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Abstract

Knowledge Discovery in Databases for

Intrusion Detection, Disease

Classi�cation and Beyond

As the number of networked computers and the amount of sensitive information

available on them grows there is an increasing need to ensure the security of these

systems. Passwords and encryption have, for some time, provided an important

initial defense. Given a clever and malicious individual these defenses can, however,

often be circumvented. Intrusion detection is therefore needed as another way to

protect computer systems.

This thesis describes a novel three stage algorithm for building classi�cation

models in the presence of nonstationary, temporal, high dimensional data, in gen-

eral, and for detecting network intrusion detections, in particular. Given a set of

training records the algorithm begins by identifying "interesting" temporal patterns

in this data using a modal logic. This approach is distinguished from other work

in this area where frequent patterns are identi�ed. We show that when frequency

is replaced by our measure of "interestingness" the problem of �nding temporal

patterns is NP-complete. We then o�er an eÆcient heuristic approach that has

proven experimentally e�ective.

Having identi�ed interesting patterns, these patterns then become the predictor

variables in the construction of a Multivariate Adaptive Regression Splines (MARS)

model. This approach will be justi�ed by its ability to capture complex nonlinear
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relationships between the predictor and response variables which is comperable to

other heuristic approaches such as neural networks and classi�cation trees, while

o�ering improved computational properties such as rapid convergence and inter-

pretability.

After considering several approaches to the problems of over�tting which is in-

herent when modelling high dimensional data and nonstationarity, we describe our

approach to addressing these issues through the use of truncated Stein shrinkage.

This approach is motivated by showing the inadmissability of the maximum likeli-

hood estimator (MLE) in the high dimensional (dimension � 3) data.

We then discuss the application of our approach as participants in the 1999

DARPA Intrusion Detection Evaluation where we exhibited the bene�ts of our

approach.

Finally, we suggest another area of research where we believe that our work

would meet with similar success, namely, the area of disease classi�cation.
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Chapter 1

Introduction

Commentators have coined the phrase \information revolution" to describe a series

of technological advancements beginning with the microprocessor and culminating

with the internet and other information dissemination media that allow large quan-

tities of information to be rapidly stored and distributed. This language has been

chosen to suggest a similarity in societal impact to previous periods of technolog-

ical change like the industrial revolution. Amidst all of this hyperbole have come

a host of predictions about how this new technology will impact all aspects of life

from how governments govern, to how corporations function, to how individuals

lead their lives. It has been suggested that tyrannical regimes will no longer be

able to close their borders and suppress their citizens as information about the

bene�ts of freedom will be widely and freely available via the internet. Businesses

are forecast to change in a wide variety of ways. Suppliers will receive real time

noti�cation of the need for additional parts thus mitigating the need for large in-

ventories while achieving better capacity utilization. Petroleum companies will be
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able to store and review large volumes of geological data to better inform their

investments in oil drilling expeditions. Companies will be able to better manage

risk as their ability to identify risk factors increases. They will be better able to

target potential customers through direct marketing as people's buying habits are

analyzed by credit card companies and internet advertising �rms. Individuals' lives

will be changed as well. Access to economic information and the �nancial markets

has resulted in a proliferation of individuals investing in the stock market. People

are no longer limited to buying goods available in their neighborhood, but rather

now have access to stores all over the world. Prices can be compared quickly and

easily between companies to ensure a good deal.

While these bene�ts are all promised by the information revolution they are

predicated on our ability to aggregate and analyze all of this data produced by

our new technologies. The aggregation of large quantities of data has been made

possible by the evolution of database technology and the decreased cost of digital

storage media. The analysis of large quantities of data is the topic of this thesis.

Because of the growth in database size and use, knowledge discovery in databases

(KDD), often called data mining, has emerged in the 1990's as a visible research area

with the explicit goal of developing tools to facilitate the discovery of higher-level

information or knowledge in large databases. The KDD process is often described as

the \non-trivial process of identifying valid, novel, potentially useful, and ultimately

understandable patterns in data." The discovered knowledge can be rules describing

properties of the data, frequently occurring patterns, clusters of objects in the

database, etc.

Broadly speaking, there are two kinds of patterns discovered by data mining

2



algorithms: predictive and descriptive[35]. Predictive algorithms are built to solve a

speci�c problem of predicting one or more attributes in a database based on the rest.

Predictive patterns are not always attempts at predicting the future - the important

characteristic is that they make an educated guess about the value of an unknown

attribute given the values of other known attributes. By contrast, the point of

descriptive algorithms is simply to present interesting patterns that a domain expert

might not already know. In other words, with descriptive patterns there are no right

answers only interesting ones. Because of this, descriptive patterns are harder to

evaluate than predictive patterns, because their real value lies in whether they

suggest any actions to the domain expert, and how e�ective those actions are. Our

work, the work described in this thesis, has focused on addressing problems in both

of these areas, applied to a speci�c class of data namely, non-stationary, temporal,

high dimensional data.

In some domains the distribution of database records is stationary. For example,

Mobil Oil Corporation has developed a data warehouse capable of storing over 100

terabytes of data related to oil exploration[36]. One could imagine that Mobil would

use geological data from known oil wells in order to predict whether unexplored

land might be promising for future oil exploration. In building a model of which

geological features predict the existence of underground oil the modelers do not have

to worry that data gathered in a certain time and place will be useless in predicting

oil in another time and place. If the existence of certain minerals correlates highly

with the presence of underground oil in the North Sea then this correlation will

almost certainly also hold in the Indian Ocean. If this correlation holds in 1970

it also holds in 2000. In other domains, however, this assumption that data is
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stationary is 
awed. In these domains one cannot simply use training data (e.g.

data from an existing oil well) to build a model of which geological features predict

the existence of underground oil, and then use this model to make predictions about

out of sample data (e.g. yet unexplored land). The distribution of feature values

varies between the in-sample and out-of-sample data thus rendering predictions

based on in-sample data 
awed. In our work we have expanded on tools developed

within the statistics community in order to addressed this particular issue.

In some databases there is no interaction between a given database record and

the records that come before and after it. For example, one could imagine in a

supermarket's database that each record corresponds to the basket of items pur-

chased by a customer as well as demographic information about that customer

perhaps available if the purchase was made by credit card. This information could

be used in several ways. First, the supermarket would like to determine if there

are any patterns in customer purchases in order to improve store layout. One well

documented supermarket buying pattern is the correlation between the purchase of

diapers and beer. With this knowledge a supermarket may want to put beer close

to diapers on the store shelves in order to make shopping faster. Additionally, the

supermarket might want to use demographic information about its customers for

marketing purposes. At any rate, the data mining process in this case is simpli-

�ed by the fact that when looking for patterns in the database each record can be

considered individually. The purchases and demographics of one customer have no

impact on the purchases or demographics of another. In other domains, however,

there is a causal relationship between database records. In some cases this is the

result of temporal features in the data. In other words, when analyzing the data
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it is important to account for the time ordering of the database records. In other

cases, this causal relationship is the result of physical characteristics of the data.

For example, when analyzing human genome data it is never enough to know that a

given nucleotide occurred at a given location on a given chromosome without know-

ing the nucleotide sequences that preceded and followed it. This vastly complicates

the data mining process in that we are no longer simply looking for patterns within

a given database record but also for patterns amongst di�erent records.

One's ability to build predictive models of data is fundamentally dependent on

two factors - the complexity of the underlying (true) model, and the quality of the

available training data. Once a problem domain has been selected the complexity

of the underlying model becomes an issue exogenous to the modeling process and

therefore an issue over which the modeler has little impact except for ensuring that

the techniques being used are robust enough to handle the domain's inherent com-

plexities. The quality and size of the training data, while typically limited by real

world constraints, must be addressed in a more proactive manner. As mentioned

previously, nonstationarity is a qualitative feature of data that we address. An-

other important issue is the size of training data. The size of the training data is

intimately related to the dimensionality of that data. In most complex domains the

number of independent variables and thus the number of degrees of freedom is very

large. Despite the availability of thousands or even millions of training records this

results in poor coverage of the space being modeled which in turn results in high

variance in the models constructed. Virtually all techniques for dealing with small

sample statistics involve some �nal pruning phase where increased model bias is

traded for decreased variance through a reduction in the number of degrees of free-
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dom. We have explored many of these alternatives and our results using truncated

shrinkage will be discussed in detail.

The two problem domains that we wish to address are network intrusion de-

tection and cancer classi�cation. While, on the surface, these problems seem com-

pletely unrelated the algorithmic issues related to both problems are actually quite

similar in that they both involve the mining of temporal, non-stationary, high di-

mensional data. The problem of network intrusion detection involves analyzing

computer network activity and attempting to identify the existence of intrusive or

malicious behavior. In building a model of both normal and malicious activity we

cannot assume that our data is stationary. First, as networks and network proto-

cols evolve the activities of normal users will change. Second, as intruders become

more sophisticated the activity patterns exhibited by malicious individuals will also

change. Therefore, we must account for these changes in building our model. Or

more speci�cally, we must allow for these changes when using a model which was

built based on a given network, at a speci�c time, when trying to identify intrusions

on a di�erent network or at a di�erent time. Furthermore, if each record in our

data represents a single network connection, it is important that we analyze rela-

tionships between these records since intrusions typically do not occur in a single

network connection but rather are the result of a series of actions taken over many

connections.

Cancer classi�cation has been traditionally based on morphological appearance

of the tumor. This approach has two signi�cant limitations. First it is subject to

potential human error and second it is too imprecise, i.e. there are almost certainly

cancer classes that have yet to be discovered. Since cancer is a disease caused by
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genetic mutations we take a genetic approach to cancer classi�cation. That is, we

consider the expression of genes as RNA in both healthy and diseased individuals

and attempt to identify genetic patterns that both distinguish healthy from cancer-

ous cells as well as di�erent classes of cancerous cells. In addressing this problem,

however, we cannot assume that our data is non-stationary. Gene expression in-

evitably di�ers within groups of individuals. If we use a healthy individual to model

what constitutes normal gene expression we may incorrectly predict that another

individual has cancer because their gene expression di�ers from our �rst healthy

individual. In reality this di�erence may simply be due to normal variances in

the population. Therefore, when building a model of healthy and cancerous gene

expression we must account for di�erences within the normal population as well as

temporal di�erences since gene expression changes as one ages. Additionally, if we

view our data as a sequence of gene expression levels it is important to consider

interactions between these levels as many cancers are polymorphic, that is they

involve interacting mutations in more than one gene.

1.1 Problem Statement and Our Approach

Classi�cation involves learning a function that maps (classi�es) a data item into

one of several prede�ned classes. Both intrusion detection and cancer classi�cation

are fundamentally classi�cation problems. In both cases we build a function of a

set of predictor variables in order to predict the value of one or several predicted

variables.

In cancer classi�cation, each record in our data represents the gene expression
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level for one particular gene. In addition, we augment each record with a set of

features that capture the relationship between the expression of the gene in the

given record and the expression levels of other genes. These additional features are

the ones deemed to be most relevant in classifying cancer. Once these features have

been selected a classi�cation model is built based on a set of in sample (already

labeled) data and we again employ shrinkage in order to addresses the issues of

over�tting, non-stationarity, and combining classi�ers.

Given that the classi�cation process is virtually identical in both of these prob-

lem domains, throughout this thesis we will present the details of our approach

in the context of solving the generic classi�cation problem in the presence of non-

stationary, high dimensional data in which interactions exist amongst the individual

records. The algorithm is divided into three steps: feature selection, classi�cation,

and shrinkage.

1.1.1 Feature Selection

Initially, our data consists of an ordered set of database records, each with a set of

features deemed relevant, given some domain knowledge, for predicting the value

of some dependant variable. In our data there are also important relationships

between di�erent records. Therefore, our goal in this initial step is to extract from

the data a set of temporal features that are most relevant for predicting the value of

the dependent variable. To accomplish this we discover patterns using propositional

linear temporal logic and de�ne an interestingness measure over these patterns. We

have chosen to use propositional linear temporal logic both because of its ability

to express the types of patterns we are looking for as well as the fact that we have
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devised an eÆcient algorithm for �nding such patterns. In some domains it would

be useful to use a more expressive predicate logic. This, however, may result in an

explosive growth in the computational complexity over our pattern search space.

One aspect of future research will be to develop eÆcient algorithms over more

expressive logics. Given a language for describing the patterns we additionally

de�ne an interestingness measure over these patterns. The precise interestingness

measure used is domain dependent. In general, it is a measure of how much the

occurrence of the pattern correlates with the occurrence of a single value of the

predicted variable.

These newly discovered patterns along with the features from the original database

records become the independent variables of the next stage of our approach - clas-

si�cation.

1.1.2 Classi�cation

Classi�cation is a problem that is well known to members of the data mining com-

munity. The most widely used classi�cation technique is decision trees. There are

more powerful (in the sense that they are able to represent a more robust class

of functions) classi�cation techniques like neural networks, however, practitioners

often shy away from them due to their computational complexity and lack of trans-

parency. One important feature of a classi�er that is important to data miners is

that the resulting function be ultimately understandable. We like to be able to

understand why a prediction made by our classi�er was made so that we can better

understand relationships that exist in our problem domain. Neural networks are

ultimately a black box and while their predictions may be accurate they lead to
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little insight about the problem at hand.

We have settled on an alternative technique known as MARS (Multivariate

Adaptive Regression Splines) [41]. This is not a novel technique - it was developed

over 10 years ago. However, at that time practitioners generally lacked the compu-

tational resources to use this technique and it has been generally overlooked in the

interim. MARS can be described as an extension of decision trees. It, however, is a

nonlinear technique that overcomes many of the shortcomings of standard decision

trees while remaining computationally tractable and ultimately interpretable.

1.1.3 Over�tting and Combining Forecasts

In all classi�cation techniques, the introduction of additional degrees of freedom

(in decision trees or MARS via additional splitting) reduces the in sample error

(bias) of the model while increasing the model variance. This frequently results in

poor approximations of out of sample data. To address this problem virtually all

classi�cation methods include some technique for reducing the model bias - typically

via reduction in its degrees of freedom. In both CART[16] and C4.5[66] this is done

via a pruning technique which replaces pairs of nodes with their parent node in the

tree. This results in increased bias in the model while reducing its variance and,

in practice, reduced out-of-sample error. In his original paper Freidman suggested

a similar technique be employed when building a MARS model. He suggested an

iterative procedure in which, in each iteration, a single basis function is removed

from the model. The decision as to which basis function to remove is determined by

which removal results in the smallest increase in in-sample error. At the conclusion

of this process one has a sequence of models each with one less basis function (and
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therefore at least one less degree of freedom) than the previous. From this sequence

the best model is chosen.

Combining forecasts is typically done via averaging resulting in a maximum

likelihood estimator (MLE). To evaluate the correctness of this approach consider

the more general situation of trying to estimate a parameter T by t(x). If E[[t(x)]] =

T , then t(x) is said to be an unbiased estimator of T and a measure of the precision

of this estimator is E[[t(x)� T ]]2, i.e. its variance. If, instead, Et(x) 6= T , then t(x)

is known as a biased estimator of T . A measure of its precision is still E[[t(x) � T ]]2,

but now since Et(x) 6= T , this quantity is not the variance, but rather is known as

the mean squared error (abbreviated, MSE). We now show[70],

E[[[t(x) � �]2]] = E[[[t(x) � E[[t(x)]] + E[[t(x)]]� �]2]] (1.1)

= E[[[t(x) � E[[t(x)]]]2]] + (E[[t(x)]]� �)2 + (1.2)

2(E[[t(x)]]� �)E[[t(x)� E[[t(x)]]]] (1.3)

= E[[[t(x) � E[[t(x)]]]2]] + (E[[t(x)]]� �)2 (1.4)

= var[t(x)] + (E[[t(x)]]� �])2 (1.5)

= var[t(x)] + [Bias(t)]2 (1.6)

James and Stein showed (Stein, 1956) that in the case where x is of dimension

three or greater, by sacri�cing increased bias for decreased variance we can achieve

uniformly smaller MSE[49]. In other words the MLE is inadmissible. We have

extended Stein's original work for shrinking linear models to the nonlinear setting

appropriate for our classi�cation technique.
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1.2 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces the �eld

of data mining and suggests several areas in the �eld that will be useful in our

domains of interest. Chapter 3 presents the problem of �nding interesting patterns

in data. This chapter begins with a discussion of an approach for �nding frequent

patterns in data. Frequent patterns are, however, limited in their expressiveness

and we therefore extend this approach to discover a more robust class of patterns.

The computational diÆculties and our algorithm are discussed here. Chapter 4

o�ers a survey of classi�cation techniques along with their various strengths and

weaknesses. Chapter 5 is a detailed discussion of the classi�cation technique we

have used, MARS, addressing theoretical, computational and implementation is-

sues. Chapter 6 discusses various approaches to reducing model variance including

bagging and boosting, as well as a detailed analysis of shrinkage from both a fre-

quentist and Bayesian view. Chapter 7 introduces the problem on network intrusion

detection, surveying existing approaches as well as our approach. Chapter 8 dis-

cusses the results from our involvement in the 1998 DARPA Intrusion Detection

Evaluation. Chapter 9 suggests an approach to applying our techniques to the

problem of cancer classi�cation. Finally, Chapter 10 summarizes this thesis and

outlines directions for future work.
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Chapter 2

The KDD Process

A database is a reliable store of information. One of the prime purposes of such

a store is the eÆcient retrieval of information. This retrieved information is not

necessarily a copy of information stored in the database, rather, it is information

that can be inferred from the database. From a logical perspective, two inference

techniques can be distinguished[46].

1. Deduction is a technique to infer information that is a logical consequence

of the information in the database. Most database management systems

(DBMSs), such as relational DBMSs, o�er simple operators for the deduc-

tion of information. For example, the join operator applied to two relational

tables where the �rst administrates the relation between employees and de-

partments and the second the relation between departments and managers,

infers a relation between employees and managers. Extending the deductive

expressiveness of query languages while remaining computationally tractable

is pursued in the research area called deductive databases.
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2. Induction is a technique for inferring information that is generalized from the

information in the database. For example, from the employee-department and

the department-manager tables from the example above, it might be inferred

that each employee has a manager.

The search for this higher-level information or knowledge is the goal of the

knowledge discovery in databases, KDD, process.

De�nition 1 Knowledge discovery in databases (abbreviated, KDD) is the non-

trivial process of identifying valid, novel, potentially useful, and ultimately under-

standable patterns in data[35].

In the KDD process we are typically looking for patterns P in a language L that

we have speci�ed for the particular domain of interest. For example, the language

could be association rules or modal logic expressions, as we will see later. An

important notion, called interestingness, is usually taken as an overall measure of

pattern value, combining validity, novelty, usefulness, and simplicity. Some KDD

systems have an explicit interestingness function I that maps expressions in L to a

measure space Ml. Other systems de�ne interestingness indirectly via an ordering

of the discovered patterns.

Given the notions listed above, we may state our de�nition of knowledge as

viewed from the narrow perspective of KDD[35]..

� Knowledge: A pattern P in L is called knowledge if for some user speci�ed

threshold T 2Ml, I(P ) > T .
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� Data mining is a step in the KDD process consisting of particular data min-

ing algorithms that, under some acceptable computational eÆciency limitations,

produces a particular enumeration of patterns over the database.

Note that the space of patterns is often in�nite, and the enumeration of patterns

involves some form of search in this space. the computational eÆciency constraints

place severe limits on the subspace that can be explored by the algorithm.

� KDD Process is the process of using data mining methods (algorithms) to

extract (identify) what is deemed knowledge according to the speci�cations of mea-

sures and thresholds, using the database D along with any required preprocessing,

sub-sampling, and transformations of D.

There are many characterizations of the KDD process in the literature [2, 37,

48, 52, 57, 58]. They typically di�er in organization rather than substance. We

will consider one such characterization. The KDD process proceeds in the following

steps[50]:

1. Data Extraction

2. Data Curation

3. Data Engineering

4. Algorithm Engineering

5. Mining Algorithm

6. Data Analysis and Evaluation
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Data extraction: Once a problem has been de�ned, relevant data must be

collected. In most cases, the relevant data is extracted from an existing database

or a data warehouse. Usually, data mining algorithms cannot be run directly against

a database and stored in some format (typically a 
at �le) that can be loaded into

main memory and accessed by the mining algorithms. In these cases, the manual

extraction step is really just an artifact of the inability of the data mining algorithm

to run directly against a database.

There are several shortcomings of this approach. First, duplicating data is

generally undesirable: it requires more storage space and it creates the problem of

maintaining consistency with the source database. Second, since the KDD process

is usually iterative, as one rede�nes the data to be examined the whole extraction

process may need to be repeated. Third, many �le systems have a �le size limit,

so users must manually partition larger database extracts and maintain a set of

�les. Finally, it is not even clear that a mining algorithm would be able to process

the resulting extract �les if they are large, since many implementations of mining

algorithms often load the �le contents into main memory as �rst step.

Work has been done in using SQL, the standard database query language, in

data mining to directly and automatically get the answers to those questions about

the data that it needs to ask[50]. The KDD process can be sped up signi�cantly

by relying on the relational database management system's query engine.

Data Cleaning and Exploration: Once the requisite data has been collected,

it is important to spend some time exploring the database, for two reasons. First,

the data analyst must develop intimate knowledge of the data - not only knowing

the attribute names and what they are intended to mean, but also the actual
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contents of the database. Second, there are many sources of error when collecting

data from multiple databases into a single analytical database, and a good analyst

must perform several sanity checks to validate the extracted data. It is rare that

the extracted data is without any problem.

Data Engineering: The previous steps have been concerned with creating and

cleaning the mining base, which is a static database containing all of the information

we would ever want to use in our data mining runs. There are three problems at this

stage. First, the mining base might contain many attributes that could pro�tably

be ignored. Selecting which subset of attributes to use is an important problem.

Second, the mining base might contain many more records than can be analyzed

during the available time, in which case we must sample the mining base. Third,

some of the information in the mining base might be better expressed in a di�erent

way for a particular analysis. As one explores di�erent solutions to these problems

in the course of a data mining project, the data engineering step is repeated many

times to converge to the best customized mining base for our purposes, where

customizing addresses all three problems mentioned above.

Algorithm engineering: There are many algorithmic approaches to extract-

ing useful information from data. As these are the basis for this thesis we will defer

discussion of the speci�cs until later sections.

Running the mining algorithm and evaluation of results: The next step,

running the data mining algorithm, is the point where the algorithm designer can

just sit back and watch. The one issue that must be addressed at this stage is the

decision of how to partition the data into a training set and a validation set in order

to facilitate the evaluation of the quality of the algorithm. We will illustrate these
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Home Team Stats Road Team Stats

PPG RPG APG SPG PPG RPG APG SPG WINNER

98.2 10.3 10.1 2.7 104.1 8.8 7.4 4.1 HW

101.5 10.4 11.1 2.2 89.9 8.9 12.2 3.1 HW

91.4 13.3 9.3 3.2 101.0 10.8 9.0 3.6 RW

93.2 12.1 9.7 3.5 99.3 12.2 8.8 5.1 HW

96.5 8.4 8.4 4.1 97.6 9.0 6.8 4.2 HW

97.8 9.9 10.2 3.2 94.5 11.7 10.0 2.8 RW

105.4 8.1 14.5 1.8 98.6 10.4 11.7 4.0 HW

91.3 13.4 8.8 4.6 96.6 8.8 7.9 3.1 RW

Table 2.1: These are sample data of NBA games. PPG = points per game, RBG =

rebounds per game, APG = assists per game, and SPG = steals per game. These statistics

are shown for both the home and road teams. The �nal �eld is the winner of the game.

steps with an example.

Example:

Suppose we have been hired by a Las Vegas casino to build a system that predicts

the winner of professional basketball games. We are not interested in predicting

scores, simply winners. We will pose this as a classi�cation problem. Given all

relevant data we would like to classify each \game record" into one of the following

tow classes: \Home Team Wins" (HW) or \Road Team Wins" (RW). Suppose

further that we have the results of an entire basketball season to use for training.

We will then test our system by predicting the outcome of the nth game given the
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results of �rst n� 1 games. A sample of what this data might look like is in Table

2.1.

The data in Table 2.1 is the result of completing the �rst step in the KDD

process, that of data extraction. It is possible that the data was not in its present

form in the database. Perhaps, a di�erent table was kept for each team, in which

case the statistics of the two teams competing in each game had to be merged

to form Table 2.1. Or perhaps, a di�erent table was kept for each statistic. In

any case, after deciding what data is necessary for our problem (usually done in

consultation with a domain expert) the requisite data must typically be put into a

single table in order for the data mining algorithm to be able to access it.

The next step in the data mining process is cleaning and exploration. We want to

become familiar with the data as well as to make sure that it is consistent and error

free. For example, one problem that may exist in Table 2.1 is that the cumulative

data may include the current game. That is we may be using training data that

includes the nth game for purposes of predicting the outcome of the nth game. This

would, of course, invalidate this data for predictive purposes. We would have to go

back to the database and extract the data for the previous game(s) played by each

team, which would then include all the valid knowledge available to us. This type

of temporal in�delity is not uncommon.

The next step is data engineering. We have actually already performed some of

the tasks typically associated with this stage of the process in that we only extracted

data that we thought would be important for the prediction task at hand. Often

some pruning of the extracted data would occur at this point. In addition we may

decide that some of the statistics would be better expressed in a di�erent way. For
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example, we may decide that rather than looking at home team PPG and road

team PPG that we would rather use the statistic point di�erential, i.e. (Home

Team PPG - Road Team PPG). In this case we would add an additional �eld to

our table.

There are many algorithms available for the classi�cation problem. At this point

one must be chosen and run on our data set. Following this, we would analyze the

results in consultation with a basketball expert who may �nd them useful or may

think we should try again, either with a di�erent algorithm or a di�erent set of

attributes. The process is inherently iterative.

2.1 Types of Data Mining Patterns

The name \data mining" has been a godsend. Before it became popular researchers

in areas such as statistics, machine learning, databases, neural networks, pattern

recognition, econometrics, and many others were all working on the same kinds of

problems, but they were not fully capitalizing on each other's work. Without a

name under which to unite, the research su�ered from fragmentation.

Data mining unites all of these disciplines under the premise that there exists

much valuable knowledge in databases, but that due to the tremendous and growing

volumes of data involved, advanced computers are necessary for the meaningful

analysis of this data as opposed to tedious manual searches by human analysts. The

need for data mining has been fueled in the business community by the popularity

of data warehousing, which refers to the collecting and cleaning of large databases
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for analysis and decision support, as opposed to transactional databases which serve

accounting and inventory managers. As the amount of data collected has grown,

so to has the need for more tools to eÆciently analyze the data. The following is

a brief summary of a variety of algorithms that are either particularly prevalent

in the data mining community or particularly relevant to the problems we have

addressed.

Classi�cation: The ability to predict the future would certainly be a highly

desirable skill. While no statistical technique can be used to eliminate or explain all

of the uncertainty in the world, statistics can be used to quantify that uncertainty.

Many techniques have been developed to accomplish the singular task of predicting

the value of a dependant variable from knowledge of the values of one or more

independent variables. These techniques include regression (both parametric and

non-parametric), neural networks, decision trees, Bayesian networks, and others.

We utilize one such technique, Multivariate Adaptive Regression Splines (MARS)

in classifying normal versus abnormal network activity and normal versus abnormal

gene expression levels.

Link Analysis: Link analysis determines relationships between �elds in database

records. In some settings, such as analyzing purchasing habits of supermarket cus-

tomers, link analysis represents the end goal. In other settings, link analysis is

simply important diagnostic information. For example, in regression, one common

source of error is correlation amongst the "independent" (predictor) variables. Ap-

proaches, such as ridge regression have been developed to address this problem.

Sometimes the correlations are more subtle and exist only amongst the variances

of the predictor variables. Again techniques such as ANOVA decomposition, have
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been developed to address this problem. In either case, a prerequisite to confronting

these problems is recognizing them, and link analysis is an important tool in doing

this. In the context of evaluating audit records for intrusion detection, correlation

between system features is common. For example one observes frequent correlation

between command and argument in the shell command history of a user. A pro-

grammer, for example, might have the opening of an emacs session highly correlated

with the opening of \.cc" or \.hh" �les.

Sequence analysis: Orthogonal to link analysis, sequence analysis provides

information between database records rather than within them. Sequence analysis

algorithms provide information about temporal relationships that exist in the data.

Most of these algorithms involve sliding a \window" across the data records and

looking for patterns within the current viewing window[60]. Patterns' interesting-

ness are typically measured by the number of windows in which they occur. In our

work we have extended this work by using a propositional, linear, modal logic as a

description language for discovered patterns. We have also removed the notion of

a sliding window, allowing us to identify patterns between database records that

are temporally spread out. This is important in the context of network intrusion

detection because it is possible for an intruder to separate the stages of an attack

over a signi�cant time period in an attempt to avoid detection. Furthermore, we

have changed our interestingess measure from simple frequency to \unexpected-

ness", allowing us to take advantage of probabilistic information about the data.

These issues will be discussed in detail in chapter 3.

Association rules: Intimately related to link analysis is the problem of mining

a large collection of basket data for association rules between sets of items with some
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minimum con�dence and support. By an association rule, we mean an implication

of the form X ! Ij where X is a set of some items in I, and Ij is a single

item in I that is not present in X. The rule X ! Ij is satis�ed in the set of

transactions T with the con�dence factor 0 � c � 100 if, and only if, at least c%

of the transactions in T that satisfy X also satisfy Ij. Furthermore, we are often

interested in identifying rules with a minimum support threshold. These constraints

concern the number of transactions in T that support a rule. For an association

rule X ! Ij the support for the rule is de�ned as Pr[[X [ Ij]][3, 5, 7, 61].
Clustering: Clustering is concerned with the problem of automatic discovery

of classes in data. This is in contrast with classi�cation where class descriptions

are generated from labeled examples. In some sense, automatic classi�cation aims

at discovering the \natural" classes in the data. These classes re
ect basic causal

mechanisms that make some cases look more like each other than the rest of the

cases. The causal mechanisms may be as trivial as sample biases in the data, or

could re
ect some important and yet unknown relationship between data in the

domain.

There are several approaches to clustering. For example, in the Bayesian ap-

proach the goal is to �nd the most probable set of class descriptions given the

data and prior expectations[22]. The introduction of priors automatically enforces

a tradeo� between the �t to the data and the complexity of the class descriptions.

Another approach is maximum likelihood which tries to �nd the class descriptions

that best predict the data. These models have trouble because the best classi�ca-

tion is always a set of single case classes, perfectly �tting each case, with a class

for each unique case. This extreme \classi�cation" has little predictive power for
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new cases and illustrates a potential problem inherent in all modeling techniques

- that of over�tting the data. Over�tting occurs when models are built based on

their ability to accurately characterize training data. It is often tempting to build

models that perform very well on training data but are too speci�c to the biases in

that data that cause them to be poor predictors of unseen data. In all classi�cation

problems this issue has to be confronted.

The statement a clustering pattern makes about the probability distribution

is that the distribution of the entire population can be decomposed into the sum

of the distributions of the clusters[35]. Formally, if Pri[[x]] is the distribution for

cluster i, Pr[[x]] is the distribution for the entire population, and cluster is the new

attribute indicating the cluster to which a record belongs, then the statement the

clustering pattern makes about the probability distribution of x is:

Pr[[x]] =
P

i Pr[[xjcluster = i]] Pr[[cluster = i]] (2.1)
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Chapter 3

Finding Interesting Patterns in

Temporal Data

In the network intrusion detection setting, our data initially consists of an ordered

set of TCP/IP audit records, each with a set of features deemed relevant, given some

domain knowledge. In our data there are also important relationships between

di�erent records. Therefore, our goal in this initial stage of our algorithm is to

augment each record with a set of temporal features that are most relevant for

classifying each record as being normal or malicious activity. To accomplish this

we discover patterns using propositional linear time temporal logic and de�ne an

interestingness measure over these patterns. We have chosen to use propositional

linear time temporal logic both because of its ability to express the types of patterns

we are looking for as well as the fact that we have devised an eÆcient algorithm

for �nding such patterns. 1

1Much of this chapter is excerpted from [10], a chapter authored by myself and Alex Tuzhilin.

Rather than referencing that chapter throughout the current chapter I am referencing it once,
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The diÆculty in �nding interesting patterns is in knowing where to look. Work

has been done in �nding frequent episodes (patterns) in temporal data. In that

setting one utilizes a \time window" of user de�ned width, which is slid across the

event sequence. The frequency of an episode is de�ned as the number of windows

in which it appears and a pattern is considered interesting if its frequency exceeds

some threshold. In some pattern discovery settings frequency is an appropriate

measure of interestingness.

In other settings, such as network intrusion detection, this is not necessarily

the case. Attacks, almost by de�nition, are rare events and therefore occur with

low frequency. Furthermore, the component activities of a multistage attack are

typically benign, in and of themselves, and are only malicious in concert. Therefore,

when searching for patterns that characterize malicious activity we are not simply

interested in those patterns that occur frequently in the presence of an attack, but

rather those patterns that occur more frequently during an attack than they do

during normal network activity.

In this spirit we de�ne an the interestingness of a pattern P to be the ra-

tio of the number of occurrences of P during the course of an intrusion to the

number of occurrences of P during the course of normal network behavior. This

interestingness measure, unlike frequency, will allow us, in principle, to 1) identify

patterns, that are rare, yet highly correlated with intrusive behavior, and 2) ignore

patterns that occur frequently during an intrusion, but occur just as frequently

during normal behavior. Consider, for example, an attack on the HTTP server

on a victim machine. The attacker sends a very large number of requests to the

here.
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server in an attempt to cause a bu�er over
ow. The patterns Service = HTTP

and Port = 80 are both atomic patterns that would appear frequently during

normal activity as well as during this type of attack. Additionally, the pattern

P = f(Service = HTTP ) AND (Port = 80)g would occur freqeuntly during nor-

mal activity (since HTTP requests are typically assocociated with port 80) and

during this attack. A long sequence of occurrences of pattern P , however, would be

uniquely associated with this attack, and it is therefore, the pattern PNP : : :NP

(a modal formula describing several successive occurrences of the pattern P ) that

we would be interested in identifying. 2

When interestingness is measured in this probabilistic way, the problem of �nd-

ing interesting patterns becomes NP-complete. In the remainder of this chapter,

after o�ering some contextual background in the �eld of knowledge discovery in

temporal databases we will present the algorithm for discovering frequent temporal

patterns and then present our algorithm for discovering interesting temporal pat-

terns. While given the complexity of the problem, our algorithm cannot necessarily

�nd all interesting patterns, we have found empirically that it performs quite well

and at the end of this chapter we will present some of these results. Throughout this

chapter the problem of �nding interesting patterns will be approached in a generic

setting with its precise application to intrusion detection disucssed in subsequent

chapters.

