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1 Introduction

This thesis tries to pioneer some unexplored aspects in computational finance. Com-
putational finance is rapidly gaining reputation as a field worthy of dedicated research.
Although far from maturity, it may one day complement the established league of financial
economics, corporate, mathematical and statistical finance as equal partner.

There are some institutional activities that try to advance computational finance as
a field in its own right. Publications such as the “Journal of Computational Finance”
or the “Journal of Computational Intelligence in Finance” encourage research that uses
computational techniques. Topics range from numerical methods to neural networks to
genetic algorithms. Some academic places offer graduate programs in computational
finance, based on a mixture of finance, mathematics and computer science courses.

Then, of course, there is the vast collection of books on standard derivative pricing
models that, to a more or lesser degree, contain recipes on how these models are imple-
mented on a computer. In virtually all cases, instructions are kept on a very high level,
or actual programs are rudimentary and isolated solutions.

In this thesis, we attempt to combine results in mathematical finance with object-
oriented software-development techniques. The goal is to create a program that solves
the particular financial problem that we have posed ourselves, is extensible, durable, and
capable of forming the base of an industrial-strength product.

These features make it necessary to create a shell of supporting software first. The
mathematically sophisticated code that tackles the particular pricing problem must be
inserted into this shell. The shell, in fact, turns out to be rather large—81500 lines of
C++ code and 11500 of Java code have been written altogether for this thesis, of which,
for instance, only 2800 deal with the combinatorial structure of the pricing problem (these
2800 lines do not contain numerical code).

Large programs are best developed through modularization. The unit of modular-
ization under the object-oriented approach is the class—an abstract data type that may
inherit properties from super or parent classes and defer the instantiation of properties
to child or sub classes. The final application ideally consists of a forest of shallow class
hierarchies. Our code contains classes and class hierarchies for entities that have direct
financial significance (instruments, portfolios, models, scenarios), classes that support

certain mathematical methods (lattices, finite difference solvers, path spaces, optimiz-



ers), classes that control the evaluation loop (compute engines and evaluaters), scripting
classes (parser, scanner, script sources, expressions), system classes (sockets, pipes, ser-
vices), and many others. Altogether, there are about 135 classes in our code.

In the following pages we report on our concrete achievements, and hope to induce

the reader to participate in our vision. Qur achievements are two-fold:

1. We have solved the worst-case pricing problem for path-dependent options such as
barrier or American options under uncertain volatility assumptions. We have also
added a new type of uncertain volatility scenario: volatility shock scenarios allow a

fixed number of limited-duration volatility oscillations of high amplitude.

2. We have done so by creating a software environment that is thoroughly modular,
object-oriented, and extensible. Combinatorial and numerical algorithms are sepa-
rated and orthogonal. The system is downwards-compatible without performance
loss (i.e., it solves the plain Black-Scholes PDE without performance penalty). It
is upwards-compatible in the sense that extensions to the system are indeed exten-
sions—they don’t require an overhaul of the existing code (this has been proven

experimentally when we added Monte Carlo optimization methods).
Our vision has two aspects as well:

1. The worst-case pricing problem for path-dependent options is only one case among
many that require combinatorial and numerical methods for their solution. In
this singular example, the combinatorial aspect dominates the running time and
therefore justifies the search for efficient algorithmic techniques. In general, we think
the convergence of numerical methods and discrete algorithms promises interesting

research directions and practical applications that benefit the financial community.

2. The evaluation of portfolios does not occur in a vacuum. Data needs to flow in
from somewhere, and prices, curves, or calibrated surfaces need to be propagated.
The problems we are investigating require considerable computing resources. For
that reason, a client-server approach is very attractive: the client specifies the
concrete pricing problem and supplies some of the data, and the high-powered
server computes the answer, possibly augmenting the data with pre-fabricated data

that resides on the server (such as a calibrated volatility surface, for instance).



We have started to explore this architecture through Java- and HTML-based client
frontends and server backends that receive requests via TCP or CGI. Ultimately, we
envision a centralized site that offers a variety of pricing, hedging and calibration

services that are based on novel techniques such as those presented in this thesis.

For the reader in a hurry, Fig. 1.1 summarizes the microscopic and macroscopic aspects
of our achievements and vision in a nutshell.
The overview on the next few pages describes and motivates our interest in the algo-

rithmic and architectural topics in this thesis.

1.1 Uncertain Volatility Scenarios and Exotic Options

It is widely accepted that the assumption of constant volatility in financial models (such
as the original Black-Scholes model) and derivatives prices observed in the market are
incompatible. There are several ways to fix this deficiency: prescribed heterogeneous
yet deterministic volatility models, stochastic volatility models, or the calibration of a
volatility surface to market prices are common approaches.

Strongly related to finding the right method of modeling volatility is the problem to
measure the exposure of the options portfolio under investigation to volatility risk; how
does the model value of the portfolio change if the volatility is perturbed a little?

Uncertain volatility models attack both problems: they select a concrete volatility
surface among a candidate set of volatility surfaces, and they answer the sensitivity

question by computing an upper bound that the value of the portfolio can take under any

achievement vision
uncertain volatility models discrete algorithms
microscopic for barrier and dominate
American options numerical methods

macroscopic | scalable, object-oriented | Web-computing for finance

software solution takes off

Figure 1.1: Our achievements and vision in a nutshell




candidate volatility. (By inverting the position, a lower bound can be computed as well.)
This is achieved by choosing the local volatility o (S, t) among two extremal values omin
and opax such that the value of the portfolio is maximized locally.

Uncertain volatility scenarios generalize this approach: given a model that exhibits
uncertainty in some of its coefficients (the volatility, in particular), instantiate those
uncertain coefficients such that some objective is fulfilled. This objective is called a
scenario.

The original uncertain volatility model by Avellaneda and Pards (1995) is a worst-case
scenario for the sell-side. By maximizing the portfolio value and charging accordingly,
sellers are guaranteed coverage against adverse market behavior if the realized volatility
belongs to the candidate set. Worst-case prices are nonlinear, due to diversification of
volatility risk and “gamma-risk.” Worst-case evaluation is based on a nonlinear Hamilton-
Jacobi-Bellman equation that generalizes Black-Scholes by adjusting the local volatility,
or conditional variance, to the local gamma.

The worst-case volatility scenario (our notion) has been implemented for portfolios
of vanilla options, for which the Hamilton-Jacobi-Bellman equation is straightforward to
implement on a computer. An extension that hedges a portfolio of vanilla options with
liquidly traded market benchmarks is presented in Avellaneda and Pards (1996).

The computational overhead, however, grows quite dramatically once path-dependent
options, such as barrier or American options, are added to the portfolio. The worst-case
volatility scenario from today’s perspective of a portfolio containing an American option,
for instance, depends on whether the option is exercised today or not (for simplicity,
assume the option can be exercised only at finitely many times). A worst-case pricer

must compare

e the worst-case price of the portfolio under the assumption that the American option

is exercised tomorrow at the earliest;

e the worst-case price of the portfolio minus the American option, plus the cashflow

received or paid immediately from early exercise.

The pricer then must select the early exercise strategy that fits the worst-case assumption.
As the number of American options in the portfolio increases, the number of different

early exercise strategies that must be invesigated increases potentially exponentially, as



nonlinearity forces the pricer to consider all relevant combinations. This leads to a hier-
archy of interdependent PDE’s, each solving a Hamilton-Jacobi-Bellman problem.

In this thesis, we solve the pricing problem for portfolios containing barrier and Amer-
ican options, under worst-case volatility scenarios. For barrier options, the computational
complexity can be determined beforehand and is always O(n?), n being the number of
barrier options in the portfolio. For American options, the situation becomes more diffi-

cult since

e the early exercise boundaries are not known a priori: each PDE describes a free
boundary problem, the boundary value being selected locally from a hierarchy of

subordinate PDE’s (numerical aspect);

e the pricer must distinguish between long and short positions, as agents can use their
long positions to counter somewhat the worst-case early exercise strategies ascribed
to the investors with whom they have established their short positions. This gives

rise to the notion of best worst-case scenario (combinatorial aspect).

Potentially, up to O(2") early exercise combinations need to be considered (n being the
number of American options in the portfolio). This, of course, is unacceptably expensive.
We have developed algorithms that reduce the number of combinations tested locally,
but remain correct in the sense that, locally, the best worst-case scenario is always found.
We also present a heuristic which reduces the compute time further, but is no longer

guaranteed to be correct.

1.2 Volatility Shock Scenarios

Worst-case volatility scenarios limit the candidate set to volatilities that oscillate between
two extremal bounds (which may be heterogeneous). The resulting spread between the
worst-case values for the original and inverted position is often unacceptably large. To
narrow the extremal bounds o, and opax is a possible solution, but also makes it
less likely that the volatility realized later indeed observes those bounds. To narrow the
extremal bounds selectively in some places, and leave them unmodified (or even widened)
in others seems a plausible alternative, allowing for periods of relative calm and periods

of wolatility shocks with high amplitude.



Where on the time axis should those periods of high volatility fluctuation be located?
If market events that influence volatility cannot be foreseen, the exact location of volatility
shocks is difficult to determine. The worst-case paradigm comes to rescue: it is the
pricer’s task to locate volatility shock periods where they cause the most damage, in a
path-dependent way. Thus, the portfolio is not only maximized over the local volatility,
but also over the location of volatility shock periods.

An example helps to clarify. Suppose the volatility is estimated at 15%. There exists
very likely, we assume, one short period of 3 days during which the volatility may vary
between 15 and 100%. Given some portfolio, what is its worst-case value under the
assumption that the 3-day volatility shock period can start anytime? Its start date may
even be path-dependent: it may start earlier if the stock price moves up, and later if it
moves down.

Volatility shock scenarios can be solved with dynamic programming. We have devel-
oped algorithms that solve volatility shock scenarios for portfolios of vanilla, barrier and
American options. The number f of volatility shock periods is not limited; the overhead
is linear in f (for instance, if there is exactly one volatility shock period of duration one
day, then the slowdown factor compared to the regular worst-case scenario is 3).

Volatility shock scenarios are a useful new member in the arsenal of tools that assess

volatility risk. They furthermore fit neatly into the scenario paradigm introduced above.

1.3 Object-Oriented Implementation

The thesis title promises insight into the actual implementation. We comply by, first of all,
giving a name to our creation: Mtg. Mtg consists of modules MtgLib, MtgClt, MtgSvr,
MtgCal and MtgMath, where the latter three are essentially only wrappers around the
C++ class library MtgLib, offering different ways to access its features. MtgClt is a Java
frontend to MtgSvr.

MtgLib contains object-oriented code that solves the worst-case volatility and volatil-
ity shock scenarios for vanilla, barrier and American options. Its higher-level combina-
torial classes are geared towards multi-factor models on lattices. Its numerical classes
for finite difference solutions (explicit and mixed implicit/explicit) accept any one-factor
model. MtgLib strictly adheres to the scenario concept.

Figure 1.2 shows how successive refinement leads from a general view on evaluation



all methods

N

lattice-based

o~

one-factor

N

Black-Scholes

Figure 1.2: Progressing from a general view on evaluation to the concrete method for the
concrete model. The boxes correspond to classes tEngine, tFDEngine, tOFEngine and

tGeoEngine in MtgLib

to a concrete lattice-based method supporting a one-factor Black-Scholes model. At each
level in the hierarchy, alternative approaches can be spawned off.

A similar hierarchy can be drawn for scenarios: scenarios in general are refined to
worst-case volatility scenarios, which in turn are extended to volatility shock-scenarios.
The choice of the scenario is orthogonal to the choice of the method of evaluation. At
the deepest level, Black-Scholes may be evaluated under either scenario.

In this thesis, we give a broad overview over the categories of classes in MtgLib.
Interfaces are emphasized over implementation details. We hope our exposition proves

that MtgLib is an example of good object-oriented design.

1.4 Client-Server Computing on the Web

Two of our programs are accessible on the World Wide Web:

e MtgSvr is a general-purpose server that accepts requests in a customized scripting
language and returns the result in ASCII format. MtgClt is a Java frontend to
MtgSvr that can be downloaded from our website. It connects to MtgSvr through



the TCP protocol. Through MtgSvr, MtgClt handles all cases of exotic options
(barrier, American) and volatility scenarios (worst-case, volatility shock) discussed

in this thesis.

e MtgCal is a calibrator for fixed-income markets. The user specifies model coef-
ficients and benchmark instruments in an HTML form. After the data has been
submitted through the CGI protocol to MtgCal, calibration is started on the server
and eventually produces a result HTML page, which can then be inspected by the

user.

MtgSvr uses lattice-based numerical methods. MtgSvr demonstrates that the algorithms
proposed in this thesis can be implemented. MtgCal uses Monte Carlo simulation and
minimum-entropy optimization to calibrate. We mention MtgCal and discuss some of its
features to give an idea of the direction in which our work is heading.

Client-server computing based on standard web technology creates a variety of prob-

lems:

e The sandbox and firewall problem: MtgCIlt may be unable to connect to the server
via low-level TCP if the security settings in the web-browser are high, or there is a
firewall between the server and the client (this is the case for most corporate clients
that access our server at NYU). Possible solutions to this problem exist (HTTP
tunneling, the SOCKS protocol), but haven’t been explored by us.

e The HTTP protocol is designed for simple request-response transactions. Long-lived
transactions that lead to considerable CPU overhead at the server (like calibration
which might take several minutes to complete) do not fit this paradigm very well.
MtgCal uses a polling mechanism that lets the client detect the final result (almost)
as soon as it becomes available, and yet does not go beyond basic HT' TP /Javascript

technology.

Other issues are related to security (HTTPS versus HTTP), dissemination of results (the
calibrated surface for subsequent pricing), and the fee structure for such online services. In
summary, we consider web computing for finance a challenging field which will definitely

encourage future research here at NYU.



1.5 Related Work

Starting point of this thesis is the uncertain volatility model by Avellaneda and Paras
(1995). Its extension to barrier and American options is, to the best of our knowledge,
original. The volatility shock scenario is a refinement of the band-approach and also, to
the best of our knowledge, original.

Part I gives an overview over the literature in mathematical and computational fi-
nance, as far as it is relevant to our work. Chapter 4 in particular reviews uncertain

volatility models and the notion of scenario-based pricing to which they give rise.

1.6 How to Best Read this Thesis

We summarize the following chapters and try to assess their respective value for readers

of different backgrounds.

Chapter 2 summarizes notation and conventions, most of which are standard or intu-

itive. This chapter can be consulted as need arises.

Chapter 3 gives a short overview over mathematical finance. The Black-Scholes model
receives the most attention, although interest-rate models such as HJM are also
mentioned. The distinction between deterministic and stochastic volatility is em-

phasized. This chapter can be skipped safely by anyone familiar with the terms.

Chapter 4 reviews the concept of uncertain model coefficients and introduces the no-
tion of “scenarios.” Pricing, hedging and calibration are briefly discussed as three

applications. An understanding of these issues is essential.

Chapter 5 introduces the multi-lattice framework within which our algorithms are de-
veloped. This chapter defines notation and key data structures that should not be
missed. It also presents insight into some numerical issues regarding stability in
Sect. 5.2. This section is rather technical and can be skipped at first reading (not

by anyone actually implementing our algorithms, though).

Chapter 6 discusses algorithms for scenario-base evaluation of barrier option portfolios.

In particular, it shows how to set up multi-lattice dynamic programming so that



the potentially large number of PDE’s can be handled. This chapter and the next

describe the key algorithmic achievements of this thesis. Please read them.

Chapter 7 discusses algorithms for scenario-based evaluation of American option port-
folios. Evaluating American options is more complex than evaluating barrier op-
tions, but the same idea of ordering solutions of PDE’s hierarchically applies. The

economic implications are discussed in Sect. 7.1.

Chapter 8 describes an extension to worst-case volatility scenarios. The volatility is now
allowed to exhibit short shocks at unpredictable times. This chapter is independent
of Chapters 6 and 7 and can be read immediately after Chapter 5. The style is less

formal.

Chapter 9 gives an overview over the class library MtgLib and has the class declarations
for the core classes. This chapter gives an idea of the architecture of a system that
has the capabilities described in Chapters 6, 7 and 8. Readers can benefit from
the exposition even if they have not read those chapters. Chapter 9 focuses on the

architecture of MtgLib and is not a tutorial on its use.

Chapter 10 describes some aspects of MtgSvr and MtgCal, our two online applications.
MtgSvr is discussed to demonstrate the feasibility of the algorithms in Chapters 6,
7 and 8. MtgCal is included to show ongoing work and motivate possible future

directions. This chapter is fairly self-contained.

More information on the work presented in this thesis can be obtained by following these

links:

buff@cs.nyu.edu

http://www.courantfinance.cims.nyu.edu
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Part 1

Computational Finance: Theory
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2 Notation and Basic Definitions

2.1 Linear Algebra

N denotes the nonnegative integers. R denotes the real numbers. R, denotes the non-
negative real numbers. R, denotes the strictly positive real numbers.

Vectors and matrices are typeset in boldface (except when greek symbols are used):
x € R?, A € R"*™. Vectors are interpreted as column vectors: R? = R**!_ In text, they
are quoted in transposed form.

The normal font is used for vector or matrix components: a = (ay,...,a,
(a; |0 <i<n)T.

The zero vector is denoted by 0. The dot product is written a-b = a’b. If a € R" is
a vector, B = I, denotes the diagonal matrix B € R"*" with b;; = a; and all offdiagonal
elements vanishing. For B € R"*" the trace of B is the sum of its diagonal elements:
tr (B) =3 it bii-

For x,y € R*, x > y means z; > y; for 1 <7 < n. x >y means x > y and there
is at least one j € {1,...,n} such that z; > y;. x > y means z; > y; for 1 <i <n
throughout.

2.2 Probability and Stochastic Processes

Let (Q,F,P) be a probability space. A family of o-algebras {F; | t > ty} is called a
filtration on (Q,F) if F; C Fy C F for tp < t < t'. Here, botht € Nor t € Ry
are admissible. (Q,F,{F;}, P) is called a filtered probability space. It satisfies the usual
conditions if F is P-complete, Fy contains all P-nullsets of F and {F}} is right-continuous.

Let X = {X; | to <t < t1} be a stochastic process defined on €. If the range of the
index ¢ is clear we write {X;}. If the sample points X; are random variables in R we write
X; € R. If the sample points X; are n-vectors of random variables we write X; € R”.
Given w € Q, we call {Xy(w) | to <t <1} the sample path of the process X on w.

X is called adapted to the filtration {F;} if the random variable X; is F;-measurable
for every t. The filtration {FX} = {0{X, | s <t} |t >t} is called the natural filtration
of X. If {F} = {F*} we say that {F;} is generated by X. If a filtered probability
space (2, F,{F:}, P) appears without further comments, we assume that (2, F,{F;}, P)

12



satisfies the usual conditions, and the stochastic process X under consideration generates
{F}. In particular, we assume Fy = {Q,0}. These definitions can be looked up in
Borodin and Salminen (1996) or any textbook on stochastic processes. They apply to
the discrete case (t,tg,t; € N) as well as to the continuous case (t,ty,t; € Ry). In the
discrete case, i, j, k are the preferred index symbols (instead of ¢, u etc.).

For any event A € F, we write P(A) for the probability of A under the measure P.
For any random variable X, we write Ep (X)) for the expectation of X under the measure
P. If it is clear which measure is meant, we simply write E (X). Two measures P and @
are equivalent if they have the same nullsets. The indicator random variable for A € F

is denoted by 14.

2.3 Portfolios and Partial Portfolios

Let X be a vector of k random variables (i.e., a portfolio of k£ contingent claims), and

let A € R* be a position in X. Let M C {1,... ,k}, and let i; < iy < --- < i, be an
enumeration of the n elements in M. The selection operator on X and A is defined as
follows:
select (X, M) = (Xi,,...,X; )" (2:21)
select (\, M) = Ny, ... ;X)) T -

A vector Y of k' < k random variables is called a restriction or partial portfolio
of X, in symbolic notation Y C X, if there is M C {1,... ,k}, |[M| = k', such that
Y = select (X, M). Y results by removing some claims from X (possibly none!). The

” and “<” is obvious.

interpretation of “=
The definition of a restriction or partial position of X' € R¥ is analoguous (in symbolic
notation X' C \).
We write (Y,\) C (X,\) f Y C X and X C X. In this case we re-use the term

partial portfolio.

13



3 Continuous Time Finance

In this chapter we give a brief survey of continuous time finance. Since the dominant
state variable in all models is the diffusion coefficient—the volatility—of the asset price
process, we categorize models according to the nature of this coefficient. Models whose
volatility coefficient does not exhibit randomness are treated in Sect. 3.1. Models whose
volatility coefficient follows a stochastic process are discussed in Sect. 3.2.

The material presented in this chapter is standard. Uncertainty volatility models, on

which the original work of this dissertation is grounded, are discussed in Chapter 4.

3.1 Deterministic Volatility

Most of our work is based on equity/FX Black-Scholes models. For this reason, Black-
Scholes analysis is reviewed in rather more detail in the first half of this section.

In Chapter 10.2 we outline a client/server architecture for model calibration. Since
our prototype calibrates to fixed income data, the second half of this section is dedicated

to the HJM framework and the Vasicek short rate model.

3.1.1 One-Factor Black-Scholes Analysis

There are many ways to derive the Black-Scholes partial differential equation. Baxter
and Rennie (1996), Duffie (1996), Hull (1993) and Wilmott et al. (1993) use the common
approach based on stochastic calculus. Cox and Rubinstein (1985) show that the Black-
Scholes formula can be interpreted as the continuous-time limit of the binomial random
walk model.

Given is a filtered probability space (2, F,{F;}, P) and a finite time horizon 7. In
this probability space, let B = {B;}, By = 1 be the price process of a riskless asset (B
for bond), and let S = {S;} be the security price process:

dBt = 'rtBt
dSt = St(,ut dt + Ot dW)

(3.3.1)

W is a Brownian motion and 7, ; and oy are sufficiently well-behaved functions. Let X

be a nonnegative Fpr-measurable random variable that represents the payoff structure of
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a contingent claim on S.

g, =Bt (3.3.2)

Ot

t t
Ct = exp {_/0 ¢u qu - %/0 sz du} (333)

define a martingale measure @ equivalent to P via Q(A) = Ep ((;14) for all A € F. The

and

arbitrage-free price 7 of the contingent claim X is given by
m=Eqg (BrX) (3.3.4)

where 8 = {3}, B = 1/Br, is the discount process belonging to B.

In order to compute m, a replicating strategy for X is constructed explicitely. Let
f(S;,t) denote the (yet unknown) price of X at time ¢ for security price S}, with final
value f(S7,T) = X. Let F' = {F;} be the associated price process: F; = f(S;,t). Assume
for the moment that f is twice differentiable. A partial differential equation for f can be
determined as follows.

Define the R?-valued process 0 = {6;}

07 = By(F, — %f(stat)st) and 0] = %f(St,t) (3.3.5)

6 replicates F and thus X: 0YB; + 6} S; = F;. Now notice that, with Ito’s formula,

of Of | 1 500%f of

This implies together with the definition of 6 that the instantaneous change of the value
of the portfolio (09 By, 0}5;) is

00dB; + 0}dS; =

(0?/1,,55,5 + etl’f'tBt)dt + 9,}UtStth =
(3.3.7)
ot 2171982 0S

2
dFt — (g + 1O'?SZa f + 'f'tSta—f — ’T‘tFt> dt =

where p stands for the term in the brackets.
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0 is self-financing only if p = 0, for in this case F' becomes the value process corre-

sponding to 6, and

t
F,— Fy = / 0°dB, + 0.dS, du (3.3.8)
0
holds.
It is the condition p = 0 which gives rise to the Black-Scholes partial differential
equation
of |1 5 0f of _
E §O't St W + TtSt% - ’rtft =0 (339)
with boundary condition
f(Sp,T)=X (3.3.10)

Fact 3.1. If there is no arbitrage, then the price function f: (0,00) x [0,T] — Ry for X
satisfies (3.3.9). In this case, (3.3.5) defines the replicating trading strategy.

There is an intuitiv economic interpretation of (3.3.9): the difference of the return of a
hedged option portfolio (the first two terms) and a bank account (the last two terms) must
be zero. The prominent role of the volatility o, in the determination of the arbitrage-free
price for S becomes clear after the derivation of (3.3.9) (u:, on the other hand, can be
"hedged away”).

We have f(Sp,0) = 7 and therefore f(Sp,0) = Eq (87X). Moreover,

Fi = 3Eq (BrX | 7) (3:3.11)

This is sometimes called the probabilistic solution of (3.3.9).

3.1.2 Interest Rate Models

Interest-rate derivatives can in some sense be regarded as a bet on the future cost of
money. The role of the security price process S is played by processes of bond prices,

yields, spot or forward rates, depending on the focus of the model.
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Terminology

Let (Q,F,{F;}, P) be the underlying filtered probability space. W = {W;} is an N-
dimensional Brownian motion on it; 7 a finite time horizon. In this context, the symbol
T usually denotes the maturity of a bond in the literature. We follow this convention
here, but use T for other purposes in later sections.)

Assume a continuum of discount bonds, one for each maturity 7" < 7. The time t-price
of the bond with maturity 7" is denoted by P(¢,T'), with terminal price P(T,T) =1 (all
bonds are normalized). The instantaneous forward rate at time ¢ for borrowing at time T,
f(t,T), and the yield—the average implied interest rate—at time ¢ of the bond maturing
at time T', R(t,T), fulfill

F(1.T) =~ dog P(t,T)

_log P(¢,T)
T—-1

(3.3.12)
R(t,T) =

for all 0 <t < T < 7, respectively. Solving for P, one gets

T
P(t,T) = exp (— / F(tu) du) (3.3.13)
t
The time ¢ instantaneous forward rate, defined as
re = f(t,t) (3.3.14)

is called the spot rate. Note that the spot rate is not sufficient to recover P(¢,T); the
entire forward rate curve is needed.
It is assumed that there exists a cash bond B = {B;}, whose stochastic differential

equation is
dBt = ’T‘tBtdt (3315)

B is the numeraire. With By = 1, the solution of (3.3.15) is

t
B; = exp </ Tu du) (3.3.16)
0

for 0 <t¢ < 7. Again, we define a discount factor §; = 1/B;.

17



The HIM Model

This no-arbitrage model by Heath et al. (1992) models the evolution of the entire forward
rate curve, starting with a term-structure of interest rates observed in today’s market.
Jarrow (1996) is another comprehensive source.

For 0 < T < 7, let the R-valued process f1' = {f!'} denote the evolution of the time
t forward rate for borrowing at time T: fI = f(t,T). The dynamics of the f7 are

=1+ /taT(w) du + i /taTi(w) AW, (3.3.17)
t 0 0 U — Jy u o

for 0 <t < T. Here {fOT = f(0,7) | 0 < T < 7} is a nonrandom initial forward rate
curve, and the R-valued processes o’ and o7 (0 < T < 7,1 < i < N) may depend
on w, are adapted to {F;} and satisfy certain continuity, integrability and boundedness
conditions. We will omit the argument w to enhance readability. (In the literature, f! is
usually written f(t,T), o is written «(t,T) and of" is written o;(¢,T). In order to be
consistent with our earlier notation, we keep the current time ¢ as a subscript, the index
of the asset as first superscript and the index of the source of uncertainty as the second
superscript. )

With (3.3.14) and (3.3.17), the spot rate process can be written as

t N oot )
re = f5+/a;; du—l—Z/ ol dw? (3.3.18)
0 =1 70

Ito’s lemma together with some regularity conditions on B show that P(¢,T) is the

solution of

dP(t,T) = P(t,T)

=1

N
(re + b )dt + > aZ’ide] (3.3.19)

with

(3.3.20)

bl is the excess rate of return of the T-maturity bond at time ¢. The bond price processes

P(t,T) are not necessarily Markovian!
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Under no-arbitrage assumptions, it is necessary to find an equivalent measure ) which
makes the discounted bond price processes 3, P(t,T) martingales, simultaneously for all
0 <T < 7. Heath et al. (1992) argue that it is sufficient to find such @ for a “basis” of
N different bonds. It can furthermore be shown that @, if it exists, is unique and does
not depend on the choice of the basis.

After doing this, the spot rate r; follows the process

N ot gt N
r = f5+2/0 03/ oV dvdu—i—Z/U olt AW} (3.3.21)
i=1 v i=1

where W is a Q-Brownian motion. In general, 1; is path dependent. Note that the drift
a does not appear in (3.3.21).
Given the martingale measure (), contingent claims X that mature at some time T

are evaluated in standard fashion, with fair price 7 = Eg (67X ) and value process

1 T
Xy =—=Eq (BrX | 1) =Eq (exp (—/ T du) X ‘ .7-}) (3.3.22)
B t

In particular,

P(t,T) = Eq (exp <— /tTru du> ‘ }'t> (3.3.23)

The Vasicek Short-rate Model

HJM offers a general framework that can be instantiated with specific drift and volatility
coefficients. Vasicek (1977) proposes the one-factor model where the spot rate follows an

Ornstein-Uhlenbeck mean-reverting process under the equivalent martingale measure :
dry = (0 — art)dt +o th (3324)

with constants 6, o and o. In terms of HJM, this means
ol = oe~(T—t)
2 (3.3.25)

—a g —a
fi=0/a+e T(To—g/a)—ﬁ(l—e T)?
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3.2 Stochastic Volatility

Some authors include under the concept of “stochastic volatility” the case where the

coefficient o(Sy,t) of the asset price process

depends on S;. A time and/or space-heterogeneous yet deterministic volatility coefficient,
however, merely makes the arithmetic more challenging and often precludes the existence
of a closed-form solution; the argument from replication still goes through. The situation
is different if o undergoes random shocks which are “nontradable” in the economy. It is

this case which is discussed in this section.

3.2.1 Tradable and Nontradable Factors

The following exposition is taken from Hofmann et al. (1992). Their work, in turn, draws
from results presented in Follmer and Schweizer (1991). Their model is general enough
to include the concrete models of Sect. 3.2.2 as special cases.

Let W = {W;} be an N-dimensional Brownian motion on a filtered probability space
(Q, F,{F;}, P). Fix some time horizon T'. Define the RM -valued process X = {X;} with

component processes X!,... , XM by
dX; = /J,(Xt, t) dt + O'(Xt, t) dW;, (3327)

where = (u*: RM — x[0,TIR |1 <i< M)ando = (6V: RM x [0,T] = R|1<i<
M,1 < j < N) are functions satisfying appropriate regularity conditions. The component

M may represent tradable assets or economic factors; trivially, there

processes X', ..., X
must be at least one tradable asset X* and we assume i = 1 without loss of generality.
We also postulate the existence of an R, -valued process X° which plays the role of

the riskless asset:
dX) =r(Xy,t)XPdt and X) =1 (3.3.28)

The discount factor 3 = {3} is defined via 8; = 1/X?, as usual.
Let the random variable Y on (2, Fr) be a contingent claim. Standard procedure

would imply a trading strategy 0 = {6}, §; € RM+1 for Y and a value process V9, which
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would then satisfy
V! =SB (BrY | F) (3.3.20)
under some P-equivalent measure ) € P which makes fX a martingale.

This is indeed the case if the economy is complete, i.e. N = M and all components are
tradable. In this case, 0 exists and is self-financing, and ) and 0 are uniquely determined
by u, o and Y7.

In the general, incomplete situation, this need not be so. We would certainly wish
6" = 0 to hold for all nontradable components i. However, this restriction might make a
self-financing replicating strategy impossible. There are several ways out of this dilemma.
Schweizer (1991) discusses “mean-self financing” strategies; here, we briefly summarize

some fixes which are more concrete.

3.2.2 Some Concrete One-dimensional Models

We present some concrete models based on a ome-dimensional asset price process and
stochastic volatility. The models differ in how they supplement no-arbitrage theory.
Hull-White and Wiggins, for instance, advance equilibrium arguments, while others try
to exploit ad-hoc hedging opportunities in the Black-Scholes spirit.

Let (2, F,{F;}, P) be a filtered probability space and T a fixed, finite time horizon.
Let W = {W,;}, W; € R?, be a two-dimensional Brownian motion with correlation
coefficient p, or Ep (dWldWQ) = pdt. (At this point, we deviate from our standard
assumption that the component processes of W are independent, i.e. p = 0.)

There is a riskless asset X° = {X?} with X =1 and X} = e"’. r is the riskless rate

and = 1/X" the discount process, as usual.

Hull and White’s Model

Hull and White (1987) propose the following model:

dSt = St(’)” dt + Ot dWl)

(3.3.30)
do} = o} (£(07,t) dt + $(o7 , 1) dW?)

where ¢ and ¢ may depend on 02 and t, but not on S. Under the additional assumption

that (a) p = 0 and (b) 0 does not have systematic risk (a statement we shall not explain

21



further at this point), a partial differential equation slightly more complex than (3.3.9) can
be derived by using CAPM equilibrium arguments, eliminating randomness and therefore
precluding any risk preferences.

Now define the mean volatility V over a particular path {02} as

1 T
V= ?/0 of dt (3.3.31)

For any attainable contingent claim X, let
m(V)=Ep (BrX |o*=V) (3.3.32)

denote the fair price of X under the restricted scenario where O't2 =Viior0<it<T.

Then it can be shown that the no-arbitrage price of 7 is

oo

- / T(VYR(V | 02) dV (3.3.33)
— 00

where h(V | 03) is the density of V' conditional on o3 under P. In other words, the price

of a contingent claim X turns out to be the weighted average Black-Scholes price for any

realizable mean volatility. This result does not hold if p # 0 or £ or ¢ depend on S.
Wiggins’ Model

The model advocated in Wiggins (1987) has the dynamics

dSt = St(ﬂ, dt + Ot dWl)

(3.3.34)
doy = h(oy) dt + p oy dW?

It is not required that p = 0. Let F' = {F;}, F; = f(Si,t), be the value process of a
contingent claim X. Wiggins defines a hedge portfolio § = {6;}, 6; € R?, in the riskless

asset and the security by

0 0
0) =By | Fr — == f(Si,t)S, — pp—f (S, 1)
oS oo (3.3.35)
9 pp 0 o
1 _ —_—— —_—
gt - 85 (St7t) + St 80' (St,t)

6 is a modification of (3.3.5) with the property that its value process V? satisfies

L2 (3.3.36)
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for 0 <t <T. Le., the return of the hedge portfolio is uncorrelated with the return of
the security. If S is an index on the market, the hedge portfolio has therefore a zero beta
coefficient. Under some additional economic assumptions and for the special case that
S is indeed a contingent claim on the market, f is a solution to the partial differential

equation

af? 0o
asfag + a_({ (h(o1) = pbof) =0 (3.3.37)

1 0’ f
BS + §O't2 ZW +,0¢O't28t

where BS stands for the left side terms of the Black-Scholes partial differential equa-
tion (3.3.9).

Johnson and Shanno’s Model

Johnson and Shanno (1987) choose the model

dS; = Si(pdt + o;S™ HdWw!)

(3.3.38)
doy = oy(€ dt + po> 1 dW?)

with a1, > 0. The correlation coefficient between W' and W? is p. Setting up the
Black-Scholes hedge portfolio € as in (3.3.5), one finds that the value process V? of

satisfies

of of
0 o _ a2 2
dVy = dFy — (BS + JS)dt — ¢o; P _anW (3.3.39)

where BS represents the standard Black-Scholes terms—see (3.3.9)—and JS stands for
additional nonrandom terms which are easy to derive with Ito calculus. At this point,
Johnson and Shanno assume that the diW? term can be diversified away (this assump-
tion replaces the equilibrium principles in the previous two models), and get a partial

differential equation BS + JS = 0 with appropriate boundary conditions for X.

Scott’s Model

Scott (1987) uses a model in which the volatility follows a mean-reverting process with

mean o:

dSy; = Sy(pdt + op dWh)

3.3.40
doy = (6 — o) dt + pdW? ( )
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Again, p is the correlation coefficient between dW'! and dW?2. Assume there are two
contingent claims, X and Y, with price functions f and g, respectively, and price processes
F = {F;} and G = {G;}. Assume furthermore that X expires at time Tx < T, and Y
expires at time Ty < Ty < T. A trading strategy 6 that hedges a portfolio of X and
Y (with dynamic weights) during times 0 < ¢ < Tx gives rise to a partial differential

equation

% <BSf+p¢0'tSt af + 3 ¢ af2>
oo

0S0o
8f d¢?

(3.3.41)
_¢2 -
o 0S00 do?

(BS + p¢0’tSt

which does no longer have terms in dW' or dW?2. BS 7 and BS, represent the standard
Black-Scholes terms corresponding to f and g terms as they appear in (3.3.9).
However, the PDE in (3.3.41) does not have a unique solution for given boundary

conditions at ¢ = Tx. There are two ways in which this situation can be resolved:

e Equilibrium arguments can be applied. This approach is chosen in Scott (1987) and
leads to a partial differential equation for X which depends on \*, the risk premium

associated with do.

e If the price for the claim Y is known (for instance, if Y is a liquid option), one
can model Y'’s price process G as a geometric Brownian motion diffusion with the
constant volatility implied by Y’s price. This path is explored—based on a slightly
different model for do—in Zhu and Avellaneda (1997).

A theoretical third possibility is to postulate the existence of an asset whose price is

perfectly correlated with do.
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4 Scenario-based Evaluation and Uncertainty

The following problems arise as soon as arbitrage pricing theory is applied in practice:

e Plausible values for volatility and other coefficients must be found to instantiate

the chosen model.

e Once instantiated, models often prove too weak to represent the market dynamics
adequately; in the case of Black-Scholes, this deficiency shows itself in the often

cited implied volatility smile.

It is natural to try to cure the second problem by introducing time- and space-dependency
in the volatility and other coefficients. If this leads to randomness in the evolution of
the volatility, one has created a stochastic volatility model. The first problem still looms
large, however, and some sort of parameter calibration becomes necessary before the
stochastic volatility model can be applied.

Uncertain volatility takes a different approach. Instead of chosing a fixed set of a
priori model coefficients, agents specify priorities which they would like to see applied
when a given portfolio is evaluated under the model. These priorities are initially stated
“in prose” and have some economic function. They usually correspond to stochastic

control problems and require dynamic programming methods for their solution.

4.1 Preliminaries

Definition 4.1 (Scenario). We call a set of (declarative) agent priorities and the (im-

perative) evaluation rules they imply a scenario.

Definition 4.2 (Uncertain coefficients). Model coefficients which are variable under
a given scenario are called uncertain. The evaluation rules of the scenario control the

instantiation of uncertain coefficients, locally or globally.

These definitions are not strictly formal. The soundness of the concept needs to be

established for each concrete scenario. In this thesis, we restrict ourselves to two scenarios:
e the worst-case volatility scenario;

e the volatility-shock scenario.
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(Patterns for model coefficients)

l

Scenario — () =— Portfolio

|

Instantiated model coefficients

Figure 4.1: Both scenario and portfolio are required components when model coefficients

are instantiated. Model coefficients can, but must not, be restricted by patterns

We review the foundations of the former and its companion, the Uncertain Volatility
Model (UVM) by Avellaneda and Paras, in this chapter. Algorithmic issues of worst-
case scenarios are moved as original work to Part II. The volatility shock scenario is an
extension of the worst-case scenario and is discussed, also as original work, in Chapter 8
of Part II.

The benefit of the scenario approach is clear: no a-priori choice of model coefficients
has to be made. Furthermore, once evaluation rules have been applied to instantiate
uncertain coefficients, we’re back in the realm of arbitrage pricing theory. On the other
hand, as seen in Sect. 3.2, no-arbitrage arguments alone are not sufficient when coefficients
are stochastic; disputable assumptions, equilibrium arguments and other methods which
are not easily generalizable are required to complete the job.

The scenario approach may yield different instantiations of model coefficients for dif-
ferent portfolios. Figure 4.1 shows how scenario and portfolio are both taken into account
when the evaluation rules of the scenario are executed.

The separation into model and scenario is in fact strong enough to reappear in the
object-oriented implementation in Part III. Models, scenarios and portfolios all have
associated class hierarchies.

