cannot be applied to those popular relational abstract domains, such as Polyhedral, which

limit its usage in practice.

1.1.5 Reduced Product

One of the most convenient ways to obtain more precision in the analysis by abstract

interpretation is to combine several already existing domains into a new, more powerful

one. Given a concrete domain (D[,v[) and two abstract domains (D]
1,v]1) and (D]

2,v]2)

with their concretizations γ1 : D]
1 → D[ and γ2 : D]

2 → D[, we can define the product

domain:
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D] , D]
1 × D]

2

with ordering:

(x]1, x
]
2) v] (y]1, y

]
2) , x]1 v]1 y]1 ∧ x]2 v]2 y]2

and the concretization:

γ(x]1, x
]
2) , γ1(x]1) u[ γ2(x]2)

Let f ]1 be an abstract transformer in (D]
1,v]1) and f ]2 be an abstract transformer in

(D]
2,v]2), both f ]1 and f ]2 are sound abstractions of concrete transformer f [ in (D[,v[), we

can then define the product transformer :

f ](x]1, x
]
2) , (f ]1(x]1), f ]2(x]2))

which is a sound abstraction of f [. Comparing to compute each component separately,

f ] does actually not bring any precision improvement. This can be corrected by adding a

reduction step that propagates information: let ρ] ∈ D] → D] be a function satisfying both

the soundness condition (γ ◦ ρ])(x]) = γ(x]) and the improvement condition ρ](x]) v] x],

then we calculate ρ] ◦ f ] instead of f ]. ρ] is called reduction which is a lower closure

operator in D]. ρ] ◦ f ] may be not as precise as the best abstract transformer for f [ in

D], But it is more precise than f ] or at least has the same precision of f ]. When both α1

and α2 exist in, respectively, (D]
1,v]1) and (D]

2,v]2), an optimal reduction can be defined

as ρ](x]) , ((α1 ◦ γ)(x]), (α2 ◦ γ)(x])). Sometimes, ρ] is not easily computable due to lack

of efficient algorithm, or does not exist due to lack of proper abstraction functions. We

can still propagate information by using so-called partial reduction. More details can be
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found in [CCF+07].

If one or both abstract domain does not satisfy the ascending chain condition, so does

the product domain D]
1×D]

2 and we need to define a widening and/or narrowing. We can

define the widening O] ∈ (D]
1 × D]

2)→ (D]
1 × D]

2) component-wise as:

O] , (O]
1,O]

2) or (O]
1,t]2) or (t]1,O]

2)

in case D]
1 or D]

2 satisfies the ascending chain condition and no widening is needed. A

narrowing M]∈ (D]
1 × D]

2)→ (D]
1 × D]

2) can be defined the same way as widening.

1.1.6 Abstract Domains

In abstract interpretation, all computations take place in the abstract domain which needs

careful design. Normally, designing an abstract domain includes two aspects:

• Domain representation: choosing a computer-representable set of elements which is

the over-approximation of the concrete semantics.

• Domain operators: designing a computable abstraction of each concrete function in

the concrete domain D[. When the abstract domain does not satisfy the ascending

chain condition and/or descending chain condition, a widening and/or narrowing

operator(s) should also be included.

We then give the formal definition of abstract domain:

Definition 1.1.4 (Abstract Domain). An abstract domain can be defined as (D],v],

α, γ,⊥],>],t],u],O],M], f ], b], ...) where we have:

• a set D] whose elements are computer-representable,

• a partial order v] on D] together with a algorithm to compare abstract elements,
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• an abstraction function α : D[ → D] and a concretization function γ : D] → D[,

• an infimum ⊥] and a supremum >],

• algorithms to compute sound abstractions t] and u] of, respectively, t[ and u[,

• a widening O] and/or an efficient narrowing M], if D] has strictly increasing infinite

chains and/or strictly decreasing infinite chains,

• abstract transformers f ], b], ... to compute sound abstractions of concrete semantics

of concrete transformers.

Note that, best abstraction and best abstract transformers are preferred when they

exist and are computable, but this is not mandatory. The cost of abstract operations

and transformers should always be the first to be taken into consideration. Hence, every

domain designer must make a reasonable tradeoff between efficiency and precision.

1.2 A Simple Programming Language

We present a minimal imperative programming language with its abstract syntax and for-

mal semantics in the abstract interpretation framework that will be used in the following

chapters. It’s turing complete, easy to formalize the semantics and extendable. We also

present an example of application of abstract interpretation to this simple programming

language.

1.2.1 Abstract Syntax

The syntax of a programming language describes how to write programs. The abstract

syntax describes the abstract syntax trees (AST) representing the syntactic structure of
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source code.

Definition 1.2.1 (Abstract syntax).

x ∈ X variables

E ∈ E ::= 1 | x | ? | E1 − E2 expressions

B ∈ B ::= E1 < E2 | E1 ↑ E2 boolean expressions

C ∈ C ::= skip | x = E | C1 ; C2 |

if (B) {C1} else {C2} |

while (B) {C} commands

A ∈ A ::= skip | x = E | B | ¬B actions

1 is the only number. The other integers are abbreviations like 0 = 1− 1,−1 = 0− 1,

etc. ? returns random number which could be any integer value. ↑ is “nand” i.e. “not

and” logical operation. All other boolean operations can be defined in term of ↑ such as

¬B , B ↑ B,B1 ∧ B2 , (B1 ↑ B2) ↑ (B1 ↑ B2), etc. < is the only comparison operation.

All others can be defined in term of < such as E1 <= E2 , ¬(E2 < E1),E1 == E2 ,

E1 <= E2∧E2 <= E1, etc. Commands are similar to the C programming language except

skip which is null/NOP execution step. Actions describe elementary indivisible program

computation steps that is no operation skip, assignments x = E executed by the program

or conditions tested by the program. The action B records that the Boolean expression

B evaluated to true (tt). The action ¬B records that the Boolean expression B evaluated

to false (ff).
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1.2.2 States

States record the current values of variables in the environment/memory as well as a la-

bel/control point specifying what remains to be executed (nothing for stop). For example

the state of the program while (x != 0) { x = x + 1; } just before executing the loop

body is 〈L, ρ〉 where the set of variables is X = {x}, the values V = Z are integers, the

environment ρ ∈ X→ V maps x to its value ρ(x), and L , x = x + 1; while (x != 0) {x

= x + 1; } denotes what remains to be done when execution is at L, i.e., execute the loop

body and then repeat the loop entry.

Definition 1.2.2 (States).

L ∈ L ::= C | stop labels

v ∈ V values

ρ ∈ E , X→ V environments

σ ∈ Σ , L× E states

The environment assignment ρ[x := v] of value v to the variable x in environment ρ is

such that

ρ[x := v](x) , v

ρ[x := v](y) , ρ(y) when x 6= y

1.2.3 Traces

A trace π of length |π| , 1 is reduced to a single state π = σ0. A trace π of length

|π| , n > 1 is a pair π = 〈π, π〉 of a finite sequence π = σ0σ1...σn−1 ∈ Σn of states

separated by a finite sequence π = A0A1...An−2 ∈ An−1 of actions, which we can write as

σ0
A0−→ σ1

A1−→ ...
An−2−−−→ σn−1 and interpret as an observation of an execution that starts
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from state σ0, such that in state σi, the execution of action Ai leads to next state σi+1,

i = 0, 1, ..., n − 2. Note that the first state σ0 in a trace π may not be an initial state

as well as the last one σn−1 in the trace may not be the final state. This is because, in

general, the observation of an execution may start at any time and stop at any later time

during the execution.

Formally, Π+ denotes the set of all finite traces while Π∗ , {ε} ∪Π+ also includes the

empty trace ε corresponding to no observation. The set of all infinite traces is denoted

Π∞ so that the set of all traces is Π , Π∗ ∪ Π∞.

1.2.4 Trace Semantics of a Simple Programming Language

The semantics describes all possible observations of executions for all programs of the

language. Hence, the semantics of a programming language can be formalized by traces.

Let the semantics StJCK of a command C be a set of traces π ∈ Π which can be finite

π ∈ St∗JCK, where the execution terminates, or infinite π ∈ St∞JCK, where the execution

does not terminate. So we have StJCK , St∗JCK ∪ St∞JCK.
We define a set of infinite traces as the limits of a set S of finite traces where the set

of infinite traces have all their non-empty finite prefixes in set S of finite traces.

Definition 1.2.3 (Infinite limits of a set of finite traces).

limt ∈ ℘(Π∗)→ ℘(Π∞)

limt S , {π ∈ Π∞ | ∀π1 ∈ Π∗ : (∃π2 ∈ Π∞ : π = π1
A−→ π2) =⇒

(∃π3 ∈ Π∗ : ∃π4 ∈ Π∞ : π = π1
A−→ π3

A′−→ π4 ∧ π1
A−→ π3 ∈ S)}

We then define the trace semantics StJCK of commands C by induction on the syntactic

structure of the commands.
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stop When starting, the execution of the stop command finishes immediately. It does

not have possible non-terminating behavior.

Definition 1.2.4 (Trace semantics of the stop command).

St∗JstopK , {〈stop, ρ〉 | ρ ∈ E}

St∞JstopK , ∅

skip The execution of the skip command is just one step that does not change the value

of any variable. Same as stop, it does not have possible non-terminating behavior.

Definition 1.2.5 (Trace semantics of the skip command).

St∗JskipK , {〈skip, ρ〉 skip−−→ 〈stop, ρ〉 | ρ ∈ E}

St∞JskipK , ∅

Assignment The execution of the assignment command x = E is just one step that

changes the value of variable x by assigning any one of the possible values v of the

expression E in the current environment/memory state ρ. Same as stop and skip, it does

not have possible non-terminating behavior.

Definition 1.2.6 (Trace semantics of the assignment command).

St∗Jx = EK , {〈x = E, ρ〉 x=E−−→ 〈stop, ρ[x := v]〉 | ρ ∈ E ∧ v ∈ EJEKρ}
St∞Jx = EK , ∅
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Conditional A terminating (resp. non-terminating) execution of a conditional com-

mand if (B) {C1} else {C2} consists of an observation of the test, with action B when

evaluation of the test in the current environment/memory state ρ is true, followed by a

terminating (rest. non-terminating) execution of C1, or action ¬B when evaluation of the

test in the current environment/memory state ρ is false, followed by a terminating (rest.

non-terminating) execution of C2.

Definition 1.2.7 (Trace semantics of the conditional command).

St∗Jif (B) {C1} else {C2}K ,
{〈if (B) {C1} else {C2}, ρ〉 B−→ 〈C1, ρ〉 A−→ π |

ρ ∈ E ∧ true ∈ EJBKρ ∧ 〈C1, ρ〉 A−→ π ∈ St∗JC1K}
∪ {〈if (B) {C1} else {C2}, ρ〉 ¬B−→ 〈C2, ρ〉 A−→ π |

ρ ∈ E ∧ false ∈ EJBKρ ∧ 〈C2, ρ〉 A−→ π ∈ St∗JC2K}
St∞Jif (B) {C1} else {C2}K ,

{〈if (B) {C1} else {C2}, ρ〉 B−→ 〈C1, ρ〉 A−→ π |

ρ ∈ E ∧ true ∈ EJBKρ ∧ 〈C1, ρ〉 A−→ π ∈ St∞JC1K}
∪ {〈if (B) {C1} else {C2}, ρ〉 ¬B−→ 〈C2, ρ〉 A−→ π |

ρ ∈ E ∧ false ∈ EJBKρ ∧ 〈C2, ρ〉 A−→ π ∈ St∞JC2K}

Sequence The terminating execution of a command sequence C1 ; C2 is a terminating

execution of C1 followed by a terminating execution of C2. The non-terminating execution

of a command sequence C1 ; C2 is either a non-terminating execution of C1 or a termi-

nating execution of C1 followed by a non-terminating execution of C2. We first define

trace sequencing π ; C to be the trace π modified such that C is appended to all control

states of the trace π. So if π describes some computation then π ; C describes this same
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computation to be following by some execution of C.

Definition 1.2.8 (Trace semantics of the command sequence).

St∗JC1 ; C2K , {(π ; C2)
A−→ 〈C2, ρ〉 A′−→ π′ | ρ ∈ E∧

π
A−→ 〈stop, ρ〉 ∈ St∗JC1K ∧ 〈C2, ρ〉 A′−→ π′ ∈ St∗JC2K}

St∞JC1 ; C2K , {(π ; C2) | π ∈ St∞JC1K}
∪ {(π ; C2)

A−→ 〈C2, ρ〉 A′−→ π′ | ρ ∈ E∧

π
A−→ 〈stop, ρ〉 ∈ St∗JC1K ∧ 〈C2, ρ〉 A′−→ π′ ∈ St∞JC2K}

Loop The trace semantics of a loop can be defined in the least fixpoint form. This

consists in defining a set of trace transformer F tiJwhile (B) {C}KX that introduces base

cases and extends already observed iterates in X by one more iteration taking its fixpoint.

The terminating executions of a loop are those that iterate 0 or more times where, at each

time the loop body terminates as long as the loop condition B is true and terminate as

soon as the loop condition B becomes false. The non-terminating executions of a loop can

be defined as the limit of the prefix traces corresponding to finite iterations in the loop

where, at each time the loop body terminates plus those execution where after a finite

number of iterations, the loop body does not terminate (which can happen with nested

loops).

Definition 1.2.9 (Trace semantics of while loop).

F tiJwhile (B) {C}KX , {〈while (B) {C}, ρ〉 | ρ ∈ E} ∪

{π A−→ 〈while (B) {C}, ρ〉 B−→ (〈C, ρ〉 A′−→ π′
A′′−→ 〈stop, ρ′〉) ; while (B) {C} |

π, π′ ∈ Π∗ ∧ π A−→ 〈while (B) {C}, ρ〉 ∈ X ∧ true ∈ EJBKρ ∧
(〈C, ρ〉 A′−→ π′

A′′−→ 〈stop, ρ′〉) ∈ St∗JCK}
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StiJwhile (B) {C}K , lfp⊆F tiJwhile (B) {C}K
St∗Jwhile (B) {C}K , {π A−→ 〈while (B) {C}, ρ〉 ¬B−→ 〈stop, ρ〉 |

π ∈ Π∗ ∧ π A−→ 〈while (B) {C}, ρ〉 ∈ StiJwhile (B) {C}K ∧ false ∈ EJBKρ}
St∞Jwhile (B) {C}K ,

limt{π A−→ 〈while (B) {C}, ρ〉 ∈ StiJwhile (B) {C}K | true ∈ EJBKρ} ∪
{π A−→ 〈while (B) {C}, ρ〉 B−→ 〈C ; while (B) {C}, ρ〉 A′−→ π′ ; while (B) {C} |

π
A−→ 〈while (B) {C}, ρ〉 ∈ StiJwhile (B) {C}K ∧ true ∈ EJBKρ ∧

〈C, ρ〉 A′−→ π′ ∈ St∞JCK}

1.2.5 Action Path Semantics: An Example of Abstract Inter-

pretation

In program analysis, especially in data-flow analysis [Hec77], it is common to represent

programs by control flow graphs (or flowcharts, or some equivalent intermediate represen-

tation) and then to reason on sequences of actions along all paths in these control flow

graphs. We will define the action path semantics GaJGJCKK of the control flow graph GJCK
of command C as an abstract interpretation αa of the trace semantics StJCK.

Action Path Abstraction

The action path abstraction αa(S) collects the set of action paths, which are sequences

of actions performed along the traces of a trace semantics S and ignores anything about

states.

We denote A+ the set of non-empty finite action paths, A∗ the set of finite, possible

empty, action paths so that A∗ , {ε} ∪ A+ and A∞ the set of infinite action paths.

Given a trace π = 〈π, π〉, αa(π) , π collects the sequence of actions π executed along
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that trace, which may be empty ε for traces reduced to a single state. It follows that

αa(π
A−→ π′) = αa(π) · A · αa(π′) and αa(π ; C) = αa(π).

Definition 1.2.10 (Action path abstraction). Given a set of traces S,

αa ∈ ℘(Π)→ ℘(A∗ ∪ A∞)

αa(S) , {αa(π) | π ∈ S}

collects the sequences of actions executed along the traces of S.

Note that αa preserves both unions and intersections, and we have the following the-

orem:

Theorem 1.2.1 (Homomorphic Abstraction). Given a function h : C 7→ A, let αh(X) =

{h(x) | x ∈ X} and γh(Y ) = {x | h(x) ∈ Y }, then αh and γh form a Galois connection:

(℘(C),⊆) −−−→←−−−
αh

γh
(℘(A),⊆) (1.1)

Proof. For all X ∈ ℘(C) and Y ∈ ℘(A),

αh(X) ⊆ Y

⇐⇒ {h(x) | x ∈ X} ⊆ Y Hdefinition of αhI

⇐⇒ ∀x ∈ X : h(x) ∈ Y Hdefinition of ⊆I

⇐⇒ X ⊆ {x | h(x) ∈ Y } Hdefinition of ⊆I

⇐⇒ X ⊆ γh(Y ) Hdefinition of γhI

Hence, by defining γa(A) , {π | αa(π) ∈ A}, we will have
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Corollary 1.2.2.

(℘(Π),⊆) −−−→←−−−
αa

γa

(℘(A∗ ∪ A∞),⊆)

Proof. By Theorem 1.2.1 where h is αa.

Control Flow Graph

A control flow graph (V,E) of a program is usually a directed graph, in which nodes

correspond to the actions in the program and the edges represent the possible flow of

control and might be weighted with tt and ff. Normally, a CFG (short for control flow

graph) has a single point of entry which is denoted entry, and a single point of exit which

is denoted exit.

The CFGs can be defined in an inductive manner. Let GJCK be a control flow graph of

a command C, we then build it by the structural induction on the syntax of the command

C:

GJskipK ,
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Action Path Semantics of CFGs

Following the definition of trace semantics StJCK of command C, we define the action

path semantics GaJGJCKK of CFG GJCK of command C as the union of finite sequences

of actions Ga∗JGJCKK abstracting the finite trace semantics St∗JCK of the command and

infinite sequences of actions Ga∞JGJCKK abstracting the infinite trace semantics St∞JCK
of the command, i.e., GaJGJCKK , Ga∗JGJCKK ∪ Ga∞JGJCKK.

We first define the limits of sets of action paths which is similar to the limits of sets

of finite traces in definition 1.2.3.

Definition 1.2.11 (Infinite limits of a set of finite action paths).

lima ∈ ℘(A∗)→ ℘(A∞)

lima S , {ω ∈ A∞ | ∀ω1 ∈ A∗ : (∃ω2 ∈ A∞ : ω = ω1 · ω2) =⇒

(∃ω3 ∈ A∗ : ∃ω4 ∈ A∞ : ω = ω1 · ω3 · ω4 ∧ ω1 · ω3 ∈ S)}

Hence,

26



Definition 1.2.12 (Action path semantics of CFGs).
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Informally, using regular expressions, we have:
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K)∞

Ideally, we would like GaJGJCKK = αa(StJCK). Unfortunately, this is impossible due to the

lack of environment/memory information during execution in the action path semantics.

The following theorem states that the action path semantics is an over-approximation of

the action paths that would be collected directly from the trace semantics.

Theorem 1.2.3. αa(StJCK) ⊆ GaJGJCKK.

Proof. See appendix.

The above theorem is a good example of approximate abstraction where the abstrac-

tion of the concrete semantics must be over-approximated in the abstract since it cannot

be exactly calculated in the abstract only.

1.3 Numerical Static Analysis

In this section, we discuss the static analysis that automatically discovers the numerical

properties of program variable by using so-called numerical abstract domains. We then

present two classical numerical abstract domains - interval and polyhedra.
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1.3.1 Discovering properties of numerical variables

Given a program, the aim of numerical static analysis is to find out the possible values of all

variables at each program point. This can be done by observing the set of reachable states

R ⊆ Σ, which is an abstraction of trace semantics S. The reachable state abstraction

function can be defined as:

Definition 1.3.1 (Reachable state abstraction). Given a set of traces S,

αr ∈ ℘(Π)→ ℘(Σ)

αr(S) , {σ | ∃σ0
A0−→ ...σn ∈ S : ∃i ≤ n : σ = σi}

We model program semantics as a labelled transition system (Σ, I,A, τ) where:

• Σ: a set of states;

• I ⊆ Σ: a set of initial states;

• A: a set of actions;

• τ ∈ Σ× A× Σ: a transition relation.

Let > be all possible values of all variables in the environment/memory and ⊥ = ∅, we

denote I = {〈L0,>〉 | L0 ∈ L} ∪ {〈Li,⊥〉 | Li ∈ L, i ∈ N, i ≥ 1}.

The set of reachable states R can be constructed by fixpoint. We define the function

r ∈ ℘(Σ)→ ℘(Σ) as:

r(X) , I ∪ {σ | ∃σ′ ∈ X : ∃A ∈ A : (σ′,A, σ) ∈ τ}

and we have R = lfp(r).
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We can then lift the reachable state semantics ℘(L × (X → V)) to L → ℘(X → V)

which is called collecting semantics. In this form, we can easily get the strongest proper-

ties of states at each program point by “collecting” all possible environments/memories.

However, such environments/memories may often be infinite, or finite but too large to be

represented in computer system. Hence, we need to seek further abstractions.