There has been much work done recently on pattern discovery in temporal and

sequential databases. Some examples of this work are [12, 13, 24, 53, 59, 60, 62,

71, 74, 78]. Since there are many di�erent types of discovery problems that were

2the operator N will be made clear shortly.
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addressed in these references, it is important to characterize these problems using

some framework. One such characterization was proposed in [24]. In this chapter

we review this framework and then focus on one speci�c problem of discovering

unexpected patterns in temporal sequences. To �nd unexpected patterns in a se-

quence of events, we assume that each event in the sequence, and therefore each

pattern occurs with some probability and assume certain conditional distributions

on the neighboring events. Based on this, we can compute an expected number of

occurrences of a certain pattern in a sequence. If it turns out that the actual num-

ber of occurrences of a given pattern signi�cantly di�ers for the expected number,

then this pattern is certainly unexpected and, therefore, is interesting [73, 72]. We

present an algorithm for �nding such patterns. As we will show in subsequent chap-

ters this generic setting can be extended for use in intrusion detection by assuming

that individual events are conditionally independent and that the probability of a

speci�c event or pattern occurring is calculated based on the number of occurrences

of the given pattern or event during the course of normal network activity.

3.1 Characterization of Knowledge Discovery Tasks in Tem-

poral Databases

Characterization of knowledge discovery tasks in temporal databses, proposed in

[24] is represented by the 2-by-2 matrix presented in Table 3.1. The �rst dimension

in this matrix de�nes the two types of temporal patterns. The �rst type of a

temporal pattern speci�es how data changes over time and is de�ned in terms of
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5-1-97 7-12-97

Figure 3.1: An example of the head and shoulder pattern.

temporal predicates. For example, the pattern

head and shoulder(IBM ; 5=1=97 ; 7=12=97 )

indicates that the stock of IBM exhibited head and shoulder trading pattern [56]

from 5/1/97 until 7/4/97, as is shown in Figure 3.1). The second type of temporal

patterns is rules, such as \if a stock exhibits a head-and-shoulder pattern and

investor cash levels are low, then bearish period is likely to follow."

The second dimension, the validation/generation dimension, refers to the pur-

pose of the discovery task. In validation the system focuses on a particular pattern

and determines whether it holds in the data. For example, we may want to validate

if the head and shoulders pattern holds for the IBM stock in a given data set or

that a certain rule \holds" on the data. The second purpose of discovery can be the

generation of new predicates or rules that are previously unknown to the system.

For example, the system may attempt to discover new types of trading rules in

�nancial applications.

Categorizing patterns in terms of the above two dimensions leads to a two-

by-two classi�cation framework of the knowledge discovery tasks, as presented in
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Table 3.1. We will describe each of the four categories in turn now.

Validation Generation

Predicates I III

Rules II IV

Table 3.1: Types of Knowledge Discovery Tasks.

Class I. The discovery tasks of this type involve the validation of previously de-

�ned predicates over the underlying database. For example, assume that we have

the temporal database of daily closing prices of stocks at some stock exchange,

STOCK(SYMBOL,PRICE,DATE), where SYMBOL is the symbol of a security,

PRICE is the closing price of that stock on the date DATE. Consider the following

predicate specifying that the price of a certain stock bottomed out and is on the

rise again over some time interval:

bottom reversal(x; t1; t2) = (9t)(t1 < t < t2 ^ decrease(x; t1; t)

^ increase(x; t; t2))

where increase(x; t1; t2) and decrease(x; t1; t2) are predicates specifying that the

price of security x respectively \increases" and \decreases" over the time interval

(t1; t2)
3.

3Note that we do not necessarily assume monotonic increases and decreases. Predicates in-

crease and decrease can be de�ned in more complex ways, and we purposely leave it unspeci�ed

how to do this.
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Then we may want to validate that the predicate bottom reversal(x; t1; t2) holds

on the temporal relation STOCK(SYMBOL,PRICE,DATE). This validation can

take several forms. For example, we may want to �nd for the predicate bot-

tom reversal if one of the following holds:

bottom reversal(IBM ; 5=7=93 ; 8=25=93 );

bottom reversal(IBM ; t1 ; t2 );

bottom reversal(x ; 5=7=93 ; 8=25=93 )

The �rst problem validates that the stock of IBM experienced the \bottom reversal"

pattern between 5/7/93 and 8/25/93. The second problem �nds all the time periods

when IBM's stock had \bottom reversal," and the last problem �nds all the stocks

that had \bottom reversals" between 5/7/93 and 8/25/93.

One of the main issues in the problems of Class I (predicate validation problem)

is to �nd approximatematching patterns. For example, for the IBM stock to exhibit

the bottom reversal pattern between 5/7/93 and 8/25/93, it is not necessary for

the time series of IBM stock to match predicate bottom reversal exactly. Another

example of the approximate matching problem of Class I comes from the speech

recognition applications where sounds and words are matched only approximately

against the speech signal.

There has been extensive work done on Class I problems in signal processing

[64], speech recognition [9, 67], and data mining communities. In the data mining

community these types of problems are often referred as similarity searches and

have been studied in [1, 4, 6, 12, 34, 42].

Class II. Discovery tasks of Class II involve validation of previously asserted
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rules. For example, consider the rule: \If a price correction in a stock is seen before

the announcement of big news about the company, then insider trading is likely,"

Correction(stock; t1; t2) ^ Big news(stock; t3) ^ Soon after(t3; t2)

! Insider trading(stock; t1; t2)

where Correction, Big news, Insider trading and Soon after are user-de�ned predi-

cates (views) de�ned on relations STOCKS and NEWS.

Evaluation of this rule on the data entails �nding instances of variables stock,

t1, t2, t3 and the \statistical strength" of the rule (e.g. measured in terms of its

con�dence and support [3]) that make the rule hold on the data (in statistical

terms).

As in the case of Class I problems, one of the main issues in rule validation is the

problem of approximate matching. The need for approximate matching arises for

the following reasons. First of all, rules hold on data only in statistical terms (e.g.

having certain levels of con�dence and support). Secondly, some of the predicates

in the rule can match the data only approximately (as is the case with Class I

problems from Table 3.1). Moreover, certain temporal operators are inherently

fuzzy. For example, temporal operator Soon after(t1; t2) is fuzzy and needs to be

de�ned in \fuzzy" terms4.

Class III. Discovery tasks of Class III involve the discovery of new interesting

predicate-based patterns that occur in the database. In order to discover such

patterns, the system should know on what it should focus its search because there
4Note that it is not appropriate to de�ne this operator in terms of the temporal operator Next

because of the inherent ambiguity of the term \soon." Although this operator can be de�ned in

many di�erent ways, one natural approach would be through the use of fuzzy logic [79].
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are potentially very many new patterns in the database. In other words, the system

should know what to look for by letting the user specify what is interesting. For

example, the pattern bottom reversal may be interesting because it provides trading

opportunities for the user.

Although there are many di�erent measures of interestingness for the user, such

as frequency, unexpectedness, volatility, and periodicity [24], the most popular mea-

sure used in the literature is frequency of occurrence of a pattern in the database

[59, 60, 62]. In particular, [59, 60] focus on discovering frequent episodes in se-

quences, whereas [62] discovers frequent patterns in temporal databases satisfying

certain temporal logic expressions.

In this chapter, we use a di�erent measure of interestingness. Instead of dis-

covering frequent patterns in the data, we attempt to discover unexpected patterns.

While it is sometimes the case that the discovery of frequent patterns o�ers use-

ful insight into a problem domain, there are many situations where it does not.

Consider, for example, the problem of intrusion detection on a network of work-

stations. Assume we de�ne our events to be operating system calls made by some

process on one of these workstations. We conjecture, then, that patterns of sys-

tem calls di�er for ordinary users as opposed to intruders. Since intrusion is a

relatively rare occurrence the patterns we would discover using frequency as our

measure of interestingness would simply be usage patterns of ordinary users o�ering

us no information about intrusions. Instead what we propose is to assign exoge-

nous probabilities to events and then attempt to discover patterns whose number of

occurrences di�ers by some proportion what would be expected given these proba-

bilities. In the example of intrusion detection we would assign the probabilities of
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events to re
ect the frequency of events in the presence of no intruders. Then if an

intrusion did occur, it would presumably cause some unexpected pattern of system

calls which can be an indication of this event.

As will be demonstrated the new measure of interestingness requires discov-

ery techniques that signi�cantly di�er from the methods used for the discovery of

frequent episodes. The main reason for that is that unexpected patterns are not

monotone. These notions will be made more precise in Section 3.2.

Class IV. Discovery tasks of Class IV involve discovery of new rules consisting

of interesting relationships among predicates. An example of a temporal pattern

of this type is the rule stating that \If a customer buys maternity clothes now, she

will also buy baby clothes within the next few months."

Discovery tasks of Class IV constitute challenging problems because, in the most

general case, they contain problems of Class III (discovery of new predicates) as

subproblems. The general problem of discovering interesting temporal rules using

the concept of an abstract [27] has been studied in [11]. Discovery of temporal

association rules was studied in [8, 74].

In this section, we reviewed a characterization of knowledge discovery tasks, as

presented in [24]. In the rest of this chapter, we will focus on one speci�c Class

III problem dealing with discovery of unexpected patterns. In the next section, we

will formulate the problem. Following that we will present an algorithm for �nding

unexpected patterns, and then present experiments evaluating this algorithm on

several applications.
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3.2 Discovering Unexpected Patterns in Sequences: The

Problem Formulation

We start this section with an intuitive presentation of the problem and then provide

its more formal treatment.

We want to �nd unexpected patterns, de�ned in terms of temporal logic ex-

pressions, in sequences of database records. We assume that each event in each

record in the sequence occurs with some probability and assume certain condi-

tional distributions on the neighboring events. Based on this, we can compute an

expected number of occurrences of a certain pattern in a sequence. If it turns out

that the actual number of occurrences of a given pattern signi�cantly di�ers from

the expected number, then this pattern is certainly unexpected and, therefore, is

interesting [72, 73].

The assignment of a probability distribution over the events is necessary for

the purpose of determining the expected number of occurrences of a pattern P . In

general, certain problem domains may suggest a more appropriate way to evaluate

these expectations than by calculating them as a function of the frequencies of indi-

vidual events. In the network intrusion detection setting we calculate the expected

number of occurrences of P during an attack based on the frequency of P during

normal network activity. In other settings, di�erent methods for determining ex-

pectations may be appropriate. The important question is that given some method

for computing expectations can we eÆciently identify unexpected patterns.

In this chapter, we �rst present a naive algorithm that �nds all unexpected

patterns (such that the ratio of the actual number of occurrences to the expected
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number of occurrences exceeds a certain threshold). After that, we present an

improved version of the algorithm that �nds most of the unexpected patterns in

a more eÆcient manner. We also experimentally compare the naive and the more

eÆcient algorithms in terms of their performance.

More formally, let E = f�; �; 
; : : : g be a �nite alphabet of events. We use

a subset of propositional linear temporal logic to discover temporal patterns over

the events. The basic temporal operators of this system are �Bk� (� beforek �)

which intuitively means that � occurs followed by an occurrence of � within k

subsequent events, �N� (� next �) � occurs and the next event is �, �^� (� and

�) which means that � and � occur in the same database record5, and �U� (�

until �) which means before � occurs a sequence of �'s occurs.This is often called

the strong until [77]. While the before operator is actually redundant as �B� can

be expressed as :(:�U�) we have chosen to include it separately for simplicity and

eÆciency. A pattern of events is de�ned as a logical expression consisting of ground

events connected by these operators. For example, the simplest case is �N�. Some

additional examples are ÆU�N�B
 and �N�N
.

In the pattern discovery algorithm presented in Section ??? we consider the

following fragment of the Propositional Temporal Logic (PLTL). The syntax of this

subset is as follows. The set of formulae of our subset is the least set of formulae

generated by the following rules:
5Since ^ is a symmetric operator, throughout this discussion we will assume that an arbitrary

ordering has been imposed on the events, such that if � preceeds � in this ordering, then �^� is

a valid pattern while �^� is not. This simply allows us to avoid considering duplicate, symmetric

patterns.
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(1) each atomic proposition P is a formulae;

(2) if p is a formula and q is a formula containing no temporal operators then

pUq, pBKq, pNq, p^q, qUp, qBKp, qNp, q^p are formulae.
6

We assume an exogenous probability distribution over the events. While these

events may be dependent or independent, depending on the problem domain of

interest we assume independence of the events unless explicitly stated otherwise.

In any case, given an a priori set of event probabilities, we can compute expected

values for the number of occurrences of any temporal pattern in our string. For

example, the expected number of occurrences of E[[�B�]], assuming the events �

and � are independent, can be computed as follows. Let Xn be the number of

occurrences of the pattern �B� up to the nth element of the input string and �n

the number of �'s up to the nth element of the input string. Then

E[[Xn]] = Pr[[�]][Xn�1 + �n�1] + (1� Pr[[�]])(Xn�1)

= E[[Xn�1]] + Pr[[�]]E[[Xn�1]]

= E[[Xn�1]] + (n� 1)Pr[[�]]Pr[[�]]

6We ignore disjunctions because what seems to occur in practice when disjunctions are allowed

is that the disjunction of a very interesting pattern, E, with an uninteresting pattern, F , results

in an interesting pattern E _ F . This occurs not because E _ F truly o�ers any insight into

our problem domain but rather because the interestingness of E \drags up" the interestingness

measure of E _ F to the point where it also becomes interesting. We choose instead to simply

report E as an interesting pattern. Our decision to omit conjuctions and negation will be made

clear shortly.
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Therefore,

E[[Xn]]� E[[Xn�1]] = Pr[[�]]Pr[[�]](n� 1)

Also, E[[X2]] = Pr[[�]] � Pr[[�]]. From this recurrence equation, we compute E[[�BK�]]

for the input string of length N as

E[[�B�]] =
Pr[[�]]Pr[[�]]N(N � 1)

2

The expected number of occurrences of patterns of other forms can be similarly

computed as

E[[�N�]] = Pr[[�]]Pr[[�]](N � 1) (3.1)

E[[�BK�]] = Pr[[�]]Pr[[�]](K)(N �K) +
Pr[[�]]Pr[[�]](K)(K � 1)

2

E[[�U�]] =
Pr[[�]]Pr[[�]]

1� Pr[[�]]

N�1X
i=2

1� Pr[[�]]i + Pr[[�]]Pr[[�]]

As was stated earlier, we will search for the unexpected temporal patterns in

the data, where unexpectedness is de�ned as follows:

De�nition 2 Let P denote some temporal pattern in string S. Let A[[P ]] be the

actual number of occurrences and E[[P ]] the expected number of occurrences of pat-

tern P in S. Given some threshold T , we de�ne a pattern P to be unexpected

if
A[[P ]]
E[[P ]]

> T . The ratio
A[[P ]]
E[[P ]]

is called the Interestingness Measure (IM) of the

pattern P and will be denoted as IM(P ). 7

7Another measure of interestingness is to �nd patterns P for which A[[P ]]=E[[P ]] < T . This
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Figure 3.2: The graph G(V;E) with vertices v1; v2; : : : ; v6 and a clique C of size 4.

C = fv2; v3; v4; v5g

This is a probabilistic measure of interestingness whereby a pattern is unexpected if

its actual count exceeds its expected count by some proportion T . As the following

theorem indicates, however, this problem is likely to be computationally diÆcult.

Problem (INTERESTINGNESS):

Given a string of temporal events V = v1; v2; : : : ; vr, does there exist an interesting

pattern in V of the form X1BkX2Bk : : :BkXm for an arbitrary m?

Theorem 1 The INTERESTINGNESS problem is NP-complete.

Proof We show that our problem is NP-hard by proving that CLIQUE �p IN-

problem can be treated similarly. We have chosen not to search for these patterns because they

are complimentary to the ones described in De�nition 1. If a pattern :P is found to be interesting

in our formulation then P will be interesting in this complimentary formulation for some new

threshold. Thus in the interest of simplicity we choose to solve these complimentary problems

separately and ignore negation.
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TERESTINGNESS. The reduction algorithm begins with an instance of CLIQUE.

Let G = (V;E) be an arbitrary graph with jV j vertices and jEj edges. We

shall construct a string of events S such that an interesting pattern of the form

e1Bke2 : : :Bkem exists if and only if G has a clique of size m. The string is con-

structed as follows. Each vertex v1; v2; : : : ; vjV j, in the graph G will become an

event in our string S, i.e. our events are e1; e2; : : : ; ejV j. Additionally we will make

use of (jV j + jEj)m \dummy" events called d1; d2; : : : ; d(jV j+jEj)m, where m is the

value from the CLIQUE problem. Based on each vertex vi 2 G a substring will

be created. The associated event ei will be called the \generator" of this substring

and the substring will be \generated" by the event. The concatenation of these

substrings will be the string S. Initially, the vertices in G are arbitrarily ordered

1; 2; :::jV j. Then for each associated event ei, in order, we create the substring based
on ei by listing, again in sorted order, the list of vertices(actually their associated

events) ej, for which there exists an edge (vi; vj) 2 E plus the event eijV j times.
For example, the substring generated by e2 for the graph in Figure 1 would be

e1 e2e2 : : : e2| {z }
jV j

e3e4e5

since there are edges in G from v2 to each of e3; e4, and e5. Following each substring

generated in this fashion we concatenate a substring of all the dummy events in

sorted order. As will be seen shortly these dummy events are used to separate the

substrings of events ei and therefore no dummies are needed following the substring
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generated by ejV j. Thus, for the above graph the string

S = e1e1 : : : e1| {z }
jV j

e2e5e6d1 : : : d(jV j+jEj)me1 e2 : : : e2| {z }
jV j

e3e4e5d1 : : :

d(jV j+jEj)me2 e3 : : : e3| {z }
jV j

e4e5e6d1 : : : d(jV j+jEj)me2e3 e4 : : : e4| {z }
jV j

e5d1 : : :

d(jV j+jEj)me1e2e3e4 e5 : : : e5| {z }
jV j

d1 : : : d(jV j+jEj)me1e3 e6 : : : e6| {z }
jV j

The total length of S will be 2jEj + jV j2 + (jV j � 1)((jV j + jEj)m). This can be

seen as follows. The substring generated by ei will have jV j occurrences of ei plus
one occurrence of each event ej such that (vi; vj) 2 E (deg(vi)). Summing over all

vertices i the total length of these substrings will equal 2jEj + jV j2. In addition

there will be a total of jV j � 1 occurrences of the substring d1d2 : : : d(jEj+jV j)m with

a total length of (jV j � 1)((jV j + jEj)m). The string S can clearly be constructed

in polynomial time as it is polynomial in the size of the graph.

Given that our problem allows for an exogenous assignment of probabilities we

will assume that all of the events are equiprobable. That is

Pr[[X]] =
1

jV j+ (jV j+ jEj)m
for X = ei or dj; i 2 1 : : : jV j; j 2 1 : : : (jej + jV j)m. Since each dummy event

occurs exactly jV j � 1 times and each event ei occurs jV j times in the substring it

generates plus an additional deg(jV j) times elsewhere, these exogenous probabilities
are not consistent with the actual probabilities of the events in S as the events

corresponding to vertices occur more frequently than the dummy events. It is

possible to de�ne the probabilities so that the assigned probabilities of the dummy

events is consistent with their actual frequencies but this requires a somewhat more

complicated construction and proof and o�ers little insight into the problem so we

41



have chosen to proceed as described above.

Let BEFOREK = jV j+ jEj.
The expected number of occurrences of a pattern

X1BkX2Bk : : :BkXL = (n�K(L� 1))KL�1Pr[[X1]]PX2 : : :Pr[[XL]]

+
K(L�1)�1X
i=L�1

0
BB@ i

(L� 1)

1
CCAPr[[X1]] : : :Pr[[XL]]; ifK > 1

= (n�K(L� 1))KL�1Pr[[X1]]PX2 : : :Pr[[XL]]; otherwise

where K = BEFOREK and n = jSj. This can be derived in a manner analogous

to how expectations were derived in section 3. It can be seen that in the special

case of L = 2 this formula reduces to the one derived previously for E[[Bk]].

For the case where K = jV j+ jEj; n = 2jEj+ jV j2+(jV j�1)((jV j+ jEj)m), and

L = m we will call the value of this expectation �. Let the interestingness threshold

T =
2jV jm� 1

2�

The relevance of this value is that if a pattern of the form X1BkX2 : : :BkXm is

instantiated only with events ei(no dummies) and it occurs at least jV jm times it

will be deemed interesting. If it occurs jV jm � 1 times it will not. This will be

discussed in further detail shortly.

We must now show that this transformation from CLIQUE to INTERESTING-

NESS is a reduction. First, suppose a CLIQUE v1; v2; : : : ; vm exists in G and

therefore corresponding events e1; e2; : : : ; em exist in S. Note that here the indexes

of the vertices and events are not intended to suggest that the clique must consist
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of the �rst m vertices in the original ordering but rather are used for ease of ex-

position. Of course these v1; : : : ; vm(and e1; : : : ; em) could represent any collection

of m vertices(events) although we will continue to assume that they are in sorted

order. By construction, the substring generated by e1 will include

e1e1 : : : e1| {z }
jV j

e2e3 : : : em

For an arbitrary i the substring generated by ei will include
8

e1e2 : : : eiei : : : ei| {z }
jV j

ei+1 : : : em

Each substring will contain jV j occurrences of the pattern e1Bke2Bke3Bk : : :Bkem

and there are m such substrings so the total number of occurrences of this pattern

is jV jm. Thus

A[[e1Bk : : :Bkem]]

E[[e1Bke2 : : :Bkem]]
=
jV jm
�

> T

Conversely, suppose that an interesting pattern of the form X1BkX2 : : :BkXm

exists. We must show that a corresponding CLIQUE of at least size m exists in G.

The following lemma is the basis for our claim.

Lemma: 1 If an interesting pattern exists then it consists only of events ei, con-

taining no dummy events.

Proof: We have already seen that if a CLIQUE of size m exists in G then an

interesting pattern exists in S. Thus interesting patterns are possible. What is left

to show is that if
8There may, of course be vertices that are not part of the clique that are connected via some

edge to ei. These vertices would also be included.
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� a pattern consists only of dummy events then it cannot be interesting, and

� if a pattern consists of both dummy events and events ei it can't be interesting

Assume we instantiate the pattern P = X1Bk : : :BkXm with j dummy events

and m�j events ei where j = 1 : : :m. Note that given our de�nition of BEFOREK

for any pattern of this form its total length, i.e. the distance in the string S from

X1 to Xm can be at most (jEj+ jV j)m. Therefore, if a pattern contains any dummy

events these occurrences must occur only at the beginning or end of the pattern

since any dummy event is part of a substring of (jEj+ jV j)m dummy events. That

is there cannot exist a dummy event dj in the pattern such that an event ei occurs

before dj in the pattern and an event ek occurs after it. We will assume, without

loss of generality, that the j dummy events all occur at the end of the pattern. We

will next count the maximum number of occurrences of patterns of this form.

Each of the m � j events ei generates a substring in S. In that substring the

event ei occurs jV j times and all other events occur once. In addition, in the

substring of dummy events immediately following this substring each event occurs

once. Thus, there can be at most jV j occurrences of the pattern P that include

events from the substring generated for each ei. There are a total of m� k events

ei in the pattern and therefore a maximum of (m � j)jV j occurrences of P that

include these substrings. In addition, there exist jV j� (m� j) substrings generated
by events not in P . In each of these substrings P can occur at most once since

each event in P occurs at most once in a substring that it did not generate. This

can result in a maximum of jV j � (m � j) additional instances of P for a total of

(m� j + 1)jV j � (m� j) occurrences of P . This expression is maximized if j = 1
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in which case the maximum number of occurrences of P = mjV j �m+ 1. Since

mjV j �m + 1

�
< T

where � is again the expected number of occurrences of this pattern,this pattern

cannot be interesting. 2

We now know that any interesting pattern can consist only of events ei. We

also know that each occurrence of an interesting pattern can include only events

generated by a single ei (since BEFOREK < (jEj+ jV j)m, the length of the dummy

substrings separating event substrings generated by each event). Furthermore, we

can use an argument identical to the one used in the proof of the above lemma to

show that for at least mjV j occurrences of a pattern to exist at least mjV j of them
must include the generating event from which all the events in this instance came.

In other words, if an interesting pattern e1Bk : : :Bkem exists then there must be at

least mjV j instances which include the ei that generated the substring from which

all the other events came. To see this note that each time an instance of a pattern

that includes a generating event occurs, jV j instances will actually occur, one for

each copy of the generating event in the substring it generated. Let us assume

that only (m� 1)jV j instances of a pattern exist that include the generating event

from which all other events in this instance came.9 In all the other substrings

generated by events not in the pattern there can be at most one instance of the

pattern since each event occurs at most once in a substring it did not generate.

There are jV j � (m � 1) such events so the total number of instances would only

be mjV j �m+1. Therefore, for a pattern to occur at least mjV j times and thus to
9There cannot be any more than this unless there are mjV j since they come in multiples of

jV j.
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be interesting there must be mjV j instances that include the generator of the other
events in that instance. Since each generator results in jV j instances there are m
generators that are part of instances. The m vertices that correspond to these m

events form a clique in G. This is clearly true since for any of the ei amongst these

m generators there is an edge from itself to each of the other generators.

Finally, note that this problem is also in NP and therefore NP-complete since

given a certi�cate(i.e. an instantiation of our pattern in this case) we can check if

it is interesting by simply scanning over S. This clearly can be done in polynomial

time. 2

Notice that we have phrased our NP-hardness problem as \Does any interesting

pattern exist?" We could have just as easily posed the question \Do p interesting

patterns exist"? Our proof can be trivially extended to accomplish this by enforcing

that the dummy events always contain p� 1 interesting patterns and that the pth

interesting pattern only occur if a clique of size m exists in G. Our decision to

enforce that the dummy events contain no interesting patterns and to thus pose

our question as we did was rather arbitrary.

While we are trying to �nd interesting patterns that contain a variety of tem-

poral operators in an arbitrary order, this theorem states that �nding interesting

patterns that only use the BEFORE operator is hard. Furthermore, we would like

to put no restrictions on the \interesting" patterns we discover. We would simply

like to �nd all patterns that are interesting. The following theorem, however, shows

that it is necessary to impose some bounds on the size of the patterns that we un-

cover, since in the case of unrestricted patterns, the most unexpected pattern will

always be the entire string.
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Theorem 2 Consider a string of temporal events V = v1; v2; : : : ; vN and a tem-

poral pattern T . If the length of T (number of temporal operators in it), length(T )

< N � 1, then there exists another pattern P such that length(P ) = length(T ) + 1

and IM(P ) � IM(T ), where the length of a pattern is de�ned as the number of

events in the pattern.

Proof:

Let A[[T ]] = � and
A[[T ]]
E[[T ]]

= � and Z = fz1; z2; : : : ; zmg the set of all events.

We want to prove that 9 zi 2 Z s.t.
A[[TNzi]]
E[[TNzi]]

� �

Assume this is not true for z1; z2; : : : ; zm�1 and show that it must be true for zm.

By this assumption and because of (3.1)

A[[TNzi]]

Pr[[T ]]Pr[[zi]](N � 1)
< � 8zi; i = 1; 2; : : : ; m� 1:

Therefore, A[[TNzi]] < �Pr[[T ]]Pr[[zi]](N � 1).

Then,
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m�1X
i=1

A[[TNzi]] <
m�1X
i=1

�Pr[[T ]]Pr[[zi]](N � 1) (3.2)

= �Pr[[T ]](N � 1)
m�1X
i=1

Pr[[zi]] (3.3)

= �Pr[[T ]](N � 1)(1� Pr[[zm]]) (3.4)

Since,
mX
i=1

A[[TNzi]] = A[[T ]] = �; (3.5)

A[[TNzm]] > � � �Pr[[T ]](N � 1)(1� Pr[[zm]]) (3.6)

A[[TNzm]]

E[[TNzm]]
>

� � �Pr[[T ]](N � 1)(1� Pr[[zm]])

Pr[[T ]]Pr[[zm]](N � 1)
(3.7)

=
�

Pr[[T ]]Pr[[zm]](N � 1)
� �Pr[[T ]](N � 1)(1� Pr[[zm]])

Pr[[T ]]Pr[[zm]](N � 1)
(3.8)

=
�

Pr[[T ]]Pr[[zm]](N � 1)
� �(1� Pr[[zm]])

Pr[[zm]]
(3.9)

(since
�

E[[T ]]
=

�

Pr[[T ]](N)
= �) (3.10)

=
�N

Pr[[zm]](N � 1)
� �(1� Pr[[zm]])

Pr[[zm]]
(3.11)

=
(�N)� (�N � �)(1� Pr[[zm]])

Pr[[zm]](N � 1)
(3.12)

=
� + ((N � 1)(�Pr[[zm]]))

Pr[[zm]](N � 1)
(3.13)

= � +
�

Pr[[zm]](N � 1)
(3.14)

> � 2 (3.15)

Intuitively, this theorem tells us that given an interesting temporal pattern, there

exists a longer pattern that is more interesting. In the limit then, the most inter-

esting pattern will always be the entire string of events, as it is the most unlikely.

In order to cope with this, we restrict the patterns that we look for to be of length
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less than or equal to some length limit. Of course, still the most interesting pattern

we will �nd will be one whose length is equal to the length limit. Nevertheless,

it is often the case that an interesting pattern that is not the most interesting

provides valuable insight into a given domain as we will see later in discussing our

experiments.

3.3 Algorithm

3.3.1 Naive Algorithm

A naive approach to discovering interesting patterns in an input sequence might

proceed as follows. Sequentially scan over the input string discovering new patterns

as we go. When a new pattern is discovered a record containing the pattern itself

as well as a count of the number of occurrences of the pattern is appended to a

list of all discovered patterns. This is repeated until all patterns up to a user-

de�ned maximum length, have been found. More precisely, the algorithm proceeds

as follows

De�nition 3 BEFOREK: A user de�ned constant that determines the maximum

number of events that X can precede Y by, for XBKY to hold.

Input:

� Input String

� Event Probabilities: the exogenously determined probabilities of each atomic

event.
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� BEFOREK

� The threshold T for interestingness. That is the value that, if exceeded by the

interestingness measure of a pattern, deems it interesting.

� Maximum allowable pattern length (MAXL).

Output:

� All discovered patterns P such that IM(P ) > T .

Algorithm:

Scan the input string to determine the interestingness measure

of each event in it, and initialize list L with all these events

WHILE L is not empty DO

Amongst all the patterns of L, choose the pattern C

with the largest interestingness measure as the next

candidate to be expanded.

Expand C as follows. Scan the input string looking

for occurrences of C. When an instance of C is

discovered, expand it both as a prefix and as a

suffix. By this we mean, record all occurrences of

(C op X) and (X op C) where op ranges over the temporal

operators, and X ranges over all events. Finally,

compute the interestingness of all these newly

discovered patterns C'.

IF Length(C') < MAXL THEN add C' to the list L.
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Remove C from L.

END WHILE

Output interesting patterns.

Note that the algorithm we just presented is tantamount to an exhaustive search

and is therefore highly ineÆcient. We propose a more practical algorithm, that,

although is not guaranteed to �nd all interesting patterns, o�ers speed up with

minimal loss of accuracy. The idea is to expand on the approach presented in [60]

of beginning with small patterns and expanding only those that o�er the potential

of leading to the discovery interesting, larger patterns.

3.3.2 Discovering Frequent Patterns in Sequences

When the interestingness of a pattern is measured by its frequency an eÆcient

algorithm can be used to discover all frequent patterns. The problem statement is

as follows: given a class of operators, an input sequence of events, and a frequency

threshold, �nd all patterns that occur frequently enough.

The algorithm for solving this problem has two alternating phases: building new

candidate patterns, and counting the number of occurrences of these candidates.

The eÆciency of the algorithm is based on two observations:

� Where there are potentially a large number of patterns that have to be evalu-

ated, the search space can be dramatically pruned by building large patterns

from smaller ones in a prescribed way. If the pattern �N�N
 is frequent, then

the patterns �N� and �N
 must also be frequent. In general, for a pattern

P to be frequent so must all of its subpatterns. The algorithm for identifying
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frequent patterns can take advantage of this fact by only considering patterns

of size n if its pre�x and suÆx of size n� 1 are themselves frequent.

� All complex patterns are simply the result of recursively combining other

smaller patterns. For example, in order to eÆciently count the number of

occurrences of the pattern �N�BKÆBK
 we simply need to have identi�ed the

number of occurrences and location of the two patterns �N� and ÆBK
 have

occurred, and have an eÆcient method for combining patterns via the BK op-

erator. In general, since all of our operators are binary, when combining two

patterns with operator Op to create a larger pattern, in order to determine

the number of occurrences of the resulting pattern we need only to have 1) de-

termined the number and locations of Op's two operands and have an eÆcient

method for locating patterns of the form A Op B.

The algorithm proceeds by initially counting the number of occurrences of length

1 patterns (the length of a pattern is simply the number events that occur in it).

Following that, a candidate set for the next iteration of discovery is computed by

combining pairwise all frequent length 1 patterns via each operator. In general,

in the nth iteration, the combination of patterns of length n � 1 and length 1

are added to the candidate set provided that the length n � 1 pre�x and suÆx of

the resulting length n pattern have already been deemed frequent in the previous

iteration. Then, during the discovery phase, the number and location of occurences

of the candidate length n patterns are determined tivially given the locations of their

length n�1 pre�xes and length 1 suÆxes. This process proceeds until the candidate
set becomes empty. Note, that the memory requirements of this algorithm are
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minimized because once a pattern is deemed infrequent it can never result in being

the subpattern of a larger frequent pattern, and can therefore be discarded. We will

see shortly that this property does not hold given our de�nition of interestingness

.That is, a pattern can be unexpected while its component sub-patterns are not.

This lack of monotonicity in our interestingness measure is most easily understood

with an example.

3.3.3 Main Algorithm

Example: Let the set of events be E = fA;B;Cg. Assume the probability of these
events is Pr[[A]] = 0:25;Pr[[B]] = 0:25; andPr[[C]] = 0:50. Also assume that these

events are independent. Let the threshold T = 2. In other words, for a pattern to

be interesting the value of the actual number of occurrences of the pattern divided

by the expected number of occurrences of the pattern must exceed 2:0. Consider

the following string of events.

ABABABABCCCCCCCCCCCC

(the length of this string N = 20)

Given our probabilities, E[[A]] = 5 and E[[B]] = 5. Also given the expression for

computing expectations for patterns of the form ANB.

