MODERN MACHINE LEARNING METHODS FOR PROTEIN DESIGN

Daniel Berenberg

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DocTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE
NEW YORK UNIVERSITY

AuGusT, 2025

Professor Richard Bonneau

Professor Kyunghyun Cho


https://scholar.google.com/citations?user=NJXt3VAAAAAJ&hl=en
https://scholar.google.com/citations?user=0RAmmIAAAAAJ&hl=en

© DANIEL BERENBERG

ALL RIGHTS RESERVED, 2025



DEDICATION

For Max & Chiara

1ii



ACKNOWLEDGMENTS

I would like to extend my deepest gratitude to all of those who have supported and guided
me during my PhD. My advisors Richard Bonneau and Kyunghyun Cho not only challenged me
to be a better scientist, but also gave me incredible opportunities to learn new things. I would
also like to thank my committee members, Jin Montclare, Neville Sanjana, and Sumit Chopra, for
providing insightful feedback on this dissertation.

Vladimir Gligorijevi¢ was a patient, wise, and tenacious exemplar as a scientist, mentor, and
friend. At the Flatiron Institute, Julia Koehler Leman and Doug Renfrew gave me an unforgettable
crash course on protein structure and always made the time to meet and discuss research.

Much of my PhD was spent working with the talented scientists at Prescient Design. Some of
the most memorable experiences were late nights working alongside Stephen Ra, Andy Watkins,
and Simon Kelow interrogating designs (the “Golden Children”). I am grateful to have learned
so much from Nathan Frey and Saeed Saremi, Henri Dwyer, Jae Hyeon Lee, JiWon Park, Natasa
Tagasovska, and all of those with whom I worked closely during that time.

I appreciate the time spent with and feedback given from my NYU colleagues and collabo-
rators Nate Gruver, Alan Amin, and Louis Mittel. I am very thankful for my fellow lab mates:
Meet Barot, Maggie Beheler-Amass, Tymor Hamamsy, Claudia Skok-Gibbs, and Harsh Srivastava
for sharing their science with me and being great, supportive friends during the entire process.
Finally, I am thankful for the encouragement of family: Linda, Spencer, Darcy, Marilyn, Jim, and

friends: Eric, Eli, and Sam.

iv



ABSTRACT

Designing biosynthetic molecules such as proteins is critical for applications in therapeutics
and agriculture, yet the vast sequence space and complex functional landscape pose significant
challenges. Previous design workflows rely on clustering, mechanistic modeling, or directed evo-
lution and are often constrained by hand-crafted heuristics and domain-specific biases. Advances
in deep generative modeling and protein databases of unprecedented size present an opportunity
to apply modern machine learning techniques. In this work, we develop methods to generate
and score protein sequences. We propose several steering and guidance techniques that balance
data-driven exploration with expert-guided refinement. Leveraging established classifications
of antibodies, we enable targeted redesign of designated regions for applications such as affin-
ity maturation and framework optimization. Expanding the scope to general sequence design,
we show effective classifier-guided generation of protein sequences using a novel sequence de-
noising autoencoder. Finally, we investigate the utility of natural language text embeddings in
classifier-free generation and show the capabilities of text conditioned models on downstream
generative modeling tasks. These works represent a modern framework for protein engineering

that incorporates domain knowledge into a human-centered interface.
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1 INTRODUCTION

Proteins are the functional products of genetic sequences such as DNA that either carry out
or engage in almost every biosynthetic process in all cellular organisms. Proteins are functionally
diverse and ubiquitous throughout nature, making them ideal candidates for many applications
in subject areas such as drug discovery [4], agriculture [5], and the environment [6]. Despite
the potential benefits of protein design, multiple challenges arise from the combinatorially vast
sequence and sparsely functional sequence space. Moreover, even subtle differences in protein
sequences can result in gain or loss of protein function, making the design process extremely sen-
sitive to small perturbations. Computational protein design seeks to efficiently sample sequence
space and generate on-target, physically realizable proteins.

Advances in next-generation sequencing technologies have given way to large-scale genomics
projects [7-10] and resulted in a proverbial biological data age. Efforts to characterize and an-
notate protein sequences [11-13] have created a rich taxonomies of protein structure and func-
tion. Data availability combined with specialized semiconductors has enabled the application
of emerging methodologies in artificial intelligence such as deep learning. In particular deep
neural networks, optimized via stochastic gradient descent [14, 15], have been shown to model
complex distributions without the need for feature-engineering or dimensionality reduction tech-
niques [16, 17]. Self-supervised learning [15, 18] and generative modeling [19-21] have not only
disentangled the need for an output label, but also opened the possibility of generating novel

samples.



A complete computational protein design workflow entails candidate generation, sample rank-
ing and evaluation, experimental readout, and in some cases re-incorporation of experimental
feedback [22]. This work is primarily concerned with the former two. We address the following
objectives: protein family diversification, steerable generation, and sample evaluation.

In Chapter 3, we investigate the utility of generative models to diversify the variable domain
of antibody heavy and light chains. In order to do so, we introduce the discrete Walk-Jump Sam-
pler (dW]S), a generative model based on the Neural Empirical Bayes (NEB) [20] framework. The
Neural Empirical Bayes framework relies on Herbert Robbins’ seminal An empirical Bayes ap-
proach to statistics [23] by training a Bayesian estimator parameterized by a neural network to
estimate the score of a data manifold corrupted with additive isotropic Gaussian noise. The dW]JS
has two variants applicable to sampling procedures such as stochastic gradient Langevin dynam-
ics [24]: an energy-based model (EBM) trained via contrastive divergence [25] and a score-based
model trained using a form of denoising score matching. To demonstrate the capabilities of the
dWJS for protein family diversification, we first train it on the paired heavy and light chains of the
Observed Antibody Space (pOAS) [2] and generate novel antibodies meant to target the HER2 re-
ceptor. We evaluate the generative model in-silico with developing the Distributional Conformity
Score (DCS), an instantiation of a conformal transducer system (CTS) [26, 27], which returns a
randomized p-value testing the null hypothesis that a query sample is drawn independently and
identically distributed (IID) with respect to some reference distribution. We find that both vari-
ants of the dW]JS produce realistic antibody sequences with conserved framework regions and
mutated the complementarity determining regions (CDRs). We experimentally evaluated the top
ranking antibody samples and found they not only expressed in-vitro, but also bound to the target
antigen and outperformed other existing methods in doing so.

In Chapter 4, we develop the deep manifold sampler (DMS), a sequence denoising autoencoder
as well as two sampling methodologies to steer its generation. The DMS is a non-autoregressive

transformer encoder-decoder that accepts a corrupted, off manifold, sequence and denoises it to



its original state. The corruption process perturbs the original sequence by either inserting, delet-
ing, or substituting AL residues. In order to handle the length differences between the corrupted
and original sequence, the DMS follows Shu, et al [28] and is equipped with two learnable mod-
ules conditioned on the encoder representation of the corrupted sequence Z: length posterior
module P, (AL | Z) that classifies the length change and a length transformation f,(Z | Z, AL)
that expands or contracts the input by AL. Using an MCMC-like iterative denoising process, the
DMS samples a wider range of proteins by not only sampling sequences from the decoder, but
also estimating length changes AL € [—ALpyayx, ALmax| using the length posterior. Additionally,
we propose two methods for conditional generation using the DMS: classifier-guided, function bi-
ased sampling and classifier-free multi-segment preserving sampling (MSPS). In function-biased
sampling, we train an external classifier P, (Y | Z) to classify gene ontology (GO) terms [11]
given the corrupted sequence representation. During sampling, we add the gradient of the classi-
fier with respect to the function of interest V cyP, (Y | ) to the decoded, length transformed
representation Z. The DMS demonstrates the capability to produce target-function enriched
samples using this guidance methodology as well as traverse between distinct functional fam-
ilies. Multi-segment preserving sampling is an alternative guidance methodology that injects
expert information into the sampling process in order to concentrate sampling to user-defined,
non-preserved regions. In order to do so, we modify the corruption process at inference time to
apply perturbations along the non-preserved segments. In turn, we modify the length posterior
to distribute length changes in those segments while retaining absolute sequence identity in the
preserved regions to the original seed sequence. We demonstrate the ability of the DMS to con-
strain sampling to CDR regions in antibodies and produce realistic, i.e., high-likelihood samples.
These two conditional sampling methodologies described above result in a balanced approach to
exploratory sampling while exploiting external information.

In Chapter 5, we explore new directions in natural language conditioned protein design. Nat-

ural language communication with molecular machine learning systems, or molecular program-



ming (MP), offers a flexible interface for concisely articulating the desired properties of the target
molecules. Previously established molecular programming methods rely on either contrastive
alignment to learn a joint embedding space of protein sequences and text [29-31] or as effective
translation systems between text and protein [32]. Unfortunately, evaluation approaches for MP
systems is not yet standardized, due partially to the ill-defined nature of text-based molecular
concepts.

In this chapter, we describe two alternative MP systems condition on text embeddings rather
than natural language itself. The advantages of embedding-based conditioning are not only based
in J. R. Firth’s distributional hypothesis: “A word is characterized by the company it keeps”, but
also in the emergent additive nature of semantic embeddings that enables operations such as con-
cept algebra [17]. The first approach, interrogates the utility of text conditioning for mutation ef-
fect prediction. We describe a general protein language model fine-tuning method, Conditioning
on Residue-level Annotations from Text (CRATE), that allows for the injection of conditioning in-
formation, in particular token-level annotations such as binding and active sites, during training.
We benchmark CRATE on the ProteinGym [33], a dataset of deep mutational scan (DMS) assays
surveying a variety of selection types and protein functions. We find that not only does CRATE-
training results in improved performance compared to the baseline unconditional model, but also
it enables task-specific conditioning in order to improve performance on a per-assay basis. In the
second approach, we apply the same embedding conditioning methodology as in CRATE to train
a text-conditioned Walk-Jump sampler (tcWJS) module. Specifically, we fine-tune ESM2 using
the NEB approach with the additional input of text embeddings at each hidden layer. In order
to evaluate the tcWJS against a state-of-the-art baseline, we use two portable evaluations to test
validity, whether the output sequence resembles a realistic protein, and language alignment, the
coherence of the output molecule with the conditioning text. To test validity, we draw from the
evaluations developed in Chapter 4 by measuring the pseudo-likelihood of generated samples

given by a surrogate model relative to that of putative proteins in SwissProt [34]. To test lan-



guage alignment, we build off of the distributional conformity score developed in Chapter 3 to
instantiate a new CTS called the concept-conditional distributional conformity score (ccDCS),
which reports a p-value testing whether a given sample is drawn from a reference distribution
of proteins annotated with similar text to the input. We find that tcW]JS is competitive with the
state-of-the-art model MP4 in both language alignment and validity.

The rest of this dissertation is organized in the following manner. Chapter 2 provides back-
ground information on protein biology, historical context on protein design, descriptions of nec-
essary bioinformatics tools and databases, and a brief literature review protein sequence model-
ing and generation. Chapter 3 is a reprint of the published work describing the discrete Walk-
Jump sampler. Chapter 4 contains two reprinted articles, the first introducing the Deep Manifold
Sampler and function-guided design and the second describing the multi-segment preserving
sampling algorithm. Chapter 5 introduces the CRATE fine-tuning method and describes the text-
conditioned Walk-Jump sampler. We conclude in Chapter 6 with a summary of the work as well

as a description of future directions and outlook.



2 BACKGROUND MATERIAL

This chapter primes the reader for the following chapters by providing essential context on
topics related to computational protein design. In Section 2.1, we discuss the necessary basis for
protein biology as well as computational tools for protein sequence clustering and categoriza-

tion.In Section 2.4, we review modern methods for modeling and sampling protein sequences.

2.1 PROTEIN BIOLOGY, STRUCTURE, AND FUNCTION

Proteins are a diverse class of large, organic molecules that participate in almost every bio-
logical process in every living organism. These molecular machines are linear polypeptide chains
composed of amino acids, and highly specialized to carry out specific functions such as catalysis of
reactions, signaling to other systems, and mechanical interaction with other biomolecules (often
proteins) to create materials or other products. Proteins are located all throughout the organismal
system in and outside of cells. Intracellular proteins are found in different cellular organelles and
expressed to implement the functionality of the cell. Extracellular proteins are located outside of
the cell membrane and may act by signaling to other cells or biological subsystems. Transmem-
brane proteins act as an intermediate conduit between either side of the cell membrane. This

section provides necessary details to contextualize the protein modality for computer scientists.



2.1.1 MOLECULAR COMPOSITION OF PROTEINS

Proteins are linear chains of amino acids, or residues. Amino acids are small molecules with
three functional groups: an amino group, a carboxyl group, and a variable side chain that con-
fers its electro-physical properties. There are twenty naturally occuring amino acids, each with

different molecular properties.

H—N

H—C,—R

(@)

(b)

Figure 2.1: 2.1(a): Diagram of a two amino acids joined by a peptide bond. Each R-group represents a
side-chain. 2.1(b): Quaternary structure of a crystallized Chymotrypsin protein (PDB ID: 2HCA). Loops,
a-helices, and f-strands are colored in magenta, cyan, and red respectively.

Consecutive amino acids along a protein sequence are joined via a peptide bond, as seen in
Figure 2.1(a), that connect the carboxyl and amino groups, forming the protein backbone.

Local force-fields induced by the molecular properties of adjacent amino acids along pref-
erence short subsequences to take on certain geometries, or secondary structures: a-helices, f-

strands, and loosely structured loop regions. These secondary structure elements act on one



another forcing the protein to fold into ane energetically favorable conformation called the ter-
tiary structure. The tertiary structure may consist of one or more constituent domains which
may themselves play different functional roles [35].

Finally, tertiary structures may fold in complex with one another to construct multimeric

assemblies called quaternary structure (see Figure 2.1(b)).

2.1.1.1 SEQUENCE HOMOLOGY

Evolution is the product of random recombination and variation of ancestral genetic code
subject to environmental selective pressure. As organisms evolve, mutations in genetic code
results in downstream functional speciation of biological products such as proteins. Homologous
proteins arise from two different speciation events: splitting and duplication [36, 37]. In a splitting
event, gene sequences diverge and although non-identical, they code for functionally equivalent
protein products, or orthologs (for example, horse and human myoglobin). In a duplication event,
a gene sequence is duplicated with variation, creating a paralog that may evolve to perform a

different but related function (for example, horse myoglobin and horse hemoglobin).

2.2 EARLY METHODS IN PROTEIN DESIGN

Engineering proteins is a long sought after grand challenge. Early pioneers proposed “rational
design” - the systematic modification of protein sequences based on hypotheses on the relation-
ship between protein structure and function [38, 39]. Contemporaries proposed site-directed
mutagenesis [40, 41] to methodically test hypotheses. Arnold’s seminal work on directed evo-
lution [42] proposed mimicking natural selection by evaluating the fitness of random mutations
along a given sequence. Despite these early methods setting the stage for modern protein engi-
neering and design, the throughput is limited by costs, in money and in time, of the experimental

procedures. Later, Computational models of protein folding such as Rosetta [43, 44] were used



to optimize sequences by inverse folding resulted in the first de novo designed protein [45]. Still,
the computational cost of mechanistic modeling techniques as well necessitate faster, more data-

driven methods for general design problems.

2.3 BIOINFORMATICS TOOLS

Proteins are large and complex biomolecules with a diverse species of functions and proper-
ties. In order to better understand the sequence, structure, and function landscapes, a variety of

tools have been developed to find patterns, cluster, and label proteins for downstream analysis.

2.3.1 SEQUENCE CLUSTERING

As discussed in Section 2.1.1.1, homologous proteins may be functionally similar as well.
Sequence similarity-based clustering methods group samples using a sequence similarity ker-
nel. Typically, clustering involves setting a similarity threshold, finding diverse cluster centroids
whose similarity does not exceed the threshold, and assigning membership by finding the centroid
of maximal similarity. Sequence similarity is found by aligning sequences — matching preserved
domains according to a transition matrix such as BLOSUM62 [46] and offsetting with gap charac-
ters — using dynamic programming algorithms such as Smith-Waterman or Needleman-Wunsch.

Fast tools for clustering such as MMSeqs2 [47] enables agglomeration of large sequence
databases and downstream applications such as search/retrieval (linear scan of centroids using
e.g., BLAST [48]), annotation transfer (copying labels among cluster members), and dataset debi-
asing (sampling ecumenically from clusters during e.g., model training). The UniRef databases [49]
are a collection of non-redundant sequence cluster databases.

Sequence clusters are commonly postulated to perform similar functions and hence a variety
of classification systems have been developed to categorize clusters as well as provide a taxonomy

of their functions.



2.3.2 DATABASES AND ANNOTATION TYPES

Protein sequences are deposited into central databases such as UniProt [50] with either ex-
perimental evidence from large-scale sequencing initiatives [7-10, 51] or as hypothetical protein
predictions from open reading frames (ORFs) [52]. The UniProt database is divided into separate
sources: SwissProt [53], a manually curated database of richly annotated proteins and UniProt-
TrEMBL, a larger scale database with electronic curation and annotations.

Advancements in experimental technologies [54] have scaled sequence repositories to big data
and enabled use of modern deep learning methods. Sequence data can be retrieved as strings of
amino acids following the standard coding scheme of the International Union of Pure and Applied

Chemistry [55], which account for ambiguous and nonstandard amino acids.

2.3.2.1 ANNOTATIONS

Protein sequences are often accompanied with either experimentally verified or electronic
annotations meant to characterize their structure and function. For the purpose of this work,

annotations may appear in three different forms:

1. Labels consisting of a record identity number and optionally a natural language description.
2. Numeric molecular properties, either computationally derived or experimentally confirmed.

3. Free-form, natural language descriptions.

Annotations of this form may apply to the entire protein sequence (global) or ascribed to a
specific subsequence or domain (residue-level).

We review a routinely used computational annotation sources below.

« Pfam [56] uses cluster-specific profile hidden markov models (pHMMs) to assign sequence
labels. Clusters are interpreted and labeled by a mix of automation and expert evaluation

to ascribe a semantic meaning.
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« CATH [13] is a structural taxonomy of protein domains wherein each successive tier of
the system constitutes a more specific fold classification. The acronym stands for Class,
Architecture, Topology, and Homologous superfamily. All tiers besides the last are assigned

using a structural, rather than sequence, similarity kernel.

« InterPro [57] combines annotations from several sources including Pfam and CATH. Inter-
Pro annotations are assigned by ensembling the predictions from each source and unifying

them under a common label system.

Each of the above listed annotation sources is linked to separate function classification sys-
tems that seek to provide a taxonomy of protein function. The Gene Ontology (GO) [11] is a
directed acyclic graph (DAG) of three disjoint components standing for different aspects of func-
tion: Molecular function (MF), biological process (BP), and cellular component (CC). Each node
of the separate components is connected to its eponymous root. Traversal along the path towards

the root represents synonymous generalization.

2.4 PROTEIN SEQUENCE MODELING

The most abundant form of protein data are amino acid sequences. The relationship between
sequence, structure, and function (see Section 2.1.1) implies that sequences contain a great deal
of information on the function of the protein that can be used for modeling and prediction.

