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Chapter 1

Introduction

server client

Figure 1.1: Thinwire model.

We are interested in the visualization of large images across a network.
Upon request, the server sends an image across the network to the client,
who in turn, presents this image to the viewer. As the network is of rela-
tively low bandwidth, we call it a thin wire (Figure 1.1). A usual practice
under this setting is progressive transmission where a low resolution im-
age is first sent across and it is then progressively and uniformly refined
(Figure 1.2). A key observation is that, at any moment, the viewer is only
interested in a region around a point (the gaze point) in the image. To
exploit this, we give a scheme where the viewer interactively indicates this
region and the selected region has higher priority in the refinement process
(Figure 1.3). As a result, the displayed image in the client-side does not
has uniform resolution. We call such image a space-variant image and call
the scheme interactive progressive transmission.

A fundamental difference between this scheme and the usual progressive
transmission scheme is that we bring what the viewer wants to see into
consideration, in other words, we place more emphasis on the visualization
process. This shift in emphasis opens new perspectives of the problem. In
this report, we focus on this difference. There are three issues that arise,
and the next three chapters are organized accordingly.
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(a) (b)

(c) (d)

Figure 1.2: Progressive Transmission: A low resolution image (a) is first
sent across. The subsequent image (b), (c) and (d) are refined progressively.
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(a) (b)

(c) (d)

Figure 1.3: Interactive progressive transmission: the white arrow points to
the region selected by the viewer. Note that in (c), the details around the
“mouth” retain. The position of the arrow remains unchanged from (c) to
(d), and thus more refinements are performed on the “left eye”.
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First, we need to understand what we mean by an image having varied
resolution, and need to know how to distribute the resolution on an image
and how to progressively refine such a space-variant image. In chapter two,
we look at a psychophysical finding of human vision and study space-variant
image in two approaches. In the first approach, we give a formulation that
expresses the process of obtaining a space-variant image from a uniform
image as a functional operator and study its operator matrix. In the second
approach, we give a scheme where, loosely speaking, the space-variant image
is the one that minimizes a weighted distance from the original image, given
a fixed number of bits.

The second issue arises from the interactivity between the viewer and
the system. If we treat what the viewer wants to view as a request for data,
then, throughout the visualization process, more requests will be generated
than the server could serve. Thus, it is necessary to select the importance
requests which are to be sent to the server. This motivates the formulation
of an on-line scheduling problem in chapter three. An interesting property
of this problem which we exploit is that: a request could be scaled down
and served at a lower level of service. We give a few scheduling strategies
and prove their competitive ratio.

The actual implementation of the system is not straightforward. Since
the images are large, a more careful memory management strategy is re-
quired. Furthermore, as visualization is a real-time process, this induces
additional constraints in the system design. In chapter four, we study
these constraints and describe an implementation of interactive progressive
transmission.

4



Chapter 2

Foveation

We study two aspects of foveation. First, we define foveation as a “space-
variant” low-pass filtering process, through which we describe how resolu-
tion is “distributed” on the image. Second, we formulate the problem of
approximating a foveated/space-variant image using a fixed number of bits,
while trying to minimize some weighted error. Based on these two studies,
we propose two progressive transmission schemes.

2.1 Introduction

Figure 2.1(a) is a uniform resolution image whereas Figure 2.1(b) is a
foveated image. We call the point of highest resolution the fovea and the
process of going from a uniform image to a foveated image foveation. In
general, we call an image with non-uniform resolution a space-variant im-
age. These terms are borrowed from biological vision systems. Note that in
Figure 2.1(b), resolution decreases gradually as the distance from the fovea
increases. One of our aims here is to formulate this space-variant structure
of an image.

2.1.1 Physiological Aspect of Foveation

It is well-known that our visual system has a space-variant nature where
the resolution is high in the center of the visual field but gradually falling off
towards the peripheral. Studies of this space-variant structure in the visual
cortex could be traced back to [26, 14, 30], who suggest a well-defined map-
like representation of visual field in the cortex. In the early 1940’s, Talbot
and Marshall [41] demonstrate and confirm this hypothesis. Subsequent
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(a) Uniform resolution image. (b) Space variant resolution image

Figure 2.1: Foveation.

studies by Schwartz [32] show that the complex logmap is a good model for
the mapping of the visual field in the visual cortex. Schwartz gives a recent
survey on this topic in [33]. The form of logmap proposed by Schwartz
is characterized by two real constants k and a and can be conveniently
expressed as a complex function LOG : C→ C of the form:

LOG(z) :=
{

k ln(z + a) if Re(z) > 0,
k ln(z − a) otherwise.

The logmap maps the point (x, y) in the retinal plane to a point (ρ, θ) in
the visual cortex plane where

ρ := k ln(
√

(|x|+ a)2 + y2), and

θ :=





tan−1
(

y
x+a

)
if x > 0,

tan−1
(

y
x−a

)
+ π otherwise.

(2.1)

This mapping is illustrated in Figure 2.2.
By sampling the visual cortex plane uniformly, the value at each sample

point (ρi, θj) could be viewed as the result of applying an “averaging”
operation (or low-pass filtering) on the neighborhood of LOG−1(ρi, θj) in
the retinal plane. Call the sample points {LOG−1(ρi, θj)} the logmap pixels.
Note that the logmap determines the arrangement of logmap pixels in the
retinal plane. An advantage of using the logmap pixels to represent the
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Figure 2.2: Transformation from the visual field to the visual cortex.

visual field (rather than the uniform grid) is that it permits a reduction
of the total number of pixels while retaining high density of pixels in the
“interesting” region, and this has motivated the design of many computer
vision and visualization systems.

2.1.2 Applications of Foveation in Computer System

From an engineering point of view, it is not necessary to adhere to the
exact form of space-variant mapping obtained from physiological findings.
For example, Panerai et al. [29] use a logmap of the form,

ρ := k ln(
√

x2 + y2 + a), and

θ :=
{

tan−1
(

y
x

)
if x > 0,

tan−1
(

y
x

)
+ π otherwise. (2.2)

They also study various arrangements of logmap pixels (in the retinal
plane), namely log-Cartesian and horizontal log-Cartesian as illustrated in
Figure 2.3. Another interesting arrangement is the one obtained by blend-
ing two arrangements: the usual uniform arrangement within the fovea and
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the space-variant arrangement on the peripheral. Examples of this config-
uration are described in [28]. A disadvantage of this configuration is the
difficulty in merging the two arrangements smoothly.

The values at the logmap pixels can be obtained from a scene using a
foveated vision chip (or seeing silicon) where the photoreceptors are orga-
nized in a way similar to the biological retina. Each photoreceptor carries
out a sampling process based on some sampling function. A typical sam-
pling function is the Mexican hat, whose width depends on the location
of the photoreceptor. The width of a sampling function increases linearly
as the distance of the photoreceptor from the center of the chip increases.
Therefore, the process is a non-uniform sampling process. A survey on
some of the past and current technology of vision chip could be found in
[28], which is also available in the web [27].

Another method for obtaining the value at the logmap pixels is from
a two dimensional uniform resolution raster image, for example Figure 2.1
(a). One approach to extract the values is by directly “emulating” the non-
uniform sampling process, that is, the retinal plane is first partitioned into
blocks where each block corresponds to a logmap pixel, and then the value
of each logmap pixel is obtained by averaging all the original (uniform)
pixels in the same block. The real-time system designed by Kortum [16]
and the real-time system CORTEX-I developed by Wallace et al. [46] use
this approach. The partition is usually precomputed and stored in a lookup
table, and thus, the “emulating” process is fast but lack flexibility in the
sense that the arrangement of the logmap pixels is fixed. A more flexible
approach first computes a hierarchical representation of the image, and the
foveated image is then obtained by cut-and-paste from different scales of the
image. The method proposed by Burt [6, 1, 5] which uses Gaussian pyramid
as the hierarchical representation of the image belongs to this approach.

Machine Vision A uniform image contains too much information and
this is always a bottleneck in real-time vision systems. Two straightforward
ways to reduce information are by lowering the resolution uniformly or
by reducing the size of the visual field. Foveation provides a simple and
fast blending of both means of reduction. Yeshurun and Schwartz [48]
generalized the use of foveation in machine vision to space-variant vision.
The performance of a space-variant vision system could be further enhanced
by dynamically moving the fovea so as to gather relevant information. This
methodology is also known as smart-sensing introduced by Burt [5]. Again,
this dynamic nature is motivated by the human vision. An implementation
of such a system is CORTEX-I[46, 4].

Another interesting property of foveation lies in the geometry of the
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Figure 2.3: The logmap arrangement (given by (2.2)), log-Cartesian and
horizontal log-Cartesian arrangements. Image reproduced from [29].

logmap. Note that rotation and scaling in the retinal plane amounts to
translation along the θ and ρ axis in the visual cortex plane respectively.
Apparently, this is a desirable property in some vision tasks, for example,
in corner detection. In addition, based on experimental results, Panerai et
al. [29] report that computation in the visual cortex plane is more robust
in finding correlation of two images Ileft and Iright where both images are
obtained from a binocular camera system.

A lot of basic image processing operations depend on the neighborhood
relationship of pixels. In the usual uniform image, this neighborhood is
usually taken as the 4-neighbor or 8-neighbor depending on whether the
four corners are to be included. It is not clear how the neighborhood
relationship should be defined for the logmap pixels. Wallace et al. [46]
study various configurations of connectivity graph for the logmap pixels,
where the connectivity graph represents the neighborhood relationship of
the logmap pixels: two pixels are adjacent if and only if there is an edge
between them.

Visualization The existence of a space-variant nature in our visual sys-
tem suggests that a foveated image and the full resolution image is visually
indistinguishable if the viewer’s gaze point coincides with the center of the
foveated image. This observation could be confirmed by psychological ex-
periment and has been exploited by some visualization systems.

Since the landmark NSF Report in 1987 [25], visualization is an active
research area. Visualization is a process whereby the viewer gains insight
into a large data set. An interesting issue in visualization concerns how to
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visualize a large geometric data set. A possible approach is by allowing the
viewer walks through these objects interactively. Of course, this method
is computationally intensive due to the size of the data and the real-time
requirement. This is where foveation could play an active role. Examples
are flight simulation systems designed by [42, 11].

Volume rendering, which could be viewed as a projection from a three
dimensional data to a two dimensional image, is inherently computationally
intensive due to the large size of volumetric data set. In three dimensions,
foveation results in even more significant data reduction, which in turn,
leads to a reduction of rendering time. Since volume data is a generalization
of image data, techniques on image foveation could be extended to volume
naturally, except that it poses more of a computational challenge. Levoy
and Whitaker build a system that achieve real-time rending of volume data
[17] using foveation. They perform volume rendering at different resolution
and the foveated image is obtained by pasting images of different resolutions
using interpolation.

Recently, there is growing interest in visualizing large data sets across
the Internet, and in these applications, the low transmission rate of the
network is a bottleneck. Foveation, in this case, helps to reduce the network
workload. As opposes to the previous applications, the data here could be
the simple array data, for example image or video.

Using foveation or region of interests (ROI) to reduce network workload
is an active area in video conferencing [31, 13, 2, 3]. Attention is also fo-
cused on the means to select ROI, for example in [31, 10]. Note that video
and still images are very different in nature and have different requirements.
Video transmission stresses even more on real-time performance, but there
is less requirement of progressive refinement since successive frames or im-
ages displayed are not the same. For still images, it is well known that
by allowing the user specifies the area of interest could greatly improve
compression rate. For example, the commercial Summus’ Wavelet Image
(WI) has the feature of multiple “region of interests focusing” [39]. Here,
the role of the user is to select the region of interests before the image is
compressed. The selected regions are then compressed with less distortion.
However, the role of the viewer is passive in the sense that he is not allowed
to choose the region of interests.

A point to note here is that the viewer’s gaze point is not fixed, in fact,
it is actively moving on the image. Thus, to provide a foveated image that
is indistinguishable to the viewer throughout the visualization process, it is
necessary to track the viewer’s gaze point and produce the corresponding
foveated image. Example of systems using eye tracking are [17, 16].

We would like to clarify that in our thinwire application, we do not
intend to track the viewer’s gaze point. Instead, the viewer is to “cooperate”

10



(a) (b)

Figure 2.4: Foveation as a non-uniform sampling process. Figure (a) is
reproduced from [46] and (b) is reproduced from [16]

with the system by selecting his gaze point using the conventional pointing
devices, for example mouse, joystick or even keyboard. We also do not aim
to use the logmap to produce foveated images that are indistinguishable
from their corresponding full resolution images. Instead, we use the logmap
as a guide to the “distribution” of resolution on the images.

2.2 Space-Variant Resolution

2.2.1 Foveation Operator

Our goal here is to formally describe the process of foveation and understand
the role of the logmap in this process. We formulate this process as an
operator and analyze its operator matrix with respect to some wavelet
basis. The analysis suggests some approximation methods. Based on these
methods, we propose an interactive progressive transmission scheme.

Definition in one dimension. We begin with one dimensional func-
tions. A foveation [8] of a function f : R → R is determined by a weight
function w : R→ R≥0 and a scaling function g : R→ R. The weight func-
tion is non-negative and w(x) = 0 only for finitely many x. The scaling
function g is integrable and normalized so that

∫∞
−∞ |g(x)| dx = 1.
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Define the foveation operator T fov as

(
T fovf

)
(x) :=

∫ ∞

−∞
f(t)

1
w(x)

g

(
t− x

w(x)

)
dt. (2.3)

By writing

gx(t) :=
1

w(x)
g

(
t− x

w(x)

)
, (2.4)

T fov can be rewritten as
(
T fovf

)
(x) = 〈f, gx〉.

Call the result of the above operation a space-variant image.
Treating T fov as an integral operator

(T f)(x) :=
∫

K(x, t)f(t)dt, (2.5)

then in our case, the kernel K(x, t) is the scaling function gx(t).
We are interested in a special class of weight functions. A standard

weight function is one of the form

wstd(t) := α|t− γ|+ β, (2.6)

where α, β and γ are fixed constants and α, β ≥ 0. We call α the rate, β the
foveal resolution and γ the gaze point, and call the resulting space-variant
image a foveated image. Figure 2.1 (b) is the result of applying T fov on
Figure 2.1(a) with a standard weight function.

We could obtain new weight function by combining several weight func-
tions. Given two weight functions, their blended weight function w is defined
as

w(x, y) = min{w1(x, y), w2(x, y)}.
We call a weight function blended from finitely many weight functions a
multi-fovea weight function and the corresponding space-variant image a
multi-foveated image.

In our thin-wire application, we only consider standard weight function
and multi-fovea function. Beside the physiological motivation, a multi-fovea
weight function is easy to manipulate since it is composed by finitely many
standard weight functions where each in turn can be easily represented by
their rate α, foveal resolution β and gaze point γ. This simple description
is desirable in the thinwire applications.

Tabernero et al. study a closely related foveatization operator [40]. We
will address the differences between their operator and ours.

12



Definition in two dimensions. In two dimensions, the scaling function
g : R× R→ R is integrable and normalized as follow:

∫ ∞

−∞

∫ ∞

−∞
|g(s, t)| ds dt = 1.

The two dimensional weight function w : R×R→ R+∪{0} is non-negative
and vanishes only at finitely many (x, y). Let

gx,y(s, t) :=
1

w(x, y)2
g

(
s− x

w(x, y)
,

t− y

w(x, y)

)
.

Define the two dimensional foveation as
(
T fovI

)
(x, y) :=〈I, gx,y〉. (2.7)

One way to obtain a two dimensional weight function is by extending a
one dimensional weight function w(·) in the following way:

w(x, y) := w(‖(x, y)‖2),

where ‖.‖2 is the usual 2-norm.

Motivations by logmap. The definition of T fov and standard weight
function is motivated by the logmap. It intends to capture the situation
where convolution is performed in the visual cortex plane. Let us break the
integral in the definition of T fov into two halves and assume x > 0,

T fovf(x) =
∫ ∞

0

f(t)
1
x

g

(
t− x

x

)
dt +

∫ 0

−∞
f(t)

1
x

g

(
t− x

x

)
dt.

We could rewrite the first half as a convolution.
∫ ∞

0

f(t)
1
x

g

(
t− x

x

)
dt

=
∫ ∞

0

f(eu)e−yg

(
eu − ey

ey

)
deu

(where ey = x and eu = t)

=
∫ ∞

−∞
f(eu)e−(y−u)g

(
e−(y−u) − 1

)
du

=
∫ ∞

−∞
f∗(u)g∗(y − u) du,
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ρx

Visual Cortex PlaneRetina Plane

θy

0

π

Figure 2.5: The corresponding neighborhood in the visual cortex plane and
the retinal plane. Note that the neighborhood in retinal plane has different
orientations and shapes.

where

f∗(u) := f(eu), and
g∗(v) := e−vg

(
e−v − 1

)
.

Similarly, the second half can be rewritten as a convolution of f∗ with g∗
where

f∗(u) := f(−eu), and
g∗(v) := −e−vg

(−e−v − 1
)
.

This simplicity suggests that perhaps we should reformulate the notion
of foveation by defining it as a convolution in the visual cortex plane (as
illustrated in Figure 2.5). However, in our application, we are interested
in multi-foveated image. A disadvantage of considering convolution in the
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ρx

θy

π

0

Figure 2.6: As opposed to Figure 2.5, the neighborhoods in the retinal
plane have common orientation and shape.

visual cortex plane is that the corresponding space-variant filters in the
retinal plane have “orientation” and “shape” that depend on their locations
(Figure 2.5), a fact which would cause difficulties in constructing multi-
foveated image. Instead, we keep the orientation and shape of the filters
but vary their width according to their locations (Figure 2.6). Note that
the difference between these two formulations amounts to whether a modulo
| · | is applied to w(x) (the w(x) within the parameter of g) in the definition
(2.3).

The foveatization operator [40], on the contrary, is equivalent to convolu-
tion in the visual cortex plane. Given a prototype filter P , the foveatization
of a function is defined as

T̃ fovf(x) :=
∫

1
|x|f(t)P

(
t

x

)
dt, (2.8)

By letting g(t) := p(t + 1), we have

T̃ fovf(x) :=
∫

1
|x|f(t)g

(
t− x

x

)
dt.
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Note the difference between this formulation and (2.3). If g is even, that
is g(x) = g(−x), then (2.8) can be viewed as a foveation operator with
w(x) = |x|.

2.2.2 Operator Matrix of Foveation

One approach to analyze an operator T : L2(R) → L2(R) is by studying its
operator matrix A whose entries

ai,j :=〈T (gi), gj〉,
where B = {gm}m∈Z is an orthonormal base. We are interested in the case
where B is an orthonormal compactly supported wavelet base {ψj,n}j,n∈Z.