E[[ANB]] = Pr[[A]]Pr[[B]](N � 1)

= (0:25)(0:25)(19)

= 1:1875
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Since A[[A]] = 4 and A[[B]] = 4, both of the events A and B are not interesting

(in fact the actual number occurrences of these events was less than what was

expected), but the pattern ANB which occurred 4 times was interesting with

IM(ANB) =
4

1:1875

= 3:37 2

This lack of monotonicity in our interestingness measure results in a signi�cantly

more complex problem especially in terms of space complexity. In the algorithm for

discovering frequent patterns signi�cant pruning of the search space can occur with

each iteration. That is, when a newly discovered pattern is found to have occurred

fewer times than the frequency threshold, it may be discarded as adding new events

to it cannot result in a frequent pattern. With our measure of interestingness,

however, this is not the case. The addition of an event to an uninteresting pattern

can result in the discovery of an interesting one. This inability to prune discovered

patterns leads to an explosion in the amount of space required to �nd unexpected

patterns.

A more eÆcient algorithm than the naive one for �nding unexpected patterns

involves sequential scans over the string of events discovering new patterns with

each scan. A list is maintained of those patterns discovered so far, and on each

subsequent iteration of the algorithm the \best" pattern is selected from this list

for expansion to be the seed for the next scan.

The heart of the algorithm is how \best" patterns are chosen. We will explain it

formally below (in De�nition 4), but would like to give some intuition beforehand.

Clearly, we would like to de�ne \best" to mean most likely to produce an interesting
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pattern during expansion. By Theorem 2, we know that expanding an already

interesting pattern must result in the discovery of additional interesting pattern(s).

The question remains, however, amongst interesting patterns already discovered

which is the best candidate for expansion, and if no interesting patterns remain

unexpanded, are there any uninteresting patterns worth expanding?

Initially, the algorithm begins with a scan of the input string counting the num-

ber of occurrences (and therefore, the frequencies) of individual events. Subsequent

to this, we continue to expand best candidates until there are no more candidates

worthy of expansion. This notion will be made clear shortly.

De�nition 4 The FORM(P ) of a pattern P is a logical expression with all ground

terms in P replaced by variables.

For example, if P = �N�BK
BKÆ then FORM(P ) = WNXBKY BKZ.

Given the length of the input string, we can determine the number of patterns

of each form in the input string. For example, given a string of length M , the

number of patterns of form XNY is M � 1. The number of patterns XBKY is

(M �K)K + ((K)(K � 1)=(2)).

De�nition 5 Given a pattern P and an operator op, Actual Remaining(P op X)

is the number of patterns of the form PopX that have yet to be expanded. This

value is maintained for each operator, op and pattern P . That is, we maintain a

value for PNX;PBKX;XBKP; etc : : : Again, X ranges over all events.

For example, if there are 20 occurrences of P = �BK� in the input string and 5

patterns of the form �BK�NX have been discovered so far, then

Actual Remaining Next �BK�NX = 15.
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We use the following heuristic to determine which discovered pattern is the best

one to expand. Given an arbitrary literal D, the best pattern P for expansion is the

pattern for which the the value of

E[[A[[P op Æ]]=E[[P op Æ]]]]

is maximal for some Æ.

This heuristic is simply a probabilistic statement that the pattern P that is most

likely to result in the discovery of an interesting pattern is the one for which there

exists a literal Æ such that the expected value of the interestingness measure of the

pattern generated when Æ is added to P via one of the temporal operators op, is

maximal over all discovered patterns P , literals Æ, and operators op. It is necessary

for us to use the expected value of the interestingness measure because, although

we know the actual number of occurrences of both P and Æ, we do not know the

number of occurrences of P op Æ. How this expectation is computed follows directly

from our devivations of expectations and is illustrated in the following example.

Example: If P = �N� and op is next, then

E[[A[[PNÆ]]=E[[PNÆ]]]]

= (#PN)(FR(Æ))=Pr[[�]]Pr[[�]]Pr[[Æ]](K � 2)
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where,

K = length of input string

FR(Æ) = frequency of Æ's that could complete the pattern �N�NX

#PN = number of occurrences of pattern P yet to be expanded via the operator N

If op is before,

E[[A[[PBKÆ]]=E[[PBKÆ]]]]

= ((#P )(FR(Æ))(BEFOREK))=Pr[[�]]Pr[[�]]Pr[[Æ]](K � 2)(BEFOREK)

= ((#P )(FR(Æ)))=Pr[[�]]Pr[[�]]Pr[[Æ]](K � 2)

Similar arguments are used for any combination of the operators before, next,and,

and until 10.

In general, we choose the candidate pattern, P , the suÆx literal Æ and the oper-

ator op whose combination is most likely to result in the discovery of an interesting

pattern.

Throughout our algorithm, two data structures are necessary in order to eÆ-

ciently compute best candidates on each subsequent iteration.

� An ((N + 1) � M) matrix where N is the number of distinct events, and

M is the number of di�erent pattern forms that we intend to discover. In

principle,M can be very large. However, in practice we have limited the length

of our patterns to approximately 5 (depending on the application), noting
10For before and until these de�nitions are slightly erroneous due to losses of patterns at the

ends of the input string. These errors are negligible, however, since the length of the input string

is much larger than the length of individual patterns of interest
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that the infrequency of much larger patterns typically lends them statistically

insigni�cant. With the maximum pattern length set to 5 and using our four

temporal operators N, Bk,U, and ^, the value of m =
P5

i=1 4
i = 4(45�1)=(4�

1) = 1364, a managable number.

The structure of this matrix is as follows: each entry [i; j] i 2 1 : : :N; j 2
1 : : :M represents the remaining number of yet-to-be-discovered patterns of

form j whose �nal event is i. This number is easily maintained as it is simply

the total number of occurrences of the event i minus the number of already

discovered patterns of form j whose �nal event is i. The additional (N + 1)st

row contains the total number of already discovered patterns (the sum of the

values in the columns) of form j. Each column of this array is sorted such that

literal � preceeds � in column j if the number of �'s remaining to be added

as suÆxes to create patterns of form j divided by Pr[[�]] exceeds that value for

�. This value will be called the "candidacy value" of the corresponding literal

for the corresponding pattern form.11This matrix wil be termed the "suÆx

matrix".

� The second data structure is an array ofM�R lists whereM is again number

of di�erent pattern forms that we intend to discover and R is the number of

temporal operators we are using. In list jop, all patterns of form j that have

already been discovered are kept in sorted order by the number of occurrences
11Of course, sorting each column, results in row i not always referring to a single literal, but

rather the ith literal in sorted order for that particular column. An indexing scheme is used to keep

track of which entry represents which literal in each column. The scheme itself is straightforward

and omitted for simplicity.
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of each pattern yet to be expanded through the use of operator op divided

by E[[P ]]. This value will be called the corresponding pattern's "candidacy

value" for the corresponding operator. This value is trivial to calculate since

we know the total number of patterns that result of the form P op X. Along

with each pattern we maintain the number of occurrences of the given pattern

P , and the locations of P . This array will be termed the "set of discovered

patterns".12

The best combination of an element from each of these two data structures will

be the candidate for the next discovery iteration. More precisely, at each iteration,

assume that the �rst value in each list in the set of discovered patterns of whose

length is less than the maximum allowed pattern length correspond to the patterns

P1; P2; : : : ; PM . Additionally, assume that the �rst value in each column in the

suÆx matrix corresponds to the literals �1; �2; : : : �M . We compute the M values

that result from multiplying the candidacy value for each of these Pi times the �rst

value in the suÆx matrix for the pattern form that is the result of combining a

pattern Pi from the set of discovered patterns with the literal � via the operator

op corresponding to the operator for the list from which P was taken. We choose

the pattern Pi, literal �j and operator op whose combination results in the largest

amongst these M values. In doing this we accomplish our goal of choosing the

candidate pattern, literal, and operator whose combination is most likely to result

in the discovery of an interesting pattern.
12This discussion suggests that R copies of the list of locations of the pattern P are maintained,

one for each temporal operator. In, fact only one list is kept with a pointer to that list actually

stored with each occurrence of the pattern.
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Once these candidates have been chosen, determining the number of occurrences

of the pattern Pi op �j can be computed via linear scans of the location lists for the

pattern Pi and the literal �j. For example, if op = N then we look for locations l

such that Pi occurs at location l and �j occurs at location l + 1. If the op = ^

we look for locations where both Pi and �j occur, etc.

Intuitively, this algorithm begins by choosing the (pattern, literal, operator)

triple whose combination is most likely to result in the discovery of an interesting

pattern. As the algorithm progresses if a given pattern P has not generated a lot

of newly discovered patterns as a candidate for expansion it will percolate towards

the top of its associated sorted list. Likewise, if a literal � has not been used as

the suÆx of a lot of discovered patterns it will percolate to the top of its suÆx list.

In this way, as patterns and literals become more likely to generate an interesting

pattern via combination they will become more likely to be chosen as candidates

for the next iteration.

Given these preliminary motivations, we now formally present the algorithm:

Input:

� Input Sequence of database records

� Event Probabilities

� BEFOREK: as discussed earlier we use a bounded version of the before op-

erator. BEFOREK is a user de�ned variable that is equal to the maximum

distance between two events X and Y for XBKY to hold.

� Threshold T for interestingness, that is the value that if exceeded by the
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interestingness measure of a pattern deems it interesting

� Value of MIN TO EXPAND: the minimum threshold of expected interesting-

ness that a pattern, literal, operator triple must have in order to become the

next pattern for expansion. The algorithm will terminate if no such pattern

remains.

� Maximum allowable pattern length

Output:

� List of interesting patterns, their number of occurrences and the value of their

interestingness measures

Algorithm:

Scan the input string to determine the interestingness

and locations of each event

Initialize list with the set of discovered patterns

Initialize the suffix lists

WHILE (Choose_Next_Candidate() >= MIN_TO_EXPAND

Calculate_Pattern_Locations($P$,$\alpha$,$op$)

Update_AlreadyDiscoveredPatterns()

Update_SuffixList()

END WHILE

Return interesting patterns
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The algorithm continues until there are no more patterns for which (actual remain-

ing/expected remaining) exceeds some minimum threshold MIN TO EXPAND, a

parameter chosen at the outset.

Scanning for each event: This is a simple linear scan of the DL events that

occur in the record sequence where D is the number of database records and L is

the number of �elds in each record.

Initializing the set of discovered patterns: R lists need to be intialized at

this stage where R is the number of temporal operators we are using. Each list

represents the pattern form X where X is an arbitrary literal. One sorted list is

stored for each temporal operator. The cost of this initialization is simply the cost

of sorting these lists. Each list will initially be in identical sorted order. Therefore,

the total cost of this initialziation is O(NlogN) where N is the number of distict

events in the database. Each literal �, in each list, has an initial candidacy value of

A[[�]]
Pr[[�]]

where A[[�]] is the number of occurrences of � determined in the intial scan.

Initializing the suÆx lists: R lists need to be intialized at this stage where R

is the number of temporal operators we are using. Each list contains the potential

suÆxes for all length 2 patterns. Each of these lists will again be sorted based

on their candidacy values. Initially, these values are the same as for the set of

discovered patterns and, therefore, no additional sorting is necessary. The total

cost of this initialization is O(N).

Choose Next Candidate: In this function we compute the M values that

result from multiplying the candidacy value for each of the patterns Pi that are

at the front of the discovered pattern lists times times the �rst value in the suÆx

matrix for the pattern form that is the result of combining a pattern Pi from the set
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of discovered patterns with the literal � via the operator op corresponding to the

operator for the list from which P was taken. We choose the pattern Pi, literal �j

and operator op whose combination results in the largest amongst these M values.

The cost of this operation is O(M)

Calculate Pattern Locations: As described earlier, we can compute the lo-

cations of the pattern resulting from combining a pattern P with a literal � via the

operator op via a linear scan of the location lists for P and �. The total number of

operations required for this computation is proportional to the longer of these two

location lists. This has an expected value of DR
N
.

Update Already Discovered Patterns: Given that we have just computed

the locations of our candidate P op �, this update requires two steps. First, the

newly discovered patterns must be inserted into the appropriate R lists. Since we

need to maintain the sorted order of these lists each insertion will require O(log(L))

where L is the length of the list into which P is being inserted.

The second step is to update the list that P was chosen from. The number of

occurrences of P yet to be expanded via the operator op has just been decreased

by the number of occurrences of the pattern P op �. This will reduce its candidacy

value and P , therefore, needs to be restored to its appropriate sorted position. This

operation will require O(L) operations where L is the length of the list that P was

taken from.

Update SuÆx List: The list corresponding to the form of pattern P op � now

needs to be updated. The total number of patterns of this form already discovered

needs to be increased by the number of occurrences of P op �. Additionally, the

number of �'s yet to be used as a suÆx for a pattern of this form needs to be
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decreased by this same value. Finally, since the candidacy value of � will have now

decreased it now needs to be put in its appropriate sorted order. This will require

O(NlogN) where N is the number of distinct events in our database.

A couple of observations are relevant at this stage regarding this algorithm.

First, while we can evaluate the complexity (as we have done above) of each iter-

ation of the algorithm we do not know a priori the number of patterns that will

be discovered before there are no more (pattern, literal, operator) triples whose

expected interestingness exceeds MIN TO EXPAND. We are, therefore, unable to

precisely calculate the computational complexity of this entire algorithm. Second,

in this algorithm we discover only a single new pattern with each iteration. We

have experimented with expanding more patterns in each iteration. For example,

we could simply choose a pattern P literal �, pair and include in our candidate set

all patterns of the form P op � where op ranges over all temporal operators. Going

even further we could only choose a pattern P and include all patterns of the form

P op X where op ranges all operators and X over all literals. We have found in

practice that if the number of di�erent events in our data set is large then these

techniques are too coarse. More speci�cally, too many patterns are discovered in

each iteration and many interesting patterns go undiscovered before we begin to

run into memory limitations. In the �nal analysis, the number of patterns worth in-

cluding in each iteration results from an evaluation of the time/space usage tradeo�

that results from this decision.
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3.4 Experiments

In our initial evaluation of this algorithn we conducted experiments on three di�er-

ent problem domains. The �rst was a simple sequence of independent events. This

data was generated synthetically. The second domain we considered were sequences

of UNIX operating system calls as part of the sendmail program. The third was

that of Web log�les. In the last case, events were correlated.

3.4.1 Sequential independent events

We used an input string of length 1000 over 26 di�erent events. In this case, we

assumed that each event was equally likely and that the events were independent.

We searched for patterns, P , for which Length(P )� 5. Our results are presented

in Table 3.2. The columns of the above table are as follows:

Algorithm - The algorithm used. The naive algorithm, presented in Section 4.1,

represents essentially an exhaustive search over the input string and is guaranteed

to �nd all interesting patterns. It is included as a benchmark by which we measure

the e�ectiveness of the main algorithm. Percentage is equal to the value for the

main algorithm divided by the value for the naive algorithm times 100 for each

column respectively. The �rst number following each algorithm(2 or4) is the value

of BEFOREK used. The second number(3,4, or 6) is the interestingness threshold.

# of Scans - The number of scans over the input sequence necessary to discover all

interesting patterns found.

# of Expanded Patterns - The number of patterns discovered, interesting or oth-
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Algorithm # of Scans # of Expanded Patterns # of Interesting Patterns

Naive(2,3) 416 2489 290

Main(2,3) 161 919 268

Percentage 38.7% 36.9% 92.4%

Naive(4,3) 416 3105 259

Main(4,3) 163 1073 250

Percentage 39.2% 34.6% 96.5%

Naive(2,4) 416 2489 168

Main(2,4) 161 919 164

Percentage 38.7% 36.9% 97.6%

Naive(4,4) 416 3105 171

Main(4,4) 163 1073 166

Percentage 39.2% 34.6% 97.1%

Naive(2,6) 416 2489 133

Main(2,6) 161 919 130

Percentage 38.7% 36.9% 97.7%

Naive(4,6) 416 3105 129

Main(4,6) 163 1073 127

Percentage 39.2% 34.6% 98.4%

Table 3.2: Results for independent sequential data.
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erwise.

# of Interesting Patterns - The number of interesting patterns found.

Based on the results presented in Table 3.2, the main algorithm did not �nd

all interesting patterns, although it discovered most while doing less work than

the naive algorithm. Also note that the main algorithm was more accurate as our

threshold for interestingness increased. In other words, when our algorithm did

miss interesting patterns they tended not to be the most interesting.

3.4.2 Sequences of OS System Calls

The second domain we investigated was a sequence of operating system calls made

by a sendmail program. The events consisted of the 31 di�erent system calls

that the program made and our string consisted of 31769 sequential calls. At the

time of these experiments we had no knowledge of the actual probabilities of these

events. Therefore, we made an assumption that system calls are independent from

each other and estimated probabilities of individual events by simply scanning the

string and counting the number of actual occurrences of each event. For each event

ei we let Pr[[ei]] = ( number of occurrences of ei)/ (the total string length). Because

of this, the interestingness of each of atomic event was by de�nition exactly 1. This

forced us to assign a value to MIN TO EXPAND that exceeds 1 since otherwise

the algorithm would not even begin. This resulted in more scans of the input

string than were actually necessary to discover interesting patterns but nonetheless

the improvement we achieved over the naive algorithm was consistent with our

experiments in other domains (approximately three times). The following represent
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a selection of interesting patterns discovered. These were selected because of a

combination of their interestingness as well as our con�dence that these actually

represent signi�cant events due to the number of occurrences of them. These results

were generated on a run where we allowed strings of up to length 5.

EVENT :((sigblock NEXT setpgrp) NEXT vtrace)

COUNT :2032

ACT/EXP :43.1628

EVENT :(((sigblock NEXT setpgrp) NEXT vtrace) NEXT vtrace)

COUNT :455

ACT/EXP :83.1628

EVENT :(((sigblock NEXT setpgrp) NEXT vtrace) BEFORE sigvec)

COUNT :355

ACT/EXP :52.1150

EVENT :(sigblock NEXT(setpgrp BEFOREK vtrace))

COUNT :2032

ACT/EXP :21.5814

EVENT :((sigblock BEFOREK setpgrp) NEXT vtrace)

COUNT :2032

ACT/EXP :21.5814
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EVENT :((sigpause NEXT vtrace) NEXT lseek)

COUNT :1016

ACT/EXP :106.672

EVENT :(sigpause BEFOREK (vtrace NEXT lseek))

COUNT :1016

ACT/EXP :53.336

EVENT :(sigvec BEFOREK (sigpause NEXT

(vtrace NEXT (lseek NEXT lseek))))

COUNT :29

ACT/EXP :212.349

EVENT :(sigpause BEFOREK (vtrace BEFOREK lseek))

COUNT :2032

ACT/EXP :53.336

EVENT :((vtrace NEXT lseek) NEXT lseek)

COUNT :1017

ACT/EXP :35.5112

In these results COUNT represents the number occurrences of the pattern

EVENT and ACT/EXP represents the interestingness of this pattern. We make a

few observations. First, most of the interesting patterns that occurred a reasonable

number of times (the ones shown above) were mostly of length 3. There were, of
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course, more interesting patterns of longer length but the number of occurrences

of these patterns was signi�cantly fewer. Also notice that no interesting UNTIL

patterns were discovered. This is because we never saw AAAAAAB, i.e. all the

occurrences of until were of the form AB or AAB which were captured by NEXT

or BEFORE and since fewer instances of NEXT and BEFORE were expected these

proved more interesting.

These system calls are from the UNIX operating system. In the future we

propose to assign probabilities of atomic events based on their frequencies in a

period when we are con�dent no intrusions to the network occurred and then see

if we can discover interesting patterns that correspond to intrusions.

3.4.3 Web log�les

Each time a user accesses a Web site, the server on the Web site automatically

adds entries to �les called log�les. These therefore summarize the activity on the

Web site and contain useful information about every Web page accessed at the site.

While the exact nature of the information captured depends on the Web server that

the site uses, the only information we made use of was the user identity and the

sequence of requests for pages made by each user. The Web site we considered was

that of one of the schools at a major university. The users we considered were the

two most frequent individual users. It is important to recognize that the Web log�les

simply tell us the hostname from which a request originated. Typically, there are

a large number of users who may access a Web site from the same host, and the

hostname, therefore, cannot be used to de�nitively identify individual users. We

attempted to identify, with some con�dence, frequent hostnames that did indeed
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represent individual users. We used two Web log�les for our experiments. First, we

considered a synthetic Web log. This included a Web site with 26 di�erent pages

and 236 total links. We used an input string of length 1000 representing 1000 hits

on pages of the site. In this case events were hits on Web pages. Probabilities were,

of course, not independent. The probability of a user reaching a given Web page is

dependent on the page he is currently at. In order to compute a priori probabilities

of each page we declared several pages to be equally likely \entrance points", to the

Web site. If there were N \entrance points" then each has a 1
N
chance of occurring.

If P is one of these \entrance points", P has K links on it and one of these links

is to page G then the probability of G occurring is ( 1
N
)( 1

K
). By conducting an

exhaustive breadth-�rst search we were able to calculate the probabilities of each

event occurring (i.e. each page being \hit"). When calculating expectations for

various patterns, we used conditional probabilities. So, for example, the E[[ANB]] is

no longer Pr[[A]]Pr[[B]](K � 1), where K is the length of the input string. It is now

Pr[[A]]Pr[[BjA]](K�1) = Pr[[A]](1=#of links in page A)(K�1) if there is a link from

A to B and 0 otherwise. Our results for this data are presented in Table 7.1. The

interestingness threshold for these experiments was 3.0. Once again our algorithm

was able to �nd most interesting patterns while examining a much smaller portion

of the search space than the naive algorithm did.

Finally, we considered data from an actual Website from one of the schools of a

major university. There were 4459 di�erent pages on this site with 37954 di�erent

links between pages. We used Web log data collected over a period of nine months

and selected out the two most frequent individual users of the site, both of whom

accounted for more that 1400 hits and used these sequences of hits as our input
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Algorithm # of Scans # of Expanded Patterns # of Interesting Patterns

Naive2 634 1356 464

Main2 239 528 437

Percentage 37.7% 38.9% 94.2%

Naive4 654 1564 462

Main4 245 568 437

Percentage 37.5% 36.3% 94.6%

Table 3.3: Results for synthetic Web log�le data.

string. Our experiments using this data were less enlightening than when we used

synthetic data. The main algorithm found only a handful of interesting patterns

of length greater than two. In fact, when we applied the naive algorithm we found

that there were few more interesting patterns to be found at all. More speci�cally,

the main algorithm found 2 and 3 interesting patterns of length greater than two

in our two input strings, respectively. The naive algorithm found 3 and 3. The

primary reason for the lack of interesting patterns of greater length was that the

size of the Web site dominated the size of the input string. The fact that there

were 4459 pages and our input strings were only of length 1400 made the expected

number of occurrences of each event very small - so small, in fact, that even a single

occurrence of many events proved interesting.

Additional factors that compounded the problem are:

1. Changing Web Structure. Our algorithm was run on a graph

that corresponds to the Web architecture at a single instant in time
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and thus failed to cature the information at a single instant in time

and thus failed to capture the information that encoded the evolution

of the Web architecture ( we captured the structure of the Web site,

including the links, on a single day, and extrapolated it to 9 months of

Web log data). Over this period there were some changes to the Web

site. These changes create some diÆculties in that the Web log�les

showed that users linked from pages to other pages where links had

ceased to exist in the Web at the time of consideration. In fact, there

were visits to pages in the Web log data that did not exist in the site

we were using. This had the e�ect of forcing the expected number

of occurrences of any patterns that included these pages or links to

be zero and thus never considered interesting either as patterns or

candidates.

2. Multiple Sessions. While each input string we used had a length

greater than 1400 events, these Web hits spanned many sessions.

In fact, the average session length was approximately 10 hits. The

last hit from one session immediately preceded the �rst hit of the

NEXT session in our input string. Normally, however, a link did not

exist from the last page of the �rst session to the �rst page of the

NEXT session. Therefore, once again this had the e�ect of forcing the

expected number of occurrences of any patterns that included this

sequence of pages to be zero and thus never considered interesting

either as patterns or candidates.

3. Caching. Consider what sequence of hits appears in Web log data if

73



a user goes to pages A;B;C;D in the following order A! B ! C !
B ! D. Normally, what occurs is that a request is made(and there-

fore logged) for page A then page B then page C then, however, when

the user goes back to page B no request is made of the server because

this page has been cached on the users' local machine. Finally, a re-

quest for page D will be made and logged. Therefore, this sequence

of hits will appear in the Web log data as follows: A! B ! C ! D.

If no link exists from page C to page D then once again the ex-

pected number of occurrences of any pattern including this sequence

of events will be zero. Given the wide use by Web users of the BACK

button, the e�ect of caching is substantial.

4. Local Files. Finally, many pages that appeared in the Web log data

did not appear in the Web site we were using because they were �les

kept on individuals local machines in their own directories, rather

than on the Web server. These pages had the same e�ect as the

changes made in the Web over the nine month period.
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Chapter 4

Classi�cation

Having selected appropriate predictor variables through the feature selection pro-

cess described in the last chapter, we are now prepared to use these features to

construct a classi�er. Our goal is to keep the classi�er general enough in order

to be comparable to several heuristic models such as neural networks (by allowing

robust basis functions) and classi�er systems (by using adaptive, multiphase re-

gression). The problem remains, however, how to best distinguish the signal f(X)

from the noise � in equation 4.1. For �nite training samples our de�nition of the

true underlying function f(X) is incomplete. Any quantity can be expressed as the

sum of two other quantities. To this end, we have selected MARS (Multivariate

Adaptive Regression Splines) developed by Jerome Friedman [41]. In choosing

this model we have considered many other classi�cation techniques and settled on

this one based on its expressiveness and its performance in the presence of high

dimensional data.

In order to motivate our choice of MARS we �rst include a chapter that sur-

75



veys a variety of approaches to multivariate regression modelling. Our goal is to

illustrate some of the diÆculties associated with each method when applied in high

dimensional settings, in order to motivate our choice of MARS as our regression

technique. Friedman motivated his original development of MARS by contrasting

it with some of the same (as well as other) modeling techniques. Recall that the

obstacle we face here is that the high dimensional data results in poor coverage

of the space being modeled which in turn resulsts in unacceptably high variance

in the models constructed. Particular attention will be given to spline regression

and decision tree classi�cation as MARS can most easily be viewed as a direct

extension of these approaches.

The classi�cation problem can be viewed as an attempt to accurately approxi-

mate a response variable y that is function of many variables, given only the value

of the function, perturbed by noise, at various points in the space of predictor vari-

ables as determined by the available training data. The objective is, given one or

more predictor variables x1; : : : ; xn and training data fyi; x1i; : : : ; xnigN1 to derive

a rule for estimating response values in future observations given only the values of

the predictor variables[41]

The relationship between y and the predictor variables x1; : : : ; xn is assumed

to take the form

y = f(x1; : : : ; xn) + � (4.1)

where (x1; : : : ; xn) 2 D � Rn containing the data; the single-valued deterministic

function f , of its n-dimensional argument, is intended to capture the predictive

relationship of y on x1; : : : ; xn. The random component � re
ects the dependence

76



of y on quantities other than x1; : : : ; xn. We de�ne E[[� j X]] = 0 for all x1; : : : ; xn,

so that the assumed true underlying function f can be de�ned by

f(X) = E[[y j X]] (4.2)

with the expected values taken over the population from which the training and

future data are presumed to be random samples. This is somewhat of an oversim-

pli�cation of the problem that we are addressing. Recall that the domains that

we are interested in, the data is nonstationary. That is, it may be unreasonable

to assume that the training data and the out of sample data will be drawn from

identical joint probablity distributions. We ignore this issue for the time being and

address it later in chapter 6 via the use of Stein shrinkage.

In this setting, the goal of the training procedure is to build a model

f̂(x1; : : : ; xn) + �, using available training data, that reasonably approximates

f(x1; : : : ; xn) + � over the domain D of interest.

4.1 Classi�cation Techniques

There are �ve classi�cation techniques that we consider here as motivation for our

choice of MARS as the classi�cation method used in our intrusion detection sys-

tem. The discussion of each of these approaches begins with a description of the

given technique including some implementation considerations in cases where deci-

sions made about a speci�c implementation can signi�cantly e�ect either the form

of the model constructed or the algorithmic complexity of the model construction

process.

The �rst, and simplest approach we consider is global parametric modeling. In
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this approach the underlying function that we are attempting to estimate is as-

sumed to take some simple parametric form. The problem of model construction

then reduces to a simple parameter estimation problem that is typically solved by

minimizing the sum of square errors of the model on the training data. While

this approach is very simple to implement and is quite e�ective if we have prior

knowledge of the form of the estimated function, this is not typically the case. In

the usual setting where we have no prior knowledge of the form of the estimated

function, a poor choice of function for use in this technique can result in very low

accuracy in the resulting model.

The second approach we consider is spline approximation. Spline approximation

has particular interest for us since MARS may be viewed as a direct extension of

this approach. Again, a speci�c parametric form of the underlying function is

assumed. In spline approximation, however, we additionally divide the domain

of interest into a set of nonoverlapping subregions de�ned by knot points. The

location of these knot points is determined a priori and then the parameters of the

chosen paramteric function are estimated seperately in each subregion. Continuity

conditions are imposed in order to ensure smoothness at the region boundaries.

While spline approximation o�ers an improved accuarcy as compared with global

parametric modeling, this approach has limitations especially when dealing with

high dimensional data. On the one hand, unlike global parametric modeling, this

technique allows us to model local variations in the underlying function. In a high

dimensional setting, however, the statistician is caught between two currents. She

would like to increase the number of knot points (and therefore the number of

subregions) in order to improve the models ability to re
ect local variation in the
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underlying function. As the number of subregions increases the number of data

points within each subregion decreases, resulting in a high variance in the resulting

model. Additionally, spline approximation requires an a priori selection of knot

point locations. The appropriate choice for these locations is typically unknown

and varying these locations can have signi�cant impact on the resulting model. As

we will see in Chapter 5 theMARS algorithm addresses this problem by adaptively

choosing knot locations based on the data.

Next we consider kernel and nearest neighbor estimates. This is the last of

the approaches we consider where a parametric function form is assumed. Like

global parametric modeling this problme reduces to one of parameter estimation.

In both of these approaches, however, the parameters are functions of the indepen-

dent variable, x and are therefore generally di�erent at each evaluation point x.

The parameters are typically estimated by locally weighted least squares so that

the dominant e�ect in the paratmeter estimation is given by data points close a

given evaluation point. While working well in low dimensional settings this type of

approach su�ers reduced accuracy in high dimensional settings for similar reasons

as spline approximation. Again we are caught in a tradeo� between using large, well

populated regions for local parameter approximation versus small, less populated

regions. The bias/variance tradeo� inherent in this decision is identical to that for

spline approximation.

The fourth technique that we consider is projection pursuit regression. This is

the �rst adaptive technique that we discuss where no assumtions are made about the

form of the underlying function. Projection pursuit regression (PPR) can be used

to estimate a smooth function of several variables from noisy and scattered data.
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The procedure models the regression surface as a sum of empirically determined

univariate smooth functions of linear combinations of the predictor variables in an

iterative manner. It is more general than standard stepwise and stagewise regression

procedures, does not require the de�nition of a metric in the predictor space, and

lends itself to graphical interpretation. Projection pursuit regression is limited,

however, in its ability to approximate functions that involve interactions between

the predictor variables.

The �nal technique that we consider are decision tree classi�ers. A decision tree

classi�es examples into a �nite number of classes. Nodes in the tree are labeled

with attribute names, the edges are labeled with possible values (or groups/ranges

of values) for this attribute, and the leaves are labeled with the di�erent classes

(or some probability distribution over the classes). A new case is classi�ed by

following a path down the tree, by taking the edges corresponding to the values of

the attributes in the object. If the leaves consist of probability distributions over

the classes then the case will be classi�ed as a member of the class it is most likely

to be in given the leaf it ended up in and given the probability distribution there.

While decision trees have proved valuable in multivariate function approximation,

they su�ers from several limitations. The �rst of these limitations, and perhaps

the most important is that the estimated function that results from building a

decision tree is discontinuous at the subregion boundaries. Decision trees are, also,

poor at approximating some very simple functions such as linear functions as well as

additive functions. Recursive partitioning's inability to approximate such functions

is due to the fact that the functions that result from this method tend to involve

functions of more than a few variables. TheMARS algorithm can be viewed as an
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extension of the decision tree approach that attempts to address these limitations.

4.1.1 Global Parametric Modelling

The simplest, most widely studied, and perhaps, most widely used method for

function approximation in a high dimensional setting is global parametric modeling.

The principal approach has been to assume a model, throughout the domain of

interest, of the form

Y = X� + � (4.3)

where

Y is an (n � 1) vector of response variables,

X is an (n � p) matrix of known form that re
ects

the parametric function of choice,

� is an (p � 1) vector of parameters,

� is an (n � 1) vector of errors

and where E[[�]] = 0; V ar(�) = I�2, so the elements of � are uncorrelated[23]. In this

setting, and paramteric modelling in general, the underlying function is assumed

to be a member of a parametric set of functions whereas the noise is assumed to

lie outside of that set. This assumption is reasonable since the chosen parametric

function typically varies smoothly with changing values of the predictor variables

while the noise varies randomly. The function estimation problem then simply

reduces to that of estimating the parameters � from the training data.
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Since E[[�]] = 0, an alternative way of writing this model is

E[[Y]] = X� (4.4)

The error sum of squares is then

�0� = (Y �X�)0(Y �X�) (4.5)

= Y0Y � �0X0Y �Y0X� + �0X0X� (4.6)

= Y0Y � 2�0X0Y + �0X0X� (4.7)

The least squares estimate of � is the value of b, which, when subsituted in

Eq.4.5, minimizes �0�. It can be determined by di�erentiating Eq.4.5 with respect

to � and setting the resulting matrix equation equal to zero, at the same time

replacing � by b. This provides what are known as normal equations

(X0X)b = X0Y (4.8)

If the p normal equations are independent, X0X are nonsingular, and its inverse

exists then the solution to the normal equations can be written[23]

b = (X0X)�1X0Y (4.9)

This parametric approach has limited 
exibility when the form of the under-

lying function varies over the domain of interest. Additionally, this approach is

likely to produce poor approximations when the form of the true underlying func-

tion di�ers from the chosen parametric one. Global parametric models tend to be

computationally very simple to �t to a set of training data and have the additional

virtue of requiring relatively few data points. They are also easy to interpret and

rapidly computable. Finally, if the noise component � is large compared to f(x),
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then the error associated with model misspeci�cation may not be the most serious

error that results from modeling the given data set. In noisy settings, a simple

model like global parametric is often better at mitigating the problem of over�tting

than a more complex approach[41].

