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Abstract

Designing biosynthetic molecules such as proteins is critical for applications in therapeutics

and agriculture, yet the vast sequence space and complex functional landscape pose significant

challenges. Previous design workflows rely on clustering, mechanistic modeling, or directed evo-

lution and are often constrained by hand-crafted heuristics and domain-specific biases. Advances

in deep generative modeling and protein databases of unprecedented size present an opportunity

to apply modern machine learning techniques. In this work, we develop methods to generate

and score protein sequences. We propose several steering and guidance techniques that balance

data-driven exploration with expert-guided refinement. Leveraging established classifications

of antibodies, we enable targeted redesign of designated regions for applications such as affin-

ity maturation and framework optimization. Expanding the scope to general sequence design,

we show effective classifier-guided generation of protein sequences using a novel sequence de-

noising autoencoder. Finally, we investigate the utility of natural language text embeddings in

classifier-free generation and show the capabilities of text conditioned models on downstream

generative modeling tasks. These works represent a modern framework for protein engineering

that incorporates domain knowledge into a human-centered interface.
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1 | Introduction

Proteins are the functional products of genetic sequences such as DNA that either carry out

or engage in almost every biosynthetic process in all cellular organisms. Proteins are functionally

diverse and ubiquitous throughout nature, making them ideal candidates for many applications

in subject areas such as drug discovery [4], agriculture [5], and the environment [6]. Despite

the potential benefits of protein design, multiple challenges arise from the combinatorially vast

sequence and sparsely functional sequence space. Moreover, even subtle differences in protein

sequences can result in gain or loss of protein function, making the design process extremely sen-

sitive to small perturbations. Computational protein design seeks to efficiently sample sequence

space and generate on-target, physically realizable proteins.

Advances in next-generation sequencing technologies have givenway to large-scale genomics

projects [7–10] and resulted in a proverbial biological data age. Efforts to characterize and an-

notate protein sequences [11–13] have created a rich taxonomies of protein structure and func-

tion. Data availability combined with specialized semiconductors has enabled the application

of emerging methodologies in artificial intelligence such as deep learning. In particular deep

neural networks, optimized via stochastic gradient descent [14, 15], have been shown to model

complex distributions without the need for feature-engineering or dimensionality reduction tech-

niques [16, 17]. Self-supervised learning [15, 18] and generative modeling [19–21] have not only

disentangled the need for an output label, but also opened the possibility of generating novel

samples.
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Acomplete computational protein designworkflow entails candidate generation, sample rank-

ing and evaluation, experimental readout, and in some cases re-incorporation of experimental

feedback [22]. This work is primarily concerned with the former two. We address the following

objectives: protein family diversification, steerable generation, and sample evaluation.

In Chapter 3, we investigate the utility of generative models to diversify the variable domain

of antibody heavy and light chains. In order to do so, we introduce the discrete Walk-Jump Sam-

pler (dWJS), a generative model based on the Neural Empirical Bayes (NEB) [20] framework. The

Neural Empirical Bayes framework relies on Herbert Robbins’ seminal An empirical Bayes ap-

proach to statistics [23] by training a Bayesian estimator parameterized by a neural network to

estimate the score of a data manifold corrupted with additive isotropic Gaussian noise. The dWJS

has two variants applicable to sampling procedures such as stochastic gradient Langevin dynam-

ics [24]: an energy-based model (EBM) trained via contrastive divergence [25] and a score-based

model trained using a form of denoising score matching. To demonstrate the capabilities of the

dWJS for protein family diversification, we first train it on the paired heavy and light chains of the

Observed Antibody Space (pOAS) [2] and generate novel antibodies meant to target the HER2 re-

ceptor. We evaluate the generative model in-silicowith developing the Distributional Conformity

Score (DCS), an instantiation of a conformal transducer system (CTS) [26, 27], which returns a

randomized 𝑝-value testing the null hypothesis that a query sample is drawn independently and

identically distributed (IID) with respect to some reference distribution. We find that both vari-

ants of the dWJS produce realistic antibody sequences with conserved framework regions and

mutated the complementarity determining regions (CDRs). We experimentally evaluated the top

ranking antibody samples and found they not only expressed in-vitro, but also bound to the target

antigen and outperformed other existing methods in doing so.

In Chapter 4, we develop the deepmanifold sampler (DMS), a sequence denoising autoencoder

as well as two sampling methodologies to steer its generation. The DMS is a non-autoregressive

transformer encoder-decoder that accepts a corrupted, off manifold, sequence and denoises it to
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its original state. The corruption process perturbs the original sequence by either inserting, delet-

ing, or substituting Δ𝐿 residues. In order to handle the length differences between the corrupted

and original sequence, the DMS follows Shu, et al [28] and is equipped with two learnable mod-

ules conditioned on the encoder representation of the corrupted sequence 𝑍 : length posterior

module 𝑃𝜂 (Δ𝐿 | 𝑍 ) that classifies the length change and a length transformation 𝑓𝜎 (𝑍 | 𝑍,Δ𝐿)

that expands or contracts the input by Δ𝐿. Using an MCMC-like iterative denoising process, the

DMS samples a wider range of proteins by not only sampling sequences from the decoder, but

also estimating length changes Δ𝐿 ∈ [−Δ𝐿max,Δ𝐿max] using the length posterior. Additionally,

we propose twomethods for conditional generation using the DMS: classifier-guided, function bi-

ased sampling and classifier-free multi-segment preserving sampling (MSPS). In function-biased

sampling, we train an external classifier 𝑃𝜔 (𝑌 | 𝑍 ) to classify gene ontology (GO) terms [11]

given the corrupted sequence representation. During sampling, we add the gradient of the classi-

fier with respect to the function of interest ∇𝑦∈𝑌𝑃𝜔 (𝑌 | ·) to the decoded, length transformed

representation 𝑍 . The DMS demonstrates the capability to produce target-function enriched

samples using this guidance methodology as well as traverse between distinct functional fam-

ilies. Multi-segment preserving sampling is an alternative guidance methodology that injects

expert information into the sampling process in order to concentrate sampling to user-defined,

non-preserved regions. In order to do so, we modify the corruption process at inference time to

apply perturbations along the non-preserved segments. In turn, we modify the length posterior

to distribute length changes in those segments while retaining absolute sequence identity in the

preserved regions to the original seed sequence. We demonstrate the ability of the DMS to con-

strain sampling to CDR regions in antibodies and produce realistic, i.e., high-likelihood samples.

These two conditional sampling methodologies described above result in a balanced approach to

exploratory sampling while exploiting external information.

In Chapter 5, we explore new directions in natural language conditioned protein design. Nat-

ural language communication with molecular machine learning systems, or molecular program-
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ming (MP), offers a flexible interface for concisely articulating the desired properties of the target

molecules. Previously established molecular programming methods rely on either contrastive

alignment to learn a joint embedding space of protein sequences and text [29–31] or as effective

translation systems between text and protein [32]. Unfortunately, evaluation approaches for MP

systems is not yet standardized, due partially to the ill-defined nature of text-based molecular

concepts.

In this chapter, we describe two alternative MP systems condition on text embeddings rather

than natural language itself. The advantages of embedding-based conditioning are not only based

in J. R. Firth’s distributional hypothesis: “A word is characterized by the company it keeps”, but

also in the emergent additive nature of semantic embeddings that enables operations such as con-

cept algebra [17]. The first approach, interrogates the utility of text conditioning for mutation ef-

fect prediction. We describe a general protein language model fine-tuning method, Conditioning

on Residue-level Annotations from Text (CRATE), that allows for the injection of conditioning in-

formation, in particular token-level annotations such as binding and active sites, during training.

We benchmark CRATE on the ProteinGym [33], a dataset of deep mutational scan (DMS) assays

surveying a variety of selection types and protein functions. We find that not only does CRATE-

training results in improved performance compared to the baseline unconditional model, but also

it enables task-specific conditioning in order to improve performance on a per-assay basis. In the

second approach, we apply the same embedding conditioning methodology as in CRATE to train

a text-conditioned Walk-Jump sampler (tcWJS) module. Specifically, we fine-tune ESM2 using

the NEB approach with the additional input of text embeddings at each hidden layer. In order

to evaluate the tcWJS against a state-of-the-art baseline, we use two portable evaluations to test

validity, whether the output sequence resembles a realistic protein, and language alignment, the

coherence of the output molecule with the conditioning text. To test validity, we draw from the

evaluations developed in Chapter 4 by measuring the pseudo-likelihood of generated samples

given by a surrogate model relative to that of putative proteins in SwissProt [34]. To test lan-
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guage alignment, we build off of the distributional conformity score developed in Chapter 3 to

instantiate a new CTS called the concept-conditional distributional conformity score (ccDCS),

which reports a 𝑝-value testing whether a given sample is drawn from a reference distribution

of proteins annotated with similar text to the input. We find that tcWJS is competitive with the

state-of-the-art model MP4 in both language alignment and validity.

The rest of this dissertation is organized in the following manner. Chapter 2 provides back-

ground information on protein biology, historical context on protein design, descriptions of nec-

essary bioinformatics tools and databases, and a brief literature review protein sequence model-

ing and generation. Chapter 3 is a reprint of the published work describing the discrete Walk-

Jump sampler. Chapter 4 contains two reprinted articles, the first introducing the Deep Manifold

Sampler and function-guided design and the second describing the multi-segment preserving

sampling algorithm. Chapter 5 introduces the CRATE fine-tuning method and describes the text-

conditioned Walk-Jump sampler. We conclude in Chapter 6 with a summary of the work as well

as a description of future directions and outlook.
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2 | Background Material

This chapter primes the reader for the following chapters by providing essential context on

topics related to computational protein design. In Section 2.1, we discuss the necessary basis for

protein biology as well as computational tools for protein sequence clustering and categoriza-

tion.In Section 2.4, we review modern methods for modeling and sampling protein sequences.

2.1 Protein biology, structure, and function

Proteins are a diverse class of large, organic molecules that participate in almost every bio-

logical process in every living organism. These molecular machines are linear polypeptide chains

composed of amino acids, and highly specialized to carry out specific functions such as catalysis of

reactions, signaling to other systems, and mechanical interaction with other biomolecules (often

proteins) to create materials or other products. Proteins are located all throughout the organismal

system in and outside of cells. Intracellular proteins are found in different cellular organelles and

expressed to implement the functionality of the cell. Extracellular proteins are located outside of

the cell membrane and may act by signaling to other cells or biological subsystems. Transmem-

brane proteins act as an intermediate conduit between either side of the cell membrane. This

section provides necessary details to contextualize the protein modality for computer scientists.
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2.1.1 Molecular composition of proteins

Proteins are linear chains of amino acids, or residues. Amino acids are small molecules with

three functional groups: an amino group, a carboxyl group, and a variable side chain that con-

fers its electro-physical properties. There are twenty naturally occuring amino acids, each with

different molecular properties.

...

NH

C𝛼H R1

CO

NH

C𝛼H R2

CO

...

(a)
(b)

Figure 2.1: 2.1(a): Diagram of a two amino acids joined by a peptide bond. Each 𝑅-group represents a
side-chain. 2.1(b): Quaternary structure of a crystallized Chymotrypsin protein (PDB ID: 2HCA). Loops,
𝛼-helices, and 𝛽-strands are colored in magenta, cyan, and red respectively.