The operator matrix is also useful in designing an approximation algo-
rithm. If the function f is uniformly sampled as a N -vector with respect
to the father wavelet φj0,0 at some scale j0, and the kernel (refer to (2.5))
is also sampled with respect to φj0,0 as a N × N matrix K, then a direct
method to compute T (f) takes θ(N2) arithmetic operations. However, in
the cases where the operator matrix A is sparse, we may able to do better.
For example, if A is diagonal and there is a linear time algorithm to de-
compose and reconstruct f with respect to B, then, we have a trivial linear
time algorithm. Note that there is a linear time fast wavelet transform for
the orthonormal compactly supported wavelet B,

For a non-sparse operator matrix, we can compress it by suppressing
entries that are below a threshold value. For many operators, by choosing
an appropriate wavelet, the compressed matrix Ã is sparse with a very thin
diagonal band, that is, |i − j| > k ⇒ ãi,j = 0, where k is some small
constant. This leads to a O(kn) time approximation algorithm.

Now, consider the foveation operator. Let

θj,m,k,n :=〈T fovψj,m, ψk,n〉. (2.9)

Let us compute, numerically, the foveation operator matrix. Figure
2.7 illustrates such a matrix computed using DAUB8 wavelet. The scaling
function is a Gaussian function cutting off at |x| > 5, that is,

g(x) :=

{
1√
2π

e−x2/2, if |x| < 5,

0, otherwise.

The weight function is the standard weight function w(x) :=(α|x|)−1 with
rate α := 1/30.

A quick visual inspection suggests that the matrix is dominated by the
diagonal entries θj,m,j,m where j,m ∈ Z. On the other hand, Figure 2.8
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k = 2

n = 0

n = 0

k = 3

k = 4

k = 5

m = 32

j = 4j = 5 j = 3

m = 0m = −32

n = −63

n = 0

n = 0

n = 63

Figure 2.7: Computed numerical value of the operator matrix {θj,m,k,n}.
The entries are grouped into blocks where each block consists of entries
with the same first and third index. For example, the block in the bottom-
left corner consists of entries of the form θ6,m,2,n where −3 ≤ m ≤ 3 and
−63 ≤ n ≤ 63. The intensity of each pixel corresponds to the value of the
corresponding entry; a darker pixel has a larger value.17



suggests that the diagonal entries decay, relatively slower, away from the
fovea. In other words, there are two directions of decay away from each
θj,0,j,0: a very fast decay off the diagonal and a slower decay away from the
fovea.

Another interesting observation from Figure 2.8 is the self similarity
across the scales, that is, θj,n,j,n = θk,n,k,n for any n, j, and k.

0.0

1.0

0.5

−31 0 0 0

j = 4j = 3

−15

Figure 2.8: The cross section of Figure 2.7 along the diagonal entries
θj,m,j,m.

We justify these two observations in the next two sections. We first give
an informal approximation of the diagonal entries θ0,n,0,n which provides
some insights on the roles of ψ and g. Next we give a few general bounds
on the entries.

We restrict our discussion to compactly supported wavelet and scaling
function. Furthermore, we only consider standard weight function with
zero foveal resolution. Specifically,
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Condition 2.1

1. supp(g) ⊆ [−A,A],

2. w(x) = α|x|, where αA < 1, and α > 0,

3. {ψj,m}j,m∈Z is an orthonormal compactly support wavelet, supp(ψ) ⊆
[−A,A], and ψ is uniformly Lipschitz q ≥ 0.

2.2.3 Approximating the diagonal entries

We assume Condition 2.1. For simplicity, we assume α = 1. By the compact
support of ψ,

θ0,n,0,n =
∫ n+A

n−A

∫ ∞

−∞
ψ0,n(x)ψ0,n(t)gx(t) dt dx,

where gx(t) := |x|−1g
(|x|−1(t− x)

)
. Note that we only have to consider gx

for x ∈ [n − A,n + A]. For large n, hn(· − x) is a good approximation of
gx, where

hn(t) :=
1
|n|g

(
t

n

)
.

Using this approximation, we have a much simpler form:

cn :=
∫ ∞

−∞

∫ ∞

−∞
ψ0,n(x)hn(t− x)ψ0,n(t) dt dx.

By interchanging the integrals (which is possible by Fubini’s theorem) and
treating the first two terms as a convolution, the above can be rewritten
as:

cn =
∫ ∞

−∞
(ψ0,n ? hn) (t)ψ0,n(t) dt.

By applying the Parseval’s formula and convolution theorem,

cn =
∫ ∞

−∞
ψ̂0,n(w)ĥn(w)ψ̂0,n(w) dw

=
∫ ∞

−∞
ĥn(w)

∣∣∣ψ̂0,n(w)
∣∣∣
2

dw, (2.10)

where we use the following convention for the Fourier transform:

f̂(w) =
1√
2π

∫ ∞

−∞
e−ixwf(x) dx.
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0.5
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2.5
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3.5

|ψ̂|2

|ĥm|
|ĥn|

w

Figure 2.9:
∣∣∣ψ̂

∣∣∣ ,
∣∣∣ĥm

∣∣∣ and
∣∣∣ĥn

∣∣∣ where m and n are some integers such that
m > n.

Figure 2.9 illustrates (2.10). Since ĥn(·) = ĝ(|n| · ),

|cn| =
∫ ∞

−∞
ĝ(|n|w)

∣∣∣ψ̂(w)
∣∣∣
2

dw.

Since ψ has compact support, ψ̂ is at least p times continuously differ-
entiable at 0. Furthermore, since ψ has p vanishing moments, we have
ψ̂(k)(0) = 0 for k < p. Hence |ψ̂(w)| < Cwp for some constant C. Thus

|cn| ≤ C2

∫ ∞

−∞
|ĝ(|n|w)|w2p dw

= C2|n|−2p−1

∫ ∞

−∞
|ĝ(w)|w2p dw.

Furthermore, if g is at least 2p times continuously differentiable, then
∫ ∞

−∞
|ĝ(w)| |w|2p < ∞,
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and thus leads to |cn| = O(|n|−2p−1).
What about 〈T fovφ, φ〉? Similarly, en is a good approximation where

en :=
∫ ∞

−∞
ĥn(w)

∣∣∣φ̂(w)
∣∣∣
2

dw.

Since |φ̂(0)| = 1, we expect a slower decay:

en ≤ E

∫ ∞

−∞
|ĥn(w)| dw

=
E

n

∫ ∞

−∞
|ĝ(w)| dw = E1n

−1,

where E and E1 are some constants. The effect of this slower decay appears
in two dimensional foveation, and we will revisit this in section 2.2.6.

2.2.4 Bounds on the entries

In this section, we study the operator matrix more rigorously. Again, we
assume the wavelet ψ, scaling function g and weight function w satisfy
Condition 2.1.

Self-similarity. This simple lemma tells us that the entries θj,m,k,n are
the same across the scales. It implies that to compute the operator matrix
we can first compute θ0,m,k,n for all m, k and n and then extend them to
all the other scales.

Lemma 1

θj,m,k,n = θj−`,m,k−`,n for any ` ∈ Z.

Proof. By definition,

θj,m,k,n =
∫ ∞

−∞
ψk,n(x)

∫ ∞

−∞
ψj,m(t)(w(x))−1g

(
t− x

w(x)

)
dt dx

=
∫ ∞

−∞
2−k/2ψ(2−kx− n)

∫ ∞

−∞
2−j/2ψ(2−jt−m)(w(x))−1g

(
t− x

w(x)

)
dt dx.

Substituting t′ = 2−`t and x′ = 2−`x,

θj,m,k,n =
∫ ∞

−∞
2−(k−`)/2ψ(2−(k−`)x′ − n)

∫ ∞

−∞
2−(j−`)/2ψ(2−(j−`)t′ −m)(w(x′))−1g

(
t′ − x′

w(x′)

)
dt′ dx′

= θj−`,m,k−`,n.
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Q.E.D.

Fast Decay. The next lemma (Lemma 2) tells us that for θj,m,k,n to be
non-zero, m is of the order of 2k−jn. The following lemma (Lemma 3)
tells us that θj,m,k,n is small if |k − j| is large. These two lemmas together
imply a decay off the diagonal. To illustrate, if j = k, then using the first
lemma, n is closes to m. If j 6= k, then the second lemma suggests that it
is small. Lemma 4 gives a sharper bound than Lemma 3 and it depends on
the regularity of the wavelet and |j − k|. However, it is only applicable for
large |m| or large |n|.

On the other hand, Lemma 5 suggests the relatively slower decay away
from the fovea. It gives a bound that decays as |m| or |n| increase and
depends on the regularity of the scaling function g and the number of van-
ishing moments ψ has. In particular, the diagonal entries (where (j,m) =
(k, n)) decay accordingly.

By just considering the support of g and ψ, we have the following:

Lemma 2 There are constants C and D such that, if θj,m,k,n 6= 0, then
we have the followings.

(a)

|n| < 2A ⇒ |m| < 2k−jC + D.

(b)

|m| < 2A ⇒ |n| < 2j−kC + D.

(c)

|n| ≥ 2A and |m| ≥ 2A ⇒ C|m| > 2k−j |n| > C−1|m|.

Proof. Figures 2.10 and 2.11 are useful in visualizing the proof. Let

G := {(t, x) : t ∈ supp(gx)} ,

Tk,n := {(t, x) : t ∈ R, x ∈ supp(ψk,n)} , and
Xj,m := {(t, x) : x ∈ R, t ∈ supp(ψj,m)} .

Note that G ⊆ G̃, Tk,n ⊆ T̃k,n and Xj,m ⊆ X̃j,m, where

G̃ := {(t, x) : t ∈ [x− |x|αA, x + |x|αA], } ,

T̃k,n :=
{
(t, x) : t ∈ R, x ∈ [2−k(−A− n), 2−k(A− n)]

}
, and

X̃j,m :=
{
(t, x) : x ∈ R, t ∈ [2−j(−A− n), 2−j(A− n)]

}
.
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x = t
1+aA

m−A

m + A

2j(n + A)

x

t

G̃
X̃j,n

T̃0,m

x = t
1−aA

2j(n−A)

Figure 2.10: The set G̃, X̃j,m and T̃0,n when n > A.

Figures 2.10 and 2.11 illustrate these three sets. Pictorially, the two lines
enclosing G̃ in Figure 2.10 are the lines {(t, x) : t = x(1−Aα)} and {(t, x) :
t = x(1 + αA)} respectively.

From the definition of θj,m,k,n, we can deduce that θj,m,k,n 6= 0 implies

G̃ ∩ T̃k,n ∩ X̃j,m 6= ∅. (2.11)

Now we analyze conditions on j,m, k and n implied by (2.11).

(a) If |n| < 2A, then we have (T̃0,n ∩ G̃) ⊆ {(t, x) : |x| ≤ 3A and |t| ≤
3A(1 + αA)} which implies that T̃0,n ∩ G̃ is a subset of

{(t, x) : x ∈ R, |t| ≤ C}, (2.12)
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where C is a constant. For (2.11) to hold, it is necessary that T̃j,m has
non-empty intersection with (2.12). There are two cases to consider:
Suppose (0, 0) ∈ X̃j,m, then |m| must be less than or equal to A;
Otherwise, that is (0, 0) 6∈ X̃j,m, we must have 2j(|m| −A) ≤ C. By
combining both cases, we have

|m| < 2jC + D,

where D is a constant.

By self-similarity (Lemma 1), we generalize the result to all k, that
is, if βj,m,k,n 6= 0, then

|m| < 2j−kC + D. (2.13)

(b) Note that in the proof of part (a), the role of T̃k,n and Sj,m are
interchangeable, and thus implying part(b).

(c) Suppose |n| ≥ 2A, then we have the situation depicts in Figure 2.10.
If n > 0, then

(T̃0,n ∩ G̃) ⊆
{(t, x) : |x− n| ≤ A, (1− αA)(n−A) ≤ t ≤ (n + A)(1 + αA)}.

Otherwise (n ≤ 0), we have

(T̃0,n ∩ G̃) ⊆
{(t, x) : |x− n| ≤ A, (1 + αA)(n + A) ≤ t ≤ (n−A)(1− αA)}.

Combining both sets, and together with the assumption that |n| ≥
2A, we have the weaker statement:

(T̃0,n ∩ G̃) ⊆ {(t, x) : x ∈ R, C−1|n| < |t| < C|n|}, (2.14)

for some positive constant C. Note that X̃j,m has non-empty inter-
section with (2.14) only if 2j(|m| − A) ≤ C|n|. Since |m| ≥ 2A, we
have

|m| ≤ C12−j |n|+ A,

where C1 is a positive constant. It is also necessary that 2j(|m|+A) ≥
C−1|n| which can be written as |m| ≥ C−1

2 2−j |n| since |m| ≥ 2A.

In general, by self-similarity (Lemma 1), if βj,m,k,n 6= 0, |m| ≥ 2A
and |n| ≥ 2A, then

C−12k−j |n| ≤ |m| ≥ C2k−j |n|, (2.15)

for some constant C.
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x

t

m + A

2j(n + A)

T̃0,m

X̃j,n

Figure 2.11: The sets G̃, T̃j,m and X̃0,n when 0 < n < A.

To simplify notations, (a), (b) and (c) are stated with common constants.
Q.E.D.

Lemma 3 There is a constant J such that for any j, k, |n| < 2A and |m| <
2A,

|θj,m,k,n| ≤ J2−|k−j|/2.

Proof.

(a) First we show |θj,m,k,n| ≤ J2(k−j)/2.

θ0,m,k,n =
∫ ∞

−∞
ψk,n(x)

∫ ∞

−∞
ψ0,m(t)(α|x|)−1g

(
t− x

α|x|
)

dt dx
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|θ0,m,k,n| ≤ sup
−∞<x<∞

{∫ ∞

−∞
ψ0,m(t)(α|x|)−1g

(
t− x

α|x|
)

dt

}
·

∫ ∞

−∞
|ψk,n(x)| dx

= J1

∫ ∞

−∞
|ψk,n(x)| dx

≤ J22k/2.

Thus,
|θj,m,k,n| ≤ J22(k−j)/2.

(b) Next we show |θj,m,k,n| ≤ J2(j−k)/2. By substituting t′ = tx−1 into
the definition of θ0,m,k,n, we have

θ0,m,k,n =
∫ ∞

0

ψk,n(x)
∫ ∞

−∞
ψ0,m(t′x)α−1g

(
t′ − 1

α

)
dt′ dx

+
∫ 0

−∞
ψk,n(x)

∫ −∞

∞
ψ0,m(t′x)(−α−1)g

(
− t′ − 1

α

)
dt′ dx.

Consider the first term in the right hand side (the second term is
similar).
∣∣∣∣
∫ ∞

0

ψk,n(x)
∫ ∞

−∞
ψ0,m(tx)α−1g

(
t− 1

α

)
dt dx

∣∣∣∣

=
∣∣∣∣
∫ 2−c

c

α−1g

(
t− 1

α

) ∫ ∞

0

ψk,n(x)ψ0,m(tx) dx dt

∣∣∣∣
(since supp(g(α−1(· − 1)) ⊆ [c, 2− c] where c := 1− αA)

≤ max
c≤t≤2−c

{∫ ∞

0

ψk,n(x)ψ0,m(tx) dx

} ∫ 2−c

c

∣∣∣∣α−1g

(
t− 1

α

)∣∣∣∣ dt

≤ F3 max
c≤t≤2−c

{∫ ∞

0

ψk,n(x)ψ0,m(tx) dx

}

≤ F3 max
c≤t≤2−c

{
2−k/2

∫ ∞

0

|ψ0,m(tx)| dx

}

= F32−k/2

∫ ∞

0

|ψ0,m(cx)| dx

≤ F42−k/2.

Q.E.D.

26



Note that the above two lemmas exploit the compact support of ψ and
g, but do not consider other useful properties like the smoothness of g. The
next two lemmas make use of the regularity of ψ and g to obtain sharper
result. (Recall that we have assumed Condition 2.1.)

Lemma 4 Suppose ψ is uniformly Lipschitz q and has at least q vanishing
moments, then there is a constant E such that for any j, m, k, n, where not
both |n| < 2A and |m| < 2A, we have

|θj,m,k,n| ≤ E 2−|k−j|(q+1/2).

Proof.

(a) First we show |θj,m,k,n| ≤ E2(k−j)(q+1/2). Let W̃ := G̃ ∩ T̃k,n ∩
X̃j,m, where G̃, T̃k,n and X̃j,m are as defined in Lemma 2. Since
either |n| ≥ 2A or |m| ≥ 2A, it is necessary that W̃ ⊆ R≥0 ×R≥0

or W̃ ⊆ R≤0 × R≤0. Therefore, we have two cases: either n > 0,
m > 0 and

θ0,m,k,n =
∫ ∞

0

∫ ∞

0

ψk,n(x)ψ0,m(t)(αx)−1g

(
t− x

αx

)
dt dx,(2.16)

or n < 0, m < 0 and

θ0,m,k,n =
∫ 0

−∞

∫ 0

−∞
ψk,n(x)ψ0,m(t)(−αx)−1g

(
t− x

−αx

)
dt dx.

We only consider the first case since the second case is similar.

θ0,m,k,n =
∫ ∞

0

∫ ∞

0

ψk,n(x)ψ0,m(t)(αx)−1g

(
t− x

αx

)
dt dx,

=
∫ ∞

0

ψk,n(x)
∫ ∞

0

ψ0,m(t′x)α−1g

(
t′ − 1

α

)
dt′ dx. (2.17)

(by substituting t′ = tx−1)

If n > 2A, then ψk,n(x) = 0 for x < 0. Using this fact, (2.17) can
be rewritten as

∫ ∞

−∞
ψk,n(x)

∫ ∞

0

ψ0,m(t′x)α−1g

(
t′ − 1

α

)
dt′ dx.
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Otherwise, we have m > 2A. Since ψ has compact support,
ψ0,m(t′x) = 0 whenever t′ and x have different sign. Therefore,
(2.17) can again be rewritten as the above.

Since supp(g) ⊆ [−A,A], and αA < 1, we have

supp(g(α−1(· − 1))) ⊆ [c, 2− c],

where c := 1− αA is a positive constant.

θ0,m,k,n =
∫ 2−c

c

α−1g(
t− 1

α
)
∫ ∞

−∞
ψk,n(x)ψ0,m(tx) dx dt (2.18)

=
∫ 2−c

c

α−1tqg

(
t− 1

α

) ∫ ∞

−∞
ψk,n(x)

(
t−qψ0,m(tx)

)
dx dt.

By Lemma 23 (in Appendix A), since ψ0,m is uniformly Lipschitz
q, then so is the function t−qψ0,m(xt) on x. Together with Theo-
rem 24,

|
∫ ∞

−∞
ψk,n(x)t−qψ0,m(tx)) dx| ≤ E12k(q+1/2),

for some constant E1. Therefore

|θ0,m,k,n| ≤ max
c≤t≤2−c

{∣∣∣∣α−1tqg

(
t− 1

a

)∣∣∣∣
}
·

∫ 2−c

c

E12k(q+1/2) dt = E22k(q+1/2).

(b) We now show |θj,m,k,n| ≤ E2(j−k)(q+1/2). By self-similarity (Lemma
1), (2.18) can be rewritten as:

θj,m,0,n =
∫ 2−c

c

1
α

g

(
t− 1

α

)
t−1/2

∫ ∞

−∞
ψ0,n(x)

(
t1/2ψj,m(tx)

)
dx dt

|θj,m,0,n| ≤ max
c≤t≤2−c

{∣∣∣∣
1
α

g

(
t− 1

α

)
t−1/2

∣∣∣∣
}
·

∫ 2−c

c

∣∣∣∣
∫ ∞

−∞
ψ0,n(x)

(
t1/2ψj,m(tx)

)
dx

∣∣∣∣ dt.