4.1.2 Spline Fitting

In the theory of spline functions f is approximated by several simple parametric

functions each de�ned over a di�erent subregion of the domain of interest. The

simplest example of function approximation by splines are splines of degree 0. In

this simple case, we can write

f̂(X) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

c1 X 2 [t1; t2]

c2 X 2 [t2; t3]
...

cn�1 X 2 [tn�1; tn]

(4.10)

where t1; t2; : : : ; tn are known as knot points. In this simple degree 0 case, the value

of f̂ is a step function de�ned by a constant value in each domain subregion. While

such low order splines results in the inability to approximate even simple linear

functions without the introduction of a huge number of knot points, models of this

type are widely used in the construction of decision trees as will be seen later in

this chapter[23].

The most widely used splines are of degree three (i.e. a cubic function of X

is assumed in each knot interval), where their second order derivatives exist and

are continuous. For simplicity, we will illustrate the spline �tting procedure here
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through the use of degree 2 or quadratic splines. The technique for higher order

splines is analogous.

Let fRjgSj=1 be a set of S disjoint subregions of D such that D =
SS
j=1Rj. A

function f̂(x) is a spline of degree k if f̂(x) is a piecewise polynomial of degree-k,

such that f̂ ; f̂ 0; : : : ; f̂ (k�1) are all continuous. In the case of quadratic splines, a

simple counting process shows us the number of conditions involved in de�ning

such a spline. Each of the Rj points are called knots, and are the points where the

function f̂(x) changes character. If there are S such knots, then there are S � 1

subintervals and S � 2 interior knots. Since the spline f̂(x) consists of quadratic

polynomials of the form aix
2 + bix + ci over each subinterval [Ri; Ri+1], there are

3(S � 1) coeÆcients. We then expect that 3(S � 1) conditions will fully de�ne a

quadratic spline function with S knots[23].

On each end of the subinterval [Ri; Ri+1], the quadratic spline function f̂i must

satisfy the interpolation conditions f̂i(Ri) = yi and f̂i(Ri+1) = yi+1. Since there

are S � 1 such subintervals, this imposes 2(S � 1) conditions. The continuity

of f̂ 0 at each of the interior knots gives S � 2 more conditions. Thus, we have

2(S�1)+S�2 = 3S�4 conditions, or one condition short of the 3S�3 conditions
required. There are a variety of ways to impose an additional condition. Perhaps

the most popular is f̂ 0(R0) = 0. The equations for the interpolating quadratic

splines can now be uniquely determined[23].

When qth order splines are being used, while any set of basis functions that span

the space of qth order spline approximations can be used, and the corresponding

coeÆcients of the basis functions �t to the data using ordinary least squares, the

procedure of spline approximation is typically implemented through the use of
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B�splines.
The B splines of degree 0 are de�ned by

B0
i =

8>>><
>>>:
1; if ti � x < ti+1;

0; otherwise.

(4.11)

With the functions B0
i as a starting point, we now generate all the higher degree B

splines via the following recursive de�nition:

Bk
i (x) =

 
x� ti
ti+k � ti

!
Bk�1
i (x) +

 
ti+k+1 � x

ti+k+1 � ti+1

!
Bk�1
i+1 (x) k � 1 (4.12)

B splines are widely used due to their favorable numerical properties. When knot

point locations are being selected a priori and then the basis function coeÆcients �t

to the data using least squares, then B splines are typically an appropriate choice

of basis functions. In other settings, however, such as in the MARS algorithm

discussed in the next chapter, where knot point locations are selected adaptively,

there is a signi�cant drawback to using B splines from an implemenation point of

view. In this setting, the training data is used to determine optimal knot point

locations. One can observe from the functional form of the B splines in 4.12 that

each time a knot point location is changed multiple basis functions also change.

This observation leads to a more complicated procedure for updating B splines

than would be required if each basis function were associated with a single knot

point. One set of basis function that o�ers this advantageous feature are the power

basis functions.

In the univariate case with N regions separated by N�1 knot points, the power
basis functions are as follows:

1; fxigq1; f(x� tj)
q
+gN�11 (4.13)
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where ftjgN�11 are the knot locations. The minimization of the SSE can be done

within each domain subregion as de�ned by the locations of the knot points in the

same fashion as was done in the context of global parametric modeling (discussed

previously), while maintaining the continuity of lower order derivatives at the knot

points. While these basis functions do not possess the superior numerical properties

of B splines, they have the property that changing a knot location changes only

one basis function, leaving the others unchanged. This advantage will be exploited

in an eÆcient implementation of the MARS algorithm.

The application of this approach to high dimensional data is trivial in principle.

In practice, however, one runs into the well known \curse of dimensionality". As

the dimension of the data increases, the number of parameters that must be approx-

imated increases exponentially. Additionally, with high (n) dimensional data, as the

number of knot points increases, the data points within each region [ti; ti+1] where

t 2 <n become increasingly sparse, thus resulting in poorer and poorer approxima-

tions. Finally, spline approximation assumes an a priori knowledge of appropriate

placement of knot locations, and therefore, an a priori knowledge of where the form

of the underlying function f changes. In practice, the appropriate choice of knot

locations is unknown. As will be seen with decision trees and MARS, adaptive

modeling techniques attempt to identify the appropriate choice of knot locations in

a data driven manner.

4.1.3 Kernel and Nearest Neighbor Estimates

Local paramteric approximations take the form

f̂ = X�̂(x) (4.14)
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where f̂ is a simple parametric function. Unlike global parametric approximations,

here the parameter values, �̂(x), are generally di�erent at each evaluation point x

and are obtained by locally weighted least squares by minimizing

NX
i=1

w(x;xi)[yi �X�̂(x)]2 (4.15)

The weight function w(x;x0) (of 2n variables) is chosen to place the dominant mass

on points x0 close to x. The properties of the approximation are mostly determined

by the choice of w and to a lesser extent by the parametric function used[68].

The diÆculty with applying local parametric methods in the presence of high

dimensional data lies with the choice of an appropriate weight function w for the

speci�c problem at hand. This strongly depends on the underlying function f and

is, therefore, generally unknown. The most common choice

w(x;x0) = K(jx� x0j=s(x)) (4.16)

with jx�x0j being a weighted distance between x and x0, s(x) is a scale factor and
K is a kernel function of a single argument. Commonly used scale functions in-

clude constant functions s(x) = s0 (kernel smoothing) and s(x) = s0=p̂(x) (nearest

neighbor smoothing), where p̂(x) is an estimate of the density of the local predictor

points.

In low dimensions, this approximation of the weight function w of 2n variables

by a function K of a single variable, controlled by a single parameter s0 is generally

not too serious since asymptotic conditions can be realized without requiring large

sample sizes. This is not the case in high (� 2) dimensions. The problem with a

kernel based on distances between points is that the volume of the corresponding

sphere in n�space grows as its radius to the nth power. Therefore, to ensure that
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w places adequate mass on enough data points to control the variance of f̂(x), s(x)

will have to be very large, incurring high bias.

4.1.4 Projection Pursuit Regression

Each of the modeling techniques that we have discussed so far assumes that the

functional form of the underlying function f is known, reducing the problem to one

of estimating a set of parameters. To the extent that the chosen model is correct,

these procedures can be successful. In practice, however, model correctness is dif-

�cult to verify and an incorrect model can yield poor predicitve results. For this

reason emphasis in the statistical research community has been given to nonpara-

metric regression techniques which make few assumptions about the underlying

function. In nonparametric modeling the distinction between signal and noise is

based solely on the notion of smoothness; f(X) is assumed to be that component

of Y that varies smoothly with changing values of X , whereas the noise is taken to

be the leftover part that does not. The e�ectiveness of a nonparamteric regression

technique is determined by how well it can gauge the local smoothness properties

of f(X) and exploit them so as to �lter out most of the noise without substantively

impacting the signal.

Projection pursuit uses an approximation of the form

f̂(x) =
MX
m=1

fm(
nX
i=1

�imxi) (4.17)

The approximation is constructed in an iterative manner:
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(1) Initialize current residuals and term counter

ri  yi; i = 1; : : : ; n (4.18)

M  0 (4.19)

(It is assumed that the response variable is centered:
P
yi = 0)

(2) Search for the next term in the model:

For a given linear combination Z = � � X, construct a smooth representation

f�(Z) of the current residuals as ordered in ascending value of Z. Take as a criterion

of �t I(�) for this linear combination the fraction of the so far unexplained variance

that is explained by f�:

I(�) = 1�
nX
i=1

(ri � f�(� � xi))=
nX
i=1

r2i (4.20)

Find the coeÆcient vector �M+1 that maximizes I(�)

�M+1 = max
�

�1I(�) (4.21)

(3) Termination

If the criterion of �t is smaller than a user speci�ed threshold, stop. Else update

the current residuals and the term counter

ri  ri � fM+1(�M+1 � xi); i = 1; : : : ; n (4.22)

M  M + 1 (4.23)

and go to step (2).

Although simple in concept, projection pursuit regression overcomes many limi-

tations of other nonparametric regression procedures. The sparsity limitation ( the
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curse of dimensionality) of kernel and nearest neighbor techniques is not encoun-

tered since all estimation is performed in a univariate setting. Progression pursuit

regression does not require speci�cation of a metric in the predictor space. Projec-

tion pursuit regression is also computationally quite feasible. For increasing sample

size n, dimensionality p, and number of iterations M , the computation required to

construct the model has a time complexity of O(Mpn logn).

Disadvantages of projection pursuit regression are that there are some simple

functions that require large M for good approximation. This results from the

inability of the regression model to approximate functions that include linear rela-

tionships between the predictor variables. It is also diÆcult to separate the additive

from the interaction e�ects associated with the variable dependencies.

4.2 Decision trees

A decision tree classi�es examples into a �nite number of classes. Nodes in the

tree are labeled with attribute names, the edges are labeled with possible values

(or groups/ranges of values) for this attribute, and the leaves are labeled with the

di�erent classes (or some probability distribution over the classes). A new case

is classi�ed by following a path down the tree, by taking the edges corresponding

to the values of the attributes in the object. If the leaves consist of probability

distributions over the classes then the case will be classi�ed as a member of the

class it is most likely to be in given the leaf it ended up in and given the probability

distribution there [65, 66].

During the process of building decision trees several issues must be confronted.
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The �rst is: based on what data should we build the tree? Given a database

of records one option is to use all the available records to build the tree. The

problem with this approach, of course, is once the tree is built there is no unbiased

data on which to test it. A better alternative for estimating the reliability of any

classi�cation model is to divide the data into a training set and a test set, build the

model using only the training set, and examine its performance on the unseen test

cases. This is satisfactory when there is plenty of data, but if there are only a small

number of records available (a few hundred for example) then several problems

arise. First, in order to get a reasonably accurate �x on the accuracy of our tree,

the test set must be large, so the training set will be small. Second, when the total

amount of data is small, di�erent divisions of the data into a training set and a

test set can produce surprisingly large variations in error rates on unseen (test)

cases. Finally, if we divide the data arbitrarily, we are implicitly assuming that the

process we are modeling is stationary. This may or may not be true in reality.

A more robust estimate of accuracy on unseen cases can be obtained by cross-

validation. In this procedure, the data is divided into N blocks so as to make each

block's number of cases and class distribution as uniform as possible. N di�erent

classi�cation models (decision trees in this case) are then built, in each of which

one block is omitted from the training data, and the resulting model is tested on

the cases in that omitted block. In this way, each case appears in exactly one test.

Provided that N is not too small - 10 is commonly used - the average error rate

over the N unseen test sets is a good predictor of the error rate of a model built

from all the data [66].

There are many related statistical issues that concern themselves with ensuring
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statistical validity of results reported by a given classi�cation method as well as

issues involved in the comparison of di�erent classi�cation methods [69]. As these

are not issues unique to decision trees but rather to all model building, we will not

discuss them in more signi�cant depth here, but rather focus on the issues unique

to building e�ective decision trees.

The three issues fundamental to the construction of decision trees that we will

discuss in the following sections are as follows:

1. At a given node how do we decide which attribute on which to partition the

data at this point (or whether to partition it at all)?

2. Once the attribute has been chosen on which to partition the data, how do

we partition it? Of course, if the attribute is discrete-valued one option would

be to create a new node for each attribute value. However, this might not be

desirable for attributes with many values. For continuous valued attributes

this approach is not even possible and the attributes must be partitioned in

some reasonable way.

3. Finally, once a tree has been built we need to determine whether and how to

prune it. The goal of pruning would be to simplify and reduce the error rate

of the existing tree.

After reviewing approaches to these issues, this chapter will conclude the discussion

of decision trees by considering a few re�nements to the basic process.
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4.2.1 Attribute Selection

Given a set of training cases T and a set of classes fC1; C2; : : : ; Ckg into which we

are attempting to classify those training cases there are certainly many possible

ways to build a decision tree. In fact, any test that divides T in a nontrivial way,

so that at least two of the subsets fTig are not empty, will eventually result in a

partition into single-class subsets, even if many of them contain a single training

case.

However, building a tree that is consistent with the training data is not the sole

goal of the tree building process. In fact, one possible tree we could build would

consist of a leaf for each training set. This tree would certainly result in errorless

classi�cation of the training data but would perform relatively poorly on out-of-

sample data. This classi�cation represents an extreme case of over�tting. Thus,

our goal, in addition to minimizing error, is to build a compact tree that reveals

the structure of the domain we are considering and thus has suÆcient predictive

power.

Since we are looking for a compact decision tree that is consistent with the train-

ing set, why not explore all possible trees and select the simplest? Unfortunately,

the problem of �nding the smallest decision tree consistent with a training set is

NP-Complete [47]. With this in mind, decision tree construction methods are based

on heuristics for selecting attributes on which to partition the data. Most of these

heuristics are non-backtracking, greedy algorithms. Once a test has been selected

to partition the current set of training cases, usually on the basis of maximizing

some local measure of progress, the choice is not revisited and the consequences of

alternative choices is not explored. This approach makes the choice of the attribute
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on which to partition particularly important.

In CART, Breiman [16][15] derives his goodness of split criteria from an impurity

function.

De�nition 6 If there are J classes into which we are classifying cases, an impurity

function is a function � de�ned on the set of all J-tuples of numbers (p1; : : : ; pJ)

satisfying pj � 0, j = 1; : : : ; J,
P

j pj = 1 with the properties

(i) � is maximized at (1
j
; : : : ; 1

j
)

(ii) � is minimized at (1; : : : ; 0); (0; 1; : : : ; 0); : : : ; (0; : : : ; 0; 1)

(iii) � is a symmetric function of p1; : : : ; pj

De�nition 7 Given an impurity function �, de�ne the impurity measure i(t) of

any node t as

i(t) = �(p(1jt); : : : ; p(J jt)) (4.24)

Given an impurity function �, we would like to choose the attribute to split on at

a given node that results in a maximal decrease in impurity. In the tree building

methods developed by Quinlan if an attribute, A, takes multiple values then when

a node is split on A a node is created for each of these values. In contrast, in

Breiman's method all splits are binary. In this case, if a split s of a node t sends a

proportion pR of the data cases in t to tR and the proportion pL to tL, de�ne the

decrease in impurity to be

�i(s; t) = i(t) � pRi(tR) � pLi(tL) (4.25)

Then we can take the goodness of split �(s; t) to be �i(s; t).
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Suppose we have done some splitting and arrived at a current set of terminal

nodes. The set of splits used, together with the order in which they were used,

determines a binary tree T . Denote the current set of terminal nodes by ~T ; set

I(t) = i(t)p(t), and de�ne the tree impurity I(t) by

I(t) =
X
t2 ~T

I(t) =
X
t2 ~T

i(t)p(t) (4.26)

It is clear that selecting the splits that maximize �i(s; t) is equivalent to selecting

those splits that minimize the overall tree impurity I(T ).

�I(s; t) = fi(t)� pLi(tL)� pRi(tR)gp(t) (4.27)

= �i(s; t)p(t) (4.28)

This expression can be extended in the obvious way if we allow multivalued, as

opposed to binary, splits. Since �I(s; t) di�ers from �i(s; t) by the factor p(t), the

same split s� maximizes both expressions. Therefore, by choosing the split s at node

t that minimizes the impurity of that node we are also minimizing the impurity of

the entire tree. We still, of course, need to choose an impurity function consistent

with these ideas. Many such functions have been suggested in the literature and

we will present several of them here.

It is important to remember the context in which the decision of which attribute

to select takes place: We are at a node during the classi�cation tree construction.

Some subset S of the original training set has �ltered down to this node. We are

now trying to evaluate how good it would be to split on attribute A. Let n(a; c)

be the number of records in S with attribute A = a and class C = c. Similarly,

let Pr[[a; c]] be the probability of drawing a record uniformly from S with A = a,
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C = c. De�ne Pr[[a]];Pr[[c]]; n(a), and n(c) in the obvious way, and let n = jSj.
Note, in addition, that many of the attribute selection methods utilize notions

from information theory. The reader is assumed to have some basic knowledge in

this area. For a good review see [25].

Information Gain

The �rst attribute selection method we discuss was introduce by Quinlan in his

ID3 system [65]. Recall that the entropy of a discrete random variable X is the

average length of the shortest description of the random variable. It, in some sense,

represents the amount of information contained in X. More precisely:

De�nition 8 The entropy H(X) of a discrete random variable X is de�ned by

H(X) = �X
x2X

Pr[[x]] log2 Pr[[x]] (4.29)

For our purposes, assume S is the subset of the original training set currently being

partitioned. Also let C = fC1; : : : ; Ckg be the set of classes into which records are

being classi�ed. Then de�ne,

H(C) = �
kX

j=1

Pr[[Cj]]� log2(Pr[[Cj]]) (4.30)

where Pr[[Cj]] is the probability that a record drawn randomly from S is an element

of class Cj. H(C) measures the average amount of information needed to identify

the class of a case in S. Or, in other words, it conveys the amount of uncertainty

in S about the class membership of records in S.

Mutual Information is a measure of the amount of information that one ran-

dom variable contains about another random variable. It is the reduction in the

uncertainty of one random variable due to the knowledge of the other.
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De�nition 9 Consider two random variables X and Y . The mutual information

is de�ned as

I(X;Y ) = H(Y ) � H(Y jX) (4.31)

For our own purposes, we would like to partition on the attribute that conveys

the most information about class membership of the records in S. More precisely,

we would like to choose the attribute A that maximizes I(A;C).

We calculate this by considering each available attribute, Ai, in turn and com-

puting the conditional entropy, H(CjA), the entropy of C given that we partition

on attribute Ai. Assuming Ai has n possible outcomes

H(CjAi) =
nX
j=1

jSjj
jSj �H(Sj) ; where Sj = jth partition of S (4.32)

Then, the mutual information (or information gain as termed by Quinlan) is

I(Ai;C) = H(C) � H(CjAi) (4.33)

We choose to partition on the attribute that maximizes this value.

Note that in this discussion we have assumed that all attributes take discrete

values and that when partitioning on an attribute we want to create a node for each

of its values. Neither of these assumptions are true, in general. We will discuss how

to include, in this framework, both continuous valued attributes and the grouping

of attribute values shortly.

Gain Ratio

Although mutual information performs well as a partition criterion, it has a serious

de�ciency - it has a strong bias in favor of attributes that take many values. This
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bias can been seen in the following example:

Example:

Consider the problem confronting a credit card company of classifying prospective

card-holders based on their credit worthiness. Further, assume that the database ta-

ble containing card-holder information (credit history, demographic information,etc

: : : ) includes an ID �eld that uniquely identi�es each prospective card-holder.

Partitioning based on this attribute would lead to a large number of subsets, each

containing just one record. Since all of these one-record subsets necessarily contain

records of a single class, I(Ai;C) = 0, so the mutual information from using this

attribute to partition the set of training records is maximal. From the point of view

of prediction, however, such a division is useless.

The bias inherent in the mutual information criterion can be recti�ed by a nor-

malization process in which the apparent mutual information attributable to tests

with many values is adjusted. The new criterion resulting from this normalization

is now de�ned [66]

De�nition 10 The GainRatio criterion is

GainRatio(Ai) =
H(Ai;C)

H(Ai)
(4.34)

where Ai is the attribute in question and S is the subset currently being partitioned.

This expresses the proportion of information generated by the split that is useful, i.e.

that appears helpful for classi�cation. In other words, we divide out the information

that pertains to a record, that indicated not the class to which the record belongs,

but the outcome of the attribute itself.
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If the split is near-trivial, i.e. creates subsets that are very unbalanced in their

size, H(Ai) will be small and the GainRatio unstable. To avoid this, the GainRatio

criterion selects an attribute for partitioning to maximize the ratio above, subject

to the constraint that the mutual information must be large - at least as great as

the average mutual information over all tests examined.

It is apparent that the prospective card-holder ID attribute, in the above exam-

ple, will not be ranked highly by this criterion. If there are k classes, the numerator

(mutual information) is at most log2(k). The denominator, H(Ai), on the other

hand is log2(n), where n = jSj. It seems reasonable to presume that the number

of training cases at a node is larger than the number of classes, so the ratio would

have a small value.

Splitting Criteria in CART

In CART, two splitting criteria are used. The �rst is the Gini criterion which

utilizes the Gini index as an impurity function.The Gini index has the form

i(t) =
X
j 6=i

p(jjt)p(ijt) (4.35)

The Gini index has the following interpretation. If we choose an object from a

node t at random, we will classify it as a member of class i with probability p(ijt).
The probability that it is actually a member of class j is p(jjt). Therefore, the

probability of misclassi�cation is exactly the Gini index.

Recall, that we will choose to split the node t with the split s that maximizes

�i(s; t)p(t). That is, for each possible split s, we will maximize i(t) � pRi(tR) �
pLi(tL) where tR and tL represent the two new nodes that result from the split s.
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The second approach used in CART is called the Twoing Criterion. Denote the

set of classes C as C = f1; : : : ; Jg. At each node, separate the classes into two

superclasses,

C1 = fj1; : : : ; jng; C2 = C � C1 (4.36)

Call the objects whose class is in C1 class 1 objects, and all other objects class 2

objects.

For any split s of the node t, compute �i(s; t) where i(t) = p(1jt)p(2jt). In

other words use the Gini index for the two-class problem. Of course, �i(s; t)

depends on the choice of c1, so the notation �i(s; t; C1) is used. Now �nd the split

s�(C1) which maximizes �i(s; t; C1). Then �nd the superclass C�
1 which maximizes

�i(s�(C1); t; C1). The split used on the node is s�(C�
1).

The idea is, at every node, to group the classes in such a way as to maximize

the decrease in node impurity if we were to consider this a two-class problem.

This approach has the advantage that it results in \strategic" splits. At each

node, the classes are sorted into two groups that are in some sense most dissimilar

and given these groups outputs the best split s�. Near the top of the tree, this

criterion attempts to group together large numbers of classes that are similar in

some characteristic. Near the bottom of the tree it attempts to isolate single classes.

4.2.2 Partitioning Attributes

The next issue we must address is: given a selected attribute on which to partition

the subset of records at a given node, how do we partition them? Until now, we

have assumed that all attributes take discrete values and that a node will be created
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for each of these values (at least each of the values present in S). We have yet to

describe how to deal with attributes that take continuous values as well as the

possibility of grouping attribute values at a newly created node. In CART these

methods are always used since all splits must be binary. In Quinlan's systems the

grouping of categorical attributes and partitioning of continuous ones are included

as an option. These will be the topics of the next two sections.

Partitioning Continuous Attributes

If an attribute A has continuous numeric values, we will partition the records by

comparing values of A to some threshold Z. That is, all records whose value of

A � Z will be grouped together as will all records whose value of A < Z.

It may seem diÆcult to choose a Z that will result in an ideal split of A but

Breiman [16] introduces a straightforward approach. The training cases to be par-

titioned, T , are �rst sorted on the values of the attribute A being considered.

There are only a �nite number of these values, so let us denote them in order as

fv1; : : : ; vmg. Any threshold value lying between vi and vi+1 will have the same ef-

fect of dividing the cases into those whose value of the attribute A lies in fv1; : : : ; vig
and those whose value is fvi+1; : : : ; vmg. There are thus only m� 1 possible splits

on A, all of which are examined. For each possible split, the splitting criterion is

evaluated. For example, if we are using mutual information as our splitting cri-

terion, we will calculate I(Ai;C) for each possible split of the continuous valued

attribute Ai. Assume that this maximal value sets the threshold between vk and

vk+1. If I(Ai;C) using this split is greater than I(Aj;C), i 6= j, for all other at-

tributes, then the training set will be partitioned on Ai with the threshold between
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vk and vk+1.

Some systems use the midpoint vk+vk+1
2

as the threshold, while others like Quin-

lan's C4.5, choose the largest value of A in the entire training set that does not

exceed the midpoint above. This ensures that all threshold values appearing in

trees actually appear in the data.

It may seem expensive to examine all m� 1 possible thresholds, but, when the

cases have been sorted as above, this can be carried out in one pass, updating the

class distributions to the left and right of the threshold on the 
y.

4.2.3 Grouping Attribute Values

The two questions that must be answered regarding the grouping of attribute values

are:

1. When do we choose to group attributes?, and

2. Given that the decision has been made to group attributes, how is it done?

We deal with these questions in turn.

When the criteria described so far decide to split the training set on a discrete

valued attribute, they generate a separate node for each possible value of that

attribute. If there are many such values, however, resulting in nodes with small

subsets of training cases, this approach has two drawbacks. The �rst potential

problem is that useful patterns in the subsets may become undetectable due to an

insuÆciency of data. The second type of problem that might arise is dependent on

the splitting criterion being used. For example, the GainRatio criterion measures

the ratio of information relevant to classi�cation that is provided by the division
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to the information produced by the division itself. The denominator of this ratio

grows rapidly as the number of subsets increases. The GainRatio criterion, in other

words, is biased against attributes with many values. It, therefore, may make sense

to group attribute values under this criterion.

There are three potential approaches to determining when and if a given at-

tribute's values should be grouped. The �rst option would be to consider possible

groupings of attribute's values (henceforth, called value groups) before the tree is

built. This would involve considering groupings of many-valued attributes, choos-

ing the best possible grouping (under the splitting criterion being used) and either

adding new attributes with the reduced numbers of values or using them in place of

the original attributes from which they were formed. However, the most appropri-

ate division of an attribute's values into value groups will not remain constant but

will re
ect the contexts established in di�erent parts of the tree. Thus, although

this approach is computationally economical, it is 
awed.

The second approach would be to determine an optimal grouping of an at-

tribute's values after that attribute has been chosen as the one to be split. The

problem with this approach is that a given attribute may never be chosen to be

split unless its values are grouped e�ectively. For example, if we are using the

GainRatio as our splitting criterion, since the denominator will be large without

grouping attributes for an attribute with many values, the attribute may never be

chosen to be split. However, there may exist a value grouping that mitigates the

problem with the denominator large enough to make this an appealing attribute to

split. Therefore, we would prefer an approach that considers possible value groups

before determining the attribute to be split.
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The �nal approach �nds value groups of multivalued attributes each time a possi-

ble split of the training cases is being evaluated. At this time, the best groupings are

determined for each multivalued discrete attribute and its splitting criterion calcu-

lated using the partition induced by the value groups. This continual re-evaluation

of value groups can require a substantial increase in computation, especially for do-

mains in which many discrete attributes have many possible values. It is, however,

the most e�ective approach.

Determining Value Groups

If a multivalued attribute takes n di�erent values then even if we are only consid-

ering splitting the training cases into two value groups there are 2n�1�1 nontrivial
partitions of these values. There is certainly no way to consider all of these possible

groupings for large values on n - not to mention the fact that we would typically

like to consider more than just binary splits.

In one special case there is a solution to this computational quagmire. Breiman

et al. [16] prove that, if there are just two classes into which we are classifying the

training records, it is possible to order the values so that the best partition is one

of the \cuts" of this sequence - instead of 2n�1 � 1 possibilities, only n� 1 need to

be examined.

Theorem 3 Let A be an attribute taking the values fa1; : : : ; aLg. Additionally, let
C1 and C2 be the two classes, let Pr[[C1jA = al]] denote the probability that a record

is in class C1 given that the value of A = al, and let � denote the splitting criterion.

Then, order the Pr[[C1jA = al]], that is,

Pr[[C1jA = al1 ]] � Pr[[C1jA = al2 ]] � : : : � Pr[[C1jA = alL ]]: (4.37)
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then one of the L subsets

fal1; : : : ; alhg h = 1; : : : ; L (4.38)

is optimal.1

In general, however, there is no nice way to �nd an optimal grouping. Therefore,

a greedy algorithm is used to �nd value groups. Of course, these groups may not

be optimal.

The method used in Quinlan's C4.5 is based on iterative merging of value groups.

The initial value groups are just the individual values of the attribute under con-

sideration and, at each iteration, the consequences of merging every pair of groups

is considered. The process continues until just two value groups remain, or until

no such merger would produce a better partition of the training cases.

The partition arising from any particular collection of value groups is evaluated

by whatever selection criterion is in force. Under the GainRatio criterion, for

example, merging two groups of attribute values results in fewer subsets of training

cases and a corresponding reduction in the denominator. If the reduction in the

numerator (mutual information) is not substantial, the �nal GainRatio may be

increased.

In C4.5, some additional requirements are imposed such as the ones ensuring

that each resulting value group have some minimal number of elements. Addition-

ally, the �nal split should have at least half the mutual information of the original

multivalued split.
1I have left out a detail of the statement of this theorem concerning functional requirements

on �. All of the splitting criterion that have been considered satisfy these requirements.
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4.2.4 Additional Issues

Decision trees are a well developed area of statistical modeling and as a result

there has been much e�ort to improve the various stages of tree building. As can

be seen by the number of splitting criteria in use there is no consensus on any

\best" approach. There seem to be many domain dependent issues in decision tree

building. It will not be possible to do justice to the entire area in this short space.

There are a few additional issues that I would like to discuss brie
y.

Multivariate Splits

Each of the divisions that results from the splitting criteria that have been discussed

so far correspond to a special kind of surface in the description space, namely a

hyperplane that is orthogonal to the axis of the tested attribute and parallel to

all other axis. Thus, the regions produced by a decision tree using such criteria

are not arbitrary, but rather, are hyper-rectangles. This represents a major limi-

tation of decision tree classi�cation methods. When the task at hand is such that

class regions are not hyper-rectangles, the best that a decision tree can do is to

approximate the regions by hyper-rectangles. Certain types of simple functions,

are, however, diÆcult to approximate by decision trees given this limitation. For

example, consider a bank deciding whether or not a prospective customer is worthy

of a loan. Assume that three attributes of the customer available to the bank are,

her current income, her current savings, and her current debt. The decision whether

or not to give her a loan will be based not any one of these attributes, but rather

a linear combination of the three. We could represent this combination in our tree

by consecutively splitting the data on each of these three attributes. However, it
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makes more sense, in terms of minimizing the size and complexity of the resulting

tree to allow splits on linear combinations of attribute values. Another type of

function that is diÆcult to estimate with decision trees are boolean functions. In

a medical diagnosis problem, for example, we may want to split the data based

on whether the patient has a fever and a rash. Or more generally, given boolean

attributes Ai, does the case have property (D1 and D2) or (D3 and D4). In CART,

modi�cations to the basic tree building procedure are available as options to deal

with these limitations.

Linear Combinations

The details of the algorithm for determining good linear combination splits is rather

involved. Here I will sketch the idea. For further details see [16]. Suppose there

areM1 ordered variables (categorical variables are excluded). At every node t, take

the set of coeÆcients a = (a1; : : : ; aM1) such that kak2 = P
m a2m = 1, and search

for the best split of the form

X
m

amxm � c (4.39)

as c ranges over all possible values. Denote this split by s�(a) and the corresponding

decrease in impurity by �i(s�(a; t). That is,

�i(s�(a�); t) = maxa�i(s
�(a); t) (4.40)

This produces a linear split of the form

X
m

a�mxm � c� (4.41)
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The implementation of a search algorithm for maximizing �i(s�(a); t) over the large

set of possible values of a is in [16].

This process often results in a complicated tree structure. At each node one has

to interpret a split based on a linear combination of all ordered variables. Some of

these attributes, however, may contribute little to the e�ectiveness of the split and

can, therefore, be pruned.

For m ranging from 1 to M1, vary the threshold constant c and �nd the best

split of the form

X
~m 6=m

a�~mx ~m � cm (4.42)

That is, �nd the best split using the linear combination with coeÆcients a� but

deleting xm and optimizing on the threshold c. Denote the decrease in impurity

using this split by �m and

�� = �i(s�(a�); t) (4.43)

The most important single variable to the split s�(a�) is the one whose deletion

causes the greatest deterioration in performance. More speci�cally, it is that vari-

able for which �m is a minimum. Similarly, the least important variable is the one

for which �m is a maximum.

The deterioration due to deleting the most important variable is ���minm�m,

and the deterioration due to deleting the least important variable is ���maxm�m.

Set a constant � (usually 0:1 or 0:2), and if

�� �maxm�m < �(�� �minm�m) (4.44)

then delete the least important variable.
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This procedure is repeated on the remaining undeleted variables until no more

deletion occurs. If we denote the indices of the undeleted variables by fm1g then the
node splitting algorithm is used again to �nd the best split of any linear combination

of these remaining variables.

Boolean Combinations

Since the class of all Boolean combinations of splits is extremely large and can lead

to a confusing tree, the class of Boolean combinations considered is restricted to

splits of the form

fIs xm1 2 B1 and : : : and xmh
2 Bhg (4.45)

When the complimentary node is considered, it also includes splits of the form

fIs xm1 2 B1 or : : : or xmh
2 Bhg (4.46)

The class (4.45) of Boolean splits is denoted as

sm1 \ sm2 \ : : : \ smn (4.47)

and interpreted as the set of all cases sent to tL by every split in the set fsm1; : : : ; smng.
Denote the decrease in impurity of the node t by the split as

�i(sm1 \ sm2 \ : : : \ smn ; t) (4.48)

Ideally, we would like to maximize the above value over all splits on variables

xm1 ; : : : ; xmn and then maximize over all subsets fm1; : : : ; mng � f1; : : : ;Mg.
There is no eÆcient algorithm known to do this in a reasonable way so, instead, a

stepwise method is used.

109



If a split s on an ordered variable x is of the form fIs x � c?g, let �s be

the split fIs x > c?g. If s is a split on a categorical variable x of the form

fIs x 2 fb1; : : : ; bhg?g, denote by �s the split fIs x 62 fb1; : : : ; bhg?g. Additionally,
let s�m be the best split on the variable xm and take S� to be the set of splits

S� = fs�1; �s�1; : : : ; s�M ; �s�Mg (4.49)

The stepwise procedure proceeds as follows:

1: If s�m1
is the best split in S�, �nd the s 2 S� that maximizes

max(�i(s�m1
\ s; t);�i(�s�m1

\ s; t)) (4.50)

If that maximum value is �i(s�m1
\s�; t), denote s�1\s�2 = s�m1

\s�. If the maximum
value is �i(�s�m1

\ s�; t), denote s�1 \ s�2 = �s�m1
\ s�.