Let the concrete domain be (℘(X→ V),⊆,∪,∩,>,⊥), our aim is to design an abstract

domain with a computer-representable abstract version of concrete domain ℘(X→ V) and

computable abstractions of any concrete semantic functions. In the past 40 years, a lot

of numerical abstract domains had been introduced. In the remaining of this section, we

recall two well-known numerical abstract domains: intervals and polyhedra.

1.3.2 Intervals

The interval abstract domain was first introduced in [CC76] by Cousot and Cousot. It

uses an upper and a lower bound to abstract possible values for each variable. The

interval abstract domain is very efficient and able to provide useful information on program

executions. For example, it can be used to prove the absence of arithmetic overflow or

out-of-bound array access.

Let Int be the set of empty or non-empty intervals with bounds in Z where

Int , {[a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b} ∪ {⊥I}

In particular, Int contains [−∞,∞] which represents the whole set Z, and the singletons

[a, a] when a ∈ Z. The empty interval is denoted by ⊥I . The partial order vI is defined

as:

[a1, b1] vI [a2, b2] , a1 ≥ a2 ∧ b1 ≤ b2
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and the abstraction and concretization functions are defined as:

αI(S) ,


⊥I if S = ∅,

[minS,maxS] otherwise.

γI(⊥I) , ∅;

γI([a, b]) , {v | v ∈ Z ∧ a ≤ v ≤ b}.

The abstract meet uI and join tI are defined as:

[a, b] uI [c, d] , [max{a, c},min{b, d}];

[a, b] tI [c, d] , [min{a, c},max{b, d}].

Note that the abstract join tI is not exact, e.g., [1, 2] tI [4, 5] = [1, 5] which contains

spurious value 3. Then the widening OI is defined as:

[a, b]OI [c, d] ,



a if a ≤ c

−∞ otherwise

,


b if b ≥ d

+∞ otherwise


The widening OI is similar to tI but ensures termination by replacing unstable upper

bounds with +∞ and lower bounds with −∞, so that intervals cannot grow indefinitely.
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At the end, we define several abstract expression evaluation functions as:

−I [a, b] , [−b,−a]

[a, b] +I [c, d] , [a+ c, b+ d]

[a, b]−I [c, d] , [a− d, b− c]

[a, b]×I [c, d] , [min{ac, bc, ad, bd},max{ac, bc, ad, bd}]

[a, b]/I [c, d] ,



⊥I if c = d = 0

[min{a/c, a/d, b/c, b/d},

max{a/c, a/d, b/c, b/d}] else if c ≥ 0

[−b,−a]/I [−d,−c] else if d ≤ 0

[a, b]/I [c, 0] tI [a, b]/I [0, d] otherwise

Then the interval abstract domain can be defined as the point-wise extension over

X→ Int:

D] , (X→ Int) ∪ {⊥]}

R]
1 v] R]

2 , ∀x : R]
1(x) vI R]

2(x)

α(R) , λx ∈ X . αI({ρ(x) | ρ ∈ R})

R]
1 op

] R]
2 , λx ∈ X . R]

1(x) opI R
]
2(x) where op = t,u,O,+,−,×, /.

Our description of interval abstract domain uses integer numbers Z to represent

bounds. It can also use real numbers R. Note that the set of real numbers does not

have effective computer representation and algorithms. Hence, in practice, computer rep-

resentable rational numbers are commonly used which leads to a slightly weaker domain.
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1.3.3 Polyhedra

The polyhdra abstract domain was first introduced in [CH78] by Cousot and Halbwachs. It

uses a set of affine inequalities to abstract possible values for program variables. Compared

to the interval abstract domain, polyhedra abstract domain is much more expressive and

precise, but much less efficient of course. Another difference between the interval abstract

domain and the polyhedra abstract domain is that the interval abstract domain abstracts

each variable independently so it is not able to discover relationships between variables

while the polyhedra abstract domain is able to. Those abstract domains who abstract

each variable independently, such as the interval abstract domain, are called non-relational

abstract domains while the other abstract domains who can discover relationships between

variables, such as the polyhedra abstract domain, are called relational abstract domains.

The polyhedra abstract domain is based on the theory of linear algebra. It uses a set

of (or conjunction of) linear inequalities to represent the property of a set of variables

(x1, ..., xn). Normally, we need the polyhedra abstract domain to be closed, convex (and

possibly unbounded) on Zn. In practice, there exists two representations for polyhedra:

• a finite set of constraints C = {∑n
i=1 a1ixi ≤ b1, ...,

∑n
i=1 amixi ≤ bm} which we

usually denote as a pair 〈A, ~B〉 where A ∈ Zm×n is a matrix and ~B ∈ Zm is a vector;

• a finite set of generators, that is, a set of points P = {~P1, ..., ~Pp} and a set of rays

R = {~R1, ..., ~Rr} which we usually denote as a pair 〈P,R〉.

The concretization functions for both representations are defined as:

γ(C) , γ(〈A, ~B〉) , { ~X | A× ~X ≤ ~B}

γ(〈P,R〉) , {(∑p
i=1 λi

~Pi +
∑r

i=1 µi
~Ri) | λi ≥ 0, µi ≥ 0,

∑p
i=1 λi = 1}

There is no abstraction function because some vector sets do not have a best over-
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approximation as a closed convex polyhedron, e.g., x2 + y2 ≤ 1.

Some of typical abstract operators in the polyhedra abstract domain are defined as:

〈P,R〉 v] 〈A, ~B〉 , ∀i : A× ~Pi ≤ ~B ∧ ∀i : A× ~Ri ≤ 0

〈P1, R2〉 t] 〈P2, R2〉 , 〈P1 ∪ P2, R1 ∪R2〉

C1 O] C2 , {c1 ∈ C1 | C2 v] {c1}} ∪

{c2 ∈ C2 | ∃c1 ∈ C1 : C1 =] (C1\{c1}) ∪ {c2}}

The above widening is called standard widening for polyhedra. More details can be found

in [BHRZ05]. Note that some of operations we perform on closed convex polyhedra are

easy when those polyhedra are represented by a set of constraints (e.g., widening O]) while

some other operations are easy when those polyhedra are represented by a set of generators

(e.g., abstract join t]). Moreover, some operations we perform on closed convex polyhedra

are more simple when we use both representations (e.g., abstract ordering v]). Hence, it

is usually to use both representations in the polyhedra abstract domains thus a conversion

algorithm is also included. A standard conversion algorithm is due to Chernikova and

later improved by LeVerge [Ver94].
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Chapter 2

Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) solving [BSST09] is concerned with the satisfiability

of first-order formulas with respect to some background theories. In this chapter, we first

recall the notion of first-order logic. We then recall the SMT problem. We introduce the

notion of satisfiability and validity modulo theories, and recall the theories of interest in

SMT. We also present the abstract DPLL(T ) algorithm for solving SMT problems, and

Nelson-Oppen method for combining theories. Finally, we introduce SMT-LIB, a library

designed for the SMT problem. The material introduced in this chapter serves as reference

for the following chapters in this thesis.

2.1 First-Order Logic

In this section, we introduce first-order logic, which includes its syntax, interpretations,

theories and models.
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2.1.1 Syntax

The set F(x, f,p) of first-order formulas over a countable set of variables x and a disjoint

signature Σ = 〈f,p〉 (where f is a set of function symbols and p is a set of predicate

symbols such that f and p are disjoint, i.e., f ∩ p = ∅) is defined as:

Definition 2.1.1 (First-order logic).

x, y, z, ... ∈ x variables

a, b, c, ... ∈ f0 constants

f, g, h, ... ∈ fn functions with arity n ≥ 1

f ,
⋃
n≥0 fn

t ∈ T(x, f) terms

t ::= x | c | f(t1, t2, ..., tn)

ff, tt ∈ p0 propositions

p, q, r, ... ∈ pn predicates with arity n ≥ 1

p ,
⋃
n≥0 pn

a ∈ A(x, f,p) atomic formulas

a ::= ff | p(t1, t2, ..., tn) | ¬a

ϕ ∈ F(x, f,p) quantified first-order formulas

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ∃x : ϕ

Note that all other boolean operators can be defined in term of ¬ and ∧ such that

ϕ ∨ φ , ¬(¬ϕ ∧ ¬φ), ϕ ⇒ φ , ¬(ϕ ∧ ¬φ), ϕ ⇔ φ , (ϕ ⇒ φ) ∧ (φ ⇒ ϕ). The

universal quantifier ∀ can be defined in term of the existential quantifier ∃ and ¬ such

that ∀x : ϕ , ¬(∃x : ¬ϕ). A literal is an atomic formula or its negation. A clause is

a disjunction l1 ∨ l2 ∨ ... ∨ ln of zero or more literals. A CNF formula is a conjunction

36



c1 ∧ c2 ∧ ... ∧ cn of zero or more clauses. A first-order formula is quantifier-free if and

only if it contains no quantifiers. In first-order logic with equality, there is a distinguished

predicate = (t1, t2) which we write t1 = t2.

2.1.2 Interpretations

Given a set F(x, f,p) of first-order formulas on a signature 〈f,p〉, an interpretation I is a

couple 〈IV , Iγ〉 such that:

• IV is a non-empty set of values,

• ∀c ∈ f0 : Iγ(c) ∈ IV ,

• ∀n ≥ 1 : ∀f ∈ fn : Iγ(f) ∈ InV → IV ,

• ∀n ≥ 0 : ∀p ∈ pn : Iγ(p) ∈ InV → B

where B , {false, true} ⊆ IV . Let the environment be a function from variables to the

values in a given interpretation I ∈ = such that:

ρ ∈ E , x→ IV .

We say an interpretation I and an environment ρ satisfy a first-order formula ϕ, which is

denoted by I |=ρ ϕ, in the following way:

I |=ρ a , JaKIρ
I |=ρ ¬ϕ , ¬(I |=ρ ϕ)

I |=ρ ϕ ∧ φ , (I |=ρ ϕ) ∧ (I |=ρ φ)

I |=ρ ∃x : ϕ , ∃v ∈ IV : I |=ρ[x:=v] ϕ
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where the evaluation JaKIρ ∈ B of an atomic formula a ∈ A(x, f,p) in the environment ρ

is:

JffKIρ , false,

J¬aKIρ , ¬JaKIρ,
Jp(t1, ..., tn)KIρ , Iγ(p)(Jt1KIρ, ..., JtnKIρ),

where the evaluation JtKIρ ∈ IV of a term t ∈ T(x, f) in the environment ρ is:

JxKIρ , ρ(x),

JcKIρ , Iγ(c),

Jf(t1, ..., tn)KIρ , Iγ(f)(Jt1KIρ, ..., JtnKIρ).

In addition, we say an interpretation I and an environment ρ satisfy an equality in the

first-order logic with equality such that:

I |=ρ t1 = t2 , Jt1KIρ =I Jt2KIρ

where =I is the unique reflexive, symmetric, antisymmetric, and transitive relation on IV .

2.1.3 Theories and Models

The set of free variables of a first-order formula ϕ can be defined inductively as the set of

variables in the formula which are not in the scope of an existential quantifier. A sentence

is a first-order formula with no free variables. A theory is a set of sentences [CK90] (which

are called the theorems of the theory) under the same signature which should contain at

least all the predicates and function symbols that appear in the theorems. The language of

a theory is the set of quantified first-order formulas that contain no predicate or function

symbol outside of the signature of the theory.
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An Interpretation I ∈ = is said to be a model of a first-order formula ϕ when

∃ρ : I |=ρ ϕ.

An interpretation I ∈ = is said to be a model of a theory if and only if it is a model of

all the theorems of the theory. We use

M(T ) , {I ∈ = | ∀ϕ ∈ T : ∃ρ : I |=ρ ϕ}

to denote the set of all models of a theory T . Note that we also have M(T ) = {I ∈ = |

∀ϕ ∈ T : ∀ρ : I |=ρ ϕ} since ϕ is a sentence, and if there exists an interpretation I and

an environment ρ such that I |=ρ ϕ, then for all ρ′, I |=ρ′ ϕ. This is because the values of

variables in ρ/ρ′ do not influence the environment of ϕ.

2.2 The SMT Problem

In this section, we first recall the notion of satisfiability and validity (modulo theory). We

also recall the theories of interest in SMT solvers. We then present the abstract DPLL(T )

algorithm for solving the SMT problem. At the end, we recall the theory combination

problem in SMT and introduce Nelson-Oppen method.

2.2.1 Satisfiability and Validity

We say a first-order formula ϕ is satisfiable (with respect to the set = of interpretations)

if and only if there exist an interpretation I and an environment ρ that make the formula

true:

satisfiable(ϕ) , ∃I ∈ = : ∃ρ : I |=ρ ϕ.
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And the unsatisfiable is:

unsatisfiable(ϕ) , ∀I ∈ = : ∀ρ : I |=ρ ¬ϕ.

We say a first-order formula ϕ is valid when all interpretations and environments make

it true:

valid(ϕ) , ∀I ∈ = : ∀ρ : I |=ρ ϕ.

And the invalid is:

invalid(ϕ) , ∃I ∈ = : ∃ρ : I |=ρ ¬ϕ.

Hence, we have ϕ is satisfiable if and only if ¬ϕ is invalid, and ϕ is valid if and only if

¬ϕ is unsatisfiable.

If we only consider a subset I ∈ ℘(=) of interpretations such that:

satisfiableI(ϕ) , ∃I ∈ I : ∃ρ : I |=ρ ϕ

we call it satisfiability modulo interpretations I. We also have validity modulo interpre-

tations I such as:

validI(ϕ) , ∀I ∈ I : ∀ρ : I |=ρ ϕ.

Moreover, when there exists a theory T such that I = M(T ), we have the notion

of satisfiability and validity modulo theory T , where we only consider interpretations

I ∈M(T ) that are models of the theory. Hence, we have:

satisfiableT (ϕ) , satisfiableM(T )(ϕ) = ∃I ∈M(T ) : ∃ρ : I |=ρ ϕ

validT (ϕ) , validM(T )(ϕ) = ∀I ∈M(T ) : ∀ρ : I |=ρ ϕ
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which are also called T -satisfiable and T -valid.

2.2.2 Theories of interest

One prominent difference between SMT solvers and other first-order logical solvers is that

SMT solvers only concentrate on some specialized theories of particular interest instead

of focusing on more general methods. Those specialized theories of interest should be

expressive enough to model interesting problems and have efficient decision procedures

(a terminating algorithm that gives either a yes or a no answer to a formal problem).

Below we recall several popular theories used in most state-of-the-art general-purpose

SMT solvers:

Equality. Usually, a theory imposes some restrictions on how function or predicate

symbols are interpreted. However, the most general case is a theory which imposes no

such restrictions, in other words, a theory that includes all possible models for a given

signature. Given any signature, we denote the theory that includes all possible models

of that theory as Tε. It is also sometimes called the empty theory because its finite

axiomatization is just ∅. Because no constraints are imposed on the way the symbols in

the signature may be interpreted, it is also sometimes called the theory of equality with

uninterpreted functions (EUF). The satisfiability problem for conjunctions of formulas

modulo Tε is decidable in polynomial time using a procedure known as congruence closure

[BTV03, NO05].

Linear integer arithmetic. Let ΣZ = {0, 1,+,−,≤} be the signature and the theory

TZ consist of the model that interprets these symbols in the usual way over the integers.

This theory is also known as Presburger arithmetic. The general satisfiability problem for

conjunctions of formulas modulo TZ is decidable, but its complexity is triply-exponential.
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On the other hand, the satisfiability problem for conjunctions of quantifier-free formulas

modulo TZ is NP-complete [Pap81].

Linear real arithmetic. Let ΣR = {0, 1,+,−,≤} be the signature and the theory

TR consist of the model that interprets these symbols in the usual way over the reals.

The general satisfiability problem for conjunctions of formulas modulo TR is decidable,

but its complexity is doubly-exponential. On the other hand, the satisfiability problem

for conjunctions of quantifier-free formulas modulo TR is polynomial [Kar84], though

exponential methods (Simplex) tend to perform best in practice [DdM06].

Arrays. Let ΣA = {read, write} be the signature. Given an infinite array a, the term

read(a, i) denotes the value at index i of a and the term write(a, i, v) denotes an array

that is identical to a except that the value at index i is v. Let ΛA be the following axioms:

∀a : ∀i : ∀v : read(write(a, i, v), i) = v

∀a : ∀i : ∀j : ∀v : i 6= j → read(write(a, i, v), j) = read(a, j)

∀a : ∀b : (∀i : read(a, i) = read(b, i))→ a = b

Then the theory TA of infinite arrays is the set of all models of these axioms. The general

satisfiability problem for conjunctions of formulas modulo TA is undecidable. On the

other hand, the satisfiability problem for conjunctions of quantifier-free formulas modulo

TA is NP-complete. In practice, several algorithms have been developed which work well

[SJ80, Opp80, SBDL01, BMS06]. The theory of arrays are often used to model memories

and to reason about memory reads and writes.

Other useful theories include fixed-width bitvectors which can easily encode common

CPU arithmetic instructions and inductive data type which can be used to model a variety

42



of things, e.g., enumerations, records, tuples, program data types, and type systems.

Moreover, combining theories may provide more expressivity such that the combination

of theory of arrays and theory of fixed-width bitvectors gives a natural logic for encoding

assembly instructions.

2.2.3 Abstract DPLL(T )

The most common method used for solving SMT problems is DPLL(T ) [GHN+04, NOT06,

Seb07, BSST09], in which efficient SAT solvers are integrated with decision procedures

for first-order theories. In this section, we present abstract DPLL(T ) which describes

DPLL(T ) procedure abstractly as a transition system [NOT06].

In abstract DPLL(T ), states are of form Fail or µ ‖ ϕ where ϕ is a CNF formula

and µ is a sequence of literals, each marked as a decision or a non-decision literal, which

represents a partial assignment of truth values to the atomic formulas (atoms) of ϕ. We

write ld to denote it as the decision literal. We write µ |=p ϕ to mean that if µ is

propositionally satisfiable, so does ϕ. The initial state is ∅ ‖ ϕ. The transition relation is

specified by a set of transition rules such that:
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Definition 2.2.1 (Transition rules of DPLL(T )).

Propagate: µ ‖ ϕ ∧ (c ∨ l) =⇒ µ, l ‖ ϕ ∧ (c ∨ l) if


µ |=p ¬c

l is undefined in µ

Decide: µ ‖ ϕ =⇒ µ, ld ‖ ϕ if


l or ¬l occurs in ϕ

l is undefined in µ

Fail: µ ‖ ϕ ∧ c =⇒ Fail if


µ |=p ¬c

µ contains no decision literals

Restart: µ ‖ ϕ =⇒ ∅ ‖ ϕ

T -Propagate: µ ‖ ϕ =⇒ µ, l ‖ ϕ if


µ |=T l

l or ¬l occurs in ϕ

l is undefined in µ

T -Learn: µ ‖ ϕ =⇒ µ ‖ ϕ ∧ c if


each atoms of c occurs in µ ‖ ϕ

ϕ |=T c
T -Forget: µ ‖ ϕ ∧ c =⇒ µ ‖ ϕ if ϕ |=T c
T -Backjump:

µ, ld, µ′ ‖ ϕ ∧ c =⇒ µ, l′ ‖ ϕ ∧ c if



µ, ld, µ′ |=p ¬c, and there is

some clause c′ ∨ l′ such that:

ϕ ∧ c |=T c′ ∨ l′ and µ |=p ¬c′

l′ is undefined in µ, and

l′ or ¬l′ occurs in µ, ld, µ′ ‖ ϕ
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The clause c in the T -Backjump rule is called conflicting clause and c′∨l′ in the same

rule is called backjump clause. The sequence S0 =⇒ S1 =⇒ S2 =⇒ ... following the

transition rules of DPLL(T ) in definition 2.2.1 is called derivation. Moreover, [BDH+13]

shows that DPLL(T ) is an abstract interpretation of the semantics of logical formulas.

2.2.4 Combining Theories

In SMT, it is common to face with formulas involving several theories in practice, e.g., the

combination of theory of integer and theory of arrays. Hence, a natural question is given

two theories T1 and T2 over signatures Σ1 and Σ2, whether it is possible to combine their

theory solvers into a single theory solver that decide satisfiability modulo the combination

T1 ⊕ T2 over the signature Σ1 ∪ Σ2.

Unfortunately, there does not exist a general complete method for combining any

theories due to undecidability. By imposing some restriction on the component theories

and their combination, Nelson and Oppen proposed a successful method for combining

theory solvers [NO79]. It is fair to say that most work in theory combination in SMT

is based on extensions and refinements of Nelson and Oppens work. In this section, we

present a declarative non-deterministic combination framework, first presented in [Opp80].

Given two theories T1 and T2 over signatures Σ1 and Σ2, the Nelson-Oppen method is

applicable when:

• the signatures Σi, i = 1, 2 are disjoint, i.e., Σ1 ∩ Σ2 = ∅,

• each theory Ti, i = 1, 2 is stably infinite (a theory is stably infinite if every T -

satisfiable formula is satisfiable in infinite models),

• the formulas to be tested for satisfiability are quantifier-free.

The Nelson-Oppen method often begins with a purification procedure which turns the
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formula ϕ into an equisatisfiable pure form ϕ = ϕ1 ∧ ϕ2 where each ϕi is Ti-satisfiable.

