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Abstract

Several modern machine learning algorithms can be studied from the perspective of evolution

dynamics on the space of probability measures. Gradient descent-ascent algorithms that are used

to solve minimax problems such as the ones arising in generative adversarial networks (GANs)

can be interpreted as a joint evolution of two measures: one over the space of parameters of

the generator, and one over the space of parameters of the discriminator. In chapter 2, we study

systems of this form, and we provide convergence guarantees when possible. Diffusion models,

which are another generative modeling technique, are also based on dynamics on probability

measures, in this case over the space of samples. The dynamics are simulated at inference time;

the starting distribution is a Gaussian, and the final distribution is meant to be the target data

distribution. Diffusion models were generalized by the Flow Matching framework, which allows

to construct different paths between the Gaussian noise distribution and the data distribution. In

chapter 3, we introduce Multisample Flow Matching, which is a generalization of Flow Matching

with intimate connections to optimal transport. Stochastic optimal control is a third problem

where dynamics on measures play a critical role. The goal is to learn a vector field (the control)

in order to drive the behavior of the solutions of a stochastic differential equation. In chapter 4,

we present Stochastic Optimal Control Matching, a least-squares loss that is based on the same

principles that are used to formulate diffusion model losses, and which achieves errors that are

an order of magnitude lower than for existing methods.
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1 | Introduction

A common thread among the three works covered in this thesis is that dynamics on probability

distributions play a central role in all of them. These probability distributions can be defined over

the space of parameters, or over the space of samples. A brief summary of each of the works can

be found below.

Mean-field analysis of two-player zero-sum games [Domingo-Enrich et al. 2020] Find-

ing Nash equilibria in two-player zero-sum continuous games is a central problem in machine

learning, e.g. for training both GANs and robust models. The existence of pure Nash equilibria

requires strong conditions which are not typically met in practice. Mixed Nash equilibria exist

in greater generality and may be found using mirror descent. Yet this approach does not scale

to high dimensions. To address this limitation, we parametrize mixed strategies as mixtures of

particles, whose positions and weights are updated using gradient descent-ascent. We study this

dynamics as an interacting gradient flow over measure spaces endowed with the Wasserstein-

Fisher-Rao metric. We establish global convergence to an approximate equilibrium for the re-

lated Langevin gradient-ascent dynamic. We prove a law of large numbers that relates particle

dynamics to mean-field dynamics. Our method identifies mixed equilibria in high dimensions

and is demonstrably effective for training mixtures of GANs.

Multisample Flow Matching [Pooladian et al. 2023] Simulation-free methods for training

continuous-time generative models construct probability paths that go between noise distribu-
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tions and individual data samples. Recent works, such as Flow Matching, derived paths that are

optimal for each data sample. However, these algorithms rely on independent data and noise sam-

ples, and do not exploit underlying structure in the data distribution for constructing probability

paths. We propose Multisample Flow Matching, a more general framework that uses non-trivial

couplings between data and noise samples while satisfying the correct marginal constraints. At

very small overhead costs, this generalization allows us to (i) reduce gradient variance during

training, (ii) obtain straighter flows for the learned vector field, which allows us to generate high-

quality samples using fewer function evaluations, and (iii) obtain transport maps with lower cost

in high dimensions, which has applications beyond generative modeling. Importantly, we do so

in a completely simulation-free manner with a simple minimization objective. We show that our

proposed methods improve sample consistency on downsampled ImageNet data sets, and lead to

better low-cost sample generation.

Stochastic Optimal Control Matching [Domingo-Enrich et al. 2023] Stochastic optimal

control, which has the goal of driving the behavior of noisy systems, is broadly applicable in

science, engineering and artificial intelligence. Our work introduces Stochastic Optimal Control

Matching (SOCM), a novel Iterative Diffusion Optimization (IDO) technique for stochastic op-

timal control that stems from the same philosophy as the conditional score matching loss for

diffusion models. That is, the control is learned via a least squares problem by trying to fit a

matching vector field. The training loss, which is closely connected to the cross-entropy loss,

is optimized with respect to both the control function and a family of reparameterization ma-

trices which appear in the matching vector field. The optimization with respect to the repa-

rameterization matrices aims at minimizing the variance of the matching vector field. Experi-

mentally, our algorithm achieves lower error than all the existing IDO techniques for stochastic

optimal control for three out of four control problems, in some cases by an order of magni-

tude. The key idea underlying SOCM is the path-wise reparameterization trick, a novel tech-
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nique that is of independent interest, e.g., for generative modeling. The code can be found at

https://github.com/facebookresearch/SOC-matching.
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2 | Mean-field two-player zero-sum

games

2.1 Introduction

Multi-objective optimization problems arise in many fields, from economics to civil engineering.

Tasks that require optimizing multiple objectives have also become a routine part of many agent-

based machine learning algorithms including generative adversarial networks [Goodfellow et al.

2014], imaginative agents [Racanière et al. 2017], hierarchical reinforcement learning [Wayne and

Abbott 2014] and multi-agent reinforcement learning [Bu et al. 2008]. It not only remains difficult

to carry out the necessary optimization, but also to assess the optimality of a given solution.

Multi-agent optimization is generally cast as finding equilibria in the space of strategies. The

classic notion of equilibrium is due to Nash [Nash 1951]: a Nash equilibrium is a set of agent

strategies for which no agent can unilaterally improve its loss value. Pure Nash equilibria, in

which each agent adopts a single strategy, provide a limited notion of optimality because they

exist only under restrictive conditions. On the other hand, mixed Nash equilibria (MNE), where

agents adopt a strategy from a probability distribution over the set of all strategies, exist in much

greater generality [Glicksberg 1952]. Importantly, MNE exist for games with infinite-dimensional

compact strategy spaces, in which each player observes a loss function that is continuous in its

strategy. We encounter this setting in different game formulations of machine learning problems,
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like GANs [Goodfellow et al. 2014].

AlthoughMNE are guaranteed to exist, it is difficult to identify them. Indeed, worst-case complex-

ity analyses have shown that without additional assumptions on the losses there is no efficient

algorithm for finding a MNE, even in the case of two-player finite games [Daskalakis et al. 2009].

Some recent progress has been made; [Hsieh et al. 2019] proposed a mirror-descent algorithm

with convergence guarantees, which is approximately realizable in high-dimension.

Contributions. Following Hsieh et al. [2019], we formulate continuous two-player zero-sum

games as amulti-agent optimization problem over the space of probabilitymeasures on strategies.

We describe two gradient descent-ascent dynamics in this space, both involving a transport term.

• We show that the stationary points of a gradient ascent-descent flow with Langevin diffu-

sion over the space of mixed strategies are approximate MNE.

• We analyse a gradient ascent-descent dynamics that jointly updates the positions andweights

of twomixed strategies to converge to an exactMNE. This dynamics corresponds to a gradi-

ent descent-ascent flow over the space of measures endowedwith aWasserstein-Fisher-Rao

(WFR) metric [Chizat et al. 2018].

• We discretize both dynamics in space and time to obtain implementable training algorithms.

We provide mean-field type consistency results on the discretization. We demonstrate nu-

merically how both dynamics overcome the curse of dimensionality for finding MNE on

synthetic games. On real data, we use WFR flows to train mixtures of GANs, that explicitly

discover data clusters while maintaining good performance.

2.2 Related work

Eqilibria in continuous games. Most of the works that study convergence to equilibria in

continuous games or GANs do not frame the problem in the infinite-dimensional space of mea-
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sures, but on finite-dimensional spaces. That is because they either (i) restrict their attention to

games with convexity-concavity assumptions in which pure equilibria exist [Mertikopoulos et al.

2019; Lin et al. 2018; Nouiehed et al. 2019], or (ii) provide algorithms with convergence guaran-

tees to local notions of equilibrium such as stable fixed points, local Nash equilibria and local

minimax points [Heusel et al. 2017; Adolphs et al. 2018; Mazumdar et al. 2019; Jin et al. 2019;

Fiez et al. 2019; Balduzzi et al. 2018]. Both approaches differ from ours, which is to give global

convergence guarantees without convexity assumptions. Some works have studied approximate

MNE in infinite-dimensional measure spaces. Arora et al. [2017] proved the existence of approxi-

mate MNE and studied the generalization properties of this approximate solution; their analysis,

however, does not provide a constructive method to identify such a solution. In a more explicit

setting, Grnarova et al. [2017] designed an online-learning algorithm for finding a MNE in GANs

under the assumption that the discriminator is a single hidden layer neural network. Balandat

et al. [2016] apply the dual averaging algorithm to the minimax problem and show that it recov-

ers a MNE, but they do not provide any convergence rate nor a practical algorithm for learning

mixed NE. Our framework holds without making any assumption on the architectures of the dis-

criminator and generator and provides explicit algorithms with some convergence guarantees.

Mean-field view of nonlinear gradient descent. Our approach is closely related to the

mean-field perspective on wide neural networks [Mei et al. 2018; Rotskoff and Vanden-Eijnden

2018; Chizat and Bach 2018; Sirignano and Spiliopoulos 2019; Rotskoff et al. 2019]. These methods

view training algorithms as approximations of Wasserstein gradient flows, which are dynamics

on measures over the space of neurons. In our setting, a mixed strategy corresponds to a measure

over the space of strategies.

Particle approaches for two-player games. Our theoretical work sheds a new light on the

results of Hsieh et al. [2019], and rigorously justifies important algorithmic modifications the

authors introduced. Specifically, they give rates of convergence for infinite-dimensional mirror
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descent on measures (i.e. updating strategy weights but not their positions). The straightfor-

ward implementation of this algorithm performs poorly unless the dimension is low (Figure 2.1),

which is why they proposed an ‘implementable‘ two-timescale version, in which the inner loop

is a transport-based sampling procedure closely related to our Algorithm 1. This implementable

version is not studied theoretically, as the two-timescale structure hinders a thorough analysis.

Our analysis includes transport on equal footing with mirror descent updates.

2.3 Problem setup and mean-field dynamics

Notation. For a topological space X we denote by P(X) the space of Borel probability mea-

sures on X, andM+(X) the space of Borel (positive) measures. For a given measure 𝜇 ∈ P(X)

that is absolutely continuous with respect to the canonical Borel measure 𝑑𝑥 ofX and has Radon-

Nikodym derivative 𝑑𝜇

𝑑𝑥
∈ C(X), we define its differential entropy 𝐻 (𝜇) = −

∫
log( 𝑑𝜇

𝑑𝑥
)𝑑𝜇. For

measures 𝜇, 𝜈 ∈ P(X),W2 is the 2-Wasserstein distance.

2.3.1 Lifting differentiable games to spaces of strategy distributions

Differentiable two-player zero-sum games. We recall the definition of a differentiable zero-

sum game, and show how finding a mixed Nash equilibrium to such a game is equivalent to

solving a bi-linear game in the infinite dimensional space of distributions on strategies. We will

use gradient flow approaches for solving the lifted problem.

Definition 2.1. A two-player zero-sum game consists of a set of two players with parameters

𝑧 = (𝑥,𝑦) ∈ Z = X × Y, where players observe a loss functions ℓ1 : Z → R and ℓ2 : Z → R that

satisfy for all (𝑥,𝑦) ∈ Z, ℓ1(𝑥,𝑦) + ℓ2(𝑥,𝑦) = 0. ℓ ≜ ℓ1 = −ℓ2 is the loss of the game.

The compact finite-dimensional spaces of strategiesX andY are endowed with a certain distance

function 𝑑 (which we assume Euclidean in what follows—subsection A.7.5 derives our results
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on arbitrary strategy manifolds). This allows to define differentiable games, amenable to first-

order optimization. We make the following mild assumption over the regularity of losses and

constraints [Glicksberg 1952].

Assumption 1. The parameter spacesX andY are compact Riemannianmanifolds without bound-

ary of dimensions 𝑑𝑥 , 𝑑𝑦 embedded in R𝐷𝑥 ,R𝐷𝑦 respectively. The loss ℓ is continuously differen-

tiable and 𝐿-smooth with respect to each parameter. That is, for all 𝑥, 𝑥′ ∈ X and 𝑦,𝑦′ ∈ Y,

∥∇𝑥 ℓ (𝑥,𝑦) − ∇𝑥 ℓ (𝑥′, 𝑦′)∥2 ≤ 𝐿(𝑑 (𝑥, 𝑥′)+𝑑 (𝑦,𝑦′)), ∥∇𝑦ℓ (𝑥,𝑦) − ∇𝑦ℓ (𝑥′, 𝑦′)∥2 ≤ 𝐿(𝑑 (𝑥, 𝑥
′)+𝑑 (𝑦,𝑦′)).

From pure to mixed Nash eqilibria. Assuming that both players play simultaneously, a pure

Nash equilibrium point is a pair of strategies (𝑥∗, 𝑦∗) ∈ X × Y such that, for all (𝑥,𝑦) ∈ X × Y,

ℓ (𝑥★, 𝑦) ≤ ℓ (𝑥★, 𝑦★) ≤ ℓ (𝑥,𝑦★). Such points do not always exist in continuous games. In con-

trast, mixed Nash equilibria (MNE) are guaranteed to exist [Glicksberg 1952] under Assump-

tion 1. Those distributions (𝜇★𝑥 , 𝜇★𝑦 ) ∈ P(X) × P(Y) are global saddle points of the expected loss

L(𝜇𝑥 , 𝜇𝑦) ≜
∬
ℓ (𝑥,𝑦)𝑑𝜇𝑥 (𝑥)𝑑𝜇𝑦 (𝑦). Formally, for all 𝜇𝑥 , 𝜇𝑦 ∈ P(X) × P(Y),

L(𝜇∗𝑥 , 𝜇𝑦) ≤ L(𝜇∗𝑥 , 𝜇∗𝑦) ≤ L(𝜇𝑥 , 𝜇∗𝑦). (2.1)

We quantify the accuracy of an estimation (𝜇𝑥 , 𝜇𝑦) of a MNE using the Nikaidô and Isoda [1955]

error

NI(𝜇𝑥 , 𝜇𝑦) = sup
𝜇𝑦∈P(Y)

L(𝜇𝑥 , 𝜇𝑦) − inf
𝜇𝑥∈P(X)

L(𝜇𝑥 , 𝜇𝑦). (2.2)

We track the evolution of this metric in our theoretical results (subsection 2.4.2) and in our ex-

periments. We obtain guarantees on finding 𝜀-MNE (𝜇𝜀𝑥 , 𝜇𝜀𝑦), i.e. distribution pairs such that

NI(𝜇𝜀𝑥 , 𝜇𝜀𝑦) ≤ 𝜀.
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2.3.2 Training dynamics on discrete mixtures of strategies

We study three different dynamics for solving (2.1). Let us first assume that the two players

play finite mixtures of 𝑛 strategies 𝜇𝑥 =
∑𝑛
𝑖=1𝑤

𝑖
𝑥𝛿𝑥𝑖 ∈ P(X), 𝜇𝑦 =

∑𝑛
𝑖=1𝑤

𝑖
𝑦𝛿𝑦𝑖 ∈ P(Y), where

{𝑥𝑖, 𝑦𝑖}𝑖∈[1:𝑛] are the positions of the strategies and 𝑤 𝑖
𝑥 ,𝑤

𝑖
𝑦 ≥ 0 are their weights. In the simplest

setting, those mixtures are assumed uniform, i.e. 𝑤 𝑖
𝑥 = 𝑤 𝑖

𝑦 = 1/𝑛. Finding the best 2𝑛 strategies

involve finding a saddle point of L(𝜇𝑥 , 𝜇𝑦) = 1
𝑛2

∑
𝑖

∑
𝑗 ℓ (𝑥𝑖, 𝑦 𝑗 ). Starting from random indepen-

dent initial strategies 𝑥𝑖0 = 𝜉𝑖 ∼ 𝜇𝑥,0, 𝑦𝑖0 = 𝜉𝑖 ∼ 𝜇𝑦,0, we may hope that the gradient descent-ascent

dynamics
𝑑𝑥𝑖𝑡

𝑑𝑡
= −1

𝑛

𝑛∑︁
𝑗=1
∇𝑥 ℓ (𝑥𝑖𝑡 , 𝑦

𝑗
𝑡 ),

𝑑𝑦𝑖𝑡

𝑑𝑡
=

1
𝑛

𝑛∑︁
𝑗=1
∇𝑦ℓ (𝑥 𝑗𝑡 , 𝑦𝑖𝑡 ), ∀𝑖 ∈ [1 : 𝑛] (2.3)

finds such a saddle point. Yet this may fail in simple nonconvex-nonconcave games, as illustrated

in subsection A.7.2—the particle distributions collapse to a stationary point that is not a MNE.

To mitigate this convergence problem, we analyse a perturbed dynamics analogous to Langevin

gradient descent. Using the same initialization as in (2.3), we add a small amount of noise in the

gradient dynamics and obtain the stochastic differential equations

𝑑𝑋 𝑖𝑡 = −
1
𝑛

𝑛∑︁
𝑗=1
∇𝑥 ℓ (𝑋 𝑖𝑡 , 𝑌

𝑗
𝑡 )𝑑𝑡 +

√︄
2
𝛽
𝑑𝑊 𝑖

𝑡 , 𝑑𝑌
𝑖
𝑡 =

1
𝑛

𝑛∑︁
𝑗=1
∇𝑦ℓ (𝑋 𝑗

𝑡 , 𝑌
𝑖
𝑡 )𝑑𝑡 +

√︄
2
𝛽
𝑑𝑊̄ 𝑖

𝑡 , (2.4)

where 𝑊 𝑖
𝑡 ,𝑊̄

𝑖
𝑡 are independent Brownian motions. The discretization of (2.4) results in algo-

rithm 1; it is similar to Alg. 4 in Hsieh et al. [2019].

We propose a second alternative dynamics to (2.3), that updates both the positions and theweights

of the particles, using relative updates for weights. Wewill show that it enjoys better convergence
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Algorithm 1 Langevin Descent-Ascent (L-DA)
Input: IID samples 𝑥1

0, . . . , 𝑥
𝑛
0 from 𝜇𝑥,0 ∈ P(X), IID samples 𝑦1

0, . . . , 𝑦
𝑛
0 ∈ Y from 𝜇𝑦,0 ∈ P(Y)

1 for 𝑡 = 0, . . . ,𝑇 do
2 for 𝑖 = 1, . . . , 𝑛 do
3 Sample Δ𝑊 𝑖

𝑡 ∼ N(0, 𝐼 ) 𝑥𝑖𝑡+1 = 𝑥𝑖𝑡 −
𝜂

𝑛

∑𝑛
𝑗=1 ∇𝑥 ℓ (𝑥𝑖𝑡 , 𝑦

𝑗
𝑡 ) +

√︁
2𝜂𝛽−1Δ𝑊 𝑖

𝑡

4 Sample Δ𝑊̄ 𝑖
𝑡 ∼ N(0, 𝐼 ) 𝑦𝑖𝑡+1 = 𝑦𝑖𝑡 +

𝜂

𝑛

∑𝑛
𝑗=1 ∇𝑦ℓ (𝑥

𝑗
𝑡 , 𝑦

𝑖
𝑡 ) +

√︁
2𝜂𝛽−1Δ𝑊̄ 𝑖

𝑡

5 end
6 end
Output: 𝜇𝑛

𝑥,𝑇
= 1

𝑛

∑𝑛
𝑖=1 𝛿𝑥𝑖

𝑇
, 𝜇𝑛

𝑦,𝑇
= 1

𝑛

∑𝑛
𝑖=1 𝛿𝑦𝑖

𝑇

Algorithm 2 Wasserstein-Fisher-Rao Descent-Ascent (WFR-DA)
Input: IID samples 𝑥 (1)0 , . . . , 𝑥

(𝑛)
0 from 𝜈𝑥,0 ∈ P(X), IID samples 𝑦 (1)0 , . . . , 𝑦

(𝑛)
0 from 𝜈𝑦,0 ∈ P(Y).

Initial weights: For all 𝑖 ∈ [1 : 𝑛],𝑤 (𝑖)𝑥 = 1, 𝑤 (𝑖)𝑦 = 1.
7 for 𝑡 = 0, . . . ,𝑇 do
8 [𝑥 (𝑖)

𝑡+1]𝑛𝑖=1 = [𝑥
(𝑖)
𝑡 − 𝜂

∑𝑛
𝑗=1𝑤

(𝑖)
𝑦,𝑡∇𝑥 ℓ (𝑥

(𝑖)
𝑡 , 𝑦

( 𝑗)
𝑡 )]𝑛𝑖=1

9

[
𝑤̂
(𝑖)
𝑥,𝑡+1

]𝑛
𝑖=1

=

[
𝑤
(𝑖)
𝑥,𝑡 exp

(
−𝜂′∑𝑛

𝑗=1𝑤
( 𝑗)
𝑦,𝑡 ℓ (𝑥

(𝑖)
𝑡 , 𝑦

( 𝑗)
𝑡 )

)]𝑛
𝑖=1
[𝑤 (𝑖)

𝑥,𝑡+1]𝑛𝑖=1 =
[
𝑤̂
(𝑖)
𝑥,𝑡+1

]𝑛
𝑖=1
/∑𝑛

𝑗=1 𝑤̂
( 𝑗)
𝑥,𝑡+1

10 [𝑦 (𝑖)
𝑡+1]𝑛𝑖=1 = [𝑦

(𝑖)
𝑡 + 𝜂

∑𝑛
𝑗=1𝑤

( 𝑗)
𝑥,𝑡 ∇𝑦ℓ (𝑥

( 𝑗)
𝑡 , 𝑦

(𝑖)
𝑡 )]𝑛𝑖=1

11

[
𝑤̂
(𝑖)
𝑦,𝑡+1

]𝑛
𝑖=1

=

[
𝑤
(𝑖)
𝑦,𝑡 exp

(
𝜂′

∑𝑛
𝑗=1𝑤

( 𝑗)
𝑥,𝑡 ℓ (𝑥

( 𝑗)
𝑡 , 𝑦

(𝑖)
𝑡 )

)]𝑛
𝑖=1
[𝑤 (𝑖)

𝑦,𝑡+1]𝑛𝑖=1 =
[
𝑤̂
(𝑖)
𝑦,𝑡+1

]𝑛
𝑖=1
/∑𝑛

𝑗=1 𝑤̂
( 𝑗)
𝑦,𝑡+1

12 end
Output: 𝜈𝑛

𝑥,𝑇
= 1
𝑇+1

∑𝑇
𝑡=0

∑𝑛
𝑖=1𝑤

(𝑖)
𝑥,𝑇
𝛿
𝑥
(𝑖 )
𝑇

, 𝜈𝑛
𝑦,𝑇

= 1
𝑇+1

∑𝑇
𝑡=0

∑𝑛
𝑖=1𝑤

(𝑖)
𝑦,𝑇
𝛿
𝑦
(𝑖 )
𝑇

properties in the mean-field limit.

𝑑𝑥𝑖𝑡

𝑑𝑡
= −𝛾

𝑛∑︁
𝑗=1
𝑤
𝑗
𝑦,𝑡∇𝑥 ℓ (𝑥𝑖𝑡 , 𝑦

𝑗
𝑡 ),

𝑑𝑤 𝑖
𝑥,𝑡

𝑑𝑡
= 𝛼

(
−

𝑛∑︁
𝑗=1
𝑤
𝑗
𝑦,𝑡 ℓ (𝑥𝑖𝑡 , 𝑦

𝑗
𝑡 ) + 𝐾 (𝑡)

)
𝑤 𝑖
𝑥,𝑡 (2.5)

and similarly for all 𝑦𝑖𝑡 (flipping the sign of ℓ). 𝐾 (𝑡) ≜ ∑𝑛
𝑘=1

∑𝑛
𝑗=1𝑤

𝑗
𝑦,𝑡𝑤

𝑘
𝑥,𝑡 ℓ (𝑥𝑖𝑡 , 𝑦

𝑗
𝑡 ) keeps𝑤𝑥,𝑡 in the

simplex. We use uniform weights for initialization. When 𝛾 = 0 and 𝛼 = 1, only the weights are

updated: this results in the continuous-time version of the infinite-dimensional mirror descent

studied by Hsieh et al. [2019]. The Euler discretization of (2.5) results in algorithm 2.
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2.3.3 Training dynamics as gradient flows on measures

The three dynamics that we have introduced at the level of particles induces dynamics on the

associated empirical probability measures. If {𝑥𝑖𝑡 , 𝑦𝑖𝑡 }𝑖∈[1,𝑛] is a solution of (2.3), then 𝜇𝑥 (𝑡) =

1
𝑛

∑𝑛
𝑖=1 𝛿𝑥𝑖𝑡 and 𝜇𝑦 (𝑡) =

1
𝑛

∑𝑛
𝑖=1 𝛿𝑦𝑖𝑡 are solutions of the InteractingWasserstein Gradient Flow (IWGF)

of L:


𝜕𝑡𝜇𝑥 = ∇ · (𝜇𝑥∇𝑥𝑉𝑥 (𝜇𝑦, 𝑥)), 𝜇𝑥 (0) = 1

𝑛

∑𝑛
𝑖=1 𝛿𝑥𝑖0

,

𝜕𝑡𝜇𝑦 = −∇ · (𝜇𝑦∇𝑦𝑉𝑦 (𝜇𝑥 , 𝑦)), 𝜇𝑦 (0) = 1
𝑛

∑𝑛
𝑖=1 𝛿𝑦𝑖0

.

(2.6)

The derivation of (2.6) is provided in subsectionA.7.3. We use the notation𝑉𝑥 (𝜇𝑦, 𝑥) ≜ 𝛿L
𝛿𝜇𝑥
(𝜇𝑥 , 𝜇𝑦) (𝑥) =∫

ℓ (𝑥,𝑦)𝑑𝜇𝑦 (𝑦) for the first variations of the functional L(𝜇𝑥 , 𝜇𝑦). Holding 𝜇𝑦 fixed, the evolution

of 𝜇𝑥 is a Wasserstein gradient flow on L(·, 𝜇𝑦).We interpret these PDEs in the weak sense, i.e.

equality holds when integrating measures against bounded continuous functions.

The distributions 𝜇𝑥 (𝑡) = 1
𝑛

∑𝑛
𝑖=1 𝛿𝑋 𝑖𝑡 and 𝜇𝑦 (𝑡) =

1
𝑛

∑𝑛
𝑖=1 𝛿𝑌 𝑖𝑡 , where {𝑋

𝑖, 𝑌 𝑖}𝑖∈[1:𝑛] are solutions

of (2.4) follows a Entropy-Regularized Interacting Wasserstein Gradient Flow (ERIWGF):


𝜕𝑡𝜇𝑥 = ∇𝑥 · (𝜇𝑥∇𝑥𝑉𝑥 (𝜇𝑦, 𝑥)) + 𝛽−1Δ𝑥𝜇𝑥 , 𝜇𝑥 (0) = 1

𝑛

∑𝑛
𝑖=1 𝛿𝑥𝑖0

𝜕𝑡𝜇𝑦 = −∇𝑦 · (𝜇𝑦∇𝑦𝑉𝑦 (𝜇𝑥 , 𝑦)) + 𝛽−1Δ𝑦𝜇𝑦, 𝜇𝑦 (0) = 1
𝑛

∑𝑛
𝑖=1 𝛿𝑦𝑖0

(2.7)

The derivation of (2.7) is provided in Theorem A.19. It is a system of coupled nonlinear Fokker-

Planck equations, that are the Kolmogorov forward equations of the SDE (2.4). They correspond

to the IWGF of the entropy-regularized loss L𝛽 (𝜇𝑥 , 𝜇𝑦) ≜ L(𝜇𝑥 , 𝜇𝑦) + 𝛽−1(𝐻 (𝜇𝑦) − 𝐻 (𝜇𝑥 ).

Finally, if {𝑥𝑖, 𝑦𝑖,𝑤 𝑖
𝑥 ,𝑤

𝑖
𝑦}𝑖∈[1:𝑛] solve (2.5), then 𝜇𝑥 (𝑡) =

∑𝑛
𝑖=1𝑤

𝑖
𝑥,𝑡𝛿𝑥𝑖𝑡

, 𝜇𝑦 (𝑡) =
∑𝑛
𝑖=1𝑤

𝑖
𝑦,𝑡𝛿𝑦𝑖𝑡

solve the
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Interacting Wasserstein-Fisher-Rao Gradient Flow (IWFRGF) of L:


𝜕𝑡𝜇𝑥 = 𝛾∇𝑥 · (𝜇𝑥∇𝑥𝑉𝑥 (𝜇𝑦, 𝑥)) − 𝛼𝜇𝑥 (𝑉𝑥 (𝜇𝑦, 𝑥) − L(𝜇𝑥 , 𝜇𝑦)), 𝜇𝑥 (0) =

∑𝑛
𝑖=1𝑤

𝑖
𝑥,0𝛿𝑥𝑖0

,

𝜕𝑡𝜇𝑦 = −𝛾∇𝑦 · (𝜇𝑦∇𝑦𝑉𝑦 (𝜇𝑥 , 𝑦)) + 𝛼𝜇𝑦 (𝑉𝑦 (𝜇𝑥 , 𝑦) − L(𝜇𝑥 , 𝜇𝑦)), 𝜇𝑦 (0) =
∑𝑛
𝑖=1𝑤

𝑖
𝑦,0𝛿𝑦𝑖0

.

(2.8)

The derivation of (2.8) is provided in section A.1 and Theorem A.22. The Wasserstein-Fisher-

Rao or Hellinger-Kantorovich metric [Chizat et al. 2015; Kondratyev et al. 2016; Gallouët and

Monsaingeon 2016] is a metric on the probability spaceM+(X) induced by a lifting to the space

P(X × R+) of the form 𝜈 ↦→ 𝜇 =
∫
R+
𝑤 𝑑𝜈 (·,𝑤). If we keep 𝜈𝑦 fixed, the first equation in (2.8)

is a Wasserstein-Fisher-Rao gradient flow (slightly modified by the term 𝛼𝜇𝑥L(𝜇𝑥 , 𝜇𝑦) to con-

strain 𝜇𝑥 in P(X)). The term −𝛼𝜇𝑥 (𝑉𝑥 (𝜇𝑦, 𝑥) − L(𝜇𝑥 , 𝜇𝑦)), which also arises in entropic mirror

descent, allow mass to ‘teleport’ from bad strategies to better ones with finite cost by moving

along the weight coordinate. Wasserstein-Fisher-Rao gradient flows have been used by Chizat

[2019]; Rotskoff et al. [2019]; Liero et al. [2018] in the context of optimization.

Initialization of (2.6), (2.7) and (2.8) may be done with the measures 𝜇𝑥,0 and 𝜇𝑦,0 from which

{𝑥𝑖0}, {𝑦𝑖0} are sampled, in which case the measures 𝜇𝑥 (𝑡) and 𝜇𝑦 (𝑡) are not discrete and follow the

mean-field dynamics. In subsection 2.4.3 we link the dynamics starting from discrete realizations

to the mean-field dynamics.

2.4 Convergence analysis

We establish convergence results for the entropy-regularized dynamics and the WFR dynamics.

2.4.1 Convergence of the entropy-regularized Wasserstein dynamics

The following theorem characterizes the stationary points of the entropy-regularized dynamics.

12



Theorem 2.2. Suppose that Assumption 1 holds, that ℓ ∈ 𝐶2(X ×Y) and that the initial measures

𝜇𝑥,0, 𝜇𝑦,0 have densities in 𝐿1(X), 𝐿1(Y). If a solution (𝜇𝑥 (𝑡), 𝜇𝑦 (𝑡)) of the ERIWGF (2.7) converges

in time, it must converge to the point (𝜇𝑥 , 𝜇𝑦) which is the unique fixed point of the problem

𝜌𝑥 (𝑥) =
1
𝑍𝑥
𝑒−𝛽

∫
ℓ (𝑥,𝑦) 𝑑𝜇𝑦 (𝑦), 𝜌𝑦 (𝑦) =

1
𝑍𝑦
𝑒𝛽

∫
ℓ (𝑥,𝑦) 𝑑𝜇𝑥 (𝑥) . (2.9)

(𝜇𝑥 , 𝜇𝑦) is an 𝜖-Nash equilibrium of the game given byL when 𝛽 ≥ 4
𝜖

log
(
21−𝑉𝛿
𝑉𝛿
(2𝐾ℓ/𝜖 − 1)

)
,where

𝐾ℓ := max𝑥,𝑦 ℓ (𝑥,𝑦) −min𝑥,𝑦 ℓ (𝑥,𝑦) is the length of the range of ℓ , 𝛿 := 𝜖/(2Lip(ℓ)) and𝑉𝛿 is a lower

bound on the volume of a ball of radius 𝛿 in X,Y.

The proof is in section A.3. Theorem 2.2 characterizes the stationary points of the ERIWGF

but does not provide a guarantee of convergence in time. It implies that if the dynamics (2.7)

converges in time, the limit will be an 𝜖-Nash equilibrium of L, with 𝜖 = 𝑂̃ (1/𝛽) (disregarding

log factors). The dynamics (2.7) correspond to a McKean-Vlasov process on the joint probability

measure 𝜇𝑥 × 𝜇𝑦 . While convergence to stationary solutions of such processes have been studied

in the Euclidean case [Eberle et al. 2019]l, their results would only guarantee convergence for

temperatures 𝛽−1 ≳ 𝐿𝑖𝑝 (ℓ) in our setup, which is not strong enough to certify convergence to

arbitrary 𝜖-NE.

There is a trade-off between setting a low temperature 𝛽−1, which yields an 𝜖-Nash equilibrium

with small 𝜖 but possibly slow or no convergence, and setting a high temperature, which has

the opposite effect. Linear potential Fokker-Planck equations (that we recover when both play-

ers are decoupled) indeed converge exponentially with rate 𝑒−𝜆𝛽𝑡 for all 𝛽 , with 𝜆𝛽 decreasing

exponentially with 𝛽 for nonconvex potentials [Markowich and Villani 1999, sec. 5]. Entropic

regularization also biases the dynamics towards measures with full support and hence precludes

convergence to sparse equilibria even if they exist. This problem does not arise in the WFR dy-

namics.

13



2.4.2 Analysis of the Wasserstein-Fisher-Rao dynamics

Theorem 2.3 states that, at a certain time 𝑡0, the time averaged measures of the solution (𝜈𝑥 , 𝜈𝑦)

of (2.8) are an 𝜖-MNE, where 𝜖 can be made arbitrarily small by adjusting the constants 𝛾, 𝛼 of

the dynamics. We define 𝜈𝑥 (𝑡) = 1
𝑡

∫ 𝑡

0 𝜈𝑥 (𝑠) 𝑑𝑠 and 𝜈𝑦 (𝑡) =
1
𝑡

∫ 𝑡

0 𝜈𝑦 (𝑠) 𝑑𝑠 , where 𝜈𝑥 and 𝜈𝑦 are

solutions of (2.8).

Theorem 2.3. Let 𝜖 > 0 arbitrary. Suppose that 𝜈𝑥,0, 𝜈𝑦,0 are such that their Radon-Nikodym deriva-

tives with respect to the Borel measures of X,Y are lower-bounded by 𝑒−𝐾
′
𝑥 , 𝑒−𝐾

′
𝑦 respectively. For

any 𝛿 ∈ (0, 1/2), there exists a constant𝐶𝛿,X,Y,𝐾 ′𝑥 ,𝐾 ′𝑦 > 0 depending on the dimensions of X,Y, their

curvatures and 𝐾′𝑥 , 𝐾
′
𝑦 , such that if 𝛾/𝛼 < 1, 𝛾

𝛼
≤

(
𝜖/𝐶𝛿,X,Y,𝐾 ′𝑥 ,𝐾 ′𝑦

) 2
1−𝛿

NI(𝜈𝑥 (𝑡0), 𝜈𝑦 (𝑡0)) ≤ 𝜖 where 𝑡0 = (𝛼𝛾)−1/2.

The proof (section A.4) builds on the convergence properties of continuous-time mirror descent

and closely follows the proof of Theorem 3.8 from Chizat [2019]. We explicit the dependency

of 𝐶𝛿,X,Y,𝐾 ′𝑥 ,𝐾 ′𝑦 on the dimensions of the manifolds and the properties of the loss ℓ . Notice that

Theorem 2.3 ensures convergence towards an 𝜖-Nash equilibrium of the non-regularized game.

Following Chizat [2019], it is possible to replace the regularity assumption on the initial measures

𝜈𝑥,0, 𝜈𝑦,0 by a singular initialisation, at the expense of using𝑂 (exp(𝑑)) particles. This result is not

a convergence result for the measures, but rather on the value of the NI error. Notice that it

involves time-averaging and a finite horizon. Similar results are common for mirror descent in

convex games [Juditsky et al. 2011], albeit in the discrete-time setting.

Theorem 2.3 does not capture the benefits of transport, as it regards it as a perturbation of mirror

descent (which corresponds to 𝛾 = 0). When targetting a small error 𝜖 , we need to set 𝛾 ≪ 𝛼

because of the bound on 𝛾/𝛼 . In this case, mirror descent is the main driver of the dynamics.

However, it is seen empirically that taking much higher ratios 𝛾/𝛼 (i.e. increasing the importance

14



of the transport term) results in better performance. A satisfying explanation of this phenomenon

is still sought after in the simpler optimization setting [Chizat 2019].

2.4.3 Convergence to mean-field

The following theorem (proof in section A.6) links the empirical measures of the systems (2.4),

(2.5) to the solutions of the mean field dynamics (2.7) and (2.8) respectively. It can be seen as a

law of large numbers. It shows that by Theorem 2.4, algorithm 1 and algorithm 2 approximate

the mean-field dynamics studied in subsection 2.4.1 and subsection 2.4.2.

Theorem 2.4. (i) Let 𝜇𝑛𝑥 = 1
𝑛

∑𝑛
𝑖=1 𝛿𝑋 (𝑖 ) ∈ C([0,𝑇 ],P(X)), 𝜇𝑛𝑦 = 1

𝑛

∑𝑛
𝑖=1 𝛿𝑌 (𝑖 ) ∈ C([0,𝑇 ],P(Y)) be

the empirical measures of a solution of (2.4) up to an arbitrary time𝑇 . Let 𝜇𝑥 ∈ C([0,𝑇 ],P(X)), 𝜇𝑦 ∈

C([0,𝑇 ],P(Y)) be a solution of the ERIWGF (2.7) with mean-field initial conditions 𝜇𝑥 (0) = 𝜇𝑥,0,

𝜇𝑦 (0) = 𝜇𝑦,0. Then,

E[W2
2 (𝜇𝑛𝑥,𝑡 , 𝜇𝑥,𝑡 ) +W2

2 (𝜇𝑛𝑦,𝑡 , 𝜇𝑦,𝑡 )]
𝑛→∞−−−−→ 0, E[|NI(𝜇𝑛𝑥,𝑡 , 𝜇𝑛𝑦,𝑡 ) − NI(𝜇𝑥,𝑡 , 𝜇𝑦,𝑡 ) |]

𝑛→∞−−−−→ 0,

uniformly over 𝑡 ∈ [0,𝑇 ]. NI is the Nikaido-Isoda error defined in (2.2).

(ii) Let 𝜈𝑛𝑥 =
∑𝑛
𝑖=1𝑤

𝑖
𝑥,𝑡𝛿𝑋 (𝑖 ) ∈ C([0,𝑇 ],P(X)), 𝜇𝑛𝑦 =

∑𝑛
𝑖=1𝑤

𝑖
𝑦,𝑡𝛿𝑌 (𝑖 ) ∈ C([0,𝑇 ],P(Y)) be the (pro-

jected) empiricalmeasures of a solution of (2.5) up to an arbitrary time𝑇 . Let𝜈𝑥 ∈ C([0,𝑇 ],P(X)), 𝜈𝑦 ∈

C([0,𝑇 ],P(Y)) be a solution of (2.8) with mean-field initial conditions 𝜇𝑥 (0) = 𝜇𝑥,0, 𝜇𝑦 (0) = 𝜇𝑦,0.

Then,

E[W2
2 (𝜈𝑛𝑥,𝑡 , 𝜈𝑥,𝑡 ) +W2

2 (𝜈𝑛𝑦,𝑡 , 𝜈𝑦,𝑡 )]
𝑛→∞−−−−→ 0, E[|NI(𝜈𝑛𝑥,𝑡 , 𝜈𝑛𝑦,𝑡 ) − NI(𝜈𝑥,𝑡 , 𝜈𝑦,𝑡 ) |]

𝑛→∞−−−−→ 0,

uniformly over 𝑡 ∈ [0,𝑇 ]. 𝜈𝑥,𝑡 , 𝜈𝑦,𝑡 , 𝜈𝑛𝑥,𝑡 , 𝜈𝑛𝑦,𝑡 are the time-averaged measures, as in Theorem 2.3.
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Figure 2.1: Nikaido-Isoida errors for L-DA,

WFR-DA and mirror descent, as a function

of the problem dimension, for a nonconvex

loss ℓ𝑎 (left) and convex loss ℓ𝑏 (right). L-DA

and WFR-DA outperforms mirror descent for

large dimensions. Values averaged over 20

runs after 30000 iterations. Error bars show

standard deviation across runs.
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Figure 2.2: Training mixtures of GANs over a synthetic mixture of Gaussians in 2D. WFR-DA converges

faster with models with low number of parameters, and similar performance with over-parametrized

models. Mixtures naturally perform a form of clustering of the data. Errors bars show variance across 5

runs.

2.5 Numerical Experiments

We show that WFR and Langevin dynamics outperform mirror descent in high dimension, on

synthetic games. We then show the interests of using WFR-DA for training GANs. Code has

been made available for reproducibility.
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Figure 2.3: Trainingmixtures of GANs over CIFAR10. We compare the algorithm that updates themixture

weights and parameters (WFR-DA flow) with the algorithm that only updates parameters (W-DA flow).

Using several discriminators and a WFR-DA flow brings more stable convergence. Each generator tends

to specialize in a type of images. Errors bars show variance across 5 runs.
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2.5.1 Polynomial games on spheres

We study two different games with losses ℓ𝑎, ℓ𝑏 : S𝑑−1 × S𝑑−1 → R of the form

ℓ𝑎 (𝑥,𝑦) = 𝑥⊤𝐴0𝑥 + 𝑥⊤𝐴1𝑦 + 𝑦⊤𝐴2𝑦 + 𝑦⊤𝐴3(𝑥2) + 𝑎⊤0 𝑥 + 𝑎⊤1 𝑦

ℓ𝑏 (𝑥,𝑦) = 𝑥⊤𝐴⊤0𝐴0𝑥 + 𝑥⊤𝐴1𝑦 + 𝑦⊤𝐴⊤2𝐴2𝑦 + 𝑎⊤0 𝑥 + 𝑎⊤1 𝑦,

where𝐴0, 𝐴1, 𝐴2, 𝐴3, 𝑎0, 𝑎1 are matrices and vectors with components sampled from a normal dis-

tributionN(0, 1), and 𝑥2 is the vector given by component-wise multiplication of 𝑥 . ℓ𝑏 is a convex

loss on the sphere, while ℓ𝑎 is not. We run Langevin Descent-Ascent (updates of positions) and

WFR Descent-Ascent (updates of weights and positions), and compare it with mirror descent

(updates of weights).We note that the computation of the NI error (2.2) entails solving two op-

timization problems on measures, or equivalently in parameter space. We solve each of them

by performing 2000 gradient acsent runs with random uniform initialization and selecting the

highed minimum final value. This gives a lower bound on the NI error which is precise enough

for our purposes. We perform time averaging on the weights of mirror descent andWFR-DA, but

not on the positions of WFR-DA because that would incur an 𝑂 (𝑡) overhead on memory.

Results. Wirror descent performs like WFR-DA in low dimensions, but suffers strongly from

the curse of dimensionality (Figure 2.1). On the other hand, algorithms that incorporate a trans-

port term keep performing well in high dimensions. In particular, WFR-DA is consistently the

algorithm with lowest NI error. Notice that the errors in the 𝑛 = 50 and 𝑛 = 100 plots do not

differ much, confirming that we reach a mean-field regime.

2.5.2 Training GAN mixtures

WenowuseWFR-DA to trainmixtures of generator networks. We consider theWasserstein-GAN

[Arjovsky et al. 2017] setting. We seek to approximate a distribution Pdata with a distribution
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G𝑥 , defined as the push-forward of a noise distribution N(0, 𝐼 ) by a neural-network 𝑔𝑥 . The

discrepancy between Pdata and G𝑥 is estimated by a neural-network discriminator 𝑓𝑦 , leading to

the problem

min
𝑥

max
𝑦
ℓ (𝑥,𝑦) ≜ E𝑎∼𝑝data [𝑓𝑦 (𝑎)] − E𝜀∼N(0,𝐼 ) [𝑓𝑦 (𝑔𝑥 (𝜀))] .

We lift this problem in the space of distributions over the parameters𝑥 and𝑦 (see subsectionA.7.4),

that we represent through weighted discrete distributions of
∑𝑝

𝑖=1𝑤
(𝑖)
𝑥 𝛿𝑥 (𝑖 ) and

∑𝑞

𝑗=1𝑤
( 𝑗)
𝑦 𝛿𝑦 ( 𝑗 ) . We

solve

min
𝑥 (𝑖 ) ,𝑤𝑥∈△𝑝

max
𝑦 ( 𝑗 ) ,𝑤𝑦∈△𝑞

𝑝∑︁
𝑖=1

𝑞∑︁
𝑗=1
𝑤
(𝑖)
𝑥 𝑤

( 𝑗)
𝑦 ℓ (𝑥 (𝑖), 𝑦 ( 𝑗)) ,

using algorithm 2, where △𝑞 is the 𝑞-dimensional simplex. The optimal generation strategy cor-

responding to an equilibrium point (𝑥 (𝑖))𝑖,𝑤𝑥 , (𝑦 ( 𝑗)) 𝑗 ,𝑤𝑦 is then to randomly select a generator

𝑔𝑥𝐼 with 𝐼 sampled among [𝑛] with probability𝑤 (𝑖)𝑥 , and use it to generate𝑔𝑥𝐼 (𝜀), with 𝜀 ∼ N(0, 𝐼 ).

Training mixtures of generators has been proposed by Ghosh et al. [2018], with a tweaked dis-

criminator loss. Our formulation only involves a lifting in the space of measures, and uses a new

training algorithm.

Results on 2D GMMs. We first set Pdata to be an 8-mode mixture of Gaussians in two dimen-

sions. We use the original W-GAN loss, with weight cropping for the discriminators (𝑓𝑦 ( 𝑗 ) ) 𝑗 . We

measure the interest of using mixtures when a single generator 𝑔𝑥 (𝑖 ) cannot fit Pdata (single-layer

MLP), and when it can (4-layer MLP).We report results in Figure 2.2, measuring the log likelihood

of G𝑥 for the GMM during training. The WFR dynamic is stable even with few particles. When

training under-parametrized generators, using mixtures permits faster convergence (in terms of

generator updates). In the over-parametrized setting, training a single generator or a mixture of

generators perform similarly. WFR-DA is thus useful to train mixtures of simple generators. In

this setting, each simple generator identifies modes in the training data, doing data clustering at

no cost (Figure 2.2 right).
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Results on real data. We train a mixture of ResNet generators on CIFAR10 and MNIST. We

replace the position updates in algorithm 2 by extrapolated Adam steps [Gidel et al. 2019] to

achieve faster convergence, and perform grid search over generator and discriminators learning

rates. Convergence curves for the best learning rates are displayed in Figure 2.3 right, measuring

test FID [Heusel et al. 2017]. With a sufficient number of generators and discriminators (𝐺 >

5, 𝐷 > 2), the model trains as fast as a normal GAN. WFR-DA is thus stable and efficient even

with a reasonable number of particles. Using the discretized WFR versus the Wasserstein flow

provides a slight improvement over updating parameters only. As with GMMs, each generator

trained with WFR-DA becomes specialised in generating a fraction of the target data, thereby

identifying clusters. Those could be used for unsupervised conditional generation of images.

2.6 Conclusions and future work

We have explored non-convex-non-concave, high-dimensional games from the perspective of

optimal transport. As with non-convex optimization, framing the problem in terms of measures

provides geometric benefits, at the expense of moving into non-Euclidean metric spaces over

measures. Our theoretical results establish approximate mean-field convergence for two setups:

Langevin Descent-Ascent andWFR D-A, and directly applies to GANs, for mixtures of generators

and discriminators.

Despite the positive convergence guarantees our results are qualitative in nature, i.e. without

rates. In the entropic case, the unfavorable tradeoff between temperature and convergence of

the associated McKean-Vlasov scheme deserves further study, maybe through log-Sobolev-type

inequalities [Markowich and Villani 1999]. In theWFR case, we lack a local convergence analysis

explaining the benefits of transport observed empirically, perhaps leveraging sharpness Polyak-

Łojasiewicz results such as those in [Chizat 2019] or [Sanjabi et al. 2018]. Finally, in our GAN

formulation, each generator is associated to a single particle in a high-dimensional product space
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of all network parameters, which is not scalable to large population sizes that would approximate

their mean-field limit. A natural question is to understand to what extent our framework could

be combined with specific choices of architecture, as recently studied in [Lei et al. 2019].

Broader impact

We study algorithms designed to find equilibria in games, provide theoretical guarantees of con-

vergence and test their performance empirically. Among other applications, our results give

insight into training algorithms for generative adversarial networks (GANs), which are useful for

many relevant tasks such as image generation, image-to-image or text-to-image translation and

video prediction. As always, we note that machine learning improvements like ours come in the

form of “building machines to do X better”. For a sufficiently malicious or ill-informed choice of

X, such as surveillance or recidivism prediction, almost any progress in machine learning might

indirectly lead to a negative outcome, and our work is not excluded from that.
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3 | Multisample Flow Matching

3.1 Introduction

Deep generative models offer an attractive family of paradigms that can approximate a data dis-

tribution and produce high quality samples, with impressive results in recent years [Ramesh et al.

2022; Saharia et al. 2022; Gafni et al. 2022]. In particular, these works havemade use of simulation-

free training methods for diffusion models [Ho et al. 2020; Song et al. 2021b]. A number of works

have also adopted and generalized these simulation-free methods [Lipman et al. 2023; Albergo

and Vanden-Eijnden 2023; Liu et al. 2022; Neklyudov et al. 2022] for continuous normalizing flows

(CNF; Chen et al. [2018]), a family of continuous-time deep generative models that parameterizes

a vector field which flows noise samples into data samples.

Recently, Lipman et al. [2023] proposed Flow Matching (FM), a method to train CNFs based on

constructing explicit conditional probability paths between the noise distribution (at time 𝑡 = 0)

and each data sample (at time 𝑡 = 1). Furthermore, they showed that these conditional probabil-

ity paths can be taken to be the optimal transport path when the noise distribution is a standard

Gaussian, a typical assumption in generative modeling. However, this does not imply that the

marginal probability path (marginalized over the data distribution) is anywhere close to the op-

timal transport path between the noise and data distributions.

Most existing works, including diffusion models and FlowMatching, have only considered condi-

tional sample paths where the endpoints (a noise sample and a data sample) are sampled indepen-
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Figure 3.1: Multisample Flow Matching trained with batch optimal couplings produces more consistent

samples across varying NFEs. Note that both flows on each row start from the same noise sample.

dently. However, this results in non-zero gradient variances even at convergence, slow training

times, and in particular limits the design of probability paths. In turn, it becomes difficult to create

paths that are fast to simulate, a desirable property for both likelihood evaluation and sampling.

Contributions: We present a tractable instance of FlowMatching with joint distributions, which

we call Multisample Flow Matching. Our proposed method generalizes the construction of prob-

ability paths by considering non-independent couplings of 𝑘-sample empirical distributions.

Among other theoretical results, we show that if an appropriate optimal transport (OT) inspired

coupling is chosen, then sample paths become straight as the batch size 𝑘 →∞, leading to more

efficient simulation. In practice, we observe both improved sample quality on ImageNet using

adaptive ODE solvers and using simple Euler discretizations with a low budget number of func-

tion evaluations. Empirically, we find that on ImageNet, we can reduce the required sampling cost
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by 30% to 60% for achieving a low Fréchet Inception Distance (FID) compared to a baseline Flow

Matching model, while introducing only 4% more training time. This improvement in sample

efficiency comes at no degradation in performance, e.g. log-likelihood and sample quality.

Within the deep generative modeling paradigm, this allows us to regularize towards the op-

timal vector field in a completely simulation-free manner (unlike e.g. Finlay et al. [2020b]; Liu

et al. [2022]), and avoids adversarial formulations (unlike e.g. Makkuva et al. [2020]; Albergo

and Vanden-Eijnden [2023]). In particular, we are the first work to be able to make use of solu-

tions from optimal solutions on minibatches while preserving the correct marginal distributions,

whereas prior works would only fit to the barycentric average (see detailed discussion in sub-

section 3.5.1). Beyond generative modeling, we also show how our method can be seen as a

new way to compute approximately optimal transport maps between arbitrary distributions in

settings where the cost function is completely unknown and only minibatch optimal transport

solutions are provided.

3.2 Preliminaries

3.2.1 Continuous Normalizing Flow

Let R𝑑 denote the data space with data points 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 . Two important objects

we use in this paper are: the probability path 𝑝𝑡 : R𝑑 → R>0, which is a time dependent (for

𝑡 ∈ [0, 1]) probability density function, i.e.,
∫
𝑝𝑡 (𝑥)𝑑𝑥 = 1, and a time-dependent vector field,

𝑢𝑡 : [0, 1] × R𝑑 → R𝑑 . A vector field 𝑢𝑡 constructs a time-dependent diffeomorphic map, called a

flow,𝜓 : [0, 1] × R𝑑 → R𝑑 , defined via the ordinary differential equation (ODE):

𝑑

𝑑𝑡
𝜓𝑡 (𝑥0) = 𝑢𝑡 (𝜓𝑡 (𝑥0)) , 𝜓0(𝑥0) = 𝑥0 . (3.1)
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To create a deep generative model, Chen et al. [2018] suggested modeling the vector field 𝑢𝑡 with

a neural network, leading to a deep parametric model of the flow 𝜓𝑡 , referred to as a Continuous

Normalizing Flow (CNF). A CNF is often used to transform a density 𝑝0 to a different one, 𝑝1, via

the push-forward equation

𝑝𝑡 (𝑥) = [𝜓𝑡 ]♯𝑝0(𝑥) = 𝑝0(𝜓−1
𝑡 (𝑥))

����det
[
𝜕𝜓−1

𝑡

𝜕𝑥
(𝑥)

] ���� , (3.2)

where the second equality defines the push-forward (or change of variables) operator ♯. A vector

field 𝑢𝑡 is said to generate a probability path 𝑝𝑡 if its flow𝜓𝑡 satisfies (3.2).

3.2.2 Flow Matching

A simple simulation-free method for training CNFs is the Flow Matching algorithm [Lipman et al.

2023], which regresses onto an (implicitly-defined) target vector field that generates the desired

probability density path 𝑝𝑡 . Given two marginal distributions 𝑞0(𝑥0) and 𝑞1(𝑥1) for which we

would like to learn a CNF to transport between, Flow Matching seeks to optimize the simple

regression objective,

E𝑡,𝑝𝑡 (𝑥) ∥𝑣𝑡 (𝑥 ;𝜃 ) − 𝑢𝑡 (𝑥)∥2 , (3.3)

where 𝑣𝑡 (𝑥 ;𝜃 ) is the parametric vector field for the CNF, and 𝑢𝑡 (𝑥) is a vector field that gen-

erates a probability path 𝑝𝑡 under the two marginal constraints that 𝑝𝑡=0 = 𝑞0 and 𝑝𝑡=1 = 𝑞1.

While Equation 3.3 is the ideal objective function to optimize, not knowing (𝑝𝑡 , 𝑢𝑡 ) makes this

computationally intractable.

Lipman et al. [2023] proposed a tractable method of optimizing (3.3), which first defines condi-

tional probability paths and vector fields, such that when marginalized over 𝑞0(𝑥0) and 𝑞1(𝑥1),

provide both 𝑝𝑡 (𝑥) and 𝑢𝑡 (𝑥). When targeted towards generative modeling, 𝑞0(𝑥0) is a simple
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noise distribution and easy to directly enforce, leading to a one-sided construction:

𝑝𝑡 (𝑥) =
∫

𝑝𝑡 (𝑥 |𝑥1)𝑞1(𝑥1) 𝑑𝑥1

𝑢𝑡 (𝑥) =
∫

𝑢𝑡 (𝑥 |𝑥1)
𝑝𝑡 (𝑥 |𝑥1)𝑞1(𝑥1)

𝑝𝑡 (𝑥)
𝑑𝑥1, (3.4)

where the conditional probability path is chosen such that

𝑝𝑡=0(𝑥 |𝑥1) = 𝑞0(𝑥) and 𝑝𝑡=1(𝑥 |𝑥1) = 𝛿 (𝑥 − 𝑥1), (3.5)

where 𝛿 (𝑥 − 𝑎) is a Dirac mass centered at 𝑎 ∈ R𝑑 . By construction, 𝑝𝑡 (𝑥 |𝑥1) now satisfies both

marginal constraints.

Lipman et al. [2023] shows that if𝑢𝑡 (𝑥 |𝑥1) generates 𝑝𝑡 (𝑥 |𝑥1), then the marginalized𝑢𝑡 (𝑥) gener-

ates 𝑝𝑡 (𝑥), and furthermore, one can train using the much simpler objective of Conditional Flow

Matching (CFM):

E𝑡,𝑞1 (𝑥1),𝑝𝑡 (𝑥 |𝑥1) ∥𝑣𝑡 (𝑥 ;𝜃 ) − 𝑢𝑡 (𝑥𝑡 |𝑥1)∥2 , (3.6)

with 𝑥𝑡 = 𝜓𝑡 (𝑥0 |𝑥1); see 3.2.2.1 for more details. Note that this objective has the same gradient

with respect to the model parameters 𝜃 as Eq. (3.3) [Lipman et al. 2023, Theorem 2].

3.2.2.1 Conditional OT (CondOT) path

One particular choice of conditional path 𝑝𝑡 (𝑥 |𝑥1) is to use the flow that corresponds to the

optimal transport displacement interpolant [McCann 1997] when𝑞0(𝑥0) is the standard Gaussian,

a common convention in generative modeling. The vector field that corresponds to this is

𝑢𝑡 (𝑥𝑡 |𝑥1) =
𝑥1 − 𝑥
1 − 𝑡 . (3.7)
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Using this conditional vector field in (3.1), this gives the conditional flow

𝑥𝑡 = 𝜓𝑡 (𝑥0 |𝑥1) = (1 − 𝑡)𝑥0 + 𝑡𝑥1 . (3.8)

Substituting (3.8) into (3.7), one can also express the value of this vector field using a simpler

expression,

𝑢𝑡 (𝑥𝑡 |𝑥1) = 𝑥1 − 𝑥0 .

It is evident that this results in conditional flows that (i) tranports all points 𝑥0 from 𝑡 = 0 to 𝑥1

at exactly 𝑡 = 1 and (ii) are straight paths between the samples 𝑥0 and 𝑥1. This particular case

of straight paths was also studied by Liu et al. [2022] and Albergo and Vanden-Eijnden [2023],

where the conditional flow (3.8) is referred to as a stochastic interpolant. Lipman et al. [2023]

additionally showed that the conditional construction can be applied to a large class of Gaussian

conditional probability paths, namely when 𝑝𝑡 (𝑥 |𝑥1) = N(𝑥 |𝜇𝑡 (𝑥1), 𝜎𝑡 (𝑥1)2𝐼 ). This family of

probability paths encompasses most prior diffusion models where probability paths are induced

by simple diffusion processes with linear drift and constant diffusion (e.g. Ho et al. [2020]; Song

et al. [2021b]). However, existing works mostly consider settings where 𝑞0(𝑥0) and 𝑞1(𝑥1) are

sampled independently when computing training objectives such as (3.6).

3.2.3 Optimal Transport: Static & Dynamic

Optimal transport generally considers methodologies that define some notion of distance on the

space of probability measures [Villani 2008, 2003; Santambrogio 2015]. Letting P(R𝑑) be the

space of probability measures over R𝑑 , we define the Wasserstein distance with respect to a cost

function 𝑐 : R𝑑 × R𝑑 → R+ between two measures 𝑞0, 𝑞1 ∈ P(R𝑑) as [Kantorovitch 1942]

𝑊𝑐 (𝑞0, 𝑞1) B min
𝑞∈Γ(𝑞0,𝑞1)

E𝑞(𝑥0,𝑥1) [𝑐 (𝑥0, 𝑥1)] , (3.9)
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where Γ(𝑞0, 𝑞1) is the set of joint measures with left marginal equal to 𝑞0 and right marginal equal

to 𝑞1, called the set of couplings. The minimizer to Equation 3.9 is called the optimal coupling,

which we denote by 𝑞∗𝑐 . In the case where 𝑐 (𝑥0, 𝑥1) B ∥𝑥0−𝑥1∥2, the squared-Euclidean distance,

Equation 3.9 amounts to the (squared) 2-Wasserstein distance𝑊 2
2 (𝑞0, 𝑞1), and we simply write

the optimal transport plan as 𝑞∗.

Considering again the squared-Euclidean cost, in the case where 𝑞0 exhibits a density over R𝑑

(e.g. if 𝑞0 is the standard normal distribution), Benamou and Brenier [2000] states that𝑊 2
2 (𝑞0, 𝑞1)

can be equivalently expressed as a dynamic formulation,

𝑊 2
2 (𝑞0, 𝑞1) = min

𝑝𝑡 ,𝑢𝑡

∫ 1

0

∫
R𝑑
∥𝑢𝑡 (𝑥)∥2 𝑝𝑡 (𝑥)d𝑥0d𝑡 . (3.10)

where𝑢𝑡 generates 𝑝𝑡 , and 𝑝𝑡 satisfies boundary conditions 𝑝𝑡=0 = 𝑞0 and 𝑝𝑡=1 = 𝑞1. The optimality

condition ensures that sample paths 𝑥𝑡 are straight lines, i.e. minimize the length of the path, and

leads to paths that are much easier to simulate. Some prior approaches have sought to regularize

the model using this optimality objective (e.g. Tong et al. [2020]; Finlay et al. [2020b]). In contrast,

instead of directly minimizing (3.10), we will discuss an approach based on using solutions of the

optimal coupling 𝑞∗ on minibatch problems, while leaving the marginal constraints intact.

3.3 Flow Matching with Joint Distributions

While Conditional Flow Matching in (3.6) leads to an unbiased gradient estimator for the Flow

Matching objective, it was designedwith independently sampled 𝑥0 and 𝑥1 inmind. We generalize

the framework from Subsection 3.2.2 to a construction that uses arbitrary joint distributions of

𝑞(𝑥0, 𝑥1) which satisfy the correct marginal constraints, i.e.

∫
𝑞(𝑥0, 𝑥1)d𝑥1=𝑞0(𝑥0) ,

∫
𝑞(𝑥0, 𝑥1)d𝑥0=𝑞1(𝑥1). (3.11)
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We will show in Subsection 3.4 that this can potentially lead to lower gradient variance during

training and allow us to design more optimal marginal vector fields 𝑢𝑡 (𝑥) with desirable proper-

ties such as improved sample efficiency.

Building on top of Flow Matching, we propose modifying the conditional probability path con-

struction (3.5) so that at 𝑡 = 0, we define

𝑝𝑡=0(𝑥0 |𝑥1) = 𝑞(𝑥0 |𝑥1).

where 𝑞(𝑥0 |𝑥1) is the conditional distribution 𝑞(𝑥0,𝑥1)
𝑞1 (𝑥1) . Using this construction, we still satisfy the

marginal constraint,

𝑝0(𝑥) =
∫

𝑝0(𝑥 |𝑥1)𝑞1(𝑥1)𝑑𝑥1 =

∫
𝑞(𝑥, 𝑥1)𝑑𝑥1 = 𝑞0(𝑥)

i.e. 𝑝𝑡=0(𝑥) =
∫
𝑞(𝑥, 𝑥1)𝑑𝑥1 = 𝑞0(𝑥) by the assumption made in (3.11). Then similar to Chen

and Lipman [2023], we note that the conditional probability path 𝑝𝑡 (𝑥 |𝑥1) need not be explicitly

formulated for training, and that only an appropriate conditional vector field 𝑢𝑡 (𝑥 |𝑥1) needs to

be chosen such that all points arrive at 𝑥1 at 𝑡 = 1, which ensures 𝑝𝑡=1(𝑥 |𝑥1) = 𝛿 (𝑥 −𝑥1). As such,

we can make use of the same conditional vector field as prior works, e.g. the choice in ??.