2: Find the s in S� that maximizes �i(s�1\ s�2\ s; t). If the maximum is achieved at

s = s�, denote s�1\ s�2 \ s�3 = s�1 \ s�2 \ s�. Continue adding splits to this intersection
until step 3 is satis�ed.

3: Fix � > 0; if at any stage in step 2

�i(s�1 \ : : : \ s�n+1; t) � (1 + �)�i(s�1 \ : : : \ s�n) (4.51)

then stop and use the split s�1 \ : : : \ s�n

Soft Thresholds

In the discussion of continuous attributes a threshold was chosen, and a binary

split done, around this value. The problem with this approach is that there is

no distinction made between values close to the threshold versus values far away

from the threshold. If there are many values close to the threshold then small
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perturbations in the data can potentially produce radically di�erent classi�cations.

Thus, some have experimented with soft thresholds [20].

Soft thresholds is based on the following idea: rather than classifying a case

as being in subset 1 (below the threshold) or in subset 2 (above or equal to the

threshold) give some weighting to the probability of it being in each subset and

distribute it across both subsets. For example, one could potentially add 0:6 records

to subset 14 and 0:4 records to subset 2. These fractional records would then be

treated as such in the determination of future splits and in the pruning phase.

How these distributions are determined is the subject of this area of research

but will not be discussed here.

Missing Values

It is not unlikely that when dealing with real life data that there will be missing

attribute values [66]. This might occur because the value is not relevant to a

particular case, was not recorded when the data was collected, or was lost at some

stage of preparing the data for the tree building process.

Typical approaches to this problem are probabilistic in nature. Similar to the

approach in soft partitions, when at some node in the tree, if a case needs to be

classi�ed based on a missing attribute value the probability of it belonging to each

of the children of the node is determined based on the other cases at the node.

Then fractions of it may be classi�ed in each of the subsets at the children of the

node. In other words, if there is a 10% chance it belongs to subset 41 then 0:1

records will be added to subset 1, similarly for all other subsets.

There are two possible places in which a missing attribute might be encountered.

111



Either in trying to classify an unseen case or in a training case in the course of

building the tree.

In the �rst case, rather than classifying the case de�nitely, we generate a prob-

ability distribution over the classes and choose the one that the given case is most

likely to be a member of.

In the latter case we must decide how to take this missing value into account

when evaluating the splitting criterion. Approaches to this issue are discussed in

[21].

4.2.5 De�ciencies of Recursive Partitioning

While decision trees have proved valuable in multivariate function approximation,

they su�ers from several limitations. The �rst of these limitations, and perhaps

the most important is that the estimated function that results from building a

decision tree is discontinuous at the subregion boundaries. In addition to its obvious

cosmetic problem, this limitation severely limits the accuracy of the approximation

if the underlying function is itself continuous.

Decision trees are, also, poor at approximating some very simple functions such

as linear functions, i.e. functions of the form

f(xjfajgp0) = a0 +
pX
i=1

aixi; p � n (4.52)

as well as additive functions, i.e functions of the form

f(x) =
nX
j=1

gj(xj) (4.53)

Recursive partitioning's inability to approximate such functions is due to the fact

that the functions that result from this method tend to involve functions of more
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than a few variables. To see why this claim holds consider what happens each time

a split is performed. A basis function (leaf) of lower order interaction is replaced

by two new functions (leaves), each with interaction order one level higher. As

this progresses, the result is a set of basis functions with high order interactions

amongst the variables.
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Chapter 5

Multivariate Adaptive Regression

Splines

Up to this point we have taken a geometric view of decision tree classi�cation. Our

approach has been to recursively partition a set of input vectors in order to classify a

single output value. While this view is very intuitive, this process can also be viewed

as a stepwise regression procedure. After �rst justifying our selection of MARS

we then cast decision tree classi�cation as a stepwise regression procedure through

the construction of spline basis, and �nally show how some simple extensions to

stepwise regression results in theMARS algorithm, originally due to Friedman[41].

5.1 Choosing a Classi�er

Our goal in selecting a classi�er is to keep it general enough so that it is comparable

to the more powerful heuristic approaches such as neural networks in terms of its

ability to allow robust basis functions and classi�er systems that use adaptive, mul-
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tiphase regression. Neural networks were rejected as a classi�cation technique for

computational reasons given the dimensionality and size of our data sets, because of

the lack of interpretability of the resulting models, and because MARS ultimately

o�ers similar power in its ability to represent complex nonlinear relationships.

The classi�ers discussed in Chapter 4 can be broadly divided into two categories

- parametric and nonparametric. Among the parametric procedures, by de�nition,

the correct form of the underlying model must be assumed. It is often the case in

reality that a practitioner will not know the true parametric form of the underly-

ing function. Therefore, while these approaches are typically easy to implement,

computationally eÆcient, and straighforward to evaluate and interpret, they are

limited in their predictive capacity.

Given the complexity of intrusion detection data, it is unlikely that a simple

parametric function would be capable of modeling the variability of the underlying

function throughout all regions of the domain. For example, the features relevant

to detecting an intrusion will certainly vary among di�erent attacks. Therefore, any

global parametric approach would not suÆce. Spline, kernel, and nearest neighbor

approximation all o�er a mechanism for addressing local variation in the underlying

function. They, however, all su�er from the "curse of dimensionality" and their

performance is signi�cantly degraded in high dimensional settings. Additionally,

they all require some restricitive assumptions, that when wrong, again degrade their

predictive capacity. In spline approximation knot locations must be chosen and in

kernel and nearest neighbor approximation a weight function must be chosen.

The other two techniques discussed in Chapter 4 are both adaptive. Projection

pursuit su�ers from its inability to capture relationships between predictor variables
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that are certainly present in intrusion detection data. Regression trees o�er a

powerful classi�cation technique but su�er from a lack of continuity at subregion

boundaris and their inablilty to approximate some simple functions. MARS will

be developed as an extension to the decision tree approach with some modi�cations

that address these shortcomings.

As will be shown shortly MARS can be viewed as a zero order adaptive spline

approximation. It is adaptive because knot locations are selected dynamically dur-

ing the model building process. It is a zero order spline approximation if one views

a path in the decision tree as tensor product of indicator functions. The lack of con-

tinuity of decision trees can be remedied by replacing zero order splines with linear

spline functions. This, however, introduces a problem as well. The decision tree

construction algorithm allows multiple splits of the same predictor variable along

a path in the tree. While this is not problematic in the case of zero order splines,

in the linear spline setting this introduces higher order dependencies amongst the

variables in the resulting basis function. To remedy this we disallow multiple par-

titions of any variable along a single tree path. While this restriction, on its own,

limits the power of our algorithm, the power can be restored, and the ability to

approximate some simple functions that decision trees are typically unable to ap-

proximate can be achieved by allowing multiple splits of a single node during the

tree construction process. MARS is simply the decision tree algorithm with the

above modi�cations. Through these modi�cations we achieve our goal of selecting

a classi�cation technique that retains the computational tractability and the inter-

pretability of decision trees while extending their expressive power in terms of their

ability to approximate some simple functions as well as more complex nonlinear
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functions. Next we cast decision tress as a stepwise regression technique and then

derive MARS as an extension to stepwise regression.

5.2 Decision Trees as Stepwise Regression

Let y represent a single univariate response variable that depends on a vector of

p predictor variables x where x = (x1; : : : ; xp). Assume we are given N samples

of y and x, namely fyi;xigNi=1, and that we can describe y with the regression

model, y = f(x1; : : : ; xp) + � over some domain D � <p, which contains the data.

The function f(x) re
ects the true but unknown relationship between y and x.

The random additive error variable �, which is assumed to have mean zero and

variance �2� , and re
ects the dependence of y on quantities other than x. The

goal in regression modeling is to formulate a function f̂(x) that is a reasonable

approximation of f(x) over the domain D.

As discussed in the last chapter a typical approach to this problem is through

the use of splines. The decision tree, or recursive partitioning regression model,

can be viewed similarly. Through recursive partitioning as we build a decision tree

we end up with a set of nodes that form a disjoint partition of the domain of x.

After pruning the tree, which is equivalent to merging two or more of these disjoint

subsets, each path from the root of the tree to a leaf is one of our interpolating

spline functions. More formally, the classi�cation function resulting from a tree can

be stated as

if x 2 Rm; then f̂(X) = gm(Xjfajgp1) (5.1)

Here fRmgM1 are disjoint subregions representing the partition of D. In our tree
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building methodology the functions gm are simple constant functions

gm(xjam) = am (5.2)

As discussed in the last chapter one of the most signi�cant de�ciencies of re-

cursive partitioning algorithms is their lack of continuity at subregion boundaries.

In response to this, and other de�ciencies Friedman [41] has developed the MARS

system. The starting point is to cast the approximation (5.1) and (5.2) in the form

of an expansion in a set of basis functions. As before, we have N samples of y and

x = (x1; : : : ; xp), namely fyi;xigNi=1. Let fRjgSj=1 be a set of S disjoint subregions

of D such that D =
SS
j=1Rj. Given the subregions fRjgSj=1, recursive partitioning

estimates the unknown function f(x) at x with

f̂(x) =
SX
j=1

f̂j(x)Bj(x); (5.3)

where

Bj(x) = I[x 2 Rj]; (5.4)

and I[�] is an indicator function with value 1 if its argument is true and 0 otherwise.
Each indicator function, in turn, is a product of univariate step functions

H[�] = 1; if � > 0; 0; otherwise; (5.5)

that describe each subregion Rj. Thus Bj(x) is a basis function with value 1 if x

is a member of the Rjth subregion of D. Also, for x 2 Rj, we have f̂(x) = cj, the

sample mean of the yi's in the case of numerical yi's and the most likely class in the
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case that the yi's are categorical, whose fxgNi=1 2 Rj. Given these de�nitions the

algorithm for recursive partitioning that results in a decision tree can be restated

as follows.

B1(x) 1

For M = 2 to Mmax do : lof �  1
For m = 1 to M � 1 do:

For v = 1 to n do:

For t 2 fxvj jBm(xj) > 0g
g  P

i6=m aiBi(x) + amBi(x)H[+(xv � t)] + aMBi(x)H[�(xv � t)]

lof  mina1;:::aMLOF (g)

if lof < lof �; then lof �  lof ;m�  m; t�  t end if

end for

end for

end for

BM(x) Bm�(x)H[�(xv� � t�)]

Bm�(x) Bm�(x)H[+(xv� � t�)]

end for

end algorithm

Figure 5.1: The forward recursive partitioning or decision tree algorithm

In the �rst line of this algorithm the initial region is set to the entire domain of x.

The outermost \for loop" amounts to iterating through the splitting procedure with

Mmax the �nal number of regions. The three innermost loops select an optimal basis

function Bm�, a variable on which to split, xv� , and a split point t�. The quantity
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being minimized is the lack-of-�t, or impurity, function that results form the chosen

split.

The basis functions resulting from this algorithm are of the form

Bm(x) =
KmY
k=1

H[skm � (xv(k;m)� tkm)] (5.6)

The quantity Km is the number of splits that give rise to Bm. The quantities skm

take the values �1 and indicate the (right/left) sense of the split. The v(k;m) are

the predictor variables and the tkm are the corresponding values of these predictor

variables.

Recall, of course, that after the initial tree is built, or in the current terminology

the initial set of subregions established, a backward step merges subregions to avoid

over�tting by the original tree.

5.3 The MARS Algorithm

The discontinuities in the above algorithm result from the step function H[�] and

the fact that f̂j(x) has constant value cj. To solve this problem, Friedman replaces

the step function H[�] with linear (order-1) regression splines in the form of left

(�) and right (+) truncated splines, i.e.,

T�(x) = [(t� x)+]
q=1 = (t� x)+ and T+(x) = [(x� t)+]

q=1 = (x� t)+; (5.7)

where u+ = u if u > 0 and 0 otherwise, the scalar x is an element of x and

t represents a partition point in the range of x. This choice was motivated by

the observation that the original algorithm also uses truncated splines. These are

hidden by the fact that in the above algorithm q = 0. Using these univariate splines,
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the resulting multivariate spline basis functions take the form:

B(q)
m (x) =

KmY
k=1

[skm � (sv(k;m) � tkm)]
q
+; (5.8)

as well as products involving truncated splines with polynomials of lower order than

q. Here skm = �1.
While the introduction of �rst order basis splines into the recursive partitioning

algorithm solves the lack of continuity problem, it introduces a problem as well.

Our original algorithm allows multiple partitions of a single variable along a single

path in the tree. In the q = 0 case this poses no problem. For q > 0, this approach,

however, introduces higher order dependencies amongst individual variables in the

resulting basis functions. In other words, what results, are not q-order splines.

In order to remedy this problem, one option, of course, is to disallow multiple

partitions of the same variable in a single basis function (i.e tree path). This

solution is unsatisfactory as it severely limits the power of our recursive partitioning

algorithm. Before discussing the solution provided by Friedman we will discuss

some other limitations of the recursive partitioning algorithm as the solution to the

problem of higher order interactions of a single variable remedies these as well.

The other signi�cant problem (besides lack of continuity) that limits the e�ec-

tiveness of recursive partitioning algorithms is their inability to capture low order

variable interactions. This de�ciency recall, is due to the fact that recursive par-

titioning algorithms introduce ever higher order variable interactions with each

iteration. To overcome this diÆculty Friedman [41] proposes that the parent region

not be eliminated during the creation of subregions. In terms of decision trees, this

means that multiple splits are allowed on a given node. Of course, the result of
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multiple splits of a single node will result in overlapping subregions, which never

occurred in our usual approach to building trees. With the repetitive partitioning

of some region R1 by di�erent predictor variables, the modi�ed recursive partition-

ing algorithm can produce linear models. It can produce additive models by always

choosing B1(x), the entire domain, as the parent. This modi�cation also allows for

multiple partitions of the same predictor variable from the same parent region.

This resolution also solves the problem of higher order (other than q = 1)

interactions of a single variable in the resulting basis functions. We can now safely

disallow multiple splits of the same variable in a single basis function (a single path

down the tree) without a�ecting the power of our procedure. In the cases that

multiple splits of a single variable along a single path were used in our original tree

formulation we can now accomplish the same e�ect by repeatedly selecting the same

parent for splitting on the same variable. The resulting algorithm is as follows.

The MARS algorithm produces a linear truncated spline model with overlap-

ping subregions fRjgSj=1 of the domain D. Each overlapping subregion of aMARS

model is de�ned by the partition points of the predictor variables from an ordered

sequence of linear truncated splines that form a product basis function. TheMARS

approximation of the unknown function f(x) is

f̂(x) = a0 +
MX
m=1

am
KmY
k=1

[skm � (xv(k;m) � tkm)]+; (5.9)

where f̂(x) is an additive function of the product basis functions associated with the

subregions fRjgSj=1. Since for a given set of product basis functions, the values of

the partition points are �xed, theMARSmodel is a linear model whose coeÆcients

may be determined by least-squares regression.
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B1(x) 1; M  2

Loop until M > Mmax : lof �  1
For m = 1 to M � 1 do :

For v 62 fv(k;m)j1 � k � Kmg
For t 2 fxvj jBm(xj) > 0g
g  PM�1

i=1 aiBi(x) + aMBm(x)[+(xv � t)]+ + aM+1Bm(x)[�(xv � t)]+

lof  mina1;::: ;aM+1
LOF (g)

if lof < lof �; then lof �  lof ; m�  m; v�  v; t�  t end if

end for

end for

end for

BM(x) Bm�(x)[+(xv� � t�)]+

BM+1(x) Bm�(x)[�(xv� � t�)]+

M  M + 2

end loop

end algorithm

Figure 5.2: The forward MARS algorithm

5.4 Categorical Predictors

As mentioned in the descussion of projection pursuit regression, in the previous

chapter, the distinction between signal and noise is based solely on the notion of

smoothness; f(X) is assumed to be that component of Y that varies smoothly with

changing values of X , whereas the noise is taken to be the leftover part that does

not. The e�ectiveness of a nonparamteric regression technique is determined by
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how well it can gauge the local smoothness properties of f(X) and exploit them so

as to �lter out most of the noise without substantively loosing the signal.

In a setting where the predictor variables are orderable there are many def-

initions of smoothness resulting in many techniques for nonparametric function

estimation. When some or all of the predictor variables assume values for which

there is no natural ordering the notion of smoothness of the dependence of y on

such variables is less clear. We now develop a notion of smoothness of the depen-

dence of an ordinal variable on unorderable categorical variables and exploit it in

the context of MARS.

Categorical values assume a discrete set of unorderable values

x 2 fc1; : : : ; cKg (5.10)

Consider the case of a single variable x that is categorical and the situation

where one would like to estimate f(x) = E[[y j x]]. The simplest and unbiased

estimate is

f̂(x = ck) = ak = AV G(y j x = ck) (5.11)

with the average taken over the training data. These values are the least squares

estimates of the coeÆcients in the basis function expansion

f̂(x) =
KX
k=1

akI(x = ck) (5.12)

where the basis functions are indicator variables of the categorical variable taking

on each of its values[40].

In developing a meaningful de�nition of smoothness for categorical variables

it is �rst useful to consider what we mean by smoothness in the case of orerable
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variables. Smoothness is de�ned as a relatively low variability of the function f(x)

amongst values of x that all lie within a local neighborhood of x. Smoothness of

the dependence of a function on a categorical variable can be analogously de�ned,

namely low variability of f(x) when its argument is restricted to particular subsets

of its values. A "smooth" function, f(x), of a categorical variable x is a function

whose values tend to cluster about a relatively small number of di�erent values, as

x ranges over its complete set of values. This de�nition of smoothness depends on

the variability of f(x) within such clusters but not between them. A categorical

variable \smoothing" procedure would attempt to discover the particular subset

of x values corresponding to each of the clusters and then produce as its function

estimate the mean response within each one.

Let A1; : : : ; AL be subsets of the set of values 5.10 realized by a categorical

variable x

Al � fc1; : : : ; cKg; 1 � l � L (5.13)

and take as the function estimate the basis function expansion

f̂(x) =
LX
l=1

alI(x 2 Al); L � K (5.14)

where the coeÆcients falgL1 are estimated by least squares. If L = K then this is

equivalent to the unbiased estimate (5.12) assuming the subsets span all values of

x. For L < K bias has been introduced. For a given L the goal is to choose the

subsets A1; : : : ; AL that minimize model error over the training data. The value

chosen for L is the one that minimizes future prediction error as estimated through

some model selection criteria[40].
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This procedure can be implemented in a similar fashion as is done for ordinal

predictor variables with the indicator basis functions replacing the truncated power

spline functions. One considers all basis functions of the form

I(x 2 A) (5.15)

where A ranges over all possible subsets of the categorical variables, as candidate

variables to be selected through a variable subset selection procedure. The result of

this variable selection procedure will be a model of the form 5.14 with the categorical

value subsets A1; : : : ; AL and their number L, automatically estimated from the

data.

The ability of spline basis functions for ordinal variables and indicator functions

over value subsets for categorical variables to delineate subsets of values for their

respective type of variable: indicator functions do so directly, and spline functions

through the knot locations, allows us to exploit our de�nition of smoothness in each

setting in order to distinguish signal from noise.

Consider the case where there are n predictor variables X = (x1; : : : ; xn) all of

which are categorical. Proceeding as in the ordinal case, a set of basis functions can

be derived by taking the tensor product over all of the variables of the univariate

indicator basis functions de�ned on each one

fI(xj 2 Alj)g 1 � j � n: (5.16)

[40]

An adaptive strategy would consider all of the basis functions in this complete

tensor product as candidate variables. The MARS algorithm that approximates

this strategy would be the same as the one described for ordinal variables with the
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replacement of truncated power spline basis functions with indicator functions over

the categorical variable subsets

[ + (xv � t)]q+  I(xv 2 A) (5.17)

[� (xv � t)]q+  I(xv 62 A) (5.18)

The lack of �t of the resulting model is minimized with respect to l,v, and the

subset A. Here indicator functions take the place of spline functions and categorical

value subsets take the place of knot locations on the respective predictor variables.

The rest of the procedure and model selection are the same. The resulting model

has the form

f̂(x) = a0 +
MX
m=1

am
KmY
k=1

I(xv(k;m) 2 Akm) (5.19)

[40]

Next consider the case of n predictor variables, no of which are ordinal and nc

of which are categorical. Spline basis functions are de�ned for each of the ordinal

variables and subset indicator functions for each of the categorical variables. The

tensor product of these functions over all of the variables forms a basis in the

n = no+nc dimensional predictor space. These basis represent candidate variables

for a variable subset selection strategy.

The MARS algorithm for mixed ordinal and categorical variables is a straight-

forward generalization of that for either all ordinal or all categorical varibles. Op-

timization with respect to the previous basis function Bl(x), already in the model,

is done in the same manner. The type of factor multiplying it will depend on the

type of variable xv that is being considered to serve as the factor argument: spline
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factor for ordinal variables or subset indicator functions for categorical variables.

For a spline factor optimization is performed with respect to the knot location t.

For an indicator factor it is performed with respect to the corresponding subset of

categorical values. The resulting joint optimization with respect to the predictor

variable xv and the parameter of its corresponding factor will give rise to the best

factor of either type to multiply Bl(x), which itself may be a mixture of spline and

indicator factors. The entire optimization over l; v; and t or A produces the next

pair of basis functions to include at the (M +1)st iteration. As in the all ordinal or

all categorical case, this forward stepwise procedure for generating basis functions

is continued until a relatively large number Mmax is produced.

5.5 Computational Issues

Our presentation of the MARS algorithm has been presented as a series of simple

extensions to recursive partitioning regression. When addressing implementation

issues, however, these \simple" extensions have a signi�cant impact on the algo-

rithmic complexity of MARS. A typical implementation of recursive partitioning

regression takes advantage of the nature of step functions, as well as the fact that

the resulting basis functions are nonoverlapping. These features of recursive par-

titioning regression can dramatically reduce the computation associated with the

inner two loops of the decision tree algorithm 5.2 from O(NM2+M3) to O(1). The

total computation can then be made in O(nNMmax) time, after sorting. Unfortu-

nately the same approach does not extend to the MARS algorithm.

The minimization of the lack of �t criterion in the MARS algorithm 5.3 is a
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linear least squares �t of the response y on the current basis function set. There

are several techniques for performing this �t. We have selected an approach based

on the Cholesky decomposition algorithm to solve the normal equations

BTBa = BTy (5.20)

for the vector of basis coeÆcients a, where B is the basis data matrix and y is the

(length N) vector of response values. While this approach is less numerically stable

than some others, such as QR decomposition, unlike QR decomposition it allows

us to keep the computation linear in the number of data records N , which is the

largest parameter in the problem.

If the basis functions are centered to have zero mean, then the normal equations

can be written

Va = c (5.21)

where

Vi;j =
NX
k=1

Bj(xk)
h
Bi(xk)� �Bi

i
(5.22)

ci =
NX
k=1

(yk � �y)Bi(xk) (5.23)

and �Bi and �y correspond to the averages over the data. These equations must be

resolved for every possible knot location t, for every variable v, form basis functions

already included and for each of the M iterations of the MARS algorithm. If

these computations are conducted in a naive manner, this will require computation

proportional to

C � nNM4
max(�N + �Mmax)=L (5.24)
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where � and � are constants and L is the minimal number of required (nonzero

weighted) observations between each knot point 1. This computational burden

would be prohibitive except in the case of very small data sets. Although perfor-

mance improvements similar to those achieved in recursive partitioning regression

are impossible, signi�cant improvement is still possible. One can make use of prop-

erties of the q = 1 truncated power spline basis functions in order to develop rapid

updating formulae for the quantities that enter into the normal equations (5.22),

as well as to take advantage of the rapid updating properties of the Cholesky de-

composition.

Theorem 4 Cholesky Decomposition. If matrix A 2 <n�n is symmetric positive

de�nite, then there exists a lower triangular matrix G 2 <n�n with positive diagonal
entries such that A = GGT .

In solving the normal equations 5.21, ifV is symmetric positive de�nite then we use

the Cholesky decomposition to compute the matrix G. In the equation V = GGT,

for i � k we have

aik =
kX

p=1

gipgkp: (5.25)

Rearranging this equation we obtain

gik =

 
aik �

k�1X
p=1

gipgkp

!,
gkk i > k (5.26)

gkk =

 
akk �

k�1X
p=1

g2kp

!1=2

(5.27)

1Freidman suggest imposing this requirement in order to avoid high variance of the function

estimate at local minimum of the function in the presence of noisy observations.
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We then �rst solve Gy = c for y, and then GTa = y for a.

During the execution of the MARS algorithm it may be the case at an inter-

mediate point that the matrix V becomes singular. In that case pivoting becomes

necessary during the course of Cholesky decomposition. In order to avoid this piv-

oting step for eÆciency reasons we slightly modify the normal equations via a small

perturbation

(V + �D)a = C (5.28)

where D is a diagonal (M + 1)� (M + 1) matrix containing the diagonal elements

of V. This slight perturbation ensures that the modi�ed version of V is always

non-singular.

The most important property of the truncated power basis is that each basis

function is characterized by a single knot point. Changing a knot location changes

only one basis function, leaving the remaining basis functions unchanged. Other

bases lack this appealing property.

The current MARS model in Figure 5.3 can be rexpressed as

g0  
M�1X
i=1

aiBi(x) + aMBm(x)xv + aM+1Bm(x)(xv � t)+ (5.29)

The innermost "For" loop in the MARS algorithm 5.3 minimizes the lack of �t

criterion with respect to both the knot location t and the coeÆcients a1; : : : ; aM+1.

Using g0 instead of g yields an equivalent solution. The advantage of using g0 is
that only a single basis function changes as t changes[41].

The updating formulae that we use assume that we visit the eligible knot loca-
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tions in decreasing order, i.e t � u,

cM+1(t) = cM+1(u) +
X

t�xvk<u

(yk � �y)Bmk(xvk � t)

+(u� t)
X

xvk�u

(yk � �y)Bmk

Vi;M+1(t) = Vi;M+1(u) +
X

t�xvk<u

(Bik � �Bi)Bmk(xvk � t)

+(u� t)
X

xvk�u

(Bik � �Bi)Bmk; 1 � i �M

VM+1;M+1(t) = VM+1;M+1(u) +
X

t�xvk<u

B2
mk(xvk � t)2

+(u� t)
X

xvk�u

B2
mk(2xvk � t� u) + (s2(u)� s2(t))=N

(5.30)

where s(t) =
P

xvk�t Vmk(xvk � t). Bik and Bmk are elements of the basis function

data matrix, xvk are elements of the original data matrix, and yk are the data

response values[41].

These updating formulae can be used to obtain the last (M + 1)st row (and

column) of the basis covariance matrix V and last element of the vector c at all

eligible knot locations t with computation proportional to (M +2)Nm. Here Nm is

the number of observations for which Bm(x) > 0. Note that all other elements of V

and c do not change as the knot location t changes. This permits the use of updating

formulae for the Cholesky decomposition to reduce its computation from O(M3) to

O(M2) in solving the normal equations at each eligible knot location. Therefore,

the computation required for the inner "For" loop of the MARS algorithm is

proposrtional to �MNm + �M2Nm=L. This gives an upper bound on the total

computation for the MARS algorithm as being proportional to

C� = O(nNM3
max(� + �Mmax=L)) (5.31)
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[41]

5.5.1 Categorical Variables

The principal computational issue in an implementation of the MARS algorithm

centers on the minimization of the lack of �t criterion jointly with respect to all

expansion coeÆcients and the parameters associated with the two new basis func-

tions (knot locations or categorical value subset). Optimization with respect to

the other parameters (l and v) is done through repeated applications of this min-

imization procedure. An important concern is that the computation increase only

linearly with the training sample size N since this is generally the largest parameter

of the problem. The case of optimizing with respect to a knot location has been

previously discussed.

For a categorical variable xv, the optimization is done jointly with respect to

the expansion coeÆcients and subsets of its values

A� = argmin
NX
i=1

"
yi �

2MX
m=0

am ~Bm(xi)� a2M+1Bl(xi)I(xvi 2 A)
#2

(5.32)

[40] Here f ~Bm(x)g2M0 are an orthonormalized set of basis functions that span the

same space as fBm(x)g2M0 . For a given subset A, minimization of (5.32) with

respect to the coeÆcients famg2M+1
0 requires O(MN) computational time. Once

this optimization has been performed for one subset, it can be computed rapidly

for any other subset with computation proportional only toM . This is because the

minimum for any given subset A can be computed directly from the quantities

NX
i=1

yiBl(xi)I(xvi = cj) and
NX
i=1

~Bm(xi)Bl(xi)I(xvi = cj); 0 � m � 2M (5.33)
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These quantities can be evaluated once and for all at the beginning. Calculation

of A� by complete enumeration over all possible subsets would therefore require

computation proportional to

M(N + 2K�1) (5.34)

For small K this does not present a serious problem. For substantially larger K,

however, the associated exponential growth reduces the viability of this approach.

An alternative approach is to employ an approximate stepwise variable subset se-

lection procedure. The approximate subset selection procedure that we employed

begins by selecting the categorical variable and single element subset of that variable

that most improves the accuracy of our model. An additional value is repeatedly

added to that subset so long as its addition improves model accuracy. While such a

stepwise procedure does not necessarily produce an optimal subset, but rather may

select a subset that provides a local minima in terms of model accuracy, this ap-

proach usually produces a reasonably good one. It is, however, not necessary that

an optimal subset be found for any particular basis function since a suboptimal ba-

sis function can be remedied by basis functions added to the model in subsequent

iterations.

Using a stepwise strategy in (5.32) reduces the computation to O[M(N+K2)] so

that the total computation associated with the MARS algorithm is proportional

to

O(M3
max

"
nN + �

ncX
j=1

K2
j

#
) (5.35)

where N is the sample size, n is the total number of predictor variables, Mmax is

the maximum number of basis functions produced by the forward stepwise algo-
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rithm, fKjgnc1 are the number of values associated with each of the nc categorical

variables, and � is a proportionality constant. Since in the pure ordinal variable

case the computational time is O(nNM3
max), the additional computational burden

associated with the introduction of categorical variables is small except for very

large values of Kj[40].
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Chapter 6

Bias, Variance and Shrinkage

6.1 Introduction

In solving a classi�cation problem in which we are attempting to approximate a

function f , the approach typically goes as follows: some family, F of functions is

de�ned and an approximation, f̂ , of f is selected as the function in F having the

minimum mean squared error over some training set T . If E[[f̂(x)]] = f(x), then

f̂(x) is said to be an unbiased estimator of f and a measure of the precision of this

estimator is E[[f̂(x)� f(x)]]
2
, i.e. its variance. If, instead, Ef̂(x) 6= f(x), then f̂ is

known as a biased estimator of f . A measure of its precision is still E[[f̂ (x)� f(x)]]
2
,

but now since Ef̂(x) 6= f(x), this quantity is not the variance, but rather is known
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as the mean squared error1. We now show[70],

E[[[f̂ (x)� f(x)]2]] = E[[[f̂ (x)� E[[f̂(x)]] + E[[f̂ (x)]]� f(x)]2]] (6.1)

= E[[[f̂ (x)� E[[f̂(x)]]]
2
]] + (E[[f̂ (x)]]� f(x))2 (6.2)

+ 2(E[[f̂(x)]]� f(x))E[[f̂(x)� E[[f̂ (x)]]]] (6.3)

= E[[[f̂ (x)� E[[f̂(x)]]]
2
]] + (E[[f̂ (x)]]� f(x))2 (6.4)

= var[f̂(x)] + (E[[f̂(x)]]� f(x)])2 (6.5)

= var[f̂(x)] + [Bias(t)]2 (6.6)

(6.7)

If F is small, as in the case of ordinary linear least squares, for example, and the

underlying function f is rather nonlinear, the bias will be large. However, because

we are only required to estimate a small set of paramters due to the limited size

of F , the variance will be small. On the other hand if F is large, as is the case

when we use MARS, the bias is typically small while the variance is large. The

bias/variance tradeo� is well known in the statistical community. The introduction

of bias in a model in order to reduce variance and out of sample error is the topic

of this chapter. Recall that the need for such techniques is particularly acute in our

domains of interest due to their nonstationarity. The fact that we expect out of

sample probability distributions to di�er from their in sample counterparts implies
1In the literature, maximum likelihood estimators such as ordinary least squares (OLS), are

often termed unbiased estimators. In fact, the OLS estimator will also be biased because we can

not be certain that the model being used is in fact the correct model. Therefore, while the decision

to use techniques such as shrinkage is often portrayed as a choice between biased and unbiased

estimators, this is in fact, not the case.
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that over�tting our model to in sample data by building a low bias, high variance

model will have a particularly deleterious e�ect on our ability to minimize out of

sample error.

Our selection of MARS as a modeling technique, while o�ering us the ability

to approximate complex, nonlinear functions has the adverse e�ect of generating

a function that requires the estimation of a large number of parameters (i.e. our

function has many degrees of freedom). This results in the well known \curse of

dimensionality". In order for it to �t well to the in sample data on which it is

trained, the model is over�t to this data and has a large variance.

6.2 Bias, Variance, and Unstable Classi�ers

The need to trade increased bias for decreased variance has been recognized in

the statistics community for a long time. When a classi�er is built based on a

set of training data, what inevitably results is a model that is extremely e�ective

at categorizing records taken from within the training data, but is less e�ective

at categorizing out of sample data. Because the model is built by minimizing its

mean squared error on the training data, what results is an overly complex model

that over�ts the data, inferring more structure in the data than is justi�ed. Many

classi�cation techniques have an additional problem in extending their e�ectiveness

from classifying in sample to classifying out of sample data - instability. Instability

results when small changes to the training data result in signi�cant changes to

the model constructed. We discussed this issue in Chapter 5 when motivating the

replacement of zero order splines with �rst order splines in the MARS algorithm
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as compared to the decision tree algorithm. While the use of �rst order splines

mitigates this problem to a certain extent, it is still the case that relatively small

changes in the training data can result in di�erent basis functions to be selected,

and therefore, a substantively di�erent MARS model to be constructed.

In this chapter we begin by summarizing approaches used to reduce out of sample

error when using decision tree classi�ers. These approaches generally involve some

mechanism for pruning the decision tree. Subtrees are replaced by leaf nodes,

reducing the size and therefore, the number of degrees of freedom of the resulting

tree. Which subtrees should be replaced is typically determined by some measure

of how the removal of a given subtree impacts the overall predictive accuracy of

the model. While in sample prediction error will be increased, model variance is

decreased as is out of sample prediction error.

Next, we discuss the pruning approach suggested by Friedman for use with

MARS. Qualitatively, the approach is similar to that used for pruning decision

trees, the one signi�cant di�erence being that when pruning decision trees, basis

functions are removed in pairs 2. InMARS, on the other hand, because overlapping

basis functions are allowed, single basis functions may be (and are) pruned on each

iteration of the pruning process.