Consecutive amino acids along a protein sequence are joined via a peptide bond, as seen in

Figure 2.1(a), that connect the carboxyl and amino groups, forming the protein backbone.

Local force-fields induced by the molecular properties of adjacent amino acids along pref-

erence short subsequences to take on certain geometries, or secondary structures: 𝛼-helices, 𝛽-

strands, and loosely structured loop regions. These secondary structure elements act on one
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another forcing the protein to fold into ane energetically favorable conformation called the ter-

tiary structure. The tertiary structure may consist of one or more constituent domains which

may themselves play different functional roles [35].

Finally, tertiary structures may fold in complex with one another to construct multimeric

assemblies called quaternary structure (see Figure 2.1(b)).

2.1.1.1 Seqence homology

Evolution is the product of random recombination and variation of ancestral genetic code

subject to environmental selective pressure. As organisms evolve, mutations in genetic code

results in downstream functional speciation of biological products such as proteins. Homologous

proteins arise from two different speciation events: splitting and duplication [36, 37]. In a splitting

event, gene sequences diverge and although non-identical, they code for functionally equivalent

protein products, or orthologs (for example, horse and humanmyoglobin). In a duplication event,

a gene sequence is duplicated with variation, creating a paralog that may evolve to perform a

different but related function (for example, horse myoglobin and horse hemoglobin).

2.2 Early methods in protein design

Engineering proteins is a long sought after grand challenge. Early pioneers proposed “rational

design” – the systematic modification of protein sequences based on hypotheses on the relation-

ship between protein structure and function [38, 39]. Contemporaries proposed site-directed

mutagenesis [40, 41] to methodically test hypotheses. Arnold’s seminal work on directed evo-

lution [42] proposed mimicking natural selection by evaluating the fitness of random mutations

along a given sequence. Despite these early methods setting the stage for modern protein engi-

neering and design, the throughput is limited by costs, in money and in time, of the experimental

procedures. Later, Computational models of protein folding such as Rosetta [43, 44] were used
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to optimize sequences by inverse folding resulted in the first de novo designed protein [45]. Still,

the computational cost of mechanistic modeling techniques as well necessitate faster, more data-

driven methods for general design problems.

2.3 Bioinformatics tools

Proteins are large and complex biomolecules with a diverse species of functions and proper-

ties. In order to better understand the sequence, structure, and function landscapes, a variety of

tools have been developed to find patterns, cluster, and label proteins for downstream analysis.

2.3.1 Seqence clustering

As discussed in Section 2.1.1.1, homologous proteins may be functionally similar as well.

Sequence similarity-based clustering methods group samples using a sequence similarity ker-

nel. Typically, clustering involves setting a similarity threshold, finding diverse cluster centroids

whose similarity does not exceed the threshold, and assigningmembership by finding the centroid

of maximal similarity. Sequence similarity is found by aligning sequences – matching preserved

domains according to a transition matrix such as BLOSUM62 [46] and offsetting with gap charac-

ters – using dynamic programming algorithms such as Smith-Waterman or Needleman-Wunsch.

Fast tools for clustering such as MMSeqs2 [47] enables agglomeration of large sequence

databases and downstream applications such as search/retrieval (linear scan of centroids using

e.g., BLAST [48]), annotation transfer (copying labels among cluster members), and dataset debi-

asing (sampling ecumenically from clusters during e.g., model training). TheUniRef databases [49]

are a collection of non-redundant sequence cluster databases.

Sequence clusters are commonly postulated to perform similar functions and hence a variety

of classification systems have been developed to categorize clusters as well as provide a taxonomy

of their functions.
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2.3.2 Databases and Annotation Types

Protein sequences are deposited into central databases such as UniProt [50] with either ex-

perimental evidence from large-scale sequencing initiatives [7–10, 51] or as hypothetical protein

predictions from open reading frames (ORFs) [52]. The UniProt database is divided into separate

sources: SwissProt [53], a manually curated database of richly annotated proteins and UniProt-

TrEMBL, a larger scale database with electronic curation and annotations.

Advancements in experimental technologies [54] have scaled sequence repositories to big data

and enabled use of modern deep learning methods. Sequence data can be retrieved as strings of

amino acids following the standard coding scheme of the International Union of Pure and Applied

Chemistry [55], which account for ambiguous and nonstandard amino acids.

2.3.2.1 Annotations

Protein sequences are often accompanied with either experimentally verified or electronic

annotations meant to characterize their structure and function. For the purpose of this work,

annotations may appear in three different forms:

1. Labels consisting of a record identity number and optionally a natural language description.

2. Numericmolecular properties, either computationally derived or experimentally confirmed.

3. Free-form, natural language descriptions.

Annotations of this form may apply to the entire protein sequence (global) or ascribed to a

specific subsequence or domain (residue-level).

We review a routinely used computational annotation sources below.

• Pfam [56] uses cluster-specific profile hidden markov models (pHMMs) to assign sequence

labels. Clusters are interpreted and labeled by a mix of automation and expert evaluation

to ascribe a semantic meaning.
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• CATH [13] is a structural taxonomy of protein domains wherein each successive tier of

the system constitutes a more specific fold classification. The acronym stands for Class,

Architecture, Topology, and Homologous superfamily. All tiers besides the last are assigned

using a structural, rather than sequence, similarity kernel.

• InterPro [57] combines annotations from several sources including Pfam and CATH. Inter-

Pro annotations are assigned by ensembling the predictions from each source and unifying

them under a common label system.

Each of the above listed annotation sources is linked to separate function classification sys-

tems that seek to provide a taxonomy of protein function. The Gene Ontology (GO) [11] is a

directed acyclic graph (DAG) of three disjoint components standing for different aspects of func-

tion: Molecular function (MF), biological process (BP), and cellular component (CC). Each node

of the separate components is connected to its eponymous root. Traversal along the path towards

the root represents synonymous generalization.

2.4 Protein seqence modeling

The most abundant form of protein data are amino acid sequences. The relationship between

sequence, structure, and function (see Section 2.1.1) implies that sequences contain a great deal

of information on the function of the protein that can be used for modeling and prediction.

Both protein sequences and natural language text are modalities of discrete tokens with com-

plex, often long-range dependencies. Consequentially, innovations in natural language process-

ing (NLP) are often adapted in bioinformatics.

11



2.4.1 Mathematical description

Formally, letV be a finite vocabulary of discrete tokens 𝑣1, 𝑣2, . . . , 𝑣 |V| and let 𝑋 = [𝑥𝑡 ]ℓ𝑡=1 be

a sequence of length ℓ where 𝑥𝑡 ∈ V . Sequences are drawn with respect to a density model 𝑋 ∼

𝑃 (𝑋 ) = 𝑃 (𝑥1, 𝑥2, . . . , 𝑥ℓ). This work considers two factorizations of 𝑃 (𝑋 ). The autoregressive, or

causal factorization of 𝑃 (𝑋 ) is

𝑃 (𝑋 ) =
ℓ∏
𝑡=1

𝑃 (𝑥𝑡 |𝑥<𝑡 ) (2.1)

where 𝑥<𝑡 = [𝑥𝑘]𝑡−1
𝑘=1. Models trained with the autoregressive formulation be readily sampled

by drawing tokens from 𝑃 (𝑥𝑡 | 𝑥<𝑡 ) until reaching a prescribed stopping criteria. The non-

autogressive, or bidirectional factorization of 𝑃 (𝑋 ) is

𝑃 (𝑋 ) =
ℓ∏
𝑡=1

𝑃 (𝑥𝑡 | 𝑥\𝑡 ) (2.2)

where 𝑥\𝑡 represents all other tokens in the sequence apart from 𝑥𝑡 . Models trained in a non-

autoregressive manner cannot be readily sampled without a prescribed procedure. No matter the

factorization, models of both types are likelihood-based models in that they learn to maximize the

likelihood (or pseudo-likelihood in the case of bidirectional models) of a collection of observed

sequences. Bidirectional models, such as masked language models (MLMs), typically learn the

pseudo-likelihood via a denoising objective [58, 59].

Yet another formulation of 𝑃 (𝑋 ) expresses it as a Boltzmann distribution

𝑃 (𝑋 ) = exp(−𝛽𝐸 (𝑋 ))
𝑍

(2.3)

where 𝑍 =
∑
𝑋∈V∗ exp(−𝛽𝐸 (𝑋 )). Energy-based models (EBMs) 𝐸𝜃 (𝑋 ) estimate the unnormalized

log-probability 𝐸 (𝑋 ) and can be trained by minimizing, e.g., contrastive divergence (CD) [60].
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Sampling using an energy-based model with a derivative (as is the case for CD-based models) can

be implemeted by stochastic gradient Langevin dynamics (SGLD) [24, 61]. Score-based generative

models [21, 62, 63] such as discrete diffusion models [64, 65] represent the score, or gradient of

the log-density, and are similarly applicable to SGLD.

2.4.1.1 Generative models for seqence design

Protein generation is a core module in the design workflow wherein novel sequences are

sampled according to the learned density model. For autoregressive models, sampling is readily

available by decoding left-to-right, generating one token at a time. Pseudo-likelihood models

such as MLMs typically use an MCMC-like procedure by starting with a initial, possibly random,

sequence and iteratively masking/corrupting and denoising it to approximate the joint density in

Equation 2.2. Models of or with explicit access to the score of a sample are applicable to sampling

schemes such as SGLD. Techniques to steer generation of these models can also be implemented

by external (classifier-based) or internal (classifier-free) guidance. In classifier-guided genera-

tion [66–68], the gradient of an external classifier with respect to a class of instance is added as a

supplementary signal during sampling. In classifier-free guidance [69], the model itself is made

to represent the joint distribution of data and properties by, e.g., prepending class tokens to the

input.

2.4.2 Historical context of biological seqence modeling

Early methods adapted Shannon’s 𝑛-gram model [70] to biological sequence by analyzing 𝑘-

length subsequences called 𝑘-mers s[71–73]. In practice, such fixed-length prefix methods use a

limited context window that does not allow the model to approximate the entire context, require

storing a large probability table of size |V|𝑘−1× |V|, and call for heuristics to approximate 𝑘-mers

not found in the training set.

Hidden Markov Models (HMMs) for text [74, 75] brought on innovations in bioinformat-
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ics[76–78]. Mathematically, HMMs defer from the 𝑛-gram model by leveraging Markovian hid-

den states and estimating observable token emission probabilities. However, these models rely

on restrictive assumptions about the dependency structure of the sequence and require a com-

putationally costly sequence alignment, which may even still under-specify the distribution of

interest if it is too shallow. Additionally, while HMMs are still in wide use today for classification

(see Section 2.3.2.1), the primary task in protein design is sequence generation, where modern

methods vastly outperform them.

Deep learning has since offered a powerful framework for sequence recognition that alleviates

many of the shortcomings of preceding methods. One-dimensional convolutional networks learn

localized spectral filters intuitively similar to𝑘-mers have demonstrated competitive performance

in protein function prediction [79] as well as general sequence modeling [80]. Recurrent and and

gated neural networks [81–83] demonstrated improved performance over HMMs and capability

to learn powerful representations for downstream tasks.

2.4.3 Transformer revolution

Prior to the seminal work describing the transformer architecture [84], gated neural networks

were the state-of-the-art in protein sequence modeling. However, transformer-based protein

foundation models [85–87] have since demonstrated improved performance over gated neural

networks on a variety of axes including representational capacity, longer context windows, in-

terpretability, and training speed and stability.