In this thesis, we exclusively focus on the volatility as the only uncertain
coefficient. Formally, we assume a filtered probability space (2, F,{F;}, P), a one-dim-
ensional Brownian motion W, and some finite time horizon T'. In this probability space,
let S = {S;} be a security price process with the stochastic differential equation

dsS;

t
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Let r: [0,7] — Ry be the time-dependent interest rate, and 5 = {3} the corresponding

discount process:

t
B 2/0 e " ds (4.4.2)

We assume r and p are continuous functions that are sufficiently well behaved for our

purpose. o: (0,00) x [0,7] — R4 is our uncertain model coefficient.

Definition 4.3 (Candidate set and scenario measure). A set
C C{o| (4.4.1) has a solution} (4.4.3)

is called a candidate set for o. For each o € C there exists a unique measure Q(o) which

makes 58S a martingale: we say Q(o) is the scenario measure for o.

Sometimes we also refer to the “scenario ¢” or “scenario volatility.” The candidate
set implements the optional pattern for the uncertain coefficient referred to in Fig. 4.1.

Let the nonnegative, continuous random variable X denote the payoff of a contingent
claim at time 7. The no-arbitrage price of the contingent claim for fixed o follows the

process
1
F(X,0) = E EQo) (BrX | Fr) (4.4.4)

Extension to portfolios of contingent claims is straightforward. Let X = (Xq,..., X;)"
be a set of £ > 0 nonnegative contingent claims—a portfoliol—on (€2, F), all maturing
at time T. (The theory can be easily generalized to contingent claims with different
expiration dates.) For any combined position A = (Ar,... ,\¢)T € RF, X\ - X is also a—
not necessarily nonnegative—random variable on (€2, F) and represents the final cashflow
at time T for the holder of the portfolio. (At this time we assume that contingent claims
are not path-dependent; i.e., their payoff can be written as g(Sr) for some function
g. Later, of course, we will include barrier and American options.) The value process

F = {F;} is extended to cover combined positions through

k
F(\-X,0) =Y _ NF(X;,0) (4.4.5)
=1
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l

Worst-case scenario — (O ~— (A, X)

|

o:(0,00) x [0,T] = Ry 4

Figure 4.2: The generic terms of Fig. 4.1 filled in. The worst-case scenario can be tailored

to pricing, hedging or calibration situations as described in the text

4.2 The Worst-case Volatility Scenario

We distinguish three concrete worst-case volatility scenarios, or worst-case scenarios for
short, each illuminating the exposure to volatility risk from a slightly different perspective.

All scenarios have in common that
C={0| omin < (S, t) < omax and (4.4.1) has a solution} (4.4.6)

where 0 < omin < 0max represents a prescribed bound. For simplicity, we assume constant
bounds, but the theory holds for time-heterogeneous bounds as well. Figure 4.2 illustrates
the flow of information that leads from C, (A, X)) and the concrete scenario to the selection
of 0 €C.

The agent priorities in each of the worst-case scenario variations can be informally

stated as follows:

Worst-case pricing. Given the portfolio X and a position A € R¥ in X. Which 6 € C

maximizes today’s value Fy(\- X, 0)?

The optimal hedge-portfolio. Given two portfolios X and X of k resp. k contingent
claims, and a position A € R¥ in X. For each X;, 1 < i < k, a “market price” 7;
is known. (Assume, for instance, that the X; are traded frequently, and the X; are
exotic over-the-counter instruments.) Which 6 € C maximizes Fy(A - X, o) under

the additional constraint that Fy(X;,6) = 7; for 1 <4 < k?

Calibration. Given a portfolio X of k contingent claims, and market prices 7; for all

X;, 1 < i < k. Fix a subjective “prior” @ € C. Which & € C minimizes |0 — 7|
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under the additional constraint that Fy(X;,&) = @; for each 1 < i < k? We leave

the semantics of the distance || - || unspecified.

Section 4.2.1 is dedicated to the the worst-case pricing problem. Section 4.2.2 is a short
treatise on the problem of finding the optimal hedge portfolio. Section 4.2.3 investigates
calibration issues.

[43a0)]

Here and throughout the rest of the work, optimality is denoted by a accent.

4.2.1 Worst-case Pricing

The objective is to find the volatility coefficient 6 € C which maximizes Fy(\ - X, o) for
a given vector X of k contingent claims, and given position A € RF. Sellers of A - X
are completely hedged against volatility risk within the bounds (4.4.6) if they charge at
least Fy(A - X,5). (From this point of view, A\; > 0 means X; is sold, and \; < 0 means
X; is bought. Positive quantities signify liabilities of the seller, while negative quantities
signify cash inflow.)

The objective must be formalized with care, since 6 may not exist. For instance,
assume the final payoff A - X is convex and continuous, and C = {0.2 — % | n > 6}. It
is clear that Fy(A - X,0.2 — 1) — Fy(X - X,0.2) from below as n — oo, yet 0.2 & C.
Nevertheless, Fy(A-X,0.2) should be regarded as the worst-case price, and o = 0.2 as its

its scenario coefficient.

Convex Contingent Claims

It is instructive to consider the simple case of convex portfolios first. Let ¥ = X\ - X
and assume Y can be written ¢(S7(w)) = Y(w) for w € Q and some nonnegative convex
function g: (0,00) — Ry. (For instance, X might be a vector of European call or put
options, with positions \; > 0 throughout). In this case, the Black-Scholes solution is

also convex in S. Jeanblanc-Picque et al. (1991) conclude

Fact 4.4. For convex Y, the value processes F(Y,omax) and F(Y,omin) form a super-

resp. submartingale under any measure Q(o) with o € C. This implies
F(Y,omin) < Fi(Y,0) < F(Y,0max) (4.4.7)

for 0 <t <T and for all o € C.
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For a nonnegative convex overall position Y, the solution of the maximization problem
is thus 6 = omax. Similarly, if Y is negative and concave, |Y| is positive and convex, and
F(Y,0) < Fi(Y,0min) for all o € C.

General Portfolios

Let Y = A- X be the liability structure at time T for a portfolio X of k£ contingent claims
and position A € R¥. This time we make no assumptions about Y: @ — R. Avellaneda
and Paras (1995) generalize Fact 4.4 as follows:

Fact 4.5. Given Y, define a value process F(Y) = {F,(Y)} by Fy(Y) = f(S;, £;Y), where
f 15 the solution of the partial differential equation

2
ngr 2(352)5325]; tstaf refe = (4.4.8)

with boundary condition f(Sp,T) =Y (Sr) and

Omax x>0
S(z) =4 4 (4.4.9)
Omin ’Lf Tz <0

Then F(Y) is a supermartingale under any measure Q(o) where o € C.

The informal rationale is the following: take the original Black-Scholes equation (3.3.9)
and bring r;f; to the right side, while observing that the remaining terms on the left side
do not contain f. To make f as large as possible, we maximize the only term on the left

side which has some degree of freedom: 10S? gsé This is accomplished in (4.4.9).

Fact 4.6. Let F(Y) be the value process for Y defined in Fact 4.5. Then

Fy(Y) = sup Fy(Y, 0) (4.4.10)
oeC

Moreover, the o which yields the supremum is given by (4.4.9).
Thus, there actually exists a “scenario 6”7, and it can be constructed locally.
Fact 4.7. For c € Ry, and two liability structures Y = X-X and Z = X - X/,
Fy(cY) = cF(Y)
F(Y +2) < E(Y) + Fy(Z) (4.4.11)

)
F(Y +2) > F(Y) — F(-Z)
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Thus, positions may be scaled, but F' is nonlinear and sub-additive. (The third
statement follows from the second with Fy(Y) = F,(Y + Z — Z) < F,(Y + Z) + Fy,(—72)).
Notice also that Fact 4.7 is vaiud for 0 < ¢ < T', not just for t = 0.

4.2.2 The Optimal Hedge Portfolio

Let X and X be two portfolios of size k and k, respectively. Assume furthermore that
X € RF is a position for X, and 7 € Rﬁ 4 is a market price vector for X. (X might be
a book position, and X might be a set of liquid options.) It is a natural restriction to
consider only those o € C under whose scenario measure Q(c) the prices @ for X are

matched. This restriction on C is defined as follows:
C'={oecC|Fy(X;0)=mfor1 <i<k} (4.4.12)

Now let Y = X - X be the combined payoff of portfolio X. Avellaneda and Pards
(1996) show

Fact 4.8. Given X, X, \ and . Assume AeERF isq finite solution of the optimization

problem

inf { sup Fp(Y + X -X,0) — X~ w} (4.4.13)
AERF | oeC

Let 6 be the scenario volatility for X as in Fact 4.6:

Fo(Y + X-X,6) =sup Fy(Y + X - X, 0) (4.4.14)
oeC
Then
Fy(Y,6) = sup Fy(Y,0) (4.4.15)
oeC!

The solution \ is unique, since the function
h(A) =sup Fp(Y + X -X,0) — A7 (4.4.16)
oeC
is convex and has therefore at most one minimum. Furthermore, under first-order condi-

tions on optimality,

a(?\ (Fo(Y+X-X,6)—X-7)| =Fy(X;,6)—7m=0 (4.4.17)
i \i
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and therefore Fy(X;,6) = m;, for 1 <i < k.

The position A is optimal in the sense that no other position reduces the worst-case
residual liability h(\) by a larger amount. An agent who counterbalances a stake in X
by taking an offsetting position A in X needs at most h(\) additional cash to hedge the
combined position, provided the volatility does not leave C. A can thus be regarded as

the optimal hedge portfolio under the worst-case scenario.

4.2.3 Calibration

Calibration is not the main task of this thesis, although we sketch an online calibrator
for the money market in the context of software engineering topics in Chapter 10.2. Cal-
ibration naturally motivates, however, further application of the optimization techniques
described in the previous section, and shall thus be awarded a few lines.

The goal of calibration is to find an instantiation of the uncertain coefficients that
matches observed prices of market instruments exactly. In that sense, the optimal hedge
portfolio results from calibrating o to the market prices 7. The method, however, is
less satisfactory since it depends on the presence of a book portfolio X. Furthermore,
agents cannot introduce subjective prior beliefs about uncertain coefficients; in fact, the
resulting scenario o takes on only extremal values oy, and opax.

For this reason, let us reformulate the problem. Given a portfolio X and a corre-
sponding price vector T € Rﬁ 4, choose some (constant) prior & € C that best reflects
your subjective beliefs about the volatility of the underlying asset.

For any o € C and for any w € €2, define the distance of o to & on the path {S;(w) | 0 <
t<T} as

T
d(o,w) :/0 1 (o(Su(w),u)?) du (4.4.18)

where 7 is a smooth, finite, strictly convex function which attains its minimum at 52, i.e.

n(a?) = 0. n is called pseudo entropy function and implements a penalty for deviation

from the prior—for instance, take n(0?) = 1 (0? — 52)2.

With C" as defined in (4.4.12), Avellaneda et al. (1997) extend Fact 4.8 by showing

Fact 4.9. Given X and 7. Assume \ € RF is a finite solution of the optimization problem

inf { sup Fy(—d(o) + X - X,0) — A - w} (4.4.19)
AeERE | oeC
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and let & € C be the scenario volatility for M. Then

Fy(—d(5),6) = Sgg Fy(—d(o),0) (4.4.20)

In other words, 6 minimizes the penalty. Again, the solution \is unique.

Computation of h()\)

In the case of the optimal hedge portfolio, h(\) is computed by solving (4.4.8). This
approach needs to be modified for calibration.

For fixed 7, define the flux function
®(z) = sup (0% — n(o?)) (4.4.21)

where the supremum is taken over (Omin, Omax) and attained at o = ®'(z). WithY = A\-X
for fixed A € RF, define the process G = {G,} as

Gy =sup Fi(—d(o) +Y,0) (4.4.22)
oeC

Fact 4.10. Given G and Y. Then Gy = g(Si,t), where g is the solution of the partial

differential equation

dg 1 /Bts2a g
L 9s2

0
> + Tt St% — Ttge = 0 (4423)

with boundary condition g(St,T) =Y (St). The supremum in (4.4.22) is realized at

o(S,t) = \/ <5t 52 as2> (4.4.24)

Notice that (4.4.23) is not the pricing equation for Y; the pricing equation for Y is
obtained by replacing ® with % Sf%.
The PDE (4.4.23) can be solved with finite difference methods. We will get back to

calibration issues briefly at the end of Part I1I, in Chapter 10.2, although there the stage

By construction, h(\) = Gy.

will be the money market (not the equity/FX market), and the numerical tool will be

Monte Carlo simulation.
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Other Approaches

Calibration or the problem of fitting parameters of stochastic models to market data has
been studied for some time. Breeden and Litzenberger (1978) observe that the price of a
binary option X with X =1 if K1 < Sp < Ky and X = 0 otherwise must be

K> g2

e C(K)dK (4.4.25)

where C: (0,00) — Ry, K — C(K), is the pricing function for a continuum of call
options on the asset, with strike price K and expiration date 7. This result stems from
no-arbitrage arguments involving butterfly spreads and is valid regardless of the stochastic
model. The price of any contingent claim can be recovered in a similar way from such a
curve C, provided sufficient market data is available.

In a recent study, Jackwerth and Rubinstein (1996) minimize the distance between a
prior probability distribution for St and a posterior distribution compatible with prices
of contingent claims in a one-period setting, using a variety of objective functions. Among
others, least-squares, absolute variation, maximum entropy and smoothness criteria are
tested, the latter not requiring a prior distribution. The least-squares approach is based
on an earlier paper, Rubinstein (1995). Pirkner et al. (1999) suggest to model the terminal
return density of the stock with a mixture of normal distributions.

Lagnardo and Osher (1997) use a gradient descent procedure to minimize the func-

tional

F(o) = |Vol| |24+ v(Fo(A-X,0) = X-7)? (4.4.26)

where v > 0 is a constant and controls the rate of convergence in a numerical procedure.

4.3 Scenarios and Nonlinearity

In general, worst-case scenarios lead to nonlinear solutions and may be asymmetric for
the buy and sell side.

In economic terms, nonlinearity is due to risk-diversification under mixed convexity.
Any position A in X has to be priced and hedged as a unit; no “stand-alone” scenario
price for X; can be deduced from Fj. Sellers of Y = X\ - X are hedged against volatility
risk within the bounds C if they charge at least FO(Y). Vice versa, buyers of Y are
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hedged if they pay at most —ﬁ’o(—Y). The volatility range [0min, Omax] thus leads to a
corresponding no-arbitrage worst-case price range [—Fy(=Y), Fp(Y)].

Computationally, nonlinearity requires sophisticated algorithms which handle and
(hopefully) reduce the combinatorial complexity that arises if the portfolio under con-
sideration contains exotic, path-dependent options. In the remainder of this thesis, algo-

rithms for barrier and American options are studied in particular.
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Part 11

Algorithms for Nonlinear Models
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5 A Lattice Framework

Nonlinear models that embed Black-Scholes in worst-case scenarios require algorithmic

techniques on two levels:

1. Finite difference methods combined with dynamic programming are used to solve
individual PDEs of type (4.4.8).

2. A collection of PDEs needs to be solved in the right order if exotic options with
barrier or American features are involved. Solutions of subordinate PDEs serve as
boundary data for PDEs higher up in the hierarchy. (There is only one PDE if the

portfolio under consideration contains only vanilla options.)

The sensitivity of the remaining portfolio to fluctuations in o changes if options are taken
out through knock-out or early exercise. The so altered portfolio, evaluated indepen-
dently, may yield an instantiation of o under the worst-case scenario which differs from
the one for the original portfolio. Consequently, it may also yield a worst-case value that
differs from the contribution of the remaining options to the worst-case value of the orig-
inal portfolio, had the option(s) not been taken out. The worst-case value of the reduced
portfolio, computed separately, must be used as boundary value for the original portfolio
where options are removed by knock-out or early exercise.

An example may help to clarify this explanation. Assume a portfolio of two call
options X7 and X9 which are identical except for the fact Xy allows early exercise, while
X1 does not. The positions are Ay = —1 and A9 = 2, respectively. Let Y = A - X be the
payoff if X5 is held until maturity, and let Y’ = A1 X be the remaining payoff if X is
not held until maturity, but exercised early. Figure 5.1 shows the payoff graphically for
both cases.

It is clear that the worst-case volatility is ¢ = omax if Xa is held until maturity, for
Y and fi(S;,t;Y) are both convex in S. (Recall that f is the solution of (4.4.8).) On
the other hand, 0 = oy, from the time on at which X5 is exercised, for the remainder
Y’ and thus f;(S¢, t;Y') are concave in S. In this case, the outlook in terms of exposure
to volatility risk is significantly changed. Although the analysis is straightforward in this
toy example, the complexity of the problem grows very fast in cases of mixed convexity

or exotic options.
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2max(S — K, 0)
—max(S — K,0)

—max(S — K,0)

Figure 5.1: The shape of the final payoff Y = A - X = 2X5 — X on the left side, and
Y’ =\ X; = —X; on the right side

From now on, worst-case pricing—see Sect. 4.2.1—will be the underlying
worst-case scenario. Results are easily applicable to worst-case hedging and calibra-

tion.

The complexity of worst-case pricing and algorithms that cope with it are the focus
of the rest of Part II. Chapters 6 and 7 treat in detail the implications arising from the
inclusion of barrier and American options into the portfolio. The current chapter focuses
on numerical and general data structure aspects of solvers for PDEs of type (4.4.8). As
one may need to solve multiple PDE’s simultaneously, data structures must support the

flow of boundary and decision-support data.

5.1 Multi-lattice Dynamic Programming

The current price of the underlying asset is denoted by Sy = sg. Let [sp, sy] and [0,T] be
suitably chosen ranges for the space and time dimensions of the lattice, with sp < sg < sp.
Let

O=to<ti<---<IN=T

be an equidistant discretization of time, i.e. t; = idt for dt = T/N and 0 <i < N.
The space dimension need not be uniformly disretized; we will see later that the
arbitrary spacing of knock-out barriers requires non-uniformity to avoid slow convergence.

Denote the space discretization by

Sp=---<8_9<s51<5<s51<s2< =8y,
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where for convencience we use the p and ; subscripts also as numerical index. (In
practice, sy /sy = so/sp = 3.5V T leads to good results and limits the time complexity in
the number of time steps to O (N3/2). The interested reader is referred to Pards (1995).)

5.1.1 Data Structures

We refer to a lattice node by its space and time labels (s;,¢;), or simply by its space and
time indexes (j,7), whichever is more convenient. All PDEs are based on the same dis-
cretization. Each PDE, however, is assigned its own lattice instance in memory. Boundary
values are shared by copying (and possibly processing) data from one lattice instance to
another.

Each lattice instance L is identified by a partial portfolio X; C X and a position Ar,
(which need not be a partial position of \). If there are only vanilla options in X, there

is only one lattice instance in the computation, identified by top-level (X, \).

Definition 5.1 (Lattice signature). Let L be a lattice instance identified by partial
portfolio X1, C X and position Ar. The pair (X, 1) is called the signature of L. The
size of L is denoted by |L| = |Xr| = |Az].

Often, Ar, is ommitted, and only Xy, is used to refer to a lattice instance for simplicity.
Lattice instances may be added dynamically during the computation. The set of the

signatures of active lattice instances is denoted by L. At all times, (X, ) € L.

Definition 5.2. Let L € L be a lattice instance with signature (X, Ar), and (j,7) a
node. V(j,i; L) denotes the finite difference approzimation of the worst-case value Fi()\L-

Xr | Si = sj), and vy(j,%; L) denotes its partial derivative in (Ap)y, 1 <k < |L|:

o (5.5.1)

o5 L) = 5 B\ -Xp | Si = s)

(Here and in the following, i and t; are used interchangingly to index processes such as
F.)
With each node instance (j,4; L) is therefore associated a value/gradient pair

VG.iL), (w3 ) 1<k < L))



that is stored in the lattice instance’s private memory. If is clear which lattice instance
L is meant, or if L is not significant, L is omitted.
Not all value/gradient pairs need to be accessible at the same time. Two general rules

must to be observed, however:

Internal consistency: For the finite difference scheme to work, time i+ 1 value/gradient

node instances need to be available when time 7 node instances are computed.

External consistency: A node instance (7,%; L') needs to be available if the computa-
tion of node instance (j,7; L), X C Xy, requires the lookup of a boundary value

associated with partial portfolio/position (X, Ar/).

The second rule motivates the general policy, possibly augmented for special cases, to
process existing lattice instance L before lattice instance L' if |L| < |L'|. Furthermore, a
mechanism must be implemented which automatically inserts a new lattice instance with
the appropriate signature into £ if the second rule is violated nevertheless (exception
handling).

5.1.2 Dataflow for Explicit Methods

Definition 5.3. We say that the node instance (j,i; L) belongs to the continuation re-
gion if no L'-lookup is necessary to determine the worst-case value for it, for any lattice
instance L' # L.

Figure 5.2 shows the dataflow for an explicit forward Euler one-level scheme for a
PDE of type (4.4.8) within the continuation region.

If a node instance (j,7; L) turns out to require boundary data from L' # L, the
scheme in Fig. 5.2 may or may not be bypassed, depending on whether V( Jyi; L) can be
determined unconditionally (knock-out) or not (agent’s choice like early exercise).

Notice that data flows from time ¢ + 1 to time 4 slices for both instantiation of the

uncertain coefficient and actual rollback.

5.1.3 Dataflow for Mixed Explicit/Implicit Methods

Mixed explicit/implicit methods such as Crank-Nicholson introduce a lag of one time slice
between the instantiation of the uncertain coefficient and the actual rollback, as shown

pictorially in Fig. 5.3.
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convexity

(G+1Li+1) —

Vii+1) |

(- 1i+1)
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U <| | <

Figure 5.2: Dataflow for explicit one-level finite differencing in the continuation region.
Values at time ¢ + 1 nodes are first used to compute the worst-case volatility. The black
box signifies the finite difference approximation for the PDE. The compartmentalized

node attachments symbolize the gradient (9 (-,))x

This discrepancy is necessary to preserve the simplicity of the tridiagonal system
of linear equations that obtains in the rollback step from time ¢ + 1 to time 7. The
nonlinearity introduced by the worst-case scenario is taken care of entirely in the explicit
instantiation of o.

Mixed methods cause more problems if the transfer of boundary values between lattice
instances is not unconditional. Iterative refinement methods such as SOR must then be
employed since the replacement of one V (j,4; L) affects all other V(,4; L)’s, through their

implicit connection.

5.2 Numerical Issues

Standard procedure is to solve PDEs of the Black-Scholes type on a lattice whose space
dimension is discretized uniformly after logarithmic scaling. It is also well-known to
practitioners that barriers should coincide with spatial levels of the lattice whenever
possible. Since a) the number of distinct barriers in the portfolio is not limited, b)

all instruments and thus all barriers must be watched simultaneously under worst-case
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convexity

(G+1Li+1) —

v
= =

Vii+1) |
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V(j—1,i) V(- 1i+1)

Figure 5.3: Dataflow for mixed explicit/implicit one-level finite differencing in the contin-
uation region. Values at time 7 + 1 nodes are first used in an explicit fashion to compute
the worst-case volatility at all space levels. The black box represents one equation in
the linear system of equations, instantiated with the local worst-case volatility. The

bi-directional arrows on the left side indicate the implicit nature of the system

scenarios, and c¢) uniform spacing can match at most one barrier and sy, or two barriers
at the same time (Rubinstein and Reiner (1991) and Cheuk and Vorst (1996)), it is
reasonable to modify the standard procedure to allow non-uniformity.

Secondly, to guarantee stability, explicit forward Euler schemes require the von Neu-
mann condition dt/(Ax)? < 1/2 to hold. Here, Az is the spatial step size after a suitable
variable transformation. Equivalently, one may require the transition weights assigned to
the arrows in Fig. 5.2 to remain positive (see Thomas (1995) or Wilmott et al. (1993)).

We present an algorithm that matches all barriers except those that are wvery close
together, retains uniform spacing between barriers, and obyes the von Neumann stability
condition (this condition is lifted for Crank-Nicholson, since it is not necessary for mixed

epxlicit/implicit methods).

The following exposition is taken from Avellaneda and Buff (1998).
Let the factors U; = sjy1/s; resp. D; = s;_1/s; represent the size of the up resp.

down moves at each spatial level. Instead of using the increments U; and D; directly,
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however, we switch to their logarithms and work with quantities E{] and E% satisfying

—j
Uj=1/Dj1 = o7u Vil
Vi (5.5.2)

Dj=1/Uj 1 =e 7pV&

for D < j < U. dt is the time increment determined from an initial target increment
dtmax-

Equation (4.4.8) is formulated with the riskneutral drift r,. We generalize and write
ue = r¢ — d, instead, where d; denotes a dividend rate, foreign interest rate or storage

cost, depending on the properties of the underlying asset. It is assumed that lower and

upper bounds
Hmin < Kt < Hmax (0 <t< T) (553)

are known.

For simplicity, we assume that there are n up-and-out barriers
sp < by <by<--- < by <00,

and no down-and-out barriers. Extension to down-and-out barriers in both algorithms

and proposition is straightforward. By convention, sy = by is also treated as a barrier.

Proposition 5.4. Given barriers by, ... by, a target time step dimax, volatility bounds
Omin, Omax, and drift bounds pmin, pmax- If the algorithm in Fig, 5.4 is used to compute
spatial increments EjU, EjD for D < j < U together with a possible adjustment of dtmax to
dt, then the explicit forward Euler approzimation of (4.4.8) shown in Fig. 5.5 obeys the
von Neumann stability condition. In particular, the variables Py and Pp satisfy
Py,Pp >0
1 (5.5.4)
Py + Pp < 5
Furthermore, the barriers by, by, ... by are all matched if the algorithm in Fig. 5.5 does

not stop with an error.

Proof. See Avellaneda and Buff (1998) for a full proof. Here, let us only apply the
transformation X = log(S) to (4.4.8) to get

0 1 _ 0?2 0 0?2 0 0
a—{+§z2{e 2x (8—Xf;_ Q—Q} (a—X"; —a—;;) Fudtorfi=0 (555
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Input: barriers b(), ce 7bn7 dtmaxa Omins, Omax; Mmin, Mmax
Output: dt, EJU, EJD for0<; <U

(extension to cover down-and-out barriers as well is straightforward)

1. Set & := max{|gmin|, |4max|}
2. Set dt := dtpax- This is the initial guess, to be adjusted later
3. Repeat for ¢ =0,... ,n:

(a) Set T := 20max (see remark in text)
(b) If 4 = n then skip the next step (there are no more barriers above b,)
(c) Increase & such that biekTVil — bi+1 for some k € N. If no such k exists (i.e.,
In(bj;1/bj) < @Vdt), abort and report an error (see remark in text)
(d) Set
dt' = [—20[21“ ]2
(O ihax + 21)
Check if dt < dt'. If yes, skip the next step (dt has passed the test)
(e) dt is too big: choose a new dt > 0 such that dt < dt' and start over with step 3
(for instance, set dt = 0.9dt")
(f) For all s; such that b; < s; < bj11 (or simply b; < s; if i =n), set E{IJ = Eb =
o. In addition, set E‘{]‘) := 0 where s;, = b;, and if ¢ < n, set Ele := 7 where

Sjl = bi+1

Figure 5.4: Discretizing space while preserving the von Neumann condition. The input
dtmax indicates the desirable time step, from which spatial increments E{] and E% are
derived. The output dt is equal to dtmax if no adjustments are necessary, smaller otherwise

(see step 3e). The algorithm matches one barrier at a time, starting with by = s
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Input: Lattice instance L, time ¢ dt, EjU, Ei) for D<j3<U
Output: V(j,i;L) for D <j<U

1. Repeat for D < j < U:

(a) Define
2 o/t o Vi
PU(O'): | .O' | 2<1_0D;/—>+ .M.UD\/_' .
o0 + (6@) o + (6{])
2 o \dt o \/di
Pp(o) = —— > 2 <1+ UU5/_> o M-UU\/_. 2
w7+ (75) w7+ (75)

Py (o) =1~ Py(o) — Pp(o)
(b) Set

V(j,i; L) i=e max{PU(U) V(G +1,i+1;L)

4 Py(o) V(i +1,L) + Po(o) V(j — 1,i + 1;L)}

where the maximum is taken over {omin, Omax }

2. Extrapolate to get V(D,i; L) and V(U,4; L)

Figure 5.5: The explicit forward Fuler scheme to compute the worst-case value V(j, i; L)
at all spatial levels sp, ... , sy from the V(-,i+1; L). The gradient is computed similarly.

This algorithm corresponds to Fig. 5.2
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with

sl Tnax 020 (5.5.6)
0. ifC <0 -

The explicit finite difference approximations for (5.5.5) are as follows. For the time axis,

the forward difference

of . V(,i+1)—V(i)
ot dt

(5.5.7)

is used. On the space axis, centered differences for both the first and second partial
derivatives are used. Since the upward and downward displacement might differ, the

formulas are slightly more complex than usual:

% - a\l/(ﬂ [(E%)QV(j+l,i+l)

- (= )217(]' —1i+1) - ((afb)Q - (6%})2> V(ji+1)]

(5.5.8)
O’f . 2 i, .
9x7 = g [V LD
+T V(= Li+1) = (@ + )V (i +1)]
where
7 (5) 25 (55)
a =70y (O‘D) + 7 (O'U) (5.5.9)

Algebra shows that the weights Py, Py and Pp computed in the algorithm in Fig. 5.4
replicate the approximation (5.5.7) and (5.5.8). They furthermore satisfy (5.5.4) by con-
struction: crucial is step 3d.

The barriers are matched by construction as well. U

Py, Pp and Py = 1 — Py — Pp can be regarded as probabilities. The property
Py+Pp < % guarantees that the middle weight is always at least %; this has been found
empirically to lead to a significant improvement in accuracy (a small Py effectively turns
the explicit scheme into a binomial tree method).

Note that the algorithm in Fig. 5.5 matches the barriers regardless of the validity

of the von Neumann condition. The algorithm can thus be used unmodified for mixed
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explicit/implicit schemes (and indeed is). The algorithm in Fig. 5.4 can be significantly
simplified in the mixed case (the test with dt' can be ommitted).

Two further remarks should be made. Firstly, step 3a in the algorithm in Fig. 5.5 can
safely be replaced by

3a’ Set 7 := V2 0pmax

In this case Py + Pp < % only if E%} = 6%. For E?] # EjD, the upper bound becomes
Py + Pp < 1 instead. This still guarantees Py > 0 and therefore does not break the
probability framework of the derivation. Moreover, E?] # EjD for at most n spatial levels of
the lattice (n is the number of barriers). The ratio of the number of “good” j’s (E{] = E]b)
over the number of “bad” j’s (E?] % Ejb) is therefore negligible as the granularity of the
lattice gets finer.

Secondly, the algorithm may trigger an error in step 3c. If two barriers are too close to
each other, one of them must be ignored and the algorithm is restarted with the number

of barriers reduced by one.
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6 Algorithms for Barrier Options

Consider a portfolio X consisting of position A; in barrier option X; with knock-out
barrier b > so and positions Ag, ... , A; in k—1 vanilla options X, ... , X;. Let all options
mature at time 7. The payoff at time T is path-dependent: depending on whether the
underlying asset has reached the barrier b in the time interval [0, 7] or not, the owner of
the portfolio receives Z§:2 AiX; or A - X, respectively.

The situation is shown pictorially in Fig. 6.1. Path 1 crosses the barrier v at time ¢,
path 2 doesn’t. When path 1 hits the barrier, X; becomes worthless. As the portfolio is
reduced by one instrument, its sensitivity to volatility fluctuations between times ¢ and
T is likely to differ from the sensitivity of the original, unaltered portfolio (X, \). The
worst-case volatility from time ¢ on is therefore likely to be different for the partial and the
original portfolio. Hence, two instances of the worst-case pricing problem must be solved,
for (X, \) and for (Y, \'), respectively, where Y = (Xo,... , X;)" and X = (Ao, ... , M) .

Two worst-case pricing problems correspond to two lattice instances L; and Ls, each
assigned to solve a PDE of type (4.4.8). The boundary conditions imposed on the two

PDE’s, however, differ. Lo is used to solve an initial-value problem with initial value
F(ST, T; N, Y) =X -Y(Sy) (6.6.1)

as the partial portfolio (Y,\') contains only vanilla options. L; is used to solve an

initial-boundary-value problem with initial value
f(S7,T;7,X) = X X(Sr) (6.6.2)
and boundary value

flu,t; A\, X) = f(u,t; N, Y) (6.6.3)

for 0 < ¢ < T. Under the assumption that L; and Ls match the barrier u at level j,,
(6.6.3) is reflected within the finite difference framework by the identity of values

V (juris L1) = V(ju,is Lo) + 0 (6.6.4)
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lattice instance L, I
uf /

S0
A-X
path 2
! T
lattice instance Lo I
5 path 1 E?:z ¢
0
! T

Figure 6.1: Two paths taken by the underlying asset. Path 1 crosses the barrier u and
looses the position in X; at time £, consequently shifting to lattice instance Lo whose
signature does not contain X;. Path 2 stays below the barrier and leaves the portfolio

intact until expiration

and the identity of gradients

ﬁl(juaza Ll) =0

2 (Ju, 43 L1) = 01(Ju, 15 L2)

¢ ¢ (6.6.5)

Ok (Ju, 4 L1) = Ok—1(Ju, 15 L2)
for all time slices 0 < i < N. We write “+0” in (6.6.4) to indicate that any potential
premium received as a result of X;’s knock-out must be added to the residual worst-case
liability V (ju,i; L2). The identities (6.6.4) and (6.6.5) replace the transactions shown in

Figs. 5.2 and 5.3. External consistency requires furthermore that nodes of Lo are always

processed before corresponding nodes of L.

A remark regarding path-dependency The candidate set C defined in Def. 4.3
contains only non-path-dependent elements o: (Ry4+ X [0,7]) — R44. To solve sepa-
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rate pricing problems on distinct lattice instances and transfer boundary data essentially
makes the volatility path-dependent and thus leads to a worst-case volatility scenario that
may not be part of C. Without proof, however, we point out that the worst-case volatility
is path-independent (i.e., recombining on a discrete lattice) for paths that remain within
a single lattice instance. Only where paths hit boundaries and a jump between lattice
instances occurs may volatilities diverge. Each realized path can experience only a finite
number of such jumps.

We refrain from changing Def. 4.3 formally, but ask the reader to keep this re-
mark in mind. At any rate, the subsequent definitions that contain terms such as
sup,ec(Eg(e) (- - -)) remain consistent under either interpretation of C, since jumps are al-
ways explicitely reflected in recursive boundary terms or terms that contain independent
o'

This remark applies to both worst-case pricing of barrier options (this chapter) and

American options (treated in Chapter 7).

6.1 The Hierarchy of PDEs

We have seen that two lattice instances have to be created if the portfolio contains one
barrier option, thus doubling the cost of solving the worst-case pricing problem. The
immediate question is: what is the number of lattice instances in the general case, and
what are their signatures? How expensive is it to compute worst-case values for portfolios
that contain more than one barrier option?

We answer this question for any portfolio that contains up-and-out, down-and-out and
double-barrier knock-out options. Up-and-out barrier options knock out if the asset price
reaches a barrier u > sg, as in the example in Fig. 6.1. Down-and-out barrier options
knock out if the asset prices falls to a level d < sg. Double-barrier options knock out as
soon as the asset reaches a barrier u > sg, or falls to a level d < sp: the interval [d, u]
defines a corridor in which the double-barrier option is alive.

The following sections closely follow Avellaneda and Buff (1998).
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6.1.1 Construction

Let each instrument of the portfolio X be associated with an up-and-out barrier u(X;)
and a down-and-out barrier d(X;), 1 < 7 < k. Vanilla options are modeled by setting
d(X;) = 0 and u(X;) to a very large number (preferrably larger than sy, the upper
boundary of the finite difference lattice). For a single up-and-out barrier option with
barrier b, d(X;) = 0 and u(X;) = b. For a single down-and-out barrier option with
barrier b, d(X;) = b and u(X;) very large. For double barrier options, d(X;) and u(X;)
are both set to the respective barriers.

The open asset-price interval in which the instrument X; is possibly alive is denoted
by a(X;) = (d(X;),u(X;)), 1 <i < k. Let Y C X be a partial portfolio with &' < k

instruments . Define

.
A(Y) = (a(Ys) (6.6.6)
=1
A(Y) is also open. Let
U(Y) = sup A(Y) = minu(¥))
= (6.6.7)
D(Y) = inf A(Y) = r?ialx d(Y;)

[D(Y),U(Y)] is the closure of A(Y). U(Y) is the smallest up-and-out barrier of the

instruments in Y. Similarly, D( is the largest down-and-out-barrier in Y. If the

Y)
underlying asset stays within A(Y), an initial position in Y will remain intact until

expiration.

Definition 6.1 (Extensions). Let Y C X be a partial portfolio with k' < k instru-

ments.

By(Y)={1<i<K |uY;) >U(Y)} (6.6.8)
is called the upper extension of Y. Correspondingly,

Bp(Y)={1<i<k[dY;) <D(Y)} (6.6.9)
is called the lower extension of Y. The vectorized versions of By and Bp are

By (Y) = select (Y, By (Y)) (6.6.10)
Bp(Y) =select (Y, Bp(Y))
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X; X X3 Xy

Figure 6.2: A portfolio X consisting of k& = 4 options and its upper and lower extensions,
By (X) and Bp(X). The vertical axis marks the price of the underlying asset. U(X) is
the smallest up-and-out barrier among the up-and-out barriers in X. Similarly, D(X) is
the smallest down-and-out barrier among the down-and-out barriers in X. Each option

X; is represented by a vertical bar whose endpoints are its barriers u(X;) and d(X;)

Similarly, a position X' in Y is reduced to

Ay (Y) = select (X', By(Y))

(6.6.11)
ANp(Y) = select (X, Bp(Y))

By (Y) resp. Bp(Y) indicate which instruments in Y remain possibly alive when the
price of the underlying asset crosses U(Y) resp. D(Y). By (Y) and Bp(Y) are sets; the
corresponding partial portfolios By (Y) and Bp(Y) are possibly empty. (By(Y), A (Y))
and (Bp(Y),A,(Y)) are the signatures of the lattice instances that feed the boundary
data at U(Y) and D(Y). For empty By (Y) or Bp(Y), no lookup is necessary.

If U(Y) is very large (as is the case if Y consists of vanilla options only), it will lie
outside the finite lattice. Similarly, D(Y) = 0 also falls outside the lattice. In these cases,
no additional lattice instances need to be maintained.

Figure 6.2 gives an example for £ = 4. The sequences of up-and-out and down-and-out
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barriers are
s0 < u(Xy) < u(X1) = u(X3) < u(Xs)

(6.6.12)
So > d(Xl) = d(Xg) > d(XQ) = d(X4)

The upper and lower extensions By (X) and Bp(X) of the full portfolio contain them-
selves barrier options. Thus, additional lattice instances covering the extensions of B (X)
and Bp(X) need to be created as well. Recursion leads to the four partial portfolios shown
in Figure 6.3. Altogether, four lattice instances are needed to solve the worst-case pricing

problem for the example portfolio.

Partial portfolio | Upper extension | Lower extension
(X1, X2, X3, X4)T | (X1, X2, X3)T (X2, X4)"
(X1, X2, X3)" (X2)" (X2)"
(X2, X4)T (X)T empty
(X2) empty empty

Figure 6.3: The extension hierarchy created by the example portfolio X of Fig. 6.2

Definition 6.2 (Extension hierarchy). Let X be a portfolio with k > 0 instruments.
Let B denote the set of all partial portfolios of X. The extension hierarchy of X, written
B(X), is defined as the smallest subset of B such that

e X € B(X), and

e Y € B(X) implies By(Y) € B(X) and Bp(Y) € B(X), assuming those are

nonempty

Figure 6.4 sketches the algorithm to find the extension hierarchy B(X) of any given
portfolio X on a very high level. The sketch is inefficient, but finding B(X) is the least
costly operation in solving the worst-case for X. (In our actual implementation, we do
employ a more efficient procedure.)

Once B(X) is known, lattice instances can be created, with appropriately instantiated
signatures.