Both protein sequences and natural language text are modalities of discrete tokens with com-
plex, often long-range dependencies. Consequentially, innovations in natural language process-

ing (NLP) are often adapted in bioinformatics.
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2.4.1 MATHEMATICAL DESCRIPTION

Formally, let V be a finite vocabulary of discrete tokens vy, vy, . .., vy and let X = [x;]_; be

t=1
a sequence of length ¢ where x; € V. Sequences are drawn with respect to a density model X ~
P(X) = P(xy,x, . ..,x¢). This work considers two factorizations of P(X). The autoregressive, or

causal factorization of P(X) is
¢
P(x) = [ PCalx<r) (2.1)
t=1

where x; = [xk]]tc_:ll. Models trained with the autoregressive formulation be readily sampled

by drawing tokens from P(x; | x<;) until reaching a prescribed stopping criteria. The non-

autogressive, or bidirectional factorization of P(X) is

t
PX) = | [P | 2) (22)
t=1

where x\; represents all other tokens in the sequence apart from x;. Models trained in a non-
autoregressive manner cannot be readily sampled without a prescribed procedure. No matter the
factorization, models of both types are likelihood-based models in that they learn to maximize the
likelihood (or pseudo-likelihood in the case of bidirectional models) of a collection of observed
sequences. Bidirectional models, such as masked language models (MLMs), typically learn the
pseudo-likelihood via a denoising objective [58, 59].

Yet another formulation of P(X) expresses it as a Boltzmann distribution

exp(—fE(X))

P(X) = ~

(2.3)

where Z = ) yeq+ exp(—PE(X)). Energy-based models (EBMs) Eg(X) estimate the unnormalized

log-probability E(X) and can be trained by minimizing, e.g., contrastive divergence (CD) [60].
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Sampling using an energy-based model with a derivative (as is the case for CD-based models) can
be implemeted by stochastic gradient Langevin dynamics (SGLD) [24, 61]. Score-based generative
models [21, 62, 63] such as discrete diffusion models [64, 65] represent the score, or gradient of

the log-density, and are similarly applicable to SGLD.

2.4.1.1 GENERATIVE MODELS FOR SEQUENCE DESIGN

Protein generation is a core module in the design workflow wherein novel sequences are
sampled according to the learned density model. For autoregressive models, sampling is readily
available by decoding left-to-right, generating one token at a time. Pseudo-likelihood models
such as MLMs typically use an MCMC-like procedure by starting with a initial, possibly random,
sequence and iteratively masking/corrupting and denoising it to approximate the joint density in
Equation 2.2. Models of or with explicit access to the score of a sample are applicable to sampling
schemes such as SGLD. Techniques to steer generation of these models can also be implemented
by external (classifier-based) or internal (classifier-free) guidance. In classifier-guided genera-
tion [66-68], the gradient of an external classifier with respect to a class of instance is added as a
supplementary signal during sampling. In classifier-free guidance [69], the model itself is made
to represent the joint distribution of data and properties by, e.g., prepending class tokens to the

input.

2.4.2 HISTORICAL CONTEXT OF BIOLOGICAL SEQUENCE MODELING

Early methods adapted Shannon’s n-gram model [70] to biological sequence by analyzing k-
length subsequences called k-mers s[71-73]. In practice, such fixed-length prefix methods use a
limited context window that does not allow the model to approximate the entire context, require
storing a large probability table of size |'V|*~! x |V|, and call for heuristics to approximate k-mers
not found in the training set.

Hidden Markov Models (HMMs) for text [74, 75] brought on innovations in bioinformat-
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ics[76-78]. Mathematically, HMMs defer from the n-gram model by leveraging Markovian hid-
den states and estimating observable token emission probabilities. However, these models rely
on restrictive assumptions about the dependency structure of the sequence and require a com-
putationally costly sequence alignment, which may even still under-specify the distribution of
interest if it is too shallow. Additionally, while HMM:s are still in wide use today for classification
(see Section 2.3.2.1), the primary task in protein design is sequence generation, where modern
methods vastly outperform them.

Deep learning has since offered a powerful framework for sequence recognition that alleviates
many of the shortcomings of preceding methods. One-dimensional convolutional networks learn
localized spectral filters intuitively similar to k-mers have demonstrated competitive performance
in protein function prediction [79] as well as general sequence modeling [80]. Recurrent and and
gated neural networks [81-83] demonstrated improved performance over HMMs and capability

to learn powerful representations for downstream tasks.

2.4.3 TRANSFORMER REVOLUTION

Prior to the seminal work describing the transformer architecture [84], gated neural networks
were the state-of-the-art in protein sequence modeling. However, transformer-based protein
foundation models [85-87] have since demonstrated improved performance over gated neural
networks on a variety of axes including representational capacity, longer context windows, in-

terpretability, and training speed and stability.

« Representational capacity. Transformer models have shown to outpace gated networks in

scaling of model size [83, 88].

« Longer context windows. Gated networks transmit information at each step which may filter
out dependencies over very long time-scales. In contrast, the self-attention mechanism in

transformers not only parallelizes the information sharing step but allows it to be shared
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anywhere along the sequence. Moreover, memory efficient implementations of the atten-
tion mechanism [89] enable subquadratic storage complexity that allows longer contexts

to be captured.

« Interpretability. The attention maps of a transformer network are more easily understood
than the gating and memory mechanisms of gated units [90]. Another recent line of work
applies mechanistic intepretability uses sparse autoencoders to protein language models [91-

93].

o Training speed and stability. Contrary to gated networks, even autoregressive transformer-
based model do not suffer from a sequential computation bottleneck by virtue of the atten-
tion mask. Transformers also do not suffer from common issues during training such as

exploding and vanishing gradients.

2.4.3.1 INDUCTIVE BIAS AND MASKING

The transformer attention mechanism calculates pairwise attention weights along the se-
quence, imposing no prior on the dependency structure. Inductive biases may be asserted onto
the model by masking the attention maps.

Causal (autoregressive) masks are lower triangular matrices that disallow attention to pass
backwards in time (i.e., future tokens cannot inform the representation of their predecessors). A
priori, causal masking may not seem like the ideal choice for protein sequence modeling as the
N-to-C terminus ordering is arbitrary from a sequence modeling perspective. However, autore-
gressive pLMs such as ProGen [87, 94] have demonstrated state-of-the-art generation by training
with N-to-C and C-to-N terminus ordering and labeling the ordering with specialized start/end
tokens. Causal language models conform to the formulation in subsection 2.4.1 and can be readily
sampled by iteratively generating sequences token-wise.

Masked language models (MLMs) [58, 86] process the input sequence without imposing an
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information flow order. During training, random subsets of tokens are masked and reconstructed
by the model using the unmasked context. Models are optimized to reconstructing masked to-
kens given the surrounding information. As such, masked language models are not restricted to a
specific direction information flow. Span masking [95] is a variant of masked language modeling
in which contiguous token spans are dropped out. Masked language models impose an unordered
dependency structure that enables past and future tokens to pass information. While the induc-
tive bias of a masked language model aligns more closely with the dependency structure along
a protein sequence, sequences from such models cannot be readily sampled without a decoding
heuristic or iterative sampling procedure.

Although in natural language the choice of tokenizer has been shown to affect performance [96,
97], protein language models (excluding e.g., ProtGPT2 [98]) often use a simple amino acid level
tokenizer to enable complete control over the output and force the model to learn the multi-
token dependencies. A recent line of work however has investigated the utility of other tok-
enization strategies [99] as well as the ability to ingest other protein modalities such as structure

tokens [100, 101].
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3 D1SCRETE WALK JUMP SAMPLER

This chapter is a reprint of published paper:
Protein Discovery with Discrete Walk-Jump Sampling
Nathan FreyT, Daniel Berenbergi, Karina Zadorozhny, Joseph Kleinhenz, Julien Lafrance-Vanasse,
Isidro Hotzel, Yan Wu, Stephen Ra, Richard Bonneau, Kyunghyun Cho, Andreas Loukas, Vladimir

Gligorijevi¢, and Saeed Saremi International Conference on Learning Representations (ICLR) 2024

T These authors contributed equally to the reproduced part in this thesis.

3.1 INTRODUCTION

Discrete sequence generation poses a number of challenges to gradient-based generative mod-
els. Generative models must be expressive enough to faithfully capture the underlying data dis-
tribution, while also having controllable outputs that are novel, unique, diverse, and respect the
constraints of the problem space. Energy-based models (EBMs) [102, 103] fit an energy function
that specifies a probability distribution over data analogous to the Boltzmann distribution from
statistical physics. Giving access to an easily computable energy is an advantage of EBMs, but
on the flip-side they can be difficult to train and sample from. Denoising objectives based on
score matching [62, 104] and the related advancements in diffusion models [105, 106] overcome

these issues, but these either model the energy gradient or only provide access to an empirical
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lower-bound of the likelihood.

Protein design is an instance of the discrete sequence generation problem, wherein the chal-
lenge is to find useful proteins in the large, discrete, and sparsely functional space Romero and
Arnold [107] of dimension 20" for proteins of length L. Here, we consider the specific problem
of generative modeling of antibodies, a class of proteins with highly conserved structure that are
of immense interest for therapeutics. In addition to the qualities mentioned above, generative
models for antibodies must be sample-efficient because of the relatively small size of datasets
with therapeutic antibodies Kim et al. [108]. Antibodies consist of well-conserved domains and
high-entropy variable regions, so leveraging evolutionary information from pre-trained protein
language models is not an immediate solution. We distinguish ab initio protein discovery and de-
sign (producing novel, functional proteins given some training samples), which is the focus of this
work, from de novo design, which we define as the generation of novel proteins without starting
material. Existing autoregressive protein design methods Jin et al. [109] are inefficient and can
suffer from accumulation of errors and high inference latency, while current non-autoregressive
diffusion models are similarly inefficient and poorly optimized for real discovery and design tasks
Kong, Huang, and Liu [110]. Our goal here is to invent an efficient, non-autoregressive generative
modeling paradigm for discrete data that produces high quality, novel samples.

To this end, we introduce Smoothed Discrete Sampling (SDS), a new formalism for training
and sampling from discrete generative models. We propose a novel algorithm, discrete Walk-
Jump Sampling (dW]JS), a method building on the neural empirical Bayes (NEB) [20] formalism,
that addresses the brittleness of discrete EBMs and diffusion models and in doing so, provides a
robust and general framework for protein discovery and design." We also design a metric called
the Distributional Conformity Score (DCS), which is a simple scalar score for protein sample
quality. Our results rescue EBMs for discrete distribution modeling and question the need for

diffusion models with multiple noise scales in protein discovery.

Thttps://github.com/prescient-design/walk-jump
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Our contributions are as follows:

+ We introduce a new paradigm for modeling discrete data distributions, Smoothed Discrete
Sampling (SDS), building on the neural empirical Bayes framework. We propose the dis-
crete Walk-Jump sampling algorithm, which uses uncoupled, separately trained score- and
energy-based models to learn noisy data distributions and sample discrete data. dW]JS en-
ables fast, non-autoregressive sampling with variable length discrete outputs. We also de-

sign a novel architecture for discrete EBMs.

+ Our method simplifies score-based model training for discrete data by requiring only a sin-
gle noise level and no noise schedule, which alleviates the brittleness, training instabilities,
and slow sampling of diffusion models. Our method also resolves difficulties in training
EBMs, obviating the need for many common EBM training tricks (replay buffer, £, norm

penalty, rejection sampling, etc.), while preserving good sample quality and fast sampling.

« We demonstrate the utility of our approach in the context of ab initio protein discovery and
design - generating novel, biophysically-valid protein sequences from models trained on
repertoires of functional molecules. We validate our method with in vitro experiments. Our
method outperforms autoregressive and masked protein language models, large language

models, discrete sequence and structure-sequence diffusion, and score-based baselines.
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Figure 3.1: Selected samples from a single Markov chain Monte Carlo sampling run of discrete Walk-
Jump sampling (our method). Protein color corresponds to different antibody germlines (classes). Samples
are folded with EquiFold [1] for visualization purposes. Discrete walk-jump sampling exhibits fast mixing
and explores diverse modes of the distribution in a single chain.

3.2 BACKGROUND

3.2.1 ENERGY-BASED MODELS

EBMs are a class of models that learn an energy function f; : X — R mapping inputs x (in R%)

to a scalar “energy” value. The data distribution is approximated by the Boltzmann distribution

polx) oc e 00, (3.1)

EBMs are typically trained via contrastive divergence [25], and new samples are drawn from
po(x) by Markov-Chain Monte Carlo (MCMC). Details of the loss function used in this work are
given in Section 3.3. In Langevin MCMC, samples are initialized from a known data point or

random noise and refined with (discretized) Langevin diffusion

X1 = Xk — O Vo (xg) + @é‘k, e ~ N(0,1), (3.2)

where V denotes the gradient of the energy function with respect to inputs, k is the sampling

step, ¢ is the (discretization) step size, and the noise ¢ is drawn from the normal distribution at
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each step.

3.2.2 NEURAL EMPIRICAL BAYES

In NEB, the random variable X is transformed with additive Gaussian noise Y = X+N (0, 62I;).

The least-squares estimator of X given Y = y is given by [23, 111]

£(y) =y +0°Viegp(y), (3.3)

where p(y) = f p(y|x)p(x)dx is the probability distribution function of the smoothed density.?
This estimator is often expressed directly in terms of g(y) = V log p(y) known as the score func-
tion [62] which is parameterized with a neural network denoted by g, : R? — R The least-

squares estimator then takes the following parametric form:

%5(y) = y+0°g94(y). (3.4)

Putting this all together leads to the following learning objective

L(9) = Exepyymplyin) Ix = o ()12, (3.5)

which is optimized with stochastic gradient descent. Notably, no MCMC sampling is required
during learning. In short, the objective is “learning to denoise” with an empirical Bayes formula-
tion (discussed further in Appendix A.2.3). Additionally, the NEB approach conveniently requires
a single hyperparameter o controlling the smoothness of the distribution P(Y). We estimate the

optimal ¢ in Appendix A.1.5.

2We follow the convention p(x) = px(x), p(y) = py(y), etc.
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Figure 3.2: Discrete walk-jump sampling. a The noising and denoising process is applied to antibody
proteins. b Discrete inputs x are smoothed with isotropic Gaussian noise, ¢ ~ N (0, 6°I;), to noisy inputs,
y = x + €. A discrete energy-based model (dEBM) parameterizes the energy function fp(y) of noisy data.
Noisy data is sampled with the energy function, and denoised with a separate denoising ByteNet network
to clean samples, X4 (y). ¢ The “walk" sampling steps on the noisy data manifold with Langevin MCMC are
totally decoupled from the “jump” steps to clean samples. d The dEBM takes noisy inputs y, concatenates
them with a 1d positional encoding, p14, passes through an MLP and a 3 layer CNN, and concatenates
the outputs with an embedding z; of the inputs into a hidden state, h. h is passed through an MLP and
returns the energy fp(y).

3.3 ANTIBODY DISCOVERY AND DESIGN

3.3.1 DISCRETE WALK-JUMP SAMPLING

Following training of the denoising network, gy, one can sample noisy data using the learned
score function g,4(y) with Langevin MCMC (replace —V f with g in Equation 3.2). For any such
draws yy, clean samples from the true data manifold M are obtained by “jumping” back to M
with the least-squares estimator X4 (yx) = yx + 694 (yk). This is the walk-jump sampling (WJS)
scheme. A key property of WJS is the fact that the least-squares estimation (jump) is decoupled
from the Langevin MCMC (walk).

Here, we take advantage of this decoupling to train an EBM with maximum likelihood esti-
mation on the smoothed distribution of noisy sequences, generate noisy samples with Langevin

MCMC, and denoise samples with a separately trained neural network, the least-squares estima-
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tor. The algorithm for discrete walk-jump sampling is given in Algo. 1. Our algorithm is general
and applies to any discrete sequence inputs of a fixed vocabulary. In Fig. 3.1 we show samples
generated from a single chain of MCMC. Unlike a diffusion model, every sample along the chain
collectively forms a valid set of samples from the underlying distribution, because of the decou-
pled walk (sampling) and jump (denoising) steps. dWJS also produces fast-mixing chains, such
that many diverse modes (protein classes) are sampled in a single chain. Samples are folded with
EquiFold [1] for visualization and confirmation of structural validity.

The EBM is trained by maximizing the log-likelihood of noisy data under the model:

arg max By [10g po(y)] = arg max (B Ly )] =By Lo(@™]). - (30

where y* are noisy training data and y~ are noisy data sampled from the model.

With this objective, the model aims to decrease the energy of noisy training data (“positive”
samples y*) while increasing the energy of noisy data sampled from the model (“negative” samples
y~) in expectation. The following identity is behind the positive/negative phases in the EBM

training:

Volog po(y) = —Vofo(y) — Vglog Z(0)

[ Vofo(y)e oWy
Z(0)

= —V@f‘g(y) + / ngé(y) : p@(y)dy

=-Vofo(y) +
(37)

= =Vofy(y) +Bypy) [Vofo ()],

where Z(0) = / e %W dy is the partition function.
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Algorithm 1: Discrete Walk-Jump Sampling

Input: Denoiser, g4 (y), energy-based model, fp(y)

Output: Noisy samples y ~ p(y), denoised samples x(y)

yo ~ Unif ([0, 1]d) + N(0, 0%1y)

=Y

2 fort=0,...,T—-1do
3 Utv1 < Yt —5Vyf9(yt) +\/%€t &~ N(0,1y)
4 end

X1 — yr +o%g4(yr)

(5]

¢ return argmaxxr // to recover one-hot encoding

VARIABLE LENGTH PROTEIN SEQUENCE GENERATION. We represent antibody protein molecules
as x = (x1,...,x4), where x; € {1,...,20} corresponds to the amino acid (AA) type at position
l. Sequences from the Observed Antibody Space (OAS) database [2] are aligned according to the
AHo numbering scheme [112] using the ANARCI [113] package and one-hot encoded. Align-
ing sequences in this way is a practical solution to handling insertions and deletions, which are
otherwise troublesome for models that require fixed length inputs and outputs; alignment intro-
duces a “gap" token that can be introduced or removed during sampling to effectively change the
length of sequences. This allows the model to capture the distribution of lengths present in natu-
ral antibodies. The alignment step maps heavy and light chain sequences of varying lengths to a
standard, gapped input size of 149 and 148 respectively with 21 possible discrete tokens including
the gap. Thus, the input dimension for every sequence becomes d = (149 + 148) x 21. Without
loss of generality, any set of proteins can be aligned with a multiple sequence alignment [114].
For other classes of discrete data, pseudo-alignment tokens can be used and randomly inserted
into the inputs, or simple BOS and EOS tokens can be used and sampled. An EBM is trained
via contrastive divergence on the manifold of smoothed, noisy one-hot encodings, y, given by

y =x+e¢ ¢~ N(0,0%;), where x € {0, 1}d. A separate denoising model is trained with the
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objective in Eq. 3.5. New antibody sequences are generated (Fig. 3.2) by sampling noisy samples
with Langevin MCMC following gradients from the EBM, denoising with the least-squares esti-
mator, and taking argmax X to recover a one-hot encoding. Further details related to training and

network architecture are given in Appendix A.1.