We then propose the Joint CFM objective as

LJCFM = E𝑡,𝑞(𝑥0,𝑥1) ∥𝑣𝑡 (𝑥𝑡 ;𝜃 ) − 𝑢𝑡 (𝑥𝑡 |𝑥1)∥2 , (3.12)

where 𝑥𝑡 = 𝜓𝑡 (𝑥0 |𝑥1) is the conditional flow. Training only involves sampling from 𝑞(𝑥0, 𝑥1) and

does not require explicitly knowing the densities of 𝑞(𝑥0, 𝑥1) or 𝑝𝑡 (𝑥 |𝑥1). Note that Equation

(3.12) reduces to the original CFM objective (3.6) when 𝑞(𝑥0, 𝑥1) = 𝑞0(𝑥0)𝑞1(𝑥1).

A quick sanity check shows that this objective can be used with any choice of joint distribution

𝑞(𝑥0, 𝑥1).
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Lemma 3.1. The optimal vector field 𝑣𝑡 (·;𝜃 ) in (3.12), which is the marginal vector field 𝑢𝑡 , maps

between the marginal distributions 𝑞0(𝑥0) and 𝑞1(𝑥1).

In the remainder of the section, we highlight some motivations for using joint distributions

𝑞(𝑥0, 𝑥1) that are different from the independent distribution 𝑞0(𝑥0)𝑞1(𝑥1).

Variance reduction Choosing a good joint distribution can be seen as a way to reduce the

variance of the gradient estimate, which improves and speeds up training. We develop the gra-

dient covariance at a fixed 𝑥 and 𝑡 , and bound its total variance:

Lemma 3.2. The total variance (i.e. the trace of the covariance) of the gradient at a fixed 𝑥 and 𝑡 is

bounded as:

𝜎2
𝑡,𝑥 = Tr

[
Cov𝑝𝑡 (𝑥1 |𝑥)

(
∇𝜃 ∥𝑣𝑡 (𝑥 ;𝜃 ) − 𝑢𝑡 (𝑥 |𝑥1)∥2

) ]
(3.13)

≤ ∥∇𝜃𝑣𝑡 (𝑥 ;𝜃 )∥2 E𝑝𝑡 (𝑥1 |𝑥) ∥𝑢𝑡 (𝑥) − 𝑢𝑡 (𝑥 |𝑥1)∥2

Then E𝑡,𝑝𝑡 (𝑥) [𝜎2
𝑡,𝑥 ] is bounded above by:

max
𝑡,𝑥
∥∇𝜃𝑣𝑡 (𝑥 ;𝜃 )∥2 × LJCFM (3.14)

This proves that E𝑡,𝑝𝑡 (𝑥) [𝜎2
𝑡,𝑥 ], which is the average gradient variance at fixed 𝑥 and 𝑡 , is upper

bounded in terms of the Joint CFM objective. That means that minimizing the Joint CFM objective

help in decreasing E𝑡,𝑝𝑡 (𝑥) [𝜎2
𝑡,𝑥 ]. Note also that E𝑡,𝑝𝑡 (𝑥) [𝜎2

𝑡,𝑥 ] is not the gradient variance and is

always smaller, as it does not account for variability over 𝑥 and 𝑡 , but it is a good proxy for it.

The proof is in App. B.4.2.

Sampling 𝑥0 and 𝑥1 independently generally cannot achieve value zero for E𝑡,𝑝𝑡 (𝑥) [𝜎2
𝑡,𝑥 ] even at

the optimum, since there are an infinite number of pairs (𝑥0, 𝑥1) whose conditional path crosses
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any particular 𝑥 at a time 𝑡 . As shown in (3.14), having a low optimal value for the Joint CFM

objective is a good proxy for low gradient variance and hence a desirable property for choosing

a joint distribution 𝑞(𝑥0, 𝑥1). In section 3.4, we show that certain joint distributions have optimal

Joint CFM values close to zero.

Straight flows Ideally, the flow 𝜓𝑡 of the marginal vector field 𝑢𝑡 (and of the learned 𝑣𝜃 by

extension) should be close to a straight line. The reason is that ODEs with straight trajectories

can be solved with high accuracy using fewer steps (i.e. function evaluations), which speeds up

sample generation. The quantity

𝑆 = E𝑡,𝑞0 (𝑥0)
[
∥𝑢𝑡 (𝜓𝑡 (𝑥0))∥2 − ∥𝜓1(𝑥0) − 𝑥0∥2

]
, (3.15)

which we call the straightness of the flow and was also studied by Liu [2022], measures how

straight the trajectories are. Namely, we can rewrite it as

𝑆 = E𝑡,𝑞0 (𝑥0)
[
∥𝑢𝑡 (𝜓𝑡 (𝑥0)) − E𝑡 ′ [𝑢𝑡 ′ (𝜓𝑡 ′ (𝑥0))] ∥2

]
, (3.16)

which shows that 𝑆 ≥ 0 and only zero if 𝑢𝑡 (𝜓𝑡 (𝑥0)) is constant along 𝑡 , which is equivalent to

𝜓𝑡 (𝑥0) being a straight line.

When 𝑥0 and 𝑥1 are sampled independently, the straightness is in general far from zero. This can

be seen in the CondOT plots in Figure 3.2 (right); if flows were close to straight lines, samples

generated with one function evaluation (NFE=1) would be of high quality. In section 3.4, we show

that for certain joint distributions, the straightness of the flow is close to zero.

Near-optimal transport cost By Lemma 3.1, the flow 𝜓𝑡 corresponding to the optimal 𝑢𝑡

satisfies that 𝜓0(𝑥0) = 𝑥0 ∼ 𝑞0 and 𝜓1(𝑥0) ∼ 𝑞1. Hence, 𝑥0 ↦→ 𝜓1(𝑥0) is a transport map between
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𝑞0 and 𝑞1 with an associated transport cost

E𝑞0 (𝑥0) ∥𝜓1(𝑥0) − 𝑥0∥2. (3.17)

There is no reason to believe that when 𝑥0 and 𝑥1 are sampled independently, the transport cost

E𝑞0 (𝑥0) ∥𝜓1(𝑥0) − 𝑥0∥2 will be anywhere near the optimal transport cost𝑊 2
2 (𝑝0, 𝑝1). Yet, in Sec-

tion 3.4 we show that for well chosen 𝑞, the transport cost for𝜓1 does approach its optimal value.

Computing optimal (or near-optimal) transport maps in high dimensions is a challenging task

[Makkuva et al. 2020; Amos 2023] that extends beyond generative modeling and into the field of

optimal transport, and it has applications in computer vision [Feydy et al. 2017; Solomon et al.

2015, 2016; Liu et al. 2023b] and computational biology [Lübeck et al. 2022; Bunne et al. 2021,

2022; Schiebinger et al. 2019], for instance. Hence, Joint CFM may also be viewed as a practical

way to obtain approximately optimal transport maps in this context.

3.4 Multisample Flow Matching

Constructing a joint distribution satisfying the marginal constraints is difficult, especially since

at least one of the marginal distributions is based on empirical data. We thus discuss a method to

construct the joint distribution𝑞(𝑥0, 𝑥1) implictly by designing a suitable sampling procedure that

leaves the marginal distributions invariant. Note that training with (3.12) only requires sampling

from 𝑞(𝑥0, 𝑥1).

We use a multisample construction for 𝑞(𝑥0, 𝑥1) in the following manner:
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1. Sample {𝑥 (𝑖)0 }𝑘𝑖=1 ∼ 𝑞0(𝑥0) and {𝑥 (𝑖)1 }𝑘𝑖=1 ∼ 𝑞1(𝑥1).

2. Construct a doubly-stochastic matrix with probabilities 𝜋 (𝑖, 𝑗) dependent on the samples

{𝑥 (𝑖)0 }𝑘𝑖=1 and {𝑥
(𝑖)
1 }𝑘𝑖=1.

3. Sample from the discrete distribution,

𝑞𝑘 (𝑥0, 𝑥1) = 1
𝑘

∑𝑘
𝑖, 𝑗=1 𝛿 (𝑥0 − 𝑥𝑖0)𝛿 (𝑥1 − 𝑥 𝑗1)𝜋 (𝑖, 𝑗).

Marginalizing 𝑞𝑘 (𝑥0, 𝑥1) over samples from Step 1, we obtain the implicitly defined 𝑞(𝑥0, 𝑥1). By

choosing different couplings 𝜋 (𝑖, 𝑗), we induce different joint distributions. In this work, we focus

on couplings that induce joint distributions which approximates, or at least partially satisfies, the

optimal transport joint distribution. The following result, proven in App. B.4.3, guarantees that

𝑞 has the right marginals.

Lemma 3.3. The joint distribution 𝑞(𝑥0, 𝑥1) constructed in Steps [1-3] has marginals 𝑞0(𝑥0) and

𝑞1(𝑥1).

That is, the marginal constraints (3.11) are satisfied and consequently we are allowed to use the

framework of Section 3.3.

3.4.1 CondOT is Uniform Coupling

The aforementioned multisample construction subsumes the independent joint distribution used

by prior works, when the joint coupling is taken to be uniformly distributed, i.e. 𝜋 (𝑖, 𝑗) = 1
𝑘
. This

is precisely the coupling used by [Lipman et al. 2023] under our introduced notion of Multisample

Flow Matching, and acts as a natural reference point.

3.4.2 Batch Optimal Transport (BatchOT) Couplings

The natural connections between optimal transport theory and optimal sampling paths in terms

of straight-line interpolations, lead us to the following pseudo-deterministic coupling, which we
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Figure 3.2: Multisample FlowMatching learn probability paths that are much closer to an optimal trans-

port path than baselines such as Diffusion and CondOT paths. (Left) Exact marginal probability paths.

(Right) Samples from trained models at 𝑡 = 1 for different numbers of function evaluations (NFE), using

Euler discretization. Furthermore, the final values of the Joint CFM objective (3.12)—upper bounds on the

variance of𝑢𝑡 at convergence—are: CondOT: 10.72; Stable: 1.60, Heuristic: 1.56; BatchEOT: 0.57, BatchOT:

0.24.

call Batch Optimal Transport (BatchOT). While it is difficult to solve (3.9) at the population level,

it can efficiently solved on the level of samples. Let {𝑥 (𝑖)0 }𝑘𝑖=1 ∼ 𝑞0(𝑥0) and {𝑥 (𝑖)1 }𝑘𝑖=1 ∼ 𝑞1(𝑥1).

When defined on batches of samples, the OT problem (3.9) can be solved exactly and efficiently

using standard solvers, as in POT [Flamary et al. 2021, Python Optimal Transport]. On a batch

of 𝑘 samples, the runtime complexity is well-understood via either the Hungarian algorithm or

network simplex algorithm, with an overall complexity of O(𝑘3) [Peyré and Cuturi 2019, Chapter

3]. The resulting coupling 𝜋𝑘,∗ from the algorithm is a permutation matrix, which is a type of

doubly-stochastic matrix that we can incorporate into Step 3 of our procedure.

We consider the effect that the sample size 𝑘 has on the marginal vector field𝑢𝑡 (𝑥). The following

theorem shows that in the limit of 𝑘 →∞, BatchOT satisfies the three criteria that motivate Joint

CFM: variance reduction, straight flows, and near-optimal transport cost.

Theorem 3.4 (Informal). Suppose that Multisample Flow Matching is run with BatchOT. Then, as

𝑘 →∞,
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(i) The value of the Joint CFM objective (Equation (3.12)) for the optimal 𝑢𝑡 converges to 0.

(ii) The straightness 𝑆 for the optimal marginal vector field 𝑢𝑡 (Equation (3.15)) converges to zero.

(iii) The transport cost E𝑞0 (𝑥0) ∥𝜓1(𝑥0) − 𝑥0∥2 (Equation (3.17)) associated to 𝑢𝑡 converges to the

optimal transport cost𝑊 2
2 (𝑝0, 𝑝1).

As 𝑘 → ∞, result (i) implies that the gradient variance both during training and at convergence

is reduced due to Equation 3.14; result (ii) implies the optimal model will be easier to simu-

late between 𝑡=0 and 𝑡=1; result (iii) implies that Multisample Flow Matching can be used as a

simulation-free algorithm for approximating optimal transport maps.

The full version of Thm. 3.4 can be found in App. B.4, and it makes use of standard, weak technical

assumptions which are common in the optimal transport literature. While Thm. 3.4 only analyzes

asymptotic properties, we provide theoretical evidence that the transport cost decreases with 𝑘 ,

as summarized by a monotonicity result in Thm. B.8.

3.4.3 Batch Entropic OT (BatchEOT) Couplings

For 𝑘 sufficiently large, the cubic complexity of the BatchOT approach is not always desirable,

and instead one may consider approximate methods that produce couplings sufficiently close to

BatchOT at a lower computational cost. A popular surrogate, pioneered in [Cuturi 2013], is to

incorporate an entropic penalty parameter on the doubly stochastic matrix, pulling it closer to

the independent coupling:

min
𝑞∈Γ(𝑞0,𝑞1)

E(𝑥0,𝑥1)∼𝑞 ∥𝑥0 − 𝑥1∥2 + 𝜀𝐻 (𝑞) ,

where 𝐻 (𝑞) = −∑
𝑖, 𝑗 𝑞𝑖, 𝑗 (log(𝑞𝑖, 𝑗 ) − 1) is the entropy of the doubly stochastic matrix 𝑞, and 𝜀 > 0

is some finite regularization parameter. The optimality conditions of this strictly convex program

leads to Sinkhorn’s algorithm, which has a runtime of Õ(𝑘2/𝜀) [Altschuler et al. 2017].

The output of performing Sinkhorn’s algorithm is a doubly-stochastic matrix. The two limit-
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ing regimes of the regularization parameter are well understood (c.f. Peyré and Cuturi [2019],

Proposition 4.1, for instance): as 𝜀 → 0, BatchEOT recovers the BatchOT permutation matrix

from subsection 3.4.2; as 𝜀 → ∞, BatchEOT recovers the independent coupling on the indices

from subsection 3.4.1.

3.4.4 Stable and Heuristic Couplings

An alternative approach is to consider faster algorithms that satisfy at least some desirable prop-

erties of an optimal coupling. In particular, an optimal coupling is stable. A permutation coupling

is stable if no pair of 𝑥 (𝑖)0 and 𝑥 ( 𝑗)1 favor each other over their assigned pairs based on the coupling.

Such a problem can be solved using the Gale-Shapeley algorithm [Gale and Shapley 1962] which

has a compute cost of O(𝑘2) given the cross set ranking of all samples. Starting from a random

assignment, it is an iterative algorithm that reassigns pairs if they violate the stability property

and can terminate very early in practice. Note that in a cost-based ranking, one has to sort

the coupling costs of each sample with all samples in the opposing set, resulting in an overall

O(𝑘2 log(𝑘)) compute cost.

The Gale-Shapeley algorithm is agnostic to any particular costs, however, as stability is only

defined in terms of relative rankings of individual samples. We design a modified version of

this algorithm based on a heuristic for satisfying the cyclical monotonicity property of optimal

transport, namely that should pairs be reassigned, the reassignment should not increase the total

cost of already matched pairs. We refer to the output of this modified algorithm as a heuristic

coupling and discuss the details in Appendix B.1.2.

3.5 Related Work

Generative modeling and optimal transport are inherently intertwined topics, both often aiming

to learn a transport between two distributions but with very different goals. Optimal transport
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Figure 3.3: Sample quality (FID) vs compute cost (NFE) using Euler discretization. CondOT has signifi-

cantly higher FID at lower NFE compared to proposed methods.

is widely recognized as a powerful tool for large-scale generative modeling as it can be used to

stabilize training [Arjovsky et al. 2017]. In the context of continuous-time generative modeling,

optimal transport has been used to regularize continuous normalizing flows for easier simulation

[Finlay et al. 2020b; Onken et al. 2021], and increase interpretability [Tong et al. 2020]. However,

the existing methods for encouraging optimality in a generative model generally require either

solving a potentially unstable min-max optimization problem (e.g. [Arjovsky et al. 2017; Makkuva

et al. 2020; Albergo and Vanden-Eijnden 2023]) or require simulation of the learned vector field

as part of training (e.g. Finlay et al. [2020b]; Liu et al. [2022]). In contrast, the approach of using

batch optimal couplings can be used to avoid the min-max optimization problem, but has not

been successfully applied to generative modeling as they do not satisfy marginal constraints—we

discuss this further in the following subsection 3.5.1. On the other hand, neural optimal transport

approaches are mainly centered around the quadratic cost [Makkuva et al. 2020; Amos 2023;

Finlay et al. 2020a] or rely heavily on knowing the exact cost function [Fan et al. 2021; Asadulaev

et al. 2022]. Being capable of using batch optimal couplings allows us to build generativemodels to

approximate optimal maps under any cost function, and even when the cost function is unknown.
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3.5.1 Minibatch Couplings for Generative Modeling

Among works that use optimal transport for training generative models are those that make use

of batch optimal solutions and their gradients such as Li et al. [2017]; Genevay et al. [2018]; Fatras

et al. [2019]; Liu et al. [2019]. However, naïvely using solutions to batches only produces, at best,

the barycentric map, i.e. the map that fits to average of the batch couplings [Ferradans et al. 2014;

Seguy et al. 2017; Pooladian andNiles-Weed 2021], and does not correctlymatch the truemarginal

distribution. This is a well-known problem and while multiple works (e.g. Fatras et al. [2021];

Nguyen et al. [2022]) have attempted to circumvent the issue through alternative formulations of

optimality, the lack of marginal preservation has been a major downside of using batch couplings

for generative modeling as they do not have the ability to match the target distribution for finite

batch sizes. This is due to the use of building models within the static setting, where the map is

parameterized directly with a neural network. In contrast, we have shown in Theorem 3.3 that in

our dynamic setting, where we parameterize themap as the solution of a neural ODE, it is possible

to preserve the marginal distribution exactly. Furthermore, we have shown in Proposition B.7

(App. B.4.5) that our method produces a map that is no higher cost than the joint distribution

induced from BatchOT couplings.

Concurrently, Tong et al. [2023] motivates the use of BatchOT solutions within a similar frame-

work as our Joint CFM, but from the perspective of obtaining accurate solutions to dynamic

optimal transport problems. Similarly, Lee et al. [2023] propose to explicitly learn a joint distri-

bution, parameterized with a neural network, with the aim of minimizing trajectory curvature;

this is done using through an auxiliary VAE-style objective function. In contrast, we propose a

family of couplings that all satisfy the marginal constraints, all of which are easy to implement

and have negligible cost during training. Our construction allow us to focus on (i) fixing consis-

tency issues within simulation-free generative models, and (ii) using Joint CFM to obtain more

optimal solutions than the original BatchOT solutions.
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ImageNet 32×32 ImageNet 64×64
NFE @ FID = 10 NFE @ FID = 20

Diffusion ≥40 ≥40
FM w/ CondOT 20 29
MultisampleFM w/ Heuristic 18 12
MultisampleFM w/ Stable 14 11
MultisampleFM w/ BatchOT 14 12

Table 3.1: Derived results shown in Figure 3.3, we can determine the approximate NFE required to achieve

a certain FID across our proposed methods. The baseline diffusion-based methods (e.g. ScoreFlow and

DDPM) require more than 40 NFE to achieve these FID values.

NFE DDPM ScoreSDE BatchOT Stable

Adaptive 5.72 6.84 4.68 5.79
40 19.56 16.96 5.94 7.02
20 63.08 58.02 7.71 8.66
8 232.97 218.66 15.64 14.89
6 275.28 266.76 22.08 19.88
4 362.37 340.17 38.86 33.92

Table 3.2: FID of model samples on ImageNet 32×32 using varying number of function evaluations (NFE)

using Euler discretization.

3.6 Experiments

We empirically investigate Multisample Flow Matching on a suite of experiments. First, we show

how different couplings affect the model on a 2D distribution. We then turn to benchmark, high-

dimensional datasets, namely ImageNet [Deng et al. 2009]. We use the official face-blurred Im-

ageNet data and then downsample to 32×32 and 64×64 using the open source preprocessing

scripts from Chrabaszcz et al. [2017]. Finally, we explore the setting of unknown cost functions

while only batch couplings are provided. Full details on the experimental setting can be found in

Appendix B.5.2.
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ImageNet 32×32 ImageNet 64×64
CondOT BatchOT CondOT BatchOT

Consistency(𝑚=4) 0.141 0.101 0.174 0.157
Consistency(𝑚=6) 0.105 0.071 0.151 0.134
Consistency(𝑚=8) 0.079 0.052 0.132 0.115
Consistency(𝑚=12) 0.046 0.030 0.106 0.085

Table 3.3: BatchOT produces samples with more similar content to its true samples at low NFEs (using

midpoint discretization). Visual examples of this consistency are shown in Figure 3.1.

2-D Cost 2-D KL 32-D Cost 32-D KL 64-D Cost 64-D KL

Cost Fn. 𝑐 (𝑥0, 𝑥1) B B-st B-fm B-st B-fm B B-st B-fm B-st B-fm B B-st B-fm B-st B-fm

∥𝑥1 − 𝑥0∥22 0.90 0.60 0.72 0.07 4E-3 41.08 31.58 38.73 151.47 0.06 92.90 65.57 87.97 335.38 0.14
∥𝑥1 − 𝑥0∥1 1.09 0.86 0.98 0.18 4E-3 27.92 24.51 27.26 254.59 0.08 60.27 50.49 58.38 361.16 0.16
1 − ⟨𝑥0,𝑥1⟩

∥𝑥0∥∥𝑥1∥ 0.03 2E-4 3E-3 5.91 4E-3 0.62 0.53 0.58 179.48 0.06 0.71 0.60 0.68 337.63 0.12
∥𝐴(𝑥1 − 𝑥0)∥22 0.91 0.54 0.65 0.07 4E-3 32.66 24.61 30.13 256.90 0.06 78.70 58.11 78.50 529.09 0.19

Table 3.4: Matching couplings from an oracle BatchOT solver with unknown costs. Multisample Flow

Matching is able to match the marginal distribution correctly while being at least a optimal as the oracle,

but static maps fail to preserve the marginal distribution.

3.6.1 Insights from 2D experiments

Figure 3.2 shows the proposed Multisample Flow Matching algorithm on fitting to a checkboard

pattern distribution in 2D. We show the marginal probability paths induced by different coupling

algorithms, as well as low-NFE samples of trained models on these probability paths.

The diffusion and CondOT probability paths do not capture intricate details of the data distribu-

tion until it is almost at the end of the trajectory, whereasMultisample FlowMatching approaches

provide a gradual transition to the target distribution along the flow. We also see that with a fixed

step solver, the BatchOT method is able to produce an accurate target distribution in just one Eu-

ler step in this low-dimensional setting, while the other coupling approaches also get pretty close.

Finally, it is interesting that both Stable and Heuristic exhibit very similar probability paths to

optimal transport despite only satisfying weaker conditions.
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Figure 3.4: Multisample FlowMatching with BatchOT shows faster convergence due to reduced variance

(ImageNet64).

3.6.2 Image Datasets

We find that Multisample Flow Matching retains the performance of Flow Matching while im-

proving on sample quality, compute cost, and variance. In Table B.2 of subsection B.2.1, we re-

port sample quality using the standard Fréchet Inception Distance (FID), negative log-likelihood

values using bits per dimension (BPD), and compute cost using number of function evaluations

(NFE); these are all standard metrics throughout the literature. Additionally, we report the vari-

ance of 𝑢𝑡 (𝑥 |𝑥0, 𝑥1), estimated using the Joint CFM loss (3.12) which is an upper bound on the

variance. We do not observe any performance degradations while simulation efficiency improves

significantly, even with small batch sizes.

Additionally, in subsection B.2.5, we include runtime comparisons between Flow Matching and

Multisample FlowMatching. On ImageNet32, we only observe a 0.8% relative increase in runtime

compared to Flow Matching, and a 4% increase on ImageNet64.

Higher sample qality on a compute budget We observe that with a fixed NFE, models

trained using Multisample Flow Matching generally achieve better sample quality. For these
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experiments, we draw 𝑥0 ∼ N(0, 𝐼𝑑) and simulate 𝑣𝑡 (·, 𝜃 ) up to time 𝑡 = 1 using a fixed step

solver with a fixed NFE. Figures 3.3 show that even on high dimensional data distributions, the

sample quality of of multisample methods improves over the naïve CondOT approach as the

number of function evaluations drops. We compare to the FID of diffusion baseline methods in

Table 3.2, and provide additional results in subsection B.2.4.

Interestingly, we find that the Stable coupling actually performs on par, and some times better

than the BatchOT coupling, despite having a smaller asymptotic compute cost and only satisfying

a weaker condition within each batch.

As FID is computed over a full set of samples, it does not show how varying NFE affects individual

sample paths. We discuss a notion of consistency next, where we analyze the similarity between

low-NFE and high-NFE samples.

Consistency of individual samples In Figure 3.1 we show samples at different NFEs, where it

can be qualitatively seen that BatchOT produces samples that are more consistent between high-

and low-NFE solutions than CondOT, despite achieving similar FID values.

To evaluate this quantitatively, we define a metric for establishing the consistency of a model with

respect to an integration scheme: let 𝑥 (𝑚) be the output of a numerical solver initialized at 𝑥 using

𝑚 function evalutions to reach 𝑡 = 1, and let 𝑥 (∗) be a near-exact sample solved using a high-cost

solver starting from 𝑥0 as well. We define

Consistency(𝑚) = 1
𝐷
E𝑥∼𝑞0 ∥F (𝑥 (𝑚)) − F (𝑥 (∗))∥2

where F (·) outputs the hidden units from a pretrained InceptionNet1, and 𝐷 is the number of

hidden units. These kinds of perceptual losses have been used before to check the content align-

ment between two image samples (e.g. Gatys et al. [2015]; Johnson et al. [2016]). We find that

Multisample Flow Matching has better consistency at all values of NFE, shown in Table 3.3.
1We take the same layer as used in standard FID computation.
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Training efficiency Figure 3.4 shows the convergence of Multisample Flow Matching with

BatchOT coupling compared to Flow Matching with CondOT and diffusion-based methods. We

see that by choosing better joint distributions, we obtain faster training. This is in line with our

variance estimates reported in Table B.2 and supports our hypothesis that gradient variance is

reduced by using non-trivial joint distributions.

3.6.3 Improved Batch Optimal Couplings

We further explore the usage of Multisample Flow Matching as an approach to improve upon

batch optimal solutions. Here, we experiment with a different setting, where the cost is unknown

and only samples from a batch optimal coupling are provided. In the real world, it is often the

case that the preferences of each person are not known explicitly, but when given a finite number

of choices, people can more easily find their best assignments. This motivates us to consider the

case of unknown cost functions, and information regarding the optimal coupling is only given

by a weak oracle that acts on finite samples, denoted 𝑞𝑘
𝑂𝑇,𝑐

. We consider two baselines: (i) the

BatchOT cost (B) which corresponds to E𝑞𝑘
𝑂𝑇,𝑐
(𝑥0,𝑥1) [𝑐 (𝑥0, 𝑥1)], and (ii) learning a static map that

mimics the BatchOT couplings (B-ST) by minimizing the following objective:

E𝑞𝑘
𝑂𝑇,𝑐
(𝑥0,𝑥1) ∥𝑥1 −𝜓𝜃 (𝑥0)∥2 .

This can be viewed as learning the barycentric projection [Ferradans et al. 2014; Seguy et al. 2017],

i.e. 𝜓 ∗(𝑥0) = 𝐸𝑞𝑘
𝑂𝑇,𝑐
(𝑥1 |𝑥0) [𝑥1], a well-studied quantity but is known to not preserve the marginal

distribution [Fatras et al. 2019].

We experimentwith 4 different cost functions on three synthetic datasets in dimensions {2, 32, 64}

where both 𝑞0 and 𝑞1 are chosen to be Gaussian mixture models. In Table 3.4 we report both the

transport cost and the KL divergence between 𝑞1 and the distribution induced by the learned

map, i.e. [𝜓1]♯𝑞0. We observe that while B-ST always results in lower transport costs compared
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Figure 3.5: 2D densities on the 8-Gaussians target distribution. (Left) Ground truth density. (Right)

Learned densities with static maps in the top row and Multisample Flow Matching dynamic maps in the

bottom row. Models within each column were trained using batch optimal couplings with the correspond-

ing cost function.

to B-FM, its KL divergence is always very high, meaning that the pushed-forward distribution

by the learned static map poorly approximates 𝑞1. Another interesting observation is that B-

FM always reduces transport costs compared to B, providing experimental support to the theory

(Theorem B.8).

Flow Matching improves optimality Figure 3.6 shows the cost of the learned model as we

vary the batch size for computing couplings, where the models are trained sufficiently to achieve

the same KL values as reported in Table 3.4. We see that our approach decreases the cost com-

pared to the BatchOT oracle for any fixed batch size, and furthermore, converges to the OT solu-

tion faster than the batchOT oracle. Thus, since Multisample Flow Matching retains the correct

marginal distributions, it can be used to better approximate optimal transport solutions than

simply relying on a minibatch solution.
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Figure 3.6: Transport cost vs. batch size (𝑘) for computing couplings on the 64D synthetic dataset. The

number of samples used for performing gradient steps during training and the resulting KL divergences

were kept the same.

3.7 Conclusion

We propose Multisample Flow Matching, building on top of recent works on simulation-free

training of continuous normalizing flows. While most prior works make use of training algo-

rithms where data and noise samples are sampled independently, Multisample Flow Matching

allows the use of more complex joint distribution. This introduces a new approach to designing

probability paths. Our framework increases sample efficiency and sample quality when using

low-cost solvers. Unlike prior works, our training method does not rely on simulation of the

learned vector field during training, and does not introduce any min-max formulations. Finally,

we note that our method of fitting to batch optimal couplings is the first to also preserve the

marginal distributions, an important property in both generative modeling and solving transport

problems.
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4 | Stochastic Optimal Control

Matching

4.1 Introduction

Stochastic optimal control aims to drive the behavior of a noisy system in order to minimize a

given cost. It has myriad applications in science and engineering: examples include the simu-

lation of rare events in molecular dynamics [Hartmann et al. 2014; Hartmann and Schütte 2012;

Zhang et al. 2014; Holdijk et al. 2023], finance and economics [Pham 2009; Fleming and Stein

2004], stochastic filtering and data assimilation [Mitter 1996; Reich 2019], nonconvex optimiza-

tion [Chaudhari et al. 2018], power systems and energy markets [Belloni et al. 2016; Powell and

Meisel 2016], and robotics [Theodorou et al. 2011; Gorodetsky et al. 2018]. Stochastic optimal

has also been very impactful in neighboring fields such as mean-field games [Carmona et al.

2018], optimal transport [Villani 2003, 2008], backward stochastic differential equations (BSDEs)

[Carmona 2016] and large deviations [Feng and Kurtz 2006].

For continuous-time problems with low-dimensional state spaces, the standard approach to learn

the optimal control is to solve the Hamilton-Jacobi-Bellman (HJB) partial differential equation

(PDE) by gridding the space and using classical numerical methods. For high-dimensional prob-

lems, a large number of works parameterize the control using a neural network and train it apply-

ing a stochastic optimization algorithm on a loss function. These methods are known as Iterative
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Diffusion Optimization (IDO) techniques [Nüsken and Richter 2021] (see subsection 4.2.2).

It is convenient to draw an analogy between stochastic optimal control and continuous normal-

izing flows (CNFs), which are a generative modeling technique where samples are generated by

solving an ordinary differential equation (ODE) for which the vector field has been learned, ini-

tialized at a Gaussian sample. CNFs were introduced by [Chen et al. 2018] (building on top of

Rezende and Mohamed [2015]), and training them is similar to solving control problems because

in both cases one needs to learn high-dimensional vector fields using neural networks, in contin-

uous time.

The first algorithm developed to train normalizing flows was based on maximizing the likelihood

of the generated samples [Chen et al. 2018, Sec. 4]. Obtaining the gradient of the maximum

likelihood loss with respect to the vector field parameters requires backpropagating through the

computation of the ODE trajectory, or equivalently, solving the adjoint ODE in parallel to the

original ODE. Maximum likelihood CNFs (ML-CNFs) were superseded by diffusion models [Song

and Ermon 2019; Ho et al. 2020; Song et al. 2021c] and flow-matching, a.k.a. stochastic interpolant,

methods [Lipman et al. 2023; Albergo and Vanden-Eijnden 2023; Pooladian et al. 2023; Albergo

et al. 2023], which are currently the preferred algorithms to train CNFs. Aside from architectural

improvements such as the UNet [Ronneberger et al. 2015], a potential reason for the success

of diffusion and flow matching models is that their functional landscape is convex, unlike for

ML-CNFs. Namely, vector fields are learned by solving least squares regression problems where

the goal is to fit a random matching vector field. Convex functional landscapes in combination

with overparameterized models and moderate gradient variance can yield very stable training

dynamics and help achieve low error.

Returning to stochastic optimal control, one of the best-performing IDO techniques amounts to

choosing the control objective (equation 4.1) as the training loss (see (4.12)). As in ML-CNFs,

computing the gradient of this loss requires backpropagating through the computation of the

trajectories of the SDE (4.2), or equivalently, using an adjoint method. The functional landscape
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of the loss is highly non-convex, and the method is prone to unstable training (see green curve

in the bottom right plot of Figure 4.2). In light of this, a natural idea is to develop the analog of

diffusion model losses for the stochastic optimal control problem, to obtain more stable training

and lower error, and this is what we set out to do in our work. Our contributions are as follows:

• We introduce Stochastic Optimal Control Matching (SOCM), a novel IDO algorithm in

which the control is learned by solving a least-squares regression problem where the goal

is to fit a random matching vector field which depends on a family of reparameterization

matrices that are also optimized.

• We derive a bias-variance decomposition of the SOCM loss (Theorem 4.5). The bias term

is equal to an existing IDO loss: the cross-entropy loss, which shows that both algorithms

have the same landscape in expectation. However, SOCM has an extra flexibility in the

choice of reparameterization matrices, which affect only the variance. Hence, we propose

optimizing the reparameterization matrices to reduce the variance of the SOCM objective.

• The key idea that underlies the SOCM algorithm is the path-wise reparameterization trick

(Theorem 4.4), which is a novel technique for estimating gradients of an expectation of a

functional of a random process with respect to its initial value. It is of independent interest

and may be more generally applicable outside of the settings considered in this paper.

• We perform experiments on four different settings where we have access to the ground-

truth control. For three of these, SOCM obtains a lower 𝐿2 error with respect to the ground-

truth control than all the existing IDO techniques, with around 10× lower error than com-

peting methods in some instances.
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4.2 Framework

4.2.1 Setup and Preliminaries

Let (Ω, F , (F𝑡 )𝑡≥0,P) be a fixed filtered probability space on which is defined a Brownian motion

𝐵 = (𝐵𝑡 )𝑡≥0. We consider the control-affine problem

min
𝑢∈U
E
[ ∫ 𝑇

0

(1
2
∥𝑢 (𝑋𝑢𝑡 , 𝑡)∥2 + 𝑓 (𝑋𝑢𝑡 , 𝑡)

)
d𝑡 + 𝑔(𝑋𝑢𝑇 )

]
, (4.1)

where d𝑋𝑢𝑡 = (𝑏 (𝑋𝑢𝑡 , 𝑡) + 𝜎 (𝑡)𝑢 (𝑋𝑢𝑡 , 𝑡)) d𝑡 +
√
𝜆𝜎 (𝑡)d𝐵𝑡 , 𝑋𝑢0 ∼ 𝑝0. (4.2)

and where 𝑋𝑢𝑡 ∈ R𝑑 is the state, 𝑢 : R𝑑 × [0,𝑇 ] is the feedback control and belongs to the set of

admissible controls U, 𝑓 : R𝑑 × [0,𝑇 ] → R is the state cost, 𝑔 : R𝑑 → R is the terminal cost,

𝑏 : R𝑑×[0,𝑇 ] → R𝑑 is the base drift, and 𝜎 : [0,𝑇 ] → R𝑑×𝑑 is the invertible covariance matrix and

𝜆 ∈ (0, +∞) is the noise level. In section C.1 we formally define the setU of admissible controls

and describe the regularity assumptions needed on the control functions. In the remainder of

the section we introduce relevant concepts in stochastic optimal control; we provide the most

relevant proofs in section C.2 and refer the reader to Oksendal [2013, Chap. 11] and Nüsken and

Richter [2021, Sec. 2] for a similar, more extensive treatment.

Cost functional and value function The cost functional for the control 𝑢, point 𝑥 and time

𝑡 is defined as 𝐽 (𝑢;𝑥, 𝑡) := E
[ ∫ 𝑇
𝑡

( 1
2 ∥𝑢𝑠 (𝑋

𝑢
𝑠 )∥2 + 𝑓𝑠 (𝑋𝑢𝑠 )

)
d𝑡 + 𝑔(𝑋𝑢

𝑇
)
��𝑋𝑢𝑡 = 𝑥

]
. That is, the cost

functional is the expected value of the control objective restricted to the times [𝑡,𝑇 ] with the

initial value 𝑥 at time 𝑡 . The value function or optimal cost-to-go at a point 𝑥 and time 𝑡 is defined

as the minimum value of the cost functional across all possible controls:

𝑉 (𝑥, 𝑡) := inf
𝑢∈U

𝐽 (𝑢;𝑥, 𝑡). (4.3)
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Hamilton-Jacobi-Bellman eqation and optimal control If we define the infinitesimal

generator 𝐿 := 𝜆
2
∑𝑑
𝑖, 𝑗=1(𝜎𝜎⊤)𝑖 𝑗 (𝑡)𝜕𝑥𝑖 𝜕𝑥 𝑗 +

∑𝑑
𝑖=1 𝑏𝑖 (𝑥, 𝑡)𝜕𝑥𝑖 , the value function solves the following

Hamilton-Jacobi-Bellman (HJB) partial differential equation:

(𝜕𝑡 + 𝐿)𝑉 (𝑥, 𝑡) −
1
2
∥(𝜎⊤∇𝑉 ) (𝑥, 𝑡)∥2 + 𝑓 (𝑥, 𝑡) = 0,

𝑉 (𝑥,𝑇 ) = 𝑔(𝑥). (4.4)

The verification theorem [Pavliotis 2014, Sec. 2.3] states that if a function𝑉 solves theHJB equation

above and has certain regularity conditions, then𝑉 is the value function (4.3) of the problem (4.1)-

(4.2). An implication of the verification theorem is that for every 𝑢 ∈ U,

𝑉 (𝑥, 𝑡) + E
[1
2

∫ 𝑇

𝑡

∥𝜎⊤∇𝑉 + 𝑢∥2(𝑋𝑢𝑠 , 𝑠) d𝑠
��𝑋𝑢𝑡 = 𝑥

]
= 𝐽 (𝑢, 𝑥, 𝑡). (4.5)

In particular, this implies that the unique optimal control is given in terms of the value function

as𝑢∗(𝑥, 𝑡) = −𝜎 (𝑡)⊤∇𝑉 (𝑥, 𝑡). Equation (4.5) can be deduced by integrating the HJB equation (4.4)

over [𝑡,𝑇 ], and taking the conditional expectation with respect to 𝑋𝑢𝑡 = 𝑥 . We include the proof

of (4.5) in section C.2 for completeness.

A pair of forward and backward SDEs (FBSDEs) Consider the pair of SDEs

d𝑋𝑡 = 𝑏 (𝑋𝑡 , 𝑡) d𝑡 +
√
𝜆𝜎 (𝑡)d𝐵𝑡 , 𝑋0 ∼ 𝑝0, (4.6)

d𝑌𝑡 = (−𝑓 (𝑋𝑡 , 𝑡) +
1
2
∥𝑍𝑡 ∥2) d𝑡 +

√
𝜆⟨𝑍𝑡 , d𝐵𝑡 ⟩, 𝑌𝑇 = 𝑔(𝑋𝑇 ). (4.7)

where 𝑌 : Ω × [0,𝑇 ] → R and 𝑍 : Ω × [0,𝑇 ] → R𝑑 are progressively measurable 1 random

processes. It turns out that 𝑌𝑡 and 𝑍𝑡 defined as 𝑌𝑡 := 𝑉 (𝑋𝑡 , 𝑡) and 𝑍𝑡 := 𝜎 (𝑡)⊤∇𝑉 (𝑋𝑡 , 𝑡) =

−𝑢∗(𝑋𝑡 , 𝑡) satisfy (4.7). We include the proof in section C.2 for completeness.
1Being progressively measurable is a strictly stronger property than the notion of being a process adapted to the

filtration F𝑡 of 𝐵𝑡 (see [Karatzas and Shreve 1991]).
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An analytic expression for the value function From the forward-backward equations

(4.6)-(4.7), one can derive a closed-form expression for the value function 𝑉 :

𝑉 (𝑥, 𝑡) = −𝜆 logE
[

exp
(
− 𝜆−1

∫ 𝑇

𝑡

𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑔(𝑋𝑇 )
) ��𝑋𝑡 = 𝑥 ], (4.8)

where𝑋𝑡 is the solution of the uncontrolled SDE (4.6). This is a classical result, but we still include

its proof in section C.2. Given that 𝑢∗(𝑥, 𝑡) = −𝜎 (𝑡)⊤∇𝑉 (𝑥, 𝑡), an immediate, yet important,

consequence of (4.8) is the following representation of the optimal control:

Lemma 4.1 (Path-integral representation of the optimal control [Kappen 2005]).

𝑢∗(𝑥, 𝑡)=𝜆𝜎 (𝑡)⊤∇𝑥 logE
[

exp
(
− 𝜆−1

∫ 𝑇

𝑡

𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑔(𝑋𝑇 )
) ��𝑋𝑡 = 𝑥 ] . (4.9)

Remark that the right-hand side of this equation involves the gradient of logarithm of a condi-

tional expectation. This is reminiscent of the vector fields that are learnedwhen training diffusion

models or flow matching algorithms. For example, the target vector field for variance-exploding

score-based diffusion loss [Song et al. 2021c] can be expressed as

∇𝑥 log𝑝𝑡 (𝑥) = ∇𝑥 logE𝑌∼𝑝data [
exp(−∥𝑥 − 𝑌 ∥2/(2𝜎2

𝑡 ))
(2𝜋𝜎2

𝑡 )𝑑/2
] .

Note, however, that in (4.9) the gradient is takenwith respect to the initial condition of the process,

which requires the development of novel techniques.

Conditioned diffusions Let C = 𝐶 ( [0,𝑇 ];R𝑑) be the Wiener space of continuous functions

from [0,𝑇 ] to R𝑑 equipped with the supremum norm, and let P(C) be the space of Borel proba-

bility measures over C. For each control 𝑢 ∈ U, the controlled process in equation (4.2) induces

a probability measure in P(C), as the law of the paths 𝑋𝑢𝑡 , which we refer to as P𝑢 . We let P be

50



the probability measure induced by the uncontrolled process (4.6), and define the work functional

W(𝑋, 𝑡) :=
∫ 𝑇

𝑡

𝑓 (𝑋𝑠, 𝑠) d𝑠 + 𝑔(𝑋𝑇 ). (4.10)

It turns out (TheoremC.4 in sectionC.2) that the Radon-Nikodymderivative 𝑑P
𝑢∗

𝑑P satisfies 𝑑P
𝑢∗

𝑑P (𝑋 ) =

exp
(
𝜆−1 (𝑉 (𝑋0, 0) −W(𝑋, 0)

) )
. Also, a straight-forward application of the Girsanov theorem for

SDEs (Theorem C.3) shows that

𝑑P𝑢

𝑑P𝑢
∗ (𝑋𝑢

∗)=exp
(
−𝜆−1/2

∫ 𝑇

0
⟨𝑢∗(𝑋𝑢∗𝑡 , 𝑡)−𝑢 (𝑋𝑢

∗
𝑡 , 𝑡), d𝐵𝑡 ⟩−

𝜆−1

2

∫ 𝑇

0
∥𝑢∗(𝑋𝑢∗𝑡 , 𝑡)−𝑢 (𝑋𝑢

∗
𝑡 , 𝑡)∥2 d𝑡

)
,

(4.11)

which means that the only control 𝑢 ∈ U such that P𝑢 = P𝑢
∗ is the optimal control itself. Such

changes of process are the basic tools to design IDO losses, and we leverage them as well.

4.2.2 Existing approaches and related work

Low-dimensional case: solving the HJB eqation For low-dimensional control problems

(𝑑 ≤ 3), it is possible to grid the domain and use a numerical PDE solver to find a solution to the

HJB equation (4.4). The main approaches include finite difference methods [Bonnans et al. 2004;

Ma and Ma 2020; Baňas et al. 2022], which approximate the derivatives and gradients of the value

function using finite differences, finite element methods [Jensen and Smears 2013], which involve

restricting the solution to domain-dependent function spaces, and semi-Lagrangian schemes [De-

brabant and Jakobsen 2013; Carlini et al. 2020; Calzola et al. 2022], which trace back characteris-

tics and have better stability than finite difference methods. See Greif [2017] for an overview

on these techniques, and Baňas et al. [2022] for a comparison between them. Hutzenthaler

et al. [2016] introduced the multilevel Picard method, which leverages the Feynman-Kac and

the Bismut-Elworthy-Li formulas to beat the curse of dimensionality in some settings [Beck et al.

2019; Hutzenthaler et al. 2019, 2018; Hutzenthaler and Kruse 2020].
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High dimensional methods leveraging FBSDEs The FBSDE formulation in equations (4.6)-

(4.7) has given rise to multiple methods to learn controls. One such approach is least-squares

Monte Carlo (see Pham [2009, Chapter 3] and Gobet [2016] for an introduction, and Gobet et al.

[2005]; Zhang et al. [2004] for an extensive analysis), where trajectories from the forward pro-

cess (4.6) are sampled, and then regression problems are solved backwards in time to estimate

the expected future cost in the spirit of dynamic programming. A second method that exploits

FBSDEs was proposed by E et al. [2017]; Han et al. [2018]. They parameterize the control using

a neural network 𝑢𝜃 , and use stochastic gradient algorithms to minimize the loss L(𝑢𝜃 , 𝑦0) =

E[(𝑌𝑇 (𝑦0, 𝑢𝜃 ) − 𝑔(𝑋𝑇 ))2], where 𝑌𝑇 (𝑦0, 𝑢𝜃 ) is the process in (4.7) with initial condition 𝑦0 and

control 𝑢𝜃 . This algorithm can be seen as a shooting method, where the initial condition and the

control are learned to match the terminal condition. Multiple recent works have combined neu-

ral networks with FBSDE Monte Carlo methods for parabolic and elliptic PDEs [Beck et al. 2018;

Chan-Wai-Nam et al. 2019; Zhou et al. 2021], control [Becker et al. 2019; Hartmann et al. 2019],

multi-agent games [Han and Hu 2020; Carmona and Laurière 2021, 2022]; see [E et al. 2021] for

a more comprehensive review.

Many of the methods referenced above and some additional ones can be seen from a common per-

spective using controlled diffusions. As observed in equation (4.11), the key idea is that learning

the optimal control is equivalent to finding a control 𝑢 such that the induced probability measure

P𝑢 on paths is equal to the probability measure P𝑢∗ for the optimal control. In the paragraphs

below we cover several loss that fall into this framework. All the losses below can be optimized

using a common algorithmic framework, which we describe in Algorithm 3. For more details,

we refer the reader to Nüsken and Richter [2021], which introduced this perspective and named

such methods Iterative Diffusion Optimization (IDO) techniques. For simplicity, we introduce the

losses for the setting in which the initial distribution 𝑝0 is concentrated at a single point 𝑥init; we

cover the general setting in section C.2.
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Algorithm 3 Iterative Diffusion Optimization (IDO) algorithms for stochastic optimal control
Input: State cost 𝑓 (𝑥, 𝑡), terminal cost𝑔(𝑥), covariancematrix 𝜎 (𝑡), base drift𝑏 (𝑥, 𝑡), noise level 𝜆, number

of iterations 𝑁 , batch size 𝑚, number of time steps 𝐾 , initial control parameters 𝜃0, loss L ∈
{LAdj(4.12),LCE(4.13),LVar𝑣 (4.15),L

log
Var𝑣 (4.16),LMom𝑣

(4.17)}
13 for 𝑛 ∈ {0, . . . , 𝑁 − 1} do
14 Simulate𝑚 trajectories of the process 𝑋 𝑣 controlled by 𝑣 = 𝑢𝜃𝑛 , e.g., using Euler-Maruyama updates
15 if L ≠ LAdj then detach the𝑚 trajectories from the computational graph, so that gradients do not

backpropagate;
16 Using the𝑚 trajectories, compute an𝑚-sample Monte Carlo approximation L̂(𝑢𝜃𝑛 ) of the loss L(𝑢𝜃𝑛 )
17 Compute the gradients ∇𝜃 L̂(𝑢𝜃𝑛 ) of L̂(𝑢𝜃𝑛 ) w.r.t. 𝜃𝑛
18 Obtain 𝜃𝑛+1 with via an Adam update on 𝜃𝑛 (or another stochastic algorithm)
19 end

Output: Learned control 𝑢𝜃𝑁

The relative entropy loss and the adjoint method The relative entropy loss is defined

as the Kullback-Leibler divergence between P𝑢 and P𝑢∗ : EP𝑢 [log 𝑑P𝑢

𝑑P𝑢
∗ ]. Upon removing constant

terms and factors, this loss is equivalent to (see Theorem C.5 in section C.2, or Hartmann and

Schütte [2012]; Kappen et al. [2012]):

LAdj(𝑢) := E
[ ∫ 𝑇

0

(1
2
∥𝑢 (𝑋𝑢𝑡 , 𝑡)∥2 + 𝑓 (𝑋𝑢𝑡 , 𝑡)

)
d𝑡 + 𝑔(𝑋𝑢𝑇 )

]
. (4.12)

This is exactly the control objective in (4.1). This connection has been studied extensively [Bierkens

and Kappen 2014; Gómez et al. 2014; Hartmann and Schütte 2012; Kappen et al. 2012; Rawlik et al.

2013]. Hence, the relative entropy loss is a very natural one, and is widely used; see Onken et al.

[2023]; Zhang and Chen [2022] for some examples on multiagent systems and sampling.

Solving optimization problems of the form (4.12) has a long history that dates back to Pontryagin

[1962]. Note that LAdj(𝑢) depends on 𝑢 both explicitly, and implicitly through the process 𝑋𝑢 .

To compute the gradient ∇𝜃 L̂Adj(𝑢𝜃𝑛 ) of a Monte Carlo approximation L̂Adj(𝑢𝜃𝑛 ) of LAdj(𝑢𝜃𝑛 ) as

required by Algorithm 3, we need to backpropagate through the simulation of the𝑚 trajectories,

which is why we do not detach them from the computational graph. One can alternatively com-

pute the gradient ∇𝜃 L̂Adj(𝑢𝜃𝑛 ) by explicitly solving an ODE, a technique which is known as the
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adjoint method. The adjoint method was introduced by Pontryagin [1962], popularized in deep

learning by Chen et al. [2018], and further developed for SDEs in Li et al. [2020].

The cross-entropy loss The cross-entropy loss is defined as the Kullback-Leibler divergence

between P𝑢∗ and P𝑢 , i.e., flipping the order of the two measures: EP𝑢∗ [log 𝑑P𝑢
∗

𝑑P𝑢 ]. For an arbitrary

𝑣 ∈ U, this loss is equivalent to the following one (see Theorem C.6(i) in section C.2):

LCE(𝑢) := E
[ (
−𝜆−1/2

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩−𝜆−1

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), 𝑣 (𝑋 𝑣𝑡 , 𝑡)⟩ d𝑡+𝜆

−1

2

∫ 𝑇

0
∥𝑢 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

)
× exp

(
− 𝜆−1W(𝑋 𝑣 , 0)−𝜆−1/2

∫ 𝑇

0
⟨𝑣 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩−

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

) ]
. (4.13)

The cross-entropy loss has a rich literature [Hartmann et al. 2017; Kappen and Ruiz 2016; Ru-

binstein and Kroese 2013; Zhang et al. 2014] and has been recently used in applications such as

molecular dynamics [Holdijk et al. 2023].

Furthermore, we note that the cross-entropy loss can be significantly simplified and written in

terms of the 𝐿2 error of the control 𝑢 with respect to the optimal control 𝑢∗:

Lemma 4.2 (Cross-entropy loss in terms of control 𝐿2 error).

LCE(𝑢) =
𝜆−1

2
E
[ ∫ 𝑇

0
∥𝑢∗(𝑋𝑢∗𝑡 , 𝑡) − 𝑢 (𝑋𝑢

∗
𝑡 , 𝑡)∥2 d𝑡 exp

(
− 𝜆−1𝑉 (𝑋𝑢∗0 , 0)

) ]
.

This characterization, which is proven in Theorem C.6(ii) in section C.2, is relevant for us because

a similar one can be written for the loss that we propose (see Theorem 4.5).

Variance and log-variance losses For an arbitrary 𝑣 ∈ U, the variance and the log-variance

losses are defined as L̃Var𝑣 (𝑢) = VarP𝑣 ( dP
𝑢∗

dP𝑢 ) and L̃
log
Var𝑣 (𝑢) = VarP𝑣 (log dP𝑢∗

dP𝑢 ) whenever EP𝑣 |
dP𝑢∗

dP𝑢 | <
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+∞ and EP𝑣 | log 𝑑P𝑢
∗

𝑑P𝑢 | < +∞, respectively. Define

𝑌̃
𝑢,𝑣

𝑇
= −𝜆−1

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), 𝑣 (𝑋 𝑣𝑡 , 𝑡)⟩ d𝑡 − 𝜆−1

∫ 𝑇

0
𝑓 (𝑋 𝑣𝑡 , 𝑡) d𝑡 − 𝜆−1/2

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩

+ 𝜆
−1

2

∫ 𝑇

0
∥𝑢 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡 . (4.14)

Then, L̃Var𝑣 and L̃
log
Var𝑣 are equivalent, respectively, to the following losses (see Theorem C.7):

LVar𝑣 (𝑢) := Var
(
exp

(
𝑌̃
𝑢,𝑣

𝑇
− 𝜆−1𝑔(𝑋 𝑣𝑇 )

) )
, (4.15)

Llog
Var𝑣 (𝑢) := Var

(
𝑌̃
𝑢,𝑣

𝑇
− 𝜆−1𝑔(𝑋 𝑣𝑇 )

)
, (4.16)

The variance and log-variance losses were introduced by Nüsken and Richter [2021]. Unlike for

the cross-entropy loss, the choice of the control 𝑣 does lead to different losses. When using LVar𝑣

or Llog
Var𝑣 in Algorithm 3, the variance is computed across the𝑚 trajectories in each batch.

Moment loss For an arbitrary 𝑣 ∈ U, the moment loss is defined as

LMom𝑣
(𝑢,𝑦0) = E[(𝑌̃𝑢,𝑣𝑇

+ 𝑦0 − 𝜆−1𝑔(𝑋 𝑣𝑇 ))
2], (4.17)

where 𝑌̃𝑢,𝑣
𝑇

is defined in (4.14). Note the similarity with the log-variance loss (4.16); the optimal

value of 𝑦0 for a fixed 𝑢 is 𝑦∗0 = E[𝜆−1𝑔(𝑋 𝑣
𝑇
) − 𝑌̃𝑢,𝑣

𝑇
], and plugging this into (4.17) yields exactly

the log-variance loss. The moment loss was introduced by Hartmann et al. [2019, Section III.B],

and it is a generalization of the FBSDE method pioneered by E et al. [2017]; Han et al. [2018] and

referenced earlier in this subsection. In fact, the original method corresponds to setting 𝑣 = 0.
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4.3 Stochastic Optimal Control Matching

In this section we present our loss, Stochastic Optimal Control Matching (SOCM). The correspond-

ing method, which we describe in Algorithm 4, falls into the class of IDO techniques described

in subsection 4.2.2. The general idea is to leverage the analytic expression of 𝑢∗ in Theorem 4.1

to write a least squares loss for 𝑢, and the main challenge is to reexpress the gradient of a condi-

tional expectation with respect to the initial condition of the process. We do that using a novel

technique which introduces certain arbitrary matrix-valued functions𝑀𝑡 , that we also optimize.

Theorem 4.3 (SOCM loss). For each 𝑡 ∈ [0,𝑇 ], let 𝑀𝑡 : [𝑡,𝑇 ] → R𝑑×𝑑 be an arbitrary matrix-

valued differentiable function such that 𝑀𝑡 (𝑡) = Id. Let 𝑣 ∈ U be an arbitrary control. Let LSOCM :

𝐿2(R𝑑 × [0,𝑇 ];R𝑑) × 𝐿2( [0,𝑇 ]2;R𝑑×𝑑) → R be the loss function defined as

LSOCM(𝑢,𝑀) := E
[ 1
𝑇

∫ 𝑇

0



𝑢 (𝑋 𝑣𝑡 , 𝑡) −𝑤 (𝑡, 𝑣, 𝑋 𝑣 , 𝐵,𝑀𝑡 )


2 d𝑡 × 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)

]
, (4.18)

where 𝑋 𝑣 is the process controlled by 𝑣 (i.e., 𝑑𝑋 𝑣𝑡 = (𝑏 (𝑋 𝑣𝑡 , 𝑡) + 𝜎 (𝑡)𝑣 (𝑋 𝑣𝑡 , 𝑡)) d𝑡 +
√
𝜆𝜎 (𝑡) d𝐵𝑡 and

𝑋 𝑣0 ∼ 𝑝0), and

𝑤 (𝑡, 𝑣, 𝑋 𝑣 , 𝐵,𝑀𝑡 ) = 𝜎 (𝑡)⊤
(
−

∫ 𝑇

𝑡

𝑀𝑡 (𝑠)∇𝑥 𝑓 (𝑋 𝑣𝑠 , 𝑠) d𝑠 −𝑀𝑡 (𝑇 )∇𝑔(𝑋 𝑣𝑇 )

+
∫ 𝑇

𝑡

(𝑀𝑡 (𝑠)∇𝑥𝑏 (𝑋 𝑣𝑠 , 𝑠) − 𝜕𝑠𝑀𝑡 (𝑠)) (𝜎−1)⊤(𝑠)𝑣 (𝑋 𝑣𝑠 , 𝑠) d𝑠

+ 𝜆1/2
∫ 𝑇

𝑡

(𝑀𝑡 (𝑠)∇𝑥𝑏 (𝑋 𝑣𝑠 , 𝑠) − 𝜕𝑠𝑀𝑡 (𝑠)) (𝜎−1)⊤(𝑠)d𝐵𝑠
)
,

𝛼 (𝑣, 𝑋 𝑣 , 𝐵) = exp
(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋 𝑣𝑡 , 𝑡) d𝑠 − 𝜆−1𝑔(𝑋 𝑣𝑇 )

− 𝜆−1/2
∫ 𝑇

0
⟨𝑣 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩ −

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

)
. (4.19)

LSOCM has a unique optimum (𝑢∗, 𝑀∗), where 𝑢∗ is the optimal control.

We refer to𝑀 = (𝑀𝑡 )𝑡∈[0,𝑇 ] as the family of reparametrization matrices, to the random vector field
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𝑤 as the matching vector field, and to 𝛼 as the importance weight. We present a proof sketch of

Theorem 4.3; the full proofs for all the results in this section are in section C.3.

Proof sketch of Theorem 4.3 Let 𝑋 be the uncontrolled process (4.6). Consider the loss

L̃(𝑢) = E
[ 1
𝑇

∫ 𝑇

0



𝑢 (𝑋𝑡 , 𝑡) − 𝑢∗(𝑋𝑡 , 𝑡)

2 d𝑡 exp
(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 , 𝑡) d𝑡 − 𝜆−1𝑔(𝑋𝑇 )

) ]
(4.20)

= E
[ 1
𝑇

∫ 𝑇

0

(

𝑢 (𝑋𝑡 , 𝑡)

2 − 2⟨𝑢 (𝑋𝑡 , 𝑡), 𝑢∗(𝑋𝑡 , 𝑡)⟩ + ∥𝑢∗(𝑋𝑡 , 𝑡)


2) d𝑡

× exp
(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 , 𝑡) d𝑡 − 𝜆−1𝑔(𝑋𝑇 )

) ]
.

Clearly, the only optimum of this loss is the optimal control 𝑢∗. Using the analytic expression of

𝑢∗ in Theorem 4.1, the cross-term can be rewritten as (see Theorem C.8 in section C.3):

E
[ 1
𝑇

∫ 𝑇

0
⟨𝑢 (𝑋𝑡 , 𝑡), 𝑢∗(𝑋𝑡 , 𝑡)⟩ d𝑡 exp

(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 , 𝑡) d𝑡 − 𝜆−1𝑔(𝑋𝑇 )

) ]
= −𝜆E

[ 1
𝑇

∫ 𝑇

0

〈
𝑢 (𝑋𝑡 , 𝑡), 𝜎 (𝑡)⊤∇𝑥E

[
exp

(
− 𝜆−1

∫ 𝑇

𝑡

𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑔(𝑋𝑇 )
) ��𝑋𝑡 = 𝑥 ]〉 d𝑡

× exp
(
− 𝜆−1

∫ 𝑡

0
𝑓 (𝑋𝑠, 𝑠) d𝑠

) ]
. (4.21)

It remains to evaluate the conditional expectation∇𝑥E
[

exp
(
−𝜆−1

∫ 𝑇
𝑡
𝑓 (𝑋𝑠, 𝑠) d𝑠−𝜆−1𝑔(𝑋𝑇 )

) ��𝑋𝑡 =
𝑥
]
, which we do by a “reparameterization trick” that shifts the dependence on the initial value 𝑥

into the stochastic processes—here we introduce a free variable𝑀𝑡—and then applying Girsanov

theorem. We coin this the path-wise reparameterization trick:

Proposition 4.4 (Path-wise reparameterization trick for stochastic optimal control). For each

𝑡 ∈ [0,𝑇 ], let𝑀𝑡 : [𝑡,𝑇 ] → R𝑑×𝑑 be an arbitrary continuously differentiable function matrix-valued
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function such that𝑀𝑡 (𝑡) = Id. We have that

∇𝑥E
[

exp
(
− 𝜆−1

∫ 𝑇

𝑡

𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑔(𝑋𝑇 )
) ��𝑋𝑡 = 𝑥 ]

= E
[ (
− 𝜆−1

∫ 𝑇

𝑡

𝑀𝑡 (𝑠)∇𝑥 𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑀𝑡 (𝑇 )∇𝑔(𝑋𝑇 )

+ 𝜆−1/2
∫ 𝑇

𝑡

(𝑀𝑡 (𝑠)∇𝑥𝑏 (𝑋𝑠, 𝑠) − 𝜕𝑠𝑀𝑡 (𝑠)) (𝜎−1)⊤(𝑠)d𝐵𝑠
)

× exp
(
− 𝜆−1

∫ 𝑇

𝑡

𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑔(𝑋𝑇 )
) ��𝑋𝑡 = 𝑥 ] . (4.22)

We prove a more general form of this result (Theorem C.10) in subsection C.3.2 and also provide

an intuitive derivation in subsection C.3.3. In the proof of Theorem C.10, the reparameterization

matrices𝑀𝑡 arise as the gradients of a perturbation to the process𝑋𝑡 . Similar ideas can potentially

be applied to derive losses for generative modeling. If we plug (4.22) into the right-hand side of

(4.21), and then this back into (4.20), andwe complete the square, we obtain that for some constant

𝐾 independent of 𝑢,

L̃(𝑢) = E
[ 1
𝑇

∫ 𝑇

0



𝑢 (𝑋𝑡 , 𝑡) + 𝜎 (𝑡) ( ∫ 𝑇

𝑡

𝑀𝑡 (𝑠)∇𝑥 𝑓 (𝑋𝑠, 𝑠) d𝑠 +𝑀𝑡 (𝑇 )∇𝑔(𝑋𝑇 )

− 𝜆1/2
∫ 𝑇

𝑡

(𝑀𝑡 (𝑠)∇𝑥𝑏 (𝑋𝑠, 𝑠) − 𝜕𝑠𝑀𝑡 (𝑠)) (𝜎−1)⊤(𝑠)d𝐵𝑠
)

2 d𝑡

× exp
(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 , 𝑡) d𝑡 − 𝜆−1𝑔(𝑋𝑇 )

) ]
+ 𝐾.