• Representational capacity. Transformer models have shown to outpace gated networks in

scaling of model size [83, 88].

• Longer context windows. Gated networks transmit information at each step whichmay filter

out dependencies over very long time-scales. In contrast, the self-attention mechanism in

transformers not only parallelizes the information sharing step but allows it to be shared
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anywhere along the sequence. Moreover, memory efficient implementations of the atten-

tion mechanism [89] enable subquadratic storage complexity that allows longer contexts

to be captured.

• Interpretability. The attention maps of a transformer network are more easily understood

than the gating and memory mechanisms of gated units [90]. Another recent line of work

appliesmechanistic intepretability uses sparse autoencoders to protein languagemodels [91–

93].

• Training speed and stability. Contrary to gated networks, even autoregressive transformer-

based model do not suffer from a sequential computation bottleneck by virtue of the atten-

tion mask. Transformers also do not suffer from common issues during training such as

exploding and vanishing gradients.

2.4.3.1 Inductive bias and masking

The transformer attention mechanism calculates pairwise attention weights along the se-

quence, imposing no prior on the dependency structure. Inductive biases may be asserted onto

the model by masking the attention maps.

Causal (autoregressive) masks are lower triangular matrices that disallow attention to pass

backwards in time (i.e., future tokens cannot inform the representation of their predecessors). A

priori, causal masking may not seem like the ideal choice for protein sequence modeling as the

N-to-C terminus ordering is arbitrary from a sequence modeling perspective. However, autore-

gressive pLMs such as ProGen [87, 94] have demonstrated state-of-the-art generation by training

with N-to-C and C-to-N terminus ordering and labeling the ordering with specialized start/end

tokens. Causal language models conform to the formulation in subsection 2.4.1 and can be readily

sampled by iteratively generating sequences token-wise.

Masked language models (MLMs) [58, 86] process the input sequence without imposing an
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information flow order. During training, random subsets of tokens are masked and reconstructed

by the model using the unmasked context. Models are optimized to reconstructing masked to-

kens given the surrounding information. As such, masked language models are not restricted to a

specific direction information flow. Span masking [95] is a variant of masked language modeling

in which contiguous token spans are dropped out. Masked language models impose an unordered

dependency structure that enables past and future tokens to pass information. While the induc-

tive bias of a masked language model aligns more closely with the dependency structure along

a protein sequence, sequences from such models cannot be readily sampled without a decoding

heuristic or iterative sampling procedure.

Although in natural language the choice of tokenizer has been shown to affect performance [96,

97], protein language models (excluding e.g., ProtGPT2 [98]) often use a simple amino acid level

tokenizer to enable complete control over the output and force the model to learn the multi-

token dependencies. A recent line of work however has investigated the utility of other tok-

enization strategies [99] as well as the ability to ingest other protein modalities such as structure

tokens [100, 101].
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3 | Discrete Walk Jump Sampler

This chapter is a reprint of published paper:

Protein Discovery with Discrete Walk-Jump Sampling

Nathan Frey†,Daniel Berenberg†, Karina Zadorozhny, JosephKleinhenz, Julien Lafrance-Vanasse,

Isidro Hotzel, YanWu, Stephen Ra, Richard Bonneau, Kyunghyun Cho, Andreas Loukas, Vladimir

Gligorijević, and Saeed Saremi International Conference on Learning Representations (ICLR) 2024

† These authors contributed equally to the reproduced part in this thesis.

3.1 Introduction

Discrete sequence generation poses a number of challenges to gradient-based generativemod-

els. Generative models must be expressive enough to faithfully capture the underlying data dis-

tribution, while also having controllable outputs that are novel, unique, diverse, and respect the

constraints of the problem space. Energy-based models (EBMs) [102, 103] fit an energy function

that specifies a probability distribution over data analogous to the Boltzmann distribution from

statistical physics. Giving access to an easily computable energy is an advantage of EBMs, but

on the flip-side they can be difficult to train and sample from. Denoising objectives based on

score matching [62, 104] and the related advancements in diffusion models [105, 106] overcome

these issues, but these either model the energy gradient or only provide access to an empirical
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lower-bound of the likelihood.

Protein design is an instance of the discrete sequence generation problem, wherein the chal-

lenge is to find useful proteins in the large, discrete, and sparsely functional space Romero and

Arnold [107] of dimension 20𝐿 for proteins of length 𝐿. Here, we consider the specific problem

of generative modeling of antibodies, a class of proteins with highly conserved structure that are

of immense interest for therapeutics. In addition to the qualities mentioned above, generative

models for antibodies must be sample-efficient because of the relatively small size of datasets

with therapeutic antibodies Kim et al. [108]. Antibodies consist of well-conserved domains and

high-entropy variable regions, so leveraging evolutionary information from pre-trained protein

language models is not an immediate solution. We distinguish ab initio protein discovery and de-

sign (producing novel, functional proteins given some training samples), which is the focus of this

work, from de novo design, which we define as the generation of novel proteins without starting

material. Existing autoregressive protein design methods Jin et al. [109] are inefficient and can

suffer from accumulation of errors and high inference latency, while current non-autoregressive

diffusion models are similarly inefficient and poorly optimized for real discovery and design tasks

Kong, Huang, and Liu [110]. Our goal here is to invent an efficient, non-autoregressive generative

modeling paradigm for discrete data that produces high quality, novel samples.

To this end, we introduce Smoothed Discrete Sampling (SDS), a new formalism for training

and sampling from discrete generative models. We propose a novel algorithm, discrete Walk-

Jump Sampling (dWJS), a method building on the neural empirical Bayes (NEB) [20] formalism,

that addresses the brittleness of discrete EBMs and diffusion models and in doing so, provides a

robust and general framework for protein discovery and design.1 We also design a metric called

the Distributional Conformity Score (DCS), which is a simple scalar score for protein sample

quality. Our results rescue EBMs for discrete distribution modeling and question the need for

diffusion models with multiple noise scales in protein discovery.
1https://github.com/prescient-design/walk-jump
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Our contributions are as follows:

• We introduce a new paradigm for modeling discrete data distributions, Smoothed Discrete

Sampling (SDS), building on the neural empirical Bayes framework. We propose the dis-

crete Walk-Jump sampling algorithm, which uses uncoupled, separately trained score- and

energy-based models to learn noisy data distributions and sample discrete data. dWJS en-

ables fast, non-autoregressive sampling with variable length discrete outputs. We also de-

sign a novel architecture for discrete EBMs.

• Our method simplifies score-based model training for discrete data by requiring only a sin-

gle noise level and no noise schedule, which alleviates the brittleness, training instabilities,

and slow sampling of diffusion models. Our method also resolves difficulties in training

EBMs, obviating the need for many common EBM training tricks (replay buffer, ℓ2 norm

penalty, rejection sampling, etc.), while preserving good sample quality and fast sampling.

• We demonstrate the utility of our approach in the context of ab initio protein discovery and

design - generating novel, biophysically-valid protein sequences from models trained on

repertoires of functional molecules. We validate our method with in vitro experiments. Our

method outperforms autoregressive and masked protein language models, large language

models, discrete sequence and structure-sequence diffusion, and score-based baselines.
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Figure 3.1: Selected samples from a single Markov chain Monte Carlo sampling run of discrete Walk-
Jump sampling (our method). Protein color corresponds to different antibody germlines (classes). Samples
are folded with EquiFold [1] for visualization purposes. Discrete walk-jump sampling exhibits fast mixing
and explores diverse modes of the distribution in a single chain.

3.2 Background

3.2.1 Energy-based models

EBMs are a class of models that learn an energy function 𝑓𝜃 : X → Rmapping inputs 𝑥 (inR𝑑 )

to a scalar “energy" value. The data distribution is approximated by the Boltzmann distribution

𝑝𝜃 (𝑥) ∝ 𝑒−𝑓𝜃 (𝑥) . (3.1)

EBMs are typically trained via contrastive divergence [25], and new samples are drawn from

𝑝𝜃 (𝑥) by Markov-Chain Monte Carlo (MCMC). Details of the loss function used in this work are

given in Section 3.3. In Langevin MCMC, samples are initialized from a known data point or

random noise and refined with (discretized) Langevin diffusion

𝑥𝑘+1 = 𝑥𝑘 − 𝛿 ∇𝑓𝜃 (𝑥𝑘) +
√

2𝛿 𝜀𝑘 , 𝜀𝑘 ∼ N(0, 𝐼𝑑), (3.2)

where ∇ denotes the gradient of the energy function with respect to inputs, 𝑘 is the sampling

step, 𝛿 is the (discretization) step size, and the noise 𝜀𝑘 is drawn from the normal distribution at
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each step.

3.2.2 Neural empirical Bayes

In NEB, the randomvariable𝑋 is transformedwith additive Gaussian noise𝑌 = 𝑋+N(0, 𝜎2𝐼𝑑).

The least-squares estimator of 𝑋 given 𝑌 = 𝑦 is given by [23, 111]

𝑥 (𝑦) = 𝑦 + 𝜎2∇ log𝑝 (𝑦), (3.3)

where 𝑝 (𝑦) =
∫
𝑝 (𝑦 |𝑥)𝑝 (𝑥)𝑑𝑥 is the probability distribution function of the smoothed density.2

This estimator is often expressed directly in terms of 𝑔(𝑦) = ∇ log𝑝 (𝑦) known as the score func-

tion [62] which is parameterized with a neural network denoted by 𝑔𝜙 : R𝑑 → R𝑑 . The least-

squares estimator then takes the following parametric form:

𝑥𝜙 (𝑦) = 𝑦 + 𝜎2𝑔𝜙 (𝑦). (3.4)

Putting this all together leads to the following learning objective

L(𝜙) = E𝑥∼𝑝 (𝑥),𝑦∼𝑝 (𝑦 |𝑥) ∥𝑥 − 𝑥𝜙 (𝑦)∥2, (3.5)

which is optimized with stochastic gradient descent. Notably, no MCMC sampling is required

during learning. In short, the objective is “learning to denoise” with an empirical Bayes formula-

tion (discussed further in Appendix A.2.3). Additionally, the NEB approach conveniently requires

a single hyperparameter 𝜎 controlling the smoothness of the distribution 𝑃 (𝑌 ). We estimate the

optimal 𝜎 in Appendix A.1.5.
2We follow the convention 𝑝 (𝑥) := 𝑝𝑋 (𝑥), 𝑝 (𝑦) := 𝑝𝑌 (𝑦), etc.
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Figure 3.2: Discrete walk-jump sampling. a The noising and denoising process is applied to antibody
proteins. b Discrete inputs 𝑥 are smoothed with isotropic Gaussian noise, 𝜀 ∼ N(0, 𝜎2𝐼𝑑 ), to noisy inputs,
𝑦 = 𝑥 + 𝜀. A discrete energy-based model (dEBM) parameterizes the energy function 𝑓𝜃 (𝑦) of noisy data.
Noisy data is sampled with the energy function, and denoised with a separate denoising ByteNet network
to clean samples, 𝑥𝜙 (𝑦). c The “walk" sampling steps on the noisy datamanifold with LangevinMCMCare
totally decoupled from the “jump" steps to clean samples. d The dEBM takes noisy inputs𝑦, concatenates
them with a 1d positional encoding, 𝑝1𝑑 , passes through an MLP and a 3 layer CNN, and concatenates
the outputs with an embedding 𝑧𝑠 of the inputs into a hidden state, ℎ. ℎ is passed through an MLP and
returns the energy 𝑓𝜃 (𝑦).