B(X) is exhaustive. No more lattice instances are required to solve the worst-case

pricing problem for X. The solution itself is obtained by solving worst-case pricing
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Input: portfolio X
Output: extension hierarchy B(X)

1. Set B(X) :={X}
2. Repeat the following:

(a) Set B := U {Bn(Y),By(Y)}
YeB(X)

(b) Set B := B'\ (B(X) U {0})
(c) Set B(X) := B(X)UB'

until B/ =0

Figure 6.4: Finding the extension hierarchy B(X) amounts to computing a closure. In
step 2a, we make sure we know all extensions immediately reachable from the current
configuration. In step 2b, extensions that are already known are discarded, as well as the

empty extension for which no lattice instance is created

problems on all lattice instances, transferring boundary data where necessary. The policy
outlined in Sect. 5.1 to ensure external consistency leads to the approach shown in Fig. 6.5,
outlined on a very high level. (In a concrete implementation, step 3c is done time slice by

time slice; the inner loop implicit in step 3¢ and the outer loop in step 3 change places.)

6.1.2 Complexity

The example in Fig. 6.2 requires four lattice instances for the solution of the worst-case
problem. Now consider a second portfolio X' also consisting of 4 double-barrier options,
with the barriers rearranged as shown in Fig. 6.6. In this case, the application of the
algorithm in Fig. 6.4 yields an extension hierarchy of 10 elements, listed in Figure 6.7.
It turns out that 10 = 4 x (4 + 1)/2 is indeed the maximum size of any extension
hierarchy for a portfolio with 4 instruments. This result can be generalized to the following

proposition, taken from Avellaneda and Buff (1998).

54



Input: extension hierarchy B(X)

1. Set n:=|B(X)|
2. Find an ordering Yy, Yy,,..., Y, of B(X) such that [Y; | < [Y;] for i <
3. Repeat fore=1,... ,n:
(a) If By(Yy,) # 0 then access the lattice instance for partial portfolio By(Y,),

and use it for the boundary condition at U(Y,)

(b) If Bp(Yy,) # 0 then access the lattice instance for partial portfolio Bp(Yy,),
and use it for the boundary condition at D(Y/,)

(c) Solve (4.4.8) for (Yy;, \;;), using the data produced in the previous two steps

Figure 6.5: Solving the worst-case pricing problem for X requires solving subordinate
worst-case problems in the right order. The particular ordering in step 2 implies that
Y, =X

Proposition 6.3. Given a portfolio X of k > 1 instruments such that

w(X1) > u(Xg) > - > u(Xg) (6.6.13)
AX) £d(XG)  (L<ij <hki# ) (6.6.14)

Then |B(X)| < k(k+1)/2.

Proof. By induction over k. For k = 1, |B(X)| = 1 by inspection and the proposition is
true. Thus assume k > 1. Define X' = (Xy,...,X,_;)T. X’ is a partial portfolio of X
with £ — 1 instruments and fulfills the premises of the proposition. Figure 6.8 shows an
example for k = 4.

The idea is to count the lower extensions that must be added to B(X') as a consequence
of adding X, to X'. It will turn out that a) all new extensions contain Xy, and b) upper
extensions will not cause trouble, thanks to the particular ordering (6.6.13).

Clearly, X € B(X). By assumption (6.6.13), By(X) = X’ which implies X' € B(X),
and by transitivity B(X') C B(X) (here we refer to the algorithm in Fig. 6.4).
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X; X X3 Xy

Figure 6.6: A portfolio X’ consisting of k¥ = 4 double-barrier options with up-and-out
barriers u(X1) > u(X2) > u(X3) > u(X,) and down-and-out barriers d(X1) > d(X2) >

d(X3) > d(X4). This particular combination requires 10 lattice instances

Now consider the sequence Yy = X, Y1 = Bp(Yy), Y2 = Bp(Y1), ..., Y1 =
Bp(Yr—2), Y = (0. This sequence of consecutive lower extensions has k + 1 distinct
elements, because by assumption (6.6.14) the d;’s are all distinct.

Thus, |Y;| =k —i. For 0 <i <k — 1, define

B; = select (Y, {1<j <k—i| Y # X3}) (6.6.15)

B, is Y;, possible reduced by the element X} if it happens to be part of Y;. Note that
by definition of X',

B, =X (6.6.16)
We claim that for 0 <7 <k —1,
B, € B(X’) (6.6.17)

To see this choose ig € {0,... ,k — 1} such that B; C Y; (i.e., X} isin Y;, and B; is a
strictly partial portfolio of Y;) for i < iy and B; =Y, (i.e., X is not element of Y;) for
i > 1p, and note that for 7 < 4y, the equality Bp(B;) = B;;1 holds.
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Partial portfolio | Upper extension | Lower extension
(X7, X5, X5, X)) | (X7, X5, X5)T | (X5, X3, X)7
(X1, X3, X5)" (X7, x5)" (X3, X3)"
(X3, X5, X3)" (X3, X5)T (X5, X"
(X7, X5)" (X1) (X3)
(X3, X35)" (X3) (X3)
(x5, X))T (X3) (X%)
(X1) empty empty
(X3) empty empty
(X3) empty empty
(X3) empty empty

Figure 6.7: The extension hierarchy created by the example portfolio X’ of Fig. 6.6

Together with (6.6.16) as starting point, this implies that B; € B(X') and recursively
B; € B(X') for 0 < i <ig. Thus, (6.6.17) is true for at least 0 < i < ip.

That (6.6.17) is also true for 7o + 1 < i < k —1 can be derived from B;, = B;,+; and
B; =Y, for i > iy, both true by choice of iy, and since Y; € B(X') by definition of Y;.

u(Xy) is the smallest up-and-out barrier, and X is thus the first instrument which
is dropped. Therefore, By (Y;) = B;, or By (Y;) € B(X') for 0 <i <k —1 by (6.6.17).
This implies that the partial portfolios that are not already part of B(X') are exactly
those that contain Xy, namely X,Y;,...,Y;,. Thus, since ¢y < k —1, it follows that the
size of B(X) is bounded by

IB(X)] < BX')|+1+(k—-1) (6.6.18)
or, by induction,

IBX)| <k(k—1)/24+ 1+ (k—1) =k(k+1)/2 (6.6.19)
which completes the proof. O

It is easy to see that the size of the extension hierarchy does not become larger if

u(X;) and d(X;) are not distinct as postulated in the proposition, making the upper
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X_’r——— —————————— - =

X; X X3 Xy

Figure 6.8: Portfolios X and X’ illustrate the proof of Prop. 6.3 for & = 4. Y, the lower
extension of X, is also marked. Note that By (Y1) = Bp(X') = (X2, X3)T

bound k(k + 1)/2 the general worst case upper bound for every portfolio of vanilla, single
and double barrier options of size k. Motivated by the example in Fig. 6.6, it can be
shown that this upper bound is tight.

Corollary 6.4. Let X be a portfolio of k double barrier options with barriers u(Xy) >
u(Xo) > >u(Xg) and d(X1) > d(X2) -+ > d(Xy). Then |B(X)| =k(k+1)/2.

Proof. All elements in the sequence of lower extensions Yy,...,Y in the proof of
Prop. 6.3 contain Xj. i.e. 49 = k — 1. Since this is true in each inductive step, equality
follows in (6.6.19). O

Most practical cases do not involve double barrier options. Proposition 6.3 can be

specialized for portfolios that contain only single barrier options.

Proposition 6.5. Given a portfolio X of k > 1 instruments such that
S > d(Xl) > d(XQ) > e > d(Xkd) (6.6.20)
and

U(Xkd+1) > > U(Xk) > Sq, (6.6.21)
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for some kq € {0,... ,k}. Furthermore, u(X1),u(X2),... ,u(Xy,) are very large, and
d(Xp,41) = -+ = d(Xy) = 0. (Thus, there are kq down-and-out barrier options and
ky = k — kq up-and-out barrier options in X.) Then

IB(X)| = kq + ku + ka ku. (6.6.22)

Proof. A simple counting argument will do. If a path {S;(w)}, w € Q of the underlying
crosses barrier d(X,), 1 < n < kg, it must have crossed barriers d(X),... ,d(Xp—1)
before. Thus, only subsets Xi,..., X, with contiguous indexes can be knocked out at
any particular time. Therefore, we count kg + 1 ways to separate the k; down-and-out
barrier options into knocked-out ones and ones which are still alive.

Similarly, we count k, + 1 ways to divide the k, up-and-out barrier options in X into
knocked-out and alive ones. Since the up-and-out and down-and-out barrier options are
unrelated, there are (kg + 1)(k, + 1) combinations altogether. Disregarding the empty

combination, we get
IB(X)| = (kq + 1)(ky + 1) = 1 = kg + ky + kq ky.- (6.6.23)

O

Proposition 6.5 shows that the number of lattice instances for a portfolio of single
barrier options is linear both in the number of up-and-out resp. down-and-out barrier
options. Again, barriers are not necessarily distinct as required in the premise of the
proposition. If, however, k; and k, are set to the number of distinct up-and-out and
down-and-out barriers in X, respectively, then (6.6.22) remains precise. If X also contains
vanilla options, one additional lattice instance needs to be created, and |B(X)| = kg +

kew + kg ky + 1.

6.2 Performance Results

All tests were performed on a Pentium/166 MHz PC running Windows NT Workstation
4.0/SP 3 and equipped with 128 MB of RAM. The worst-case pricer is written in C++ and
compiled with Microsoft Visual C++ 5.0, optimizations activated. The pricer uses the
algorithms developed in the previous sections, and is implemented in an object oriented
fashion of which more will be heard in Part III.

In the following, the term “Mtg” is used to refer to our pricer.
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6.2.1 Convergence

Before we measure the speed of Mtg, we need to convince ourselves that the results it
delivers are numerically accurate. We first apply Mtg to a double-barrier option and

compare the result with two sources in the literature.

Experiment 1: A Double-barrier Option

Set X = (X;1) and Ay = 1. X; is a double barrier option with variable strike K, up-
and-out barrier u = u(X;) and down-and-out barrier d = d(X;). We assume Sy = 2 and
T = 365 days. The interest rate r and volatility o are constant.

Geman and Yor (1996) use a probabilistic approach to price X;. Kunitomo and Tkeda
(1992) suggest a pricing formula that consists of a sum of an infinite series. Mtg is run with
four different time steps dtmax = 1/(IV x 365), where N = 1, 5, 20 and 50, respectively,
as well as under explicit and Crank-Nicholson schemes (in the explicit scheme dt = dtpax
after the algorithm in Fig. 5.4 is run).

Figure 6.9 lists the results for three combinations of r, o, 4 and d. Geman and Yor’s
method is quoted as “G-Y”, and Kunitomo and Ikeda’s method is quoted as “K-I1.”

The convergence is very satisfactory. For N = 5, the first four digits after the decimal
point of the results of all three methods agree. The Crank-Nicholson scheme converges
slightly faster than the explicit forward Euler scheme. It is, however, between 30 and
50% slower than the explicit scheme.

For N =1, the result appears almost instantaneously. For N = 50, 32 and 44 seconds
are needed for the explicit and Crank-Nicholson scheme, respectively. The theoretical
time complexity is O(N 3/ 2), due to trimming. Measurements for all N validate the
theory and yield a running time of approximately 0.1 x N 3/2 geconds for the explicit

scheme, and 0.14 x N3/2 seconds for Crank-Nicholson.

Experiment 2: A Portfolio of Single-barrier Puts

To test the algorithm in Fig. 5.5, a portfolio of four down-and-out at-the-money puts is
priced, listed in Figure 6.10. All options mature in 30 days. The other parameters are
Sy =100, r = 0.025 and o = 0.2.

The results for the explicit and the Crank-Nicholson scheme are summarized in

Fig. 6.11. Also shown are op and oy (defined in Sect. 5.2). There are four regions

60



N scheme o=0.2 o=0.5 o=0.5
(periods (CR = r = 0.02 r=0.05 r =0.05
per Crank- K=2 K=2 K =1.75
day) Nicholson) | d =1.5,u =25 d=15u=3 d=1,u=3
Mtg 1 explicit 0.040899 0.017666 0.075914
Mtg 1 CR 0.040968 0.017844 0.076146
Mtg 5 explicit | 0.041050 0.017819 0.076102
Mtg ) CR 0.041063 0.017856 0.076149
Mtg 20 explicit 0.041079 0.017848 0.076158
Mtg 20 CR 0.041083 0.017857 0.07617
Mtg 50 explicit | 0.041085 0.017853 0.076168
Mtg 50 CR 0.041086 0.017857 0.076173
G-Y 0.0411 0.0178 0.07615
K-I 0.041089 0.017856 0.076172

Figure 6.9: Prices obtained for a double barrier call option with each of the three methods

Mtg, G-Y and K-I. There is no uncertainty

in the lattice with differing ¢p and &y; the three interior barriers at 98, 95 and 90 mark
the boundaries between these regions. The range of op and oy narrows as N becomes
large, from a range of 0.29-0.38 with an absolute difference of 0.09 for N = 1 to a range of
0.28285-0.028591 with an absolute difference of only 0.000306 for N = 400. (It is obvious
that smaller and thus more numerous spatial increments have to be bent relatively less
to match the barriers.)

A closed form formula for down-and-out barrier puts yields 10.287 as the model value.
The numerical result is sufficiently close for N > 100.

For N =50, 100, 200 and 400 the running time is 2, 6, 17 and 51 seconds under the
explicit scheme, and 5, 15, 44 and 139 seconds under Crank-Nicholson. This suggests
a running time of 0.006 x N3/2 (explicit) respectively 0.0162 x N3/2 seconds (Crank-
Nicholson). Crank-Nicholson trails the explicit scheme by a factor of ~ 2.7, while not
yielding significant higher accuracy.

Note that this example does not exhibit uncertainty. Only one lattice instance is
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type | strike | barrier position

put 100 98 long 200 contracts

put 100 95 long 10 contracts
put 100 90 long 2 conctracts
put 100 85 long 1 contract

Figure 6.10: A portfolio of four down-and-out 30-day at-the-money puts. The position
in each put is approximately inverse proportional to the relative value that it contributes

to the portfolio

needed to compute the price of the portfolio, and in this case the individual values of
the puts might as well have been computed separately and added up. We introduce
uncertainty for this particular portfolio below.

6.2.2 Combinatorics

Experiment 3: Two Barrier Options Hedged

We introduce uncertainty in ¢ for the first time and choose opin = 0.1 and opmax = 0.2 as
upper and lower bounds. The other parameters are Sy = 100 and r = 0.02.

Let X be a portfolio of 5 instruments. X is a double-barrier call, X5 is a single-barrier
put, and X3, X4 and X5 are vanilla calls whose market prices are known. All options
mature in 30 days. Let A = (1,1,0.24,—0.98,8.47)" be the position in X.

Four lattice instances are necessary to solve the worst-case problem for (X, \). Their

signatures are, respectively,
e the two barrier options plus the vanillas;
e the double barrier option plus the vanillas;
e the single barrier option plus the vanillas;
e the vanillas.

The worst-case price of (X,\) is shown in Fig. 6.13 for various time steps. Results

under the explicit scheme and Crank-Nicholson are in close agreement, although Crank-
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N price 0p,0u  Op,0u OD,0U  OD,O0U

(periods between  between between  between
per explicit Crank- 98 98 95 90
day) Nicholson | and above and 95 and 90 and below

1 7.72429  7.76010 0.38597 0.29699  0.34432 0.36400
2 7.79286  7.80849 0.33426 0.34294  0.29819 0.31524
5 9.96666  10.0005 0.28769 0.33205  0.28872 0.30523
10 10.1146  10.1320 0.30514 0.31306  0.29695 0.28777
20 10.2094  10.2185 0.28769 0.29515  0.28872 0.28727
50 10.2532  10.2569 0.30325 0.30001  0.29216 0.28599
100 10.2709  10.2727 0.29690 0.28285  0.28693 0.28737
200 10.2793  10.2803 0.28729 0.28966  0.28643 0.28599
400 10.2832  10.2837 0.28591 0.28285  0.28300 0.28364

Figure 6.11: Results for a portfolio of four down-and-out at-the-money puts. The model
value is 10.287. Also shown are op and oy for the four significant regions of the lattice,

determined by the interior barriers 98, 95 and 90 and found by the algorithm in Fig. 5.5

Nicholson turns out to be between 2 and 4 times slower. The running times for the
explicit scheme are less than 1, 1, 3 and 12 seconds for N = 5, 10, 20 and 50, respectively.
The running times for Crank-Nicholson are 1, 2, 12 and 32 seconds, respectively.

Given their market prices, the transaction involving X3, X4 and X5 creates a premium
of 84.499. Thus, anyone charging at least 85.5801 for the entire package and at the same
time entering the offsetting position in X3, X; and X5 (thus effectively charging 1.0811
for X; and Xy) will break even or make a profit provided the volatility stays within the
band 0.1 < o < 0.2 over the next 30 days. It can be shown that our particular offsetting
position in the vanillas is optimal in the sense that 1.0811 is the smallest surcharge for
X1 and X5 for any offsetting position. The position (0.24,—0.98,8.47) in (X3, X4, X35) is
the optimal hedge portfolio for the position (1,1) in (X, X2). See also Sect. 4.2.2.
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type | strike position U&O barrier ‘ D&O barrier
call 110 long 1 contract 120 90

put 100 long 1 contract - 95

type | strike position quoted price

call | 110 | long 0.24 contracts 17% implied vol

call | 100 | short 0.98 contracts 13% implied vol

call 90 long 8.47 contracts 15% implied vol

Figure 6.12: The portfolio consists of two 30-day barrier options and four 30-day vanilla
options. The market prices for the vanilla options are quoted as implied volatility. The

contribution of X3, X4 and X5, given their market prices and positions, is 84.499

Experiment 4: Single-barrier Portfolios of Various Sizes

According to Prop. 6.5, the running time is O(kq+ ky +kq ky,) in the number of down-and-
out barriers k; and up-and-out barriers k,,, assuming there are no double-barrier options
in the portfolio. We want to validate this formula experimentally.

We augment the portfolio of four down-and-out barrier puts in Fig. 6.10 by four up-
and-out barrier calls as shown in Fig. 6.14. For each combination of down-and-out and
up-and-out barrier options (kq, ky) € {(z,y) |0 < z,y <4,z > 1,y < x}, the worst-case
price is computed for the portfolio consisting of the first k4 puts and the first &, calls.
Since we are only interested in the running time, we set o = 0.199999 and opax = 0.2
just to make sure the problem becomes nonlinear. The other parameters are Sy = 100,
r = 0.025 and N = 20 (i.e., dt = 1/(20 x 365)).

Figure 6.15 shows the result in tabulated form. Figure 6.16 plots the running times
against the number of lattice instances required for the combinations of Fig. 6.15. The
graphic shows that the running time progresses linearly, thereby validating Prop. 6.5 ex-
perimentally. (Slight deviations are expected: each partial portfolio has its unique bound-
ary, and the corresponding lattice instance thus a unique continuation region. Numerical
processing concentrates on the continuation region, causing slightly different processing

times for different lattice instances.)
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N price explicit price
(periods | explicit Crank- | minus premium
per day) Nicholson | for X3, X4, X5

5 85.5709  85.5720 1.0719

10 85.5762  85.5771 1.0772

20 85.5788  85.5791 1.0798

50 85.5801  85.5803 1.0811

Figure 6.13: Worst-case prices for a double-barrier option, a single-barrier option and

three traded vanillas. The last column shows the contribution of X; and X5 to the worst-

case price, given that the market prices for X3, X; and X5 are 17, 13 and 15% implied

volatility, respectively

type | strike | barrier position

put 100 98 long 200 contracts
put 100 95 long 10 contracts
put 100 90 long 2 conctracts
put 100 85 long 1 contract
call 100 102 long 200 contracts
call 100 105 long 10 contracts
call 100 110 long 2 conctracts
call 100 115 long 1 contract

Figure 6.14: The portfolio of four down-and-out 30-day at-the-money puts of Fig. 6.10,

augmented by four up-and-out 30-day at-the-money calls
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ky (explicit) ky (Crank-Nicholson)
kq 0 1 2 3 4 0 1 2 3 4
1 03] 1.3 05| 1.9
2 1.0 3.1] 5.9 1.6 | 42| 8.2
3 1.8 52| 9.2 138 3.2 7.1 | 127 | 18.1
4 29| 7.8]14.1 | 19.9 | 26.7 4.9 110.6 | 17.7 | 26.5 | 374

Figure 6.15: The running times in seconds under the explicit resp. Crank-Nicholson
schemes for various combinations of down-and-out and up-and-out barrier options (kg

and k,, respectively)

explicit Crank-Nicholson
[s] 40 — 40 —
°
30 30
° °
20 ® 20 oo
oo °
10 PR 10 - .
bt o8°°
R e e T T O T T Tm—7TT—T 7 T T
1 35 8 11 15 19 24 1 35 8 11 15 19 24
Ng + Ny + Ng Ny, Ng + Ny + Ng Ny,

Figure 6.16: The running times in seconds under the explicit resp. Crank-Nicholson
schemes, plotted against the number of lattice instances necessary to process various

combinations of single-barrier options
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7 Algorithms for American Options

Just like barrier options, American options may be subjected to premature termination
sometime between the settlement and the face maturity date. This seems to make the
techniques discussed in Chapters 5 and 6 applicable to portfolios that contain American
options as well.

This is true—in principle. The fundamental difference is that the early exercise of
American options is voluntary. The precise date is not known a priori, although it may
be assumed that holders of American options time early exercise so as to maximize their
expected payoff. How mathematical finance models this behavior can be read in Bensous-
san (1984) and Karatzas (1988). Numerically, American options can be evaluated with
projected SOR (Successive Over-Relaxation) methods on a lattice or tree, as described
in Wilmott et al. (1993). Other approaches are also possible (see Longstaff and Schwartz
(1998), for instance).

Uncertainty in some of the model coefficients adds another twist to the problem: the
early exercise strategy for an individual American option X; now depends on the entire
position (X, ), not merely on the contribution of X; judged separately. We have en-
countered this situation with barrier options: once X is exercised, the exposure of the
remaining partial portfolio to fluctuations in the uncertain coefficients may be different,
and so may the worst-case value. Thus it is not possible to pre-process the components
of X with American early exercise features separately and use the so found early exer-
cise boundaries just like knock-out boundaries are used in the case of barrier options.
Rather, the continuation and early exercise regions for each American option in X must
be searched for dynamically, by considering the consequences of all possible early exer-
cise strategies (of which there are plenty if X contains several American options) on the
worst-case value of the entire position.

In this chapter, we show how to implement the dynamic search for continuation and
early exercise regions within the framework of worst-case pricing. We also show how
to cope with the explosion of combinations: it is possible to reduce the combinatorial
complexity in most practical cases considerably.

In some sense, the concept of optional early exercise is merely an extension of the
notion of forced knock-out. The algorithms in this chapter work for both American and

barrier options indiscriminately. In particular, they are capable of pricing a portfolio of
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American barrier options!

Once again, ¢ shall be the only uncertain model coefficient.

7.1 Early Exercise Combinations

We use a lattice approach as proposed in Chapter 5. Let (X, ) be the portfolio, and
assume all £ instruments in X mature at time 7', and may be exercised early at any time
between now and 7.

The local data flow shown in Figs. 5.2 and 5.3 captures the situation only partially if
American options are present. V(j, i; L), unmodified, represents the worst-case portfolio
value under the restriction that no option be exercised at t = ¢; and S; = s; (recall
that S; is an abbreviation for S;; and s; is the jth spatial level of the lattice). V(j, i; L)
needs to be compared to other worst-case values that arise under viable early exercise
combinations, and a proper selection needs to be made. Thus, the original scheme turns

into a two-tiered numerical-combinatorial regime:

1. The finite-difference scheme is applied to find the worst-case value under a no-

exercise assumption. This is the numerical phase.

2. This preliminary value competes against the worst-case values delivered by all vi-
able early exercise combinations. It may or may not be updated. This is the

combinatorial phase.

V(j,i; L) is always paired with its gradient vector (91(4,4; L), ... ,0(5,4; L))T. Although
sometimes not explicitely mentioned, the gradient is always computed, and modified,
together with V(4,4; L).

Figure 7.1 presents this approach graphically. Subordinate lattice instances need to
be accessed in the combinatorial phase. As some early exercise combinations might be
dismissed right away, exactly which lattice instances must be available at a given node
instance (7,7; L) is determined at runtime. Clever selection techniques lead to significant
speedup.

Note that Fig. 7.1 is correct for explicit finite difference schemes, but not necessarily for
mixed explicit/implicit schemes such as Crank-Nicholson. As the update of one V(j, i; L)

affects all the others implicitely, iterative improvement over both phases 1 and 2, applied
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preliminary V(j,i; L) combinatorial —— final V(j,i; L)

A

final V (4, 4; L)
final V (4, ; L)

final V (3, i; Ly,)

Figure 7.1: The preliminary worst-case value V( J,4; L) at node instance (j,; L), result of
the dataflow in Fig. 5.2, enters the combinatorial post-processor which selects a suitable
early exercise combination. To do that it needs to access lattice instances L1, ... , L,, all

carrying partial portfolios of X

to all node instances (-,%; L) of the current time slice, is required. A modified projective
SOR method, for instance, may do.

For this reason, all experimental results were obtained with explicit forward Euler.
Although we have implemented Crank-Nicholson (and projected SOR), we focus on com-

binatorial aspects in this chapter and ignore the numerical side as much as possible.

7.1.1 Long and Short Positions

Which early exercise combinations should be adopted at (j,%,L)? Which combination
is “suitable”, in the language of Fig. 7.17 Simply choosing the one that represents the
largest worst-case value is not sufficient, since control lies not only with the other party
to whom some of the American instruments in the portfolio have been sold, but also with

the agent who may own some of the American options.
The Worst-case Price Revisited

To clarify this point, we remind ourselves that

the worst-case price of (X, \) represents the largest amount of funds that may
be necessary to delta-hedge a portfolio (X, \). It thus represents the safe price
which, when charged, guarantees that the seller of (X, \) will not incur any

losses.
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The worst-case price therefore represents the point of view of the sell-side:

e )\; > 0 means that the agent has sold \; contracts in the ¢th instrument and does
therefore not control the early exercise strategy for this instrument. (When the

sell-side sells a long position in X, it effectively goes short Xj;.)

e )\; < 0 means that the agent has bought |)\;| contracts in the ith instrument and

therefore controls its early exercise strategy.

The worst-case value of (X, A) is the worst-case liability of the sell-side. Positive values
mean that additional funds must be provided to hedge against the worst-case. They
represent an upper bound for the price (i.e., the most desirable price) the seller can
justifiably charge the buyer, assuming the buyer agrees with the seller on the uncertain
model coefficients.

Similarly, negative values indicate a net flow of funds from the seller to the buyer; the
absolute value represents a lower bound (corresponding to the unaltered value being an
upper bound) on the amount of funds p the seller needs to transfer together with (X, ).
Any amount smaller than p is no longer competitive under the particular uncertainty

assumptions of the model. Thus, p is the most desirable cost for the seller.

The Best Worst-case Price

In the previous paragraph we gave an economic justification for the maximum-principle
in worst-case pricing. So far, however, agents from whose perspective the worst-case price
is computed have been unable to modify their risk profile after the position (X, \) has
been set up.

This is different if X contains American instruments. Suppose X; is American, and
A\ < 0. Define X' = (Xq,...,X; 1, Xi41,... ,X)", and ) accordingly. Define X¢ = X,
with X7 modified to preclude early exercise if t = ¢; (early exercise is still allowed for ¢ >
ti+1). Let the signature of lattice instance L and L' be (X¢, \) and (X', X’), respectively.

Consider the two quantities

Vi =V{(j,i;L°)

) (7.7.1)
Vo=V (j,i;L") + N\ X;

Both are worst-case prices: Vi under the restriction that X; must not be exercised now,

but may be later, and V5 under the constraint that X; be forcibly exercised now. Let
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us assume that there are no other American options in X. Then V; and V5 exhaust the
possible early exercise combinations for X; and the remainder of the portfolio, and we
may express V(j,i; L) in terms of V7 and V5.

Since the agent may choose between Vi and Vs, it is advisable to choose the minimum.
This strategy reduces the worst-case liability of the agent and assures that the agent
selects the most competitive price when (X, A) is offered for sale, while still being hedged

against volatility fluctuations.

Definition 7.1 (Best worst-case). The best worst-case value of portfolio (X, \) is the
minimal worst-case value of (X, \), where the minimum is taken over the early exercise

strategies open to the seller of (X, ).

We illustrate the principle of best worst-case evaluation with an example, and give a
formalization in Sect. 7.1.2.

Assume X = (X1, X3)T and A = (—1,1)T. Both instruments are American. The seller
of (X, ) controls early exercise for X7, but is subjected to any early exercise decisions
made by the holder of X5. Suppose the outcomes of the four early exercise combinations

at node instance (j,7) are those shown in Fig 7.2:
e 40 if X; and X5 are both exercised (payoff of X; plus payoff of X5);

e 10 if only X; is exercised (payoff of X;, plus worst-case value of X under the

restriction that X5 not be exercised at node (j,1));

e 20 if only X5 is exercised (payoff of X5, plus best worst-case value of X; under the

restriction that X; not be exercised at node (j,1));

e 30 if neither instrument is exercised (best worst-case value under the restriction

that X; and X, not be exercised at node (j,1)).

Definition 7.1 requires a strategy for X; that guarantees the lowest value under all possible
decisions of the holder of X5. The agent therefore selects the strategy with the lowest
row maximum. In the example, the agent postpones the exercise of X at least until time

t;+1 and thus guarantees a worst-case value of 30.
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‘ exercise Xo ‘ don’t exercise Xy
40 ‘ 10

exercise X

20

don’t exercise X

Figure 7.2: Early exercise combinations at node (j,7) and their corresponding values.

Bold values are row maxima; the framed value is the best worst-case

7.1.2 Best Worst-case Evaluation Formalized

Most of the exposition in this section is taken from Buff (1999a) and reformulated for a
discrete setting.

Some notational remarks. In general, if nothing else is said, the lattice instance
associated with signature (X, ) is denoted by L, and vice versa. Its size is denoted
|IL| = |X| = |A| = k. In some cases, however, X and A; express this relationship
explicitely. If (X', \') C (X, \) is partial, and L’ is the corresponding lattice instance, we

refer to L' as a sub-lattice instance. L is sometimes called the root-lattice instance.

Definition 7.2 (Separation into long and short). Let (X', \') C (X, \) be a partial
portfolio of size k'. Then

long (X', X') ={1<n <k |\, <0 and X, is American}
short (X', ') = {1 <n <k'|X, >0 and X], is American} (7.7.2)
am (X') = {1 <n <k |\, #0 and X, is American}

separate the American instruments in X' into long and short positions. (Recall that for

the sell-side, X, > 0 translates to X], being sold.)

Definition 7.3 (” Europeanization”). Let X be a portfolio, and X, € am (X) one of
its American instruments. Then XE is its “europeanized” version: early exercised is pre-
cluded everywhere. If G is any process involving X, then we write GF for the correspond-
ing process involving XY (where “corresponding” depends on the context). Similarly, L*
1s a lattice instance whose signature contains europeanized versions X{E, ... of American

instruments Xq,....
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Definition 7.4 (Residual lattice instance). Let L be a lattice instance with signature
(X,\), and let M C{1,...,|L|}. Then -M ={1,... ,|L|} \ M, and L_p; with signature

(select (X, =M) , select (A, —M)) (7.7.3)
is called the residual lattice instance of L.

Definition 7.5 (Payoff from early exercise). Given a lattice instance L with signa-
ture (X, X) and an enumeration of instruments M C am (X). Then the payoff from early

exercise of the instruments in M 1is given by the linear combination

payoff (L, M) = select (A, M) - select (X, M) (7.7.4)

The Best Worst-case Price Process

Definition 7.6 (Local fixation of early exercise). Let ' = {F};} be any discrete pro-
cess defined on the space of node instances. FZ(L) is a random wvariable; FZ(], L) its value
at node instance (j,1; L). Assume (X, ) is the signature of L, and choose o € C.

Then we define the local fixation of F' for M C am (X) as follows:

1 ~
Fi(L, M,0) = 2 Bo() (BZ-H Byt (L) | f) + payoff (L, M) (7.7.5)

where Ly is the residual lattice instance of L. F;(L, M, o) is also a random variable,

and F;(j; L, M, o) its value at node instance (j,1; L).

In some sense, the local fixation F;(L, M, o) “harnesses” the power of FZ(L) by fixing
the volatility o as well as the early exercise strategy for one time period. The parameter
M in Def. 7.6 has the effect of modifying the features of X locally. The maturity date
of the instruments covered by M is advanced to t;, and for all other instruments the
earliest date on which early exercise is permissible is set to ¢;41. It is easy to see that F
is adaptable.

The following definitions remove the restrictions on the parameters M and o in
F(L, M, o) again. The result will not be the original F, but a version that incorporates

the best worst-case paradigm in Def. 7.1.

Definition 7.7 (Local uncertainty reintroduced). Let F(L,M,o) be a local fizati-
on. Then F(L,M) = {F;(L, M)}, defined as

Fi(L,M) =sup F;(L,M, o) (7.7.6)
oeC
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E—?(LaMaO—) Fi—l(LaMaU) E(LaMaU) E+1(LaMaU)

~ ~ ~

Fiaoll)  Eia(L) Fy(L) Fi(L)

diagonal = expectation

vertical = selection

Figure 7.3: An illustration of Def. 7.6. The process F (L, M,o) = {F;(L,M,0)} depends
on the values the base process F(L) = {F;(L)} takes on in subsequent time slices, by
taking the (discounted) expectation over all possible transitions. Although not implied
in Def. 7.6, we shall see later that F'(L) in turn may depend on F(L, M, o), by selecting

among feasable instantiations of M and o

reintroduces uncertainty in o locally.

Definition 7.8 (Local optionality reintroduced). Let F' = {F;} be any discrete pro-
cess defined on the space of node instances. Let F(L,M, o) be its local fization, and let

F(L,M) be the process defined in Def. 7.7. Let

A(L) = long (X, \)
B(L) = short (X, A)

(7.7.7)

denote the American instruments on lattice instance L with signature (X, ). Then the

process G(L) = {G4(L)}, defined as

(L) = mi F(L,AUB 7.
Gi(L) Ain e i(L, AU B) (7.7.8)

is said to reintroduce optionality locally.

Definition 7.9 (Best worst-case process). Given (X,\). Let F' = {E;} be a discrete
process defined on the space of node instances belonging to the set of root- and sub-lattice

instances for (X, ), and let G; reintroduce optionality locally. Then F is called a best
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worst-case process if

Fy(L) = G4(L) (7.7.9)

for all lattice instances L with signatures (X', \'), X' C X and N € R¥'| and 0 < i <
N — 1. If furthermore the payoff condition

Fy(L) =\ - X, (7.7.10)
holds for all those L, then F is called a best worst-case price process for (X, \).

We require (7.7.9) and the payoff condition to hold for all possible positions, not
only for those which can be constructed by removing elements from A. This is necessary
because auxiliary positions (especially in singleton partial portfolios) may be required to
support the computation.

The vertical arrows in Fig. 7.3 now make sense: the process F in the picture is a best
worst-case price process.

Notice how Defs. 7.7 and 7.8 implement the proper hierarchy of local minimization
and maximization, corresponding to the following sequence of moves between the agent,

the client(s) who hold the instruments sold by the agent, and the market:
1. The agent chooses instruments to exercise. Candidates are found in long (X, \).
2. The client(s) decide likewise for the instruments enumerated in short (X, A).

3. The market acts by “selecting” the volatility of the underlying asset until the sub-

sequent time slice.

No other order is plausible. The minimization operator in (7.7.8) guarantees that the
agent makes the best possible choice, assuming maximal adversion by the client(s) and

by the market.

Proposition 7.10 (Uniqueness). There is only one best worst-case price process for
(X, A).

Proof. Let F and G be both best worst-case price processes for (X, \). Since, by defini-
tion, both processes fulfill the payoff condition (7.7.10), they agree for i = N. Induction
over 1 = N —1,...,0 and the definiteness of Defs. 7.7 and 7.8, including (7.7.8), imply

uniqueness. O

75



Compatibility with Traditional Formulations
It is easy to verify that the definition of the best worst-case price process F for (X, )
implies that

Fi(L) = sup ﬁ, ato) (i1 Bia (L) | F) (7.7.11)

if long (X, \) = short (X, \) = 0, i.e. if all instruments in X = X¥ are European. Expan-
sion leads to

~ 1

FAL) = sup 3 By (300 oo (Buvz Funa(D) | Finr) | 7))

o€eC /81 o'eC (7712)

= ilelg E Eq() (EQ(UI) (Bz'+2 Fi+2(L) | ‘7:i+1) ‘ fz)

where we exploit the fact that the outer and inner expectations are taken over distinct
periods of time. The outer supremum is insensitive to changes of the values of the function
o for t & [t;,t;+1), and the inner supremum is insensitive to changes of the values of o
for t & [tiy1,ti+2). Both operators can thus be merged. Telescoping leads to

N 1
Fi(L) = ilélg /Bz </81+2 Fia(L) | ﬂ)

(7.7.13)

—iléIC)EEQ <5NFN( )|f>

1
—ilellc)EEQ y (B (A - X) | F)

This is the discrete version of (4.4.10) in Fact 4.6.

Now assume long (X,\) = (), but short (X,\) # (), i.e. some of the sold options
are American, but none of the options held long (by the sell-side) are. In this case, the

minimization operator in (7.7.8) is superfluous, and we get, after unrolling the definitions,

F;(L) = BICngE( ilélc) /Bz (ﬁi+1 Fii1(Lop) | fz) + payoff (L, B) (7.7.14)

There are two cases:

~

1. The maximum is attained at B = (), or F;(L) = F;(L,0). In this case, early exercise
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of any American instrument does not make the situation worse, and we conclude

. 1 .

F(L) = sup = By (Bi1 Fia () | 7:)
7€ 1’ (7.7.15)
g B (G gy, oo )

If, in turn, Fj, (L) = Fy1(L,0) for all s;, conditioned on F;, then

- 1

F;(L) = sup — (ﬁH_g max Fj,o(L, B) ) | .7-") (7.7.16)
oeC ﬂz B(L)

and so on. Most of the time this will not be so, however, and branching into case

2 may occur, depending on Fj4.

2. The maximum is attained for some B # 0, or F(L) # F(L,0). Let L' = L-p
be the residual lattice instance, with signature (X', \') = (Xpg,Ag). Now choose

B' C short (X', ') such that a)

~

1 N
Fi(L') = sup = B (BZ-H Fi(L ) | f) + payoff (L', B') (7.7.17)
gc 1

and b) no subset B” for which (7.7.17) also holds has fewer elements. Then B’ = )
must necessarily be true, for otherwise one could identify the instruments enu-
merated in B’ in the original portfolio X (the indexing might be different). They
wouldn’t be covered by B since B'NB = (), and exercising them in addition to those
in B would increase the worst-case value, contradicting the maximality under B in

(7.7.14). (The argument uses the associativity of the maximum operator.) Thus,
Fl(LI) = Fi(LI, @), and

Fy(L) = F;(L',0) + payoff (L, B) (7.7.18)
We have found the free boundary.

These two cases can be combined with the introduction of a discrete stopping time 7;

such that

n(L) = inf{i <u<N|Fy(L) # Fy(L,0) or u= N} (7.7.19)
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7;(L) marks the first time case 2 is encountered on lattice instance L. Combining cases 1

and 2, (7.7.14) can be re-written

R 1 X
Fy(L) = sup — Eoo [ B £ (Lo (L, B)| | 7 7.2
(L) sup 2 Bo() (ﬂ (L) max .(1)(L=B) + payoff ( )] ‘7> (7.7.20)

which is the form for the early exercise problem that can be found in standard textbooks,

such as Duffie (1996) (in a linear setting).

Subadditivity Revalidated

Fact 4.7 states that worst-case prices are subadditive. In the following paragraphs, we

show that best worst-case prices have the same property.

Definition 7.11 (Signature arithmetic). Given ¢ € Ry, a portfolio X of size k and
two positions \, N € RE. The following symbols for lattice instances and signatures are

associated:

symbol | signature

L (X, \)

L (X, \)
cL (X, cA)
—L (X, =)

L+L | (X, A+ ))
Proposition 7.12 (Subadditivity). Given ¢ € Ry, a portfolio X of size k and two
orthogonal positions X and N, i.e., \yAl, =0 for 1 <n < k. Let F' be the best worst-case
process for (X, A)..
Then, in the notation of Def. 7.11, the following holds for 0 <i < N:

Fy(cL) = ¢ F;(L)
Fi(L+ L) < Fi(L) + Fy(L)) (7.7.21)
Fi(L+ L") > Fy(L) — F{(-L)

Proof. We only prove the second inequality, by induction over i. For i = N, equality
holds in (7.7.21) throughout, as all instruments mature at time ¢t = ¢y.