If we perform a change of process from 𝑋 to 𝑋 𝑣 applying the Girsanov theorem (Theorem C.3 in

section C.3), we obtain the loss LSOCM(𝑢,𝑀). □

The following proposition sheds some light onto the role of reparameterization matrices and

connects the SOCM loss to the cross-entropy loss.

Proposition 4.5 (Bias-variance decomposition of the SOCM loss). The SOCM loss decomposes
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into a bias term that only depends on 𝑢 and a variance term that only depends on𝑀 :

LSOCM(𝑢,𝑀)=E
[ 1
𝑇

∫ 𝑇

0



𝑢 (𝑋𝑢∗𝑡 , 𝑡) − 𝑢∗(𝑋𝑢∗𝑡 , 𝑡)

2 d𝑡 exp(−𝜆−1𝑉 (𝑋𝑢∗0 , 0))
]

︸                                                                         ︷︷                                                                         ︸
Bias of 𝑢

+CondVar(𝑤 ;𝑀)︸              ︷︷              ︸
Variance of𝑤

,

(4.23)

where

Var(𝑤 ;𝑀)

= E
[1
𝑇

∫ 𝑇

0



𝑤̃ (𝑡, 𝑋, 𝐵,𝑀𝑡 )−
E[𝑤̃ (𝑡, 𝑋, 𝐵,𝑀𝑡 ) exp(−𝜆−1W(𝑋, 0)) |𝑋𝑡 ]

E[exp(−𝜆−1W(𝑋, 0)) |𝑋𝑡 ]


2 d𝑡 exp(−𝜆−1W(𝑋, 0))

]
= E

[ 1
𝑇

∫ 𝑇

0



𝑤 (𝑡, 𝑣, 𝑋 𝑣 , 𝐵,𝑀𝑡 )−
E[𝑤 (𝑡, 𝑣, 𝑋 𝑣 , 𝐵,𝑀𝑡 )𝛼 (𝑣, 𝑋 𝑣 , 𝐵) |𝑋 𝑣𝑡 ]

E[𝛼 (𝑣, 𝑋 𝑣 , 𝐵) |𝑋 𝑣𝑡 ]


2 d𝑡 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)

]
, (4.24)

and

𝑤̃ (𝑡, 𝑋, 𝐵,𝑀𝑡 ) = 𝜎 (𝑡)⊤
(
−

∫ 𝑇

𝑡

𝑀𝑡 (𝑠)∇𝑥 𝑓 (𝑋𝑠, 𝑠) d𝑠 −𝑀𝑡 (𝑇 )∇𝑔(𝑋𝑇 )

+ 𝜆1/2
∫ 𝑇

𝑡

(𝑀𝑡 (𝑠)∇𝑥𝑏 (𝑋𝑠, 𝑠) − 𝜕𝑠𝑀𝑡 (𝑠)) (𝜎−1)⊤(𝑠)d𝐵𝑠
)
. (4.25)

Remark that the bias term in equation (4.23) is equal to the characterization of the cross-entropy

loss in Theorem 4.2. In other words, the landscape of LSOCM(𝑢,𝑀) with respect to 𝑢 is the land-

scape of the cross-entropy lossLCE(𝑢). Thus, the SOCM loss can be seen as some form of variance

reduction method for the cross-entropy loss, and performs substantially better experimentally

(section 4.4). Yet, the expressions of the SOCM loss and the cross-entropy loss are very different;

the former is a least squares loss and is expressed in terms of the gradients of the costs.

For good training performance, it is critical that the gradients have high signal-to-noise ratio.

Looking at the SOCM loss, a good proxy for low gradient variance is to have low variance for
1
𝑇

∫ 𝑇
0



𝑢 (𝑋 𝑣𝑡 , 𝑡) − 𝑤 (𝑡, 𝑣, 𝑋 𝑣 , 𝐵,𝑀𝑡 )


2 d𝑡 × 𝛼 (𝑣, 𝑋 𝑣 , 𝐵), and this holds when both 𝛼 (𝑣, 𝑋 𝑣 , 𝐵) and

𝑤 (𝑡, 𝑣, 𝑋 𝑣 , 𝐵,𝑀𝑡 ) have low variance. Next, we present strategies to lower the variance of these
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Algorithm 4 Stochastic Optimal Control Matching (SOCM)
Input: State cost 𝑓 (𝑥, 𝑡), terminal cost𝑔(𝑥), covariancematrix 𝜎 (𝑡), base drift𝑏 (𝑥, 𝑡), noise level 𝜆, number

of iterations 𝑁 , batch size𝑚, number of time steps 𝐾 , initial control parameters 𝜃0, initial matrix
parameters 𝜔0, loss LSOCM in (C.31)

1 for 𝑛 ∈ {0, . . . , 𝑁 − 1} do
2 Simulate𝑚 trajectories of the process 𝑋 𝑣 controlled by 𝑣 = 𝑢𝜃𝑛 , e.g., using Euler-Maruyama updates
3 Detach the𝑚 trajectories from the computational graph, so that gradients do not backpropagate
4 Using the𝑚 trajectories, compute an𝑚-sample Monte-Carlo approximation L̂SOCM(𝑢𝜃𝑛 , 𝑀𝜔𝑛

) of the
loss LSOCM(𝑢𝜃𝑛 , 𝑀𝜔𝑛

) in (C.31)
5 Compute the gradients ∇(𝜃,𝜔 ) L̂SOCM(𝑢𝜃𝑛 , 𝑀𝜔𝑛

) of L̂SOCM(𝑢𝜃𝑛 , 𝑀𝜔𝑛
) at (𝜃𝑛, 𝜔𝑛)

6 Obtain 𝜃𝑛+1, 𝜔𝑛+1 with via an Adam update on 𝜃𝑛 , 𝜔𝑛 , resp.
7 end
Output: Learned control 𝑢𝜃𝑁

two objects.

Minimizing the variance of the importance weight 𝛼 We want to use a vector field 𝑣 such

that Var[𝛼 (𝑣, 𝑋 𝑣 , 𝐵)] is as low as possible. As shown by the following lemma, which is well-

known in the literature, setting 𝑣 to be the optimal control 𝑢∗ actually achieves variance zero

when we condition on the starting point of the controlled process𝑋 𝑣 . The proof of this result can

be found in Hartmann et al. [2017], but we include it in subsection C.3.5 for completeness.

Lemma 4.6. When we set 𝑣 = 𝑢∗, the conditional variance Var[𝛼 (𝑣, 𝑋 𝑣 , 𝐵) |𝑋 𝑣0 = 𝑥init] is zero for

any 𝑥init ∈ R𝑑 .

Of course, we do not have access to the optimal control 𝑢∗, but it is still a good idea to set 𝑣

as the closest vector field to 𝑢∗ that we have access to, which is typically the currently learned

control. In some instances, one may benefit from using a warm-started control parameterized as

𝑢WS(𝑥, 𝑡)+𝑢𝜃 (𝑥, 𝑡), where the warm-start𝑢WS is a reasonably good control obtained via a different

strategy (see section C.4).

Minimizing the variance of the matching vector field𝑤 We are interested in finding the

family 𝑀 = (𝑀𝑡 )𝑡∈[0,𝑇 ] that minimizes the variance of 𝑤 (𝑡, 𝑣, 𝑋 𝑣 , 𝐵,𝑀𝑡 ) conditioned on 𝑡 and 𝑋𝑡 .

Note that this is exactly the term CondVar(𝑤 ;𝑀) in the right-hand side of equation (4.23). Since
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CondVar(𝑤 ;𝑀) does not depend on the specific 𝑣 , the optimal𝑀 does not depend on 𝑣 either. And

since the first term in the right-hand side of equation (4.23) does not depend on 𝑀 = (𝑀𝑡 )𝑡∈[0,𝑇 ] ,

minimizing CondVar(𝑤 ;𝑀) is equivalent to minimizing L(𝑢) with respect to𝑀 . In practice, we

parameterize𝑀 using a neural network with a two-dimensional input (𝑡, 𝑠) and a 𝑑2-dimensional

output.

Furthermore, the following theorem shows that the optimal family𝑀∗ = (𝑀∗𝑡 )𝑡∈[0,𝑇 ] can be char-

acterized as the solution of a linear equation in infinite dimensions. The proof is in subsec-

tion C.3.6.

Theorem 4.7 (Optimal reparameterization matrices). Let 𝑣 be an arbitrary control in U. Define

the integral operator T𝑡 : 𝐿2( [𝑡,𝑇 ];R𝑑×𝑑) → 𝐿2( [𝑡,𝑇 ];R𝑑×𝑑) as

[T𝑡 ( ¤𝑀𝑡 )] (𝑠) =
∫ 𝑇

𝑡

¤𝑀𝑡 (𝑠′)E
[
𝜒 (𝑠′, 𝑋 𝑣 , 𝐵)𝜒 (𝑠, 𝑋 𝑣 , 𝐵)⊤ × 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)

]
d𝑠′,

where

𝜒 (𝑡, 𝑋 𝑣 , 𝐵) :=
∫ 𝑇

𝑡

∇𝑥 𝑓 (𝑋 𝑣𝑠 , 𝑠) d𝑠 + ∇𝑔(𝑋 𝑣𝑇 ) + (𝜎
−1
𝑡 )⊤(𝑡)𝑣 (𝑋 𝑣𝑡 , 𝑡)

−
∫ 𝑇

𝑡

∇𝑥𝑏 (𝑋 𝑣𝑠 , 𝑠) (𝜎−1
𝑠 )⊤(𝑠)𝑣 (𝑋 𝑣𝑡 , 𝑡) d𝑠 −

∫ 𝑇

𝑡

∇𝑥𝑏 (𝑋 𝑣𝑠 , 𝑠) (𝜎−1
𝑠 )⊤(𝑠) d𝐵𝑠 .

If we define 𝑁𝑡 (𝑠) = −E
[ (
∇𝑔(𝑋 𝑣

𝑇
) +

∫ 𝑇
𝑡
∇𝑥 𝑓 (𝑋 𝑣𝑠′, 𝑠′) d𝑠′

)
𝜒 (𝑡, 𝑋 𝑣 , 𝐵)⊤ × 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)

]
, the optimal

𝑀∗ = (𝑀∗𝑡 )𝑡∈[0,𝑇 ] is of the form 𝑀∗𝑡 (𝑠) = 𝐼 +
∫ 𝑠

𝑡
¤𝑀∗𝑡 (𝑠′) d𝑠′, where ¤𝑀∗𝑡 is the unique solution of the

following Fredholm equation of the first kind:

T𝑡 ( ¤𝑀𝑡 ) = 𝑁𝑡 . (4.26)

Solving the Fredholm equation (4.26) numerically is expensive, as the discretized linear system

has 𝑑2𝐾 equations and variables, 𝐾 being the number of discretization time points. However,
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Figure 4.1: Plots of the 𝐿2
error incurred by the learned control (top), and the norm squared of the

gradient with respect to the parameters 𝜃 of the control (bottom), for the Quadratic Ornstein Uhlenbeck

(easy) setting and for each IDO loss. Both plots show exponential moving averages computed from the

trajectories used during training.

since the optimal 𝑀∗ does not depend on 𝑣 , this is a computation that must be done only once

and that may be affordable in some settings.

Parameterizing the matrices 𝑀𝑡 In practice, we parameterize the matrices (𝑀𝑡 )𝑡∈[0,𝑇 ] using

a common function 𝑀𝜔 with two arguments (𝑡, 𝑠). A simple way to enforce that 𝑀𝜔 (𝑡, 𝑡) = Id is

to set 𝑀𝜔 (𝑡, 𝑠) = 𝑒−𝛾 (𝑠−𝑡)Id + (1 − 𝑒−𝛾 (𝑠−𝑡))𝑀̃𝜔̃ (𝑡, 𝑠), where 𝜔 = (𝛾, 𝜔̃), and 𝑀̃𝜔̃ : R × R→ R𝑑×𝑑 is

an unconstrained neural network.

4.4 Experiments

Weconsider four experimental settings thatwe adapt fromNüsken and Richter [2021]: Quadratic

Ornstein Uhlenbeck (easy),Quadratic Ornstein Uhlenbeck (hard), Linear Ornstein Uh-

lenbeck and Double Well. We describe them in detail in section C.5. For all of them, we have

access to the ground-truth optimal control, which means that we are able to estimate the 𝐿2 error

incurred by the learned control 𝑢.

In Figure 4.1 (top) we plot the control𝐿2 error for each IDO algorithm described in subsection 4.2.2,
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Figure 4.2: Plots of the 𝐿2
error of the learned control for the Linear Ornstein Uhlenbeck and Double

Well settings.

SOCM SOCM𝑀𝑡 = 𝐼 SOCM adjoint Adjoint
0.222 0.090 0.099 0.169

Cross entropy Log-variance Moment Variance
0.086 0.117 0.087 0.086

Table 4.1: Time per iteration (exponential moving average) for various algorithms in seconds per iteration,

for the Quadratic OU (easy) experiments (Figure 4.1).

and for the SOCM algorithm (Algorithm 4), for theQuadratic OU (easy) setting. We also include

two ablations of SOCM: (i) a version of SOCM where the reparameterization matrices 𝑀𝑡 are

set fixed to the identity 𝐼 , (ii) SOCM-Adjoint, where we estimate the conditional expectation in

equation (4.22) using the adjoint method for SDEs instead of the path-wise reparameterization

trick (see subsection C.3.4).

At the end of training, SOCM obtains the lowest 𝐿2 error, improving over all existing methods

by a factor of around ten. The two SOCM ablations come in second and third by a substantial

difference, which underlines the importance of the path-wise reparameterization trick. The best

among existing methods is the adjoint method (the relative entropy loss). In Figure 4.1 (bottom)

we show the squared norm of the gradient of each loss with respect to the parameters 𝜃 of the

control: algorithms with small noise variance tend to have low error values. Table 4.1 shows the

average times per iteration for each algorithm.
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Figure 4.3: Plots of the 𝐿2
error incurred by the learned control (top), and the norm squared of the gradient

with respect to the parameters 𝜃 of the control (bottom), for the Quadratic Ornstein Uhlenbeck (hard)

setting and for each IDO loss. All the algorithms use a warm-started control (see section C.4).

In Figure 4.2, we plot the control 𝐿2 error for Linear Ornstein Uhlenbeck and Double Well.

For Linear OU, the error is around five times smaller for SOCM than for any existing method.

For Double Well, the SOCM algorithm achieves the second smallest error, slightly behind the

adjoint method, but the latter shows instabilities. As we show in Figure C.4 in section C.5, these

instabilities are inherent to the adjoint method and they do not disappear for small learning rates.

Both in Figure 4.1 and Figure C.4, we observe that learning the reparameterization matrices is

critical to obtain gradient estimates with high signal-to-noise ratio.

The costs 𝑓 and𝑔 and the base drift𝑏 forQuadraticOU (hard) are five times those of Quadratic

OU (easy). Consequently, the factor 𝛼 (𝑣, 𝑋 𝑣 , 𝐵) has a much larger variance, and initializing the

control neural network without a warm-start yields poor results for the SOCM and cross-entropy

losses (see Figure C.5 in section C.5). Yet, when we use the control warm-start strategy detailed in

section C.4, Figure 4.3 shows that SOCM is once again the algorithm that achieves the lowest error

and the smallest gradients. Remark that the warm-start control is a reasonable approximation of

the optimal control, as the initial control 𝐿2 error is much lower than in the other figures.
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4.5 Conclusion

Our work introduces Stochastic Optimal Control Matching, a novel Iterative Diffusion Optimiza-

tion technique for stochastic optimal control that stems from the same philosophy as the condi-

tional score matching loss for diffusion models. That is, the control is learned via a least-squares

problem by trying to fit a matching vector field. The training loss is optimized with respect

to both the control function and a family of reparameterization matrices which appear in the

matching vector field. The optimization with respect to the reparameterization matrices aims at

minimizing the variance of the matching vector field. Experimentally, our algorithm achieves

lower error than all the existing IDO techniques for stochastic optimal control for four different

control settings.

One of the key ideas for deriving the SOCM algorithm is the path-wise reparameterization trick, a

novel technique to obtain low-variance estimates of the gradient of the conditional expectation of

a functional of a random process with respect to its initial value. An interesting future direction

is to use the path-wise reparameterization trick to decrease the variance of the matching vector

field for diffusion models.

The main roadblock when we try to apply SOCM to more challenging problems is that the vari-

ance of the factor 𝛼 (𝑣, 𝑋 𝑣 , 𝐵) explodes when 𝑓 and/or𝑔 are large, or when the dimension𝑑 is high.

We observe this in Figure C.5 in section C.5, which is for the Quadratic Ornstein Uhlenbeck

(hard) setting but does not use warm-start. The control 𝐿2 error for the SOCM and cross-entropy

losses remains high and fluctuates heavily due to the large variance of 𝛼 . The large variance of

𝛼 is due to the mismatch between the probability measures induced by the learned control and

the optimal control. Similar problems are encountered in out-of-distribution generalization for

reinforcement learning, and some approaches may be carried over from that area [Munos et al.

2016].
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5 | Discussion

This thesis contains three works that study or propose machine learning algorithms from the lens

of evolution dynamics on probability measures.

Looking ahead, several areas warrant further investigation. For the mean-field two-player dy-

namics, a reasonable goal is to get a better understanding of the convergence guarantees of the

proposed algorithms. In the realm of Multisample Flow Matching, experimenting with different

types of couplings and exploring the possibility of performing conditional generation are inter-

esting directions. Lastly, for Stochastic Optimal Control Matching, the application of the repa-

rameterization trick to other types of problems or its integration with reinforcement learning

frameworks could be promising directions.

In conclusion, this thesis not only demonstrates the feasibility and effectiveness of novel ap-

proaches to managing dynamics on probability measures but also opens up numerous avenues of

research. The methodologies developed here are poised to influence a range of applications, from

deep learning and artificial intelligence to complex system optimization and beyond, underscor-

ing the transformative potential of advanced mathematical frameworks in tackling real-world

challenges.
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A | Appendix: Mean-field two-player

zero-sum games

A.1 Lifted dynamics for the Interacting

Wasserstein-Fisher-Rao Gradient Flow

Recall the IWFRGF in (2.8), which we reproduce here for convenience.


𝜕𝑡𝜇𝑥 = 𝛾∇𝑥 · (𝜇𝑥∇𝑥𝑉𝑥 (𝜇𝑦, 𝑥)) − 𝛼𝜇𝑥 (𝑉𝑥 (𝜇𝑦, 𝑥) − L(𝜇𝑥 , 𝜇𝑦)), 𝜇𝑥 (0) = 𝜇𝑥,0

𝜕𝑡𝜇𝑦 = −𝛾∇𝑦 · (𝜇𝑦∇𝑦𝑉𝑦 (𝜇𝑥 , 𝑦)) + 𝛼𝜇𝑦 (𝑉𝑦 (𝜇𝑥 , 𝑦) − L(𝜇𝑥 , 𝜇𝑦)), 𝜇𝑦 (0) = 𝜇𝑦,0

Given 𝜈𝑥 ∈ P(X × R+) define 𝜇𝑥 =
∫
X𝑤𝑥 𝑑𝜈𝑥 (·,𝑤𝑥 ) ∈ P(X), that is∫

X
𝜓 (𝑥) 𝑑𝜇𝑥 (𝑥) =

∫
X×R+

𝑤𝑥𝜓 (𝑥) 𝑑𝜈𝑥 (𝑥,𝑤𝑥 ),

for all 𝜓 ∈ 𝐶 (X). Given 𝜈𝑦 ∈ P(Y × R+), define 𝜇𝑦 =
∫
X𝑤𝑦 𝑑𝜈𝑦 (·,𝑤𝑦) ∈ P(Y) analogously. We

say that 𝜈𝑥 , 𝜈𝑦 are “lifted” measures of 𝜇𝑥 , 𝜇𝑦 , and reciprocally 𝜇𝑥 , 𝜇𝑦 are “projected” measures of

𝜈𝑥 , 𝜈𝑦 .

By Theorem A.1 below, we can view a solution of (2.8) as the projection of a solution of the
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following dynamics on the lifted domains X × R+ and Y × R+:


𝜕𝑡𝜈𝑥 = ∇𝑤𝑥 ,𝑥 · (𝜈𝑥𝑔𝜇𝑦 (𝑥,𝑤𝑥 )), 𝜈𝑥 (0) = 𝜇𝑥,0 × 𝛿𝑤𝑥=1

𝜕𝑡𝜈𝑦 = −∇𝑤𝑦,𝑦 · (𝜈𝑦𝑔𝜇𝑥 (𝑦,𝑤𝑦)), 𝜈𝑦 (0) = 𝜇𝑦,0 × 𝛿𝑤𝑦=1

(A.1)

where

𝑔𝜇𝑦 (𝑥,𝑤𝑥 ) = (𝛼𝑤𝑥 (𝑉𝑥 (𝜇𝑦, 𝑥) − L(𝜇𝑥 , 𝜇𝑦)), 𝛾∇𝑥𝑉𝑥 (𝜇𝑦, 𝑥))),

𝑔𝜇𝑥 (𝑦,𝑤𝑦) = (𝛼𝑤𝑦 (𝑉𝑦 (𝜇𝑥 , 𝑥) − L(𝜇𝑥 , 𝜇𝑦)), 𝛾∇𝑦𝑉𝑦 (𝜇𝑥 , 𝑦))) .

Lemma A.1. For a solution 𝜈𝑥 : [0,𝑇 ] → P(X × R+), 𝜈𝑦 : [0,𝑇 ] → P(Y × R+) of (A.1), the

projections 𝜇𝑥 , 𝜇𝑦 are solutions of (2.8).

That is, given any𝜓𝑥 ∈ C1(X),𝜓𝑦 ∈ C1(Y), we have

𝑑

𝑑𝑡

∫
X
𝜓𝑥 (𝑥) 𝑑𝜇𝑥 = −𝛾

∫
X
∇𝑥𝜓𝑥 (𝑥) · ∇𝑥𝑉𝑥 (𝜇𝑦, 𝑥) 𝑑𝜇𝑥 − 𝛼

∫
X
𝜓𝑥 (𝑥) (𝑉𝑥 (𝜇𝑦, 𝑥) − L(𝜇𝑥 , 𝜇𝑦)) 𝑑𝜇𝑥 ,

𝑑

𝑑𝑡

∫
Y
𝜓𝑦 (𝑦) 𝑑𝜇𝑦 = 𝛾

∫
Y
∇𝑦𝜓𝑦 (𝑦) · ∇𝑦𝑉𝑦 (𝜇𝑥 , 𝑦)) 𝑑𝜇𝑦 + 𝛼

∫
Y
𝜓𝑦 (𝑦) (𝑉𝑦 (𝜇𝑥 , 𝑦) − L(𝜇𝑥 , 𝜇𝑦)) 𝑑𝜇𝑦,

𝜇𝑥 (0) = 𝜇𝑥,0, 𝜇𝑦 (0) = 𝜇𝑦,0 (A.2)

From (A.1) in the weak form, we obtain that given any𝜓𝑥 ∈ C1(X × R+),𝜓𝑦 ∈ C1(Y × R+),

𝑑

𝑑𝑡

∫
X×R+

𝜓𝑥 (𝑥,𝑤𝑥 ) 𝑑𝜈𝑥 (𝑥,𝑤𝑥 ) =
∫
X×R+

−𝛾∇𝑥𝜓𝑥 (𝑥,𝑤𝑥 ) · ∇𝑥𝑉𝑥 (𝜇𝑦, 𝑥)

− 𝛼𝑤𝑥
𝑑𝜓𝑥

𝑑𝑤𝑥
(𝑥,𝑤𝑥 ) (𝑉𝑥 (𝜇𝑦, 𝑥) − L(𝜇𝑥 , 𝜇𝑦)) 𝑑𝜇𝑥 ,

𝑑

𝑑𝑡

∫
Y×R+

𝜓𝑦 (𝑦,𝑤𝑦) 𝑑𝜈𝑦 (𝑦,𝑤𝑦) =
∫
Y×R+

𝛾∇𝑦𝜓𝑦 (𝑦,𝑤𝑦) · ∇𝑦𝑉𝑦 (𝜇𝑥 , 𝑦)

+ 𝛼𝑤𝑦
𝑑𝜓𝑦

𝑑𝑤𝑦
(𝑦,𝑤𝑦) (𝑉𝑦 (𝜇𝑥 , 𝑦) − L(𝜇𝑥 , 𝜇𝑦)) 𝑑𝜇𝑦,

𝜈𝑥 (0) = 𝜇𝑥,0 × 𝛿𝑤𝑥=1, 𝜈𝑦 (0) = 𝜇𝑦,0 × 𝛿𝑤𝑦=1. (A.3)
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Taking𝜓𝑥 (𝑥,𝑤𝑥 ) = 𝑤𝑥𝜓𝑥 (𝑥),𝜓𝑦 (𝑦,𝑤𝑦) = 𝑤𝑦𝜓𝑦 (𝑦) yields

𝑑

𝑑𝑡

∫
X×R+

𝑤𝑥𝜓𝑥 (𝑥) 𝑑𝜈𝑥 (𝑥,𝑤𝑥 ) =
∫
X×R+

−𝛾𝑤𝑥∇𝑥𝜓𝑥 (𝑥) · ∇𝑥𝑉𝑥 (𝜇𝑦, 𝑥)

− 𝛼𝑤𝑥𝜓𝑥 (𝑥) (𝑉𝑥 (𝜇𝑦, 𝑥) − L(𝜇𝑥 , 𝜇𝑦)) 𝑑𝜇𝑥 ,
𝑑

𝑑𝑡

∫
Y×R+

𝑤𝑦𝜓𝑦 (𝑦,𝑤𝑦) 𝑑𝜈𝑦 (𝑦,𝑤𝑦) =
∫
Y×R+

𝛾𝑤𝑦∇𝑦𝜓𝑦 (𝑦) · ∇𝑦𝑉𝑦 (𝜇𝑥 , 𝑦)

+ 𝛼𝑤𝑦𝜓𝑦 (𝑦) (𝑉𝑦 (𝜇𝑥 , 𝑦) − L(𝜇𝑥 , 𝜇𝑦)) 𝑑𝜇𝑦 . (A.4)

Notice that (A.4) is indeed (A.2).

A.2 Continuity and convergence properties of the

Nikaido-Isoda error

Lemma A.2. The Nikaido-Isoda error NI : P(X) × P(Y) → R defined in (2.2) is continuous when

we endow P(X),P(Y) with the topology of weak convergence. Specifically, it is Lip(ℓ)-Lipschitz

when we use the distanceW1(𝜇𝑥 , 𝜇′𝑥 ) +W1(𝜇𝑦, 𝜇′𝑦) between (𝜇𝑥 , 𝜇𝑦) and (𝜇′𝑥 , 𝜇′𝑦) in P(X) × P(Y).

Proof. For any 𝜇𝑦 , the function𝑉𝑥 (𝜇𝑦, ·) : X → R defined as 𝑥 ↦→
∫
ℓ (𝑥,𝑦) 𝑑𝜇𝑦 is continuous and

it has the same Lipschitz constant Lip(ℓ) as ℓ . Hence, for any 𝜇𝑥 , 𝜇′𝑥 ∈ P(X),

sup
𝜇𝑦∈P(Y)

L(𝜇𝑥 , 𝜇𝑦) − sup
𝜇𝑦∈P(Y)

L(𝜇′𝑥 , 𝜇𝑦) = sup
𝜇𝑦∈P(Y)

∫
𝑉𝑥 (𝜇𝑦, 𝑥)𝑑𝜇𝑥 − sup

𝜇𝑦∈P(Y)

∫
𝑉𝑥 (𝜇𝑦, 𝑥)𝑑𝜇′𝑥

≤ sup
𝜇𝑦∈P(Y)

∫
𝑉𝑥 (𝜇𝑦, 𝑥)𝑑𝜇′𝑥 + sup

𝜇𝑦∈P(Y)

∫
𝑉𝑥 (𝜇𝑦, 𝑥)𝑑 (𝜇𝑥 − 𝜇′𝑥 ) − sup

𝜇𝑦∈P(Y)

∫
𝑉𝑥 (𝜇𝑦, 𝑥)𝑑𝜇′𝑥

= sup
𝜇𝑦∈P(Y)

∫
𝑉𝑥 (𝜇𝑦, 𝑥)𝑑 (𝜇𝑥 − 𝜇′𝑥 ) ≤ Lip(ℓ)W1(𝜇𝑥 , 𝜇′𝑥 )
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The same inequality interchanging the roles of 𝜇𝑥 , 𝜇′𝑥 shows that

| sup
𝜇𝑦∈P(Y)

L(𝜇𝑥 , 𝜇𝑦) − sup
𝜇𝑦∈P(Y)

L(𝜇′𝑥 , 𝜇𝑦) | ≤ Lip(ℓ)W1(𝜇𝑥 , 𝜇′𝑥 )

holds. An analogous reasoning for ℓ (𝜇𝑥 , ·) : Y → R and the triangle inequality complete the

proof. □

Lemma A.3. Suppose that (𝜇𝑛𝑥 )𝑛∈N is a sequence of random elements valued in P(X) such that

E[W2
2 (𝜇𝑛𝑥 , 𝜇𝑥 )]

𝑛→∞−−−−→ 0,

where 𝜇𝑥 ∈ P(𝑋 ). Analogously, suppose that (𝜇𝑛𝑦 )𝑛∈N is a sequence of random elements valued in

P(Y) such that

E[W2
2 (𝜇𝑛𝑦 , 𝜇𝑦)]

𝑛→∞−−−−→ 0,

where 𝜇𝑦 ∈ P(𝑌 ).

Then,

E[|NI(𝜇𝑛𝑥 , 𝜇𝑛𝑦 ) − NI(𝜇𝑥 , 𝜇𝑦) |]
𝑛→∞−−−−→ 0

Proof. First,

E[W1(𝜇𝑛𝑥 , 𝜇𝑥 )] ≤ E[W2(𝜇𝑛𝑥 , 𝜇𝑥 )] ≤
(
E[W2

2 (𝜇𝑛𝑥 , 𝜇𝑥 )]
)1/2

, (A.5)

which results from two applications of the Cauchy-Schwarz inequality on the appropriate scalar

products. An analogous inequality holds for E[W1(𝜇𝑛𝑦 , 𝜇𝑦)]. Hence, by Theorem A.2,

E[|NI(𝜇𝑛𝑥 , 𝜇𝑛𝑦 ) − NI(𝜇𝑥 , 𝜇𝑦) |] ≤ Lip(ℓ)E[W1(𝜇𝑛𝑥 , 𝜇𝑥 ) +W1(𝜇𝑛𝑦 , 𝜇𝑦)]

≤ Lip(ℓ)
( (
E[W2

2 (𝜇𝑛𝑥 , 𝜇𝑥 )]
)1/2 +

(
E[W2

2 (𝜇𝑛𝑥 , 𝜇𝑥 )]
)1/2

)
≤ Lip(ℓ)

√
2
(
E[W2

2 (𝜇𝑛𝑥 , 𝜇𝑥 )] + E[W2
2 (𝜇𝑛𝑥 , 𝜇𝑥 )]

)1/2
,
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where the second inequality uses (A.5) and the third inequality is another application of the

Cauchy-Schwarz inequality. Since the right hand side converges to 0 by assumption, this con-

cludes the proof. □

A.3 Proof of Theorem 2.2

We restate Theorem 2.2 for convenience.

Theorem 2.2. Suppose that Assumption 1 holds, that ℓ ∈ 𝐶2,𝛼 (X × Y) for some 𝛼 ∈ (0, 1) and

that the initial measures 𝜇𝑥,0, 𝜇𝑦,0 have densities in 𝐿1(X), 𝐿1(Y). If a solution (𝜇𝑥 (𝑡), 𝜇𝑦 (𝑡)) of the

ERIWGF (2.7) converges in time, it must converge to the point (𝜇𝑥 , 𝜇𝑦) which is the unique fixed point

of the problem

𝜌𝑥 (𝑥) =
1
𝑍𝑥
𝑒−𝛽

∫
ℓ (𝑥,𝑦) 𝑑𝜇𝑦 (𝑦), 𝜌𝑦 (𝑦) =

1
𝑍𝑦
𝑒𝛽

∫
ℓ (𝑥,𝑦) 𝑑𝜇𝑥 (𝑥) .

(𝜇𝑥 , 𝜇𝑦) is an 𝜖-Nash equilibrium of the game given byL when 𝛽 ≥ 4
𝜖

log
(
21−𝑉𝛿
𝑉𝛿
(2𝐾ℓ/𝜖 − 1)

)
,where

𝐾ℓ := max𝑥,𝑦 ℓ (𝑥,𝑦) −min𝑥,𝑦 ℓ (𝑥,𝑦) is the length of the range of ℓ , 𝛿 := 𝜖/(2Lip(ℓ)) and𝑉𝛿 is a lower

bound on the volume of a ball of radius 𝛿 in X,Y.

Theorem 2.2 is a consequence of the following three results, which we prove separately.

Theorem A.4. Assume X,Y are compact Polish metric spaces equipped with canonical Borel mea-

sures, and that ℓ is a continuous function on X ×Y. Let us consider the fixed point problem


𝜌𝑥 (𝑥) = 1

𝑍𝑥
𝑒−𝛽

∫
ℓ (𝑥,𝑦) 𝑑𝜇𝑦 (𝑦),

𝜌𝑦 (𝑦) = 1
𝑍𝑦
𝑒𝛽

∫
ℓ (𝑥,𝑦) 𝑑𝜇𝑥 (𝑥),

where 𝑍𝑥 and 𝑍𝑦 are normalization constants and 𝜌𝑥 , 𝜌𝑦 are the densities of 𝜇𝑥 , 𝜇𝑦 . This fixed point

problem has a unique solution (𝜇𝑥 , 𝜇𝑦) that is also the unique Nash equilibrium of the game given
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by L𝛽 (𝜇𝑥 , 𝜇𝑦) ≜ L(𝜇𝑥 , 𝜇𝑦) + 𝛽−1(𝐻 (𝜇𝑦) − 𝐻 (𝜇𝑥 )).

Theorem A.5. Let 𝐾ℓ := max𝑥,𝑦 ℓ (𝑥,𝑦) − min𝑥,𝑦 ℓ (𝑥,𝑦) be the length of the range of ℓ . Let 𝜖 > 0,

𝛿 := 𝜖/(2Lip(ℓ)) and 𝑉𝛿 be a lower bound on the volume of a ball of radius 𝛿 in X,Y. Then the

solution (𝜇𝑥 , 𝜇𝑦) of (2.9) is an 𝜖-Nash equilibrium of the game given by L when

𝛽 ≥ 4
𝜖

log
(
2

1 −𝑉𝛿
𝑉𝛿
(2𝐾ℓ/𝜖 − 1)

)
.

Theorem A.6. Suppose that Assumption 1 holds and ℓ ∈ 𝐶2,𝛼 (X × Y) for some 𝛼 ∈ (0, 1), i.e. the

second derivatives of ℓ are 𝛼-Hölder. Then, there exists only one stationary solution of the ERIWGF

(2.7) and it is the solution of the fixed point problem (2.9).

A.3.1 Proof of Theorem A.4: Preliminaries

Definition A.7 (Upper hemicontinuity). A set-valued function 𝜓 : 𝑋 → 2𝑌 is upper hemicon-

tinuous if for every open set𝑊 ⊂ 𝑌 , the set {𝑥 |𝜓 (𝑥) ⊂𝑊 } is open.

Alternatively, set-valued functions can be seen as correspondences Γ : 𝑋 → 𝑌 . The graph of Γ

is Gr(Γ) = {(𝑎, 𝑏) ∈ 𝑋 × 𝑌 |𝑏 ∈ Γ(𝑎)}. If Γ is upper hemicontinuous, then Gr(Γ) is closed. If 𝑌 is

compact, the converse is also true.

Definition A.8 (Kakutani map). Let 𝑋 and 𝑌 be topological vector spaces and 𝜓 : 𝑋 → 2𝑌 be a

set-valued function. If𝑌 is convex, then𝜓 is termed a Kakutani map if it is upper hemicontinuous

and𝜓 (𝑥) is non-empty, compact and convex for all 𝑥 ∈ 𝑋 .

Theorem A.9 (Kakutani-Glicksberg-Fan). Let 𝑆 be a non-empty, compact and convex subset of a

Hausdorff locally convex topological vector space. Let𝜓 : 𝑆 → 2𝑆 be a Kakutani map. Then𝜓 has a

fixed point.

DefinitionA.10 (Lower semi-continuity). Suppose𝑋 is a topological space, 𝑥0 is a point in𝑋 and

𝑓 : 𝑋 → R∪{−∞,∞} is an extended real-valued function. We say that 𝑓 is lower semi-continuous

72



(l.s.c.) at 𝑥0 if for every 𝜖 > 0 there exists a neighborhood𝑈 of 𝑥0 such that 𝑓 (𝑥) ≥ 𝑓 (𝑥0) − 𝜖 for

all 𝑥 in𝑈 when 𝑓 (𝑥0) < +∞, and 𝑓 (𝑥) tends to +∞ as 𝑥 tends towards 𝑥0 when 𝑓 (𝑥0) = +∞.

We can also characterize lower-semicontinuity in terms of level sets. A function is lower semi-

continuous if and only if all of its lower level sets {𝑥 ∈ 𝑋 : 𝑓 (𝑥) ≤ 𝛼} are closed. This property

will be useful.

Theorem A.11 (Weierstrass theorem for l.s.c. functions). Let 𝑓 : 𝑇 → (−∞, +∞] be a l.s.c.

function on a compact Hausdorff topological space 𝑇 . Then 𝑓 attains its infimum over 𝑇 , i.e. there

exists a minimum of 𝑓 in 𝑇 .

Proof. Proof. Let 𝛼0 = inf 𝑓 (𝑇 ). If 𝛼0 = +∞, then 𝑓 is infinite and the assertion trivially holds.

Let 𝛼0 < +∞. Then, for each real 𝛼 > 𝛼0, the set {𝑓 ≤ 𝛼} is closed and nonempty. Any finite

collection of such sets has a nonempty intersection. By compactness, also the set
⋂
𝛼>𝛼0{𝑓 ≤

𝛼} = {𝑓 ≤ 𝛼0} = 𝑓 −1(𝛼0) is nonempty. (In particular, this implies that 𝛼0 is finite.) □

Remark 1. By Prokhorov’s theorem, sinceX andY are compact separable metric spaces, P(X) and

P(Y) are compact in the topology of weak convergence.

A.3.2 Proof of Theorem A.4: Existence

Theorem A.12 and A.13 are intermediate results, and Theorem A.14 shows existence of the solu-

tion.

Lemma A.12. For any 𝜇𝑦 ∈ P(Y), L𝛽 (·, 𝜇𝑦) : P(X) → R is lower semicontinuous, and it achieves

a unique minimum in P(X). Moreover, the minimum𝑚𝑥 (𝜇𝑦) is absolutely continuous with respect

to the Borel measure, it has full support and its density takes the form

𝑑𝑚𝑥 (𝜇𝑦)
𝑑𝑥

(𝑥) = 1
𝑍𝜇𝑦

𝑒−𝛽
∫
𝐿(𝑥,𝑦)𝑑𝜇𝑦 , (A.6)

where 𝑍𝜇𝑦 is a normalization constant.
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Analogously, for any 𝜇𝑥 ∈ P(X), −L𝛽 (𝜇𝑥 , ·) : P(Y) → R is lower semicontinuous, and it achieves

a unique minimum in P(Y). The minimum 𝑚𝑦 (𝜇𝑥 ) is absolutely continuous with respect to the

Borel measure, it has full support and its density takes the form

𝑑𝑚𝑦 (𝜇𝑥 )
𝑑𝑦

(𝑦) = 1
𝑍𝜇𝑥

𝑒𝛽
∫
𝐿(𝑥,𝑦)𝑑𝜇𝑥 ,

where 𝑍𝜇𝑥 is a normalization constant.

Proof. We will prove the result for L𝛽 (·, 𝜇𝑦), as the other one is analogous. Let 𝑑𝑥 denote the

canonical Borel measure onX, and let 𝑝 be the probability measure proportional to the canonical

Borel measure, i.e. 𝑑𝑝

𝑑𝑥
= 1

vol(X) . Notice that vol(X) is by definition the value of the canonical

Borel measure on the whole X. We rewrite

L𝛽 (𝜇𝑥 , 𝜇𝑦) =
∬

ℓ (𝑥,𝑦)𝑑𝜇𝑦𝑑𝜇𝑥 + 𝛽−1
∫

log
(
𝑑𝜇𝑥

𝑑𝑥

)
𝑑𝜇𝑥 + 𝛽−1𝐻 (𝜇𝑦)

=

∬
ℓ (𝑥,𝑦)𝑑𝜇𝑦𝑑𝜇𝑥 + 𝛽−1

∫
log

(
𝑑𝜇𝑥

𝑑𝑝

𝑑𝑝

𝑑𝑥

)
𝑑𝜇𝑥 + 𝛽−1𝐻 (𝜇𝑦)

=

∬ (
ℓ (𝑥,𝑦) − 𝛽−1 log (vol(X))

)
𝑑𝜇𝑦𝑑𝜇𝑥 + 𝛽−1

∫
log

(
𝑑𝜇𝑥

𝑑𝑝

)
𝑑𝜇𝑥 + 𝛽−1𝐻 (𝜇𝑦)

Notice that the first term in the right hand side is a lower semi-continuous (in weak convergence

topology) functional in 𝜇𝑥 when 𝜇𝑦 is fixed. That is because it is a linear functional in 𝜇𝑥 with a

continuous integrand, which implies that it is continuous in the weak convergence topology. The

second to last term can be seen as the relative entropy (or Kullback-Leibler divergence) between

𝜇𝑥 and 𝑝:

𝐻𝑝 (𝜇𝑥 ) :=
∫

log
(
𝑑𝜇𝑥

𝑑𝑝

)
𝑑𝜇𝑥

The relative entropy 𝐻𝑝 (𝜇𝑥 ) is a lower semi-continuous functional with respect to 𝜇𝑥 (see Theo-

rem 1 of Posner [1975], which proves a stronger statement: joint semi-continuity with respect to
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both measures).

Therefore, we conclude that L𝛽 (·, 𝜇𝑦) (with 𝜇𝑦 ∈ P(Y) fixed) is a l.s.c. functional on P(X). By

Theorem A.11 and using the compactness of P(X), there exists a minimum of L𝛽 (·, 𝜇𝑦) in P(X).

Denote a minimum of L𝛽 (·, 𝜇𝑦) by 𝜇𝑥 . 𝜇𝑥 must be absolutely continuous, because otherwise

−𝛽−1𝐻 (𝜇𝑥 ) would take an infinite value. By the Euler-Lagrange equations for functionals on

probability measures, a necessary condition for 𝜇𝑥 to be a minimum of L𝛽 (·, 𝜇𝑦) is that the first

variation 𝛿L𝛽 (·,𝜇𝑦)
𝛿𝜇𝑥

(𝜇𝑥 ) (𝑥) must take a constant value for all 𝑥 ∈ supp(𝜇𝑥 ) and values larger or

equal outside of supp(𝜇𝑥 ). The intuition behind this is that otherwise a zero-mean signedmeasure

with positive mass on the minimizers of 𝛿L𝛽 (·,𝜇𝑦)
𝛿𝜇𝑥

(𝜇𝑥 ) and negative mass on the maximizers would

provide a direction of decrease of the functional. We compute the first variation at 𝜇𝑥 :

𝛿L𝛽 (·, 𝜇𝑦)
𝛿𝜇𝑥

(𝜇𝑥 ) (𝑥) =
𝛿

𝛿𝜇𝑥

(∫
𝐿(𝑥,𝑦)𝑑𝜇𝑦𝑑𝜇𝑥 − 𝛽−1𝐻 (𝜇𝑥 ) + 𝛽−1𝐻 (𝜇𝑦)

)
=

∫
𝐿(𝑥,𝑦)𝑑𝜇𝑦 + 𝛽−1 log

(
𝑑𝜇𝑥

𝑑𝑥
(𝑥)

)
,

We equate
∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦 + 𝛽−1 log(𝑑𝜇𝑥

𝑑𝑥
(𝑥)) = 𝐾, ∀𝑥 ∈ supp(𝜇𝑥 ), where 𝐾 is a constant. The first

variationmust take values larger or equal than𝐾 outside of supp(𝜇𝑥 ), but since log(𝑑𝜇𝑥
𝑑𝑥
(𝑥)) = −∞

outside of supp(𝜇𝑥 ), we obtain that supp(𝜇𝑥 ) = X. Then, for all 𝑥 ∈ X,

𝑑𝜇𝑥

𝑑𝑥
(𝑥) = 𝑒−𝛽

∫
𝐿(𝑥,𝑦)𝑑𝜇𝑦+𝛽𝐾 =

1
𝑍𝜇𝑦

𝑒−𝛽
∫
𝐿(𝑥,𝑦)𝑑𝜇𝑦

where 𝑍𝜇𝑦 is a normalization constant obtained from imposing
∫

𝑑𝜇𝑥
𝑑𝑥
(𝑥) 𝑑𝑥 =

∫
1 𝑑𝜇𝑥 = 1. Since

the necessary condition for optimality specifies a unique measure and the minimum exists, we

obtain that𝑚𝑥 (𝜇𝑦) = 𝜇𝑥 is the unique minimum. An analogous argument holds for𝑚𝑦 (𝜇𝑥 ) □

Lemma A.13. Suppose that the measures (𝜇𝑦,𝑛)𝑛∈N and 𝜇𝑦 are in P(Y). Recall the definition of

𝑚𝑥 : P(Y) → P(X) in equation (A.6). If (𝜇𝑦,𝑛)𝑛∈N converges weakly to 𝜇𝑦 , then (𝑚𝑥 (𝜇𝑦,𝑛))𝑛∈N
converges weakly to𝑚𝑥 (𝜇𝑦), i.e.𝑚𝑥 is a continuous mapping when we endow P(Y) and P(X) with
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their weak convergence topologies.

The same thing holds for𝑚𝑦 and measures (𝜇𝑥,𝑛)𝑛∈N and 𝜇𝑥 on X.

Proof. Given 𝑥 ∈ X, we have
∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦,𝑛 →

∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦 , because ℓ (𝑥, ·) is a continuous

bounded function on Y. By continuity of the exponential function, we have that for all 𝑥 ∈ X,

𝑒−𝛽
∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦,𝑛 → 𝑒−𝛽

∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦 . Using the dominated convergence theorem,

∫
X
𝑒−𝛽

∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦,𝑛𝑑𝑥 →

∫
X
𝑒−𝛽

∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦𝑑𝑥

We need to find a dominating function. It is easy, because ∀𝑛 ∈ N, ∀𝑥 ∈ X, 𝑒−𝛽
∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦,𝑛 ≤

𝑒−𝛽 min(𝑥,𝑦) ∈X×Y ℓ (𝑥,𝑦) . And
∫
X 𝑒
−𝛽 min(𝑥,𝑦) ∈X×Y ℓ (𝑥,𝑦)𝑑𝑥 = 𝑒−𝛽 min(𝑥,𝑦) ∈X×Y ℓ (𝑥,𝑦)vol(X) < ∞. By the

Portmanteau theorem, we just need to prove that for all continuity sets 𝐵 of 𝑚𝑥 (𝜇𝑦), we have

𝑚𝑥 (𝜇𝑦,𝑛) (𝐵) →𝑚𝑥 (𝜇𝑦) (𝐵). This translates to∫
𝐵
𝑒−𝛽

∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦,𝑛𝑑𝑥∫

X 𝑒
−𝛽

∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦,𝑛𝑑𝑥

→
∫
𝐵
𝑒−𝛽

∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦𝑑𝑥∫

X 𝑒
−𝛽

∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦𝑑𝑥

We have proved that the denominators converge appropriately, and the numerator converges as

well using the same reasoning with dominated convergence. And both the numerators and the

denominators are positive and the numerator is always smaller denominator, the quotient must

converge. □

Lemma A.14. There exists a solution of (2.9), which is the Nash equilibrium of the game given by

L𝛽 .

Proof. We use Theorem A.9 on the set P(X) × P(Y), with the map 𝑚 : P(X) × P(Y) →

P(X) × P(Y) given by 𝑚(𝜇𝑥 , 𝜇𝑦) = (𝑚𝑥 (𝜇𝑦),𝑚𝑦 (𝜇𝑥 )). The only condition to check is upper

hemicontinuity of𝑚. By Theorem A.13 we know that𝑚𝑥 ,𝑚𝑦 are continuous, and since contin-

uous functions are upper hemicontinuous as set valued functions, this concludes the argument.
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Indeed, we could have used Tychonoff’s theorem, which is similar to Theorem A.9 but for single-

valued functions. □

A.3.3 Proof of Theorem A.4: Uniqeness

Lemma A.15. The solution of (2.9) is unique.

Proof. The argument is analogous to the proof of Theorem 2 of Rosen [1965]. Suppose (𝜇𝑥,1, 𝜇𝑦,1)

and (𝜇𝑥,2, 𝜇𝑦,2) are two different solutions of (2.9). We use the notation 𝐹1(𝜇𝑥 , 𝜇𝑦) = L𝛽 (𝜇𝑥 , 𝜇𝑦),

𝐹2(𝜇𝑥 , 𝜇𝑦) = −L𝛽 (𝜇𝑥 , 𝜇𝑦). Hence, there exist constants 𝐾𝑥,1, 𝐾𝑦,1, 𝐾𝑥,2, 𝐾𝑦,2 such that

𝛿𝐹1

𝛿𝜇𝑥
(𝜇𝑥,1, 𝜇𝑦,1) (𝑥) + 𝐾𝑥,1 = 0,

𝛿𝐹2

𝛿𝜇𝑦
(𝜇𝑥,1, 𝜇𝑦,1) (𝑦) + 𝐾𝑦,1 = 0,

𝛿𝐹1

𝛿𝜇𝑥
(𝜇𝑥,2, 𝜇𝑦,2) (𝑥) + 𝐾𝑥,2 = 0,

𝛿𝐹2

𝛿𝜇𝑦
(𝜇𝑥,2, 𝜇𝑦,2) (𝑦) + 𝐾𝑦,2 = 0

On the one hand, we know that

∫
𝛿𝐹1

𝛿𝜇𝑥
(𝜇𝑥,1, 𝜇𝑦,1) (𝑥) 𝑑 (𝜇𝑥,2 − 𝜇𝑥,1) +

∫
𝛿𝐹2

𝛿𝜇𝑦
(𝜇𝑥,1, 𝜇𝑦,1) (𝑦) 𝑑 (𝜇𝑦,2 − 𝜇𝑦,1)

+
∫

𝛿𝐹1

𝛿𝜇𝑥
(𝜇𝑥,2, 𝜇𝑦,2) (𝑥) 𝑑 (𝜇𝑥,1 − 𝜇𝑥,2) +

∫
𝛿𝐹2

𝛿𝜇𝑦
(𝜇𝑥,2, 𝜇𝑦,2) (𝑦) 𝑑 (𝜇𝑦,1 − 𝜇𝑦,2)

= −
∫

𝐾𝑥,1 𝑑 (𝜇𝑥,2 − 𝜇𝑥,1) −
∫

𝐾𝑦,1 𝑑 (𝜇𝑦,2 − 𝜇𝑦,1)

−
∫

𝐾𝑥,2 𝑑 (𝜇𝑥,1 − 𝜇𝑥,2) −
∫

𝐾𝑦,2 𝑑 (𝜇𝑦,1 − 𝜇𝑦,2) = 0 (A.7)

We will now prove that the left hand side of (A.7) must be strictly larger than 0, reaching a
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contradiction. We can write

𝛿𝐹1

𝛿𝜇𝑥
(𝜇𝑥,2, 𝜇𝑦,2) (𝑥) −

𝛿𝐹1

𝛿𝜇𝑥
(𝜇𝑥,1, 𝜇𝑦,1) (𝑥) =

∫
𝐿(𝑥,𝑦) 𝑑 (𝜇𝑦,2 − 𝜇𝑦,1)

+ 𝛽−1(log(𝜇𝑥,2(𝑥)) − log(𝜇𝑥,1(𝑥))),
𝛿𝐹2

𝛿𝜇𝑦
(𝜇𝑥,2, 𝜇𝑦,2) (𝑥) −

𝛿𝐹2

𝛿𝜇𝑦
(𝜇𝑥,1, 𝜇𝑦,1) (𝑥) = −

∫
𝐿(𝑥,𝑦) 𝑑 (𝜇𝑥,2 − 𝜇𝑥,1)

+ 𝛽−1(log(𝜇𝑦,2(𝑥)) − log(𝜇𝑦,1(𝑥)))

Hence, we rewrite the left hand side of (A.7) as

∬
𝐿(𝑥,𝑦) 𝑑 (𝜇𝑦,2 − 𝜇𝑦,1)𝑑 (𝜇𝑥,2 − 𝜇𝑥,1) + 𝛽−1

∫
(log(𝜇𝑥,2(𝑥)) − log(𝜇𝑥,1(𝑥))) 𝑑 (𝜇𝑥,2 − 𝜇𝑥,1)

−
∬

𝐿(𝑥,𝑦) 𝑑 (𝜇𝑥,2 − 𝜇𝑥,1)𝑑 (𝜇𝑦,2 − 𝜇𝑦,1) + 𝛽−1
∫
(log(𝜇𝑦,2(𝑥)) − log(𝜇𝑦,1(𝑥))) 𝑑 (𝜇𝑦,2 − 𝜇𝑦,1)

= 𝛽−1(𝐻𝜇𝑥,1 (𝜇𝑥,2) + 𝐻𝜇𝑥,2 (𝜇𝑥,1) + 𝐻𝜇𝑦,1 (𝜇𝑦,2) + 𝐻𝜇𝑦,1 (𝜇𝑦,2)) .

Since the relative entropy is always non-negative and zero only if the two measures are equal,

we have reached the desired contradiction. □

A.3.4 Proof of Theorem A.5

Wewill use the shorthand𝑉𝑥 (𝑥) = 𝑉𝑥 (𝜇𝑦) (𝑥) =
∫
L(𝑥,𝑦)𝑑𝜇𝑦 ,𝑉𝑦 (𝑦) = 𝑉𝑦 (𝜇𝑥 ) (𝑦) =

∫
L(𝑥,𝑦)𝑑𝜇𝑥 .

Since ℓ : X ×Y → R is a continuous function on a compact metric space, it is uniformly contin-

uous. Hence,

∀𝜖 > 0, ∃𝛿 > 0 st.
√︁
𝑑 (𝑥, 𝑥′)2 + 𝑑 (𝑦,𝑦′)2 < 𝛿 =⇒ |ℓ (𝑥,𝑦) − ℓ (𝑥′, 𝑦′) | < 𝜖
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Which means that

𝑑 (𝑥, 𝑥′) < 𝛿 =⇒ |𝑉𝑥 (𝑥) −𝑉𝑥 (𝑥′) | =
���� ∫ (ℓ (𝑥,𝑦) − ℓ (𝑥′, 𝑦))𝑑𝑦���� < 𝜖

This proves that 𝑉𝑥 is uniformly continuous on X (and 𝑉𝑦 is uniformly continuous on Y using

the same argument).

We can write the Nikaido-Isoda function of the game with loss L (equation (2.2)) evaluated at

(𝜇𝑥 , 𝜇𝑦) as

NI(𝜇𝑥 , 𝜇𝑦) := L(𝜇𝑥 , 𝜇𝑦) −min
𝜇′𝑥
{L(𝜇′𝑥 , 𝜇𝑦)} + (−L(𝜇𝑥 , 𝜇𝑦) +max

𝜇′𝑦
{L(𝜇𝑥 , 𝜇′𝑦)})

=

∫
𝑉𝑥 (𝑥)𝑒−𝛽𝑉𝑥 (𝑥)𝑑𝑥∫
𝑒−𝛽𝑉𝑥 (𝑥)𝑑𝑥

−min
𝑥∈C1

𝑉𝑥 (𝑥) +
−

∫
𝑉𝑦 (𝑦)𝑒𝛽𝑉𝑦 (𝑦)𝑑𝑦∫
𝑒𝛽𝑉𝑦 (𝑦)𝑑𝑦

+max
𝑦∈C2

𝑉𝑦 (𝑦) (A.8)

The second equality follows from the definitions of L,𝑉𝑥 ,𝑉𝑦 . We observe that in the right-most

expression the first two terms and the last two terms are analogous. Let us show the first two

terms can be made smaller than an arbitrary 𝜖 > 0 by taking 𝛽 large enough; the last two will be

dealt with in an analogous manner. Let us define 𝑉̃𝑥 (𝑥) = 𝑉𝑥 (𝑥) −min𝑥 ′∈C1 𝑉𝑥 (𝑥′).∫
𝑉𝑥 (𝑥)𝑒−𝛽𝑉𝑥 (𝑥)𝑑𝑥∫
𝑒−𝛽𝑉𝑥 (𝑥)𝑑𝑥

−min
𝑥∈C1

𝑉𝑥 (𝑥) =
∫
(𝑉𝑥 (𝑥) −min𝑥 ′∈C1 𝑉𝑥 (𝑥′))𝑒−𝛽𝑉𝑥 (𝑥)𝑑𝑥∫

𝑒−𝛽𝑉𝑥 (𝑥)𝑑𝑥

=

∫
𝑉̃𝑥 (𝑥)𝑒−𝛽𝑉𝑥 (𝑥)

(
1{𝑉̃𝑥 (𝑥)≤𝜖/2} + 1{𝜖/2<𝑉̃𝑥 (𝑥)≤𝜖} + 1{𝜖<𝑉̃𝑥 (𝑥)}

)
𝑑𝑥∫

𝑒−𝛽𝑉𝑥 (𝑥)1{𝑉̃𝑥 (𝑥)≤𝜖/2}𝑑𝑥 +
∫
𝑒−𝛽𝑉𝑥 (𝑥)1{𝜖/2<𝑉̃𝑥 (𝑥)≤𝜖}𝑑𝑥 +

∫
𝑒−𝛽𝑉𝑥 (𝑥)1{𝜖<𝑉̃𝑥 (𝑥)}𝑑𝑥

(A.9)

Let us define

𝑞{𝑉̃𝑥 (𝑥)≤𝜖/2} =

∫
𝑒−𝛽𝑉𝑥 (𝑥)1{𝑉̃𝑥 (𝑥)≤𝜖/2}𝑑𝑥,

and 𝑞{𝜖/2<𝑉̃𝑥 (𝑥)≤𝜖} and 𝑞{𝜖<𝑉̃𝑥 (𝑥)} analogously.
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Similarly, let

𝑟{𝑉̃𝑥 (𝑥)≤𝜖/2} =

∫
𝑉̃𝑥 (𝑥)𝑒−𝛽𝑉𝑥 (𝑥)1{𝑉̃𝑥 (𝑥)≤𝜖/2}𝑑𝑥,

and 𝑟{𝜖/2<𝑉̃𝑥 (𝑥)≤𝜖} and 𝑟{𝜖<𝑉̃𝑥 (𝑥)} analogously.

Let

𝑝 =
𝑞{𝜖/2<𝑉̃𝑥 (𝑥)≤𝜖}

𝑞{𝑉̃𝑥 (𝑥)≤𝜖/2} + 𝑞{𝜖/2<𝑉̃𝑥 (𝑥)≤𝜖} + 𝑞{𝜖<𝑉̃𝑥 (𝑥)}

Then, we can rewrite the right-most expression of (A.9) as

𝑟{𝑉̃𝑥 (𝑥)≤𝜖/2} + 𝑟{𝜖/2<𝑉̃𝑥 (𝑥)≤𝜖} + 𝑟{𝜖<𝑉̃𝑥 (𝑥)}
𝑞{𝑉̃𝑥 (𝑥)≤𝜖/2} + 𝑞{𝜖/2<𝑉̃𝑥 (𝑥)≤𝜖} + 𝑞{𝜖<𝑉̃𝑥 (𝑥)}

= 𝑝
𝑟{𝜖/2<𝑉̃𝑥 (𝑥)≤𝜖}
𝑞{𝜖/2<𝑉̃𝑥 (𝑥)≤𝜖}

+ (1 − 𝑝)
𝑟{𝑉̃𝑥 (𝑥)≤𝜖/2} + 𝑟{𝜖<𝑉̃𝑥 (𝑥)}
𝑞{𝑉̃𝑥 (𝑥)≤𝜖/2} + 𝑞{𝜖<𝑉̃𝑥 (𝑥)}

(A.10)

Since 𝑉̃ (𝑥) ≤ 𝜖 in the set {𝑥 |𝜖/2 < 𝑉̃𝑥 (𝑥) ≤ 𝜖}, 𝑟{𝜖/2<𝑉̃𝑥 (𝑥)≤𝜖}/𝑞{𝜖/2<𝑉̃𝑥 (𝑥)≤𝜖} ≤ 𝜖 .

Let 𝑥min be such that𝑉 (𝑥min) = min𝑥∈𝐶1 𝑉 (𝑥) (possibly not unique). By uniform continuity of𝑉𝑥 ,

we know there exists 𝛿 > 0 (dependent only on 𝜖) such that 𝐵(𝑥min, 𝛿) ⊆ {𝑥 |𝑉̃𝑥 (𝑥) ≤ 𝜖/2}. The

following inequalities hold:

𝑟{𝑉̃𝑥 (𝑥)≤𝜖/2} ≤
𝜖

2
𝑞{𝑉̃𝑥 (𝑥)≤𝜖/2},

𝑟{𝜖<𝑉̃𝑥 (𝑥)} ≤ (max
𝑥∈C1

𝑉𝑥 (𝑥) −min
𝑥∈C1

𝑉𝑥 (𝑥))𝑞{𝜖<𝑉̃𝑥 (𝑥)} ≤ (max
𝑥,𝑦

𝐿(𝑥,𝑦) −min
𝑥,𝑦

𝐿(𝑥,𝑦))𝑞{𝜖<𝑉̃𝑥 (𝑥)}

= 𝐾𝐿𝑞{𝜖<𝑉̃𝑥 (𝑥)} . (A.11)

where we define 𝐾ℓ = max𝑥,𝑦 ℓ (𝑥,𝑦) −min𝑥,𝑦 ℓ (𝑥,𝑦). Using (A.11), we obtain

𝑟{𝑉̃𝑥 (𝑥)≤𝜖/2} + 𝑟{𝜖<𝑉̃𝑥 (𝑥)}
𝑞{𝑉̃𝑥 (𝑥)≤𝜖/2} + 𝑞{𝜖<𝑉̃𝑥 (𝑥)}

≤
𝜖
2𝑞{𝑉̃𝑥 (𝑥)≤𝜖/2} + 𝐾𝐿𝑞{𝜖<𝑉̃𝑥 (𝑥)}
𝑞{𝑉̃𝑥 (𝑥)≤𝜖/2} + 𝑞{𝜖<𝑉̃𝑥 (𝑥)}

.
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If the right-hand side is smaller or equal than 𝜖 , then equation (A.10) would be smaller than 𝜖 and

the proof would be concluded. For that to happen, we need (𝐾ℓ − 𝜖)𝑞{𝜖<𝑉̃𝑥 (𝑥)} ≤
𝜖
2𝑞{𝑉̃𝑥 (𝑥)≤𝜖/2} ⇔

𝑞{𝑉̃𝑥 (𝑥)≤𝜖/2}/𝑞{𝜖<𝑉̃𝑥 (𝑥)} ≥ 2(𝐾ℓ/𝜖 − 1). The following bounds hold:

𝑞{𝑉̃𝑥 (𝑥)≤𝜖/2} ≥ Vol(𝐵(𝑥min, 𝛿))𝑒−𝛽 (min𝑥∈C1 𝑉𝑥 (𝑥)+𝜖/2),

𝑞{𝜖<𝑉̃𝑥 (𝑥)} ≤ (1 − Vol(𝐵(𝑥min, 𝛿)))𝑒−𝛽 (min𝑥∈C1 𝑉𝑥 (𝑥)+𝜖) .

Thus, the following condition is sufficient:

Vol(𝐵(𝑥min, 𝛿))
1 − Vol(𝐵(𝑥min, 𝛿))

𝑒𝛽𝜖/2 ≥ 2(𝐾𝐿/𝜖 − 1).