3.3 Antibody discovery and design

3.3.1 Discrete walk-jump sampling

Following training of the denoising network, 𝑔𝜙 , one can sample noisy data using the learned

score function 𝑔𝜙 (𝑦) with Langevin MCMC (replace −∇𝑓 with 𝑔 in Equation 3.2). For any such

draws 𝑦𝑘 , clean samples from the true data manifoldM are obtained by “jumping” back toM

with the least-squares estimator 𝑥𝜙 (𝑦𝑘) = 𝑦𝑘 + 𝜎2𝑔𝜙 (𝑦𝑘). This is the walk-jump sampling (WJS)

scheme. A key property of WJS is the fact that the least-squares estimation (jump) is decoupled

from the Langevin MCMC (walk).

Here, we take advantage of this decoupling to train an EBM with maximum likelihood esti-

mation on the smoothed distribution of noisy sequences, generate noisy samples with Langevin

MCMC, and denoise samples with a separately trained neural network, the least-squares estima-
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tor. The algorithm for discrete walk-jump sampling is given in Algo. 1. Our algorithm is general

and applies to any discrete sequence inputs of a fixed vocabulary. In Fig. 3.1 we show samples

generated from a single chain of MCMC. Unlike a diffusion model, every sample along the chain

collectively forms a valid set of samples from the underlying distribution, because of the decou-

pled walk (sampling) and jump (denoising) steps. dWJS also produces fast-mixing chains, such

that many diverse modes (protein classes) are sampled in a single chain. Samples are folded with

EquiFold [1] for visualization and confirmation of structural validity.

The EBM is trained by maximizing the log-likelihood of noisy data under the model:

arg max
𝜃

E𝑦∼𝑝𝑌 [log𝑝𝜃 (𝑦)] = arg max
𝜃

(
E𝑦−∼𝑝𝜃 (𝑦) [𝑓𝜃 (𝑦

−)] − E𝑦+∼𝑝𝑌 [𝑓𝜃 (𝑦+)]
)
, (3.6)

where 𝑦+ are noisy training data and 𝑦− are noisy data sampled from the model.

With this objective, the model aims to decrease the energy of noisy training data (“positive”

samples𝑦+) while increasing the energy of noisy data sampled from themodel (“negative” samples

𝑦−) in expectation. The following identity is behind the positive/negative phases in the EBM

training:

∇𝜃 log𝑝𝜃 (𝑦) = −∇𝜃 𝑓𝜃 (𝑦) − ∇𝜃 log𝑍 (𝜃 )

= −∇𝜃 𝑓𝜃 (𝑦) +
∫
∇𝜃 𝑓𝜃 (𝑦)𝑒−𝑓𝜃 (𝑦)𝑑𝑦

𝑍 (𝜃 )

= −∇𝜃 𝑓𝜃 (𝑦) +
∫
∇𝜃 𝑓𝜃 (𝑦) · 𝑝𝜃 (𝑦)𝑑𝑦

= −∇𝜃 𝑓𝜃 (𝑦) + E𝑦∼𝑝𝜃 (𝑦) [∇𝜃 𝑓𝜃 (𝑦)],

(3.7)

where 𝑍 (𝜃 ) =
∫
𝑒−𝑓𝜃 (𝑦)𝑑𝑦 is the partition function.
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Algorithm 1: Discrete Walk-Jump Sampling
Input: Denoiser, 𝑔𝜙 (𝑦), energy-based model, 𝑓𝜃 (𝑦)

Output: Noisy samples 𝑦 ∼ 𝑝 (𝑦), denoised samples 𝑥 (𝑦)

1 𝑦0 ∼ Unif ( [0, 1]𝑑) + N (0, 𝜎2𝐼𝑑)

2 for 𝑡 = 0, . . . ,𝑇 − 1 do

3 𝑦𝑡+1 ← 𝑦𝑡 − 𝛿 ∇𝑦 𝑓𝜃 (𝑦𝑡 ) +
√

2𝛿𝜀𝑡 , 𝜀𝑡 ∼ N(0, 𝐼𝑑)

4 end

5 𝑥𝑇 ← 𝑦𝑇 + 𝜎2𝑔𝜙 (𝑦𝑇 )

6 return arg max𝑥𝑇 // to recover one-hot encoding

Variable length protein seqence generation. We represent antibody protein molecules

as 𝑥 = (𝑥1, . . . , 𝑥𝑑), where 𝑥𝑙 ∈ {1, . . . , 20} corresponds to the amino acid (AA) type at position

𝑙 . Sequences from the Observed Antibody Space (OAS) database [2] are aligned according to the

AHo numbering scheme [112] using the ANARCI [113] package and one-hot encoded. Align-

ing sequences in this way is a practical solution to handling insertions and deletions, which are

otherwise troublesome for models that require fixed length inputs and outputs; alignment intro-

duces a “gap" token that can be introduced or removed during sampling to effectively change the

length of sequences. This allows the model to capture the distribution of lengths present in natu-

ral antibodies. The alignment step maps heavy and light chain sequences of varying lengths to a

standard, gapped input size of 149 and 148 respectively with 21 possible discrete tokens including

the gap. Thus, the input dimension for every sequence becomes 𝑑 = (149 + 148) × 21. Without

loss of generality, any set of proteins can be aligned with a multiple sequence alignment [114].

For other classes of discrete data, pseudo-alignment tokens can be used and randomly inserted

into the inputs, or simple BOS and EOS tokens can be used and sampled. An EBM is trained

via contrastive divergence on the manifold of smoothed, noisy one-hot encodings, 𝑦, given by

𝑦 = 𝑥 + 𝜀, 𝜀 ∼ N(0, 𝜎2𝐼𝑑), where 𝑥 ∈ {0, 1}𝑑 . A separate denoising model is trained with the
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objective in Eq. 3.5. New antibody sequences are generated (Fig. 3.2) by sampling noisy samples

with Langevin MCMC following gradients from the EBM, denoising with the least-squares esti-

mator, and taking argmax𝑥 to recover a one-hot encoding. Further details related to training and

network architecture are given in Appendix A.1.

Protein design vs discovery. Protein discovery is the task of generating novel, unique, and

valid samples. Protein design refers to taking some starting sequence andmaking edits to improve

function. With dWJS we achieve discovery through unconditional sampling, while design is

performed via constrained sampling and scoring. That is, we impose the following constraint

in the form of a binary projection matrix

𝑃⊤argmax 𝑥 (𝑦, 𝑡) = 𝑃⊤𝑠

for 𝑃 ∈ {0, 1}𝐿×𝑐 , where 𝑐 is the number of conserved tokens in the sequence, 𝑦 is the noisy

sequence at time step 𝑡 of Langevin MCMC, 𝑥 (𝑦, 𝑡) is the denoised sample at time 𝑡 , and 𝑠 is

the starting sequence. This constraint ensures that the specified regions of the sequence are

conserved, while the non-conserved regions are free to change during Langevin MCMC.

3.3.2 Derivation of optimal noise level for discrete seqence data

Throughout the experiments in Section 3.4, we must choose what noise level, 𝜎 , to use for

training. Empirically, we find that in the protein discovery setting, 𝜎 ≥ 0.5 is sufficient for getting

good sample quality. Here, we provide some intuition for choosing a good𝜎 , based on a geometric

picture of the concentration of the measure [20]. We define the matrix 𝜒 with entries

𝜒𝑖𝑖′ =
| |𝑋𝑖 − 𝑋𝑖′ | |

2
√
𝑑

, (3.8)
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where𝑑 is the dimension of the data and the 1
2
√
𝑑
scaling comes from the concentration of isotropic

Gaussians in high dimensions. The critical noise level, 𝜎𝑐 , is defined as

𝜎𝑐 = max
𝑖𝑖′

𝜒𝑖𝑖′

such that for 𝜎 > 𝜎𝑐 , all noisy data have some degree of overlap. For our antibody sequence

data, the statistics of the 𝜒 matrix are given in Table 3.1 and the histogram of 𝜒𝑖𝑖′ values is shown

in Appendix A.1.6. We find that 𝜎𝑐 ≈ 0.5, which agrees with our empirical hyperparameter

optimization. Estimating 𝜎𝑐 in this way serves to motivate the empirical success of the 𝜎 used in

our experiments, and provides helpful guidance on the scale of 𝜎 to use for discrete data. Here we

take 𝑑 to be the length of the input vector (𝑑 = 𝐿 = 297 for aligned antibody sequences); for the

flattened sparse one-hot matrices with vocabulary size 21, 𝑑 = 6237. This scales 𝜎𝑐 by 0.22, which

still gives a useful scale for 𝜎 , but is not optimal because of the sparsity of the one-hot matrices.

Table 3.1: Statistics of the distance matrix, 𝜒 , for discrete antibody sequence data.

min median mean max ≈ 𝜎𝑐
𝜒 0.17 0.42 0.41 0.51

3.3.3 Distributional conformity score

The Fréchet inception distance (FID) [115] (a metric for image generation quality) and the

BLEU (BiLingual Evaluation Understudy) score [116] (for evaluating the quality of machine trans-

lation) greatly simplify the evaluation of proposed methods; protein generation lacks such met-

rics, which motivates us to introduce the “distributional conformity score” (DCS) (Fig. 3.3). The

goal of the DCS is to provide a succinct description of how likely generated samples are with re-

spect to a reference distribution, while maintaining novelty and diversity. DCS is designed such
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Figure 3.3: in silico designs sampled with dWJS are compared to a reference set of validation samples.
Distributions are characterized with a set of sample quality metrics. Joint density estimation is used to
compute the likelihood of designs versus the validation set and likelihoods are condensed into a distribu-
tional conformity score that characterizes the similarity of generated samples to the reference set.

that improving sample quality corresponds directly to increased probability of generating real,

biophysically valid proteins.