Since ψ0,n is uniformly Lipschitz q,

|θj,m,0,n| ≤ E3

∫ 2−c

c

t−(q+1/2)2j(q+1/2) dt

≤ E42j(q+1/2).
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Q.E.D.

Lemma 5 Suppose g is uniformly Lipschitz ρ and ψ has at least ρ vanish-
ing moment, then, for any |n| ≥ 2A, |m| ≥ 2A and any j, k,

|θj,m,k,n| ≤ F 2(j−k)(ρ+1/2)|n|−(ρ+1), and

|θj,m,k,n| ≤ F 2(k−j)/2|m|−(ρ+1).

Proof.

(a) First we show |θj,m,k,n| ≤ F 2(j−k)(ρ+1/2)|n|−(ρ+1).

Since g is uniformly Lipschitz ρ, then so is (αx)ρg(·/(αx)− 1).

θj,m,0,n =
∫ ∞

−∞
ψ0,n(x)|αx|−(ρ+1)

∫ ∞

−∞
ψj,m(t)

(
|αx|ρg

(
t

αx
− 1

))
dt dx.

Therefore,

|θj,m,0,n| ≤
∫ ∞

−∞

∣∣∣ψ0,n(x)(αx)−(ρ+1)F12j(ρ+1/2)
∣∣∣ dx

= F12j(ρ+1/2)

∫ n+A

n−A

ψ0,n|αx|−(ρ+1) dx.

Since |n| ≥ 2A,

|θj,m,0,n| ≤ F12j(ρ+1/2)(α|n−A|)−(ρ+1)

∫ ∞

−∞
|ψ0,n(x)| dx

≤ F22j(ρ+1/2)|n|−(ρ+1).

Generalizing to all k, we have

|θj,m,k,n| ≤ F
(j−k)(ρ+1/2)
2 |n|−(ρ+1). (2.19)

(b) Now we show |θj,m,k,n| ≤ F 2(k−j)/2|m|−(ρ+1).

If |n| ≥ 2A and |m| ≥ 2A, then combining (2.19) and Lemma
2(c), we obtain

|θj,m,k,n| < F22(j−k)(ρ+1/2)(C−12j−k|m|)−(ρ+1)

< F32(k−j)/2(|m|)−(ρ+1).

Q.E.D.
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2.2.5 Boundedness of T fov

It is interesting to know whether the foveation operator is bounded. An
operator T is bounded if there is a constant B such that for any function
f ∈ L2(R),

‖T (f)‖2 ≤ B‖f‖2.
We use the fast decays of the operator matrix to show the boundedness.

Theorem 6 For a scaling function g : R → R and weight function w :
R→ R≥0, if

(a) supp(g) ⊆ [−A,A], for some constant A,

(b) g is uniformly Lipschitz p > 0, and

(c) w(x) = α|x|, where αA < 1, and α > 0,

then the operator T fov is bounded.

To prove the theorem, we first find an appropriate wavelet ψ and study
the matrix with entries 〈T fovψj,m, ψk,n〉. Next, by using the self-similarity
and fast decay property, we apply Schur’s lemma (Lemma 22) to show that
T fov is bounded. This approach of proving the boundedness of an operator
could also be found in [12] and [20].

We first show a few lemmas and present the proof of this theorem at
the end of this section. In the rest of this section, we assume that the
scaling function g and weight function w satisfy the conditions stated in
the theorem. Furthermore, we assume ψ is a wavelet with support contained
in [−A,A], and ψ is uniformly Lipschitz q with q ≥ 5

4 and has at least 2
vanishing moments. In the proof of the theorem, we will show that it is
also possible to “scale” up the support of g so that such a wavelet exist.

Let

ρ :=min{p, 2}. (2.20)

Define
w` := 2`λ,

where λ is a constant given by

λ :=max{1
2
− ρ,

1
4
}. (2.21)

The next lemma takes care of cases when |n| and |m| are small.

Lemma 7 There is a constant B such that the followings hold.
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(a) For any |ñ| < 2A and k̃,
∑

j

∑
m

wj |θj,m,̃k,ñ
| ≤ Bw

k̃
.

(b) For any |m̃| < 2A and j̃,
∑

k

∑
n

wk|θ̃j,m̃,k,n
| ≤ Bw

j̃
.

(c) For any m̃ and j̃,
∑

k

∑

|n|<2A

wk|θ̃j,m̃,k,n
| ≤ Bw

j̃
.

(d) For any ñ and k̃,
∑

j

∑

|m|<2A

wj |θj,m,̃k,ñ
| ≤ Bw

k̃
.

Proof.

(a)
∑

j

∑
m

wj |θj,m,̃k,ñ
|

=
∑

j

∑

|m|>2A

wj |θj,m,̃k,ñ
|+

∑

j

∑

|m|≤2A

wj |θj,m,̃k,ñ
|

≤
∑

j≤k̃

∑

|m|>2A

wjE2(j−k̃)(q+1/2) +
∑

j>k̃

∑

|m|>2A

wjE2(̃k−j)(q+1/2)

(by Lemma 4) (by Lemma 4)

+
∑

j≤k̃

∑

|m|≤2A

wjJ2(j−k̃)/2 +
∑

j>k̃

∑

|m|≤2A

wjJ2(̃k−j)/2

(by Lemma 3) (by Lemma 3)

= w
k̃

∑

j≤k̃

∑

|m|>2A

E2(j−k̃)(q+1/2+λ)

+ w
k̃

∑

j>k̃

∑

|m|>2A

E2(̃k−j)(q+1/2−λ)
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+ w
k̃

∑

j≤k̃

∑

|m|≤2A

J2(j−k̃)(1/2+λ)

+ w
k̃

∑

j>k̃

∑

|m|≤2A

J2(̃k−j)(1/2−λ). (2.22)

Consider the last two terms in the right hand side. For some
constant B1,

w
k̃

∑

j≤k̃

∑

|m|≤2A

J2(j−k̃)(1/2+λ) + w
k̃

∑

j>k̃

∑

|m|≤2A

J2(̃k−j)(1/2−λ)

≤ 4AJw
k̃


∑

j≤k̃

2(j−k̃)(1/2+λ) +
∑

j>k̃

2(̃k−j)(1/2−λ)




≤ B1wk̃
.

(since λ <
1
2
)

We now consider the first two terms in (2.22). By Lemma
2, the number of m’s such that θ

j,m,̃k,ñ
6= 0 is less than

2k̃−jC + D. Thus,

w
k̃

∑

j≤k̃

∑

|m|>2A

E2(j−k̃)(q+1/2+λ) + w
k̃

∑

j>k̃

∑

|m|>2A

E2(̃k−j)(q+1/2−λ)

≤ Cw
k̃


∑

j>k̃

2(̃k−j)E2(̃k−j)(q+1/2−λ)

+
∑

j≤k̃

2(̃k−j)E2(j−k̃)(q+1/2+λ)




+Dw
k̃


∑

j>k̃

2(̃k−j)(q+1/2−λ) +
∑

j≤k̃

2(j−k̃)(q+1/2+λ)




≤ w
k̃
B2.

(since q +
1
2
− λ > 1).

This shows part (a). We can similarly show part (b) by
switching j with k and m with n.
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(c)
∑

k

∑

|n|<2A

wk|θ̃j,m̃,k,n
|

≤ 4A


∑

k<j̃

2kλJ2(k−j̃)(1/2) +
∑

k≥j̃

2kλJ2(̃j−k)(1/2)




(by Lemma 3)

= 4Aw
j̃


∑

k<j̃

J2(k−j̃)(1/2+λ)) +
∑

k≥j̃

J2(̃j−k)(1/2−λ)




≤ w
j̃
B3.

This shows part (c). Similarly, we have part (d) by symme-
try.

Q.E.D.

Lemma 8 There is a constant G such that the following bounds hold.

(a) For any |m̃| > 2A and j̃,
∑

k>j̃

wk

∑

|n|≥2A

|θ̃
j,m̃,k,n

| ≤ w
j̃
G.

(b) For any |m̃| > 2A and j̃,
∑

k≤j̃

wk

∑

|n|≥2A

|θ̃
j,m̃,k,n

| ≤ w
j̃
G.

(c) For any |ñ| > 2A and k̃,
∑

j<k̃

wj

∑

|m|≥2A

|θ
j,m,̃k,ñ

| ≤ w
k̃
G.

(d) For any |ñ| > 2A and k̃,
∑

j≥k̃

wj

∑

|m|≥2A

|θ
j,m,̃k,ñ

| ≤ w
k̃
G.
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Proof.

(a) By Lemma 5,

∑

|n|≥2A

|θ̃
j,m̃,k,n

| ≤
∑

|n|≥2A

F2(̃j−k)(ρ+1/2)|n|−(ρ+1)

≤ G12(̃j−k)(ρ+1/2).

Summing over all k larger than j̃,

∑

k>j̃

wk


 ∑

|n|≥2A

|θ̃
j,m̃,k,n

|

 ≤

∑

k>j̃

2kλG12(̃j−k)(ρ+1/2)

= 2̃jλG1

∑

k>j̃

2(̃j−k)(ρ+1/2−λ)

≤ w
j̃
G2. (2.23)

(since λ <
1
2
)

(b) For any m̃ ≥ 2A, and k, by Lemma 2, the number of n’s such
that θ̃

j,m̃,k,n
6= 0 is less than C|m|2̃j−k. Combined with Lemma

5,

∑

|n|≥2A

wk|θ̃j,m̃,k,n
| ≤ 2kλ

(
C|m̃|2̃j−k

)(
F2(k−j̃)/2|m̃|−(ρ+1)

)

≤ w
j̃
G3|m̃|−ρ2(̃j−k)(1/2−λ). (2.24)

On the other hand, by applying Lemma 4, we have

∑

|n|≥2A

wk|θ̃j,m̃,k,n
| ≤ 2kλ

(
C|m̃|2̃j−k

)
F2(k−j̃)(q+1/2)

≤ w
j̃
G4|m̃|2(k−j̃)(q−1/2+λ). (2.25)

Now, we have two inequalities: (2.24) decays as |m̃| increases
but grows as k decreases; whereas it is in the other way in
(2.25). Let ξ be a positive constant ξ := ρ( 1

2 − λ)−1 (so that

2ξ(1/2−λ) log2 |m̃| = |m̃|ρ). Summing up all “small” k using (2.24),
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we have
∑

j̃−ξ log |m̃|≤k≤j̃

wk|θ̃j,m̃,k,n
| ≤ G3wj̃

|m̃|−ρ2ξ(1/2−λ) log m̃

≤ G5wj̃
.

(by choice of ξ)

By definition of λ (2.21), if ρ ≤ 1
4 , then λ = 1

2 −ρ, which implies
ξ = 1. Thus

ξ

(
q − 1

2
+ λ

)
= q − ρ > 1.

On the other hand, if ρ > 1
4 , then λ = 1

4 which implies ξ = 4ρ.
Together with the assumption that q ≥ 5

4 ,

ξ

(
q − 1

2
+ λ

)
> q − 1

4
≥ 1.

Therefore 2−ξ(q−1/2+λ) log2(m̃) ≤ |m̃|−1.

Summing up the “large” k using (2.25), and applying this in-
equality, we have

∑

k<j̃−ξ log |m̃|
wk|D3θ̃j,m̃,k,n

| ≤ G4wj̃

∑

h<j̃

F2(h−ξ log |m̃|−j̃)(q−1/2+λ)|m̃|

≤ G6

∑

h<j

w
j̃
|m̃|(|m̃|−1)2(h−j̃)(q−1/2+λ)

≤ G7wj̃
.

(c) Using Lemma 5, it is easy to verify that, for any |ñ| ≥ 2A,
∑

|m|≥2A

|θ
j,m,̃k,ñ

| ≤
∑

|m|≥2A

2(̃k−j)/2|m|−(ρ+1)

≤ H12(̃k−j)/2.

Summing over all j smaller than k̃,
∑

j≤k̃

wj

∑

|m|≥2A

|θ
j,m,k,ñ

| ≤
∑

j>k̃

2jλH12(̃k−j)/2

=
∑

j>k̃

2k̃λH12(̃k−j)(1/2+λ) ≤ w
k̃
H2.
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(d) By Lemma 2, the number of m’s such that θ
j,m,̃k,ñ

6= 0 is less

than C|ñ|2k̃−j . By applying Lemma 5,

wj

∑

|m|≥2A

|θ
j,m,̃k,ñ

| ≤ 2jλC
(
|ñ|2k̃−j

)
F2(j−k̃)(ρ+1/2)|ñ|−(ρ+1)

= 2k̃λH3|ñ|−ρ2(j−k̃)(ρ+1/2−λ). (2.26)

Since ρ > 0 and |ñ| ≥ 2A, therefore |ñ|−ρ is bounded above.
Thus we have,

∑

j<k̃

∑

|m|≥2A

wj |θj,m,̃k,ñ
| ≤ w

k̃
H32(j−k̃)(ρ+1/2−λ)

≤ w
k̃
H4.

Q.E.D.

Proof of Theorem 6.
Recall that to apply Lemma 7 and Lemma 8, we have to find a wavelet

ψ that satisfies these assumptions:

1. supp(ψ) ⊆ [−A,A], and

2. ψ is uniformly Lipschitz q ≥ 5
4 and has at least two vanishing mo-

ments.

Note that we can arbitrary scale up the support of the scaling function g
as long as the rate α of the weight function scales up proportionally. For
example, for any d > 0, let

g̃(x) := g(d−1x), and
w̃(x) := d−1α|x|,

then the foveation operator under this new scaling function g̃ and weight
function w̃ are the same as the original T fov, although supp(g) ⊆ [−dA, dA].
Therefore, the restriction on ψ can be relaxed to the followings:

1. ψ has compact support, and

2. ψ is uniformly Lipschitz q ≥ 5
4 and has at least two vanishing mo-

ments.

Certainly, such wavelet exists. An example is DAUB6 [9].
Now, by straight forward application of Schur’s lemma using Lemma 8

and Lemma 7, we have the boundedness of T fov.
Q.E.D.
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2.2.6 Approximation of Foveation

Given a function f : R→ R represented by a sequence {a[n]}n∈Z, where

f =
∞∑

n=−∞
a[n]φ0,n, (2.27)

and φ is a father wavelet. We want to compute its foveation with respect
to a standard weight function and some scaling function g. Let ψ be the
mother wavelet corresponds to φ, as noted before (section 2.2.4), if g is
regular and ψ has enough vanishing moments, then the operator matrix
(with respect to ψ) is dominated by the diagonal entries. This intuitively
justifies the following approximation of the foveation operator.

T fovf ≈
∞∑

j=1

∞∑
n=−∞

θj,n,j,ndj [n]ψj,n,

where each dj [n] :=〈f, ψj,n〉 can be computed from {a[n]}∞n=−∞ by the fast
wavelet transform. We further approximate each θj,n,j,n by a precomputed
value cj [n], and summing j and n over finite range:

T fovf ≈ 〈f, φ`0,0〉φ`0,0 +
`0∑

j=1

N∑
n=0

cj [n]dj [n]ψj,n. (2.28)

Call the matrix/array {cj [n]}j,n the mask.
We could precompute (numerically) cj [n] directly from the definition of

θj,n,j,n or from the approximation (2.10) described in section 2.2.3. Care
must be taken in computing θj,n,j,n. If it is computed directly from the
definition, then we need to decompose the kernel gx(t) with respect to φ0,0

and this is not easy. In practice, we sample the kernel uniformly at a unit
spacing and thus inducing error, especially when j and x are small. Figure
2.12 and Figure 2.15(b) are computed in this way. Note that in Figure 2.12,
due to the error, self-similarity does not hold when j is small. A remedy is
to compute θj,n,j,n for some large j (typically, j > 3) and then extending
it to other scales using self-similarity.

The given function may not represented as in (2.27). For example, it
may be represented by the uniform sample {ã[n]}n∈Z where each ã[n] := f(n).
In this case, the fast wavelet transform is no more exact. Consequently,
some properties, in particular, self-similarity, does not hold.

Since we usually do not know the precise method by which the function
is sampled, and in any case, this sampling error is small when the scale j
is large, we could still use the self-similar mask which is computed in high
resolution (large j).
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The precomputed mask is only applicable for a specific weight function.
In the thinwire application, a faster method is required. We precompute a
“lookup” table L of size Lsize, with respect to the standard weight function

w0(x) := α0|x|,
where α0 is some small constant. Typically, a good choice of α0 is (Lsize)−1,
however, for convenience in discussion, we assume that α0 = 1. Hence,
each L[k] stores the precomputed value of θ1,0

1,k. For entries in other scales
or entries correspond to different weight functions, their values are “looked-
up” from this table.

Let us define θα,β
j,n to be the diagonal entries θj,n,j,n correspond to the

foveation where the standard weight is w(x) = α|x|+ β.
To approximate θα,β

j,n , the lookup procedure returns L[k], where

k :=bα(|n|+ 2−jβ)c.
If (k > Lsize), then the value zero is returned. Recall that L[k] = c1,0

1 [k].
In particular, if β = 0 but α 6= 1, then the lookup amounts to a dilation

by a factor of α. If α = 1 but β 6= 0, then the lookup amounts to a
translation. This lookup procedure can be justified by using the similar
trick in deriving (2.10). The details are shown in the next few paragraphs.

Different rate α. Assuming n is large and n
α is an integer, let us compare

θ1,0
1,n and θα,0

1, n
α

for some α > 0.

θ1,0
1,n =

∫ ∞

−∞
ψ1,n(x)

∫ ∞

−∞

1
|x|g

(
t− x

|x|
)

ψ1,n(t) dt dx

=
∫ A

−A

ψ1,0(x)
∫ ∞

−∞

1
|x + n|g

(
t− x

|x + n|
)

ψ1,0(t) dt dx.

On the other hand,

θα,0
1, n

α
=

∫ n
α +A

n
α−A

ψ0, n
α

∫ ∞

−∞

1
α|x|g

(
t− x

α|x|
)

ψ0, n
α
(t) dt dx

=
∫ A

−A

ψ0,0

∫ ∞

−∞

1
|αx + n|g

(
t− x

α|x|+ n

)
ψ0,0(t) dt dx.

The outer integral integrates x from −A to A. Therefore, for large n, |x|+n
is a good approximation of α|x|+n, and we could approximate θα,0

1,n by θ1,0
1, n

α
.

Figure 2.13 confirms this approximation numerically. Recall that θ1,0
1, n

α
is

precomputed and stored in L[n
α ].
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Figure 2.12: Numerically computed θj,n,j,n plotted as a function of n. The
samples are taken uniformly at a unit spacing.

Different foveal resolution β. With non-zero β, the self-similarity prop-
erty no long holds. This is intuitively clear since the foveal no longer has
“infinite” precision, and thus θ1,β

j,0 vanishes for small j.