PROTEIN DESIGN Vs DISCOVERY. Protein discovery is the task of generating novel, unique, and
valid samples. Protein design refers to taking some starting sequence and making edits to improve
function. With dWJS we achieve discovery through unconditional sampling, while design is
performed via constrained sampling and scoring. That is, we impose the following constraint

in the form of a binary projection matrix
PTargmax x(y,t) = P's

for P € {0, 1}, where c is the number of conserved tokens in the sequence, y is the noisy
sequence at time step ¢ of Langevin MCMC, x(y,t) is the denoised sample at time ¢, and s is
the starting sequence. This constraint ensures that the specified regions of the sequence are

conserved, while the non-conserved regions are free to change during Langevin MCMC.

3.3.2 DERIVATION OF OPTIMAL NOISE LEVEL FOR DISCRETE SEQUENCE DATA

Throughout the experiments in Section 3.4, we must choose what noise level, o, to use for
training. Empirically, we find that in the protein discovery setting, o > 0.5 is sufficient for getting
good sample quality. Here, we provide some intuition for choosing a good o, based on a geometric

picture of the concentration of the measure [20]. We define the matrix y with entries

i = |1 Xi — Xir||
12 2\/3 s

(3.8)

25



where d is the dimension of the data and the ﬁ scaling comes from the concentration of isotropic

Gaussians in high dimensions. The critical noise level, o, is defined as
O¢ = Mmax xijj’
i’

such that for ¢ > o, all noisy data have some degree of overlap. For our antibody sequence
data, the statistics of the y matrix are given in Table 3.1 and the histogram of y; values is shown
in Appendix A.1.6. We find that o, ~ 0.5, which agrees with our empirical hyperparameter
optimization. Estimating o, in this way serves to motivate the empirical success of the ¢ used in
our experiments, and provides helpful guidance on the scale of ¢ to use for discrete data. Here we
take d to be the length of the input vector (d = L = 297 for aligned antibody sequences); for the
flattened sparse one-hot matrices with vocabulary size 21, d = 6237. This scales o, by 0.22, which

still gives a useful scale for o, but is not optimal because of the sparsity of the one-hot matrices.

Table 3.1: Statistics of the distance matrix, y, for discrete antibody sequence data.

min median mean max ~ o,

x 0.17 042 0.41 0.51

3.3.3 DISTRIBUTIONAL CONFORMITY SCORE

The Fréchet inception distance (FID) [115] (a metric for image generation quality) and the
BLEU (BiLingual Evaluation Understudy) score [116] (for evaluating the quality of machine trans-
lation) greatly simplify the evaluation of proposed methods; protein generation lacks such met-
rics, which motivates us to introduce the “distributional conformity score” (DCS) (Fig. 3.3). The
goal of the DCS is to provide a succinct description of how likely generated samples are with re-

spect to a reference distribution, while maintaining novelty and diversity. DCS is designed such
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Figure 3.3: in silico designs sampled with dW]JS are compared to a reference set of validation samples.
Distributions are characterized with a set of sample quality metrics. Joint density estimation is used to
compute the likelihood of designs versus the validation set and likelihoods are condensed into a distribu-
tional conformity score that characterizes the similarity of generated samples to the reference set.

that improving sample quality corresponds directly to increased probability of generating real,
biophysically valid proteins.

We evaluate the probability that our generated sequences conform to a reference distribution
using the conformal transducer system [26, 27]. Let X € R Y eR,and Z = X X Y.° A confor-
mity measure A is a measurable function that maps a sequence (zi,...,z,) € Z" to a set of real
numbers (a1, ..., a,). Here, we define A to be the likelihood under the joint density over various
properties, including biophysical properties and statistical properties, such as a log-probability
under a protein language model (the properties considered, further details, and comparisons to
other measures of protein-likeness are given in Appendix A.6). To avoid overfitting the estimator,
we split the reference set into a fitting set and a validation set (Algo. 2). In practice, the confor-
mity measure A and the scores aj, ..., ax may be pre-computed. At the time of computing the
distributional conformity of a query sample, the only calculations that remain are of the score a
and the sum to calculate p¥ on line 6 of Algo. 2. The sum can be reduced to O(log k) complexity
by storing the reference values ay, ..., ax—; in a binary search tree and performing a search for

Afe.

3In the discussion of distributional conformity score, x refers to sample features; elsewhere in the paper x refers
to clean data. Here, y refers to labels; elsewhere in the paper y refers to noisy data.
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In our context, the reference distribution 9 comprises all antibodies and the label y represents
the property of interest such as expression or binding. Empirically, we find that DCS is a useful
in silico evaluation metric for developing generative methods and hyperparameter optimization,

and that methods with DCS > 0.3 yield nearly 100% expressing proteins in the wet lab.

Algorithm 2: Distributional conformity scores for evaluating generated designs
Input: Reference distribution D, test example x € X, conformity measure A, label y

Output: p-value p? (the fraction of validation examples that are less similar to D,|, than

x)

(=

Sample (z1,...,2,),zi ~ D,y and a held-out validation set (Zy, ..., Zx_1),Z; ~ Dy

Set Zx « (x,y)

N

3 fori=1tok do

ai — Az, ..., 2n, Zi)

-

5 end

=)

k
P i Zim e < o]

return pY

~N

3.4 EXPERIMENTS

We evaluate our method, discrete Walk-jump sampling (dW]JS) (Fig. 3.2), on three antibody
generation tasks: 1) distribution learning on paired observed antibody space [2]; 2) the in vitro
expression and purification of novel antibodies; and 3) most importantly, functional therapeutic
antibody design [117]. Crucially, we compare methods using our distributional conformity score,
which is a sample-to-distribution metric to assess sample quality (analogous to an FID score),
rather than the sequence recovery metrics used in previous antibody design work [109, 110].
Sequence recovery is a poor objective for our goal, which is the discovery of novel (large edit

distance from known examples), functional antibodies. Details related to model architectures,
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Table 3.2: Ablikeness metrics, uniqueness, diversity, and distributional conformity scores.

IntDivT DCST

Model Woroperty | Unique T Egige T
dWJS (energy-based) 0.056 1.0 58.4
dW]S (score-based)  0.065 0.97 62.7
SeqVDM 0.062 1.0 60.0
DEEN 0.087 0.99 50.9
GPT 3.5 0.14 0.66 55.4
IgLM 0.08 1.0 48.6
ESM2 0.15 1.0 70.99*

55.3
65.1
57.4
42.7
46.1
34.6
77.56*

0.38
0.49
0.40
0.41
0.23
0.533
0.061

Table 3.3: Measured protein synthesis.

Model

totalexpressed T

dW]JS (score-based)
dWJS (energy-based)
EBM

1.0
0.97
0.42

training, baseline methods, and sequence sampling are in Appendix A.1.

3.4.1 DW]JS GENERATES NATURAL, NOVEL, DIVERSE ANTIBODIES IN SILICO

We measure generative model performance with a suite of “antibody likeness" (ab-likeness)
metrics including labels derived from the AA sequence with Biopython [118]. Sequence property
metrics are condensed into a single scalar metric by computing the distributional conformity
score and the normalized average Wasserstein distance Wproperty between the property distribu-
tions of samples and a validation set. The average total edit distance E4;5; summarizes the novelty
and diversity of samples compared to the validation set, while internal diversity (IntDiv) repre-

sents the average total edit distance between samples. Our method achieves strong ablikeness

results (Table 3.2), simply by increasing o to > 0.5.
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dW]JS with dEBM sampling achieves the best agreement with the validation set property dis-
tribution and highest percentage of unique samples, while dW]JS with score-based sampling has
high distributional conformity score, novelty, and diversity. We compare to a latent sequence dif-
fusion method (SeqVDM), (a discrete generalization of variational diffusion; [119]), a score-based
model with an energy parameterization (DEEN), a transformer-based language model trained
specifically for antibody design (IgLM); [120], ESM2 [121], and a pre-trained large language model
(LLM) (GPT 3.5). Our dWJS methods have faster sampling time and lower memory footprint than
diffusion, autoregressive, and score-based baselines (Table A.3), while also having better sample
quality. Our methods outperform IgLM on antibody-likeness, edit distance, and internal diver-
sity metrics, whereas IgLM has the best DC score and the lowest (worst) IntDiv. This indicates
that IgLM samples are extremely close to the reference set and samples are similar to one an-
other. As our score-based dWJS has a DC score of 0.49 and a 100% expression rate in the lab, it
is likely that all IgLM samples would successfully express in the lab as well. IgLM does produce
100% unique samples, outperforming score-based dW]JS and GPT 3.5. Due to IgLM being an au-
toregressive sampler, our method (energy-based dWJS) has 43x faster sampling speed, which is
useful when generating and ranking large numbers of designs. To mimic the ab initio generation
task for ESM2, we increase the masking percentage as high as we can (40%) while still generating
valid samples and infill validation set sequences to generate new samples. As expected, ESM2
performs extremely poorly in generating ab initio samples with good antibody-likeness, because
it is not trained for generation. It generates highly repetitive sequences that are very dissimilar
to antibodies (hence the high, but meaningless, E4;st and IntDiv scores). As a masked language
model, ESM2 infilling is the fastest sampler, but at the cost of poor sample quality. Details on the

baseline methods, and IgLM and GPT 3.5 prompts are given in Appendices A.1 and A.4.
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Table 3.4: Predicted and measured antibody binding affinity.

Model Pbind T totalping T
dW]JS (energy-based) (Ours) 0.96 0.70
dW]S (score-based) (Ours) 0.95 N/A
LaMBO-2 [65] N/A  0.25
AbDiffuser [122] 094  0.22(0.57)
SeqVDM 0.75 N/A
GPT 4 0.74 N/A
Transformer 0.60 N/A
EGNN 0.58 N/A

3.4.2 DW]JS GENERATES NATURAL, NOVEL, DIVERSE ANTIBODIES IN VITRO

Out of more than 277 designed antibody sequences tested in the laboratory, 270 were suc-
cessfully expressed and purified (Table 3.3). We achieved the 97.47% in vitro success rate by
developing dW]JS to capture the antibody distribution in silico as measured by Wroperty and dis-
tributional conformity score. For comparison, sequences from an EBM (trained on clean data with
samples drawn using traditional Langevin MCMC) achieved a 42% expression rate. An antibody
sequence comprised of random vocabulary tokens would be expected to have a 0% expression
rate, and in laboratory experiments we have confirmed that a small number of edits (< 4) can

destroy expression if the proposal distribution (generative model) is poorly optimized.

3.43 DW]JS GENERATES FUNCTIONAL ANTIBODY VARIANTS IN VITRO

To further show the robustness of our method, we consider the task of training generative
models on a hu4D5 antibody mutant dataset [117] and compare to baseline models. The dataset
consists of 9k binding and 25k non-binding hu4D5 CDR H3 mutants with up to 10 mutations (after
de-duplication and removing samples that are labeled both binding and non-binding). This yields

a 10" dimensional search space. The mutants were measured in lab experiments to determine
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their binding to HER2 antigen. The goal of this benchmark task is to produce unique samples
that also bind to HER2. We trained dWJS models (score-based and energy-based) on only the
binder set at a noise level of o = 0.5, while also training a 1ID-CNN binary classifier to classify
binders and non-binders. The classifier achieves 86% accuracy on an IID validation split. Then, we
classified 1000 samples from each dW]JS generative model and four baseline models also trained
on the hu4D5 binder set. We compare in silico to three diffusion models: 1) a sequence transformer
based on BERT Devlin et al. [58] that generates sequences, 2) an E(n) Equivariant Graph Neural
Network (EGNN) Satorras, Hoogeboom, and Welling [123] that codesigns (sequence, structure),
and 3) a latent sequence diffusion model, SeqVDM; and a pre-trained LLM, GPT 4. The specific
prompt used for GPT 4 is given in Appendix A.4. The probability of binding for unique designs
from each model is reported in Table 3.4. Our methods produce the highest percentage of unique
predicted binders.

We also report in vitro wetlab validation results for the dW]JS energy-based designs. dWJS
produces the highest percentage of functional antibodies that bind to target (totalpi,q in Table
3.4). We achieved a 70% binding rate in the first round of experimental wet lab validation on
HER?2, by redesigning the CDR H3 loop of trastuzumab. To the best of our knowledge, this is the
highest reported binding rate of any antibody design method applied to trastuzumab CDR H3 re-
design. Concurrent with the first appearance of our work, two diffusion models reported in vitro
wet-lab results for this task: AbDiffuser [122], a (sequence, structure) antibody codesign method,
and LaMBO-2 [65], a guided discrete diffusion method. LaMBO-2 produces 25% binders, while
AbDiffuser generates 22% binders (57% binders after post-hoc filtering). Our method, dWJS, pro-
duces the highest percentage of unique binders (70%) and requires no post-hoc filtering. While
the diffusion methods include other important capabilities including structure generation (AbD-
iffuser) and guided sampling (LaMBO-2), our method outperforms diffusion for discrete distribu-

tion learning, which is our goal. For this experiment, our model is trained only on the publicly
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available [117] dataset. This training dataset, our code,* and our experimental results are open
and we encourage other researchers to compare results in the same in vitro setting. Further details

on wetlab experiments are presented in Appendix A.5.

3.5 RELATED WORK

Energy-based models (EBMs) [103] are a class of physics-inspired models that learn an energy
function defining a probability distribution over data with a rich history that goes back to Boltz-
mann machines Hinton and Sejnowski [102]. Estimating unnormalized densities has also been
formulated using score matching Hyvarinen [62]. This formulation led to probabilistic models
for denoising autoencoders [104, 124, 125], but also has an empirical Bayes interpretation that is
most related to this work. In particular, the neural empirical Bayes (NEB) [20] formalism unifies
kernel density estimation [126] and empirical Bayes [23] to transform the unsupervised learning
problem into a more tractable form where a neural network energy function is parameterized to
capture a smoothed data distribution. Our work is the first study of the NEB formalism for dis-
crete data. Discrete diffusion models such as [64] learn an iterative denoising process over many
different noise levels by prescribing a noise process over discrete data that converges to a known
categorical distribution.

Approaches borrowing from traditional ML generative modeling have been used to model
antibodies [68, 120, 127, 128], but typical natural-language-based methods struggle to capture the
data distribution of antibodies, for which there is limited training data (~1K - 1M high-quality
sequences depending on the distribution of interest) and additional challenges due to the high-
entropy variable regions of the sequence. Here, we address the above challenges with training
and sampling discrete sequences using a novel formulation of decoupled energy- and score-based

modeling.

*https://github.com/prescient-design/walk-jump
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3.6 CONCLUSIONS

We proposed Smoothed Discrete Sampling (SDS), a new paradigm for modeling discrete dis-
tributions that uses Langevin Markov-Chain Monte Carlo to sample from smoothed data distri-
butions. We introduce the discrete Walk-Jump Sampling (dW]S) algorithm and evaluate it on the
antibody discovery and design problems, showing the capability of our method to generate novel,
diverse, and functional antibodies as measured by synthetic biophysical property distributions,
similarity metrics, and in vitro experiments. The strong regularization provided by fitting the
energy function to noisy data completely prevents overfitting and training instabilities, result-
ing in fast and efficient training and sampling with low compute requirements. dW]JS discards
many of the commonly used techniques for improving EBM training with Langevin MCMC (re-
play buffers, # norm penalty, simulated annealing, rejection sampling, etc.) and reduces the
engineering complexity of training EBMs and diffusion-based models to a single hyperparameter
choice: the noise level, 0. Altogether, our results suggest a simplified, more general and robust
framework for training and sampling from discrete energy- and score-based models with appli-
cations to therapeutic molecule design. Future work will probe the generality of our results to
other classes of molecules and even other data modalities (e.g., images), as well as theoretical

investigation into the results presented here.

3.7 RETROSPECTIVE

This work introduced a new generative model for protein sequences and demonstrated its
effectiveness at generating realistic, functional antibodies. We show that our model’s generation
quality is competitive with other contemporary state-of-the-art generative models for antibodies.
A follow-up work that demonstrates the generative capabilities of discrete walk-jump sampling

for a more diverse collection of protein families and functions provide evidence to justify its utility
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as a generalized sampler. Additionally, our work shows that a simple ByteNet architecture trained
from scratch on paired antibody chains was an effective means to producing antibody sequences.
This work presented an unguided sampling approach, insofar as the Langevin walk steps are
only informed by the learned gradient model. Additionally, our work did not leverage pre-trained
antibody language models such as Ablang [129] or IgLM [130]. Since the publication of this work,
multiple follow-up works have addressed these areas of interest. Mahajan, et al [131] exploited
large language models for walk-jump sampling in order to enhance expressivity. Additionally,
Ikram, et al [132] and Joren, et al [133] explored classifier-based and classifier-free guidance

techniques to drive sampling into desirable regions of sequence space.
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4 DEEP MANIFOLD SAMPLER

4.1 FUNCTION-GUIDED DESIGN BY DEEP MANIFOLD SAMPLING

This section is a reprint of workshop paper:
Vladimir Gligorijevi¢, Daniel Berenberg, Stephen Ra, Andrew Watkins, Simon Kelow,
Kyunghyun Cho, and Richard Bonneau

Machine Learning for Structural Biology Workshop, NeurIPS 2021

4.1.1 INTRODUCTION

Protein design has led to remarkable results in past decades in synthetic biology, agriculture,
medicine, and nanotechnology, including the development of new enzymes, peptides and biosen-
sors [134]. However, sequence space is large, discrete, and sparsely functional [135], where only a
small fraction of sequences may fold into stable structural conformations. Taken together, these
considerations present important challenges for automated and efficient exploration of design
space.

Building on previous works on representation learning from large-scale protein sequence
data [81, 86, 88, 136—138], we introduce a novel generative model-based approach called “deep
manifold sampling” for accelerating function-guided protein design to explore sequence space

more effectively. By combining a sequence denoising autoencoder (DAE) with a function clas-
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sifier trained on roughly 0.5M sequences with known function annotations from the Swiss-Prot
database [34], our deep manifold sampler is capable of generating diverse sequences of variable
length with desired functions. Moreover, we conjecture that by using a non-autoregressive ap-
proach, our deep manifold sampler is able to perform more effective sampling than previous

autoregressive models.

4.1.2 RELATED WORK

Recent work has demonstrated success in learning semantically-rich representations of pro-
teins that encapsulate both biophysical and evolutionary properties. In particular, language mod-
els (LM) using bi-directional long short-term memory (LSTM) [139] and attention-based [86]
architectures and trained on protein sequences have yielded useful representations for many
downstream tasks, including secondary structure and contact map predictions [86], structural
comparison [139], remote homology detection [88], protein engineering and fitness landscape
inference [136], and function prediction [140].