We evaluate the probability that our generated sequences conform to a reference distribution

using the conformal transducer system [26, 27]. Let X ∈ R𝑑 , Y ∈ R, and Z = X × Y.3 A confor-

mity measure 𝐴 is a measurable function that maps a sequence (𝑧1, . . . , 𝑧𝑛) ∈ Z𝑛 to a set of real

numbers (𝛼1, . . . , 𝛼𝑛). Here, we define 𝐴 to be the likelihood under the joint density over various

properties, including biophysical properties and statistical properties, such as a log-probability

under a protein language model (the properties considered, further details, and comparisons to

other measures of protein-likeness are given in Appendix A.6). To avoid overfitting the estimator,

we split the reference set into a fitting set and a validation set (Algo. 2). In practice, the confor-

mity measure 𝐴 and the scores 𝛼1, . . . , 𝛼𝑘 may be pre-computed. At the time of computing the

distributional conformity of a query sample, the only calculations that remain are of the score 𝛼𝑘

and the sum to calculate 𝑝𝑦 on line 6 of Algo. 2. The sum can be reduced to 𝑂 (log𝑘) complexity

by storing the reference values 𝛼1, . . . , 𝛼𝑘−1 in a binary search tree and performing a search for

𝛼𝑘 .
3In the discussion of distributional conformity score, 𝑥 refers to sample features; elsewhere in the paper 𝑥 refers

to clean data. Here, 𝑦 refers to labels; elsewhere in the paper 𝑦 refers to noisy data.
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In our context, the reference distributionD comprises all antibodies and the label𝑦 represents

the property of interest such as expression or binding. Empirically, we find that DCS is a useful

in silico evaluation metric for developing generative methods and hyperparameter optimization,

and that methods with DCS > 0.3 yield nearly 100% expressing proteins in the wet lab.
Algorithm 2: Distributional conformity scores for evaluating generated designs
Input: Reference distribution D, test example 𝑥 ∈ X, conformity measure 𝐴, label 𝑦

Output: p-value 𝑝𝑦 (the fraction of validation examples that are less similar to 𝐷𝑧 |𝑦 than

𝑥 )

1 Sample (𝑧1, . . . , 𝑧𝑛), 𝑧𝑖 ∼ 𝐷𝑧 |𝑦 and a held-out validation set (𝑧1, . . . , 𝑧𝑘−1), 𝑧𝑖 ∼ 𝐷𝑧 |𝑦

2 Set 𝑧𝑘 ← (𝑥,𝑦)

3 for 𝑖 = 1 to 𝑘 do

4 𝛼𝑖 ← 𝐴(𝑧1, . . . , 𝑧𝑛, 𝑧𝑖)

5 end

6 𝑝𝑦 ← 1
𝑘

∑𝑘
𝑖=1 [𝛼𝑖 < 𝛼𝑘]

7 return 𝑝𝑦

3.4 Experiments

We evaluate our method, discrete Walk-jump sampling (dWJS) (Fig. 3.2), on three antibody

generation tasks: 1) distribution learning on paired observed antibody space [2]; 2) the in vitro

expression and purification of novel antibodies; and 3) most importantly, functional therapeutic

antibody design [117]. Crucially, we compare methods using our distributional conformity score,

which is a sample-to-distribution metric to assess sample quality (analogous to an FID score),

rather than the sequence recovery metrics used in previous antibody design work [109, 110].

Sequence recovery is a poor objective for our goal, which is the discovery of novel (large edit

distance from known examples), functional antibodies. Details related to model architectures,
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Table 3.2: Ablikeness metrics, uniqueness, diversity, and distributional conformity scores.

Model 𝑊property ↓ Unique ↑ 𝐸dist ↑ IntDiv ↑ DCS ↑

dWJS (energy-based) 0.056 1.0 58.4 55.3 0.38
dWJS (score-based) 0.065 0.97 62.7 65.1 0.49
SeqVDM 0.062 1.0 60.0 57.4 0.40
DEEN 0.087 0.99 50.9 42.7 0.41
GPT 3.5 0.14 0.66 55.4 46.1 0.23
IgLM 0.08 1.0 48.6 34.6 0.533
ESM2 0.15 1.0 70.99* 77.56* 0.061

Table 3.3: Measured protein synthesis.

Model totalexpressed ↑
dWJS (score-based) 1.0
dWJS (energy-based) 0.97
EBM 0.42

training, baseline methods, and sequence sampling are in Appendix A.1.

3.4.1 dWJS generates natural, novel, diverse antibodies in silico

We measure generative model performance with a suite of “antibody likeness" (ab-likeness)

metrics including labels derived from the AA sequence with Biopython [118]. Sequence property

metrics are condensed into a single scalar metric by computing the distributional conformity

score and the normalized average Wasserstein distance𝑊property between the property distribu-

tions of samples and a validation set. The average total edit distance 𝐸dist summarizes the novelty

and diversity of samples compared to the validation set, while internal diversity (IntDiv) repre-

sents the average total edit distance between samples. Our method achieves strong ablikeness

results (Table 3.2), simply by increasing 𝜎 to ≥ 0.5.
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dWJS with dEBM sampling achieves the best agreement with the validation set property dis-

tribution and highest percentage of unique samples, while dWJS with score-based sampling has

high distributional conformity score, novelty, and diversity. We compare to a latent sequence dif-

fusion method (SeqVDM), (a discrete generalization of variational diffusion; [119]), a score-based

model with an energy parameterization (DEEN), a transformer-based language model trained

specifically for antibody design (IgLM); [120], ESM2 [121], and a pre-trained large languagemodel

(LLM) (GPT 3.5). Our dWJS methods have faster sampling time and lower memory footprint than

diffusion, autoregressive, and score-based baselines (Table A.3), while also having better sample

quality. Our methods outperform IgLM on antibody-likeness, edit distance, and internal diver-

sity metrics, whereas IgLM has the best DC score and the lowest (worst) IntDiv. This indicates

that IgLM samples are extremely close to the reference set and samples are similar to one an-

other. As our score-based dWJS has a DC score of 0.49 and a 100% expression rate in the lab, it

is likely that all IgLM samples would successfully express in the lab as well. IgLM does produce

100% unique samples, outperforming score-based dWJS and GPT 3.5. Due to IgLM being an au-

toregressive sampler, our method (energy-based dWJS) has 43× faster sampling speed, which is

useful when generating and ranking large numbers of designs. To mimic the ab initio generation

task for ESM2, we increase the masking percentage as high as we can (40%) while still generating

valid samples and infill validation set sequences to generate new samples. As expected, ESM2

performs extremely poorly in generating ab initio samples with good antibody-likeness, because

it is not trained for generation. It generates highly repetitive sequences that are very dissimilar

to antibodies (hence the high, but meaningless, 𝐸dist and IntDiv scores). As a masked language

model, ESM2 infilling is the fastest sampler, but at the cost of poor sample quality. Details on the

baseline methods, and IgLM and GPT 3.5 prompts are given in Appendices A.1 and A.4.
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Table 3.4: Predicted and measured antibody binding affinity.

Model 𝑝bind ↑ totalbind ↑
dWJS (energy-based) (Ours) 0.96 0.70
dWJS (score-based) (Ours) 0.95 N/A
LaMBO-2 [65] N/A 0.25
AbDiffuser [122] 0.94 0.22 (0.57)
SeqVDM 0.75 N/A
GPT 4 0.74 N/A
Transformer 0.60 N/A
EGNN 0.58 N/A

3.4.2 dWJS generates natural, novel, diverse antibodies in vitro

Out of more than 277 designed antibody sequences tested in the laboratory, 270 were suc-

cessfully expressed and purified (Table 3.3). We achieved the 97.47% in vitro success rate by

developing dWJS to capture the antibody distribution in silico as measured by𝑊property and dis-

tributional conformity score. For comparison, sequences from an EBM (trained on clean data with

samples drawn using traditional Langevin MCMC) achieved a 42% expression rate. An antibody

sequence comprised of random vocabulary tokens would be expected to have a 0% expression

rate, and in laboratory experiments we have confirmed that a small number of edits (< 4) can

destroy expression if the proposal distribution (generative model) is poorly optimized.

3.4.3 dWJS generates functional antibody variants in vitro

To further show the robustness of our method, we consider the task of training generative

models on a hu4D5 antibody mutant dataset [117] and compare to baseline models. The dataset

consists of 9k binding and 25k non-binding hu4D5 CDRH3mutants with up to 10mutations (after

de-duplication and removing samples that are labeled both binding and non-binding). This yields

a 1013 dimensional search space. The mutants were measured in lab experiments to determine
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their binding to HER2 antigen. The goal of this benchmark task is to produce unique samples

that also bind to HER2. We trained dWJS models (score-based and energy-based) on only the

binder set at a noise level of 𝜎 = 0.5, while also training a 1D-CNN binary classifier to classify

binders and non-binders. The classifier achieves 86% accuracy on an IID validation split. Then, we

classified 1000 samples from each dWJS generative model and four baseline models also trained

on the hu4D5 binder set. We compare in silico to three diffusionmodels: 1) a sequence transformer

based on BERT Devlin et al. [58] that generates sequences, 2) an E(n) Equivariant Graph Neural

Network (EGNN) Satorras, Hoogeboom, and Welling [123] that codesigns (sequence, structure),

and 3) a latent sequence diffusion model, SeqVDM; and a pre-trained LLM, GPT 4. The specific

prompt used for GPT 4 is given in Appendix A.4. The probability of binding for unique designs

from each model is reported in Table 3.4. Our methods produce the highest percentage of unique

predicted binders.

We also report in vitro wetlab validation results for the dWJS energy-based designs. dWJS

produces the highest percentage of functional antibodies that bind to target (totalbind in Table

3.4). We achieved a 70% binding rate in the first round of experimental wet lab validation on

HER2, by redesigning the CDR H3 loop of trastuzumab. To the best of our knowledge, this is the

highest reported binding rate of any antibody design method applied to trastuzumab CDR H3 re-

design. Concurrent with the first appearance of our work, two diffusion models reported in vitro

wet-lab results for this task: AbDiffuser [122], a (sequence, structure) antibody codesign method,

and LaMBO-2 [65], a guided discrete diffusion method. LaMBO-2 produces 25% binders, while

AbDiffuser generates 22% binders (57% binders after post-hoc filtering). Our method, dWJS, pro-

duces the highest percentage of unique binders (70%) and requires no post-hoc filtering. While

the diffusion methods include other important capabilities including structure generation (AbD-

iffuser) and guided sampling (LaMBO-2), our method outperforms diffusion for discrete distribu-

tion learning, which is our goal. For this experiment, our model is trained only on the publicly
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available [117] dataset. This training dataset, our code,4 and our experimental results are open

andwe encourage other researchers to compare results in the same in vitro setting. Further details

on wetlab experiments are presented in Appendix A.5.

3.5 Related Work

Energy-based models (EBMs) [103] are a class of physics-inspired models that learn an energy

function defining a probability distribution over data with a rich history that goes back to Boltz-

mann machines Hinton and Sejnowski [102]. Estimating unnormalized densities has also been

formulated using score matching Hyvärinen [62]. This formulation led to probabilistic models

for denoising autoencoders [104, 124, 125], but also has an empirical Bayes interpretation that is

most related to this work. In particular, the neural empirical Bayes (NEB) [20] formalism unifies

kernel density estimation [126] and empirical Bayes [23] to transform the unsupervised learning

problem into a more tractable form where a neural network energy function is parameterized to

capture a smoothed data distribution. Our work is the first study of the NEB formalism for dis-

crete data. Discrete diffusion models such as [64] learn an iterative denoising process over many

different noise levels by prescribing a noise process over discrete data that converges to a known

categorical distribution.

Approaches borrowing from traditional ML generative modeling have been used to model

antibodies [68, 120, 127, 128], but typical natural-language-based methods struggle to capture the

data distribution of antibodies, for which there is limited training data (∼1K - 1M high-quality

sequences depending on the distribution of interest) and additional challenges due to the high-

entropy variable regions of the sequence. Here, we address the above challenges with training

and sampling discrete sequences using a novel formulation of decoupled energy- and score-based

modeling.
4https://github.com/prescient-design/walk-jump
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3.6 Conclusions

We proposed Smoothed Discrete Sampling (SDS), a new paradigm for modeling discrete dis-

tributions that uses Langevin Markov-Chain Monte Carlo to sample from smoothed data distri-

butions. We introduce the discrete Walk-Jump Sampling (dWJS) algorithm and evaluate it on the

antibody discovery and design problems, showing the capability of our method to generate novel,

diverse, and functional antibodies as measured by synthetic biophysical property distributions,

similarity metrics, and in vitro experiments. The strong regularization provided by fitting the

energy function to noisy data completely prevents overfitting and training instabilities, result-

ing in fast and efficient training and sampling with low compute requirements. dWJS discards

many of the commonly used techniques for improving EBM training with Langevin MCMC (re-

play buffers, ℓ2 norm penalty, simulated annealing, rejection sampling, etc.) and reduces the

engineering complexity of training EBMs and diffusion-based models to a single hyperparameter

choice: the noise level, 𝜎 . Altogether, our results suggest a simplified, more general and robust

framework for training and sampling from discrete energy- and score-based models with appli-

cations to therapeutic molecule design. Future work will probe the generality of our results to

other classes of molecules and even other data modalities (e.g., images), as well as theoretical

investigation into the results presented here.