θ1,β
j,0 =

∫ ∞

−∞
ψj,n(x)

∫ ∞

−∞
ψj,n(t)

1
|x|+ β

g

(
t− x

|x|+ β

)
dt dx

=
∫ ∞

−∞
ψ0,n(x)

∫ ∞

−∞
ψ0,n(t)

1
|x|+ 2−jβ

g

(
t− x

|x|+ 2−jβ

)
dt dx

=
∫ n+2−jβ+A

n+2−jβ−A

ψ0,n+2−jβ(x)

∫ ∞

−∞
ψ0,n+2−jβ(t)

1
|x− 2−jβ|+ 2−jβ

g

(
t− x

|x− 2−jβ|+ 2−jβ

)
dt dx.

If n + 2−jβ − A is large, we have |x − 2−jβ| + 2−jβ = |x|. Therefore, we
approximate θ1,β

j,0 by

θ1,β
j,n ≈

∫
ψ0,n+2−jβ(x)

∫
ψ0,n+2−jβ(t)

1
|x|g

(
t− x

|x|
)

dt dx

= θ1,0
1,k.
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Figure 2.13: (a) Entries of θα,0
1,n with different rate α plotted as a function

of n. (b) Approximating the entries with rate α = 1/60 by dilating the
entries with rate α = 1/100.
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where k :=n + 2−jβ.

Generalization to two dimensions. We now consider raster images.
Given an image represented by N ×N pixels {p[i, j]}0≤i,j<N . We consider
the “non-standard” two dimensional wavelet. Let

Φj,m,n(x, y) := φj,m(x)φj,n(y),
Ψd

j,m,n(x, y) := ψj,m(x)ψj,n(y),
Ψv

j,m,n(x, y) := ψj,m(x)φj,n(y), and

Ψh
j,m,n(x, y) := φj,m(x)ψj,n(y).

As is in the one dimensional case, we assume that

I =
N−1∑
n=0

N−1∑
m=0

p[n,m]Φ0,n,m.

The foveation of I, with respect to a weight function w and a separable
scaling g, is approximated by

〈I,Φ`0,0,0〉Φ`0,0,0 +
∑

k,m,n,j

ck
j [m,n]dk

j [m,n]Ψk
j,m,n,

where
dk

j [m,n] :=〈I, Ψk
j,m,n〉,

and each ck
j [m, n] is an approximation of the diagonal entries,

∫ ∞

−∞
dy

∫ ∞

−∞
dx Ψk

0,m,n(x, y)
∫ ∞

−∞
dt

∫ ∞

−∞
ds Ψk

0,m,n(s, t)gw(x,y)(s, t).

Since w(x, y) is not separable, we can not separate the scaling function in
the above integration. However, by assuming that w(x, y) remains con-
stant in the domain [m − A,m + A] × [n − A, n + A], gw(x,n)(s)gw(m,y)(t)
approximates gw(x,y)(s, t). Using this approximation, we have a simpler
form, through which we derive a lookup procedure similar to that in one
dimension.

To precompute the two dimensional lookup table directly from the def-
inition is computational intensive, especially when the support of ψ or g is
large. By using similar argument in the previous paragraph, we have

ck
j [m, n] =





cj [r] · bj [r], if k = v,
bj [r] · cj [r], if k = h,
cj [r] · cj [r], otherwise,

(2.29)
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where r :=
√

m2 + n2, each cj [m] is the mask in one dimension and each
bj [n] is an approximation of

〈φj,m, T fov (φj,m)〉.

The approximation (2.29) not only suggests a way to compute ck
j,m,n it also

suggests a way to reduce the size of the lookup table: instead of keeping
a two dimensional mask, we could keep two masks {cj [m]}, {dj [m]}, and
compute ck

j [m,n] as required.
As observed in section 2.2.3, 〈φj,m, T (φj,m)〉 decays much slower than

〈ψj,m, T (ψj,m)〉. Thus the vertical component has a slower decays compares
to the diagonal component. Figure 2.14(a) shows the contour plot of a mask
and Figure 2.16(a) is the foveation computed using this mask.

Another speedup in precomputation is by assuming the entries are sym-
metric around the fovea. Thus, we only have to compute ck

1 [0,m] and then
rotate it to fill out the lookup table.

A simplified approximation. An interesting simplification is by further
approximating ck

j,m,n by it’s thresholded value TH(θj,n,j,n), where

TH(x) =
{

1 if x > D, and
0 otherwise,

for some constant D. Call this simplified mask the 0-1 mask.
Unlike the previous method, most coefficients here could be completely

excluded from the reconstruction process. Another way of viewing this
simplified approximation is by treating {TH(θj,n,j,n)} as a indicator, where
each entry indicates whether the corresponding coefficient is to be included.
Figure 2.14(b) illustrates a self-similar 0-1 mask.

This method of using a 0-1 mask to produce “foveated” image is essen-
tially the well-known technique of Burt [5]. In a certain sense, we give a
justification of this method by arguing that it is indeed an approximation
of the foveation operator with standard weight function.

The advantages of using the 0-1 mask, beside its simplicity, is the com-
putational speedup in the reconstruction process. As observed in the intro-
duction of this chapter, foveation is also applied to speedup computation,
which is achieved by ignoring most of the wavelet coefficients. For exam-
ple, in [7], the projection of the volume data onto a plane is computed by
performing a texture mapping operation for each coefficient. Note that the
original approximation scheme is not suitable.

Figure 2.16 and Figure 2.17 shows the approximation of Figure 2.15(a)
using DAUB6 and Haar wavelet respectively.
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(a)

(b)

Figure 2.14: (a)The contour plot of a mask. Note that the vertical compo-
nent and diagonal component are different. (b) The simplified 0-1 Mask.
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(a)

(b)

Figure 2.15: Foveation with gaze point at the ‘left eye’ and with rate
α = 1/(80 pixels). (a) Original image I. (b) Computed directly from
the definition. The pixels in the original image take integer value in
{0, . . . , 255}. 44



(a)

(b)

Figure 2.16: Approximation of Figure 2.15(b). (a) Computed using the
mask as shown in Figure 2.14(a). (b) Computed using the 0-1 mask as
shown in Figure 2.14(b). The coefficients are not quantized; they are rep-
resented up to the precision of their floating point representation.45



(a)

(b)

Figure 2.17: Foveation using Haar wavelet. The weight function is same as
that in Figure 2.16. (a) Computed using the diagonal entries. (b) Com-
puted using the 0-1 mask.
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Summary. Let us summarize the methods described in this section.

1. We approximate the operator matrix of T fov by a diagonal matrix.

2. Each diagonal entry is precomputed directly from the definition or
from the approximation (2.10).

3. As it is impossible to store the diagonal entries for all standard weight
functions, we precompute and store the diagonal entries of one stan-
dard weight in a lookup table. For other weight functions, the values
are derived from this table.

4. In two dimensions, by using (2.29), we could speedup the computation
of the lookup table, and reduce the size of the table.

5. The algorithm could be further simplified by thresholding each en-
tries.

2.2.7 Transmission Scheme

We now propose a general interactive progressive scheme motivated by the
above approximation. Let

dk
j [m,n] :=〈I, Ψk

j,m,n〉.

For simplicity, assume that the interactions between the client and the
server occur at discrete times t = 1, 2, . . .. At time t, the server keeps a
multi-fovea weight function wt and a time varying mask C = {ck

` [m,n]}0<`≤`0,0≤m,n<N .
Here, the mask is used as follows: for simplicity, if the mask is 0-1, then it
tells whether a particular coefficient has been received or not. In general,
it is a value in [0,1]. Further, each mask value ck

` [m,n] is non-decreasing
over time.

Initially, w0(x) := 2`0 and the corresponding mask C are initialized ac-
cordingly using the lookup table. In the first interaction, the server sends
the coefficient a :=〈Φ`0,0,0, I〉 and a constant 4 to the client. For each
subsequent interaction, say the interaction t, the followings are performed.

1. The client sends a standard weight function ŵ (represented by its
foveal resolution, rate and gaze point) to the server.

2. Upon receipt of ŵ, the server performs the following:

(a) From the lookup table, the server computes {ĉk
j [m,n]}k,j,m,n

which is the mask for ŵ.
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(b) For each k, j,m and n such that

ĉk
j [m,n] > ck

j [m, n],

the server sends

bdk
j [m,n]ĉk

j [m,n]4c
ĉk
j [m,n]4 − bdk

j [m,n]ck
j [m, n]4c

ck
j [m,n]4

to the client, and resets

ck
j [m, n] ← ĉk

j [m,n].

3. The client reconstructs the foveated image.

It is easy to check that the reconstructed image in step 3 is

aΦ`0,0,0 +
∑

k,j,m,n

bck
j [m, n]dk

j [m,n]4c
4 Ψk

j,m,n.

We may simplify the mask by rounding each ck
j [m,n] to its nearest

power of 2. In this case, each log2 ck
j [m,n] indicates the number of bits

(of dk
j [m,n]) that has been send to the client. To illustrate, suppose the

value of a coefficient dv
1[0, 0] is (b1b2b3b4)2 in binary representation, and

ĉv
1[0, 0] = 2−3 in the first round of interactions, then the server will send b1

to the client in step 2(b). During the next round, if ĉv
1[0, 0] = 2−1, then the

server just has to send two extra bits b2b3 to the client.
If the mask is further simplified to a 0-1 mask, then step 2(c) can be

rewritten as:

2(c) For each k, j,m and n such that

ĉk
j [m,n]− ck

j [m,n] = 0

the server sends bdk
j [m,n]4c to the client, and resets

ck
j [m,n] ← 1.

Here, each entry in the mask indicates whether the corresponding coefficient
has been send. In Chapter 4, we describe an implementation using this
simplified transmission scheme.
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2.3 Weighted Distance

2.3.1 Introduction

In the context of progressive transmission, the performance of a scheme
on an image I is usually measured by the distortion of It from I, where
It is the image reconstructed by the client at time t. The distortion is
usually the mean square error ‖I − It‖22. How should we measure the
“goodness” of a scheme when the client requests for a foveated image? To
take ‖T fov(I)− It‖22 as the distortion is not adequate. Imagine a situation
in our thin wire application, where a client requests a foveated image but
the server managed to sent the original image I. By using ‖T fov(I) − I‖22
as a measure, the performance of the server is “poor”. On the contrary,
the original image may be preferred by the client.

Instead of taking ‖T fov(I)− It‖22 as a measure, we use a weighted norm
between I and It as the underlying measure in the transmission scheme.
In the usual setting, mean square error is measured on the retinal plane.
Following the same spirit as is in the definition of foveation operator, we
apply the mean square error in the visual cortex plane, which corresponds to
a weighted mean square error in the retinal plane. A optimal approximate
foveated image in this setting, loosely speaking, is the image that minimizes
its weighted distance from the original image but represented by a fixed
(predefined) number of bits.

Image compression and progressive transmission. One of the early
papers on progressive transmission was by Sloan and Tanimoto [38]. Since
then, it is an active research area and most current image compression
schemes include features of progressive transmission. The popular graphic
format GIF and JPEG [45] already have progressive transmission mode. A
survey on progressive transmission could be found in [44].

Under a progressive transmission scheme, an image I is first transformed
and stored as a linear bit stream b0, b1, . . . , bn. For any t, it is possible to
reconstruct an approximation It of the original I based on b0, b1, . . . , bt. It
is desirable that the distortion is bounded by εt, that is

‖It − I‖2 < εt, (2.30)

and εt has fast decay as t increases.
One would argue that the mean square error in (2.30) may not be the

right measure. It is well known that the sensitivity of the human vision
varies across different frequencies [23]. However, mean square error is still
of much interests since it is easy to manipulate mathematically. Many
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compression schemes, for example JPEG, use a weighted mean square error
as a guide for compression.

Any lossy image compression scheme naturally suggests a possible pro-
gressive transmission scheme, which could be obtained by progressively im-
proving the quality of compression. Most lossy image compression schemes
could be described in the framework of transform code. Under this frame-
work, an image is encoded in three steps: transformation, quantization and
lossless compression.

Transformation. This first step applies an invertible linear transforma-
tion to the image, in other words, it decomposes the image with respect to
a base B. There are many types of such transformation. To name a few,
the Karhunen-Loeve transformation (also known as principal orthogonal
decomposition), which is optimal in the sense that it “completely” decorre-
lates the image by diagonalizing the covariance matrix; the DCT (Discrete
Cosine Transform) which is used by JPEG; and subband coding. A sub-
band coding is determined by a pair of filters, a low-pass filter H and a
high-pass filter G. Its transform code is obtained by repetitive application
of H and G follows by decimation on the image. Thus, the transform code
is a hierarchical representation of the image. The fast wavelet transform,
Gaussian and Laplacian pyramids could be viewed as a form of subband
coding.

It is desirable that the base B is orthonormal with respect to the 2-
norm. If this is the case, then the transformation has the energy invariant
properties which implies that an error ε occurs in a coefficient induces a
same error ε in the represented image. This ability of predicting error
is very useful in analyzing and design compression scheme. Furthermore,
orthonormal base tends to decorrelate the image better.

Quantization. After transformation, the coefficients {am}M
m=1 are then

quantized, that is, each coefficient am is approximated by ãm taken from a
finite set of values. The quantization error is the error am− ãm. This steps
contributes to the lossy feature of the transform code.

A quantizer Q is a staircase function characterized by xi, i = 0, . . . , N−1
and bi, i = 0, . . . , N :

Q(x) = xi if x ∈ [bi, bi+1).

Call each [bi, bi+1) a bin. In all quantizers considered in this report, xi := 1
2 (bi+

bi+1). In the case where all bins have equal size, we call it the uniform
quantizer. We are only interested in scalar quantization where each ãm is
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determined solely by the value of am, as opposed to the vector quantization
where (ã1, ã2, . . . , ãM ) are jointly determined by the vector (a1, a2, . . . , aM ).

For a random source A and a quantizer Q, let Ã := Q(A). If the number
of bins is fixed, say N , to minimize the expected mean square error E{(A−
Q(A))2}, Lloyd-Max algorithm [24, 15] gives the optimal solution where
smaller bins are “allocated” to more popular values. However, if we fix
the expected mean square error, say D, and would like to minimize the
entropy of Ã, surprisingly, the uniform quantizer outperforms the quantizer
obtained by Lloyd-Max algorithm; in fact it is near optimal for small D (or
large number of bins) assuming A is well-behaved (for example, when A is
Laplacian [47] or the quantizer and A satisfy the high bit rate assumption
described in [21]). Note that the entropy of Ã is a lower bound for the
average bit size needed to code Ã [34].

In the context of progressive transmission, there are two types of scalar
quantization: multiscale and embedded quantization. In multiscale quanti-
zation, the data is first quantized by a coarse quantizer and the quantization
error is then quantized by a finer quantizer. In the embedded quantization
[43], the output of the coarse quantizer coincide with the output of the
finer quantizer applied in the next step. As a result, for each refinement,
the refined quantized values can be obtained by concatenation of the pre-
vious values with the additional bits. On the other hand, in the case of
multiscale quantization, an arithmetic addition is required for each coeffi-
cient. Therefore, embedded quantization is computationally more efficient.
Furthermore it is also more efficient in achieving low distortion [43].

Lossless Compression. This step is also known as channel compression.
After quantization, the image is represented as a sequence of bytes. Lossless
compression applies an invertible transformation to remove redundancy. A
major framework for lossless compression scheme is entropy encoding. Let
A to be a random source which takes value among a finite set of symbols
{ai}1≤i≤k. An entropy coding scheme determines a binary coding for the
symbols so as to minimize the expected bit size. Let

pi := Prob(A = ai).

The entropy of A is defined as

−
k∑

i=1

pi log pi.

The Shannon theorem shows that the entropy is a lower bound for the ex-
pected bit size to encode A. Popular entropy encoding schemes are Huffman
coding and arithmetic coding.
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Many effective schemes in fact are not based on entropy coding. Per-
haps this is because entropy coding assumes that the Ai’s are independent,
which is not the case for most transform code. For example, small valued
coefficients tends to cluster. A simple compression that exploit this obser-
vation is run-length code, which encodes a consecutive sequence of n zeros
by the integer n. This simple compression turns out to be very effective
and JPEG employs run-length coding followed by an entropy coding.

Consider the wavelet coefficients of an image. By visual inspection, one
could conclude that there is coherence across the scales. Methods that
exploit this observation is the zero-tree developed by Shapiro [35] and the
predictive method by Simoncelli and Buccigrossi [36].

Using transform code to generate foveated images. Most current
image compression schemes are concerned with uniform progressive trans-
mission. However, we could easily generalize them to to space-variant pro-
gressive transmission by using different bin size across the spatial domain.
This is especially so in the cases of wavelet transformed code, since wavelet
is space localized. For JPEG, since an image is first subdivided into non-
overlapped blocks of 8 × 8 sub-image, and each block is treated indepen-
dently, they can be easily modified to support the space variant progressive
transmission. So, the question now is, given a standard weight function and
scaling function, how should the quantization be done in order to approxi-
mate the corresponding foveated image. We will focus on this question.

Bits Allocation of Transform Code. Let us treat the three steps of
transform code more formally but restrict the discussion to the cases where
the base B is orthonormal, and where scalar quantization and entropy en-
coding are applied in the last two steps.

We follow the approach in [21]. Let B = {gm}0≤m<N be an orthonormal
basis. A function/image f is represented by its coefficients {am} with
respect to B where each am = 〈f, gm〉.

Let Y , {Am}0≤m<N and {Ãm}0≤m<N to be the random variables of the
signals/images f to be coded, the coefficient {am}0≤m<N and the quantized
{ãm}0≤m<N respectively. Thus

Y =
N−1∑
m=0

Amgm,

and each
Am = 〈Y, gm〉.
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Let Ỹ to be the random variable of the represented function (after quanti-
zation),

Ỹ =
N−1∑
m=0

Ãmgm.

Since gm is orthonormal, the expected mean square error of approxi-
mating Y is

E{‖Y − Ỹ ‖22} =
N−1∑
m=0

E{|Am − Ãm|2}‖gm‖22 =
N−1∑
m=0

E{|Am − Ãm|2}.(2.31)

Let rm be the entropy of Ãm. Consider the following problem.

(a) Given a random source Am0 and a fixed constant D, what is the
quantizer such that the expected mean square error is D and the entropy of
Ãm0 is minimized.

Let

r :=
N−1∑
m=0

rm.

The question (a) can be further extended to the whole function/image:

(b). Given a random image Y and a base B, a fixed constant D, what
is the quantizer such that the expected mean square error is D and r is
minimized.

Note that r is the entropy of the joint distribution of {Ãm} only if all
Ãm are independent; in general, r is smaller. As observed before, we are
only interested in scalar quantization, thus we still use r to measure the
average bit size.

It can be shown that if the base induces equal distortion in each direction
of gm, then the uniform quantizer is optimal. This result can be extended
to a weighted case where the expected mean square error (2.31) is replaced
by a weighted mean square error,

N1∑
m=0

1
w2

m

E{|Am − Ãm|2}. (2.32)

In this case, the bin size for Am is 4wm, where 4 is a constant depends
on the expected weighted error D.
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In this section, we consider a problem similar to (b) but instead of
using the 2-norm (2.31) as a measure of error, we use a weighted norm
determined by a standard weight function. The expected weighted norm is
later approximated by (2.32).