Other studies have focused on generative modeling for producing realistic protein structures
— for example, using Generative Adversarial Networks (GAN) for creating pairwise distance maps
[141] and variational autoencoders (VAE) for 3D coordinate generation of protein backbones [142]
— and designing new sequences. One advantage in formulating a design problem with sequences
has traditionally been the relative availability of data as compared to experimentally-determined
structures. Balakrishnan et al. [143] used graphical models trained on multiple sequence align-
ments (MSA) to sample new sequences. More recently, VAEs [144, 145] have been used for de-
signing novel enzymes and T-cell receptor proteins, obviating the need for MSA, but they have
been largely limited to a single family of proteins. Additionally, a few generative models have
been proposed for conditional design [137, 138, 146]: Greener et al. [146] use a VAE conditioned
on structural features for generating sequences with metal binding sites, Madani et al. [137]

use a conditional LM for sampling proteins, where each amino acid is sampled sequentially, and
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Shin et al. [138] use an autoregressive model to generate a nanobody sequence library with high
expression levels.

Motivated by conditional design as translation task, we develop an approach for generating
protein sequences with desired functions, where sequences are translated from an input sequence
to an output sequence with higher property values. Our deep manifold sampling approach uses
a denoising autoencoder (DAE), a self-supervised model that implicitly estimates the structure
of the data-generating density by denoising stochastically corrupted training examples [59, 104,
147, 148]. We use a Markov chain Monte Carlo (MCMC) process [148] to sample from the density
function learned by the encoder. We corrupt this sample and repeat the procedure above to
produce a chain of samples from the DAE.

We also consider known issues with autoregressive models including decoding latency [149,
150], difficulty of parallelization at inference time [151-153], and exposure bias at test-time gen-
eration [154, 155]. By using a non-autoregressive modeling strategy, our deep manifold sampler
is capable of predicting multiple mutations — including insertions and deletions — at different
positions in a given sequence resulting in sequences of varying lengths. We conjecture that in
doing so, our manifold sampler enables effective exploration of the overall fitness landscape of

properties, resulting in diverse protein designs with desirable properties.

4.1.3 METHODS

We propose to learn a protein sequence manifold by training a DAE on a large database of
observed sequences spanning multiple protein families. Moreover, to ensure that generated se-
quences satisfy a set of desired functional constraints, we combine a protein function classifier

with the DAE to guide sampling.
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Figure 4.1: (A) A designed sequence of C2*-binding protein obtained by altering the sequence of calmod-
ulin, calcium-binding protein (PDB: 6T]J5, chain A) after removing its calcium binding site. (B) Redesign
of fusarium solani pisi cutinase (PDB ID: TAGY, chain A) cutinases with enhanced functions.

4.14 A SEQUENCE DENOISING AUTOENCODER

Our goal is to generate a diverse set of protein sequences that exhibit a high level of a desired

function using a sequence DAE [156]. We want to map an input sequence Xtoa target sequence

X, where X always has a higher level of some desired protein function than X. We formulate this

task as a language modeling problem, where we model the joint probability of the tokens of a

target protein sequence X = (xi, - - -, x7) of length L given its corrupted version X of length L as:

L
log p(X|X) = > log p(x:|X)

t=1

We model the joint distribution p(X|X) with the proposed architecture (Supplementary Fig,

B.1). First, we apply a sequence corruption process C(X|X) that takes as input sequence X of

length L and returns corrupted version X, potentially of different length L (B.1). The corrupted
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sequence X is passed as an input to the encoder Qp (Z|X) that maps xi,---,X; € [0, l]i><22 to
a sequence of continuous representations Z = 2y, - - - ,Zj € RIxd, To predict the probabilities
of target tokens X = (xy, - - - x1), we use a monotonic location-based attention mechanism [152]
to transform L vectors of Z into L vectors. The length transform f;(Z|Z, AL) takes in Z and
the length difference AL = L — L and returns the new vectors of the target sequence Z, with
L =L+AL f-(Z |Z, AL) then computes each z; as a weighted sum of the vectors from the
encoder, i.e., z; = Zle ai.Zj, where a;'. is an attention coefficient computed as in Shu et al. [152].

j
Z is then passed to the decoder P;(X|Z), which predicts the probabilities of the target tokens.

4.1.4.1 LENGTH PREDICTION AND TRANSFORMATION

Although the length difference is known during training, it is not readily available at infer-
ence time and must be predicted. We use an approach previously proposed by Shu et al. [152] and
Lee et al. [150] and construct a length predictor as a classifier that outputs a categorical distribu-
tion P, (AL|Z) over the length difference. The classifier takes in a sequence-level representation
obtained by pooling representations 7/ = % ii:l z;, and produces a categorical distribution
that covers the maximum range of length differences, [—ALpax, ALpax], Wwhere ALy, is deter-

mined by the choice of a corruption process (B.1). The classifier is parameterized by a single,

fully connected linear layer with a so ftmax output.

4.1.4.2 A PROTEIN FUNCTION CLASSIFIER

For conditional sequence design, we incorporate a protein function classifier by training it on
the representations from the encoder of the DAE. The goal is to exploit the error signal from the
function classifier at test time to guide sampling towards sequences with desired functions. We
train a multi-label classifier P,,(Y|Z) that takes in a latent representation Z from the encoder and
that outputs a vector Y of probabilities for each function as well as the classifier’s internal latent

representation Z.. We parameterize P, with one multi-head attention (MHA) layer that maps the
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initial sequence feature representation Z to an internal feature representation, Z,, of the same
hidden dimension as Z, which is pooled to form a protein-level representation; z* ool = % Z{le Zei-
This protein-level representation is passed to single, fully connected layer followed by a point-

wise sigmoid function that returns function probabilities.

4.1.4.3 FUNCTION-CONDITIONED SAMPLING

We guide sampling towards a target function i at every sampling step by using the gradient
of the function classifier’s predictive probability of i to update the encoder’s vectors and increase
the likelihood of higher expression of the desired target function. At every generation step, we

update the internal state of the encoder as follows:

VZ long(Yi|Z)

7« 7+¢€ ~
|V log P, (Y| Z)]|

(4.1)

where € controls the strength of the function gradients. The output Z is then passed to the
length transform, together with the predicted AL sampled from the length predictor, and then to

the decoder (Supplementary Fig. B.1).

4.1.5 RESULTS

We demonstrate the applicability of our method in three different case studies: 1) adding
a function to an existing fold by installing a binding site (Fig. 4.1A) 2) diversifying a protein
sequence by preserving its function and salient residues (Fig. 4.1B), and 3) modifying protein

function by globally changing the protein fold (B.4).

DESIGNING A SEQUENCE WITH A METAL BINDING SITE. We study the ability of the model to add

a potential metal binding sites to a protein. In particular, we test the model’s ability to recover
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metal binding sites by starting the sampling procedure from a sequence of a metal binding pro-
tein after removing the known binding residues, including residues involved in calcium binding
(three aspartate and one glutamic amino acid residues) from a calcium-binding protein (PDB:
6TJ5, chain A; Fig. 4.1A). Starting from the altered sequence, we perform sampling by condi-
tioning on calcium ion binding (GO:0005509). After six MCMC steps, we obtain a sequence with a
high score for calcium ion binding and observe a sequence motif frequently found in most known
calcium binding proteins (Fig. 4.1A); highlighted in red). The designed sequence has 48.7% se-
quence identity to the the starting one. When folded using the trRosetta package [157], it forms
a helix-loop-helix structural domain at the location of the predicted binding site [158]. The three
aspartite amino acids in this loop are negatively charged and interact with a positively charged
calcium ion. The glycine is necessarily due to the conformational requirements of the backbone

[158, 159].

REDESIGN OF CUTINASES WITH ENHANCED FUNCTIONS. We test the ability of model to diversify
an existing protein sequence by preserving the functional residues. Here, we use sequence of
fusarium solani pisi cutinase. Cutinases are responsible for hydrolysis of the protective cutin lipid
layer in plants and thus have been used for hydrolysis of small molecule esters and polyesters.
Sampled sequences obtained after 6 generations of sampling steps with the constrain imposed
on cutinase activity (GO:0050525) are folded by trRosetta. The results are show in Fig.4.1B with
catalytic residues are highlighted in red. Our function classifier shows the probability scores
for cutinase activity of the designed sequences. We perform multiple sequence alignment of the
top scoring sampled sequences showing the catalytic residues of the initial cutinase (1AGY-A)

preserved by our manifold sampling strategy.
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4.2 MULTI-SEGMENT PRESERVING SAMPLING FOR DEEP MANIFOLD

SAMPLER

This section is a reprint of workshop paper:
Daniel Berenberg, Jae Hyeon Lee, Simon Kelow, Ji Won Park, Andrew Watkins, Vladimir Glig-
orijevi¢, Richard Bonneau Stephen Ra, and Kyunghyun Cho

Machine Learning for Drug Discovery Workshop, ICLR 2022

4.2.1 INTRODUCTION

Protein sequence families, particularly antibodies, have both well-conserved and variable
regions. In antibodies, the heavy and light chain sequences consist of highly conserved re-
gions known as the framework as well as an array of distinct hypervariable loops, known as
complementarity-determining regions (CDRs) [160]. Despite the intrinsic variability of CDRs,
conditional variation is often conferred by the gene locus admitting the protein [161]. Much of
an antibody’s antigen-binding affinity is owed to the CDRs, while the framework remains fixed
or requires minimal change [162]. For in silico modeling, integrating these established aspects
of structure and binding can drive the development of better in situ antibody therapeutic design
[163]. While work in protein language modeling suggests that models can learn these evolution-
ary conservation rules [85-87], it is an open challenge as to how to explicitly incorporate prior
insight at test-time generation, such as sequence-level annotations [164], to restrict sampling in
certain segments.

The deep manifold sampler was recently proposed as an effective method to sample novel
sequences by iterative, optionally gradient-guided steps, of sequence denoising [68]. Empirically,

gradient-based guided sampling was shown to selectively encourage changes in functional sites,
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implicitly leaving non-functional regions unperturbed. In this work, we propose an alternative
to the gradient-based guided design procedure in which predefined regions of a sequence are ex-
plicitly preserved, leaving sampling to take place in a priori known notable sequence regions. We
conduct an experiment on antibody sequences to demonstrate the deep manifold sampler’s ability
to focus sampling on a subset of sequence positions. We do so by deliberately corrupting select
regions of antibody sequences, that correspond to CDRs, and evaluating the length distribution

and composition of sampled CDRs.

4.2.2 BACKGROUND: THE DEEP MANIFOLD SAMPLER

The deep manifold sampler [68] is a denoising autoencoder (DAE) specialized to handle variable-
length sequences. As with a typical DAE [147], the deep manifold sampler consists of three mod-
ules; a corruption process C(x|x), an encoder F and a decoder G. Unlike the usual DAE however,
the deep manifold sampler has an extra module that determines the change in the length, to which
we refer as the “length conversion” [28].

The deep manifold sampler assumes as input a sequence of discrete tokens, x = (x1, X2, ..., XL),
where each token x; is an item from a finite vocabulary V of unique words or subwords. In the
case of protein sequence modeling, V consists of all unique amino acids. The sequence x is cor-
rupted with the corruption process C, resulting in a noisy input sequence X ~ C(x|x). This
corruption process can be arbitrary as long as it is largely local and unstructured. It may even
alter the length of the sequence, |x| # |X|.

The encoder F turns the corrupted sequence X into a set of hidden vectors, h = (hy, hy, .. ., hjz|),
where h; € R%. The encoder can be implemented using any of the widely-used deep architectures,
such as transformers [84], convolutional networks [165] and recurrent networks [166, 167]. In
this work, we follow the original deep manifold sampler’s encoder, which was implemented as a

transformer.
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The hidden vectors are pooled to form a single-vector representation:
h=—=> h. (4.2)

This pooled representation is used by the length conversion to predict the change in the length.
At training time, this length change predictor is trained to output Al* = |x| — |x|. When we
sample sequences from the deep manifold sampler after training, we use the predicted change

Al to adjust the size of the hidden vector set. The adjusted hidden vector set consists of |x| + Al

hidden vectors, z = (21, . .., z|z+a1), Where
|X|
zr = Z wphy (4.3)
t'=1
with
-1 LY
Wi & t, — — | . 4.4
Y exp(o) ( %] + Al ) (44)

The decoder G then takes this transformed hidden vector sequence z and outputs a corresponding
sequence of logit vectors, §j = (71, . . ., §|zj+A1), Where J; € RIVI. These logits are turned into prob-
ability distributions over the vocabulary V in many different ways. The original deep manifold
sampler implements a non-autoregressive approach [168, 169], where each logit is independently

turned into a distribution:

exp (47 +b°)
Soevexp (G +b”)

p(y: = o|x, Al) = (4.5)

where b? is a bias for token v.
It is however also possible to use these logits together with a more powerful output module,

such as a conditional random field (CRF; [170]), as was recently done in [171], and autoregressive
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language models [172]. For experiments in this paper, we use a variant of the deep manifold
sampler in which we use a CRF at the end of the decoder.

At training time, we minimize the negative log-probability of the original sequence x given
the corrupted version x and a known Al* to train the encoder and decoder, while minimizing the
negative log-probability of Al* to train the length change predictor. We parameterize the latter
as a classifier. Once training is done, we can draw a series of samples from the deep manifold
sampler by repeating the process of corruption, length conversion, and reconstruction.

While the original deep manifold sampler has an additional function predictor that can be
used to guide the sampling procedure, we omit that here, as this is optional and can be replaced
with another computational oracle without altering the sampling procedure that is the focus of

this paper.

4.2.3 MULTI-SEGMENT PRESERVING SAMPLING

The deep manifold sampler was originally proposed in the context of protein design in Glig-
orijevi¢ et al. [68]. Within this setting, we often consider biological, chemical, and physical knowl-
edge in order to impose constraints that narrow down a large, combinatorial search space [173,
174]. The deep manifold sampler on the other hand stays true to the key principle of deep learn-
ing, that is, end-to-end learning, which makes it challenging to explicitly incorporate this knowl-
edge into both learning and sampling. In this paper, we take one step towards enabling this into
the sampling procedure of the deep manifold sampler. We assume the availability of knowledge
in which segments of an original sequence, from which sampling starts, must be preserved in
order to maintain a set of desirable properties. For example, in the case of antibody engineering,
it may be desirable to only alter CDR loops while leaving all framework residues intact [162].

Let x = (x1, X, ..., x) be the initial sequence from which we run the deep manifold sampler
to draw a series of samples over the sequence manifold. Instead of unconstrained sampling, we

consider a scenario in which we are provided with a set of non-overlapping segments of the
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Figure 4.2: Multi-segment preserving sampling for § = 1. (A) Non-preserved segments § are corrupted
using corruption process C, for which a given token (yellow) may be randomly perturbed (blue). This is
encoded as hidden vector set h. Length change predictor pg(Al|h) outputs AL, which is distributed across
5 (Eq. 4.8). (B) Segment-preserving sampling follows similar operations on preserved segment s (red) with
notable differences. Corruption C yields an unaltered sequence x and we carry over hidden vector h; of a
token within preserved segment § with strength § (Eq. 4.9).

sequence that must be preserved in-order by their starting and ending indices (inclusive):

s = ((ir, 1), - - - (i k) (4.6)

subject to iy < ji for all k and ji < iy for all k& > k. We refer to this set as a preserved-segment
set. Likewise, we can imagine the complement segment set § that contains all the segments that

are between the to-be-preserved segments in s:

§=(00,iy=1),(jh+Liz—1),..., (g + 1 |x| +1)). (4.7)

In order to preserve these segments while altering the remaining parts of the sequence, in-
cluding their respective lengths, we make a series of modifications to the sampling procedure of

the deep manifold sampler. First, we alter the corruption process C such that it does not corrupt
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the preserved segments. For instance, if the corruption process randomly adds or removes to-
kens, this is only done to the segments in the complement set § but not to those in s. Doing so
results in x and also changes the segment set s in order to appropriately reflect the changes in
the indices due to insertions and deletions. We use s to refer to the preserved segment set of the
corrupted sequence X.

However, the encoder still results in the hidden vector set h that corresponds to x. While
the length change prediction also stays the same, returning length change Al, Al needs to be dis-
tributed across the non-preserved segments in order to avoid altering the length of any preserved
segment in s. We do so proportional to the original lengths of the non-preserved segments. In

other words, we add to the length of each non-preserved segment (ji + 1, iy — 1):

(lTk+1 = jk + 1)
S (ke = Ji +1)

11, (4.8)

where j, = 0 and ig4; = |X] + 1.

After distributing the length difference among the non-preserved segments, we can now con-
struct the index map o that tells us which segment in the new sequence corresponds to each of
the preserved segment in x. In other words, y,;,)0(j,) = Xi,j,- Let us use o(S) to denote the
preserved-segment set derived from s and the length distribution above.

The actual length conversion happens just like before, as in Eq. (4.3). We however add an extra
step after the length conversion in order to give the decoder a hint about preserved segments and

their contents. This is done by carrying over the original hidden vector h; of a token within a

preserved segment:

(1= Pz + Phy-1(p), if t € 0(5)
Z; — (4.9)

Zt, lft ¢ 0(5)

0~! is the inverse index map, and f € [0, 1] is the strength of carry-over.
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The decoder turns this length-converted and segment-preserving hidden sequence z into a
sequence of logit vectors g, just like the original sampling procedure. We then modify the logit
vector corresponding to a token with a preserved segment to force the sampled outcome to pre-

serve the token identity:

o0, if t € 0(5) and v = Xp-1(y

~0

Yr < Yoo, ifte€o(s)ando # X,y (4.10)

vy, ift ¢ o(3)

In the case of non-autoregressive modeling, this would result in a Categorical distribution for
a preserved token to assign the entire probability mass (= 1) to the original token identity. If a
CREF is used at the end, this would prevent any sequence that violates preservation from being
decoded out with non-zero probability.

We can repeat this sampling step with the newly sampled sequence and the corresponding
preserved-segment set. This allows us to iteratively draw a series of samples while preserving
the segments from the original sequence, designated by the preserved-segment set s. Because
this iterative sampling procedure preserves multiple segments and their contents, we refer to

this procedure as multi-segment preserving sampling (Figure 4.2).

4.2.4 EXPERIMENTS

The proposed algorithm for multi-segment preserving sampling is designed to completely
preserve designated segments. Here, we demonstrate a potential application in antibody design
enabled by our algorithm coupled with the deep manifold sampler. Antibodies with a particular
V-gene have fixed lengths in the framework as well as CDR1 and CDR2 regions. As a result, an-
tibodies display most of their diversity in length and amino acid composition in CDR3 [175]. To

demonstrate the effectiveness of our approach and restricted variation of the preserved segments,
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B ‘ Aligned CDR3 sequence ‘ Edit distance

N/A (original) | ARDPEWDPF-QANY-YYYGMDV 0
0.0 ARDPEWDPF-QAN-YYYGMDV 3
0.1 ARDPEWDPFFQANYNYYYGMVD 3
0.5 KRDPEWDRF-QAPY-YTVGMDV 5
0.9 ARGPECDPH-QAV-DIYYGMDV 6

Table 4.1: Example outputs of multi-segment preserving sampling when restricting variation to the CDR3
region under different settings of . Display is restricted to the sampled region, the rest is preserved by
construction.

we select all unique human antibody sequences with the IGHV1-18 gene from the Observed An-
tibody Space (OAS) database [2] for multi-segment preserving sampling. Using a deep manifold
sampler, we sample exclusively from the CDR3, while preserving other regions, and show the
length and log-probability (GPT-2) distributions of the generated sequences qualitatively coin-
cide with that of the test data. Table 4.1 illustrates examples of sampled CDR3 regions under

different settings of carry-over strength S.