3.7 Retrospective

This work introduced a new generative model for protein sequences and demonstrated its

effectiveness at generating realistic, functional antibodies. We show that our model’s generation

quality is competitive with other contemporary state-of-the-art generative models for antibodies.

A follow-up work that demonstrates the generative capabilities of discrete walk-jump sampling

for amore diverse collection of protein families and functions provide evidence to justify its utility
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as a generalized sampler. Additionally, our work shows that a simple ByteNet architecture trained

from scratch on paired antibody chains was an effective means to producing antibody sequences.

This work presented an unguided sampling approach, insofar as the Langevin walk steps are

only informed by the learned gradient model. Additionally, our work did not leverage pre-trained

antibody language models such as Ablang [129] or IgLM [130]. Since the publication of this work,

multiple follow-up works have addressed these areas of interest. Mahajan, et al [131] exploited

large language models for walk-jump sampling in order to enhance expressivity. Additionally,

Ikram, et al [132] and Joren, et al [133] explored classifier-based and classifier-free guidance

techniques to drive sampling into desirable regions of sequence space.
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4 | Deep Manifold Sampler

4.1 Function-guided Design by Deep Manifold Sampling

This section is a reprint of workshop paper:

Vladimir Gligorijević, Daniel Berenberg, Stephen Ra, Andrew Watkins, Simon Kelow,

Kyunghyun Cho, and Richard Bonneau

Machine Learning for Structural Biology Workshop, NeurIPS 2021

4.1.1 Introduction

Protein design has led to remarkable results in past decades in synthetic biology, agriculture,

medicine, and nanotechnology, including the development of new enzymes, peptides and biosen-

sors [134]. However, sequence space is large, discrete, and sparsely functional [135], where only a

small fraction of sequences may fold into stable structural conformations. Taken together, these

considerations present important challenges for automated and efficient exploration of design

space.

Building on previous works on representation learning from large-scale protein sequence

data [81, 86, 88, 136–138], we introduce a novel generative model-based approach called “deep

manifold sampling” for accelerating function-guided protein design to explore sequence space

more effectively. By combining a sequence denoising autoencoder (DAE) with a function clas-
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sifier trained on roughly 0.5M sequences with known function annotations from the Swiss-Prot

database [34], our deep manifold sampler is capable of generating diverse sequences of variable

length with desired functions. Moreover, we conjecture that by using a non-autoregressive ap-

proach, our deep manifold sampler is able to perform more effective sampling than previous

autoregressive models.

4.1.2 Related Work

Recent work has demonstrated success in learning semantically-rich representations of pro-

teins that encapsulate both biophysical and evolutionary properties. In particular, language mod-

els (LM) using bi-directional long short-term memory (LSTM) [139] and attention-based [86]

architectures and trained on protein sequences have yielded useful representations for many

downstream tasks, including secondary structure and contact map predictions [86], structural

comparison [139], remote homology detection [88], protein engineering and fitness landscape

inference [136], and function prediction [140].

Other studies have focused on generative modeling for producing realistic protein structures

— for example, usingGenerativeAdversarial Networks (GAN) for creating pairwise distancemaps

[141] and variational autoencoders (VAE) for 3D coordinate generation of protein backbones [142]

— and designing new sequences. One advantage in formulating a design problem with sequences

has traditionally been the relative availability of data as compared to experimentally-determined

structures. Balakrishnan et al. [143] used graphical models trained on multiple sequence align-

ments (MSA) to sample new sequences. More recently, VAEs [144, 145] have been used for de-

signing novel enzymes and T-cell receptor proteins, obviating the need for MSA, but they have

been largely limited to a single family of proteins. Additionally, a few generative models have

been proposed for conditional design [137, 138, 146]: Greener et al. [146] use a VAE conditioned

on structural features for generating sequences with metal binding sites, Madani et al. [137]

use a conditional LM for sampling proteins, where each amino acid is sampled sequentially, and
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Shin et al. [138] use an autoregressive model to generate a nanobody sequence library with high

expression levels.

Motivated by conditional design as translation task, we develop an approach for generating

protein sequences with desired functions, where sequences are translated from an input sequence

to an output sequence with higher property values. Our deep manifold sampling approach uses

a denoising autoencoder (DAE), a self-supervised model that implicitly estimates the structure

of the data-generating density by denoising stochastically corrupted training examples [59, 104,

147, 148]. We use a Markov chain Monte Carlo (MCMC) process [148] to sample from the density

function learned by the encoder. We corrupt this sample and repeat the procedure above to

produce a chain of samples from the DAE.

We also consider known issues with autoregressive models including decoding latency [149,

150], difficulty of parallelization at inference time [151–153], and exposure bias at test-time gen-

eration [154, 155]. By using a non-autoregressive modeling strategy, our deep manifold sampler

is capable of predicting multiple mutations — including insertions and deletions — at different

positions in a given sequence resulting in sequences of varying lengths. We conjecture that in

doing so, our manifold sampler enables effective exploration of the overall fitness landscape of

properties, resulting in diverse protein designs with desirable properties.

4.1.3 Methods

We propose to learn a protein sequence manifold by training a DAE on a large database of

observed sequences spanning multiple protein families. Moreover, to ensure that generated se-

quences satisfy a set of desired functional constraints, we combine a protein function classifier

with the DAE to guide sampling.
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>>SMTCPPRVREAFALFDTDGDGEISGRDLVLAIRSCGVSPTPDEIKALPMSMAWPDFEAWMSKKLASYNPEEELIKSFKAFD
RSNDGTVSADELSQVMLALGELLSDEEVKAMIKEADPNGTGKIQYANFVKMLLK

6TJ5 (chain A) 

Designed

>>SMTCPPRVREAFALFTGGISGRDLVLAIRSCGVSPTPDEIKALPMSMAWPDFEAWMSKKLASYNPEEELIKSFKAFDRSND
GTVSADELSQVMLALGELLSDEEVKAMIKEADPNGTGKIQYANFVKMLLK

Input sequence: (remove Ca+ binding residues)

>>SPTCPPYVREAFALFVGGEISGRDLVLAIRSSVVSPKPDDKKALLMMSAWPPDEAAMMKLLAYYLEENLIKSFKKADRRND
GTTVAADDLSQVMALLAELLSDEEVKACIKEADLNGTGKIQYANFVKMLLK

>>SECPPYVREAFALFVGGEISGRDDVLAIRSSVVSPKPDDKKALLMMSAEPPDEAAMMKLLAYYGENNLIKSFVKADRRNDG
TTVVADDLSQMMALLAELLSDEEIKACIKEADLNGTGKILYANFVKMLLK

>>SEQAPYVREAFALFVGGISGRDDVLAIRSSVVSPKPDDKKALLMMSAEPPDEAAMKLLAYYGERNLAKSFVKADGRGDGTT
VVADDLSQMMALLAELLSDEEIKACIKEEDLNGTGKILYANFVKMLLK

>>SEKAPYVREAFALFVGGISGRDDVLAIRSSVVSPKPDDKKALLMMSAEPPDREAAMKLLAYYGEDRNLAKFFVKADRGGDG
GTTVVADDSSQFMALLAELLSDEEIKACIKEEDLAGDTGKILYANFVKMLLK

>>SEKAPYVREAFALFVGGISGRDDVLAIRSSVVSPKPDDKKALLMMSAEPPDREAAMKLLAYYGEDRNLAKFFVKADRGGDG
GTTVVADDSSQFMALLAELLSDEEIKACIKEEDLAGDTGKILYANFVKMLLK

>>SNKAPYQLEDRALFVGGSSGRGVVLAIRSSVVSIKPDKKALLMMSAEPPDLEAAGKLLAYYGEARNLDRFYVKADRDGDGG
TTVVWDDSSQFMALLAELLMEEIKHAIKEEDLAGDTKNILYNFVKMLLK

Designed sequence:

trRosetta

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Conditioning on
“calcium ion binding” 
(GO:0005509)

PDB: 1AGY (chain A)

>LGRTTRDDLINGNSASCRDVIFIYARGSTETGNLGTLGPSIASNLE
SAFGKDGVWIQGVGGAYRATLGDNALPRGTSSAAIREMLGLFQQ
ANTKCPDATLIAGGYSQGAALAAASIEDLDSAIRDKIAGTVLFGYTK
NLQNRGRIPNYPADRTKVFCNTGDLVCTGSLIVAAPHLAYGPDAR
GPAPEFLIEKVRAVRGSA

>LGRVTMDLTLGNSASLASAIFIHARGSTTGNLLTLPATSYLASALF
GSDGGVLIQGVDGKYRQASDSGNALPARETSSAAIREMLGLGSD
QANITKPTDATLIAGCRSQGAALAAGSIEPDTLSAGRDKIAETDLYT
SNLQIRGGDIPGLVPADAEAVFRNFLDLVLATGPLTIKATHHLAYV
PDAVGPVIEFLILKVRAVISGQSA

64.1% seqid

>LGRVTTILTLGNSASLADAIFIHARGSTTGNLSTLNATSYLESAQF
GIDGGVLIQGVGGAYRNASDSGNALPARETSSVAIREMLGLGSDL
ANITKCKDATLIAGCYSQGAALAAGSIEPDTLSAIRDKIAATVLFGY
TKNLQIRGGDIPGQVPAYRTAVFCNFLDLVLKTGSLTIKAAHHLAE
VADAVGPVPEFLIEAVRTVISGQSA

46.2% seqid

>LGRVTMDLTLGVSASLADAHFIHARGSFTGNLSTLPAFSYLESAQ
FTSDGGVLIQGVGGAYSNASDSGNALPARETSSAAIREMLGLGSD
QANITKCPDATLIAGCISQGAALAAGSIEIDTLSAIRDKIAATVCFGY
TKNLQIRGGDIPVLVPADRTAVFCNFLDLVLQTGSLTIKAAHHLAY
VPDAVGPVPEFLIEYVRAVISGQSA

68.8% seqid

>LGRVTEDLTLGNSASLADAITIHARGSTTGNLSTLPATSYLESAQ
FGSDGGVLLQGVGGAYRNASCSGNALPARETSSAAIREMLGLGS
DQANITCCPDATLIAGCYSQGAAKAAGVIEPDTVSAIRDKIAATVLE
GYTKNLQIRGGDIPGLVFADRTAVFPAFLDLVLCTGSITIKAAHHLA
YVPDAVGPVPEFLIEAVRAVISGQSA

46.2% seqid

Sample 1

Sample 2

Sample 3

Sample 4

Conditioning on
“cutinase activity”
(GO:0050525)

(A) (B)

Figure 4.1: (A) A designed sequence of𝐶2+
𝑎 -binding protein obtained by altering the sequence of calmod-

ulin, calcium-binding protein (PDB: 6TJ5, chain A) after removing its calcium binding site. (B) Redesign
of fusarium solani pisi cutinase (PDB ID: 1AGY, chain A) cutinases with enhanced functions.