2.3.2 Weighted Norm in One Dimension

Given a weight function w : R → R>0 where w(x) ≥ 0 for all x and
w(x) = 0 only for finitely many x. Define, for two one-dimensional functions
f : R→ R, g : R→ R, and a weight function w,

〈f, g〉w :=
∫

f(x)g(x)
w(x)

dx.

Define the weighted norm of f as

‖f‖w :=
√
〈f, f〉w. (2.33)

It is easy to verify that ‖.‖w is a norm.
Instead of using the mean square error to measure distance between

images, we take the weighted norm as a measure and consider the following
expected weighted error.

E{‖Y − Ỹ ‖2w}.
We are interested in the case where B is a wavelet base. Unfortunately,
(2.31) is no longer valid since B is not orthonormal under ‖.‖w, since
〈ψj,m, ψk,m〉w 6= 0 for (j, m) 6= (k, m).

Note that for a function f ,

‖f‖2w =
∑

j,m

〈f, ψj,m〉2‖ψj,m‖2w + 2
∑

j,m

〈f, ψj,m〉
∑

(k,n)6=(j,m)

〈f, ψk,n〉〈ψj,m, ψk,n〉w.

Lemma 9 shows that for any weight function w(t) := α|t − γ| + β, and for
each j,m,

∑
k,n〈ψj,m, ψk,n〉w is small. Thus, we take the following as an

approximation of E{‖Y − Ỹ ‖2w}:
∑

j,m

E{|Aj,m − Ãj,m|2}‖ψj,m‖2w.

We further approximate each ‖ψj,m‖w by (wj,m)−1 where

wj,m :=
√

α2j/2

√
|m− 2−jγ|+ 2−j

β

α
. (2.34)
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Here, {wj,m} play the role of weight in (2.32). We could temporarily ignore
the first term

√
α since it is a common factor for all wj,m. For convenience,

we fix the gaze point at the origin (since generalization to other locations
is easy). Thus, we only consider weight function of the following form:

w(x) = |x|+ β0,

where β0 := β
α .

Lemma 9 Suppose ψ has compact support supp(ψ) ⊆ [−A,A], then there
is a constant G, such that for any weight function w(x) = |x|+β0, |m̃| > 2A

and j̃,

(a)
∑

(k,n)6=(̃j,m̃)

〈ψ
j̃,m̃

, ψk,n〉w < G2−j̃ 1

m̃2 + 2−j̃β0

,

(b)

‖ψ
j̃,m̃
‖2w = 2−j̃ 1

|m̃|+ 2−j̃β0

+ O
(
m̃−2

)
.

Proof.

(a) First, consider the case where k > j̃.

〈ψ
j̃,m̃

, ψk,n〉w

=
∫ ∞

−∞

1
|x|+ β0

ψ
j̃,m̃

(x)ψk,n(x) dx

= 2−j̃

∫ m̃+A

m̃−A

1

|x|+ β02−j̃
ψ

0,m̃
(x)ψ

k−j̃,n
(x) dx (2.35)

= 0 +
∫ m̃+A

m̃−A

(
1

|x|+ β02−j̃
− 1

|m̃|+ A + β02−j̃

)
ψ

0,m̃
(x)ψ

k−j̃,n
(x) dx

≤ 2−j̃ max
x∈[|m̃|+A,|m̃|−A]

(
1

|x|+ β02−j̃
− 1

|m̃|+ A + β02−j̃

)(
2(̃j−k)/2G1

)

≤ 2−j̃G2

(
1

(|m̃|+ β02−j̃)2 −A2

)(
2(̃j−k)/2G1

)

≤ G32−j̃2(̃j−k)/2 1

(|m̃|+ β02−j̃)2
. (2.36)

(since |m̃| > A)
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Since the number of n such that 〈ψ
j̃,m̃

, ψk,n〉w 6= 0 is bounded by a

constant (recall that k > j̃), thus, for some constant G4,

∑
n

〈ψ
j̃,m̃

, ψk,n〉w ≤ 2−j̃G42(̃j−k)/2 1

(|m̃|+ β02−j̃)2
. (2.37)

We now consider the case where k < j̃. By combining the fact that
k < j̃ and |m̃| > 2A, it follows that |n| > A if 〈ψ

j̃,m̃
, ψk,n〉w 6= 0. By

switching (j̃, m̃) and (k, n) in (2.36),

〈ψ
j̃,m̃

, ψk,n〉w ≤ 2−kG32(k−j̃)/2 1
(|n|+ β02−k)2

≤ 2−kG32(k−j̃)/2 1

(C12̃j−k|m̃|+ β02−k)2

(since |n| > C12̃j−k|m| for some constant C1 < 1)

≤ 2−j̃G42(k−j̃)3/2 1

(|m̃|+ β02−j̃)2

Since the number of n such that 〈ψ
j̃,m̃

, ψk,n〉w 6= 0 is less than C22̃j−k

for some constant C2, we have,

∑
n

〈ψ
j̃,m̃

, ψk,n〉w ≤
(
C22̃j−k

)
2−j̃G52(k−j̃)3/2 1

(|m̃|+ β02−j̃)2

≤ 2−j̃G52(k−j̃)/2 1

(|m̃|+ β02−j̃)2
. (2.38)

Lastly, consider the case where k = j̃. Using the same approach in
the last two cases, we could obtain

∑

n 6=m̃

〈ψ
j̃,m̃

, ψk,n〉w ≤ 2−j̃G3
1

(|m̃|+ β02−j̃)2
. (2.39)

Now, combining (2.38), (2.37) and (2.39):

∑

(k,n) 6=(̃j,n)

〈ψ
j̃,n

, ψk,n〉w ≤ G2−j̃ 1

(|m̃|+ β02−j̃)2
.
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(b) From (2.35),

〈ψ
j̃,m̃

, ψ
j̃,m̃
〉w

= 2−j̃

∫ m̃+A

m̃−A

1

|x|+ β02−j̃
ψ

0,m̃
(x)ψ

0,m̃
(x) dx

=
2−j̃

m + β02−j
+

2−j̃

∫ m̃+A

m̃−A

(
1

|x|+ β02−j̃
− 1

m + β02−j

)
ψ

0,m̃
(x)ψ

0,m̃
(x) dx

=
2−j̃

m + β02−j
+ O(m−2).

Q.E.D.

2.3.3 Weighted Norm in Two Dimensions

In two dimensions, for I : R× R→ R and J : R× R→ R, with respect to
a weight function, define

〈I, J〉w :=
∫ ∞

−∞

∫ ∞

−∞

I(x, y)J(x, y)
(w(x, y))2

dx dy,

and the weighted norm as

‖I‖w :=
√
〈I, I〉w.

Similar to the cases in one dimension, in two dimensions, if

w(x, y) :=
√

α(x2 + y2) + β,

we approximate ‖Ψj,m,n‖w by w−1
j,n,m where

wj,m,n := 2j
√

α

√
α(m2 + n2) + 2−2j

β

α
. (2.40)

Note the differences on the exponent between the above and (2.34).
It is easy to see that

Lemma 10 If supp(ψ) ⊆ [−A,A], then for any weight function of the form
w(x, y) =

√
x2 + y2 + β0, for each m > 2A, n > 2A, j, and k ∈ {v, h, d},

‖Ψk
j,m,n‖2w =

2−2j

m2 + n2 + 2−2jβ0
+ O(m−4 + n−4).
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2.3.4 Bit Allocation

Given a standard weight function w(x, y) :=
√

α(x2 + y2) + β, recall that
we want to substitute wj,n,m (2.40) into (2.32). Let us examine the value
of wj,n,m for different j, n, m and β. Assume that we are working on a N
by N pixels image where each pixel take value from {0, 1, . . . , 2b − 1}, and
N = 2`0 .

First, ignore the effect of β and α. For fixed n and m, when j in-
creases, the bin size decreases by a factor of 2. However, as j increases, the
maximum possible value of the coefficients increases by a factor of 2, and
thus the number of bins remains unchanged. This implies that the num-
ber of bits reserved for each coefficient across the scales is constant. For a
fixed j, as m and n increase, the bin size increase at a rate of

√
m2 + n2.

Thus, the number of bits reserved for a coefficient decrease at a rate of
1
2 log2(m2 + n2). Now we consider non-zero foveal resolution. The foveal
resolution specifies the highest possible resolution near the fovea. Consider
the case where α = 1 and β 6= 0. For all scale j, wj,0,0 = β. This induces a
uniform resolution near the fovea.

Figure 2.18 shows the values of j + log2 wj,0,n as a function of n for
different values of j. Given a fix constant 4, the value (log24) + j +
log2 wj,0,n can be interpreted as the number of bits required to encode the
coefficient (before the lossless compression) for Φj,0,n.

2.3.5 Transmission Scheme

The transmission scheme is similar to that in section 2.2.7 except that the
mask {ck

j,m,n}k,j,m,n are replaced by a set of weights {wj,m,n}j,m,n.
Let

dk
j,m,n :=〈I, Ψk

j,m,n〉.
For simplicity, assume that the interactions between the client and the
server occur at discrete time t = 1, 2, . . .. At time t, the server keeps a multi-
fovea weight function wt and a weight table W = {wk

` [m,n]}0≤`≤`0,0≤m,n<N .
Initially, w0(x) := 2`0 and each entries of weight table is initialize to zero.
In the first interaction, the server sends the coefficient a :=〈Φ`0,0,0, I〉 and
a constant 4 to the client. For each subsequent interaction, say the t-
interaction, the followings are performed.

1. The client sends a standard weight function ŵ (represented by its
foveal resolution, rate and gaze point) to the server.

2. Upon receipt of ŵ, the server performs the following:
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Figure 2.18: The values of j +log2 wj,0.n as a function of n. Here, the ratio
β
α = 24.
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Figure 2.19: The values of j +log2 wj,0.n as a function of n. Here, the ratio
β
α = 20.
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(a)

(b)

Figure 2.20: Two foveated images generated using same number of bits
(about 0.21 bits per pixel). (a) Generate by quantizer with {wm} described
in this section. The weighted distance from the original is about 76.4. (b)
Computed using the 0-1 Mask The weighted distance ‖I − T fov(I)‖w0 is
about 86.8. Note that for fairness in comparison, we use a common weighted
norm with w0(x, y) = 1 +

√
x2 + y2 for both images. Furthermore, both

images are not further compressed with lossless compression.
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(a) From the lookup table, the server computes Ŵ = {ŵj,m,n]}
which is the mask for ŵ.

(b) For each k, j,m and n such that

ŵj,m,n > wj,m,n,

the server sends

bdk
j [m,n]ŵj,m,n4c

ŵj,m,n4 − bdk
j [m,n]ŵj [m,n]4c

ŵj,m,n4
to the client, and resets

wj,m,n ← ŵj,m,n.

3. The client reconstructs the foveated image.

The foveated image reconstructed in step 3 is

a Φ`0,0,0 +
∑

k,j,m,n

bdk
j [m, n]wj,m,n4c

wj,m,n4 Ψk
j,m,n.

If we further simplify the above by thresholding the weight, and fix each
4 = 1, then step 2(b) becomes:

2(b) For each k, j,m and n such that

ŵj,m,n − wj,m,n = 1,

the server sends
bdk

j [m,n]ŵj,m,nc
ŵj,m,n

to the client and resets
wj,m,n ← 1.

2.4 Conclusion

In this chapter, we describe two approaches to producing a foveated image
from a uniform resolution image. In the first approach we give a method
that, given an image I, constructs an image I0 which approximates T fov(I),
using ‖I0−T fov(I)‖22 as a measure. The construction is achieved by applying
a mask {ck

j [m,n]}k,j,mn on the wavelet coefficients {dk
j [m,n]}k,j,m,n of I,

I0 =
∑

k,j,m,n

bck
j [m,n]dk

j [m, n]4c
4 Ψk

j,m,n, (2.41)
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where 4 is some constant. The formulation of the foveation operator T fov

is motivated by the logmap transformation, and it intends to capture the
situation where convolution is performed on the visual cortex plane (the
domain after logmap transformation).

In the second approach, we tries to find a Q(·) that minimizes the ex-
pected (by treating I as a random variable) weighted distance ‖Q(I)−I‖2w,
given a fixed average number of bits for Q(I). Since we usually do not know
the distribution of I, it is impossible to design such a method Q(·). As-
suming that wavelet transform decorrelates I, we design an approximation
using a set of weights {wj [m,n]}j,m,n,

I ′0 =
∑

k,j,m,n

bwj [m, n]dk
j [m,n]4c

wj [m,n]4 Ψk
j,m,n, (2.42)

where 4 is some constant. Again, the definition of weighted distance is
motivated by the logmap transformation. The weighted distance amounts
to the usual mean square error in the visual cortex plane.

Both (2.41) and (2.42) could be simplified by thresholding the weights
and the mask respectively. As mentioned in the introduction, a well-known
method of producing a foveated image is by a cut-and-paste from an hi-
erarchical representation of the image. This method coincides with the
extreme form of the simplification just mentioned, where a mask/weights
is thresholded or rounded to {0, 1}.

63



64



Chapter 3

On-line Scheduling with
Level of Service

In this chapter, we study an abstract on-line scheduling problem motivated
by the thinwire model. If we treat what the viewer wants to view as a
request for data, then, throughout the visualization process, a continuous
stream of requests will be generated. Because of the thinwire assumption,
more requests will be generated than the bandwidth could support. Thus,
it is necessary to select the more important requests which are to be sent
to the server. An interesting property of this problem which we exploit is
that: a request could be scaled down and served at a lower level of service.

3.1 Introduction

Scheduling is an important issue in resource management. Suppose I is an
instance of a scheduling problem, usually a sequence of jobs or requests.
The goal is to find an optimal schedule which achieves minimum cost or,
equivalently, maximum merit.

We are interested in on-line scheduling. In this setting, the problem
instance is released gradually, a single job or request at a time, while the
scheduler upon receipt of each new job/request, is required to make decision
and output a part of the schedule. Performance of an on-line scheduler could
be measured by its competitiveness, introduced by Sleator and Tarjan [37].
Suppose S is a scheduler and S(I) is the schedule produced by S on I, then
S is c-competitive if for any instance I,

merit(opt(I)) ≤ c . merit(S(I)) + b,
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where b is some constant and opt(I) is the optimal off-line schedule. The
competitive ratio of a scheduler S is defined by

C := sup
I

merit(opt(I))
merit(S(I))

.

We say that a problem is no better than c-competitive if there does not
exist a scheduler that is c1-competitive, for any c1 < c. A classic example
is the paging problem where the main memory can only holds at most k
pages and the goal is to minimize the number of page faults. Sleator and
Tarjan [37] show that the LIFO (last in first out) and LRU (least recently
used) strategies are k-competitive and the problem is no better than k-
competitive. The paging problem is a special case of the k-server problem
introduced by Manasse, MacGeoch, and Sleator [22].

There are a few variants on the computational models. One may con-
sider randomized scheduler. A randomized scheduler S, as opposed to the
deterministic scheduler, is allowed to toss coins randomly. Given an in-
stance I, let S(I) to be the random variable of the schedule output by S.
We say that S is c-competitive if for any I,

merit(opt(I)) ≤ c . E[merit(S(I))] + b,

where b is a constant. Similarly, we say that S has competitive ratio C if

C := sup
I

merit(opt(I))
E[merit(S(I))]

.

Average case analysis is another major branch in the analysis of on-line
problems. Here, the instance is drawn from a known distribution, and a
scheduler S is measured by its expected performance. If we write I to be
the random variable for the instance, then the expected performance is

E[merit(S(I))].

While the k-server and the paging problem focus on the fundamental
issue of how to “distribute” jobs among k servers, the case where there
is only one server is also interesting. An example is the on-line intervals
packing problem where the instance consists of open intervals and a schedule
is a subset of non-overlapping intervals. Lipton and Tomkins [18] study a
variant where the input intervals are sorted by their left endpoints, and the
intervals are restricted to two types: intervals with unit size and intervals
with size k. The goal is to cover the real line as much as possible. They
give a randomized scheduler that is 2-competitive.
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The on-line scheduling problem studied here could be treated as a vari-
ant of on-line interval packing problem. We describe this scheduling prob-
lem in a user-manager setting where the user issues requests and the man-
ager schedules the requests1. We give a class ArbFit of managers. Two
members in this class Greedy and EndFit have competitive ratio 2. Greedy
and EndFit have interesting interpretation and in a certain sense, Greedy
is always better than EndFit. We show that every manager in ArbFit is
3-competitive; on the other hand, there is a manager that has competi-
tive ratio 3. A natural extension of Greedy and EndFit is a randomized
algorithm gdyXend which randomly changes mode between Greedy and
EndFit. We do not know the expect performance of gdyXend, however,
since gdyXend adheres to the rule of ArbFit, it is always 3-competitive.

We show that this problem is no better than 2(2 − √
2) ≈ 1.1716-

competitive by describing an adversary.

3.2 Problem formulation and definition

Basic formulation In this user-manager setting, the user issues requests
and the manager tries to serve the requests within its limited resource. An
instance is a sequence of requests. Each request q has four parameters,
(s, t, u, v), where s, the start time, is the time the request is issued; t, the
deadline, is the time the request has to be completed; u is the size of the
request and v is the weight of the request. Write st(q), dl(q), sz(q),wt(q)
for its start time, deadline, size and weight respectively. The requests are
issued one at a time and if a request p is issued before q, then st(p) ≤ st(q).
The manager could serve any issued request but at any time, only a request
could be served. A request q is completely served if it has been served for
a total of sz(q) time. A request can not be served if it’s deadline has al-
ready passed or it has been completely served. The service is preemptive
without penalty, that is, the manager could switch from one request to an-
other request at anytime and he could also switch back to an uncompleted
service. However, the number of such switchings must be bounded by some
polynomial p(n) where n is the total number of requests. For each com-
pletely served request, the manager gains sz(q)wt(q) merit points. Unlike
usual scheduling problems, a partially served request contributes a propor-
tional amount of merit points: If a request q is served for a total of x time,
then the manager gains xwt(q) merit points. The goal of the manager is to
maximize the total merit points gained.

1We avoid the term “client-server” since they have specific meaning in the thinwire
model.
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Call a request q alive at time t0 if st(q) ≤ t0 ≤ dl(q). At time t0, requests
could have been partially or completely served within (−∞, t0]. Those alive
requests that are not yet completely served are said to be pending at time
t0.

Schedule Given an instance I = {q1, q2, . . . , qn}, define the schedule H to
be a piecewise constant function from R to {q1, q2, . . . , qn}∪{∅}, satisfying
|H−1(qk)| ≤ sz(qk) and H−1(qk) ⊆ (st(qk), dl(qk)] for all k = 1, 2, . . . , n.
The schedule describes how requests are served through the time. If a
request qk is served at t0, then H(t0) := qk. If no request is served, then
H(t0) is defined to be ∅. Call an half-opened half-closed interval (t1, t2] ⊂ R
a time-slot. We further add a restriction on the definition of a schedule:
for any request qk, H−1(qk) must be either the empty set or the union of a
finite number of time-slots. Call a point of discontinuity in the schedule a
switch-point.