4.2.4.1 TRAINING DETAILS

We obtained 5,971,552 unique human antibody heavy chain sequences with the IGHV1-18
gene from the OAS database, with 2,000 and 10,000 sequences set aside for validation and test
sets respectively and the remaining used for training.! We trained a deep manifold sampler on
the training set with a constant learning rate of 107 for 60K mini-batch steps with the batch size
of 128. The model consisted of a two-layer transformer encoder and decoder, each with 8 heads
and the total embedding dimension of 256 and feed-forward layer dimension of 1024. The last
layer consists of a CRF for final sequence generation. The rest of the training procedure was the
same as described in the original paper.

In addition, we also trained an autoregressive GPT-2 model using HuggingFace Transformers

library v4.16.2 [176] on the same training set in order to demonstrate that the sampler-generated

10nly sequences with "Redundancy > 1" were retained.
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sequences capture the amino-acid token distribution observed in the training set. The model
consisted of 6 attention layers with 8 heads and a total embedding dimension of 512 and was
trained with a constant learning rate of 4 X 107 for 25K mini-batch steps with batch size of 1024.

The other parameters were set to the default values provided by the package.

4.2.5 SAMPLING DETAILS AND RESULTS

For each sequence in the test set, we applied multi-segment preserving sampling for one
iteration, preserving all non-CDR3 regions with four different f§ values of 0, 0.1, 0.5, and 0.9.%

Figure 4.3 and Figure 4.4 show the length and log-probability (GPT-2) distributions of the gen-
erated sequences with changes in CDR3 and the test data across all selected 8 values. The CDR3
length distribution of the generated samples matches the natural sequence length distribution for
each value of . The GPT-2 log-probability distribution of the samples has lower overall mean
compared to that of the test distribution but is still within the same range. Both distributions vary
only slightly with different values of . These two results show the effectiveness of the sampling
strategy for generating diverse antibody sequences, restricted to user-defined regions.

In Figure 4.5, we illustrate the distribution of the number of edits in the generated sequences
relative to the input seed sequences, including substitutions, insertions, and deletions. The dis-
tributional mean increases slightly with higher values of . For future work, we plan on a more

systematic understanding of the effects of carry-over strength  on sample quality and diversity.

4.2.6 CONCLUSION

We have proposed a sampling procedure for the deep manifold sampler that explicitly pre-
serves designated segments of the input sequence, allowing variation to occur only in non-
preserved regions. We find that this approach, multi-segment preserving sampling, is applicable

to a number of design problems in the life sciences where we often want to use prior knowledge

2The region annotation was obtained from the OAS data unit files.
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Figure 4.3: The normalized distribution of the CDR3 lengths of the deep manifold sampler-generated
sequences (“Samples") and the test set sequences (“Training (OAS)") with four different  parameters.
From Top Left, Clockwise: Samples were generated with § =0,0.1,0.9, and 0.5.

made available in these domains. With biological sequence design for example, we want to sam-
ple new, diverse designs that avoid perturbing well-conserved regions of the input. In this way,
we demonstrate the utility of multi-segment preserving sampling by restricting sampling to the
CDR3 regions of a collection of antibody heavy chains with the IGHV1-18 gene and validating
the resulting CDR3 designs against a separate GPT-2 model. As shown in Figure 4.4, the sampled
CDR3 regions admit high log-probability scores by the GPT-2 model, providing evidence that the
samples are plausible. Additionally, the CDR3 length distribution of the samples coincides with
the observed length distribution in the training set, suggesting the model adequately captures
the variability in non-preserved segment lengths, despite the lack of explicit provision during

training. In future work, we will extend our exploration on the effect of the carry-over strength
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B in terms of sample quality as well as its usage in conjunction with the function predictor for

guided sampling proposed in Gligorijevi¢ et al. [68].

4.3 RETROSPECTIVE

The Deep Manifold Sampler is a general approach to non-autoregressive guided sequence
design. We present two steering techniques: function-guided design using a Gene Ontology term
classifier and multi-segment preserving sampling. One future direction for improving the DMS
technology is to emplace specialized tokens that encode various properties such as the taxon
and function. Doing so would enable classifier-free guidance using multi-segment preserving
sampling. Additionally, further evaluation using a similar distributional conformity approach to
Chapter 3 would provide more concrete empirical evidence on the sample validity. Finally, further
benchmarking against newly emerged, multi-step denoising models such as discrete denoising
probabilistic diffusion [64, 65] and discrete flow-matching [177, 178] is necessary to justify the

capabilities of the DMS.
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5 NATURAL LANGUAGE CONDITIONED

PROTEIN DESIGN

5.1 INTRODUCTION

Recent studies [179-182] have shown that oprotein language models (PLMs) exhibit complex
behavior in performative modeling of protein sequence, structure, function, and evolution [183—
186]. These findings elicit interest in augmenting and controlling protein language model be-
havior using additional contextual information, such as functional labels, text, or structure [29,
30, 187-190]. The increasing interest in multimodal representations of proteins emphasizes the
importance of investigating the modalities that, in addition to sequence, may provide contex-
tual information that enriches the foundation model representation and result in performance
improvements on downstream tasks.

In this work, we propose a framework for conditioning on residue and global information
from text (CORGI) and evaluate the influence on model performance of text annotations on two
generative modeling tasks. CORGI fuses a pre-trained protein language model (PLM) with a text
embedding model using feature-wise linear modulation (FiLM) [191]. We postulate that residue-
level and global conditioning enhance generation in complementary ways. Whereas global con-
ditioning enables classifier-free guidance towards regions of sequence space enriched in a specific

functions and properties, residue-level conditioning unlocks fine-grained control by beneficially
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constraining the logits within annotated intervals. To investigate the contribution of natural lan-
guage conditioning, we fine-tune CORGI models on a text-augmented dataset and benchmark
their performance on two downstream generative modeling tasks: mutation effect prediction
and de novo design. For mutation effect prediction, we propagate wildtype annotations onto
mutants and evaluate the contributions of each annotation type compared to a baseline uncon-
ditional model trained on the same dataset. We also demonstrate the capability of CORGI to
accommodate different tasks by showcasing the model’s performance on distinct selection as-
says of mutants with a common genotype. Benchmarking text-conditioned de novo samplers
remains challenging due to the inherent imprecision of natural language prompts; it is often un-
clear whether generated samples truly reflect the intended concept. To address this, we develop
unbiased benchmarks for sequence validity and language alignment, grounded in an established
framework for assessing distributional conformity. Using our evaluation, CORGI models demon-
strate competitive performance compared to other state-of-the-art natural-language conditioned

models.

5.2 RELATED WORK

Text conditioned protein modeling: Previous studies have investigated the utility of text
features in both predictive and generative modeling. Protein function prediction models such
as DeepText2GO [192] and OntoProtein [193] demonstrate enhanced performance with multi-
modal inputs from manuscript abstracts and gene ontology (GO) term embeddings. Text anno-
tations and protein classifications often exhibit high mutual information. Duan, et al [190] also
observed the mutual information phenomenon and studied the effects on downstream classifi-
cation tasks of annotation-augmented sequence representations, finding that not all annotations
improve performance.

Multi-modal contrastive learning models such as ProTrek [187] and ProteinCLAP [30] adapt

56



CLIP [194] to learn aligned embedding spaces of text and protein. These learned features then fa-
cilitate text-to-protein generation either by latent optimization or internally scoring designs [29].

Text-conditioned generative models span a wide spectrum of ideas and implementations.
Galactica [195] is a multi-purpose autoregressive large language model trained on scientific text
and molecular data. MP4 [32] is a multi-modal encoder-decoder model uses cross-attention to
perform text-to-protein translation. Finally, observing that structure space is a seemingly lower-
dimensional index of function, Pinal [29] mediates text-to-protein generation via a generated 3Di
encoding [100].

Text-conditioned generative model evaluations: Evaluating the performance of natu-
ral language conditioned models is challenging because prompts often express soft, ambiguous
concepts rather than discrete, well-defined labels. While the subject area has not yet reached
consensus on the evaluation metrics that should be adopted for this task, benchmarking typically
entails two criteria: validity and language alignment. Validity metrics assess whether a given
protein sequence is biologically realistic. Multiple works [29, 196] have proposed the pLDDT
score [3] as a proxy for foldability. Other coarse measurements such as amino acid distributions
may be employed to further characterize the sequence validity.

Language alignment measures the coherence between generated text and sequence. Aligned
multimodal embedding spaces such as ProTrek [29] are designed to produce a similarity score
that reflects this alignment. The MP repository [196] provides an estimate of language alignment
via the NLM-sim, which measures the text-to-text similarity between the input prompt and the

output of ProtNLM [197].

5.3 METHODS

We consider CORGI in two isolated conditioning settings using residue-level and global text

annotations. We investigate two use cases: (1) Incorporating residue-level annotations from site-
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specific protein family models, such as HMM signature for homologous protein in InterPro [57],
will sharpen the per-residue logit distributions along annotated intervals. Furthermore, after
pre-training the sharpened logit distributions are useful for downstream applications such as
mutation effect prediction, given that the signal provided by the annotation may contribute to a
more nuanced likelihood estimate. (2) Sequence-wide annotations may be leveraged to directly
steer design via soft prompting. Contrary to prior existing methods, we investigate whether
conditionally sampling using embedding outputs of a pre-trained text encoder enables targeted
molecular programming,.

As position-specific annotations outnumber sequence-wide ones by orders of magnitude, we
treat the two annotation types separately, constructing sequence datasets of either type and in-

dividually evaluating trained CORGI models in different settings.

5.3.1 EVALUATION

We characterize the influence of text annotations on CORGI models by measuring the perfor-
mance on two downstream generative modeling tasks: mutation effect prediction and molecular
programming. Mutation effect prediction measures the model’s capability to propose meaning-
ful, non-deleterious edits to a protein sequence. Molecular programming is a de novo generation

task in which output samples must be not only realistic, but also align with the input text prompt.

5.3.1.1 MUTATION EFFECT PREDICTION BENCHMARK

Mutation effect prediction models assess the impact on fitness of mutations to a reference
sequence. Fitness can be measured in several ways including stability, binding affinity, activity,
expression, or organismal survival. Competitive performance in mutation effect prediction im-
plies the model is capable in making quality, biologically meaningful edits. The ProteinGym [33]
is a collection of deep mutational scanning (DMS) assays that assign experimentally determined

fitness values called DMS scores to sequence variants. Following previous studies, we define the
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mutation effect score as the model’s log-likelihood estimate of a given mutant. To characterize
performance, we compute the Spearman-rank correlation between the mutation effect and the
DMS score and calculate the average correlation over per taxonomic class and per DMS selection
type.

We postulate that conditioning on residue-level and global annotations during training will
improve predictive performance on the ProteinGym assessment. To test this hypothesis, we prop-
agate wild-type annotations onto mutants. For substitution assays, direct transfer of these an-
notations is sufficient. For indels, we adjust the annotation intervals according to the alignment
between wildtype and mutant. We choose to transfer annotations based on the intuition that non-
deleterious mutations will be tolerated by the model via a correspondence between the condition-
ing information and the sequence. For deleterious mutations where the wildtype annotation no

longer applies, the mismatch in conditioning will decrease the overall likelihood.

5.3.1.2 MOLECULAR PROGRAMMING BENCHMARK

Constructing the molecular programming benchmark requires two inputs: a database of an-
notated protein records with a vector index of their function documents and a collection of test
prompts. Our database is populated with SwissProt [53] records and is indexed by nomic-embed-
text-v1 [198] text representations. The MP repository [196] contains a collection of test prompts

as well as generated sequences from MP4 [32].

5.3.1.3 CONCEPT-CONDITIONED DISTRIBUTIONAL CONFORMITY SCORE

To assess the model’s capability in generating aligned sequences to a text concept, we in-
stantiate a conformal transducer system [199, 200] based on the distributional conformity score
(DCS) [201]: the concept-conditioned distributional conformity score (C2DCS), that measures con-
formity to a specific reference distribution of sequences with an aligned concept. The schematic

of the score construction is depicted in Figure 5.1. We define the “induced sequence neighbor-
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Figure 5.1: Schematic of the concept-conditioned distributional conformity score. Protein records are
stored in a vector database indexed by the annotation text representation. Sequence representations of
the nearest annotations are used to parameterize the conformity model. The conformity model in turn
scores generated sequences by their sequence embeddings.

hood” (ISN) N (z) as the set of protein sequences retrieved by querying the k-nearest neighbors
to the annotation description representation z from a vector database of document embeddings.
The induced sequence neighborhood embeddings are used to parameterize a conformity scoring
model. First, we divide the ISN into disjoint training and calibration sets. The training set is used
to fit a density estimator A ;) which serves as the concept-conditioned conformity measure for
the ISN of z. For each element of the calibration set Ngy(z) = {r; € R¢ | i = 1,...,m}, we
compute its conformity measurement o; = AN(z)("i)- For a query sequence s;, we compute its

sequence embedding r, and in turn its conformity measurement oy = Ax/(;)(r4) and calculate the

C2DCS:

1 m
C2DCS(atg; aty, - . . ) = — Z[ai < ay. (5.1)
m

i=1

More information on the construction and specific instantiation of the C2DCS in this work can

be found in Appendix C.3.
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Whereas other evaluation criteria were tightly coupled to point-evaluations of underlying
models with subtle biases, our method is de-coupled from any specific model and relies on its
output distributions rather than point-wise evaluations. This gives way to a more versatile metric

that naturally accounts for systematic biases or preferences in the underlying criteria.

5.3.2 TEXT-AUGMENTED TRAINING DATA

The CORGI framework consumes protein sequences with global and residue-level text anno-
tations. Every annotation is a tuple of the form (s, ¢, d), where [s, t] is an index interval stating
the region along which the text description d applies. Global annotation intervals are trivally
[0, ] where ¢ is the length of the annotated sequence. The text description d comes in the form
of either a natural language document or discrete label code. For the latter, we map the label
code to its long-form explanation. We embed each annotation description using a pre-trained
text encoder.

We collected 510,747 protein sequence records from the SwissProt database [53] with either
text annotations, discrete labels, or residue-level annotations. Global annotations were restricted
to relevant categories such as function, structural subunit, catalytic activity, cofactors, pathway,
Gene Ontology (GO) [11] terms, Enzyme Commission (EC) [202] numbers, InterPro labels [57],
and other miscellaneous comments. For each collected record, we create a description document
by combining all of its text annotations and discrete label descriptions together with a template.

For each residue-level annotation, we use a long-form description of its “type” (domain, family,
binding site, active site, etc) rather than the label itself. These annotations function as coarse yet
still informative markers of regions of interest. Each long-form description is generated using a
large language model by prompting it to expand on the term in the context of protein structure
and function.

We embed all text descriptions and region-level explanations using nomic-embed-text-v1 [198].

RNXd

Region explanation vectors are compiled into an embedding matrix E € such that E; corre-

61



sponds to the residue label type y; € {yo,...,yn-1}

5.3.3 CORGI MODEL DESCRIPTION

COnditioning on Residue-level and Global Information (CORGI)

Protein foundation model

: Hidden layers LM head: Outputs
InPUts - - Protein sequence
Protein _ —_— e e e -
sequence . .
N I E o ET T aenn ? .........................
annotations fomily —> | | | | l |
binding Text A
encoder FiLM layers
“Tube-forming lipid transport protein
Gl(t)bfal which mediates the transfer of lipids q
annotations etween membranes at organelle
contact sites” %\5 Context
- processing
module

Figure 5.2: CORGI model schematic.

CORG I (Figure 5.2) fuses a text conditioning network with a protein foundation model via
feature-wise linear modulation (FiLM). Text annotations are processed through a pre-trained text
encoder and subsequently incorporated into the hidden blocks of a pre-trained PLM via gain
and bias terms [191]. To process residue-level annotations, we construct a matrix Cregique = AET
where E € RN*? is the residue label type embedding matrix described in Section 5.3.2 and A €
{0, 1}V is such that A; ; = 1if residue index i is annotated with the label j. The global annotation
vector is row-expanded to a matrix Cglobal the same dimensions as Cregique. The final conditioning
representation C = Cglobal + Cresidue 1S subsequently transformed through the context processing
module.

For our experiments, we fine-tuned the baseline ESM2-150M model [203] on the text-augmented
dataset described in Section 5.3.2. Additionally, we provide a study of CORGI training at scale
and task-specific inference in Appendix C.6 using ProGen-2 [94].

We train two CORGI variants: one as a masked language model (MLM) using the cross entropy
objective function and the other as a walk-jump sampler (W]S) formulated according to the neural

empirical Bayes (NEB) framework [20].

62



Each model is regularized by annotation dropout (with pg,opous = 0.2) to accept no additional
context as input. By virtue of this dropout, the user is able to specify to eithe rmodel a contrastive

weight w that considers both unconditional and conditional gradients as shown in Equation 5.2.

$p(y, 2, w) = (1+w)gy(y,2) — wgy(y, 0) (5.2)

We refer the reader to Appendix C.4.1 for more in-depth description on the architecture, train-
ing, and sampling. A brief analysis justifying the choice of the noise level o is provided in Ap-

pendix C.5.

5.4 RESULTS

We trained two CORGI models based on ESM2-150M and benchmarked them on two down-
stream generative modeling tasks. We evaluate the impacts of text conditioning on mutation
effect prediction with the text-augmented ProteinGym (Section 5.3.1.1) and the distributional con-
formity of generated molecular programming samples using the Molecular Programming repos-

itory ( Section 5.3.1.2).

5.4.1 MutaTIiOoN EFFECT PREDICTION

Conditional generative models of protein sequence should not only produce plausible samples
conforming to the concept of interest, but also make biologically meaningful edits. To test this
desired trait, we evaluate each model on the ProteinGym by computing mutation effect scores of
each mutant. For the masked language model versions, we follow previous works and define the
mutation effect score as the model’s total log-likelihood estimate of the variant. For the model’s

optimized with the NEB loss (Equation C.3), define the mutation effect score by the relative change
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in gradient norm between the mutant and wildtype:

||ggb(ymut) | - ||g¢(ywt) I
194 (ywi)l

A¢(ymut: ywt) = (5'3)

where the mutant and wildtype ym,: and y,,; smoothed by additive isotropic Gaussian noise with
variance o.

Tables 5.1 and 5.2 provide the Spearman averages across selection and taxon type respectively.
Notably, the masked language model CORGI variant outperforms the baseline by a large margin
in every taxon category and all selection types apart from binding, where the performance gain
is more modest.