A term t is called i-term if its top function symbol is in Σi, i = 1, 2. A literal l is called

i-literal if its predicate symbol is in Sigmai, i = 1, 2 or if it is of form (¬)s = t and both s

and t are i-term. A subterm of an i-term l is an alien subterm of l if it is a j-term, with

j 6= i, and all its superterms in l are i-terms. An i-term or i-literal is called pure if it only

contains symbols from Σi, i = 1, 2. The purification procedure consists of the following

steps:

Purification procedure.

1. Initial state. Let ϕ be a conjunction of literals over Σ1 ∪ Σ2.

2. Abstract alien subterms. Replace each alien subterm t of a literal ϕ with a fresh

variable x and add (conjunctively) the equation x = t to ϕ. Repeat until no more

subterms in ϕ.

3. Separate. let ϕi, i = 1, 2 be the conjunctions of all the i-literals in (the new) ϕ.

Then the combination procedure of the Nelson-Oppen method consists of the following

steps:

Combination procedure.

1. Initial state. Let ϕ be a conjunction of literals over Σ1 ∪ Σ2.

2. Purification. Preserving satisfiability transform ϕ into ϕ1 ∧ ϕ2 where ϕi, i = 1, 2

are the conjunctions of the i-literals.

3. Guess a partition. Let x be the set of all variables occurs in both ϕ1 and ϕ2,

S , {(x1, x2) | x1, x2 ∈ x}, guess a partition E ∪ I on S where x1 = x2 when
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(x1, x2) ∈ E and x1 6= x2 when (x1, x2) ∈ I. Let

ψ ,
∧

(x1,x2)∈E

(x1 = x2) ∧
∧

(x1,x2)∈I

(x1 6= x2)

4. Check pure formulas. Check whether ϕi ∧ ψ is Ti-satisfiable for i = 1, 2.

5. Return. Return satisfiable when both return yes; return unsatisfiable otherwise.

In practice, the purification is unnecessary if each theory solver accepts literals contain-

ing alien subterms, and treats the latter as if they were free constants. A Nelson-Oppen

procedure without the purification step can be found in [BDS02]. By imposing several

restrictions on the component theories, it is also possible to deduct the equalities to be

shared instead of guessing, see [NO03, NO05, LM05]. Moreover, Cousot, Cousot and

Mauborgne [CCM11] shows that the Nelson-Oppen procedure is a reduced product.

2.3 SMT-LIB

SMT-LIB, short for Satisfiability modulo theories library, is an international initiative

aimed at facilitating research and development in SMT. It provides a standard rigorous

description of background theories used in SMT systems and a common input and output

language for SMT solvers. The latest version of SMT-LIB is version 2.0. In this section,

we give a brief introduction of theories, logics and commands of its language referred in

SMT-LIB v2 [BST10].

2.3.1 Theories

SMT-LIB includes the following theories which the SMT-LIB logics refer to one or more

of them:
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Core. The Core theory defines the basic Boolean operators which include two constant

symbols true and false representing Boolean values true and false, several function

symbols not, and, or, xor and => (implies) representing standard Boolean operators, and

three predicate symbols =, distinct and ite. The predicate = has two arguments which

returns true when its two arguments are identical while the predicate distinct also has

two arguments but returns true when its two arguments are not identical. The predicate

ite has three arguments where its first argument is a predicate. It returns its second

argument when its first argument evaluates to true or returns its third argument when

its first argument evaluates to false.

Ints. The Ints theory defines the theory of linear integer arithmetic. Its signature in-

cludes all numerals and all terms of the form (- n) where n is a numeral other than 0 as its

constant symbols. It includes several function symbols such as +, -, *, div, mod, abs which

representing standard integer arithmetic operators and <, <=, >, >= which representing

standard integer comparison operators.

Reals. The Reals theory defines the theory of linear real arithmetic. Its constant sym-

bols include an abstract value for each irrational algebraic number, all numerals, all terms

of the form (- n) where n is a numeral other than 0 and all terms of the form (/ m n) or

(/ (- m) n) where m is a numeral other than 0, n is a numeral other than 0 and 1, m and

n have no common factors besides 1. Its function symbols include +, -, *, div, mod, abs

which representing standard real arithmetic operators and <, <=, >, >= which representing

standard real comparison operators.

Reals Ints. The Reals Ints theory defines the combination of theory of linear integer

arithmetic and theory of linear real arithmetic. It includes all constants symbols and

function symbols defined in the ints theory and reals theory. It also defines three other
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function symbols to real, to int and is int. The function to real transforms an

integer into the real number while the function to int maps a real number to its integer

part. The function is int tests whether a real number is an integer. Note that the mix

of integers and real numbers in one literal is not allowed. The user must explicit convert

all integers to real numbers using to real or convert all real numbers to integers using

to int.

ArrayEx. The ArrayEx theory defines the theory of functional arrays with extension-

ality. It defines two function symbols select and store whose meanings are the same as

in 2.2.2. The ArrayEx theory should also satisfy all axioms defined in 2.2.2.

FixedSizeBitVectors. The FixedSizeBitVectors theory defines the theory of bit vec-

tors with arbitrary size. The bit vectors are defined as binaries (#bX BitVec m) where m

is the number of digits in X and hexdeximals (#xX BitVec m) where m is 4 times the num-

ber of digits in X. The FixedSizeBitVectors theory defines two function symbols concat

and extract which representing the operations of concatenation and extraction of bit

vectors. It also defines usual bit-wise operators including bvnot, bvand, bvor, arith-

metic operators including bvneg, bvadd, bvmul, bvudiv, bvurem and shift operators

bvshl, bvshr.

2.3.2 Logics

SMT-LIB defines a lot of logics, from the sub-logics to the combination of two or more of

them. Dividing logics into sub-logics helps identifying fragments of the main logic where

it may possible to apply specialized and more efficient satisfiability techniques. In this

section, we will recall several (sub)-logics we are interested in.
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AUFLIA: Closed formulas over the theory of linear integer arithmetic and arrays ex-

tended with free function symbols but restricted to arrays with integer indices and values.

AUFLIRA: Closed linear formulas with free function symbols over one and two dimen-

sional arrays of integer index and real value.

AUFNIRA: Closed formulas with free function and predicate symbols over a theory of

arrays of integer index and real value.

LRA: Closed linear formulas in linear real arithmetic.

QF AUFLIA: Closed quantifier-free linear formulas over the theory of integer arrays

extended with free function symbols.

QF AX: Closed quantifier-free formulas over the theory of arrays with extentionality.

QF LIA: Unquantified linear integer arithmetic. In essence, Boolean combinations of

inequation between linear polynomials over integer variables.

QF LRA: Unquantified linear real arithmetic. In essence, Boolean combinations of

inequation between linear polynomials over real variables.

QF NIA: Quantifier-free integer arithmetic.

QF NRA: Quantifier-free real arithmetic.

QF UF: Unquantified formulas built over a signature of uninterpreted (i.e., free) func-

tion symbols.
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QF UFLIA: Unquantified linear integer arithmetic with uninterpreted function sym-

bols.

QF UFLRA: Unquantified linear real arithmetic with uninterpreted function symbols.

UFLRA: Linear real arithmetic with uninterpreted function symbols.

2.3.3 SMT2 Commands

SMT-LIB defines a large set of commands which help users to write standard SMT scripts

that can be accepted by every SMT solvers supporting it. In this section, we recall a key

subset of the SMT2 commands. More details about those commands can be found it

[BST10].

(set-logic L): This command tells the solvers what logic will be used. The argument L

can be the name of a logic defined in the SMT-LIB or of some other solver-specific logic.

If this is left unspecified, the solvers can assume an ALL SUPPORTED logic that enables

the widest range of supported formulas or just simply return error. This command must

precede all of the other commands in this list.

(declare-fun f σ∗ σ): This command declares an uninterpreted function symbol f that

operates over a list of arguments of types σ∗ and the returns a value of type σ. Variables are

declared as uninterpreted constants by leaving the domain list empty, e.g. (declare-fun

x () Int).

(assert t): This command adds term t to the assertion set on the top of the assertion-set

stack if t is a closed formula (i.e., a well sorted closed term of sort Int). Otherwise, it

returns an error.
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(check-sat): This command instructs the solver to check whether the conjunction of

all the formulas in the set of all assertions is satisfiable in the logic specified with the

set-logic command. It will return either sat which indicates that the solver has found

a model, unsat which indicates that the solver has established there is no model, and

unknown which indicates that the search was inconclusive - because of time limits, solver

incompleteness, and so on.

(get-model): After the (check-sat) call with the answer sat, this command asks the

solver to return a satisfying interpretation.

(get-value t1, ..., tn): Similar to the command (get-model), this command asks the

solver to return a satisfying interpretation of the given terms t1, ..., tn instead of the whole

model.

The following example gives a very simple SMT script that asks if there is a solution

to the pair of equations x+ 2 ∗ y = 20 and x− y = 2:

Example 2.3.1. Simple SMT-LIB example.

(set-logic QF LIA)

(declare-fun x () Int)

(declare-fun y () Int)

(assert (= (+ x (* 2 y)) 20))

(assert (= (- x y) 2))

(check-sat)

(get-model)

The solver will return sat, indicating that the formula is satisfiable. The solver will also

return a model ((x 8) (y 6)), indicating x = 8 and y = 6 is a satisfying solution.
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Part II

SMT-based Abstract Domains
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Chapter 3

Affine Equalities

In this chapter, we introduce a logical abstract domain whose elements are logical formulas

involving finite conjunctions of affine equalities. An affine equality is of form a1x1 +a2x2 +

...+ anxn = b. We assume ai, b, xi, 1 ≤ i ≤ n are all integers.

3.1 Normal Form of Affine Equalities

Given a set of affine equalities of n variables:



a11x1 + a12x2 + · · · a1nxn = b1,

a21x1 + a22x2 + · · · a2nxn = b2,

...

am1x1 + am2x2 + · · · amnxn = bm
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Its normal form will be: 

c11x1 + c12x2 + · · · c1nxn = d1,

c21x1 + c22x2 + · · · c2nxn = d2,

...

cl1x1 + cl2x2 + · · · clnxn = dl

where l ≤ m and cij satisfies:

(1) ∀i ∈ [1, l] : ∃j ∈ [1, n] : cij 6= 0.

(2) For each i0 ∈ [1, l], if ci0j0 6= 0 and ∀j < j0, ci0j = 0, then ∀i > i0 : ∀j ≤ j0 : cij = 0.

This normal form is also called normalized reduced row-echelon form [Kar76] and the

proof of its existence can be found in [Mun64]. It follows that the normal form of a set of

affine equalities of n variables has at most n affine equalities.

Normally, row operations, such as multiply a row by a non-zero scalar, or add or

subtract a row to another row, or permute two rows, may be used to transform a set of

affine equalities to its normal form. In this section, we are going to discuss how to use

SMT solvers for the transformations. A set of affine equalities can be easily written into

a first-order logical formula such as:

ϕ =
∧

i∈[1,m]

ai1x1 + ai2x2 + · · · ainxn = bi

3.1.1 Generation from Points P

Given a set of n-dimensional points P where |P | = m,m ≥ 1, we can generate the normal

form of a set of affine equalities, which satisfies each point in P , directly by using SMT

solvers. Note that when m = 1, the normal form of the set of affine equalities satisfies
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the point p can be written directly as:

ϕ =
∧

i∈[1,n]

xi = pi (3.1)

When m > 1, let’s consider the following template equality:

c1x1 + c2x2 + ...+ cnxn = d (3.2)

When we replace xi, 1 ≤ i ≤ n by the points in P , we will get a set of equalities:



p11c1 + p12c2 + · · ·+ p1ncn = d,

p21c1 + p22c2 + · · ·+ p2ncn = d,

...

pm1c1 + pm2c2 + · · ·+ pmncn = d

(3.3)

where c1, ..., cn, d are unknowns. By rewriting the above equalities into a first-order logical

formula, we can then ask an SMT solver if this formula is satisfiable under the theory

of integer (or real arithmetic). If satisfiable, we can ask the SMT solvers to return a

possible non-zero model for c1, ..., cn, d. This gives us one possible equality that satisfies

P . Because SMT solversonly generate arbitrary models, so we must specify what kind of

c1, ..., cn, d we need to get the normal form of affine equalities that satisfy P .

From the definition of normal form, we can generate the following set of possible

c1, ..., cn, d: 

c1 6= 0, c2, ..., cn, d are integers,

c1 = 0, c2 6= 0, c3, ..., cn, d are integers,

...

c1 = 0, c2 = 0, ..., cn−1 = 0, cn 6= 0, d is an integer.

(3.4)
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Then all satisfiable c1, ..., cn, d forms the normal form of affine equalities that contains all

points in P . If there is no satisfiable c1, ..., cn, d, then return >. Moreover, to make the

models generated by SMT solvers easily comparing to each other, we can alos use the

following set of possible c1, ..., cn, d:



c1 = 1, c2, ..., cn, d are rational numbers,

c1 = 0, c2 = 1, c3, ..., cn, d are rational numbers,

...

c1 = 0, c2 = 0, ..., cn−1 = 0, cn = 1, d is a rational number.

(3.5)

Example 3.1.1. Let P = {(1, 2, 3, 4, 5), (2, 3, 4, 5, 6)}, we then have

 c1 + 2c2 + 3c3 + 4c4 + 5c5 = d

2c1 + 3c2 + 4c3 + 5c4 + 6c5 = d

We first translate it into the following SMT script:

(set-logic QF LRA)

(declare-fun c1 () Real)

(declare-fun c2 () Real)

(declare-fun c3 () Real)

(declare-fun c4 () Real)

(declare-fun c5 () Real)

(declare-fun d () Real)

(assert (= (+ c1 (+ (* 2 c2) (+ (* 3 c3) (+ (* 4 c4)

(* 5 c5))))) d))

(assert (= (+ (* 2 c1) (+ (* 3 c2) (+ (* 4 c3) (+ (* 5 c4)

(* 6 c5))))) d))
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Note that the real numbers in the SMT solvers are actually represented as rational num-

bers. Then we translate “c1 = 1, c2, ..., cn, d are rational numbers” by adding the following

SMT script:

(assert (= c1 1))

(check-sat)

(get-model)

By calling Z3 [dMB08], it will return “sat” and produce the model which is “c1 = 1, c2

= - 3/2, c3 = 0, c4 = 1/2, c5 = 0, d = 0”. Continuing to check other possible c1, ..., cn, d,

we then get

• c1 = 0, c2 = 1, c3 = - 3/2, c4 = 0, c5 = 1/2, d = 0

• c1 = 0, c2 = 0, c3 = 1, c4 = 0, c5 = -1, d = -2

• c1 = 0, c2 = 0, c3 = 0, c4 = 1, c5 = -1, d = -1

• “unsat” for c1 = 0, c2 = 0, c3 = 0, c4 = 0, c5 = 1

After several adjustment, such as multiple by dividend, we have the affine equalities in

normal form that satisfy P : 

2x1 − 3x2 + x4 = 0

2x2 − 3x3 + x5 = 0

x3 − x5 = −2

x4 − x5 = −1

Note that different SMT solver may generate different results for c1, ..., cn, d. For
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example, the normal form generated by CVC4 [BCD+11] will be:



x1 − 2x2 + x3 = 0

x2 − 2x3 + x4 = 0

x3 − 2x4 + x5 = 0

x4 − x5 = −1

Hence, all the examples in the following chapters, unless clearly stated, will use Z3 as our

SMT solver.

3.1.2 Normalization

Given any set of affine equalities F of n variables, we can easily transform it into the

normal form using an SMT solvers. Let FN
i , 1 ≤ i ≤ n be the normal form of affine

equalities generated from i independent points. We say n points are independent if and

only if for any subset of these points, the normal form of affine equalities generated from

them will not satisfy any other points. Then the normalization can be done as follow:

0. Check the satisfiability of F using an SMT solver. If “unsat”, return ⊥. Otherwise,

ask the SMT solver to generate a model for F , let it be p1.

1. Generating FN
1 from {p1}. Check the satisfiability of F∧¬FN

1 using the SMT solver.

If “unsat”, then FN
1 is the normal form of F . Otherwise, ask the SMT solver to

generate a model for F ∧ ¬FN
1 , let it be p2.

2. Generating FN
2 from {p1, p2}. Check the satisfiability of F ∧ ¬FN

2 using the SMT

solver. If “unsat”, then FN
1 is the normal form of F . Otherwise, ask the SMT solver

to generate a model for F ∧ ¬FN
2 , let it be p3.

...
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i. Generating FN
i from {p1, ..., pi}. Check the satisfiability of F ∧¬FN

i using the SMT

solver. If “unsat”, then FN
i is the normal form of F . Otherwise, ask the SMT solver

to generate a model for F ∧ ¬FN
i , let it be pi+1.

...

Note that this procedure will have at most n+1 steps, hence it will guarantee to terminate.

We call the set of points {p1, ..., pi, ...} the normalization points of F .

Example 3.1.2. Given the following set of affine equalities:

 x1 + x2 + x3 = 0

x1 + 2x2 + 3x3 = 0

We first translate it into the SMT script:

(set-logic QF LIA)

(declare-fun x1 () Int)

(declare-fun x2 () Int)

(declare-fun x3 () Int)

(assert (= (+ x1 (+ x2 x3)) 0))

(assert (= (+ x1 (+ (* 2 x2) (* 3 x3))) 0))

(check-sat)

(get-model)

By calling Z3, it will return “sat” and generate the model “x1 = 1, x2 = -2, x3 = 1”. We

then check with the following SMT script:

(assert (not (and (= x1 1) (and (= x2 -2) (= x3 1)))))

Z3 will still return “sat” and generate a new model “x1 = -1, x2 = 2, x3 = -1”. We

generate the normal form of affine equalities from {(x1 = 1, x2 = -2, x3 = 1’), (x1 = -1,
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x2 = 2, x3 = -1)}. It will be:

F =

 x1 − x3 = 0

x2 + 2x3 = 0

We then check with the following SMT script:

(assert (not (= (- x1 x3) 0)))

(assert (not (= (+ x2 (* 2 x3)) 0)))

Z3 will return “unsat” which means we get the normal form F .

3.2 SMT-Based Affine Equality Abstract Domain

In this section, we introduce the SMT-based affine equality abstract domain which is able

to represent and manipulate the invariants in the form of the finite conjunctions of affine

equalities. SMT solvers will be used for the computation of transformations and other

logical operations in the domain.

3.2.1 Representation

Let X = {x1, x2, ..., xn} be the finite set of program variables. We use the finite conjunc-

tions of affine equalities

ϕ =
∧

i∈[1,m]

ai1x1 + ai2x2 + · · · ainxn = bi

to represent the relational properties of X . We prefer every finite conjunction of affine

equalities to be in normal form, but it is not necessary. The set of all possible values

of X by a finite conjunction of affine equalities is given by the following concretization
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function:

Definition 3.2.1. The concretization of a finite conjunction of affine equalities is

γe(ϕ) , {(v1, v2, ..., vn) | (v1, v2, ..., vn) |= ϕ}

We use false to represent the abstract infimum ⊥e and true to represent the abstract

supremum >e.

3.2.2 Binary Operations

We now introduce several useful abstract binary operators for the SMT-based affine equal-

ity abstract domain which are necessary to define an abstract domain.

Inclusion Testing

We can easily compare two finite conjunctions of affine equalities using the SMT solver.

Theorem 3.2.1 (Inclusion test for finite conjunctions of affine equalities). Given two

finite conjunctions of affine equalities ϕ1 and ϕ2, we have

ϕ1 ve ϕ2 , ϕ1 |= ϕ2 = ∀X : ϕ1 ⇒ ϕ2.

In practice, we prefer less universal quantifications in the formulas when checking

them with SMT solvers. Besides, we know that ∀x : ϕ ≡ ¬∃x : ¬ϕ. Hence, we have

∀X : ϕ1 ⇒ ϕ2 = ¬∃X : ¬(ϕ1 ⇒ ϕ2) = ¬∃X : ¬(¬ϕ1 ∨ ϕ2) = ¬∃X : ϕ1 ∧ ¬ϕ2. We
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then use SMT solvers to check the satisfiability of ϕ1 ∧ ¬ϕ2. If “unsat”, we know that

ϕ1 ve ϕ2, otherwise, we have ϕ1 6ve ϕ2.

Equality Testing

Equality testing is similar to the inclusion testing. We have the following theorem:

Theorem 3.2.2 (Equality testing of finite conjunctions of affine equalities). Given two

finite conjunctions for affine equalities ϕ1 and ϕ2, we have

ϕ1 = ϕ2 , ∀X : ϕ1 ⇔ ϕ2

Hence, we can either check ∀X : ϕ1 ⇔ ϕ2 directly. In practice, we may check ϕ1 ve ϕ2

and ϕ2 ve ϕ1 instead since ϕ1 = ϕ2 , ϕ1 ve ϕ2 ∧ ϕ2 ve ϕ1. In the later case, if both

return true, then we have ϕ1 = ϕ2, otherwise, we have ϕ1 6= ϕ2.

Meet

The meet (or intersection) of two finite conjunctions of affine equalities is actually a

conjunction of all affine equalities.