Hence, if we take

𝛽 ≥ 2
𝜖

log
(
2

1 − Vol(𝐵(𝑥min, 𝛿))
Vol(𝐵(𝑥min, 𝛿))

(𝐾𝐿/𝜖 − 1)
)

(A.12)

then (𝜇𝑥 , 𝜇𝑦) is an 𝜖-Nash equilibrium. Since we have only bound the first two terms in the

right hand side of (A.8) and the other two are bounded in the same manner, the statement of the

theorem results from setting 𝜖 = 𝜖/2 in (A.12).

A.3.5 Proof of Theorem A.6

First, we show that any pair 𝜇𝑥 , 𝜇𝑦 such that

𝑑𝜇𝑥

𝑑𝑥
(𝑥) = 1

𝑍𝑥
𝑒−𝛽

∫
ℓ (𝑥,𝑦) 𝑑𝜇𝑦 (𝑦),

𝑑𝜇𝑦

𝑑𝑦
(𝑦) = 1

𝑍𝑦
𝑒𝛽

∫
ℓ (𝑥,𝑦) 𝑑𝜇𝑥 (𝑥)
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is a stationary solution of (2.7). Denoting the Radon-Nikodym derivatives 𝑑𝜇𝑥
𝑑𝑥
,
𝑑𝜇𝑦

𝑑𝑦
by 𝜌𝑥 , 𝜌𝑦 , it is

sufficient to see that


0 = ∇𝑥 · (𝜌𝑥∇𝑥𝑉𝑥 (𝜇𝑦, 𝑥)) + 𝛽−1Δ𝑥𝜌𝑥

0 = −∇𝑦 · (𝜌𝑦∇𝑦𝑉𝑦 (𝜇𝑥 , 𝑦)) + 𝛽−1Δ𝑦𝜌𝑦

(A.13)

holds weakly. And

∇𝑥𝜌𝑥 =
1
𝑍𝑥
𝑒−𝛽

∫
ℓ (𝑥,𝑦) 𝑑𝜇𝑦 (𝑦)

(
−𝛽∇𝑥

∫
ℓ (𝑥,𝑦) 𝑑𝜇𝑦 (𝑦)

)
= −𝜌𝑥∇𝑥𝑉𝑥 (𝜇𝑦, 𝑥),

∇𝑦𝜌𝑦 =
1
𝑍𝑦
𝑒𝛽

∫
ℓ (𝑥,𝑦) 𝑑𝜇𝑥 (𝑥)

(
𝛽∇𝑦

∫
ℓ (𝑥,𝑦) 𝑑𝜇𝑥 (𝑥)

)
= 𝜌𝑦∇𝑦𝑉𝑦 (𝜇𝑥 , 𝑦),

implies that (A.13) holds.

Now we will prove the converse. Suppose that 𝜇𝑥 , 𝜇𝑦 are (weak) stationary solutions of (2.7).

That is, if 𝜓𝑥 ∈ 𝐶2(X),𝜓𝑦 ∈ 𝐶2(Y) are arbitrary twice continuously differentiable functions, the

following holds

0 =

∫
X

(
−

∫
Y
∇𝑥𝜓𝑥 (𝑥) · ∇𝑥 ℓ (𝑥,𝑦) 𝑑𝜇𝑦 + 𝛽−1Δ𝑥𝜓𝑥 (𝑥)

)
𝑑𝜇𝑥

0 =

∫
Y

(∫
X
−∇𝑦𝜓𝑦 (𝑦) · ∇𝑦ℓ (𝑥,𝑦) 𝑑𝜇𝑥 − 𝛽−1Δ𝑦𝜓𝑦 (𝑥,𝑦)

)
𝑑𝜇𝑦 (A.14)

(A.14) can be seen as two measure-valued stationary Fokker-Planck equations. We want to

see that they have densities and that the densities satisfy the corresponding classical station-

ary Fokker-Planck equations (A.13). Works in the theory of PDEs have studied sufficient condi-

tions for measure-valued stationary Fokker-Planck equations to correspond to weak stationary

Fokker-Planck equations, and further to classical stationary Fokker-Planck equations. See page

3 of Huang et al. [2015] for a more detailed explanation on the two steps. That measure-valued
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stationary correspond to weak stationary solutions is shown in Theorem 2.2 of [Bogachev et al.

2001]. That weak stationary solutions are classical stationary solutions requires that the drift

term is in 𝐶1,𝛼
loc (locally 𝛼-Hölder continuous with exponent 1), meaning that it is in 𝐶1 and that

its derivatives are 𝛼-Hölder in compact sets. The result follows from the theory of Schauder esti-

mates. Differentiating under the integral sign, the drift terms −
∫
Y ∇𝑥 ℓ (𝑥,𝑦) 𝑑𝜇𝑦,

∫
X ∇𝑦ℓ (𝑥,𝑦) 𝑑𝜇𝑥

fulfill the condition if ℓ ∈ 𝐶2,𝛼 .

A.4 Proof of Theorem 2.3

Recall the expression of an Interacting Wasserstein-Fisher-Rao Gradient Flow (IWFRGF) in (2.8):



𝜕𝑡𝜇𝑥 = 𝛾∇ · (𝜇𝑥∇𝑥𝑉𝑥 (𝜇𝑦, 𝑥))

−𝛼𝜇𝑥 (𝑉𝑥 (𝜇𝑦, 𝑥) − L(𝜇𝑥 , 𝜇𝑦)), 𝜇𝑥 (0) = 𝜇𝑥,0

𝜕𝑡𝜇𝑦 = −𝛾∇ · (𝜇𝑦∇𝑦𝑉𝑦 (𝜇𝑥 , 𝑦))

+𝛼𝜇𝑦 (𝑉𝑦 (𝜇𝑥 , 𝑦) − L(𝜇𝑥 , 𝜇𝑦)), 𝜇𝑦 (0) = 𝜇𝑦,0

The aim is to obtain a global convergence result like the one in Theorem 3.8 of Chizat [2019].

First, we will rewrite Lemma 3.10 of Chizat [2019] in our case.

Lemma A.16. Let 𝜇𝑥 , 𝜇𝑦 be the solution of the IWFRGF in (2.8). Let 𝜇★𝑥 , 𝜇★𝑦 be arbitrary measures

on X,Y. Let 𝜇𝑥 (𝑡) = 1
𝑡

∫ 𝑡

0 𝜇𝑥 (𝑠) 𝑑𝑠 and 𝜇𝑦 (𝑡) =
1
𝑡

∫ 𝑡

0 𝜇𝑦 (𝑠) 𝑑𝑠 . Let ∥ · ∥BL be the bounded Lipschitz

norm, i.e. ∥ 𝑓 ∥BL = ∥ 𝑓 ∥∞ + Lip(𝑓 ). Let

Q𝜇★,𝜇0 (𝜏) = inf
𝜇∈P(Θ)

∥𝜇★ − 𝜇∥∗BL +
1
𝜏
H(𝜇, 𝜇0) (A.15)
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with Θ = X or Y. Let

𝐵 =
1
2

(
max

𝑥∈X,𝑦∈Y
ℓ (𝑥,𝑦) − min

𝑥∈X,𝑦∈Y
ℓ (𝑥,𝑦)

)
+ Lip(ℓ) (A.16)

Then,

L(𝜇𝑥 (𝑡), 𝜇★𝑦 ) − L(𝜇★𝑥 , 𝜇𝑦 (𝑡)) ≤ 𝐵Q𝜇★𝑥 ,𝜇𝑥,0 (𝛼𝐵𝑡) + 𝐵Q𝜇★𝑦 ,𝜇𝑦,0 (𝛼𝐵𝑡) + 𝛾𝐵
2𝑡 (A.17)

Proof. The proof is as in Lemma 3.10 of Chizat [2019], but in this case we have to do everything

twice. Namely, we define the dynamics

𝑑𝜇𝜖𝑥

𝑑𝑡
= 𝛾∇ · (𝜇𝜖𝑥∇𝑉𝑥 (𝜇𝑦, 𝑥))

𝑑𝜇𝜖𝑦

𝑑𝑡
= −𝛾∇ · (𝜇𝜖𝑦∇𝑉𝑦 (𝜇𝑥 , 𝑦))

initialized at 𝜇𝜖𝑥 (0) = 𝜇𝜖𝑥,0, 𝜇𝜖𝑦 (0) = 𝜇𝜖𝑦,0 arbitrary such that 𝜇𝜖𝑥,0 and 𝜇
𝜖
𝑦,0 are absolutely continuous

with respect to 𝜇𝑥,0 and 𝜇𝑦,0 respectively.

Let us show that

1
𝛼

𝑑

𝑑𝑡
H(𝜇𝜖𝑥 , 𝜇𝑥 ) =

∫
𝛿L
𝛿𝜇𝑥
(𝜇𝑥 , 𝜇𝑦) (𝑥) 𝑑 (𝜇𝜖𝑥 − 𝜇𝑥 ) (A.18)

whereH(𝜇𝜖𝑥 , 𝜇𝑥 ) is the relative entropy, i.e.

𝑑

𝑑𝑡
H(𝜇𝜖𝑥 , 𝜇𝑥 ) =

𝑑

𝑑𝑡

∫
log

(
𝜌𝜖𝑥

)
𝑑𝜇𝜖𝑥 ,

𝜌𝜖𝑥 being the Radon-Nikodym derivative 𝑑𝜇𝜖𝑥/𝑑𝜇𝑥 .

Assume to begin with that 𝜇𝜖𝑥 remains absolutely continuous with respect to 𝜇𝑥 through time. We
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can write

𝑑

𝑑𝑡

∫
𝜓𝑥 (𝑥)𝜌𝜖𝑥 (𝑥)𝑑𝜇𝑥 (𝑥) =

𝑑

𝑑𝑡

∫
𝜓 (𝑥)𝑑𝜇𝜖𝑥 (𝑥)

We can develop the left hand side into

𝑑

𝑑𝑡

∫
𝜓𝑥 (𝑥)𝜌𝜖𝑥 (𝑥)𝑑𝜇𝑥 (𝑥) =

∫
−𝛾∇(𝜓𝑥 (𝑥)𝜌𝜖𝑥 (𝑥)) · ∇𝑉𝑥 (𝜇𝑦, 𝑥)𝑑𝜇𝑥 (𝑥)

+
∫
−𝛼𝜓𝑥 (𝑥)𝜌𝜖𝑥 (𝑥) (𝑉𝑥 (𝜇𝑦, 𝑥) − L(𝜇𝑥 , 𝜇𝑦))𝑑𝜇𝑥 (𝑥)

+
∫
𝜓𝑥 (𝑥)

𝜕𝜌𝜖𝑥

𝜕𝑡
(𝑥)𝑑𝜇𝑥 (𝑥)

=

∫
−𝛾 (∇𝜓𝑥 (𝑥)𝜌𝜖𝑥 (𝑥) +𝜓𝑥 (𝑥)∇𝜌𝜖𝑥 (𝑥)) · ∇𝑉𝑥 (𝜇𝑦, 𝑥) 𝑑𝜇𝑥 (𝑥)

+
∫
−𝛼𝜓𝑥 (𝑥)𝜌𝜖𝑥 (𝑥) (𝑉𝑥 (𝜇𝑦, 𝑥) − L(𝜇𝑥 , 𝜇𝑦))𝑑𝜇𝑥 (𝑥)

+
∫
𝜓𝑥 (𝑥)

𝜕𝜌𝜖𝑥

𝜕𝑡
(𝑥)𝑑𝜇𝑥 (𝑥)

and the right hand side into

𝑑

𝑑𝑡

∫
𝜓 (𝑥)𝑑𝜇𝜖𝑥 (𝑥) =

∫
−𝛾∇𝜓𝑥 (𝑥) · ∇𝑉𝑥 (𝜇𝑦, 𝑥)𝑑𝜇𝜖𝑥 (𝑥)

Note that comparing terms, we obtain

∫
−𝛾𝜓𝑥 (𝑥)∇𝜌𝜖𝑥 (𝑥) · ∇𝑉𝑥 (𝜇𝑦, 𝑥) 𝑑𝜇𝑥 (𝑥)

=

∫
𝛼𝜓𝑥 (𝑥)𝜌𝜖𝑥 (𝑥) (𝑉𝑥 (𝜇𝑦, 𝑥) − L(𝜇𝑥 , 𝜇𝑦)) −𝜓𝑥 (𝑥)

𝜕𝜌𝜖𝑥

𝜕𝑡
(𝑥) 𝑑𝜇𝑥 (𝑥)
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Since𝜓𝑥 is arbitrary, it must be that

−𝛾∇𝜌𝜖𝑥 (𝑥) · ∇𝑉𝑥 (𝜇𝑦, 𝑥) = 𝛼𝜌𝜖𝑥 (𝑥) (𝑉𝑥 (𝜇𝑦, 𝑥) − L(𝜇𝑥 , 𝜇𝑦)) −
𝜕

𝜕𝑡
𝜌𝜖𝑥 (𝑥) (A.19)

holds 𝜇𝑥 -almost everywhere. Now,

𝑑

𝑑𝑡

∫
log

(
𝜌𝜖𝑥

)
𝑑𝜇𝜖𝑥 = −𝛾

∫
∇

(
log

(
𝜌𝜖𝑥 (𝑥)

) )
· ∇𝑉𝑥 (𝜇𝑦, 𝑥) 𝑑𝜇𝜖𝑥 (𝑥)

= −𝛾
∫

1
𝜌𝜖𝑥 (𝑥)

∇
(
𝜌𝜖𝑥 (𝑥)

)
· ∇𝑉𝑥 (𝜇𝑦, 𝑥) 𝑑𝜇𝜖𝑥 (𝑥)

= 𝛼

∫
(𝑉𝑥 (𝜇𝑦, 𝑥) − L(𝜇𝑥 , 𝜇𝑦)) 𝑑𝜇𝜖𝑥 (𝑥) −

∫
1

𝜌𝜖𝑥 (𝑥)
𝜕

𝜕𝑡
𝜌𝜖𝑥 (𝑥)𝑑𝜇𝜖𝑥 (𝑥)

Here,

∫
1

𝜌𝜖𝑥 (𝑥)
𝜕

𝜕𝑡
𝜌𝜖𝑥 (𝑥)𝑑𝜇𝜖𝑥 (𝑥) =

∫
𝜕

𝜕𝑡
𝜌𝜖𝑥 (𝑥)𝑑𝜇𝑥 (𝑥) = 0

And since

L(𝜇𝑥 , 𝜇𝑦) =
∫

𝛿L
𝛿𝜇𝑥
(𝜇𝑥 , 𝜇𝑦) (𝑥) 𝑑𝜇𝑥 ,

the first term yields (A.18). We assumed that 𝜌𝜖𝑥 existed and was regular enough. To make the

argument precise, we can define the density of 𝜇𝜖𝑥 with respect to 𝜇𝑥 to be a solution 𝜌𝜖𝑥 of (A.19),

and thus specify 𝜇𝜖𝑥 .

Now, recall that 𝜇★𝑥 is an arbitrary measure in P(X). By linearity of L with respect to 𝜇𝑥 ,∫
𝛿L
𝛿𝜇𝑥
(𝜇𝑥 , 𝜇𝑦) (𝑥) 𝑑 (𝜇𝜖𝑥 − 𝜇𝑥 ) =

∫
𝛿L
𝛿𝜇𝑥
(𝜇𝑥 , 𝜇𝑦) (𝑥) 𝑑 (𝜇★𝑥 − 𝜇𝑥 ) +

∫
𝛿L
𝛿𝜇𝑥
(𝜇𝑥 , 𝜇𝑦) (𝑥) 𝑑 (𝜇𝜖𝑥 − 𝜇★𝑥 )

≤ −(L(𝜇𝑥 , 𝜇𝑦) − L(𝜇★𝑥 , 𝜇𝑦)) + ∥
𝛿L
𝛿𝜇𝑥
(𝜇𝑥 , 𝜇𝑦)∥BL∥𝜇𝜖𝑥 − 𝜇★𝑥 ∥∗BL (A.20)

Notice that we can take ∥ 𝛿L
𝛿𝜇𝑥
(𝜇𝑥 , 𝜇𝑦)∥BL to be smaller than 𝐵 (defined in (A.16)). If we integrate
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(A.18) and (A.20) from 0 to 𝑡 and divide by 𝑡 , we obtain

1
𝑡

∫ 𝑡

0
L(𝜇𝑥 (𝑠), 𝜇𝑦 (𝑠)) 𝑑𝑠 −

1
𝑡

∫ 𝑡

0
L(𝜇★𝑥 , 𝜇𝑦 (𝑠)) 𝑑𝑠

≤ 1
𝛼𝑡
(H (𝜇𝜖𝑥,0, 𝜇𝑥,0) − H (𝜇𝜖𝑥 (𝑡), 𝜇𝑥 (𝑡))) +

𝐵

𝑡

∫ 𝑡

0
∥𝜇𝜖𝑥 − 𝜇★𝑥 ∥∗BL 𝑑𝑠 (A.21)

We bound the last term on the RHS:

𝐵

𝑡

∫ 𝑡

0
∥𝜇𝜖𝑥 − 𝜇★𝑥 ∥∗BL 𝑑𝑠 ≤ 𝐵∥𝜇𝜖𝑥,0 − 𝜇★𝑥 ∥∗BL +

𝐵

𝑡

∫ 𝑡

0
∥𝜇𝜖𝑥,0 − 𝜇𝜖𝑥 ∥∗BL 𝑑𝑠 (A.22)

And

∥𝜇𝜖𝑥 (𝑡) − 𝜇𝜖𝑥,0∥∗BL = sup
∥ 𝑓 ∥BL≤1,𝑓 ∈𝐶2 (X)

∫
𝑓 𝑑 (𝜇𝜖𝑥 (𝑡) − 𝜇𝜖𝑥,0) = sup

∥ 𝑓 ∥BL≤1,𝑓 ∈𝐶2 (X)

∫ 𝑡

0

𝑑

𝑑𝑠

∫
𝑓 𝑑𝜇𝜖𝑥 (𝑠) 𝑑𝑠

= sup
∥ 𝑓 ∥BL≤1,𝑓 ∈𝐶2 (X)

−
∫ 𝑡

0

∫
𝛾∇𝑓 (𝑥) · ∇𝛿L

𝛿𝜇𝑥
(𝜇𝜖𝑥 , 𝜇𝑦) (𝑥) 𝑑𝜇𝜖𝑥 (𝑠) 𝑑𝑠

≤
∫ 𝑡

0

∫
𝛾𝐵 𝑑𝜇𝜖𝑥 (𝑠) 𝑑𝑠 = 𝛾𝐵𝑡 (A.23)

Also, by linearity of L with respect to 𝜇𝑦 ,

−1
𝑡

∫ 𝑡

0
L(𝜇★𝑥 , 𝜇𝑦 (𝑠)) 𝑑𝑠 = −L(𝜇★𝑥 , 𝜇𝑦 (𝑡)) (A.24)

If we use (A.22), (A.23) and (A.24) and the non-negativeness of the relative entropy on (A.21), we

obtain:

1
𝑡

∫ 𝑡

0
L(𝜇𝑥 (𝑠), 𝜇𝑦 (𝑠)) 𝑑𝑠 − L(𝜇★𝑥 , 𝜇𝑦 (𝑡)) ≤

H (𝜇𝜖𝑥,0, 𝜇𝑥,0)
4𝛼𝑡

+ 𝐵∥𝜇𝜖𝑥,0 − 𝜇★𝑥 ∥∗BL +
𝐵2𝛾

2
𝑡 (A.25)

−1
𝑡

∫ 𝑡

0
L(𝜇𝑥 (𝑠), 𝜇𝑦 (𝑠)) 𝑑𝑠 + L(𝜇𝑥 (𝑡), 𝜇★𝑦 ) ≤

H (𝜇𝜖𝑦,0, 𝜇𝑦,0)
4𝛼𝑡

+ 𝐵∥𝜇𝜖𝑦,0 − 𝜇★𝑦 ∥∗BL +
𝐵2𝛾

2
𝑡 (A.26)

Equation (A.26) is obtained by performing the same argument switching the roles of 𝑥 and 𝑦, and
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L by −L. By adding equations (A.25) and (A.26) and considering the definition of Q in (A.15),

we obtain the inequality (A.17).

□

Notice that by taking the supremumwrt 𝜇★𝑥 , 𝜇★𝑦 on (A.17) we obtain a bound on the Nikaido-Isoda

error of (𝜇𝑥 (𝑡), 𝜇𝑦 (𝑡)) (see (2.2)).

Next, we will obtain a result like Lemma E.1 from Chizat [2019] in which we bound Q. The proof

is a variation of the argument in Lemma E.1 from Chizat [2019], as in our case no measures are

necessarily sparse.

Lemma A.17. Let Θ be a Riemannian manifold of dimension 𝑑 . Assume that Vol(𝐵𝜃,𝜖) ≥ 𝑒−𝐾𝜖𝑑 for

all 𝜃 ∈ Θ, where the volume is defined of course in terms of the Borel measure1 of Θ. If 𝜌 := 𝑑𝜇0
𝑑𝜃

is the

Radon-Nikodym derivative of 𝜇0 with respect to the Borel measure of Θ, assume that 𝜌 (𝜃 ) ≥ 𝑒−𝐾 ′

for all 𝜃 ∈ Θ. The function Q𝜇★,𝜇0 (𝜏) defined in (A.15) can be bounded by

Q𝜇★,𝜇0 (𝜏) ≤
𝑑

𝜏
(1 − log𝑑 + log𝜏) + 1

𝜏
(𝐾 + 𝐾′)

Proof. We will choose 𝜇𝜖 in order to bound the infimum. For 𝜃 ∈ Θ, 𝜖 > 0, let 𝜉𝜃,𝜖 be a probability

measure on Θwith support on the ball 𝐵𝜃,𝜖 of radius 𝜖 centered at 𝜃 and proportional to the Borel

measure for all subsets of the ball. Let us define the measure

𝜇𝜖 (𝐴) =
∫
Θ
𝜉𝜃,𝜖 (𝐴) 𝑑𝜇★(𝜃 )

for all Borel sets 𝐴 of X. Now, we can bound ∥𝜇𝜖 − 𝜇★∥∗BL ≤ 𝑊1(𝜇𝜖, 𝜇★). Let us consider the

1The metric of the manifold gives a natural choice of a Borel (volume) measure, the one given by integrating the
canonical volume form.
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coupling 𝛾 between 𝜇𝜖 and 𝜇★ defined as:

𝛾 (𝐴 × 𝐵) =
∫
𝐴

𝜉𝜃,𝜖 (𝐵) 𝑑𝜇★(𝜃 )

for 𝐴, 𝐵 arbitrary Borel sets of Θ. Notice that 𝛾 is indeed a coupling between 𝜇𝜖 and 𝜇★, because

𝛾 (𝐴 × Θ) = 𝜇★(𝐴) and 𝛾 (Θ × 𝐵) = 𝜇𝜖 (𝐵). Hence,

𝑊1(𝜇𝜖, 𝜇★) ≤
∫
Θ×Θ

𝑑Θ(𝜃, 𝜃 ′) 𝑑𝛾 (𝜃, 𝜃 ′) =
∫
Θ

1
Vol(𝐵𝜃 ′,𝜖)

∫
𝐵𝜃 ′,𝜖

𝑑Θ(𝜃, 𝜃 ′) 𝑑𝜃 𝑑𝜇★(𝜃 ′) (A.27)

where the inner integral is with respect to the Borel measure on Θ. Since 𝑑Θ(𝜃, 𝜃 ′) ≤ 𝜖 for all

𝜃 ∈ 𝐵𝜃 ′,𝜖 , we conclude from that (A.27) that𝑊1(𝜇𝜖, 𝜇★) ≤ 𝜖 .

Next, let us bound the relative entropy term. Define 𝜌𝜖 as the Radon-Nikodym derivative of 𝜇𝜖

with respect to the Borel measure of Θ, i.e.

𝜌𝜖 (𝜃 ) :=
𝑑𝜇𝜖

𝑑𝜃
(𝜃 ) =

∫
Θ

1
Vol(𝐵𝜃 ′,𝜖)

1𝐵𝜃 ′,𝜖 (𝜃 ) 𝑑𝜇
★(𝜃 ′).

Also, recall that 𝜌 := 𝑑𝜇0
𝑑𝜃

. Then, we write

H(𝜇𝜖, 𝜇0) =
∫
Θ

log
𝜌𝜖

𝜌
𝑑𝜇𝜖 =

∫
Θ

log(𝜌𝜖)𝜌𝜖𝑑𝜃 −
∫
Θ

log(𝜌)𝜌𝜖𝑑𝜃 . (A.28)

On the one hand, we use the convexity of the function 𝑥 → 𝑥 log𝑥 :

𝜌𝜖 (𝜃 ) log 𝜌𝜖 (𝜃 ) =
(∫

Θ

1
Vol(𝐵𝜃 ′,𝜖)

1𝐵𝜃 ′,𝜖 (𝜃 ) 𝑑𝜇
★(𝜃 ′)

)
log

(∫
Θ

1
Vol(𝐵𝜃 ′,𝜖)

1𝐵𝜃 ′,𝜖 (𝜃 ) 𝑑𝜇
★(𝜃 ′)

)
≤

∫
Θ

(
1

Vol(𝐵𝜃 ′,𝜖)
1𝐵𝜃 ′,𝜖 (𝜃 )

)
log

(
1

Vol(𝐵𝜃 ′,𝜖)
1𝐵𝜃 ′,𝜖 (𝜃 )

)
𝑑𝜇★(𝜃 ′).
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We use Fubini’s theorem:

∫
Θ
𝜌𝜖 (𝜃 ) log 𝜌𝜖 (𝜃 ) 𝑑𝜃 ≤

∫
Θ

∫
Θ

(
1

Vol(𝐵𝜃 ′,𝜖)
1𝐵𝜃 ′,𝜖 (𝜃 )

)
log

(
1

Vol(𝐵𝜃 ′,𝜖)
1𝐵𝜃 ′,𝜖 (𝜃 )

)
𝑑𝜃 𝑑𝜇★(𝜃 ′)

=

∫
Θ

1
Vol(𝐵𝜃 ′,𝜖)

∫
𝐵𝜃 ′,𝜖

− log
(
Vol(𝐵𝜃 ′,𝜖)

)
𝑑𝜃 𝑑𝜇★(𝜃 ′) = −

∫
Θ

log
(
Vol(𝐵𝜃 ′,𝜖)

)
𝑑𝜇★(𝜃 ′)

≤ −𝑑 log 𝜖 + 𝐾 (A.29)

where 𝑑 is the dimension of Θ and 𝐾 is a constant such that Vol(𝐵𝜃 ′,𝜖) ≥ 𝑒−𝐾𝜖𝑑 for all 𝜃 ′ ∈ Θ.

On the other hand,

−
∫
Θ

log(𝜌 (𝜃 ))𝜌𝜖 (𝜃 ) 𝑑𝜃 =

∫
Θ

1
Vol(𝐵𝜃 ′,𝜖)

∫
Vol(𝐵𝜃 ′,𝜖 )

− log(𝜌 (𝜃 )) 𝑑𝜃 𝑑𝜇★(𝜃 ′)

≤
∫
Θ

1
Vol(𝐵𝜃 ′,𝜖)

∫
Vol(𝐵𝜃 ′,𝜖 )

𝐾′ 𝑑𝜃 𝑑𝜇★(𝜃 ′) = 𝐾′ (A.30)

where 𝐾′ is defined such that 𝜌 (𝜃 ) ≥ 𝑒−𝐾 ′ for all 𝜃 ∈ Θ.

By plugging (A.29) and (A.30) into (A.28) we obtain:

∥𝜇★ − 𝜇𝜖 ∥∗BL +
1
𝜏
H(𝜇𝜖, 𝜇0) ≤ 𝜖 +

1
𝜏
(−𝑑 log 𝜖 + 𝐾 + 𝐾′).

If we optimize the bound with respect to 𝜖 we obtain the final result. □

Theorem 2.3. Let 𝜖 > 0 arbitrary. Suppose that 𝜇𝑥,0, 𝜇𝑦,0 are such that their Radon-Nikodym

derivatives with respect to the Borel measures of X,Y are lower-bounded by 𝑒−𝐾
′
𝑥 , 𝑒−𝐾

′
𝑦 respectively.

For any 𝛿 ∈ (0, 1/2), there exists a constant 𝐶𝛿,X,Y,𝐾 ′𝑥 ,𝐾 ′𝑦 > 0 depending on the dimensions of X,Y,

their curvatures and 𝐾′𝑥 , 𝐾
′
𝑦 , such that if 𝛾/𝛼 < 1 and

𝛾

𝛼
≤

(
𝜖

𝐶𝛿,X,Y,𝐾 ′𝑥 ,𝐾 ′𝑦

) 2
1−𝛿

(A.31)
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Then, at 𝑡0 = (𝛼𝛾)−1/2 we have

NI(𝜇𝑥 (𝑡0), 𝜇𝑦 (𝑡0)) := sup
𝜇★𝑥 ,𝜇

★
𝑦

L(𝜇𝑥 (𝑡0), 𝜇★𝑦 ) − L(𝜇★𝑥 , 𝜇𝑦 (𝑡0)) ≤ 𝜖

Proof. We plug the bound of Theorem A.17 into the result of Theorem A.16, obtaining

L(𝜇𝑥 (𝑡), 𝜇★𝑦 ) − L(𝜇★𝑥 , 𝜇𝑦 (𝑡)) ≤
𝑑𝑥

𝛼𝑡
(1 − log𝑑𝑥 + log(𝛼𝐵𝑡))

+
𝑑𝑦

𝛼𝑡
(1 − log𝑑𝑦 + log(𝛼𝐵𝑡))

+ 1
𝛼𝑡
(𝐾𝑥 + 𝐾′𝑥 + 𝐾𝑦 + 𝐾′𝑦) + 𝛾𝐵2𝑡

Now, we set 𝑡 = (𝛼𝛾)−1/2, and thus the right hand side becomes

√︂
𝛾

𝛼

(
𝑑𝑥

(
1 − log

𝑑𝑥

𝐵
+ log

√︂
𝛼

𝛾

)
+ 𝑑𝑦

(
1 − log

𝑑𝑦

𝐵
+ log

√︂
𝛼

𝛾

)
+ 𝐾𝑥 + 𝐾′𝑥 + 𝐾𝑦 + 𝐾′𝑦 + 𝐵2

)
(A.32)

Let 𝜖 > 0 arbitrary. We want (A.32) to be lower or equal than 𝜖 . For any 𝛿 such that 0 < 𝛿 < 1/2,

there exists 𝐶𝛿 such that log(𝑥) ≤ 𝐶𝛿𝑥𝛿 . This yields√︂
𝛾

𝛼

(
𝑑𝑥

(
1 − log

𝑑𝑥

𝐵
+𝐶𝛿

(
𝛼

𝛾

)−𝛿/2)
+ 𝑑𝑦

(
1 − log

𝑑𝑦

𝐵
+𝐶𝛿

(
𝛼

𝛾

)−𝛿/2))
+

√︂
𝛾

𝛼

(
𝐾𝑥 + 𝐾′𝑥 + 𝐾𝑦 + 𝐾′𝑦 + 𝐵2

)
(A.33)

If we set 𝛾 < 𝛼 , (𝛾/𝛼)−𝛿/2 > 1 then (A.33) is upper-bounded by

(𝛾
𝛼

) 1−𝛿
2

(
𝑑𝑥 (1 − log

𝑑𝑥

𝐵
+𝐶𝛿 ) + 𝑑𝑦 (1 − log

𝑑𝑦

𝐵
+𝐶𝛿 ) + 𝐾𝑥 + 𝐾′𝑥 + 𝐾𝑦 + 𝐾′𝑦 + 𝐵2

)
If we bound this by 𝜖 , we obtain the bound in (A.31). □
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Corollary A.18. Let (X𝑑𝑥 ,Y𝑑𝑦 , 𝑙𝑑𝑥 ,𝑑𝑦 )𝑑𝑥∈N,𝑑𝑦∈N be a family indexed byN2. Assume that 𝜇𝑥,0, 𝜇𝑦,0 are

set to be the Borel measures in X𝑑𝑥 ,Y𝑑𝑦 , that X𝑑𝑥 ,Y𝑑𝑦 are locally isometric to the 𝑑𝑥 , 𝑑𝑦-dimensional

Euclidean spaces, and that the volumes of X𝑑𝑥 , Y𝑑𝑦 grow no faster than exponentially on the dimen-

sions 𝑑𝑥 , 𝑑𝑦 . Assume that 𝑙𝑑𝑥 ,𝑑𝑦 are such that 𝐵 is constant. Then, we can rewrite (A.31) as

𝛾

𝛼
≤ 𝑂

((
𝜖

(𝑑𝑥 + 𝑑𝑦) log(𝐵) + 𝑑𝑥 log(𝑑𝑥 ) + 𝑑𝑦 log(𝑑𝑦) + 𝐵2

) 2
1−𝛿

)
Proof. The volume of 𝑛-dimensional ball of radius 𝑟 in 𝑛-dimensional Euclidean space is

𝑉𝑛 (𝑟 ) =
𝜋𝑛/2

Γ(𝑛2 + 1)𝑅
𝑛,

and hence, if X,Y are locally isometric to the 𝑑𝑥 and 𝑑𝑦-dimensional Euclidean spaces we can

take

𝐾𝑥 = log Γ
(
𝑑𝑥

2
+ 1

)
− 𝑑𝑥

2
log(𝜋) ≤

(
𝑑𝑥

2
+ 1

)
log

(
𝑑𝑥

2
+ 1

)
− 𝑑𝑥

2
log(𝜋) ≤ 𝑂 (𝑑𝑥 log𝑑𝑥 )

𝐾𝑦 = log Γ(
𝑑𝑦

2
+ 1) − 𝑛

2
log(𝜋) ≤ 𝑂 (𝑑𝑥 log𝑑𝑥 )

If the volumes of X,Y grow no faster than an exponential of the dimensions 𝑑𝑥 , 𝑑𝑦 and we take

𝜇𝑥,0, 𝜇𝑦,0 to be the Borel measures, we can take𝐾′𝑥 = log(Vol(X)), 𝐾′𝑦 = log(Vol(Y)) to be constant

with respect to the dimensions 𝑑𝑥 , 𝑑𝑦 . □

A.5 Proof of Theorem 2.4(i)

A.5.1 Preliminaries

Throughout the section we will use the techniques shown in subsection A.7.5 to deal with SDEs

onmanifolds. Effectively, thismeans that for SDEswe have additional drift terms ĥ𝑥 or ĥ𝑥 induced
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by the geometry of the manifold, and that we must project the variations of the Brownian motion

onto the tangent space.

Define the processes X𝑛 = (𝑋 1, . . . , 𝑋𝑛) and Y𝑛 = (𝑌 1, . . . , 𝑌𝑛) such that for all 𝑖 ∈ {1, . . . , 𝑛},

𝑑𝑋 𝑖𝑡 =

(
−1
𝑛

𝑛∑︁
𝑗=1
∇𝑥 ℓ (𝑋 𝑖𝑡 , 𝑌

𝑗
𝑡 ) + ĥ𝑥 (𝑋 𝑖𝑡 )

)
𝑑𝑡 +

√︁
2𝛽−1 Proj𝑇

𝑋𝑖𝑡
X (𝑑𝑊 𝑖

𝑡 ), 𝑋
𝑛,𝑖
0 = 𝜉𝑖 ∼ 𝜇𝑥,0

𝑑𝑌 𝑖𝑡 =

(
1
𝑛

𝑛∑︁
𝑗=1
∇𝑦ℓ (𝑋 𝑗

𝑡 , 𝑌
𝑖
𝑡 ) + ĥ𝑦 (𝑌 𝑖𝑡 )

)
𝑑𝑡 +

√︁
2𝛽−1 Proj𝑇

𝑌𝑖𝑡
Y (𝑑𝑊̄ 𝑖

𝑡 ), 𝑌
𝑛,𝑖
0 = 𝜉𝑖 ∼ 𝜇𝑦,0

(A.34)

where W𝑡 = (𝑊 1
𝑡 , . . . ,𝑊

𝑛
𝑡 ), and W̄𝑡 = (𝑊̄ 1

𝑡 , . . . ,𝑊̄
𝑛
𝑡 ) are Brownian motions on R𝑛𝐷𝑥 and R𝑛𝐷𝑦

respectively. Notice that X𝑡 is valued in X𝑛 ⊆ R𝑛𝐷𝑥 and Y𝑡 is valued in Y𝑛 ⊆ R𝑛𝐷𝑦 . (A.34) can

be seen as a system of 2𝑛 interacting particles in which each particle of one player interacts with

all the particles of the other one. It also corresponds to noisy continuous-time mirror descent on

parameter spaces for an augmented game in which there are 𝑛 replicas of each player, choosing
1
2 ∥ · ∥

2
2 for the mirror map.

Now, define X̃ = (𝑋̃ 1, . . . , 𝑋̃𝑛) and Ỹ = (𝑌̃ 1, . . . , 𝑌̃𝑛) for all 𝑖 ∈ {1, . . . , 𝑛} let

𝑑𝑋̃ 𝑖𝑡 =

(
−

∫
Y
∇𝑥 ℓ (𝑋̃ 𝑖𝑡 , 𝑦) 𝑑𝜇𝑦,𝑡 + ĥ𝑥 (𝑋̃ 𝑖𝑡 )

)
𝑑𝑡 +

√︁
2𝛽−1 Proj𝑇

𝑋̃𝑖𝑡
X (𝑑𝑊 𝑖

𝑡 ),

𝑑𝑌̃ 𝑖𝑡 =

(∫
X
∇𝑦ℓ (𝑥, 𝑌̃ 𝑖𝑡 ) 𝑑𝜇𝑥,𝑡 + ĥ𝑦 (𝑌̃ 𝑖𝑡 )

)
𝑑𝑡 +

√︁
2𝛽−1 Proj𝑇

𝑌̃ 𝑖𝑡
Y (𝑑𝑊̄ 𝑖

𝑡 ),

𝑋̃ 𝑖0 = 𝜉
𝑖 ∼ 𝜇𝑥,0, 𝜇𝑦,𝑡 = Law(𝑌̃ 𝑖𝑡 ), 𝑌̃ 𝑖0 = 𝜉𝑖 ∼ 𝜇𝑦,0, 𝜇𝑥,𝑡 = Law(𝑋̃ 𝑖𝑡 ) (A.35)

Lemma A.19 (Forward Kolmogorov equation). The laws (𝜇𝑥 )𝑡∈[0,𝑇 ], (𝜇𝑦)𝑡∈[0,𝑇 ] of a solution 𝑋̃ , 𝑌̃
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of (A.35) with 𝑛 = 1 (seen as elements of C([0,𝑇 ],P(X)), C([0,𝑇 ],P(Y))) are a solution of (A.36).


𝜕𝑡𝜇𝑥 = ∇𝑥 · (𝜇𝑥∇𝑥𝑉𝑥 (𝜇𝑦, 𝑥)) + 𝛽−1Δ𝑥𝜇𝑥 , 𝜇𝑥 (0) = 𝜇𝑥,0

𝜕𝑡𝜇𝑦 = −∇𝑦 · (𝜇𝑦∇𝑦𝑉𝑦 (𝜇𝑥 , 𝑦)) + 𝛽−1Δ𝑦𝜇𝑦, 𝜇𝑦 (0) = 𝜇𝑦,0
(A.36)

Proof. We sketch the derivation for the forward Kolmogorov equation on manifolds. First, we

define the semigroups

𝑃𝑥𝑡 𝜓𝑥 (𝑥) = E[𝜓𝑥 (𝑋̃𝑡 ) |𝑋̃0 = 𝑥], 𝑃
𝑦

𝑡 𝜓𝑦 (𝑦) = E[𝜓𝑦 (𝑌̃𝑡 ) |𝑌̃0 = 𝑦],

where 𝑋̃ , 𝑌̃ are solutions of (A.35) with 𝑛 = 1. We obtain that if L𝑥𝑡 ,L
𝑦

𝑡 are the infinitesimal

generators (i.e., L𝑥𝑡 𝜓𝑥 (𝑥) = lim𝑡→0+
1
𝑡
(𝑃𝑥𝑡 𝜓𝑥 (𝑥) − 𝜓𝑥 (𝑥))), the backward Kolmogorov equations

𝑑
𝑑𝑡
𝑃𝑥𝑡 𝜓𝑥 (𝑥) = L𝑥𝑡 𝑃𝑥𝑡 𝜓𝑥 (𝑥), 𝑑𝑑𝑡 𝑃

𝑦

𝑡 𝜓𝑦 (𝑦) = L
𝑦

𝑡 𝑃
𝑦

𝑡 𝜓𝑦 (𝑦) hold for𝜓𝑥 ,𝜓𝑦 in the domains of the generators.

Since L𝑥𝑡 and 𝑃𝑥𝑡 commute for these choices of𝜓𝑥 , we have 𝑑
𝑑𝑡
𝑃𝑥𝑡 𝜓𝑥 (𝑥) = 𝑃𝑥𝑡 L𝑥𝑡 𝜓𝑥 (𝑥), 𝑑𝑑𝑡 𝑃

𝑦

𝑡 𝜓𝑦 (𝑦) =

𝑃
𝑦

𝑡 L
𝑦

𝑡𝜓𝑦 (𝑦). By integrating these two equations over the initial measures 𝜇𝑥,0, 𝜇𝑦,0, we get

𝑑

𝑑𝑡

∫
𝜓𝑥 (𝑥) 𝑑𝜇𝑥,𝑡 =

∫
L𝑥𝑡 𝜓𝑥 (𝑥) 𝑑𝜇𝑥,𝑡 ,

𝑑

𝑑𝑡

∫
𝜓𝑦 (𝑦) 𝑑𝜇𝑦,𝑡 =

∫
L𝑦𝑡𝜓𝑦 (𝑦) 𝑑𝜇𝑦,𝑡 .

We can write an explicit form for L𝑥𝑡 𝑃𝑥𝑡 𝜓𝑥 (𝑥) by using Itô’s lemma on (A.35):

L𝑥𝑡 𝜓𝑥 (𝑥) =
(∫
Y
∇𝑥 ℓ (𝑥,𝑦) 𝑑𝜇𝑦,𝑠 𝑑𝑠 − ĥ𝑥 (𝑥)

)
∇𝑥𝜓𝑥 (𝑥) + 𝛽−1Tr

((
Proj𝑇𝑥X

)⊤
𝐻𝜓𝑥 (𝑥) Proj𝑇𝑥X

)
,

where we use Proj𝑇
𝑋̃𝑖𝑡
X to denote its matrix in the canonical basis.

Let {𝜉𝑘} be a partition of unity forX (i.e. a set of functions such that
∑
𝑘 𝜉𝑘 (𝑥) = 1) in which each
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𝜉𝑘 is regular enough and supported on a patch of X. We can write

𝑑

𝑑𝑡

∫
X
𝜓𝑥 (𝑥) 𝑑𝜇𝑥,𝑡 (𝑥) =

𝑑

𝑑𝑡

∫
X
𝜓𝑥 (𝑥) 𝑑𝜇𝑥,𝑡 (𝑥) =

∑︁
𝑘

𝑑

𝑑𝑡

∫
X
𝜉𝑘 (𝑥)𝜓𝑥 (𝑥) 𝑑𝜇𝑥,𝑡 (𝑥)

=
∑︁
𝑘

∫
L𝑥𝑡 (𝜉𝑘 (𝑥)𝜓𝑥 (𝑥)) 𝑑𝜇𝑥,𝑡

Now, let𝜓𝑘𝑥 (𝑥) = 𝜉𝑘 (𝑥)𝜓𝑥 (𝑥).∫
X
L𝑥𝑡 𝜓𝑘𝑥 (𝑥) 𝑑𝜇𝑥,𝑡

=

∫
X

(
∇𝑥𝑉𝑥 (𝜇𝑦,𝑠, 𝑥) − ĥ𝑥 (𝑥)

)
∇𝑥𝜓𝑘𝑥 (𝑥) + 𝛽−1Tr

((
Proj𝑇𝑥X

)⊤
𝐻𝜓𝑘𝑥 (𝑥) Proj𝑇𝑥X

)
𝑑𝜇𝑥,𝑡

Notice that this equation is analogous to (A.57). We reverse the argument made in subsec-

tion A.7.5. Using the fact that the support of 𝜓𝑘𝑥 (𝑥) is contained on some patch of X given by

the mapping𝜓𝑘 : 𝑈R𝑑 ⊆ R𝑑 → 𝑈 ⊆ X ⊆ R𝐷 , the corresponding Fokker-Planck on𝑈R𝑑 is

𝑑

𝑑𝑡

∫
𝑈
R𝑑

𝜓𝑘𝑥 (𝜓𝑘 (𝑞)) 𝑑 (𝜓−1
𝑘
)∗𝜇𝑥,𝑡 (𝑞)

=

∫
𝑈
R𝑑

∇𝑉𝑥 (𝜇𝑦,𝑠,𝜓𝑘 (𝑞)) · ∇𝜓𝑘𝑥 (𝜓𝑘 (𝑞)) + 𝛽−1Δ𝜓𝑘𝑥 (𝜓𝑘 (𝑞)) 𝑑 (𝜓−1
𝑘
)∗𝜇𝑥,𝑡 (𝑞),

where the gradients and the Laplacian are in the metric inherited from the embedding (as in

subsection A.7.5). The pushforward definition implies

𝑑

𝑑𝑡

∫
X
𝜓𝑘𝑥 (𝑥) 𝑑𝜇𝑥,𝑡 (𝑥) =

∫
𝑈
R𝑑

∇𝑉𝑥 (𝜇𝑦,𝑠, 𝑥) · ∇𝜓𝑘𝑥 (𝑥) + 𝛽−1Δ𝜓𝑘𝑥 (𝑥) 𝑑𝜇𝑥,𝑡 (𝑥),
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By substituting𝜓𝑘𝑥 (𝑥) = 𝜉𝑘 (𝑥)𝜓𝑥 (𝑥), summing for all 𝑘 and using
∑
𝑘 𝜉𝑘 (𝑥) = 1, we obtain:

𝑑

𝑑𝑡

∫
X
𝜓𝑥 (𝑥) 𝑑𝜇𝑥,𝑡 (𝑥) =

∫
X
∇𝑥𝑉𝑥 (𝜇𝑦,𝑠, 𝑥) · ∇𝑥𝜓𝑥 (𝑥) + 𝛽−1Δ𝑥𝜓𝑥 (𝑥) 𝑑𝜇𝑥,𝑡 (𝑥)

which is the same as the first equation in (2.7). The second equation is obtained analogously. □

Let 𝜇𝑛𝑥 = 1
𝑛

∑𝑛
𝑖=1 𝛿𝑋 𝑖 be a P(C([0,𝑇 ],X))-valued random element that corresponds to the empir-

ical measure of a solution X𝑛 of (A.34). Analogously, let 𝜇𝑛𝑦 = 1
𝑛

∑𝑛
𝑖=1 𝛿𝑌 𝑖 be a P(C([0,𝑇 ],Y))-

valued random element corresponding to the empirical measure of Y𝑛 .

Define the 2-Wasserstein distance on P(C([0,𝑇 ],X)) as

W2
2 (𝜇, 𝜈) := inf

𝜋∈Π(𝜇,𝜈)

∫
𝐶 ( [0,𝑇 ],X)2

𝑑 (𝑥,𝑦)2 𝑑𝜋 (𝑥,𝑦) (A.37)

where 𝑑 (𝑥,𝑦) = sup𝑡∈[0,𝑇 ] 𝑑X (𝑥 (𝑡), 𝑦 (𝑡)). Define it analogously on P(C([0,𝑇 ],Y)).

We state a stronger version of the law of large numbers in the first statement of Theorem 2.4(i).

TheoremA.20. There exists a solution of the coupledMcKean-Vlasov SDEs (A.35). Pathwise unique-

ness and uniqueness in law hold. Let 𝜇𝑥 ∈ P(C([0,𝑇 ],X)), 𝜇𝑦 ∈ P(C([0,𝑇 ],Y)) be the unique

laws of the solutions for 𝑛 = 1 (all pairs have the same solutions). Then,

E[W2
2 (𝜇𝑛𝑥 , 𝜇𝑥 ) +W2

2 (𝜇𝑛𝑦 , 𝜇𝑦)]
𝑛→∞−−−−→ 0

Let us comment on why Theorem A.20 implies the first statement in Theorem 2.4(i). We make

use of the mapping P(C([0,𝑇 ],X)) ∋ 𝜇 ↦→ (𝜇𝑡 )𝑡∈[0,𝑇 ] ∈ C([0,𝑇 ],P(X)) into the time marginals.

By the definition (A.37), sup𝑡∈[0,𝑡]W2
2 (𝜇𝑛𝑥,𝑡 , 𝜇𝑥,𝑡 ) ≤ W2

2 (𝜇𝑛𝑥 , 𝜇𝑥 ) and the same holds for 𝜇𝑛𝑦 , 𝜇𝑦 . At

this point, Theorem A.19 states that (𝜇𝑥 )𝑡∈[0,𝑇 ], (𝜇𝑦)𝑡∈[0,𝑇 ] is a solution of the mean-field ERIWGF

(A.36) and concludes the argument. The proof of Theorem A.20 uses a propagation of chaos
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argument, originally due to Sznitman [1991] in the context of interacting particle systems. Our

argument follows Theorem 3.3 of Lacker [2018].

A.5.2 Existence and uniqeness

We prove existence and uniqueness of the system given by

𝑋̃𝑡 =

∫ 𝑡

0

(
−

∫
Y
∇𝑥 ℓ (𝑋̃𝑠, 𝑦) 𝑑𝜇𝑦,𝑠 𝑑𝑠 + ĥ𝑥 (𝑋̃𝑠)

)
𝑑𝑠 +

√︁
2𝛽−1

∫ 𝑡

0
Proj𝑇

𝑋̃𝑠
X (𝑑𝑊𝑠),

𝑌̃𝑡 =

∫ 𝑡

0

(∫
X
∇𝑦ℓ (𝑥, 𝑌̃𝑠) 𝑑𝜇𝑥,𝑠 + ĥ𝑦 (𝑌𝑛,𝑖𝑠 )

)
𝑑𝑠 +

√︁
2𝛽−1

∫ 𝑡

0
Proj𝑇

𝑌̃𝑠
Y (𝑑𝑊̄𝑠),

𝜇𝑥,𝑡 = Law(𝑋̃𝑛𝑡 ), 𝜇𝑦,𝑡 = Law(𝑌̃𝑛𝑡 ), 𝑋̃0 = 𝜉 ∼ 𝜇𝑥,0, 𝑌̃0 = 𝜉 ∼ 𝜇𝑦,0. (A.38)

Path-wise uniqueness means that given𝑊,𝑊̄ , 𝜉, 𝜉 , two solutions are equal almost surely. Unique-

ness in lawmeans that regardless of the Brownian motion and the initialization random variables

chosen (as long as they are 𝜇𝑥,0 and 𝜇𝑦,0-distributed), the law of the solution is unique. We prove

that both hold for (A.38).

We have that for all 𝑥, 𝑥′ ∈ X, 𝜇, 𝜈 ∈ P(Y),���� ∫ ∇𝑥 ℓ (𝑥,𝑦) 𝑑𝜇 − ∫
∇𝑥 ℓ (𝑥′, 𝑦) 𝑑𝜈

���� ≤ 𝐿(𝑑 (𝑥, 𝑥′) +W2(𝜇, 𝜈)) (A.39)

This is obtained by adding and subtracting the term
∫
∇𝑥 ℓ (𝑥′𝑦) 𝑑𝜇, by using the triangle in-

equality and the inequalityW1(𝜇, 𝜈)) ≤ W2(𝜇, 𝜈)) (which is proven using the Cauchy-Schwarz

inequality). Hence,���� ∫ ∇𝑥 ℓ (𝑥,𝑦) 𝑑𝜇 − ∫
∇𝑥 ℓ (𝑥′, 𝑦) 𝑑𝜈

����2 ≤ 2𝐿2(𝑑 (𝑥, 𝑥′)2 +W2
2 (𝜇, 𝜈)) (A.40)
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On the other hand, using the regularity of the manifold, there exists LX such that

|ĥ𝑥 (𝑥) − ĥ𝑥 (𝑥′) | ≤ 𝐿X𝑑 (𝑥, 𝑥′),

|Proj𝑇𝑥X − Proj𝑇𝑥′X | ≤ 𝐿X𝑑 (𝑥, 𝑥
′)

where Proj𝑇𝑥X denotes its matrix in the canonical basis and the norm in the second line is the

Frobenius norm. Also, let ∥𝑥 −𝑥′∥ be the Euclidean norm ofX in R𝐷𝑥 (the Euclidean space where

X is embedded) and let 𝐾X > 1 be such that 𝑑 (𝑥, 𝑥′) ≤ 𝐾X ∥𝑥 − 𝑥′∥.

Let 𝜇𝑦, 𝜈𝑦 ∈ P(C([0,𝑇 ],X)) and let 𝑋 𝜇𝑦 , 𝑋𝜈𝑦 be the solutions of the first equation of (A.38) when

we plug 𝜇𝑦 (𝜈𝑦 resp.) as the measure for the other player. 𝑋 𝜇𝑦 and 𝑋𝜈𝑦 exist and are unique by

the classical theory of SDEs (see Chapter 18 of Kallenberg [2002]). Following the procedure in

Theorem 3.3 of Lacker [2018], we obtain

E[∥𝑋 𝜇𝑦 − 𝑋𝜈𝑦 ∥2𝑡 ] ≤ 3𝑡E
[ ∫ 𝑡

0

���� ∫ ∇𝑥 ℓ (𝑋 𝜇𝑦 , 𝑦) 𝑑𝜇𝑦,𝑟 −
∫
∇𝑥 ℓ (𝑋𝜈𝑦 , 𝑦) 𝑑𝜈𝑦,𝑟

����2 𝑑𝑟 ]
+ 3𝑡E

[ ∫ 𝑡

0
|ĥ𝑥 (𝑋 𝜇𝑦 ) − ĥ𝑥 (𝑋𝜈𝑦 ) |2 𝑑𝑟

]
+ 12E

[ ∫ 𝑡

0
|Proj𝑇𝑥X − Proj𝑇𝑥′X |

2 𝑑𝑟

]
≤ 3(3𝑡 + 4)𝐿̃2E

[ ∫ 𝑡

0
(∥𝑋 𝜇𝑦 − 𝑋𝜈𝑦 ∥2𝑟 +W2

2 (𝜇𝑦,𝑟 , 𝜈𝑦,𝑟 )) 𝑑𝑟
]
, (A.41)

where 𝐿̃2 = (𝐿2 + 𝐿2
X)𝐾

2
X . Using Fubini’s theorem and Gronwall’s inequality, we obtain

E[∥𝑋 𝜇𝑦 − 𝑋𝜈𝑦 ∥2𝑡 ] ≤ 3(3𝑇 + 4)𝐿̃2 exp(3(3𝑇 + 4)𝐿̃2)
∫ 𝑡

0
W2

2 (𝜇𝑦,𝑟 , 𝜈𝑦,𝑟 )) 𝑑𝑟 (A.42)

Let 𝐶𝑇 := 3(3𝑇 + 4)𝐿̃2 exp(3(3𝑇 + 4)𝐿̃2). For 𝜇, 𝜈 ∈ P(𝐶 ( [0,𝑇 ],X)), define

W2
2,𝑡 (𝜇, 𝜈) := inf

𝜋∈Π(𝜇,𝜈)

∫
𝐶 ( [0,𝑇 ],X)2

sup
𝑟∈[0,𝑡]

𝑑 (𝑥 (𝑟 ), 𝑦 (𝑟 )) 𝜋 (𝑑𝑥, 𝑑𝑦)
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Hence, (A.42) and the boundW2
2 (𝜇𝑦,𝑟 , 𝜈𝑦,𝑟 ) ≤ W2

2,𝑟 (𝜇𝑦, 𝜈𝑦) yield

E[∥𝑋 𝜇𝑦 − 𝑋𝜈𝑦 ∥2𝑡 ] ≤ 𝐶𝑇
∫ 𝑡

0
W2

2,𝑟 (𝜇𝑦, 𝜈𝑦) 𝑑𝑟

Reasoning analogously for the other player, we obtain

E[∥𝑋 𝜇𝑦 − 𝑋𝜈𝑦 ∥2𝑡 + ∥𝑌 𝜇𝑥 − 𝑌 𝜈𝑥 ∥2𝑡 ] ≤ 𝐶𝑇
∫ 𝑡

0
W2

2,𝑟 (𝜇𝑦, 𝜈𝑦) 𝑑𝑟 +𝐶𝑇
∫ 𝑡

0
W2

2,𝑟 (𝜇𝑥 , 𝜈𝑥 ) 𝑑𝑟

Given 𝜇𝑦 ∈ P(𝐶 ( [0,𝑇 ],Y)), define Φ𝑥 (𝜇𝑦) = Law(𝑋 𝜇𝑦 ) ∈ P(𝐶 ( [0,𝑇 ],X)), and define Φ𝑦 analo-

gously. Notice thatW2
2,𝑡 (Φ𝑥 (𝜇𝑦),Φ𝑥 (𝜈𝑦)) ≤ E[∥𝑋 𝜇𝑦 − 𝑋𝜈𝑦 ∥2𝑡 ],W2

2,𝑡 (Φ𝑦 (𝜇𝑥 ),Φ𝑦 (𝜈𝑥 )) ≤ E[∥𝑋 𝜇𝑥 −

𝑋𝜈𝑥 ∥2𝑡 ]. Hence, we obtain

W2
2,𝑡 (Φ𝑥 (𝜇𝑦),Φ𝑥 (𝜈𝑦)) +W2

2,𝑡 (Φ𝑦 (𝜇𝑥 ),Φ𝑦 (𝜈𝑥 )) ≤ 𝐶𝑇
∫ 𝑡

0
W2

2,𝑟 (𝜇𝑦, 𝜈𝑦) +W2
2,𝑟 (𝜇𝑥 , 𝜈𝑥 ) 𝑑𝑟

Observe thatW2
2,𝑡 (𝜇𝑥 , 𝜈𝑥 )+W2

2,𝑡 (𝜇𝑦, 𝜈𝑦) is the square of a distance between (𝜇𝑥 , 𝜇𝑦) and (𝜈𝑥 , 𝜈𝑦) on

P(𝐶 ( [0,𝑇 ],X)) ×P(𝐶 ( [0,𝑇 ],Y)). Hence, we can apply the Piccard iteration argument to obtain

the existence result and another application of Gronwall’s inequality yields pathwise uniqueness.

Uniqueness in law (i.e., regardless of the specific Brownian motions and initialization random

variables) follows from the typical uniqueness in law result for SDEs (see Chapter 18 of Kallenberg

[2002] for example). The idea is that when we solve the SDEs with𝑊 ′,𝑊̄ ′, 𝜉′, 𝜉′ plugging in the

drift the laws of a solution for𝑊,𝑊̄ , 𝜉, 𝜉 , the solution has the same laws by uniqueness in law of

SDEs. Hence, that new solution solves the coupled McKean-Vlasov for𝑊 ′,𝑊̄ ′, 𝜉′, 𝜉′.
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A.5.3 Propagation of chaos

Let 𝜇𝑛𝑥 = 1
𝑛

∑𝑛
𝑖=1 𝛿𝑋 𝑖 , 𝜇

𝑛
𝑦 = 1

𝑛

∑𝑛
𝑖=1 𝛿𝑌 𝑖 . Using the argument from existence and uniqueness on the

𝑖-th components of X, X̃,

E[∥𝑋 𝑖 − 𝑋̃ 𝑖 ∥2𝑡 ] ≤ 3(3𝑇 + 4)𝐿̃2E

[ ∫ 𝑡

0
(∥𝑋 𝑖 − 𝑋̃ 𝑖 ∥2𝑟 +W2

2 (𝜇𝑛𝑦,𝑟 , 𝜇𝑦,𝑟 )) 𝑑𝑟
]

Arguing as before, we obtain

E[∥𝑋 𝑖 − 𝑋̃ 𝑖 ∥2𝑡 ] ≤ 𝐶𝑇E
[ ∫ 𝑡

0
W2

2,𝑟 (𝜇𝑛𝑦 , 𝜇𝑦) 𝑑𝑟
]

Let 𝜈𝑛𝑥 = 1
𝑛

∑𝑛
𝑖=1 𝛿𝑋̃ 𝑖 be the empirical measure of the mean field processes in (A.35). Notice that

1
𝑛

∑𝑛
𝑖=1 𝛿 (𝑋 𝑖 ,𝑋̃ 𝑖 ) is a coupling between 𝜈

𝑛
𝑥 and 𝜇𝑛𝑥 , and so

W2
2,𝑡 (𝜇𝑛𝑥 , 𝜈𝑛𝑥 ) ≤

1
𝑛

𝑛∑︁
𝑖=1
∥𝑋 𝑖 − 𝑋̃ 𝑖 ∥2𝑡

Thus, we obtain

E[W2
2,𝑡 (𝜇𝑛𝑥 , 𝜈𝑛𝑥 )] ≤ 𝐶𝑇E

[ ∫ 𝑡

0
W2

2,𝑟 (𝜇𝑛𝑦 , 𝜇𝑦) 𝑑𝑟
]

We use the triangle inequality

E[W2
2,𝑡 (𝜇𝑛𝑥 , 𝜇𝑥 )] ≤ 2E[W2

2,𝑡 (𝜇𝑛𝑥 , 𝜈𝑛𝑥 )] + 2E[W2
2,𝑡 (𝜈𝑛𝑥 , 𝜇𝑥 )]

≤ 2𝐶𝑇E
[ ∫ 𝑡

0
W2

2,𝑟 (𝜇𝑛𝑦 , 𝜇𝑦) 𝑑𝑟
]
+ 2E[W2

2,𝑡 (𝜈𝑛𝑥 , 𝜇𝑥 )]
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At this point we follow an analogous procedure for the other player and we end up with

E[W2
2,𝑡 (𝜇𝑛𝑥 , 𝜇𝑥 ) +W2

2,𝑡 (𝜇𝑛𝑦 , 𝜇𝑦)] ≤ 2𝐶𝑇E
[ ∫ 𝑡

0
W2

2,𝑟 (𝜇𝑛𝑦 , 𝜇𝑦) +W2
2,𝑟 (𝜇𝑛𝑥 , 𝜇𝑥 ) 𝑑𝑟

]
+ 2E[W2

2,𝑡 (𝜈𝑛𝑥 , 𝜇𝑥 ) +W2
2,𝑡 (𝜈𝑛𝑦 , 𝜇𝑦)]

We use Fubini’s theorem and Gronwall’s inequality again.

E[W2
2,𝑡 (𝜇𝑛𝑥 , 𝜇𝑥 ) +W2

2,𝑡 (𝜇𝑛𝑦 , 𝜇𝑦)] ≤ 2 exp(2𝐶𝑇𝑇 )E[W2
2,𝑡 (𝜈𝑛𝑥 , 𝜇𝑥 ) +W2

2,𝑡 (𝜈𝑛𝑦 , 𝜇𝑦)]

If we set 𝑡 = 𝑇 we get

E[W2
2 (𝜇𝑛𝑥 , 𝜇𝑥 ) +W2

2 (𝜇𝑛𝑦 , 𝜇𝑦)] ≤ 2 exp(2𝐶𝑇𝑇 )E[W2
2 (𝜈𝑛𝑥 , 𝜇𝑥 ) +W2

2 (𝜈𝑛𝑦 , 𝜇𝑦)]

and the factor E[W2
2 (𝜈𝑛𝑥 , 𝜇𝑥 ) +W2

2 (𝜈𝑛𝑦 , 𝜇𝑦)] goes to 0 as 𝑛 →∞ by the law of large numbers (see

Corollary 2.14 of [Lacker 2018]).