The merit of a schedule merit(H) is defined as follows:

n∑

j=1

wt(qj)|H−1(qj)|.

If S is a manager and I an instance, then we write S(I) for the schedule
obtained by applying S on I. If S is random, then S(I) is a random
schedule.

An off-line optimal schedule for an instance I is a schedule that maxi-
mizes merit. Denote by opt(I) an off-line optimal schedule for I.

Pending request Call a request q alive at time t0 if st(q) ≤ t0 ≤ dl(q).
With respect to a manager, at time t0, some requests could have been
partially or completely served within (−∞, t0]. Call those alive requests
that are not yet completely served the pending requests at time t0.

Ordering of requests. Note that start times of requests are non-unique.
However, since the requests are issued one at a time, there is a natural
ordering of the requests.

The managers given in this chapter make decisions by giving priority to
heavier weighted requests. In the case where wt(p) = wt(q), we resolve the
tie by treating p “heavier” than q if and only if p arrives before q. In the
rest of this chapter, when we use the phrase “p is heavier than q”, we are
referring to this total ordering.
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H1

H2

Hchg

Figure 3.1: The charging scheme.

Charging Scheme. We often need to argue that the merit of a schedule
H is smaller than the total merit of other schedules, say H1 and H2. Our
approach is to charge a portion of H to H1 and the remaining to H2.
Intuitively, the charging process can be viewed as first cutting H1 and H2

into pieces and then joining some of the pieces to form another piecewise-
constant function Hchg. Each piece, after cutting, could be translated before
joining. As it may be the case that |H−1

chg(q)| > sz(q) for some request q,
thus Hchg is not a schedule. The cut-and-paste must be done in a way that
for all t, wt(Hchg(t)) ≥ wt(H(t)). Therefore,

merit(H) ≤ merit(Hchg) ≤ merit(H1) + merit(H2).

In particular, if H1 = H2, then we have

merit(H) ≤ 2 ·merit(H1).

Figure 3.1 illustrates an example of Hchg, H1 and H2. Formally, a charging
scheme of H to H1 and H2 can be described by two functions: a piecewise
constant function Cx : R → {1, 2} and another piecewise-linear function
Cy : R → R. Each linear piece (a1, a2] of the function Cy can be written
as

Cy(t) = t + α for t ∈ (a1, a2],
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where α is a constant. We further require that for each i ∈ 1, 2, Cy is
one-one restricted to the domain C−1

x (i). From Cx and Cy, define Hchg:

Hchg(t) =
{

H1(Cy(t)), if Cx(t) = 1,
H2(Cy(t)), otherwise.

We often use the following phrase: charge (s′, e′] from H to Hi at (s, e].
This means that Cx(t) := i and Cy(t) := t−s′+s for t ∈ H−1(q). Note that
a precondition is e − s = e′ − s′. (Figure 3.2). Equivalently, if H−1(q) is
the interval (s′, e′], we may also say that we charge a request q from H to
Hi at (s, e].

H2

s e

e′s′

H

q

Hchg

Figure 3.2: Charging the request q in H to H2 at (s, e].

The purpose of this formal definition is to clarify what a charging scheme
is. In the rest of this chapter, we will not describe Hchg, Cx and Cy explicitly.

3.3 Examples of Managers

In this section, we describe two managers Greedy and EndFit. At any mo-
ment, Greedy always serves the current heaviest pending request, whereas
EndFit always serves according to the off-line optimal schedule of the cur-
rent pending requests. In a certain sense, the two managers are at two
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extreme ends of a spectrum. Both managers fall into a general class of
managers, ArbFit, which we are going to describe now.

A manager in this class performs the following upon arrival of a request
q.

1. Stops the current service (that is, preempt).

2. Computes a ‘plan’, which is a schedule for the pending requests. We
call it a ‘plan’ because the manager may not carry out the schedule
as planned due to the arrival of new requests later. The plan is
computed by considering the pending requests one by one, starting
from the heaviest request down to the lightest request. (Here, we are
referring to the total ordering described in section 3.2). Let p be the
request being considered. Its allocation is subjected to the following
restriction:

(∗) The allocation to p must be maximized. (For example, if it
is possible to completely allocate p, the whole of p must be
allocated). However, there is no restriction on where to allocate
p. Allocated time-slots are not available for requests which are
subsequently considered.

(We will give a formal description of 2(∗) later in this section).

3. Carries out the plan until a new request arrives.

Let the plan computed after step 2 be Plan+(S, I, q). Let Plan−(S, I, q)
be the original plan just before step 2 is executed. Note that Plan−(S, I, q)
is actually Plan+(S, I, q′), where q′ is the request which arrives just before
q.

A formal way to describe the restriction 2(∗) on Plan+(S, I, q) is as
follow: for any request p, let Ip be the union of time-slots that are contained
in the life span of p, and are allocated with requests not lighter than p, that
is,

Ip := (st(p), dl(p)]−

 ⋃

p′ is heavier than p

(Plan+(S, I, q))−1(p′)


 .

Then, we must have
∣∣(Plan+(S, I, q))−1(p)

∣∣ = min {sz(p), |Ip|} .

Different managers in ArbFit differ in how they allocate the request
being considered in step 2(∗). Greedy is the manager who allocates the
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request being considered in the earliest possible time-slot. This agrees with
the previous description of Greedy.

Another manager may allocate the request being considered in the lat-
est possible time-slot. Interestingly, at any moment, say at time t0, its
plan is an off-line optimal schedule of the pending requests at t0. This
description coincides with the manager EndFit described in the beginning
of this section. This seem to be counter-intuitive as the original descrip-
tion of EndFit seems to suggest that it is not a good strategy whereas the
alternative description seems to suggest the other way.

We now show that these two descriptions agrees with each other. Let
P be the set of pending requests upon arrival of q0. For each q ∈ P , let
q̂ :=(t0, dl(q), s,wt(q)) where s is the remaining size of q yet to be served,
and let P̂ be the set of these newly defined requests. Then we have the
following lemma:

Lemma 11 The Plan+(EndFit, I, q0) is an optimal schedule for P̂ .

Proof. Let H be an off-line optimal schedule of P̂ . Consider the heaviest
request p̂. Let the time-slots where p̂ is allocated be (s1, t1], (s2, t2], . . . , (sk, tk].
Let s :=

∣∣H−1(p̂)
∣∣ =

∑k
i=1(ti−si). Since p̂ is the heaviest request, it is easy

to verify that s = min {sz(p̂), dl(p̂)− st(p̂)}, which implies that p̂ will be
completely served as long as its life span not smaller than its size. We want
to perform a swap so that p̂ is allocated in the time-slot (dl(p̂)− s, dl(p̂)].
This can be achieved by swapping the portion of p̂ allocated in (si, ti] with
requests allocated in (ui, ui +(ti−si)] where ui = dl(p̂))−s+

∑i−1
j=1(ti−si),

for i = 2, . . . , k, and u1 := dl(p̂))− s. These swaps are possible because all
requests have a common start-time st(p̂). The new time-slot allocated for
p̂ is exactly same as that for p in Plan+(EndFit, I, q0).

We can now repeat this process for the next heaviest request. The only
difference is that this allocation may be spread out over more than one
interval. The final plan is clearly Plan+(EndFit, I, q0). Q.E.D.

To understand how the manager EndFit works, it is helpful to visualize
the relationship between Plan−(EndFit, I, q) and Plan+(EndFit, I, q) upon
arrival of a new request q. To obtain Plan+(EndFit, I, q) from Plan−(EndFit, I, q),
first find the location to “insert” the newly arrives request q; then “squeeze”
q in by “pushing” the original allocated requests leftward (to an earlier time-
slot). In so doing, some requests may be “pushed-out” from the plan. The
plans produced by Greedy can be viewed in the similar way except that the
“push” is in the opposite direction.
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3.3.1 Competitive ratio of Greedy

First, we state a lemma whose purpose is to tackle a technical complication.
Consider a schedules H1. At time t0, where t0 is a switch point in H1, it is
possible that a request q has been partially, but not completely served, that
is,

∣∣H−1
1 (q) ∩ (−∞, t0]

∣∣ 6∈ {0, sz(q)}. This causes a technical complication,
which is not difficult but tedious to handle. It is even more tedious in the
case where we want to compare two schedules H1, H2, which have different
sets of switch points.

We say that an instance I is intact in a schedule H, if each request
q, H−1(q) is connected, and either |H−1(q)| = 0 or sz(q). (By defini-
tion, an empty set is connected). We say that a request q is refined
to q1, . . . , qk for some 1 ≤ k (or q1, . . . , qk forms a refinement of q), if
qi = (st(q), dl(q), si,wt(q)), for each i = 1, . . . , k, where

k∑

i=1

si = sz(q),

and si ≥ 0 for each i = 1, . . . , k. (Figure 3.3). An instance I0 is a refine-
ment of I if the requests in I0 are refinements of requests in I. Since our
scheduling problem is preemptive, q is essentially the same as the combined
of q1 and q2.

It is easy to see that:

Lemma 12 Given an instance I, if I0 is a refinement of I, then

merit(opt(I)) = merit(opt(I0)),
merit(Greedy(I)) = merit(Greedy(I0)), and
merit(EndFit(I)) = merit(EndFit(I0)).

Furthermore, there is an refinement I1 which is intact in opt(I1), EndFit(I1),
and Greedy(I1).

Q.E.D.

Lemma 13 The competitive ratio of Greedy is at least 2.

Proof. Take an instance of two requests q1 :=(0, 2, 1, 1) and q2 :=(0, 1, 1, 1)
where q1 arrives before q2 (Figure 3.4). Q.E.D.

Theorem 14 For any instance I,

2 · merit(Greedy(I)) ≥ merit(opt(I)).
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I1

Figure 3.3: Instance I1 is a refinement of I that is intact in H.

Proof.
Given an instance I, let Hgdy be the schedule Greedy(I) and Hopt be

the off-line optimal schedule opt(I). By Lemma 12, we can assume that I
is intact in both Hgdy and Hopt.

Let H0 be an identical copy of Hgdy. We want to charge requests served
in Hopt to H0 and Hgdy. Let {t1, t2, . . . , tm} be the distinct switch-points
in Hopt, where ti < tj if and only if i < j.

We describe the charging scheme H̃ by construction.
For each ti, starting from i = 1 to m−1, consider the time-slot (ti, ti+1].

Let qopt :=Hopt(ti+1), and let qgdy be the lightest request served during
(ti, tt+1] by Greedy.

There are two cases:

1. If the request qgdy is not lighter than qopt, charge qopt from Hopt to
Hgdy at (ti, ti+1].

2. Otherwise, Charge qopt from Hopt to H0 at H−1
0 (qopt).

We have to show that in the second case, |H−1
0 (qopt)| ≥ |(ti, ti+1]|. In

the first place, why is the weight of qgdy lighter? The request qgdy is chosen
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I

q2

Greedy(I)

opt(I)

Figure 3.4: This example demonstrates that the competitive ratio of Greedy
is at least 2.

by Greedy because it is the heaviest request among the pending requests.
This implies that qopt is not a pending request, although it is alive at time
ti. So qopt must has been completely served by Greedy.

Q.E.D.

3.3.2 Competitive Ratio of EndFit

In this section, we show that the competitive ratio of EndFit is 2.

Lemma 15 The competitive ratio of EndFit is at least 2

Proof. Take two requests q1 :=(0, 2, 1, 1) and q2 :=(1, 2, 1, 1) (Figure 3.5).
Q.E.D.

To prove the upper bound, given an instance I, we modify I to obtain an
instance Ĩ such that merit(opt(Ĩ)) = merit(opt(I)) and yet merit(EndFit(Ĩ)) ≤
merit(EndFit(I)). The new instance Ĩ is of a restricted form which we ex-
ploit in proving the claimed bound.

A request q̃ is a trimmed request of q if st(q̃) ≥ st(q), dl(q̃) = dl(q),
wt(q̃) = wt(q̃) and sz(q̃) ≤ sz(q). An instance Ĩ is a trimmed instance of I

if there is a one-one (not necessary onto) mapping from Ĩ to I such that
any q̃ in Ĩ is a trimmed request of its corresponding request in I. Clearly,
merit(opt(I)) ≥ merit(opt(Ĩ)), but what about the relationship between
EndFit(I) and EndFit(Ĩ)?
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Figure 3.5: This example demonstrates that the competitive ratio of EndFit
is at least 2.

Lemma 16 (Key lemma). If Ĩ is a trimmed instance of I, then

merit(EndFit(Ĩ)) ≤ merit(EndFit(I)).

Proof.
Before proving the lemma, let us view the plans of EndFit from an-

other direction and make two remarks. Although these two remarks seem
“technical”, they are important steps in this proof because they establish
a connection between the off-line and on-line setting of EndFit.

On the arrival of a request q, let P be the set of pending requests. For
each p ∈ P , let p̂ be the trimmed request p̂ :=(st(q), dl(p), s, wt(p)) where s
is the remaining size of p yet to be served. Let P̂ be the collection of such
p̂. Let H to be a schedule of P̂ defined as follow:

For each p̂ ∈ P̂ , H(t) is not lighter than p̂ for any t ∈ (t0, dl(p̂)], where

t0 :=
{

st(p̂), if
∣∣H−1(p̂)

∣∣ < sz(p̂),
inf H−1(p̂), otherwise.

Note that there is a unique schedule that satisfies the above, thus the
definition is valid. It is easy to see that the plan Plan+(EndFit, I, q) = H.

The above definition is made on the set of pending requests P̂ . We
want to relax this by replace it by the original requests. Let I0 be set of
requests that contains q and all requests that arrive before q. Let H0 be
the schedule that satisfies the following:

For any p ∈ I0, H0(t) is not lighter than p for any t ∈ (t0, dl(p)], where

t0 :=
{

st(p), if
∣∣H0

−1(p)
∣∣ < sz(p),

inf H0
−1(p), otherwise.
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We can view H0 as the schedule obtained by applying EndFit on I0 in an
off-line setting. Let EndFitOff be such a manager, and thus EndFitOff(I0) =
H. Clearly, H0 is not the same as the original H, since all p̂ ∈ P̂ have com-
mon start time while this may not true for requests in I0. However, we
have:

Remark (a). For any t ∈ (t0,∞), H(t) is equivalent to H0(t) in the
sense that H(t) = p̂ if and only if H0(t) = p.

Proof of Remark(a)

This can be shown by contradiction. We may assume P̂ and I0 are
intact in H and H0 respectively. Suppose on the contrary, then there
is a maximum tmax such that H0(tmax) is not equivalence to H(tmax).
Let p̂max :=H(tmax) and consider the corresponding pmax in H0. There
are two cases: either pmax is heavier or lighter than H0(tmax). Let us
consider the first case. It is not possible that H0 allocates pmax at a
time later than tmax since this will contradict either the definition of
tmax or the intactness of P . It is also not possible that H0 allocates pmax

at an earlier time or does not even serve it, since this will contradict
the definition of H0. We can similarly show that the second case leads
to contradiction. Q.E.D. (of Remark (a))

Remark (a) is useful because it establishes an equivalent between the
plan H0 with a schedule H which is computed by an off line manager.

It is easy to see that:

Remark (b). Suppose I is any set of requests, then, for any p ∈ I, and
for all t, EndFitOff(I)(t) is not lighter than EndFitOff(I\{p})(t).

Given an instance I, suppose G0 := EndFitOff(I) and G1 := EndFitOff(I\{p}),
where p is any request, write

G0
del p
=⇒ G1

to express the relationship that G1 is obtained from G0 by deleting p from
the instance. In the other direction, we use the notation:

G1
ins p
=⇒ G0.

By definition, G0
del p
=⇒ G1

ins p
=⇒ G0.

Now, back to the proof of the lemma. Given an instance I and a trimmed
instance Ĩ, it is sufficient to consider the case where Ĩ differs from I by only

77



one request: a request q̃ in Ĩ which is the trimmed request of q in I, and
sz(q̃) ∈ {0, sz(q)}.

Let the requests in I, listed in their order of arrival, be

p0, . . . , pk, q, q1, . . . qm,

and the corresponding trimmed instance Ĩ be

p̃0, . . . , p̃k, q̃1, . . . , q̃`, q̃, q̃`+1, . . . q̃m.

Let H0 := EndFitOff({p0, . . . , pk}) and H̃0 := EndFitOff({p̃0, . . . , p̃k}).
Define H1,H2, . . . and H̃0, H̃1, . . . as follows:

H0
ins q
=⇒ H1

ins q1=⇒ H2 . . .
ins q`=⇒ H`

ins q`+1=⇒ . . .

H̃0
ins q̃1=⇒ H̃1 . . .

ins q̃`=⇒ H̃`−1
ins q̃
=⇒ H̃`

ins q̃`+1=⇒ . . .

Note that H0 and H̃0 are essentially the same, since each p̃i is a exact copy
of pi, for i = 0, 1, . . . , k. We write H0 ←→ H̃0 to refer to the equivalence
just mentioned. If H1

del q
=⇒ H0 and H0 ←→ H̃0, we write

H1
del q−→ H̃0.

Inductively, we have the following:

H0
ins q
=⇒ H1

ins q1=⇒ H2 . . .
ins q`=⇒ H`

ins q`+1=⇒ . . .
↘↖ ↓del q ↓del q ↓del q

H̃0
ins q̃1=⇒ H̃1 . . .

ins q̃`=⇒ H̃`−1
ins q̃
=⇒ H̃`

ins q̃`+1=⇒ . . .

Note that, by Remark (b), we have

wt(H1(I)(t)) ≥ wt(H̃0(Ĩ)(t)), for t ∈ (st(q), st(q1)]. (3.1)

So far we have only concerned about EndFitOff. We now apply Re-
mark(a) to bridge the above diagram to the on-line setting. For any
t ∈ (st(q), st(q1)], by Remark (a), since no request arrives between q and
q1,

Plan+(EndFit, I, q)(t) = H1(t), and

EndFit(Ĩ)(t) = H̃0(t).

Combining with (3.1), we have

wt(EndFit(I)(t)) ≥ wt(EndFit(Ĩ)(t)), for t ∈ (st(q), st(q1)].
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This inequality can be extended to the following:

wt(EndFit(I)(t)) ≥ wt(EndFit(Ĩ)(t)), for t ∈ (st(q), st(q̃)]. (3.2)

Now, there are two cases. If sz(q̃) = 0, then H̃` = H̃`−1 and by extend-
ing the previous argument,

wt(EndFit(I)(t)) ≥ wt(EndFit(Ĩ)(t)), for t ∈ (st(q̃),∞). (3.3)

On the other hand, if sz(q̃) = sz(q), then by inserting q̃, we have H̃` ←→
H`. Therefore,

wt(EndFit(I)(t)) = wt(EndFit(Ĩ)(t)), for t ∈ (st(q̃),∞). (3.4)

Since the instance I and Ĩ differ only on q,

wt(EndFit(I)(t)) = wt(EndFit(Ĩ)(t)), for t ∈ (−∞, st(q)]. (3.5)

By combining (3.2), (3.3), (3.4) and (3.5), we have

merit(EndFit(I)) ≥ merit(EndFit(Ĩ)).