4.1.4 A seqence denoising autoencoder

Our goal is to generate a diverse set of protein sequences that exhibit a high level of a desired

function using a sequence DAE [156]. We want to map an input sequence 𝑋̃ to a target sequence

𝑋 , where 𝑋 always has a higher level of some desired protein function than 𝑋̃ . We formulate this

task as a language modeling problem, where we model the joint probability of the tokens of a

target protein sequence 𝑋 = (𝑥1, · · · , 𝑥𝐿) of length 𝐿 given its corrupted version 𝑋̃ of length 𝐿̃ as:

log𝑝 (𝑋 |𝑋̃ ) =
𝐿∑︁
𝑡=1

log𝑝 (𝑥𝑡 |𝑋̃ )

We model the joint distribution 𝑝 (𝑋 |𝑋̃ ) with the proposed architecture (Supplementary Fig.

B.1). First, we apply a sequence corruption process 𝐶 (𝑋̃ |𝑋 ) that takes as input sequence 𝑋 of

length 𝐿 and returns corrupted version 𝑋̃ , potentially of different length 𝐿̃ (B.1). The corrupted
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sequence 𝑋̃ is passed as an input to the encoder 𝑄𝜃 (𝑍 |𝑋̃ ) that maps 𝑥1, · · · , 𝑥𝐿̃ ∈ [0, 1]𝐿̃×22 to

a sequence of continuous representations 𝑍 = 𝑧1, · · · , 𝑧𝐿̃ ∈ R𝐿̃×𝑑 . To predict the probabilities

of target tokens 𝑋 = (𝑥1, · · · 𝑥𝐿), we use a monotonic location-based attention mechanism [152]

to transform 𝐿̃ vectors of 𝑍 into 𝐿 vectors. The length transform 𝑓𝜎 (𝑍 |𝑍,Δ𝐿) takes in 𝑍 and

the length difference Δ𝐿 = 𝐿 − 𝐿̃ and returns the new vectors of the target sequence 𝑍 , with

𝐿 = 𝐿̃ + Δ𝐿. 𝑓𝜎 (𝑍 |𝑍,Δ𝐿) then computes each 𝑧𝑖 as a weighted sum of the vectors from the

encoder, i.e., 𝑧𝑖 =
∑𝐿̃
𝑗=1 𝑎

𝑖
𝑗𝑧 𝑗 , where 𝑎

𝑖
𝑗 is an attention coefficient computed as in Shu et al. [152].

𝑍 is then passed to the decoder 𝑃𝜙 (𝑋 |𝑍 ), which predicts the probabilities of the target tokens.

4.1.4.1 Length prediction and transformation

Although the length difference is known during training, it is not readily available at infer-

ence time and must be predicted. We use an approach previously proposed by Shu et al. [152] and

Lee et al. [150] and construct a length predictor as a classifier that outputs a categorical distribu-

tion 𝑃𝜂 (Δ𝐿 |𝑍 ) over the length difference. The classifier takes in a sequence-level representation

obtained by pooling representations 𝑧𝑝𝑜𝑜𝑙 = 1
𝐿̃

∑𝐿̃
𝑖=1 𝑧𝑖 , and produces a categorical distribution

that covers the maximum range of length differences, [−Δ𝐿𝑚𝑎𝑥 ,Δ𝐿𝑚𝑎𝑥 ], where Δ𝐿𝑚𝑎𝑥 is deter-

mined by the choice of a corruption process (B.1). The classifier is parameterized by a single,

fully connected linear layer with a 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 output.

4.1.4.2 A protein function classifier

For conditional sequence design, we incorporate a protein function classifier by training it on

the representations from the encoder of the DAE. The goal is to exploit the error signal from the

function classifier at test time to guide sampling towards sequences with desired functions. We

train a multi-label classifier 𝑃𝜔 (𝑌 |𝑍 ) that takes in a latent representation 𝑍 from the encoder and

that outputs a vector 𝑌 of probabilities for each function as well as the classifier’s internal latent

representation 𝑍𝑐 . We parameterize 𝑃𝜔 with one multi-head attention (MHA) layer that maps the
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initial sequence feature representation 𝑍 to an internal feature representation, 𝑍𝑐 , of the same

hidden dimension as 𝑍 , which is pooled to form a protein-level representation; 𝑧𝑝𝑜𝑜𝑙𝑐 = 1
𝐿̃

∑𝐿̃
𝑖=1 𝑧𝑐𝑖 .

This protein-level representation is passed to single, fully connected layer followed by a point-

wise sigmoid function that returns function probabilities.

4.1.4.3 Function-conditioned sampling

We guide sampling towards a target function 𝑖 at every sampling step by using the gradient

of the function classifier’s predictive probability of 𝑖 to update the encoder’s vectors and increase

the likelihood of higher expression of the desired target function. At every generation step, we

update the internal state of the encoder as follows:

𝑍 ← 𝑍 + 𝜖
∇𝑍 log 𝑃𝜔 (𝑌𝑖 |𝑍 )
| |∇𝑍 log 𝑃𝜔 (𝑌𝑖 |𝑍 ) | |

(4.1)

where 𝜖 controls the strength of the function gradients. The output 𝑍 is then passed to the

length transform, together with the predicted Δ𝐿 sampled from the length predictor, and then to

the decoder (Supplementary Fig. B.1).

4.1.5 Results

We demonstrate the applicability of our method in three different case studies: 1) adding

a function to an existing fold by installing a binding site (Fig. 4.1A) 2) diversifying a protein

sequence by preserving its function and salient residues (Fig. 4.1B), and 3) modifying protein

function by globally changing the protein fold (B.4).

Designing a seqence with a metal binding site. We study the ability of the model to add

a potential metal binding sites to a protein. In particular, we test the model’s ability to recover
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metal binding sites by starting the sampling procedure from a sequence of a metal binding pro-

tein after removing the known binding residues, including residues involved in calcium binding

(three aspartate and one glutamic amino acid residues) from a calcium-binding protein (PDB:

6TJ5, chain A; Fig. 4.1A). Starting from the altered sequence, we perform sampling by condi-

tioning on calcium ion binding (GO:0005509). After six MCMC steps, we obtain a sequence with a

high score for calcium ion binding and observe a sequence motif frequently found in most known

calcium binding proteins (Fig. 4.1A); highlighted in red). The designed sequence has 48.7% se-

quence identity to the the starting one. When folded using the trRosetta package [157], it forms

a helix-loop-helix structural domain at the location of the predicted binding site [158]. The three

aspartite amino acids in this loop are negatively charged and interact with a positively charged

calcium ion. The glycine is necessarily due to the conformational requirements of the backbone

[158, 159].

Redesign of cutinases with enhanced functions. We test the ability of model to diversify

an existing protein sequence by preserving the functional residues. Here, we use sequence of

fusarium solani pisi cutinase. Cutinases are responsible for hydrolysis of the protective cutin lipid

layer in plants and thus have been used for hydrolysis of small molecule esters and polyesters.

Sampled sequences obtained after 6 generations of sampling steps with the constrain imposed

on cutinase activity (GO:0050525) are folded by trRosetta. The results are show in Fig.4.1B with

catalytic residues are highlighted in red. Our function classifier shows the probability scores

for cutinase activity of the designed sequences. We perform multiple sequence alignment of the

top scoring sampled sequences showing the catalytic residues of the initial cutinase (1AGY-A)

preserved by our manifold sampling strategy.
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4.2 Multi-segment Preserving Sampling for Deep Manifold

Sampler

This section is a reprint of workshop paper:

Daniel Berenberg, Jae Hyeon Lee, Simon Kelow, Ji Won Park, Andrew Watkins, Vladimir Glig-

orijević, Richard Bonneau Stephen Ra, and Kyunghyun Cho

Machine Learning for Drug Discovery Workshop, ICLR 2022

4.2.1 Introduction

Protein sequence families, particularly antibodies, have both well-conserved and variable

regions. In antibodies, the heavy and light chain sequences consist of highly conserved re-

gions known as the framework as well as an array of distinct hypervariable loops, known as

complementarity-determining regions (CDRs) [160]. Despite the intrinsic variability of CDRs,

conditional variation is often conferred by the gene locus admitting the protein [161]. Much of

an antibody’s antigen-binding affinity is owed to the CDRs, while the framework remains fixed

or requires minimal change [162]. For in silico modeling, integrating these established aspects

of structure and binding can drive the development of better in situ antibody therapeutic design

[163]. While work in protein language modeling suggests that models can learn these evolution-

ary conservation rules [85–87], it is an open challenge as to how to explicitly incorporate prior

insight at test-time generation, such as sequence-level annotations [164], to restrict sampling in

certain segments.

The deep manifold sampler was recently proposed as an effective method to sample novel

sequences by iterative, optionally gradient-guided steps, of sequence denoising [68]. Empirically,

gradient-based guided sampling was shown to selectively encourage changes in functional sites,
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implicitly leaving non-functional regions unperturbed. In this work, we propose an alternative

to the gradient-based guided design procedure in which predefined regions of a sequence are ex-

plicitly preserved, leaving sampling to take place in a priori known notable sequence regions. We

conduct an experiment on antibody sequences to demonstrate the deepmanifold sampler’s ability

to focus sampling on a subset of sequence positions. We do so by deliberately corrupting select

regions of antibody sequences, that correspond to CDRs, and evaluating the length distribution

and composition of sampled CDRs.

4.2.2 Background: the Deep Manifold Sampler

The deepmanifold sampler [68] is a denoising autoencoder (DAE) specialized to handle variable-

length sequences. As with a typical DAE [147], the deep manifold sampler consists of three mod-

ules; a corruption process𝐶 (𝑥 |𝑥), an encoder 𝐹 and a decoder𝐺 . Unlike the usual DAE however,

the deepmanifold sampler has an extramodule that determines the change in the length, to which

we refer as the “length conversion” [28].

The deepmanifold sampler assumes as input a sequence of discrete tokens, 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝐿),

where each token 𝑥𝑡 is an item from a finite vocabulary 𝑉 of unique words or subwords. In the

case of protein sequence modeling, 𝑉 consists of all unique amino acids. The sequence 𝑥 is cor-

rupted with the corruption process 𝐶 , resulting in a noisy input sequence 𝑥 ∼ 𝐶 (𝑥 |𝑥). This

corruption process can be arbitrary as long as it is largely local and unstructured. It may even

alter the length of the sequence, |𝑥 | ≠ |𝑥 |.

The encoder 𝐹 turns the corrupted sequence𝑥 into a set of hidden vectors,ℎ = (ℎ1, ℎ2, . . . , ℎ |𝑥 |),

whereℎ𝑡 ∈ R𝑑 . The encoder can be implemented using any of the widely-used deep architectures,

such as transformers [84], convolutional networks [165] and recurrent networks [166, 167]. In

this work, we follow the original deep manifold sampler’s encoder, which was implemented as a

transformer.
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The hidden vectors are pooled to form a single-vector representation:

ℎ̄ =
1
|𝑥 |

|𝑥 |∑︁
𝑡=1

ℎ𝑡 . (4.2)

This pooled representation is used by the length conversion to predict the change in the length.