We then survey two approaches to addressing classi�er instability that addition-

ally decrease model variance. The �rst of these is Bagging (bootstrap aggregating).

It will be shown that if, rather than building a model based on a single training set
2Basis functions are removed on pairs when pruning binary decision trees. When splits resulting

in multiple children at a given node are allowed then all of these children will be pruned together.

The general point is that with decision trees either all or none of a nodes children must be pruned.
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of size N , we were provided with K training sets of size N , built K models, and

then �nally took the average over these models we would end up with a model with

improved stability and decreased variance as compared to a single model based

on a single training set. Bagging attempts to approximate this situation, in the

case where we only have a single training set, by repeatedly sampling the training

set in order to generate multiple training sets. Boosting is a similar technique to

Bagging, di�ering only in the way the sampling is done. Boosting has been shown

to be better at reducing out of sample error rates as compared with Bagging. It

has the compuational disadvantage, however, that the K models built must be con-

structed in sequence as opposed to in Bagging where the models can be constructed

in parallel. These notions will be made more precise in subsequnet sections of this

chapter.

Finally, we discuss in some detail, the approach we used for reducing the vari-

ance of our classi�er, namely Stein Shrinkage. We will show that the maximum

likelihood estimator(MLE) is inadmissible by showing that the Stein estimator has

uniformly lower risk than does the MLE in high dimensional (greater than 2) set-

tings. Stein's results have often been termed the "Stein paradox", and have been

widely overlooked by statistical practitioners in the years since its introduction.

Stein shrinkage implies that when estimating one paramter �i we consider the val-

ues fo �j; j 6= i. For example, if �fteen people each take an IQ test, when estimating

the actual IQ of one of these individuals we consider the test scores of every other

individual as well. This unintuitive result has generated much scepticism in the

statistical community. We will discuss these issues, the merits of Stein Shrinkage,

and the speci�c type of shrinkage that we employed in the �nal sections of this
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chapter.

6.3 Pruning Decision Trees

The recursive partitioning method of constructing decision trees continues to sub-

divide the set of training cases until each subset in the partition contains cases of a

single class, or until no further partitioning o�ers any improvement. This approach

will result in an optimal classi�cation of the training data. It, however, typically

results in an overly complex tree that over�ts the data, inferring more structure

in the data than is justi�ed. This problem is illustrated in the following example

given by Quinlan[66]:

Example 1 Consider the situation where we have a two-class task, in which a

case's class is inherently indeterminate (i.e. unrelated to its attribute values), with

proportion p � 0:5 of the cases belonging to the majority class, its expected error

rate is clearly 1 � p. If, on the other hand, the classi�er assigns a case to the

majority class with probability p and to the other class with probability 1� p, its

expected error rate is the sum of

� the probability that a case belonging to the majority class is assigned to the

other class, p� (1� p), and

� the probability that a case belonging to the other class is assigned to the majority
class, (1� p)� p
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which comes to 2� p� (1� p). Since p is at least 0:5, this is generally greater than
1 � p, so the second, more complex, classi�er will have a higher misclassi�cation

rate. Quinlan constructed an arti�cial dataset of this kind with ten attributes, each

of which took the value 0 or 1 with equal probability. The class was also binary,

yes with probability 0:25 and no with probability 0:75. One thousand randomly

generated cases were split into a training set of 500 and a test set of 500. From this

data, C4.5's initial tree-building routine produces a nonsensical tree of 119 nodes

that has an error rate of more than 35% on the test cases. Of course, a much

simpler tree with just one node, would have only a 25% error rate.

Now that we see the problem with over�tting the question remains: how do we

remove those parts of the tree that do not contribute to classi�cation accuracy on

unseen cases. I will describe two approaches here. The �rst, called error based prun-

ing [66] uses only the training set to prune the tree. The second, cost-complexity

pruning uses a set of holdout records to determine the �nal structure of the tree.

This approach clearly has the drawback that more records are needed to build the

�nal tree.

Pruning a decision tree will almost invariably cause it to misclassify more of

the training cases. Consequently, the leaves of the pruned tree will not necessarily

contain training cases from a single class. Instead, for each leaf there will be a class

distribution specifying, for each class, the probability that a training case at the

leaf belongs to that class. When considering test cases, we will classify these as

being in the most likely class at their terminal leaf.
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6.3.1 Error Based Pruning

Error based pruning is the method used by Quinlan in C4:5[66]. We start from

the bottom of the tree and examine each non-leaf subtree. If replacement of this

subtree with a leaf would lead to a lower predicted classi�cation error rate on unseen

cases we will prune the subtree in favor of a leaf. The question remains, how do we

determine this error rate?

When N training cases are covered by a leaf, E of them incorrectly, the error

rate for this leaf is E=N . If we regard these N cases as a sample of the entire

dataset, we can ask what the probability of error would be of an arbitrary event

that reaches this leaf. This probability can be determined for a given con�dence

level CF from the con�dence limits for the binomial distribution. The upper limit

of this interval will be written as UCF (E;N). Then, a leaf covering N training cases

with a predicted error rate of UCF (E;N) would result in a predicted N�UCF (E;N)

errors on N unseen cases. We then can compare the sum of the expected number

of errors in the children of a given node with the expected number of errors in the

node itself if we pruned the children. If the error rate is improved then we will

prune these children. It is important to note that we must consider expected errors

of unseen cases as opposed to the number of errors in the existing tree because

pruning will always result in more errors in the training set. The tree was built to

optimally classify these cases. What we would like to do is better classify unseen

cases.

Example 2 Consider the task of classifying congressman as democrats or republi-

cans based on their voting records. Further, assume that on each issue they can vote

yes(y), no(n), or abstain(a). Speci�cally, consider the vote taken on educational
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spending and the subtree resulting from partitioning the data on this attribute.

.Educational Spending

democrat(6)

democrat(9)

republican(1)

n
y

a

Since these nodes all contain single classes no further partitioning would occur

- these nodes would be leaves of the tree. For the �rst leaf, N = 6, E = 0, and

using a 25% con�dence level U25%(0; 6) = 0:206, so the predicted number of errors

if this leaf were used to classify 6 unseen cases is 6 � 0:206. For the other leaves,

U25%(0; 9) = 0:143 and U25%(0; 1) = 0:750, so the number of predicted errors of this

subtree is

6� 0:206 + 9� 0:143 + 1� 0:750 = 3:273 (6.8)

If the subtree were replaced by a leaf (this would be the leaf democrat since 15=16 of

the cases are democrat) N would be 16 and E = 1 (there would be one classi�cation

error for the one republican). Thus the expected number of errors on 16 unseen

cases would be

16� U25%(1; 16) = 16� 0:157 = 2:512 (6.9)

Since 2:512 < 3:273 this subtree would be pruned to a leaf and the process would

continue up the tree until no further improvements are possible.
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Note that this method violates statistical notions of sampling and con�dence

limits since the N (16 in the example above) cases being used as a \sample" are cer-

tainly not arbitrary events reaching that leaf. This heuristic has, however, produced

good results.

6.3.2 Minimal Cost-Complexity Pruning

Minimal Cost-Complexity pruning is used by Breiman in CART[16].

De�nition 11 If T 0 is gotten from T by successively pruning o� branches, the T 0

is called a pruned subtree of T and denoted by T 0 < T .

Let Tmax denote the unpruned tree.

The idea behind minimal cost-complexity pruning is this [16]:

De�nition 12 For any subtree T � Tmax de�ne its complexity as j ~T j, the number
of leaves in T . Let � � 0 be a real number called the complexity parameter and

let R(T ) be the classi�cation error rate (i.e. the probability of misclassifying an

arbitrary case). Then de�ne the cost-complexity measure R�(T ) as

R�(T ) = R(T ) + �j ~T j (6.10)

Thus, R�(T ) is a linear combination of the error rate of the tree and its com-

plexity. If we think of � as the complexity cost per terminal node, R�(T ) is formed

by adding to the error rate of the tree a penalty for complexity.

Now, for each value of � , the goal is to �nd the subtree T (�) � Tmax which min-

imizes R�(T ). If � is small, the penalty for having a large number of terminal nodes

is small and T (�) will be large. For instance, if Tmax is so large that each terminal
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node contains only one case, then every case is classi�ed correctly; R(Tmax) = 0,

so that Tmax minimizes R0T . As � increases, the minimizing subtrees T (�) will

have fewer terminal nodes. Finally, for � suÆciently large, the minimizing subtree

T (�) will consist of the root node only, and the tree Tmax will have been completely

pruned.

Although � runs through a continuum of values, there are at most a �nite

number of subtrees of Tmax. Because of the �niteness, what happens is that if T (�)

is the minimizing tree for a given value of �, then it continues to be minimizing as �

increases until a jump point �0 is reached, and a new tree T (�0) becomes minimizing

and continues to be the minimizer until the next jump point �00. Thus, the pruning

process produces a �nite sequence of subtrees T1; T2; : : : with progressively fewer

terminal nodes.

The task is now to choose one of those pruned trees (or Tmax) as the �nal tree.

This is done by using an additional set of test cases. Each of these cases is then

run through each of the pruned trees and for each tree the misclassi�cation error

rate determined across the entire test sample. The tree with the minimal error rate

will be chosen as the �nal tree.

This method has the disadvantage of requiring an additional set of cases to be

set aside for the pruning phase. This problem can be mitigated by instead using

cross validation, discussed earlier.
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6.4 Pruning in MARS

As in ordinary recursive partitioning, MARS proceeds through two stages. First,

an exhaustive set of partitions are constructed and then a backwards pruning pro-

cedure removes partitions that don't contribute to the predictive accuracy of the

model. The signi�cant di�erence between the pruning stage inMARS versus what

we have seen before is that usually subregions are removed in pairs (assuming we

are building a binary tree). In MARS, since, overlapping subregions are allowed,

single subregions can be pruned at a time.

MARS uses residual-square-error in the forward and backward steps of the al-

gorithm to evaluate model �t and compare partition points. The actual backward

�t criterion used inMARS for �nal model selection is called the generalized cross-

validation criterion (GCV )[41]. In general, cross validation requires many models

to be built. Friedman proposes an approximation to the GCV criterion that only re-

quires the construction of a single model. The modi�ed generalized cross-validation

criterion (GCV �) used to evaluate a model with subregions fRjgMj=1 is[41]

GCV �(M) =
1=N

PN
i=1[yi � f̂M(xi)]

2

[1� C(M)�=N ]2
(6.11)

The numerator is the average residual-square-error and the denominator is a penalty

term that re
ects the model complexity.

If the values of the basis function parameters (number of factors Km, knot

locations tkm and signs skm) associated with the MARS model were determined

independently of the data response variables (y1; : : : ; yN), then only the coeÆcients

(c0; : : : ; cM) are being �tted to the data. Consequently the complexity cost function
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is

C(M) = trace(B(BTB)�1BT ) + 1; (6.12)

where B is the M �N data matrix of the M (nonconstant) basis functions (Bij =

Bi(xj)).

The MARS procedure, however, does make use of the response values in the

construction of basis functions. MARS, therefore, uses a modi�ed version of the

complexity cost function, C(M), namely

~C(M) = C(M) + d �M (6.13)

Here C(M) is the number of nonconstant basis functions in the MARS model.

The quantity d represents a cost for each basis function optimization and is a

(smoothing) parameter of the procedure. Large values of d will result in fewer

knots and, therefore, smoother functions. In practice, Friedman suggests that the

best choice for values of d are 2 � d � 4.

6.5 Bagging Predictors

Many classi�cation techniques are unstable. Instability results when small changes

to the training set result in signi�cant changes to the model constructed. Decision

trees su�er from this problem, as does MARS to a lesser extent. The instabil-

ity of decision tress is mitigated, to a signi�cant extent, in MARS as a result of

the smoothing of the spline functions. In order to address the problem of insta-

bility, Breiman, has developed a technique known as bagging[14, 19] (bootstrap

aggregating). This technique, while addressing the instability problem, reduces

the variance of the resulting predictive function.
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In the typical setting for constructing a classi�cation model we are presented

with a training set T which consists of data f(yn;xn); n = 1; : : : Ng drawn randomly
from a larger population (probability distribution) P , from which our out of sample

data will also be drawn. Based on this training set we construct a model f̂(x) which

approximates the true underlying function f . The average prediction error e of f̂(x)

is

e = ETEY;X[[Y � f̂(X)]]2 (6.14)

where Y;X are random variables taken from the distribution P and independent of

T .

Imagine now, that instead of a single training set if we had K training sets each

of size N and each drawn from the same distribution P . We then could construct a

model f̂i(x) based on each of these training sets and �nally construct an aggregated

model whose response variable is simply the average of the responses of each of the

K models in the case of a numerical response variable, and whose response is the

result of a plurality vote in the case of a categorical response variable. In this case

the aggregated predictor is

f̂A(x) = ETf̂(x) (6.15)

and the average prediction error of the aggregated model is

eA = EY;X(Y � f̂A(X)2 (6.16)

The important factor to note here is that in evaluating the average mean squared

error we have moved the expectation over the training set T into our model construc-

tion procedure. In doing so, we can take advantage of the inequality (EZ)2 � EZ2
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which gives us

e = E[[Y ]]2 � 2E[[Y ]]f̂A + EY;XETf̂
2(X) (6.17)

� E[[Y � f̂A]]
2
= eA (6.18)

Therefore, f̂A has lower average prediction error than does f̂ . How much lower

depends on how unequal the two sides of

�
ET[[̂f(x)]]

�2 � ET[[̂f
2(x)]] (6.19)

are. The e�ect of instability is clear. If f̂(x) does not change too much with

replicate T the two sides will be nearly equal, and aggregation will not help. The

more highly variable the f̂(x) are, the more improvement aggregation may produce.

f̂A, however, is always an improvement over f̂ .

This analysis presumes the existance of K training sets which, of course, we

don't have. In order to approximate this situation Breiman[14] has suggested the

following approach. Repeated bootstrap samples fT (B)g are taken from T , and

based on each of these samples a sequence of models, f̂i(x) is constructed. If the

response variable y is numerical then f̂B is taken to be the average over the models

constructed, and if y is categorical then the value of f̂B is determined by a majority

vote.

The fT (B)g form replicate data sets, each consisting of N cases, drawn at ran-

dom, but with replacement, from T . Each (yn;xn) may appear several times or

not at all in a particular T (B). The fT (B)g are replicate data sets drawn from the

bootstrap distribution approximating the distribution, P , underlying T .

We return now to the discussion of error reduction as a result of this bootstrap

aggregation procedure. We saw earlier the necessary error improvement that results
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if we have available a sequence of training sets drawn at random from the distri-

bution P when we construct an aggregated model f̂A. The bagged estimate f̂B,

however, is somewhat di�erent in that it is constructed via a sequence of training

sets drawn from the distribution PT which concentrates mass 1=N at each point

(yn;xn) 2 T . Then the quality of f̂B is pushed in two directions: on the one hand,

if the procedure that constructs each of the models, f̂i(x), is unstable, then the

bootstrap method can result in error reduction through aggregation. On the other

hand, if the procedure is stable, then f̂B(x) will not be as accurate for data drawn

from P as f̂(x). There is a crossover point between instability and stability at

which f̂B stops improving on f̂ and does worse. There is an additional limitation

of bagging. For some data sets, f̂(x) is close to the limits of accuracy possible

on the given data set. In that case, no amount of bagging can o�er signi�cant

improvement.

6.6 Boosting Predictors

One limit to the practical application of staged model construction procedures like

bagging (and boosting) is the computational requirements involved in the construc-

tion of many classi�cation models. An appealing feature of bagging, in this context,

is that the models are independent of each other and can, therefore, be constructed

in parallel. The boosting technique, Adaboost[17, 18, 38, 39, 28] (adaptive boost-

ing), discussed here, while having superior predictive capabilities as compared to

bagging requires the construction of models in sequence. The parallelization of bag-

ging is possible because in the construction of each subsequent model, each training
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example is equally likely to be selected as a member of a subsequent training set.

In Adaboost, developed by Freund and Shapire, each training examples is used in

the construction of subsequent models. They are weighted, however, based on the

classi�cation error of the given training example in the previous iteration of the

model construction process. These notions are now made more precise.

Adaboost takes as input a training set (xi; yi); : : : ; (xm; ym) taken from a prob-

ability distribution P . It is assumed for simplicity that each yi = f�1;+1g. Ad-
aboost invokes a given classi�cation procedure in a series of rounds t = 1; : : : ; T .

Initially, each training example is given an equal weight. In each subsequent round,

training examples are reweighted so that examples that were misclassi�ed in the

previous round are given greater weight in the current round. In this manner,

"hard" training examples are given ever increasing weights until a model is con-

structed capable of correctly classifying these examples. Finally, the aggregated

model is the weighted average of the T models constructed, based on their average

error rate. More precisely, the algorithm proceeds as follows[29]:

Initialize D1(i) = 1=m For t = 1; : : : ; T :

� Train model using distribution Dt

� Build model f̂t : X ! f�1;+1g with error �t = Pr[[f̂t(xi) 6= yi]]

� Choose �t =
1
2
ln

 
1��t
�t

!

� Update:

Dt+1(i) =
Dt(i)exp(��tyiht(xi))

Zt
(6.20)

where Zt is a normalization factor chosen so that Dt+1 will be a distribution.
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Output the �nal hypothesis:

H(x) = sign
� TX
t=1

�tht(x)
�

(6.21)

The algorithm maintains a distribution or set of weights over the training set. The

weight of this distribution on training examples i on round t is denoted Dt(i).

Initially, all weights are set to be equal. On each round, the weights of incorrectly

classi�ed examples are increased so that the subsequent model is forced to focus on

the hard examples in the training set.

The classi�cation procedure's job is to construct a model f̂t : f�1;+1g appro-
priate for the distribution Dt. The goodness of the constructed model is measured

by its error

�t = Pr[[f̂t(xi) 6= yi]] =
X

i:f̂t(Xi)6=yi

(6.22)

Note that the error is measured with respect to the distribution Dt on which the

classi�cation procedure was trained.

Once the model f̂t has been generated, Adaboost chooses a parameter �t. Intu-

itively, �t measures the weight that is assigned to f̂t in the �nal aggregated model.

Notice that �t � 0 if �t � 1=2 and that �t gets larger as �t gets smaller.

The distribution Dt is next updated. The e�ect of this rule is to increase the

weight of examples misclassi�ed by f̂t, and to decrease the weight of correctly clas-

si�ed examples. Therefore, the weight is concentrated on "hard" training examples.

The �nal model f̂ is a weighted majority vote of the T models, f̂t where �t is

the weight assigned to f̂t.

An important theoretical property of Adaboost is its ability to reduce in sample

error. First, we recast the error �t of f̂t as
1
2
� 
t. Since a model that simply
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guesses each training example's class at random has an error rate of 1=2 (on binary

problems), 
t therefore measures how much better than random are f̂t's predictions.

Freund and Shapire[39, 39] prove that the fraction of mistakes on the training set

of the �nal model f̂ is at most

Y
t

[2
q
�t(1� �t)] =

Y
t

q
1� 4
2t (6.23)

� exp(�2X
t


2t ) (6.24)

Therefore, if each model is slightly better than random so that 
t � 
 for some


 > 0, then the training error drops exponentially fast.

For out of sample instances, Freund and Shapire show that the error, with high

probability, is at most

Pr[[f̂(x) 6= y]] +O
�sTd

m

�
(6.25)

where Pr[[�]] represents the empirical probability on the training sample. This bound
suggests that boosting runs the risk of over�tting as T becomes large. Since the

boosting procedure involves iterative stages of model construction eahc re�ned to

better address the "hard" training examples, over�tting is a problem that one might

anticipate with this approach. In fairness, Freund and Shapire have reported some

excellent emerical results in terms of Adaboost's ability to reduce variance while

avoiding over�tting even with large values of T .

6.7 Stein Shrinkage - Frequentist View

Having constructed one or more MARS models based on various training sets

which we are provided with, we have now seen several approaches to trading in-
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creased bias for decreased variance in the interest of reducing over�tting, and,

therefore, out of sample prediction error. We now turn to the approach that we

have implemented known as Stein Shrinkage. Stein showed as early as 1956[75, 49]

that in estimating the mean of a multivariate normal distribution with dimension

n � 3, that the maximum likelihood estimator (MLE) is inadmissible and o�ered an

alternative estimation procedure that is guaranteed to have uniformly lower mean

squared error.

Stein's results have often been termed the "Stein paradox", and have been

widely overlooked by statistical practitioners in the intervening years. The lack

of use of these ideas is the result of several factors. First, statisticians have been

widely content with the success of the MLE and have felt that the introduction

of a process as complex as Stein shrinkage could not be worth the e�ort. More

signi�cant, however, is that fact that Stein shrinkage implies that when estimating

one paramter �i we consider the values fo �j; j 6= i. For example, if �fteen people

each take an IQ test, when estimating the actual IQ of one of these individuals we

consider the test scores of every other individual as well. This unintuitive result

has generated much scepticism in the statistical community. We feel, however, that

in the data mining community where high dimensional data is the norm, that these

ideas deserve renewed consideration, and will provide a welcomed addition to the

modeler's tool chest.

6.7.1 Motivation for Stein Shrinkage

Recall that at this point in our data mining algorithm we have constructed several

MARS models, and estimated the associated paramters � = (�1; : : : ; �p) by �̂ =
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(x1; : : : ; xp). If �̂ is a good estimator of �, then each of the xi should be close to

the associated �i. Additionally,
Pp

i=1 �
2
i should be close to

Pp
i=1 x

2
i . What Stein

actually observed is that
Pp

i=1 �
2
i is close to

Pp
i=1 x

2
i � p with high probability. To

address this problem, Stein suggests multiplying the MLE by a factor to ensure

that not only is �̂ a good estimator of �, but also that
Pp

i=1 �
2
i is close to

Pp
i=1 x

2
i

as follows

ĉ = 1� pPp
i=1 x

2
i

(6.26)

This seems reasonable because
Pp

i=1(1 � p=
Pp

i=1 x
2
i )x

2
i is close to

Pp
i=1 �

2
i with a

high probability.

More precisely,

Theorem 5 Let u(X) be a nonnegative function of the random variable X. If

E[[u(X)]] exists, then, for every positive constant c,

Pr[[u(X) � c]] � E[[u(X)]]

c
(6.27)

Proof:[45]

We assume that X is continuous. This proof can be trivially extended to the

discrete case by replacing integrals with sums.

Let A = fx : u(x) � cg and let f(x) denote the probability density function of

X. Then,

E[[u(X)]] =
Z 1

�1
u(x)f(x)dx (6.28)

=
Z
A
u(x)f(x)dx+

Z
A�
u(x)f(x)dx (6.29)

Since each of these �nal terms is � 0, we have

E[[u(X)]] �
Z
A
u(x)f(x)dx (6.30)
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Given that x 2 A, u(x) � c, and we have

E[[u(X)]] � c
Z
A
f(x)dx (6.31)

Since,

Z
A
f(x)dx = Pr[[X 2 A]] (6.32)

= Pr[[u(X) � c]] (6.33)

it follows that

E[[u(X)]] � cPr[[u(X) � c]] (6.34)

This is a general form of the well known Chebyshev inequality.

Theorem 6 Chebyshev's Inequality Let X be a random variable with mean �

and variance �2. Then for every k > 0,

Pr[[jX � �j � k�]] � 1

k2
(6.35)

Proof:[45]

In the previous theorem let u(X) = (X � �)2 and c = k2�2. Then,

Pr[[(X � �)2 � k2�2]] � E[[(X � �)2]]

k2�2
(6.36)

Since E[[(X � �)2]] = �2

Pr[[jX � �j � k�]] � 1

k2
(6.37)

Corollary 1 Let �̂ be an unbiased estimator of �. Then,

Pr[[
����̂ � �

��� � �]] � V ar(�̂)

�2
(6.38)
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Proof:

Let � = k
q
V ar(�̂). Then this corollary follows directly from Chebyshev's inequal-

ity.

We now use these results to show that
Pp

i=1 �
2
i and

Pp
i=1 x

2
i � p are close.

Theorem 7 If Xi; 1 � i � p are independent N(�i; 1) random variables then as

p!1;
Pp

i=1 x
2
i =p converges in probability to 1 +

Pp
i=1 �

2
i =p:

Proof:[43]

Since xi � N(�i; 1); 1 � i � p,

E

""
1

p

pX
i=1

x2i

##
=

1

p

X
i=1

p�2i + 1 (6.39)

and

V ar

""
1

p

pX
i=1

x2i

##
=

1

p
(6.40)

Then from Chebyshev's inequality,

Pr

""�����1p
pX
i=1

x2i � 1� 1

p

pX
i=1

�2i

����� > �

##
<

1

p�
(6.41)

As p!1; 1=p�2 ! 0, and our result is proven.

An alternative motivation for Stein shrinkage based on least squares was of-

fered by Stigler[76]. His argument proceeds as follows. The MLE is the result of

performing least squares estimation of X on �. Stigler arrives at the James-Stein

estimator by doing what amounts to a Bayesian estimation, i.e. doing the inverse of

the regression used to �nd the MLE, instead �nding the least squares estimator of �

on X. Consider the situation where we are trying to �nd the best linear estimator

of the �i of the form

�̂i = a+ bXi; 1 � i � p (6.42)
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Then,

�̂i = �� + �̂(xi � �x) (6.43)

where

�̂ =

Pp
i=1(xi � �x)(�i � ��)Pp

i=1(xi � �x)2
(6.44)

We then observe that the numerator above has the same expected value as

pX
i=1

(xi � �x)2 � (k � 1) (6.45)

Replacing this term in the expression, 6.44, for �̂ we get

�̂ =

Pp
i=1(xi � �x)2 � (p� 1)Pp

i=1(xi � �x)2
(6.46)

= 1� (p� 1)Pp
i=1(xi � �x)2

(6.47)

The resulting least squares approximation is

�̂i = �x+

"
1� (k � 1)Pp

i=1(xi � �x)2

#
(xi � �x); 1 � i � p (6.48)

This result is a form of the James-Stein estimator where the estimator is centered

at the mean.

6.7.2 The Inadmissibility of the MLE

Having now given two intuitive arguments why one might expect a Stein type

estimator to be more accurate then the MLE, we now turn to a proof of this fact.

We follow the argument of James and Stein to show that for � = (�1; : : : ; �p, if

p � 3, the MLE is inadmissible. We accomplish this by proving that the James
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Stein estimator has uniformly smaller average mean squared error (risk) than does

the MLE. Recall, that we assume that each �i has variance 1, and therefore, the

MLE has risk 1 as well. We, therefore, prove the inadmissibility of the MLE by

proving that the risk of the James Stein estimator is less than 1.

Theorem 8 If p � 3 the MLE is inadmissible.

Proof:[43]

The proof consists of computing the expected risk (R) of the James Stein estimator

and showing that it is less than 1.

R =
1

p
E[(�̂ � �)0(�̂ � �)] (6.49)

=
1

p
E[(x� �)0(x� �)]� 2(p� 2)

p
E

"
(x� �)0x

x0x

#
+
(p� 2)2

p
E

"
1

x0x

#
(6.50)

We now must show that R < 1. Observe that

E

"
(x� �)0x

x0x

#
=

pX
i=1

E

"
(xi � �i)xiPp

i=1 x
2
i

#
(6.51)

=
Z 1

�1
� �
Z 1

�1

Pp
i=1(xi � �i)xie

� 1
2

Pp

i=1
(xi��i)2Pp

i=1 x
2
i

dx1 : : dxp(6.52)

For each summand in 6.52 rearrange the order of integration so that the �rst inte-

gration in evaluating the integral for the ith term is with respect to xi. By using

integration by parts we then get

Z 1

�1

(xi � �i)xi
x0x

e�
1
2
(xi��i)2dxi =

Z 1

�1
(
1

x0x
� 2x2i
(x0x)2

)e�
1
2
(xi��i)2dxi (6.53)

Integration of both sides of 6.53 with respect to the other p � 1 variables and

summing from 1 to p yields

E

"
(x� �)0x

x0x

#
= (p� 2)E

"
1

x0x

#
(6.54)
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Substituting 6.54 into 6.50,

R = 1� (p� 2)2

p
E

"
1

x0x

#
< 1 (6.55)

6.8 Stein Shrinkage - Bayesian View

Bayesian Statistics is characterized by the assumption of a prior distribution for

the parameters about which inferences are being made. Both the prior information

and the data are obtained by sampling together with Bayes theorem are used to

make inferences about the parameters of interest. When the prior distribution is

unknown its parameters are often replaced by sample estimates. This technique is

called empirical Bayes.

Bayes estimators are obtained as functions of prior parameters, population pa-

rameters and sample estimates. The posterior distribution is obtained by using

Bayes theorem to combine the sampling distribution with the prior distribution to

arrive at a posterior distribution. The Bayes estimator is optimal because it has the

smallest mean squared error averaging over the prior distribution. For the squared

error loss function the Bayes estimator is the mean of the posterior distribution.

When the prior distribution is unknown, �rst the Bayes estimator is obtained

as if the prior were known. The unknown priors are then replaced by functions of

sample estimates. The approximate Bayes estimator obtained by this technique is

known as the empirical Bayes estimator.

161



6.8.1 The Bias Variance Tradeo� Revisited

Recall that in our current setting we have constructed a classi�cation model of the

form

B(q)
m (x) =

KmY
k=1

[skm � (sv(k;m) � tkm)]
q
+; (6.56)

by replacing the univariate step function H[�] of the decision tree algorithms with

linear (order-1) regression splines in the form of left (�) and right (+) truncated

splines, i.e.,

T�(x) = [(t� x)+]
q=1 = (t� x)+ and T+(x) = [(x� t)+]

q=1 = (x� t)+; (6.57)

where u+ = u if u > 0 and 0 otherwise, the scalar x is an element of x and t

represents a partition point in the range of x.

Thus far we have considered the bias/variance issues in the context of regression

rather than classi�cation. While the arguments from the regression context extend

rather naturally, given that theMARS model that we have constructed is a classi-

�cation model, and that the problems we are interested in solving are classi�cation

problems, we now review the bias/variance tradeo� from that point of view.

In classi�cation, the output variable y 2 f1; : : : ; Jg is a class label. The training
set T is of the form T = f(yn;xn); n = 1; : : : ; Ng where the yn are class labels.

Given T , we have constructed a MARS classi�er M(x; T ) for predicting future

class values of y. We assume that the training data consists of a set of independent

records drawn from a distribution P = (Y;X). The misclassi�cation error is de�ned

to be

ME(M(; T )) = EP[[M(X;T) 6= Y]] (6.58)
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and denote ME(M) the expectation of ME(M(; T )) over T . Let

Pr[[jjx]] = Pr[[Y = jjX = x]] (6.59)

Pr[[dx]] = Pr[[X 2 dx]] (6.60)

�j(x) is the prior distribution of the class j over x (6.61)

Then the Bayes classi�er

C� = argmaxjPr[[jjx]] (6.62)

has a misclassi�cation rate

ME(C�) = 1�
Z
maxj(Pr[[jjx]])Pr[[dx]] (6.63)

= 1�
Z
maxj(Pr[[jjx]]�j(x))dx (6.64)

This error rate can be broken into its component bias and variance. For each basis

function (partition) in the MARS model

ME(MBl) = 1�X
l

maxjPr[[x 2 Bl; x 2 j]] (6.65)

+
X
l

I(yl 6=y�l )jPr[[x 2 Bl; x 2 j]]� Pr[[x 2 Bl; x 62 j]]j (6.66)

where BL is a given partition or basis function. The �rst term on the right hand

side of the equality is the error due to bias, while the second term is the error due

to variance. We can then observe that the bias for a given partition is

B(L) � C
N
p
L

(6.67)

and the variance for a given partition is

V (L) �
s
L

D
(6.68)
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where C is a constant, N is the dimensionality of x, L is the number of partitions

in the MARS model, and D is the number of training data records. This shows

very clearly the tradeo� that exists between bias and variance. As the model be-

comes more complex and its number of degrees of freedom is increased through the

introduction of additional partitions with each iteration of the MARS algorithm,

the bias decreases while the variance increases. We can reduce the variance (and

in turn the out of sample error) by trading decreased variance for increased bias

through a reduction in the number of degrees of freedom.

6.9 Stein Shrinkage as an Empirical Bayes Estimator

Having established the theoretical foundation of Stein shrinkage we now turn to our

application of this apporach. In our setting, once the knot points (spline functions)

of the MARS model have been established, the problem reduces to a linear re-

gression problem. We, therefore, now look to apply Stein shrinkage in this context.

Given a set of training data and a model,

y =
X

�iBi + �i (6.69)

we wish to estimate the parameters, �i. We assume priors on the �i,

�i � N(0; � 2) (6.70)

and let �̂i be the unbiased estimator of �

�̂i � N(�i; �
2) (6.71)

We assume here that the �̂i are independently distributed, and that the prior

distribution is multivariate normal and the coordinates of the N dimensional vector
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� are independent. Therefore, the conditional distribution of �̂i on �i is

f(�̂ij�i) =
1p
2��

e�
1
2
(�̂i��i)2�

2

; 1 � i � N (6.72)

and the prior distribution of the �i is

�(�i) =
1p
2�� 2

e�
�2
i

2�2 ; 1 � i � N (6.73)

We now use Bayes theorem

f(�ij�̂i) =
f(�̂ij�i)�(�i)R
f(�̂ij�i)�(�i)d�i

(6.74)

in order to compute the posterior distribution of �ij�̂i. We simply substitute 6.72

and 6.73 into 6.74, and obtain

f(�ij�̂i) =
1q
2��2

�2+1

e
�
(�i�

�2�̂i
�2+1

)2

2�2

�2+1 (6.75)

The Bayes estimator, �̂ is the mean of the posterior distribution and can be ex-

pressed as

�̂i =
� 2

� 2 + 1
�̂i (6.76)

= (1� 1

� 2 + 1
)�̂i 1 � i � N (6.77)

This expression assumes that we know the variance of � which is typically untrue.

In these cases we simply estimate the variance from the data. We observe that

�̂0�̂

� 2 + 1
� �2(N) (6.78)

and use this fact to compute the unbiased estimator of 1
�2+1

,

1

� 2 + 1
� (N � 2)�2

�̂0�̂
(6.79)
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resulting in the Stein estimator[30, 31, 32, 33]

�̂i = (1� (N � 2)�2

�̂0�̂
)�̂i; 1 � i � N (6.80)

Therefore, the Stein estimator may be viewed as an empirical Bayes estimator.