A.5.4 Convergence of the Nikaido-Isoda error

Corollary A.21. For 𝑡 ∈ [0,𝑇 ], if 𝜇𝑛𝑥,𝑡 , 𝜇𝑥,𝑡 , 𝜇𝑛𝑦,𝑡 , 𝜇𝑦,𝑡 are the marginals of 𝜇𝑛𝑥 , 𝜇𝑥 , 𝜇
𝑛
𝑦 , 𝜇𝑦 at time 𝑡 , we

have

E[|NI(𝜇𝑛𝑥,𝑡 , 𝜇𝑛𝑦,𝑡 ) − NI(𝜇𝑥,𝑡 , 𝜇𝑦,𝑡 ) |]
𝑛→∞−−−−→ 0

Proof. See Theorem A.3. □
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A.6 Proof of Theorem 2.4(ii)

A.6.1 Preliminaries

Define the processesX = (𝑋 1, . . . , 𝑋𝑛),w𝑥 = (𝑤1
𝑥 , . . . ,𝑤

𝑛
𝑥 ) andY = (𝑌 1, . . . , 𝑌𝑛),w𝑦 = (𝑤1

𝑦, . . . ,𝑤
𝑛
𝑦 )

such that for all 𝑖 ∈ {1, . . . , 𝑛}

𝑑𝑋 𝑖𝑡

𝑑𝑡
= −𝛾 1

𝑛

𝑛∑︁
𝑗=1
𝑤
𝑗
𝑦,𝑡∇𝑥 ℓ (𝑋 𝑖𝑡 , 𝑌

𝑗
𝑡 ), 𝑋 𝑖0 = 𝜉

𝑖 ∼ 𝜇𝑥,0

𝑑𝑤 𝑖
𝑥,𝑡

𝑑𝑡
= 𝛼

(
−1
𝑛

𝑛∑︁
𝑗=1
𝑤
𝑗
𝑦,𝑡 ℓ (𝑋 𝑖𝑡 , 𝑌

𝑗
𝑡 ) +

1
𝑛2

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1
𝑤
𝑗
𝑦,𝑡𝑤

𝑘
𝑥,𝑡 ℓ (𝑋 𝑖𝑡 , 𝑌

𝑗
𝑡 )

)
𝑤 𝑖
𝑥,𝑡 , 𝑤 𝑖

𝑥,0 = 1

𝑑𝑌 𝑖𝑡

𝑑𝑡
= 𝛾

1
𝑛

𝑛∑︁
𝑗=1
𝑤
𝑗
𝑥,𝑡∇𝑦ℓ (𝑋

𝑗
𝑡 , 𝑌

𝑖
𝑡 ), 𝑌 𝑖0 = 𝜉𝑖 ∼ 𝜇𝑦,0

𝑑𝑤 𝑖
𝑦,𝑡

𝑑𝑡
= 𝛼

(
1
𝑛

𝑛∑︁
𝑗=1
𝑤
𝑗
𝑥,𝑡 ℓ (𝑋 𝑖𝑡 , 𝑌

𝑗
𝑡 ) −

1
𝑛2

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1
𝑤
𝑗
𝑦,𝑡𝑤

𝑘
𝑥,𝑡 ℓ (𝑋 𝑖𝑡 , 𝑌

𝑗
𝑡 )

)
𝑤 𝑖
𝑥,𝑡 , 𝑤 𝑖

𝑦,0 = 1

(A.43)

Let𝜈𝑛𝑥,𝑡 =
1
𝑛

∑𝑛
𝑖=1 𝛿 (𝑋 𝑖𝑡 ,𝑤𝑖𝑥,𝑡 ) ∈ P(X×R

+), 𝜈𝑛𝑦,𝑡 = 1
𝑛

∑𝑛
𝑖=1 𝛿 (𝑌 𝑖𝑡 ,𝑟

𝑛,𝑖
𝑦,𝑡 )
∈ P(Y×R+). Let 𝜇𝑛𝑥,𝑡 = 1

𝑛

∑𝑛
𝑖=1𝑤

𝑖
𝑥,𝑡𝛿𝑋 𝑖𝑡

∈

P(X), 𝜇𝑛𝑦,𝑡 = 1
𝑛

∑𝑛
𝑖=1𝑤

𝑖
𝑦,𝑡𝛿𝑌 𝑖𝑡

∈ P(Y) be the projections of 𝜈𝑛𝑥,𝑡 , 𝜈𝑛𝑦,𝑡 . Notice that we have changed the

notation with respect to the main text, multiplying𝑤 𝑖
𝑥 by 𝑛: now𝑤 𝑖

𝑥,0 = 1 and
∑
𝑖 𝑤

𝑖
𝑥,𝑡 = 𝑛,∀𝑡 ≥ 0

instead of𝑤 𝑖
𝑥,0 = 1/𝑛 and

∑
𝑖 𝑤

𝑖
𝑥,𝑡 = 1,∀𝑡 ≥ 0.

Let ℎ𝑥 , ℎ𝑦 be the projection operators, i.e. ℎ𝑥𝜈𝑥 =
∫
R+𝑤𝑥𝜈𝑥 (·,𝑤𝑥 ). We also define the mean field
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processes X̃, Ỹ, w̃𝑥 , w̃𝑦 given component-wise by

𝑑𝑋̃ 𝑖𝑡

𝑑𝑡
= −𝛾∇𝑥

∫
ℓ (𝑋̃ 𝑖𝑡 , 𝑦)𝑑𝜇𝑦,𝑡 , 𝑋̃ 𝑖0 = 𝜉

𝑖 ∼ 𝜇𝑥,0

𝑑𝑤̃ 𝑖
𝑥,𝑡

𝑑𝑡
= 𝛼

(
−

∫
ℓ (𝑋̃ 𝑖𝑡 , 𝑦)𝑑𝜇𝑦,𝑡 + L(𝜇𝑥,𝑡 , 𝜇𝑦,𝑡 )

)
𝑤̃ 𝑖
𝑥,𝑡 , 𝑤̃ 𝑖

𝑥,0 = 1

𝑑𝑌̃ 𝑖𝑡

𝑑𝑡
= 𝛾∇𝑦

∫
ℓ (𝑥, 𝑌̃ 𝑖𝑡 )𝑑𝜇𝑥,𝑡 , 𝑌̃ 𝑖0 = 𝜉𝑖 ∼ 𝜇𝑦,0

𝑑𝑤̃ 𝑖
𝑦,𝑡

𝑑𝑡
= 𝛼

(∫
ℓ (𝑥, 𝑌̃ 𝑖𝑡 )𝑑𝜇𝑥,𝑡 − L(𝜇𝑥,𝑡 , 𝜇𝑦,𝑡 )

)
𝑤̃ 𝑖
𝑥,𝑡 , 𝑤̃ 𝑖

𝑦,0 = 1

𝜇𝑥,𝑡 = ℎ𝑥Law(𝑋̃ 𝑖𝑡 , 𝑤̃ 𝑖
𝑥,𝑡 ), 𝜇𝑦,𝑡 = ℎ𝑦Law(𝑌̃ 𝑖𝑡 , 𝑤̃ 𝑖

𝑦,𝑡 ) (A.44)

for 𝑖 between 1 and 𝑛.

Lemma A.22 (Forward Kolmogorov equation). If 𝑋̃ , 𝑤̃𝑥 , 𝑌̃ , 𝑤̃𝑦 is a solution of (A.44) with 𝑛 = 1,

then its laws 𝜈𝑥 , 𝜈𝑦 fulfill (A.1).

Proof. Let 𝜓𝑥 : X × R+ → R. Plug the laws 𝜈𝑥 , 𝜈𝑦 of the solution (𝑋̃ , 𝑤̃𝑥 ), (𝑌̃ , 𝑤̃𝑦) into the ODE

(A.44). Let Φ𝑥,𝑡 = (𝑋Φ
𝑥,𝑡 ,𝑤

Φ
𝑥,𝑡 ) : (X×R+) → (X×R+) denote the flow that maps an initial condition

of the ODE (A.44) to the corresponding solution at time 𝑡 . Then, we can write 𝜈𝑥,𝑡 = (Φ𝑥,𝑡 )∗𝜈𝑥,0,

where (Φ𝑥,𝑡 )∗ is the pushforward. Hence,

𝑑

𝑑𝑡

∫
X×R+

𝜓𝑥 (𝑥,𝑤𝑥 ) 𝑑𝜈𝑥,𝑡 (𝑥,𝑤𝑥 )

=
𝑑

𝑑𝑡

∫
X×R+

𝜓𝑥 (Φ𝑥,𝑡 (𝑥,𝑤𝑥 )) 𝑑𝜈𝑥,0(𝑥,𝑤𝑥 )

=

∫
X×R+

(
∇𝑥𝜓𝑥 (Φ𝑥,𝑡 (𝑥,𝑤𝑥 )),

𝑑𝜓𝑥

𝑑𝑤𝑥
(Φ𝑥,𝑡 (𝑥,𝑤𝑥 ))

)
· 𝑑
𝑑𝑡

Φ𝑥,𝑡 (𝑥,𝑤𝑥 ) 𝑑𝜈𝑥,0(𝑥,𝑤𝑥 )

=

∫
X×R+

∇𝑥𝜓𝑥 (Φ𝑥,𝑡 (𝑥,𝑤𝑥 )) · (−𝛾∇𝑥𝑉𝑥 (ℎ𝑦𝜈𝑦,𝑡 , 𝑋Φ
𝑥,𝑡 ))

+ 𝑑𝜓𝑥
𝑑𝑤𝑥
(Φ𝑥,𝑡 (𝑥,𝑤𝑥 ))𝛼 (−𝑉𝑥 (ℎ𝑦𝜈𝑦,𝑡 , 𝑋Φ

𝑥,𝑡 ) + L(ℎ𝑥𝜈𝑥,𝑡 , ℎ𝑦𝜇𝑦,𝑡 )) 𝑑𝜈𝑥,0(𝑥,𝑤𝑥 )

And we can identify the right hand side as the weak form of (A.1), shown in (A.3). The argument
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for 𝜈𝑦 is analogous. □

We state a stronger version of the law of large numbers in the first statement of Theorem 2.4(ii).

TheoremA.23. There exists a solution of the coupled SDEs (A.44). Pathwise uniqueness and unique-

ness in law hold. Let 𝜈𝑥 ∈ P(C([0,𝑇 ],X × R+)), 𝜈𝑦 ∈ P(C([0,𝑇 ],Y × R+)) be the unique laws of

the solutions for 𝑛 = 1 (all pairs have the same solutions). Then,

E[W2
2 (𝜈𝑛𝑥 , 𝜈𝑥 ) +W2

2 (𝜈𝑛𝑦 , 𝜈𝑦)]
𝑛→∞−−−−→ 0

Theorem A.23 is the law of large numbers for the WFR dynamics, and its proof follows the

same argument of Theorem A.20. The reason Theorem A.23 implies Theorem 2.4(ii) is analo-

gous to the reason for which Theorem A.20 implies Theorem 2.4(i), with the additional step that

W2
2 (𝜇𝑛𝑥,𝑡 , 𝜇𝑥,𝑡 ) =W2

2 (ℎ𝑥𝜈𝑛𝑥,𝑡 , ℎ𝑥𝜈𝑥,𝑡 ) ≤ 𝑒4𝑀𝑇W2
2 (𝜈𝑛𝑥,𝑡 , 𝜈𝑥,𝑡 ), and this inequality is shown in (A.46).

A.6.2 Existence and uniqeness

We choose to do an argument close to Sznitman [1991] (see Lacker [2018]), which yields conver-

gence of the expectation of the square of the 2-Wasserstein distances between the empirical and

the mean field measures.

First, to prove existence and uniqueness of the solution (𝜇𝑥,𝑡 , 𝜇𝑦,𝑡 ) in the time interval [0,𝑇 ] for
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arbitrary 𝑇 , we can use the same argument as in the section A.5. Now, instead of (A.38) we have

𝑋̃𝑡 = 𝜉 − 𝛾
∫ 𝑡

0

∫
Y
∇𝑥 ℓ (𝑋̃𝑠, 𝑦) 𝑑𝜇𝑦,𝑠 𝑑𝑠,

𝑤̃𝑥,𝑡 = 1 + 𝛼
∫ 𝑡

0

(
−

∫
ℓ (𝑋̃𝑡 , 𝑦)𝑑𝜇𝑦,𝑡 + L(𝜇𝑥,𝑡 , 𝜇𝑦,𝑡 )

)
𝑤̃𝑥,𝑠 𝑑𝑠,

𝑌̃𝑡 = 𝜉 + 𝛾
∫ 𝑡

0

∫
X
∇𝑦ℓ (𝑥, 𝑌̃𝑠) 𝑑𝜇𝑥,𝑠 𝑑𝑠,

𝑤̃𝑦,𝑡 = 1 + 𝛼
∫ 𝑡

0

(∫
ℓ (𝑥, 𝑌̃𝑡 )𝑑𝜇𝑥,𝑡 − L(𝜇𝑥,𝑡 , 𝜇𝑦,𝑡 )

)
𝑤̃𝑦,𝑠 𝑑𝑠,

𝜇𝑥,𝑡 = ℎ𝑥Law(𝑋̃𝑡 , 𝑤̃𝑥,𝑡 ), 𝜇𝑦,𝑡 = ℎ𝑦Law(𝑌̃𝑡 , 𝑤̃𝑦,𝑡 ),

where 𝜉 and 𝜉 are arbitrary random variables with laws 𝜇𝑥,0, 𝜇𝑦,0 respectively. For 𝑥, 𝑥′ ∈ X,

𝑟, 𝑟 ′ ∈ R+, 𝜇𝑥 , 𝜇′𝑥 ∈ P(X), 𝜇𝑦, 𝜇′𝑦 ∈ P(Y), notice that using an argument similar to (A.39) the

following bound holds���� (−∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦 + L(𝜇𝑥 , 𝜇𝑦)

)
𝑤 −

(
−

∫
ℓ (𝑥′, 𝑦)𝑑𝜇′𝑦 + L(𝜇′𝑥 , 𝜇′𝑦)

)
𝑤 ′

����
≤ 2𝑀 |𝑤 −𝑤 ′| + |𝑤 ′|𝐿̃( |𝑥 − 𝑥′| + 3W1(𝜈, 𝜇)) ≤ 2𝑀 |𝑤 −𝑤 ′| + |𝑤 ′|𝐿̃( |𝑥 − 𝑥′| + 3W2(𝜇𝑦, 𝜇′𝑦))

=⇒
���� (−∫

ℓ (𝑥,𝑦)𝑑𝜇𝑦 + L(𝜇𝑥 , 𝜇𝑦)
)
𝑟 −

(
−

∫
ℓ (𝑥′, 𝑦)𝑑𝜇′𝑦 + L(𝜇′𝑥 , 𝜇′𝑦)

)
𝑟 ′
����2

≤ 12𝑀2 |𝑤 −𝑤 ′|2 + 3|𝑤 ′|2𝐿̃2( |𝑥 − 𝑥′|2 + 9W2
2 (𝜇𝑦, 𝜇′𝑦))

Recall that 𝑀 is a bound on the absolute value of ℓ and 𝐿̃ is the Lipschitz constant of the loss ℓ .

A simple application of Gronwall’s inequality shows |𝑤̃𝑥,𝑡 | is bounded by 𝑒2𝑀𝑇 for all 𝑡 ∈ [0,𝑇 ].
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Hence, we can write

E[∥𝑋 𝜇𝑦 − 𝑋 𝜇′𝑦 ∥2𝑡 + ∥𝑤
𝜇𝑦
𝑥 −𝑤

𝜇′𝑦
𝑥 ∥2𝑡 ] ≤ 𝛾2𝑡E

[ ∫ 𝑡

0

����∇𝑥 ∫
ℓ (𝑋 𝜇𝑦

𝑠 , 𝑦)𝑑𝜇𝑦,𝑠 − ∇𝑥
∫

ℓ (𝑋 𝜇′𝑦
𝑠 , 𝑦)𝑑𝜇′𝑦,𝑠

����2 𝑑𝑠]
+𝛼2𝑡E

[ ∫ 𝑡

0

���� (−∫
ℓ (𝑋 𝜇𝑦

𝑠 , 𝑦)𝑑𝜇𝑦 + L(𝜇𝑥 , 𝜇𝑦)
)
𝑤
𝜇𝑦
𝑥 −

(
−

∫
ℓ (𝑋 𝜇′𝑦

𝑠 , 𝑦)𝑑𝜇′𝑦 + L(𝜇′𝑥 , 𝜇′𝑦)
)
𝑤
𝜇′𝑦
𝑥

����2 𝑑𝑠]
≤ 𝐾𝑡E

[ ∫ 𝑡

0
∥𝑋 𝜇𝑦 − 𝑋 𝜇′𝑦 ∥2𝑠 + ∥𝑤 𝜇𝑦 −𝑤 𝜇′𝑦 ∥2𝑠 𝑑𝑠

]
+ 𝐾′𝑡E

[ ∫ 𝑡

0
W2

2 (𝜇𝑦,𝑠, 𝜇′𝑦,𝑠) 𝑑𝑠
]
,

where 𝐾 = max{12𝛼2𝑀2, 2𝐿2𝛾2 + 3𝐿̃2𝑒4𝑀𝑇𝛼2}, 𝐾′ = 2𝐿2𝛾2 + 27𝐿̃2𝑒4𝑀𝑇𝛼2. Notice that we have used

(A.40) as well. This equation is analogous to equation (A.41), and upon application of Fubini’s

theorem and Gronwall’s inequality it yields

E[∥𝑋 𝜇𝑦 − 𝑋 𝜇′𝑦 ∥2𝑡 + ∥𝑤
𝜇𝑦
𝑥 −𝑤

𝜇′𝑦
𝑥 ∥2𝑡 ] ≤ 𝑇𝐾′ exp(𝑇𝐾)E

[ ∫ 𝑡

0
W2

2 (𝜇𝑦,𝑠, 𝜇′𝑦,𝑠) 𝑑𝑠
]

(A.45)

Now we will prove that

W2
2 (ℎ𝑥𝜈𝑥 , ℎ𝑥𝜈′𝑥 ) ≤ 𝑒4𝑀𝑇W2

2 (𝜈𝑥 , 𝜈′𝑥 ), (A.46)

where 𝜈𝑥 , 𝜈′𝑥 ∈ P(X × [0, 𝑒2𝑀𝑇 ]). Define the homogeneous projection operator ℎ̃ : P((X ×

R+)2) → P(X2) as ∀𝑓 ∈ 𝐶 (X2),

∫
X2
𝑓 (𝑥,𝑦) 𝑑 (ℎ̃𝜋) (𝑥,𝑦) =

∫
(X×[0,𝑒2𝑀𝑇 ])2

𝑤𝑥𝑤𝑦 𝑓 (𝑥,𝑦) 𝑑𝜋 (𝑥,𝑤𝑥 , 𝑦,𝑤𝑦), ∀𝜋 ∈ P((X × R+)2) .
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Let 𝜋 be a coupling between ℎ𝑥𝜈𝑥 , ℎ𝑥𝜈′𝑥 . Then ℎ̃𝜋 is a coupling between ℎ𝑥𝜈𝑥 , ℎ𝑥𝜈′𝑥 and∫
X2
∥𝑥 − 𝑦∥2 𝑑 (ℎ̃𝜋) (𝑥,𝑦) =

∫
(X×[0,𝑒2𝑀𝑇 ])2

𝑤𝑥𝑤𝑦 ∥𝑥 − 𝑦∥2 𝑑𝜋 (𝑥,𝑤𝑥 , 𝑦,𝑤𝑦)

≤ 𝑒4𝑀𝑇
∫
(X×[0,𝑒2𝑀𝑇 ])2

∥𝑥 − 𝑦∥2 𝑑𝜋 (𝑥,𝑤𝑥 , 𝑦,𝑤𝑦)

≤ 𝑒4𝑀𝑇
∫
(X×[0,𝑒2𝑀𝑇 ])2

∥𝑥 − 𝑦∥2 + |𝑤𝑥 −𝑤𝑦 |2 𝑑𝜋 ′(𝑥,𝑤𝑥 , 𝑦,𝑤𝑦)

Taking the infimum with respect to 𝜋 on both sides we obtain the desired inequality.

Let 𝜈𝑥,𝑡 = Law(𝑋 𝜇𝑦
𝑡 ,𝑤

𝜇𝑦
𝑥,𝑡 ), 𝜈′𝑥,𝑡 = Law(𝑋 𝜇′𝑦

𝑡 ,𝑤
𝜇′𝑦
𝑥,𝑡 ) and recall that 𝜇𝑥,𝑡 = ℎ𝑥𝜈𝑥,𝑡 , 𝜇

′
𝑥,𝑡 = ℎ𝑥𝜈

′
𝑥,𝑡 . Given

𝜈𝑦 ∈ P(𝐶 ( [0,𝑇 ],Y × R+)), define Φ𝑥 (𝜈𝑦) = Law(𝑋𝜈𝑦 ,𝑤𝜈𝑦
𝑥 ) ∈ P(𝐶 ( [0,𝑇 ],X)) where we abuse

the notation and use (𝑋𝜈𝑦 ,𝑤𝜈𝑦
𝑥 ) to refer to (𝑋 𝜇𝑦 ,𝑤

𝜇𝑦
𝑥 ). Notice also that

W2
2,𝑡 (Φ𝑥 (𝜈𝑦),Φ𝑥 (𝜈′𝑦)) ≤ E

[
sup
𝑠∈[0,𝑡]

∥𝑋 𝜇𝑦
𝑠 − 𝑋

𝜇′𝑦
𝑠 ∥2 + ∥𝑤

𝜇𝑦
𝑥,𝑠 −𝑤

𝜇′𝑦
𝑥,𝑠 ∥2

]
≤ E[∥𝑋 𝜇𝑦 − 𝑋 𝜇′𝑦 ∥2𝑡 + ∥𝑤

𝜇𝑦
𝑥 −𝑤

𝜇′𝑦
𝑥 ∥2𝑡 ] (A.47)

We use (A.46) and (A.47) on (A.45) to conclude

W2
2,𝑡 (Φ𝑥 (𝜈𝑦),Φ𝑥 (𝜈′𝑦)) ≤ 𝑇𝐾′ exp(𝑇𝐾)E

[ ∫ 𝑡

0
W2

2,𝑠 (𝜈𝑦, 𝜈′𝑦) 𝑑𝑠
]

The rest of the argument is sketched in section A.5.

A.6.3 Propagation of chaos

Following the reasoning in the existence and uniqueness proof, we can write

E[∥𝑋 𝑖 − 𝑋̃ 𝑖 ∥2𝑡 + ∥𝑤 𝑖
𝑥 − 𝑤̃ 𝑖

𝑥 ∥2𝑡 ]

≤ 𝐾𝑡E
[ ∫ 𝑡

0
∥𝑋 𝑖 − 𝑋̃ 𝑖 ∥2𝑠 + ∥𝑤 𝑖

𝑥 − 𝑤̃ 𝑖
𝑥 ∥2𝑠 𝑑𝑠

]
+ 𝐾′𝑡E

[ ∫ 𝑡

0
W2

2 (𝜇𝑛𝑦,𝑠, 𝜇𝑦,𝑠) 𝑑𝑠
]
,
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Hence, we obtain

E[∥𝑋 𝑖 − 𝑋̃ 𝑖 ∥2𝑡 + ∥𝑤 𝑖
𝑥 − 𝑤̃ 𝑖

𝑥 ∥2𝑡 ] ≤ 𝑇𝐾′ exp(𝑇𝐾)E
[ ∫ 𝑡

0
W2

2 (𝜇𝑛𝑦,𝑠, 𝜇𝑦,𝑠) 𝑑𝑠
]

Let 𝜈𝑛𝑥,𝑡 =
1
𝑛

∑𝑛
𝑖=1 𝛿 (𝑋̃ 𝑖𝑡 ,𝑤̃𝑖𝑡 )

∈ P(X ×R+) be the marginal at time 𝑡 of the empirical measure of (A.43).

As in section A.5,

W2
2,𝑡 (𝜈𝑛𝑥 , 𝜈𝑛𝑥 ) ≤

1
𝑛

𝑛∑︁
𝑖=1

sup
𝑠∈[0,𝑡]

∥𝑋 𝑖𝑠 − 𝑋̃ 𝑖𝑠 ∥2 + |𝑤 𝑖
𝑥,𝑠 − 𝑤̃ 𝑖

𝑥,𝑠 |2 ≤
1
𝑛

𝑛∑︁
𝑖=1
∥𝑋 𝑖 − 𝑋̃ 𝑖 ∥2𝑡 + ∥𝑤 𝑖

𝑥 − 𝑤̃ 𝑖
𝑥 ∥2𝑡

which yields

E[W2
2,𝑡 (𝜈𝑛𝑥 , 𝜈𝑛𝑥 )] ≤ 𝑇𝐾′ exp(𝑇𝐾)E

[ ∫ 𝑡

0
W2

2 (𝜇𝑛𝑦,𝑠, 𝜇𝑦,𝑠) 𝑑𝑠
]

≤ 𝑇𝐾′ exp((𝐾 + 4𝑀)𝑇 )E
[ ∫ 𝑡

0
W2

2,𝑠 (𝜈𝑛𝑦 , 𝜈𝑦) 𝑑𝑠
]

The second inequality above follows from inequality (A.46)W2
2 (𝜈𝑛𝑦,𝑠, 𝜈𝑦,𝑠) ≤ W2

2,𝑠 (𝜈𝑛𝑦 , 𝜈𝑦). Now

we use the triangle inequality as in section A.5:

E[W2
2,𝑡 (𝜈𝑛𝑥 , 𝜈𝑥 )] ≤ 2E[W2

2,𝑡 (𝜈𝑛𝑥 , 𝜈𝑛𝑥 )] + 2E[W2
2,𝑡 (𝜈𝑛𝑥 , 𝜈𝑥 )]

≤ 2𝑇𝐾′ exp((𝐾 + 4𝑀)𝑇 )E
[ ∫ 𝑡

0
W2

2,𝑠 (𝜈𝑛𝑦 , 𝜈𝑦) 𝑑𝑠
]
+ 2E[W2

2,𝑡 (𝜈𝑛𝑥 , 𝜈𝑥 )]

If we denote𝐶 := 2𝑇𝐾′ exp((𝐾 +4𝑀)𝑇 ) and we make the same developments for the other player,

we obtain

E[W2
2,𝑡 (𝜈𝑛𝑥 , 𝜈𝑥 ) +W2

2,𝑡 (𝜈𝑛𝑦 , 𝜈𝑦)] ≤ 𝐶E
[ ∫ 𝑡

0
W2

2,𝑠 (𝜈𝑛𝑦 , 𝜈𝑦) +W2
2,𝑠 (𝜈𝑛𝑥 , 𝜈𝑥 ) 𝑑𝑠

]
+ 2E[W2

2,𝑡 (𝜈𝑛𝑥 , 𝜈𝑥 ) +W2
2,𝑡 (𝜈𝑛𝑦 , 𝜈𝑦)]
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From this point on, the proof works as in section A.5.

A.6.4 Convergence of the Nikaido-Isoda error

Corollary A.24. For 𝑡 ∈ [0,𝑇 ], let 𝜇𝑛𝑥,𝑡 = 1
𝑡

∫ 𝑡

0 ℎ𝑥𝜈
𝑛
𝑥,𝑟 𝑑𝑟, 𝜇𝑥,𝑡 =

1
𝑡

∫ 𝑡

0 ℎ𝑥𝜈𝑥,𝑟 𝑑𝑟 and define 𝜇𝑛𝑦,𝑡 , 𝜇𝑦,𝑡

analogously. Then,

E[|NI(𝜇𝑛𝑥,𝑡 , 𝜇𝑛𝑦,𝑡 ) − NI(𝜇𝑥,𝑡 , 𝜇𝑦,𝑡 ) |]
𝑛→∞−−−−→ 0

Proof. Notice that since the integral over time and the homogeneous projection commute, we

have 𝜇𝑛𝑥,𝑡 = ℎ𝑥 ( 1𝑡
∫ 𝑡

0 𝜈
𝑛
𝑥,𝑟 𝑑𝑟 ), 𝜇𝑥,𝑡 = ℎ𝑥 ( 1𝑡

∫ 𝑡

0 𝜈𝑥,𝑟 𝑑𝑟 ). Since
1
𝑡

∫ 𝑡

0 𝜈
𝑛
𝑥,𝑟 𝑑𝑟 and 1

𝑡

∫ 𝑡

0 𝜈𝑥,𝑟 𝑑𝑟 belong to

P(X × [0, 𝑒2𝑀𝑇 ]), (A.46) implies

W2
2

(
ℎ𝑥

(
1
𝑡

∫ 𝑡

0
𝜈𝑛𝑥,𝑟 𝑑𝑟

)
, ℎ𝑥

(
1
𝑡

∫ 𝑡

0
𝜈𝑥,𝑟 𝑑𝑟

))
≤ 𝑒4𝑀𝑇W2

2

(
1
𝑡

∫ 𝑡

0
𝜈𝑛𝑥,𝑟 𝑑𝑟,

1
𝑡

∫ 𝑡

0
𝜈𝑥,𝑟 𝑑𝑟

)
Notice thatW2

2 (
1
𝑡

∫ 𝑡

0 𝜈
𝑛
𝑥,𝑟 𝑑𝑟,

1
𝑡

∫ 𝑡

0 𝜈𝑥,𝑟 𝑑𝑟 ) ≤
1
𝑡

∫ 𝑡

0 W
2
2 (𝜈𝑛𝑥,𝑟 , 𝜈𝑥,𝑟 ) 𝑑𝑟 . Indeed,

W2
2

(
1
𝑡

∫ 𝑡

0
𝜈𝑛𝑥,𝑟 𝑑𝑟,

1
𝑡

∫ 𝑡

0
𝜈𝑥,𝑟 𝑑𝑟

)
= max
𝜓∈Ψ𝑐 (X)

1
𝑡

∫ 𝑡

0

∫
𝜓 𝑑𝜈𝑛𝑥,𝑟 𝑑𝑟 +

1
𝑡

∫ 𝑡

0

∫
𝜓𝑐 𝑑𝜈𝑛𝑥,𝑟 𝑑𝑟

≤ 1
𝑡

∫ 𝑡

0

(
max

𝜓∈Ψ𝑐 (X)

∫
𝜓 𝑑𝜈𝑛𝑥,𝑟 +

∫
𝜓𝑐 𝑑𝜈𝑛𝑥,𝑟

)
𝑑𝑟

=
1
𝑡

∫ 𝑡

0
W2

2 (𝜈𝑛𝑥,𝑟 , 𝜈𝑥,𝑟 ) 𝑑𝑟

Hence, using the inequalityW2
2 (𝜈𝑛𝑥,𝑟 , 𝜈𝑥,𝑟 ) ≤ W2

2 (𝜈𝑛𝑥 , 𝜈𝑥 ):

E

[
W2

2

(
ℎ𝑥

(
1
𝑡

∫ 𝑡

0
𝜈𝑛𝑥,𝑟 𝑑𝑟

)
, ℎ𝑥

(
1
𝑡

∫ 𝑡

0
𝜈𝑥,𝑟 𝑑𝑟

)) ]
≤ 𝑒4𝑀𝑇E

[
1
𝑡

∫ 𝑡

0
W2

2 (𝜈𝑛𝑥,𝑟 , 𝜈𝑥,𝑟 ) 𝑑𝑟
]

≤ 𝑒4𝑀𝑇E[W2
2 (𝜈𝑛𝑥 , 𝜈𝑥 )]

Since the right hand side goes to zero as 𝑛 → ∞ by Theorem A.23, we conclude by applying
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Theorem A.3. □

A.6.5 Hint of the infinitesimal generator approach

Let 𝜓𝑥 : X → R,𝜓𝑦 : Y → R be arbitrary continuously differentiable functions, i.e. 𝜓𝑥 ∈

𝐶1(X,R),𝜓𝑦 ∈ 𝐶1(Y,R). Let us define the operators L (𝑛)𝑥,𝑡 : 𝐶1(X,R) → 𝐶0(X,R),L (𝑛)𝑦,𝑡 :

𝐶1(Y,R) → 𝐶0(Y,R) as

L (𝑛)𝑥,𝑡 𝜓𝑥 (𝑥) = −𝛾∇𝑥
∫

ℓ (𝑥,𝑦)𝑑𝜇𝑛𝑦,𝑡 · ∇𝑥𝜓𝑥 (𝑥) + 𝛼
(
−

∫
ℓ (𝑥,𝑦)𝑑𝜇𝑛𝑦,𝑡 + L(𝜇𝑛𝑥,𝑡 , 𝜇𝑛𝑦,𝑡 )

)
L (𝑛)𝑦,𝑡 𝜓𝑦 (𝑦) = 𝛾∇𝑦

∫
ℓ (𝑥,𝑦)𝑑𝜇𝑛𝑥,𝑡 · ∇𝑦𝜓𝑦 (𝑥) + 𝛼

(∫
ℓ (𝑥,𝑦)𝑑𝜇𝑛𝑥,𝑡 − L(𝜇𝑛𝑥,𝑡 , 𝜇𝑛𝑦,𝑡 )

)
(A.48)

Notice that from (A.43) and (A.48), we have

𝑑

𝑑𝑡

∫
X
𝜓𝑥 (𝑥) 𝑑𝜇𝑛𝑥,𝑡 (𝑥) =

𝑑

𝑑𝑡

∫
X×R+

𝑤𝑥𝜓𝑥 (𝑥) 𝑑𝜈𝑛𝑥,𝑡 (𝑥,𝑤𝑥 ) =
𝑑

𝑑𝑡

𝑛∑︁
𝑖=1

𝑤 𝑖
𝑥,𝑡𝜓𝑥 (𝑋 𝑖𝑡 )

=

𝑛∑︁
𝑖=1

𝑑𝑤 𝑖
𝑥,𝑡

𝑑𝑡
𝜓𝑥 (𝑋 𝑖𝑡 ) +

𝑛∑︁
𝑖=1

𝑤 𝑖
𝑥,𝑡∇𝑥𝜓𝑥 (𝑋 𝑖𝑡 ) ·

𝑑𝑋 𝑖𝑡

𝑑𝑡

=

∫
X×R+

𝑤𝑥L (𝑛)𝑥,𝑡 𝜓𝑥 (𝑥) 𝑑𝜈𝑛𝑥,𝑡 (𝑥,𝑤𝑥 ) =
∫
X
L (𝑛)𝑥,𝑡 𝜓𝑥 (𝑥) 𝑑𝜇𝑛𝑥,𝑡 (𝑥) (A.49)

The analogous equation holds for 𝜇𝑛𝑥,𝑡 :

𝑑

𝑑𝑡

∫
Y
𝜓𝑦 (𝑦) 𝑑𝜇𝑛𝑦,𝑡 (𝑦) =

∫
Y
L (𝑛)𝑦,𝑡 𝜓𝑦 (𝑦) 𝑑𝜇𝑛𝑦,𝑡 (𝑦) (A.50)

Formally taking the limit 𝑛 →∞ on (A.49) and (A.50) yields

𝑑

𝑑𝑡

∫
X
𝜓𝑥 (𝑥) 𝑑𝜇𝑥,𝑡 (𝑥) =

∫
X
L𝑥,𝑡𝜓𝑥 (𝑥) 𝑑𝜇𝑥,𝑡 (𝑥)

𝑑

𝑑𝑡

∫
Y
𝜓𝑦 (𝑦) 𝑑𝜇𝑦,𝑡 (𝑦) =

∫
Y
L𝑦,𝑡𝜓𝑦 (𝑦) 𝑑𝜇𝑦,𝑡 (𝑦),
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where

L𝑥,𝑡𝜓𝑥 (𝑥) = −𝛾∇𝑥
∫

ℓ (𝑥,𝑦)𝑑𝜇𝑦,𝑡 · ∇𝑥𝜓𝑥 (𝑥) + 𝛼
(
−

∫
ℓ (𝑥,𝑦)𝑑𝜇𝑦,𝑡 + L(𝜇𝑥,𝑡 , 𝜇𝑦,𝑡 )

)
L𝑦,𝑡𝜓𝑦 (𝑦) = 𝛾∇𝑦

∫
ℓ (𝑥,𝑦)𝑑𝜇𝑥,𝑡 · ∇𝑦𝜓𝑦 (𝑥) + 𝛼

(∫
ℓ (𝑥,𝑦)𝑑𝜇𝑥,𝑡 − L(𝜇𝑥,𝑡 , 𝜇𝑦,𝑡 )

)
and 𝜇𝑥,0, 𝜇𝑦,0 are set as in (A.43).

To make the limit 𝑛 → ∞ rigorous, an argument analogous to Theorem 2.6 of Chizat and Bach

[2018] would result in almost sure convergence of the 2-Wasserstein distances between the em-

pirical and the mean field measures. In our case almost sure convergence of the squared distance

implies convergence of the expectation of the squared distance through dominated convergence,

and hence the almost sure convergence result is stronger. Nonetheless, such an argument would

require proving uniqueness of the mean field measure PDE through some notion of geodesic

convexity, which is not clear in our case.
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A.7 Auxiliary material

A.7.1 𝜖-Nash eqilibria and the Nikaido-Isoda error

Recall that an 𝜖-NE (𝜇𝑥 , 𝜇𝑦) satisfies ∀𝜇∗𝑥 ∈ P(X), L(𝜇𝑥 , 𝜇𝑦) ≤ L(𝜇∗𝑥 , 𝜇𝑦) + 𝜖 and ∀𝜇∗𝑦 ∈ P(Y),

L(𝜇𝑥 , 𝜇𝑦) ≥ L(𝜇𝑥 , 𝜇∗𝑦) − 𝜖 . That is, each player can improve its value by at most 𝜖 by deviating

from the equilibrium strategy, supposing that the other player is kept fixed.

Recall the Nikaido-Isoda error defined in (2.2). This equation can be rewritten as:

NI(𝜇𝑥 , 𝜇𝑦) = sup
𝜇∗𝑦∈P(Y)

L(𝜇𝑥 , 𝜇∗𝑦) − L(𝜇𝑥 , 𝜇𝑦) + L(𝜇𝑥 , 𝜇𝑦) − inf
𝜇∗𝑥∈P(X)

L(𝜇∗𝑥 , 𝜇𝑦) .

The terms sup𝜇∗𝑦∈P(Y) L(𝜇𝑥 , 𝜇
∗
𝑦)−L(𝜇𝑥 , 𝜇𝑦) > 0measure howmuch player𝑦 can improve its value

by deviating from 𝜇𝑦 while 𝜇𝑥 stays fixed. Analogously, the termsL(𝜇𝑥 , 𝜇𝑦)−inf𝜇∗𝑥∈P(X) L(𝜇∗𝑥 , 𝜇𝑦) >

0 measure how much player 𝑥 can improve its value by deviating from 𝜇𝑥 while 𝜇𝑦 stays fixed.

Notice that

∀𝜇∗𝑥 ∈ P(X), L(𝜇𝑥 , 𝜇𝑦) ≤ L(𝜇∗𝑥 , 𝜇𝑦) + 𝜖 ⇔ L(𝜇𝑥 , 𝜇𝑦) − inf
𝜇∗𝑥∈P(X)

L(𝜇∗𝑥 , 𝜇𝑦) ≤ 𝜖

∀𝜇∗𝑦 ∈ P(Y), L(𝜇𝑥 , 𝜇𝑦) ≥ L(𝜇𝑥 , 𝜇∗𝑦) − 𝜖 ⇔ sup
𝜇∗𝑦∈P(Y)

L(𝜇𝑥 , 𝜇∗𝑦) − L(𝜇𝑥 , 𝜇𝑦) ≤ 𝜖

Thus, an 𝜖-Nash equilibrium (𝜇𝑥 , 𝜇𝑦) fulfills NI(𝜇𝑥 , 𝜇𝑦) ≤ 2𝜖 , and any pair (𝜇𝑥 , 𝜇𝑦) such that

NI(𝜇𝑥 , 𝜇𝑦) ≤ 𝜖 is an 𝜖-Nash equilibrium.

A.7.2 Example: failure of the Interacting Wasserstein Gradient Flow

Let us consider the polynomial 𝑓 (𝑥) = 5𝑥4 + 10𝑥2 − 2𝑥 , which is an asymmetric double well as

shown in Figure A.1.

Let us define the loss ℓ : R × R → R as ℓ (𝑥,𝑦) = 𝑓 (𝑥) − 𝑓 (𝑦). That is, the two players are
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Figure A.1: Plot of the function 𝑓 (𝑥) = 5𝑥4 + 10𝑥2 − 2𝑥 .

non-interacting and hence we obtain 𝑉𝑥 (𝑥, 𝜇𝑦) = 𝑓 (𝑥) + 𝐾 , 𝑉𝑦 (𝑦, 𝜇𝑥 ) = −𝑓 (𝑦) + 𝐾′. This means

that the IWGF in equation (2.6) becomes two independent Wasserstein Gradient Flows

𝜕𝑡𝜇𝑥 = ∇ · (𝜇𝑥 𝑓 ′(𝑥)), 𝜇𝑥 (0) = 𝜇𝑥,0,

𝜕𝑡𝜇𝑦 = −∇ · (𝜇𝑦 𝑓 ′(𝑦)), 𝜇𝑦 (0) = 𝜇𝑦,0.

The particle flows in (2.3) become

𝑑𝑥𝑖

𝑑𝑡
= −𝑓 ′(𝑥𝑖),

𝑑𝑦𝑖

𝑑𝑡
= 𝑓 ′(𝑦𝑖).

That is, the particles of player 𝑥 follow the gradient flow of 𝑓 and the particles of player 𝑦 follow

the gradient flow of −𝑓 . It is clear from Figure A.1 that if the initializations 𝑥0,𝑖, 𝑦0,𝑖 are on the left

of the barrier, they will not end up in the global minimum 𝑓 (resp., the global maximum of −𝑓 ).

And in this case, the pair of measures supported on the global minimum of 𝑓 is the only (pure)

Nash equilibrium.

The game given by ℓ does not fall exactly in the framework that we describe in this work because

ℓ is not defined on compact spaces. However, it is easy to construct very similar continuously
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differentiable functions on compact spaces that display the same behavior.

A.7.3 Link between Interacting Wasserstein Gradient Flow and

interacting particle gradient flows

Recall (2.3):
𝑑𝑥𝑖

𝑑𝑡
= −1

𝑛

𝑛∑︁
𝑗=1
∇𝑥 ℓ (𝑥𝑖, 𝑦 𝑗 ),

𝑑𝑦𝑖

𝑑𝑡
=

1
𝑛

𝑛∑︁
𝑗=1
∇𝑥 ℓ (𝑥 𝑗 , 𝑦𝑖).

Let Φ𝑡 = (Φ𝑥,𝑡 ,Φ𝑦,𝑡 ) : X𝑛×Y𝑛 → X𝑛×Y𝑛 be the flowmapping initial conditions X0 = (𝑥𝑖,0)𝑖∈[1:𝑛],

Y0 = (𝑦𝑖,0)𝑖∈[1:𝑛] to the solution of (2.3). Let 𝜇𝑛𝑥,𝑡 =
1
𝑛

∑𝑛
𝑖=1 𝛿Φ(𝑖 )𝑥,𝑡 (X0,Y0) and 𝜇

𝑛
𝑦,𝑡 =

1
𝑛

∑𝑛
𝑖=1 𝛿Φ(𝑖 )𝑦,𝑡 (X0,Y0) .

For all𝜓𝑥 ∈ C(X),

𝑑

𝑑𝑡

∫
X
𝜓𝑥 (𝑥) 𝑑𝜇𝑛𝑥,𝑡 (𝑥) =

1
𝑛

𝑛∑︁
𝑖=1

𝑑

𝑑𝑡
𝜓𝑥 (Φ(𝑖)𝑥,𝑡 (X0,Y0))

=
1
𝑛

𝑛∑︁
𝑖=1
∇𝑥𝜓𝑥 (Φ(𝑖)𝑥,𝑡 (X0,Y0)) ·

(
−1
𝑛

𝑛∑︁
𝑗=1
∇𝑥 ℓ (Φ(𝑖)𝑥,𝑡 (X0,Y0),Φ( 𝑗)𝑦,𝑡 (X0,Y0))

)
= −1

𝑛

𝑛∑︁
𝑖=1
∇𝑥𝜓𝑥 (Φ(𝑖)𝑥,𝑡 (X0,Y0)) · ∇𝑥𝑉𝑥 (𝜇𝑛𝑦,𝑡 ,Φ

(𝑖)
𝑥,𝑡 (X0,Y0))

= −
∫
X
∇𝑥𝜓𝑥 (𝑥) · ∇𝑥𝑉𝑥 (𝜇𝑛𝑦,𝑡 , 𝑥) 𝑑𝜇𝑛𝑥,𝑡 (𝑥),

which is the first line of (2.6). The second line follows analogously.

A.7.4 Minimax problems and Stackelberg eqilibria

Several machine learning problems, including GANs, are framed as a minimax problem

min
𝑥∈X

max
𝑦∈Y

ℓ (𝑥,𝑦).
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A minimax point (also known as a Stackelberg equilibrium or sequential equilibrium) is a pair

(𝑥,𝑦) at which the minimum and maximum of the problem are attained, i.e.


min𝑥∈X max𝑦∈Y ℓ (𝑥,𝑦) = max𝑦∈Y ℓ (𝑥,𝑦)

max𝑦∈Y ℓ (𝑥,𝑦) = ℓ (𝑥,𝑦)
.

We consider the lifted version of the minimax problem (A.7.4) in the space of probability mea-

sures.

min
𝜇𝑥∈P(X)

max
𝜇𝑦∈P(Y)

L(𝜇𝑥 , 𝜇𝑦). (A.51)

By the generalized Von Neumann’s minimax theorem, a Nash equilibrium of the game given by

L is a solution of the lifted minimax problem (A.51) (see Theorem A.25 in the case 𝜖 = 0).

The converse is not true: minimax points (solutions of (A.51)) are not necessarily mixed Nash

equilibria even in the case where the loss function is convex-concave. An example isL : R×R→

R given by L(𝜇𝑥 , 𝜇𝑦) =
∬
(𝑥2 + 2𝑥𝑦) 𝑑𝜇𝑥 𝑑𝜇𝑦 . LetM be the set of measures 𝜇 ∈ P(R) such that∫

𝑥 𝑑𝜇 = 0. Notice that any pair (𝛿0, 𝜇𝑦) with 𝜇𝑦 ∈ P(R) is a minimax point. That is because

max
𝜇𝑦∈P(R)

L(𝜇𝑥 , 𝜇𝑦) =



+∞ if 𝜇𝑥 ∉M

positive if 𝜇𝑥 ∈ M \ {𝛿0}

0 if 𝜇𝑥 = 𝛿0,

and hence 𝛿0 = arg min𝜇𝑥∈P(R) max𝜇𝑦∈P(R) L(𝜇𝑥 , 𝜇𝑦). But in the case that 𝜇𝑥 = 𝛿0, we obtain that

arg max𝜇𝑦∈P(R) L(𝜇𝑥 , 𝜇𝑦) = P(R), because for all measures 𝜇𝑦 ∈ P(R), L(𝛿0, 𝜇𝑦) = 0. However,

for 𝜇𝑦 ∉M, L(𝜇𝑥 , 𝜇𝑦) as a function of 𝜇𝑥 does not have a minimum at 𝛿0, but at 𝛿− ∫
𝑦 𝑑𝜇𝑦

. Hence,

the only mixed Nash equilibria are of the form (𝛿0, 𝜇𝑦), with 𝜇𝑦 ∈ M.

The intuition behind the counterexample is that minimax points only require the minimizing

player to be non-exploitable, but the maximizing player is only subject to a weaker condition.
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We define a 𝜀-minimax point (or 𝜖-Stackelberg equilibrium) of an objective L(𝜇𝑥 , 𝜇𝑦) as a couple

(𝜇̃𝑥 , 𝜇̃𝑦) such that


min𝜇𝑥∈P(X) max𝜇𝑦∈P(Y) L(𝜇𝑥 , 𝜇𝑦) ≥ max𝜇𝑦∈P(Y) L(𝜇̃𝑥 , 𝜇𝑦) − 𝜀

max𝜇𝑦∈P(Y) L(𝜇̃𝑥 , 𝜇𝑦) ≤ L(𝜇̃𝑥 , 𝜇̃𝑦) + 𝜀
.

Lemma A.25. An 𝜀-Nash equilibrium is a 2𝜀-minimax point, and it holds that

min
𝜇𝑥∈P(X)

max
𝜇𝑦∈P(Y)

L(𝜇𝑥 , 𝜇𝑦) − 𝜖 ≤ L(𝜇𝑥 , 𝜇𝑦) ≤ max
𝜇𝑦∈P(Y)

min
𝜇𝑥∈P(X)

L(𝜇𝑥 , 𝜇𝑦) + 𝜀

Proof. Let (𝜇𝑥 , 𝜇𝑦) be an 𝜀-Nash equilibrium. Notice that max𝜇𝑦∈P(Y) min𝜇𝑥∈P(X) L(𝜇̃𝑥 , 𝜇𝑦) ≤

min𝜇𝑥∈P(X) max𝜇𝑦∈P(Y) L(𝜇̃𝑥 , 𝜇𝑦). Also,

min
𝜇𝑥∈P(X)

max
𝜇𝑦∈P(Y)

L(𝜇𝑥 , 𝜇𝑦) ≤ max
𝜇𝑦∈P(Y)

L(𝜇𝑥 , 𝜇𝑦) ≤ L(𝜇𝑥 , 𝜇𝑦) + 𝜀 ≤ min
𝜇𝑥∈P(X)

L(𝜇𝑥 , 𝜇𝑦) + 2𝜀

≤ max
𝜇𝑦∈P(Y)

min
𝜇𝑥∈P(X)

L(𝜇𝑥 , 𝜇𝑦) + 2𝜀 (A.52)

and this yields the chain of inequalities in the statement of the lemma. Also, the condition

max𝜇𝑦∈P(Y) L(𝜇̃𝑥 , 𝜇𝑦) ≤ L(𝜇̃𝑥 , 𝜇̃𝑦) + 𝜀 of the definition of 𝜀-minimax point follows directly from

the definition of an 𝜖-Nash equilibrium. Using part of (A.52), we get

max
𝜇𝑦∈P(Y)

L(𝜇𝑥 , 𝜇𝑦) − 2𝜖 ≤ max
𝜇𝑦∈P(Y)

min
𝜇𝑥∈P(X)

L(𝜇𝑥 , 𝜇𝑦) ≤ min
𝜇𝑥∈P(X)

max
𝜇𝑦∈P(Y)

L(𝜇̃𝑥 , 𝜇𝑦),

which is the first condition of a 2𝜖-minimax. □

Theorem A.25 provides the link between approximate Nash equilibria and approximate Stackel-

berg equilibria, and it allows to translate our convergence results into minimax problems such as

GANs.
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A.7.5 Itô SDEs on Riemannian manifolds: a parametric approach

We provide a brief summary on how to deal with SDEs on Riemannian manifolds and their cor-

responding Fokker-Planck equations (see Chapter 8 of Chirikjian [2009]). While ODEs have a

straightforward translation into manifolds, the same is not true for SDEs. Recall that the defini-

tions of the gradient and divergence for Riemannian manifolds are

∇ · 𝑋 = |𝑔 |−1/2𝜕𝑖 ( |𝑔 |1/2𝑋 𝑖), (∇𝑓 )𝑖 = 𝑔𝑖 𝑗 𝜕 𝑗 𝑓 ,

where 𝑔𝑖 𝑗 is the metric tensor, 𝑔𝑖 𝑗 = (𝑔𝑖 𝑗 )−1 and |𝑔 | = det(𝑔𝑖 𝑗 ). We use the Einstein convention for

summing repeated indices.

The parametric approach to SDEs inmanifolds is to define the SDE for the variables q = (𝑞1, · · · , 𝑞𝑑)

of a patch of the manifold:

𝑑q = h(q, 𝑡)𝑑𝑡 + 𝐻 (q, 𝑡)𝑑w. (A.53)

The corresponding forward Kolmogorov equation is

𝜕𝑓

𝜕𝑡
+ |𝑔 |−1/2

𝑑∑︁
𝑖=1

𝜕

𝜕𝑞𝑖

(
|𝑔 |1/2ℎ𝑖 𝑓

)
=

1
2
|𝑔 |−1/2

𝑑∑︁
𝑖, 𝑗=1

𝜕2

𝜕𝑞𝑖𝜕𝑞 𝑗

(
|𝑔 |1/2

𝐷∑︁
𝑘=1

𝐻𝑖𝑘𝐻
⊤
𝑘 𝑗
𝑓

)
, (A.54)

which is to be understood in the weak form.

Assume that the manifoldM embedded in R𝐷 . If𝜓 : UR𝑑 ⊆ R𝑑 →U ⊆ M ⊆ R𝐷 is the mapping

corresponding to the patchU and (A.53) is defined onUR𝑑 , let us set 𝐻 (q) = (𝐷𝜓 (q))−1. In this
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case,
∑
𝑘 𝐻𝑖𝑘𝐻

⊤
𝑘 𝑗

=
∑
𝑘 (𝐷𝜓 )−1

𝑖𝑘
((𝐷𝜓 )−1

𝑘 𝑗
)⊤ = 𝑔𝑖 𝑗 (q). Hence, the right hand side of (A.54) becomes

1
2
|𝑔 |−1/2

𝑑∑︁
𝑖, 𝑗=1

𝜕2

𝜕𝑞𝑖𝜕𝑞 𝑗

(
|𝑔 |1/2𝑔𝑖 𝑗 𝑓

)
= |𝑔 |−1/2

𝑑∑︁
𝑖=1

𝜕

𝜕𝑞𝑖

(
|𝑔 |1/2ℎ̃𝑖 𝑓

)
+ 1

2
|𝑔 |−1/2

𝑑∑︁
𝑖, 𝑗=1

𝜕

𝜕𝑞𝑖

(
|𝑔 |1/2𝑔𝑖 𝑗 𝜕

𝜕𝑞 𝑗
𝑓

)
= |𝑔 |−1/2

𝑑∑︁
𝑖=1

𝜕

𝜕𝑞𝑖

(
|𝑔 |1/2ℎ̃𝑖 𝑓

)
+ 1

2
|𝑔 |−1/2

𝑑∑︁
𝑖, 𝑗=1

𝜕

𝜕𝑞𝑖

(
|𝑔 |1/2𝑔𝑖 𝑗 𝜕

𝜕𝑞 𝑗
𝑓

)
= ∇ · (h̃𝑓 ) + 1

2
∇ · ∇𝑓

where

ℎ̃𝑖 (q) =
1
2

𝑑∑︁
𝑗=1

(
|𝑔(q) |−1/2𝑔𝑖 𝑗 (q) 𝜕 |𝐺 (q) |

1/2

𝜕𝑞 𝑗
+ 𝜕𝑔

𝑖 𝑗 (q)
𝜕𝑞 𝑗

)
Hence, we can rewrite (A.54) as

𝜕𝑓

𝜕𝑡
= ∇ · ((−h + h̃) 𝑓 ) + 1

2
∇ · ∇𝑓

For this equation to be a Fokker-Planck equation with potential 𝐸 (i.e. with a Gibbs equilibrium

solution), we need −h + h̃ = ∇𝐸, which implies h = −∇𝐸 + h̃.

We can convert an SDE in parametric form like (A.53) into an SDE on R𝐷 by using Ito’s lemma

on 𝑋 = 𝜓 (q):

𝑑𝑋𝑖 = 𝑑𝜓𝑖 (q) =
(
𝐷𝜓𝑖 (q)h(q) +

1
2
Tr(𝐻 (q, 𝑡)⊤(𝐻𝜓𝑖) (q)𝐻 (q, 𝑡))

)
𝑑𝑡 + 𝐷𝜓𝑖 (q)𝐻 (q, 𝑡)𝑑w(A.55)

If we set 𝐻 (q) = (𝐷𝜓 (q))−1 as before, 𝐷𝜓 (q)𝐻 (q, 𝑡) is the projection onto the tangent space of

the manifold, i.e. 𝐷𝜓 (q)𝐻 (q, 𝑡)𝑣 = Proj𝑇𝜓 (q)𝑀𝑣, ∀𝑣 ∈ R
𝐷 . In the case h = ∇𝐸 + h̃, 𝐷𝜓𝑖 (q)h(q) =

𝐷𝜓𝑖 (q)∇𝐸 (q) +𝐷𝜓𝑖 (q)h̃(q). It is very convenient to abuse the notation and denote 𝐷𝜓 (q)∇𝐸 (q)
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by ∇𝐸 (𝜓 (q)). We also use ĥ(𝜓 (q)) := 𝐷𝜓 (q)h̃(q) + 1
2Tr(((𝐷𝜓 (q))

−1)⊤(𝐻𝜓 ) (q) (𝐷𝜓 (q))−1). Both

definitions are well-defined because the variables are invariant by changes of coordinates. Hence,

under these assumptions (A.55) becomes

𝑑𝑋 = (−∇𝐸 (𝑋 ) + ĥ(𝑋 )) 𝑑𝑡 + Proj𝑇𝑋𝑀 (𝑑w) (A.56)

In short that means that we can treat SDEs on embedded manifolds as SDEs on the ambient space

by projecting the Brownian motions to the tangent space and adding a drift term ĥ that depends

on the geometry of the manifold. Notice that for ODEs on manifolds the additional drift term

does not appear and (A.56) reads simply 𝑑𝑋 = ∇𝐸 (𝑋 )𝑑𝑡 .

Notice that the forward Kolmogorov equation for (A.56) on R𝐷 reads

𝑑

𝑑𝑡

∫
𝑓 (𝑥) 𝑑𝜇𝑡 (𝑥) =

∫
(∇𝐸 (𝑥) − ĥ(𝑥)) ·∇𝑥 𝑓 (𝑥) +

1
2
Tr((Proj𝑇𝑥𝑀 )

⊤𝐻 𝑓 (𝑥)Proj𝑇𝑥𝑀 ) 𝑑𝜇𝑡 (𝑥), (A.57)

for an arbitrary 𝑓 .

119



B | Appendix: Multisample Flow

Matching

B.1 Coupling algorithms

Multisample FM makes use of batch coupling algorithms to construct an implicit joint distribu-

tion satisfying the marginal constraints. While BatchOT coupling is motivated by approximating

the OT map, we consider other lower complexity coupling algorithms which produce coupling

that satisfy some desired property of optimal couplings. In Table B.1 we summarize the runtime

complexities for the different algorithms used in this work. We will now describe in detail the

Stable and Heuristic coupling algorithms.

CondOT BatchOT BatchEOT Stable Heuristic

Runtime Complexity O(1) O(𝑘3) Õ(𝑘2/𝜀) O(𝑘2 log(𝑘)) O(𝑘2 log(𝑘))

Table B.1: Runtime complexities of the different coupling algorithms as a function of the batch size 𝑘 .

B.1.1 Stable couplings

[Wolansky 2020] surveys discrete optimal transport from a stable coupling perspective proving

that stability is a necessary condition for OT couplings. Although stable couplings are not OT,

they are cheaper to compute and are therefore an appealing approach to pursue. For completeness
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we formulate the Gale Shapely Algorithm in our setting in Algorithm 1. The rankings 𝑅0, 𝑅1 hold

the preferences of the samples in {𝑥 (𝑖)0 }𝑘𝑖=1 and {𝑥
(𝑖)
1 }𝑘𝑖=1 respectively. Where 𝑅0(𝑖, 𝑗) is the rank of

𝑥
( 𝑗)
1 in 𝑥 (𝑖)0 ’s preferences and 𝑅1(𝑖, 𝑗) is the rank of 𝑥 ( 𝑗)0 in 𝑥 (𝑖)1 ’s preferences.

B.1.2 Heuristic couplings

The stable coupling is agnostic to the cost of pairing samples and only takes into account the

ranks. Therefore, reassignments during the Gale Shapely algorithms might increase the total cost

although the rankings of assigned samples are improved. We draw inspiration from the cyclic

monotonicity of OT couplings [Villani 2008] and from the marriage with sharing formulation

in [Wolansky 2020] and modify the reassignment condition in the Gale Shapely algorithm (see

Algorithm 2). The modified condition encourages "local" monotonicity between the reassigned

pairs only, reassigning a pair only if the potentially newly assigned pairs have a lower cost.

121



Algorithm 5 Stable Coupling (Gale Shapley)
Result: assignment 𝜎

Data: {𝑥 (𝑖)0 }𝑘𝑖=1 ∼ 𝑞0(𝑥0), {𝑥 (𝑖)1 }𝑘𝑖=1 ∼ 𝑞1(𝑥1), rankings 𝑅0, 𝑅1

8 initialization: 𝜎 empty assignment

while ∃ 𝑖 ∈ [𝑘] s.t. 𝜎 (𝑖) is empty do

9 𝑗 ← first sample in 𝑅0(𝑖, ·) whom 𝑥
(𝑖)
0 has not tried to match with yet

if ∃ 𝑖′ s.t. 𝜎 (𝑖′) = 𝑗 then

10 if 𝑅1( 𝑗, 𝑖) < 𝑅1( 𝑗, 𝑖′) then

11 𝜎 (𝑖′) ← empty

𝜎 (𝑖) ← 𝑗

12 end

13 else

14 𝜎 (𝑖) ← 𝑗

15 end

16 end
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Algorithm 6 Heuristic Coupling
Result: assignment 𝜎

Data: {𝑥 (𝑖)0 }𝑘𝑖=1 ∼ 𝑞0(𝑥0), {𝑥 (𝑖)1 }𝑘𝑖=1 ∼ 𝑞1(𝑥1), rankings 𝑅0, 𝑅1, cost matrix 𝐶

17 initialization: 𝜎 empty assignment

while ∃ 𝑖 ∈ [𝑘] s.t. 𝜎 (𝑖) is empty do

18 𝑗 ← first sample in 𝑅0(𝑖, ·) whom 𝑥
(𝑖)
0 has not tried to match with yet

if ∃ 𝑖′ s.t. 𝜎 (𝑖′) = 𝑗 then

19 𝑗 ′← first sample in 𝑅0(𝑖′, ·) whom 𝑥
(𝑖′)
0 has not tried to match with yet

𝑙 ← second sample in 𝑅0(𝑖, ·) whom 𝑥
(𝑖)
0 has not tried to match with yet

if 𝐶 (𝑖, 𝑗) +𝐶 (𝑖′, 𝑗 ′) < 𝐶 (𝑖, 𝑙) +𝐶 (𝑖′, 𝑗) then

20 𝜎 (𝑖′) ← empty

𝜎 (𝑖) ← 𝑗

21 end

22 else

23 𝜎 (𝑖) ← 𝑗

24 end

25 end
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B.2 Additional tables and figures

B.2.1 Full results on ImageNet data

ImageNet 32×32 ImageNet 64×64
Model NLL FID NFE Var(𝑢𝑡 ) NLL FID NFE Var(𝑢𝑡 )

Ablations†

DDPM [Ho et al. 2020] 3.61 5.72 330 3.27 13.80 323
ScoreSDE [Song et al. 2021b] 3.61 6.84 198 3.30 26.64 365
ScoreFlow [Song et al. 2021a] 3.61 9.53 189 3.34 32.78 554
Flow Matching w/ Diffusion [Lipman et al. 2023] 3.60 6.36 165 3.35 15.11 162
Rectified Flow [Liu et al. 2022] 3.59 5.55 111 3.31 13.02 129
Flow Matching w/ CondOT [Lipman et al. 2023] 3.58 5.04 139 594 3.27 13.93 131 1880

Ours

Multisample Flow Matching w/ StableCoupling 3.59 5.79 148 523 3.27 11.82 132 1782
Multisample Flow Matching w/ HeuristicCoupling 3.58 5.29 133 555 3.26 13.37 110 1816
Multisample Flow Matching w/ BatchEOT 3.58 6.14 132 508 3.26 14.92 141 1736
Multisample Flow Matching w/ BatchOT 3.58 4.68 146 507 3.27 12.37 135 1733

Table B.2: Multisample Flow Matching improves on sample quality and sample efficiency while not

trading off performance at all compared to Flow Matching.
†
Reproduction using the same training hy-

perparameters (architecture, optimizer, training iterations) as our methods.
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Figure B.1: Marginal probability paths. (Top) Batch size 64. (Bottom) Batch size 8.

B.2.2 How batch size affects the marginal probability paths on 2D

checkerboard data

B.2.3 FID vs NFE using midpoint discretization scheme

B.2.4 Comparison of FID vs NFE for baseline methods DDPM and

ScoreSDE

B.2.5 Runtime per iteration is not significantly affected by solving

for couplings

B.2.6 Convergence improves when using larger coupling sizes
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Figure B.2: Sample quality (FID) vs compute cost (NFE); midpoint discretization.

ImageNet32 FID (Euler)
NFE DDPM ScoreSDE BatchOT Stable

Adaptive 5.72 6.84 4.68 5.79
40 19.56 16.96 5.94 7.02
20 63.08 58.02 7.71 8.66
12 152.59 140.95 10.72 11.10
8 232.97 218.66 15.64 14.89
6 275.28 266.76 22.08 19.88
4 362.37 340.17 38.86 33.92

ImageNet32 FID (Midpoint)
NFE DDPM ScoreSDE BatchOT Stable

Adaptive 5.72 6.84 4.68 5.79
40 6.68 6.48 5.09 5.94
20 7.80 8.96 5.98 6.57
12 14.87 16.22 7.18 7.84
8 56.41 56.73 8.73 9.99
6 188.08 168.99 10.71 12.98
4 319.41 279.06 17.28 21.82

Table B.3: Comparing the FID vs. NFE on ImageNet32 for two baselines and two of our methods.