Theorem 3.2.3 (Meet of finite conjunctions of affine equalities). Given two finite con-

junctions of affine equalities ϕ1 and ϕ2, we have

ϕ1 ue ϕ2 , ϕ1 ∧ ϕ2

Hence, the only thing left is to normalize ϕ1 ∧ ϕ2. Let it be ϕ, we then have ϕ1 ue ϕ2 =

ϕ.
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Join

The join (or union) of two finite conjunctions of affine equalities is actually a disjunction

of them.

Theorem 3.2.4 (Join of finite conjunctions of affine equalities). Given two finite con-

junctions of affine equalities ϕ1 and ϕ2, we have

ϕ1 te ϕ2 , ϕ1 ∨ ϕ2

Unlike the meet, there may not exist a finite conjunction of affine equalities ϕ that

makes ∀X : ϕ ⇔ ϕ1 ∨ ϕ2. Instead, we calculate a finite conjunction of affine equalities

ϕ′ which satisfies ∀X : ϕ1 ∨ ϕ2 ⇒ ϕ′ and ∀X : ∀ϕ′′ : ϕ1 ∨ ϕ2 ⇒ ϕ′ ∧ ϕ′ ⇒ ϕ′′. We

can calculate such finite conjunction of affine equalities by the normalization procedure

letting F = ϕ1 ∨ ϕ2. If we know the normalization points of both ϕ1 and ϕ2, let them be

P1 and P2, we can also generate ϕ from P = P1 ∪ P2.

Example 3.2.1. Let ϕ1 = x1 = 1 ∧ x2 = −2 ∧ x3 = 1 and ϕ2 = x1 = −1 ∧ x2 =

2 ∧ x3 = −1, then ϕ1 te ϕ2 = x1 − x3 = 0 ∧ x2 + 2x3 = 0.

3.2.3 Transfer Functions

We now present the transfer functions for the SMT-based affine equality abstract domain.

Assignment Transfer Function

There are two major types of linear assignments, invertible and non-invertible. We first

consider the invertible assignment.
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The invertible assignment has the form

xi = a1x1 + ...+ aixi + ...+ anxn + b, ai 6= 0 (3.6)

The fact ai 6= 0 means we can carry over the knowledge of the previous value of xi to the

new value of xi. Thus we can rewrite it as:

xi = [xi − (a1x1 + ...+ ai−1xi−1 + ai+1xi+1 + ...+ anxn + b)]/ai (3.7)

Let ϕ[x← e] represents the replacement of x by e in ϕ, then the assignment transfer

function for invertible assignment can be defined as:

f ei Jxi = a1x1 + ...+ aixi + ...+ anxn + bKϕ
= ϕ[xi ← [xi − (a1x1 + ...+ ai−1xi−1 + ai+1xi+1 + ...+ anxn + b)]/ai]

Example 3.2.2. let ϕ = x1−x3 = 0 ∧ x2+2x3 = 0, given an assignment x2 = x1−x2+x3,

then f ei Jx2 = x1 − x2 + x3K = x1 − x3 = 0 ∧ x1 − x2 + 3x3 = 0.

The non-invertible assignment has the form

xi = a1x1 + ...+ ai−1xi−1 + ai+1xi+1 + ...+ anxn + b (3.8)

It appears we have to “loose” some information of old xi by the assignment to xi. The

simple way to do this is to remove all affine equalities which contain xi. A better way is:

1. Let ` be the last affine equality in ϕ which contain xi. Rewrite it into xi = (b −

Σajxj)/ai.

2. Replace xi by (b− Σajxj)/ai in each affine equality in ϕ except l.

3. Remove l from ϕ and call the result ϕ′.

Then the assignment transfer function for non-invertible assignment can be defined as:
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f enJa1x1 + ...+ ai−1xi−1 + ai+1xi+1 + ...+ anxn + bK
= ϕ′ ∧ xi = a1x1 + ...+ ai−1xi−1 + ai+1xi+1 + ...+ anxn + b

Example 3.2.3. let ϕ = x1 − x3 = 0 ∧ x2 + 2x3 = 0, given an assignment x2 = x1 + x3,

then f ei Jx2 = x1 + x3K = x1 − x3 = 0 ∧ x2 = x1 + x3.

Test Transfer Function

Given a test φ, if it has the form
∧
i∈[1,m] ai1x1 + ai2x2 + · · · ainxn = bi, then the test

transfer function will be:

f et JφKϕ =

 ϕ ue φ when evaluating in the true branch

ϕ when evaluating in the false branch

Otherwise, we simply return ϕ for both true and false branches.

3.2.4 Example

Let’s consider the following program:

[P0 ] x = 2 ; y = 3 ; z = 5 ;

[P1 ] while [P2 ] ( . . . ) {

[P3 ] x = x + 1 ; y = y + 2 ; z = z + 3 ;

[P4 ] }

The test does not have the form
∧
i∈[1,m] ai1x1 + ai2x2 + · · · ainxn = bi hence it is not

taken into account. Initially, P0
0 is true and P0

1, P0
2, P0

3, P0
4 are false. Then each assertion

is propagated through the analysis of the program:
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P1
0 = true

P1
1 = f ei Jz = 5K(f ei Jy = 3K(f ei Jx = 2KP1

0)) = x = 2 ∧ y = 3 ∧ z = 5

P1
2 = P1

1 te P1
4 = P1

1 ∨ false = P1
1

P1
3 = P1

2

P1
4 = f ei Jz = z + 3K(f ei Jy = y + 2K(f ei Jx = x + 1KP1

3)) = x = 3 ∧ y = 5 ∧ z = 8

The assertion P0 and P1 will not be changed, hence we continue with P2:

P2
2 = P1

1 te P1
4 = 3x - z = 1 ∧ 3y - 2z = -1

P2
3 = P2

2

P2
4 = f ei Jz = z + 3K(f ei Jy = y + 2K(f ei Jx = x + 1KP2

3)) = 3x - z = 1 ∧ 3y - 2z = -1

Then P1
1 te P2

4 = 3x - z = 1 ∧ 3y - 2z = -1 is equal to P2
2 so that the program analysis

has converged.

The final result is:

[P0: true] x = 2 ; y = 3 ; z = 5 ;

[P1: x = 2 ∧ y = 3 ∧ z = 5] whi l e [P2: 3x - z = 1 ∧ 3y - 2z = -1] ( . . . ) {

[P3: 3x - z = 1 ∧ 3y - 2z = -1] x = x + 1 ; y = y + 2 ; z = z + 3 ;

[P4: 3x - z = 1 ∧ 3y - 2z = -1] }

3.2.5 Implementation

We have implemented our SMT-Based affine equality abstract domain using OCaml. It

accepts finite conjunctions of affine equalities. We translate formulas and SMT queries

into SMT-LIB v2 scripts hence all SMT solvers which accept SMT-LIB v2 script as their

input can be used in our implementation.

We have evaluated our implementation using different SMT solvers, such as cvc4 and

z3. We have also compared our implementation with the same operators in the Apron
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library. Table 3.1 shows the differences between our implementation using cvc4, z3 and

Apron when evaluating the program in Sect. 3.2.4. Each column in the table shows the

time usage for calculating the assertion (normally involving one abstract operation) in

Sect. 3.2.4.

P1
1 P1

2 P1
4 P2

2 P2
4 P1

1 te P2
4

Z3 0.000457s 0.273667s 0.000229s 0.353616s 0.000256s 0.327332s
CVC4 0.000366s 0.235393s 0.000227s 0.464791s 0.000261s 0.385006s
Apron 0.000106s 0.000134s 0.000075s 0.000184s 0.000089s 0.000137s

Table 3.1: Comparing SMT-based affine equality abstract domain and Equality abstract
domain in Apron abstract domain library

From Table 3.1, we can see that there are not too much time differences between

using CVC4 and Z3. But when comparing to the equality abstract domain in Apron

abstract domain library, we can find huge time differences from our SMT-based affine

equality abstract domain, especially for computing P1
2, P2

2 and P1
1 te P2

4 which are the

computations of the join operators. First, we must admit that our implementation is not

optimal. When computing the assignment transfer functions in P1
1, P1

4 and P2
4, even we

are actually using the same methods as those in Apron, our domain is always slower than

Apron’s. Another reason for such differences is because the join operator in our domain

uses the normalization process which needs to call the SMT solvers several times. For

example, when computing P2
2, we have to call the SMT solvers about 10 times. Hence,

if we can arrange these calling into parallel, we can definitely reduce the time of our

domain. However, although this may reduce the time of computing the join operators

around 10 times lower, there still exists a huge difference between our domain and the

abstract domain in Apron, e.g., 0.03536s v.s. 0.00018s. Most of these time are used for the

SMT solvers to do the solving and generating the models. Hence, we can conclude that

the SMT solvers themselves are slower than Apron. To improve the performance of our

domain, it mainly depends on the improvement of the SMT solvers. With the evolution of
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the SMT solvers, we believe our SMT-based affine equality abstract domain will catch up

the classical convex abstract domains and will provide a different perspective in designing

the new abstract domains.
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Chapter 4

Linear Inequalities

In this chapter, we introduce another SMT-based logical abstract domain which involves

finite conjunctions of linear inequalities. A linear inequality is of form a1x1 + a2x2 + ...+

anxn ≤ b. We assume ai, b, xi, 1 ≤ i ≤ n are all integers.

4.1 Representation

Let X = {x1, x2, ..., xn} be the finite set of program variables. We use the finite conjunc-

tions of linear inequalities

ϕ =
∧

i∈[1,m]

ai1x1 + ai2x2 + · · · ainxn ≤ bi

to represent the relational properties of X . Strict inequalities will be over-approximated to

non-strict ones, e.g., a1x1 + ...+anxn < b will be rewritten to a1x1 + ...+anxn ≤ b. Linear

equalities will be rewritten to conjunctions of two linear inequalities, e.g., a1x1+...+anxn =

b will be rewritten to a1x1 + ...+ anxn ≤ b ∧ (−a1x1) + ...+ (−anxn) ≤ −b.

The set of all possible values of X by a finite conjunction of linear inequalities is given
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by the following concretization function:

Definition 4.1.1. The concretization of a finite conjunction of linear inequalities is

γi(ϕ) , {(v1, v2, ..., vn) | (v1, v2, ..., vn) |= ϕ}

We use false to represent the abstract infimum ⊥i and true to represent the abstract

supremum >i.

4.1.1 Simplification

Given any finite conjunction of linear inequalities, it is often the case that eliminating sev-

eral linear inequalities will not change its concretization. We call these linear inequalities

irrelevant. With SMT solvers, we can simplify any finite conjunction of linear inequalities

by eliminating irrelevant linear inequalities thanks to the following theorem:

Theorem 4.1.1. Let ϕ = `1 ∧ `2 ∧ ... ∧ `m where `i, i ∈ [1,m] is linear inequality, `j is

irrelevant if and only if ∀X : `1 ∧ ... ∧ `j−1 ∧ `j+1 ∧ ... ∧ `m ⇒ `j.

Proof. γi(`1 ∧ ... ∧ `j−1 ∧ `j+1 ∧ ... ∧ `m) = γi(ϕ)

⇐⇒ {(v1, v2, ..., vn) | (v1, v2, ..., vn) |= `1 ∧ ...∧ `j−1 ∧ `j+1 ∧ ...∧ `m} = {(v1, v2, ..., vn) |

(v1, v2, ..., vn) |= ϕ}
Hby definition of γi(ϕ) = {(v1, v2, ..., vn) | (v1, v2, ..., vn) |= ϕ}I

⇐⇒ {(v1, v2, ..., vn) | (v1, v2, ..., vn) |= `1 ∧ ... ∧ `j−1 ∧ `j+1 ∧ ... ∧ `m ⇔ ϕ}

Hsince {x | P (x)} = {y | Q(y)} iff P (x)⇔ Q[y/x]I

⇐⇒ ∀X : `1 ∧ ... ∧ `j−1 ∧ `j+1 ∧ ... ∧ `m ⇔ ϕ Hdefinition of |=I
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⇐⇒ ∀X : `1 ∧ ... ∧ `j−1 ∧ `j+1 ∧ ... ∧ `m ⇒ `j

Hφ⇒ φ ∧ `j ⇐⇒ φ⇒ `j where φ = `1 ∧ ... ∧ `j−1 ∧ `j+1 ∧ ... ∧ `mI

Checking ∀X : `1 ∧ ... ∧ `j−1 ∧ `j+1 ∧ ... ∧ `m ⇒ `j is simple when using SMT solvers.

We first rewrite it as:

∀X : `1 ∧ ... ∧ `j−1 ∧ `j+1 ∧ ... ∧ `m ⇒ `j

= ∀X : ¬(`1 ∧ ... ∧ `j−1 ∧ `j+1 ∧ ... ∧ `m) ∨ `j

= ∀X : ¬(`1 ∧ ... ∧ `j−1 ∧ `j+1 ∧ ... ∧ `m ∧ ¬`j)

= ¬∃X : `1 ∧ ... ∧ `j−1 ∧ `j+1 ∧ ... ∧ `m ∧ ¬`j

Then we check the satisfiability of `1∧ ...∧`j−1∧`j+1∧ ...∧`m∧¬`j. If SMT solvers return

“unsat”, which means `j is irrelevant, we can safely eliminate it from ϕ. Otherwise, we

can’t eliminate `j. Repeating this procedure on the remaining linear inequalities until no

more irrelevant ones, we then obtain a minimal finite conjunction of linear inequalities

(with no irrelevant inequalities) corresponding to the same concretization.

4.2 Binary Operations

We introduce several useful binary operators, such as inclusion testing, equality testing,

meet and join which are necessary to define an abstract domain.

4.2.1 Inclusion Testing

Comparing two finite conjunctions of linear inequalities using SMT solvers is similar to

compare two finite conjunctions of affine equalities. We have the following theorem:
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Theorem 4.2.1 (Inclusion test for finite conjunctions of linear inequalities). Given two

finite conjunctions of linear inequalities ϕ1 and ϕ2, we have

ϕ1 vi ϕ2 , ϕ1 |= ϕ2 = ∀X : ϕ1 ⇒ ϕ2.

Checking ∀X : ϕ1 ⇒ ϕ2 is simple. We rewrite it to ¬∃X : ϕ1 ∧ ¬ϕ2 and use SMT

solvers to check the satisfiability of ϕ1 ∧ ¬ϕ2. If SMT solvers return “unsat”, we have

ϕ1 vi ϕ2. Otherwise, we have ϕ1 6vi ϕ2.

4.2.2 Equality Testing

To test if two finite conjunctions of linear inequalities are equal, we have the following

theorem:

Theorem 4.2.2 (Equality testing for finite conjunctions of linear inequalities). Given

two finite conjunctions of linear inequalities ϕ1 and ϕ2, we have

ϕ1 = ϕ2 , ∀X : ϕ1 ⇔ ϕ2

Hence, we can use SMT solvers to check if ϕ1 ⇔ ϕ2 is valid directly. Instead we can

also check ∀X : ϕ1 ⇒ ϕ2 and ∀X : ϕ2 ⇒ ϕ1 since ∀X : ϕ1 ⇔ ϕ2 = ∀X : ϕ1 ⇒ ϕ2 ∧ ϕ2 ⇒

ϕ1 = ∀X : ϕ1 ⇒ ϕ2 ∧ ∀X : ϕ2 ⇒ ϕ1. In the later case, if SMT solvers return “unsat” for

both cases, then we have ϕ1 = ϕ2, otherwise, we have ϕ1 6= ϕ2.
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4.2.3 Meet

Given two finite conjunctions of linear inequalities, we have the following theorem for the

meet (or intersection):

Theorem 4.2.3 (Meet of finite conjunctions of linear inequalities). Given two finite

conjunctions of linear inequalities ϕ1 and ϕ2, we have

ϕ1 ui ϕ2 , ϕ1 ∧ ϕ2

Hence, we simplify ϕ1 ∧ϕ2 by eliminating irrelevant inequalities, let it be ϕ. We then

have ϕ1 ui ϕ2 = ϕ.

4.2.4 Join

Similar to the meet, we have the following theorem for the join (or union) of finite con-

junctions of linear inequalities:

Theorem 4.2.4 (Join of finite conjunctions of linear inequalities). Given two finite con-

junctions of linear inequalities ϕ1 and ϕ2, we have

ϕ1 ti ϕ2 , ϕ1 ∨ ϕ2

Unlike the meet, it is often the case that there may not exist a finite conjunction of

linear inequalities ϕ which satisfies ∀X : ϕ ⇔ ϕ1 ∨ ϕ2. Instead, we generate a finite

conjunction of linear inequalities ϕ′ which satisfies ∀X : ϕ1 ∨ ϕ2 ⇒ ϕ′.
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Let ϕ1 and ϕ2 have the form

ϕ1 =
∧
i∈[1,l] ai1x1 + ai2x2 + · · · ainxn ≤ bi

ϕ2 =
∧
j∈[1,m] cj1x1 + cj2x2 + · · · cjnxn ≤ dj

We apply convex hull on them and get

∃σ1 : ∃σ2 : ∃y11 : ∃y21 : ∃y12 : ∃y22 : ... : ∃y1n : ∃y2n :

x1 = y11 + y21 ∧ x2 = y12 + y22 ∧ ... ∧ xn = y1n + y2n

∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧ σ2 ≥ 0

∧
∧
i∈[1,l]

ai1y11 + ai2y12 + · · · ainy1n ≤ biσ1 (4.1)

∧
∧

j∈[1,m]

cj1y21 + cj2y22 + · · · cjny2n ≤ djσ2

Eliminating σ1, σ2, y11, y21, y12, y22, ..., y1n, y2n will yield a finite conjunction of linear equal-

ities ϕ which satisfies ∀X : ϕ1 ∨ ϕ2 ⇒ ϕ.

Like other operators in this chapter, SMT solvers can also be used here to solve

equation 4.1 thanks to the following famous theorem:

Theorem 4.2.5 (Farkas’ Lemma [Sch86]). Consider a system S of linear inequalities

ai1x1 + ai2x2 + · · · ainxn + bi ≤ 0, i ∈ [1,m] over a set of variables x1, x2, ..., xn. When

S is satisfiable, it entails a linear inequality c1x1 + c2x2 + · · · cnxn + d ≤ 0 iff there

exist non-negative integers λ0, λ1, ..., λm (integers for linear equalities) such that c1 =

Σm
i=1λiai1, ..., cn = Σm

i=1λiain, d = (Σm
i=1λibi) − λ0. Moreover, S is unsatisfiable iff the

inequality 1 ≤ 0 can be derived.

With Farkas’s lemma, the above problem has been transformed to a satisfiability

problem over linear integer arithmetic which can be easily solved by SMT solvers. We

first rewrite equation 4.1 as:
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∃σ1 : ∃σ2 : ∃y11 : ∃y21 : ∃y12 : ∃y22 : ... : ∃y1n : ∃y2n :

x1 − y11 − y21 = 0 ∧ x2 − y12 − y22 = 0 ∧ ... ∧ xn − y1n − y2n = 0

∧ σ1 + σ2 − 1 = 0 ∧ −σ1 ≤ 0 ∧ −σ2 ≤ 0

∧
∧
i∈[1,l]

ai1y11 + ai2y12 + · · · ainy1n − biσ1 ≤ 0

∧
∧

j∈[1,m]

cj1y21 + cj2y22 + · · · cjny2n − djσ2 ≤ 0

Applying Farkas’ lemma with the template linear inequality c1x1 + ...+ cnxn + d ≤ 0 (the

coefficients of σ1, σ2, y1i, y2i are all 0), we will get:

∃λ0 : ∃λ1 : ... : ∃λl+m+n+3 : λ0 ≥ 0 ∧ λn+2 ≥ 0 ∧ λn+3 ≥ 0 ∧ ...
∧ c1 = λ1 ∧ ... ∧ cn = λn ∧ d = −λ0 − λn+1

∧ −λ1 + a11λn+4 + ...+ al1λl+n+3 = 0 ∧ ...
∧ −λ1 + c11λm+n+4 + ...+ cm1λl+m+n+3 = 0 ∧ ...
∧ λn+1 − λn+2 − b1λn+4 − ...− blλl+n+3 = 0

∧ λn+1 − λn+3 − d1λm+n+4 − ...− dmλl+m+n+3 = 0

All satisfiable non-zero models for c1, c2, ..., cn, d will yield a conjunction of linear inequal-

ities ϕ which satisfies ∀X : ϕ1 ∨ ϕ2 ⇒ ϕ. Normally, there exists infinite models for

c1, c2, ..., cn, d. Hence, we will only yield a finite subset of all models from SMT solvers.

One possible way is to check the satisfiability of a finite set of possibilities of c1, c2, ..., cn, d

such as ∀i : ci > 0, ∀i : ci < 0, ∀i ∈ [1, k] : ci > 0 ∧ ∀i ∈ [k + 1, n] : ci < 0, etc.