So let i < N, and assume (7.7.21) is true for ¢ + 1:

Fipi(L+ L) < Fipa (L) + Fia (1) (7.7.22)
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Let M C am (X) be a subset of American instruments on L (and on L' and L + L', for
that matter). If M = () the residual lattice of L + L' is L 4+ L' itself. In this case, direct
application of (7.7.22) leads to

F(L+ L', 0,0)= %EQ (ﬁz+1 Fi(L+ 1) | -7:>
< éEQ(a) (5z‘+1 (FiJrl(L) + E+1(L,)) | fz)
= %EQ(U) (/82+1 Fi1(L) |f> + ﬂl EQ(o) (/82+1 Fipa (L)) | fz)
= F;(L,0,0) + F;(L',0,0)
(7.7.23)
If M # () we have (L + L')—py C L+ L'. (7.7.22) does not directly validate
Bt (L + )ont) < For (o) + Fir () (7.7.24)

but we may hold (7.7.24) to be true, by nested application of the proposition for a portfolio
of smaller size k' = |(L + L')-p| < k. (For k' = 0, equality obviously holds.) Thus,

Fi(L+L,7M70)

|
= = Ea( (,BZH Bt (L 4+ L')-t) | f) + payoff (L + L', M)

ﬂi (ﬁz+1 ( Fyp1 (Do) + Fi (L )) | .7-") + payoff (L + L', M)
_ ﬁl (/3@+1 Fi1(Loy) | E) + payoff (L, M)

1
+ = 2 EQ(o) (@H Fi (L) | fi) + payoff (L', M)

= -Fi(LaMao-) + Fi(LlaMag)
(7.7.25)

and subadditivity is shown for the local fixation. Since this is true for all o € C, we get

SupFi(L+L,aMaU) < Sup[Fi(LaMaU) +Fi(L,aMaU)]

oeC oeC (7 7 26)
S SUPFi(La M? U) + sup -Fi(L,a M7 OJ)
oeC o'eC
or
Ey(L+ L', M) < Fy(L,M) + F;(L', M) (7.7.27)
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Thus, reintroducing local uncertainty does not violate subadditivity.
The remainder of the proof is concerned with retaining subadditivity through the

application of the minimum and maximum operators. Just as in (7.7.7), define
A(L) =long (X, ) B(L) = short (X, \)
A(L') = long (X, A1) B(L') = short (X, Ar/) (7.7.28)
AL+ L") =long (X, A1) B(L + L') = short (X, AL +1/)
The orthogonality of A and X' and Def. 7.2 imply that

AL+ L")y = A(L) U A(L')
(7.7.29)
B(L+ L") = B(L)uU B(L)
where the union is direct, i.e. A(L) N A(L') =0 and B(L) N B(L') = (.
Now partition M = AU B with A C A(L + L') and B = B(L + L'). Then
payoff (L, M) = payoff (L, AU B)
= payoff ANA(L))U(BNB(L
(L ( (L)) U ( (L)) (7.7.30)
payoff (L', M) = payoff (L', AU B)
— payoff (I, (A0 A(L) U (B0 B(LY))
and consequently
Fy(L,M) = Fy(L,AU B)
(7.7.31)

Ei(

= F;(L, (AN A(L)) U (BN B(L)))
(L
(L

(AﬂA( ) U (BNB(L)))

Although we do not show this in every detail, (7.7.30) and (7.7.31) are easy to validate,
since A\ A(L) and B\ B(L) respectively A\ A(L') and B\ B(L') refer to vanishing
positions: the correspondings \’s respectively \’s are all zero. It is straightforward to
equate payoff terms and signatures of lattice instances that differ only on instruments
whose position is zero.

Reintroducing local optionality, it follows from (7.7.27) that

F(L+L)= min max Fj(L+L',AUB)
ACA(L+L') BCB(L+L')

< min max (Fi(L,AUB) —I—Fi(L',AUB))
ACA(LYL') BCB(L+L')

(7.7.32)
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With (7.7.31),
min max (E-(L,AUB)-!—E(L',AUB))
ACA(LYL') BCB(L+L')

= omin o max (F (L, (AN A(L)) U (BN B(L)))

+ F(I, (AN A@Y) U (BN B(L)))) (1739
S AQE&I}FL,) (ng%%)iy) Fl (L’ (A n A(L)) U (B N B(L)))

o B (ANA(L) U (BN B(1)))

Some of the candidate sets searched by the maximum operators can be dropped, and the
candidate sets for the minimum operator can be partitioned:
i Fy(L,(ANA(L)) U(BNB(L
omin (o omax | F(L (AN A(L) U (BN B(L))

o max E(L', (AnA(L)) U (BN B(L')))>

= min (max FZ-(L,(AQA(L))UB)

ACA(L+L/) \BCB(L)
(71! !
+ g (L, (A0 A(L) U B))
= min  min ( max Fj(L,A; UB)+ max ﬁ’AL',AgUB))
A1CA(L) A;CA(L') \BCB(L) BCB(L)

(7.7.34)

Rearranging terms yields

min  min ( max Fj(L,A; UB)+ max E(L',AgUB))
A1CA(L) A2 CA(L') \BCB(L) BCB(L)

= min (max Fi(L,AlLJB)—i- min  max Fi(LI,AQUB)> (7.7.35)

A1CA(L) \BCB(L) A2CA(L') BEB(L')
= min max E(L, AiUB)+ min max F(L',A,UB)
A1CA(L) BCB(L) A2 CA(L') BCB(L')

Since, by definition,

min  max Fj(L, A, UB) = Fj(L) (7.7.36)
A1CA(L) BEB(L)

and

min  max Fj(L', Ay UB) = Fy(L') (7.7.37)
A2 CA(L') BCB(L')
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we conclude from the sequence (7.7.32) through (7.7.35) that

Fi(L+ L) < Fy(L) + Fy(L)) (7.7.38)
This completes the induction step and the proof. ]

It should be obvious that the assertions of Prop. 7.12 also hold simultaneously for all
partial portfolios (X', \') C (X, A).

In the proposition, the portfolio X is split into halves (X, | A, # 0)" and (X, | A\ =
0)'. A different formulation uses two partial portfolios (X;,\;) C (X,A), i = 1,2,
that do not overlap: (X;, A;) = (select (X, M;),select (A, M;)) with My N My = () and
M; UMy ={1,...,|X]|}. Ly, Ly and —L9 being the lattice instances with signatures
(X1, A1), (X2,A2) and (X2, —A2), respectively, (7.7.21) reads

Fy(L) < Fy(Ly) + Fy(Ly)

~

) ) (7.7.39)
Fi(L) > Fiy(L1) — F{(~L2)

We will refer to the assertions of the proposition in either form, depending on the context.

Implementation

In principle, we have already seen in Fig. 7.1 how the best worst-case process for (X, \)
can be implemented by applying dynamic programming principles locally. The variables
V (j,i; L) are discrete approximizations of the values Fj(L | S; = s ;) of the best worst-case
process. The results achieved so far motivate the algorithm in Fig. 7.4 to compute the

“suitable early exercise combination” mentioned in the caption of Fig. 7.1.

7.2 Speedup Techniques

The term

F.(L) = mi F(L,AUB 7.4
i(L) ARin max i(L,AUB) (7.7.40)

has 214DIHIBL)] gubexpressions. If corresponds to step 3b in Fig. 7.4. If the signature
of L is (X, \) and there are n < k American instruments in X, the running time of the
worst-case pricer becomes O(2"), which is quite unacceptable.

In this section, we explore two ways of improving this performance impasse:
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Input: Lattice instance L with signature (X, \), time g
Output: V(j,i;L) for D <j<U

1. Repeat for all spatial levels D < j < U, possibly with the algorithm in Fig. 5.5:

I . 1 .
(a) Set V(]J;La@)ZSUPE Eq0) <5i+1 Fip (L) | S5 = 5i>
oeC Mi

(b) Set the gradient 9y, (j,%; L, D) accordingly, for 1 < n < |L|:

0
O (4,15 L,0) = o V(j,i;L,0)
n

2. Set A(L) =long (X, ) and B(L) = short (X, )
3. Solve the local minmax problem:

(a) For all ) # M C A(L) U B(L), check whether V (j,i; L', 0) has already been
computed, where the signature of L' is (select (X, M) ,select (A, M)). If not,

interrupt and recurse

(b) Find A C A(L) and B C B(L) such that

V(j,i;:L,AUB) = min max V(j,i;L, AUB)
ACA(L) BCB(L)

and set M = AU B, X = select (X, M), and A = select (\, M)

(c) It M = 0 set V(j,i;L) = V(j,i;L,0) and 9,(j,65L) = 6(4,5;L,0), 1 <
n < |L|. Otherwise let L be the lattice instance with signature (X, \), set
V(j,i;L) = V(j,4; L) + payoff (L, M), and copy 0n(j,i;L) from L for n €
{1,...,|L|} \ M, after proper reindexing. For all other n, set v,(j,7; L) = X,

Figure 7.4: The algorithm to track the best worst-case process on the lattice. In a
real implementation, step 1 is one round in an explicit or mixed explicit/implict finite
difference scheme, based on PDE’s of type (4.4.8). Step 2 offers potential for improvement.
The temporary vector V(-,4; L, ) is the discrete version of F(L, ()
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1. Sometimes it can be said with certainty that a particular instrument X, on a lattice
instance L must or must not be exercised, regardless of the remaining position. Only
where such certainty cannot be gained is it necessary to consider both possibilities

in concert with all other instruments.

2. In the linear case the simple cutoff rule
Xy > 0y (i, 55 L, 0) (7.7.41)

comparing the potential payoff with the prospective future profit determines the
early exercise boundary. This formula is no longer true in the nonlinear case, but

it might well be useful as heuristic.
In both cases, space is partitioned onto three regions.

Definition 7.13 (Corridor of uncertainty). Let L be a lattice instance with signature
(X, A). Choose n € am (X). Let (j,1; L) be a node instance.

If early exercise of X,, is a priori not pursued at (j,i; L) then (j,i; L) belongs to the
continuation region of X,.

If early exercise of X, is a priori opted for at (j,i; L) then (j,i;L) belongs to the
exercise region of X,,.

In early exzerise is a priori neither avoided nor opted for at (j,4; L) then (j,1; L) belongs
to the corridor of uncertainty of X,,. In its corridor of uncertainty, X, contributes to the

exponential complezity of (7.7.40).

Notice that the terminology is operational: the continuation region of X, is not the
region in which not exercising X, is optimal in the sense of the minmax formulation.
Rather, continuation region, exercise region and corridor of uncertainty are established
externally; then (7.7.40) is applied at each node instance (4,4, L) that belongs to the
corridor of uncertainty of at least one instrument.

The computational complexity is still exponential in n where n corridors of uncer-
tainty overlap. Figure 7.5 shows cases with non-overlapping and overlapping corridors of
uncertainty.

It is crucial to keep the corridor of uncertainty as small as possible. The first speedup
approach uses a worst-case and best-case price band for each individual American in-
strument to estimate the corridor of uncertainty. This approach never misses the correct

combination (/Al, B) in step 3b of Fig. 7.4 and is thus equivalent.
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Figure 7.5: Shown on the left side are the non-overlapping corridors of uncertainty for
two American options X; and Xo. Within each corridor 2 early exercise alternatives must
be considered: execise X; resp. Xo versus don’t exercise Xi resp. X5. On the right side,
the corridors of uncertainty for the American options Y7 and Y5 overlap. In the overlap
region, 4 early exercise alternatives must be considered. (This picture is conceptual. For

an actual example, see Fig. 7.8)

The second speedup approach collapses the corridor of uncertainty. The formula
(7.7.41) is used to separate space into regions of continuation and exercise, respectively.
The corridor of uncertainty is empty. This approach is no longer guaranteed to be correct;
it is a heuristic. It handles American options much like barrier options. For instance, it
can be made to process barrier options with irregular barriers, by replacing (7.7.41) with
sj > U(Xp, i) where U maps to a time-dependent up-and-out barrier for X,.

These techniques require a refinement of steps 2 and 3 in Fig. 7.4. A general template

of the necessary changes is offered in Fig. 7.6.

7.2.1 Maintaining the Corridor of Uncertainty

So far we have created partial portfolios (X', \') C (X, \) only when they were necessary
as sources of boundary values. In this section we shall see how the separate computation
of best worst-case prices for (X, 1) and (X,,,—1), 1 <n <k, can help to eliminate early
exercise combinations without sacrificing correctness. (The notation (X,,+1) is used as

shorthand for the vector pair ((X},), (1)) throughout this section and the next.)
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2% Partition long (X,\) = Ac U Ay U A and short (X,\) = Be U By U Bg, where
the subscripts C, U and F stand for continuation region, uncertainty corridor and

exercise region, respectively
3% Solve the local minmax problem:

(a) For all M C Ay U By, interrupt and recurse if V(j,4;L’,0) has not been

computed yet. Here, the signature of L’ is
(select (X, M U A U Bg) ,select (\, M U Ag U Bg))

(b) Find A C Ay and B C By such that

V(j,i;L,AUBU Ap U Bp)

= mi V(j,i;L,AUBU A UB
A%TUBH&’ZV(]’“ ,AUBUAg UBg)

and set M = AUB U A U Bg, X = select (X, M), and \ = select (A, M)

(c) ... (just as step 3c in Fig. 7.4)

Figure 7.6: Steps 2% and 3* replace steps 2 and 3 in Fig. 7.4. Step 2x is still generic: it does
not provide guidelines as to how to partition the long and short positions. Sections 7.2.1
and 7.2.2 fill in the details

Proposition 7.14 (Corridor of uncertainty I). Let L be a lattice instance of size k
with signature (X, \), and let F be the best worst-case price process. For n € am (X), let
LY be the lattice instance with signature (X,,1), and let Lp be the lattice instance with
signature (X,,—1). Then

—Fy(Lp) < Fi(Ly) (7.7.42)
for 0 <i < N.

Proof. By induction over 7. For i = N we have equality, as X, is always exercised at the

maturity date ¢y, and

—Fy(Lp) = Fy(Ly) = Xy (7.7.43)
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For i < N, by unrolling Defs. 7.5, 7.6, 7.7 and 7.8, we get

—Fi(LD) = —min{—Xn, sup — ﬁ (BH»I Fz’+1(LD) | fz)}
oeC M (7.7.44)
= max {Xn, ilélc) E EQ(o) (/BH-I Fipi(Lp) | 7:)}
Using the induction hypothesis and linearity of expectation,
- ilélgﬁz Eq(e) (ﬂiﬂ Fi1(Lp) | fi)
= ;relg E EQ( (—,Bi-i-l Fi—l—l(LD) | ‘7:1)
(7.7.45)
< ;Ielg = Eq(0) (/Berl Fi (LY) | fi)
1
< sup — EQ (/Berl Fia(LY) | fi)
oeC
Together,
—Fi(LD) < max {Xn, sup — (ﬁz+1 Fz-l—l( U) | 71)} = Fi(LU) (7.7.46)
o€eC ﬁz
O

Proposition 7.14 shows that —E(Lp) and F(LY) span a non-empty corridor between
them. The following proposition shows that this corridor can be used to separate the

continuation and exercise regions.

Proposition 7.15 (Corridor of uncertainty II). Given a lattice instance L of size k
with signature (X, ). Let F be the best worst-case process for (X, ). Choose n € am (X).
Set A(L) = long (X, \) and B(L) = short (X, ). Let A'(L) = A(L) \ {n} and B'(L) =
B(L)\{n} be their reduced versions. Let LU be the lattice instance with signature (X,,1),
and let Lp be the lattice instance with signature (X,,—1).
If By(LY) < X,, then

Fi(L) = AénAl,I(l )BICnBa')((L) Fy(L,AUBU{n}) (7.7.47)

i.e. Xy, is exercised for sure.

If, on the other hand, —F;(Lp) > X,, then

F(L)= mi F(L,AUB 7.7.48
i(L) Alin pmax i(L, ) ( )

1.e. X, is not exercised.
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Proof. The proof uses Prop. 7.12. Set M ={1,... ,n—1,n+1,... ,k} and
(X', \') = (select (X, M), select (A, M)) (7.7.49)
Let L' be the lattice instance with signature (X', \’), and notice that

F(L)= mi F(L',AUB 7.7.50
i(L) Alin pmax i(L ) ( )

Let L™ be the lattice instance with signature (X, \,), and let L™ be the lattice instance

with signature (X, —Ap).

Case 1 Assume Fj(LY) < X, and A\, > 0, i.e. n € B(L) and B'(L) C B(L). Then
MF(LY) = F(L") by the first assertion of Prop. 7.12. Furthermore, by the second

assertion of Prop. 7.12,

Fy(L) < Fi(LY) + Fy(L)
= MBS (LY + By (L))
< AnXn + F(L) (7.7.51)
=MX,+ min  max Fi(L', AUB)

ACA'(L) BCB'(L)

= min max Fj(L,AUBU{n})
ACA/(L) BCB'(L)

The last transformation follows because a) A, X, can be pulled inside the payoff term of
F;(L', AU B), and b) the residual lattice instances of L with respect to AU BU {n} and
L' with respect to AU B are identical.
For fixed A we have maxpcp(r,) Fy(L,AUB) > maxpcpi(r,) Fj(L,AUB U {n}), since
in the latter term the maximum is taken over less values. Since A(L) = A'(L),
F0 = i, g AP

> mi Fy(L,AUB
> min  max (L, AUB U {n}) (7.7.52)

= min  max F(L,AUBU{n})
ACA'(L) BCB'(L)

(7.7.51) and (7.7.52) together prove (7.7.47).
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Case 2 If )\, <0, ie n € A(L) and A'(L) C A(L), we reason similarly. By the first
assertion of Prop. 7.12, =\, F'(LV) = F(L™). By the third assertion of Prop. 7.15,

Fy(L) > —F;(L™) + Fy(L)
+ (L)
> A X + Fy(L) (7.7.53)

=\ X, + min max F(L,AUB)
ACA'(L) BCB'(L)

= min  max Fj(L,AUBU{n})
ACA'(L) BCB/(L)

In the other direction we use B(L) = B'(L) and get
Fi(L) = min max Fj(L,AUB)
ACA(L) BCB(L)

< mi Fy(L,AUB
< Mnin | max (L, AUB U {n}) (7.7.54)

= min max F(L,AUBU{n})
ACA'(L) BCB'(L)

Again, (7.7.47) follows readily.

~

Case 3 Now assume —F;(Lp) > X,, and A\, > 0, i.e. n € B(L), B'(L) C B(L). Then
MF(Lp) = F(L™) by the first assertion of Prop. 7.12. With the third assertion of the
proposition and A(L) = A(L'),
L) > ~F(L7) + F(I)
= —\Fi(Lp) + Fy(L)
o (7.7.55)
>\, Xy + Fi(L)

= min max F(L,AUBU{n})
ACA'(L) BCB'(L)

Choose A C A(L) and B C B(L) such that Fj(L) = Fj(L,AU B). If n € B the strict
inequalitiy in (7.7.55) leads to a contradiction. Thus, n & B. Therefore, B C B(L)\{n} =
B'(L), and

Fi(L)= min max F(L,AUB) (7.7.56)
ACA'(L) BCB'(L)

89



2%% Set

Ap = {n € long (X,\) | — V(j,i; LD) > Xn}
Ap ={n €long(X,\) | V(jis LY) < X, }

Apr = long (X, )\) \ (AC U AF)
and
Bo = {n € short (X, \) | — V(j,4: L) > Xn}

Bp = {n € short (X, ) | V(4,4 LY) < Xn}

Bjs = short (X, )\) \ (BC U BF)

Figure 7.7: An elaboration of step 2x in Fig. 7.6, based on Prop. 7.15. LY is the lattice
instance with signature (X, 1), and LY, is the lattice instance with signature (X, —1),

insofar X,, is American. Proposition 7.14 guarantees that Ac N Ap = Bc N Bp =)

Case 4 If )\, <0, ie. n € A(L) and A'(L) C A(L), we find that —\,F(Fp) = F(L%)
by the first assertion of Prop. 7.12. The second assertion of Prop. 7.12 and B(L) = B(L')
imply
Fi(L) < F(LT) + Fy(L)
= —A\Fi(Lp) + Fy(L)
< X, + Fy(L)

= min  max Fj(L,AUBU{n})
ACA'(L) BCB'(L)

(7.7.57)

The argument that concluded case 3 works in this case as well, and thus (7.7.47) is shown.

This completes the proof. O

Figure 7.7 shows how Prop. 7.15 can be used to initialize the corridor of uncertainty in
step 2« in Fig. 7.6. The discrete formulation in terms of node instances is straightforward.
Note that up to 2k additional lattice instances must be maintained. The technique is thus

not entirely overhead free, but the overhead is linear in the number of American options.
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0.1<0<0.2 0.1<0<0.35 0.1 <0<0.5

110 - 110 -
100 —;:j 100 100 -

90 | —— 90 90
80 = 80 - 80 -
70 - 70 - 70 -

60 | 60 | 60 |
0 30 0 30 0 30
time [days] time [days] time [days]

[S] 110 —

Figure 7.8: The corridor of uncertainty for three 30-day American puts, with strike 90,
100 and 110, respectively (from bottom to top). The interest rate is » = 0.03. The
volatility range gets wider from left to right. In the left picture, there is no overlap;
in the middle picture, corridors of uncertainty overlap pairwise; in the right picture, all

corridors overlap in the shaded region

(In fact, it can be shown that the total number of lattice instances is bounded from
above by 2 + k — 1. The exhausitve set of 2¥ partial portfolios includes already k of
the additional singleton lattice instances, and “—1” comes from the fact that the empty
partial portfolio need not be carried on a lattice instance at all.)

Figure 7.8 shows the location of the corridor of uncertainty for three 30-day American
puts with strikes 90, 100 and 110. Under a scenario in which the volatility stays within 10
and 20% the corridors do not overlap. If L is a lattice instance with signature (X, \), and
the three American puts are part of X (but no other American instruments are), then
|Apr|+|Bap| = 1 in step 2#x, Fig. 7.7, in each corridor, and 0 otherwise. Under a 10-35%
scenario, the corridors for the puts with strikes 90 and 100, and the corridors for the
puts with strikes 100 and 110 overlap, respectively. Here, |Aps| 4+ |Bas| = 2 in the shaded
regions, leading to 4 combinations in the minmax term in step 3xb, Fig. 7.6. Under a
10-50% scenario all corridors overlap, and |Aps|+|Bas| = 3 in the shaded region, leading
to 8 combinations in the minmax term. The example demonstrates that the corridor of
uncertainty is a powerful tool to reduce the combinatorial complexity of the best worst-
case pricing problem if the volatility range is not too wide. It also shows that the method

reverts to exponential complexity if the volatility range is extraordinarily wide. In the
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next section, a heuristic is presented that tries to alleviate this dependency.

7.2.2 Collapsing the Corridor of Uncertainty

The complexity of best worst-case pricing is potentially exponential if the corridors of
uncertainty are nonempty and overlap. To collapse the corridor of uncertainty means
to select a definite early exercise boundary, possibly within the corridor, that divides
the lattice into continuation and exercise regions for each American option. The way
in which this is done in the following paragraphs makes the approach heuristic: it does
not guarantee that the resulting early exercise combinations reflect the local best worst-
case selections adequately. We present, however, experimental results that show that the
discrepancy is negligible in most cases.

The idea is to apply the rule commonly used in linear lattice-based pricing of American
options: if the early exercise payoff exceeds the expected future payoff (which includes
possible future early exercise), then the expected future payoff is locally replaced by the
early exercise payoff. This cut-off rule dynamically assigns each lattice node to either the
continuation or exercise region of the lattice.

Under nonlinearity, we do not have an isolated expected future payoff for an American
option X, which is part of a larger portfolio (X, ). We do have, however, the discrete
version of the gradient of the best worst-case value of (X, ) with respect to the position
of X,,, namely

o .0 &
On(j,1; L) = 53— Fi(L | Si = s) (7.7.58)

n

(Discrete and continuous terms with analogue interpretations are equated with “=”.) As
we will see in the following proposition, this gradient together with A provides sufficient
information to reconstruct the best worst-case value locally.
In this section, we adopt a candidate set
C={0|0omin <0 < Omax} (7.7.59)
with constants 0 < opin < Omax for simplicity.

Definition 7.16 (Local stability). Let L be a lattice instance with signature (X, \).

Choose n € {1,... ,|L|}. We say F' is locally stable with respect to A, if
9 Fy(L) = 9 Fy(L, M) (7.7.60)
g oA, T o
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whenever

~

Ey(L) = Fy(L, M) (7.7.61)
for some M C {1,...,|L|}.

We are not too concerned with the situation in which F is not locally stable. In
all practical cases, there are only finitely many regions in A-space with distinct best
worst-case exercise combinations at a given node instance (j,4). Finiteness suggests that
whenever FZ() switches from ﬁ’i(-,Ml) to Fi(',MQ) with My # Ms, say at A\, = a with
all other \’s unchanged, then there are intervals (o — €,) and (o, @ + €) in which M;
respectively M, remain the best worst-case exercise combination. If we assume that
partial derivatives in A, exist for FZ(), then by approching a from above and below it
follows that ' is locally stable with respect to A,,.

The subsequent propositions are meant to motivate heuristic (7.7.58). We therefore
leave it at this rather informal argument and, by assuming the existence of partial deriva-

tives in A, at the same time implicitely assert that Def. 7.16 applies to E.

Proposition 7.17. Let L be a lattice instance of size k with signature (X, ). Assume
the partial derivatives with respect to A of the best worst-case price process F' exist. Then
the following identity holds:

k
> ain Fy(L) = Fy(L) (7.7.62)

n=1

Proof. By induction over i. For ¢ = N we have

Fn(L) = payoff (L,{1,... ,k}) =X-X (7.7.63)
which, as linear combination of individual payoffs, obviously satisfies (7.7.62).
Now assume 7 < N. By induction hypothesis,
fod
> Mg i (L) = Fia (D) (7.7.64)
n=1 n

Case 1 Assume that Fj(L) = Fj(L,0), i.e. no instruments are exercised in the best
Ai w | Sz

worst-case. Now recall that Fj(L, ;= 5j) = f(Sj,i), where f satisfies a PDE of type
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(4.4.8) between times 7 and 7 + 1 (during which interval no exercise takes place), and the

boundary value is given by FH_l(L). The worst-case spot volatility is determined by the

5
spot convexity = = % and the function

Omax 1fxz>0
X(z) = (7.7.65)
Omin ifxz <0

In particular,
0
oAn
for z # 0, and ¥(z)z = 0 for z = 0. Differentiating the PDE (4.4.8) with respect to A,

shows that % f satisfies the same PDE, and so does any linear combination of partial

(z) =0 (7.7.66)

derivatives.
We set the boundary at time ¢ + 1, and conclude furthermore from (7.7.64) that the
boundary condition is the same for PDE (4.4.8) and the linear combination of its partial

derivatives. Thus, by the uniqueness of the solution of (4.4.8),

k
0 - o

This completes the proof for case 1.

Case 2 Now assume Fj(L) = Fj(L, M) for some M # (). Then, with L' = L_; being

the residual lattice instance,

Fy(L) = sup F;(L, M, 0)
oeC

= [supFi(L’,(b,a)] + payoff (L, M) (7.7.68)
o€eC

= Ey(L',0) + payoff (L, M)

by the definition of Fi(L, M) and F;(L, M,o) in Defs. 7.6 and 7.7, and switching between
lattice instances.

Let k' = |L| — |M| = |L'|. The induction hypothesis (7.7.64) makes no statement for
the smaller lattice instance L'. We may, however, apply the proposition on L’ (inheriting
all the premises) and conclude

kl

Z(AL')”a(Aay)n Fy(L',0) = F;(L',0) (7.7.69)

n=1
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(A similar argument has been used in Prop. 7.12. The obvious base case k' = 0, or even
k' =1, can be worked out directly.)
Let {nl, . ,n‘M|} be an enumeration of M. As in (7.7.63),
|M]|

5,
payoff (L, M) =Y " Ap, 75— . payoff (L, M) (7.7.70)
=1

and hence, by adding (7.7.69) and (7.7.70) which sum over distinct positions,

e ai Fy(L,M) = Fy(L, M) (7.7.71)

n=1

This completes the proof. ]

The next two propositions establish upper and lower bounds for the partial derivatives

of the best worst-case process.

Proposition 7.18 (Upper bounds for partial derivatives). Let L be a lattice in-
stance with signature (X, \). Assume the partial derivatives of the best worst-case price
process F'in X ezist and are uniformly continuous. Choose n € {1,...,|L|} and let LY

be the lattice instance with signature (Xp,1). Then

0 - .
——Fi(L) < Fy(LY) (7.7.72)
o\,
Proof. By induction over . If 1 = N all instruments are forcibly exercised, and basic
algebra shows that equality holds in (7.7.72). Thus assume 7 < N, and reason as in the
proof of Prop. 7.17.

Case 1 Assume that Fj(L) = F;(L,0), i.e. no instruments are exercised in the best

worst-case. Fix o. Then, by uniform continuity and the induction hypothesis,

0 0 1
G—MFi(L’w’U) = on B /Bz (5z+1Fz+1( ) | fi)
; ( fiar O b (D) | E) (7.7.73)
1
< ﬁz (ﬁz+1Fz+1( ) |-7:z)
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The local fixation of F;(LY) with respect to 0 is

1 .
F(LY,0,0) = — Bq() (B B (L) | F)
and therefore
E;(LY) = max {Xn, sup Fy(LY, @,U')}
o' eC
> F; (LU7 @, U)
Together, (7.7.73), (7.7.74) and (7.7.75) show that

0

(7.7.76) is true for every o € C. Now let 01, 09,... be a sequence such that

(L,0,0) < Fy(LY)

lim F;(L,0,0,) = F;(L,0)
=00

Then,
flﬁ@m— lim F;(L,0,07)
Ao i\ _a)\nl i\, ¥, 0y
0
= lim — F;(L,0,
Jim o (L,0,07)

< lim Fj(LY)
=00
= Fy(LY)
As F;(L) = F;(L,0), we conclude

0 -
mn“

L) < Fy(LY)

Case 2 Now assume Fj(L) = Fj(L, M) for some M # (). Then, with L' =

the residual lattice instance,

E(L) = Fi(L,a @) + pa'yOff (La M)

(7.7.74)

(7.7.75)

(7.7.76)

(7.7.77)

(7.7.78)

(7.7.79)

L_js being

(7.7.80)

as shown before in (7.7.68). If n & M we apply the proposition for Ej(L', ) with smaller

lattice instance L'. If n € M we take from (7.7.75) that

0

8>\npayoff (L, M)
o .

= a—)\nFi(LaM)
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This completes the proof. O
The lower bounds for the partial derivatives of the best worst-case prices are weaker:

Proposition 7.19 (Lower bounds for partial derivatives). Let L be a lattice in-
stance with signature (X, X). Assume the partial derivatives of the best worst-case price
process F in X exist and are uniformly continuous. Pick n € {1,...|L|}. Let LY be the

lattice instance with signature (XY, —1), where XY denotes the European version of X,

no

(see Def. 7.3). Let FE be the best worst-case price process for (XE —1). Then

0

_pE(TE
F(L)_aA

Ey(L) (7.7.82)

Proof. By induction over 7. At maturity (i = N), all instruments are exercised, and

equality holds in (7.7.82). Therefore assume i < N.

Case 1 Assume that Fj(L) = F;(L,0), i.e. no instruments are exercised in the best

worst-case. Fix o. Then, by uniform continuity and the induction hypothesis,

0 0 1
B—ME(L,Q),U) = o B ﬁz (/Bz-l-le+1( ) | .7-])
0
ﬂl </81+1 Fi(L) | f)
K (7.7.83)
> 2 Bow) (B (~FEL(ER)) | 73)
1
= 5 Bow) (B FEL(LE) | 7:)
Furthermore
N 1
—FF(Lp) = —5}16% 5 Eqer <5z+1 1 (LB) | f)
. 1 -
= inf, |~ Ba) (B FEL(EE) | 7)) (7.7.84)

< _F EQ (ﬁz+1 +1(LD) |‘7:>

Together, (7.7.83) and (7.7.84) show that, for every o € C,

0

oo Fill,0,0) > F(LE) (7.7.85)
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Let 01,09,... be a sequence such that

Jim Fi(L,0,01) = Fy(L,0) (7.7.86)
—00
Then,
iF-(L 0) = lim F;(L,0, 07)
N ) W et
0
= lim —Fi L,@,O'
g, Fil 2 (7.7.87)
> lim FF(LE)
[—00
= FiE(Lg)
Finally,
9 » E(TE
o i) = B (Lp) (7.7.88)

Case 2 The case Fj(L) = Fj(L, M) for some M # () is handled just as case 2 in the
proof of Prop. 7.18. U

Propositions 7.18 and 7.19 show that %E(L) lies in the interval

EF(LY) < 0 Fy(L) < Fy(LY) (7.7.89)
0An

for X,. This band is wider than the corridor of uncertainty |Fj(Lp), F;(LV)|. We
were unable to prove that the lower corridor bound is also a lower bound for the partial
derivative (which we conjecture nevertheless).

Of course, % FZ(L) is not available in a program unless all early exercise combi-
nations have already been examined. This can be avoided by substituting % Fy(L,0)
for % Fz(L) Although not shown here, the previous results can be extended to (and

partially include already) the estimate

FE(LE,0) < 8(3\ Fy(L,0) < F;(LY,0) (7.7.90)

Figure 7.9 instantiates the algorithm of Fig. 7.6 to collapse the corridor of uncertainty.
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2%% Set

AC’ = {n € long (Xa >‘) | @n(j,i;L,Q)) > Xn}
Ap =long (X, ) \ Ac

and
Be = {n € short (X, \) | 9,,(4,%; L,0) > X, }

Bp = short (X, \) \ B¢

Figure 7.9: An elaboration of step 2x in Fig. 7.6 that uses partial derivatives to estimate

the early exercise boundary. The variables o, (4,%; L, () have already been computed

7.2.3 Other Issues

Sections 7.2.1 and 7.2.2 have presented the big picture. In this section we review some
minor or unresolved issues which are interesting purely from a computational point of

view. They are of no financial or numerical concern.

Dynamic Maintenance of the Corridor of Uncertainty

The algorithm in Fig. 7.7 relies of the existence of V(j, i; LY) and —V(j, i; L) to partition
long (X, \) respectively short (X, \) into Ac, Ap, Ay respectively Be, Br, By. Here,
LY is the lattice instance with signature (X,,1), and L% is the lattice instance with
signature (X, —1).

Depending on the shape of the lattice (box or tree shape?), its position (what is
s07), the width of the volatility range and the characteristics of the instruments, A¢c or
A respectively Bo or Brp may sometimes be empty, corresponding to the respective
boundaries lying outside the region covered by the lattice.

Thus LY or L}, may sometimes be superfluous. In order to not maintain lattice
instances which are of no use, we employ the dynamic lookup approach that reduces the
number of lattice instances carrying partial portfolios in the first place. The recursion that

adds lattice instances when needed is activated in step 3xa in the algorithm in Fig. 7.6.
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The idea is to use the partial derivative of V(j, i; L, ) with respect to A, to make a
first choice. If X, < 0 (j,4; L) then V(4,4 LY) < X,, cannot be the case, due to Prop. 7.18
that says, in its discrete approximation, o, (j,7; L) < V( 4,i; LY). This necessarily implies
x & Ap U Bp. Thus, lookup of LY can be avoided in some cases. As oy, (j,4; L) is not yet
available when the comparison needs to be made, ©,(4,%; L, )) may be used instead.

In the other direction the situation is more subtle. Prop. 7.19 only states that
—FiE(LlE)) < %E(L) which is too weak to allow conclusions from X, > 0,(j,; L).
However, under the conjecture —EF;(Lp) < %Fi(L), the initial comparison with the
partial derivative may indeed lead to the avoidance of the L%, lookup for some X;,. This
strategy is pursued in our implementation.

A careful look at the data in Fig. 7.12 reveals that this avoidance strategy has practical

impact. The number of lattice instances reported in the table are smaller than the ones

that follow from the schematic view in Fig. 7.14, for opax < 0.4.

Recursion Leads to Domino Effect

There is also the possibility of the recursion in step 3*a in Fig. 7.6 causing a domino
effect that restarts the rollback of the time slices in the finite difference scheme for
many lattice instances. If V(j,i;L,Al U B; U Ag U Bg) is not available in the com-
putation of V(j,i; L) for some node instance (j,7; L), then lattice instance L; with sig-
nature (select (X, M;),select (A, M;)) needs to be created. Here, My = {1,...,|L|}\
{A; U B; U A U Bg}. The finite difference scheme computes V(, i';Ly) forall N > 4" >
and resumes the computation of V(j, i; L).

A memory aware implementation of the finite difference scheme does not keep all the
values of V(, i'; L1), and the other lattice instances. Rather, data is kept for the current
and the previous time slices 7' and 7' + 1, in order to reduce the space complexity for one
lattice instance from O(N x (U — D)) to O(U — D). Here, D and U are the spatial levels
of the lattice boundaries.

For this reason, subordinate values V(, i'; Ly, As U By U Ag U Bg) required in turn as
data for L; need not be available, even if the associated lattice instance Lo exists. Each
lattice instance is equipped to provide data for one “current” time slice, and no others.

We have briefly mentioned in the beginning of Sect. 7.2 that the algorithms for Amer-

ican options are applicable to barrier options with regular or irregular barriers as well.
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B BC AB ABC
30V, 29 recurse for BC

30,29 v resume 29
28-20 v 28-20 v
19 recurse for B
30-19 v resume 191 19 recurse for AB

30 v, 29 recurse for B

resume 29

28-19 v 28-19 v resume 19
180V 180V 180V 180V

Figure 7.10: Rolling back the lattice for a 30-day up-and-out barrier option A, a 25-
day vanilla option B and a 20-day down-and-out barrier option C. Numbers indicate
time slices 7 for which values V(-,i, L) are being computed, and labels indicate actions
triggered due to lookup misses. (“19 recurse for AB”, for instance, means that the lattice
instance for portfolio AB does not exist or cannot provide the data for the desired time
slice 1 = 19.) The computation proceeds row by row, and within rows from left to right
columns. The boxes represent the single case in which the creation of a new lattice

instance leads to a waste of compute time

The tools developed in Chapter 6, in particular the algorithm in Fig. 6.4 to compute the
extension hierarchy, go beyond the general approach of Fig. 7.6 in that they guarantee
that V(j, i; L, Ap U Bg) is always available if the barriers are canonical.

For illustration purposes, we assume that the computation of the extension hierarchy
is turned off in the following example shown in Fig. 7.10. The portfolio consists of a 30-
day up-and-out barrier option A, a 25-day vanilla option B and a 20-day down-and-out
barrier option C. The time step is one day: dt = 1/365.

Figure 7.10 monitors the finite difference scheme time slice by time slice. “Recurse”
and “resume” labels indicate where recursion is triggered and work is resumed, and for
what time slice. Initially, only the lattice instance for the entire portfolio is maintained.
The boxed cells represent a situation in which a total restart is required: the lattice in-

stance L(B) for B is carried unimpeded through time slices 30, ... ,19, when the creation
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of the lattice instance for AB requires access to time 30-values on L(B). These have been
discarded long ago, and so L(B) has to be restarted, resulting in double work for 12 time
slices on L(B).

In general, if the directed acyclic graph implied by lookup operations, where vertices
model lattices instances and edges model data flow, is recombining, then the domino effect
may occur. Edges in the dag are created at different times and may connect to vertices
whose lattice instances are not synchronized. Singleton partial portfolios are likely to
lead to the domino effect, for instance..

The domino effect can have serious consequences for the running time. There are two

solutions to this problem:

1. Develop a tool that precomputes an anlogue of the extension hierarchy for American
options. It is in principle possible to evaluate all singleton portfolios first and create
a data structure with geometric information on overlapping corridors of uncertainty.

The resulting extension hierarchy would be exact. This is a preemptive solution.

2. Periodically checkpoint by saving the values V(, i; L) and related information such
as the gradient in separate memory space. A restart can then be based on the data
collected during the most recent checkpoint. This solution tries to alleviate the

effect of a restart.