B.3 Generated samples
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ImageNet64 FID (Euler)
NFE DDPM ScoreSDE BatchOT Stable

Adaptive 13.80 26.64 12.37 11.82
40 25.83 44.16 14.79 13.39
20 66.42 82.97 17.06 15.15
12 158.46 141.79 20.94 18.81
8 258.49 210.29 27.56 26.38
6 321.04 262.20 36.17 37.14
4 373.08 335.54 56.75 63.25

ImageNet64 FID (Midpoint)
NFE DDPM ScoreSDE BatchOT Stable

Adaptive 13.80 26.64 12.37 11.82
40 15.3 26.67 14.22 12.97
20 15.05 25.73 16.05 14.76
12 18.91 29.99 18.27 17.60
8 53.15 67.83 20.85 21.36
6 179.79 155.91 24.87 27.15
4 330.53 279.00 38.45 46.08

Table B.4: Comparing the FID vs. NFE on ImageNet64 for two baselines and two of our methods.

ImageNet 32×32 ImageNet 64×64
It./s Rel. increase It./s Rel. increase

CondOT (reference) 1.16 — 1.31 —
BatchOT 1.15 0.8% 1.26 3.9%
Stable 1.15 0.8% 1.26 3.9%

Table B.5: Absolute and relative runtime comparisons between CondOT, BatchOT and Stable matching.

“It./s" denotes the number of iterations per second, and “Rel. increase" is the relative increase with respect

to CondOT. Note that these are on relatively standard batch sizes (refer to section B.5 for exact batch sizes).

B.4 Theorems and proofs

B.4.1 Proof of Lemma 3.1

We need only prove that the marginal probability path interpolates between 𝑞0 and 𝑞1.

𝑝0(𝑥) =
∫

𝑝0(𝑥 |𝑥1)𝑞1(𝑥1)𝑑𝑥1 =

∫
𝑞(𝑥 |𝑥1)𝑞1(𝑥1)𝑑𝑥1 = 𝑞0(𝑥).

Then since 𝑢𝑡 (𝑥 |𝑥1) transports all points 𝑥 ∈ R𝐷 to 𝑥1 at time 𝑡 = 1, we satisfy 𝑝𝑡=1(𝑥 |𝑥1) =

𝛿 (𝑥 − 𝑥1).

𝑝1(𝑥) =
∫

𝑝1(𝑥 |𝑥1)𝑞1(𝑥1)𝑑𝑥 =

∫
𝛿 (𝑥 − 𝑥1)𝑞1(𝑥1)𝑑𝑥1 = 𝑞1(𝑥).
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Figure B.3: Larger couplings sizes (𝑘) for defining the multisample coupling results in faster and more

stable convergence. This is done on the 64-D experiments in subsection 3.6.3. The batch size (number of

samples) for training is kept thestr same and only 𝑘 is varied for solving the couplings.

Theorems 1 and 2 of Lipman et al. [2023] can then be used to prove that (i) the marginal vector

field 𝑢𝑡 (𝑥) transports between 𝑝0 = 𝑞0 and 𝑝1 = 𝑞1, and (ii) the Joint CFM objective has the same

gradient in expectation as the Flow Matching objective and is uniquely minimized by 𝑣𝑡 (𝑥 ;𝜃 ) =

𝑢𝑡 (𝑥).

B.4.2 Proof of Lemma 3.2

Note that

Cov𝑝𝑡 (𝑥1 |𝑥)
(
∇𝜃 ∥𝑣𝑡 (𝑥 ;𝜃 ) − 𝑢𝑡 (𝑥 |𝑥1)∥2

)
= Cov𝑝𝑡 (𝑥1 |𝑥)

(
∇𝜃 ∥𝑣𝑡 (𝑥 ;𝜃 )∥2 − (∇𝜃𝑣𝑡 (𝑥 ;𝜃 ))T𝑢𝑡 (𝑥 |𝑥0, 𝑥1)

)
= (∇𝜃𝑣𝑡 (𝑥 ;𝜃 ))T Cov𝑝𝑡 (𝑥1 |𝑥) (𝑢𝑡 (𝑥 |𝑥1)) (∇𝜃𝑣𝑡 (𝑥 ;𝜃 )) ,

(B.1)

and that

Cov𝑝𝑡 (𝑥1 |𝑥) (𝑢𝑡 (𝑥 |𝑥1)) = E𝑝𝑡 (𝑥1 |𝑥) (𝑢𝑡 (𝑥 |𝑥1) − 𝑢𝑡 (𝑥)) (𝑢𝑡 (𝑥 |𝑥1) − 𝑢𝑡 (𝑥))⊤ . (B.2)
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Figure B.4: Multisample Flow Matching trained with batch optimal couplings produces more consistent

samples across varying NFEs on ImageNet32. From left to right, the NFEs used to generate these samples

are 200, 12, 8, and 6 using a midpoint discretization. Note that both flows on each row start from the same

noise sample.

Here, we used that 𝑢𝑡 (𝑥) = E𝑝𝑡 (𝑥1 |𝑥) [𝑢𝑡 (𝑥 |𝑥1)] by (3.4). If we take the trace on both sides of (B.1),

we get

Tr
[
Cov𝑝𝑡 (𝑥1 |𝑥)

(
∇𝜃 ∥𝑣𝑡 (𝑥 ;𝜃 ) − 𝑢𝑡 (𝑥 |𝑥1)∥2

) ]
=Tr

[
(∇𝜃𝑣𝑡 (𝑥 ;𝜃 ))T Cov𝑝𝑡 (𝑥1 |𝑥) (𝑢𝑡 (𝑥 |𝑥1)) (∇𝜃𝑣𝑡 (𝑥 ;𝜃 ))

]
= Tr

[
Cov𝑝𝑡 (𝑥1 |𝑥) (𝑢𝑡 (𝑥 |𝑥1)) (∇𝜃𝑣𝑡 (𝑥 ;𝜃 )) (∇𝜃𝑣𝑡 (𝑥 ;𝜃 ))

]
= ⟨Cov𝑝𝑡 (𝑥1 |𝑥) (𝑢𝑡 (𝑥 |𝑥1)) , (∇𝜃𝑣𝑡 (𝑥 ;𝜃 )) (∇𝜃𝑣𝑡 (𝑥 ;𝜃 ))T⟩𝐹

≤ ∥Cov𝑝𝑡 (𝑥1 |𝑥) (𝑢𝑡 (𝑥 |𝑥1)) ∥𝐹 ∥ (∇𝜃𝑣𝑡 (𝑥 ;𝜃 )) (∇𝜃𝑣𝑡 (𝑥 ;𝜃 ))T ∥𝐹

≤ E𝑝𝑡 (𝑥1 |𝑥) ∥ (𝑢𝑡 (𝑥 |𝑥1) − 𝑢𝑡 (𝑥)) (𝑢𝑡 (𝑥 |𝑥1) − 𝑢𝑡 (𝑥))⊤ ∥𝐹 ∥ (∇𝜃𝑣𝑡 (𝑥 ;𝜃 )) (∇𝜃𝑣𝑡 (𝑥 ;𝜃 ))⊤ ∥𝐹

= ∥∇𝜃𝑣𝑡 (𝑥 ;𝜃 )∥2E𝑝𝑡 (𝑥1 |𝑥) ∥𝑢𝑡 (𝑥 |𝑥1) − 𝑢𝑡 (𝑥)∥2.
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Figure B.5: Multisample Flow Matching trained with batch optimal couplings produces more consistent

samples across varying NFEs on ImageNet64. From left to right, the NFEs used to generate these samples

are 200, 12, 8, and 6 using a midpoint discretization. Note that both flows on each row start from the same

noise sample.

The second equality holds because Tr(𝐴𝐵) = Tr(𝐵𝐴) when both expressions are well defined,

and the third equality holds by the definition of the Frobenius inner product ⟨·, ·⟩𝐹 . The first

inequality holds by the Cauchy-Schwarz inequality. The second inequality holds by equation

(B.2) and by the triangle inequality. In the last equality we used that for any vector 𝑣 , ∥𝑣𝑣⊤∥𝐹 =

(Tr(𝑣𝑣⊤, 𝑣𝑣⊤))1/2 = ∥𝑣 ∥2. This proves (3.13).
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Figure B.6: Non-curated generated images for ImageNet64 using Multisample Flow Matching with

BatchOT coupling.

To prove (3.14), we write:

E𝑡,𝑝𝑡 (𝑥) [𝜎2
𝑡,𝑥 ]

≤ E𝑡,𝑝𝑡 (𝑥) [∥∇𝜃𝑣𝑡 (𝑥 ;𝜃 )∥2E𝑝𝑡 (𝑥1 |𝑥) ∥𝑢𝑡 (𝑥 |𝑥1) − 𝑢𝑡 (𝑥)∥2]

≤ max
𝑥,𝑡
∥∇𝜃𝑣𝑡 (𝑥 ;𝜃 )∥2 × E𝑡,𝑝𝑡 (𝑥) [E𝑝𝑡 (𝑥1 |𝑥) ∥𝑢𝑡 (𝑥 |𝑥1) − 𝑢𝑡 (𝑥)∥2]

= max
𝑥,𝑡
∥∇𝜃𝑣𝑡 (𝑥 ;𝜃 )∥2 × E𝑡,𝑞(𝑥0,𝑥1) [∥𝑢𝑡 (𝑥𝑡 |𝑥1) − 𝑣𝑡 (𝑥𝑡 ;𝜃 )∥2] ≤ max

𝑡,𝑥
∥∇𝜃𝑣𝑡 (𝑥 ;𝜃 )∥2 × LJCFM

Here, the first inequality holds by (3.13), and the last inequality holds because 𝑢𝑡 (𝑥) is the mini-
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mizer of LJCFM.

B.4.3 Proof of Lemma 3.3

For an arbitrary test function 𝑓 , by the construction of 𝑞 we write

E𝑞(𝑥0,𝑥1) 𝑓 (𝑥0) = E{𝑥 (𝑖 )0 }𝑘𝑖=1∼𝑞0,{𝑥 (𝑖 )1 }𝑘𝑖=1∼𝑞1E𝑞𝑘 (𝑥0,𝑥1) 𝑓 (𝑥0).

Since 𝑞𝑘 has marginal 1
𝑘

∑𝑘
𝑖=1 𝛿 (𝑥0 − 𝑥 (𝑖)0 ) because 𝜋 is a doubly stochastic matrix, we obtain that

E𝑞𝑘 (𝑥0,𝑥1) 𝑓 (𝑥0) = 1
𝑘

∑𝑘
𝑖=1 𝑓 (𝑥

(𝑖)
0 ) and then the right-hand side is equal to

E{𝑥 (𝑖 )0 }𝑘𝑖=1∼𝑞0,{𝑥 (𝑖 )1 }𝑘𝑖=1∼𝑞1

1
𝑘

𝑘∑︁
𝑖=1

𝑓 (𝑥 (𝑖)0 ) = E𝑞0 (𝑥0) 𝑓 (𝑥0),

which proves that the marginal of 𝑞 for 𝑥0 is 𝑞0. The same argument works for the 𝑥1 marginal.

B.4.4 Proof of Theorem 3.4

Notation We begin by recalling and introducing some additional notation. Let 𝑿0 = (𝑥𝑖0)+∞𝑖=1 ,

𝑿1 = (𝑥𝑖1)+∞𝑖=1 be sequences of i.i.d. samples from the distributions 𝑞0 and 𝑞1, and denote by 𝑿𝑘
0 =

(𝑥𝑖0)𝑘𝑖=1,𝑿
𝑘
1 = (𝑥𝑖1)𝑘𝑖=1 the finite sequences containing the initial 𝑘 samples. We denote by 𝑞𝑘0 and 𝑞

𝑘
1

the empirical distributions corresponding to 𝑿𝑘
0 and 𝑿𝑘

1 , i.e. 𝑞
𝑘
0 = 1

𝑘

∑𝑘
𝑖=1 𝛿𝑥𝑖0

, 𝑞𝑘1 = 1
𝑘

∑𝑘
𝑖=1 𝛿𝑥𝑖1

. Let

𝑞𝑘 be the distribution over R𝑑 ×R𝑑 which is output by the matching algorithm; 𝑞𝑘 has marginals

that are equal to 𝑞𝑘0 and 𝑞𝑘1 . Let 𝑞
∗ be the optimal transport plan between 𝑞0 and 𝑞1, and let 𝑞𝑘

be the optimal transport plan between 𝑞𝑘 and 𝑞 under the quadratic cost. Using this additional

notation, we rewrite some of the objects that were defined in the main text in a lengthier, more

precise way:
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(i) The marginal vector field corresponding to sample size 𝑘 :

𝑢𝑘𝑡 (𝑥) = E𝑿𝑘
0

iid∼𝑞0,𝑿𝑘
1

iid∼𝑞1,(𝑥0,𝑥1)∼𝑞𝑘
[𝑥1 − 𝑥0 |𝑥 = 𝑡𝑥1 + (1 − 𝑡)𝑥0], ∀𝑡 ∈ [0, 1] . (B.3)

We made the dependency on 𝑘 explicit, and we used that𝜓𝑡 (𝑥0 |𝑥1) = 𝑡𝑥1 + (1 − 𝑡)𝑥0. Note

that equivalently, we can write 𝑢𝑘𝑡 as the solution of a simple variational problem.

𝑢𝑘𝑡 = arg min
𝑢𝑡

E
𝑿𝑘

0
iid∼𝑞0,𝑿𝑘

1
iid∼𝑞1,(𝑥0,𝑥1)∼𝑞𝑘

∥𝑥1 − 𝑥0 − 𝑢𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2, ∀𝑡 ∈ [0, 1] .(B.4)

(ii) The flow𝜓𝑘𝑡 (𝑥0) corresponding to 𝑢𝑘𝑡 , i.e. the solution of 𝑑𝑥𝑡
𝑑𝑡

= 𝑢𝑘𝑡 (𝑥𝑡 ) with initial condition

𝑥0. We made the dependency on 𝑘 explicit.

(iii) The straightness of the flow𝜓𝑘𝑡 :

𝑆𝑘 = E𝑡∼U(0,1),𝑥0∼𝑞0

[
∥𝑢𝑘𝑡 (𝜓𝑘𝑡 (𝑥0))∥2 − ∥𝜓𝑘1 (𝑥0) − 𝑥0∥2

]
. (B.5)

Assumptions We will use the following three assumptions, which allow us to potentially ex-

tend our result beyond BatchOT:

(A1) The distributions 𝑞0 and 𝑞1 over R𝑑 have bounded supports, i.e. there exists 𝐶 > 0 such

that for any 𝑥 ∈ supp(𝑞0) ∪ supp(𝑞1), ∥𝑥 ∥ ≤ 𝐶 .

(A2) 𝑞0 admits a density and the optimal transport map𝑇 between 𝑞0 and 𝑞1 under the quadratic

cost is continuous.

(A3) We assume that almost surely w.r.t. the draw of 𝑿0 and 𝑿1, 𝑞𝑘 converges weakly to 𝑞 as

𝑘 →∞.

Some comments are in order as to when assumptions (A2), (A3) hold, since they are not directly

verifiable. By the Caffarelli regularity theorem (see Villani [2008], Ch. 12, originally in Caffarelli

[1992]), a sufficient condition for (A2) to hold is the following:
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(A2’)𝑞0 and𝑞1 have a common supportΩwhich is compact and convex, have𝛼-Hölder densities,

and they satisfy the lower bound 𝑞0, 𝑞1 > 𝛾 for some 𝛾 > 0.

Assumption (A3) holds when the matching algorithm is BatchOT, that is, when 𝑞𝑘 is the optimal

transport plan between 𝑞𝑘0 and 𝑞𝑘1 , as shown by the following proposition, which is proven in

App. B.4.4.3.

Proposition B.1. Let 𝑞𝑘 be the optimal transport plan between 𝑞𝑘0 and 𝑞𝑘1 under the quadratic cost

(i.e. the result of Steps [1-3] under BatchOT). We have that almost surely w.r.t. the draws of 𝑿0 and

𝑿1, the sequence (𝑞𝑘)𝑘≥0 converges weakly to 𝑞∗, i.e. assumption (A3) holds.

Proof structure We split the proof of Theorem 3.4 into two parts: in Subsubsec. B.4.4.1 we

prove that the optimal value of the Joint CFM objective (3.12) converges to zero as 𝑘 → ∞.

In Subsubsec. B.4.4.2, we prove that the straightness converges to zero and the transport cost

converges to the optimal transport cost as 𝑘 →∞.

B.4.4.1 Convergence of the optimal value of the CFM objective

Theorem B.2. Suppose that assumptions (A1), (A2) and (A3) hold. We have that

lim
𝑘→∞
E
𝑡∼U(0,1),𝑿𝑘

0
iid∼𝑞0,𝑿𝑘

1
iid∼𝑞1,(𝑥0,𝑥1)∼𝑞𝑘

∥𝑥1 − 𝑥0 − 𝑢𝑘𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2 = 0,

where 𝑢𝑘𝑡 is the marginal vector field as defined in (B.3).

Proof. The transport plan 𝑞∗ satisfies the non-crossing paths property, that is, for each 𝑥 ∈ R𝑑

and 𝑡 ∈ [0, 1], there exists at most one pair (𝑥0, 𝑥1) such that 𝑥 = 𝑡𝑥1 + (1− 𝑡)𝑥0 [Nurbekyan et al.

2020; Villani 2003]. Consequently, when such a pair (𝑥′0, 𝑥′1) exists, we have that the analogue of

the vector field in (B.3) admits a simple expression:

𝑢∗𝑡 (𝑥) := E(𝑥0,𝑥1)∼𝑞∗ [𝑥1 − 𝑥0 |𝑥 = 𝑡𝑥1 + (1 − 𝑡)𝑥0] = 𝑥′1 − 𝑥′0 (B.6)
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This directly implies that

E(𝑥0,𝑥1)∼𝑞∗ ∥𝑥1 − 𝑥0 − 𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2 = 0.

Applying this, we can write

E𝑡∼U(0,1),(𝑥0,𝑥1)∼𝑞𝑘 ∥𝑥1 − 𝑥0 − 𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2

= |E(𝑥0,𝑥1)∼𝑞𝑘 [E𝑡∼U(0,1) ∥𝑥1 − 𝑥0 − 𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2]

− E(𝑥0,𝑥1)∼𝑞∗ [E𝑡∼U(0,1) ∥𝑥1 − 𝑥0 − 𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2] |. (B.7)

Now, define the function 𝑓 : supp(𝑞0) × supp(𝑞1) → R as

𝑓 (𝑥0, 𝑥1) = E𝑡∼U(0,1) ∥𝑥1 − 𝑥0 − 𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2. (B.8)

By Lemma B.3, which holds under (A1) and (A2), we have that 𝑓 is bounded and continuous.

Assumption (A3) states that almost surelyw.r.t. the draws of𝑿0 and𝑿1, themeasure𝑞𝑘 converges

weakly to𝑞∗. We apply the definition ofweak convergence ofmeasures, which implies that almost

surely,

lim
𝑘→∞
E(𝑥0,𝑥1)∼𝑞𝑘 [𝑓 (𝑥0, 𝑥1)] = E(𝑥0,𝑥1)∼𝑞 [𝑓 (𝑥0, 𝑥1)] .

Equivalently, the right-hand side of (B.7) converges to zero as𝑘 tends to infinity. Hence, we obtain

that E𝑡∼U(0,1),(𝑥0,𝑥1)∼𝑞𝑘 ∥𝑥1−𝑥0−𝑢∗𝑡 (𝑡𝑥1 + (1− 𝑡)𝑥0)∥2 → 0 almost surely. Almost sure convergence

implies convergence in probability, which means that

Pr(E𝑡∼U(0,1),(𝑥0,𝑥1)∼𝑞𝑘 ∥𝑥1 − 𝑥0 − 𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2 > 𝜖) 𝑘→∞−−−−→ 0, ∀𝜖 > 0.
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Here, the randomness comes only from drawing the random variables 𝑿𝑘
0 ,𝑿

𝑘
1 . Also, using again

that 𝑓 is bounded, say by the constant 𝐶 > 0, we can write E𝑡∼U(0,1),(𝑥0,𝑥1)∼𝑞𝑘 ∥𝑥1 − 𝑥0 − 𝑢∗𝑡 (𝑡𝑥1 +

(1 − 𝑡)𝑥0)∥2 ≤ 𝐶 , for all 𝑘 ≥ 0. A crude bound yields

E𝑡∼U(0,1),𝑿𝑘
0 ,𝑿

𝑘
1 ,(𝑥0,𝑥1)∼𝑞𝑘 ∥𝑥1 − 𝑥0 − 𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2

≤ 𝜖 +𝐶Pr(E𝑡∼U(0,1),(𝑥0,𝑥1)∼𝑞𝑘 ∥𝑥1 − 𝑥0 − 𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2 > 𝜖).

In this equation and from now, we write 𝑿𝑘
0 ,𝑿

𝑘
1 instead of 𝑿𝑘

0
iid∼ 𝑞0,𝑿𝑘

1
iid∼ 𝑞1 for shortness. We

can take 𝜖 arbitrarily small, and for a given 𝜖 we can make the second term in the right-hand side

arbitrarily small by taking 𝑘 large enough. Hence, we obtain that

lim
𝑘→∞
E𝑡∼U(0,1),𝑿𝑘

0 ,𝑿
𝑘
1 ,(𝑥0,𝑥1)∼𝑞𝑘 ∥𝑥1 − 𝑥0 − 𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2 = 0.

To conclude the proof, we use the variational characterization of 𝑢𝑘𝑡 given in (B.4), which implies

that

E𝑡∼U(0,1),𝑿𝑘
0 ,𝑿

𝑘
1 ,(𝑥0,𝑥1)∼𝑞𝑘 ∥𝑥1 − 𝑥0 − 𝑢𝑘𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2

≤ E𝑡∼U(0,1),𝑿𝑘
0 ,𝑿

𝑘
1 ,(𝑥0,𝑥1)∼𝑞𝑘 ∥𝑥1 − 𝑥0 − 𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2 → 0.

□

Lemma B.3. Let 𝑓 be the function defined in equation (B.8). Suppose that assumptions (A1) and

(A2) hold. Then, 𝑓 is bounded and continuous.

Proof. First, we show that the function 𝑢∗𝑡 defined in equation (B.6) is bounded and continuous

wherever it is defined. It is bounded because 𝑢∗𝑡 (𝑥) = 𝑥′1 − 𝑥′0 for some 𝑥′0 in supp(𝑞0) and 𝑥′1 in

supp(𝑞1), which are both bounded by assumption.

To show that 𝑢∗𝑡 is continuous, we use that 𝑞0 is absolutely continuous and that consequently a
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transport map 𝑇 exists. Moreover, we have that 𝑥′1 = 𝑇 (𝑥′0). Consider the transport map 𝑇𝑡 at

time 𝑡 , defined as 𝑇𝑡 (𝑥) = 𝑡𝑇 (𝑥) + (1 − 𝑡)𝑥 . Thus, we can write that 𝑢∗𝑡 (𝑇𝑡 (𝑥0)) = 𝑇 (𝑥0) − 𝑥0. The

non-crossing paths property implies that𝑇𝑡 is invertible, which means that an inverse𝑇 −1
𝑡 exists.

We can write

𝑢∗𝑡 (𝑥) = 𝑇 (𝑇 −1
𝑡 (𝑥)) −𝑇 −1

𝑡 (𝑥). (B.9)

By assumption (A2), the transport map 𝑇 is continuous, and so is 𝑇𝑡 . It is well-known fact that

if 𝐸, 𝐸′ are metric spaces, 𝐸 is compact, and 𝑓 : 𝐸 → 𝐸′ a continuous bijective function, then

𝑓 −1 : 𝐸′ → 𝐸 is continuous. Thus, 𝑇 −1
𝑡 is also continuous. From equation (B.9), we conclude that

𝑢∗𝑡 is continuous.

The rest of the proof is straightforward: (𝑥1, 𝑥0) ↦→ ∥𝑥1−𝑥0−𝑢∗𝑡 (𝑡𝑥1+ (1−𝑡)𝑥0)∥2 is bounded and

continuous on the bounded supports of 𝑞0 and 𝑞1 for all 𝑡 ∈ [0, 1], and then 𝑓 is also continuous

and bounded since it is an average of continuous bounded functions, applying the dominated

convergence theorem. □

B.4.4.2 Convergence of the straightness and the transport cost

Theorem B.4. Suppose that assumptions (A1) and (A3) hold. Then,

(i) We have that lim𝑘→∞ 𝑆
𝑘 = 0, where 𝑆𝑘 is the straightness defined in (B.5).

(ii) We also have that

E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝑢𝑘𝑡 (𝜓𝑘𝑡 (𝑥0))∥2 ≥ E𝑥0∼𝑞0 ∥𝜓𝑘1 (𝑥0) − 𝑥0∥2 ≥𝑊 2
2 (𝑞0, 𝑞1), (B.10)

lim
𝑘→∞
E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝑢𝑘𝑡 (𝜓𝑘𝑡 (𝑥0))∥2 = lim

𝑘→∞
E𝑥0∼𝑞0 ∥𝜓𝑘1 (𝑥0) − 𝑥0∥2 =𝑊 2

2 (𝑞0, 𝑞1).

Proof. We begin with the proof of (i). We introduce some additional notation. We define the
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quantity 𝑆∗ in analogy with 𝑆𝑘 :

𝑆∗ = E𝑡∼U(0,1),𝑥0∼𝑞0

[
∥𝑢∗𝑡 (𝜓 ∗𝑡 (𝑥0))∥2 − ∥𝜓 ∗1 (𝑥0) − 𝑥0∥2

]
,

and 𝜓 ∗𝑡 (𝑥0) as the solution of the ODE 𝑑𝑥𝑡
𝑑𝑡

= 𝑢∗𝑡 (𝑥𝑡 ). Since the trajectories for the optimal trans-

port vector field are straight lines, we deduce from the alternative expression of the straight-

ness (equation (3.16)) that 𝑆∗ = 0. An alternative way to see this is by the Benamou-Brenier

theorem [Benamou and Brenier 2000], which states that the dynamic optimal transport cost

E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝑢∗𝑡 (𝜓 ∗𝑡 (𝑥0))∥2 is equal to the static optimal transport cost E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝜓 ∗1 (𝑥0) −

𝑥0∥2.

We will first prove that E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝑢𝑘𝑡 (𝜓𝑘𝑡 (𝑥0))∥2 converges to E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝑢∗𝑡 (𝜓 ∗𝑡 (𝑥0))∥2 and

then that E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝜓𝑘1 (𝑥0) − 𝑥0∥2 converges to E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝜓 ∗1 (𝑥0) − 𝑥0∥2.

For given instances of𝑿𝑘
0 and𝑿𝑘

1 , let 𝑞𝑘 be the optimal transport plan between the optimal trans-

port plans 𝑞 and 𝑞𝑘 . In other words, 𝑞𝑘 is a measure over the variables 𝑥0, 𝑥1, 𝑥
′
0, 𝑥
′
1, and is such

that its marginal w.r.t. 𝑥0, 𝑥1 is 𝑞, while its marginal w.r.t. 𝑥′0, 𝑥
′
1 is 𝑞

𝑘 .

That is, we will use that for all 𝑡 ∈ [0, 1], the random variable 𝑡𝑥1 + (1 − 𝑡)𝑥0, with (𝑥0, 𝑥1) ∼ 𝑞𝑘 ,

and 𝑞𝑘 built randomly from 𝑿𝑘
0

iid∼ 𝑞0,𝑿𝑘
1

iid∼ 𝑞1, has the same distribution as the random variable

𝜓𝑘𝑡 (𝑥0), with 𝑥0 ∼ 𝑞0. This is a direct consequence of Lemma 3.1, i.e. the marginal vector field 𝑢𝑡

generates the marginal probability path 𝑝𝑡 . An analogous statement holds for 𝑞, i.e. the random

variable 𝑡𝑥1+ (1−𝑡)𝑥0, with (𝑥0, 𝑥1) ∼ 𝑞, has the same distribution as the random variable𝜓 ∗𝑡 (𝑥0),

with 𝑥0 ∼ 𝑞0. However, in this case it can be obtained immediately by the non-crossing paths

property of the optimal transport plan. Hence,

E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝑢∗𝑡 (𝜓 ∗𝑡 (𝑥0))∥2 = E𝑡∼U(0,1),(𝑥0,𝑥1)∼𝑞 ∥𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2,

E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝑢𝑘𝑡 (𝜓𝑘𝑡 (𝑥0))∥2 = E𝑡∼U(0,1),𝑿𝑘
0 ,𝑿

𝑘
1 ,(𝑥0,𝑥1)∼𝑞𝑘 ∥𝑢

𝑘
𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2.
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Using this and the definition of 𝑞𝑘 , and applying Jensen’s inequality, the Cauchy-Schwarz in-

equality and the triangle inequality, we can write

��E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝑢∗𝑡 (𝜓 ∗𝑡 (𝑥0))∥2 − E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝑢𝑘𝑡 (𝜓𝑘𝑡 (𝑥0))∥2
��

= |E𝑡∼U(0,1),(𝑥0,𝑥1)∼𝑞 ∥𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2 − E𝑡∼U(0,1),𝑿𝑘
0 ,𝑿

𝑘
1 ,(𝑥 ′0,𝑥 ′1)∼𝑞𝑘

∥𝑢𝑘𝑡 (𝑡𝑥′1 + (1 − 𝑡)𝑥′0)∥2 |

=
��E𝑡∼U(0,1),𝑿𝑘

0 ,𝑿
𝑘
1 ,(𝑥0,𝑥1,𝑥

′
0,𝑥
′
1)∼𝑞𝑘

[
∥𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2 − ∥𝑢𝑘𝑡 (𝑡𝑥′1 + (1 − 𝑡)𝑥′0)∥2

] ��
=

��E𝑡∼U(0,1),𝑿𝑘
0 ,𝑿

𝑘
1 ,(𝑥0,𝑥1,𝑥

′
0,𝑥
′
1)∼𝑞𝑘

[
(∥𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥ − ∥𝑢𝑘𝑡 (𝑡𝑥′1 + (1 − 𝑡)𝑥′0)∥)

× (∥𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥ + ∥𝑢𝑘𝑡 (𝑡𝑥′1 + (1 − 𝑡)𝑥′0)∥)
] ��

≤
(
E𝑡∼U(0,1),𝑿𝑘

0 ,𝑿
𝑘
1 ,(𝑥0,𝑥1,𝑥

′
0,𝑥
′
1)∼𝑞𝑘

[
(∥𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥ − ∥𝑢𝑘𝑡 (𝑡𝑥′1 + (1 − 𝑡)𝑥′0)∥)2

] )1/2

×
(
E𝑡∼U(0,1),𝑿𝑘

0 ,𝑿
𝑘
1 ,(𝑥0,𝑥1,𝑥

′
0,𝑥
′
1)∼𝑞𝑘

[
(∥𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥ + ∥𝑢𝑘𝑡 (𝑡𝑥′1 + (1 − 𝑡)𝑥′0)∥)2

] )1/2

≤
(
E𝑡∼U(0,1),𝑿𝑘

0 ,𝑿
𝑘
1 ,(𝑥0,𝑥1,𝑥

′
0,𝑥
′
1)∼𝑞𝑘
∥𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0) − 𝑢𝑘𝑡 (𝑡𝑥′1 + (1 − 𝑡)𝑥′0)∥2

)1/2

×
(
E𝑡∼U(0,1),𝑿𝑘

0 ,𝑿
𝑘
1 ,(𝑥0,𝑥1,𝑥

′
0,𝑥
′
1)∼𝑞𝑘

[
(∥𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥ + ∥𝑢𝑘𝑡 (𝑡𝑥′1 + (1 − 𝑡)𝑥′0)∥)2

] )1/2
.

Remark that the second factor in the right-hand side is bounded because 𝑢∗𝑡 and 𝑢𝑘𝑡 are bounded.

Using Lemma B.5, we obtain that the first factor in the right-hand side tends to zero as 𝑘 grows.

Thus,

��E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝑢∗𝑡 (𝜓 ∗𝑡 (𝑥0))∥2 − E𝑡∼U(0,1),𝑥0∼𝑞𝑘0
∥𝑢𝑘𝑡 (𝜓𝑘𝑡 (𝑥0))∥2

�� 𝑘→∞−−−−→ 0. (B.11)

Now, since E𝑥0∼𝑞0 ∥𝜓 ∗1 (𝑥0) − 𝑥0∥2 is the optimal cost and 𝑆∗ = 0, we write

��E𝑥0∼𝑞0 ∥𝜓 ∗1 (𝑥0) − 𝑥0∥2 − E𝑥0∼𝑞0 ∥𝜓𝑘1 (𝑥0) − 𝑥0∥2
��

= E𝑥0∼𝑞0 ∥𝜓𝑘1 (𝑥0) − 𝑥0∥2 − E𝑥0∼𝑞0 ∥𝜓 ∗1 (𝑥0) − 𝑥0∥2

= E𝑥0∼𝑞0 ∥𝜓𝑘1 (𝑥0) − 𝑥0∥2 − E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝑢∗𝑡 (𝜓 ∗𝑡 (𝑥0))∥2. (B.12)
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Since𝜓𝑘𝑡 is the flow of 𝑢𝑘𝑡 and by Jensen’s inequality, we have that

E𝑥0∼𝑞0 ∥𝜓𝑘1 (𝑥0) − 𝑥0∥2 = E𝑥0∼𝑞0





 ∫ 1

0
𝑢𝑘𝑠 (𝜓𝑘𝑠 (𝑥′0)) 𝑑𝑠





2

≤ E𝑥0∼𝑞0

∫ 1

0
∥𝑢𝑘𝑠 (𝜓𝑘𝑠 (𝑥0))∥2 𝑑𝑠 = E𝑡∼𝑈 (0,1),𝑥0∼𝑞0 ∥𝑢𝑘𝑡 (𝜓𝑘𝑡 (𝑥0))∥2.

Plugging this into (B.12), we get that

��E𝑥0∼𝑞0 ∥𝜓 ∗1 (𝑥0) − 𝑥0∥2 − E𝑥0∼𝑞0 ∥𝜓𝑘1 (𝑥0) − 𝑥0∥2
�� (B.13)

≤ E𝑡∼𝑈 (0,1),𝑥0∼𝑞0 ∥𝑢𝑘𝑡 (𝜓𝑘𝑡 (𝑥0))∥2 − E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝑢∗𝑡 (𝜓 ∗𝑡 (𝑥0))∥2
𝑘→∞−−−−→ 0,

where the limit holds by . Putting together (B.11) and (B.4.4.2), we end upwith 𝑆𝑘 = |𝑆∗−𝑆𝑘 | 𝑘→∞−−−−→

0, which proves (i).

We prove (ii). The first inequality in (B.10) holds because 𝑆𝑘 ≥ 0 since it can be written in a form

analogous to (3.16). The second inequality in (B.10) holds because E𝑥0∼𝑞0 ∥𝜓𝑘1 (𝑥0) − 𝑥0∥2 is the

squared transport cost for the map 𝑥 ↦→ 𝜓𝑘1 (𝑥), which must be at least as large as the optimal

cost. The first equality in (B.10) is a direct consequence of (i). To prove the second equality in

(B.10), we remark that𝑊 2
2 (𝑞0, 𝑞1) = E𝑥0∼𝑞0 ∥𝜓 ∗1 (𝑥0) −𝑥0∥2. Then, equation (B.4.4.2) readily implies

that |E𝑥0∼𝑞𝑘0
∥𝜓𝑘1 (𝑥0) − 𝑥0∥2 −𝑊 2

2 (𝑞0, 𝑞1) |
𝑘→∞−−−−→ 0. □

Lemma B.5. Suppose that assumptions (A1) and (A3) hold. Let 𝑞𝑘 be the optimal transport plan

between the optimal transport plans 𝑞 and 𝑞𝑘 . We have that

lim
𝑘→∞
E
𝑡∼U(0,1),𝑿𝑘

0
iid∼𝑞0,𝑿𝑘

1
iid∼𝑞1,(𝑥0,𝑥1,𝑥

′
0,𝑥
′
1)∼𝑞𝑘

[
∥𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0) − 𝑢𝑘𝑡 (𝑡𝑥′1 + (1 − 𝑡)𝑥′0)∥2

]
= 0
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Proof. For given instances of 𝑿𝑘
0 and 𝑿𝑘

1 , we can write

E𝑡∼U(0,1),(𝑥0,𝑥1,𝑥
′
0,𝑥
′
1)∼𝑞𝑘

[
∥𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0) − 𝑢𝑘𝑡 (𝑡𝑥′1 + (1 − 𝑡)𝑥′0)∥2

]
= E𝑡∼U(0,1),(𝑥0,𝑥1,𝑥

′
0,𝑥
′
1)∼𝑞𝑘

[
∥E𝑥0,𝑥1∼𝑞 [𝑥1 − 𝑥0 |𝑡𝑥1 + (1 − 𝑡)𝑥0 = 𝑡𝑥1 + (1 − 𝑡)𝑥0]

− E𝑥 ′0,𝑥 ′1∼𝑞𝑘 [𝑥
′
1 − 𝑥′0 |𝑡𝑥′1 + (1 − 𝑡)𝑥′0 = 𝑡𝑥′1 + (1 − 𝑡)𝑥′0] ∥2

]
≤ E(𝑥0,𝑥1,𝑥

′
0,𝑥
′
1)∼𝑞𝑘

[

𝑥1 − 𝑥0 − (𝑥′1 − 𝑥′0)


2] ≤ 2E(𝑥0,𝑥1,𝑥

′
0,𝑥
′
1)∼𝑞𝑘

[

𝑥1 − 𝑥′1


2 +



𝑥0 − 𝑥′0


2]

= 2E(𝑥0,𝑥1,𝑥
′
0,𝑥
′
1)∼𝑞𝑘

[

(𝑥0, 𝑥1) − (𝑥′0, 𝑥′1)


2]

= 2𝑊 2
2 (𝑞, 𝑞𝑘)

Assumption (A3) implies that almost surely, 𝑞𝑘 converges to 𝑞 weakly. For distributions on a

bounded domain, weak convergence is equivalent to convergence in the Wasserstein distance

[Villani 2008, Thm. 6.8], and this means that𝑊 2
2 (𝑞, 𝑞𝑘)

𝑘→∞−−−−→ 0 almost surely. Almost sure con-

vergence implies convergence in probability, which means that

Pr(𝑊 2
2 (𝑞, 𝑞𝑘) > 𝜖)

𝑘→∞−−−−→ 0, ∀𝜖 > 0.

Note that𝑊 2
2 (𝑞, 𝑞𝑘) is a bounded random variable because 𝑞 and 𝑞𝑘 have bounded support as

𝑞0, 𝑞1, 𝑞
𝑘
0 and 𝑞𝑘1 have bounded support. Suppose that𝑊 2

2 (𝑞, 𝑞𝑘) is bounded by the constant 𝐶 .

Hence, we can write

E𝑿𝑘
0 ,𝑿

𝑘
1
E𝑡∼U(0,1),(𝑥0,𝑥1,𝑥

′
0,𝑥
′
1)∼𝑞𝑘

[
∥𝑢∗𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0) − 𝑢𝑘𝑡 (𝑡𝑥′1 + (1 − 𝑡)𝑥′0)∥2

]
≤ 2E𝑿𝑘

0 ,𝑿
𝑘
1
𝑊 2

2 (𝑞, 𝑞𝑘) ≤ 2
(
𝜖 +𝐶Pr(𝑊 2

2 (𝑞, 𝑞𝑘) > 𝜖)
)
.

We can take 𝜖 arbitrarily small, and for a given 𝜖 we can make the second term in the right-hand

side arbitrarily small by taking 𝑘 large enough. The final result follows. □
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B.4.4.3 Proof of Proposition B.1

We have that almost surely, the empirical distributions 𝑞𝑘0 , resp. 𝑞
𝑘
1 , converge weakly to 𝑞0, resp.

𝑞1 [Varadarajan 1958]. Hence, we can apply Theorem B.6. Since convergence in distribution of

random variables is equivalent to weak convergence of their laws, and the law of an optimal

coupling is the optimal transport plan, we conclude that (𝑞𝑘)𝑘≥0 converges weakly to 𝑞∗.

Theorem B.6 ([Cuesta-Albertos et al. 1997], Theorem 3.2). Let (𝑃𝑛)𝑛 , (𝑄𝑛)𝑛 , 𝑃 , 𝑄 be probability

measures in P2 (the space of Borel probability measures with bounded second order moment) such

that 𝑃 ≪ 𝜆𝑝 (𝑃 is absolutely continuous with respect to the Lebesguemeasure) and 𝑃𝑛
𝑤−→ 𝑃 ,𝑄𝑛

𝑤−→ 𝑄 ,

where
𝑤−→ denotes weak convergence of probability measures. Let (𝑋𝑛, 𝑌𝑛) be an optimal coupling

between 𝑃𝑛 and 𝑄𝑛 , 𝑛 ∈ N, and (𝑋,𝑌 ) an optimal coupling between 𝑃 and 𝑄 . Then, (𝑋𝑛, 𝑌𝑛)
L−→

(𝑋,𝑌 ), where L−→ denotes convergence of random variables in distribution.

B.4.5 Bounds on the transport cost and monotone convergence

results

The following result shows that for an arbitrary joint distribution 𝑞(𝑥0, 𝑥1), we can upper-bound

the transport cost associated to the marginal vector field 𝑢𝑡 to a quantity that depends only

𝑞(𝑥0, 𝑥1).

Proposition B.7. For an arbitrary joint distribution 𝑞(𝑥0, 𝑥1) with marginals 𝑞0(𝑥0) and 𝑞1(𝑥1), let

𝜓𝑡 be the flow corresponding to the marginal vector field 𝑢𝑡 . We have that

E𝑞0 (𝑥0) ∥𝜓1(𝑥0) − 𝑥0∥2 ≤ E𝑞(𝑥0,𝑥1) ∥𝑥1 − 𝑥0∥2, (B.14)

Proof. We make use of the notation introduced in App. B.4.4. We will rely on the fact that for all

𝑡 ∈ [0, 1], the random variable 𝑡𝑥1 + (1 − 𝑡)𝑥0, with (𝑥0, 𝑥1) ∼ 𝑞 has the same distribution as the

random variable 𝜓𝑡 (𝑥0), with 𝑥0 ∼ 𝑞0. This is a direct consequence of Lemma 3.1. Using that 𝜓𝑡
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is the flow for 𝑢𝑡 and Jensen’s inequality twice, we have that

E𝑥0∼𝑞0 ∥𝜓1(𝑥0) − 𝑥0∥2

= E𝑥0∼𝑞0





 ∫ 1

0
𝑢𝑠 (𝜓𝑠 (𝑥0)) 𝑑𝑠





2
≤ E𝑡∼U(0,1),𝑥0∼𝑞0 ∥𝑢𝑡 (𝜓𝑡 (𝑥0))∥2

= E𝑡∼U(0,1),(𝑥0,𝑥1)∼𝑞 ∥𝑢𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0)∥2

= E𝑡∼U(0,1),(𝑥0,𝑥1)∼𝑞 ∥E(𝑥 ′0,𝑥 ′1)∼𝑞
[
𝑢𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0 |𝑥′0, 𝑥′1) |𝑡𝑥1 + (1 − 𝑡)𝑥0 = 𝑡𝑥

′
1 + (1 − 𝑡)𝑥′0

]
∥2

≤ E𝑡∼U(0,1),(𝑥0,𝑥1)∼𝑞E(𝑥 ′0,𝑥 ′1)∼𝑞
[
∥𝑢𝑡 (𝑡𝑥1 + (1 − 𝑡)𝑥0 |𝑥′0, 𝑥′1)∥2 |𝑡𝑥1 + (1 − 𝑡)𝑥0 = 𝑡𝑥

′
1 + (1 − 𝑡)𝑥′0

]
= E𝑡∼U(0,1),(𝑥0,𝑥1)∼𝑞E(𝑥 ′0,𝑥 ′1)∼𝑞

[
∥𝑥′1 − 𝑥′0∥2 |𝑡𝑥1 + (1 − 𝑡)𝑥0 = 𝑡𝑥

′
1 + (1 − 𝑡)𝑥′0

]
= E𝑡∼U(0,1),(𝑥0,𝑥1)∼𝑞 ∥𝑥1 − 𝑥0∥2

as needed. □

Note that that the statement and proof of this proposition is equivalent to Theorem 3.5 of [Liu

et al. 2022], although the language and notation that we use is different, which is why we though

convenient to include it.

For the case of BatchOT, the following theorem shows that the quantity in the upper bound

of (B.14) is monotonically decreasing in 𝑘 . The combination of Proposition B.7 and Theorem B.8

provides a weak guarantee that for BatchOT, the transport cost should not get much higher when

𝑘 increases.

Theorem B.8. Suppose that Multisample Flow Matching is run with BatchOT. For clarity, we make

the dependency on the sample size 𝑘 explicit and let1 𝑞 (𝑘) (𝑥0, 𝑥1) := 𝑞(𝑥0, 𝑥1), and𝜓𝑘𝑡 (𝑥0) := 𝜓𝑡 (𝑥0).
1Note that here 𝑞 (𝑘 ) := 𝑞 is a marginalized distribution and is different from 𝑞𝑘 defined in Step 3.
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Then, for any 𝑘 ≥ 1, we have that

E𝑞0 (𝑥0) ∥𝜓𝑘1 (𝑥0) − 𝑥0∥2 ≤ E𝑞 (𝑘 ) (𝑥0,𝑥1) ∥𝑥1 − 𝑥0∥2,

E𝑞 (𝑘+1) (𝑥0,𝑥1) ∥𝑥1 − 𝑥0∥2 ≤ E𝑞 (𝑘 ) (𝑥0,𝑥1) ∥𝑥1 − 𝑥0∥2.

Proof. We write

E𝑡∼U(0,1),𝑿𝑘+1
0 ,𝑿𝑘+1

1
E(𝑥0,𝑥1)∼𝑞𝑘+1 ∥𝑥1 − 𝑥0∥2 =

1
𝑘
E𝑡∼U(0,1),𝑿𝑘+1

0 ,𝑿𝑘+1
1

[ 𝑘∑︁
𝑖=1
∥𝑥 (𝑖)1 − 𝑥

(𝜎𝑘+1 (𝑖))
0 ∥2

]
=

1
𝑘

1
𝑘 + 1

E𝑡∼U(0,1),𝑿𝑘+1
0 ,𝑿𝑘+1

1

[ 𝑘+1∑︁
𝑗=1

∑︁
𝑖∈[𝑘+1]\{ 𝑗}

∥𝑥 (𝑖)1 − 𝑥
(𝜎𝑘+1 (𝑖))
0 ∥2

]
≤ 1
𝑘

1
𝑘 + 1

E𝑡∼U(0,1),𝑿𝑘+1
0 ,𝑿𝑘+1

1

[ 𝑘+1∑︁
𝑗=1

∑︁
𝑖∈[𝑘+1]\{ 𝑗}

∥𝑥 (𝑖)1 − 𝑥
(𝜎− 𝑗
𝑘
(𝑖))

0 ∥2
]

= E𝑡∼U(0,1),𝑿𝑘
0 ,𝑿

𝑘
1

[
1
𝑘

𝑘∑︁
𝑗=1
∥𝑥 (𝑖)1 − 𝑥

(𝜎𝑘 (𝑖))
0 ∥2

]
= E𝑡∼U(0,1),𝑿𝑘

0 ,𝑿
𝑘
1
E(𝑥0,𝑥1)∼𝑞𝑘 ∥𝑥1 − 𝑥0∥2.

In the first equality, we used that the optimal transport map between the empirical distributions

𝑞𝑘0 and 𝑞
𝑘
1 can be encoded as a permutation, which we denote by 𝜎𝑘+1. In the inequality, we intro-

duced the notation 𝜎− 𝑗
𝑘

to denote the optimal permutation within {𝑥 (𝑖)0 }𝑖∈[𝑘+1]\{ 𝑗}. The inequality

holds because using the optimality of 𝜎𝑘+1:

𝑘+1∑︁
𝑗=1

∑︁
𝑖∈[𝑘+1]\{ 𝑗}

∥𝑥 (𝑖)1 − 𝑥
(𝜎𝑘+1 (𝑖))
0 ∥2 ≤

𝑘+1∑︁
𝑗=1

∑︁
𝑖∈[𝑘+1]

∥𝑥 (𝑖)1 − 𝑥
(𝜎𝑘+1 (𝑖))
0 ∥2

≤
𝑘+1∑︁
𝑗=1

( ∑︁
𝑖∈[𝑘+1]\{ 𝑗}

∥𝑥 (𝑖)1 − 𝑥
(𝜎− 𝑗
𝑘
(𝑖))

0 ∥2 + ∥𝑥 ( 𝑗)1 − 𝑥
( 𝑗)
0 ∥

2
)
≤

𝑘+1∑︁
𝑗=1

∑︁
𝑖∈[𝑘+1]\{ 𝑗}

∥𝑥 (𝑖)1 − 𝑥
(𝜎− 𝑗
𝑘
(𝑖))

0 ∥2.

□
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B.5 Experimental & evaluation details

ImageNet-32 ImageNet-64

Channels 256 192
Depth 3 3
Channels multiple 1,2,2,2 1,2,3,4
Heads 4 4
Heads Channels 64 64
Attention resolution 4 8
Dropout 0.0 0.1
Batch size / GPU 256 50
GPUs 4 16
Effective Batch size 1024 800
Epochs 350 575
Effective Iterations 438k 957k
Learning Rate 1e-4 1e-4
Learning Rate Scheduler Polynomial Decay Constant
Warmup Steps 20k -

Table B.6: Hyper-parameters used for training each model.

B.5.1 Image datasets

We report the hyper-parameters used in Table B.6. We use the architecture from Dhariwal and

Nichol [2021] but with much lower attention resolution. We use full 32 bit-precision for training

ImageNet-32 and 16-bit mixed precision for training ImageNet-64. All models are trained using

the Adam optimizer with the following parameters: 𝛽1 = 0.9, 𝛽2 = 0.999, weight decay = 0.0, and

𝜖 = 1𝑒−8. All methods we trained using identical architectures, with the same parameters for

the the same number of epochs (see Table B.6 for details), with the exception of Rectified Flow,

which we trained for much longer starting from the fully trained CondOT model. We use either a

constant learning rate schedule or a polynomial decay schedule (see Table B.6). The polynomial

decay learning rate schedule includes a warm-up phase for a specified number of training steps.
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In the warm-up phase, the learning rate is linearly increased from 1𝑒−8 to the peak learning rate

(specified in Table B.6). Once the peak learning rate is achieved, it linearly decays the learning

rate down to 1𝑒−8 until the final training step.

When reporting negative log-likelihood, we dequantize using the standard uniform dequantiza-

tion [Dinh et al. 2016]. We report an importance-weighted estimate using

BPD(𝐾) = − 1
𝐷

log2
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝑡 (𝑥 + 𝑢𝑘), where 𝑢𝑘 ∼ [𝑈 (0, 1)]𝐷 ,

with 𝑥 is in {0, . . . , 255}𝐷 . We solve for 𝑝𝑡 at exactly 𝑡 = 1 with an adaptive step size solver

dopri5 with atol=rtol=1e-5 using the torchdiffeq [Chen 2018] library. We used 𝐾=15 for

ImageNet32 and 𝐾=10 for ImageNet64.

When computing FID, we use the TensorFlow-GAN library https://github.com/tensorflow/

gan.

We run coupling algorithms only within each GPU. We also ran coupling algorithms across all

GPUs (using the “Effective Batch Size”) in preliminary experiments, but did not see noticeable

gains in sample efficiency while obtaining slightly worse performance and sample quality, so we

stuck to the smaller batch sizes for running our coupling algorithms.

For Rectified Flow, we use the finalized FM-CondOT model, generate 50000 noise and sample

pairs, then train using the same FM-CondOT algorithm and hyperparameters on these sampled

pairs. This is equivalent to their 2-Rectified Flow approach [Liu et al. 2022]. For the rectification

process, we train for 300 epochs.

B.5.2 Improved batch optimal couplings

Datasets. We experimented with 3 datasets in dimensions {2, 32, 64} consisting of 50𝐾 samples.

Both 𝑞0 and 𝑞1 were Gaussian mixtures with number of centers described in Table B.7.

Neural Networks Architectures. For B-ST we used stacked blocks of Convex Potential Flows
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[Huang et al. 2020] as an invertible neural network parametrizing the map, which also allowed

us to estimate KL divergence:

KL(𝑞1 | | (𝜓1)♯ 𝑞0) = E𝑥∼𝑞1

[
log𝑞1(𝑥) − log

(
(𝜓1)♯𝑞0

)
(𝑥)

]
.

For B-FM we used a simple MLP with Swish activation. For each dataset we built architectures

with roughly the same number of parameters.

Hyperparameter Search. For each dataset and each costwe swept over learning rates {0.005, 0.001, 0.0005}

and chose the best setting.

2-D 32-D 64-D
𝑞0 #centers 1 50 100
𝑞1 #centers 8 50 100
#params 50K 800K 800K
batch size 128 1024 1024
epochs 100 1000 1000

Table B.7: Hyperparameters for experiments on synthetic datasets.
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C | Appendix: Stochastic Optimal

Control Matching

C.1 Technical assumptions

Throughout our work, we make the same assumptions as [Nüsken and Richter 2021], which are

needed for all the objects considered to be well-defined. Namely, we assume that:

(i) The setU of admissible controls is given by

U = {𝑢 ∈ 𝐶1(R𝑑 × [0,𝑇 ];R𝑑) | ∃𝐶 > 0, ∀(𝑥, 𝑠) ∈ R𝑑 × [0,𝑇 ], 𝑏 (𝑥, 𝑠) ≤ 𝐶 (1 + |𝑥 |)}.

(ii) The coefficients 𝑏 and 𝜎 are continuously differentiable, 𝜎 has bounded first-order spatial

derivatives, and (𝜎𝜎⊤) (𝑥, 𝑠) is positive definite for all (𝑥, 𝑠) ∈ R𝑑 [0,𝑇 ]. Furthermore, there

exist constants 𝐶, 𝑐1, 𝑐2 > 0 such that

∥𝑏 (𝑥, 𝑠)∥ ≤ 𝐶 (1 + ∥𝑥 ∥), (linear growth)

𝑐1∥𝜉 ∥2 ≤ 𝜉⊤(𝜎𝜎⊤) (𝑥, 𝑠)𝜉 ≤ 𝑐2∥𝜉 ∥2, (ellipticity)

for all (𝑥, 𝑠) ∈ R𝑑 × [0,𝑇 ] and 𝜉 ∈ R𝑑 .
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C.2 Proofs of section 4.2

Proof of (4.5) By Itô’s lemma, we have that

𝑉 (𝑋𝑢𝑇 ,𝑇 ) −𝑉 (𝑋
𝑢
𝑡 , 𝑡) =

∫ 𝑇

𝑡

(
𝜕𝑠𝑉 (𝑋𝑢𝑠 , 𝑠) + ⟨𝑏 (𝑋𝑢𝑠 , 𝑠) + 𝜎 (𝑋𝑢𝑠 , 𝑠)𝑢 (𝑋𝑢𝑠 , 𝑠),∇𝑉 (𝑋𝑢𝑠 , 𝑠)⟩

+ 𝜆
2

𝑑∑︁
𝑖, 𝑗=1
(𝜎𝜎⊤)𝑖 𝑗 (𝑋𝑢𝑠 , 𝑠)𝜕𝑥𝑖 𝜕𝑥 𝑗𝑉 (𝑋𝑢𝑠 , 𝑠)

)
d𝑠 + 𝑆𝑢𝑡 ,

where 𝑆𝑢𝑡 =
√
𝜆
∫ 𝑇
𝑡
∇𝑉 (𝑋𝑢𝑠 , 𝑠)⊤𝜎 (𝑋𝑢𝑠 , 𝑠) d𝐵𝑠 . Note that by (4.4),

𝜕𝑠𝑉 (𝑋𝑢𝑠 , 𝑠) + ⟨𝑏 (𝑋𝑢𝑠 , 𝑠) + 𝜎 (𝑋𝑢𝑠 , 𝑠)𝑢 (𝑋𝑢𝑠 , 𝑠),∇𝑉 (𝑋𝑢𝑠 , 𝑠)⟩

+ 𝜆
2

𝑑∑︁
𝑖, 𝑗=1
(𝜎𝜎⊤)𝑖 𝑗 (𝑋𝑢𝑠 , 𝑠)𝜕𝑥𝑖 𝜕𝑥 𝑗𝑉 (𝑋𝑢𝑠 , 𝑠)

=
1
2
∥(𝜎⊤∇𝑉 ) (𝑋𝑢𝑠 , 𝑠)∥2 − 𝑓 (𝑋𝑢𝑠 , 𝑠) + ⟨𝜎 (𝑋𝑢𝑠 , 𝑠)𝑢 (𝑋𝑢𝑠 , 𝑠),∇𝑉 (𝑋𝑢𝑠 , 𝑠)⟩

=
1
2
∥(𝜎⊤∇𝑉 ) (𝑋𝑢𝑠 , 𝑠) + 𝑢 (𝑋𝑢𝑠 , 𝑠)∥2 −

1
2
∥𝑢 (𝑋𝑢𝑠 , 𝑠)∥2 − 𝑓 (𝑋𝑢𝑠 , 𝑠),

and this implies that

𝑔(𝑋𝑢𝑇 ) −𝑉 (𝑋
𝑢
𝑡 , 𝑡) =

∫ 𝑇

𝑡

(1
2
∥(𝜎⊤∇𝑉 ) (𝑋𝑢𝑠 , 𝑠) +𝑢 (𝑋𝑢𝑠 , 𝑠)∥2 −

1
2
∥𝑢 (𝑋𝑢𝑠 , 𝑠)∥2 − 𝑓 (𝑋𝑢𝑠 , 𝑠)

)
d𝑠 + 𝑆𝑢𝑡 (C.1)

Since E[𝑆𝑢𝑡 |𝑋𝑢𝑡 = 𝑥] = 0, rearranging (C.1) and taking the conditional expectation with respect

to 𝑋𝑢𝑡 yields the final result.
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Proof of (4.6)-(4.7) By Itô’s lemma, we have that

𝑑𝑉 (𝑋𝑠, 𝑠) =
(
𝜕𝑠𝑉 (𝑋𝑠, 𝑠) + ⟨𝑏 (𝑋𝑠, 𝑠),∇𝑉 (𝑋𝑠, 𝑠)⟩

+ 𝜆
2

𝑑∑︁
𝑖, 𝑗=1
(𝜎𝜎⊤)𝑖 𝑗 (𝑋𝑠, 𝑠)𝜕𝑥𝑖 𝜕𝑥 𝑗𝑉 (𝑋𝑠, 𝑠)

)
d𝑠 +
√
𝜆∇𝑉 (𝑋𝑢𝑠 , 𝑠)⊤𝜎 (𝑋𝑢𝑠 , 𝑠) d𝐵𝑠, (C.2)

Note that by (4.4),

𝜕𝑠𝑉 (𝑋𝑠, 𝑠) + ⟨𝑏 (𝑋𝑠, 𝑠),∇𝑉 (𝑋𝑠, 𝑠)⟩ +
𝜆

2

𝑑∑︁
𝑖, 𝑗=1
(𝜎𝜎⊤)𝑖 𝑗 (𝑋𝑠, 𝑠)𝜕𝑥𝑖 𝜕𝑥 𝑗𝑉 (𝑋𝑠, 𝑠)

=
1
2
∥(𝜎⊤∇𝑉 ) (𝑋𝑠, 𝑠)∥2 − 𝑓 (𝑋𝑠, 𝑠).

Plugging this into (C.2) concludes the proof.

Proof of (4.8) Since 𝑌𝑠 = 𝑉 (𝑋𝑠, 𝑠) and 𝑍𝑠 = 𝜎⊤(𝑠)∇𝑉 (𝑋𝑠, 𝑠) = −𝑢∗(𝑋𝑠, 𝑠) satisfy (4.7), we have

that

𝑔(𝑋𝑇 ) = 𝑌𝑇 = 𝑌𝑡 −
∫ 𝑇

𝑡

(𝑓 (𝑋𝑠, 𝑠) −
1
2
∥𝑢∗(𝑋𝑠, 𝑠)∥2) d𝑠 −

√
𝜆

∫ 𝑇

𝑡

⟨𝑢∗(𝑋𝑠, 𝑠), d𝐵𝑠⟩.

Hence, recalling the definition of the work functional in (4.10), we have that

W(𝑋, 𝑡) = 𝑌𝑡 +
1
2

∫ 𝑇

𝑡

∥𝑢∗(𝑋𝑠, 𝑠)∥2 d𝑠 −
√
𝜆

∫ 𝑇

𝑡

⟨𝑢∗(𝑋𝑠, 𝑠), d𝐵𝑠⟩. (C.3)

By Novikov’s theorem (Thm. C.1), we have that

E[exp(−𝜆−1W(𝑋, 𝑡)) |𝑋𝑡 ]

= 𝑒−𝜆
−1𝑌𝑡E

[
exp

(
𝜆−1/2

∫ 𝑇

𝑡

⟨𝑢∗(𝑋𝑠, 𝑠), d𝐵𝑠⟩ −
𝜆−1

2

∫ 𝑇

𝑡

∥𝑢∗(𝑋𝑠, 𝑠)∥2 d𝑠
) ��𝑋𝑡 ] = 𝑒−𝜆−1𝑌𝑡 ,

which concludes the proof of (4.8).
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Theorem C.1 (Novikov’s theorem). Let 𝜃𝑠 be a locally-H2 process which is adapted to the natural

filtration of the Brownian motion (𝐵𝑡 )𝑡≥0. Define

𝑍 (𝑡) = exp
( ∫ 𝑡

0
𝜃𝑠 d𝐵𝑠 −

1
2

∫ 𝑡

0
∥𝜃𝑠 ∥2 d𝑠

)
. (C.4)

If for each 𝑡 ≥ 0,

E
[

exp
( ∫ 𝑡

0
∥𝜃𝑠 ∥2 d𝑠

) ]
< +∞,

then for each 𝑡 ≥ 0,

E[𝑍 (𝑡)] = 1. (C.5)

Moreover, the process 𝑍 (𝑡) is a positive martingale, i.e. if (F𝑡 )𝑡≥0 is the filtration associated to the

Brownian motion (𝐵𝑡 )𝑡≥0, then for 𝑡 ≥ 𝑠 , E[𝑍𝑡 |F𝑠] = 𝑍𝑠 .

Theorem C.2 (Girsanov theorem). Let𝑊 = (𝑊𝑡 )𝑡∈[0,𝑇 ] be a standard Wiener process, and let P

be its induced probability measure over𝐶 ( [0,𝑇 ];R𝑑), known as the Wiener measure. Let 𝑍 (𝑡) be as

defined in (C.4) and suppose that the assumptions of Theorem C.1 hold. Let (Ω, F ) be the 𝜎-algebra

associated to 𝐵𝑇 . For any 𝐹 ∈ F , define the measure

Q(𝐹 ) = EP [𝑍 (𝑇 )1𝐹 ] .

Q is a probability measure because of (C.5). Under the probability measure Q, the stochastic process

{𝑊̃ (𝑡)}0≤𝑡≤𝑇 defined as

𝑊̃ (𝑡) =𝑊 (𝑡) −
∫ 𝑡

0
𝜃𝑠 d𝑠
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is a standard Wiener process. That is, for any 𝑛 ≥ 0 and any 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 , the increments

{𝑊̃ (𝑡𝑖+1) − 𝑊̃ (𝑡𝑖)}𝑛−1
𝑖=0 are independent and Q-Gaussian distributed with mean zero and covariance

(𝑡𝑖+1 − 𝑡𝑖)I, which means that for any 𝛼 ∈ R𝑑 , the moment generating function of 𝑊̃ (𝑡𝑖+1) − 𝑊̃ (𝑡𝑖)

with respect to Q is as follows:

EQ [exp(⟨𝛼,𝑊̃ (𝑡𝑖+1) − 𝑊̃ (𝑡𝑖)⟩)]

:= EP
[

exp
(〈
𝛼,𝑊 (𝑡𝑖+1) −

∫ 𝑡𝑖+1

0
𝜃𝑠 d𝑠 −𝑊 (𝑡𝑖) +

∫ 𝑡𝑖

0
𝜃𝑠 d𝑠

〉)
𝑍 (𝑇 )

]
= exp

( (𝑡𝑖+1 − 𝑡𝑖)∥𝛼 ∥2
2

)
.