In assuming a prior mean of 0 for each of the �i the resulting Stein estimator

shrinks each paramter towards 0. An important feature of the Stein estimator is

that it performs signi�cantly better than the MLE in only a relatively small subre-

gion of the entire domain. For the Stein estimator to o�er maximal improvement

one must, therefore, construct an estimator designed to do well in this subregion.

We accomplish this by shrinking the Stein estimator towards this desired region.

For any �i that are substantially outside this region the Stein estimator will collapse

towards �̂i and, therefore, provide little advantage over the MLE. Stein noted this

problem and suggested the following remedy which we have employed, namely to

shrink towards the population mean.

Let �i = j�ij and �1 < �2 < � � � < �N and the truncated Stein estimator is then

�tsi =
�
1� (L� 2)�2minf1;�L=j�ijgPN

1 �2j ^ �2
L

�
+
�i (6.81)

This estimator provides a reasonable solution to the extreme �i problem, as is

evident from the observation that
PN

1 �2j ^ �2
L is fairly small even if (N � L) of

the �i deviate signi�cantly from the mean. Dey and Berger[26] suggest that an

appropriate choice for L is

L = [3 + 0:7(N � 3)] (6.82)

and this is the value we have used.
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Chapter 7

Intrusion Detection and the 1999

DARPA Evaluation

As the number of networked computers grows and the amount of sensitive infor-

mation available on them grows as well there is an increasing need to ensure the

security of these systems. The security of computer networks is not a new issue.

We have dealt with the need for security for a long time with such measures as

passwords and encryption. These will always provide an important initial line of

defense. However, given a clever and malicious individual these defenses can often

be circumvented. Intrusion detection is therefore needed as another way to protect

computer systems. While the construction of network intrusion detection systems

has been an active research area in goverment, academia, and industry, the compar-

ison of various approaches to this problem has been diÆcult. Intrusion detection

systems are often built for speci�c networks with their own topologies using certain

protocols and running certain programs. Additionally, the disemination of data
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about speci�c computer networks and activity on those networks has been limited.

Network administrators are reluctant to make information about their networks

widely available for fear that hackers will be able to identify and exploit weak-

nesses in them. To that end the Defense Department's Advanced Research Project

Agency (DARPA) has initiated annual evaluations of intrusion detection systems.

They have simulated a network based on actual activity on an Air Force base and

made this data available to the network intrusion detection community. They have,

additionally, simulated a wide variety of attack scenarios on this simulated network.

In this chapter we begin by reviewing the network intrusion detection problem

and various approaches to detecting intrusions. We then describe the 1999 DARPA

evalution and our exeriences while participating in it.

7.1 Approaches to Inrusion Detection

An intrusion can be de�ned as \any set of actions that attempt to compromise the

integrity, con�dentiality or availability of a resource". Researchers in the �eld of in-

trusion detection attempt to identify intrusions once the initial lines of defense have

been breached and an unwarranted user has accessed the network. There are two

fundamental approaches to this problem. The �rst, often called misuse detection

attempts to categorize patterns of known intrusions as a means of identifying intru-

sions. This approach amounts to encoding these known patterns in some form and

then solving the pattern matching problem of identifying these patterns in actual

network use. This approach, of course, su�ers from its inability to detect new types

of intrusions. As networks evolve and sophisticated hackers continually attempt to
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identify and exploit new weaknesses in these networks, this approach will clearly

not solve the problem of network intrusion detection in any comprehensive way.

The second approach looks at the other side of the coin. Rather than identifying

patterns common in intrusions, it attempts to identify patterns in normal usage

and identify deviations from these normal patterns. This approach is often called

deviation detection. We have taken a hybrid approach, modeling both normal and

abnormal behaviour within a computer network.

Although most computers in sensitive applications collect audit trails, these au-

dit trails were traditionally established for performance measurement and o�ered

little help in detecting intruders. DiÆculties include the large quantity of audit

information that is too detailed, voluminous, and often meaningless to a human

reviewer. Also, such audit trails may omit information that is relevant to detecting

intrusions. Nevertheless, they do provide information such as who ran what pro-

grams and when, what �les were accessed, and how much memory and disk space

were used, which is potentially useful for detecting intrusion attempts. To make

audit trails useful for security purposes, automated tools are needed to analyze the

audit data to assist in the detection of suspicious events.

There are several di�erent levels on which an intrusion detection system may

operate. Some systems like NIDES, analyze audit trails at the user level, develop-

ing statistical pro�les of user behavior. As NIDES observes the behavior of each

monitored user, it keeps statistics for each user, for each of several dozen intrusion

detection measures. These statistics form a user's historical pro�le. The pro�les

are periodically updated based on observed user behavior. The hypothesis of such a

system is that the short term behavior of a user, while they are engaged in some ma-
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licious act, will deviate suÆciently from their long-term normal behavior. NIDES

identi�es such statistical deviations as potential intrusions or attempted intrusions.

There are obvious diÆculties in attempting to detect intrusions solely on the

basis of departures from observed norms for individual users. Although some users

may have well-established patterns of behavior, logging on and o� at close to the

same times every day and having characteristic levels and types of activity, oth-

ers may display much more erratic behavior. For the latter type of user, almost

anything is "normal", and a masquerader might easily go undetected. Moreover,

the approach is vulnerable to defeat by an insider who knows that his behavior is

being compared with his previously established behavior pattern and who slowly

modi�es their behavior over time, until they have established a new pro�le within

which they can mount an attack. Finally, this approach will certainly be of no help

in detecting malicious behavior of users for whom no pro�le exists such as users

that entered a network via anonymous FTP or some similar service.

Alternatively, Forrest et al. [44] suggest that behavior at the level of privileged

processes can be monitored. Privileged processes are those that have privileges

over and above those granted normal users. Thus, we will be monitoring patterns

exhibited by programs rather than people. There are several advantages to this

approach:

� Vulnerabilities in privileged processes are most dangerous because exploitation

of those vulnerabilities can give an intruder privileged user status.

� Privileged processes constitute a natural boundary for a computer, especially

processes that listen to a particular port. The points of access into the system
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are controlled by privileged processes.

� The range of behaviors of privileged processes is limited compared to the range

of behaviors of users. Privileged processes usually perform a speci�c, limited

function, whereas users can carry out a wide variety of actions.

� The behavior of privileged processes is relatively stable over time, especially

compared to user behavior. Not only do users perform a wider variety of ac-

tions, but the actions performed may change considerably over time, whereas

the actions (or at least the functions) of privileged process usually do not vary

much with time.

In their Intrusion Detection System (IDS) Forrest et al. de�ne normal patterns

in terms of OS system calls made by privileged processes. The algorithm they

use to build a pro�le of normal behavior is extremely simple. They scan traces of

system calls made by a particular privileged process, and build up a database of all

unique sequences of a given length k, that occurred during the trace. Each program

of interest would have its own database, which would be speci�c to a particular

architecture, software version and con�guration, local administrative policies, and

usage patterns. Once a stable database is constructed for a given program, the

database can be used to monitor the ongoing behavior of the processes executing

that program.

Once this database of normal behavior has been constructed, the same method

that was used generate the database is used to check new traces of behavior. All

overlapping sequences of length k in the new trace are considered in order to de-

termine of they are represented in the normal database. Sequences that do not
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occur in the normal database are considered to be mismatches. In order to deter-

mine the strength of an anomalous signal the di�erence between a mismatch and

existing normal signals is measured. The similarity between two sequences can be

computed using a matching rule. The matching rule used by Forrest is based on

Hamming distance, i.e. the di�erence between two sequences i and j is indicated

by the Hamming distance d(i; j) between them. For each new sequence i, they

determine the minimal Hamming distance dmin(i) between it and the set of normal

sequences:

dmin(i) = minfd(i; j) for all normal sequences jg (7.1)

The dmin value represents the strength of the anomalous signal. Note that this

measure is not dependent on trace length.

To detect an intrusion, at least one of the sequences generated by the intrusion

must be classi�ed as anomalous. In terms of Hamming distances they require that

at least one of the sequences generated by the intrusion have dmin > 0, preferably

dmin >> 0; the higher the dmin the more likely it is that the sequence was actually

generated by an intrusion. In practice, they report the maximum signal in the

trace, i.e. they compute the signal of the anomaly, SA, as:

SA = maxfdmin(i) for all new sequences ig (7.2)

Furthermore, in order to be able to compare SA values for di�erent values of k they

normalize SA over the sequence length k, i.e.:

ŜA =
SA
k

(7.3)

If the value of ŜA is greater than some user de�ned threshold C then the trace is


agged as anomalous. The value of C will determine the number of false positives
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that are 
agged. The larger C is the less likely a false positive will be 
agged. Of

course, if C is too large some real intrusions may be missed.

A similar approach is taken by Lee and Stolfo [54]. Rather than looking at

simple sequences, however, they use RIPPER, a rule learning program, and apply

it to training data. They formulate the learning task as follows:

� Each record has n positional attributes, p1; p2; : : : ; pn, one for each of the sys-

tem calls in a sequence of length n; plus a class label, \normal" or \abnormal".

� The training data is composed of normal sequences taken from 80% of the

normal traces, plus the abnormal sequences from 4 traces that include intru-

sions.

� The testing data includes both normal and abnormal traces not used in the

training data.

RIPPER outputs a set of if-then rules for the \minority" classes, and a default

\true" rule for the remaining class. The following are examples of rules generated

by RIPPER on the system call data:

normal : �p2 = 104; p7 = 112

Meaning: if p2 is system call 104(vtimes) and p7 is 112 (vtrace) then the sequence

is \normal"

normal : �p2 = 104; p7 = 104

Meaning: if p2 is system call 104(vtimes) and p7 is 104(vtimes) then the sequence

is \normal"
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...

abnormal : �true
Meaning: if none of the above rules hold, the sequence is \abnormal"

The RIPPER rules can be used to predict whether a sequence is \abnormal" or

\normal". Whether or not an abnormal sequence represents an intrusion depends,

of course, on the accuracy of the rules. They again use a user de�ned threshold,

C, so that if the number of abnormal sequences in a region of the trace exceeds C

that region is deemed an intrusion. This di�ers from the approach used by Forrest

in that here the speci�c locations of intrusions within a trace are identi�ed. Since

most of the sequences in a malicious trace will be normal with only brief deviations

during the attempted attack they claim that this approach will be more sensitive to

noise. A brief, attempted intrusion may be caught by this system since there will be

a deviation from normal activity in some region of the trace. The same abnormal

activity may not be caught by Forrest's IDS since the number of abnormal sequences

as well as their Hamming distances from normal sequences may not be enough to

exceed the minimum threshold.

The e�ectiveness of these approaches is diÆcult to evaluate due the lack of

good, real data to test them on. First of all, the normal data used in both of

their experiments was generated synthetically. That is, the privileged processes of

interest were run in various modes over relatively long periods of time until the

number of system call sequences stabilized. For an IDS that is deployed to protect

a functioning system, it is not at all clear that this is the best way to generate

normal sequences. The real normal behavior of a given process on a particular
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machine may be quite di�erent from the synthetic normal. Additionally, in their

experiments they run their algorithm with three traces of known intrusions. They

then report the values of ŜA for each of these runs with these values ranging from 0:2

to 0:7. They suggest that given these results, in a real environment, by setting the

threshold C to some value in this range, their system will be e�ective at detecting

intruders. While this may be true, it is certainly not de�nitive. How it would

perform on a host of other intrusions is unclear. Also, it is not clear that these

values of ŜA suggest large enough deviations from normal to indicate intrusions. It

is hard to evaluate whether these deviations based on synthetic data and run on a

handful of known intrusion traces are representative of intrusions in general.

The system used by Lee and Stolfo is even more diÆcult to evaluate. Their

system attempts to not only identify traces that include intrusions but also to

pinpoint the regions in the traces in which the intrusions were attempted. In the

data they used, however, while they knew the identity of intrusions they had no

knowledge of the locations of these intrusions. It is therefore, impossible to evaluate

whether or not they correctly identi�ed intrusions.

7.2 The 1999 DARPA Network Intrusion Evaluation

The lack of quality and consistent training data is systemic in the intrusion detec-

tion community. Network administrators have been reluctant to make the necessary

information available for obvious reasons. Recently, however, DARPA has begun

sponsoring network intrusion evaluations prepared and managed by MIT Lincloln

Labs in which a standardized set of audit data was collected on a simulated com-
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puter network. This data included both background netwrok traÆc as well as a

wide variety of attack scenarios.

7.2.1 The Simulation Network

The simulation network provided by DARPA consisted of two Ethernet network

segments connected to each other through a router. One of these segments is

"outside" the Air Force base LAN and the other is inside the LAN. The inside

network is connected to one interface of the router and consists of all the computers

that are part of the simulated local domain. The computers that model the "outside

world" are connected to the external interface of the router.

The simulation network included eleven computers. The outside of the network

contained a traÆc generator for both background traÆc and attack simuations, a

web server, a sni�er, and two machines used for non-automated attack generation.

The inside of the network consisted of a background traÆc generator, a sni�er, a

Solaris 2:5 victim, a SunOS 4:1:4 victim, a Linux 4:2 victim, a Linux 5:0 victim,

and a Windows NT victim. Although one computer inside the LAN and on outside

generated all of the background traÆc in the simulation, a modi�cation to these

computer's operating systems allowed them to act as hundreds of "virtual" ma-

chines. The same modi�cation was made to the outside web server so that it would

be capable of simulating thousands of web servers.

7.2.2 Simulated Attack Scenarios

The approximately �fty attack scenarios implemented in the DARPA evaluation

fell into four broad categories: denial of service, remote to user, user to root, and
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probing attacks [51].

� Denial of Service: A denial of service attack is an attack in which the at-

tacker makes some computing or memory resource too busy or too full to han-

dle legitimate requests, or denies legitimate users access to a machine. There

are many varieties of denial of service attacks. Some, such as a mailbomb, nep-

tune, or smurf attacks abuse a legitimate system feature. Others like teardrop

or ping of death create malformed packets that confuse the TCP/IP stack of

the machine that is attempting to reconstruct the packet. Yet others such

as apache2, back, and syslogd take advantage of bugs in a particular network

daemon.

� Remote to User: A remote to user attack occurs when an attacker who

has the ability to send packets to a machine over a network, but who does

not have priveleges on that destination machine, exploits some vulnerability

to gain local access as a user of that machine. Some of these attacks, such as

imap, named, and sendmail exploit bu�er over
ows in network server software.

Others such as dictionary, ftp-write, guest, and xsnoop attempt to exploit weak

or miscon�gured system security policies. Yet others such as xlock simply try

to trick an authorized user into providing her password to a screensaver that

is actually a trojan horse.

� User to Root: User to root attacks begin with a user who legitimately or

otherwise has access to a normal user account on the network and then ex-

ploits some system vulnerability to gain root access to the system. User to root

attacks are characterized by the fact that careful programming could elimi-
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nate all of the expolited vulnerabilities. These vulnerabilities are, however,

present in every major operating system in release today. There are several

types of user to root attacks. The most common is a bu�er over
ow attack.

These occur when a program copies too much data into a static bu�er without

�rst checking to ensure that the data will �t. Through manipulation of this

data over
ow, an attacker can cause arbitrary commands to be executed by

the operating system. Another class of user to root attack exploit programs

that make assumptions about the environment in which they will be run. An

example of this type of attack is loadmodule. The loadmodule program is

used by the xnews window system under SunOS 4:1:x to load two dynami-

cally loadable kernel drivers into the currently running system and to create

special devices in the /dev directory to use those modules. Because of a bug

in the way the loadmodule program sanitizes the environment, unauthorized

users can gain root access to the local machine. Other user to root attacks

take advantage of programs that are not careful about the way in which they

manage temporary �les. Finally, some user to root vulnerabilities exist be-

cause of an exploitable race condition in the actions of a single program or

multiple programs running simultaneously.

� In recent years, a growing number of programs have been released that are

capable of automatically scanning a computer network to gather information

or to �nd known vulnerabilities. These network probes are quite useful to an

intruder who is planning to stage a future attack. At attacker with a map

of the machines on a computer network as well as the services available on

each machine can use this information to identify system weaknesses. Some
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of these scanning tools such as satan, saint and mscan enable even unskilled

attackers to very quickly check hundreds or even thousands of machines on a

network for known vulnerabilities.

In addition to varying the targets and types of attacks, stealth was also introduced

into the attack scenarios in order to hide these attacks from an intrusion detection

system. There are several ways that an attacker can accomplish this. Skilled

attackers may attempt to cover their tracks by editing system logs or resetting the

modi�cation date on �les they replaced or modi�ed. Attackers can also distribute

the stages of an attack over a long period of time in order to come in "under the

radar" of an intrusion detection system looking for speci�c attack signatures.

7.2.3 The DARPA Data

The data provided by Lincoln Labs consisted of approximately 7 gigabytes of audit

data collected by running the simulated Air Force network for twelve weeks. There

were two types of audit data provided. First was tcpdump list �les which included

a record for each TCP/IP packet sent over the network. The number of records

ranged between approximately 50 thousand and 2 million records per day over the

twelve weeks depending on the level of network activity on the given day. These

list �les were suÆcient for the detection of network based attacks and represented

the training data that we focused on. The other type of audit data provided was

BSM audit data from a single UNIX Solaris host internal to the network. This data

was necessary for detecting attacks local to a speci�c machine (user to root attacks

for example). Limited by time and the prepocessing necessary on all of the audit

data, we did not mine BSM audit �les and were, therefore, unable to detect these
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local attacks.

Each tcpdump list �le was approximately 100 bytes long and consisted of the

following attributes:

1. Start Date (e.g. 01/27/1998)

2. Start Time (e.g. 05:04:43)

3. Duration (e.g. 00:00:23)

4. Service (e.g. ftp)

5. Src Bytes (e.g. 500)

6. Dest Bytes (e.g. 500)

7. Src Port (e.g. 1755)

8. Dest Port (e.g. 21)

9. Src IP (e.g. 192.168.0.20)

10. Dest IP (e.g. 192.168.1.30)

11. Attack Score (e.g. 2.56)

12. Attack Type (e.g. ping-sweep)

In the training data all of these �elds were �lled in. In the test data the last two

�elds were �lled in by the data mining system (actually Attack Type was optional).

Systems are evaluate based on their ability to assign scores that are monotonically

related to the posterior probability of an attack occurring in a session.
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We used Bro, a program developed by Paxson[63] as a tool for reconstruct-

ing TCP/IP packets. We additionally took advantage of work done by Lee and

Stolfo[55] in the 1998 DARPA evaluation in which they had extended Bro to han-

dle ICMP packets as well as to augment the records with some additional features

to be discussed shortly. Unlike denial of service and probe attacks, the remote to

local and user to root attacks are not visible when simply looking at the packet

records. These attacks typically involve a single TCP/IP connection and in order

to detect them one must consider the actual contents of the packets. The additional

features available as a result of the work by Lee and Stolfo, provided us with data

speci�c information necessary for detecting these attack types.

7.2.4 Running the Algorithm

The problem of network intrusion detection involves analyzing computer network

activity and attempting to identify the existence of intrusive or malicious behavior.

In building a model of both normal and malicious activity we cannot assume that

our data is stationary. It was known that attacks present in the training data

would, in some cases, be modi�ed when present in the test data. Additionally,

some attacks that were not present at all in the training data were introduced in

the test data. Therefore, we must account for these changes in building our model.

Or more speci�cally, we must allow for these changes when using a model which was

built based on the training data when trying to identify intrusions in the test data.

Furthermore, each record in our data represented a single network connection. It

was necessary that we analyze relationships between these records since intrusions

often do not occur in a single network connection but rather are the result of a
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series of actions taken over many connections.

Our goal is to classify each augmented record as either 1) normal behavior, or 2)

as part of a network intrusion. It is necessary to recognize that while many network

activities may be benign in and of themselves, as part of a certain sequence of events

they may represent malicious behavior. Using failed logins again as an example a

single failed login may simply be the result of a user mistyping her password. A

protracted sequence of failed logins, however, is probably the result of an intruder

attempting to guess user passwords. Therefore, before we can begin to classify au-

dit records as being normal or malicious we must �rst augment these records with

contextual information regarding activities that preceded the given record. Once

these features have been selected a classi�cation model is built based on the train-

ing data. Finally, we employ shrinkage that addresses the issues of over�tting and

non-stationarity, as well as o�ering us a mechanism for combining the classi�ers

we have built. The implementation of MARS and shrinkage are straightforward

applications of the ideas discussed in previous chapters. The implementation of the

initial pattern discovery phase, however, deserves some domain speci�c discussion.

Feature Extraction

As mentioned previously, the Bro program was used to reconstruct TCP/IP packets

from the raw binary connection data provided by Lincoln Labs. These records were

augmented with additional features that were generated as a result of the modi�-

cations made by Lee and Stolfo[55] to the Bro program. As discussed previously,

these additional features are necessary for detecting remote to local and user to root

attacks since attacks of these types typically occur in a single TCP/IP connection

and in order to detect them one must consider the actual contents of the packets.
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These additional features are as follows[55]:

� hot - The number of "hot" indicators which include things like access to

system directories, creation and execution of programs, and others.

� failed logins - The number of failed login attempts.

� logged in - A bit indicating whether or not the login was successful.

� compromised - The number of compromised conditions.

� root shell - A bit indicating whether or not a root shell was obtained.

� su - A bit indicating whether or not an "su root" command was attempted.

� �le creations - The number of �les that were created.

� shells - The Number of shell prompts.

� access �les - The number of attempts that were made to create, edit or delete
access control �les.

� outbound commands - The number of outbound commands in a FTP ses-

sion.

� hot login - A bit indicating whether or not the login belonged to a superuser

on the system.

� guest login - A bit indicating whether or not the login belonged to a guest

of the system.

One of the nice features of our modeling approach is its ability to leverage

successful techniques used by other practitioners. Our feature selection algorithm
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allows us to augment data records with as many primitive features as we like and

then to allow the pattern discovery algorithm to determine which of these, or which

combinations of these are actually most useful as MARS predictor variables. The

�nal stage of our algorithm, shrinkage, has similar properties. Given a model con-

structed over a training set drawn from the same population as our own training

set, whether a MARS model or some other model, we can combine the resulting

predictor function with our own via shrinkage. This is done by considering the

parameters of these other models as additional data points in approximating via

shrinkage the appropriate "shrunk" paramter values. As we just saw we leveraged

the work done by Lee and Stolfo[55] in identifying a set of connection data content

features that are necessary for detecting remote to local and user to root attacks.

They additionally observed that the following derived features are useful in identify-

ing other types of intrusions. We have, therefore, taken their lead and incorporated

them as well. These additional features are as follows:

� count - Given that the current record represents a connection to a speci�c IP

address, A, this feature is a count of the number of connections to A in the

two seconds preceeding the current connection.

� syn error% - Amongst those connections in the two seconds preceeding the

current connection which are connections to the same IP address as the current

record, this feature represents the percentage of records that have a "syn"

error.

� rej error% - Amongst those connections in the two seconds preceeding the

current connection which are connections to the same IP address as the current
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record, this feature represents the percentage of records that have a "rej" error.

� same service% - Amongst those connections in the two seconds preceeding

the current connection which are connections to the same IP address as the

current record, this feature represents the percentage of records that connect

to the same service as the current connection.

� di� service% - Amongst those connections in the two seconds preceeding

the current connection which are connections to the same IP address as the

current record, this feature represents the percentage of records that connect

to a di�erent service than the current connection.

� service count - Given that the current record represents a connection to

a speci�c service S, this feature is a count of the number of connections in

the two seconds preceeding the current connection that connect to the same

service.

� service syn error% - Amongst those connections in the two seconds pre-

ceeding the current connection which are connections to the same service as

the current record, this feature represents the percentage of records that have

a "syn" error.

� service rej error% - Amongst those connections in the two seconds preceed-

ing the current connection which are connections to the same service as the

current record, this feature represents the percentage of records that have a

"rej" error.

� service di� ip% - Amongst those connections in the two seconds preceeding
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the current connection which are connections to the same service as the current

record, this feature represents the percentage of records that are connections

to di�erent IP addresses.

Before conducting the pattern discovery phase of our algorithm two additional

modi�cations to the data were made. The �rst of these modi�cations involved

augmenting each record with two additional �elds. These �elds are the subnet

of both the source and destination IP addresses. For example, if the source IP

address was 152:168:168:72 and the destination IP address was 192:168:153:89 then

the source subnet �eld (SrcSubnet) and the destination subnet �eld (DstSubnet)

would be 152:168:168 and 192:168:153 respectively. These �elds were helpful in

detecting various network probe attacks that sweep through all of the IP addresses

on the target subnet. In these attacks one would observe a sequence of (typically

ICMP) packets sent one after another to each of the IP addresses on a given subnet.

Since the destination IP addresses in each of these successive connection records

are not identical, without adding these additional features the relevent relationship

between these records would not be identi�able.

The second modi�cation that we made to the data involved how we represented

the values of numerical attributes. Rather than using the feature's value as initially

determined, we typically replaced this actual value with the number of standard

deviations it was away from the mean amongst all records that used the same

service. For example, we would compute the mean and variance of the values in

the syn error% �eld amongst all records that use the telnet service. We would

then, in each telnet session, replace the syn error% value with number of standard

deviations it was from the computed mean. More precisely a value of 0 meant that
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it was within one standard deviation of the mean, a value of 1 meant that it was at

least 1 standard deviation above the mean, a value of 2 meant that it was at least

2 standard deviations above the mean, and a value of 3 meant that it was at least

3 standard deviations above the mean. Similar meaning was given to the values

-1,-2, and -3 with respect to values at least 1 standard deviation below the mean.

This modi�cation was done for two reasons. The �rst was motivated by the

limitation of our pattern discovery algorithm due to the fact that we are using a

predicate rather than propositional temporal logic. Due to this limitation and with-

out this modi�cation, if our pattern discovery algorithm encountered a sequence

of records with unusually large yet unequal values in their respective syn error%

�elds, no pattern would be identi�ed despite this (potentially) relevent sequence

of connections. This is, of course, because our algorithm is limited to measuring

equality with no notion of two values being "close". The relevent observation that

we would have liked to capture in a discovered pattern would be that a sequence

of records occurred, all with large values in their syn error% �elds. This notion of

largeness(smallness) was captured by this modi�cation. The reason that we had to

calculate the mean and variance of numerical attributes only amongst records that

used the same service is the inherent di�erence in the value one would expect of

these �elds between di�erent services. Consider, for example, the Src Bytes �eld

which represents the number of bytes sent from the source to the destination in the

current connection. If the current service is FTP then, since a �le is being sent, one

would expect this value to be frequently large. On the other hand, if the current

service is telnet one would be surprised by a large value in this �eld since all that

is being sent is a connection request, a username, and password. By computing
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the mean and variance of numerical attributes only amongst records that used the

same service we were able to distinguish this di�erence.

The second reason for this modi�cation was computational. In the next stage of

our algorithm, the construction of theMARS model, when introducing a new basis

function based on a predictor variable (�eld) V , the number of knot points that

we must consider is determined by the number of distinct values of that variable

present in our data set. By making this modi�cation we have substantially reduced

this number and, consequently, improved the eÆciency of the MARS algorithm.

Having now developed all of the necessary primitive predictor variables we are

now ready to run our pattern discovery algorithm. Recall that the training data

consists of twelve weeks of simulated network activity, with one �le provided for

each day. Pattern discovery proceeded in three phases.

First, for each attack type, we identi�ed those patterns most highly corrolated

with an occurrence of the given attack type. For each attack type in turn, we

discovered patterns in each data �le in which the attack occurred. This was done

by specifying an interestingness threshold T and identifying patterns whose inter-

estingness measure exceeded T , i.e. S1 = fP jI(P ) > Tg where P is a discovered

pattern and I(P ) is P 's interestingness measure 1. In creating S1 the interesting-

ness measure, I, of a pattern, P , was the ratio of the number of occurrences of P

during the course of the current attack of interest to the total number of occurrences
1The value of T was typically around 3 as this value was empirically determined to be e�ec-

tive for the purpose of identifying enough interesting patterns. For some attack types, however,

this value was adjusted when either too many (for practical purposes) or too few patterns were

discovered using this threshold.
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of P in the current data �le.

The second set of patterns that we discovered were those that are least highly

corrolated with an occurrence of any attack. We again considered each data �le in

turn and then, given a threshold, T (again a value of 3 was used) we discovered all

patterns S2 = fP jI(P ) < 1=Tg where, again, P is a discovered pattern and I(P )

is P 's interestingness measure. These patterns represented patterns most highly

representitive of normal behavior on the network. In creating S2 the interestingness

measure, I, of a pattern, P , was the ratio of the number of occurrences of P during

the course of any attack to the total number of occurrences of P in the current data

�le.

The �nal set of patterns that we included as predictor variables in the construc-

tion of the MARS model were intented to assist our intrusion detection system in

indentifying novel attacks that did not appear in the training data. Intuitively, we

needed to be able to identify deviations from normal behavior that were, neverthe-

less, not present in any attack we had already seen. To accomplish this we included

the patterns S3 = fP jI(P ):P 2 S2^P 62 S1g.
Having computed these sets S1; S2; and S3 for each data �le we then had 180

sets of patterns, 3 for each of the 60 days of training data we were provided with.

In order to select which patterns to use as predictor variables, we �rst had to merge

these sets into three aggregated sets S1; S2; and S3. In addition to merging the 60

S1, 60 S2, and 60 S3 sets we also had to recompute the interesetingness measure

of each discovered pattern. Since many of the discovered patterns did not occur at

all or did not occur frequently enough to meet the threshold requirement in each

of the data �les, this required a linear scan through each �le in order to count the
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total number of occurrences of each pattern as well as the number of occurrence

of each pattern during the course of an attack, or in the case of the S1 patterns,

during the course of a speci�c type of attack.

More precisely, for each pattern, P , present in any of the 60 S1 sets we counted

the total number of occurrences of P as well as the number of occurrences of P

during the course of the attack type with which P was associated. For each pattern,

P , present in any of the 60 S2 sets we counted the total number of occurrences

of P as well as the number of occurrences of P during the course of any attack.

Patterns were stored as binary trees with temporal operators at the internal nodes

and primitive features at the leaves. The locations of patterns in a given data

�le could then be identi�ed by �rst counting the number of occurrences of and

storing the locations of the various values taken by each of the primitive variables.

The number of occurrences of a pattern could then be determined by recursively

identifying the locations of their subpatterns. If the length of a given data �le is D,

the length of a pattern P is jP j and the maximum number of occurrences of any

primitive in P is M then it requires O(DM jP j) computation to determine all of

the locations of P in the given data �le. Having determined all of the locations of

P a linear scan of the data �le is neessary to determine which of these occurrences

are part of normal behavior on the network and which are part of intrusions and

what type of intrusions they are part of.

Before the aggregation could occur, however, a postprocessing normalization of

the discovered patterns was necessary. Following the aggregation, a postprocessing

generalization was also required.

In order to motivate the need for the normalization procedure, consider the set
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of patterns, S1, that are found when discovering patterns present in the Ipsweep

attack. An Ipsweep attack is a surveillance sweep to determine which hosts are

listening on a network. This information is useful to an attacker in staging attacks

and searching for vulnerable machines. An Ipsweep can be identi�ed by many

Ping packets destined for every possible machine on a network, all coming from

the same source. An interesting Ipsweep pattern that our algorithm discovered was

ffservice = SMTPg^fSrcIP = IPAg^fDstSubnet = SubnetAgNfservice =

SMTPg^fSrcIP = IPAg^fDstSubnet = SubnetAgg where IPA and SubnetA

are speci�c IP addresses and subnets respectively. While this was the form that

this pattern took in one data �le, in another �le it appeared as ffservice =

SMTPg^fSrcIP = IPBg^fDstSubnet = SubnetBgNfservice = SMTPg^
fSrcIP = IPBg^fDstSubnet = SubnetBgg. These patterns are, of course, the

same. They, however, appear to be di�erent for the purpose of recalculating the

interestingness of this pattern. More signi�cantly, if, in the test data, this same

attack is launched from a di�erent SrcIP we would be unable recognize the oc-

currence of this pattern because it would not exactly match any already discov-

ered pattern. Our normalization procedure addresses this problem. The pattern

discovered in the �rst �le would be rewritten as ffservice = SMTPg^fSrcIP =

IP1g^fDstSubnet = Subnet1gNfservice = SMTPg^fSrcIP = IP1g^fDstSubnet =
Subnet1gg. This representation means that the SrcIP; IP1 was the �rst IP address

encountered in an interesting pattern in the current �le, with similar meaning given

to DstSubnet1. Since, in the course of an Ipsweep attack only a single SrcIP and a

singleDstSubnet will be involved we would not expect to see SrcIPi or DstSubnetj

where i; j > 1. In other attacks, however, these might occur. Returning to our Ip-

191



sweep attack example, the interesting pattern found in the second �le, namely,

ffservice = SMTPg^fSrcIP = IPBg^fDstSubnet = SubnetBgNfservice =

SMTPg^fSrcIP = IPBg^fDstSubnet = SubnetBgg would also be rewritten

as ffservice = SMTPg^fSrcIP = IP1g^fDstSubnet = Subnet1gNfservice =

SMTPg^fSrcIP = IP1g^fDstSubnet = Subnet1gg, again since only a single

SrcIP and a single DstSubnet will be present in the course of an Ipsweep attack.

We have now normalized this pattern and will be able to identify its occurrence in

all of the training sets as well as in the test sets. While we have an example of this

normalization procedure in the context of attack patterns the same issues occurred

and the same remedies were imposed on the normal patterns as well.

After having aggregated all of the discovered patterns into the sets S1; S2; and

S3 we were still often left with more patterns than could be practically included

in building our MARS model 2. We were, therefore, limited to including only the

most interesting patterns present in each attack in the set S1 and the ones least

highly correlated with an attack from the set S2. The patterns chosen from S3 were

implicitly determined by the de�nition of S3 and our selections from S2. The exact

number of patterns included for each set varied. The interestingness measures of

the patterns themselves typically suggested an appropriate point at which to stop

including additional patterns.

There were many occasions where there were multiple patterns that were sim-

ply repetitions of each other or generalizations of each other all of which had

large(small) interestingness measures. We attempted to appropriately select a sin-
2Recall that the algorithmic complexity of theMARS algorithm is proportional to the number

of predictor variables. For computational reasons it was therefore important to limit this number.
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gle pattern from each of these groups so that the patterns that we included in the

MARS construction phase represented di�erent features of the associated attack

(or of normal behavior).

The simplest and most prevelent occurrence of repetitive patterns in the course

of an attack were ones of the form fANBNCg, fANBBkCg, fABkBNCg, and
fABkBBkCg. Since whenever a pattern over the operator N occurred, by de�-

nition, a pattern over the operator BKk also occurred, we often found that when

sequences of particularly relevent events were present in the data, patterns of all of

these forms would be found interesting. Of course, in this case the patterns over the

N operator typically had higher interestingness measures than those over the Bk.