Q.E.D.

Theorem 17 For any instance I,

merit(opt(I)) ≤ 2 ·merit(EndFit(I)).

Proof.
By Lemma 12, we can assume that I is intact in opt(I). Let Ĩ be the

trimmed instance of I such that for any request q ∈ I, if (opt(I))−1(q) =
(t1, t2], then st(q̃) := t1 and sz(q̃) := t2 − t1; otherwise if opt(I)−1(q) = ∅,
then sz(q̃) := 0. We further assume that Ĩ is intact in all the plans.

Ĩ has the desirable property that requests arrive in a “constant” rate,
that is, if a request q arrives at time t, then no other request arrives during
(t, t + sz(q)).

Let H1 and H2 be two identical copies of EndFit(Ĩ). We want to charge
requests in opt(Ĩ) to H1 and H2.

Consider a request q in Ĩ. Upon arrival of q, there are two cases.

1. If q is allocated in the plan Plan+(EndFit, Ĩ, q), it is possible that
there are some requests which are originally allocated in Plan−(EndFit, Ĩ, q),
but not in the new plan. Call these requests the ousted requests.
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2. Otherwise, call q the ousted request.

Let s be the total size of the ousted requests. Note that s ≤ sz(q) and
in Plan+(EndFit, Ĩ, q), the total merit of the ousted requests is not more
than the total merit of the requests allocated in (st(q), st(q) + s]. Further
note that the plan will be carried out without interruption at least until
st(q) + sz(q) since there is no request arrives during (st(q), st(q) + sz(q)).
Charge the ousted requests to H2 at (st(q), st(q) + sz(q)] and the served
requests in (st(q), st(q)+ sz(q)] to H1 at (st(q), st(q)+ sz(q)]. Now, we have

2 ·merit(EndFit(Ĩ)) ≥ merit(opt(Ĩ)).

By Lemma 16, we have

2 ·merit(EndFit(I)) ≥ merit(opt(I)).

Q.E.D.

3.3.3 Competitive ratio of ArbFit

Lemma 18 There is a manager in ArbFit with competitive ratio at least
3.

Proof.
Consider the instance comprising the requests q1 :=(0, 2, 1, 1), q2 :=(1, 3, 1, 1+

ε) and q3 :=(1, 2, 1, 1), where ε is any positive constant. The optimal merit
is 3 + ε as illustrated in Figure 3.6(b). Consider the manager S who, on
the arrival of the first request, applies the rule of EndFit but changes to
the rule of Greedy upon arrival of subsequent requests. It is easy to ver-
ify that S will only serve the request q2 and thus the ratio opt(I)/S(I) is
(3 + ε)/(1 + ε) = 3 − δ, for some positive δ. Since δ → 0 as ε → 0, the
competitive ratio of S is at least 3.

Q.E.D.

Note that the above counter example is constructed by combining the
counter examples for Greedy and EndFit. Similarly the proof of the upper
bound is based on the ideas in the proof for Greedy and EndFit. Note that
the definition of ArbFit gives its managers too much freedom in deciding
their plans, and this makes analysis difficult. To restrict this freedom, given
a manager S and I, we find a well-behaved manager S̃ and an instance Ĩ
such that S̃(Ĩ) and opt(Ĩ) are “same” as S(I) and opt(I) respectively.
Then, we exploit the property of S̃ and Ĩ to prove the claimed bound.
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opt(I)

S(I).

3

q1

q2

q3

I

Figure 3.6: Counter example for Lemma 18.

Theorem 19 For any S ∈ ArbFit. S has competitive ratio of at most 3.

Proof.
Given an instance I and manager S, we first define a modification Ĩ

which is of a simple form, and a well-behaved Manager S̃. Next, we show
that

3 merit(S̃(Ĩ)) ≥ merit(opt(Ĩ)).

The instance Ĩ is defined in a way that merit(opt(I)) = merit(opt(Ĩ)) and
merit(S(I)) = merit(S(Ĩ)).

Part I. The following is a lemma similar to Lemma 12, which we state
without proof.

Lemma 20 Given a manager S ∈ ArbFit and an instance I, suppose I1

is a refinement of I, then there is another S1 ∈ ArbFit such that for any
t ∈ R, p′ is in the refinement of p, where p′ :=S1(I1)(t) and p :=S(I)(t).

The given instance I may not be intact in S(I). We want to achieve
the intactness by refining I. This can be done by incrementally break
the requests in I to match the schedule S(I). However, since the refined
instance I ′ is no longer same as I and it is possible that S(I ′) is very much
different from S(I). By Lemma 20, we can find a S′ such that S′(I ′) is
essentially same as S(I). Thus, we can find an refinement I ′ of I that is
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intact in the schedule S′(I ′). The intactness can be similarly extended to
other schedules, that is, given a schedule H, we could find an refinement
I∗ and schedule S∗ such that I∗ is intact in both H and S∗(I∗).

By the above argument, we may assume that the given instance I is
intact in opt(I), S(I) and all plans Plan+(S, I, q).

Part II. Given an instance I, let Jopt be the set of requests that are
served in opt(I) and let Jarb be the set of requests that are served in S(I).
Let Ĩ be a trimmed instance of I defined as follow:

1. For each q ∈ Jarb, the corresponding trimmed request q̃ is the one
whose st(q̃) := s′ and sz(q̃) := sz(q), where (s′, t′] := K−1(q) and K :=S(I);

2. For each q ∈ I − (Jarb ∪ Jopt), sz(q̃) := 0;

3. For each q ∈ Jopt − Jarb, the corresponding trimmed request has
start-time st(q̃) := u′ and sz(q̃) := v′−u′, where (u′, v′] :=H−1(q) and
H := opt(I).

Let J̃opt and J̃arb ⊆ Ĩ be the corresponding set of Jopt and Jarb respec-
tively.

It is easy to see that there exist a manager S̃ ∈ ArbFit such that
S̃(Ĩ) = S(I). However, we can show more. In Part III, we describe a
“well-behaved” S̃.

Part III. Let S̃ to be the server that always allocates a request in J̃arb

in the earliest time-slot [st(q̃), st(q̃) + sz(q̃)). Note that there are only one
pending request in J̃arb. For the pending requests in J̃opt− J̃arb, it allocates
them in a way same as EndFit. We can ignore the remaining pending
requests since all of them have size 0. Figure 3.7 illustrates an example of
a plan.

By definition, merit(S̃(Ĩ)) = merit(S(I)).

p3 p4p2p1p′

Figure 3.7: In this example, wt(pi) > wt(pj) if and only if i > j, and
wt(p1) < wt(p′) < wt(p2).

We need to show that this is a valid manager in ArbFit. That is, all
the plans satisfy the restriction 2(∗) in the definition of ArbFit. We show
this by contradiction.
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Suppose q̃ is the request such that Plan+(S̃, Ĩ, q̃) does not satisfy the
restriction 2(∗), Violation of restriction 2(∗) implies that there is a request,
say q̃′, that is not allocated completely, and yet there is at least a request
lighter than q̃′ that is allocated in [st(q̃), dl(q̃′)). By definition of S̃, this
lighter request is in J̃arb and note that there is only one request in p̃. Call
this lighter request p̃. Let P̃ be the set of pending requests heavier than p̃.
Thus, by definition, q̃′ ∈ P̃ .

Now, we consider the original manager S. Let q′,q, p and P be the
counterpart of q̃′, q̃, p̃ and P̃ respectively. Since p is served by S, it is
allocated by S in Plan+(S, I, q) at the earliest time-slot. Therefore all
requests in P , in particular q′, must be allocated in Plan+(S, I, q), and
they are all allocated at a time later than st(q̃) + sz(p).

If we swap the requests in Plan+(S, I, q) as in the proof of Lemma
11 (that is, by swapping a heavier request with a lighter request that is
allocated in a later time-slot), then what we have is the result of applying
EndFit on P . This implies that q̃′ could be allocated in Plan+(S̃, Ĩ, q̃) and
thus contradicts our assumption.

Part IV. Now we exploit the restricted form imposed on S̃. Consider a
request q̃. Due to the arrival of q̃, there are some requests in Plan−(S̃, Ĩ, q̃)
that are not in Plan+(S̃, Ĩ, q̃). Note that the total size of these ousted
requests is less than or equal to sz(q), and furthermore, they are all lighter
than q̃. We call these requests the pushed-out requests and say that they
are being pushed-out by q.

Part V. Let H1,H2 and H3 be three copies of S̃(I). We want to charge
opt(I) to them.

Now, consider the server S̃ and its plan on the arrival of a request q̃.

1. If q̃ ∈ J̃opt∩ J̃arb, by definition of J̃arb and S̃, q̃ will be served. Charge
the requests pushed by q̃ to H1. In addition, charge q̃ to H3.

2. Otherwise, if q̃ ∈ J̃opt − J̃arb there are two sub-cases:

(a) If q̃ is allocated in Plan(S̃, Ĩ, q̃), charge the requests pushed by
q̃ to H2.

(b) If q̃ is not allocated, charge q̃ to H2.

Part VI. We have to check that all requests in J̃opt are being charged.
If a request is in J̃opt ∩ J̃opt, then it is being charged to H3. Otherwise,
if it belongs to the sub-case (b), then it is charged to H2. If it belongs to
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sub-case (a), then it will be allocated in H+

q̃
. Since it is not in J̃arb, it will

eventually be pushed and charged to H1 or H2. Therefore, we have

3merit(S̃(Ĩ)) ≥ merit(opt(Ĩ)),

which implies
3merit(S(I)) ≥ merit(opt(I)).

Q.E.D.

It is instructive to see how the instance described in Lemma 18 is charged
by the proof of Theorem 19. In this example, the request q1, q2 and q3 are
charged to H1, H2 and H3 respectively.

3.4 Lower Bound

We want to show that no deterministic online manager achieves a compet-
itive ratio better than 2(2−√2). To prove this, we describe an adversary,
who given any manager, after observing the behavior of this manager, gives
an instance that this manager fails to outperform the claimed ratio.

The Adversary We describe a very simple adversary.
At time zero, the adversary issues two requests, q0 = (0, 2, 1, 1) and

q1 = (0, 1, 1,
√

2 − 1) (Figure 3.8). At time t = 1, based on the portion of
q0 and q1 served, the adversary decides whether he needs to issue another
request q2 = (1, 2, 1, 1). If less than 1

2 of request q0 is served, q2 is issued,
otherwise, it is not issued.

If q2 is issued, then the merit of the off-line optimal schedule is 2, but
the merit gained by the manager is at most 1

2 +
√

2−1
2 +1; if q2 is not issued,

then the merit of the off-line optimal schedule is 1+(
√

2−1) but the merit
gained by the manager is at most 1 +

√
2−1
2 . In either case, the off-line

optimal schedule is always better by a factor of 2(2−√2), which rounds to
1.1716.

3.5 Comparing Greedy with EndFit

Both Greedy and EndFit have competitive ratio 2 and it is easy to find two
instances I0 and I1 such that

merit(Greedy(I0)) > merit(EndFit(I0)), and
merit(Greedy(I1)) < merit(EndFit(I1)).
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q1

q0

q2

Figure 3.8: The adversary.

On the other hand, by working with a few examples, it seems that Greedy
tends to perform better than EndFit. In this section, we show, in some
aggregate sense, Greedy is better than EndFit.

For a request q = (s, t, u, v), define its reflection ref(q) :=(−s,−t, u, v).
For an instance I = {q1, q2, . . . , qn}, its reflection ref(I) is

{ref(q1), ref(q2), . . . , ref(qn)}.

A technical complication is that if st(qi) = st(qj), and qi arrives before qj ,
then ref(qi) is defined to have arrived before qj . The motivation of these
definition would be clear in the proof.

Note that the EndFit(I) is very similar to Greedy(ref(I)). Figure 3.9
illustrates such an example.

Theorem 21 For any instance I,

merit (Greedy(I)) + merit (Greedy(ref(I)))
≥ merit (EndFit(I)) + merit (EndFit(ref(I))) .

Furthermore, there is an I0 such that

merit (Greedy(I0)) + merit (Greedy(ref(I0)))
> merit (EndFit(I0)) + merit (EndFit(ref(I0))) .

Proof.
Since ref(ref(I)) = I, it is sufficient to show that merit(Greedy(ref(I))) ≥

merit(EndFit(I)). Let Hend := EndFit(I) and Hgdy := Greedy(ref(I)). Note
that, t is a switch point in Hgdy if and only if −t is a switch point in Hend.

Index the request in I as {q1, q2, . . . , qn} where qi is heavier than qj if
and only if i < j. Recall that if wt(qi) = wt(qj), we resolved the tie by their
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sz(q1)
sz(q2)

q3

q2

q1

EndFit(I)

0

0 ∞

−∞

dl(q1) dl(q2) dl(q3)

Greedy(ref(I))

st(ref(q2)) st(ref(q3))st(ref(q1))

Figure 3.9: EndFit(I) and Greedy(ref(I))

order of arrival. By definition of ref, ref(qi) is heavier than ref(qj) if and
only if qi is heavier than qj .

Let W be the set of all switch points in Hend. We show by induction
on the index that for any request qi, we have wt(Hgdy(−t)) ≥ wt(qi) where
t ∈ H−1

end(qi)−W . (We need to consider W due to the technical complication
that the reflection of a time-slot, by definition, is not a time-slot). The base
case, that is, the case where the request is the heaviest, is easy to check.
Consider qk. Let (s1, s2] := H−1

end(qk). By the definition of EndFit, all the
requests served in (s2, dl(qk)]−W are heavier than qk. Now consider Hgdy.
By induction hypothesis, all the requests served in (−dl(qk),−s2]−W are
heavier than ref(qk), thus qk must be served in a time later than −s2. This
implies that all the requests served in (−dl(qk),−s2] − W are not lighter
than qk.

The second part of the theorem is easy to verify. Q.E.D.
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3.6 Remarks

Randomized manager gdyXend. Consider the counter examples given
in Lemma 13 and Lemma 15 (or Figure 3.4 and Figure 3.5). Although
Greedy performs badly in the first example, it give the off-line optimal
schedule for the second example. Similarly, EndFit performs badly on the
second but not on the first example.

This observation suggests a randomized manager gdyXend who ran-
domly changes mode between Greedy and EndFit. That is, upon arrival of
a request, he tosses a coin. If the outcome is Head (which occurs with prob-
ability 1/2), he applies the rule of Greedy to compute the plan, otherwise,
he applies the rule of EndFit.

Since the plans still follow the rule of ArbFit, gdyXend is 3-competitive.
It is easy to verify that by giving the instance I as in the proof of Lemma
18, the expected merit points gains by gdyXend is 2 + ε. Therefore the
competitive ratio of gdyXend is at least 1 1

2 .

Number of switch points. By definition, the manager is given the free-
dom of switching requests with no penalty. This rises a few questions.
Would a manager, achieves a better performance if he is allowed to in-
crease the number of switches? If the number of switches does matter,
then what is the “limit”? That is, what is a manager who is allowed to
make infinite number of switches? We now give an alternative formulation
of the scheduling problem which could be treated as one that allow infinite
number of switches.

In this extreme scheduling problem, the request takes the same form
(s, t, u, v) as is in the original problem. In this case, however, a request
is served at a rate. How a request q is served throughout its life span is
defined by its rate function fq : R→ [0, 1]. The total size of q served is

∫ dl(q)

st(q)

fq(t) dt,

and the number of merit gains from the serving of this request is

wt(q)
∫ dl(q)

st(q)

fq(t) dt.

Given an instance I, a schedule is a collection of rate functions that satisfies
the following:

1. for any q ∈ I, ∫ dl(q)

st(q)

fq(t) dt ≤ sz(q),
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and

2. for all t ∈ R, ∑

q∈I

fq(t) ≤ 1.

Similar to the original problem, at time t0, call the requests not yet
completely served the pending requests, and the schedule the manager in-
tends to carry out, which may be interrupted by the arrival of new request,
the plan. With respect to a schedule, the remaining space at time t0 is

1−
∑

q∈I

fq(t0),

and we say that the schedule is full at time t0 if the remaining space at t0
is zero.

Now, we describe a manager in this extreme setting. A simple greedy
manager FairShare computes its plan by considering the pending requests
one by one, starting from the heaviest down to the lightest. Suppose q is
the pending request being considered and s is the size of q not yet served.
FairShare distributes q equally over the time slot (st(q), dl(q)]. Specif-
ically, for each time slot which has less than s/(dl(q) − st(q)) remaining
space, it allocates q to this time slots so that it is full; for the remaining
time slots, it allocates s/(dl(q)− st(q)) of q over these slots. Then it recur-
sively allocates the remaining of q until either q is completely allocated or
(st(q), dl(q)] is full.

Using the “charging” approach, it is easy to show that FairShare is
2-competitive. What about the lower bound? Using the counter example
in Lemma 18, one can see that the competitive ratio of FairShare is at
least 1.5. A better example is the instance I0 = {q1, . . . , qn}, where qi =
(0, i, 1, 1) and qi arrives before qj if and only if i > j (so that qi is heavier
than qj for i > j). In this case, merit(opt(I0)) = n. On the other hand,
merit(FairShare)(I0) ≤ b where b is the largest integer such that

n∑

i=b

1
i
≥ 1.

Therefore the optimal schedule is better by a factor of e/(e−1)− ε′n, where
e is the base of the natural logarithms and εn is a constant depending
on n which approaches 0 as n increases. Thus, the competitive ratio of
FairShare is at least e/(e− 1) which rounds to 1.582.
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Chapter 4

System Design and
Implementation

4.1 Introduction

We have implemented an interactive progressive transmission system based
on the transmission scheme described in section 2.2.7. In this chapter, we
do not describe the implementation in detail. Instead, we focus on the
general framework of the system design and possible improvements.

As is in the usual client-server system, there are three components in our
system design: transmission scheme, server-side component and client-side
component. We concentrate the discussion on the client-side component
because it is the “front-end” of the visualization process.

We divide the discussion of the client-side component into two parts.
We first describe the interactions between the user and the system, this
includes issues on how to interpret the user’s feedback, and what image
is to be rendered in response to the user’s feedback. Next, we describe
the system architecture and data structure that support these user-system
interactions. Note that there are a few concurrent activities carried out in
the client-side and also note that the size of our image and the real-time
requirement impose major constraints. As such, the coordination among
various processes, subjected to the limited computing resource to achieve
“real-time” performance is a key element in a successful implementation.
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4.2 Transmission scheme

The design of this component is based on the 0-1 mask described in Section
2.2.7 with Haar wavelet.