Neither approach has been implemented in our system, however. Although the domino
effect plays no role in our laboratory test cases, we realize that an industrial-strength
product must implement at least one to yield competitive results, as far as speed is
concerned.

Intermediate Results in the Minmax Computation

Step 3xb in Fig. 7.6 requires the computation of

V(L) = Arrgule éréaB); V(j,i;L,AUBUARU Bg) (7.7.91)
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where the existence of V(j, i;L,AUBU A U Bg) is guaranteed by step 3xa. Taking the

minmax term apart, we observe

V(L) = min{ max [V(j,i; L,Ar UBg), max V(j,i:L,BU Ag U BE)] ,
U

B0 (7.7.92)
AngglU Bnéab}é V(j,i;L,AUBUAg U BE)}
A2
Furthermore,
max V(j,4; L, B U Ap U Bg)

BCByr

B0
= max max V(j,i;L,BUAgUBgU{n}) (7.7.93)

n€By BCBy\{n}

= V(j,i;Ln, BUAR UB An X
n€ By (ngg‘i‘{n} (83 L £ U Be)+ n>

where the signature of L,, is

(select (X, {1,... ,n—1,n+1,...,k}),select (\,{1,... ,n—1,n+1,...,k}))

Here we assume the computation of Ag, Bg, Ay and By is independent of the lattice
instance: switching to lattice instance L, must not change these sets, apart from {n}. In
the algorithms presented so far this is indeed so.

Now consider Ay:

min max V(j,i;L,AUBU Ap U Bg)

ACAy BCBy
AZD
= mi i V(j,i:L,AUBUAgUBgU (7.7.94)
R A L (7,4 L, g UBgU{m})
. (V(j,i;Lm)—i—)\me)
meAy
Together,

L) = mi /(i.i:L,,BUArUB X
V(L) mm{;g%); (Bcrggf{n}V(J,z, n, BUARUBEg) + A\ n> o

min (V(j, iz L) + Ame> }
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Thanks to step 3xa, V(j,i; L,,) is avaliable. It is reasonable to assume that the values
V(j,i;Ln,B U Ag U Bg) are available as well; they can be readily stored as interme-
diate results when L, is processed. Equally accessible (and computed only once) is
MAaxpc B, \ {n} V(j, i; L, BU Ap U Bg), which can be constructed “bottom-up” when the
hierarchy of lattice instances is processed, and therefore need not involve all exponentially
many combinations.

With that in mind (7.7.95) is equivalent to (7.7.91), but with only |Ay| + |By| terms
instead of 214vI+1Bul The complexity of step 3+b (and likewise of step 3xa) can thus be
reduced dramatically, at the cost of additional storage of intermediate results. Figure 7.11

gives an idea of the savings for the case |Ay| = |By| = 3.

By
Ay cce | ccE | cEc | Ecc | cEE | EcE | EEc | EEE

CcccC max | max | max | max | max

ccE min

cEc min

Ecc || min
cEE
EcE
EEc
EEE

Figure 7.11: The table shows all 2373 = 64 early exercise combinations if |Ay| = |By| = 3.
Rows represent combinations selected from Ay, and columns represent combinations
picked from Bpy. A lower-case “c” means continuation or no exercise, an upper-case
“E” means Exercise. The formula in (7.7.95) examines the filled in table elements only.
“max” indicates a subterm of (7.7.93). “min” indicates a subterm of (7.7.94) (the column
position is slightly misleading in this case, as the correct selection from By might differ;

it is, however, already reflected in V (§,4; Ly,))

It is important to keep in mind, however, that the overall number of lattice instances

is not reduced by this algebraic trick. Again, think of lattice instances as vertices and

104



associations through lookup as directed edges. The result of the algebraic transformation
is to reduce the number of edges, but the set of vertices remains unaltered.

In an early stage of our research, (7.7.91) was replaced by (7.7.95). Although no
rigorous tests have been made, the speedup appeared to be marginal if the number of
instruments was very small, but noticeable once the number of instruments increased.
Since there was no obvious drawback and the additional overhead in memory management

seemed to be outweighed by the benefit in all cases, (7.7.95) has been used ever since.

7.3 Performance Results

All tests were performed on a Pentium/166 MHz PC running Windows NT Worksta-
tion 4.0/SP 3 and equipped with 128 MB of RAM. The best worst-case pricer, which
we call Mtg in the following, is written and compiled with Microsoft Visual C++ 5.0,

optimizations activated.

7.3.1 Complexity

We investigate the computational complexity that arises from the positive correlation
between the width of the volatility band and the number of lattice instances required for
the solution of the best worst-case pricing problem. In this section, scenarios and portfo-
lios are constructed unter “lab conditions”, to probe certain performance characteristics
while perturbing the setup as little as possible.

Statistical tests on a large number of generated situations are reported in Sect. 7.3.2.

Experiment 1: Three American Puts

The portfolio consists of three 30-day American puts with strikes 90, 100 and 110, re-
spectively. Market parameters are Sy = 100 and r = 0.03. The size of the time step is
dt = 1/(5 x 365), or five periods per day, 150 periods overall. All results are obtained
with the explicit method.

Figure 7.12 gives an overview of the running time when the corridors of uncertainty
are maintained (as described in Sect. 7.2.1) and collapsed (as described in Sect. 7.2.2),
respectively. In the linear case (omin = Omax) Mtg takes 0.4 seconds to compute the result.

If corridors are maintained, the running time is stable in the intervals 0.12 < o < 0.24
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(small opax), 0.26 < opax < 0.40 (medium opayx) and 0.42 < opax < 0.5 (large omax),
with jumps of about 1.5, 1 and 1.5 seconds preceding the intervals. Jumps correspond to
the introduction of more lattice instances, as wider volatility bands lead to more overlap

among corridors of uncertainty.

maintaining collapsing
Omax | time [s] # of lattices | time [s]
0.10 0.4 1 -
0.12 1.9 6 1.0
0.24 1.9 6 1.0
0.26 2.9 7 1.0
0.28 3.0 8 1.0
0.40 2.7 8 1.1
0.42 4.2 10 1.0
0.50 3.9 10 1.0

Figure 7.12: Results for a portfolio of three American 30-day puts with strikes 90, 100
and 110, evaluated under a volatility band of [0.1, 0max|, With omax ranging from 0.1 to
0.5 in steps of 0.02. Shown is the running time if corridors of uncertainty are maintained,
together with the number of lattice instances created (of those, up to 6 lattice instances
are used to monitor the corridors of uncertainty). Also shown is the running time if

corridors of uncertainty are collapsed

Figure 7.13 contains a graph of the running times. Figure 7.14 displays the location
and extent of the corridors of uncertainty for the three puts schematically for the quali-
tatively different small, medium and large volatility ranges. For medium and large opax,
the labels in the picture indicate the non-singleton residual portfolios that are part of the
early exercise combinations considered. In the medium scenario, 3 partial non-singleton
portfolios need to be maintained. In the large scenario, 4 partial non-singleton portfolios

need to be maintained. In addition, some singleton lattice instances may need to be
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0.1 <0 < omax

0 T T T T T T T T |
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Omax

Figure 7.13: Running times in seconds for the three 30-day American puts with strikes
90, 100 and 110, respectively, evaluated under different volatility ranges [0.1, oax], 0.1 <
Omax < 0.5. The arrows mark jumps in the number of lattice instances, due to increasing
overlap of the corridors of uncertainty. The line at 1 second indicates the average running

time if the corridors of uncertainty are collapsed

maintained to feed boundary values, and some to provide the upper or lower boundary
for the corridor of uncertainty.

Also compare with Fig. 7.8, which shows the actual corridor shape for some sample
values of omax. Notice that the number of combinations cited there, 4 respectively 8,
refers to the maximum number of early exercise combinations that enter the minmax
term at any given node instance. This number is a lower bound for the overall number
of lattice instances.

The prices computed by both methods (maintaining versus collapsing) were identical.
Collapsing the corridors of uncertainty, however, turns out to reduce the running time
considerably and to make it independent from onax. The speedup is approximately
3.9/1.0 =~ 4 for omax = 0.5.

Experiment 2: Increasing the Number of Puts

In the previous experiment the size of the portfolio remained stable, while the width of

the volatility range increased. In experiment 2 the number of puts in the portfolio is

107



small oax medium opax large omax

110 + i +--F--4--+110/100/90 or 100/90

100 + v --=4 ... or 110/90

90 . -+ ... or 110/100
110/100/90 or

100/90 or 110/90

100/90 continuation region
corridor of uncertainty

Figure 7.14: A schematic view of the extent of the corridors of uncertainty for the three
American puts mentioned in the text, under three qualitatively different volatility ranges.
The vertical axis marks the value of the underlying. The labels indicate the residual non-
singleton portfolios (at least 2 puts); some singleton residual portfolios are evaluated in
addition to maintain the corridors of uncertainty. Instruments are identified by their

strike, which is 110, 100 and 90, respectively

varied. All puts mature in 30 days and differ only by their strikes. The extremal strikes
are 80 and 120, and all other strikes are equidistantly spaced between those endpoints.
Thus, a portfolio of size 5 contains the strikes 80, 90, 100, 110 and 120.

The number of puts varies between 2 (strikes 80 and 120 only) and 21 (10 strikes
below 100, 10 strikes above 100, and 100 itself). The experiment is repeated for a linear
scenario (o0 = 0.1) and two nonlinear scenarios, with oy, = 0.1 and opax = 0.125
and 0.15, respectively. All other parameters are unchanged: Sy = 100, » = 0.03 and
dt =1/(5 x 365).

Figure 7.15 shows the running times and number of lattice instances created for all
three volatility scenarios and all 20 portfolio sizes. Figure 7.16 presents the same data
pictorially. The superimposed step function shows the relative increase in the number of
lattice instances, normalized to fit into the plot. This function approximately follows the

trend in the running times.
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o=01 0.1 <o <0.125 0.1<0<0.15
# of puts | time [s] | time [s] # of lattices | time [s] # of lattices
2 0.28 0.8 3 1.2 4
3 0.37 1.6 ) 21 6
4 0.54 2.8 7 3.5 8
) 0.59 3.9 9 4.6 10
6 0.72 5.4 11 6.5 12
7 0.83 7.0 13 8.2 14
8 0.91 9.1 15 10.0 16
9 1.04 10.4 17 12.2 18
10 1.13 12.5 18 14.5 20
11 1.29 15.4 20 17.2 22
12 1.47 18.1 22 19.7 24
13 1.53 22.4 24 38.9 27
14 1.67 27.6 26 115.9 34
15 1.79 28.8 28 134.9 38
16 1.89 33.6 30 168.7 43
17 1.93 38.4 32 172.9 47
18 2.37 41.7 33 208.2 50
19 2.40 80.5 36 211.7 93
20 2.26 88.8 38 239.5 56
21 237 89.9 40 258.9 o8

Figure 7.15: Running times in seconds for portfolios with a varying number of 30-day
American puts under three volatility scenarios. For the nonlinear scenarios, also shown

is the number of lattice instances necessary to compute the best worst-case price
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1 5 10 15 20 21 puts

0.1 <0<0.125

o ©
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e | | 1
1 5 10 15 20 21 puts

0.1<0<0.15

[s] 300
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200
150
100
50

1
1 b} 10 15 20 21 puts

Figure 7.16: The data in Fig. 7.15 presented graphically. Solid disks mark running times.
The step function in the bottom graphs tracks the relative (!) growth of the number of

lattice instances created. In the top graph there is only one lattice instance
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Notice that the running time is not an absolute function of the number of lattice
instances. In the scenario oy, = 0.125 , for instance, 38 lattice instances are processed
in 88.8 seconds (20 puts), while in the scenario o = 0.15, 38 lattice instances are
processed in 134.9 seconds (15 puts). The individal width of the corridors of uncertainty,
positively correlated with omax, plays a significant role, too. It is here where the early
exercise combinations are weighed, causing computational overhead.

The most significant result of this test is the validity of the concept of corridors of
uncertainty: there are 2 21 theoretical early exercise combinations if the portfolio contains

21 puts.

7.3.2 A Mass Test

The experiments in the previous section were conducted under laboratory conditions: all
parameters but one remained frozen so as to test the influence of the selected parameter
on the running time of Mtg. The dimensions along which tests were made were the width
of the volatility band and the density of strikes.

In this section we lift the ceteribus paribus condition, and compute best worst-case
prices for a set of portfolios with divergent characteristics. Statistical measures are then
used to judge performance and accuracy. The hardware is unchanged: a Pentium/166
MHz PC running Windows NT Workstation 4.0/SP 3 and equipped with 128 MB of
RAM. Mtg, the pricer, is written in C++.

The results reported here are published in Buff (1999a).

The Random Portfolio Space

The random portfolio space consists of 200 portfolios. Each portfolio consists of 8 options

with characteristics determined randomly as follows:
e With equal probability the option is a call or a put.

e For call options, the strike lies in the interval [80, ... ,110] with probability

12 if 80 <z <100
Pr{strike = z} = (7.7.96)

— if 101 <2 <110
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For put options, the strike lies in the interval [90,... ,120] with probability

% it 90 <2 <99
Pr{strike = z} = ) (7.7.97)
o it 100 <z <120

Thus, in-the-money and out-of-the-money options are equally likely, but the range
of possible strikes for in-the-money options is about twice as wide as for out-of-the-

money options.
e The maturity is uniformly distributed in the interval [50, ... , 100], counted in days.

e The position A\,, 1 <n <8, is £1, 2 or £3 with equal probability.

Figure 7.17 gives a summary.

type ‘ probability ‘ strike ‘ maturity ‘ position
call % betw. 80 and 110 | betw. 50 and 100 | £1, +2 or +3
put % betw. 90 and 120 | betw. 50 and 100 | £1, +2 or +3

Figure 7.17: The random portfolio space. Each option has the characteristics listed in

the table, randomly selected. In addition, options are either European or American

The random portfolio space is furthermore divided into two subsets:

e For the first 100 portfolios, 4 options are American. The remaining 4 options are

European. We refer to this subset as the 4/4 set of portfolios.

e For the last 100 portfolios, 5 options are American. The remaining 3 options are

European. We refer to this subset as the 5/3 set of portfolios.

The random portfolio space extends the theoretical framework observed so far in two

aspects:

1. Maturity dates differ; and

2. there are American and European instruments in each portfolio.

These “advanced” features are incorporated to simulate actual situations better. Both
features are straightforward to add to the theoretical base. The 4 respectively 3 European

options contribute to curvature through superposition of their vanilla payoff structures.
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The Evaluation Space

Each of the portfolios (X1* A1), ..., (Xido, \igo) in the 4/4 set, and (X33,A33), ...,
(X335, A33,) in the 5/3 set was evaluated several times under varying conditions. Always,
however, omin = 0.1. The market parameters are Sy = 100, interest rate r = 0.05 and
dividend rate ¢ = 0.03 throughout. (A dividend rate is introduced since the portfolios

contain American calls which aren’t exercised early if ¢ = 0.)

Experiment 1 In the first experiment, all portfolios as well as their negative versions
(— X instead of \) were evaluated under the three volatility scenarios opax = 0.2, 0.4 and
0.6, respectively. Two series of evaluations were performed with maintained corridors
of uncertainty, and two series of evaluations were performed with collapsed corridors of
uncertainty. The time step in series 1 was dt = 1/365, under both methods; in series 2 it
was dt = 1/(2 x 365). This experiment required 2 x 2 x 3 x (2 x 100 + 2 x 100) = 4800

evaluations.

Experiment 2 In the second experiment, all portfolios as well as their negative versions
(—X instead of \) were evaluated under the volatility scenario opmax = 0.8. Again, two
series of evaluations were performed with maintained corridors of uncertainty, and two
series of evaluations were performed with collapsed corridors of uncertainty. The time step
in series 1 was dt = 1/(5 x 365), under both methods; in series 2 it was dt = 1/(10 x 365).
This experiment required 2 x 2 x (2 x 100 4+ 2 x 100) = 1600 evaluations.

The reason for using 5 and 10 as opposed to 1 and 2 time steps per day is stability: the
algorithm in Fig. 5.4 rejects 1 respectively 2 time steps per day as too coarse for omax =
0.8.

Experiment 3 In the third experiment, all portfolios as well as their negative versions
(—X instead of \) were evaluated under the volatility scenario omax = 1.0. One series
of evaluations was performed with maintained corridors of uncertainty, and one series of
evaluations was performed with collapsed corridors of uncertainty. The time step was set
to dt = 1/(16 x 365), after running the algorithm in Fig. 5.4. This experiment required
2 x 2 %100+ 2 x 100 = 800 evaluations.

Figure 7.18 provides an overview over all three experiment specifications.
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volatility series 1 series 2
Experiment 1 | 0.1 <0 <0.2 dt =1/365 dt =1/(2 x 365)
0.1<o<04 dt=1/365 dt = 1/(2 x 365)
0.1<0<0.6 dt=1/365 dt =1/(2 x 365)
Experiment 2 | 0.1 <0 <0.8 dt=1/(5x365) dt=1/(10 x 365)
Experiment 3 | 0.1 <o < 1.0 dt=1/(16 x 365) n/a

Figure 7.18: The evaluation space. The time steps are chosen to guarantee numerical
stability. Altogether, 4800 + 1600 + 800 = 7200 evaluations were performed

Maintaining the Corridors of Uncertainty

We give absolute results for the exact approach where corridors of uncertainty are main-
tained as described in Sect. 7.2.1. In a later paragraph, the benefit and drawback of
collapsing the corridors is analyzed relative to the absolute values given here.

Figure 7.19 presents the mean and standard deviation of the running time if corridors
of uncertainty are maintained. Only series 1 is analyzed in the first two experiments;
no data is avaliable for series 2. The maximum running time in experiment 3 was 302

seconds for the 4/4 set, and 1094 seconds for the 5/3 set.

4/4 set 5/3 set
experiment | opmax time step mean | sdev | mean | sdev
1, series 1 0.2 1/365 1.5 1.0 3.4 2.8
1, series 1 0.4 1/365 3.1 1.1 9.5 4.2
1, series 1 | 0.6 1/365 3.5 1.1 | 10.7 4.1
2, series 1 0.8 1/(5 x 365) 36.7 8.9 | 115.4 | 36.5
3 1.0 | 1/(16 x 365) | 207.8 | 45.9 | 662.2 | 193.1

Figure 7.19: The running time in seconds if corridors of uncertainty are maintained,
broken down for the 4/4 set and the 5/3 set of portfolios. Each entry represents 2 x 100 =

200 evaluations, as in (original + negative) x portfolios
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Figure 7.20 presents data on convergence with respect to the time step. The results
obtained in series 1 and 2 are matched and compared pair-wise. Shown are the first two
central moments, in percentage, of

‘72(03 03 L%Zl) - VI(Oa Oa L;l:l)

- (7.7.98)
V1(0,0; L)

for 1 < n < 200, corresponding to 2 x 100 portfolios (including the negative A’s) in the

4/4 set, and the first two central moments, in percentage, of

‘72(03 03 L?Lg) - VI(Oa Oa L’IE’)L?))
Vi(0,0; L3?)

(7.7.99)

for 1 < n < 200, corresponding to 2 x 100 portfolios in the 5/3 set. V; is the best
worst-case price observed in series [. L* is the lattice instance with signature (X4, \14)
if n < 100, and with signature (X2 .5, =\ ) if n > 101. L33 is interpreted in an
analogue fashion.

No data is available for experiment 3, since experiment 3 contains only one series of

evaluations.
4/4 set 5/3 set
experiment | opax time steps mean | sdev | mean | sdev
1 0.2 1/365 — 1/(2 x 365) 0.1 0.6 0.2 1.6
1 0.4 1/365 — 1/(2 x 365) 0.3 6.0 | —0.8 7.5
1 0.6 1/365 — 1/(2 x 365) 0.0 11.2 | —0.2 2.8
2 0.8 | 1/(5x365) — 1/(10 x 365) -0.5 | 11.7 | —0.2 3.9

Figure 7.20: The relative discrepency in percentage for each matched evaluation in series 1
and 2, respectively, of experiments 1 and 2, broken down by volatility band and portfolio

set. The number of time steps is doubled between series 1 and 2

Convergence is better for narrow volatility bands. For op.x = 0.2 we may expect
stability in the first two leading digits, and thus recommend dt = 1/(2 x 365) as being
adequate. On the other hand, there is considerable variance if opyay > 0.4. This suggests
that for wide volatility ranges dt needs to be further reduced to achieve sufficient numerical

stability.
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Collapsing the Corridors of Uncertainty: Speed

After establishing a base for comparison, we examine the benefit of collapsing corridors
of uncertainty. Let mi:* be the running time if corridors of uncertainty are maintained
for portfolio n (where 1 < n < 200, and portfolios are counted as described above) in the
4/4 set, and let ¢! be the running time if corridors of uncertainty are collapsed. m>? and

>3 are interpreted accordingly. Figure 7.21 shows mean and standard deviation for the

quantities
R (7.7.100)
n 7.
mi md?

in percentage, for 1 < n < 200, broken down by experiment and series, as well as

aggregated over all experiments. Figure 7.22 shows the same data pictorially.

4/4 set 5/3 set
experiment | omax time step mean | sdev | mean | sdev
1, series 1 0.2 1/365 63.5 | 10.8 | 55.5 | 11.7
1, series 1 0.4 1/365 66.1 | 13.6 | 55.1 | 18.2
1, series 1 0.6 1/365 62.5 | 16.3 | 52.6 | 18.2
2, series 1 0.8 1/(5x365) | 65.1 | 15.8 | 54.3 | 18.7
3 1.0 | 1/(16 x365) | 71.0 | 16.5 | 60.1 | 19.6
all 65.6 | 15.0 | 55.5 | 17.7

Figure 7.21: Mean and standard deviation in percentage of the relative running time
if corridors of uncertainty are collapsed, broken down by volatility band and portfolio
subset. The last row is the average over all previous rows. The inverse of the mean would

be the average speedup factor

The relative benefit is remarkably uniform for different volatility bands, although
the benefit decreases slightly for very high opa. The standard deviation is under 20%

throughout. Relative speed increases if portfolios contain more American instruments .
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Figure 7.22: Mean £ one standard deviation of the relative running time in percent-
age when corridors of uncertainty are collapsed, compared to the running time for the

benchmark result. The data is the same as in Fig. 7.21

Collapsing the Corridors of Uncertainty: Faithfulness

Collapsing the corridor of uncertainty may lead to false results. The faithfulness of the
heuristic measures the gravity of this defect. Let Li* and L5* denote lattice instances
for portfolios 1 < n < 200 in the 4/4 and the 5/3 set, respectively, as defined earlier.
Let the benchmark result M(0,0;L#) = V(0,0; L) be the best worst-case price on
lattice instance L2* if corridors of uncertainty are maintained, and define M (0,0; L33)
accordingly. Let C’(0,0; L) be the best worst-case price if corridors are collapsed, and
define C(0,0; L2) accordingly. C(0,0; L) and C(0,0; L2?) may differ from V (0, 0; L2%)
and V(0,0; L33). The faithfulness of the heuristic is reflected in the relative deviation
from the benchmark result:

C(0,0; LEY) — M(0,0; L)

M(0,0; Lit)

(7.7.101)

and

C(0,0; L) — M(0,0; L3
( N An ) ( » n ) (77102)
M(0,0; L33)

Values close to 0 indicate high faithfulness. Large absolute values indicate low faithful-
ness. Mean and standard deviation in percentage of (7.7.101) and (7.7.102) are shown

in Fig. 7.23 for series 2 of experiments 1 and 2. Also shown is the frequency in percent-
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age with which the approximated result deviates no more than 1% from the benchmark

result.

4/4 set 5/3 set
experiment | omax time step mean | sdev | good | mean | sdev | good
1, series 2 | 0.2 1/(2 x 365) 0.00 0.32 | 99.0 | —0.29 | 4.06 | 98.0
1,series2 | 0.4 | 1/(2 x 365) 0.85 7.94 | 93.0 0.07 | 2.15 | 94.0
1, series 2 | 0.6 1/(2 x 365) | —0.12 9.22 | 90.5 | —0.22 | 2.44 | 88.5
2, series 2 | 0.8 | 1/(10 x 365) 8.93 | 122.55 | 87.0 0.94 | 18.65 | 83.0
all —0.15 3.00 | 94.2 0.28 | 6.61 | 93.5

Figure 7.23: Mean and standard deviation in percentage of the relative deviation from the
benchmark result if corridors of uncertainty are collapsed. The column labeled “good”

shows the frequency with which the benchmark result is reproduced exactly

Not shown in the figure is the frequency of exactly matching results: 51.0 and 26.0%
overall for the 4/4 set, and 46.8 and 19.0% overall for the 5/3 set. Figure 7.24 interpolates
the frequency of exactly matching results, or of results that deviate no more than 1
or 5% for experiments 1 and 2. The frequency of “good” results drops consistently
as the volatility band gets wider, and slightly if the portfolio contains more American
options. Although the heuristic reproduces the benchmark result less than half the time,
the frequency at which a 1% relative error bound is achieved is above or close to 90%

throughout.

Collapsing the Corridors of Uncertainty: Outliers

There are 4 cases in experiment 1, series 2 in which the absolute deviation from the
benchmark result exceeds 50%. The amount by which these cases deviate is shown in
Fig. 7.25, together with the composition of one of the outlier portfolios.

The sequence of best worst-case prices for the marked portfolio shows considerable
oscillation as the time step decreases, even if the corridors of uncertainty are maintained.
Fig. 7.26 shows the values, plotted against the number d of steps per day for both the ex-

plicit and mixed explicit /implicit scheme (this is the only case in this chapter on American
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4/4 set 5/3 set

[%] 100 T % 10 | ———
<1% -
80 - 80 - <1%
60 — 60 —
40 _\ 40 1
20 20 —x
exact
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0 T T | 0 T T |
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 omax

Figure 7.24: Frequency in percentage with which the relative error stays within 0% (exact
match), 1% and 5% of the benchmark result if corridors of uncertainty are collapsed,

drawn against opax. Data is base on series 2 in experiments 1 and 2

options where Crank-Nicholson combined with iterative refinement is used). 20 lattice
instances, the largest possible number, are required to solve the best worst-case pricing
problem. The inverse portfolio (—)\, instead of A, for 1 < n < 8) converges convinc-
ingly: the value varies around —36.19, with noise in the fourth digit (values are not
shown here). There is no obvious sign that helps to explain what makes the portfolio
structurally unusual enough to lead to such instability.

Further comparative convergence analysis with 1, 2, 5 and 20 time steps per day,
for all portfolios in the 4/4 subset under the scenario omax = 0.6, shows that there
is no correlation between poor numerical convergence and a large deviation from the
benchmark result in the series 2 data. The Spearman and Kendall rank coefficients
for the association between the absolute relative change of the benchmark result when
switching from 1 to 20 time steps per day, and the maximum absolute deviation from the
benchmark in the series 2 data are 0.09 and 0.06, respectively. Rank coefficients measure
linear and nonlinear monotonic relationships. A value close to zero means there is no
such relationship. The linear correlation coefficient is 0.17.

The quality of the result achieved under the heuristic seems therefore unpredictable.
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Omax | set | deviation [%] n | exercise | type | maturity | strike | A,
04 | 4/4 107.4 1 | European | put 100 92 -3
— 0.6 | 4/4 88.1 2 | European | put 68 97 2
06 | 4/4 —85.3 3 | European | call 66 93 | -1
0.2 | 5/3 —57.4 4 | European | put 61 98 1

5 | American | put 97 113 | -3

6 | American | put 93 114 2

7 | American | call 68 102 1

8 | American | put 57 93 -2

Figure 7.25: Four cases in experiment 1, series 2 (time step dt = 1/(2 x 365)), in which
the relative deviation from the benchmark result exceeds 50%, and the composition of

one of the outlier portfolios (marked with “—”)

Conclusion

The benefits of collapsing the corridor of uncertainty seem worth the loss of faithfulness
if the volatility band is narrow, for then the benchmark results are reproduced to a
sufficiently high degree. For 0.1 < ¢ < 0.2, for instance, the mean error is zero and
the standard deviation of the error is 0.32%, for 4 American options in the portfolio
(Fig. 7.23). This is equivalent to 2 matching digits.

The situation becomes less clear as oy, increases. Whether the gain in speed of about
40% is worth the increased chance of missing the best worst-case price by a large amount
must be decided case by case. As shown in Fig. 7.24, the 1% or 2 leading digit-threshold
is still reached about 90% of the time.

It should be noted that the volatility bands used in the mass test are extremely wide
and remain valid over the entire lifetime of the portfolio. In a more realistic setting, the
range of uncertainty would be narrower or restricted in time. The next chapter explores
volatility scenarios in this direction.

Numerical accuracy at timesteps in the tested range is satisfactory for narrow bands
(Fig. 7.20). For wider bands, smaller time steps than those tested should be used in

production mode. The use of the more accurate mixed explicit/implicit finite difference
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Figure 7.26: High oscillation of the best worst-case value of the portfolio marked in
Fig. 7.25 even if the corridors of uncertainty are maintained. There is no qualitative
difference between the explicit and Crank-Nicholson scheme. The number of steps per

day d is plotted on the x-axis; the corresponding time step would be dt = 1/(d x 365)

scheme would very likely improve the convergence behavior further.

7.4 American Options and Calibration

It is in principle possible to apply the ideas of Sect. 4.2.3 on calibration to portfolios of
American options. The calibrated volatility ¢ would be path-dependent and not easily
convertible into a two-dimensional surface. However, the volatility surface, being the
goal of calibration in the first place, should have a format in which subsequent pricing is
straightforward. Calibration to American options seems therefore not a viable task.
Optimizing a position in order to find the optimal hedge portfolio under worst-case

assumptions, on the other hand, would still be feasible (see Sect. 4.2.2).
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8 Exotic Volatility Scenarios

In Chapters 6 and 7, algorithms have been discussed that compute (best) worst-case
prices under uncertain volatility scenarios in which o(S;,t) and (S, u) are independent
for ¢t # w. In this chapter we extend the notion of uncertain volatility scenarios to include
evolutions of the spot volatility that depend on its past history.

The non-Markovian character of o is expressed in by-conditions in the candidate
set C. o no longer depends merely on S; and ¢, but on the path w in the probability
space. Replicating the terminology for instruments, we call such volatility scenarios exotic
volatility scenarios, as opposed to “conventional” volatility scenarios. In particular, we
examine scenarios where the spot volatility can undergo one or several volatility shocks

of limited duration.

8.1 Volatility Shocks for Portfolios of Vanilla Options

Volatility shock scenarios are based on the assumption that the spot volatility does not
deviate from an estimated prior volatility except possibly when expected or unexpected
economic events upset the market for a limited period of time. Such events may be
announcements, mergers, court rulings, natural disasters, devaluations, or others. These

events have the properties that
e they are difficult to quantize; and, more importantly,
e they cannot be forecasted to happen on a specific day in the future.

We use the worst-case approach for the quantization problem, and multi-lattice dynamic

programming for the forecasting problem.

Definition 8.1 (Prior and shock volatility). Assume we are given volatility values
0 < omin < 09 < 0max- Then og is called the prior volatility and expresses the subjective
belief of the agent about the true model volatility. omin and omax are lower and upper
bounds which the spot volatility can attain during periods of upheaval. They are called the
shock volatility bounds.

For simplicity, Def. 8.1 introduces constant volatility parameters. The concepts in

this chapter can easily be extended to cover time and/or space dependent prior and
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shock volatilities. (Recall that this does not mean that the worst-case volatility is also

constant!)

Definition 8.2 (Volatility shock scenario). Assume prior and shock volatility 0 <
Omin < 09 < omax ore given. A volatility shock scenario is characterized by its duration
d > 1, its periodicity p > 1 and its frequency f > 1. The units of d and p are days; f is
a dimensionless number. All values are integers.

The interpretation is as follows: on any realized path w the spot volatility will be o,
except for f non-overlapping periods of length d days each, during which the spot volatility
may fluctuate freely within omin and omax. Here, “non-overlapping” refers to the interior
of each period; they may touch at their endpoints. In addition, each of these f shock
periods must start on a day whose day count number is a multiple of p, where days are
counted from 0.

The class of volatilities that fulfill this description is denoted by D.

The function of p is to reduce the computational overhead and the size of the lattice.
We will see below that the compute time is proportional to d/p. p may also be used to
time shock periods, but to support this aspect fully a more powerful notion of periodicity
may be nessesary. Although in most cases p < d, we explicitely allow the case p > d.
The f shock periods are located between time 0 and time N. In the following, we
assume N > d + (f — 1) max(p,d) for convenience. In other words, the portfolios under
investigation last long enough to fall under the influence of at least f shock periods.

Examples of volatility shock scenarios are:

e The prior volatility is oy = 0.15. However, there will be a 7-day period during
which the volatility may oscillate between 0.15 and 1.0. This period, caused by a
merger announcement expected in the near future, can start on any day. Thus,

00 = Omin = 0.15, Omax = 1.0, d =7, p =1, f =1

e The central bank of country XYZ meets once a week. It is expected that an im-
portant economic decision will be made in one of its future meetings, though it is
not known in which one. Heavy trading on the day following the announcement is
anticipated. In this case, 09 = omin = 0.15, omax = 1.0, d =1, p =7, f = 1 may be

a realistic volatility shock scenario.
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The crucial property of volatility shock scenarios is that they leave open when the shock
periods occur. If the timing of events is known, a time-dependent conventional uncertain
volatility scenario works adequately. It is the additional dimension of uncertainty of
timing which opens the door to worst-case considerations.

The other quantitative difference between conventional and volatility shock scenarios
is the width of the volatility band: while conventional scenarios may allocate a 0.1-0.2
volatility band, for instance, volatility shock scenarios provide for volatility spikes of much
larger amplitude. Wide bands in the conventional scenario suffer from two flaws: a) they
lead to wide price bands, and b) they do not reflect the isolated nature of events which

influence market bahavior. Volatility shock scenarios alleviate both drawbacks.

8.1.1 Worst-case Volatility Shocks

Under the worst-case paradigm volatility shock periods are located such that the resulting
worst-case price is maximized. The market is regarded as adversary that triggers events
perturbing the prior volatility at the most adverse moment.

The objective of worst-case pricing under a conventional volatility scenario has been

formulated in Sect. 4.2:

Given a portfolio X and a position A € R* in X, which o € C maximizes
today’s value of (X, \)?

The extension to volatility shock scenarios is straightforward and goes as follows.

Given a portfolio X and a position A € R¥ in X. Given furthermore prior and
shock volatilities omin < 09 < o0max and shock scenario attributes d, p and f.

Which o € D maximizes today’s value of (X, \)?
D has been defined in Def. 8.2 as the class of volatilities o that satisfy
Omin < 0(w,t) < Omax (8.8.1)
during shock periods and
o(w,t) = og (8.8.2)

during silent periods. We assume that X contains only vanilla options, all maturing at

time tn.
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Figure 8.1: Paths 1 and 2 hit the shock front at time ¢; and switch to lattice instance
L', which solves a conventional worst-case pricing problem with time-dependent o, and
Omax (1-€.y Omin = Omax = 09 for t < ¢; and t > ¢5). Path 3 hits the shock front at a later
time and continues on a lattice instance with a different conventional worst-case volatility

scenario

Multi-lattice Dynamic Programming Revisited

The worst-case volatility-shock pricing problem can be solved with multi-lattice dynamic
programming. The number of lattice instances depends on the volatility shock scenario
and can be known beforehand. Each lattice instance carries (X, ), but solves PDE
(4.4.8) with a different, non-path-dependent (!) volatility coefficient. Transferring data
between lattice instances works much like in the American case: local decisions are made
with regard to the “shock front*, i.e. the optimal (that is, worst) time of entering a shock
period. The shock front is the analogon of the early exercise boundary.

Figure 8.1 gives an example. Lattice instance L is the top-level lattice instance yielding
the final result V(O, 0; L). Paths 1, 2 and 3 originating at sy and hitting the shock front

at time ¢ (paths 1 and 2) respectively at some later, unspecified time (path 3) are traced.
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After hitting the shock front, paths 1 and 2 continue on lattice instance L'. L' differs
from L in that it prices with the conventional uncertain volatility scenario
o (S, t) = oy (t <tyort>ty) (8.8.3)
Omin < 0(St,t) < omax (1 <t <to)
with a fixed period of volatility oscillation between times ¢; and ¢5. L, on the other hand,
prices with o¢ between ¢ = 0 and the shock front, whose location is determined with the
dynamic programming method.

Path 3 does not hit the shock front at time #; and therefore does not continue on L',
but on another lattice instance whose shock period is located suitably. Notice that while
the shock front in L is uneven, the shock period in L’ itself starts uniformly at time #;
and ends uniformly at time %s.

The example seems to suggest that there must be a lattice instance for every possible
location of the shock period. This is not so; lattice instances can be reset and reused in
the rollback scheme as soon as a shock period is finished. A combination of high-level
handling of lattice instances and conventional worst-case pricing is powerful enough to

solve the worst-case pricing problem under volatility shock scenarios.

Definition 8.3 (Extended lattice signature). Given (X, \), duration d, periodicity p
and frequency f. The extended signature of a lattice instance L for the so-specified volatil-
ity shock scenario is a quintuple (X, \,7,£,0), where T € {conventional, consolidate} is
the type, 0 < & < f is the level, and 0 < § < [d/p] is the offset of the lattice instance.
The offset is undefined if T = consolidate.

If X contains only vanilla options, all lattice instances carry the same portfolio (X, \).

In that case, we ommit X and X and write (1,€,6).

Consolidating lattice instances use subordinate conventional lattice instances to locate
the shock front. If the duration exceeds the periodicity, potential shock periods may
overlap, and up to [d/p] conventional lattice instances need to be maintained to feed a
single consolidating lattice instance. Consolidating and associated conventional lattice
instances are grouped in levels. Levels are ordered, for conventional lattice instances, in
turn, fetch their boundary data from lower level consolidating lattice instances. Thus, L

in Fig. 8.1 is consolidating while L' is conventional.
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Level 0 is unique in that it does not contain any conventional lattice instances. The
consolidating lattice instance of level 0 prices (X, \) by definition with og. On level 0,
pricing becomes linear.

Figure 8.2 explains these concepts for d = 4, p = 2 and f = 1. Shock periods are
possible between days 0-4, 2-6, 4-8, 6-10 and 8-10 (the last one being cut off at day
10). The main lattice instance L; imports worst-case prices on days 0, 2, 4, 6 and 8
from conventional lattice instances L{ and L}, depending on the offset. After maximizing
locally just like it is done for American options, the resulting value is rolled back 2 days
with linear volatility o = 0¢. Then data is imported from L? or L} and compared again.
The shock front is implicitly given by the outcome of the local maximization operations
and continuously readjusted.

The conventional lattice instances LY and Li are reused several times. After worst-
case prices have been transferred to L; on days 0, 2, 4, 6 and 8, the lattice instances are
reset with current linear prices, copied from L. Here and in the subsequent paragraphs,
“current” refers to the loop variable 7 which iterates through time slices N,...,0 (7 is
part of the input in the algorithm in Fig. 5.5). The function of L1, LY, L} and Ly can be

summarized, bottom-up, as follows:

e L is the lattice instance at the lowest level and is used to price (X, \) at the prior

volatility o = oy.

e LY is used to price (X, \) under the conventional worst-case volatility scenario with
a volatility band oy < 0 < opax during the current shock period [2ip, 2lp + 4],
[ > 0 chosen suitably, and o = 0 during the tail period [2lp + 4, 10]. The offset of
L1 is 6 = 0. As the tail period becomes longer and a volatility shock date is crossed,

LY is reset with data from L.

e L1 is used to price (X, \) under the conventional worst-case volatility scenario with
a volatility band omin < 0 < omayx during the current shock period [(2( + 1)p, (2] +
1)p+4], I > 0 chosen suitably, and 0 = o during the tail period [(2] 4+ 1)p + 4, 10].
The offset of L? is § = 1, corresponding to a shift of dp = 2 days of shock periods.
As the tail period becomes longer and a volatility shock date is crossed, L} is reset

with data from L.

e L holds prices for (X, ) which, during rollback, represent the expected payoff
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Figure 8.2: Four lattice instances L, L[l), L% and Ly are needed to solve a volatility
shock scenario with shock duration d = 4, periodicity p = 2 and frequency f = 1. LY is
responsible for the shock periods [2Ip, 2lp + 4], and L1 is responsible for the shock periods
[(21+1)p, (214+1)p+4], where [ > 0. After the worst-case price for a shock period has been
incorporated into the main lattice instance L; through local maximization (top picture),

the associated conventional lattice instance is reset with the current linear price obtained

with the prior volatility oy (bottom picture)

7 = conventional

£=1,6=0

7 = consolidate
E=1,0=0y

T = conventional
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time in days
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under the assumption that the volatility shock period has occured sometime between
the current time slice and day 10. As the rollback proceeds from day 10 to day O,
this assumption is periodically verified by checking whether the price for (X, \)

increases if the volatility shock period starts at the current time slice.