Table 5.1: Performance comparison of the baseline to each CORGI model and setting and averaged per
(selection type, mutation type) pair. The columns Model and Setting indicate the underlying CORGI
model and inference setting. The acronyms MLM and NEB stand for Masked Language Model and Neu-
ral Empirical Bayes respectively. “Baseline” stands for the masked language model trained as a control
without annotations on the same dataset as the other CORGI models. The abbreviations “R”, “G”, and 0
designate whether residue-level, global, or no annotation features were provided at inference time. Each
column (Expression, Organismal Fitness, Stability, Activity, and Binding) represents the DMS se-
lection type and is followed by the mutation type. “Indels” stand for the edits that change the original
sequence length by at least one insertion or deletion. “Subs” represent substitutions, or mutations that

do not change the original sequence length.

Expression Organismal  Stability Activity  Binding
Fitness
Model Setting | Indels Subs. Indels Subs. Indels Subs. Indels Subs.  Subs.

MLM  Baseline | 0.266 0.276 0.161 0.271 0.272 0.297 0.275 0.254  0.262
MLM R+G 0.337 0.398 0.335 0.344 0.471 0465 0.506 0.431  0.278

MLM R 0.323 0.399 0.334 0.341 0.468 0465 0.503 0432 0.290
MLM G 0.359 0.391 0.372 0345 0.473 0465 0.497 0423 0.278
MLM 0 0.361 0.396 0.329 0.346 0.477 0.470 0.509 0.427 0.285

NEB R+G 0.005 0.009 0.019 0.000 0.050 0.001 -0.016 -0.003 -0.009

NEB R -0.003 -0.005 0.011 0.003 0.051 0.000 -0.004 0.009 0.012
NEB G -0.016 0.000 -0.005 0.001 0.048 0.003 -0.091 0.001 -0.007
NEB 0 0.037 0.006 -0.010 0.001 0.051 -0.003 0.048 0.000 0.000

Providing any specific combination of annotation at inference time does not appear to have
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a measurable effect on performance, suggesting that perhaps the performance benefits originate
from modifications adjustments to the attention heads during training. We also note that the

walk-jump sampler’s mutation effect score does not correlate with mutation effects.

Table 5.2: Performance comparison of the baseline to each CORGI model and setting and averaged per
(taxon, mutation type) pair. Each column (Eukaryote, Human, Prokaryote, and Virus) stand for the
taxonomic classification of each wildtype provided by the ProteinGym. See Table 5.2 for a complete de-
scription of the Model and Setting columns as well as the abbreviations therein.

Eukaryote Human Prokaryote Virus
Model Setting | Indels Subs. Indels Subs. Indels Subs. Indels Subs.

MLM Baseline | 0.267 0.318 0.286 0.301 0.288 0.275 0.137 0.114
MLM R+G 0.508 0.439 0.473 0446 0.401 0.358 0.331 0.221

MLM R 0.494 0432 0.489 0.448 0.385 0.372 0.312 0.201
MLM G 0.516 0.436 0466 0443 0417 0352 0.353 0.234
MLM 0 0.505 0436 0.479 0447 0.422 0.370 0.339 0.218

NEB R+G 0.066 -0.002 0.032 0.001 -0.004 0.001 0.087 -0.001

NEB R 0.071 -0.003 0.038 0.006 -0.018 -0.003 0.076 0.008
NEB G 0.049 0.001 0.037 0.004 -0.013 -0.005 0.076 -0.001
NEB 0 0.066 -0.007 0.039 0.004 -0.007 -0.003 0.086 -0.006

5.4.2 TEXT-CONDITIONED DE NOVO DESIGN

Using the text-conditioned walk-jump sampler, we sample one trajectory per prompt in the
Molecular Programming repository using w = —1,0, and 1 to test performance as an uncondi-
tional, conditional, and contrastive sampler respectively.

We evaluate the validity and language alignment of the highest ranking generated samples,
comparing to Pinal [29] and MP4 [32] and display the results in Figure 5.3. We note that the
CRATE-W]JS model outperforms MP4 and is competitive with Pinal. One possible explanation
for the higher proportion of exceptionally high distributional conformity scores in Pinal is the

choice to incorporate a structure intermediate during generation.
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Figure 5.3: Left: Validity of samples assessed by proxy via the ESM2-35M negative log-likelihood (NLL).
Smaller NLL values correspond to more valid examples. The NLL distributions for every model stand
within an acceptable range (i.e., below 1). Right: Empirical cumulative distributions of concept conditional
conformity scores. Given a C2DCS value a on the x-axis, the corresponding value on the y-axis may be
interpreted as the fraction of examples that reject the null hypothesis that the samples are exchangeable
with the reference distribution at significance level a.

5.4.3 DiSCUSSION

CORGl is a fine-tuning framework that enables a model to consume external text-based condi-
tioning information during training and inference via feature-wise linear modulation. We trained
CORG I variants using the masked language modeling (MLM) and neural emprical Bayes objective
functions and evaluated their performance on downstream protein design tasks.

We find that the neural empirical Bayes and masked language modeling variants of CORGI
perform well on different downstream tasks. Whereas the masked language model excels at
mutation effect prediction, the walk-jump sampler is better at de novo generation. We intuit that
this performance discrepancy between the CORGI variants is due to the theoretical difference in

objective functions. Whereas the MLM cross-entropy loss is motivated by matching individual
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token-level distributions, the NEB loss is focused on globally matching the distribution gradients.
These findings motivate future work in combining the two model variants to deploy a two-step
de novo design pipeline. The first step is a walk-jump sampling trajectory that navigate towards
a specific region of sequence space enriched in the concept of interest. The second step is a local
refinement step that updates the initial design candidates with iterative unmasking.

Another promising direction is in target site-specific redesign, or sequence in-painting. Given
alocal specification for a specific sequence interval, we are interested in using CORGI to resample
this region. However, provided that the MLM variant did not benefit from any specific inference-
time provision of residue-level or global features, we expect this to perhaps be the case as well
for the walk-jump sampler. This phenomenon warrants further investigation that may reveal po-
tential methods to correct it. For example, learned token-level, position-specific representations
such as those learned in the scaling experiment provided in Appendix C.6 may alleviate this issue.

Finally, given that text representations are known to exhibit semantic clustering favorable
to concept algebra via vector arithmetic [204], we are curious to test whether this phenomenon

enables generation of samples imbued with or restricted from multiple concepts.

5.5 CONCLUSION

In this work, we investigated the contribution of both residue-level and global text annota-
tion representations to downstream generative modeling tasks in protein design and engineering.
We introduce the CORGI approach and demonstrate its improvement over baseline methods in
both mutation effect prediction and de novo sampling. We modified the distributional conformity
score [201] to measure sequence plausibility conditioned on a specific concept. Training two
different CORGI variants with masked language modeling and neural empirical Bayes objective
functions reveals interesting results in the benefits of text for either model in both downstream

tasks. Additionally, we demonstrated training and inference at scale. We defined a greedy invari-
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ant for annotation subset selection and find that specific selection types benefit from only certain
subsets of annotations. Our findings indicate promising directions in not only multi-modal, text-

conditioned design, but also conditional evaluation for abstract concepts.
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6 CONCLUSION

Proteins are molecular machines that participate in virtually every biosynthetic process. Due
to their apparent ubiquity, designing protein sequences is a long sought after grand challenge
with many potential applications in areas such as therapeutic discovery and agriculture. The
combinatorially expansive design space of protein sequences prohibits exhaustive evaluation,
therefore calling for intelligent methods that propose realistic and functional protein sequences
suited for a specific task. Protein design and engineering methodologies have sophisticated over
the last 50 years from site-specific mutagenesis, to directed evolution, and finally with mecha-
nistic computational modeling. Now with the advent of larger sequence repositories and highly
expressive, data hungry technologies such as deep neural networks, the protein design challenge
is suited to be cast as a generative modeling problem. However, as with any generative modeling
endeavor, new challenges emerge in steering sampling in order to produce diverse, yet on-target
sequences. This dissertation describes methods that address these challenges by presenting not
only novel samplers, but also versatile distributional evaluation criteria.

In Chapter 3, we introduce the discrete walk-jump sampler (dWJS), a generative model for
antibodies. We show with a distributional conformity analysis and other accompanying metrics
that the Neural Empirical Bayes methodology is applicable to protein family diversification and
targeted control of sampling along the sequence. The dW]JS is trained from scratch, however since
then follow up works have leveraged pre-trained models to enhance model capacity. Despite

the strong performance of the dWJS, the method was only tested with Aho-aligned antibody

69



sequences, motivating the exploration of more versatile methods.

In Chapter 4, we propose the Deep Manifold Sampler (DMS) for generalized protein design.
Alongside a denoising autoencoder that supports de-corrupting indels, the DMS uses an length
posterior to propose novel lengths to denoised proteins. We demonstrate function guided design
using a function predictor trained on the model’s hidden representation. Notably, the DMS suc-
cessfully transitions between proteins of distinct functions. Using the DMS, we also proposed
another sampling methodology — multi-segment preserving sampling (MSPS) — that allows the
injection of expert knowledge to preserve specific regio s of the sequence. MSPS is again ap-
plied to antibody sequences and shown to produce in-distribution complementarity-determining
regions.

Using the learnings of Chapter 3 and Chapter 4 in generative modeling and steerable ge-
neation, we then consider the task of text-driven protein design and engineering in Chapter 5.
Natural language is utile in expressing complex concepts that do not adhere to a discrete label
scheme or otherwise, making it an advantageous modality for design. We propose conditioning
on residue-level and global information from text (CORGI), a fine-tuning framework that enables
any pre-trained model to accept latent text-conditioning information at either scale. We show
that CORGI can be applied to diverse model types including causal language models and walk-
jump samplers and demonstrate the performance of trained CORGI models on mutation effect
prediction and molecular programming. We found that CORGI not only enhances mutation ef-
fect prediction performance, but also enables task-specific annotation selection using a greedy
algorithm. We also showed that CORGI is competitive in generating in-distribution de novo de-
signs from text prompts. To do so, we adapted the distributional conformity score first proposed
in Chapter 3 to support text concept conditioning. This concept conditional distributional con-
formity score is more robust and flexible than previous language alignment metrics because it de-
couples the reliance on point-wise evaluations of specific models. We found the text-conditioned

CORGI model to perform competitively with state-of-the-art contemporary models using this
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metric. We also observed the benefit of structure conditioning, leading to a concrete next step in
CORGI fine-tuning of walk-jump samplers to explore structure-informed models as well.

The body of work described in this thesis serves as a methodological prescription for deep-
learning driven conditional and unconditional protein design. We explored the utility of classifier-
guided and classifier-free technologies for this purpose and investigated extensions to natural
language conditioning. This work is timely as the emergence of large language models as pow-
erful tools to enhance productivity in scientific research has only just begun. Indeed, while these
methods are not general solutions to molecular modeling or understanding, they are effective
in statistically sampling complex, natively discrete sequence manifolds. Whereas large language
models are generalist, the methods described in this dissertation are specialized and capable. As
the field progresses, especially with multi-modal integrations such as text-driven design, it will
be interesting to use methods such as these to function as tools for not only human researchers,
but also artificially intelligent agents. A possible future for accelerated molecular design is to in-
corporate bespoke sampling methodologies as tool calls to agent-based scientific models. Agents
with access to such tools may be able to research, rank, and produce candidates that human

experts can then supervise and provide feedback.
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A SUPPLEMENTARY MATERIAL FOR

CHAPTER 3

A  SUPPLEMENTARY MATERIAL FOR CHAPTER 3

A.1 NETWORK ARCHITECTURES AND TRAINING DETAILS

A.1.1 DiISCRETE WALK-JUMP SAMPLERS

For all experiments we use an identical architecture for the EBM consisting of three Conv1D
layers with kernel sizes 15, 5, and 3 and padding 1, ReLU non-linearities and an output linear layer
of size 128. The denoising model is a 35-layer ByteNet [205] architecture with a hidden dimension
of 128, trained from scratch. The Bytenet architecture has been shown to perform competitively
with transformers for protein sequence pretraining tasks [80]. All models were trained with the
AdamW [206] optimizer in PyTorch [207]. We used a batch size of 256, an initial learning rate of

1 x 107*%, and trained with early stopping.

TRANSFORMER IMPLEMENTATION OF DW]JS DENOISING MODEL In addition to the ByteNet imple-
mentation, we implemented a transformer-based architecture for the denoising network, with 12

hidden layers, 8 attention heads, a dimension of 2048 for the feed-forward layers, 256 features
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in the encoder/decoder inputs, and SiLU activations. The score-based dW]JS with a transformer
architecture exhibits comparable performance to the ByteNet architecture, indicating that the
performance of our method is not reliant on a particular architecture, and any sufficiently ex-

pressive architecture will work.

TAXONOMY OF SMOOTHED DISCRETE SAMPLING Because of the decoupled walk and jump steps,
there are many natural implementations of Smoothed Discrete Sampling. Empirically, we find
that Algo. 1 takes advantage of both energy- and score-based modeling to produce the highest
quality, novel, unique, diverse samples. Four natural choices for performing sampling, which
arise from different combinations of energy- and score-based parameterizations, are summarized
in Table A.1. Discrete Walk-Jump Sampling refers to walking with the EBM, f3(y), and jumping
with the denoising network, g4 (y). Score-based dW]JS uses g4 (y) for both walking and jump steps.
The Deep Energy Estimator Network (DEEN) [125] approach uses a denoiser that is trained by
taking the derivative of an energy and using the same learning objective as Eq. 3.5. DEEN can be
thought of as an energy parameterization of a score-based generative model. Finally, dWJS-EBM
uses an EBM for sampling and the gradient of the energy, V fy(y), for denoising. Empirically, we
find that the most performative method in terms of efficiency, sample quality, and diversity is the

EBM walk and denoiser jump, which we refer to as Discrete Walk-Jump Sampling.

Table A.1: Smoothed Discrete Sampling implementations.

Model Walk (sampling)  Jump (denoising)
dWJS (energy-based) EBM Denoiser

dW]JS (score-based) Denoiser Denoiser

Deep Energy Estimator Network Denoiser (energy) Denoiser (energy)
dWJS-EBM EBM EBM
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A.1.2 DW]S STABILIZES AND SIMPLIFIES TRAINING

We observe that the dW]JS algorithm prevents instabilities during maximum likelihood train-
ing. EBMs commonly exhibit issues with training stability and divergences in the energy, due
to the energy landscape becoming too complicated to sample. Noising the data provides strong
regularization that prevents overfitting and instabilities. This is seen over a range of noise levels
o € [0.5,4.0] for EBMs trained over 3,000 steps. Training instabilities recur for ¢ < 0.5. We in-
vestigate the effects of discarding many of the techniques for improved EBM training that, while
introduced to ameliorate challenges with EBMs, also introduce complexities that make EBMs
brittle, inflexible, and difficult to optimize. In particular, we discard the replay buffer, the £, norm
penalty loss term to regularize the energies, Metropolis rejection sampling, and time step anneal-
ing. We use the Langevin MCMC algorithm (Algo. 10) from [208] and eliminate the need for

careful hyperparameter finetuning; o is the only free hyperparameter in dWJS.

A.1.3 DIFFUSION BASELINES

In our comparison study we use the Sequence-based Variational Diffusion Model (SeqVDM)
proposed by Kingma et al. [119], adapted for protein sequence data. The model deals with the
discrete sequences by first projecting them into a continuous latent space and then performing the
discrete denoising diffusion in the latent space. The VDM learns the data distribution by modeling
the reverse of a diffusion process in a latent space. In all our experiments we used T = 1000 steps
with the fixed noise schedule y,,;;, = —13 and yp,ax = 5. The encoder, decoder and score network
model are parameterized with 3 blocks of residual MLP layers applied on flattened 1-hot encoding
representations of sequences. The MLP layers project the initial sequence representation down to
ad = 512 dimensional latent space. The model is simultaneously trained to optimize the diffusion
loss (i.e., the score-matching loss) and the sequence reconstruction loss. SeqVDM is trained on

paired OAS with the AdamW optimizer and the initial learning rate of 2 x 10~ for 50 epochs.

74



The sampling is done by starting from a latent vector initialized with Gaussian noise.

A.1.4 LANGUAGE MODEL BASELINES

We generate samples from IgLM using the prompt given in Appendix A.4. IgLM is a GPT2-
style model trained to conditionally generate antibody heavy and light chains. It is therefore a
strong autoregressive baseline for antibody design.

To mimic the ab initio generation task presented in Table 3.2, we increase the masking per-
centage of the masked language model ESM2 [121] as high as possible (40%) and infill validation
set sequences to generate new samples. Beyond 40% masking, the model produces invalid se-
quences containing non-amino acid characters. As a masked language model, ESM2 is capable of
limited infilling tasks, but it is not designed to perform true ab initio protein discovery. Indeed,
it does not generate antibody-like sequences, and the high E4;s; and IntDiv scores are therefore
meaningless. We include it purely as a familiar and powerful general protein language model
baseline to show the gap in performance between a general, pre-trained protein MLM and our

methods.

A.1.5 EFFECT OF CHOICE OF o

In Table A.2 we show sample quality results for score-based dW]JS as a function of the noise
level, 0. We see that o = 0.5 produces the best quality samples, while maintaining uniqueness and
diversity. Setting the noise too low (¢ = 0.1) leads to samples that do not capture the biophysical
property distribution of the training set (high W,,operry) and have extremely high edit distances
from the training set (Eg;; > 120). This is because at low o, the density is not smoothed and
sampling does not perform well. At extremely high noise level (o = 3), the samples more closely
match the training distribution, but they start to show signs of “mode collapse” (lower average edit

distance to the training set and lower internal diversity), because the density is over-smoothed.
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Table A.2: o, ablikeness metrics, uniqueness, diversity for score-based dW]S.

o Woroperty | Unique T Egis T IntDiv T
0.1 0.378 1.0 120.6"  60.0
0.5 (From Table 3.2) 0.065 1.0 62.7 65.1
3.0 0.130 0.995 44.2 30.0

A.1.6 ESTIMATION OF 0, HYPERPARAMETER
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Figure A.1: Histogram of ;i values for random samples from the paired observed antibody space Olsen,
Boyles, and Deane [2] dataset.

A.2 ADDITIONAL ALGORITHMS

A.2.1 GRADIENT FLOW ENABLES LOCAL MINIMA FINDING

We define the gradient flow as y’(t) = —Vlog f(y(t)), where sampling is performed by fol-
lowing the flow of the gradient of the probability density function in a deterministic dynam-

ics, rather than stochastic Langevin dynamics. We initialize sampling from noise at t = 0,
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Yo = €0, &0 ~ N (0, 1), and sample noisy samples y’(t) following the gradient flow. In this way, we
discover local “attractors" on the data manifold that correspond to local minima of the learned

energy function. The algorithm for discrete gradient flow is given in Algo. 3.

Algorithm 3: Discrete gradient flow

Input: Denoiser, g4 (y), energy-based model, fp(y)

Output: Denoised samples x(y, t)

Yo ~ N(0, 0%Iy)

=Y

2 fort=0,...,T—-1do

3 Yre1 < Yp — 0 Vyf@(yt)

4 end

(5]

X1 — yr +o%g4(yr)

6 return arg max xr

77



A.2.2 LANGEVIN MCMC UPDATE

Algorithm 4: Walk-jump sampling [20] using the discretization of Langevin diffusion

by [208]. Lines 6-13 correspond to walk step and line 14 is the jump step.