Example 4.2.1. Let ϕ1 = x1 ≥ 0 ∧ x2 ≥ 0 ∧ x1 + x2 ≤ 1 and ϕ2 = x1 ≥ 1 ∧ x2 = 2. We

first create the convex hull of ϕ1 and ϕ2, let it be:

∃σ1 : ∃σ2 : ∃y11 : ∃y21 : ∃y12 : ∃y22 : x1 = y11 + y21 ∧ x2 = y12 + y22

∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧ σ2 ≥ 0

∧ y11 ≥ 0 ∧ y12 ≥ 0 ∧ y11 + y12 ≤ σ1

∧ y21 ≥ σ2 ∧ y22 = 2σ2
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which then has been rewritten as:

∃σ1 : ∃σ2 : ∃y11 : ∃y21 : ∃y12 : ∃y22 : x1 − y11 − y21 = 0 ∧ x2 − y12 − y22 = 0

∧ σ1 + σ2 − 1 = 0 ∧ −σ1 ≤ 0 ∧ −σ2 ≤ 0

∧ −y11 ≤ 0 ∧ −y12 ≤ 0 ∧ y11 + y12 − σ1 ≤ 0

∧ −y21 + σ2 ≤ 0 ∧ y22 − 2σ2 = 0

Applying Farkas’ lemma, we will get:

∃λ0 : ∃λ1 : ... : ∃λ10 : λ0 ≥ 0 ∧ λ4 ≥ 0 ∧ λ5 ≥ 0 ∧ λ6 ≥ 0

∧ λ7 ≥ 0 ∧ λ8 ≥ 0 ∧ λ9 ≥ 0

∧ c1 = λ1 ∧ c2 = λ2 ∧ d = −λ0 − λ3

∧ −λ1 − λ6 + λ8 = 0 ∧ −λ2 − λ7 + λ8 = 0

∧ −λ1 − λ9 = 0 ∧ −λ2 + λ10 = 0

∧ λ3 − λ4 − λ8 ∧ λ3 − λ5 + λ9 − 2λ10 = 0

By checking the satisfiability of above formula using Z3, we get the following models:

• c1 = −1, c2 = 0, d = 0;

• c1 = 0, c2 = 1, d = −2;

• c1 = 0, c2 = −1, d = 0;

• c1 = −1, c2 = 1, d = −1;

• c1 = −1, c2 = −1, d = 0.

which yields −x1 ≤ 0∧x2−2 ≤ 0∧−x2 ≤ 0∧−x1 +x2−1 ≤ 0∧−x1−x2 ≤ 0. Moreover,

we have ∀x1 : ∀x2 : −x1 ≤ 0 ∧ x2 − 2 ≤ 0 ∧−x2 ≤ 0∧−x1 + x2 − 1 ≤ 0⇒ −x1 − x2 ≤ 0.

Hence, we have ϕ1 ti ϕ2 = −x1 ≤ 0 ∧ x2 − 2 ≤ 0 ∧ −x2 ≤ 0 ∧ −x1 + x2 − 1 ≤ 0.

4.3 Transfer Functions

We now define transfer functions which are necessary in the program analysis.
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4.3.1 Assignment

Given a finite conjunction of linear inequalities ϕ and an assignment x` = E, we consider

the following three different kind of assignment transfer functions.

Assignment of a Non Linear Expression

If the expression E(X ) is not linear then we assume any value of Z can be assigned to x`

which means we will know nothing about the value of x` after the assignment. Therefore

we have to eliminate x` from ϕ.

One possible method is Fourier-Motzkin elimination method [Sch86]:

1. Rewrite ϕ into the form ϕN∧ϕL∧ϕG where ϕN is the conjunction of linear equalities

which do not contain x`, ϕL is the conjunction of linear equalities which can all be

rewritten into the form x` ≤ t1 and ϕG is the conjunction of linear equalities which

can all be rewritten into the form x` ≥ t2.

2. For each x` ≤ t1 in ϕL and each x` ≥ t2 in ϕG, we generate a new linear inequality

t2 ≤ t1. Let ϕL be a conjunction of m linear inequalities and ϕG be a conjunction

of n linear inequalities, we will have m × n new linear inequalities. Let ψ be the

conjunction of these m× n linear inequalities, return ϕN ∧ ψ.

3. If either ϕL or ϕG is empty, return ϕN .

Farkas’ lemma can be used to eliminating x` from ϕ as well by letting c` = 0 in the

template inequality.

Example 4.3.1. Let ϕ = x1−x2 ≤ 1∧x2 ≤ 1∧x1 +x2 ≤ 5. When using Fourier-Motzkin

elimination method, the new conjunction of linear inequalities after the assignment x2 =

x1 ∗ x2 is ϕ′ = x1 ≤ 2 ∧ x1 ≤ 3 = x1 ≤ 2.
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When using Farkas’ lemma, we have ∃λ0 : ∃λ1 : ∃λ2 : ∃λ3 : λ0 ≥ 0 ∧ λ1 ≥ 0 ∧ λ2 ≥

0 ∧ λ3 ≥ 0 ∧ c1 = λ1 + λ3 ∧ d = −λ0 − λ1 − λ2 − 5λ3 ∧ −λ1 + λ2 + λ3 = 0. By checking

the satisfiability using Z3, we get c1 = 2 ∧ d = −6 which yields ϕ′ = x1 ≤ 3.

Invertible Assignments

When the expression E(X ) in the assignment contains x`, it is called invertible assignment.

Let the assignment has the form

x` = a1x1 + ...+ a`x` + ...+ anxn + b, a` 6= 0

The fact a` 6= 0 means we can carry over the knowledge of the previous value of x` to the

new value of x`. We rewrite the assignment as:

x` = [xi − (a1x1 + ...+ a`−1x`−1 + a`+1x`+1 + ...+ anxn + b)]/a`

Let ϕ[x ← e] represent the replacement of x by e in ϕ, then the assignment transfer

function for invertible assignment can be defined as:

fJxi = a1x1 + ...+ aixi + ...+ anxn + bKϕ
= ϕ[xi ← [xi − (a1x1 + ...+ a`−1x`−1 + a`+1x`+1 + ...+ anxn + b)]/a`]

Example 4.3.2. let ϕ = x1−x2 ≤ 1∧x2 ≤ 1∧x1+x2 ≤ 5. The assignment x2 = x1+x2+1

is invertible so that we have x′2 = −x1 + x2 − 1. Then the new conjunction of linear

inequalities after the assignment is ϕ′ = 2x1 − x2 ≤ 0 ∧ −x1 + x2 ≤ 2 ∧ x2 ≤ 3.

Non-invertible Assignments

When the expression E(X ) in the assignment does not contain x`, it is called non-invertible

assignment. In this case, we cannot solve ϕ′ in terms of ϕ so that some information is

lost by the assignment. Therefore we should eliminate x` from ϕ. This is similar to the
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case of assignment of a non linear expression except that the assignment x` = E is added

to the result after elimination.

Example 4.3.3. let ϕ = x1− x2 ≤ 1∧ x2 ≤ 1∧ x1 + x2 ≤ 5. The assignment x2 = x1 + 1

is non-invertible. The elimination of x2 in ϕ will get x1 ≤ 2 by Fourier Motzkin method

or x1 ≤ 3 by Farkas’ lemma. So the new conjunction of linear inequalities after the

assignment is ϕ′ = x1 ≤ 2 ∧ x1 − x2 + 1 = 0 or ϕ′ = x1 ≤ 3 ∧ x1 − x2 + 1 = 0.

4.3.2 Test

Given a conjunction of linear inequalities ϕ and a linear test φ, if the test is not in the

form of linear equality, we need first reduce it to the form of linear inequality. Consider a

generic test E1 ./ E2. A first step is to group the expressions on the left side as E1−E2 ./ 0.

We then do one of the following if ./ is not ≤:

• If ./ is =, the test can be rewritten as:

E1 − E2 ≤ 0 ∧ E2 − E1 ≤ 0

• If ./ is <, then we can use the test:

E1 − E2 + 1 ≤ 0

• If ./ is 6=, we calculate the join of two inequalities:

E1 − E2 + 1 ≤ 0 ti E2 − E1 + 1 ≤ 0

When we have done the reduction of the test, let it be ψ. We then simply calculate

ϕ′t = ϕ ui ψ for the true branch and ϕ′f = ϕ ui ¬ψ for the false branch.
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Example 4.3.4. let ϕ = x1 − x2 ≤ 1 ∧ x2 ≤ 1 ∧ x1 + x2 ≤ 5. A test x1 ≥ 1− x2 is first

rewritten to −x1 − x2 + 1 ≤ 0. Then we have ϕ′t = x1 − x2 ≤ 1 ∧ x2 ≤ 1 ∧ x1 + x2 ≤

5 ∧ −x1 − x2 ≤ −1 and ϕ′f = x1 − x2 ≤ 1 ∧ x1 + x2 ≤ 1.

4.4 Widening

Widening is a generic concept that can be used to guarantee convergence of the fixed-point

computations in the static analysis. We borrow the standard widening [Hal79] which is

universally used in the polyhedra abstract domains and adapt it to the finite conjunctions

of linear inequalities.

Definition 4.4.1. Given two finite conjunctions of linear inequalities ϕ1 = l1∧ l2∧ ...∧ lm
and ϕ2 = j1∧ j2∧ ...∧ jn which satisfy ϕ1 vi ϕ2 where li, jk, i ∈ [1,m], k ∈ [1, n] are linear

inequalities. The widening of ϕ1, ϕ2 is:

ϕ1 Oi ϕ2 , ψ1 ∧ ψ2

where

• ψ1 is a conjunction of linear inequalities where each linear inequality l is in ϕ1 which

satisfies ∀X : ϕ2 ⇒ l;

• ψ2 is a conjunction of linear inequalities where each linear inequality j is in ϕ2 but

not in ϕ1 while there exists a linear inequality l in ϕ1 which we can replace l by j in

ϕ1 without changing the concretization of ϕ1. Let ϕ \ l represent removing l from

ϕ, then it can be written as ∀X : (ϕ1 \ l) ∧ j ⇔ ϕ1.
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Both ∀X : ϕ2 ⇒ l and ∀X : (ϕ1 \ l) ∧ j ⇔ ϕ1 can be easily checked by SMT solvers

(See 4.2.1 and 4.2.2). Hence we can use SMT solvers to calculate the widening of two

finite conjunctions of linear inequalities.

4.5 Example

Let’s consider the following program:

[P0 ] x = 2 ; y = z + 5 ;

[P1 ] while [P2 ] ( . . . ) {

[P3 ] x = x + 1 ; y = y + 3 ;

[P4 ] }

The test is non linear hence it is not taken into account. Initially, P0
0 is true and

P0
1, P0

2, P0
3, P0

4 are false. Then each assertion is propagated through the analysis of the

program:

P1
0 = true

P1
1 = fJy = z + 5K(fJx = 2KP1

0) = x = 2 ∧ y - z = 5

P1
2 = P1

1 ti P1
4 = P1

1 ∨ false = P1
1

P1
3 = P1

2

P1
4 = fJy = y + 3K(fJx = x + 1KP1

3) = x = 3 ∧ y - z = 8

The assertion P0 and P1 will not be changed, hence we continue with P2:

P2
2 = P1

1 ti P1
4 = 3x - y + z = 1 ∧ 2 ≤ x ≤ 3

P2
3 = P2

2

P2
4 = fJy = y + 3K(fJx = x + 1KP2

3) = 3x - y + z = 1 ∧ 3 ≤ x ≤ 4

When the loop body has been analyzed, we apply widening operation at the loop

junction P2:
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P3
2 = P2

2 Oi (P1
1 ti P2

4) = 3x - y + z = 1 ∧ 2 ≤ x ≤ 3 Oi (x = 2 ∧ y - z = 5 ti 3x - y

+ z = 1 ∧ 3 ≤ x ≤ 4) = 3x - y + z = 1 ∧ 2 ≤ x ≤ 3 Oi 3x - y + z = 1 ∧ 2 ≤ x ≤ 4 = 3x

- y + z = 1 ∧ x ≥ 2

P3
3 = P3

2

P3
4 = fJy = y + 3K(fJx = x + 1KP3

3) = 3x - y + z = 1 ∧ x ≥ 3

We have P1
1 ti P3

4 = 3x - y + z = 1 ∧ x ≥ 2 is equal to P3
2 so that the program analysis

has converged.

The final result is:

[P0: true] x = 2 ; y = z + 5 ;

[P1: x = 2 ∧ y - z = 5] whi l e [P2: 3x - y + z = 1 ∧ x ≥ 2] ( . . . ) {

[P3: 3x - y + z = 1 ∧ x ≥ 2] x = x + 1 ; y = y + 3 ;

[P4: 3x - y + z = 1 ∧ x ≥ 3] }

4.6 Implementation

We have implemented our SMT-Based affine equality abstract domain using OCaml. It

accepts finite conjunctions of linear inequalities. We translate formulas and SMT queries

into SMT-LIB v2 scripts hence all SMT solvers which accept SMT-LIB v2 script as their

input can be used in our implementation.

We have evaluated our implementation using different SMT solvers, such as cvc4 and

z3. We have also compared our implementation with the same operators in Apron library.

Table 4.1 shows the differences between our implementation using cvc4, z3 and Apron

when evaluating the program in Sect. 4.5. Each column in the table shows the time usage

for calculating the assertion (normally involving one abstract operation) in Sect. 4.5.

Similar to Table 3.1, Table 4.1 shows that there are not too much time differences
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Z3 CVC4 Apron

P1
1 0.000428s 0.000366s 0.000091s

P1
2 = P1

1 ∨ false 0.000001s 0.000001s 0.000139s
P1

4 0.000228s 0.000183s 0.000073s
P2

2 = P1
1 ti P1

4 1.561615s 1.722872s 0.000191s
P2

4 0.000346s 0.000320s 0.000107s
P3

2 = P2
2 Oi (P1

1 ti P2
4) 2.280052s 2.414390s 0.000438s

P3
4 0.000241s 0.000220s 0.000071s

P1
1 ti P3

4 1.032653s 1.372473s 0.000181s

Table 4.1: Comparing SMT-based linear inequality abstract domain and Polka abstract
domain in Apron abstract domain library

between using CVC4 and Z3. But when comparing to the polka abstract domain in

Apron abstract domain library, SMT-based linear inequality abstract domain is much

slower, especially for computing the join and widening operators, such as P2
2 and P3

2. The

similar reasons in Sect. 3.2.5 can be applied here. First, our implementation is not optimal.

Second, the join and widening operators need to call the SMT solvers a lot of times. For

example, to compute the join in P2
2, we need to call the SMT solvers about 12 times.

And to compute the join and widening in P3
2, we need to call the SMT solvers about 20

times. Moreover, when compare each time used by the SMT solvers between SMT-based

affine equality abstract domain and SMT-based linear inequality abstract domain, we can

find that the linear inequality abstract domain is slower than the affine equality abstract

domain. This implies that the SMT solvers are normally slower in larger formulas. Hence,

to improve the performance of our SMT-based linear inequality abstract domain, we may

use the same methods in Sect. 3.2.5, such as calling the SMT solvers parallel in the same

time. Moreover, the improvement of our SMT-based linear inequality abstract domain

should also rely on the improvement of the SMT solvers.

Besides, our SMT-based linear inequality abstract domain often generates less precise

results than polka abstract domain in Apron abstract domain library. This is because

we only test a few set of possible coefficients for the template inequality hence will not
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always yield the optimal results. See Table 4.2 for a simple example of computing the

join of x− 2y ≥ 6 ∧ x+ 2y ≤ 10 ∧ y ≥ 0 and x− 2y ≥ 2 ∧ x+ 2y ≤ 10 ∧ y ≥ 1.

Result Time

Z3 x− 2y ≥ 2 ∧ x+ y ≥ 5 ∧ x+ 2y ≤ 10 ∧ y >= 0 1.188986s
CVC4 x− 2y ≥ 2 ∧ x+ y ≥ 5 ∧ x+ 2y ≤ 10 ∧ y >= 0 1.799660s
Apron x− 2y ≥ 2 ∧ x+ 2y ≥ 6 ∧ x+ 2y ≤ 10 ∧ y >= 0 0.000237s

Table 4.2: Comparing the join operator in SMT-based linear inequality abstract domain
and Polka abstract domain in Apron abstract domain library

4.7 Related Work

To the best of our knowledge, these are the first logical abstract domains which rely on

SMT solvers for the computation of transformations and other logical operations. How-

ever, the idea of logical abstract interpretation and using SMT solver or other theorem

provers to build abstract domains is definitely not new. In [CC92a], The extension of

abstract interpretation framework to logic programs has been investigated. The seman-

tics foundations to abstract domains consisting in first order logic formulas in a theory

were first given in [CCM10a]. Moreover, in [CCM11], the equivalence between reduced

product of abstract domains and the combination of decision procedures has been proved,

hence opens up possibilities for interesting synergies between SMT solvers and program

analyzers. There also exists several works in computing abstract logical operators based

on predicate abstraction, such as in [YRS04, TR12]. All of these works relied on finite

domains while ours worked on the infinite domain.

On the other hand, there also exist some static analysis using the SMT solvers and

Farkas’ lemma. In [CSS03], Farkas’ lemma has been used to generate linear invariants. In

[BHMR07], Farkas’ lemma has been used for the synthesis of invariants expressed in the

combined theory of linear arithmetic and uninterpreted function symbols. In [HMM12],
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a path sensitive static analyzer has been introduced where SMT solvers have been used

for finding the feasible paths during the analysis in order to improve the precision. In

[LRR13], SMT solvers and Farkas’ lemma have been used to solve constraints in order to

generate loop invariants over arrays.
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Part III

Binary Tree-based Abstract Domains
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Chapter 5

Branch Condition Path Abstraction

In this chapter, we introduce branch condition graphs GbJCK which can be viewed as

further abstractions of the control flow graphs GJCK of command C (see Sect. 1.2.5). We

then define the branch condition path semantics GbJGbJCKK as an abstract interpretation

αb of the action path semantics GaJCK of the control flow graph GJCK of command C.

5.1 Branch Condition Graph

A branch condition is the test B occurring in a command “if (B) {C1} else {C2}” while a

loop condition is the test B occurring in a command “while (B) {C}”. A branch condition

graph (BCG) of a program is a directed acyclic graph, in which each node corresponds to

a branch condition occurring in the program and has two outgoing edges representing its

true and false branches. An edge from node A to node B means that the branch condition

corresponding to node B occurs after the branch condition corresponding to node A in

the program and there are no other branch conditions occurring between them. A trace

from the entry point to the exit point of a BCG is called branch condition path. We use

B to denote the true branch while ¬B denotes the false branch.
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Example 5.1.1. Consider the following program fragment and its branch condition graph

on the left:

while ( i <= m) {

i f ( x < y ) x++;

else y++;

i f (p > 0)

i f ( q > 0) r = p + q ;

else r = p − q ;

else

i f ( q > 0) r = q − p ;

else r = −(p + q ) ;

i ++;

}

Chapter 5

Branch Condition Path
Abstraction

In this chapter, we introduce branch condition graphs GbJCK which is ab-
stractions of the control flow graphs GJCK of command C (see 1.2.5). We
then define the branch condition path semantics GbJCK of such branch con-
dition graphs as an abstract interpretation ↵b of the action path semantics
GaJCK of the control flow graph GJCK of command C.

5.1 Branch Condition Graph

A branch condition is the test B occurred in the command ”if (B) {C1} else
{C2}” while a loop condition is the test B occurred in the command ”while
(B) {C}”. A branch condition graph (BCG) of a program is a directed graph,
in which each node is corresponding to a branch condition occurred in the
program and has two outgoing edges representing its true and false branches.
An edge from node A to node B means the branch condition corresponding
to node B occurs after branch condition corresponding to node A in the
program and there are no other branch conditions occurred between them.
A BCG always has a single point of entry denoted entry and a single point
of exit denoted exit.

Example 5.1.1. Consider the following program fragment:

while ( i <= m) {
i f ( x < y ) x++;

45

else y++;
i f (p > 0)

i f ( q > 0} r = p + q ;
else r = p � q ;

else
i f ( q > 0) r = q � p ;
else r = �(p + q ) ;

i++;
}

Its BCG will be:

The branch condition graph GbJCK, like the CFG, can be defined in the
structural induction on the syntax of the command C:

GbJskipK ,

GbJx := EK ,

GbJC1; C2K , let GbJC1K = and

GbJC2K = in

GbJif (B) {C1} else {C2}K , let GbJC1K = and

GbJC2K = in

GbJwhile (B) {C}K , let GbJCK = in

Note that the concatenation of and is still .

46

else y++;
i f (p > 0)

i f ( q > 0} r = p + q ;
else r = p � q ;

else
i f ( q > 0) r = q � p ;
else r = �(p + q ) ;

i++;
}

Its BCG will be:

The branch condition graph GbJCK, like the CFG, can be defined in the
structural induction on the syntax of the command C:

GbJskipK ,

GbJx := EK ,

GbJC1; C2K , let GbJC1K = and

GbJC2K = in

GbJif (B) {C1} else {C2}K , let GbJC1K = and

GbJC2K = in

GbJwhile (B) {C}K , let GbJCK = in

Note that the concatenation of and is still .

46

else y++;
i f (p > 0)

i f ( q > 0} r = p + q ;
else r = p � q ;

else
i f ( q > 0) r = q � p ;
else r = �(p + q ) ;

i++;
}

Its BCG will be:

The branch condition graph GbJCK, like the CFG, can be defined in the
structural induction on the syntax of the command C:

GbJskipK ,

GbJx := EK ,

GbJC1; C2K , let GbJC1K = and

GbJC2K = in

GbJif (B) {C1} else {C2}K , let GbJC1K = and

GbJC2K = in

GbJwhile (B) {C}K , let GbJCK = in

Note that the concatenation of and is still .