To decrease the periodicity p from 2 to 1 requires two additional conventional lattice
instances for shock periods with offsets 1 and 3, respectively. The resulting cycle of
periods is [(4] 4+ o)p, (4l +0)p+4],0 <o <3 and [ > 0. To increase p from 2 to 4, on the
other hand, makes L} superfluous, and three lattice instances overall suffice. Also note
that the days on which shock periods start and end must be matched by the lattice: if
d and/or p are small, the discretization becomes necessarily denser. 1/p is proportional
to the time complexity of the pricing problem. Fine-tuning of both d and p can lead to
a significant gain in response time.

If the shock frequency f is increased from 1 to 2, a new level £ = 2 needs to be
added. Ly becomes the main lattice, and V(O, 0; Lo) the overall result. Ly is interpreted

as follows:

e L5 holds prices for (X, ) which, during rollback, represent the expected payoff un-
der the assumption that up to two volatility shock periods occur sometime between

the current time slice and day 10.

The new conventional lattice instances L and L} with signatures (7 = conventional, £ =
2,6 = 0) and (7 = conventional, £ = 2,0 = 1), respectively, are reset with data from L;

when shock dates are crossed. They are interpreted as follows:

e LY prices (X, \) under the conventional worst-case volatility scenario with a volatil-
ity band oy < 0 < opax during the current shock period [2ip,2ip + 4], I > 0
chosen suitably, and under the assumption that an additional shock period occurs

during the tail period [2Ip + 4, 10].

e L prices (X, \) under the conventional worst-case volatility scenario with a volatil-
ity band opin < 0 < opax during the current shock period [(21 4 1)p, (21 + 1)p + 4],
[ > 0 chosen suitably, and under the assumption that an additional shock period

occurs during the tail period [(2] 4+ 1)p + 4, 10].
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Care has to be taken that L3 and L} are reset with data from L; only after L; has been
processed: the data must reflect the result of the local maximization at L; on the shock
date.

Figure 8.3 gives a schematic overview over the hierarchy of lattice instances for general
f. Each consolidating lattice instance L,, 0 < n < f, carries the full solution of a worst-

case volatility-shock pricing problem with frequency f' = n.

Ly consolidating
max

coo °oo °oo conventional
reset

Iy consolidating
max

LY 000 L¢™'|  conventional
reset

Ly consolidating (linear)

Figure 8.3: The hierarchy of lattice instances for general f. Arrows represent the dataflow.
c is the number of conventional lattice instances per level. The “max” and “reset” labels

correspond to the “max” and “reset” operations in Fig. 8.2

Algorithms

In the following we assume a discretization that coincides with day boundaries: ¢; = i for

0 <4 < N. Depending on the duration and periodicity of the shock volatility scenario,
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this convention may be relaxed in an actual implementation.

Input: Duration d, periodicity p, frequency f

Output: A set of lattice instances

1. Set ¢ = [d/p]. cis the number of conventional lattice instances per level

2. Create lattice instance Ly with signature

(7 = consolidate, £ = 0, = undefined)

3. Repeat forn=1,..., f:

(a) Create lattice instance L,, with signature
(7 = consolidate, £ = n,d = undefined)

(b) Repeat for m =0,... ,c—1:

i. Create lattice instance L] with signature

(7 = conventional, & =n,J = m)

Figure 8.4: The algorithm to create all required lattice instances for a given volatility

shock scenario

The algorithm in Fig. 8.4 computes the required number of conventional lattice in-
stances, and creates all lattice instances. The following lemma shows that the algorithm

creates the necessary number of lattice instances, and uses them optimally.

Lemma 8.4 (Lattice instance creation). Given a volatility shock scenario with dura-
tion d, periodicity p and frequency f. For any given level n, 1 < n < f, the algorithm in
Fig. 8.4 facilitates an assignment of shock periods to conventional lattice instances such
that no two overlapping shock periods are assigned to the same lattice instance. (Touching

at the endpoints is allowed.)

Proof. Any shock period can be written [Ip,Ip+d], [ > 0. The quantity ¢ = [d/p] defined
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in step 1 of the algorithm is the smallest number such that ¢p > d, for

cp = [d/plp > (d/p)p = d (8.8.4)

on one side, and

(c=Dp=([d/p] -p<((d/p+1)-1)p=d (8.8.5)

in the other direction.

Now fix a level n. Cosider the first ¢ shock periods [Ip,ip +d], 0 <[ < c—1. All
¢ shock periods overlap, for their start dates 0,p,2p,...,(c — 1)p all lie within the first
period [0, d], as shown in (8.8.5). Thus, at least ¢ lattice instances are required to fulfill
the condition that shock periods assigned to the same lattice instance don’t overlap. We
assign each of the ¢ shock periods to a separate lattice instance.

Let LO,..., LS ! be the lattice instances created. The next shock period that needs
assignment is [ep, cp + d]. Since cp > d, assignment of this shock period to L does not
violate the no-overlap condition (although the periods may touch at their endpoints). It
is easy to see how the round-robin assignment proceeds.

In summary, if day ¢ is divisible by p, i.e. is a day on which a shock period may start,
then the lattice instance to which this shock period is assigned within any given level is

m =1i/p mod c. O

The worst-case volatility-shock pricing problem is solved in two phases. In phase 1,
values are rolled back in whatever scheme has been selected (explicit or mixed ex-
plicit/implicit). In addition, local maximization is performed for consolidating lattice
instances if the processed time slice falls on day on which a shock period starts. During
phase 1, lower level lattice instances are processed first, and conventional lattice instances
are processed before the consolidating lattice instance within the same level. This rule is
an extension of the external consistency rule proposed in Sect. 5.1. Figure 8.5 shows the
algorithm.

Phase 2 is dedicated to resetting the conventional lattice instances, depending on
whether their offsets 0 and the round-robin index i/p mod c of the shock start-date
match. No particular order needs to be observed in phase 2. The data collected from
consolidating lattice instances has been prepared in phase 1. The algorithm is shown in
Fig. 8.6.
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Input: Lattice instance L with signature (7,¢,0), time 4
Output: V(j,i;L) for D <j<U

1. If 7 = conventional:
(a) Use the algorithm in Fig. 5.5 to get worst-case values V (j,4; L) for D < j < U
2. If 7 = consolidate:

(a) Apply the algorithm in Fig. 5.5 with opin and omax set to o (essentially, a
linearized version of the algorithm) to get initial V(j, iyL) for D<j<U
(b) If £ > 0 and 7 is divisible by the periodicity p:
i. With ¢ = [d/p] and m =i/p mod ¢, repeat for D < 5 < U:
V(s L) s= max [V (3,55 1), V (s L)
where we can be sure that conventional Lgb has already been processed

earlier in phase 1; adjust the gradient of V( 7, i; L) accordingly

Figure 8.5: Phase-1 algorithm, applied to all lattice instances in the order Lo, L?, ..
LS Ly, . Ly. Note that V(j,4; L) is treated as a variable which can be modified

b

Instead of formalizing the notion of volatility shocks any further, we use the algo-
rithms in Figs. 8.5 and 8.6 to define the worst-case volatility-shock price of a portfolio.
The consistency of the algorithms is clear by Lemma 8.4 and inspection. They are a

straightforward extension of the basic concepts developed in Chapter 5.

Definition 8.5 (Worst-case volatility-shock price). Given a volatility shock scena-
rio with duration d, periodicity p and frequency f, together with prior volatility o9 and
shock volatility bounds owyin and omax. The value obtained for a portfolio (X, \) by running
the algorithms in Figs. 8.5 and 8.6, embedded in a multi-lattice dynamic-programming

framework as discussed in Chapter 5, is called the worst-case volatility-shock price of
(X, A).

In particular, the subadditivity of the worst-case price asserted in Fact 4.7 (and re-
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Input: Lattice instance L with signature (7,¢,0), time 4
Output: Adjusted V(j,4; L) for D < j <U

1. If 7 = conventional:

(a) If 4 is divisible by the periodicity p:
i. With ¢ = [d/p], set m =i/p mod ¢
ii. If m = 4§ repeat for D <5 < U:

V(5,4 L) == V(j,4; Le—1)

where consolidating L¢_; has been processed in phase 1; reset the gradient

accordingly

Figure 8.6: Phase-2 algorithm, applied to all conventional lattice instances

peated later, for American options, in Prop. 7.12) is maintained through the application

of the maximum operator in step 2(b)i in Fig. 8.5.

Numerical Issues

Volatility shock scenarions encourage short volatility spikes with large amplitude. Since
these spikes can be located anywhere on the lattice, opax is the relevant upper volatility
bound for the algorithm in Fig. 5.4. Recall that the algorithm computes the discretiza-
tion in time and space for the explicit finite difference scheme. Mixed explicit/implicit
schemes don’t require exceptionally small time steps and may in the case of volatility
shock scenarios be faster than explicit schemes. For this reason, Crank-Nicholson is used
in the following experiments.

The validity of the PDE (4.4.8) is another numerical issue. Recall that the local

volatility under uncertainty is given by

2 Omae if 2 >0
D (8 f) =™ 08% = (8.8.6)

2 . 2
95 Omin 1f % <0
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which has the welcome property that % ¥ = 0 almost everywhere, for 1 < n < |A|. This
has the consequence that the gradient in X is a solution of (4.4.8), too, with different
boundary conditions. Volatility-shock scenarios have only a finite number of additional

transitions in volatility space and therefore do not change this property.

8.1.2 Experimental Results

All tests were performed on a Pentium/166 MHz PC running Windows NT Workstation
4.0/SP 3, with 128 MB of RAM. The software is called Mtg and has been written and
compiled with Microsoft Visual C++ 5.0, optimizations activated.

Experiment 1: A Butterfly Spread

Consider the butterfly spread of four call options in Fig. 8.7. The maturities of the
options are 30, 50, 40 and 60 days, respectivly. The current stock price is Sy = 100, and

the interest rate is r = 0.03.

type | maturity | strike | A\,
call 30 95

call 50 100 | -1
call 40 110 | -1
call 60 115 1

Figure 8.7: A butterfly spread consting of four call options. The spread is not perfect:

the maturity dates of the calls are not aligned

The spread is priced under three volatility scenarios:
1. A linear volatility scenario with constant volatility o = 0.15.

2. A volatility shock scenario with opnin = 09 = 0.15, omax = 0.5, duration d = 3 days,

periodicity p = 1 day and frequency f = 1.

3. A conventional worst-case volatility scenario with oy = 0.15 and opax = 0.184052,

where the latter was chosen to match the average volatility over any high-volatility
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path in scenario 2:

1 /60 1
Omax = \| 55 i o2dt = \/@ (3 x 0.52 + 57 x 0.152) (8.8.7)

The time step for the Crank-Nicholson finite-difference scheme is dt = 1/(10 x 365).

0.15 < o £0.184052

shock scenario

0 o = 0.15 linear
T T T T T
80 90 100 110 120 130 S

Figure 8.8: The butterfly spread of Fig. 8.7 priced under three volatility scenarios. Shown
is the worst-case value plotted against today’s value of the underlying. The parameters

for the shock scenarios are o, = 09 = 0.15, oax = 0.5, d=3, p=1and f =1

Figure 8.8 plots the resulting worst-case values against the time-zero value of the
underlying. The linear scenario obviously yields the smallest value throughout. The
relation between the two non-linear scenarios is less apparent. The volatility shock sce-
nario is smoother and comes closer to the linear scenario. It may be more appealing to
practitioners.

Figure 8.9 contains an image of the top-level consolidating lattice instance. Black
regions indicate where the maximum operator in step 2(b)i in Fig. 8.5 locates the potential
start of a shock period. Conversly, any path starting at time 0 enters its shock period
when it hits one of the black regions for the first time. Shock periods are predominantly

entered near maturity dates.

Experiment 2: Increasing the Frequency

In experiment 2 the portfolio in Fig. 8.7 is priced again, under the same volatility shock

scenario with omin = 09 = 0.15, omax = 0.5, duration d = 3 and periodicity p = 1. The
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Figure 8.9: The shock front unveiled. Black regions indicate where three-day shock
periods start. The four clusters correspond to the four maturities 30, 40, 50 and 60 days.

The spatial axis is in log-scale; the labels are normalized

frequency f varies between 1 and 20. Figure 8.10 lists the running time, the number of
lattice instances created, and the worst-case value as a function of f. Figure 8.11 shows
the worst-case value graphically.

The number of lattice instances created by the dynamic creation scheme is f x
([d/p] +1)+ 1 =4f + 1. Here, [d/p] is the number of conventional lattice instances per
level, [d/p] + 1 is the number of overall lattice instances per level, and the additional
lattice instance Lg is used for the level-zero linear pricing. The running time mirrors the
linear growth of the number of lattice instances, discounting some noise for higher values
of f.

For f = 20 the worst-case volatility-shock value and the conventional worst-case value
obtained under an uncertain volatility scenario 0.15 < o < 0.5 coincide, for 20 volatility
shocks of 3 days length each cover the entire 60-day lifetime of the portfolio. A coverage
of 10 x 3 = 30 days is, according to the data in Fig. 8.10, already sufficient to reproduce
the conventional value to within 1.3%.

Figure 8.12 shows the shape of the shock front on the top-level lattice for f = 2,3, 4,
respectively. In this context, the top-level lattice for f = a is a lattice instance b levels
away from the top for f = a + b. If a path hits one of the black regions in the top
picture, a three-day volatility-shock period is initiated after which the path continues on

the lattice instance shown in Fig. 8.9. Similarly, with intermediate three-day transitions
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with high volatility oscillation, paths examined under scenarios f = 3 and f = 4 jump
from the middle respectively bottom picture to the top respectively middle picture by
passing through one of the black regions. The shock region shows a vertical pattern
because shock periods may only start on day boundaries, but the time step is 1/10 of a

day.

Experiment 3: Convergence

Experiments 1 and 2 were executed with a time step of dt = 1/(10 x 365). Worst-case
prices ford =3, p =1and f = 1,2, 3, computed with 1, 2, 5, 10, 20, 50 and 100 steps per
day and shown in Fig. 8.13, certify the stability of the results obtained. No significant
improvement is achieved for dt < 1/(10 x 365).

Conclusion

The concept of refined volatility scenario makes direct economic sense. In particular,
volatility shock scenarios promise to remedy some of the flaws of conventional uncertain
volatility scenarios based on a perpetual volatility band. Among these are too pessimistic
price bands and unrealistic mapping of market behavior.

The preceding discussion and experiments prove that the computational overhead is
linear in the granularity d/p of the volatility shock scenario, and therefore bearable. No
sacrifices have to be made in terms of accuracy.

Figure 8.8 shows that volatility-shock prices are less extremal than prices obtained
under conventional uncertain volatility scenarios. Figure 8.11 shows that volatility shock
scenarios react gradually to an increase in the extent of volatility oscillation. Volatility
shock scenarios therefore permit to fine-tune the market model to a great degree. They

promise to be a valuable tool in assessing volatility risk.

8.2 Volatility Shocks and Exotic Options

Exotic volatility scenarios and portfolios of exotic options can be combined. The com-
putational overhead is multiplicative. The algorithm in Fig. 8.4 creates an initial set
of lattice instances with signatures (X, A\, 7, £, 0); additional lattice instances with signa-

tures (X', N, 7/,¢,d"), (X', N) C (X, ), may be created dynamically later (if the portfolio
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contains American options) or statically (if the portfolio contains barrier options).

Steps 1 and 2a in Fig. 8.5 refer to the untainted rollback scheme in Fig. 5.5. In the
case of exotic options, more sophisticated operations based on dynamic programming
need to be executed instead. Chapters 6 and 7 have explained how lattice instances
with partial portfolios are maintained to locate the exercise boundary or to supply it
with data, if barrier and/or American options are part of the problem. Luckily, this
kind of data transfer between lattice instances can be confined to steps 1 and 2a: the
maximum operator in the expression for V( J,i; L) in step 2(b)i is at the highest level and
does not interfer. (In mixed implicit/explicit schemes, however, this may create the same
problem as for American options, making iterative refinement of the initial solution of
the underlying linear system of equations necessary.)

Figure 8.14 illustrates the distinction between the “horizontal” relationship of lattice
instances for different partial portfolios, but with identical volatility shock parameters,
and the “vertical” relationship between consolidating and conventional lattice instances
with differing volatility shock parameters. The relationship between 7 and 7/, ¢ and ¢, ¢
and ¢’ is predetermined and has been discussed above. The relationship between (X, )
and (X', \') depends on the makeup of the portfolio. Certain is only that (X', ') C (X, A).

Figure 8.15 generalizes the microscopic example of Fig. 8.14 and shows a data flow
diagram for a volatility shock scenario with frequency f = 2. Each stack of boxes repre-
sents a component scenario for a fixed partial portfolio. The component scenario imports
data at every level from a subordinate component scenario located to its left, depending
on the requirements arising from the exotic options in the portfolio.

Mtg, our pricer, is capable of handling both exotic options and volatility shock sce-

narios at the same time. We do not give experimental results in this work.
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frequency f | time [s] | # lattices value
1 11.5 ) 3.264
2 20.9 9 3.462
3 33.2 13 3.648
4 43.3 17 3.816
o 53.0 21 3.946
6 70.8 25 4.051
7 78.8 29 4.136
8 89.1 33 4.197
9 92.5 37 4.240
10 106.6 41 4.271
11 128.1 45 4.291
12 138.8 49 4.306
13 151.1 53 4.316
14 172.9 57 4.322
15 150.3 61 4.325
16 178.3 65 4.326
17 220.3 69 4.327
18 233.4 73 4.327
19 239.2 7 4.327
20 271.5 81 4.327

Figure 8.10: Running times, number of lattice instances and worst-case volatility-shock

values for the portfolio in Fig. 8.7, as a function of the shock frequency f
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Figure 8.11: Worst-case volatility-shock values at S = 100 for the butterfly spread in
Fig. 8.7, as a function of the shock frequency f. The horizontal line represents the worst-

case value under the conventional volatility scenario 0.15 <o < 0.5
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Figure 8.12: The top-level shock front unveiled for f = 2,3,4. Black regions indicate

where three-day shock periods start. Notice that the shock front expands to the left as

the frequency increases. (also compare with Fig. 8.9 for f = 1)
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price
time step f=1]f=2|f=3
1/365 3.3859 | 3.5830 | 3.7672
1/(2 x 365) | 3.2922 | 3.4996 | 3.6887
1/(5 x 365) | 3.2717 | 3.4732 | 3.6603
— 1/(10 x 365) | 3.2637 | 3.4619 | 3.6488
1/(20 x 365) | 3.2587 | 3.4571 | 3.6458
1/(50 x 365) | 3.2569 | 3.4549 | 3.6437
1/(100 x 365) | 3.2560 | 3.4541 | 3.6429

Figure 8.13: Worst-case prices for the call spread in Fig. 8.7 under the shock-volatility
scenarios d = 3, p = 1 and f = 1,2,3. Results in experiments 1 and 2 were obtained
with a time step dt = 1/(10 x 365). The data shows that there are no convergence issues;
doubling the number of steps per day from 10 to 20 changes the result by 0.15, 0.13 and
0.08%, respectively

exotic options i 2

exotic volatility scenario

Figure 8.14: The lattice instance with signature (X, \, 7,&,0) imports data from lattice
instances with signatures (X', X', 7,&,d) and (X, A, 7',¢’,0"). The numbers indicate the

order in which data is imported
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Figure 8.15: A volatility shock scenario with f = 2 for a portfolio X containing some
exotic options. Each box represents one or more lattice instances; arrows represent the
data flow. The size of each box is proportional to the number of lattice instances in the

group it represents (in this case, we conjecture p < d)
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9 The Architecture of MtgLib

The algorithms of Chapters 6, 7 and 8 are part of a programming system for nonlinear
models in computationl finance. The name of this system, Mtg, has already appeared
where experimental results were presented.

Mtg consists of components written in C++ and Java. Figure 9.1 arranges the com-
ponents of Mtg in a top application layer, and a bottom support layer. The support layer
also contains in dashed boxes the third party software required to run the component

immediately on top.

Client «——— Server

MtgClt MtgSvr MtgMath

————————————————

i Web browser | MtgLib i Mathematica |

————————————————

Figure 9.1: Components MtgSvr and MtgLib are written in C++. MtgClt is written in
Java and runs in a Web-browser environment. MtgMath is part C++, part Mathematica

script

The main components of Mtg are:

MtgLib The core C++ library. MtgLib contains the majority of the code written for
this thesis, or about 81500 lines of code. MtgLib is platform-independent.

MtgSvr A background server process. MtgSvr receives and answers requests via TCP.
The text protocol used by MtgSvr serves mainly to transmit descriptions of object
instances of classes in MtgLib. MtgSvr is a tiny wrapper around MtgLib. Under
Unix, MtgSvr is a deamon; on Windows N'T, MtgSvr is implemented as a service.

See Buff (1999b).
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MtgClt A Java front-end that knows how to communicate with MtgSvr. MtgClt can
act both as stand-alone application and as applet run by a Web browser. It is
powerful enough to let the user create pricing problems with barrier and American
options, under worst-case and volatility shock scenarios. It is, however, restricted
to the lattice approach for Black-Scholes. MtgClt consists of approximately 11500

lines of Java code (about half of which is general-purpose).

MtgMath A front-end that uses the symbolic and plotting capabilities of the software
system for technical computation, Mathematica. MtgMath was mainly used to do

the experiments and prepare the graphs for this thesis.

There are other components of Mtg: MtgCal by Buff (1999c) is a model-independent
online calibrator for fixed income instruments, based on Monte Carlo simulation and
Entropy minimization. MtgGrab is a background process that collects current prices for
US treasury paper on the Internet and calibrates a Vasicek short rate model. Daily results
are published in Buff (1999d).

The philosophy of MtgGrab and MtgCal is briefly sketched in 10.2, to make the
reader familiar with our current work and give an idea of future research directions. Since
the thesis focuses on the complexity arising from exotic option portfolio and volatility
scenarios, however, the architecture of MtgLib itself is at the center of our attention.

Before we proceed, some informal remarks about lingo concerning lattice-based eval-
uation. Rollback is the term used to describe the outer loop that iterates over the time
slices tn,tnN_1,... ,to in the finite difference scheme. The inner loop processing that oc-
curs for each time slice, i.e. the propagation of the solution at time slice ¢;;; to the earlier
time slice t;, is called (rollback) round. Instead of time slice we sometimes say hyperplane
to emphasize the data aspect. Under a one-factor model, the hyperplane is actually a
two-dimensional plane with rows indexed sp, ..., sg,... , sy (see Sect. 5.1), and columns
for the total value and each gradient element. The number of columns used is called the
width of the hyperplane. The current round, time slice, hyperplane, or node refers to the
current iteration of the rollback loop (forgive the cyclic definition, it should be clear). We

use the terms Monte Carlo and simulation interchangingly, and sometimes together.
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9.1 The Class Hierarchy—External

The classes in MtgLib which correspond directly to input parameters and have some
intuitive “meaning” to the user are called external. Instances of these classes may be
defined in the scripting language in which MtgSvr communicates. The following categories

of external classes exist:

Instruments Maturity, payoff policy, knock-out policy and early-exercise policy are the
dominant orthogonal features of instruments. American/European options with or
without knock-out boundaries and with linear of digital payoff are standardized in
MtgLib (and in MtgClt, for that matter). A compact language allows to specify

other types of instruments.

Portfolios Portfolios are collections of instruments and generalize some of their proper-

ties (the longest maturity, for instance).

Models Models consist of specifications of factors and model coefficients, possibly un-
certain. With the exception of Sect. 10.2, a one-factor Black-Scholes model is used

throughout this thesis.

Model coefficients Model coefficients may have their own classes to allow term struc-
ture. At this time, piecewise constant volatility and drift coefficients are supported.

The volatility coefficient may be uncertain.

Scenarios Models and their (uncertain) coefficients are interpreted according to a pre-
scribed scenario. We have discussed worst-case volatility and volatility scenarios.
Their needs to be some consistency between the model and the scenario: if the
model incorporates uncertain model coefficients, the scenario must be able to select
concrete adaptions. Apart from that, scenarios are expressed without reference to

the model.

Numerical methods Possible numerical methods are closed-form solutions (not consid-
ered here), explicit or mixed implicit/explicit finite difference schemes, or simulation
methods (Monte Carlo). The requirements diverge: while finite difference schemes
are based on a collection of lattice instances, Monte Carlo methods require path

instances which are treated differently. In MtgLib, lattices and path spaces are
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1 claim a {

2 type american_put, maturity 30, strike 100 }

3 claim b {

4 type european_put, maturity 25, strike 100 }

5 claim ¢ {

6 type european_call, maturity 20, strike 100, up-and-out 110 }
7 claim d {

8 type european_put, maturity 15, strike 100, down-and-out 90 }
9

10 portfolio p { a long 200, b short 10, ¢ long 2, d short 1 }

11

12 factor s {}

13 vol v { implied 30 10%..20% }

14 drift r { implied 30 2.5% }

15 model m { type back_scholes, vol v, discount r, s 100 }

16 scenario s { type worst_case, seller }

17

18 lattice 1 { model m, portfolio p, tree 3.5, time_step 0.5 }

19

20 evaluate { model m, lattice 1, scenario s, portfolio p }

Figure 9.2: An example script understood by MtgSvr. Scripts like this can be transmitted
to MtgSvr manually via telnet, or indirectly through the GUI of MtgClt

indeed seperate objects, with a third entity hierarchy of compute engines providing

unified access.

Evaluaters MtgSvr collects objects in a repository without initiating concrete pricing
operations itself. This is done by specifying an evaluator object which lives only
while the particular portfolio/model/scenario combination is evaluated. Evaluators

format the result and send it back through the TCP or MathLink pipe.

Figure 9.2 shows an example script that, when submitted to the MtgSvr deamon via
TCP, initiates the computation of the worst-case price of a portfolio of three puts and
one call, under a volatility scenarion 0.1 < ¢ < 0.2. The script describes instances of all

the classes listed above.
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The following sections discuss each category in more detail. Although code fragments
are included, this overview is not a tutorial on how to use MtgLib. Instead, design ideas

are emphasized.

9.1.1 Instruments

The class hierarchy into which instruments are organized is shown in Fig. 9.3. The parent

class tClaim is abstract and needs to be instantiated in subclasses.

Class name Purpose
tClaim Parent class (abstract)
tStdClaim Standard calls and puts

tCustomClaim | Customizable in a mini-language

tCashflow Supporting class (abstract)

Figure 9.3: The hierarchy of instrument classes. Indentation indicates inheritance. Stan-
dard instruments are calls and puts, American or European, with linear or digital payoff,

with or without barriers

tClaim provides a unified interface to relevant instrument properties. Its definition is
shown in Fig. 9.4. The scalar properties listed in the private section are initialized from
script declarations common for all instrument types. The virtual functions in the public
section must be overridden in subclasses to create the unique outlook of the particular
instrument type. The middle section contains two functions that are used during the
construction of the finite difference lattice: getEvents() must deliver the location of
all relevant events (maturity, cashflow, barrier, early exercise or otherwise) on the time
axis. The lattice is then guaranteed to match these events. getBarriers() may (but is
not forced to) return the location in space of eventual knock-out barriers. Designing the
lattice to match those increases numerical accuracy, but is not absolutely mandatory.

The semantic of the member variables and functions is summarized in the following

paragraphs.

mnMaturity indicates the number of days to maturity. No real calendar dates are sup-

ported yet by MtgLib for lattice-based evaluation.
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1 class tClaim : public tObject {

2

3 int m_nMaturity;

4

5 double m_gMultiplier;

6

7 bool m_bHasUpBarrier;

8 double m_gUpBarrier;

9

10 bool m_bHasDownBarrier;

11 double m_gDownBarrier;

12

13 bool m_bMonitor;

14

15 tCashflow* m_Cashflow[...];

16

17 protected:

18

19 virtual void getEvents( ... ) const;

20 virtual void getBarriers( ... ) const;

21

22 public:

23

24 virtual double payoff( tEngine& Engine );

25 virtual double knockoutPayoff( tEngine& Engine );
26 virtual double exercisePayoff( tEngine& Engine );
27

28 virtual bool upBarrier( tEngine& Engine, double& gBarrier );
29 virtual bool downBarrier( tEngine& Engine, double& gBarrier );
30

31 virtual tExPolicy monitor( tEngine& Engine, double gUnitValue );
32 };

Figure 9.4: A crude sketch of the class definition of tClaim. Possible values of the

enumeration type tExPolicy are DontExercise, ForceExercise and MayExercise
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m_gMultiplier represents the position in the instrument and corresponds to .

m bMonitor is a boolean flag that indicates whether the virtual member function moni-

tor () should be used or not. This flag is set for American options.

m_Cashflow is a list of objects derived from the abstract class tCashflow, whose definition
is given in Fig. 9.5. Each cashflow object implements additional, possibly space-

dependent cashflow on a fixed date.

payoff () computes the payoff at maturity. The tEngine object whose reference is passed
to payoff() and all other functions in tClaim provides information about the
current state. For lattice instances, the Engine contains the current node instance
(4,1; L) on which payoff () must base its calculation. The values of s; and ¢; can be
queried with Engine.day() and Engine.factor(), respectively. (Here we assume
a one-factor model. Multi-factor models are also supported.) Engines are discussed

below, in Sect. 9.2.1.

knockoutPayoff () computes the premium at knock-out. Unless overridden, this func-

tion always returns 0.

exercisePayoff () computes the payoff received at early exercise. By default, this func-

tion calls and returns the result of payoff ().

upBarrier() returns true if there is an up-and-out barrier for the current time slice,
as determined by Engine. If also returns the barrier itself. Unless overridden,

upBarrier() is defined as

1 bool tClaim::upBarrier( tEngine& Engine, double& gBarrier ) {
2 if ( m_bHasBarrier ) {

3 gBarrier = m_gUpBarrier;

4 return true;

5 ¥

6 return false;

7%

downBarrier () works in an analoguous way for down-and-out barriers.

monitor () returns a safe estimate (!) of the local early-exercise policy. Possible return

values are
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e DontExercise if the instrument must not be exercised under the current state.
e ForceExercise if the instruments must be exercised at once.

e MayExercise if the instrument may or may not be exercised. Any further
decision depends on the entire outlook and cannot be determined by the in-

strument alone.

Note the analogy with the concepts of continuation, exercise and corridor of un-
certainty developed in Chapter 7. It is not, however, the task of monitor() to
implement any of the speed-up techniques of Sect. 7.2. This is done by the com-
pute engine in cooperation with the scenario object (see Sect. 9.1.5). The proper

implementation for standard American options is thus simply

1 tExPolicy monitor( tEngine& Engine, double gUnitValue ) {
2 return MayExercise;

3}

monitor () can also be used to implement irregular barriers, bypassing the upBar-
rier() and downBarrier() member functions. In this case, continuation and
knock-out regions are deterministic. They are implicitly located through the Dont-

Exercise and ForceExercise return values.

The definition of the supporting class tCashflow is given in Fig. 9.5. The member

array m_Cashflow is examined during rollback just like the functions upBarrier () and

downBarrier () are called for each time slice. The simplest instantiation of tCashflow

would override the generate () member function with

1 double generate( tEngine& Engine ) {
return c;

3}

where ¢ is some fixed coupon payment.

tStdClaim instantiates tClaim and supports instruments with the following orthog-

onal features:

e Call or put option?

e Linear or digital payoff?
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class tCashflow {

int m_nDay;

1

2

3

4

5 protected:
6

7 virtual double generate( tEngine& Engine );
8

};

Figure 9.5: The definition of abstract class tCashflow. Cashflows are generated on day

boundaries

e American or European?
e Up-and-out and/or down-and-out barrier?

Strike and maturity are the remaining properties. Its implementation is straightforward.
tCustomClaim also instantiates tClaim, but does so in a customizable manner by parsing

flexible script expressions for

e The payoff at maturity,

the payoff at knock-out (if relevant),

the payoff at early exercise (if relevant),

the location of the knock-out barrier (time-dependent),

a policy for determining early exercise,
e optional cashflows at fixed dates.

Figure 9.6 shows how these expressions are embedded into the parent class tClaim. The
classes tNumericalExpr and tExPolicyExpression are not shown here; we merely note
that both classes provide a member function apply() which is used to evaluate the

expression. payoff (), for instance, is defined as follows:

1 double tCustomClaim::payoff( tEngine& Engine ) {
2 if ( m_pPayoff != 0 )
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3 return m_pPayoff->apply( Engine );
4 return O;

5%

Expressions have access to the state information contained in Engine, through key-
words such as time. The following script fragment, for instance, defines an up-and-out
barrier call with strike 110 and barrier 120, where the barrier is only active for the first

50 days after settlement.

1 claim x {

2 type custom, maturity 100,

3 payoff { max( s - 110, 0 1},

4 up_and_out { if time < 50 then 125 endif }
5}

9.1.2 Portfolios

Portfolios are collections of instruments. As such, they provide a generalized interface
to some of the properties of instruments. The class tPortfolio is final; there are no
subclasses.

A definition is given in Fig. 9.7. The meaning of the individual class members is as

follows:
m_Claim References to all claims are collected here.

m Factor In a multi-factor setting, different instruments may refer to different factors,
or to the same factors in a different order. To establish a unique order of factors,

the factors referenced in any of the instruments are collected in the array m_Factor.
maturity() The longest maturity of any of the instruments in the portfolio.

claim() To access individual instruments, this function must be used. The argument

refers to the position of the instrument in m_Claim, which is sorted by maturity.

getEvents () This function in turn calls tClaim: :getEvents () for each instrument and
amalgamates the result, which is used in another place to calculate the discretization

of the time axis for the lattice.
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1 class tCustomClaim : public tClaim {

2

3 class tCustomCashflow : public tCashflow {

4 public:

) tNumericalExpr* m_pExpr;

6 double generate( tEngine& Engine );

7 };

8

9 tNumericalExpr *m_pPayoff;

10 tNumericalExpr *m_pKnockoutPayoff;

11 tNumericalExpr *m_pExercisePayoff;

12

13 tNumericalExpr *m_pUpBarrier;

14 tNumericalExpr *m_pDownBarrier;

15

16 tExPolicyExpr *m_pMonitor;

17

18 double payoff( tEngine& Engine );

19 double knockoutPayoff ( tEngine& Engine );

20 double exercisePayoff( tEngine& Engine );

21

22 bool upBarrier( tEngine& Engine, double& gBarrier );
23 bool downBarrier( tEngine& Engine, double& gBarrier );
24

25 tExPolicy monitor( tEngine& Engine, double gUnitValue );
26 };

Figure 9.6: The definition of tCustomClaim, an instantiation of tClaim. The correspond-

ing extension of tCashflow is defined locally
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1 class tPortfolio {

2

3 tClaim* m_Claim[...];

4 tFactor*x m_Factor[...];

)

6 public:

7

8 int maturity() const;

9 tClaim& claim( int nPos ) const;

10

11 void getEvents( ... ) const;

12

13 void getBarriers( const tFactor* pFactor,
14 double Barrier[...] ) const;

15

16 tRetCode matchFactors( const tModel& Model ) const;
17 };

Figure 9.7: A very condensed definition of tPortfolio

getBarriers() Calls tClaim: :getBarriers for each instrument and combines the re-
sult, which is used by the algorithm in Fig. 5.4 to place the spatial levels of the

lattice.

matchFactors() The factors in m_Factor are collected without knowledge of the particu-
lar model under which the portfolio is to be evaluated. If the elements of m_Factor
are the factors Si,...,Sy,, and the model makes use of factors Si,...,S;,, then
n = m must be asserted and the correct mapping found. This task is done by

matchFactors().

The functionality of portfolio objects is mostly used in the preparatory stage of evalua-
tion. During actual rollback or simulation, instruments are directly accessed through the

claim() member function.

9.1.3 Models

Just like instruments, models are supported through an abstract parent class, tModel, and

child classes which provide the model-specific body. Figure 9.8 shows the dependencies.
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The child class tBSModel is only used for lattice-based evaluation under the Black-Scholes
model. The child classes tHIJMGaussianModel and tVasicekModel (two levels removed
from the parent class) support only Monte Carlo methods for fixed-income instruments.

They are mentioned here only for the sake of completeness.

Class name Purpose
tModel Parent class (abstract)
tBSModel One-factor Black-Scholes model

(tHJMGaussianModel) | For fixed-income
(tShortRateModel) For fixed-income
(tVasicekModel) | For fixed-income

Figure 9.8: The model hierarchy. Fixed-income models are not discussed here and there-
fore parenthesized. They are, however, implemented for the calibrator whose architecture

is briefly surveyed in Sect. 10.2

The definition of the class tModel is shown in Fig. 9.9. The semantics of the member

components of tModel are as follows:

m Factor The number of factors in the model is not predetermined. Factors are registered
at creation by the child class. However, the number of factors must be known at
the level of the parent class tModel (functions to query the number of factors and
other trivial information are not included in the figure). For this reason, references
to factors are stored in m_Factor. (Initial values of factors, however, are stored in
the child class.)

m pCalendar The calendar object is optional and at this time only supplies the scaling
factor for the conversion between day and year-based quantities: the time-unit used
in lattice calculations is one day, while model coefficients are usually quoted in their

annualized form. If no calendar object is specified, a year of 365 days is assumed.

Before we proceed to describe public member functions, a remark on compute engines.
The knowledge about the factor dynamics is encapsulated in the model. In particular,

information about PDE’s (for lattice-based methods) and SDE’s (for simulation methods)

158



1 class tModel {

2

3 tFactor* m_Factor[...];

4 tCalendar* m_pCalendar;

5

6 public:

7

8 // Functions for lattice-base methods:

9

10 virtual tRetCode createEngine( const tScenario* pScenario,
11 tFDEngine*& pEngine, tAccuracy m_nAccuracy );

12

13 virtual tRetCode createSpaceAxis( tFDMethod nMethod,
14 double gMaxDt, tSpaceAxis* Spacel...],

15 const tPortfolio* pPf = 0 );

16

17 // Functions for simulation methods:

18

19 virtual tRetCode createEngine( tMCEngine*& pEngine );
20

21 virtual tRetCode createEvolution( const tPathSpace& PathSpace,
22 tMCEngine: :tEvolutionStub*& pEvolution ) const;
23 };

Figure 9.9: The fundamental members of the class tModel. A model that supports lattice-
based methods must implement the first two virtual functions (FD = finite differences). A
model that supports simulation methods must implement the last two virtual functions
(MC = Monte Carlo)
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can only be found in the model specification. The model provides this information by
creating model-specific compute engines, which are based on the parent class tEngine
and maintain and make accessible all the necessary runtime information during rollback
or simulation. In some sense, the run() member function of tFDEngine or tMCEngine
corresponds to the main() function in C++ programs, and its member variables contain
the current global state of the computation.

Engines are discussed in more detail below, in Sect. 9.2.1. At this point we merely
observe that different types of engines are created for lattice-based and simulation-based

computation: tFDEngine and tMCEngine are the respective child classes.

createEngine (), first version Creates a compute engine for lattice-based evaluation.
To create the proper engine, the model must know the scenario. Volatility shock
scenarios, for instance, require a more complicated regimen for lattice instance
creation than worst-case volatility scenarios (see Chapter 8). It is the engine which

creates and maintains lattice instances.