Input: § (step size), u (inverse mass), y (friction), K (steps taken), Learned score function
go(y) = Vlog p(y) and noise level o

Output: xg

Yo ~ N(0,0°I3) + Uy (0,1)

[

2 99— 0

3 fork=0,...,K—1do
P

4 Y1 < Yk + 50k

5 | Gkt < 9o(Yks1)
s

6 | Uks1 < Uk + TGk

7 e~ N(0,1y)

8 Ukt1 < exp(—yS)vk41 + %Sgkﬂ + \/u (1 —exp(-2yd))e

S
9 Y1 < Yk+1 + 50841

10 Xx < yx + g9 (yx)

A.2.3 NEURAL EMPIRICAL BAYES

Here, we include additional discussion and motivation for Neural Empirical Bayes and gener-
ating discrete samples with decoupled walk and jump steps. Discrete data in this work is viewed
as taking continuous values (embedded in Euclidean space) in the NEB formalism, and by choos-
ing large noise levels we can smooth out the original distribution greatly which makes it easier
to sample from. In addition, we can use single-step denoising back to discrete values. In short,
the walk-jump sampling is especially well suited for discrete data.

In line 1 of Algorithm 1, we followed the initialization scheme in [209], since here the discrete
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Table A.3: Model size, sampling time and memory consumption.

Model Parameters (M) GPU time / sample (ms) | GPU memory (MB) |
dWJS (energy-based) 9.87 64.89 4734.76
dWIJS (score-based)  1.03 327.60 16.7
SeqVDM 12.31 940.40 246.39
DEEN 1.03 976.99 16.72
TgLM 12.89 2800 —
ESM2 7.8 5.25 —

data is viewed as being embedded in Euclidean space. Typically having the normal distribution
as part of the initialization is more important for high noise levels, and we chose the uniform
distribution for simplicity.

The walk and jump steps are completely decoupled. The models used for denoising and sam-
pling can have the same parameterization, but they can also be trained separately. Because the
walk and jump steps do not depend on each other in any way, we consider them to be decou-
pled. The energy and score are related by a derivative with respect to the inputs, and any model
that gives access to a score can be used for sampling via Langevin MCMC. However, EBMs and
score-based models are trained in completely different ways with different loss functions and ar-
chitectures, so the empirical performance can differ greatly. DEEN models are not trained with
contrastive divergence, so the EBM formulation is completely distinct in terms of parameteriza-

tion, training, and sampling.
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A.3 PERFORMANCE PROFILING

A.4 FEW-SHOT, IN-CONTEXT LEARNING AND PROMPTS

A.4.1 GPT 4 proMPT

GPT 4 accessed on April 27, 2023. Prompt was repeated 20 times to generate additional sam-
ples for statistics.
Prompt: You are an expert antibody engineer.l am going to give you examples of CDR H3
variants of trastuzumab that were reported binders to the HER2 antigen in the paper "Opti-
mization of therapeutic antibodies by predicting antigen specificity from antibody sequence
via deep learning". You will generate 100 new CDR H3 variants that you predict will also

bind to HER2. Output the 100 samples as a python list. Here are the examples:

[ "WHINGFYVFH', 'FQDHGMYQHV', 'YLAFGFYVFL', "WLNYHSYLFN', 'YNRYGFYVFD"', 'WRKSGF |
— YTFD', '"WANRSFYAND', 'WPSCGMFALL ", 'WSNYGMFVFS', 'WSMGGFYVFV', 'WGQLGFYAYA ,

— ', '"WPILGLYVFI', '"WHRNGMYAFD', '"WPLYSMYVYK"', '"WGLCGLYAYQ']

Response: As an Al language model, I can’t run simulations or generate sequences based
on actual molecular interactions. However, I can use patterns found in your provided list
to generate new sequences that may resemble the CDR H3 variants you’'ve shared. Keep in
mind that these new sequences have not been validated experimentally and may not bind to

HER2.

A.4.2 GPT 3.5 pPROMPT

GPT 3.5 accessed on May 2, 2023. Prompt was repeated 5 times to generate additional samples

for statistics.
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Prompt: You are an expert antibody engineer. I am going to give you examples of antibody
heavy chain variable regions from the paired observed antibody space database. You will
generate 10 new antibody heavy chains that are not in the database. Output the 10 samples

as a python list. Here are the examples:

['QLQLQESGPGLVKPSGTLSLICAVAGSSVTTSNVYWDWIRQPPGKGLEWIGTISYSATT', 'YYNPSLKSR |
—  VTLFVDTSKNQF SLKLNSVTAADTAMYYCARHVVDCTGGRCLWKTGFDYWGQGTLVTVSS', 'QVQLVE
<  SGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYY ' , ' ADSVKGRFTISR |
— DNSKNTLYLQMNSLRAEDTAVYYCARDQGLSTYYGYDKDSSYGMDVWGQGTTVTVSS ', 'EVQLVESGG |
—  GLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSSISSSSSYIYY', ' ADSVKGRFTISRDNA |
—  KNSLYLQMNSLRAEDTAVYYCARDFGYCSGGSCSGWGQGTLVTVSS', 'QVQLKESGPGLVQPSQTLSL |
—  TCTVSGFSLTSYHVHWVRQPPGKGLEWMGVMWSDGDTSYN' , ' SALKSRLSISRDTSKSQVFLKMSSLQ |
— TEDTATYYCARSGKAVMDAWGQGASVTVSS', ' QVQLVQSGAEVKKPGSSVKVSCKASGGPFRGSTINW
—  VRQAPGQGLEWMGRIIPILNAPNY', 'AQNFHGRVTITADKSTSTAYMELSSLTSDDTALYFCATYSGT |

<  YHMAPGAFDIWGHGTMVTVSS']

Response: Sure, I can help you generate 10 new antibody heavy chains. Here’s a list of 10
new antibody heavy chains that are not in the given database: ...

These heavy chains were generated using the antibody engineering tools and techniques
to create novel heavy chains. The generated sequences have a similar length and structure

as the provided examples, but they have different amino acid sequences, and are unique.

A.4.3 IGLM PROMPT

IgLM samples were generated using the prompt in the I[gLM README, adjusted to produce

2000 samples for comparison with other methods.
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iglm_generate --prompt_sequence EVQ \\
--chain_token [HEAVY] \\

--species_token [HUMAN] --num_seqgs 2000

A.5 IN VITRO VALIDATION

A.5.1 EXPERIMENTAL RESULTS

14 1

Count
©

U T

0.10 0.15 0.20 0.25 7.5 8.0 8.5
Expression yield (N =67) Affinity pKD (N = 47 accepted)

Figure A.2: Expression yield (mg) and binding affinity (pKD) of sequence designs from our method tar-
geting the ERBB2 antigen.

A.5.2 EXPERIMENTAL DETAILS

in vitro validation of generated antibody proteins was performed following [210]. Discrete
Walk-Jump Sampling (dW]S) was used to generate antibody sequences, which were then ex-
pressed and purified in the laboratory. Surface plasmon resonance (SPR) measurements were

used to determine binding affinity.
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Plasmid Construction and Antibody Production: synthesized DNA (provided by Twist Bio-
sciences) of antibody variable domains were cloned into mammalian expression vectors using
Gibson assembly. We amplified the whole vector using PrimeStar Max polymerase (Takeda). We
transfected PCR products transiently in 1mL Expi293 cell culture. Expression lasted 7 days be-
fore harvest. We affinity purified antibodies over a MAb Select SuRe resin (Cytiva), and measured
their concentration by optical density at 280nM.

Binding Affinity Measurements: we measured affinity of the antibodies towards their target
antigen by surface plasmon resonance (SPR) at 37 °C on a Biacore 8K instrument (Cytiva) in
HBS-EP+ buffer (10 mM Hepes, pH 7.4, 150 mM NaCl, 0.3mM EDTA and 0.05% vol/vol Surfactant
P20). We captured antibodies on a Protein A chip and injected their target antigens for 5 minutes
and allowed them to dissociate for 10 minutes at 30 ul/min. We regenerated the surface between
cycles with 10 mM glycine pH 1.5. We obtained affinity constants using Biacore Insight (Cytiva)

using a 1:1 binding kinetics model.

A.6 FURTHER DISCUSSION OF DISTRIBUTIONAL CONFORMITY

SCORE

Given a new example z, we use the conformal transducer, A, to measure how similar z is

to (z1,...,2,). The conformal transducer is then defined as a system of p-values where for

each label y € Y, a reference sequence (zy,...,z;) € 7! and a test example x € X, we have:
1

py = py(zls cees Zl: (x: y)) = % ZlZi [ayi < 6¥yI+1:| Where (ayl’ e ayl’ ayl‘H) = A(Zl’ e Zl, (x, y))

Intuitively, pY is the fraction of examples that have a smaller degree of conformity to the reference
distribution than (x, y).

The difference between DCS and property alignment (Wproperty) provides valuable insights
into the nature of the DCS statistic. DCS, being a measure of joint distribution alignment, might

prioritize capturing relationships among properties as opposed to alignment of individual prop-
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erties. Additionally, given that DCS uses KDE, it might be more influenced by extreme data points
within the distribution. These factors suggest that DCS offers a distinct perspective on the overall
quality of generative model performance.

We considered sequence-based properties (calculated with BioPython [118]) of average hyd-
prophilicity, molecular weight, grand average of hydropathy, as well as two structure-based prop-
erties (calculated with the Therapeutic Antibody Profiler [211]): surface hydrophobicity patches
around the CDR region and the symmetry of structural variable chain charges.

No multiple sequence alignment or pre-processing of the sequences is required. For con-
venience and because we have small numbers of examples and low dimensions, we use kernel
density estimation (KDE) to compute the joint density. However, DCS is completely general and
can be combined with any density estimator.

Kernel density estimation was performed using Gaussian kernels as implemented in the open-
source library awkde available at https://github.com/mennthor/awkde. We estimated the global
bandwidth of the kernel using Silverman’s method, set the adaptive local kernel bandwidth to

0.15, and employed a diagonal covariance matrix.

A.7 FURTHER DISCUSSION OF RELATED WORK

Contrastive divergence [25] training using Gibbs sampling was proposed to estimate the gra-
dient of the log partition function, wherein input data is usually discrete and MCMC chains are
initialized from training data, leading to long mixing times in high dimensions. Using continuous
inputs and Langevin MCMC initialized from uniform noise with a replay buffer of past samples,
efficient training was achieved [212]. The Langevin MCMC approach to sampling and maxi-
mum likelihood training yield advantages in simplicity (only one network is trained), flexibility
(no constraints imposed by a prior distribution), and compositionality (energy functions can be

summed). Whereas our approach relies on smoothing discrete data and learning energies and
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https://github.com/mennthor/awkde

scores over the smooth distribution, [213] formulates discrete score matching by constructing a
faithful approximation of continuous score matching via an inductive prior on the local topology
of the data space.

Although generative modeling is widely adopted in image and natural language generation,
successful applications of generative modeling in the sciences are few and far between, due to
the over-representation of image and text datasets, challenges in evaluation, and the need for
generating samples that are novel and diverse while respecting the underlying symmetries and
structure of a particular domain. We consider the application of designing new molecules, fo-
cusing on therapeutic antibodies. Antibodies are proteins consisting of a heavy and light chain
that can be represented as discrete sequences of amino acids (AAs), which comprise a standard

vocabulary of 20 characters.
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B SUPPLEMENTARY MATERIAL FOR

CHAPTER 4

B SUPPLEMENTARY MATERIAL FOR CHAPTER 4

B.1 SEQUENCE CORRUPTION PROCESS

The noise-corruption processes, C(X|X), is modeled by perturbing the original sequence by

applying one of three procedures:
» removing AL residues from randomly chosen positions in the input sequence,

« inserting AL randomly chosen residues at randomly chosen positions in the input sequence,

or
» mutating AL randomly chosen residues.

where the length difference is randomly chosen from a predefined range, AL € [=ALuax, ALmax].

B.2 DATA COLLECTION

Unsupervised training of our model is done using ~20M sequences from the protein family

database, Pfam. Sequences longer than 1000 residues and shorter than 50 residues are removed
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from our training set. The dataset is randomly partitioned into training and validation sets using
an 80:20 ratio. Supervised training of the function predictor is done using protein sequences
with annotations for at least one Molecular Function Gene Ontology (GO) term from the Uniprot

database [214]. Only GO terms with at least 50 training examples are considered.
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B.3 TRAINING

We use a Transformer-like architecture [215] to model the encoder and decoder using a
stacked MHA layer and point-wise, fully connected layers with residual connections followed
by a layer normalization.

During training, both perturbed input x and target sequence y are given to the model, and
the model is aware of their lengths. However, during inference the length of the target sequence
has to be predicted first. Given a sequence-level embedding vector, z,,, We train the model to
predict the length difference between [, and L. In our implementation, p(l, — L|zp001) is modeled
as a softmax probability distribution that covers the length difference [—AL,qx, ALpax]. During
inference, the length of the target sequence automatically adapts itself by first predicting the
length difference and then by transforming the input sequence into the target sequence using the

upsampling step presented in Section 4.1.4.1.

Algorithm 5: Manifold sampling

Input: input sequence: X°; GO term index i, param €
Output: sampled sequences: (X1, X2 .. ., X Tsteps

1 fort =0,..., Tieps do

2 Perturb sequence X! ~ C(X|X");

3 Compute latent representation: Z' ~ Qg(Z|X");

4 Compute gradient of the target GO term label probability w.r.t. classifier’s internal

states: VL = 9Pw (Y=Y;|2)
"z 0z
5 Apply gradients to latent representation to increase activation of desired function;

6 Sample length difference: AL" ~ PU(AL|Z);

7 Compute latent representation of the target sequence: Z* = f,(Z + thZ, AL") Sample

new sequence from the decoder: X'*! ~ P;(X|Z")

s end
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Figure B.1: Architecture of the sequence DAE.

B.4 DESIGNING PROTEIN SEQUENCES WITH NOVEL SECONDARY
STRUCTURES

We explore the possibility of designing a protein with an all-alpha fold — a secondary structure
that is almost exclusively a-helical - starting from a sequence of a protein having all-beta fold,
with a secondary structure composed almost exclusively of -sheets). We started with Beta-2-
microglobulin protein (PDB: 4NOF, chain B) which is composed only of beta-sheets. We perform
the sampling by conditioning on ion transmembrane transporter activity (GO:0015075). a-helices
are the most common protein structure elements embedded in membranes, so the designed se-
quence is expected to be composed of a-helices. The sampling results after seven MCMC steps
are shown in Fig. B.2. The designed sequence has no known homologs in the PDB and has only
maximal 36% sequence identical to the sequences in the Uniprot database. The sequence is folded
using trRosetta package [157]. Using an external protein function classifier, we show that the

designed sequence is predicted to have a desired function.
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PDB: 4NOF (chain B) trRosetta:

Re-designed by conditioning on
“ion transmembrane transporter
activity” (G0:0015075)

Input sequence: Designed sequence:
>>|QRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW >>IRPPQQVRHYPENNKKMMHFYAELLKYLKKGEEKVVAKRASFPQLAAYYSW
SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM LLEEAVTTQQPKKFDDAALYYALLTTVYLPAAFLVDDM
GO term Name Prob  Reliability
Known functions: Predicted functions: GO:0055085  transmembrane transport 0962 H
G0:0034220  ion transmembrane transport 0942 H

GO:0051171  regulation of nitrogen compound metabolic process  0.926  H

protein binding
identica| E rotein bindi ng GO0:0006811  ion transport 0.916 H
protein homodimerilation activitv G0:0019222  regulation of metabolic process 0.915 H

protein dimerization activity

G0:1903506  regulation of nucleic acid-templated transcription 0911  H

G0:0006810  transport 0910 H
G0:0051252  regulation of RNA metabolic process. 0909 H

Figure B.2: A designed sequence of a-helical protein obtained by altering the sequence of a f-protein by
conditioning the sampling process with ion transmembrane transporter activity function label.
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C SUPPLEMENTARY MATERIAL FOR

CHAPTER 5

C SuUPPLEMENTARY MATERIAL FOR CHAPTER 5

C.1 ANNOTATION COVERAGE

We investigated the frequency distribution of sequence-wide and residue-level annotations.
A similar coverage analysis of sequence-wide annotations in SwissProt (Figure C.1) reveals
that tokenized functional descriptions are long and a large majority of sequences are annotated

with at least one discrete label.

C.2 MORE INFORMATION ON LONG FORM DESCRIPTIONS

COMBINING SEQUENCE-WIDE SWISSPROT COMMENTS We collect text annotations and label codes
directly from the SwissProt XML file found on the UniProt FTP server. The text annotations
and label codes can be found in comment and dbReference tags, respectively. We create the
final description document of each record by formatting its associated text data into a specified

Jinja2 [216] template, as shown in C.2.
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Figure C.1: Summary information on the SwissProt text-augmented dataset. The left plot depicts the
length distribution for functional descriptions and protein sequences. The right plot indicates the count
distribution of label codes per protein.

C.3 MORE INFORMATION ON CONDITIONAL DISTRIBUTIONAL

CONFORMITY SCORE

The concept conditional distributional conformity score (C2DCS) described in Section 5.3.1.3
uses the induced sequence neighborhood N(z) a query description z. We compute the ESM2
embedding of each sequence to form a collection of reference “concept-conditional” features using
the esm2_t12_35M_UR50D model available on Huggingface Hub [176].

The conformity measure is a Gaussian mixture model (GMM) fit to the reference embeddings,
for which we scan for the number of mixture components k that maximizes the area under the
receiver operating characteristic (AUROC) in distinguishing a validation set as in or out of distri-
bution. We allocate 10% of the reference set to the calibration set, 10% to the validation set and 80%
to the training set. After finding the optimal number of components, we train a new GMM on the

90% of the data not allocated for calibration. All models are trained using the Scikit-learn [217]
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{% if 'comment_doc' in request %}

*Comments*:

{{request[ 'comment_doc']}}

{% endif %}

{% if ('dbrefs' in request) and (request['dbrefs'] | length > @) %}
*Labels*:

{% for dbref in request['dbrefs'] %}

- {{dbref['id']1}}{% if 'name' in dbref %} ({{dbref['name']}}) {% endif %}:
— {{dbref['def']}}

{% endfor %3}

{% endif %}

Figure C.2: Jinja2 template for functional descriptions. The template accepts a parameter request with
optional fields: comment_doc the molecular description of the protein collected from <comment> fields and
dbrefs: a list of dictionaries containing the label codes, definitions, and names of each <dbReference>

field.

package sklearn.mixture with covariance_type = ’full’.

We sampled 16 different records from SwissProt and used their respective embedding neigh-
borhoods to calculate the distribution of concept conditional distributional conformity scores
for in- and out-of-distribution examples. Out-of-distribution examples are randomly selected se-
quences not found in the induced sequence neighborhoods of interest. For each neighborhood,
we optimize a GMM by a subset of train, validation, and test embeddings and measure the C2DCS
on positive and negative test examples using a held out calibration set.