Corollary C.3 (Girsanov theorem for SDEs). If the two SDEs

d𝑋𝑡 = 𝑏1(𝑋𝑡 , 𝑡) d𝑡 + 𝜎 (𝑋𝑡 , 𝑡) d𝐵𝑡 , 𝑋0 = 𝑥init

𝑑𝑌𝑡 = (𝑏1(𝑌𝑡 , 𝑡) + 𝑏2(𝑌𝑡 , 𝑡)) d𝑡 + 𝜎 (𝑌𝑡 , 𝑡) d𝐵𝑡 , 𝑌0 = 𝑥init

admit unique strong solutions on [0,𝑇 ], then for any bounded continuous functional Φ on𝐶 ( [0,𝑇 ]),

we have that

E[Φ(𝑋 )] = E
[
Φ(𝑌 ) exp

(
−

∫ 𝑇

0
𝜎 (𝑌𝑡 , 𝑡)−1𝑏2(𝑌𝑡 , 𝑡) d𝐵𝑡 −

1
2

∫ 𝑇

0
∥𝜎 (𝑌𝑡 , 𝑡)−1𝑏2(𝑌𝑡 , 𝑡)∥2 d𝑡

) ]
= E

[
Φ(𝑌 ) exp

(
−

∫ 𝑇

0
𝜎 (𝑌𝑡 , 𝑡)−1𝑏2(𝑌𝑡 , 𝑡) 𝑑𝐵̃𝑡 +

1
2

∫ 𝑇

0
∥𝜎 (𝑌𝑡 , 𝑡)−1𝑏2(𝑌𝑡 , 𝑡)∥2 d𝑡

) ]
,

where 𝐵̃𝑡 = 𝐵𝑡 +
∫ 𝑡

0 𝜎 (𝑌𝑠, 𝑠)
−1𝑏2(𝑌𝑠, 𝑠) d𝑠 . More generally, 𝑏1 and 𝑏2 can be random processes that are

adapted to filtration of 𝐵.

Lemma C.4. For an arbitrary 𝑣 ∈ U, let P𝑣 and P be respectively the laws of the SDEs

d𝑋 𝑣𝑡 = (𝑏 (𝑋 𝑣𝑡 , 𝑡) + 𝜎 (𝑡)𝑣 (𝑋 𝑣𝑡 , 𝑡)) d𝑡 +
√
𝜆𝜎 (𝑡)d𝐵𝑡 , 𝑋 𝑣0 ∼ 𝑝0,

d𝑋𝑡 = 𝑏 (𝑋𝑡 , 𝑡) d𝑡 +
√
𝜆𝜎 (𝑡)d𝐵𝑡 , 𝑋0 ∼ 𝑝0.
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We have that

𝑑P

𝑑P𝑣
(𝑋 𝑣 ) = exp

(
− 𝜆−1/2

∫ 𝑇

0
⟨𝑣 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑣𝑡 ⟩ +

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

)
(C.6)

= exp
(
− 𝜆−1/2

∫ 𝑇

0
⟨𝑣 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩ −

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

)
,

𝑑P𝑣

𝑑P
(𝑋 ) = exp

(
𝜆−1/2

∫ 𝑇

0
⟨𝑣 (𝑋𝑡 , 𝑡), d𝐵𝑡 ⟩ −

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋𝑡 , 𝑡)∥2 d𝑡

)
. (C.7)

where 𝐵𝑣𝑡 := 𝐵𝑡 − 𝜆−1/2
∫ 𝑡

0 𝑣 (𝑋
𝑣
𝑠 , 𝑠) d𝑠 . For the optimal control 𝑢∗, we have that

𝑑P

𝑑P𝑢
∗ (𝑋𝑢

∗) = exp
(
𝜆−1 ( −𝑉 (𝑋𝑢∗0 , 0) +W(𝑋𝑢

∗
, 0)

) )
, (C.8)

𝑑P𝑢
∗

𝑑P
(𝑋 ) = exp

(
𝜆−1 (𝑉 (𝑋0, 0) −W(𝑋, 0)

) )
, (C.9)

where the functionalW is defined in (4.10).

Proof. The proof of (C.6)-(C.7) follows directly from Theorem C.3. To prove (C.9), we use that by

(C.3),

W(𝑋, 0) = 𝑉 (𝑋0, 0) +
1
2

∫ 𝑇

0
∥𝑢∗(𝑋𝑠, 𝑠)∥2 d𝑠 −

√
𝜆

∫ 𝑇

0
⟨𝑢∗(𝑋𝑠, 𝑠), d𝐵𝑠⟩, (C.10)

which implies that

𝑑P𝑢
∗

𝑑P
(𝑋 ) = exp

(
𝜆−1/2

∫ 𝑇

0
⟨𝑢∗(𝑋𝑡 , 𝑡), d𝐵𝑡 ⟩ −

𝜆−1

2

∫ 𝑇

0
∥𝑢∗(𝑋𝑡 , 𝑡)∥2 d𝑡

)
= exp

(
𝜆−1 (𝑉 (𝑋0, 0) −W(𝑋, 0)

) )
.

To prove (C.8), we use that since d𝑋𝑢∗𝑡 = 𝑏 (𝑋𝑢∗𝑡 , 𝑡) d𝑡 +
√
𝜆𝜎 (𝑡)d𝐵𝑢∗𝑡 , equation (C.10) holds if we
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replace 𝑋 and 𝐵 by 𝑋𝑢∗ and 𝐵𝑢∗ , which reads

W(𝑋𝑢∗, 0) = 𝑉 (𝑋𝑢∗0 , 0) +
1
2

∫ 𝑇

𝑡

∥𝑢∗(𝑋𝑢∗𝑠 , 𝑠)∥2 d𝑠 −
√
𝜆

∫ 𝑇

𝑡

⟨𝑢∗(𝑋𝑢∗𝑠 , 𝑠), d𝐵𝑣𝑠 ⟩.

Hence,

𝑑P

𝑑P𝑢
∗ (𝑋𝑢

∗) = exp
(
− 𝜆−1/2

∫ 𝑇

0
⟨𝑢∗(𝑋𝑢∗𝑡 , 𝑡), d𝐵𝑢

∗
𝑡 ⟩ +

𝜆−1

2

∫ 𝑇

0
∥𝑢∗(𝑋𝑢∗𝑡 , 𝑡)∥2 d𝑡

)
= exp

(
𝜆−1 ( −𝑉 (𝑋𝑢∗0 , 0) +W(𝑋𝑢

∗
, 0)

) )
.

□

Lemma C.5. The following expression holds:

EP𝑢
[

log
𝑑P𝑢

𝑑P𝑢
∗

]
= 𝜆−1E

[ ∫ 𝑇

0

(1
2
∥𝑢 (𝑋𝑢𝑡 , 𝑡)∥2 + 𝑓 (𝑋𝑢𝑡 , 𝑡)

)
d𝑡 + 𝑔(𝑋𝑢𝑇 ) −𝑉 (𝑋

𝑢
0 , 0)

]
, (C.11)

Proof. To prove (C.11), we write

log
𝑑P𝑢

∗

𝑑P𝑢
(𝑋𝑢) = log

(𝑑P𝑢∗
𝑑P
(𝑋𝑢) 𝑑P

𝑑P𝑢
(𝑋𝑢)

)
= log

𝑑P𝑢
∗

𝑑P
(𝑋𝑢) + log

𝑑P

𝑑P𝑢
(𝑋𝑢)

= 𝜆−1 (𝑉 (𝑋𝑢0 , 0) − ∫ 𝑇

0
𝑓 (𝑋𝑢𝑡 , 𝑡) d𝑡 − 𝑔(𝑋𝑢𝑇 )

)
− 𝜆−1/2

∫ 𝑇

0
⟨𝑢 (𝑋𝑢𝑡 , 𝑡), d𝐵𝑡 ⟩ −

𝜆−1

2

∫ 𝑇

0
∥𝑢 (𝑋𝑢𝑡 , 𝑡)∥2 d𝑡 .

Since EP𝑢
[

log 𝑑P𝑢

𝑑P𝑢
∗
]
= −EP𝑢

[
log 𝑑P𝑢

∗

𝑑P𝑢

]
, and EP𝑢

[ ∫ 𝑇
0 ⟨𝑢 (𝑋

𝑢
𝑡 , 𝑡), d𝐵𝑡 ⟩] = 0, the result follows. □

Proposition C.6. (i) The following two expressions hold for arbitrary controls 𝑢, 𝑣 in the classU of
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admissible controls:

L̃CE(𝑢) = EP𝑢∗
[

log
𝑑P𝑢

∗

𝑑P𝑢
]
= E

[ (
− 𝜆−1/2

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩ − 𝜆−1

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), 𝑣 (𝑋 𝑣𝑡 , 𝑡)⟩ d𝑡 (C.12)

+ 𝜆
−1

2

∫ 𝑇

0
∥𝑢 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡 + 𝜆−1 (𝑉 (𝑋 𝑣0 , 0) −W(𝑋 𝑣 , 0)) )

× exp
(
𝜆−1 (𝑉 (𝑋 𝑣0 , 0) −W(𝑋 𝑣 , 0))
− 𝜆−1/2

∫ 𝑇

0
⟨𝑣 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩ −

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

) ]
,

L̃CE(𝑢) =
𝜆−1

2
E
[ ∫ 𝑇

0
∥𝑢∗(𝑋𝑢∗𝑡 , 𝑡) − 𝑢 (𝑋𝑢

∗
𝑡 , 𝑡)∥2 d𝑡

]
. (C.13)

When 𝑝0 is concentrated at a single point 𝑥init, the terms𝑉 (𝑥init, 0) are constant and can be removed

without modifying the landscape. In other words, L̃CE and LCE are equal up to constant terms and

constant factors.

(ii) When 𝑝0 is a generic probability measure, L̃CE andLCE have different landscapes, andLCE(𝑢) =

EP𝑢∗
[

log 𝑑P𝑢
∗

𝑑P𝑢 exp
(
− 𝜆−1𝑉 (𝑋𝑢∗0 , 0)

) ]
. 𝑢∗ is still the only minimizer of the loss LCE, and for some

constant 𝐾 , we have that

LCE(𝑢, 0) =
𝜆−1

2
E
[ ∫ 𝑇

0
∥𝑢∗(𝑋𝑢∗𝑡 , 𝑡) − 𝑢 (𝑋𝑢

∗
𝑡 , 𝑡)∥2 d𝑡 exp

(
− 𝜆−1𝑉 (𝑋𝑢∗0 , 0)

) ]
+ 𝐾. (C.14)

Proof. We begin with the proof of (i), and prove (C.12) first. Note that by the Girsanov theorem

(Theorem C.2),

EP𝑢∗
[

log
𝑑P𝑢

∗

𝑑P𝑢
(𝑋𝑢∗)

]
= −EP𝑢∗

[
log

𝑑P𝑢

𝑑P𝑢
∗ (𝑋𝑢

∗)
]
= −EP𝑢∗

[
log

𝑑P𝑢

𝑑P
(𝑋𝑢∗) + log

𝑑P

𝑑P𝑢
∗ (𝑋𝑢

∗)
]

= −EP𝑣
[ (

log
𝑑P𝑢

𝑑P
(𝑋 𝑣 ) + log

𝑑P

𝑑P𝑢
∗ (𝑋 𝑣 )

)𝑑P𝑢∗
𝑑P
(𝑋 𝑣 ) 𝑑P

𝑑P𝑣
(𝑋 𝑣 )

]
(C.15)
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Note that by equations (C.7) and (C.9),

log
𝑑P𝑢

𝑑P
(𝑋 𝑣 ) = 𝜆−1/2

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑣𝑡 ⟩ −

𝜆−1

2

∫ 𝑇

0
∥𝑢 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡,

= 𝜆−1/2
∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩ + 𝜆−1

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), 𝑣 (𝑋 𝑣𝑡 , 𝑡)⟩ d𝑡 − 𝜆

−1

2

∫ 𝑇

0
∥𝑢 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡,

log
𝑑P

𝑑P𝑢
∗ (𝑋 𝑣 ) = 𝜆−1 ( −𝑉 (𝑋 𝑣0 , 0) +W(𝑋 𝑣 , 0)) . (C.16)

where 𝐵𝑣𝑡 := 𝐵𝑡 + 𝜆−1/2
∫ 𝑡

0 𝑣 (𝑋
𝑣
𝑠 , 𝑠) d𝑠 . Also,

𝑑P𝑢
∗

𝑑P
(𝑋 𝑣 ) = exp

(
𝜆−1 (𝑉 (𝑋 𝑣0 , 0) −W(𝑋 𝑣 , 0)) ),

𝑑P

𝑑P𝑣
(𝑋 𝑣 ) = exp

(
− 𝜆−1/2

∫ 𝑇

0
⟨𝑣 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩ −

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

)
. (C.17)

If we plug (C.16) and (C.17) into the right-hand side of (C.15), we obtain

EP𝑢∗
[

log
𝑑P𝑢

∗

𝑑P𝑢
(𝑋𝑢∗)

]
= −EP𝑢∗

[
(log

𝑑P𝑢

𝑑P
(𝑋 𝑣 ) + log

𝑑P

𝑑P𝑢
∗ (𝑋 𝑣 ))

𝑑P𝑢
∗

𝑑P
(𝑋 𝑣 ) 𝑑P

𝑑P𝑢
(𝑋 𝑣 )

]
= −E

[ (
𝜆−1/2

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩ + 𝜆−1

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), 𝑣 (𝑋 𝑣𝑡 , 𝑡)⟩ d𝑡

− 𝜆
−1

2

∫ 𝑇

0
∥𝑢 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡 + 𝜆−1 ( −𝑉 (𝑋 𝑣0 , 0) +W(𝑋 𝑣 , 0)) )

× exp
(
𝜆−1 (𝑉 (𝑋 𝑣0 , 0) −W(𝑋 𝑣 , 0)) − 𝜆−1/2

∫ 𝑇

0
⟨𝑣 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩ −

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

) ]
,

which concludes the proof.

To show (C.13), we use that by Theorem C.3,

𝑑P𝑢

𝑑P𝑢
∗ (𝑋𝑢

∗)=exp
(
−𝜆−1/2

∫ 𝑇

0
⟨𝑢∗(𝑋𝑢∗𝑡 , 𝑡)−𝑢 (𝑋𝑢

∗
𝑡 , 𝑡), d𝐵𝑡 ⟩−

𝜆−1

2

∫ 𝑇

0
∥𝑢∗(𝑋𝑢∗𝑡 , 𝑡)−𝑢 (𝑋𝑢

∗
𝑡 , 𝑡)∥2 d𝑡

)
.

156



Hence,

EP𝑢∗
[

log
𝑑P𝑢

∗

𝑑P𝑢
]
= −EP𝑢∗

[
log

𝑑P𝑢

𝑑P𝑢
∗

]
=
𝜆−1

2
E
[ ∫ 𝑇

0
∥𝑢∗(𝑋𝑢∗𝑡 , 𝑡) − 𝑢 (𝑋𝑢

∗
𝑡 , 𝑡)∥2 d𝑡

]
.

Next, we prove (ii). The first instance of 𝑉 (𝑋 𝑣0 , 0) in (C.12) can be removed without modifying

the landscape of the loss. Hence, we are left with

L̄CE(𝑢) = E
[ (
− 𝜆−1/2

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑣𝑡 ⟩ − 𝜆−1

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), 𝑣 (𝑋 𝑣𝑡 , 𝑡)⟩ d𝑡 (C.18)

+ 𝜆
−1

2

∫ 𝑇

0
∥𝑢 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡 − 𝜆−1W(𝑋 𝑣 , 0)

)
× exp

(
𝜆−1 (𝑉 (𝑋 𝑣0 , 0)−W(𝑋 𝑣 , 0))−𝜆−1/2

∫ 𝑇

0
⟨𝑣 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩−

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

) ]

And this can be expressed as

L̄CE(𝑢) = E
[
𝑔(𝑢;𝑋 𝑣0 ) exp

(
𝜆−1𝑉 (𝑋 𝑣0 , 0)

) ]
,

where

𝑔(𝑢;𝑥) = E
[ (
− 𝜆−1/2

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑣𝑡 ⟩ − 𝜆−1

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), 𝑣 (𝑋 𝑣𝑡 , 𝑡)⟩ d𝑡

+ 𝜆
−1

2

∫ 𝑇

0
∥𝑢 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡 − 𝜆−1W(𝑋 𝑣 , 0)

)
× exp

(
− 𝜆−1W(𝑋 𝑣 , 0)−𝜆−1/2

∫ 𝑇

0
⟨𝑣 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩−

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

)
|𝑋 𝑣0 = 𝑥

]
.

If we consider 𝑔(𝑢;𝑥) as a loss function for 𝑢, note that it is equivalent to the loss 𝐿CE(𝑢) equa-

tion in (C.18) for the choice 𝑝0 = 𝛿𝑥 , i.e., 𝑝0 concentrated at 𝑥 . Since the optimal control 𝑢∗ is

independent of the starting distribution 𝑝0, we deduce that 𝑢∗ is the unique minimizer of 𝑔(𝑢;𝑥),
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for all 𝑥 ∈ R𝑑 . In consequence, 𝑢∗ is the unique minimizer of LCE(𝑢) = E[𝑔(𝑢;𝑋 𝑣0 )].

To prove (C.14), note that up to a constant term, the only difference between L̄CE(𝑢) and LCE(𝑢)

is the expectation is reweighted importance weight exp
(
− 𝜆−1𝑉 (𝑋 𝑣0 , 0)

)
. □

Lemma C.7. (i) We can rewrite

L̃Var𝑣 (𝑢) = Var
(
exp

(
𝑌̃
𝑢,𝑣

𝑇
− 𝜆−1𝑔(𝑋 𝑣𝑇 ) + 𝜆

−1𝑉 (𝑋 𝑣0 , 0)
) )
,

L̃log
Var𝑣 (𝑢) = Var

(
𝑌̃
𝑢,𝑣

𝑇
− 𝜆−1𝑔(𝑋 𝑣𝑇 ) + 𝜆

−1𝑉 (𝑋 𝑣0 , 0)
)
.

When 𝑝0 is concentrated at 𝑥init, the terms 𝑉 (𝑥init, 0) are constants and can be removed without

modifying the landscape. In other words, L̃Var𝑣 and L̃
log
Var𝑣 are equal to LVar𝑣 and L

log
Var𝑣 up to a

constant term and a constant factor, respectively.

(ii) When 𝑝0 is general, L̃Var𝑣 and LVar𝑣 have a different landscape, and the optimum of LVar𝑣 may

be different from 𝑢∗. A related loss that does preserve the optimum is:

L̄Var𝑣 (𝑢) = E[VarP𝑣 (
𝑑P𝑢

∗

𝑑P𝑢
(𝑋 𝑣 ) |𝑋 𝑣0 ) exp(−𝜆−1𝑉 (𝑋 𝑣0 , 0))]

= E[Var
(
exp(𝑌̃𝑢,𝑣

𝑇
− 𝜆−1𝑔(𝑋 𝑣𝑇 )) |𝑋

𝑣
0
)
] .

In practice, this is implemented by sampling the𝑚 trajectories in one batch starting at the same point

𝑋 𝑣0 .

(iii) Also, L̃log
Var𝑣 and L

log
Var𝑣 have a different landscape, and the optimum of Llog

Var𝑣 may be different

from𝑢∗. In particular, Llog
Var𝑣 (𝑢) = VarP𝑣 (log 𝑑P𝑢

∗

𝑑P𝑢 (𝑋
𝑣 ) exp(−𝜆−1𝑉 (𝑋 𝑣0 , 0))). A loss that does preserve

the optimum 𝑢∗ is

L̄log
Var𝑣 (𝑢) = E[VarP𝑣 (log

𝑑P𝑢
∗

𝑑P𝑢
(𝑋 𝑣 ) |𝑋 𝑣0 ) exp(−𝜆−1𝑉 (𝑋 𝑣0 , 0))]

= E[Var
(
𝑌̃
𝑢,𝑣

𝑇
− 𝜆−1𝑔(𝑋 𝑣𝑇 ) |𝑋

𝑣
0
)
] .
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Proof. Using (C.9) and (C.6), we have that

𝑑P𝑢
∗

𝑑P
(𝑋 𝑣 ) = exp

(
𝜆−1 (𝑉 (𝑋 𝑣0 , 0) −W(𝑋 𝑣 , 0)) ),

𝑑P

𝑑P𝑢
(𝑋 𝑣 ) = exp

(
− 𝜆−1/2

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑣𝑡 ⟩ +

𝜆−1

2

∫ 𝑇

0
∥𝑢 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

)
= exp

(
− 𝜆−1/2

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩ − 𝜆−1

∫ 𝑇

0
⟨𝑢 (𝑋 𝑣𝑡 , 𝑡), 𝑣 (𝑋 𝑣𝑡 , 𝑡)⟩ d𝑡

+ 𝜆
−1

2

∫ 𝑇

0
∥𝑢 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

)
.

Hence,

log
𝑑P𝑢

∗

𝑑P𝑢
(𝑋 𝑣 ) = log

𝑑P𝑢
∗

𝑑P
(𝑋 𝑣 ) + log

𝑑P

𝑑P𝑢
(𝑋 𝑣 ) = 𝑌̃𝑢,𝑣

𝑇
− 𝜆−1𝑔(𝑋 𝑣𝑇 ) + 𝜆

−1𝑉 (𝑋 𝑣0 , 0).

Since L̃Var𝑣 (𝑢) = VarP𝑣 (𝑑P
𝑢∗

𝑑P𝑢 ) and L̃
log
Var𝑣 (𝑢) = VarP𝑣 (log 𝑑P𝑢

∗

𝑑P𝑢 ), this concludes the proof of (i).

To prove (ii), note that for general 𝑝0, 𝑉 (𝑋 𝑣0 , 0) is no longer a constant, but it is if we condition

on 𝑋 𝑣0 . The proof of (iii) is analogous. □

C.3 Proofs of section 4.3

C.3.1 Proof of Theorem 4.3 and Theorem 4.5

We prove Theorem 4.3 and Theorem 4.5 at the same time. Recall that by (4.9), the optimal control

is of the form 𝑢∗(𝑥, 𝑡) = −𝜎 (𝑡)⊤∇𝑉 (𝑥, 𝑡). Consider the loss

L̃(𝑢) = E
[ 1
𝑇

∫ 𝑇

0



𝑢 (𝑋𝑡 , 𝑡) + 𝜎 (𝑡)⊤∇𝑉 (𝑋𝑡 , 𝑡)

2 d𝑡 exp
(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 , 𝑡) d𝑡 − 𝜆−1𝑔(𝑋𝑇 )

) ]
.
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Clearly, the unique optimum of L̃ is −𝜎 (𝑡)⊤∇𝑉 . We can rewrite L̃ as

L̃(𝑢) = E
[ 1
𝑇

∫ 𝑇

0

(

𝑢 (𝑋𝑡 , 𝑡)

2 + 2⟨𝑢 (𝑋𝑡 , 𝑡), 𝜎 (𝑡)⊤∇𝑉 (𝑋𝑡 , 𝑡)⟩ + ∥𝜎 (𝑡)⊤∇𝑉 (𝑋𝑡 , 𝑡)


2) d𝑡 (C.19)

× exp
(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 , 𝑡) d𝑡 − 𝜆−1𝑔(𝑋𝑇 )

) ]
.

Hence, we can express L̃ as a sum of three terms: one involving ∥𝑢 (𝑋𝑡 , 𝑡)∥2, another involv-

ing ⟨𝑢 (𝑋𝑡 , 𝑡), 𝜎 (𝑡)⊤𝑉 (𝑋𝑡 , 𝑡)⟩, and a third one, which is constant with respect to 𝑢, involving

∥∇𝑉 (𝑋𝑡 , 𝑡)∥2. The following lemma provides an alternative expression for the cross term:

Lemma C.8. The following equality holds:

E
[ 1
𝑇

∫ 𝑇

0
⟨𝑢 (𝑋𝑡 , 𝑡), 𝜎 (𝑡)⊤∇𝑉 (𝑋𝑡 , 𝑡)⟩ d𝑡 exp

(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 , 𝑡) d𝑡 − 𝜆−1𝑔(𝑋𝑇 )

) ]
= −𝜆E

[ 1
𝑇

∫ 𝑇

0

〈
𝑢 (𝑋𝑡 , 𝑡), 𝜎 (𝑡)⊤∇𝑥E

[
exp

(
− 𝜆−1

∫ 𝑇

𝑡

𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑔(𝑋𝑇 )
) ��𝑋𝑡 = 𝑥 ]〉 d𝑡

× exp
(
− 𝜆−1

∫ 𝑡

0
𝑓 (𝑋𝑠, 𝑠) d𝑠

) ]
. (C.20)

Proof. Recall the definition ofW(𝑋, 𝑡) in (C.10), which means that

W(𝑋, 0) =W(𝑋, 𝑡) +
∫ 𝑡

0
𝑓 (𝑋𝑠, 𝑠) d𝑠 . (C.21)

Let {F𝑡 }𝑡∈[0,𝑇 ] be the filtration generated by the Brownian motion 𝐵. Then, equation (4.9) implies

that

𝜎 (𝑡)⊤∇𝑉 (𝑋𝑡 , 𝑡) = −
𝜆𝜎 (𝑡)⊤∇𝑥E

[
exp

(
− 𝜆−1W(𝑋, 𝑡)

) ��F𝑡 ]
E
[

exp
(
− 𝜆−1W(𝑋, 𝑡)

) ��F𝑡 ] (C.22)
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We proceed as follows:

E
[ 1
𝑇

∫ 𝑇

0
⟨𝑢 (𝑋𝑡 , 𝑡), 𝜎 (𝑡)⊤∇𝑉 (𝑋𝑡 , 𝑡)⟩ d𝑡 exp

(
− 𝜆−1W(𝑋, 0)

) ]
(i)
= −𝜆E

[ 1
𝑇

∫ 𝑇

0

〈
𝑢 (𝑋𝑡 , 𝑡),

𝜎 (𝑡)⊤∇𝑥E
[

exp
(
− 𝜆−1W(𝑋, 𝑡)

) ��F𝑡 ]
E
[

exp
(
− 𝜆−1W(𝑋, 𝑡)

) ��F𝑡 ] 〉
d𝑡

× E
[

exp
(
− 𝜆−1W(𝑋, 𝑡)

) ��F𝑡 ] exp
(
− 𝜆−1

∫ 𝑡

0
𝑓 (𝑋𝑡 , 𝑡) d𝑡

) ]
= −𝜆E

[ 1
𝑇

∫ 𝑇

0

〈
𝑢 (𝑋𝑡 , 𝑡), 𝜎 (𝑡)⊤∇𝑥E

[
exp

(
− 𝜆−1W(𝑋, 𝑡)

) ��F𝑡 ]〉 d𝑡 exp
(
− 𝜆−1

∫ 𝑡

0
𝑓 (𝑋𝑠, 𝑠) d𝑠

) ]
(ii)
= −𝜆E

[ 1
𝑇

∫ 𝑇

0

〈
𝑢 (𝑋𝑡 , 𝑡), 𝜎 (𝑡)⊤∇𝑥E

[
exp

(
− 𝜆−1W(𝑋, 𝑡)

) ��𝑋𝑡 = 𝑥 ]〉 d𝑡 exp
(
− 𝜆−1

∫ 𝑡

0
𝑓 (𝑋𝑠, 𝑠) d𝑠

) ]
.

Here, (i) holds by equation (C.22), the law of total expectation and equation (C.21), and (ii) holds

by the Markov property of the solution of an SDE. □

The following proposition, whichwe prove in subsection C.3.2, provides an alternative expression

for ∇𝑥E
[

exp
(
− 𝜆−1

∫ 𝑇
𝑡
𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑔(𝑋𝑇 )

) ��𝑋𝑡 = 𝑥
]
. The technique, which is novel and we

denote by path-wise reparamaterization trick, is of independent interest and may be applied in

other settings, as we discuss in section 4.5.

Proposition C.9 (Path-wise reparameterization trick for stochastic optimal control). For each

𝑡 ∈ [0,𝑇 ], let𝑀𝑡 : [𝑡,𝑇 ] → R𝑑×𝑑 be an arbitrary continuously differentiable function matrix-valued

function such that𝑀𝑡 (𝑡) = Id. We have that

∇𝑥E
[

exp
(
− 𝜆−1

∫ 𝑇

𝑡

𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑔(𝑋𝑇 )
) ��𝑋𝑡 = 𝑥 ]

= E
[ (
− 𝜆−1

∫ 𝑇

𝑡

𝑀𝑡 (𝑠)∇𝑥 𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑀𝑡 (𝑇 )∇𝑔(𝑋𝑇 )

+ 𝜆−1/2
∫ 𝑇

𝑡

(𝑀𝑡 (𝑠)∇𝑥𝑏 (𝑋𝑠, 𝑠) − 𝜕𝑠𝑀𝑡 (𝑠)) (𝜎−1)⊤(𝑠)d𝐵𝑠
)

× exp
(
− 𝜆−1

∫ 𝑇

𝑡

𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑔(𝑋𝑇 )
) ��𝑋𝑡 = 𝑥 ] . (4.22)
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Plugging (4.22) into the right-hand side of (C.20), we obtain that

E
[ 1
𝑇

∫ 𝑇

0
⟨𝑢 (𝑋𝑡 , 𝑡), 𝜎 (𝑡)⊤∇𝑉 (𝑋𝑡 , 𝑡)⟩ d𝑡 exp

(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 , 𝑡) d𝑡 − 𝜆−1𝑔(𝑋𝑇 )

) ]
= E

[ 1
𝑇

∫ 𝑇

0

〈
𝑢 (𝑋𝑡 , 𝑡), 𝜎 (𝑡)⊤

( ∫ 𝑇

𝑡

𝑀𝑡 (𝑠)∇𝑥 𝑓 (𝑋𝑠, 𝑠) d𝑠 +𝑀𝑡 (𝑇 )∇𝑔(𝑋𝑇 )

− 𝜆1/2
∫ 𝑇

𝑡

(𝑀𝑡 (𝑠)∇𝑥𝑏 (𝑋𝑠, 𝑠) − 𝜕𝑠𝑀𝑡 (𝑠)) (𝜎−1)⊤(𝑠)d𝐵𝑠
)〉

d𝑡

× exp
(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 , 𝑡) d𝑡 − 𝜆−1𝑔(𝑋𝑇 )

) ]
.

If we plug this into the right-hand side of (C.19) and complete the squared norm, we get that

L̃(𝑢) = E
[ 1
𝑇

∫ 𝑇

0
(


𝑢 (𝑋𝑡 , 𝑡) − 𝑤̃ (𝑡, 𝑋, 𝐵,𝑀𝑡 )



2

−


𝑤̃ (𝑡, 𝑋, 𝐵,𝑀𝑡 )



2 +


𝑢∗(𝑋𝑡 , 𝑡)

2) d𝑡 exp

(
− 𝜆−1W(𝑋, 0)

) ]
where 𝑤̃ is defined in equation (4.25). We also define Φ(𝑢;𝑋, 𝐵) as

Φ(𝑢;𝑋, 𝐵) = 1
𝑇

∫ 𝑇

0
(


𝑢 (𝑋𝑡 , 𝑡) − 𝑤̃ (𝑡, 𝑋, 𝐵,𝑀𝑡 )



2) d𝑡 .

Now, by the Girsanov theorem (Theorem C.2), we have that for an arbitrary control 𝑣 ∈ U,

E[Φ(𝑢;𝑋, 𝐵) exp
(
− 𝜆−1W(𝑋, 0)

)
]

=E
[
Φ(𝑢;𝑋 𝑣 , 𝐵𝑣 ) exp

(
− 𝜆−1W(𝑋 𝑣 , 0) − 𝜆−1/2

∫ 𝑇

0
⟨𝑣 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑣𝑡 ⟩ +

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

) ]
=E

[
Φ(𝑢;𝑋 𝑣 , 𝐵𝑣 ) exp

(
− 𝜆−1W(𝑋 𝑣 , 0) − 𝜆−1/2

∫ 𝑇

0
⟨𝑣 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑡 ⟩ −

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

) ]
,

where 𝐵𝑣𝑡 := 𝐵𝑡 + 𝜆−1/2
∫ 𝑡

0 𝑣 (𝑋
𝑣
𝑠 , 𝑠) d𝑠 . Reexpressing 𝐵𝑣 in terms of 𝐵, we can rewrite Φ(𝑢;𝑋 𝑣 , 𝐵𝑣 )
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and 𝑤̃ (𝑡, 𝑋 𝑣 , 𝐵𝑣 , 𝑀𝑡 ) as follows:

Φ(𝑢;𝑋 𝑣 , 𝐵𝑣 ) = 1
𝑇

∫ 𝑇

0



𝑢 (𝑋 𝑣𝑡 , 𝑡) − 𝑤̃ (𝑡, 𝑋 𝑣 , 𝐵𝑣 , 𝑀𝑡 )


2 d𝑡,

𝑤̃ (𝑡, 𝑋 𝑣 , 𝐵𝑣 , 𝑀𝑡 ) = 𝜎 (𝑡)⊤
(
−

∫ 𝑇

𝑡

𝑀𝑡 (𝑠)∇𝑥 𝑓 (𝑋 𝑣𝑠 , 𝑠) d𝑠 −𝑀𝑡 (𝑇 )∇𝑔(𝑋 𝑣𝑇 )

+ 𝜆1/2
∫ 𝑇

𝑡

(𝑀𝑡 (𝑠)∇𝑥𝑏 (𝑋 𝑣𝑠 , 𝑠) − 𝜕𝑠𝑀𝑡 (𝑠)) (𝜎−1)⊤(𝑋 𝑣𝑠 , 𝑠)d𝐵𝑠

+
∫ 𝑇

𝑡

(𝑀𝑡 (𝑠)∇𝑥𝑏 (𝑋 𝑣𝑠 , 𝑠) − 𝜕𝑠𝑀𝑡 (𝑠)) (𝜎−1)⊤(𝑋 𝑣𝑠 , 𝑠)𝑣 (𝑋 𝑣𝑠 , 𝑠)d𝑠
)
.

Putting everything together, we obtain that

L̃(𝑢) = LSOCM(𝑢,𝑀) − 𝐾,

where L(𝑢,𝑀) is the loss defined in (C.31) (note that𝑤 (𝑡, 𝑣, 𝑋 𝑣 , 𝐵,𝑀𝑡 ) := 𝑤̃ (𝑡, 𝑋 𝑣 , 𝐵𝑣 , 𝑀𝑡 )), and

𝐾 = E
[ 1
𝑇

∫ 𝑇

0
(


𝑤̃ (𝑡, 𝑋, 𝐵,𝑀𝑡 )



2 −


𝑢∗(𝑋𝑡 , 𝑡)

2) d𝑡 exp

(
− 𝜆−1W(𝑋, 0)

) ]
To complete the proof of equation (4.23), remark that L̃(𝑢) can be rewritten as

L̃(𝑢) = E
[ 1
𝑇

∫ 𝑇

0



𝑢 (𝑋𝑡 , 𝑡) − 𝑢∗(𝑋𝑡 , 𝑡)

2 d𝑡 exp
(
− 𝜆−1W(𝑋, 0)

) ]
= E

[ 1
𝑇

∫ 𝑇

0



𝑢 (𝑋𝑡 , 𝑡) − 𝑢∗(𝑋𝑡 , 𝑡)

2 d𝑡
𝑑P𝑢

∗

𝑑P
(𝑋 ) exp(−𝜆−1𝑉 (𝑋0, 0))

]
= E

[ 1
𝑇

∫ 𝑇

0



𝑢 (𝑋𝑢∗𝑡 , 𝑡) − 𝑢∗(𝑋𝑢∗𝑡 , 𝑡)

2 d𝑡 exp(−𝜆−1𝑉 (𝑋𝑢∗0 , 0))
]
.
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It only remains to reexpress 𝐾 . Note that by Theorem 4.4, we have that

𝑢∗(𝑋𝑡 , 𝑡) =
E
[
𝑤̃ (𝑡, 𝑋, 𝐵,𝑀𝑡 ) exp

(
− 𝜆−1W(𝑋, 0)

)
|F𝑡

]
E
[

exp
(
− 𝜆−1W(𝑋, 0)

)
|F𝑡

]
=
E
[
𝑤̃ (𝑡, 𝑋, 𝐵,𝑀𝑡 ) 𝑑P

𝑢∗

𝑑P (𝑋 ) |F𝑡
]

exp(−𝜆−1𝑉 (𝑋0, 0))
E
[
𝑑P𝑢

∗

𝑑P (𝑋 ) |F𝑡
]

exp(−𝜆−1𝑉 (𝑋0, 0))
=
E
[
𝑤̃ (𝑡, 𝑋, 𝐵,𝑀𝑡 ) 𝑑P

𝑢∗

𝑑P (𝑋 ) |F𝑡
]

E
[
𝑑P𝑢

∗

𝑑P (𝑋 ) |F𝑡
]

= E
[
𝑤̃ (𝑡, 𝑋𝑢∗, 𝐵𝑢∗, 𝑀𝑡 ) |𝑋𝑢

∗
𝑡 = 𝑋𝑡

]
Hence, using the Girsanov theorem (Theorem C.2) several times, we have that

𝐾 = E
[ 1
𝑇

∫ 𝑇

0



𝑤̃ (𝑡, 𝑋𝑢∗, 𝐵𝑢∗, 𝑀𝑡 )∥2 − ∥E
[
𝑤̃ (𝑡, 𝑋𝑢∗, 𝐵𝑢∗, 𝑀𝑡 ) |𝑋𝑢

∗
𝑡

]

2 d𝑡 exp(−𝜆−1𝑉 (𝑋𝑢∗0 , 0))
]

= E
[ 1
𝑇

∫ 𝑇

0



𝑤̃ (𝑡, 𝑋𝑢∗, 𝐵𝑢∗, 𝑀𝑡 ) − E
[
𝑤̃ (𝑡, 𝑋𝑢∗, 𝐵𝑢∗, 𝑀𝑡 ) |𝑋𝑢

∗
𝑡

]

2 d𝑡 exp(−𝜆−1𝑉 (𝑋𝑢∗0 , 0))
]

=E
[ 1
𝑇

∫ 𝑇

0



𝑤̃ (𝑡, 𝑋, 𝐵,𝑀𝑡 )−
E[𝑤̃ (𝑡, 𝑋, 𝐵,𝑀𝑡 )exp(−𝜆−1W(𝑋, 0)) |𝑋𝑡 ]

E[exp(−𝜆−1W(𝑋, 0)) |𝑋𝑡 ]


2 d𝑡 exp(−𝜆−1W(𝑋, 0))

]
= E

[ 1
𝑇

∫ 𝑇

0



𝑤 (𝑡, 𝑣, 𝑋 𝑣 , 𝐵,𝑀𝑡 ) −
E[𝑤 (𝑡, 𝑣, 𝑋 𝑣 , 𝐵,𝑀𝑡 )𝛼 (𝑣, 𝑋 𝑣 , 𝐵) |𝑋 𝑣𝑡 ]

E[𝛼 (𝑣, 𝑋 𝑣 , 𝐵) |𝑋 𝑣𝑡 ]


2 d𝑡 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)

]
,

which concludes the proof, noticing that 𝐾 = Var(𝑤 ;𝑀).

C.3.2 Proof of the path-wise reparameterization trick (Theorem 4.4)

We prove a more general statement (Theorem C.10), and show that Theorem 4.4 is a particular

case of it.

Proposition C.10 (Path-wise reparameterization trick). Let (Ω, F , P) be a probability space, and

𝐵 : Ω × [0,𝑇 ] → R𝑑 be a Brownian motion. Let 𝑋 : Ω × [0,𝑇 ] → R𝑑 be the uncontrolled process

given by (4.6), and let𝜓 : Ω × R𝑑 × [0,𝑇 ] → R𝑑 be an arbitrary random process such that:

• For all 𝑧 ∈ R𝑑 , the process𝜓 (·, 𝑧, ·) : Ω × [0,𝑇 ] → R𝑑 is adapted to the filtration (F𝑠)𝑠∈[0,𝑇 ] of

the Brownian motion 𝐵.
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• For all 𝜔 ∈ Ω, 𝜓 (𝜔, ·, ·) : R𝑑 × [0,𝑇 ] → R𝑑 is a twice-continuously differentiable function

such that𝜓 (𝜔, 𝑧, 0) = 𝑧 for all 𝑧 ∈ R𝑑 , and𝜓 (𝜔, 0, 𝑠) = 0 for all 𝑠 ∈ [0,𝑇 ].

Let 𝐹 : 𝐶 ( [0,𝑇 ];R𝑑) → R be a Fréchet-differentiable functional. We use the notation 𝑋 +𝜓 (𝑧, ·) =

(𝑋𝑠 (𝜔) +𝜓 (𝜔, 𝑧, 𝑠))𝑠∈[0,𝑇 ] to denote the shifted process, and we will omit the dependency of 𝜓 on 𝜔

in the proof. Then,

∇𝑥E
[

exp
(
− 𝐹 (𝑋 )

) ��𝑋0 = 𝑥
]

(C.23)

=E
[ (
−∇𝑧𝐹 (𝑋 +𝜓 (𝑧, ·)) |𝑧=0+𝜆−1/2

∫ 𝑇

0
(∇𝑧𝜓 (0, 𝑠)∇𝑥𝑏 (𝑋𝑠, 𝑠)−∇𝑧𝜕𝑠𝜓 (0, 𝑠)) (𝜎−1)⊤(𝑠)d𝐵𝑠

)
× exp

(
− 𝐹 (𝑋 )

) ��𝑋0 = 𝑥
]

Proof of Theorem 4.4. Given a family of functions (𝑀𝑡 )𝑡∈[0,𝑇 ] satisfying the conditions in Theo-

rem 4.4, we can define a family (𝜓𝑡 )𝑡∈[0,𝑇 ] of functions𝜓𝑡 : R𝑑 × [𝑡,𝑇 ] → R𝑑 as𝜓𝑡 (𝑧, 𝑠) = 𝑀𝑡 (𝑠)⊤𝑧.

Note that 𝜓𝑡 (𝑧, 𝑡) = 𝑧 for all 𝑧 ∈ R𝑑 and 𝜓𝑡 (0, 𝑠) = 0 for all 𝑠 ∈ [𝑡,𝑇 ], and that ∇𝑧𝜓𝑡 (𝑧, 𝑠) = 𝑀𝑡 (𝑠).

Hence, 𝜓𝑡 can be seen as a random process which is constant with respect to 𝜔 ∈ Ω, and which

fulfills the conditions in Theorem C.10 up to a trivial time change of variable from [𝑡,𝑇 ] to [0,𝑇 ].

We also define the family (𝐹𝑡 )𝑡∈[0,𝑇 ] of functionals 𝐹𝑡 : 𝐶 ( [𝑡,𝑇 ];R𝑑) → R as 𝐹𝑡 (𝑋 ) = 𝜆−1
∫ 𝑇
𝑡
𝑓 (𝑋𝑠, 𝑠) d𝑠+

𝜆−1𝑔(𝑋𝑇 ). We have that

∇𝑧𝐹𝑡 (𝑋 +𝜓𝑡 (𝑧, ·))

= ∇𝑧
(
𝜆−1

∫ 𝑇

𝑡

𝑓 (𝑋𝑠 +𝜓𝑡 (𝑧, 𝑠), 𝑠) d𝑠 + 𝜆−1𝑔(𝑋𝑇 +𝜓𝑡 (𝑧,𝑇 ))
)

(i)
=𝜆−1

∫ 𝑇

𝑡

∇𝑧𝜓𝑡 (𝑧, 𝑠)∇𝑓 (𝑋𝑠+𝜓𝑡 (𝑧, 𝑠), 𝑠) d𝑠+𝜆−1∇𝑧𝜓𝑡 (𝑧,𝑇 )∇𝑔(𝑋𝑇 +𝜓𝑡 (𝑧,𝑇 ))

=𝜆−1
∫ 𝑇

𝑡

𝑀𝑡 (𝑠)∇𝑓 (𝑋𝑠+𝜓𝑡 (𝑧, 𝑠), 𝑠) d𝑠+𝜆−1𝑀𝑡 (𝑇 )∇𝑔(𝑋𝑇 +𝜓𝑡 (𝑧,𝑇 )),
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where equality (i) holds by the Leibniz rule. Using that𝜓𝑡 (0, 𝑠) = 0, we obtain that:

∇𝑧𝐹𝑡 (𝑋 +𝜓𝑡 (𝑧, ·))
��
𝑧=0 = 𝜆

−1
∫ 𝑇

𝑡

∇𝑧𝜓𝑡 (0, 𝑠)∇𝑓 (𝑋𝑠, 𝑠) d𝑠 + 𝜆−1∇𝑧𝜓𝑡 (𝑇, 0)∇𝑔(𝑋𝑇 ),

Up to a trivial time change of variable from [𝑡,𝑇 ] to [0,𝑇 ], Theorem 4.4 follows from plugging

these choices into equation (C.23).

Remark 2. We can use matrices𝑀𝑡 (𝑠) that depend on the process𝑋 up to time 𝑠 , since the resulting

processes𝜓𝑡 (·, 𝑧, ·) are adapted to the filtration of the Brownian motion 𝐵. More specifically, if we let

𝑀𝑡 : R𝑑 × [𝑡,𝑇 ] → R𝑑×𝑑 be an arbitrary continuously differentiable function matrix-valued function

such that 𝑀𝑡 (𝑥, 𝑡) = Id for all 𝑥 ∈ R𝑑 , and we define the exponential moving average of 𝑋 as the

process 𝑋 (𝜐) given by

𝑋
(𝜐)
𝑡 = 𝜐

∫ 𝑡

0
𝑒−𝜐 (𝑡−𝑠)𝑋𝑠 𝑑𝑠,

we have that

𝑑

𝑑𝑠
𝑀𝑡 (𝑋 (𝜐)𝑠 , 𝑠) = ⟨∇𝑀𝑡 (𝑋 (𝜐)𝑠 , 𝑠), 𝑑𝑋

(𝜐)
𝑠

𝑑𝑠
⟩ + 𝜕𝑠𝑀𝑡 (𝑋 (𝜐)𝑠 , 𝑠)

= 𝜆⟨∇𝑥𝑀𝑡 (𝑋 (𝜐)𝑠 , 𝑠), 𝑋𝑠 − 𝑋 (𝜐)𝑠 ⟩ + 𝜕𝑠𝑀𝑡 (𝑋 (𝜐)𝑠 , 𝑠),

and we can write

∇𝑥E
[

exp
(
− 𝜆−1

∫ 𝑇

𝑡

𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑔(𝑋𝑇 )
) ��𝑋𝑡 = 𝑥 ]

= E
[ (
− 𝜆−1

∫ 𝑇

𝑡

𝑀𝑡 (𝑋 (𝜐)𝑠 , 𝑠)∇𝑥 𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑀𝑡 (𝑋 (𝜐)𝑇
,𝑇 )∇𝑔(𝑋𝑇 )

+ 𝜆−1/2
∫ 𝑇

𝑡

(𝑀𝑡 (𝑋 (𝜐)𝑠 , 𝑠)∇𝑥𝑏 (𝑋𝑠, 𝑠) −
𝑑

𝑑𝑠
𝑀𝑡 (𝑋 (𝜐)𝑠 , 𝑠)) (𝜎−1)⊤(𝑠)d𝐵𝑠

)
× exp

(
− 𝜆−1

∫ 𝑇

𝑡

𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑔(𝑋𝑇 )
) ��𝑋𝑡 = 𝑥 ] .
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Plugging this into the proof of Theorem 4.3, we would obtain a variant of SOCM (Alg. 4) where the

matrix-valued neural network𝑀𝜔 takes inputs (𝑡, 𝑠, 𝑥) instead of (𝑡, 𝑠). Since the optimization class

is larger, from the bias-variance in Theorem 4.5 we deduce that this variant would yield a lower

variance of the vector field 𝑤 , and likely an algorithm with lower error. This is at the expense of

an increased number of function evaluations (NFE) of 𝑀𝜔 ; one would need 𝐾 (𝐾+1)𝑚
2 NFE per batch

instead of only 𝐾 (𝐾+1)
2 , which may be too expensive if the architecture of𝑀𝜔 is large. A way to speed

up the computation per batch is to parameterize𝑀𝑡 using cubic splines.

□

Proof of Theorem C.10. Recall that

d𝑋𝑠 = 𝑏 (𝑋𝑠, 𝑠) d𝑠 +
√
𝜆𝜎 (𝑠) d𝐵𝑠, 𝑋0 ∼ 𝑝0,

is the SDE for the uncontrolled process. For arbitrary 𝑥, 𝑧 ∈ R𝑑 , we consider the following SDEs

conditioned on the initial points:

d𝑋 (𝑥+𝑧)𝑠 = 𝑏 (𝑋 (𝑥+𝑧)𝑠 , 𝑠) d𝑠 +
√
𝜆𝜎 (𝑠) d𝐵𝑠, 𝑋

(𝑥+𝑧)
0 = 𝑥 + 𝑧, (C.24)

d𝑋 (𝑥)𝑠 = 𝑏 (𝑋 (𝑥)𝑠 , 𝑠) d𝑠 +
√
𝜆𝜎 (𝑠) d𝐵𝑠, 𝑋

(𝑥)
0 = 𝑥 . (C.25)

Suppose that 𝜓 : R𝑑 × [0,𝑇 ] → R𝑑 satisfies the properties in the statement of Theorem C.10. If

𝑋̃ (𝑥) is a solution of

d𝑋̃ (𝑥)𝑠 = (𝑏 (𝑋̃ (𝑥)𝑠 +𝜓 (𝑧, 𝑠), 𝑠) − 𝜕𝑠𝜓 (𝑧, 𝑠)) d𝑠 +
√
𝜆𝜎 (𝑠) d𝐵𝑠, 𝑋̃

(𝑥)
0 = 𝑥,

then 𝑋 (𝑥+𝑧) = 𝑋̃ (𝑥) + 𝜓 (𝑧, ·) is a solution of (C.24). This is because 𝑋 (𝑥+𝑧)0 = 𝑋̃
(𝑥)
0 + 𝜓 (𝑧, 0) =
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𝑋̃
(𝑥)
0 + 𝑧 = 𝑥 + 𝑧, and

d𝑋 (𝑥+𝑧)𝑠 = d𝑋̃ (𝑥)𝑠 + 𝜕𝑠𝜓 (𝑧, 𝑠) d𝑠

= (𝑏 (𝑋̃ (𝑥)𝑠 +𝜓 (𝑧, 𝑠), 𝑠) − 𝜕𝑠𝜓 (𝑧, 𝑠)) d𝑠 +
√
𝜆𝜎 (𝑠) d𝐵𝑠 + 𝜕𝑠𝜓 (𝑧, 𝑠) d𝑠

= 𝑏 (𝑋 (𝑥+𝑧)𝑠 , 𝑠) d𝑠 +
√
𝜆𝜎 (𝑠) d𝐵𝑠,

Note that we may rewrite (C.25) as

d𝑋 (𝑥)𝑠 = (𝑏 (𝑋 (𝑥)𝑠 +𝜓 (𝑧, 𝑠), 𝑠) − 𝜕𝑠𝜓 (𝑧, 𝑠)) d𝑠

+ (𝑏 (𝑋 (𝑥)𝑠 , 𝑠) − 𝑏 (𝑋 (𝑥)𝑠 +𝜓 (𝑧, 𝑠), 𝑠) + 𝜕𝑠𝜓 (𝑧, 𝑠)) d𝑠 +
√
𝜆𝜎 (𝑠) d𝐵𝑠, 𝑋

(𝑥)
𝑡 ∼ 𝑝0.

Hence, since𝜓 (𝑧, 𝑠) is a random process adapted to the filtration of 𝐵, we can apply the Girsanov

theorem for SDEs (Corollary C.3) on 𝑋̃ (𝑥) and𝑋 (𝑥) , and we have that for any bounded continuous

functional Φ,

E[Φ(𝑋̃ (𝑥))]

= E
[
Φ(𝑋 (𝑥)) exp

( ∫ 𝑇

0
𝜆−1/2𝜎 (𝑠)−1(𝑏 (𝑋 (𝑥)𝑠 +𝜓 (𝑧, 𝑠), 𝑠) − 𝑏 (𝑋 (𝑥)𝑠 , 𝑠) − 𝜕𝑠𝜓 (𝑧, 𝑠)) d𝐵𝑠

− 1
2

∫ 𝑇

0
∥𝜆−1/2𝜎 (𝑠)−1(𝑏 (𝑋 (𝑥)𝑠 +𝜓 (𝑧, 𝑠), 𝑠) − 𝑏 (𝑋 (𝑥)𝑠 , 𝑠) − 𝜕𝑠𝜓 (𝑧, 𝑠))∥2 d𝑠

) ]
.(C.26)
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We can write

E
[

exp
(
− 𝐹 (𝑋 )

) ��𝑋0 = 𝑥 + 𝑧
] (i)
= E

[
exp

(
− 𝐹 (𝑋 (𝑥+𝑧))

) ] (ii)
= E

[
exp

(
− 𝐹 (𝑋̃ (𝑥) +𝜓 (𝑧, ·))

) ]
(iii)
= E

[
exp

(
− 𝐹 (𝑋 (𝑥) +𝜓 (𝑧, ·))

)
× exp

( ∫ 𝑇

0
𝜆−1/2𝜎 (𝑠)−1(𝑏 (𝑋 (𝑥)𝑠 +𝜓 (𝑧, 𝑠), 𝑠) − 𝑏 (𝑋 (𝑥)𝑠 , 𝑠) − 𝜕𝑠𝜓 (𝑧, 𝑠)) d𝐵𝑠

− 1
2

∫ 𝑇

0
∥𝜆−1/2𝜎 (𝑠)−1(𝑏 (𝑋 (𝑥)𝑠 +𝜓 (𝑧, 𝑠), 𝑠) − 𝑏 (𝑋 (𝑥)𝑠 , 𝑠) − 𝜕𝑠𝜓 (𝑧, 𝑠))∥2 d𝑠

) ]
(iv)
= E

[
exp

(
−𝐹 (𝑋 +𝜓 (𝑧, ·))+

∫ 𝑇

0
𝜆−1/2𝜎 (𝑠)−1(𝑏 (𝑋𝑠+𝜓 (𝑧, 𝑠), 𝑠)−𝑏 (𝑋𝑠, 𝑠)−𝜕𝑠𝜓 (𝑧, 𝑠)) d𝐵𝑠

− 1
2

∫ 𝑇

0
∥𝜆−1/2𝜎 (𝑠)−1(𝑏 (𝑋𝑠 +𝜓 (𝑧, 𝑠), 𝑠) − 𝑏 (𝑋𝑠, 𝑠) − 𝜕𝑠𝜓 (𝑧, 𝑠))∥2 d𝑠

)
|𝑋0 = 𝑥

]
(C.27)

Equality (i) holds by the definition of 𝑋 (𝑥+𝑧) , equality (ii) holds by the fact 𝑋 (𝑥+𝑧)𝑠 = 𝑋̃
(𝑥)
𝑠 +𝜓 (𝑧, 𝑠),

equality (iii) holds by equation (C.26), and equality (iv) holds by the definition of 𝑋 (𝑥)𝑠 . We con-

clude the proof by differentiating the right-hand side of (C.27) with respect to 𝑧. Namely,

∇𝑥E
[

exp
(
− 𝐹 (𝑋 )

) ��𝑋0 = 𝑥
]
= ∇𝑧E

[
exp

(
− 𝐹 (𝑋 )

) ��𝑋0 = 𝑥 + 𝑧
] ��
𝑧=0

(i)
= E

[ (
− ∇𝑧𝐹 (𝑋 +𝜓 (𝑧, ·)) + 𝜆−1/2

∫ 𝑇

0
(∇𝑧𝜓 (0, 𝑠)∇𝑥𝑏 (𝑋𝑠, 𝑠) − ∇𝑧𝜕𝑠𝜓 (0, 𝑠)) (𝜎−1)⊤(𝑠)d𝐵𝑠

)
× exp

(
− 𝐹 (𝑋 )

) ��𝑋0 = 𝑥
]

In equality (i) we used (C.27), and that:

• by the Leibniz rule,

∇𝑧
∫ 𝑇

0
∥𝜎 (𝑠)−1(𝑏 (𝑋𝑠 +𝜓 (𝑧, 𝑠), 𝑠) − 𝑏 (𝑋𝑠, 𝑠) − 𝜕𝑠𝜓 (𝑧, 𝑠))∥2 d𝑠

��
𝑧=0

=

∫ 𝑇

0
∇𝑧 ∥𝜎 (𝑠)−1(𝑏 (𝑋𝑠 +𝜓 (𝑧, 𝑠), 𝑠) − 𝑏 (𝑋𝑠, 𝑠) − 𝜕𝑠𝜓 (𝑧, 𝑠))∥2

��
𝑧=0 d𝑠 = 0.
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• and by the Leibniz rule for stochastic integrals (see [Hutton and Nelson 1984]),

∇𝑧
( ∫ 𝑇

0
𝜎 (𝑠)−1(𝑏 (𝑋𝑠 +𝜓 (𝑧, 𝑠), 𝑠) − 𝑏 (𝑋𝑠, 𝑠) − 𝜕𝑠𝜓 (𝑧, 𝑠)) d𝐵𝑠

) ��
𝑧=0

=

∫ 𝑇

0
(∇𝑧𝜓 (0, 𝑠)∇𝑥𝑏 (𝑋𝑠, 𝑠) − ∇𝑧𝜕𝑠𝜓 (0, 𝑠)) (𝜎−1)⊤(𝑠) d𝐵𝑠 .

□

C.3.3 Informal derivation of the path-wise reparameterization trick

In this subsection, we provide an informal, intuitive derivation of the path-wise reparameter-

ization trick as stated in Theorem C.10. For simplicity, we particularize the functional 𝐹 to

𝐹 (𝑋 ) = 𝜆−1
∫ 𝑇

0 𝑓 (𝑋𝑠, 𝑠) d𝑠 + 𝜆−1𝑔(𝑋𝑇 ). Consider the Euler-Maruyama discretization of the un-

controlled process 𝑋 defined in (4.6), with 𝐾 + 1 time steps (let 𝛿 = 𝑇 /𝐾 be the step size). This is

a family of random variables 𝑋 = (𝑋𝑘)𝑘=0:𝐾 defined as

𝑋0 ∼ 𝑝0, 𝑋𝑘+1 = 𝑋𝑘 + 𝛿𝑏 (𝑋𝑘 , 𝑘𝛿) +
√
𝛿𝜆𝜎 (𝑘𝛿)𝜀𝑘 , 𝜀𝑘 ∼ 𝑁 (0, 𝐼 ).

Note that we can approximate

E
[

exp
(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑔(𝑋𝑇 )

) ��𝑋0 = 𝑥
]

≈ E
[

exp
(
− 𝜆−1𝛿

𝐾−1∑︁
𝑘=0

𝑓 (𝑋𝑘 , 𝑠) − 𝜆−1𝑔(𝑋𝐾 )
) ��𝑋0 = 𝑥

]
,

and that this is an equality in the limit 𝐾 → ∞, as the interpolation of the Euler-Maruyama

discretization 𝑋 (𝑥) converges to the process 𝑋 (𝑥) . Now, remark that for 𝑘 ∈ {0, . . . , 𝐾 − 1},
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𝑋𝑘+1 |𝑋𝑘 ∼ 𝑁 (𝑋𝑘 + 𝛿𝑏 (𝑋𝑘 , 𝑘𝛿), 𝛿𝜆(𝜎𝜎⊤) (𝑘𝛿)). Hence,

E
[

exp
(
− 𝜆−1𝛿

𝐾−1∑︁
𝑘=0

𝑓 (𝑋𝑘 , 𝑠) − 𝜆−1𝑔(𝑋𝐾 )
) ��𝑋0 = 𝑥

]
= 𝐶−1

∬
(R𝑑 )𝐾

exp
(
− 𝜆−1𝛿

𝐾−1∑︁
𝑘=0

𝑓 (𝑥𝑘 , 𝑠) − 𝜆−1𝑔(𝑥𝐾 )

− 1
2𝛿𝜆

𝐾−1∑︁
𝑘=1
∥𝜎−1(𝑘𝛿) (𝑥𝑘+1−𝑥𝑘−𝛿𝑏 (𝑥𝑘 , 𝑘𝛿))∥2

− 1
2𝛿𝜆
∥𝜎−1(0) (𝑥1−𝑥−𝛿𝑏 (𝑥, 0))∥2

)
d𝑥1 · · · d𝑥𝐾 ,

where𝐶 =

√︃
(2𝜋𝛿𝜆)𝐾 ∏𝐾−1

𝑘=0 det((𝜎𝜎⊤) (𝑘𝛿)). Now, let𝜓 : R𝑑 × [0,𝑇 ] → R𝑑 be an arbitrary twice

differentiable function such that 𝜓 (𝑧, 0) = 𝑧 for all 𝑧 ∈ R𝑑 , and 𝜓 (0, 𝑠) = 0 for all 𝑠 ∈ [0,𝑇 ]. We

can write

∇𝑥E
[

exp
(
− 𝜆−1𝛿

𝐾−1∑︁
𝑘=0

𝑓 (𝑋𝑘 , 𝑠) − 𝜆−1𝑔(𝑋𝐾 )
)
|𝑋0 = 𝑥

]
= ∇𝑧E

[
exp

(
− 𝜆−1𝛿

𝐾−1∑︁
𝑘=0

𝑓 (𝑋𝑘 , 𝑠) − 𝜆−1𝑔(𝑋𝐾 )
)
|𝑋0 = 𝑥 + 𝑧

]
|𝑧=0

= 𝐶−1∇𝑧
(∬
(R𝑑 )𝐾

exp
(
− 𝜆−1𝛿

𝐾−1∑︁
𝑘=0

𝑓 (𝑥𝑘 , 𝑠) − 𝜆−1𝑔(𝑥𝐾 )

− 1
2𝛿𝜆

𝐾−1∑︁
𝑘=1
∥𝜎−1(𝑘𝛿) (𝑥𝑘+1−𝑥𝑘−𝛿𝑏 (𝑥𝑘 , 𝑘𝛿))∥2

− 1
2𝛿𝜆
∥𝜎−1(0) (𝑥1−(𝑥+𝑧)−𝛿𝑏 (𝑥+𝑧, 0))∥2

)
d𝑥1 · · · d𝑥𝐾

)
|𝑧=0

= 𝐶−1∇𝑧
(∬
(R𝑑 )𝐾

exp
(
− 𝜆−1𝛿

𝐾−1∑︁
𝑘=0

𝑓 (𝑥𝑘 +𝜓 (𝑧, 𝑘𝛿), 𝑠) − 𝜆−1𝑔(𝑥𝐾 +𝜓 (𝑧, 𝐾𝛿))

− 1
2𝛿𝜆

𝐾−1∑︁
𝑘=1
∥𝜎−1(𝑘𝛿) (𝑥𝑘+1 +𝜓 (𝑧, (𝑘 + 1)𝛿)−𝑥𝑘−𝜓 (𝑧, 𝑘𝛿)−𝛿𝑏 (𝑥𝑘+𝜓 (𝑧, 𝑘𝛿), 𝑘𝛿))∥2

− 1
2𝛿𝜆
∥𝜎−1(0) (𝑥1+𝜓 (𝑧, 𝛿)−(𝑥+𝜓 (𝑧, 0))−𝛿𝑏 (𝑥+𝜓 (𝑧, 0), 0))∥2

)
d𝑥1 · · · d𝑥𝐾

)
|𝑧=0,(C.28)
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In the last equality, we used that for 𝑘 ∈ {1, . . . , 𝐾}, the variables 𝑥𝑘 are integrated over R𝑑 , which

means that adding an offset𝜓 (𝑧, 𝑘𝛿) does not change the value of the integral. We also used that

𝜓 (𝑧, 0) = 𝑧. Now, for fixed values of 𝑥 = (𝑥1, . . . , 𝑥𝐾 ), and letting 𝑥0 = 𝑥 , we define

𝐺𝑥 (𝑧) = 𝜆−1𝛿

𝐾−1∑︁
𝑘=0

𝑓 (𝑥𝑘 +𝜓 (𝑧, 𝑘𝛿), 𝑠) + 𝜆−1𝑔(𝑥𝐾 +𝜓 (𝑧, 𝐾𝛿))

+ 1
2𝛿𝜆

𝐾−1∑︁
𝑘=0
∥𝜎−1(𝑘𝛿) (𝑥𝑘+1+𝜓 (𝑧, (𝑘 + 1)𝛿)−𝑥𝑘−𝜓 (𝑧, 𝑘𝛿)−𝛿𝑏 (𝑥𝑘+𝜓 (𝑧, 𝑘𝛿), 𝑘𝛿))∥2.