46

We can generate its branch condition paths as below:

(x < y) · (p > 0) · (q > 0),

(x < y) · (p > 0) · ¬(q > 0),

(x < y) · ¬(p > 0) · (q > 0),

(x < y) · ¬(p > 0) · ¬(q > 0),

¬(x < y) · (p > 0) · (q > 0),

¬(x < y) · (p > 0) · ¬(q > 0),

¬(x < y) · ¬(p > 0) · (q > 0),

¬(x < y) · ¬(p > 0) · ¬(q > 0).
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The branch condition graph GbJCK, like the CFG, can be defined in the structural

induction on the syntax of the command C:

GbJskipK ,
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5.2 Branch Condition Path Abstraction

We abstract finite action paths A1 ·A2 · ... ·An, n ≥ 0 by the finite branch condition path

Ab
1 · Ab

2 · ... · Ab
m,m ≤ n where Ab

1 = Ap,A
b
2 = Aq, ...,A

b
m = Ar, 1 ≤ p < q < ... < r ≤ n

are distinct branch conditions. The branch condition path is empty ε when there are

no branch conditions occurring in the action path. We say that two branch conditions
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Ab
1,A

b
2 are equal if and only if Ab

1 and Ab
2 occur at the same program point. Moreover,

each branch condition in the branch condition path must be the last occurrence in the

action path being abstracted, that is, if Ab
i is a branch condition in the branch condition

path Ab
1 · Ab

2 · ... · Ab
m abstracting the action path A1 · A2 · ... · An where Ab

i = Aj, then

∀k : j < k ≤ n,Ab
i 6= Ak. Note that we only consider finite action paths hence safety

properties.

5.2.1 Condition Path Abstraction

An action can be either a skip or an assignment or a condition. The condition path

abstraction collects the set of finite sequences of conditions performed along the action

path π and ignores any skip and assignment in π.

Given an action path π, αc(π) collects the sequence of conditions in the action path,

which may be empty ε when there are no conditions occurred in the action path, by the

following induction rules:

αc(skip) , ε αc(B) , B

αc(x = E) , ε αc(¬B) , ¬B

αc(π1 · π2) , αc(π1) · αc(π2)

Note that ε · πc = πc · ε = πc.

Let AC be the set of conditions and (AC)∗ be the set of finite, possible empty, condition

paths. Given a set of action paths A, αc(A) collects the sequences of conditions in the

action paths A:

αc ∈ ℘(A∗) 7→ ℘((AC)∗)

αc(A) , {αc(π) | π ∈ A} (5.1)

It’s easy to see that αc preserves arbitrary unions and intersections hence is ⊆-
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increasing. By defining γc(C) , {π | αc(π) ∈ C}, we will have:

Corollary 5.2.1.

(℘(A∗),⊆) −−−→←−−−
αc

γc

(℘((AC)∗),⊆) (5.2)

Proof. By Theorem 1.2.1 where h is αc.

Furthermore, we can construct a concretization γc in an inductive manner. Given a

condition path πc, γ
c(πc) collects all possible action paths whose condition path abstrac-

tions are πc using following induction rules:

γc(Ac) , (A \ AC)∗ · Ac · (A \ AC)∗

γc(πc1 · πc2) , {a · b | a ∈ γc(πc1) ∧ b ∈ γc(πc2)}

Then given a set of condition paths C, γc(C) collects all possible action paths:

γc ∈ ℘((AC)∗) 7→ ℘(A∗)

γc(C) ,
⋃
{γc(πc) | πc ∈ C} (5.3)

5.2.2 Loop Condition Elimination

Given a finite condition path πc, α
d(πc) collects the finite sequence of branch conditions

(with duplications) by eliminating all loop conditions in πc. This sequence may be empty

ε when there are no branch conditions occurred in πc. Let AB be the set of branch

conditions and AL be the set of loop conditions, thus AC , AB ∪ AL and AB ∩ AL = ∅.

Note that we distinguish those conditions by the program points where they occur, not

by themselves.

For all Ab ∈ AB and Al ∈ AL, we have

αd(Ab) , Ab and αd(Ab) , ε.
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Then given two condition paths πc1 and πc2, we have

αd(πc1 · πc2) , αd(πc1) · αd(πc2).

Note that ε · πd = πd · ε = πd.

Let (AB)∗ be the set of finite, possible empty, sequences of branch conditions. Given

a set of condition paths C, αd(C) collects the sequences of branch conditions (with dupli-

cations) from the condition paths C:

αd ∈ ℘((AC)∗) 7→ ℘((AB)∗)

αd(C) , {αd(πc) | πc ∈ C} (5.4)

It follows that αd preserves both arbitrary unions and intersections, hence it is ⊆-

increasing. By defining γd(D) , {πc | αd(πc) ∈ D}, we will have:

Corollary 5.2.2.

(℘((AC)∗),⊆) −−−→←−−−
αd

γd

(℘((AB)∗),⊆) (5.5)

Proof. By Theorem 1.2.1 where h is αd.

Furthermore, we can construct a concretization γd in an inductive manner:

γd(Ab) , (AL)∗ · Ab · (AL)∗

γd(πd1
· πd2

) , {a · b | a ∈ γd(πd1
) ∧ b ∈ γd(πd2

)}

Then given a set of sequences of branch conditions (with duplications) D, γd(D)

collects all possible condition paths:

γd ∈ ℘((AB)∗) 7→ ℘((AC)∗)

γd(D) ,
⋃
{γd(πd) | πd ∈ D} (5.6)
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5.2.3 Duplication Elimination

The branch condition paths are the sequences of branch conditions without duplications.

In this section, we introduce the abstraction function that eliminates duplications in any

sequence of branch conditions.

We first define two functions that are used in the abstraction function α`. Given a

sequence seq and an element d of seq, erase(seq, d) eliminates all elements in seq that is

equal to d:

erase(d1d2d3...dn, d) , if d1 == d then erase(d2d3...dn, d)

else d1 · erase(d2d3...dn, d)

Note that erase(seq, d) may return empty ε. Then fold(seq) eliminates the duplications

of each element in seq starting from the last element:

fold(d1d2...dn) , if d1d2...dn == ε then ε

else fold(erase(d1d2...dn−1, dn)) · dn

Hence, given a sequence of branch conditions πd, α
`(πd) = fold(πd) eliminates dupli-

cations of each branch condition while keeping its last occurrence in πd.

Let D be the set of sequences of branch conditions that have duplications. Given a set

of sequences of branch conditions D, α`(D) collects branch condition paths ( sequences

of branch conditions without duplications):

α` ∈ ℘((AB)∗) 7→ ℘((AB)∗ \ D)

α`(D) , {α`(πd) | πd ∈ D} (5.7)

It appears that α` preserves both arbitrary unions and intersections, hence is ⊆-

increasing. By defining γ`(B) , {πd | α`(πd) ∈ B}, we will have:
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Corollary 5.2.3.

(℘((AB)∗),⊆) −−−→←−−−
α`

γ`

(℘((AB)∗ \ D),⊆) (5.8)

Proof. By Theorem 1.2.1 where h is α`.

Furthermore, we can define a function unfold(seq) that reverse fold(seq):

unfold(d1d2...dn) , {d1, d2, ..., dn}∗ · d1 · {d2, ..., dn}∗ · d2 · ... · {dn}∗ · dn

Let γ`(πb) = unfold(πb). Then, given a set of branch condition paths B, we can

construct γ`(B) as:

γ` ∈ ℘((AB)∗ \ D) 7→ ℘((AB)∗)

γ`(B) ,
⋃
{γ`(πb) | πb ∈ B} (5.9)

5.2.4 Branch Condition Path Abstraction

The branch condition path abstraction αbJAK collects the branch condition paths, which

is the set of sequences of branch conditions with no duplications along the action paths

in A. It can be defined by the composition of αc, αd, α` defined in the previous sections

as:

αb ∈ ℘(A∗) 7→ ℘((AB)∗ \ D)

αb(A) , α` ◦ αd ◦ αc(A) (5.10)

Respectively, the concretization function γb(B) can be defined by the composition of

γc, γd, γ` as:

γb ∈ ℘((AB)∗ \ D) 7→ ℘(A∗)

γb(B) , γc ◦ γd ◦ γ`(B) (5.11)
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It follows that αb and γb form a Galois connection:

(℘(A∗),⊆) −−−→←−−−
αb

γb

(℘((AB)∗ \ D),⊆) (5.12)

Proof. The composition of Galois connections is still a Galois connection. For all A ∈

℘(A∗) and B ∈ ℘((AB)∗ \ D),

αb(A) ⊆ B

⇐⇒ α` ◦ αd ◦ αc(A) ⊆ B Hdefinition of αbI

⇐⇒ αd ◦ αc(A) ⊆ γ`(B) Hby (℘((AB)∗),⊆) −−−→←−−−
α`

γ`

(℘((AB)∗ \ D),⊆)I

⇐⇒ αc(A) ⊆ γd ◦ γ`(B) Hby (℘((AC)∗),⊆) −−−→←−−−
αd

γd

(℘((AB)∗),⊆)I

⇐⇒ A ⊆ γc ◦ γd ◦ γ`(B) Hby (℘(A∗),⊆) −−−→←−−−
αc

γc

(℘((AC)∗),⊆)I

⇐⇒ A ⊆ γb(B) Hdefinition of γbI
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Chapter 6

Binary Decision Tree Abstract

Domain Functor

In abstract interpretation, normally the more disjunctions we allow to encode the program

properties, the more precise result we will often have; in the meantime, the combinatorial

explosion of disjunctions will also cause much less efficiency. In this chapter, we introduce

the binary decision tree abstract domain functor to represent and manipulate invariants

in the form of binary decision trees. The abstract property will be represented by the

disjunction of leaves which are separated by the values of binary decisions, i.e., boolean

tests, which will be organized in the decision nodes of the binary decision trees. This

binary decision tree abstract domain functor may provide a flexible way of adjusting the

cost/precision ratio in path-dependent static analysis.

6.1 Introduction

Let us first consider the following example which is modified from the one in [GR07]:

Example 6.1.1. A motivating example.
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x = 0 ; y = 0 ;

1while ( y >= 0) {

i f ( x <= 50) y++;

else y−−;

x++;

}

A Binary Decision Tree
Abstract Domain Functor

Junjie Chen and Patrick Cousot

New York University

Abstract. We present an abstract domain functor whose elements are
binary decision trees. It is parameterized by decision nodes which are a
set of boolean tests appearing in the programs and by a numerical or
symbolic abstract domain whose elements are the leaves. We first define
the branch condition path abstraction which forms the decision nodes of
the binary decision trees. It also provides a new prospective on partition-
ing the trace semantics of programs as well as separating properties in the
leaves. We then discuss our binary decision tree abstract domain functor
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strongest one.
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true
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<
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di↵erent
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binary

decision
tree
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be
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structural

We know that the strongest invariant at program point 1 is (0 <= x <= 50 ∧ x = y) ∨

(51 <= x <= 103∧x+y−102 = 0). When we use the APRON numerical abstract domain

library [JM09] to generate the invariant at program point 1, we get x >= 0 ∧ y >= −1

with the box (interval) abstract domain and y >= −1∧x−y >= 0∧x+52y >= 0 with the

polka (convex polyhedra) abstract domain. Both analyses are very imprecise compared

to the strongest one. This is because the true and false branches of “if (x <= 50)” have

different behaviors and those abstract domains do not consider them separately.

Hence, we propose the binary decision tree abstract domain functor that takes those

branches into consideration.

Given the trace semantics StJPK of a program P, αb ◦ αa(StJPK) abstracts StJPK into

a finite set B of branch condition paths where |B| = N . Then for each πb ∈ B, we have

γa ◦ γb(πb) ∩ StJPK ⊆ StJPK and
⋃
i≤N(γa ◦ γb(πbi) ∩ StJPK) = StJPK. Moreover, for all

pairs (πb1, πb2) ∈ B×B, we have (γa ◦γb(πb1)∩StJPK)∩ (γa ◦γb(πb2)∩StJPK) = ∅. Hence,

the set B of branch condition paths defines a partitioning of the trace semantics StJPK
of a program P. If we can generate the invariants for each program point only using the

information of one partition of the trace semantics, then for each program point, we will

get a finite set of invariants. It follows that the disjunction of such set of invariants forms

the invariant of that program point. Hence, we encapsulate the set of branch condition
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paths into the decision nodes of a binary decision tree where each top-down path (without

leaf) of the binary decision tree represents a branch condition path, and store in each leaf

nodes the invariant generated from the information of the subset of the trace semantics

defined by the corresponding branch condition path.

We denote the binary decision tree in the parenthesized form

J B1 : J B2 : LP1 M, LP2 M K, J B3 : LP3 M, LP4 M K K

where B1,B2,B3 are decisions (branch conditions) and P1, P2, P3, P4 are invariants. It

encodes the fact that either if B1 and B2 are both true then P1 holds, or if B1 is true and

B2 is false then P2 holds, or if B1 is false and B3 is true then P3 holds, or if B1 and B3 are

both false then P4 holds. The parenthesized representation of binary trees uses L ... M for

leaves and J B : tl, tr K for the decision B and tl (resp. tr) represents its left subtree (resp.

right subtree). In first order logic, the above binary decision tree would be be written as

(B1 ∧ B2 ∧ P1) ∨ (B1 ∧ ¬B2 ∧ P2) ∨ (¬B1 ∧ B3 ∧ P3) ∨ (¬B1 ∧ ¬B3 ∧ P4) with an implicit

universal quantification over free variables.

Let D(B) denote the set of all branch conditions appearing in B. Let β = B or ¬B and

B\β denote the removal of β and all branch conditions appearing before in each branch

condition path in B, then we define the binary decision tree as:

Definition 6.1.1 (Binary Decision Tree). A binary decision tree t ∈ T(B,D`) over the

set B of branch condition paths (with concretization γa ◦γb) and the leaf abstract domain

D` (with concretization γ`) is either L p M with p is an element of D` and B is empty or

J B : tt, tf K where B ∈ D(B) is the first element of all branch condition paths πb ∈ B and

(tt, tf ) are the left and right subtree of t represent its true and false branch such that

tt, tf ∈ T(B\β,D`).
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Example 6.1.2. In Example 6.1.1, the binary decision tree at program point 1 will be

t = Jx ≤ 50 : L 0 ≤ x ≤ 50 ∧ x = y M, L 51 ≤ x ≤ 103 ∧ x + y− 102 = 0 MK.

From theorem 6.1.1, we can also define the binary decision tree in the fixpoint form:

Theorem 6.1.1. The following least fixpoint form also defines the binary decision trees

T(B,D`) = lfp⊆F (B,D`)

where

F (B,D`)X , { L p M | p ∈ D` }

∪ { J B : tt, tf K | B ∈ D(B) ∧ tt, tf ∈ X∧

X ⊆ T(B\β,D`) }

Proof. The proof is straight forward from Definition 6.1.1.

Let ρ be the concrete environment assigning concrete values ρ(x) to variables x and

JeKρ for the concrete value of the expression e in the concrete environment ρ, we can then

define the concretization of the binary decision tree as

Definition 6.1.2. The concretization of a binary decision tree γt is either

γt(L p M) , γ`(p)

when the binary decision tree can be reduced to a leaf or

γt(J B : tt, tf K) , {ρ | JBKρ = true =⇒ ρ ∈ γt(tt) ∧

JBKρ = false =⇒ ρ ∈ γt(tf )}

when the binary decision tree is rooted at a decision node.
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Furthermore, we would like γt(tt) 6= γt(tf ) in any circumstances. So we revise the

definition of binary decision tree as below:

Definition 6.1.3. The revised Binary Decision Tree t ∈ T(B,D`) with its concretization

γt are

〈t, γt(t)〉 , {〈L p M, γ`(p)〉 | p ∈ D`}

∨ {〈J B : tt, tf K, ρ〉 | B ∈ D(B)

∧ tt, tf ∈ T(B\β,D`)

∧ JBKρ = true =⇒ ρ ∈ γt(tt)

∧ JBKρ = false =⇒ ρ ∈ γt(tf )

∧ γt(tt) 6= γt(tf ))}

Given t1, t2 ∈ T(B,D`), we say that t1 ≡t t2 if and only if γt(t1) = γt(t2). Let

T(B,D`)\≡t be the quotient by the equivalence relation ≡t. The binary decision tree

abstract domain functor is defined as:

Definition 6.1.4. A binary decision tree abstract domain functor is a tuple

〈T(B,D`)\≡t ,vt,⊥t,>t,tt,ut,Ot,Mt〉

on two parameters, a set B of branch condition paths and a leaf abstract domain D`

where

P,Q, ... ∈ T(B,D`)\≡t abstract properties

vt ∈ T× T→ {false, true} abstract partial order

⊥t,>t ∈ T(B,D`) infimum, supremum

(∀P ∈ T : ⊥t vt P vt >t) (6.1)

tt,ut ∈ T× T→ T abstract join, meet

Ot,Mt ∈ T× T→ T abstract widening, narrowing
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The set B of branch condition paths is built by the syntactic analysis from the control

flow of the program. Hence the structure of the binary decision tree is finite and does

not change during the data flow analysis. The static analyzer designer should allow to

change the maximal length of branch condition paths in B so as to be able to adjust the

cost/precision ratio of the analysis. The leaf abstract domain D` for the leaves could be

any numerical or symbolic abstract domains such as intervals, octagons, polyhedra, array

domains, etc., or the logical abstract domains we defined in Chapter 3 and Chapter 4, or

even the reduced product of two or more of those abstract domains. A list of available

abstract domains that can be used at the leaves would be another option of the static

analyzer designer. We can use any of these options to build a particular instance of the

binary decision tree abstract functor. The advantage of this modular approach is that we

can change those options to adjust the cost/precision ratio without having to change the

structure of the analyzer.

6.2 Binary Operations

In this section, we introduce several abstract binary operations, such as abstract partial

order, join and meet, for the binary decision tree abstract domain functor.

6.2.1 Inclusion and Equality

Given two binary decision trees t1, t2 ∈ T(B,D`) \ {⊥t,>t}, we can check t1 vt t2 by

comparing each pair (`1, `2) of leaves in (t1, t2) where `1 and `2 are defined by the same

branch condition path πb ∈ B. If each pair (`1, `2) satisfies `1 v` `2, we can conclude that

t1 vt t2; otherwise, we have t1 6vt t2.

102



\∗ To check whether t1 vt t2 . ∗\

include(t1 , t2 : binary decision trees )

{

i f (t1 == Ll1M && t2 == Ll2M) then return t1 v` t2 ;

let t1 = JB: t1l , t1rK and t2 = JB: t2l , t2rK ;

return include(t1l , t2l ) & include(t1r , t2r ) ;

}

Example 6.2.1. We have Jx ≤ 50 : L x = 0∧y = 0 M, L⊥` MK v Jx ≤ 50 : L 0 ≤ x ≤ 1∧x =

y M, L⊥` MK and Jx ≤ 50 : L x = 0 ∧ y = 0 M, L⊥` MK 6v Jx ≤ 50 : L x = 1 ∧ y = 1 M, L⊥` MK.

The equality of t1 and t2 can be tested by the fact t1 =t t2 , t1 vt t2 ∧ t2 vt t1. When

the leaf abstract domain D` has =`, we can also check the equality for each pair (`1, `2) of

leaves in (t1, t2) where `1 and `2 are defined by the same branch condition path πb ∈ B.

6.2.2 Meet and Join

Given two binary decision trees t1, t2 ∈ T(B,D`), the meet t = t1 ut t2 can be computed

using the meet u` in the leaf abstract domain D`. Let `1, `2 be leaves of t1, t2 respectively,

where the same branch condition path πb ∈ B leads to `1 and `2, then ` = `1 u` `2 is

the leaf of t led by the same branch condition path πb ∈ B. After computing each leaf

` = `1 u` `2 in t, we then get t = t1 ut t2.
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meet(t1 , t2 : binary decision trees )

{

i f (t1 == Ll1M && t2 == Ll2M) then return t1 u` t2 ;

let t1 = JB: t1l , t1rK and t2 = JB: t2l , t2rK ;

return JB: meet( t1l , t2l ) , meet(t1r , t2r)K ;

}

Similar to the meet, we can compute the join t = t1 tt t2 using the join t` in the leaf

abstract domain D`. Instead of computing the join `1 t` `2 for each pair (`1, `2) of leaves

in (t1, t2) where `1 and `2 are led by the same branch condition path πb ∈ B, we also use

the branch conditions in πb as bound to prevent precision loss. Let πb = β1 · β2 · ... · βn
where βi = Bi or ¬Bi, i = 1, ..., n, we have ` = (`1 t` `2)u` D`(β1)u` D`(β2)u` ...u` D`(βn)

(D`(β) means the representation of β in D`, when α` exists in the leaf abstract domain

D`, we can use α`(β) instead).

join (t1 , t2 : binary decision trees , bound = >)

{

i f (t1 == Ll1M && t2 == Ll2M) then return (t1 t` t2) u` bound;

let t1 = JB: t1l , t1rK and t2 = JB: t2l , t2rK ;

return JB: join ( t1l , t2l , bound u` D`(B)) ,

join (t1r , t2r , bound u` D`(¬B))K ;

}

Example 6.2.2. We have Jx ≤ 50 : L x = 0∧y = 0 M, L⊥` MK v Jx ≤ 50 : L 0 ≤ x ≤ 1∧x =

y M, L⊥` MK and Jx ≤ 50 : L x = 0 ∧ y = 0 M, L⊥` MK 6v Jx ≤ 50 : L x = 1 ∧ y = 1 M, L⊥` MK.
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6.3 Transfer Functions

We define transfer functions for both tests and assignments. The tests either occur in a

loop head or occur in the branch. Hence, we define both loop test transfer function and

branch test tranfer function for the binary decision tree abstract domain functor.