Let e`[i, j] be the coefficient of the father wavelet Φ`,i,j and let dk
` [i, j] be

the coefficient of the mother wavelet Ψk
`,i,j,. Let Dk

` be the matrix (array)
whose (i, j)-th entry is dk

` [i, j]. Similarly for E`. Call the set of matrices
Dk

1 , . . . , D`0 , k ∈ {v,h,d} the coefficient pyramid and the set of matrices
E0, . . . , E`0 the image pyramid. Let Ck

` be the mask. Recall that each
entry ck

` [n,m] in the mask indicates whether the client has received the
mother wavelet coefficient dk

` [n,m]. We further simplified the scheme by
using a common mask for the vertical, diagonal and horizontal components
(C` = Ck

` for k ∈ {v, d, h}). Again, call the set of matrices C0, . . . , C`0−1

the mask pyramid.
Note that the discussion in section 2.2.7 is not restricted to any partic-

ular wavelet. However, Haar has the non-overlap property which is very
important in the implementation of the client-side component. The difficul-
ties in using other smoother wavelets is the major fall back of the current
design. We will address this issue again.

We assume lossless transmission. In fact, this scheme can only oper-
ate under lossless transmission, because both the client and server keep a
common mask. In particular, we use the TCP/IP protocol for transmission.

We omit the detail specifications like the hand-shaking procedure and
the byte arrangement.

4.3 Client-side component: Part one

4.3.1 Features

We first describe the features provided by the system from the viewer’s
point of view.

The viewer wants to view a large image (for example, a 3000×5000×24
bits image), which is stored in a server connected by a thin-wire. Based on
the partial data received from the server, the client reconstructs a multi-
foveated image. As the image is large, only a portion of the whole multi-
foveated image could be displayed within the displaying window. Call the
displayed portion the viewing image. Call the boundary of the viewing
image with respect to the whole image the viewing boundary. (Figure 4.1).
The viewing image is multi-foveated. We use “pixel” as an unit to measure
the width of the viewing image and viewing boundary. If the width of the
viewing image is w1 pixels, and the width of the viewing boundary is w2
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pixels, then we say that the zoom levels of the viewing image is log2(w2/w1).
In current implementation, we only allow integer zoom level.

Display window

Viewing image

Viewing boundary

Whole multi-foveated image

Figure 4.1: An example of display window, viewing boundary and viewing
image.

After a network connection to the server is established, a low resolution
image is first sent over and displayed on the display window. Now, the
viewer indicates his intention by performing a sequence of the following
“requests”:

Moving The viewer could freely move the mouse/cursor pointer
within the image.

Zooming in/out The viewer could zoom the image. That is, the viewing
boundary could be shrunk or enlarged while keeping the
size of the display window unchanged.

Panning The viewer could smoothly move the viewing boundary
to a new location while keeping its size unchanged.

Jumping The viewer could set the the top-right corner of the view-
ing boundary to a new location, regardless of its previous
location.

Do-nothing The viewer could choose to do nothing.
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Details around the moving cursor pointer are sent across the network con-
tinuously and upon receipt, these are filled in continuously into the viewing
image.

4.3.2 Translation of mouse movement

We now establish the link between the user’s request and the data request
to be sent to the server. Recall that each request is represented by a weight
function which in turn is represented by the rate α, foveal resolution β and
the fovea γ.

Assume that we are working on a discrete time frame t = 0, 1, 2, . . .. At
time t, let (xt, yt) be the position of the mouse pointer (with respect to the
whole image). Let zt be the current zoom level which is an integer. Let wt

to be the weight function to be sent to the server at time t. The weight
function wt is represented by its rate αt, fovea resolution βt and gaze point
γt. At all times, the fovea resolution is determined by zi:

βt ← 2zt ,

and the gaze point is always the mouse position:

γt ← (xt, yt).

The rate αt is always set to a predefined value say, R0, except when the
user chooses to do nothing. In this case, a possible scheme is

αt ← αt−1

1 + αt−1S
,

where S is another predefined constant. This relationship of αt and αt−1

can be rewritten as,
1
αt

=
1

αt−1
+ S.

Hence, if the user chooses to do nothing, the inverse rate 1
α increases by

S. In our implementation, the rate is not increased by a constant rate.
We employ a heuristic which, taking the sparseness of the mask pyramid
into consideration, chooses a rate such that the number of bytes requested
for remains approximately fixed at a predefined constant. Thus, if the
user moves the mouse to a region which already has data sent, then the
increment S will be larger.
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4.4 Client-side component: Part two

A few activities occur concurrently in the client-side: the system needs to
keep track of the user’s input, sending and receiving data to and from the
server, reconstructing the image and rendering the reconstructed foveated
image. We assign these activities to three modules: Network, Display, and
User. We further introduce one more module Manager whose responsibility
is to coordinate these modules.

The main shared data among these modules consists of the mask pyra-
mid and the image pyramid. Call the shared data Shared.

4.4.1 Data Structure

Here are two observations.

1. Since the image is large, if the reconstructed image is stored in a full
two dimensional array, locality will not be preserved in the sense that
two neighboring pixels may be stored in two memory locations far
apart, and thus leads to frequent page swaps.

2. On the other hand, since the image is large, the whole image can not
be displayed at full resolution on the display window. The viewing
image is a part of the image and/or a zoom-out image. Thus, it is not
necessary to store a full two dimensional array of the reconstructed
foveated image.

To handle the memory space problem (1), we exploit (2).
The reconstruction process is separated into two stages and Shared acts

as an intermediate storage between the two stages. When data arrives, it
is updated into Shared; and whenever required, the viewing image is then
rendered from Shared.

Shared consists of the mask and image pyramid. Recall that the co-
efficient d`[i, j] = 0 if the mask c`[i, j] = 0 for any `, i and j. For most
of the time, the mask is very sparse. There are a number of ways to rep-
resent a sparse matrix. To choose a good representation, we consider the
operations it supports. We delay the description of the data structure until
appendix B. Instead, in the next three paragraphs, we describe the three
basic operations it supports.

Updating. On receipt of a set of m (mother wavelet) coefficients from the
server, suppose N is the width and height of the image, what is the number
of operations required to update the image pyramid? By the fast wavelet
transform, this updating can be done using O(N2) arithmetic operations,
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which is linear in term of the total number of image pixels. However, this
is still not feasible since N is large. We need an incremental reconstruction
algorithm that depends only on m.

For the Haar wavelet, due to its non-overlap property, there is a straight
forward incremental reconstruction algorithm (assuming the pyramid is
stored as a full two dimensional array), which takes O(m) arithmetic oper-
ations. The sparse data-structure should achieve a similar performance.

Rendering. This is the most frequently called operation. Most system
graphics routines that display an image onto the display unit takes as an
argument a full two dimensional array, whose entries have one-one cor-
respondence to the pixels of the displaying image. Thus, there is a gap
between the image pyramid and the representation of the viewing image
(Figure 4.2). Though the connecting step is straightforward, due to its
frequent uses, it has to be brought into consideration in the design of the
sparse image pyramid.

The use of Haar basis simplifies the operation, since we just have to
duplicate a coefficient and move them into the viewing image, as shown in
Figure 4.2.

level 0

level 3

level 2

level 1

Image pyramid Viewing image

Figure 4.2: Each cell on the left represents a father wavelet coefficient. An
empty cell indicates that the coefficient is not yet available. A cell on the
right represents a pixel in the viewing image.

Consider a situation where the user wants to pan. A method to carry
out such panning is by first moving the current pixels in the viewing image

94



to their respective new location and the new exposed area is then rendered
from the image pyramid. Since the viewing image is “moving”, the user
is insensitive to the details. Thus, it is more cost-effective to perform an
approximate but fast rendering operation for the newly exposed area. This
motivates rendering in different modes. The mode to be called is decided
by the Manager module.

Query. Beside the updating and rendering operations, Shared is also
required to support queries on the sparseness of the mask pyramid. Specif-
ically, when given a query of the form (`, rs, re, cs, ce), Shared should report
an approximation of the number of non-zero elements in this range, that
is, it should give an approximation of the number

∑

rs≤r≤re

∑

cs≤c≤ce

ck
` [r, c].

This information is useful in, for example, deciding whether a request is to
be scaled up or scaled down.

4.4.2 Coordinating various activities

A naive round-robin method to handle different modules might be a loop
consisting the following steps:

1. Checks whether the user wants to zoom, pan, or jump, and immedi-
ately performs this operation.

2. Checks the current mouse position and translates it into a request.

3. Sends the request to the server and waits for the reply. Once the data
arrive, updates Shared.

This is clearly not a good solution in general. For example, while waiting
for the reply in step 3, the user may want to pan the viewing image.

In our solution, all four modules (User, Network, Display and Manager)
run concurrently. Manager holds responsibility for coordinating the other
modules. All modules report their status to Manager and Manager issues
instructions, based on the current status and the sparseness of Shared.

A simple manager is as follows:

1. If Display is idling, constructs and issues an instruction.

2. If Network is idling, constructs and issues an instruction.

3. Checks the current status.
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Figure 4.3 depicts the relationship among various modules and data-
structure. To understand this figure, we describe the client-side activities
after the viewer issues his requests.

1. User reports the status of the input devices, for example mouse po-
sition, to Manager.

2. Upon notification by User, Manager translates the status of the input
devices to a list of requests. Next, based on some strategy, Manager
decides whether this request is to be dropped, scaled down or delayed.
If the decision is to serve a scaled down request q̃, Manager instructs
Network to send q̃ to the server.

3. Network sends the request to the server and waits for the requested
data. After all data arrived, Network updates Shared and notifies
Manager.

4. Upon notification, based on the current situation, the Manager decides
whether a sub-image is to be rendered. If this is the case, it instructs
the Display to do so.

5. Display, instructed by Manager, renders the sub-image and displays
it on the display window.

4.5 Server-side component

A very important consideration regarding the design of server is the mem-
ory usage. The current design breaks each matrix Mi into sub-matrices
(typically 128 by 128 coefficients), where each sub-matrix is stored as a
single file. Whenever the client requests coefficients which lie in some sub-
matrix, the whole sub-matrix is loaded into the main memory (unless it is
already in memory). The requested coefficients are then extracted and sent
across. When all coefficients in the sub-matrix have been sent, it is released
from the main memory. Currently, we rely on the operating system to deal
with the caching between secondary memory and the main memory. It is
not difficult to incorporate a more sophisticated cache management algo-
rithm which could be “tuned” for server of different computing capacity
and which could anticipate the client’s requests.

As for the mask pyramid, in the current implementation, its data-
structure is exactly same as that in the client-side (Section 2.3). Since
a server may serve many clients, maintaining a pyramid for each client can
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Figure 4.3: Overall System Design.

become a burden. Currently, we do not have a straight forward way to im-
prove it. One possible way is to group coefficients into blocks (for example
8 by 8 coefficients per block), and force the client to receive a whole block
whenever the client request for any coefficient in that block. In this way,
the size of the mask pyramid could be reduced by a factor of 64.

4.6 Implementation

We implemented our system in a Unix platform and the program is written
in C++. Concurrency among the modules is achieved by using thread
programming. Thus, the time sharing among the modules is being taken
care of by the operating system. The graphics interface is done by directly
calling the X-windows library. The system is tested on SPARCstation 5.
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No special graphics hardware is assumed.

4.7 Remarks and Future works

In this section, we describe some possible improvements, most of which
centered around the trade-offs among these requirements:

1. Reconstruction time: Suppose the client receives an additional m
bytes, this is the time which the client takes to update the data struc-
ture (in our implementation, the image and mask pyramid).

2. Distortion rate: This reflects the effectiveness of the transmission
scheme. Assume that the weight function w0 is fixed throughout the
transmission, and let Ib be the reconstructed foveated image after b
bytes have been received by the client, then we want a fast decay (as
a function of b) of the weighted distortion,

‖Ib − I‖2w.

3. Response time: Note that there is a delay between the time the user
issues his request, say a request to pan, and the time the image is
actually displayed. We call this delay the response time. In our im-
plementation, the rendering time is the biggest factor in the response
time.

The followings are possible trade-offs among these three requirements.

Using other wavelet. Using Haar wavelet to approximate the foveated
image causes undesirable visual artifacts. In addition, the distortion rate
is poorer than for other smoother wavelets. However, Haar has the non-
overlap property which we have exploited in this implementation to achieve
a fast incremental reconstruction.

It is unlikely that a fast incremental reconstruction algorithm exists for
overlapping wavelet. However, we could tackle this problem in another
direction. Since the viewing image is small compare to the whole image,
on arrival of new coefficients, the father wavelet coefficients corresponding
to the viewing image could be reconstructed first; others could be delayed
until an appropriate time.

Using other transmission schemes. Chapter two describes a few trans-
mission schemes. The method implemented here in fact is the simplified
version. A more sophisticated transmission scheme has better distortion
rate but slower reconstruction.
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Reducing the pyramid. We have mentioned in section 4.5 that a pos-
sible method to reduce the size of the pyramid is by grouping coefficients
into blocks. In so doing, we will have lower performance in distortion rate
but faster reconstruction.

Measurement of real-time performance. A way to combine the mea-
surement of reconstruction time, distortion rate and user response time
could be as follow: let It be the reconstructed multi-foveated image at time
t. Let I ′t be the image displayed. Note that I ′t is not necessarily same as It.
Let wt be the weight function corresponding to the user’s request at time t
and let the window Wt : R2 → {0, 1} be the function where Wt(x, y) = 1
if and only if (x, y) is a point/pixel within the viewing boundary (Figure
4.1). The effectiveness of the whole integrated system at time t could be
measured by

‖(I − I ′t)Wt‖wt .
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Appendix A

A.1 Schur’s Lemma

Lemma 22 (Schur). Let T be an operator whose matrix elements in an
orthonormal base {gn}n∈N are θn,m = 〈Tgn, gm〉. If there are two sequences
of positive numbers {wm} and {ŵm} and a constant B such that

∞∑
m=0

|θn,mwm| < Bŵn (A.1)

and
∞∑

n=0

|θn,mŵn| < Bwm, (A.2)

then
‖T‖2 ≤ B.

Proof. By the Cauchy-Schwarz inequality and (A.1), for any x :=(x0, x1, . . .),
and any n, we have

∞∑
m=0

|θn,mxm| ≤
∞∑

m=0

(|θn,m|wm)1/2

(
|θn,m|x2

m

1
wm

)1/2

≤ (Bŵm)1/2

( ∞∑
m=0

|θn,m|x2
m

1
wm

)1/2

.

Combine with (A.2), we have

‖Tx‖22 =
∞∑

n=0

( ∞∑
m=0

θn,mxm

)2
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≤
∞∑

n=0

(
(Bŵn)

∞∑
m=0

|θn,m|x2
m

1
wm

)

=
∞∑

m=0

B
x2

m

wm

∞∑
n=0

|θn,mŵm|

≤ B2
∞∑

n=0

x2
n.

Q.E.D.

A.2 Multiresolution analysis

A multiresolution analysis [19] is given by a sequence {Vj}j∈Z of closed
subspaces of L2(R) satisfying the followings:

1. Vj ⊂ Vj−1 for all j ∈ Z.

2.
⋃

j∈Z Vj is dense in L2(R) and
⋂

j∈Z Vj = {0}.

3. f ∈ Vj ⇔ f(2j ·) ∈ V0.

4. f ∈ V0 ⇒ f(· − n) ∈ V0 for all n ∈ Z.

5. There exist a φ ∈ V0, such that {φ(· − n) : n ∈ Z} is an orthonormal
basis in V0.

Let {Vj}j∈Z be a multiresolution analysis, and let Wn be the orthogonal
complement of Vn in Vn−1, that is,

Vn ⊕Wn = Vn−1,

then, there is a function, known as the mother wavelet ψ, such that {ψ(· −
k)}k∈Z forms an orthonormal basis of W0.

Let

φj,m := 2−j/2φ(2−j(· −m)), and

ψj,m := 2−j/2ψ(2−j(· −m)),

then {ψj,m}m∈N and {φj,m}m∈N are basis of Vj and Wj respectively.
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A.3 Regularity

Let f be a function which is n + 1 times continuously differentiable. For a
v ∈ R, such that f (n+1) is bounded in a neighborhood [v− h0, v + h0] of v,
let pv be the Taylor polynomial in this neighborhood:

pv(t) :=
n∑

k=0

f (k)(v)
k!

(t− v)k.

We say that the function f is uniformly Lipschitz α over [a, b] if there
exist a K > 0 such that

for all (t, v) ∈ [a, b]2, |f(t)− pv(t)| ≤ K|t− v|α.

The Lipschitz regularity of f over [a, b] is the sup of the α such that f is
Lipschitz α.

Lemma 23 If f is uniformly Lipschitz α over [a, b], then the function g

g(x) := c−αf (cx) ,

is uniformly Lipschitz α over [c−1a, c−1b], where c is a positive constant.

Proof. Let pcw and qw be the Taylor formula of f and g at cw and w
respectively. By definition,

g(k)(x) = c−α+kf (k) (cx) .

Thus,

qw(x) =
n∑

k=0

c−α+k f (k)(cw)
k!

(x− w)k = c−αpcw(cx).

Therefore, for all (x,w) ∈ [c−1a, c−1b]2,

|g(x)− qw(x)| = |c−αf(cx)− c−αpcw(cx)|
< Kc−α|cx− cw|α = K|x− w|α.

Q.E.D.

Theorem 24 Let ψ be a wavelet with n vanishing moments, ψ ∈ Cn and
has a compact support. Let 0 < α < n be a non-integer real number. If
f ∈ L2(R) is uniformly Lipschitz α over [a, b], then for any ε > 0, there
exist A > 0 such that, for all u ∈ [a, b] and s ∈ R+, we have:

|〈ψu,s, f〉| ≤ Asα+1/2,

where ψu,s(t) := |s|−1/2ψ( t−u
s ).
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A proof of the above theorem and a discussion on regularity could be
found in [21].
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Appendix B

B.1 Sparse representation for 0-1 Mask Pyra-
mid

The 0-1 mask pyramid stores the mask {cj [m,n]}j,m,n. We use a straight-
forward representation. The pyramid is represented as a list of sparse ma-
trices. Each sparse matrix is represented as an array of ordered linked list,
where each list corresponds to a row. Each item in the linked list stores
two integers: the starting column and ending column of non-zero entries.
The items in a list are ordered in term of the starting column.

Conceptually, each linked list is a sequence of non-overlapping intervals,
and the union of this intervals is the indices of non-zero entries.

Updating this pyramid is straightforward. However, care has to be taken
in implementing the rendering operation so as to achieve computational
efficiency.

B.2 Sparse representation for image pyramid

The image pyramid stores the coefficient {dk
j [m,n]}k,j,m,n. Note that an

entry dk
j [m,n] = 0 if the corresponding entry in the 0-1 mask cj [m,n] = 0.

Let us call an entry dk
j [m,n] in the image pyramid non-available if and only

if cj [m, n] = 0.
The image pyramid is represented as a list of sparse matrices and each

matrix is represented in two levels. The matrix is subdivided into smaller
sub-matrices of size, say 64 by 64. A sub-matrix is allocated only when one
of its entry is available. The first level is a matrix (two-dimensional array)
of pointer where each points to a sub-matrix (Figure B.1).

Recall that one of the supported operations is query, that is, given a
query of the form (`, rs, re, cs, ce), an approximation of the total number of
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non-available entries in this range is returned. To facilitate this operation,
for each sub-matrix, we store a sub-total, which is the number of non-
available entries in the sub-matrix. To answer a query, we just have to
compute a weighted sum of the sub-totals.

First level Second level

Figure B.1: Two-level representation.
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