Using that𝜓 (0, 𝑠) = 0 for all 𝑠 ∈ [0,𝑇 ], we have that:

𝐺𝑥 (0) = 𝜆−1𝛿

𝐾−1∑︁
𝑘=0

𝑓 (𝑥𝑘 , 𝑠) + 𝜆−1𝑔(𝑥𝐾 ) +
1

2𝛿𝜆

𝐾−1∑︁
𝑘=0
∥𝜎−1(𝑘𝛿) (𝑥𝑘+1−𝑥𝑘−𝛿𝑏 (𝑥𝑘 , 𝑘𝛿))∥2.

∇𝐺𝑥 (𝑧) |𝑧=0 = 𝜆
−1𝛿

𝐾−1∑︁
𝑘=0
∇𝜓 (0, 𝑘𝛿)∇𝑓 (𝑥𝑘 , 𝑠) + 𝜆−1∇𝜓 (0, 𝐾𝛿)∇𝑔(𝑥𝐾 )

+ 1
𝛿𝜆

𝐾−1∑︁
𝑘=0
(∇𝑧𝜓 (0, (𝑘 + 1)𝛿) − ∇𝑧𝜓 (0, 𝑘𝛿)−𝛿∇𝜓 (0, 𝑘𝛿)∇𝑏 (𝑥𝑘 , 𝑘𝛿))

× ((𝜎−1)⊤𝜎−1) (𝑘𝛿) (𝑥𝑘+1−𝑥𝑘−𝛿𝑏 (𝑥𝑘 , 𝑘𝛿))

And we can express the right-hand side of (C.28) in terms of 𝐺𝑥 (0) and ∇𝐺𝑥 (𝑧) |𝑧=0:

∇𝑧
(
𝐶−1

∬
(R𝑑 )𝐾

exp
(
−𝐺𝑥 (𝑧)

)
d𝑦1 · · · d𝑦𝐾

)
= −𝐶−1

∬
(R𝑑 )𝐾

∇𝐺𝑥 (𝑧) |𝑧=0 exp
(
−𝐺𝑥 (0)

)
d𝑦1 · · · d𝑦𝐾
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We define 𝜖𝑘 = 1√
𝛿𝜆
𝜎−1(𝑘𝛿) (𝑥𝑘+1−𝑥𝑘−𝛿𝑏 (𝑥𝑘 , 𝑘𝛿)), and then, we are able to write

𝑥𝑘+1 = 𝑥𝑘 + 𝛿𝑏 (𝑥𝑘 , 𝑘𝛿) +
√
𝛿𝜆𝜎 (𝑘𝛿)𝜖𝑘 , 𝑥0 = 𝑥 (C.29)

𝐺𝑥 (0) = 𝜆−1𝛿

𝐾−1∑︁
𝑘=0

𝑓 (𝑥𝑘 , 𝑠) + 𝜆−1𝑔(𝑥𝐾 ) +
1
2

𝐾−1∑︁
𝑘=0
∥𝜖𝑘 ∥2,

∇𝐺𝑥 (𝑧) |𝑧=0 = 𝜆
−1𝛿

𝐾−1∑︁
𝑘=0
∇𝜓 (0, 𝑘𝛿)∇𝑓 (𝑥𝑘 , 𝑠) + 𝜆−1∇𝜓 (0, 𝐾𝛿)∇𝑔(𝑥𝐾 )

+
√
𝛿𝜆−1

𝐾−1∑︁
𝑘=0
(𝜕𝑠∇𝑧𝜓 (0, 𝑘𝛿) +𝑂 (𝛿)−∇𝜓 (0, 𝑘𝛿)∇𝑏 (𝑥𝑘 , 𝑘𝛿)) (𝜎−1)⊤(𝑘𝛿)𝜖𝑘 . (C.30)

Then, taking the limit 𝐾 → ∞ (i.e. 𝛿 → 0), we recognize (C.29) as Euler-Maruyama discretiza-

tion of the uncontrolled process 𝑋 in equation (4.6) conditioned on 𝑋0 = 𝑥 , and the last term

in (C.30) as the Euler-Maruyama discretization of the stochastic integral 𝜆−1/2
∫ 𝑇

0 (𝜕𝑠∇𝑧𝜓 (0, 𝑠) −

∇𝜓 (0, 𝑠)∇𝑏 (𝑋 (𝑥)𝑠 , 𝑠)) (𝜎−1)⊤(𝑠) 𝑑𝐵𝑠 . Thus,

lim
𝐾→∞

∇𝑥E
[

exp
(
− 𝜆−1𝛿

𝐾−1∑︁
𝑘=0

𝑓 (𝑋𝑘 , 𝑠) − 𝜆−1𝑔(𝑋𝐾 )
) ]

= E
[ (
− 𝜆−1

∫ 𝑇

0
∇𝜓 (0, 𝑠)∇𝑥 𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1∇𝜓 (0,𝑇 )∇𝑔(𝑋𝑇 )

+ 𝜆−1/2
∫ 𝑇

0
(∇𝜓 (0, 𝑠)∇𝑥𝑏 (𝑋𝑠, 𝑠) − 𝜕𝑠∇𝜓 (0, 𝑠)) (𝜎−1)⊤(𝑠) d𝐵𝑠

)
× exp

(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑠, 𝑠) d𝑠 − 𝜆−1𝑔(𝑋𝑇 )

) ��𝑋0 = 𝑥
]
,

which concludes the derivation.
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C.3.4 SOCM with the adjoint method for SDEs

Proposition C.11. Let LSOCM : 𝐿2(R𝑑 × [0,𝑇 ];R𝑑) × 𝐿2( [0,𝑇 ]2;R𝑑×𝑑) → R be the loss function

defined as

LSOCM(𝑢,𝑀) := E
[ 1
𝑇

∫ 𝑇

0



𝑢 (𝑋 𝑣𝑡 , 𝑡) + 𝜎 (𝑡)⊤𝑎(𝑡, 𝑋 𝑣 )

2 d𝑡 × 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)
]
, (C.31)

where 𝑋 𝑣 is the process controlled by 𝑣 (i.e., 𝑑𝑋𝑡 = (𝑏 (𝑋𝑡 , 𝑡) + 𝜎 (𝑡)𝑣 (𝑋𝑡 , 𝑡)) d𝑡 +
√
𝜆𝜎 (𝑋𝑡 , 𝑡) d𝐵𝑡 and

𝑋0 ∼ 𝑝0), 𝛼 (𝑣, 𝑋 𝑣 , 𝐵) is the importance weight defined in (4.19), and 𝑎(𝑡, 𝑋 𝑣 ) is the solution of the

ODE

𝑑𝑎(𝑡)
𝑑𝑡

= −∇𝑥𝑏 (𝑋𝑡 , 𝑡)𝑎(𝑡) − ∇𝑥 𝑓 (𝑋𝑡 , 𝑡),

𝑎(𝑇 ) = ∇𝑔(𝑋𝑇 ),

LSOCM has a unique optimum (𝑢∗, 𝑀∗), where 𝑢∗ is the optimal control.

Proof. The proof follows the same structure as that of Theorem 4.3. Instead of plugging the path-

wise reparameterization trick (Theorem 4.4) in the right-hand side of (4.21), wemake use of (C.12)

to evaluate ∇𝑥E
[

exp
(
− 𝜆−1

∫ 𝑇
0 𝑓 (𝑋𝑡 , 𝑡) 𝑑𝑡 − 𝜆−1𝑔(𝑋𝑇 )

)
|𝑋0 = 𝑥

]
. □

Lemma C.12 (Adjoint method for SDEs, [Li et al. 2020; Kidger et al. 2021]). Let 𝑋 : Ω × [0,𝑇 ] →

R𝑑 be the uncontrolled process defined in (4.6), with initial condition 𝑋0 = 𝑥 . We define the random

process 𝑎 : Ω × [0,𝑇 ] → R𝑑 such that for all 𝜔 ∈ Ω, using the short-hand 𝑎(𝑡) := 𝑎(𝜔, 𝑡),

𝑑𝑎(𝑡)
𝑑𝑡

= −∇𝑥𝑏 (𝑋𝑡 , 𝑡)𝑎(𝑡) − ∇𝑥 𝑓 (𝑋𝑡 , 𝑡),

𝑎(𝑇 ) = ∇𝑔(𝑋𝑇 ),

174



Then, we have that

∇𝑥E[
∫ 𝑇

0
𝑓 (𝑋𝑡 , 𝑡) 𝑑𝑡 + 𝑔(𝑋𝑇 ) |𝑋0 = 𝑥] = E[𝑎(0) |𝑋0 = 𝑥],

∇𝑥E
[

exp
(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 , 𝑡) 𝑑𝑡 − 𝜆−1𝑔(𝑋𝑇 )

)
|𝑋0 = 𝑥

]
= −𝜆−1E

[
𝑎(0) exp

(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 , 𝑡) 𝑑𝑡 − 𝜆−1𝑔(𝑋𝑇 )

)
|𝑋0 = 𝑥

]
.

Proof. Wewill use an approach based on Lagrangianmultipliers. Define a process 𝑎 : Ω×[0,𝑇 ] →

R𝑑 such that for any 𝜔 ∈ Ω, 𝑎(𝜔, ·) is differentiable. For a given 𝜔 ∈ Ω, we can write

∫ 𝑇

0
𝑓 (𝑋𝑡 (𝜔), 𝑡) 𝑑𝑡 + 𝑔(𝑋𝑇 (𝜔))

=

∫ 𝑇

0
𝑓 (𝑋𝑡 (𝜔), 𝑡) 𝑑𝑡 + 𝑔(𝑋𝑇 (𝜔)) −

∫ 𝑇

0
⟨𝑎𝑡 (𝜔), (𝑑𝑋𝑡 (𝜔) − 𝑏 (𝑋𝑡 (𝜔), 𝑡) 𝑑𝑡 −

√
𝜆𝜎 (𝑡) 𝑑𝐵𝑡 )⟩.

By Theorem C.13, we have that

∫ 𝑇

0
⟨𝑎𝑡 (𝜔), 𝑑𝑋𝑡 (𝜔)⟩ = ⟨𝑎𝑇 (𝜔), 𝑋𝑇 (𝜔)⟩ − ⟨𝑎0(𝜔), 𝑋0(𝜔)⟩ −

∫ 𝑇

0
⟨𝑋𝑡 (𝜔),

𝑑𝑎𝑡

𝑑𝑡
(𝜔)⟩ 𝑑𝑡
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Hence,

∇𝑥
( ∫ 𝑇

0
𝑓 (𝑋𝑡 (𝜔), 𝑡) 𝑑𝑡 + 𝑔(𝑋𝑇 (𝜔))

)
= ∇𝑥

( ∫ 𝑇

0
𝑓 (𝑋𝑡 (𝜔), 𝑡) 𝑑𝑡 + 𝑔(𝑋𝑇 (𝜔)) − ⟨𝑎𝑇 (𝜔), 𝑋𝑇 (𝜔)⟩ + ⟨𝑎0(𝜔), 𝑋0(𝜔)⟩

+
∫ 𝑇

0

(
⟨𝑎𝑡 (𝜔), 𝑏 (𝑋𝑡 (𝜔), 𝑡)⟩ + ⟨

𝑑𝑎𝑡

𝑑𝑡
(𝜔), 𝑋𝑡 (𝜔)⟩

)
𝑑𝑡 +
√
𝜆

∫ 𝑇

0
⟨𝑎𝑡 (𝜔), 𝜎 (𝑡) 𝑑𝐵𝑡 ⟩

)
=

∫ 𝑇

0
∇𝑥𝑋𝑡 (𝜔)∇𝑥 𝑓 (𝑋𝑡 (𝜔), 𝑡) 𝑑𝑡 + ∇𝑥𝑋𝑇 (𝜔)∇𝑥𝑔(𝑋𝑇 (𝜔)) − ∇𝑥𝑋𝑇 (𝜔)𝑎𝑇 (𝜔) + ∇𝑥𝑋0(𝜔)𝑎0(𝜔)

+
∫ 𝑇

0

(
∇𝑥𝑋𝑡 (𝜔)∇𝑥𝑏 (𝑋𝑡 (𝜔), 𝑡)𝑎𝑡 (𝜔) + ∇𝑥𝑋𝑡 (𝜔)

𝑑𝑎𝑡

𝑑𝑡
(𝜔)

)
𝑑𝑡

=

∫ 𝑇

0
∇𝑥𝑋𝑡 (𝜔)

(
∇𝑥 𝑓 (𝑋𝑡 (𝜔), 𝑡) + ∇𝑥𝑏 (𝑋𝑡 (𝜔), 𝑡)𝑎𝑡 (𝜔) +

𝑑𝑎𝑡

𝑑𝑡
(𝜔)

)
𝑑𝑡

+ ∇𝑥𝑋𝑇 (𝜔)
(
∇𝑥𝑔(𝑋𝑇 (𝜔)) − 𝑎𝑇 (𝜔)

)
+ 𝑎0(𝜔) .

In the last line we used that ∇𝑥𝑋0(𝜔) = ∇𝑥𝑥 = I. If choose 𝑎 such that

𝑑𝑎𝑡 (𝜔) =
(
− ∇𝑥𝑏 (𝑋𝑡 (𝜔), 𝑡)𝑎𝑡 (𝜔) − ∇𝑥 𝑓 (𝑋𝑡 (𝜔), 𝑡)

)
𝑑𝑡 − ∇𝑥ℎ(𝑋𝑡 (𝜔), 𝑡) 𝑑𝐵𝑡 ,

𝑎𝑇 (𝜔) = ∇𝑥𝑔(𝑋𝑇 (𝜔)),

then we obtain that

∇𝑥
( ∫ 𝑇

0
𝑓 (𝑋𝑡 (𝜔), 𝑡) 𝑑𝑡 + 𝑔(𝑋𝑇 (𝜔))

)
= 𝑎0(𝜔),

and by the Leibniz rule,

∇𝑥E
[ ∫ 𝑇

0
𝑓 (𝑋𝑡 (𝜔), 𝑡) 𝑑𝑡 + 𝑔(𝑋𝑇 (𝜔))

]
= E

[
∇𝑥

( ∫ 𝑇

0
𝑓 (𝑋𝑡 (𝜔), 𝑡) 𝑑𝑡 + 𝑔(𝑋𝑇 (𝜔))

) ]
= E

[
𝑎0(𝜔)

]
.
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and

∇𝑥E
[

exp
(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 (𝜔), 𝑡) 𝑑𝑡 − 𝜆−1𝑔(𝑋𝑇 (𝜔))

) ]
= −𝜆−1E

[
∇𝑥

( ∫ 𝑇

0
𝑓 (𝑋𝑡 (𝜔), 𝑡) 𝑑𝑡 + 𝑔(𝑋𝑇 (𝜔))

)
exp

(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 (𝜔), 𝑡) 𝑑𝑡 − 𝜆−1𝑔(𝑋𝑇 (𝜔))

) ]
= −𝜆−1E

[
𝑎0(𝜔) exp

(
− 𝜆−1

∫ 𝑇

0
𝑓 (𝑋𝑡 (𝜔), 𝑡) 𝑑𝑡 − 𝜆−1𝑔(𝑋𝑇 (𝜔))

) ]
.

□

Lemma C.13 (Stochastic integration by parts, [Oksendal 2013]). Let

𝑑𝑋𝑡 = 𝑎𝑡 𝑑𝑡 + 𝑏𝑡 𝑑𝑊 1
𝑡 ,

𝑑𝑌𝑡 = 𝑓𝑡 𝑑𝑡 + 𝑔𝑡 𝑑𝑊 2
𝑡 .

where 𝑎𝑡 , 𝑏𝑡 , 𝑓𝑡 , 𝑔𝑡 are continuous square integrable processes adapted to a filtration (F𝑡 )𝑡∈[0,𝑇 ] , and

𝑊 1,𝑊 2 are Brownian motions adapted to the same filtration. Then,

𝑋𝑡𝑌𝑡 − 𝑋0𝑌0 =

∫ 𝑡

0
𝑋𝑠 𝑑𝑌𝑠 +

∫ 𝑡

0
𝑌𝑠 𝑑𝑋𝑠 +

∫ 𝑡

0
𝑏𝑠𝑔𝑠 ⟨𝑑𝑋𝑠, 𝑑𝑌𝑠⟩.

C.3.5 Proof of Theorem 4.6

Proof. Since the equality (C.3) holds almost surely for the pair (𝑋, 𝐵), it must also hold almost

surely for (𝑋 𝑣 , 𝐵𝑣 ), which satisfy the same SDE. That is

W(𝑋 𝑣 , 0) = 𝑉 (𝑋 𝑣0 , 0) +
1
2

∫ 𝑇

0
∥𝑢∗(𝑋 𝑣𝑠 , 𝑠)∥2 d𝑠 −

√
𝜆

∫ 𝑇

0
⟨𝑢∗(𝑋 𝑣𝑠 , 𝑠), d𝐵𝑣𝑠 ⟩,
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Thus, we obtain that

𝛼 (𝑣, 𝑋 𝑣 , 𝐵) = exp
(
− 𝜆−1W(𝑋 𝑣 , 0) − 𝜆−1/2

∫ 𝑇

0
⟨𝑣 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑣𝑡 ⟩ +

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

)
= exp

(
− 𝜆−1𝑉 (𝑋 𝑣0 , 0) −

𝜆−1

2

∫ 𝑇

0
∥𝑢∗(𝑋 𝑣𝑠 , 𝑠)∥2 d𝑠 + 𝜆−1/2

∫ 𝑇

0
⟨𝑢∗(𝑋 𝑣𝑠 , 𝑠), d𝐵𝑣𝑠 ⟩

− 𝜆−1/2
∫ 𝑇

0
⟨𝑣 (𝑋 𝑣𝑡 , 𝑡), d𝐵𝑣𝑡 ⟩ +

𝜆−1

2

∫ 𝑇

0
∥𝑣 (𝑋 𝑣𝑡 , 𝑡)∥2 d𝑡

)
,

and this is equal to exp
(
− 𝑉 (𝑋 𝑣0 , 0)

)
when 𝑣 = 𝑢∗. Since we condition on 𝑋 𝑣0 = 𝑥init, we have

obtained that the random variable takes constant value exp
(
− 𝑉 (𝑥init, 0)

)
almost surely, which

means that its variance is zero. □

C.3.6 Proof of Theorem 4.7

The proof of (4.24) shows that minimizing Var(𝑤 ;𝑀) is equivalent to minimizing

E
[ 1
𝑇

∫ 𝑇

0



𝑤 (𝑡, 𝑣, 𝑋 𝑣 , 𝐵,𝑀𝑡 )


2 d𝑡 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)

]
. (C.32)

To optimize with respect to 𝑀 , it is convenient to reexpress it in terms of ¤𝑀 = ( ¤𝑀𝑡 )𝑡∈[0,𝑇 ] as

𝑀𝑡 (𝑠) = 𝐼 +
∫ 𝑠

𝑡
¤𝑀𝑡 (𝑠′) d𝑠′. By Fubini’s theorem, we have that

∫ 𝑇

𝑡

𝑀𝑡 (𝑠)∇𝑥 𝑓 (𝑋 𝑣𝑠 , 𝑠) d𝑠 =
∫ 𝑇

𝑡

(
𝐼 +

∫ 𝑠

𝑡

¤𝑀𝑡 (𝑠′) d𝑠′
)
∇𝑥 𝑓 (𝑋 𝑣𝑠 , 𝑠) d𝑠

=

∫ 𝑇

𝑡

∇𝑥 𝑓 (𝑋 𝑣𝑠 , 𝑠) d𝑠 +
∫ 𝑇

𝑡

¤𝑀𝑡 (𝑠)
∫ 𝑇

𝑠

∇𝑥 𝑓 (𝑋 𝑣𝑠′, 𝑠′) d𝑠′ d𝑠,

−
∫ 𝑇

𝑡

(𝑀𝑡 (𝑠)∇𝑥𝑏 (𝑋 𝑣𝑠 , 𝑠) − ¤𝑀𝑡 (𝑠)) (𝜎−1)⊤(𝑠)𝑣 (𝑋 𝑣𝑠 , 𝑠) d𝑠

=

∫ 𝑇

𝑡

¤𝑀𝑡 (𝑠) (𝜎−1)⊤(𝑠)𝑣 (𝑋 𝑣𝑠 , 𝑠) d𝑠 −
∫ 𝑇

𝑡

¤𝑀𝑡 (𝑠)
∫ 𝑇

𝑠

∇𝑥𝑏 (𝑋 𝑣𝑠′, 𝑠′) (𝜎−1
𝑠′ )⊤(𝑠′)𝑣 (𝑋 𝑣𝑠 , 𝑠) d𝑠′ d𝑠,
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− 𝜆1/2
∫ 𝑇

𝑡

(𝑀𝑡 (𝑠)∇𝑥𝑏 (𝑋 𝑣𝑠 , 𝑠) − ¤𝑀𝑡 (𝑠)) (𝜎−1)⊤(𝑠) d𝐵𝑠

= 𝜆1/2 ( ∫ 𝑇

𝑡

¤𝑀𝑡 (𝑠) (𝜎−1)⊤(𝑠)𝑣 (𝑋 𝑣𝑠 , 𝑠) d𝑠 −
∫ 𝑇

𝑡

¤𝑀𝑡 (𝑠)
∫ 𝑇

𝑠

∇𝑥𝑏 (𝑋 𝑣𝑠′, 𝑠′) (𝜎−1)⊤(𝑠′) d𝐵𝑠′ d𝑠
)
.

Hence, we can rewrite (C.32) as

G( ¤𝑀) = E
[ 1
𝑇

∫ 𝑇

0



𝜎 (𝑡)⊤ ( ∫ 𝑇

𝑡

∇𝑥 𝑓 (𝑋 𝑣𝑠 , 𝑠) d𝑠 + ∇𝑔(𝑋 𝑣𝑇 )

+
∫ 𝑇

𝑡

¤𝑀𝑡 (𝑠)
( ∫ 𝑇

𝑠

∇𝑥 𝑓 (𝑋 𝑣𝑠′, 𝑠′) d𝑠′ + ∇𝑔(𝑋 𝑣𝑇 ) + (𝜎
−1)⊤(𝑠)𝑣 (𝑋 𝑣𝑠 , 𝑠)

−
∫ 𝑇

𝑠

∇𝑥𝑏 (𝑋 𝑣𝑠′, 𝑠′) (𝜎−1
𝑠′ )⊤(𝑠′)𝑣 (𝑋 𝑣𝑠 , 𝑠) d𝑠′ −

∫ 𝑇

𝑠

∇𝑥𝑏 (𝑋 𝑣𝑠′, 𝑠′) (𝜎−1
𝑠′ )⊤(𝑠′) d𝐵𝑠′

)
d𝑠

)

2 d𝑡

× 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)
]

The first variation 𝛿G
𝛿 ¤𝑀 ( ¤𝑀) of G at ¤𝑀 is defined as the family 𝑄 = (𝑄𝑡 )𝑡∈[0,𝑇 ] of matrix-valued

functions such that for any collection of matrix-valued functions 𝑃 = (𝑃𝑡 )𝑡∈[0,𝑇 ] ,

𝜕𝜖V( ¤𝑀 + 𝜖𝑃) |𝜖=0 = lim
𝜖→0

V( ¤𝑀 + 𝜖𝑃) − V(𝑀)
𝜖

= ⟨𝑃,𝑄⟩ :=
∫ 𝑇

0

∫ 𝑇

𝑡

⟨𝑃𝑡 (𝑠), 𝑄𝑡 (𝑠)⟩𝐹 d𝑠 d𝑡,
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where ¤𝑀 + 𝜖𝑃 := ( ¤𝑀𝑡 + 𝜖𝑃𝑡 )𝑡∈[0,𝑇 ] . Now, note that

𝜕𝜖V( ¤𝑀 + 𝜖𝑃) |𝜖=0 = 𝜕𝜖E
[ 1
𝑇

∫ 𝑇

0



𝜎 (𝑡)⊤ ( ∫ 𝑇

𝑡

∇𝑥 𝑓 (𝑋 𝑣𝑠 , 𝑠) d𝑠 + ∇𝑔(𝑋 𝑣𝑇 )

+
∫ 𝑇

𝑡

( ¤𝑀𝑡 (𝑠) + 𝜖𝑃𝑡 (𝑠))
( ∫ 𝑇

𝑠

∇𝑥 𝑓 (𝑋 𝑣𝑠′, 𝑠′) d𝑠′ + ∇𝑔(𝑋 𝑣𝑇 ) + (𝜎
−1)⊤(𝑠)𝑣 (𝑋 𝑣𝑠 , 𝑠)

−
∫ 𝑇

𝑠

∇𝑥𝑏 (𝑋 𝑣𝑠′, 𝑠′) (𝜎−1
𝑠′ )⊤(𝑠′)𝑣 (𝑋 𝑣𝑠 , 𝑠) d𝑠′ −

∫ 𝑇

𝑠

∇𝑥𝑏 (𝑋 𝑣𝑠′, 𝑠′) (𝜎−1
𝑠′ )⊤(𝑠′) d𝐵𝑠′

)
d𝑠

)

2 d𝑡

× 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)
] ��
𝜖=0

= E
[ 2
𝑇

∫ 𝑇

0

〈
𝜎 (𝑡)𝜎 (𝑡)⊤

( ∫ 𝑇

𝑡

∇𝑥 𝑓 (𝑋 𝑣𝑠 , 𝑠) d𝑠 + ∇𝑔(𝑋 𝑣𝑇 )

+
∫ 𝑇

𝑡

¤𝑀𝑡 (𝑠)
( ∫ 𝑇

𝑠

∇𝑥 𝑓 (𝑋 𝑣𝑠′, 𝑠′) d𝑠′ + ∇𝑔(𝑋 𝑣𝑇 ) + (𝜎
−1)⊤(𝑠)𝑣 (𝑋 𝑣𝑠 , 𝑠)

−
∫ 𝑇

𝑠

∇𝑥𝑏 (𝑋 𝑣𝑠′, 𝑠′) (𝜎−1
𝑠′ )⊤(𝑠′)𝑣 (𝑋 𝑣𝑠 , 𝑠) d𝑠′ −

∫ 𝑇

𝑠

∇𝑥𝑏 (𝑋 𝑣𝑠′, 𝑠′) (𝜎−1
𝑠′ )⊤(𝑠′) d𝐵𝑠′

)
d𝑠

)
,∫ 𝑇

𝑡

𝑃𝑡 (𝑠)
( ∫ 𝑇

𝑠

∇𝑥 𝑓 (𝑋 𝑣𝑠′, 𝑠′) d𝑠′ + ∇𝑔(𝑋 𝑣𝑇 ) + (𝜎
−1)⊤(𝑠)𝑣 (𝑋 𝑣𝑠 , 𝑠)

−
∫ 𝑇

𝑠

∇𝑥𝑏 (𝑋 𝑣𝑠′, 𝑠′) (𝜎−1
𝑠′ )⊤(𝑠′)𝑣 (𝑋 𝑣𝑠 , 𝑠) d𝑠′ −

∫ 𝑇

𝑠

∇𝑥𝑏 (𝑋 𝑣𝑠′, 𝑠′) (𝜎−1
𝑠′ )⊤(𝑠′) d𝐵𝑠′

)
d𝑠

〉
d𝑡

× 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)
]
. (C.33)

If we define

𝜒 (𝑠, 𝑋 𝑣 , 𝐵) :=
∫ 𝑇

𝑠

∇𝑥 𝑓 (𝑋 𝑣𝑠′, 𝑠′) d𝑠′ + ∇𝑔(𝑋 𝑣𝑇 ) + (𝜎
−1)⊤(𝑠)𝑣 (𝑋 𝑣𝑠 , 𝑠)

−
∫ 𝑇

𝑠

∇𝑥𝑏 (𝑋 𝑣𝑠′, 𝑠′) (𝜎−1
𝑠′ )⊤(𝑠′)𝑣 (𝑋 𝑣𝑠 , 𝑠) d𝑠′ −

∫ 𝑇

𝑠

∇𝑥𝑏 (𝑋 𝑣𝑠′, 𝑠′) (𝜎−1
𝑠′ )⊤(𝑠′) d𝐵𝑠′,
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we can rewrite (C.33) as

𝜕𝜖V( ¤𝑀+𝜖𝑃) |𝜖=0 (C.34)

=E
[ 1
𝑇

∫ 𝑇

0

〈
𝜎 (𝑡)𝜎 (𝑡)⊤

(∫ 𝑇

𝑡

∇𝑥 𝑓 (𝑋 𝑣𝑠 , 𝑠)d𝑠+∇𝑔(𝑋 𝑣𝑇 )+
∫ 𝑇

𝑡

𝑀𝑡 (𝑠)𝜒 (𝑠, 𝑋 𝑣 , 𝐵) d𝑠
)
,∫ 𝑇

𝑡

𝑃𝑡 (𝑠)𝜒 (𝑠, 𝑋 𝑣 , 𝐵)d𝑠
〉

d𝑠 × 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)
]

Now let us reexpress equation (C.34) as:

E
[ 1
𝑇

∫ 𝑇

0

〈
𝜎𝜎⊤(𝑡)

(
∇𝑔(𝑋 𝑣𝑇 ) +

∫ 𝑇

𝑡

(
∇𝑥 𝑓 (𝑋 𝑣𝑠 , 𝑠) + ¤𝑀𝑡 (𝑠)𝜒 (𝑠, 𝑋 𝑣 , 𝐵)

)
d𝑠

)
,∫ 𝑇

𝑡

𝑃𝑡 (𝑠)𝜒 (𝑠, 𝑋 𝑣 , 𝐵) d𝑠
〉

d𝑡 × 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)
]

(i)
= E

[ 1
𝑇

∫ 𝑇

0

∫ 𝑠

0

〈
𝑃𝑡 (𝑠)𝜒 (𝑠, 𝑋 𝑣 , 𝐵),

𝜎𝜎⊤(𝑡)
(
∇𝑔(𝑋 𝑣𝑇 ) +

∫ 𝑇

𝑡

(∇𝑥 𝑓 (𝑋 𝑣𝑠′, 𝑠′)+ ¤𝑀𝑡 (𝑠′)𝜒 (𝑠′, 𝑋 𝑣 , 𝐵)) d𝑠′
)〉

d𝑡 d𝑠 × 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)
]

(ii)
= E

[ 1
𝑇

∫ 𝑇

0

∫ 𝑠

0

〈
𝜎𝜎⊤(𝑡)

(
∇𝑔(𝑋 𝑣𝑇 ) +

∫ 𝑇

𝑡

(∇𝑥 𝑓 (𝑋 𝑣𝑠′, 𝑠′) + ¤𝑀𝑡 (𝑠′)𝜒 (𝑠′, 𝑋 𝑣 , 𝐵)) d𝑠′
)
𝜒 (𝑋 𝑣 , 𝑠, 𝐵)⊤,

𝑃𝑡 (𝑠)
〉
𝐹

d𝑡 d𝑠 × 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)
]

=

∫ 𝑇

0

∫ 𝑠

0

〈 1
𝑇
𝜎𝜎⊤(𝑡)E

[ (
∇𝑔(𝑋 𝑣𝑇 )+

∫ 𝑇

𝑡

(∇𝑥 𝑓 (𝑋 𝑣𝑠′, 𝑠′)+ ¤𝑀𝑡 (𝑠′)𝜒 (𝑋 𝑣 , 𝑠′, 𝐵)) d𝑠′
)
𝜒 (𝑋 𝑣 , 𝑠, 𝐵)⊤𝛼 (𝑣, 𝑋 𝑣 , 𝐵)

]
,

𝑃𝑡 (𝑠)
〉
𝐹

d𝑡 d𝑠 . (C.35)

Here, equality (i) holds by Lemma C.14, making the choices 𝛼 (𝑡, 𝑠) = 𝑃𝑡 (𝑠)𝜒 (𝑋 𝑣 , 𝑠, 𝐵), and 𝛾 (𝑡) =

𝜎𝜎⊤(𝑡)
(
∇𝑔(𝑋 𝑣

𝑇
) +

∫ 𝑇
𝑡

(
∇𝑥 𝑓 (𝑋 𝑣𝑠 , 𝑠) + ¤𝑀𝑡 (𝑠)𝜒 (𝑋 𝑣 , 𝑠, 𝐵)

)
d𝑠 . Equality (ii) follows from the fact that for

any matrix 𝐴 and vectors 𝑏, 𝑐 , ⟨𝐴𝑏, 𝑐⟩ = 𝑐⊤𝐴𝑏 = Tr(𝑐⊤𝐴𝑏) = Tr(𝐴𝑏𝑐⊤) = ⟨𝐵, 𝑐𝑏⊤⟩𝐹 , where ⟨·, ·⟩𝐹

denotes the Frobenius inner product. The first-order necessary condition for optimality states

that at the optimal ¤𝑀∗, the first variation 𝛿G
𝛿 ¤𝑀 ( ¤𝑀

∗) is zero. In other words, 𝜕𝜖V( ¤𝑀 +𝜖𝑃) |𝜖=0 is zero

for any 𝑃 . Hence, the right-hand side of (C.35) must be zero for any 𝑃 , which implies that almost
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everywhere with respect to 𝑡 ∈ [0,𝑇 ], 𝑠 ∈ [𝑠,𝑇 ],

E
[ (
∇𝑔(𝑋 𝑣𝑇 )+

∫ 𝑇

𝑡

(∇𝑥 𝑓 (𝑋 𝑣𝑠′, 𝑠′)+ ¤𝑀𝑡 (𝑠′)𝜒 (𝑋 𝑣 , 𝑠′, 𝐵)) d𝑠′
)
𝜒 (𝑋 𝑣 , 𝑠, 𝐵)⊤𝛼 (𝑣, 𝑋 𝑣 , 𝐵)

]
= 0.

To derive this, we also used that 𝜎 (𝑡) is invertible by assumption.

Define the integral operator T𝑡 : 𝐿2( [𝑡,𝑇 ];R𝑑×𝑑) → 𝐿2( [𝑡,𝑇 ];R𝑑×𝑑) as

[T𝑡 ( ¤𝑀𝑡 )] (𝑠) =
∫ 𝑇

𝑡

¤𝑀𝑡 (𝑠′)E
[
𝜒 (𝑋 𝑣 , 𝑠′, 𝐵)𝜒 (𝑋 𝑣 , 𝑠, 𝐵)⊤ × 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)

]
d𝑠′

If we define 𝑁𝑡 (𝑠) = −E
[ (
∇𝑔(𝑋 𝑣

𝑇
) +

∫ 𝑇
𝑡
∇𝑥 𝑓 (𝑋 𝑣𝑠′, 𝑠′) d𝑠′

)
𝜒 (𝑋 𝑣 , 𝑠, 𝐵)⊤ × 𝛼 (𝑣, 𝑋 𝑣 , 𝐵)

]
, the problem

that we need to solve to find the optimal ¤𝑀𝑡 is

T𝑡 ( ¤𝑀𝑡 ) = 𝑁𝑡 .

This is a Fredholm equation of the first kind.

Lemma C.14. If 𝛼, 𝛽 : [0,𝑇 ] × [0,𝑇 ] → R𝑑 , 𝛾 : [0,𝑇 ] → R𝑑 , 𝛿 : [0,𝑇 ] → R𝑑×𝑑 are arbitrary

integrable functions, we have that

∫ 𝑇

0

〈 ∫ 𝑇

𝑡

𝛼 (𝑡, 𝑠) d𝑠,𝛾 (𝑡)
〉

d𝑡 =
∫ 𝑇

0

∫ 𝑠

0

〈
𝛼 (𝑡, 𝑠), 𝛾 (𝑡)

〉
d𝑡 d𝑠,

Proof. We have that:

∫ 𝑇

0

∫ 𝑇

𝑡

〈
𝛼 (𝑡, 𝑠), 𝛾 (𝑡)

〉
d𝑠 d𝑡 (i)

=

∫ 𝑇

0

∫ 𝑇−𝑡

0

〈
𝛼 (𝑡,𝑇 − 𝑠), 𝛾 (𝑡)

〉
d𝑠 d𝑡

(ii)
=

∫ 𝑇

0

∫ 𝑡

0

〈
𝛼 (𝑇 − 𝑡,𝑇 − 𝑠), 𝛾 (𝑇 − 𝑡)

〉
d𝑠 d𝑡 (iii)

=

∫ 𝑇

0

∫ 𝑇

𝑠

〈
𝛼 (𝑇 − 𝑡,𝑇 − 𝑠), 𝛾 (𝑇 − 𝑡)

〉
d𝑡 d𝑠

(iv)
=

∫ 𝑇

0

∫ 𝑇

𝑇−𝑠

〈
𝛼 (𝑇 − 𝑡, 𝑠), 𝛾 (𝑇 − 𝑡)

〉
d𝑡 d𝑠 (v)

=

∫ 𝑇

0

∫ 𝑠

0

〈
𝛼 (𝑡, 𝑠), 𝛾 (𝑡)

〉
d𝑡 d𝑠

Here, in equalities (i), (ii), (iv) and (v) we make changes of variables of the form 𝑡 ↦→ 𝑇 − 𝑡 ,
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𝑠 ↦→ 𝑇 − 𝑠 , 𝑠′ ↦→ 𝑇 − 𝑠′. In equality (iii) we use Fubini’s theorem. □

C.4 Control warm-starting

We introduce the Gaussian warm-start, a control warm-start strategy that we adapt from [Liu

et al. 2023a], and that we use in our experiments in Figure 4.3. Their work tackles generalized

Schrödinger bridge problems, which are different from the control setting in that the final dis-

tribution is known and there is no terminal cost. The following proposition, that provides an

analytic expression of the control needed for the density of the process to be Gaussian at all

times, is the foundation of our method.

Proposition C.15. Given 𝑍 ∼ 𝑁 (0, 𝐼 ) define the random process 𝑌 as

𝑌𝑡 = 𝜇 (𝑡) + Γ̃(𝑡)𝑍, where 𝜇 (𝑡) ∈ R𝑑 , Γ̃(𝑡) =
√
𝑡Γ(𝑡) ∈ R𝑑×𝑑 . (C.36)

Define the control 𝑢 : R𝑑 × [0,𝑇 ] → R𝑑 as

𝑢 (𝑥, 𝑡) = 𝜎 (𝑡)−1 (𝜕𝑡𝜇 (𝑡) + ( (
𝜕𝑡Γ(𝑡)

)
Γ(𝑡)−1 + 𝐼 − (𝜎𝜎

⊤) (𝑡) (ΣΣ⊤)−1(𝑡)
2𝑡

)
(𝑥 − 𝜇 (𝑡)) −𝑏 (𝑥, 𝑡)

)
. (C.37)

Then, if Γ0 = 𝜎 (0), the controlled process 𝑋𝑢 defined in equation (4.2) has the same marginals as 𝑌 .

That is, for all 𝑡 ∈ [0,𝑇 ], Law(𝑌𝑡 ) = Law(𝑋𝑢𝑡 ).

Proof. Following [Liu et al. 2023a], we have that

𝜕𝑡𝑋𝑡 = 𝜕𝑡𝜇𝑡 + 𝜕𝑡 Γ̃(𝑡)𝑍 = 𝜕𝑡𝜇 (𝑡) + (𝜕𝑡 Γ̃(𝑡))Γ̃(𝑡)−1(𝑋𝑡 − 𝜇 (𝑡)),

∇ log𝑝𝑡 (𝑥) = −Σ̃(𝑡)−1(𝑥 − 𝜇 (𝑡)), Σ̃(𝑡) = Γ̃(𝑡)Γ̃(𝑡)⊤.
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Now, 𝑝𝑡 satisfies the continuity equation equation

𝜕𝑡𝑝𝑡 = −∇ · ((𝜕𝑡𝜇 (𝑡) + (𝜕𝑡 Γ̃(𝑡))Γ̃(𝑡)−1(𝑥 − 𝜇 (𝑡)))𝑝𝑡 ) (C.38)

Let 𝐷 (𝑡) = 1
2𝜎 (𝑡)𝜎 (𝑡)

⊤. We want to reexpress (C.38) as a Fokker-Planck equation of the form

𝜕𝑡𝑝𝑡 =−∇ · (𝑣 (𝑥, 𝑡)𝑝𝑡 )+
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝜕𝑖𝜕 𝑗 (𝐷𝑖 𝑗 (𝑡)𝑝𝑡 )=−∇ · (𝑣 (𝑥, 𝑡)𝑝𝑡 )+
𝑑∑︁
𝑖=1

𝜕𝑖

𝑑∑︁
𝑗=1
(𝐷𝑖 𝑗 (𝑡)𝜕 𝑗𝑝𝑡 )

= −∇ · (𝑣 (𝑥, 𝑡)𝑝𝑡 ) + ∇ · (𝐷 (𝑡)∇𝑝𝑡 ) = −∇ · (𝑣 (𝑥, 𝑡)𝑝𝑡 ) + ∇ · (𝐷 (𝑡)∇ log𝑝𝑡 (𝑥)𝑝𝑡 )

= −∇ · ((𝑣 (𝑥, 𝑡)−𝐷 (𝑡)∇ log𝑝𝑡 (𝑥))𝑝𝑡 ).

Hence, we need that

𝑣 (𝑥, 𝑡) − 𝐷 (𝑡)∇ log𝑝𝑡 = 𝜕𝑡𝜇 (𝑡) + (𝜕𝑡 Γ̃(𝑡))Γ̃(𝑡)−1(𝑥 − 𝜇 (𝑡)),

=⇒ 𝑣𝑡 (𝑥) = 𝜕𝑡𝜇 (𝑡) + ((𝜕𝑡 Γ̃(𝑡))Γ̃(𝑡)−1(𝑥 − 𝜇 (𝑡)) + (𝜎𝜎
⊤) (𝑡)
2

∇ log𝑝𝑡 (𝑥)

= 𝜕𝑡𝜇 (𝑡) + (𝜕𝑡 Γ̃(𝑡))Γ̃(𝑡)−1(𝑥 − 𝜇 (𝑡)) − (𝜎𝜎
⊤) (𝑡)
2

Σ(𝑡)−1(𝑥 − 𝜇 (𝑡)) .

If we let Γ̃(𝑡) = Γ(𝑡)
√
𝑡 , then Σ̃(𝑡) = 𝑡Γ(𝑡)Γ(𝑡)⊤ = 𝑡Σ(𝑡) and 𝜕𝑡 Γ̃(𝑡) = 𝜕𝑡Γ(𝑡)

√
𝑡 + Γ(𝑡)

2
√
𝑡
. That is,

𝑣 (𝑥, 𝑡) = 𝜕𝑡𝜇 (𝑡) +
(
𝜕𝑡Γ(𝑡)

√
𝑡 + Γ(𝑡)

2
√
𝑡

) Γ(𝑡)−1
√
𝑡
(𝑥 − 𝜇 (𝑡)) − (𝜎𝜎

⊤) (𝑡)
2

Σ(𝑡)−1

𝑡
(𝑥 − 𝜇 (𝑡))

= 𝜕𝑡𝜇 (𝑡) +
(
𝜕𝑡Γ(𝑡)

)
Γ(𝑡)−1(𝑥 − 𝜇 (𝑡)) + 1

2𝑡
(𝑥 − 𝜇 (𝑡)) − (𝜎𝜎

⊤) (𝑡)Σ(𝑡)−1

2𝑡
(𝑥 − 𝜇 (𝑡))

For 𝑣 to be finite at 𝑡 = 0, we need that (𝜎𝜎⊤) (0)Σ(0)−1 = 𝐼 , which holds, for example, if Γ(0) =
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𝜎 (0). Also, to match the form of (4.2), we need that

𝑣 (𝑥, 𝑡) = 𝑏 (𝑥, 𝑡) + 𝜎 (𝑡)𝑢 (𝑥, 𝑡),

=⇒ 𝑢 (𝑥, 𝑡) = 𝜎 (𝑡)−1 (𝜕𝑡𝜇𝑡 + ( (
𝜕𝑡Γ(𝑡)

)
Γ(𝑡)−1 + 𝐼 − (𝜎𝜎

⊤) (𝑡)Σ(𝑡)−1

2𝑡
)
(𝑥 − 𝜇𝑡 ) − 𝑏 (𝑥, 𝑡)

)
.

□

The warm-start control is computed as the solution of a Restricted Gaussian Stochastic Optimal

Control problem, where we constrain the space of controls to those that induce Gaussian paths

as described in Theorem C.15. In practice, we learn a linear spline 𝜇 = (𝜇 (𝑏))B
𝑏=0, where 𝜇

(𝑏) ∈ R𝑑 ,

and a linear spline Γ = (Γ (𝑏))B
𝑏=0, where Γ

(𝑏) ∈ R𝑑×𝑑 . These linear splines take the role of 𝜇 (𝑡) and

Σ(𝑡) in (C.36). Given splines 𝜇 and Γ, we obtain the warm-start control using (C.37); for a given

𝑡 ∈ [0,𝑇 ), if we let 𝑏− = ⌊B𝑡/𝑇 ⌋, 𝑏+ = 𝑏− + 1, Δ = 𝑇 /B, we have that

𝜇̂ (𝑡) = (𝑡 − 𝑏−Δ)𝜇
(𝑏+) + (𝑏+Δ − 𝑡)𝜇 (𝑏−)

Δ
, 𝜕𝑡𝜇 (𝑡) =

𝜇 (𝑏+) − 𝜇 (𝑏−)
Δ

, (C.39)

Γ̂(𝑡) = (𝑡 − 𝑏−Δ)Γ
(𝑏+) + (𝑏+Δ − 𝑡)Γ (𝑏−)

Δ
, 𝜕𝑡Γ(𝑡) =

Γ (𝑏+) − Γ (𝑏−)
Δ

, (C.40)

𝑢 (𝑥, 𝑡) = 𝜎 (𝑡)−1 (𝜕𝑡𝜇 (𝑡) + (
𝜕𝑡Γ(𝑡)Γ̂(𝑡)−1 + 𝐼 − (𝜎𝜎

⊤) (𝑡) (Σ̂Σ̂⊤)−1(𝑡)
2𝑡

)
(𝑥 − 𝜇̂ (𝑡)) − 𝑏 (𝑥, 𝑡)

)
.(C.41)

Algorithm 7 provides a method to learn the splines 𝜇, Γ. It is a stochastic optimization algorithms

in which the spline parameters are updated by sampling𝑌𝑡 in (C.36) at different times, computing

the control cost relying on (C.41), and taking its gradient.

Once we have access to the restricted control 𝑢𝑁 , we can warm-start the control in Algorithms 3

and 4 by introducing 𝑢𝑁 as an offset. That is, we parameterize the control as 𝑢𝜃 = 𝑢𝑁 + 𝑢̃𝜃 .
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Algorithm 7 Restricted Gaussian Stochastic Optimal Control
Input: State cost 𝑓 (𝑥, 𝑡), terminal cost𝑔(𝑥), covariancematrix 𝜎 (𝑡), base drift𝑏 (𝑥, 𝑡), noise level 𝜆, number

of iterations 𝑁 , batch size𝑚, number of time steps𝐾 , number of spline knots B, initial mean spline
knots 𝜇0 = (𝜇 (𝑏 )0 )B𝑏=0, initial noise spline knots Γ0 = (Γ (𝑏 )0 )B𝑏=0.

1 for 𝑛 = 0 : (𝑁 − 1)} do
2 Sample𝑚 i.i.d. variables (𝑍𝑖)𝑛𝑖=1 ∼ 𝑁 (0, 𝐼 ) and𝑚 times (𝑡𝑖)𝑛𝑖=1 ∼ Unif ( [0,𝑇 ]).
3 for 𝑗 = 0 : 𝐾 do
4 Set 𝑡 𝑗 = 𝑗𝑇 /𝐾 , and compute 𝜇̂𝑛 (𝑡 𝑗 ), 𝜕𝑡𝜇𝑛 (𝑡 𝑗 ), Γ̂𝑛 (𝑡 𝑗 ), 𝜕𝑡Γ𝑛 (𝑡 𝑗 ) according to (C.39), (C.40) using 𝜇𝑛 ,

Γ𝑛
5 for 𝑖 = 1 :𝑚 do compute 𝑌𝑖 𝑗 = 𝜇 (𝑡 𝑗 ) +

√
𝑡 𝑗 Γ̂(𝑡 𝑗 )𝑍𝑖 and 𝑢𝑛 (𝑌𝑖 𝑗 , 𝑡 𝑗 ) using (C.41);

6 end
7 Compute L̂RGSOC(𝜇𝑛, Γ𝑛) = 1

𝑚

∑𝑚
𝑖=1

(
𝑇
𝐾

∑𝐾−1
𝑗=0

( 1
2 ∥𝑢 (𝑌𝑖 𝑗 , 𝑡 𝑗 )∥

2 + 𝑓 (𝑌𝑖 𝑗 , 𝑡 𝑗 )
)
+ 𝑔(𝑌𝑖𝐾 )

)
8 Compute the gradient of L̂RGSOC(𝜇𝑛, Γ𝑛) with respect to the spline parameters (𝜇𝑛, Γ𝑛).
9 Obtain 𝜇𝑛+1, Γ𝑛+1 with via an Adam update on 𝜇𝑛 , Γ𝑛 resp. (or another stochastic algorithm)

10 end
Output: Learned splines 𝜇𝑁 , Γ𝑁 , control 𝑢𝑁

C.5 Experimental details and additional plots

C.5.1 Experimental details

The control 𝐿2 error curves show the following quantity:

E𝑡,P𝑢∗ [∥𝑢∗(𝑋𝑢
∗

𝑡 , 𝑡) − 𝑢 (𝑋𝑢
∗

𝑡 , 𝑡)∥2𝑒−𝜆
−1𝑉 (𝑋𝑢∗0 ,0)]/E𝑡,P𝑢∗ [𝑒−𝜆

−1𝑉 (𝑋𝑢∗0 ,0)]

= E𝑡,P𝑣 [∥𝑢∗(𝑋 𝑣𝑡 , 𝑡) − 𝑢 (𝑋 𝑣𝑡 , 𝑡)∥2𝛼 (𝑣, 𝑋 𝑣 , 𝐵)]/E𝑡,P𝑣 [𝛼 (𝑣, 𝑋 𝑣 , 𝐵)] .

The equality holds by the Girsanov theorem. In practice, we use Monte Carlo estimates of the

right-hand side, which we can easily compute during training because we sample trajectories

controlled by 𝑋 𝑣 .

For all losses and all settings, we train the control using Adam with learning rate 1 × 10−4. For

SOCM, we train the reparametrization matrices using Adam with learning rate 1 × 10−2. We use

batch size 𝑚 = 128 unless otherwise specified. When used, we run the warm-start algorithm

(Algorithm 7) with B = 20 knots, 𝐾 = 200 time steps, and batch size𝑚 = 512, and we use Adam
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with learning rate 3 × 10−4 for 𝑁 = 60000 iterations.

Quadratic Ornstein-Uhlenbeck The choices for the functions of the control problem are:

𝑏 (𝑥, 𝑡) = 𝐴𝑥, 𝑓 (𝑥, 𝑡) = 𝑥⊤𝑃𝑥, 𝑔(𝑥) = 𝑥⊤𝑄𝑥, 𝜎 (𝑡) = 𝜎0.

where 𝑄 is a positive definite matrix. Control problems of this form are better known as linear

quadratic regulator (LQR) and they admit a closed form solution [Van Handel 2007, Thm. 6.5.1].

The optimal control is given by:

𝑢∗𝑡 (𝑥) = −2𝜎⊤0 𝐹𝑡𝑥,

where 𝐹𝑡 is the solution of the Ricatti equation

𝑑𝐹𝑡

𝑑𝑡
+𝐴⊤𝐹𝑡 + 𝐹𝑡𝐴 − 2𝐹𝑡𝜎0𝜎

⊤
0 𝐹𝑡 + 𝑃 = 0

with the final condition 𝐹𝑇 = 𝑄 . Within theQuadratic OU class, we consider two settings:

• Easy: We set 𝑑 = 20, 𝐴 = 0.2𝐼 , 𝑃 = 0.2𝐼 , 𝑄 = 0.1𝐼 , 𝜎0 = 𝐼 , 𝜆 = 1, 𝑇 = 1, 𝑥init = 0.5𝑁 (0, 𝐼 ). We

do not use warm-start for any algorithm. We take 𝐾 = 50 time discretization steps, and we

use random seed 0.

• Hard: We set 𝑑 = 20, 𝐴 = 𝐼 , 𝑃 = 𝐼 , 𝑄 = 0.5𝐼 , 𝜎0 = 𝐼 , 𝜆 = 1, 𝑇 = 1, 𝑥init = 0.5𝑁 (0, 𝐼 ). We

use the Gaussian warm-start (section C.4). We take batch size 𝑚 = 64 and 𝐾 = 150 time

discretization steps, and we use random seed 0.

Linear Ornstein-Uhlenbeck The functions of the control problem are chosen as follows:

𝑏 (𝑥, 𝑡) = 𝐴𝑥, 𝑓 (𝑥, 𝑡) = 0, 𝑔(𝑥) = ⟨𝛾, 𝑥⟩, 𝜎 (𝑡) = 𝜎0.
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The optimal control for this class of problems is given by [Nüsken and Richter 2021, Sec. A.4]:

𝑢∗𝑡 (𝑥) = −𝜎⊤0 𝑒𝐴
⊤ (𝑇−𝑡)𝛾 .

We use exactly the same functions as [Nüsken and Richter 2021]: we sample (𝜉𝑖 𝑗 )1≤𝑖, 𝑗≤𝑑 once at

the beginning of the simulation, and set:

𝑑 = 10, 𝐴 = −𝐼 + (𝜉𝑖 𝑗 )1≤𝑖, 𝑗≤𝑑 , 𝛾 = 1, 𝜎0 = 𝐼 + (𝜉𝑖 𝑗 )1≤𝑖, 𝑗≤𝑑 ,

𝑇 = 1, 𝜆 = 1, 𝑥init = 0.5𝑁 (0, 𝐼 ).

We take 𝐾 = 100 time discretization steps, and we use random seed 0.

Double Well We also use exactly the same functions as [Nüsken and Richter 2021], which are

the following:

𝑏 (𝑥, 𝑡) = −∇Ψ(𝑥), Ψ(𝑥) =
𝑑∑︁
𝑖=1

𝜅𝑖 (𝑥2
𝑖 − 1)2, 𝑔(𝑥) =

𝑑∑︁
𝑖=1

𝜈𝑖 (𝑥2
𝑖 − 1)2, 𝜎0 = I,

where 𝑑 = 10, and 𝜅𝑖 = 5, 𝜈𝑖 = 3 for 𝑖 ∈ {1, 2, 3} and 𝜅𝑖 = 1, 𝜈𝑖 = 1 for 𝑖 ∈ {4, . . . , 10}. We set𝑇 = 1,

𝜆 = 1 and 𝑥init = 0. We take 𝐾 = 200 time discretization steps, and we use random seed 1.

C.5.2 Additional plots

Figure C.1 shows the control objective (4.1) for the four settings. The error bars for the control

objective plots show the confidence intervals for ± one standard deviation. As expected, SOCM

also obtains the lowest values for the control objective, up to the estimation error.

Figure C.2 shows the normalized standard deviation of the importance weight for the learned

control 𝑢:
√︁

Var[𝛼 (𝑢,𝑋𝑢, 𝐵)]/E[𝛼 (𝑢,𝑋𝑢, 𝐵)]. By Theorem 4.6, when 𝑋𝑢0 = 𝑥init for an arbitrary

𝑥init (which is the case for all our experiments), this quantity is zero for the optimal control 𝑢∗.
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Hence, the normalized standard deviation of 𝛼 is an alternative metric to measure the optimality

of the learned control.

Figure C.3 shows an exponential moving average of the norm squared of the gradient for Linear

OU and Double Well. For Linear OU, the minimum gradient norm is achieved by the adjoint

method, while for DoubleWell it is achieved by the cross entropy loss. The training instabilities

of the adjoint method become apparent as well. Interestingly, in both settings the algorithms

with smallest gradients are not SOCM, which is the algorithm with smallest error as shown in

Figure 4.2. Understanding this phenomenon is outside of the scope of this paper.

Figure C.4 shows that the instabilities of the adjoint method are inherent to the loss, because they

also appear at small learning rates: 3 × 10−5 is smaller than the learning rates typically used for

Adam, which hover from 1 × 10−4 to 1 × 10−3.

Figure C.5 shows plots of the control 𝐿2 error, the norm squared of the gradient, and the control

objective for the Quadratic OU (hard) setting, without using warm-start, i.e., with the same

algorithms plotted in Figure 4.1 and Figure 4.2. For over 30000 iterations, SOCM and cross en-

tropy have large gradient variance and substantially larger control objective than the adjoint, log-

variance and moment losses. This can be attributed to the large variance of the factor 𝛼 (𝑣, 𝑋 𝑣 , 𝐵),

which is present in the SOCM and the cross entropy losses. Eventually, both the gradient variance

and the error of SOCM drop below those of existing losses.

Figure C.6 shows the value of the training loss for SOCM and its two ablations: SOCM with con-

stant 𝑀𝑡 = 𝐼 , and SOCM-Adjoint. For all such algorithms, the training loss is the sum of the 𝐿2

error of the learned control 𝑢, and the expected conditional variance of the matching vector field

𝑤 . Thus, the difference between the training loss plots and the 𝐿2 error plots is the expected con-

ditional variance of𝑤 . We observe that the expected conditional variance in theQuadratic OU

setting is orders of magnitude smaller for SOCM than for its two ablations. For Linear OU, SOCM

and SOCM-adjoint have similar expected conditional variance, and a possible explanation is that

the Linear OU setting is very simple. In the Double Well setting, the SOCM-adjoint training
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loss curve has spikes that are probably caused by instabilities of the adjoint method. These spikes

can be attributed mostly to the expected conditional variance term, since the corresponding 𝐿2

error curve in Figure 4.2 does not present them.

Figure C.1: Plots of the control objective for the four settings.
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Figure C.2: Plots of the normalized standard deviation of the importance weights, which is given by√︁
Var[𝛼 (𝑢,𝑋𝑢, 𝐵)]/E[𝛼 (𝑢,𝑋𝑢, 𝐵)].

Figure C.3: Plots of the norm squared of the gradient for the Linear Ornstein Uhlenbeck and Double

Well settings.
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Figure C.4: Plots of the control 𝐿2
error and the norm squared of the gradient for the adjoint method on

Double Well, for two different values of the Adam learning rate. The instabilities of the adjoint method

persist for small learning rates, signaling an inherent issue with the loss.

Figure C.5: Plots of the control 𝐿2
error, the norm squared of the gradient, and the control objective for

the Quadratic Ornstein-Uhlenbeck (hard) setting, without using warm-start.
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Figure C.6: Plots of the training loss for SOCM and its two ablations: SOCM with constant 𝑀𝑡 = 𝐼 , and

SOCM-Adjoint.
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Indian Journal of Statistics (1933-1960), 19(1/2):23–26.

Villani, C. (2003). Topics in Optimal Transportation. Graduate studies in mathematics. American

Mathematical Society.

Villani, C. (2008). Optimal Transport: Old and New. Grundlehren der mathematischen Wis-

senschaften. Springer Berlin Heidelberg.

Wayne, G. and Abbott, L. (2014). Hierarchical control using networks trained with higher-level

forward models. Neural Computation, 26(10):2163–2193.

Wolansky, G. (2020). Semi-discrete optimal transport. arXiv preprint arXiv:1911.04348.

212



Zhang, J. et al. (2004). A numerical scheme for BSDEs. The annals of applied probability, 14(1):459–

488.

Zhang, Q. and Chen, Y. (2022). Path integral sampler: A stochastic control approach for sampling.

In International Conference on Learning Representations.

Zhang, W., Wang, H., Hartmann, C., Weber, M., and Schütte, C. (2014). Applications of the cross-

entropy method to importance sampling and optimal control of diffusions. SIAM Journal on

Scientific Computing, 36(6):A2654–A2672.

Zhou, M., Han, J., and Lu, J. (2021). Actor-critic method for high dimensional static Hamilton–

Jacobi–Bellman partial differential equations based on neural networks. SIAM Journal on Sci-

entific Computing, 43(6):A4043–A4066.

213


	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Mean-field two-player zero-sum games
	Introduction
	Related work
	Problem setup and mean-field dynamics
	Lifting differentiable games to spaces of strategy distributions
	Training dynamics on discrete mixtures of strategies
	Training dynamics as gradient flows on measures

	Convergence analysis
	Convergence of the entropy-regularized Wasserstein dynamics
	Analysis of the Wasserstein-Fisher-Rao dynamics
	Convergence to mean-field

	Numerical Experiments
	Polynomial games on spheres
	Training GAN mixtures

	Conclusions and future work

	Multisample Flow Matching
	Introduction
	Preliminaries
	Continuous Normalizing Flow
	Flow Matching
	Optimal Transport: Static & Dynamic

	Flow Matching with Joint Distributions
	Multisample Flow Matching
	CondOT is Uniform Coupling
	Batch Optimal Transport (BatchOT) Couplings
	Batch Entropic OT (BatchEOT) Couplings
	Stable and Heuristic Couplings

	Related Work
	Minibatch Couplings for Generative Modeling

	Experiments
	Insights from 2D experiments
	Image Datasets
	Improved Batch Optimal Couplings

	Conclusion

	Stochastic Optimal Control Matching
	Introduction
	Framework
	Setup and Preliminaries
	Existing approaches and related work

	Stochastic Optimal Control Matching
	Experiments
	Conclusion

	Discussion
	Appendix: Mean-field two-player zero-sum games
	Lifted dynamics for the Interacting Wasserstein-Fisher-Rao Gradient Flow
	Continuity and convergence properties of the Nikaido-Isoda error
	Proof of Theorem 2.2
	Proof of Theorem A.4: Preliminaries
	Proof of Theorem A.4: Existence
	Proof of Theorem A.4: Uniqueness
	Proof of Theorem A.5
	Proof of Theorem A.6

	Proof of Theorem 2.3
	Proof of Theorem 2.4(i)
	Preliminaries
	Existence and uniqueness
	Propagation of chaos
	Convergence of the Nikaido-Isoda error

	Proof of Theorem 2.4(ii)
	Preliminaries
	Existence and uniqueness
	Propagation of chaos
	Convergence of the Nikaido-Isoda error
	Hint of the infinitesimal generator approach

	Auxiliary material
	-Nash equilibria and the Nikaido-Isoda error
	Example: failure of the Interacting Wasserstein Gradient Flow
	Link between Interacting Wasserstein Gradient Flow and interacting particle gradient flows
	Minimax problems and Stackelberg equilibria
	Itô SDEs on Riemannian manifolds: a parametric approach


	Appendix: Multisample Flow Matching
	Coupling algorithms
	Stable couplings 
	Heuristic couplings 

	Additional tables and figures
	Full results on ImageNet data
	How batch size affects the marginal probability paths on 2D checkerboard data
	FID vs NFE using midpoint discretization scheme
	Comparison of FID vs NFE for baseline methods DDPM and ScoreSDE
	Runtime per iteration is not significantly affected by solving for couplings
	Convergence improves when using larger coupling sizes

	Generated samples
	Theorems and proofs
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Theorem 3.4
	Bounds on the transport cost and monotone convergence results

	Experimental & evaluation details
	Image datasets
	Improved batch optimal couplings


	Appendix: Stochastic Optimal Control Matching
	Technical assumptions
	Proofs of section 4.2
	Proofs of section 4.3
	Proof of Theorem 4.3 and Theorem 4.5
	Proof of the path-wise reparameterization trick (Theorem 4.4)
	Informal derivation of the path-wise reparameterization trick
	SOCM with the adjoint method for SDEs
	Proof of Theorem 4.6
	Proof of Theorem 4.7

	Control warm-starting
	Experimental details and additional plots
	Experimental details
	Additional plots


	Bibliography