6.3.1 Loop Test Transfer Function

The transfer function for the loop tests is simple. Given a binary decision tree t ∈ T(B,D`)

and a loop test B, we define t ut B as:

⊥t ut B , ⊥t
>t ut B , L B M
t ut false , ⊥t
t ut true , t

L p M ut B , L p u` D`(B) M
J B′ : tl, tr K ut B , J B′ : tl ut D`(B

′ ∧ B), tr ut D`(¬B′ ∧ B) K

Then the transfer function fLJBKt for the loop test B of the binary decision tree t can be

defined as:

fLJBKt , t ut B.

Example 6.3.1. Let t be the binary decision tree in Example 6.1.2, then fLJy >= 0Kt =

Jx ≤ 50 : L 0 ≤ x ≤ 50 ∧ x = y M, L 51 ≤ x ≤ 102 ∧ x + y− 102 = 0 MK.

6.3.2 Branch Test Transfer Function

The binary decision tree can be constructed in two different ways. On one hand, it can

be generated immediately after the set B of branch condition paths has been generated
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in the pre-analysis. In this way, all leaves of the binary decision tree will be set to >` for

the first program point and ⊥` for others (>`,⊥` ∈ D`) at the beginning. On the other

hand, both binary decision tree and B can be constructed on the fly during the static

analysis. In this last case, we have B = ∅ and the binary decision tree t = L>` M for the

first program point and t = L⊥` M for others at the beginning.

In the latter case, the branch test transfer function should first construct the new

binary decision tree from the old one by splitting on the branch condition when it has

been first met in the analysis. Given a binary decision condition t ∈ T(B,D`) and a branch

test B that’s been first met, there are two situations.

One situation is that the branch condition B is independent, that is, it does not

occur inside any scope of a branch. In this situation, the new binary decision tree t′

can be constructed by replacing each leaf p in the binary tree t with a subtree JB :

Lp u` D`(B)M, Lp u` D`(¬B)MK. We also have B′ = {πb · B | πb ∈ B} ∪ {πb · ¬B | πb ∈ B}.

The other situation is that the branch condition B is inside a scope of a branch.

Let B’ be the condition of the branch and there is no other branch scope between B

and B’, if B is inside the true branch of B’, then the new binary decision tree t′ can

be constructed by replacing each left leaf p of B’ in the binary tree t with a subtree

JB : Lpu`D`(B)M, Lpu`D`(¬B)MK. We also have B′ = {πb ·B′ ·B | πb ·B′ ∈ B}∪{πb ·B′ ·¬B |

πb · B′ ∈ B} ∪ (B \ {πb · B′ | πb · B′ ∈ B}). If B is inside the false branch of B’, the

right leaves of B’ instead of left leaves should be replaced by the same subtrees and

B′ = {πb ·¬B′ ·B | πb ·¬B′ ∈ B}∪{πb ·¬B′ ·¬B | πb ·¬B′ ∈ B}∪(B\{πb ·¬B′ | πb ·¬B′ ∈ B}).

Then in both ways, the branch test transfer function will do the same thing as loop

test transfer function. Given the branch test B and the binary decision tree t ∈ T(B,D`),

we have:

fBJBKt , t ut B.
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Example 6.3.2. Let t be the binary decision tree in Example 6.1.2, then fBJx <= 50Kt =

Jx ≤ 50 : L 0 ≤ x ≤ 50 ∧ x = y M, L⊥` MK.

6.3.3 Assignment Transfer Function

Given a binary decision tree t ∈ T(B,D`), the assignment x = E can be performed at each

leaf in t by using the assignment transfer function of D`. E.g., let t = Jx ≤ 50 : L 0 ≤ x ≤

50 M, L⊥` MK and given an assignment x = x+ 1, after performing the assignment transfer

function of Polyhedra abstract domain on each leaf of t, we will get t′ = Jx ≤ 50 : L 1 ≤

x ≤ 51 M, L⊥` MK.
Generally, the branch condition paths in B are used as labels separating the abstract

properties in disjunction which are gathered in the leaves. But this is not always the case.

For example, in the join operator, we use the branch conditions in B to reduce the result

of the join. After performing the assignment transfer function of leaf abstract domain D`

on each leaf, we may also need to manipulate the leaves using the branch condition paths

in B.

Let’s check the above result t′ after the assignment, it appears that some leaves in the

new binary decision tree may not satisfy some branch conditions in the branch condition

paths which are leading to them. For example, 1 ≤ x ≤ 51 is not satisfying the branch

condition x ≤ 50. We know the violation part is actually satisfying the negation of

those branch conditions. Hence we need to use the branch condition x ≤ 50 to separate

1 ≤ x ≤ 51 into 1 ≤ x ≤ 50 ∨ x = 51 and update the corresponding leaves. For example,

we have t′′ = Jx ≤ 50 : L 1 ≤ x ≤ 50 M, Lx = 51 M K.
Let’s see another example. Assume t = Jx is odd : Lx = [1, 1] M, Lx = [2, 2] MK where

the leaf abstract domain D` is the interval abstract domain and the assignment is x = x+1.

After performing the assignment transfer function of the interval abstract domain on each
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leaf of t, we will get t′ = Jx is odd : Lx = [2, 2] M, Lx = [3, 3] MK. In this case, we will see

that both abstract properties in the left leaf and in the right leaf are violating the branch

condition “x is odd”. Hence we need to exchange the abstract properties in the left leaf

and in the right leaf which we will get t′′ = Jx is odd : Lx = [3, 3] M, Lx = [2, 2] MK.
We call these kind of procedures reconstruction on leaves. Given a binary decision

tree t after an assignment, we define the procedure of reconstruction on leaves as follow:

1. Collecting all leave properties in t, let it be {p1, p2, ..., pn};

2. For each leaf in t, let πb = β1 · β2 · ... · βn be the branch condition path leading to it.

We then calculate p′i = pi u` (D`(β1 ∧ β2 ∧ ... ∧ βn)).

3. For each leaf in t, update it with p′1 t` p′2 t` ... t` p′n.

Correctness. Let p = p1∨p2∨...∨pn be the disjunction of all properties in leaves before

reconstruction on leaves. For each leaf `i in t, we have `i = (p1u` (D`(β
i
1∧βi2∧ ...∧βin)))t`

...t`(pnu`(D`(β
i
1∧βi2∧...∧βin))) = (p1t`...t`pn)u`(D`(β

i
1∧βi2∧...∧βin)) after reconstruction

on leaves. We then have the disjunction of all properties in leaves after reconstruction on

leaves is p′ = `1∨ ...∨ `n = (p1t` ...t` pn)u` (D`(β
1
1 ∧β1

2 ∧ ...∧β1
n))∨ ...∨ (p1t` ...t` pn)u`

(D`(β
n
1∧βn2∧...∧βnn)) = (p1t`...t`pn)u`((D`(β

1
1∧β1

2∧...∧β1
n))∨...∨(D`(β

n
1∧βn2∧...∧βnn))) =

(p1 t` ... t` pn) u` true = p1 t` ... t` pn ≡ p. This shows that the reconstruction on leaves

procedure will not change the result of the assignment transfer function.

6.4 Extrapolation Operators

When the leaf abstract domain D` has strictly increasing and/or strictly decreasing infinite

chains, widening and/or narrowing operators are required in the binary decision tree

abstract domain functor to accelerate the convergence of fixpoint iterates.
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6.4.1 Widening

Given two binary decision trees t1, t2 ∈ T(B,D`), the widening t = t1 Ot t2 can be computed

using the widening O` in the leaf abstract domain D` similar to the join operator, that is,

computing the widening `1 O` `2 for each pair (`1, `2) of leaves in (t1, t2) where `1 and `2

are led by the same branch condition path πb ∈ B while the branch conditions in πb are

also used as the threshold. Let πb = β1 · β2 · ... · βn where βi = Bi or ¬Bi, i = 1, ..., n, we

have each leaf ` = (`1 O` `2) u` D`(β1) u` D`(β2) u` ... u` D`(βn).

widening(t1 , t2 : binary decision trees , bound = >)

{

i f (t1 == Ll1M && t2 == Ll2M) then return (t1 O` t2) u` bound;

let t1 = JB: t1l , t1rK and t2 = JB: t2l , t2rK ;

return JB: widening(t1l , t2l , bound u` D`(B)) ,

widening(t1r , t2r , bound u` D`(¬B))K ;

}

6.4.2 Narrowing

The narrowing operator in the binary decision tree abstract domain functor is very similar

to its meet operator. Given two binary decision trees t1, t2 ∈ T(B,D`), the narrowing

t = t1 Mt t2 can be computed using the narrowing M` in the leaf abstract domain D`. Let

`1, `2 are leaves of t1, t2 respectively, where the same branch condition path πb ∈ B leads

to `1 and `2, then ` = `1 M` `2 is the leaf of t led by the same branch condition path

πb ∈ B. After computing each leaf ` = `1 M` `2 in t, we then get t = t1 Mt t2.
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narrowing(t1 , t2 : binary decision trees )

{

i f (t1 == Ll1M && t2 == Ll2M) then return t1 M` t2 ;

let t1 = JB: t1l , t1rK and t2 = JB: t2l , t2rK ;

return JB: narrowing(t1l , t2l ) , narrowing(t1r , t2r)K ;

}

Example 6.4.1. Let t1 = Jx ≤ 50 : L x = 0 ∧ y = 0 M, L⊥` MK and t2 = Jx ≤ 50 :

L x = y ∧ 0 ≤ x ≤ 1 M, L⊥` MK. It’s easy to see that t1 ⊆ t2. In polyhedra, we have

(x = 0 ∧ y = 0)Ot (x = y ∧ 0 ≤ x ≤ 1) = x ≥ 0 ∧ x = y. Hence, we have t1 Ot t2 = Jx ≤
50 : L 0 ≤ x ≤ 50 ∧ x = y M, L⊥` MK.

Note that we assumed the two binary decision trees in the the meet, join, widening and

narrowing would have the same shape. This is always true if we generate the set of branch

condition paths B in the pre-analysis. In this case, the binary decision trees generated

from B will always have the same shape. If we generate the set of branch condition paths

B on the fly in the analysis, the two binary decision trees in the meet, join, widening and

narrowing may not always have the same shape. When the two binary decision trees have

different shape, it’s always the case that one binary decision tree is smaller than the other

one and each path of it from root to leaf is the prefix of some paths from root to leaves

of the other one’s. Hence it can be easily split to match the shape of the other one.
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6.5 Other Operators

Although the number of branch conditions in a program is always finite, it may still be

a very large number. A large number of branch conditions means a large binary decision

tree, with a potentially an exponential growth which is not acceptable in practice. Hence,

we need limit the size (depth) of the binary decision trees.

One method is to eliminate decision nodes by merging their subtrees when the binary

decision tree grows too deep. This can be done as follow:

1. Pick up a branch condition B. We can simply use the one at the root, or the nearest

one to the leaves, or at random. We can also design a ranking function based on

the information from the analysis for each branch condition to estimate how likely

it is to be eliminated with minimal information loss. Then we always choose the

most likely one.

2. Eliminate B (B or ¬B) from each branch condition path in B.

3. For each subtree of the form JB : tt, tfK, if tt and tf have identical decision nodes,

replace it by tt tt tf .

4. Otherwise, there are decision nodes existing only in tt or tf . For each of those

decision nodes, (recursively) eliminate it by merging its subtrees. When no such

decision node exists, we get t′t and t′f , and they must have identical decision nodes,

so JB : tt, tfK can be replaced by t′t tt t′f .

Another method is to generate a smaller B by abstracting the branch condition paths

in B into shorter ones. We may partition the set of branch conditions by its appearance

inside or outside loops and then only keep the ones appear inside the loops in B. We may

also only keep the branch conditions which have some particular form, such as ax 6 b,

etc.
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The second method is different from the first one because it can be done in the pre-

analysis or on the fly before splitting trees, thus no merging is needed during the analysis.

This reduces the cost of the analysis, thus improves its efficiency. But because all the

branch conditions being eliminated are not based on the information that is collected

during the static analysis, the result may be less precise than the one generated from

the first method. Moreover, eliminating branch conditions and merging their subtrees

allow us to dynamically change the binary decision trees on the fly. This provides a more

flexible way of adjusting the cost/precision ratio of the static analysis.

6.6 Example

Let us come back to Example 6.1.1. We choose the polyhedra abstract domain as the leaf

abstract domain and we have B = {x <= 50,¬(x <= 50)}. Initially, we set t = L⊥` M in

the program point 1. After the assignment “x = 0; y = 0;”, we have “t = L x = 0∧y = 0 M”.

Let ti be the abstract property at program point 1 after the i-th iteration, then t0 = L x =

0 ∧ y = 0 M. In first iteration, we have to construct the binary decision tree when first

reaching the branch test “x <= 50”. In this case, we have t′0 = Jx ≤ 50 : L x = 0 ∧ y =

0 M, L⊥` MK. At the end of the first iteration, we get t′′0 = Jx ≤ 50 : L x = 1∧ y = 1 M, L⊥` MK.
Then t1 = t0 ∪t t′′0 = Jx ≤ 50 : L x = y ∧ 0 ≤ x ≤ 1 M, L⊥` MK. Afterward, we apply

the widening and get t′1 = t0 O t1 = Jx ≤ 50 : L 0 ≤ x ≤ 50 ∧ x = y M, L⊥` MK. In the

second iteration, the assignment “x++;” leads to reconstruction on leaves, hence we get

t′′1 = Jx ≤ 50 : L 1 ≤ x ≤ 50 ∧ x = y M, Lx = 51 ∧ y = 51 MK. Then t2 = t1 ∪t t′′1 = Jx ≤ 50 :

L 0 ≤ x ≤ 50 ∧ x = y M, L x = 51 ∧ y = 51 MK. After the third iteration, t3 = Jx ≤ 50 : L 0 ≤

x ≤ 50 ∧ x = y M, L x + y− 102 = 0 ∧ 51 ≤ x ≤ 52 MK. We then apply the widening and get

t′3 = t2 O t3 = Jx ≤ 50 : L 0 ≤ x ≤ 50 ∧ x = y M, L x + y − 102 = 0 ∧ x ≥ 51 MK. One more

iteration yields t4 = Jx ≤ 50 : L 0 ≤ x ≤ 50 ∧ x = y M, L x + y− 102 = 0 ∧ 51 ≤ x ≤ 103 MK.
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It follows that the program analysis converges. Hence t4 is the invariant at program point

1.

6.7 Related Work

A systematic characterization of the least bases for the disjunctive completion of abstract

domains can be found in [GR98]. The trace partitioning using control flows was first

introduced in [Cou81]. A static analysis framework via trace partitioning was proposed

by [HT98]. In this framework, the control flow is used to choose which disjunctions to

keep but it lacks the merge of partitions, which may lead to exponential cost. In [MR05],

a trace partitioning domain, where the partitioning of traces are based on the history of

the control flow, has been proposed. The main difference between their partitioning and

ours is we made the partitioning by the syntactic analysis from the control flow of the

program while they made the partitioning manually which is based on the input.

Decision trees have been used for the disjunctive refinement of an abstract domain such

as [GC10] for the interval abstract domain based on decision trees. A general segmented

decision tree abstract domain, where disjunctions are determined by values of variables is

introduced in [CCM10b]. Moreover, [UM14] proposed a general disjunctive refinement of

an abstract domain based on decision trees extended with linear constraints for program

termination. The difference between those works and ours is their partitionings are mainly

based on the value of some variables while ours are directly based on the branch conditions.

There also exist several works on directly allowing disjunction in the domain, i.e.,

powerset domain [BHZ07]. In [SISG06], the disjunctions are computed on an elaboration,

which can be viewed as a multiply duplication, of the programs CFG structure. Moreover,

our binary decision tree abstract domain functor can also be useful to scale traditional

path-sensitive program analysis [WZH+13].
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Conclusion

The static analysis by abstract interpretations is very efficient by using convex abstract

domains, but lacks of expressiveness. On the other hand, the first-order logic and re-

lated SMT solvers and other theorem provers are very good at expressiveness. Hence,

it will be interesting to exploit for logical abstract interpretations and domains. In this

thesis, two logical abstract domains were presented to address this issue. In chapter 3,

we investigated finite conjunctions of affine equalities and a set of logical operations to

manipulate them. SMT solvers are used for the computation of there logical operations

as well as transformations which are necessary to define an abstract domain. In chapter

4, more complicate first-order formulas - finite conjunctions of linear inequalities - have

been investigated which include how to use SMT solvers to compute transformations and

other necessary logical operations as well.

Abstract domains are often using convex sets which are conjunctions of linear con-

straints to represent program properties. This convexity makes the static analysis efficient

and scalable. On the other hand, it may cause rough approximations and produce much

less precise results. In practice, it is often necessary to refine the abstract domains by

allowing weak forms of disjunctions to increasing the precision. In this thesis, we also

presented an abstract domain functor to contribute on this issue. Our abstract domain

functor uses binary decision trees to represent and manipulate program invariants. It is

parameterized by decision nodes which are a set of boolean tests appearing in the pro-
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grams and by a numerical abstract domain whose elements are the leaves. In chapter

5, we introduced the branch condition path abstraction which defines a kind of trace

partitioning on the concrete level (trace semantics of program). It decides the decision

nodes in the binary decision trees. In chapter 6, we defined our binary decision tree ab-

stract domain functor and discussed the implementation of it by providing algorithms for

transformations and other useful domain operations. This binary decision tree abstract

domain functor can provide a flexible way of adjusting the cost/precision ratio for static

analysis.

Future Work

In this thesis, we only investigated the use of SMT solvers in logical abstract interpre-

tations and domains. It is also interesting to exploit abstract interpretation in logical /

theory approach using SMT solvers and theorem provers. Moreover, we want to investi-

gate the combination of algebraic and logical abstract interpretations which may provide

scalability, expressivity, natural interface with the end-user using logical formulas, and

soundness with respect to the program semantics.