Nevertheless, it was often the case that all of these patterns' interestingness mea-

sures exceeded T . In these cases we would include only the pattern fABkBBkCg
in the construction of the MARS model. While this decision may be unintuitive

since the pattern fANBNCg has a higher interestingness measure than the pattern

fABkBBkCg, we made the decision to include the latter rather than the former

pattern because it is more general. That is, it was clear that whenever the pattern

fANBNCg occurred, the pattern fABkBBkCg would also occur. The reverse is,

however, not the case. In the interest of maximizing the chance of detecting an

attack through the identi�cation of an occurrence of one of these patterns we chose

to include the most general one. A similar argument holds in selecting among rep-

titive patterns from the set S2. Again we always chose the most general pattern

for inclusion in the set of MARS predictor variables.

Another example of the need for this generalization postprocessing is in the

context of an ftp-write attack. The ftp-write attack is a remote to local attack that
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takes advantage of a common anonymous ftp miscon�guration. The anonymous ftp

root directory and all of its subdirectories should not be owned by the ftp account or

be in the same group as the ftp account. If any of these permissions are misappro-

priated and any of these directories are not write protected, an intruder will be able

to add �les and eventually gain access to the system. These attacks can be iden-

ti�ed by monitoring anonymous ftp sessions and ensuring that no �les are created

in the ftp root directory. Two patterns that were discovered during incidences of

this attack were ffroot shell = 1g^fguest login = 1g^ffile creations = 1gg and
ffroot shell = 1g^fguest login = 1g^ffile creations = 2gg. Recall that a value

of 1(2) in the file creations �eld means that the number of �les created exceed

the mean number of �les created, among all ftp sessions, by at least 1(2) stan-

dard deviations. Since whenever the pattern ffroot shell = 1g^fguest login =

1g^ffile creations = 2gg occurred, the pattern ffroot shell = 1g^fguest login =

1g^ffile creations = 1gg necessarily also occurred, we included only the latter

pattern in the construction of the MARS model. In general, when two interesting

patterns, P1 and P2, both occur during the execution of a speci�c attack type,

where P1 is a necessary consequence of (a generalization of) P2 we include only the

pattern P1 in the construction of the MARS model. Having now completed the

discovery of interesting patterns we are now ready to use these patterns along with

all of the primitive record features in order to construct a MARS model based on

each training set.

Building the MARS Model

Recall that building the MARS model involves solving the following normal equa-
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tions

Va = c (7.4)

where

Vi;j =
NX
k=1

Bj(xk)
h
Bi(xk)� �Bi

i
(7.5)

ci =
NX
k=1

(yk � �y)Bi(xk) (7.6)

and �Bi and �y correspond to the averages over the data.

The solution to the normal equations was discussed in Chapter 5 where we

used the Cholesky decomposition of V to compute the matrix G where V = GGT .

We then �rst solve Gy = c for y, and then GTa = y for a. What remains to be

done is the construction of the basis data matrix B (the averages B̂ and ŷ are

trivially computed. Entry Bi;j of the basis data matrix represents the value of the

ith predictor variable in the jth data record. The precitor variables fall into two

categories - the primitive features, and the temporal patterns. The values of the

primitive predictor variables in each record is either part of the initial data record

as returned by the Bro program or is generated via one of the postproccesses we

run on those initial records. The value of Bi;j where i is a temporal pattern is either

0 or 1 depending on whether or not the associated temporal pattern i is present in

the record j. The location of a pattern, P , could be determined in exact analogy

to the way we identi�ed the locations of patterns when merging the S1 and S2

sets that resulted from our pattern discovery on each of the training �les. When a

pattern, P , where P is the ith predictor variable was found to occur in record j,

Bi;j was set to 1, otherwise it was set to 0.
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A MARS model was constructed for each of the 60 data �les that we had

available to us. Given a connection record (along with all of the predictor variables)

each model returned a value between 0 and 1 re
ecting the probability that the

given record was part of an intrusion. Each of the models constructed included

a di�erent set of basis functions since each model was built based on a di�erent

data �le. For each set of tensor products of basis functions we then estimated the

variable �i based on the records in each of the 59 data �les other than the one that

was originally used for the selection of the basis functions of model i. In this way, for

each of the 60 sets of tensor products of basis functions, we had 60 approximations

of the value of the multivariate variable �i; 1 � i � 60.

Shrinking the Predictors

At this point, for each of 60 di�erent sets of tensor products of basis functions,

we have constructed 60 regression models. For each of the �i we therefore have 60

observations that are assumed to be independent and drawn from a multivariate

normal distribution. As discussed in Chapter 6 we then used the following shrinkage

estimator as our �nal approximation of each of the �i. Let �i = j�ij and �1 < �2 <

� � � < �N . The truncated Stein estimator is then

�tsi =
�
1� (L� 2)�2minf1;�L=j�ijgPN

1 �2j ^ �2
L

�
+
�i (7.7)

We now have reduced 3600 classi�cation models (60 for each of 60 tensor prod-

ucts of basis function sets) into 60 models. Each of these models returns a value

between 0 and 1 re
ecting the probability that a given record is part of an intrusion.

We return the average of these 60 response variables as our �nal prediction.

Results
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We report the results of our model, constructed based on the twelve weeks of train-

ing data provided to us by MIT Lincoln Labs. Lincoln Labs also provided us with

two weeks of unlabeled (we were not told where attacks occurred). We were told

after we had returned the results of our detection system where attacks and which

attack types were present in the test data. In total there were roughly �fty attacks

present about three quarters of which had appeared in the training data and about

one quarter of which were novel attacks. Since we built our detection system based

only on TCP/IP data, we were aware a priori that there would be a small subset

of attack scenarios, namely those that were carried out locally on a single machine,

that we would be unable to detect. Our detection rates are, therefore, reported

only with respect to those attack types that we expected we could identify.

There are two important points to be noted about the scoring system used to

evaluate our detection system. In the previous year's (1998) intrusion detection

evaluation Lincoln Labs asked participants to score each test record with some

number where the larger the score, the more likely the given record was part of

an attack. Participants were then graded based on the corrolation of their scoring

procedure with the actual presence of attacks. Using the 1998 evaluation as a

starting point, we built our intrusion detection system to be capable of the same,

record by record, scoring. In the evaluation in which we participated, however, we

were instead asked to report the day and time at which an attack occurred and

the duration of the attack. Our system had no precise way of identifying the start

of an attack or its duration. This problem was particularly acute when attacks

overlapped. We had no mechanism for recognizing the fact that there were two

seperate attacks present in a sequence of highly scored (close to 1) records. It was
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also unclear what score threshold we should use for reporting the occurrence of

an attack. If a test record received a score of 0:6 does this record deserve to be

reported, what about a score of 0:8? Given no precise method for determining this

threshold we used 0:75 as our threshold for reporting. Of course, using a smaller

threshold would have resulted in the detection of more attacks but would have been

accompanied by a higher false positive rate. Conversely, using a larger threshold

would have resulted in the detection of fewer attacks but a smaller false positive rate.

Given our limitation in being able to identify the start and duration of a speci�c

attack, we rescored our intrusion detection system ourselves after Lincoln Labs

distributed the entire attack schedule (which included starting times, durations,

and types for each attack) using the following procedure. If our system gave any

record that was part of an attack a score of greater than 0:75 we deemed that attack

successfully detected. If our system gave a score of greater than 0:75 to a record

that was not part of an attack we deemed that record a false positive. It is the

results of this rescoring that we report here.

The second point to be noted involves the determination of the assigning of a

speci�c attack type to an attack that has been detected. Our intrusion detection

system provides no precise way of determining attack types. We, therefore, used the

following heuristic to determine attack types. Once a record was deemed to be part

of an attack we determined which tensor product of basis functions contributed

most signi�cantly to its high score. Amongst the basis functions in this tensor

product, we looked for basis functions whose predictor variable, V , was a member

of S1. We then reported the attack type to be that attack type that caused V to

be included in S1 in the �rst place. If none of the predictor variables in the basis
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function tensor product were part of S1 we then used the second or third, etc. most

in
uential tensor basis product until we found one that included a basis function

from S1. If no such basis functions were found then the record's attack type was

deemed unidenti�able. If there were multiple basis functions from S1 in the tensor

product that was used for determining attack type, and these basis functions had

been included in S1 due to their membership in di�erent attack types, then the

speci�c attack type for the given record was likewise deemed unidenti�able. When

this occurred, however, it was typically the case that the di�erent attack types that

were suggested by the di�erent basis functions were all members of the same class

of attacks, i.e. denial of service, probe, remote to local, or user to root.

Novel attack types that were present in the test data but not in the training

data, while potentially detectable, were, of course, not identi�able. Among attacks

that we detected in the test data that had also been present in the training data, we

were able to correctly label 61% of them with their speci�c attack types. 89% were

labeled with an attack type in the correct class of attacks (but the wrong speci�c

attack), or had been labeled as unidenti�able because of our inability to distinguish

between multiple attack types that were part of the same, and the correct, attack

class. Our detection rates for both novel attacks and attacks that were present

in both the training and test data as well as false alarm rates are shown in Table

7.2.4. The detection rates are shown for three di�erent score thresholds. These

rates indicate the percentage of attacks detected by our system when an attack

was identi�ed by records whose score exceeded the associated score threshold. Of

course as the score threshold increases both the detection rate and the false positive

rate decrease.
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Score Threshold % of Old Attacks

Detected

% of Novel Attacks

Detected

% of False

Positives

0.5 0.74 0.56 0.31

0.7 0.59 0.43 0.24

0.9 0.44 0.28 0.18

Table 7.1: Results from the DARPA Intrusion Detection Evaluation.

We began our involvment in the intrusion detection evaluation with little expe-

rience in this �eld. We were, of course, aided by our ability to leverage the work

done by others in identifying appropriate features for inclusion when building our

predictive models and hoped that this along with our data driven approach would

allow us to build an e�ective intrusion detection system. We were grati�ed by our

success in the course of this evaluation and feel that our results justify the merits of

our approach. There were, however, several domain speci�c lessons that we learned,

and modi�cations that we would make to improve our system in the future. We

will mention a few of them here.

First, and foremost, would be the inclusion of additional, available audit data

so that we would be able to detect the entire variety of attack types. Second,

would be the introduction of a more formal method for selecting a score threshold

for reporting the occurrence of an attack. This decision will probably always be

impacted by a network administrator's threshold for false positives. The more

a network administrator is willing to accept false positives the higher guarantee

we can o�er that we have detected all intrusions. The third improvement to our
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system would be the introduction of a more formal mechanism for determining

attack types. The �nal signi�cant modi�cation that we would like to introduce

regards the way in which we generated the set S2, i.e. the way in which we model

patterns for normal behavior. Our system was more successful at detecting probe

and user to root attacks than it was at detecting denial of service or remote to local

attacks. This was because behavior during attack types that are part of the former

two attack classes are much less variable than those in the latter two classes. Probe

attacks all involve scanning a large number of hosts on a computer network. User to

root attacks all involve a user gaining unauthorized root access to the system. The

other two attack types, on the other hand involve the exploitation of vulnerabilities

in a wide variety of system services. Therefore, unless we have modelled normal

behavior for use of each system service we may be unable to identify deviations

from this normal behavior. Since, in the training data, certain system services were

utilized much more than others we found, in retrospect, that the patterns in S2

that modeled normal behavior did not include patterns involving some of the less

frequently used services. To remedy this problem we would, in the future, develop

the set S2 by discovering patterns on a service by service basis, therefore ensuring

that patterns over the entire variety of normal system behavior are included in the

construction or our intrusion detection model.
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Chapter 8

Conclusions and Future Directions

We have developed a nonlinear procedure for modeling high dimensional, temporal,

nonstationary data. Before summarizing our work in the context of network intru-

sion detection we will �rst discuss the potential application of our work to another

equally timely and relevent area of research - cancer classi�cation. While, on the

surface, these areas seem completely unrelated we feel that there exist strong sta-

tistical similarities that we can exploit in applying our techniques in this important

research area.

8.1 Cancer Classi�cation

While medical professionals have become increasingly adept at identifying carcino-

gens as well as developing treatments for various classes of cancer the large variance

in e�ectiveness of cancer treatment suggests a need for improved cancer classi�ca-

tion. Consider, for example, the case of acute leukemias. It has been well estab-

lished that acute leukemias can be categorized into those arising from lymphoid
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precursors (acute lymphoblastic leukemia, ALL) versus those arising from myeloid

precursors (acute myeloid leukemias, AML). While this distinction has been well

known for several decades and despite the fact that treatment eÆcacy of acute

leukemias is highly correlated with proper classi�cation, no single test yet exists

to establish proper diagnosis. Rather cancer classi�cation has been traditionally

based on morphological appearance of the tumor. This approach has several clear

limitations. First, it is dependant on the interpretation of a tumor's morphology

by a hematopathologist. Therefore, two cancers with substantively di�erent clini-

cal courses and di�erent responses to therapy may go undi�erentiated because of

their similar appearance under a microscope. Second, and more alarming, there are

certainly many cancer classi�cations that are still unknown. As distinguished from

cancer treatment, when infectious diseases are diagnosed and treated a sample of

the infectious bacteria is �rst extracted and grown in vitro. Many di�erent treat-

ment options are then tested on this in vitro sample and the most e�ective one is

then used in vivo on the patient. Doctors have observed a high correlation between

the e�ectiveness of in vitro and in vivo treatment for infectious disease. In contrast,

no similar correlation exists in the treatment of cancer. For many reasons many

treatments that work well in vitro often do not translate into e�ective in vivo treat-

ments, an example being blood 
ow to the tumor. Therefore, no pre-treatment tests

are available for cancer patients in determining an appropriate treatment protocol.

Instead, doctors rely on simple statistics in choosing treatment protocols often re-

sulting in poor survival rates among cancer patients. If one considers, for example,

the most prevalent of the solid tumor cancers namely lung, breast, and colon can-

cer the average remission rates range from roughly 30% - 40%. This data begs the
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question, what di�erentiates patients whose cancer is cured from those whose can-

cer is not? Or more appropriately, what distinguishes the cancers of those who are

cured versus those that are not? We hypothesize that there exist unknown cancer

classes. More speci�cally, within the group of all patients with breast cancer the

reason only 30% are cured is that the existing chemotherapy treatments are only

appropriate to the speci�c class of cancer that those 30% have, while the remaining

70% are su�ering with an unknown and, therefore, untreated cancer class. By bet-

ter classifying cancers it would be possible for medical researchers to devise more

appropriate treatment plans.

The goal of cancer classi�cation is, therefore, multifaceted. First, among known

classes one would like to devise tests for the identi�cation of these classes, thereby,

taking this job out of the hands of hematopathologists. Second, one would like to

discover novel classes so that researchers might be able to �nd new cancer treat-

ments as well as target existing ones better.

Cancer is a disease in which cell growth and division are unregulated. Without

regulation, the cells divide ceaselessly, piling on top of each other to form tumors.

In all tumors something has gone wrong with the systems that control cell division.

Decades of research have now �rmly established that this loss of control is due to

abnormal gene expression. This research has shown that cancer may be caused

by mutant cellular oncogenes, by the inappropriate expression of normal cellular

oncogenes that have been relocated in the genome by a chromosome rearrangement,

or by the loss or inactivation of genes that suppress tumor formation.

Given that cancer results from changes in the DNA of healthy cells we propose

an approach to cancer classi�cation based on gene expression. We will address both
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the cancer classi�cation problem as well the class discovery problem by identifying

deviations in gene expression between healthy and cancerous cells. We will evaluate

the quality of our approach to cancer classi�cation by considering RNA samples

from both healthy individuals as well as samples from patients from multiple known

cancer classes as identi�ed by their histopathological appearance. We attempt to

accurately and consistently validate the diagnosis made by hematopathologists on

genetic grounds. This is achieved by training our system (as described shortly)

on RNA samples that are properly labeled by their cancer class (or as healthy).

By discovering genetic di�erences among cancer classes we then build a predictive

model of theses classes that can then be tested via cross validation and through

testing on out of sample data. We then turn to the more challenging task of

class discovery. Here we train our system on the same RNA samples. This time,

however, these samples are unlabeled. We attempt to discover the classes associated

with each sample without a priori knowledge of this information. Additionally, we

attempt to discover novel classes within these samples. Our success at doing this will

be measured by considering treatment e�ectiveness among cancer patients within

these novel classes. If a newly discovered class is truly novel then patients within

this class, given the same treatment protocol, should expect similar clinical results.

We will discover these novel classes without a priori knowledge of patient treatment

eÆcacy.
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8.2 Conclusion

Broadly speaking, there are two kinds of patterns discovered by data mining algo-

rithms: predictive and descriptive. Predictive algorithms are built to solve a speci�c

problem of predicting one or more attributes in a database based on the rest. Pre-

dictive patterns are not always attempts at predicting the future - the important

characteristic is that they make an educated guess about the value of an unknown

attribute given the values of other known attributes. By contrast, the point of de-

scriptive algorithms is simply to present interesting patterns that a domain expert

might not already know. In other words, with descriptive patterns there are no

right answers only interesting ones. Because of this, descriptive patterns are harder

to evaluate than predictive patterns, because their real value lies in whether they

suggest any actions to the domain expert, and how e�ective those actions are. Our

work, the work described in this thesis, has focused on addressing problems in both

of these areas, applied to a speci�c class of data namely, non-stationary, temporal,

high dimensional data.

We addressed the nonstationarity issue by trading increased bias for decreased

variance in the construction of our classi�cation model. In some sense, we rec-

ognized a priori that, in the presence of nonstaionary data, any model that we

constructed based on a set of training data would have limited predictive capabil-

ities on out of sample (test) data. With this in mind we were willing to use the

biased estimator that resulted from the application of truncated Stein shrinkage in

order to reduce the variance in our model and improve its out of sample predictive

power.
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The most important nonstationary feature in the intrusion detection domain

resulted from the introduction in the test data of attack types that had not been

present in the training data. In addition to our use of shrinkage we, also addressed

this type of nonstationarity in the way that we selected temporal patterns for

inclusion in the construction of ourMARSmodel. Recall that there were three sets

of patterns that we included as features in theMARS model, S1 = fP jI(P ) > Tg,
S2 = fP jI(P ) < 1=Tg, and S3 = fP jI(P ):P 2 S2^P 62 S1g where P is a

discovered pattern and I(P ) is P 's interestingness measure. We included this �nal

set, S3, in recoginition of the nonstationary nature of attacks. It provided us with

a set of features that, while not particularly relevent to improving the in sample

predictive power of our algorithm, would improve the power of our model on out

of sample data.

Our use of temporal logic in describing patterns of network behavior is novel

(as best we know) in the intrusion detection community. As intrusion detection

systems are increasingly deployed on sensitive computer networks, hackers will in-

creasingly look for ways to improve the "stealthiness" of their attacks in order to

avoid detection. Most intrusion detection systems involve considering patterns of

behavior during some �xed time window. One obvious approach for hackers is,

therefore, to spread the individual stages of an attack over a period of time that

exceeds this window. Temporal logic o�ers a way to express temporal relation-

ships withoutbeing tied to a speci�c clock. In this way intrusion detection systems

can be made capable of recognizing patterns of behavior over arbitrarily long time

intervals.

After having developed our feature set through the discovery of patterns over a
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linear time, propositional, temporal logic we then used these features, and others

as the predictor variables in the construction of a MARS model. We included a

survey of several widely used approaches to multivariate function approximation

and then motivated our selection ofMARS as a consequence of its robust, nonlin-

ear predictive power, its computational tractability, and the interpretability of the

resulting model.

One's ability to build predictive models of data is fundamentally dependent on

two factors - the complexity of the underlying (true) model, and the quality of the

available training data. Once a problem domain has been selected the complexity

of the underlying model becomes an issue exogenous to the modeling process and

therefore an issue over which the modeler has little impact except for ensuring that

the techniques being used are robust enough to handle the domain's inherent com-

plexities. The quality and size of the training data, while typically limited by real

world constraints, must be addressed in a more proactive manner. As mentioned

previously, nonstationarity is a qualitative feature of data that we address. An-

other important issue is the size of training data. The size of the training data is

intimately related to the dimensionality of that data. In most complex domains the

number of independent variables and thus the number of degrees of freedom is very

large. Despite the availability of thousands or even millions of training records this

results in poor coverage of the space being modeled which in turn results in high

variance in the models constructed. Virtually all techniques for dealing with small

sample statistics involve some �nal pruning phase where increased model bias is

traded for decreased variance through a reduction in the number of degrees of free-

dom. We have surveyed many of these alternatives. We then show that the widely
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used maximum likelihood estimator is inadmissible by showing that the Stein es-

timator has uniformly lower risk in estimating the mean of a multivariate normal

distribution whose dimension is greater than two. We use truncated shrinkage as

our �nal estimator due to its favorable properties in estimating parameters far from

the sample mean.

We then describe our experience in unifying all of these ideas in building an

intrusion detection system for participation in the 1999 DARPA intrusion detection

evaluation. As part of this evaluation we were provided with twelve weeks (� 7

gigabytes) of training data and two weeks of test data. Our results are summarized

in Chapter 7.

209



Bibliography

[1] R. Agrawal, C. Faloutsos, and A. Swami. EÆcient similarity search in sequence

databases. In In Proc. of the conference on foundations of data organizations

and algorithms (FODO), October 1993.

[2] R. Agrawal, T. Imielinski, and A. Swami. Database mining - a performance

perspective. Ieee Trans. On Knowledge And Data Engineering, 5:914{925,

1993.

[3] R. Agrawal, T. Imielinsky, and A. Swami. Mining association rules between

sets of items in large databases. In Proceedings of ACM SIGMOD Conference,

pages 207{216, 1993.

[4] R. Agrawal, K-I Lin, H.S. Sawhney, and K. Shim. Fast similarity search in the

presence of noise, scaling, and translation in time-series databases. In In Proc.

of the 21st VLDB conference., 1995.

[5] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast

discovery of association rules. In Advances in Knowledge Discovery and Data

Mining, chapter 12. AAAI Press, 1996.

210



[6] R. Agrawal, G. Psaila, E. Wimmers, and M. Zait. Querying shapes of histories.

In In Proc. of the 21st VLDB conference., 1995.

[7] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large

databases. In Jorgeesh Bocca, Matthias Jarke, and Carlo Zaniolo, editors, 20th

International Conference on Very Large Data Bases, September 12{15, 1994,

Santiago, Chile proceedings, pages 487{499, Los Altos, CA 94022, USA, 1994.

Morgan Kaufmann Publishers.

[8] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of the Inter-

national Conference on Data Engineering., March 1995.

[9] W.A. Ainsworth. Speech recognition by machine. P. Peregrinus Ltd., London,

1998.

[10] G. Berger and A. Tuzhilin. Discovering unexpected patterns in temporal data

using temporal logic. In O. Etzion, S. Jajodia, and S. Sripada, editors, Tem-

poral Databases - Research and Practice. Springer Verlag, 1998.

[11] D. Berndt. AX: Searching for database regularities using concept networks. In

Proceedings of the WITS Conference., 1995.

[12] D. J. Berndt and J. Cli�ord. Finding patterns in time series: A dynamic

programming approach. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and

R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining.

AAAI Press/ The MIT Press, 1996.

[13] C. Bettini, X.S. Wang, and S. Jajodia. Testing complex temporal relation-

211



ships involving multiple granularities and its application to data mining. In

Proceedings of PODS Symposium, 1996.

[14] L. Breiman. Bagging predictors. Technical Report 421, University of California

Berkeley, September 1994.

[15] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classi�cation and

regression trees. Technical report, Wadsworth International, Monterey, CA,

1984.

[16] L. Breiman, J. H. Friedman, R.A. Olshen, and C.J. Stone. Classi�cation and

Regression Trees. Wadsworth Publishers, 1984.

[17] Leo Breiman. Bias, variance, and arcing classi�ers. Technical Report 460,

University of California at Berkeley, Statistics Department, April 1996.

[18] Leo Breiman. Arcing the edge. Technical Report 486, University of California

at Berkeley, Statistics Department, June 1997.

[19] Leo Breiman. Using adaptive bagging to debias regressions. Technical Re-

port 547, University of California at Berkeley, Statistics Department, February

1999.

[20] C. Carter and J. Catlett. Assessing credit card applications using machine

learning. IEEE Expert, 2(3):71{79, 1987.

[21] B. Cestnik, I. Kononenko, and I. Bratko. ASSISTANT 86: a knowledge-

elicitation tool for sophisticated users. In I. Bratko and N. Lavra�c, editors,

Progress in Machine Learning, pages 31{45, Wilmslow, 1987. Sigma Press.

212



[22] P. Cheeseman and J. Stutz. Bayesian classi�cation (AutoClass): theory and

results. In U. M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and

R. Uthurusamy, editors, Knowledge Discovery in Data Bases II, chapter 6,

pages 153{180. AAAI Press / The MIT Press, Menlo Park, CA, 1995.

[23] W. Cheney and D. Kincaid. Numerical Mathematics and Computing.

Brooks/Cole Publishing Company, Paci�c Grove, California, 1985.

[24] J. Cli�ord, V. Dhar, and A. Tuzhilin. Knowledge discovery from databases:

The NYU project. Technical Report IS-95-12, Stern School of Business, New

York University, December 1995.

[25] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley

& Sons, 1991.

[26] D.K. Dey and J. Berger. On truncation of shrinkage estimators in simultaneous

estimation of normal means. Journal of the American Statistical Association,

78(384):865{869, December 1983.

[27] V. Dhar and A. Tuzhilin. Abstract-driven pattern discovery in databases.

IEEE Transactions on Knowledge and Data Engineering, 5(6), 1993.

[28] Thomas G. Dietterich. An experimental comparison of three methods for con-

structing ensembles of decision trees: Bagging, boosting, and randomization.

Machine Learning, pages 1{22, 1999.

[29] Harris Drucker. Improving regressors using boosting techniques. In Jr.

D.H. Fischer, editor, Proceedings of the Fourteenth International Conference

on Machine Learning, pages 107{115. Morgan Kaufman, 1997.

213



[30] B. Efron and C. Morris. Limiting the risk of bayes and empirical bayes estima-

tors - part i: The bayes case. Journal of the American Statistical Association,

66(336):807{815, December 1971.

[31] B. Efron and C. Morris. Limiting the risk of bayes and empirical bayes esti-

mators - part ii: The empirical bayes case. Journal of the American Statistical

Association, 67(337):130{139, March 1972.

[32] B. Efron and C. Morris. Stein's estimation rule and its competitors - an

empirical bayes approach. Journal of the American Statistical Association,

68(341):117{130, March 1973.

[33] B. Efron and C. Morris. Data analysis using stein's estimator and its gener-

alizations. Journal of the American Statistical Association, 70(350):311{313,

June 1975.

[34] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence match-

ing in time-series databases. In In Proceedings of the SIGMOD conference.,

1994.

[35] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to

knowledge discovery: An overview. In Advances in Knowledge Discovery and

Data Mining, chapter 1. AAAI Press, 1996.

[36] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors.

Advances in Knowledge Discovery and Data Mining. MII Press, Mento Park,

1996.

214



[37] W.J. Frawley, G. Piatetsky-Shapiro, and C.J. Matheus. Knowledge discovery

in databases: an overview. In G. Piatetsky-Shapiro and W.J. Frawley, editors,

Knowledge Discovery in Databases. AAAI / MIT Press, 1991.

[38] Y. Freund and R. Schapire. A short introduction to boosting. Journal of

Japanese Society for Arti�cial Intelligence, 15(5):771{780, 1999.

[39] Y. Freund and R. Shapire. A decision-theoretic generalization of on-line learn-

ing and an application to boosting. Journal of Computer and System Sciences,

55:119{139, 1997.

[40] Jerome H. Friedman. Estimating functions of mixed ordinal and categorical

variables using adaptive splines. In S. Morgenthaler, E. Ronchetti, and W.A.

Stahel, editors, New Directions in Statistical Data Analysis and Robustness,

pages 73{113. Birkhauser-Verlag, 1993.

[41] J.H. Friedman. Multivariate adaptive regression splines. The Annals of Statis-

tics, 19(1):1{141, 1991.

[42] D.Q. Goldin and P.C. Kanellakis. On similarity queries for time-series data:

constraint speci�cation and implementation. In In Proc. of the 1st Int'l Con-

ference on the Principles and Practice of Constraint Programming. LNCS 976,

September 1995.

[43] Marvin H.J. Gruber. Improving EÆciency by Shrinkage - The James-Stein

and Ridge Regression Estimators. Marcel Dekker, Inc., New York, New York,

1998.

215



[44] S. Hofmeyr, S. Forrest, and A. Somayaji. Lightweight intrusion detection for

networked operating systems.

[45] R.V. Hogg and A.T. Craig. Introdiction to Mathematical Statistics. Prentice

Hall, Upper Saddle River, New Jersey, 1995.

[46] M. Holsheimer and A. P. J. M. Siebes. Data mining: the search for knowledge

in databases. In 346, page 78. Centrum voor Wiskunde en Informatica (CWI),

ISSN 0169-118X, January 31 1994. CS-R9406.

[47] R. Hya�l and R.L. Rivest. Constructing optimal binary trees is np-complete.

Information Processing Letters, 5:15{17, 1976.

[48] T. Imielinski. A database perspective on knowledge discovery. Invited Talk at

KDD'95, August 1995.

[49] W. James and C. Stein. Estimation with quadratic loss. In Proceedings of the

Fourth Berkeley Symposium on Mathematics and Statistics, pages 361{379.

University of California Press, 1961.

[50] G. H. John. Enhancements to the Data Mining Process. PhD thesis, Stanford

University, 1997.

[51] K. Kendall. A database of computer attacks for the evaluation of intrusion

detection systems. Master's thesis, Massachusetts Institute of Technology,

1999.

[52] B. Kero, L. Russell, S. Tsur, and W.M. Shen. An overview of database mining

techniques. In Proceedings of the Post-Conference Workshop on Knowledge

Discovery in Deductive and Object-Oriented Databases, Singapore, 1995.

216



[53] P. Laird. Identifying and using patterns in sequential data. In Algorithmic

Learning Theory, 4th International Workshop, Berlin, 1993.

[54] W. Lee, S. Stolfo, and P. Chan. Learning patterns from unix process execution

traces for intrusion detection. In AAAI Workshop: AI Approaches to Fraud

Detection and Risk Management, July 1997.

[55] Wenke Lee. A Data Mining Framework for Constructing Features and Models

for Intrusion Detection Systems. PhD thesis, Columbia University, 1999.

[56] J.B. Little and L. Rhodes. Understanding Wall Street. Liberty Publishing

Company, Cockeysville, Maryland, 1978.

[57] H. Mannila. Data mining: Machine learning, statistics, and databases. In

P. (Per) Svensson and J. C. (James Cornelius) French, editors, Proceedings:

Eighth International Conference on Scienti�c and Statistical Database Sys-

tems, June 18{20, 1996, Stockholm, Sweden, pages 2{11, 1109 Spring Street,

Suite 300, Silver Spring, MD 20910, USA, 1996. IEEE Computer Society Press.

[58] H. Mannila. Methods and problems in data mining. In Foto N. Afrati and

Phokion Kolaitis, editors, Database Theory|ICDT'97, 6th International Con-

ference, volume 1186 of Lecture Notes in Computer Science, pages 41{55, Del-

phi, Greece, 8{10 January 1997. Springer.

[59] H. Mannila and H. Toivonen. Discovering generalized episodes using mini-

mal occurrences. In Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining, Portland, Oregon, August 1996.

217



[60] H. Mannila, H. Toivonen, and A. Verkamo. Discovering frequent episodes in

sequences. In Proceedings of the First International Conference on Knowledge

Discovery and Data Mining, Montreal,Canada, August 1995.

[61] H. Mannila, H. Toivonen, and A. I. Verkamo. EÆcient algorithms for discov-

ering association rules. In U. M. Fayyad and R. Uthurusamy, editors, AAAI

Workshop on Knowledge Discovery in Databases (KDD-94), pages 181{192,

Seattle, Washington, July 1994. AAAI Press.

[62] B. Padmanabhan and A. Tuzhilin. Pattern discovery in temporal databases: A

temporal logic approach. In Proceedings of the Second International Conference

on Knowledge Discovery and Data Mining, Portland, Oregon, August 1996.

[63] V. Paxson. Bro: A system for detecting network intruders in real-time. In

Proceedings of the 7th USENIX Security Symposium, 1998.

[64] H.V. Poor. An Introduction to signal detection and estimation. Springer-

Verlag, New York, 1988.

[65] J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81{106,

1986.

[66] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,

1993.

[67] L.R. Rabiner and S.E. Levinson. Isolated and connected word recognition:

Theory and selected applications. In Readings in speech recognition. Morgan

Kaufmann Publishers, San Mateo, CA., 1990.

218



[68] Thomas P. Ryan. Modern Regression Techniques. John Wiley and Sons, Inc.,

New York, New York, 1997.

[69] S. L. Salzberg. On comparing classi�ers: Pitfalls to avoid and a recommended

approach. Data Mining and Knowledge Discovery, 1(3), 1997.

[70] A. Sen and M. Srivastava. Regression Analysis - Theory, Methods, and Appli-

cations. Springer-Verlag, New York, New York, 1990.

[71] P. Seshadri, M. Livny, and R. R. Design and implementation of sequence

database system. In Proceedings of ACM SIGMOD Conference, 1996.

[72] A. Silberschatz and A. Tuzhilin. On subjective measures of interestingness in

knowledge discovery. In Proceedings of the First International Conference on

Knowledge Discovery and Data Mining, Montreal, Canada, August 1995.

[73] A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowledge

discovery systems. IEEE Transactions on Knowledge and Data Engineering,

8(6), December 1996.

[74] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and

performance improvements. In Proceedings of the International Conference on

Extending Database Technology, 1996.

[75] Charles Stein. Inadmissability of the usual estimator for the mean of a multi-

variate normal distribution. In Proceedings of the Third Berkeley Symposium

on Mathematical Statistics and Probability, pages 197{206. University of Cali-

fornia Press, 1956.

219



[76] S.M. Stigler. The 1988 neyman memorial lecture: A galtonian perspective on

shrinkage estimators. 5(1):147{155, 1990.

[77] J. van Leeuwen. Handbook of Theoretical Computer Science: Volume B Formal

Models and Semantics. The MIT Press/Elsevier, MA, 1990.

[78] J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro, D. Shasha, and K. Zhang.

Combinatorial pattern discovery for scienti�c data: Some preliminary results.

In Proceedings of ACM SIGMOD Conference on Management of Data, 1994.

[79] L. Zadeh. The role of fuzzy logic in the management of uncertainty in expert

systems. In Fuzzy Sets and Systems, vol. 11, pages 199{227. 1983.

220