The model must also know the selected speed-up technique for American options.
This parameter, nAccuracy, is forwarded to the created engine. The name nAccu-
racy reflects the generality of the parameter; the engine chooses the speed-up tech-
nique that matches the parameter. Possible values are Exact (corresponding to the
maintainance of corridors of uncertainty) and Low (corresponding to the collapsing

of corridors of uncertainty).

createSpaceAxis() Creates the spatial discretization for lattice-based models, based on
the algorithms in Figs. 5.4 and 5.5, and returns it in Space. Space is an array
with one entry per factor. The parameter nMethod can take the values Explicit
and Implicit and controls to what extent stability is a concern. gMaxDt corre-
sponds to the input parameter diy.y in Fig. 5.4. The optional parameter pPf
references a portfolio object. If present, the portfolio barriers are retrieved with

pPf->getBarriers() and passed to the algorithm in Fig. 5.4.

createEngine (), second version This version creates a compute engine for simulation
methods. At this point, simulation methods are not scenario based and therefore

no additional arguments are required.
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createEvolution() Simulation methods work by shooting one random path at a time

” The random path is then converted into the corre-

in the so called “path space.
sponding factor paths by calling createEvolution(). Evolutions are organized in

their own separate class hierarchies, not shown here.

A historical note concerning the class tCalendar: lattice-base evaluation was imple-
mented before actual calendar dates could be processed. In a future version, tCalendar

will yield to features in MtgLib that already support true dates for Monte Carlo methods.

1 class tBSModel : public tModel {

2

3 tDrift* m_pDiscount;

4 tDrift* m_pCarry;

5 tDrift* m_pMu;

6

7 tVol* m_pVol;

8

9 double m_gRoot;

10

11 public:

12

13 tRetCode createSpaceAxis( tFDMethod nMethod, double gMaxDt,
14 tSpaceAxis Spacel[...], const tPortfoliox* pPf = 0 );
15

16 tRetCode createEngine( const tScenario* pScenario,

17 tFDEngine*& pEngine, tAccuracy nAccuracy );

18 };

Figure 9.10: The class tBSModel, the model body for one-factor Black-Scholes. Only

lattice-based evaluation is supported

One instantiation of tModel is shown in Fig. 9.10. tBSModel only supports lattice-
base evaluation for one-factor Black-Scholes with time-varying coefficients. The member

components have the following interpretation:

m_pDiscount References an interest-rate term structure for the parameter r of (4.4.8).

The class tDrift is explained in Sect. 9.1.4.
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m_pCarry References a term structure for the dividend rate or foreign interest rate, de-

pending on whether the underlying asset is a stock or an exchange rate.

m_pMu The no-arbitrage drift parameter. References a term structure for the difference

between m_pDiscount and m_pCarry.

m pVol References a volatility term structure that may exhibit uncertainty. The object

*m_pVol contains upper and lower bounds for the local volatility for each time slice.

m_gRoot The initial value Sy of the underlying asset. The lattice is constructed such that

Sp = S().

createSpaceAxis() Finds the stable spatial discretization that matches the barriers of
the (optional) portfolio parameter and returns exactly one object instance of the
class tGeoSpaceAxis. The prefix “Geo” means geometric Brownian motion. The
member function prepare() of this class, called in createSpaceAxis(), uses the

algorithm in Fig. 5.4. Figure 9.11 contains a skeleton of createSpaceAxis().

createEngine() Creates the lattice-based compute engine appropriate for the scenario
parameter. Two types of compute engines for one-factor Black-Scholes are currently
implemented: tGeoEngine for worst-case volatility scenarios (class tWorstCase)
and tShockEngine for volatility shock scenarios (class tShockScenario). Run-
time type information (RTTI) is used to distinguish these cases. The function is

outlined in Fig. 9.12.

(Remark: the way createEngine() is coded leads to an extensibility problem.
Prolongued sequences of conditional statements guarded by dynamic down-casts
should be avoided. There are a handful of spots in MtgLib where this problem

occurs.)

9.1.4 Model coefficients

Constant model coefficients such as the initial value of the underlying asset are handled
by the model class itself: tBSModel: :m_gRoot is an example. Other model coefficients

have more structure and deserve their own classes. As coefficients depend on the actual

162



1 tRetCode tBSModel::createSpaceAxis( tFDMethod nMethod,
2 double gMaxDt, tSpaceAxis Spacel[...], const tPortfolio* pPf )
3

4 {

) double gMinVol, gMaxVol, gMinMu, gMaxMu;

6

7 m_pVol->getFwdRange ( gMinVol, gMaxVol );

8 m_pMu->getFwdRange ( gMinMu, gMaxMu ) ;

9

10 tGeoSpaceAxis* p = new tGeoSpaceAxis;

11

12 if( pPf !'=0) {

13 double Barrier[...];

14

15 pPf->getBarriers( m_Factor[0], Barrier );

16 p—>prepare( nMethod, m_gRoot, gMinVol, gMaxVol,
17 gMinMu, gMaxMu, Barrier );

18 ¥

19 else {

20 p—>prepare( nMethod, m_gRoot, gMinVol, gMaxVol,
21 gMinMu, gMaxMu );

22 ¥

23

24 Space.append( p );

25 return 0K;

26 ¥

Figure 9.11: A sketch of the member function tBSModel: :createSpace(). The class
tGeoSpaceAxis is derived from tSpaceAxis and supports geometric Brownian motion

models. It calls tGeoSpaceAxis: :prepare (), which implements the algorithm in Fig. 5.4
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1 tRetCode tBSModel::createEngine( const tScenario* pScenario,
2 tFDEngine*& pEngine, tAccuracy nAccuracy )

3

4 {

5 if ( dynamic_cast<const tShockScenario*>( pScenario ) != 0 ) {
6 pEngine = new tShockEngine;

7 }

8 else

9 if ( dynamic_cast<const tWorstCase*>( pScenario ) != 0 ) {
10 pEngine = new tGeoEngine;

11 ¥

12 else {

13 return NOT_AVAILABLE;

14 }

15

16 pEngine->setAccuracy( nAccuracy );

17 return 0K;

18 ¥

Figure 9.12: The member function tBSModel::createEngine(). tShockEngine and
tGeoEngine are both derived from tFDEngine. Both classes support one-factor geometric

Brownian motion models (the “Geo” prefix)

model, corresponding classes may be quite diverse, and form a collection rather than a
strictly hierarchical class tree.

Figure 9.13 shows the inheritance relations for the model coefficient classes currently
supported in MtgLib. The tTermStruct hierarchy was developed first and does not
support real calendar dates; real calendar dates are only handled on the level of tDrift
and tVol and below. The classes tHIMTermStruct and tShortRateTermStruct, on the
other hand, were developed with support for real calendar dates already in mind. They
are used as model coefficient classes for interest-rate models and not discussed further in

this thesis.
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Class name Purpose

tTermStruct Parent term structure class (abstract)
tLinTermStruct Term structure for linear coefficient
tSqTermStruct Term structure for quadratic coeffiient

tDrift General term structure class for drift (abstract)
tStepDrift Piece-wise constant drift

tVol General term structure class for volatility (abstract)
tStepVol Piece-wise constant volatility

(tHJMTermStruct) For fixed-income

(tShortRateTermStruct) | For fixed-income

Figure 9.13: Classes for model coefficients. These classes are model-dependent; they do

not share a common base class

The Base Class tTermStruct

tTermStruct is the core class for piece-wise constant time-varying model coefficients. If

« is a model coefficient for an n-factor model with factors Xy,... , X, then
a(X1(t),..., Xn(t),t) = a(t) = c (9.9.1)

with & such that ¢ € [tx_1, tx] for some times slices t;_1 and .

The basic functionality of tTermStruct is to compute the values
a(t) (9.9.2)

and

bia / ’o(t) di (9.9.3)

fast. The granularity of ¢, ¢ and b is assumed to be one day.
tTermStruct can be used for both linear and quadratic parameters, such as drift and

volatility. This generality is achieved by introducing a scaling function ¢ and replacing

(9.9.3) with
- (bia / b¢(a(t))dt> (9.9.4)
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For linear term structures, ¢ is the identity. For quadratic term structures such as
volatility, ¢(z) = 22.

Assume jumps occur at jump points ug, 41, ... ,uy, where each u matches some time
sline ; (most likely M < N). To compute (9.9.2) and (9.9.4) fast, the following quantities

are maintained for each jump point u:
m_gFwd = «,

m_gFwd2 = ¢(ay,) (9.9.5)

oo [t

(9.9.4) can then be computed for all intermediate time slices ¢ with O(1) overhead, by
using m_gImp of the previous sample point u as a base and adding m_gFwd2, multiplied by
the number of days between u and ¢. Subsequent normalization is straightforward.

The remaining problem is to locate the previous jump point u for a given intermediate
time slice ¢, if ¢ is not also a jump point. A shallow forest of bounded depth does
the trick for tTermStruct. At the highest level of the forest, each node represents 100
consecutive days. Only if such a period contains a jump point is refinement necessary: the
corresponding node branches into 10 child nodes, each covering a period of 10 days, and
so on. The memory requirements for this data structure are still linear in the number
of days covered by the term structure, but nevertheless reduced 100-fold compared to
day-by-day storage if the number of jumps is small.

Figure 9.14 summarizes the important components of class tTermStruct. Their in-

terpretation is as follows:

m_Spec The nested type tSpec describes one jump point. The member variable m nUnit
locates the jump point in time. m_gFwd, m_gFwd2 and m_gImp are defined in (9.9.5).
tMap is a template for the efficient implementation of the shallow forest data struc-
ture mentioned above. m_Spec is built as jump points are added with addForward ()

and addImplied().
scaleUp() The scaling function ¢.
scaleDown() The inverse of the scaling function ¢.

addForward() and addImplied() The term structure object is constructed by calling
addForward() or addImplied() for each jump point. When all jump points have
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class tTermStruct {

1

2

3 struct tSpec {

4 int m_nUnit;

) double m_gFwd;
6 double m_gFwd2;
7 double m_gImp2;
8

9

s
10 tMap<tSpec> m_Spec;
11
12 protected:
13
14 virtual double scaleUp( double gFwd ) const;
15 virtual double scaleDown( double gFwd ) const;
16
17 public:
18
19 tRetCode addForward( int nMaturity, double gFwd );
20 tRetCode addImplied( int nMaturity, double gImp );
21
22 void getFwdRange( double& gMin, double& gMax ) const;
23
24 double forward( int nUnit ) const;
25 double forward( int nFromUnit, int nToUnit ) const;
26
27 int constantUntil() const;
28 int certainUntil( const tTermStruct& TS ) const;
29 };

Figure 9.14: The skeleton of class tTermStruct. Although the basic time unit is one
day in most cases, the code itself is independent of the concrete time unit. m nUnit,
nUnit, nFromUnit and nToUnit are therefore used instead of m_nDay, nDay, nFromDay

and nToDay
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been specified, the constant term structure rate between each pair of jump points

is determined as follows:

e If the jump point u = ¢, has been added with addForward(), then the rate
between the previous jump point and u is simply set to the actual value of the

gFwd parameter.

e If the jump point u = ¢, has been added with addImplied(), then the rate
between the previous jump point and u is set to the rate which makes the

integrated rate equal to the actual value of gImp, i.e.

o (3 [ statnar) = gamp

Note that this calculation can fail if ¢ is not the identity!

The parameters nUnit, nFromUnit and nToUnit indicate the endpoint of the respec-
tive time unit, where time units are counted from zero. This makes the extension

to fractional parameters consistent.

getFwdRange () Once all jump points have been added and the term structure has been
finalized, the oscillation of the term structure can be determined by calling get-
FwdRange (). This information is important for the construction of a stable lattice

under the explicit finite difference scheme.

forward() The one- and two-parameter versions correspond to (9.9.2) and (9.9.4), re-

spectively.

constantUntil() It may be useful to know the length of the initial constant segment of

the term structure. constantUntil() returns this information.

certainUntil() It is also useful to know wether a certain configuration of model coef-
ficients exhibits uncertainty at all. certainUntil() tests this by comparing the
current term structure with the argument TS, and returning the length of the initial

segment on which they agree.

The term structure extrapolates beyond the first and last jump points by propagating

the rates of the first and last constant segment to —oco and oo.
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Classes Derived from tTermStruct

The child class tLinTermStruct is a straightforward instantiation of tTermStruct, with ¢
being the identity. The child class tSqTermStruct is mildly more complicated; Figure 9.15

shows its definition, together with the implementation of the scaling function and its

inverse.
1 class tSqTermStruct : public tTermStruct {
2
3 double scaleUp( double gFwd ) const {
4 return gFwd * gFud;
5 }
6
7 double scaleDown( double gFwd ) const {
8 return sqrt( gFwd );
9 }

10 };

Figure 9.15: The child class tSqTermStruct. Shown are both declaration and definition

of the scaling function and its inverse

Classes with tTermStruct Components

The classes tDrift and tVol are more interesting. They are independent of any actual
implementation of the drift or volatility term structure and offer a standard query inter-
face for forward rates or volatilities. Piece-wise constant realizations of drift or volatility
term structure are obtained by combining the tDrift or tVol shell with tTermStruct as

“meat.” The formula is
tDrift + tLinTermStruct = tStepDrift
and
tVol + 2 X tSqTermStruct = tStepVol

tLinTermStruct and tSqTermStruct contribute as member components. The class
tStepDrift contains a tLinTermStruct object and forwars queries to it; tStepVol con-

tains two tSqTermStruct objects to allow for uncertainty, and forwards queries to them.
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Composition makes more sense than multiple inheritance in this case, because the number

of term structure objects is variable.

1 class tDrift {

2

3 public

4

5 tDrift () ;

6

7 virtual void getFwdRange( double& gMin, double& gMax ) const;
8

9 virtual double forward( int nUnit ) const;

10 virtual double forward( int nFromUnit, int nToUnit ) const;
11

12 virtual double implied( int nMaturity ) const;

13

14 virtual int constantUntil() const;

15 };

Figure 9.16: Class tDrift is an abstract interface for drift coefficients. Piece-wise con-

stant drift term-structures are one possible instantiation of tDrift

Figure 9.16 shows the abstract tDrift interface. All virtual functions are pure. A
call to implied() is equivalent to a call to forward() with the first parameter set to
7Zero.

Figure 9.17 shows the tVol interface. Again, all virtual functions are pure. However,
any concrete instantiation of tVol is expected to initialize the following member variables

correctly:

m nConstantUntil The length of the initial period during which the volatility is constant

(there is no uncertainty during that period!).

mnCertainUntil The length of the initial period during which the volatility is certain.

Necessarily, m nConstantUntil < m nCertainUntil.

Both m nConstantUntil and m nCertainUntil can be retrieved from the object with

trivial functions not shown in the figure.
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1 class tVol {

2

3 int m_nConstantUntil;

4 int m_nCertainUntil;

)

6 public:

7

8 virtual void getFwdRange( double& gMin, double& gMax ) const;
9

10 // Return a single value:

11 virtual double forward( int nUnit ) const;

12 virtual double forward( int nFromUnit, int nToUnit ) const;
13

14 virtual double implied( int nMaturity ) const;

15

16 // Return a range of value:

17 virtual void forward( int nUnit, double& gMin,

18 double& gMax ) const;

19 virtual void forward( int nFromUnit, int nToUnit, double& gMin,
20 double& gMax ) const;

21

22 virtual void implied( int nMaturity, double& gMin,

23 double& gMax ) const;

24 };

Figure 9.17: Class tVol is an abstract interface for volatility coefficients.

constant volatility term-structures are one possible instantiation of tVol

Piece-wise
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tVol has two sets of volatility retrieval functions: the first set returns a single value,
the second a range of values in reference parameters gMin and gMax. If there is no uncer-
tainty, both versions are equivalent. If there is uncertainty, however, and the volatility
bounds differ, then only the second set of retrieval functions is required to return the orig-
inal volatility bounds defined during construction of the object faithfully. The first set of
retrieval functions may return any value, the arithmetic average between the minimum
and maximum being one example and some additional prior volatility another.

It was mentioned earlier that tDrift and tVol are capable of handling real calendar

dates. These features are ommitted in Figs. 9.16 and 9.17.

Piece-wise linear drift and volatility coefficients are finally realized in the classes
tStepDrift and tStepVol (“Step” for step function). Figure 9.18 shows the definition
and implementation of tStepDrift, which basically acts as a proxy for its tLinTerm-
Struct member object. Figure 9.19 shows the definition of tStepVol, whose implemen-
tation is only slightly less trivial. The two-parameter forward() function, for instance,

is implemented as

1 void tStepVol::forward( int nFromUnit, int nToUnit, double& gMin,
2 double& gMax ) const

3

4 {

5 gMin = m_MinTermStruct.forward( nFromUnit, nToUnit );

6 gMax = m_MaxTermStruct.forward( nFromUnit, nToUnit );

7}

The objects v and r in the script shown in Fig. 9.2 are automatically mplemented as
tStepVol and tStepDrift instances, respectively. tStepVol and tStepDrift instances
are also used to model the volatility, interest rate, and dividend rate or foreign exchange

rate in class tBSModel (see Fig. 9.10).

9.1.5 Scenarios

Scenario objects perform an “advisory” function for lattice-based evaluation. They are
used by compute engines derived from tFDEngine to determine locally how to select
the uncertain model coefficients. They also control the assignment of lattice nodes to
continuation and exercise regions, and the corridor of uncertainty. Figure 9.20 shows the

class hierarchy.
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class tStepDrift : public tDrift {

tLinTermStruct m_TermStruct;

void getFwdRange( double& gMin, double& gMax ) const {

1

2

3

4

5 public:
6

7

8 m_TermStruct.getFwdRange( gMin, gMax );
9

}
10
11 double forward( int nUnit ) const {
12 return m_TermStruct.forward( nUnit );
13 }
14
15 double forward( int nFromUnit, int nToUnit ) const {
16 return m_TermStruct.forward( nFromUnit, nToUnit );
17 }
18
19 double implied( int nMaturity ) const {
20 return m_TermStruct.implied( nMaturity );
21 }
22
23 int constantUntil() const {
24 return m_TermStruct.constantUntil();
25 }
26 1

Figure 9.18: Piece-wise linear drift coefficients are of type tStepDrift, essentially based

on the functionality of tLinTermStruct
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1 class tStepVol : public tVol {

2

3 t3qTermStruct m_MinTermStruct;

4 tSqTermStruct m_MaxTermStruct;

5

6 public:

7

8 void getFwdRange( double& gMin, double& gMax ) const;

9

10 double forward( int nUnit ) const;

11 double forward( int nFromUnit, int nToUnit ) const;

12 double implied( int nMaturity ) const;

13

14 void forward( int nUnit, double& gMin, double& gMax ) const;
15 void forward( int nFromUnit, int nToUnit,

16 double& gMin, double& gMax ) const;

17

18 void implied( int nMaturity, double& gMin, double& gMax ) const;
19 };

Figure 9.19: Piece-wise linear, possibly uncertain volatility coefficients are of type
tStepVol. The implementation of the member functions is almost as trivial is those

of tStepDrift

The Base Class

Figure 9.21 shows how these two tasks are reflected in the class definition. Before indiviual
components are discussed, however, we need to clarify the usage of tags.

In Defs. 5.1 and 8.3, the notion of (extended) lattice signatures has been introduced
to uniquely identify individual lattice instances in the collection of lattice instances main-
tained for the particular problem. To be able to handle a wide set of scenarios, a con-
crete scenario must provide a way to translate a scenario-dependent lattice signature

(X, A, optseq) into a regularized signature which is easier to process.

Definition 9.1 (Regularized lattice signature). Let (X, A, optseq) be the pattern of
signatures for lattice instances for a concrete scenario, with optseq denoting an optional

sequence of coefficients. Then triples of the form (X, \,2m), m > 0, are called regularized
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Class name Purpose

tScenario Parent class (abstract)
tWorstCase Worst-case volatility scenario

tShockScenario | Volatility shock scenario

Figure 9.20: Scenario classes. Each class extends the functionality of its parent

lattice signatures for the scenario if there is an unambiguous mapping between the two
patterns. Furthermore, for the root lattice instance from which the final result is retrieved,

2m = 0 must hold. 2m is called the signature tag.

Compute engines use this regularized form to manage the storage of lattice instances.
For worst-case volatility scenarios, optseq is empty, and the tag is always zero. For
volatility shock scenarios, optseq = (7,&,d). It is straightforward to translate triples
(1,€,0) into integer tags 2m. Arranging lattice instances as shown in Fig. 8.3 and counting
them from top to bottom, and from left to right, yields a valid sequence.

Tags are even-numbered. Odd-numbered tags are also used internally, reversing the
evaluation view-point from sell-side to buy-side, or vice versa. Thus, if F (L) is computed
on a lattice instance with regularized lattice signature (X, A, 2m), then —F(L') is com-
puted on lattice instance L' with signature (X, —\,2m + 1). This reversal is necessary to
compute the boundaries of corridors of uncertainty, namely F(LY) and —F(L%). (Recall
that the signatures of LY and LY are (X,,,1) and (X,,, —1), respectively. See Sect.7.2.1.)

With this information, the member elements of tScenario are as follows:

m_nPosition The nested type tPosition allows to flip the evaluation view-point glob-
ally. So far in this thesis, worst-case scenarios have always beed regarded from
the seller’s point of view, and prices have been maximized to cover the worst-case
liability. To take the buyer’s position, on the other hand, means to seek the small-
est price to pay, in order to avoid loosing when the market behaves adversely.
This changes the maximization to a minimization procedure: the “sup,..” turns
into an “inf,c¢” in (4.4.10) and all the similar equations that follow. Simlarly,
the “mingc4(z) maxpcp(r)” first introduced in Def. 7.8 and occuring throughout

»

Chapter 7 changes to “maxsc ) mingcp(r).” This is because the interpretation
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1 class tScenario {

2

3 public:

4

5 enum tPosition {

6 Buyer,

7 Seller

8 s

9

10 private:

11

12 tPosition m_nPosition;

13

14 public:

15

16 virtual bool underControl( double gMultiplier );

17

18 virtual void refineExPolicy( tFDEngine& Engine, int nBaseTag,
19 int nIndex, double gDontExValue, double gExValue,
20 double gMultiplier, tExPolicy& nExPolicy );

21

22 virtual double selectVol( int nTag, double gGamma,
23 double gMin, double gMax );

24

25 virtual bool endureOver( int nTag, double gNewTotal,
26 double g0ldTotal );

27

28 virtual bool chooseOver( int nTag, double gNewTotal,
29 double g0ldTotal );

30 };

Figure 9.21: The definition of the abstract class tScenario. In general, worst-case sce-

narios are asymmetric for the buy- and sell-side. Which particular viewpoint is to be

adopted is indicated by the value of m nPosition
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of A changes: positive A now indicates a long position, whereas negative A indicates

a short position.

Any child class of tScenario is expected to initialize m_nPosition. For consistency

with the earlier text, we assume here and below that m nPosition = Seller.

underControl () If, for a given instrument X, in the portfolio under consideration,
An > 0, then X, is held short and not under the control of the agent. If A, < 0
the instrument is held long; potential early exercise is under control of the agent.
underControl() interpretes its parameter gMultiplier as A, and returns whether

the corresponding position enables the agent to exercise control.

Since the situation is reversed if the global view-point changes from the sell-side to

the buy-side, a separate function is justified.

refineExPolicy() The class tClaim relies on the member function monitor() to pro-
duce an initial assessment of the local early exercise options for an individual instru-
ment (see Sect. 9.1.1). If monitor () returns DontExercise or ForceExercise, the
current lattice-instance node is assigned to the continuation respectively exercise
region of the instrument for good. If monitor () returns MayExercise, as it does
for standard American options, then the tScenario object is asked in turn to try to
make a definite statement. Only when the tScenario object returns MayExercise

as well is the current node assigned to the corridor of uncertainty of the instrument.

The safest policy is thus to return MayExercise throughout. However, as the
tScenario object has access to other lattice instances through the Engine argu-
ment, a more advanced strategy such as described in Sects. 7.2.1 and 7.2.2 may be
employed. This must be done in tScenario’s child classes by overriding refine-

ExPolicy().

The argument nBaseTag corresponds to the tag 2m of the regularized signature
of the current lattice L. nIndex is the index of the claim in the portfolio, to be
used as argument for tPortfolio: :claim(). gDontExValue is the unit value of the
instrument obtained through rollback. gExValue is the unit value of the instrument
returned by tClaim::exercisePayoff () for the current node. gMultiplier is
the number of contracts, and nExPolicy is an in-out parameter, initially set to

MayExercise.
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selectVol() The local volatility is selected between gMin and gMax. The actual imple-
mentation of the prototype in Fig. 9.21 may base its selection on gGamma, the finite
difference approximation of 38—; f, where f (S, t; L) = Ft(L | S¢). The regularized

tag of L is nTag. Two restrictions are immediately obvious:

e selectVol() works only for a one-factor model;

e selection schemes that require information beyond gamma cannot be realized.

The uncertain volatility models of Sects. 4.2.1, 4.2.2 and, with the introduction of

a prior volatility parameter, 4.2.3, are all feasible, though.

endureOver () and chooseOver () This pair of functions is substituted for the max and
min operators in the expression “min,ca(r)maxpcp(r)” that occurs throughout
Chapter 7 and in Figs. 7.4 and 7.6. The functions are folded over a sequence of
values; g01ldTotal represents the value selected thus far, and gNewTotal represents
the new candidate. If the new value is to be selected over the old value, the function

returns true.

Formula (7.7.95) of Sect 7.2.3 is used as a recipe for folding endureOver () over the
arguments of the max operator and chooseOver() over the arguments of the min
operator. The function names reflect the absence respectively presence of control

by the agent.

Derived Classes

tWorstCase is immediately derived from tScenario. Its definition is shown in Fig. 9.22.
Figure 9.23 shows a listing of the member function selectVol(), and Fig. 9.24 shows the
implementation of endureOver (). chooseOver() is implemented in an analogue fashion.

Figure 9.25, finally, contains an outline of the function refineExPolicy(). The
function consists of two branches, the first being executed if the pricing problem is linear
or the corridors of uncertainty ought to be collapsed (in which case gDontExValue is the
partial derivative of the worst-case value with respect to Aprngex). The second branch
maintains the corridor of uncertainty by looking up the singleton portfolios (Xyrngex, 1)
and (Xprngex, —1). The function getClaim() of class tFDEngine does just that. This

branch is an implementation of the algorithm in Fig. 7.7. Note that in addition to
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1 class tWorstCase : public tScenario {

2

3 public:

4

5 bool underControl( double gMultiplier );

6

7 void refineExPolicy( tFDEngine& Engine, int nBaseTag,

8 int nIndex, double gDontExValue, double gExValue,

9 double gMultiplier, tExPolicy& nExPolicy );

10

11 double selectVol( int nTag, double gGamma, double gPrior,

12 double gMin, double gMax );

13

14 bool endureOver( int nTag, double gNewTotal, double g0ldTotal );
15 bool chooseOver( int nTag, double gNewTotal, double gOldTotal );
16 };

Figure 9.22: tWorstCase instantiates the abstract member functions of tScenario

implementing the algorithm, refineExPolicy () must reverse all selection criteria if the
global view-point is changed to the buy-side. This is done by setting the corrective
constant nTag in line 16.

Only the case where gMultiplier is non-negative is shown in Fig. 9.25. THe other

case is handled symmetrically.

The class tShockScenario is a true extension of tWorstCase. No function of tWorst-
Case is overridden, as volatility-shock scenarios essentially only broaden the candidate
set of volatilities. Figure 9.26 shows the definition of tShockScenario.

The interpretation of the member variables of tShockScenario follows Def. 8.2:
m nDuration The duration parameter d > 1.
m nPeriodicity The periodicity parameter p > 1.
m nFrequency The frequency parameter f > 1

These variables are retrieved during rollback by a specialized compute engine of class

tShockEngine. Since engines are passed only base references to objects of class tScenario
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1 double tWorstCase::selectVol( int nTag, double gGamma,
2 double gMin, double gMax )

3

4 {

5 if( nTag % 2 == 0 ) {

6 switch( position() ) {

7 case Buyer :

8 return ( gGamma <= 0 ) 7 gMax : gMin;
9 case Seller :

10 return ( gGamma >= 0 ) 7 gMax : gMin;
11 ¥

12 }

13 switch( position() ) {

14 case Buyer :

15 return ( gGamma >= 0 ) ? gMax : gMin;

16 case Seller :

17 return ( gGamma <= 0 ) ? gMax : gMin;

18 }

19

Figure 9.23: The body of the function tWorstCase: :selectVol(). Depending on tag
and global view-point, the function bases its decision on convexity respectively concavity.
Recall that odd nTag indicates that —F(L’ ) is being computed, where the signature of
L' is (X, —\,nTag) and there exists a lattice instance L with signature (X, \,nTag — 1).

Since the negative signs are not actually applied, all comparisons need to be inverted

during initialization, a down-cast must be performed by tShockEngine to access these
values. This is done safely with RTTT support.

Remark: the volatility shock scenario introduces additional events which should be
matched by the lattice. For that purpose, tScenario provides an (initially empty) method
getEvGenerator () that is overridden by tShockScenario. This function is not shown

in the figures.

9.1.6 Numerical methods

MtgLib provides two ways to evaluate portfolios numerically: based on lattices, and with

Monte Carlo simulation. Lattice-based evaluation is better supported at the time of this
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1 bool tWorstCase::endureOver( int nTag, double gNewTotal,
2 double g0ldTotal )

3

4 {

5 if( nTag % 2 == 0 ) {

6 switch( position() ) {

7 case Buyer : // minimize

8 return gNewTotal < gOldTotal;
9 case Seller : // maximize

10 return gNewTotal > gO0ldTotal;
11 ¥

12 }

13 switch( position() ) {

14 case Buyer : // maximize

15 return gNewTotal > gO0ldTotal;

16 case Seller : // minimize

17 return gNewTotal < gO0ldTotal;

18 }

19

Figure 9.24: The body of the function tWorstCase: :endureOver (). Depending on tag

and global view-point, the function mimicks a max or min operator

writing and the exclusive topic in the earlier parts of this thesis. For this reason, we focus
exclusively on the lattice-based facilities of MtgLib in the following paragraphs.

The classes that support lattice-based numerical evaluation fall into two categories:
those that define the lattice template and manage lattice instances, and those that actu-
ally perform the finite difference rollback. Figure 9.27 shows both categories. The first
group is capable of handling multi-factor models; the second group is not.

Some of the classes in Fig. 9.27 might as well be labeled “internal”, since they are
not directly visible through the scripting interface. They are listed here because of their
proximity to the hierarchy of lattice-related classes, which is visible through the scripting

interface.
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31
32
33
34 }

void tWorstCase::refineExPolicy( tFDEngine& Engine, int nBaseTag,

int nIndex, double gDontExValue, double gExValue,
double gMultiplier, tExPolicy& nExPolicy )

double gValue;

if ( Engine.isLinear() || Engine.accuracy() == Low ) {
if ( gExValue > gDontExValue )
nExPolicy = xForceExercise;
else
nExPolicy = xDontExercise;

}
else {
if ( gMultiplier >= 0 ) {
int nTag = ( position() == Buyer ) ? 0 : 1;
if ( gExValue > gDontExValue ) {
Engine.getClaim( nIndex,
nBaseTag + 1 - nTag, gValue );
if ( gExValue > gValue )
nExPolicy = xForceExercise;
}
else {
Engine.getClaim( nIndex, nBaseTag + nTag, gValue );
if ( gExValue <= gValue )
nExPolicy = xDontExercise;
}
}
else {
// the other case is symmetric
}
}

Figure 9.25: An outline of the function refineExPolicy() of class tWorstCase. The

constant Low in line 8 corresponds to the strategy to collapse corridors of uncertainty;

the else branch maintains corridors of uncertainty
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class tShockScenario : public tWorstCase {

1

2

3 int m_nDuration;

4 int m_nPeriodicity;
5 int m_nFrequency;

6

};

Figure 9.26: The class tShockScenario merely adds the parameters of a volatility shock

scenario as defined in Def. 8.2

Lattice Templates and Instances

The class tLattice describes the layout of the lattice. Number of factors, time discretiza-
tion, space discretization, shape (tree or box) and space trimming determine the layout.
Figure 9.28 shows how tLattice is defined.

The interpretation of the individual member components of tLattice is as follows:

m_pModel The lattice template needs to know about the model in order to create the
entries for m Space. It uses the function tModel::createSpaceAxis() for that

purpose.

m bIsBox The lattice can have the shape of a rectangular grid, or that of a tree, with
the root labeled with Sy. This flag determines whether the rectangular grid shape

is used.

m_bIsTrimmed and m_gTrimDev In order to reduce the running time, the lattice may be
trimmed symmetrically at the outer regions. m bIsTrimmed determines whether
this is done. m_gTrimDev indicates the number of standard deviations after which
the trimming should occur. The default values are true and 3.5. See Pards (1995)

and the comment at the beginning of Sect. 5.1 for more details.

m nMethod Can be either Explicit or Implicit and is used, among other things, as
argument in calls to tModel: :createSpaceAxis (), where it is used to ensure sta-

bility.

m Bounds Determines the dimensions of the lattice layout when viewed as (n + 2)-di-

mensional hypercube, where n is the number of factors, the (n + 1)-st dimen-
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Class name Purpose

tLattice Lattice template

tTimeAxis Discretization of time

tSpaceAxis Discretization of space for one factor (abstract)
tGeoSpaceAxis Discretization of space based on geometric

Brownian motion

tLatticeInstance Lattice instance, what else?
tOFSolver One-factor finite difference solver (abstract)
tOFExplicit Explicit finite difference solver

tGeoExplicit | Explicit solver for models based on

geometric Brownian motion

tOFImplicit Crank-Nicholson finite difference solver
tGeoImplicit | Crank-Nicholson solver for models based on

geometric Brownian motion

tGeoSolver Additional base class for tGeoExplicit and

tGeoImplicit (abstract)

Figure 9.27: The collection of classes that work together to support lattice-based evalua-
tion. The prefix “OF” stands for one-factor. tGeoExplicit and tGeoImplicit have two

parent classes and are thus a case of multiple inheritance

sion is time and the last dimension is the combined gradient + total value-vector.
m_Bounds is basically a sequence of pairs of upper and lower index bounds; the class

tArrayBounds is not shown.

m Space An array with one entry per factor. tSpaceAxis is an abstract class; con-
crete instantiations work with particular models. Currently implemented is only
tGeoSpaceAxis, which complements the model class tBSModel. Note that the di-
mension of each space axis must be consistent with the corresponding information

in m_Bounds.

m pTime The discretization of the time axis, which may be non-uniform. The time axis is

only finalized after all the space axes have been created, for the required cap on the
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22
23

class tLattice {
tModel* m_pModel;
bool m_bIsBox;
bool m_bIsTrimmed;
double m_gTrimDev;
tFDMethod m_nMethod;

tArrayBounds m_Bounds;

tSpaceAxis* m_Spacel[...];
tTimeAxis* m_pTime;

public:
tOFSolver* create0OFSolver();
tRetCode createInstance( tPortfoliox* pPf,
const tSignature* pSig, int nTag,

tLatticeInstance*& pInstance ) const;

};

Figure 9.28: The class tLattice defines the layout of the lattice (the lattice template),

from which lattice instances are created by calling createInstance()

size of the largest time step can only then be known. (See output d¢ of the algorithm
in Fig. 5.4.) The class tTimeAxis is final. tTimeAxis is purely mathematical and

does not support real calendar dates.

create0FSolver () Finite difference solvers are discussed in the next section. This func-

tion creates a solver for one-factor models. Its implementation is simple: since the
finite difference approximation to partial derivatives depend on the geometry of the
discretization as well as the underlying stochastic process, the request is forwarded

to the space axis, which knows about these properties:

1 tOFSolver* tLattice::createOFSolver ()
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return m_Space[0]->create0FSolver() ;

Ot = W N
(-]

Multi-factor solvers are not implemented.

createInstance() The lattice template is also used to create lattice instances of it. The
signature of the new lattice instance is implied by the arguments pPf, pSig and

nTag. tSignature is implemented as a bitfield; its precise definition is not shown.

The lattice instances created by createInstance() in tLattice belong to the class
tLatticeInstance, a very condensed definition of which is shown in Fig. 9.29.

Lattice instances do not allocate memory for the entire grid, but only for two ad-
jacent hyperplanes, cut perpendicular to the time axis. This is standard procedure for
memory-aware implementations of one-level finite-difference schemes and tree methods.
One hyperplane contains the values for the previously processed time slice ¢;41, the other
receives the result of the current rollback round for time slice #;. (In Sect. 7.2.3 we have
seen that this can lead to considerable slowdown due to restart.)

Additional temporary space may be necessary. In Sect. 7.2.3, a scheme to save inter-
mediate results of the minmax calculation has been proposed to increase the efficiency
slightly. m Prep is used for this purpose. Also, some finite difference solvers may need
their own scratch space; Crank-Nicholson, for instance, requires extra storage for the
decomposed coefficient matrix and the right-side vector of the linear system which it has
to solve. m_Templ and m Temp2 can be activated for that purpose.

In summary, the components of tLatticeInstance shown in Fig. 9.29 have the fol-

lowing meaning;:

m_Slot The portfolio/signature argument pair supplied to createInstance() of class

tLattice is converted in a compact array m_Slot of references to instruments.

The definition of m_Slot as array of references to instruments is incomplete, how-
ever. Instruments have different maturity dates and thus enter into the computa-
tion at different times during the rollback, therefore widening the lattice instance

dynamically (of course, all memory is allocated before-hand, and the widening is
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1 class tLatticeInstance {

2

3 tClaim* m_Slot[...];

4

5 int m_nCurrent;

6

7 tMultiArray<double> m_Buffer[2];
8

9 tMultiArray<double> m_Prep;

10 tMultiArray<double> m_Templ;

11 tMultiArray<double> m_Temp2;

12

13 public:

14

15 void beforeRollback( int nDay );
16 void afterRollback( int nDay ) ;
17

18 void rotate();

19

20 tMultiArray<double>& current() {
21 return m_Buffer[m_nCurrent];
22 ¥

23

24 tMultiArray<double>& last() {

25 return m_Buffer[m_nLast];

26 ¥

27 };

Figure 9.29: A very condensed summary of the essential elements of tLatticeInstance.
The template tMultiArray allows arrays whose dimensions are determined by objects

of class tArrayBounds. m Prep, m_Templ and m Temp2 can, but must not be used during
rollback
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only logical). m_Slot has additional features to allow this process to occur effi-
ciently. Their are also some additionl supporting members, for instance for index
translation between m_Slot and tPortfolio::m_Claim. All this is not shown for

simplicity.

m nCurrent The index in m Buffer of the multi-array representing the current hyper-
plane. “Current” refers to the time slice, say t;, that is being computed in the
current rollback round. The “last” hyperplane refers to the hyperplane of time slice

titn.

m_Buffer This buffer holds two hyperplanes of the total space of the lattice instance.
m Buffer[m nCurrent] contains the current hyperplane; m Buffer [m nCurrent—1]
contains the last hyperplane. We stress again that the innermost coordinate of each

hyperplane loops through the gradient o plus the total worst-cast value V.
m_Prep Temporary space used for intermediate results (see Sect. 7.2.3).

m_Templ and m Temp2 Temporary space, mainly used by mixed explicit/implicit schemes

such as Crank-Nicholson.

beforeRollback() and afterRollback() These functions are called before and after
rollback rounds when the current time slice ¢; falls on a day boundary. These
functions take care of maturing instruments and adjust the (logical) width of the

lattice instance.

rotate() Replaces m nCurrent with m nCurrent — 1 and thus rotates the current and

last hyperplanes.
current () Returns a reference to the current hyperplane.
last () Returns a reference to the last hyperplane.

current () and last() are not the only functions to access the elements of the lattice
instance. Their are additional functions to read and write m Prep, m_Templ and m Temp?2.
There are also functions to access not entire multi-arrays, but single innermost rows
or entries. The list of actual member functions exceeds the list of functions shown in

Fig. 9.29 several times.
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The classes tTimeAxis and tSpaceAxis are less interesting. We only note that
tSpaceAxis contains the virtual member create0FSolver () mentioned above, and that

the derived class tGeoSpaceAxis implements this function as follows:

1 tOFSolver* tGeoSpaceAxis::createOFSolver()
2

3 {

4 if ( isImplicit() )

5 return new tGeoImplicit( this );

6 return new tGeoExplicit( this );

7}

tGeoSpaceAxis also implements the algorithm in Fig. 5.4 to find a stable discretiza-

tion.