Figure C.3 demonstrates the capability of C2DCS to distinguish distributional conformity.
In-distribution examples are those examples for which the null hypothesis (i.e., that the sample
was drawn IID with respect to the reference) is true. These positive examples are assigned p-
values uniformly as expected. Out-of-distribution examples, those for which the null hypothesis
is false, are assigned low p-values, providing evidence that the C2DCS reliably distinguishes out-

of-distribution examples.
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Figure C.3: Concept conditional distributional conformity scores for a selected subset of description
embedding neighborhoods.

C.4 ARCHITECTURE AND TRAINING DETAILS

We provide more information on the architectural and training choices for each CORGI net-

work.

C.4.1 (GLOBAL ANNOTATION NETWORK

The global annotation model accepts as input a Gaussian-smoothed one-hot encoding. Since
ESM2 does not natively support continuous vector inputs, we replace the discrete embedding
layer by instead multiplying noisy token representations against the token embedding matrix.
This approach differs from the L-WJS [218] in that the noise is applied on the one-hot sequence
rather than the token embeddings, implying the learned score-model is a R¢ — R? mapping

where d is the vocabulary size. We justify this choice by the observation that the squared error
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in denoising a continuous embedding is not rotation-invariant. However, denoising a one-hot
encoded sequence is invariant to rotation and therefore does not require any additional regular-
ization terms.

During fine-tuning, the model optimizes the least squares loss in Equation C.3 using the Adam
optimizer with learning rate 1 x 10™%, weight decay set to 0.01, momentum parameters (S, f2) =
(0.9,0.999) and noise level o = 0.5. We justify this choice of noise level in Appendix C.5.

Sampling starts from a randomly initialized sequence and proceeds with 1024 Langevin up-
dates using the update described in [219] and the score function in Equation 5.2. We compute
the expectation in Equation C.4 at each step to study and select from the complete sampling
trajectory. The sampling parameters are provided in Table C.1.

Table C.1: Sampling parameters for molecular programming experiments

Parameter Value
Step size 0.5
Friction 0.5
Lipsschitz constant 1.0
Noise level 0.5

C.5 ESTIMATING THE OPTIMAL NOISE LEVEL

Neural empirical Bayes [220] requires the selection of a sufficient noise level o that grants
sufficient overlap between i-spheres, or the volume occupied by Gaussian smoothed data points.
The critical noise level o, represents the noise level at which all i-spheres have some degree
of overlap. In practice, discrete walk-jump sampler models have benefited from training with
so-called extreme noise, or some o > o.. Therefore, we must choose a noise level be used during
training that exceeds this o, threshold. An estimate of the critical noise level for aligned antibody
sequences was computed in [201]. However, since our data are samples of unaligned and diverse

protein sequences, we re-estimate o, to justify our choice of o.
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The critical noise level o, is the infinity norm max;; y; of the distance matrix y with entries

X = Xl

it = C.
X I (C.1)

where Xj, Xj» are samples drawn from the training dataset. Previous work estimated o, based
on distances of one-hot encoded sequences; while this approach was applicable for antibodies,
we believe computing distances between pooled ESM2 vector embeddings better captures the
i-sphere distances. This approach is motivated by prior work demonstrating that ESM2 embed-
dings capture biologically meaningful similarities, such as sequence homology and functional re-
lationships. These pooled embeddings are known to be spatially organized in a way that reflects
intuitive biological semantics, making them a suitable proxy for the underlying organization of

sequences prior to fine-tuning.

SAMPLING THE DISTANCE MATRIX ¥ Computing all entries of y is not only costly, but largely un-
necessary since o, is an extreme value. We develop a method to sample entries y; grounded in
the intuition that embedding distance is connected to sequence similarity. In particular, we com-

pute vector distances between and within sequence clusters. The inter-cluster distances y™*" a

re
calculated between cluster representatives. The intra-cluster distances y* for a specific cluster
index k are calculated between the cluster member and cluster representatives. Since cluster rep-

resentatives are centroids, the inter-cluster critical noise ¢™t¢*

2" can be regarded as a low estimate

of the true o.. In turn, the intra-cluster critical noise o} can be understood as the maximal extent
of the cluster radius.
Using this intution, we estimate the total o, by adding the maximum inter-cluster distance to

the maximum intra-cluster diameter over all clusters:
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o; % oM 42 max o (C.2)
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EmpIrICAL FINDINGS Using the methodology outlined above, we sampled 4096 cluster repre-

sentatives with at most 50% sequence similarity from SwissProt and computed inter- and intra-

cluster distances. Sequence clusters were computed using MMSeqs2 [47]. Figure C.4 shows the

distributions of calculated distances.
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Figure C.4: Histogram of embedding distances.

Table C.2 provides summary statistics of the distance matrix entries. Using equation C.2, we

arrive at a final estimate of o, of 0.40. This analysis therefore justifies the choice of noise level

o = 0.5 to enter the extreme noise regime described by the authors of neural empirical Bayes.

Table C.2: Summary statistics of elements of the distance matrix y, for 4096 50% sequence identity cluster

representatives.

mean median max

inter-cluster 0.069  0.068  0.155
intra-cluster 0.022 0.021 0.123
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C.6 ScALING CORGI ON LARGE SEQUENCE DATABASES

To test the influence of residue-level text annotations at scale we train CORGI on an inner
join of UniRef90 and InterPro. We fine-tune a CORGI model with a ProGen2-small [94] base and a
baseline ProGen2-small without conditioning. We compare the performance of the baseline mode
to various settings (no annotations, all annotations, and a greedy subset of annotations) of the
fine-tuned CORGI model. Prior to evaluation, we run InterProScan on the wildtypes sequences
of ProteinGym and propagated the residue-level annotations onto their mutants using the same

method described in Section 5.3.1.1. .

C.6.1 MODEL DETAILS

C.6.1.1 RESIDUE-LEVEL ANNOTATION NETWORK

We fine-tune the small variant of ProGen2 [94] using the CORGI framework on the text aug-
mented UniRef90 [49] dataset described in Section C.6.2.3. To capture position-specific annota-
tion dependencies along the sequence, we implement a bidirectional Llama [221] block in the
context processing module subsequent to the residue annotation combining step described in

Section 5.3.3.

C.6.2 RESIDUE-LEVEL ANNOTATION NETWORK

The fine-tuning follows the recommendations of the authors of ProGen-2. Our model opti-
mizes a cross-entropy loss using the AdamW [15] optimizer with the hyperparameters with linear
warmup of 3000 steps up to a learning rate of 4 X 10~ followed by cosine annealing. We retain
the same weight decay and momentum parameters described in ProGen?2.

During training, we regularize the model in two ways: annotation dropout and sequence

reversal. Annotation dropout enforces that model retains native support for unannotated se-
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quences. With probability ps,, = 0.5, all annotations of a given sample are removed. Sequence
reversal is a strategy to learn direction-agnostic token likelihoods with a causal language model.
With probability p,., = 0.5, the sequence is reversed. Specialized start and end tokens signify the
directionality of the sequence. In all of our experiments using ProGen2-small, we follow Nijkamp
et al. [94] and compute the bidirectional sequence likelihood score by evaluating the model/an-

notations twice in forward and reverse configuration.

C.6.2.1 GREEDY ANNOTATION SUBSET SELECTION

There is no guarantee that every label positively informs model likelihood. For example, the
presence of an annotation stemming from a protein family with low homology may collapse
the logit distribution such that mutant residues are assigned artificially low log-probabilities. In
order to find a subset of label types that positively impact the Spearman correlation, we employ
a greedy algorithm for optimal subset selection. Starting from an empty set of labels, the greedy
algorithm populates a “greedy subset” under the invariant that the label in question together
with the running greedy subset improves the running best average Spearman correlation. This
construction allows the user to focus the algorithm on a specific subset of assays, for example the
group of assays with the same selection and mutation type, allowing for adaptation of CORGI to

select different contextual information depending on the selection assay or mutation type.

C.6.2.2 PRE-TRAINING DATASET

For pre-training, we inner joined UniRef90 [49] sequences with InterPro [57] annotations and
UniProtKB [50] binding/active site annotations, resulting in 43729 different InterPro label types,
552 different site label types, and 105,347,199 sequences with a significant amount of annotation
coverage per sequence (Section C.1). We denote each label as yq, . . ., Y44280-

In order to condition on text information at the residue-level, we embed the long-form de-

scriptions of each InterPro/site label type present in the training dataset NV-Embed-v2 [222]. We
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apply dimensionality reduction using principal component analysis (PCA) to reduce the original
NV-Embed-v2 hidden dimension from 4096 to 1024. For the UniProt sites that did not already
have long-form abstracts, we generated them by prompting Llama-3-1B [223] to elaborate on the
short-form name of the term (see Section C.6.2.3). In this way, each label type yx € {yo,...,yn-1}

is assigned a corresponding embedding.

C.6.2.3 GLOBAL ANNOTATION NETWORK

For global annotation conditioning with application to molecular programming, we choose
to fine-tune ESM2 [203] using the Neural Empirical Bayes (NEB) framework [201, 220]. Doing
so effectively converts the model into a programmable sampler, combining previous works on
conditional walk-jump sampling [133] and leveraging pre-trained PLMs [218]. To the best of our
knowledge, this is a novel application of conditional discrete walk-jump sampling to generalized
protein families.

The network optimizes a least-squares loss

Lypyla) = lIx = f3(y. 2)l (C.3)

such that

f3(y.2) = y+ o?g4(y. 2). (C.4)

where o is the noise level, y = x + N (0, 62I;) is the one-hot encoded sequence x smoothed with
isotropic Gaussian noise and z is the function description vector. The trained model g¢(y, z) ~
Vylogp(y | z) represents a score function of the smoothed space that in practice be used to
“walk” the noisy manifold according to Langevin dynamics [24]. The “jump”, implemented us-
ing Tweedie’s formula [23] and shown in Equation C.4, may be computed at any step along the

trajectory.
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RESIDUE-LEVEL ANNOTATIONS For pre-training, we inner joined UniRef90 [49] sequences with
InterPro [57] annotations and UniProtKB [50] binding/active site annotations, resulting in 43729
different InterPro label types, 552 different site label types, and 105,347,199 sequences with a
significant amount of annotation coverage per sequence (Section C.1). We denote each label as
Yo, - - - Y44280-

In order to condition on text information at the residue-level, we embed the long-form de-
scriptions of each InterPro/site label type present in the training dataset NV-Embed-v2 [222]. We
apply dimensionality reduction using principal component analysis (PCA) to reduce the original
NV-Embed-v2 hidden dimension from 4096 to 1024. For the UniProt sites that did not already
have long-form abstracts, we generated them by prompting Llama-3-1B [223] to elaborate on the
short-form name of the term (see Section C.6.2.3). In this way, each label type yx € {yo,...,yn-1}

is assigned a corresponding embedding.

GENERATING LONG-FORM DESCRIPTIONS FOR RESIDUE-LEVEL ANNOTATIONS ~ We condition CORGI
models on natural-language embeddings of annotation descriptions. In order to generate descrip-
tion embeddings for the 552 different UniProt sites without natural language abstracts we first
constructed for each site type a short form phrase of the form site_type: site_name if a site
name was provided or otherwise just site_type. Using the short form phrase, we prompted

Llama-3-1B to generate abstracts based on the following prompt.

You are an expert molecular biologist with over 30 years of experience and an
extensive knowledge of protein structure and function. You will be provided with
a technical, short-form phrase. Generate a long-form description (no more than
500 words) that expands on the subject. Provide only the long-form description,

without any explanation or comment otherwise.

We expand the short-form phrase into a long-form description with the intuition that the

longer context creates a more informative description embedding.
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Figure C.5: Annotation coverage distributions across a random subsample (10%) of the scaled training
dataset. Left. The distribution of percent coverages per sequence (covered are counted once per sequence).
Right. The distribution of percent coverage when we repeat the count of residues participating in multiple
annotations.

C.6.2.4 RESIDUE-LEVEL ANNOTATION COVERAGE

To understand the annotation density in the UniRef90-InterPro inner join, we calculated cov-
erage statistics (Figure C.5). Most residues in the the majority of sequences have at least one
residue-level annotation. We note that since he overlapping annotations may contain redundant
or inconsistent information, the model may learn to preference certain labels over others, there-

fore motivating the greedy selection algorithm described in Section C.6.2.1.

C.6.3 REesuLTs

We trained a CORGI model using ProGen2-small by fine-tuning the pre-trained weights using

the procedure described in Section 5.3.3 and evaluated its performance on the text-augmented
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Table C.3: Performance comparison for different CORGI settings and the baseline averaged per (selection
type, mutation type) pair.

Expression Organismal Stability Activity Binding

Fitness
Model Indels Subs. Indels Subs. Indels Subs. Indels Subs. Subs.
Baseline 0.3594 0.3923 0.4212 0.3449 0.4885 0.3655 0.5109 0.3619 0.2822

CORGlIy 0.3645 0.3937 04244 0.3573 04936 0.3646 0.5245 0.3664 0.2550
CORGl 0.3571 0.4062 0.4476 0.3724 0.5072 0.3910 0.5158 0.4062 0.2680

CORGlIgreedy 0.3645 0.3995 0.4708 0.3628 0.5666 0.4264 0.5304 0.3702  0.2770

ProteinGym. For fairness in evaluation, we also fine-tune a baseline ProGen2-small architecture
with no modifications to the training set. We compare three different inference modes of CORGI
to the baseline: CORGIy (no annotations are provided), CORGI,, (all annotations are provided),
and CORGlgyeedy, (only the greedy optimal subset of annotations is provided). Table C.3 shows
that CORGI either outperforms or ties the baseline model on all but one assay/mutation type
category. We also note that in certain cases, the greedy subset of annotations outperforms the all-
in setting, CORGI,);, and sometimes vice versa. The cases where the greedy subset outperforms
the all-in settings indicate that indeed a certain tuned subset of labels are perhaps independently
correlated with the output signal. The latter cases, where the all-in setting exceeds the greedy
one, may be explained by the existence of dependencies between the labels that were not tested
during the course of the greedy algorithm.

Table C.4 similarly shows favorable performance of CORGI models to the baseline in all but
one setting. These ablations provide evidence that conditioning on residue-level information

improves downstream mutation effect prediction performance.
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Table C.4: Performance comparison for different CORGI settings and the baseline averaged per group of
(mutation-type, taxon division) pairs.

Taxon Mutation type CORGI,; CORGIp Baseline
Fukarvote Indels 0.5057 0.5299 0.5372
y Subs. 0.3981 0.3758 0.3831
Human Indels 0.5438 0.5015 0.4921
Subs. 0.4091 0.3846 0.3791

Prokarvote Indels 0.4148 0.3802 0.3647
y Subs. 0.3507 0.3375 0.3210

Virus Indels 0.4698 0.5068 0.5007
Subs. 0.2956 0.2808 0.2721

C.6.4 TASK-SPECIFIC CONDITIONING

VKOR1 is a transmembrane protein that drives the vitamin K cycle playing a role in blood clot-
ting. VKOR1 contains 3-4 transmembrane domains and 4 conserved functional cysteine residues [224],
depicted in Figure C.6. CORGI-trained models can be adapted at inference time to task-specific
conditions; here, we compared the performance of two different CORGI variants to the baseline
model on two different assay selection types, abundance and activity, for the same VKOR1 pheno-
type. Not only do the CORGI variants outperform the baseline on each assay, they also correctly
exhibit different behaviors from distinct annotation inputs.

In order to demonstrate the differences in CORGI performance for the separate tasks, we
illustrate the logit distributions in two different ways. For the abundance assay, we visualize
the logit standard deviations calculated per-position, per-token across each mutant to focus on
the variance across the sequence (see Figure C.6B and Figure C.6C). The greedy annotation set
and propagated VKOR1 labels have one label in common “Vitamin K epoxide reductase complex
subunit I” (IPR042406). As shown in Figure C.6, the annotation collapses token distributions in

and surrounding the transmembrane domains, contributing to a slightly more robust mutation
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Figure C.6: Left. VKORT1 case study on task specific inference. Right. AlphaFold 2 [3] predicted structure
of VKORT1. Highly conserved functional cysteine residues are shaded in blue. (A, D) Position specific per-
plexities for CORGI and the baseline (orange) averaged over abundance (A) and activity (D) phenotypes.
Shaded regions represent trans-membrane domains and dashed lines represent positions of conserved,
functional cysteine residues. (B, C) Logit standard deviations across abundance phenotypes for CORGI-
greedy (B) and the baseline (C). Positions with higher variance are shaded with more intensity. (E, F)
Softmax probabilities calculated from activity phenotypes for CORGI-all (E) and the baseline (F). Posi-
tions with higher probability mass are shaded with more intensity. Black boxes represent the softmax
probability of conserved cysteines.

effect prediction. By contrast, the baseline model has much higher variance per token which
may contribute to a more erroneous prediction. For the activity assay, we visualize the softmax
probabilities per-token computed across each mutant (see Figure C.6E and Figure C.6F). Notably,
CORG I correctly places most probability mass on 3/4 of the conserved cysteine residues (as op-
posed to the baseline), which echoes the findings in Chiasson et al. [224] that only 3/4 of the
conserved cysteines may be relevant to retain activity, supporting the notion that there is rele-

vant information in the annotations that further collapses the softmax probabilities, resulting in

more effective mutation effective prediction.

C.7 AnNAvrysis oF CORGI-W]JS SAMPLING TRAJECTORIES

We examined the correspondence between sampling step and the concept-conditioned dis-

tributional conformity score over long sampling chains for the WJS variety of CORGI models.
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Figure C.7(a) depicts the weighted average of distributional conformity scores along the trajec-
tory. We find that the trajectories of the unconditional, contrastive, and conditional settings of
the text-conditioned walk-jump sampler (tcW]S) behave as expected. The unconditional setting
does not improve in average score during the trajectory beyond the first steps. The slight increase
in conformity at the beginning of sampling likely corresponds with the score model steering the
random sequence onto a region of the smooth manifold with higher density. The conditional and
contrastive settings do indeed steadily improve in conformity over the trajectory however. In
particular, the conditional setting is driven to the highest average conformity and the contrastive
setting takes a more measured approach. The latter observation can be explained by the formu-
lation of equation 5.2, in which setting w = 1 forces the sampler to take a half step using the
unconditional setting for every full step with the conditional.

As discussed in Chapter 1, a full-scale protein design protocol involves several steps besides
generation and evaluation, in particular ranking. For each prompt in the Molecular Program-
ming repository, we sorted them by their concept-conditioned distributional conformity score
and selected the highest scoring samples. Figure C.7(b) shows a histogram of sampling steps of
each of these highest ranking samples. We observe that the samples generated in the later term
of the trajectory are selected more often for the conditional and contrastive models, whereas un-
conditional steps are more uniformly distributed. This observation provides more evidence that
indeed the distribution of conformity scores over the course of the sampling trajectory increases
over time and excludes the possibility that the selected samples are outliers from earlier steps in

the trajectory.
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Figure C.7: Visualizations of conformity over a long chain of sampling and the highest ranking.
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