Our binary decision tree abstract domain functor relies on trace partitioning for adjust-

ing the cost/precision ratio. Hence, we’d like to investigate new methods for partitioning

traces in different levels. In this thesis, we only consider numerical abstract domains in

the binary decision tree abstract domain functor. We also want to include the symbolic

abstract domains, and even the logical abstract domains we defined in this thesis. Last,

it is worth to investigate new methods that allow more disjunctions in abstract domains

while minimize the cost of the analysis.
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Appendix A

Proof of Theorem 1.2.3

The proof is by structural induction on the syntax of the command C.

skip command

αa(StJskipK)

= αa({〈skip, ρ〉 skip−−→ 〈skip, ρ〉 | ρ ∈ E}) Hdefinition of StJskipKI

= {skip} Hdefinition of αaI

, GaJ
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Assignment

αa(StJx = EK)

= αa({〈skip, ρ〉 x=E−−→ 〈stop, ρ[x := v]〉 | ρ ∈ E ∧ v ∈ EJEKρ}) Hdefinition of StJx = EKI

= {x = E} Hdefinition of αaI
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Conditional

αa(StJif (B) {C1} else {C2}K)

= αa({〈if (B) {C1} else {C2}, ρ〉 B−→ 〈C1, ρ〉 A−→ π | ρ ∈ E ∧ true ∈ EJBKρ ∧ 〈C1, ρ〉 A−→

π ∈ StJC1K} ∪ {〈if (B) {C1} else {C2}, ρ〉 ¬B−→ 〈C2, ρ〉 A−→ π | ρ ∈ E ∧ false ∈ EJBKρ ∧
〈C2, ρ〉 A−→ π ∈ StJC2K}) Hdefinition of StJif (B) {C1} else {C2}KI

= αa({〈if (B) {C1} else {C2}, ρ〉 B−→ 〈C1, ρ〉 A−→ π | ρ ∈ E ∧ true ∈ EJBKρ ∧ 〈C1, ρ〉 A−→

π ∈ StJC1K}) ∪ αa({〈if (B) {C1} else {C2}, ρ〉 ¬B−→ 〈C2, ρ〉 A−→ π | ρ ∈ E ∧ false ∈

EJBKρ ∧ 〈C2, ρ〉 A−→ π ∈ StJC2K}) Hsince αa(S ∪ S ′) = αa(S) ∪ αa(S ′)I
⊆ {B ·αa(〈C1, ρ〉 A−→ π | 〈C1, ρ〉 A−→ π ∈ StJC1K})} ∪ {¬B ·αa(〈C2, ρ〉 A−→ π | 〈C2, ρ〉 A−→ π ∈

StJC2K})} Hdefinition of αa and ignoring the testI
= {B} · {αa(π′) | π′ ∈ StJC1K})} ∪ {¬B} · {αa(π′′) | π′′ ∈ StJC2K})}

Hby defining the set of action paths concatenation S ·S ′ , {$ ·$′ | $ ∈ S ∧$′ ∈

S ′}, letting π′ = 〈C1, ρ〉 A−→ π, and π′′ = 〈C2, ρ〉 A−→ πI
= {B} · αa(StJC1K) ∪ {¬B} · αa(StJC2K) Hdefinition of αaI

⊆ {B} · GaJ
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Hby structural induction hypothesis and the set of action paths concatenation · is

⊆-increasing in both of its arguments.I

, GaJ
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Sequence, finite executions

αa(St∗JC1 ; C2K)

= αa({(π ; C2)
A−→ 〈C2, ρ〉 A′−→ π′ | π A−→ 〈stop, ρ〉 ∈ St∗JC1K ∧ 〈C2, ρ〉 A′−→ π′ ∈ St∗JC2K})

Hdefinition of St∗JC1 ; C2KI
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= αa({π A−→ 〈stop, ρ〉 A′−→ π′ | π A−→ 〈stop, ρ〉 ∈ St∗JC1K ∧ 〈C2, ρ〉 A′−→ π′ ∈ St∗JC2K})

Hsince αa(π ; C) = αa(π)I

= {αa(π) · A · A′ · αa(π′) | π A−→ 〈stop, ρ〉 ∈ St∗JC1K ∧ 〈C2, ρ〉 A′−→ π′ ∈ St∗JC2K}

Hsince αa(π
A−→ π′) = αa(π) · A · αa(π′)I

= {αa(π′′) · αa(π′′′) | αa(π′′) ∈ St∗JC1K ∧ αa(π′′′) ∈ St∗JC2K}

Hletting αa(π′′) = π
A−→ 〈stop, ρ〉 and αa(π′′′) = 〈C2, ρ〉 A′−→ π′I

= αa(St∗JC1K) · αa(St∗JC2K) Hdefinition of αa and set of action paths concatenationI

⊆ Ga∗J
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Hby structural induction hypothesis and the set of action paths concatenation · is

⊆-increasing in both of its arguments.I
, Ga∗J
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Sequence, infinite executions

αa(St∞JC1 ; C2K)

= αa({(π ; C2) | π ∈ St∞JC1K} ∪ {(π ; C2)
A−→ 〈C2, ρ〉 A′−→ π′ | ρ ∈ E ∧ π A−→ 〈stop, ρ〉 ∈

St∗JC1K ∧ 〈C2, ρ〉 A′−→ π′ ∈ St∞JC2K}) Hdefinition of St∞JC1 ; C2KI
= αa({(π ; C2) | π ∈ St∞JC1K}) ∪ αa({(π ; C2)

A−→ 〈C2, ρ〉 A′−→ π′ | ρ ∈ E ∧ π A−→ 〈stop, ρ〉 ∈

St∗JC1K ∧ 〈C2, ρ〉 A′−→ π′ ∈ St∞JC2K}) Hsince αa preserves unionsI
= αa(St∞JC1K) ∪ αa(St∗JC1K) · αa(St∞JC2K)

Hsince αa(π ; C2) = αa(π) and αa(π
A−→ π′) = αa(π) · A · αa(π′)I
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Hby structural induction hypothesis and the set of action paths concatenation · is

⊆-increasing in both of its arguments.I
, Ga∞J
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Iteration, transformer

αa(F tiJwhile (B) {C}K(X))

= αa({〈while (B) {C}, ρ〉 | ρ ∈ E} ∪ {π A−→ 〈while (B) {C}, ρ〉 B−→ (〈C, ρ〉 A′−→ π′
A′′−→

〈stop, ρ′〉) ; while (B) {C} | π, π′ ∈ Π∗ ∧ π A−→ 〈while (B) {C}, ρ〉 ∈ X ∧ true ∈ EJBKρ ∧
(〈C, ρ〉 A′−→ π′

A′′−→ 〈stop, ρ′〉) ∈ St∗JCK}) Hdefinition of F tiJwhile (B) {C}KI
= αa({〈while (B) {C}, ρ〉 | ρ ∈ E}) ∪ αa({π A−→ 〈while (B) {C}, ρ〉 B−→ (〈C, ρ〉 A′−→ π′

A′′−→

〈stop, ρ′〉) ; while (B) {C} | π, π′ ∈ Π∗ ∧ π A−→ 〈while (B) {C}, ρ〉 ∈ X ∧ true ∈ EJBKρ ∧
(〈C, ρ〉 A′−→ π′

A′′−→ 〈stop, ρ′〉) ∈ St∗JCK}) Hsince αa(S ∪ S ′) = αa(S) ∪ αa(S ′)I
⊆ {ε} ∪ {αa(π A−→ 〈while (B) {C}, ρ〉 B−→ (〈C, ρ〉 A′−→ π′

A′′−→ 〈stop, ρ′〉) ; while (B) {C}) |

π, π′ ∈ Π∗ ∧ π A−→ 〈while (B) {C}, ρ〉 ∈ X ∧ (〈C, ρ〉 A′−→ π′
A′′−→ 〈stop, ρ′〉) ∈ St∗JCK}

Hdefinition of αa and ignoring the result true ∈ EJBKρ of testsI

= {ε}∪{αa(π A−→ 〈while (B) {C}, ρ〉) ·B ·αa(〈C, ρ〉 A′−→ π′
A′′−→ 〈stop, ρ′〉) | π, π′ ∈ Π∗∧π A−→

〈while (B) {C}, ρ〉 ∈ X ∧ (〈C, ρ〉 A′−→ π′
A′′−→ 〈stop, ρ′〉) ∈ St∗JCK}

Hsince αa(π
A−→ π′) = αa(π) · A · αa(π′) and αa(π ; C) = αa(π)I

= {ε} ∪ {αa(π′′) · B · αa(π′′′) | π′′ ∈ X ∧ π′′′ ∈ St∗JCK}

Hletting π′′ = π
A−→ 〈while (B) {C}, ρ〉 and π′′′ = 〈C, ρ〉 A′−→ π′

A′′−→ 〈stop, ρ′〉I

= {ε} ∪ αa(X) · {B} · αa(St∗JCK)

Hdefinition of αa and set of action paths concatenationI

⊆ {ε} ∪ αa(X) · {B} · Ga∗J
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Hby structural induction hypothesis and the set of action paths concatenation · is

⊆-increasing in both of its arguments.I
= FaiJ
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K(αa(X)) Hdefinition of FaiJ
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We have proved the semi-commutation property:

∀X ∈ ℘(Π∗) :

αa(F tiJwhile (B) {C}K(X)) ⊆ FaiJ
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(A.1)

Union preservation

Let us show that the iteration transformer preserves unions.

FaiJ
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= {ε} ∪ (
⋃
i∈∆

Si) · {B} · Ga∗J
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= {ε} ∪
⋃
i∈∆

(Si · {B} · Ga∗J
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K)

Hsince the concatenation · of sets of action paths preserves unionsI

=
⋃
i∈∆

({ε} ∪ Si · {B} · Ga∗J
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=
⋃
i∈∆

FaiJ
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It follows that is ⊆-increasing.

Fixpoint approximation

A consequence of the semi-commutation property is that the abstraction of the concrete

iterates 〈Snt , n ∈ N〉 of F tiJwhile (B) {C}K from ∅ by αa s over-approximated by the iterates

〈Sna , n ∈ N〉 of FaiJ
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K in the abstract: ∀n ∈ N : αa(Snt ) ⊆ Sna . The proof is

by recurrence on n ∈ N.
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αa(S0
t ) = αa(∅) = ∅ = S0

a

αa(Sn+1
t ) = αa(F tiJwhile (B) {C}K(Snt )) Hdefinition of iterationI

⊆ FaiJ
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Hby induction hypothesis αa(Snt ) ⊆ Sna and FaiJ
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K is ⊆-increasingI

= Sn+1
a Hdefinition of iterationI

It follows that we have the following fixpoint approximation,

αa(lfp⊆F tiJwhile (B) {C}K)

= αa(
⋃
n∈N

Snt ) Hsince F tiJwhile (B) {C}K preserves unionsI

=
⋃
n∈N

αa(Snt ) Hsince αa preserves unionsI

⊆
⋃
n∈N

Sna Hsince ∀n ∈ N : αa(Snt ) ⊆ Sna and definition of ∪I

= lfp⊆FaiJ
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Iterates and least fixpoint of the iteration transformer

Given a set A of action paths, let us define its natural powers as A0 , {ε}, A1 , A,

An = A · ... · A︸ ︷︷ ︸
n times

for n > 1. The rule of powers Ap+q = Ap · Aq is trivial.

Let us calculate the iterates 〈F n, n ∈ N〉 of FaiJ
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=
⋃
n∈N

({B} · Ga∗J
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which we can write as ({B} · Ga∗J
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K)∗.

Iteration, finite excutions

αa(St∗Jwhile (B) {C}K)

= αa(let StiJwhile (B) {C}K , lfp⊆F tiJwhile (B) {C}K in {π A−→ 〈while (B) {C}, ρ〉 ¬B−→

〈stop, ρ〉 | π ∈ Π∗ ∧ π A−→ 〈while (B) {C}, ρ〉 ∈ StiJwhile (B) {C}K ∧ false ∈ EJBKρ})
Hdefinition of St∗Jwhile (B) {C}KI

= let StiJwhile (B) {C}K , lfp⊆F tiJwhile (B) {C}K in αa({π A−→ 〈while (B) {C}, ρ〉 ¬B−→

〈stop, ρ〉 | π ∈ Π∗ ∧ π A−→ 〈while (B) {C}, ρ〉 ∈ StiJwhile (B) {C}K ∧ false ∈ EJBKρ})
Hsince f(let ... in ...) = let ... in f(...)I

= let StiJwhile (B) {C}K , lfp⊆F tiJwhile (B) {C}K in αa(StiJwhile (B) {C}K) · ¬B

Hdefinition of αa and ignoring the result false ∈ EJBKρ of testI

= αa(lfp⊆F tiJwhile (B) {C}K) · ¬B Hdefinition of let ... in ...I

⊆ lfp⊆FaiJ
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Hby fixpoint approximation and · preserves unions so is ⊆-increasingI

= Ga∗J
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Limit overapproximation αa(limt S) = lima αa(S)

αa(limtS)

= {αa(π) | π ∈ Π∞ ∧∀π1 ∈ Π∗ : (∃π2 ∈ Π∞ : π = π1
A−→ π2) =⇒ (∃π3 ∈ Π∗ : ∃π4 ∈ Π∞ :

π = π1
A−→ π3

A′−→ π4 ∧ π1
A−→ π3 ∈ S)} Hdefinition of αa and limtI

= {π | 〈π, π〉 ∈ Π∞ ∧ ∀π1 ∈ Π∗ : (∃π2 ∈ Π∞ : 〈π, π〉 = π1
A−→ π2) =⇒ (∃π3 ∈ Π∗ : ∃π4 ∈

Π∞ : 〈π, π〉 = π1
A−→ π3

A′−→ π4 ∧ π1
A−→ π3 ∈ S)} , A Hsince αa(〈π, π〉) = πI
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⊆ {ω ∈ A∞ | ∀ω1 ∈ A∗ : (∃ω2 ∈ A∞ : ω = ω1 · ω2) =⇒ (∃ω3 ∈ A∗ : ∃ω4 ∈ A∞ : ω =

ω1 · ω3 · ω4 ∧ ω1 · ω3 ∈ S)} , B

HLet π ∈ A, we must show that π ∈ B. Assume π = ω1 · A · ω2, then 〈π, π〉 =

〈π1, ω1〉 A−→ 〈π2, ω2〉 = π1
A−→ π2. So by the definition of A, ∃π3 ∈ Π∗ : ∃π4 ∈

Π∞ : 〈π, π〉 = π1
A−→ π3

A′−→ π4 ∧ π1
A−→ π3 ∈ S. So define ω1 = π1A, ω3 = π3 and

ω4 = A′π4, then π = ω1 · ω3 · ω4 and αa(π1
A−→ π3) = ω1 · ω3 ∈ αa(S) proving that

π ∈ B.I
= limaαa(S) Hdefinition of limaI

Iteration, infinite executions

αa(St∞Jwhile (B) {C}K)

= αa(let StiJwhile (B) {C}K , lfp⊆F tiJwhile (B) {C}K in

limt{π A−→ 〈while (B) {C}, ρ〉 ∈ StiJwhile (B) {C}K | true ∈ EJBKρ} ∪ {π A−→

〈while (B) {C}, ρ〉 B−→ 〈C ; while (B) {C}, ρ〉 A′−→ π′ ; while (B) {C} | π
A−→

〈while (B) {C}, ρ〉 ∈ StiJwhile (B) {C}K ∧ true ∈ EJBKρ ∧ 〈C, ρ〉 A′−→ π′ ∈ St∞JCK})
Hdefinition of St∞Jwhile (B) {C}KI

= let StiJwhile (B) {C}K , lfp⊆F tiJwhile (B) {C}K in

αa(limt{π A−→ 〈while (B) {C}, ρ〉 ∈ StiJwhile (B) {C}K | true ∈ EJBKρ} ∪
{π A−→ 〈while (B) {C}, ρ〉 B−→ 〈C ; while (B) {C}, ρ〉 A′−→ π′ ; while (B) {C} | π A−→

〈while (B) {C}, ρ〉 ∈ StiJwhile (B) {C}K ∧ true ∈ EJBKρ ∧ 〈C, ρ〉 A′−→ π′ ∈ St∞JCK})
Hsince f(let ... in ...) = let ... in f(...)I

⊆ let StiJwhile (B) {C}K , lfp⊆F tiJwhile (B) {C}K in

limaαa({π A−→ 〈while (B) {C}, ρ〉 ∈ StiJwhile (B) {C}K | true}) ∪ αa({π A−→

〈while (B) {C}, ρ〉 B−→ 〈C ; while (B) {C}, ρ〉 A′−→ π′ ; while (B) {C} | π
A−→

〈while (B) {C}, ρ〉 ∈ StiJwhile (B) {C}K ∧ 〈C, ρ〉 A′−→ π′ ∈ St∞JCK})
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Hby limit approximation of αa which preserves unions, and ignoring the result

true ∈ EJBKρ of the testI
= let StiJwhile (B) {C}K , lfp⊆F tiJwhile (B) {C}K in limaαa(StiJwhile (B) {C}K) ∪
{αa(π1) · B · αa(〈C, ρ〉 A′−→ π′) | π1 ∈ StiJwhile (B) {C}K ∧ 〈C, ρ〉 A′−→ π′ ∈ St∞JCK})

Hsince {x ∈ S | true} = S, letting π1 = π
A−→ 〈while (B) {C}, ρ〉, αa(π A−→ π′) =

αa(π) · A · αa(π′) and αa(π ; C) = αa(π)I
= let StiJwhile (B) {C}K , lfp⊆F tiJwhile (B) {C}K in limaαa(StiJwhile (B) {C}K) ∪
{αa(π1) · B · αa(π2) | π1 ∈ StiJwhile (B) {C}K ∧ π2 ∈ St∞JCK})

Hletting π2 = 〈C, ρ〉 A′−→ π′I

= let StiJwhile (B) {C}K , lfp⊆F tiJwhile (B) {C}K in limaαa(StiJwhile (B) {C}K) ∪
αa(StiJwhile (B) {C}K) · {B} · αa(St∞JCK)

Hsince {αa(π) · αa(π′) | π ∈ S ∧ π′ ∈ S ′} = αa(S) · αa(S ′)I

= limaαa(lfp⊆F tiJwhile (B) {C}K) ∪ αa(lfp⊆F tiJwhile (B) {C}K) · {B} · αa(St∞JCK)

Hdefinition of let ... in ...I

⊆ limaαa(lfp⊆F tiJwhile (B) {C}K) ∪ αa(lfp⊆F tiJwhile (B) {C}K) · {B} · Ga∞J
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K

Hby induction hypothesis αa(St∞JCK) ⊆ Ga∞J
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K and · is ⊆-increasingI

⊆ limalfp⊆FaiJ
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Hby fixpoint approximation, · and lima are ⊆-increasingI

= let W = lfp⊆FaiJ
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Hsince f(e) = let x = e in f(x)I

= Ga∞J
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[LRR13] Daniel Larraz, Enric Rodŕıguez-Carbonell, and Albert Rubio. SMT-based

array invariant generation. In Roberto Giacobazzi, Josh Berdine, and Isabella

Mastroeni, editors, Verification, Model Checking, and Abstract Interpretation,

14th International Conference, VMCAI 2013, Rome, Italy, January 20-22,

2013. Proceedings, volume 7737 of Lecture Notes in Computer Science, pages

169–188. Springer, 2013.

[MR05] Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract inter-

pretation based static analyzers. In Shmuel Sagiv, editor, Programming Lan-

guages and Systems, 14th European Symposium on Programming,ESOP 2005,

Held as Part of the Joint European Conferences on Theory and Practice of

Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume

3444 of Lecture Notes in Computer Science, pages 5–20. Springer, 2005.

[Mun64] J.R. Munkres. Elementary Linear Algebra. Addison-Wesley series in mathe-

matics. Addison-Wesley, 1964.

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision

procedures. ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[NO03] Robert Nieuwenhuis and Albert Oliveras. Congruence closure with integer off-

sets. In Moshe Y. Vardi and Andrei Voronkov, editors, Logic for Programming,

Artificial Intelligence, and Reasoning, 10th International Conference, LPAR

134



2003, Almaty, Kazakhstan, September 22-26, 2003, Proceedings, volume 2850

of Lecture Notes in Computer Science, pages 78–90. Springer, 2003.

[NO05] Robert Nieuwenhuis and Albert Oliveras. Proof-producing congruence closure.

In Jürgen Giesl, editor, Term Rewriting and Applications, 16th International

Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings, volume

3467 of Lecture Notes in Computer Science, pages 453–468. Springer, 2005.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat and sat

modulo theories: From an abstract davis–putnam–logemann–loveland proce-

dure to dpll(t). J. ACM, 53(6):937–977, November 2006.

[Opp80] Derek C. Oppen. Reasoning about recursively defined data structures. J.

ACM, 27(3):403–411, 1980.

[Pap81] Christos H. Papadimitriou. On the complexity of integer programming. J.

ACM, 28(4):765–768, October 1981.
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[UM14] Caterina Urban and Antoine Miné. A decision tree abstract domain for prov-

ing conditional termination. In Markus Müller-Olm and Helmut Seidl, ed-

itors, Static Analysis - 21st International Symposium, SAS 2014, Munich,

Germany, September 11-13, 2014. Proceedings, volume 8723 of Lecture Notes

in Computer Science, pages 302–318. Springer, 2014.

[Ver94] H. Le Verge. A note on chernikova’s algorithm. Technical report, 1994.

[WZH+13] Kirsten Winter, Chenyi Zhang, Ian J. Hayes, Nathan Keynes, Cristina Ci-

fuentes, and Lian Li. Path-sensitive data flow analysis simplified. In Lindsay

Groves and Jing Sun, editors, Formal Methods and Software Engineering -

15th International Conference on Formal Engineering Methods, ICFEM 2013,

Queenstown, New Zealand, October 29 - November 1, 2013, Proceedings, vol-

ume 8144 of Lecture Notes in Computer Science, pages 415–430. Springer,

2013.

[YRS04] Greta Yorsh, Thomas W. Reps, and Shmuel Sagiv. Symbolically computing

most-precise abstract operations for shape analysis. In Jensen and Podelski

[JP04], pages 530–545.

137


	Dedication
	Acknowledgements
	Abstract
	List of Tables
	Introduction
	I Background
	Abstract Interpretation
	Elements of Abstract Interpretation
	Notations
	Abstractions and Concretizations
	Abstract and Concrete Transformations
	Fixpoint Computation
	Reduced Product
	Abstract Domains

	A Simple Programming Language
	Abstract Syntax
	States
	Traces
	Trace Semantics of a Simple Programming Language
	Action Path Semantics: An Example of Abstract Interpretation

	Numerical Static Analysis
	Discovering properties of numerical variables
	Intervals
	Polyhedra


	Satisfiability Modulo Theories
	First-Order Logic
	Syntax
	Interpretations
	Theories and Models

	The SMT Problem
	Satisfiability and Validity
	Theories of interest
	Abstract DPLL(T)
	Combining Theories

	SMT-LIB
	Theories
	Logics
	SMT2 Commands



	II SMT-based Abstract Domains
	Affine Equalities
	Normal Form of Affine Equalities
	Generation from Points P
	Normalization

	SMT-Based Affine Equality Abstract Domain
	Representation
	Binary Operations
	Transfer Functions
	Example
	Implementation


	Linear Inequalities
	Representation
	Simplification

	Binary Operations
	Inclusion Testing
	Equality Testing
	Meet
	Join

	Transfer Functions
	Assignment
	Test

	Widening
	Example
	Implementation
	Related Work


	III Binary Tree-based Abstract Domains
	Branch Condition Path Abstraction
	Branch Condition Graph
	Branch Condition Path Abstraction
	Condition Path Abstraction
	Loop Condition Elimination
	Duplication Elimination
	Branch Condition Path Abstraction


	Binary Decision Tree Abstract Domain Functor
	Introduction
	Binary Operations
	Inclusion and Equality
	Meet and Join

	Transfer Functions
	Loop Test Transfer Function
	Branch Test Transfer Function
	Assignment Transfer Function

	Extrapolation Operators
	Widening
	Narrowing

	Other Operators
	Example
	Related Work

	Conclusion
	Proof of Theorem 1.2.3
	Bibliography