Finite Difference Solvers

Figure 9.27 shows the hierarchy of finite difference solvers, but does not emphasize the
multiple-inheritance relationship very strongly. This is done in Fig. 9.30, which shows the
dependency graph. Doubly framed classes are abstract base classes which are ultimately
used as interfaces to access the functionality of the concrete solver.

The purpose of each class is as follows:

tOFSolver This base class is general in the sense that its member functions rely on
the assembly of the tridiagonal coefficient matrix and the right-side vector for one
rollback round at some other place. (Both explicit and mixed explicit/implicit
methods can be expressed in this manner.) Once the linear system of equations has
been set up, its solution can be computed independently from the concrete financial
model or spatial lattice geometry. The most visible feature of tOFSolver is the pure

virtual member function solve().

t0FExplicit Provides a body for the prototype solve () in tOFSolver. Uses an explicit

forward Euler one-level scheme.

t0FImplicit Provides a body for the prototype solve () in tOFSolver. Uses a mixed ex-
plicit/implicit Crank-Nicholson scheme. In addition, allows incremental refinement,

which is necessary for American options.
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tOFSolver used by tOFEngine

used by tGeoEngine

t0FExplicit t0FImplicit tGeoSolver
tGeoExplicit tGeoImplicit

Figure 9.30: The class hierarchy for finite difference solvers. The abstract base class
t0FSolver is used by member functions of tOFEngine to access the functionality of a

particular solver. Similarly, the abstract base class tGeoSolver is used by tGeoEngine

tGeoSolver This abstract class contains a reference to the tGeoSpaceAxis object that
has created the solver. It also has access to the model drift and volatility coeffi-
cients from which to build the tridiagonal transition matrix. tGeoSolver acts as

pheripheral source of information.

tGeoExplicit This class is the bridge between tGeoSolver and tOFExplicit. If re-
trieves model coefficients form the former and instantiates the transition weights
for the latter. The simplified nature of the linear system of equations in the explicit

case is taken into account.

tGeoImplicit This class is the bridge between tGeoSolver and tOFImplicit. If re-
trieves model coefficients form the former and instantiates the transition matrix

and right-side vector for the latter.

t0FSolver and Child Classes Some of the essential features of tOFSolver are shown

in Fig. 9.31. A description follows:

tProcessParamsStub This empty type provides a handle to whatever process parameters

need to be transferred in order to compute the transition matrix. This type is public.
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1 class tOFSolver {

2

3 public:

4

5 struct tProcessParamsStub {

6 };

7

8 class tIncrement {

9 public:

10 virtual void beginIncrement( ... );
11 virtual void doIncrement( ... );

12 virtual void endIncrement( ... );
13 };

14

15 protected:

16

17 virtual void calcWeights( int nFromLevel, int nToLevel,
18 const tProcessParamsStub& Params ) ;

19

20 public:

21

22 virtual void solve();

23 virtual tRetCode refine( tIncrement& Incr );
24 };

Figure 9.31: Some of the features of t0FSolver. The virtual functions and the local

types must be expanded in child or otherwise related classes
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In our case, it is expanded by tGeoSolver to provide the local drift and volatility

coeflicients.

tIncrement If American options are involved and a mixed explicit/implicit scheme is
used, the solution of the linear system of equations needs to be refined. Iterative
refinement proceeds in alternatingly reevaluating early-exercise decisions and per-
forming a subsequent over-relaxation step. This loop may require additional mem-
ory space or knowledge, which is encapsulated in a class derived from tIncrement.

The loop is then executed by calling the virtual member functions of tIncrement.

calcWeights() This function must compute the transition weights. The arguments
nFromLevel and nToLevel indicate the location of the interval of nodes in the
lattice for which the rollback is being performed (the interval may change due to
knock-out or a tree-shaped lattice). The function also gets to see the process pa-

rameters in the argument Params, after a proper down-cast.

solve() The top-level function that initiates the current rollback round. This function

contains the numeric part of the code.

refine() If solve() has successfully finished and the portfolio contains American op-
tions, refine () must be called repeatedly to adjust the result. This function makes

use of the tIncrement interface.

tOFExplicit is a straightforward instantiation of tOFSolver. calcWeights() re-
mains still unresolved, since tOFExplicit is a general explicit solver that does not
know about the concrete model coefficients. solve() is implemented, but the function
refine () is ignored.

The class tOFImplicit is more complex. It implements both solve () and refine().
solve () performs a LU decomposition based on the LAPACK modules DGTTRF and
DGTTREFS, which were translated and adapted from Fortran. The code allows for partial
pivoting. See LAPACK (1999) for more details.

The function refine () reuses the decomposition of solve() to modify the current
result. It does so in an over-relaxation step where the relaxation parameter w lies between

1 and 2 and is dynamically adapted, based on the previous iteration count.
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tGeoSolver and Child Classes The auxiliary class tGeoSolver is defined in Fig. 9.32.
It mainly expands the empty type tProcessParamsStub defined in class tOFSolver. The
elements m_gVol, m_gDrift and m_gDiscount are the local values of the model coefficients
in class tBSModel. The process parameters are retrieved from the model by the compute

engine, which is an instance of type tGeoEngine (more on compute engines below).

1 class tGeoSolver {

2

3 public:

4

) struct tProcessParams :
6 public tOFSolver::tProcessParamsStub {
7 double m_gVol;

8 double m_gDrift;

9 double m_gDiscount;
10 s

11 3};

Figure 9.32: The class tGeoSolver expands the stub class tProcessParamsStub, defined

in t0FSolver. Objects of class tProcessParams will be supplied by the compute engine

The classes tGeoExplicit and tGeoImplicit combine the model specific information
captured in tGeoSolver and the numerical functionality of tOFExplicit and tOFImp-
licit. Solvers actually created by the program belong to either class, whose definition
is shown in Fig. 9.33. The implementation of calcWeights() in either case is without

surprises and therefore ommitted.

9.1.7 Evaluaters

Evaluaters collect portfolio, model, scenario and numerical method, make sure they all
fit together and initiate the evaluation process. Evaluaters are short-lived, contrary to
objects of other external classes which can be reused (note that the evaluater object in
Fig. 9.2 does not need a name). They are used once and then thrown away. Figure 9.34
shows the definition.

The individual components of tEvaluate have the following semantics:

m_pPortfolio A reference to the portfolio to be evaluated.
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class tGeoExplicit : public tOFExplicit, public tGeoSolver {

void calcWeights( int nFromLevel, int nToLevel,
const tProcessParamsStub& Params ) ;

1

2

3

4

5 };
6

7 class tGeoImplicit : public tOFImplicit, public tGeoSolver {
8
9

void calcWeights( int nFromLevel, int nToLevel,
10 const tProcessParamsStub& Params ) ;
11 };

Figure 9.33: Actual solvers belong either to class tGeoExplicit or tGeoImplicit. They

compute the transition matrix from information provided in Params

m_pModel A reference to the mode under which the portfolio is to be evaluated.

m pScenario A reference to the scenario for the evaluation. This parameter is ignored if

Monte-Carlo is the numerical method of choice.

m_pOptimizer At the time of this writing, calibration through optimization is only pos-
sible for Monte-Carlo methods. The optimizer object adds an outer loop to the
evaluation process, which the compute engine must know about. Ignored if lattice-

based evaluation is selected.
m pLattice If this pointer is set, the evaluation is lattice-based.

m_pPathSpace If this pointer is set, the evaluation is done with Monte-Carlo simulation.
Only one of m pLattice and m_pPathSpace can be set. The class tPathSpace is

not explained here.
m_pFDEngine The compute engine created with the call

m_pModel->createEngine( m_pScenario, m_pFDEngine, m_nAccuracy );

if m pLattice is set. See also Fig. 9.9.

m_pMCEngine The compute engine created with the call
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class tEvaluate {

1
2
3 tPortfolio* m_pPortfolio;
4 tModel* m_pModel;

5 tScenario* m_pScenario;

6 tOptimizer* m_pOptimizer;
7 tLatticex m_pLattice;

8 tPathSpace* m_pPathSpace;
9

10 tFDEngine* m_pFDEngine;

11 tMCEngine* m_pMCEngine;

12

13 tCurveContainer m_CurveContainer;
14 tImageContainer m_ImageContainer;
15

16 tAccuracy m_nAccuracy;

17

18 public:

19

20 tRetCode run();

21 };

Figure 9.34: Evaluaters know about all the objects that make up a particular pricing

problem, cross-reference them and oversee the evaluation process

m_pModel->createEngine ( m_pMCEngine );

if m_pPathSpace is set.

m_CurveContainer Besides pricing and optimization (under Monte-Carlo), MtgLib also
offers curve-generating functionality from calibrated path spaces. Curves can be

written to files, to be used in subsequent pricing rounds.

m_ImageContainer Calibrated curves can also be converted into images. Currently sup-
ported is the GIF format popular on the World Wide Web. Curves and images

appear in Sect. 10.2. No implementation details are provided.

m nAccuracy This parameter applies to lattice-based evaluation only and controls which

of the speed-up techniques of Sect. 7.2 should be used. Possible values are Low (col-
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lapsing the corridors of uncertainty for American options) and Exact (maintaining

the corridors of uncertainty). See also Sect. 9.1.3.

run() This functions initiates the evaluation process. It transfers control to the run()

member function of either *m_pFDEngine or *m_pMCEngine.

9.2 The Class Hierarchy—Internal

The vast majority of the classes in MtgLib are internal—not visible through the scripting
language, of which an example is given in Fig. 9.2. The solver classes in Fig. 9.27,
although listed together with the hierarchy of lattice classes, may be considered internal,
for instance. In this section, we restrict ourselves to the discussion of the most important

category of internal classes: compute engines.

9.2.1 Compute Engines

Figure 9.35 shows the current hierarchy of compute engines. We discuss only the branch
that forks of tFDEngine, since all algorithmic aspects dealt with in the earlier parts of
this thesis occur in classes derived from tFDEngine. tMCEngine and its subclasses are
based on Monte-Carlo simulation.

tEngine, tFDEngine and t0FEngine are all abstract; they do not function by them-
selves. Instances are created from tGeoEngine and tShockEngine, depending on the

scenario as shown in Fig. 9.12. The classes are used as follows:
tEngine This class has several purposes:
e [t contains references to objects used by all types of compute engines, like the

model or portfolio.

o It performs some initialization that can be done on that high a level; for
instance, it matches factors referenced in the portfolio with factors defined in

the model.

e [t defines an interface to retrieve singleton portfolios. This is important for

corridors of uncertainty.
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Class name Purpose

tEngine Base class (abstract)

tFDEngine Extended base class for lattice-based
evaluation (abstract)
tOFEngine Extended base class for one-factor
lattice-based evaluation (abstract)
tGeoEngine Worst-case evaluation for geometric
Brownian motion models

tShockEngine | Evaluation under volatility shock

scenarios
tMCEngine Extended base class for Monte-Carlo
simulation (abstract)
tHIMEngine For fixed income
tShortRateEngine For fixed income

Figure 9.35: The hierarchy of compute engines. tShockEngine extends tGeoEngine by

overriding some functions that handle administrative tasks between rollback rounds

Many functions that need to access the current state (the payoff functions in Fig. 9.4,
for instance) do so either through the tEngine or through the tFDEngine interface,

after a proper down-cast.
tFDEngine This class extends tEngine in several regards:

e It contains more references to objects defined for the current problem, for

instance the lattice template and the scenario.

e [t implements the main run() function of any compute engine derived from it.
tFDEngine contains local data structures for the dynamic lookup mechanism
of lattice instances through (regularized) signatures. In some sense, tFDEngine

implements the “outer loop” over the time axis of the finite difference scheme.

e It contains more information about the current state than tEngine. It knows
which time slice ¢; is currently being processed (since it drives the loop!),

and provides variables, to be set by subclasses, that locate individual nodes
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in the corresponding hyperplane. It provides functions to access this state

information.

tFDEngine is equipped to handle multi-factor models. This class implements the

core of the multi-lattice dynamic programming paradigm introduced in Sect. 5.1.

t0FEngine While tFDEngine works for multi-factor models, tOFEngine does not. tOF-
Engine adds inner-loop functionality to tFDEngine. (For the inner loop for fixed

t;, the number of factors must be known.)

tGeoEngine This class instantiates tOFEngine to support one-factor geometric Brownian

motion models under worst-case volatility scenarios.
tShockEngine This class extends tGeoEngine to support volatility shock scenarios.

The following paragraphs go into some implementation details.

The Abstract Class tEngine

A shortened definition of tEngine is shown in Fig. 9.36. The meaning of the individual

member components is as follows:
m pPortfolio A reference to the portfolio object under investigation.
m_pModel A reference to the model used for the evaluation.

m_FactorXlat The class tPortfolio has a member function matchFactors() that uni-
fies the factor tables in the portfolio and model objects (see Fig. 9.7). The resulting

index permutation is stored in m_FactorXlat.

beforeRun() This function takes care of initialization issues that can be handled with
limited information. Factor matching is an example. If this function is overridden

in child class tXYZEngine, the original function must always be called first:

1 tRetCode tXYZEngine::beforeRun() {
2 if ( tEngine::beforeRun() != 0K )

return 0K;

CU B~ W
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1 class tEngine {

2

3 tPortfolio* m_pPortfolio;

4 tModel* m_pModel;

5

6 int m_FactorXlat[...];

7

8 protected:

9

10 virtual tRetCode beforeRun();
11 virtual tRetCode afterRun();
12

13 public:

14

15 virtual void getClaim( int nIndex, int nTag,
16 double& gUnitValue );

17 };

Figure 9.36: The abstract base class tEngine performs some preparation and cleanup
tasks before and after evaluation. It also defines the interface for the retrieval of singleton

portfolios, which is important to find the corridors of uncertainty for American options

As the class hierarchy builds up, each class contributes to initialization by overriding

beforeRun(), but still calling the function in the parent class.

afterRun() Performs cleanup jobs, mostly related to memory management, after evalu-
ation has been completed. (Curve and image generation are also possible aspects.)

Again, overriding functions must make sure to call the original eventually:

1 tRetCode tXYZEngine::afterRun() {

2

3 return tEngine::afterRun();

4 }

getClaim() This function is a pure virtual interface to retrieve the current value of the
singleton portfolio with signature (Xyngex, @), where @ = +1, depending on nTag
and scenario settings such as sell-side or buy-side point-of-view. The function is

called, for instance, in tWorstCase: :refineExPolicy(), shown in Fig. 9.25
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The Abstract Class tFDEngine

tFDEngine implements the loop over the time axis and handles the repository of
lattice instances. It works independently of the number of factors. Figure 9.37 shows the

relevant fragment of its definition. Individual members are used as follows:

mnDay and m_gFraction0fDay The value of ¢; in days, where ¢; is the current time slice.

More precisely,
t; = mnDay + m_gFractionOfDay

The distinction between days and fractions of days is convenient, because the gran-

ularity for events connected with instruments or scenarios is at the level of days.
m pLattice A reference to the lattice template.
m_pScenario A reference to the scenario object.

m_Pos This variable is not maintained by tFDEngine, only provided in order to be acces-
sible through it. Any subclass that loops over the nodes of the current time slice
t; must update m Pos during the preparatory phase of each loop iteration. The

preparatory phase ends once the finite difference solver takes over.

To keep m_Pos consistent is important, since functions like tClaim: :payoff () must

know exactly which node is currently being processed.

doRound () Executes exactly one rollback round, for all currently known lattice instances.
This function is final; it calls the function doTask (), which must be instantiated in
any subclass, to process each lattice instance. doRound () observes the rule proposed
in 5.1.1 for external consistency, augmented by provisions that guarantee that lattice
instances are processed in the correct order under volatility shock scenarios (in fact,

any scenario that uses a consistent pattern for regularizing signatures).
doTask() The pure virtual prototype that is called by doRound ().

getLatticeInstance() Accesses the lattice instance whose regularized signature is de-
termined from the pair Sig/nTag. If the lattice instance does not exist, get-
LatticeInstance() creates it and interrupts the current iteration of doRound()

through the C++ exception mechanism.
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1 class tFDEngine : public tEngine {

2

3 int m_nDay;

4 double m_gFractionOfDay;

5

6 tLatticex m_pLattice;

7 tScenario* m_pScenario;

8

9 int m_Pos[...];

10

11 tRetCode doRound();

12

13 protected:

14

15 virtual void doTask( tLatticeInstance& Instance );
16

17 void getLatticeInstance( const tSignature& Sig, int nTag,
18 tLatticeInstance*& pInstance );

19

20 tRetCode beforeRun();

21 tRetCode afterRun();

22

23 public:

24

25 tRetCode run();

26

27 void getClaim( int nIndex, int nTag, double& gUnitValue );
28 };

Figure 9.37: A small part of the definition of tFDEngine. Shown are the state information,

the interface to access lattice instances, and the main run() function
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beforeRun() After successful completion of the parent function, beforeRun() initializes

the repository of lattice instances and creates the top-level instance.
afterRun() Merely calls the parent functions, and does not do any additional processing.

run() This function contains the central control loop over the time domain, as shown in

Fig. 9.38.

getClaim() Instantiates the virtual function getClaim() whose prototype is defined in

Fig. 9.36.
1 tRetCode tFDEngine::run()
2
3 9
4 if ( ( nRet = beforeRun() ) != 0K )
5 return nRet;
6
7 int nNumOfRounds = m_pLattice->num0fSlices();
8
9 for( int k = 0; k < nNumOfRounds; ++k ) {
10 if( ( nRet = doRound() ) != 0K ) {
11 cleanup();
12 return nRet;
13 }
14 }
15
16 return afterRun();
17 }

Figure 9.38: A schematized listing of the central control loop in the function run() of
class tFDEngine. num0fSlices() is not included in Fig. 9.28; it returns the number of
discretization points in the time domain. doRound () belongs to tFDEngine and executes

one rollback round

The Abstract Class tOFEngine

tOFEngine is the last abstract class in the chain of ever more specialized classes for

compute engines. Subclasses of tOFEngine can be used to created concrete engines.
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2
3
4
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6
7
8
9

10
11
12
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17
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20
21
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23
24
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28
29
30
31
32
33
34
35
36
37

class tOFEngine : public tFDEngine {

class tIncrement : public tOFSolver::tIncrement {
t0FEngine& m_Engine;

tIncrement( tOFEngine& Engine ) : m_Engine( Engine ) {3}

void beginIncrement( int nAdjDown, int nAdjUp ) {
m_Engine.beginIncrement ( nAdjDown, nAdjUp ); }
void doIncrement( const int Pos[...] ) {
m_Engine.doIncrement ( Pos ); }
void endIncrement( int nAdjDown, int nAdjUp ) {
m_Engine.endIncrement ( nAdjDown, nAdjUp ); }
s

t0FSolver* m_pSolver;

void doBarriers( int& nAdjDown, int& nAdjUp );
void doBoundary( int nAdjDown, int nAdjUp );
void doRollback( int nAdjDown, int nAdjUp );
void doMonitor( int nAdjDown, int nAdjUp );
void doPayoff();

void beginIncrement( int nAdjDown, int nAdjUp );
void doIncrement( const int Pos[...] );
void endIncrement( int nAdjDown, int nAdjUp );

protected:

virtual const tOFSolver::tProcessParamsStub& getProcessParams();
virtual tRetCode createSolver( tOFSolver*& pSolver );

void doTask( tLatticeInstance& Instance );
tRetCode beforeRun();

tRetCode afterRun();
};

Figure 9.39: The class tOFEngine: a compute engine for one-factor models
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tOFEngine provides the inner-loop functionality for one-factor models. The member
function doTask() performs one rollback-round for the lattice instance passed as argu-
ment. What is missing to make tOFEngine a full-fledged compute engine is the calculation
of the local model coefficients for the solver.

Figure 9.39 shows the definition of tOFEngine. The members of tOFEngine have the

following semantics:

tIncrement The empty interface tIncrement has been defined in Fig. 9.31 for class
tOFSolver to support incremental refinement for mixed explicit/implicit schemes.
Here, the interface is instantiated as a proxy that forwards all requests to the parent
compute engine. nAdjUp and nAdjDown are the adjusted number of nodes above and
below the centered root node of the lattice. Adjustments occur when instruments

knock out and therefore set up a new boundary.
m_pSolver The finite difference solver created with a call to createSolver (), see below.

doBarriers() The rollback round is executed in stages. Each stage is dedicated to
a sub-task. doBarriers() locates all the barriers and initializes temporary data
structures that guide the subsequent sub-tasks. It also returns the location of the
adjusted boundary in nAdjUp and nAdjDown. These values are used in all subsequent

sub-tasks.

doBoundary () Performs the second sub-task. If barriers have been found, lattice in-
stances for subordinate partial portfolios must be accessed to set the boundary

data. This is done by calling getLatticeInstance().

doRollback() Omnce the boundary has been taken care of, the “numerical” part of the
rollback (i.e., what is commonly associated with the term) is done for the contin-
uation region. After some preparation, this function essentially calls m_pSolver->-

solve().

doMonitor () If American options are present, early exercise policies are gathered for
each node by calling tClaim: :monitor () for all relevant instruments and refining
estimates with m_pScenario->refineExPolicy(). Then, early exercise combina-
tions are evaluated where alternatives exist. This is the minmax calculation, with

exploitation of intermediate results as outlined in Sect. 7.2.3.
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beginIncrement (), doIncrement (), endIncrement () These functions repeat the mon-
itoring of American options, given the current result. They contribute to the incre-
mental refinement in the over-relaxation method used under mixed explict /implicit
schemes. Refinement is started with m_pSolver->refine() before doPayoff () is
called.

doPayoff () In the final sub-task, payoffs of maturing instruments and fixed cashflows
are added. doPayoff () is only called after incremental refinement through the

tIncrement proxy has been completed.

getProcessParams () This pure virtual function must be instantiated by a subclass. It
supplies the missing information on which evaluation relies. To defer the instanti-

ation of getProcessParams () makes tOFEngine general.

createSolver () This function creates the finite difference solver: it calls m_pLattice->-
createOFSolver(). (The lattice template, in turn, relays the request to the space

axis, as described in Sect. 9.1.6.)

doTask() The main function of the class. It calls doBarriers(), doBoundary (), do-

Rollback(), doMonitor (), refines, and calls doPayoff (), in that order.

beforeRun() After calling the parent version, this function creates the solver by calling

createSolver().
afterRun() Deletes the solver and jumps to the parent version.

tFDEngine and tOFEngine together are the logistic heart of lattice-based evaluation (the
solver and lattice class hierarchies are the numerical one), comprising combined about
2800 lines of code.

The Class tGeoEngine

Not much remains to do to complete tOFEngine to a working compute engine for one-
factor geometric Brownian motion models. Figure 9.40 shows the rather short definition.

The task of tGeoEngine is to ensure that the solver receives the correct model co-
efficients for the current time slice. The function getProcessParams() reads the drift

and volatility bounds from the model (to which a reference is provided in tEngine). It
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1 class tGeoEngine : public tOFEngine {

2

3 tGeoSolver: :tProcessParams m_Params;

4 const tOFSolver::tProcessParamsStub& getProcessParams();
5

};

Figure 9.40: The class tGeoEngine prepares the model coefficients for tOFEngine and

tGeoSolver

computes the local gamma and uses the scenario object (to which a reference is kept in
tFDEngine) to select the scenario volatility, by calling the member function selectVol().

Process parameters are then stored in m_Params and returned.

The Class tShockEngine

1 class tShockEngine : public tGeoEngine {
2

3 int m_nDepth;

4

) int m_nCurTag;

6 tLatticeInstance* m_pCurColInstance;
7

8 tRetCode beforeRun();

9 };

Figure 9.41: The class tShockEngine and some of its members

The class tShockEngine extends tGeoEngine for volatility shock scenarios, which
require periodic data transfers between lattice instances. Figure 9.41 shows some of the

members of tShockEngine. They are interpreted as follows:

m_nDepth The number of conventional lattice instances per consolidating lattice instance.
If d is the duration of the volatility shock scenario, and p its periodicity, then
m_nDepth = [d/p]. See Sect. 8.1.1 for motivation.

m_nCurTag The regularized tag of the lattice instance being processed. m nCurTag and
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the scenario parameters d, p and f imply the extended signature variables 7, £ and
0 as defined in Def. 8.3.

m_pCurCoInstance If the extended-signature parameter 7 of the current lattice instance
is “conventional”, then m_pCurCoInstance references the consolidating lattice in-
stance of the same level. If the current lattice instance is consolidating, then
m_pCurCoInstance points to the conventional lattice instance from which data
might have to be imported. (Data is only compared and possibly imported on
certain dates, and only with with respect to one conventional lattice instance at a

time.)

beforeRun() Creates all the extra lattice instances needed for the volatility shock sce-

nario. This function implements the algorithm in Fig. 8.4.

9.2.2 Other Groups of Classes

MtgLib contains about 135 classes, of which only those that form the combinatorial and
mathematical kernel have been discussed in the previous sections. Other classes fill in
the infrastructure to create actual applications.

These categories of classes are also part of MtgLib:

e Figure 9.2 shows an example of the scripting language in which MtgSvr communi-
cates. In general, each object class knows how to parse itself. Each object class con-
tains a static member function parse () that creates a new object from a script defi-
nition. There is a central class tParser, and peripheral classes tScanner, tSource,
tFileSource, tStringSource and tNetSource for support. For customized claims,
classes tExpression, tNumericalExpr and tExPolicyExpr provide the necessary

extension to the scripting language. The parser is of the recursive-descent variety.

e MtgSvr resides as a service on Windows NT PC’s. The classes tSocket, tService,

tJobServer support this background operation.

e MtgCal, to be discussed briefly in Sect. 10.2, uses the CGI protocol, aided by classes
tCgi and tTclCgi.
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e Some low-level classes provid special data structures: tHeap and tHeap?2 for one- and
two-dimensional dynamic arrays; tMultiArray; tMap for one-dimensional, highly

homogeneous arrays; and tSignature, which is implemented as a bitfield.

Future work will deal with additional support for actually traded instruments, calibra-
tion and hedging capabilities based on Monte Carlo simulation, and improved remote

accessibility.
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10 Towards Web-based Applications

We consider it a worthwhile undertaking to use contemporary technology to disseminate
results in a way that proves their applicability empirically and at the same time cre-
ates potentially useful tools for the community. We think the World Wide Web and its
standard technologies like CGI, Java or Javascript enable us to do just that. In our ex-
perimental web site, pricers and calibration tools make it possible for everyone to apply
the results of our research, in particular with regard to uncertain volatility scenarios.
The following sections briefly discuss MtgClt/MtgSvr and MtgCal, two online applica-
tions. The client-server application MtgClt/MtgSvr discussed in Sect. 10.1 prices vanilla,
barrier and American options portfolios under worst-case and volatility shock scenarios.
MtgCal, discussed in Sect. 10.2 is an online calibration-tool for fixed income and the focus

of our current research efforts.

10.1 Example 1: a Client/Server UVM Pricer

The UVM (Uncertain Volatility Model for historical reasons) pricer consists of two com-
ponents. MtgClt is a Java applet that is anchored in an HTML page in our website.
MtgSvr is a C++ program that physically resides on the machine that serves the applet,
but is logically separated from the web server (we use the Apache server for Windows
NT).

The pair MtgClt/MtgSvr implements all algorithms discussed in this thesis, and is
therefore empirical proof for their practical applicability.

MtgClt contains a GUI (graphical user interface) that lets the user enter data in three

categories:

e In the portfolio category, up to eight vanilla, barrier, American and customized
options can be entered. Preconfigured option types include options with linear and

digital payoff.

e In the scenario category, model coefficients such as volatility, interest rate and
dividend rate (respectively foreign interest rate) are specified. All coefficients can
have term structure format (tStepDrift and tStepVol are used to represent the

coefficients). In addition, the volatility may exhibit uncertainty.
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client (browser) Internet server (website)

MtgClt bidirectional TCP MtgSvr
\ A
connect new thread
HTML
e MtgSvr
connect new thread
1
& bidirectional TCP EoVI
HTML page

HTTP protocol

Figure 10.1: The architecture of MtgClt/MtgSvr. MtgSvr accepts incoming connections
and processes requests in separate threads (Windows NT) or forked-off processes (Unix).

The *.html and *.class files are served by the Apache web server
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The user also selects between the worst-case volatility scenario and the volatility
shock scenario. In the latter case duration, periodicity and frequency are entered.
Another data field determines whether the global point of view is sell-side or buy-

side oriented. The distinction has been briefly made in Sect. 9.1.5.

e In the advanced settings category, finite difference scheme (explicit or Crank-Ni-
cholson), trimming parameters (see Sect. 9.1.6), speedup techniques for American
options (maintaining/collapsing of corridors of uncertainty) and time steps are se-

lected.

In order to give a better idea of the convergence behavior of the program for the
particular pricing problem, more than one time step can be entered. The result is

then computed and listed for all time steps.

Graphically, MtgClt distinguishes between “One-Click” mode in which all categories
(slightly down-sized) are combined in a single entry form, and “Wizard” mode in which
each category is assigned its own form.

Once all entries have been made, the user presses the “Start” button and MtgClt
connects to the MtgSvr via TCP. MtgSvr handles the incoming connection by creating a
new thread (under Windows NT) or by forking off a copy of itself (under Unix). Thus,
several incoming requests can be handled at the same time.

MtgClt converts the data in the entry fields into a script in the proprietary script-
ing language of MtgSvr (an example is shown in Fig. 9.2) and sends the script. The
new thread created by MtgSvr parses the script, creates the objects it defines and exe-
cutes the evaluate statements (of which there must be at least one). The result is sent
back to MtgClt as soon as it becomes available. MtgClt/MtgSvr therefore use a simply
request /response scheme to communicate.

This architecture is shown in Fig. 10.1. Figures 10.2, 10.3 and 10.4 contain some screen
snapshots of MtgClt in action. Only the MtgClt entry forms are shown; the browser that
runs MtgClt is hidden.
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Figure 10.2: A European call option, evaluated with dt = 1/365 and dt
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Figure 10.3: A customized 90-day down-and-out put. The barrier exists only for 50 days.

The knock-out premium is $1
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10.2 Example 2: Remote Calibration Sketched

Calibration has been very shortly introduced in Sect. 4.2.3, in connection with uncertain
volatility models. In this section, we present an online, i.e. “remote”, calibrator that
allows users to choose their own model preferences.

The calibrator differs from the UVM pricer presented in the last section in two im-

portant aspects:
e [t uses a Monte-Carlo simulation method;

e it calibrates fixed income models to fixed income instruments (currently to US

treasury bonds).

Thus, it seems, all algorithms presented in this thesis become useless. This is indeed so
for the multi-lattice dynamic programming algorithms and the algorithms for barrier and
American options. The object-oriented software framework discussed in Chapter 9, how-
ever, allows to embed the new components in a preserving manner. Classes for fixed in-
come instruments are derived from tClaim just the same (tUSTBond for the US treasuries);
so are classes for models (tHJMGaussianModel, tShortRateModel and tVasicekModel,
based on tModel) and compute engines (tHJMEngine and tShortRateEngine, based on
tMCEngine). Throughout chapter 9 we have included hints in places where such exten-
sions have been made.

The following exposition should therefore be viewed as addendum to the core topics
of this thesis. It stresses the importance of sound software design that leads to extensible
software. It emphasizes our vision of financial computing on the Internet (or Intranets)

and throws some light on ongoing research and possible future directions.

10.2.1 Theoretical Foundations

The following paragraphs are necessarily incomplete. By no means do we give an exhaus-
tive account of the theory. The interested reader is referred to Cover and Thomas (1991)
and Avellaneda (1998).

Let X and 7 be a vector of k contingent claims and a corresponding price vector,
respectively. The position \ € RF that minimizes (4.4.19) in Fact 4.9 implies a calibrated

volatility 6 which prices X correctly.
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Xand & may be found with lattice-based dynamic programming, as stated in Fact 4.10.
Here we follow a different approach.

For simplicity, assume the Vasicek model
dr = (0 — ar)dt + odX (10.10.1)

for the short rate process r = {r;} (any other model will do, too). dX is the random
shock, « the speed of mean reversion, and % the level of mean reversion.

In the Monte-Carlo setting, the process r is simulated for N paths wi,... ,wy. The
value of any instrument X can then be evaluated by approximating its discounted ex-

pected payoft:

N T
Fy(X) = %;exp (—/0 rt(wi)dt> X (w;) (10.10.2)

The summation in (10.10.2) amounts to assigning to each path the weight % This
uniform probability distribution P of paths is consistent with the prior model (10.10.1).

Now assume a different probability distribution () for the paths wy,... ,wy, i.e. 0 <
q,---,qny <1 and sz\; 1 ¢ = 1. The Kullback-Leibler distance of the new distribution

Q to the original, uniform distribution P is

HQIP) = 3 Qwn) o (Q(Zf)>

i=1 Plwi)
a Q(wi)
_ ZQ(%) log ( 1/]\; ) (10.10.3)
=1 N N
=log N + Z Q(w;) log Q(w;) =log N + th log q;
i=1 1=1

0 < H(Q|P) <logN, and H(Q|P) =0 if @ = P. A measure () # P implicitely changes
the price of the instrument X:
N T
Fo(X Q)= qiexp (—/ rt(wi)dt> X (w;) (10.10.4)
i=1 0

If N is much greater than k, it makes sense to ask for Q which correctly prices X, given
m. It is furthermore reasonable to assume that the model builder prefers () that mini-

mizes H(Q|P). Given (10.10.3), this is equivalent to maximizing the entropy H(Q) =
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—Zf\;l gilogq;. Avellaneda (1998) shows that under certain assumptions, this con-
strained entropy optimization problem has a unique solution, which can be found by
the method of Lagrange multipliers:
inf { sup [H(Q) + Fo(A-X | Q)] — X~ w} (10.10.5)
AERF Q
This formula corresponds to (4.4.19) in Fact 4.9.
The supremal ) can be found directly for fixed A\. The optimal ) is found with a
gradient-based optimization algorithm (L-BFGS-B in our case).

10.2.2 Extensions to MtgLib

Compute engines for Monte Carlo have already been listed as members of MtgLib in
Fig. 9.35. Classes for interest rate models are listed in Fig. 9.8. Figure 10.5 shows some
additional classes that contribute to the outer optimization loop (recall that tEvaluate

in Fig. 9.34 contains a member variable m_pOptimizer).

Class name Purpose

tOptimizer optimizer template (abstract)
tEntropyOpt minimum entropy optimizer template

tOptInstance optimizer instance (abstract)
tMCOptInstance optimizer instance for

Monte Carlo (abstract)
tMCEntropyOptInstance | optimizer instance for
minimum entropy optimization

(also inherits from tMinimizer)

tMinimizer wrapper for L-BFGS-B

Figure 10.5: Extensions to MtgLib. Not shown in this picture are the compute engines

derived from tMCEngine; these are mentioned in Sect. 9.2.1

The purpose of each class in Fig. 10.5 is as follows:

tOptimizer The abstract base class for optimizer templates. Just as for lattices, we

distinguish between optimizer templates that contain information on the type of the
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optimizer, and actual optimizer instances which are created by optimizer templates
as requested by compute engines and used only once. Optimizer instances contain

the “dirty” variables used during the actual computation.

The main feature of tOptimizer is the member function createInstance (), which

is pure virtual.

tEntropyOpt Supports minimum entropy optimizer templates. createInstance() re-
turns objects of type tMCEntropyOptInstance. In addition, minimum entropy
optimizer templates specify the upper and lower bound for Lagrange multipliers.
The following fragment would be a valid definition of a minimum entropy optimizer
in the scripting language used by MtgCal:
1 optimizer xyz {
2 type entropy,

3 low -100, high 100
4 %

(MtgCal uses the same scripting language as MtgSvr.)

tOptInstance The abstract base class for optimizer instances. This class is designed
with both lattice-based and simulation methods in mind, although optimization

right now is supported only for simulation methods.

tOptInstance contains basic member variables such as m Price (the price vector
7), m_Lambda (the output vector holding the optimal \’s) and m_Gradient (used by

the gradient-based minimization routine).

tMCOptInstance A specialization of tOptInstance for Monte Carlo simulation. The
member variable m_Weight is the vector that holds the alternative distribution @)
for the Monte Carlo paths. This class also precomputes the discounted cashflows
for each instrument and path, since this information needs to be computed only
once. It then calls a pure virtual member function minimize () to do the actual

optimization.

tMCEntropyOptInstance Inherits from both tMCOptInstance and tMinimizer; imple-
ments minimize () defined in tMCOptInstance by passing control to tMinimizer: :-

minimize (), which in turn calls back a member function eval() in each iteration.
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eval() is the partition function for the minimum entropy problem (see Avellaneda
(1998)).

tMinimizer A wrapper to the L-BFGS-B code that has been translated from Fortran
to C (see Zhu et al. (1994)).

There are other extensions to MtgLib that deal with the generation of curves and

their output as GIF images. These extensions are ommitted to keep this chapter short.

10.2.3 Architecture

The requirements on the client environment posed by MtgCal are less stringent than those
necessary for MtgClt/MtgSvr. In particular, the client only needs to support Javascript
instead of Java. Communication between the client and the server uses the CGI protocol.
This avoids low-level TCP and thus solves the firewall problem.

Calibration does not always fit into the request-response pattern of the HTTP proto-
col, because it may require a long time to complete. Calibration is therefore split into a

sequence of steps:
1. The user enters data into a form and submits it by clicking the “Calibrate” button.

2. The web server receives the request, reads the data and passes it to MtgCal, which
is installed as CGI handler.

3. MtgCal spawns off a separate copy of itself and passes the data to it. The new
process immediately starts calibration. The original instance of MtgCal creates a
temporary HTML page asking the user for patience (“in progress...”), which in

turn is returned to the client by the web server.

The user therefore experiences immediate feedback, regardless of the prospective

duration of calibration.

4. The temporary HTML page contains some Javascript code that periodically submits
a query to MtgCal. MtgCal detects that the query comes from the temporary page
and checks on the status of the current calibration, rather than initiating a new

one.
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client (browser) server (website) server (background)

HTML form

CGI MtgCal Spawn MtgCal
in progress. ..
CGI MtgCal
in progress. ..
\ result page
CGI MtgCal * html
result page

* html

* gif

Figure 10.6: The architecture of MtgCal. HTML, Javascript and the CGI protocol are
used to transfer data between the client and the server. Proxies and firewalls pose no

problem for this setup. Calibration is done in the background on the server
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5. As soon as the background instance of MtgCal finishes calibration, it creates a result
HTML pages with links to GIF images. The result page is detected at the next

status check, returned to the client, and the user finally sees the result.

In addition to images, pure data such as the calibrated forward rate curve is also
written to disk on the server, to support subsequent rate calculations and, in the

future, pricing.

The client engages in a polling action to eventually find the result. Other approaches
are possible, but this one seems the most robust and is straightforward to implement.
Figure 10.6 shows the architecture pictorially.

It is possible to submit another calibration request even while a background copy of
MtgCal is active. Each calibration request supercedes the previous one and terminates
background copies of MtgCal prematurely.

Figures 10.7, 10.8, 10.9 and 10.10 show the layout of the HTML form into which
calibration requests are entered, and of the result page, respectively.

The result, once computed, is persistent. Figure 10.11 shows how the calibrated for-

ward rate curve can be used to compute interest rates under different quoting conventions.
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11 Conclusion

We have laid the theoretical foundation of and implemented algorithms that price port-
folios of vanilla, barrier and American options under uncertain volatility scenarios such
as the worst-case volatility and volatility shock scenarios. Our implementation follows
object-oriented principles and is modular and extensible.

In particular, our algorithmic contributions are

e a method to precompute the number of subordinate pricing problems that arise

when the portfolio under consideration contains barrier options;

e a method to arrange statically as well as dynamically the hierarchy of pricing prob-

lems that arise under nonlinear scenarios in general;
e techniques to handle portfolios that contain American options in particular;

e a heuristic that allows to cut down the number of pricing problems for portfolios

with American options;

e an extension of worst-case volatility scenarios to volatility shock scenarios in which
the volatility may experience one or several periods of high-amplitude fluctuations

at unpredictable times.

Each of these theoretical achievements has a concrete representation in the class hierarchy
of the C++ class library MtgLib.

We have also demonstrated that complicated algorithms can be brought to a wider
audience by using contemporary Internet technologies. MtgClt/MtgSvr and MtgCal are
two online applications available in our website. We project that web computing for

finance will quickly gain importance, in our own research and at other places.
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