At training time, this length change predictor is trained to output Δ𝑙∗ = |𝑥 | − |𝑥 |. When we

sample sequences from the deep manifold sampler after training, we use the predicted change

Δ𝑙 to adjust the size of the hidden vector set. The adjusted hidden vector set consists of |𝑥 | + Δ𝑙

hidden vectors, 𝑧 = (𝑧1, . . . , 𝑧 |𝑥 |+Δ𝑙 ), where

𝑧𝑡 =

|𝑥 |∑︁
𝑡 ′=1

𝜔𝑡,𝑡 ′ℎ𝑡 ′ (4.3)

with

𝑤𝑡,𝑡 ′ ∝
−1

exp(𝜎)

(
𝑡 ′ − |𝑥 |
|𝑥 | + Δ𝑙 𝑡

)2
. (4.4)

The decoder𝐺 then takes this transformed hidden vector sequence 𝑧 and outputs a corresponding

sequence of logit vectors, 𝑦 = (𝑦1, . . . , 𝑦 |𝑥 |+Δ𝑙 ), where 𝑦𝑡 ∈ R|𝑉 | . These logits are turned into prob-

ability distributions over the vocabulary 𝑉 in many different ways. The original deep manifold

sampler implements a non-autoregressive approach [168, 169], where each logit is independently

turned into a distribution:

𝑝 (𝑦𝑡 = 𝑣 |𝑥,Δ𝑙) =
exp

(
𝑦𝑣𝑡 + 𝑏𝑣

)∑
𝑣 ′∈𝑉 exp

(
𝑦𝑣
′
𝑡 + 𝑏𝑣

′ ) , (4.5)

where 𝑏𝑣 is a bias for token 𝑣 .

It is however also possible to use these logits together with a more powerful output module,

such as a conditional random field (CRF; [170]), as was recently done in [171], and autoregressive
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language models [172]. For experiments in this paper, we use a variant of the deep manifold

sampler in which we use a CRF at the end of the decoder.

At training time, we minimize the negative log-probability of the original sequence 𝑥 given

the corrupted version 𝑥 and a known Δ𝑙∗ to train the encoder and decoder, while minimizing the

negative log-probability of Δ𝑙∗ to train the length change predictor. We parameterize the latter

as a classifier. Once training is done, we can draw a series of samples from the deep manifold

sampler by repeating the process of corruption, length conversion, and reconstruction.

While the original deep manifold sampler has an additional function predictor that can be

used to guide the sampling procedure, we omit that here, as this is optional and can be replaced

with another computational oracle without altering the sampling procedure that is the focus of

this paper.

4.2.3 Multi-Segment Preserving Sampling

The deep manifold sampler was originally proposed in the context of protein design in Glig-

orijević et al. [68]. Within this setting, we often consider biological, chemical, and physical knowl-

edge in order to impose constraints that narrow down a large, combinatorial search space [173,

174]. The deep manifold sampler on the other hand stays true to the key principle of deep learn-

ing, that is, end-to-end learning, which makes it challenging to explicitly incorporate this knowl-

edge into both learning and sampling. In this paper, we take one step towards enabling this into

the sampling procedure of the deep manifold sampler. We assume the availability of knowledge

in which segments of an original sequence, from which sampling starts, must be preserved in

order to maintain a set of desirable properties. For example, in the case of antibody engineering,

it may be desirable to only alter CDR loops while leaving all framework residues intact [162].

Let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝐿) be the initial sequence from which we run the deep manifold sampler

to draw a series of samples over the sequence manifold. Instead of unconstrained sampling, we

consider a scenario in which we are provided with a set of non-overlapping segments of the
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Figure 4.2: Multi-segment preserving sampling for 𝛽 = 1. (A) Non-preserved segments 𝑠 are corrupted
using corruption process 𝐶 , for which a given token (yellow) may be randomly perturbed (blue). This is
encoded as hidden vector set ℎ. Length change predictor 𝑝𝜃 (Δ𝑙 |ℎ̄) outputs Δ𝑙 , which is distributed across
𝑠 (Eq. 4.8). (B) Segment-preserving sampling follows similar operations on preserved segment 𝑠 (red) with
notable differences. Corruption𝐶 yields an unaltered sequence 𝑥 and we carry over hidden vector ℎ𝑡 of a
token within preserved segment 𝑠 with strength 𝛽 (Eq. 4.9).

sequence that must be preserved in-order by their starting and ending indices (inclusive):

𝑠 = ((𝑖1, 𝑗1), . . . , (𝑖𝐾 , 𝑗𝐾 )) (4.6)

subject to 𝑖𝑘 ≤ 𝑗𝑘 for all 𝑘 and 𝑗𝑘 < 𝑖𝑘 ′ for all 𝑘′ > 𝑘 . We refer to this set as a preserved-segment

set. Likewise, we can imagine the complement segment set 𝑠 that contains all the segments that

are between the to-be-preserved segments in 𝑠:

𝑠 = ((0, 𝑖1 − 1), ( 𝑗1 + 1, 𝑖2 − 1), . . . , ( 𝑗𝐾 + 1, |𝑥 | + 1)) . (4.7)

In order to preserve these segments while altering the remaining parts of the sequence, in-

cluding their respective lengths, we make a series of modifications to the sampling procedure of

the deep manifold sampler. First, we alter the corruption process 𝐶 such that it does not corrupt
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the preserved segments. For instance, if the corruption process randomly adds or removes to-

kens, this is only done to the segments in the complement set 𝑠 but not to those in 𝑠 . Doing so

results in 𝑥 and also changes the segment set 𝑠 in order to appropriately reflect the changes in

the indices due to insertions and deletions. We use 𝑠 to refer to the preserved segment set of the

corrupted sequence 𝑥 .

However, the encoder still results in the hidden vector set ℎ that corresponds to 𝑥 . While

the length change prediction also stays the same, returning length change Δ𝑙 , Δ𝑙 needs to be dis-

tributed across the non-preserved segments in order to avoid altering the length of any preserved

segment in 𝑠 . We do so proportional to the original lengths of the non-preserved segments. In

other words, we add to the length of each non-preserved segment ( 𝑗𝑘 + 1, 𝑖𝑘+1 − 1):

⌈
(𝑖𝑘+1 − 𝑗𝑘 + 1)∑𝐾

𝑘 ′=−1(𝑖𝑘+1 − 𝑗𝑘 + 1)
Δ𝑙

⌉
, (4.8)

where 𝑗0 = 0 and 𝑖𝐾+1 = |𝑥 | + 1.

After distributing the length difference among the non-preserved segments, we can now con-

struct the index map 𝑜 that tells us which segment in the new sequence corresponds to each of

the preserved segment in 𝑥 . In other words, 𝑦𝑜 (𝑖𝑘 ):𝑜 ( 𝑗𝑘 ) = 𝑥𝑖𝑘 : 𝑗𝑘 . Let us use 𝑜 (𝑠) to denote the

preserved-segment set derived from 𝑠 and the length distribution above.

The actual length conversion happens just like before, as in Eq. (4.3). We however add an extra

step after the length conversion in order to give the decoder a hint about preserved segments and

their contents. This is done by carrying over the original hidden vector ℎ𝑡 of a token within a

preserved segment:

𝑧𝑡 ←


(1 − 𝛽)𝑧𝑡 + 𝛽ℎ𝑜−1 (𝑡), if 𝑡 ∈ 𝑜 (𝑠)

𝑧𝑡 , if 𝑡 ∉ 𝑜 (𝑠)
(4.9)

𝑜−1 is the inverse index map, and 𝛽 ∈ [0, 1] is the strength of carry-over.

48



The decoder turns this length-converted and segment-preserving hidden sequence 𝑧 into a

sequence of logit vectors 𝑦, just like the original sampling procedure. We then modify the logit

vector corresponding to a token with a preserved segment to force the sampled outcome to pre-

serve the token identity:

𝑦𝑣𝑡 ←



∞, if 𝑡 ∈ 𝑜 (𝑠) and 𝑣 = 𝑥𝑜−1 (𝑡)

−∞, if 𝑡 ∈ 𝑜 (𝑠) and 𝑣 ≠ 𝑥𝑜−1 (𝑡)

𝑦𝑣𝑡 , if 𝑡 ∉ 𝑜 (𝑠)

(4.10)

In the case of non-autoregressive modeling, this would result in a Categorical distribution for

a preserved token to assign the entire probability mass (= 1) to the original token identity. If a

CRF is used at the end, this would prevent any sequence that violates preservation from being

decoded out with non-zero probability.

We can repeat this sampling step with the newly sampled sequence and the corresponding

preserved-segment set. This allows us to iteratively draw a series of samples while preserving

the segments from the original sequence, designated by the preserved-segment set 𝑠 . Because

this iterative sampling procedure preserves multiple segments and their contents, we refer to

this procedure as multi-segment preserving sampling (Figure 4.2).

4.2.4 Experiments

The proposed algorithm for multi-segment preserving sampling is designed to completely

preserve designated segments. Here, we demonstrate a potential application in antibody design

enabled by our algorithm coupled with the deep manifold sampler. Antibodies with a particular

V-gene have fixed lengths in the framework as well as CDR1 and CDR2 regions. As a result, an-

tibodies display most of their diversity in length and amino acid composition in CDR3 [175]. To

demonstrate the effectiveness of our approach and restricted variation of the preserved segments,
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𝛽 Aligned CDR3 sequence Edit distance

N/A (original) ARDPEWDPF-QANY-YYYGMDV 0
0.0 ARDPEWDPF-QAN–YYYGMDV 3
0.1 ARDPEWDPFFQANYNYYYGMVD 3
0.5 KRDPEWDRF-QAPY-YTVGMDV 5
0.9 ARGPECDPH-QAV-DIYYGMDV 6

Table 4.1: Example outputs of multi-segment preserving sampling when restricting variation to the CDR3
region under different settings of 𝛽 . Display is restricted to the sampled region, the rest is preserved by
construction.

we select all unique human antibody sequences with the IGHV1-18 gene from the Observed An-

tibody Space (OAS) database [2] for multi-segment preserving sampling. Using a deep manifold

sampler, we sample exclusively from the CDR3, while preserving other regions, and show the

length and log-probability (GPT-2) distributions of the generated sequences qualitatively coin-

cide with that of the test data. Table 4.1 illustrates examples of sampled CDR3 regions under

different settings of carry-over strength 𝛽 .

4.2.4.1 Training details

We obtained 5,971,552 unique human antibody heavy chain sequences with the IGHV1-18

gene from the OAS database, with 2,000 and 10,000 sequences set aside for validation and test

sets respectively and the remaining used for training.1 We trained a deep manifold sampler on

the training set with a constant learning rate of 10−4 for 60K mini-batch steps with the batch size

of 128. The model consisted of a two-layer transformer encoder and decoder, each with 8 heads

and the total embedding dimension of 256 and feed-forward layer dimension of 1024. The last

layer consists of a CRF for final sequence generation. The rest of the training procedure was the

same as described in the original paper.

In addition, we also trained an autoregressive GPT-2 model using HuggingFace Transformers

library v4.16.2 [176] on the same training set in order to demonstrate that the sampler-generated
1Only sequences with "Redundancy > 1" were retained.
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sequences capture the amino-acid token distribution observed in the training set. The model

consisted of 6 attention layers with 8 heads and a total embedding dimension of 512 and was

trained with a constant learning rate of 4× 10−4 for 25K mini-batch steps with batch size of 1024.

The other parameters were set to the default values provided by the package.

4.2.5 Sampling details and results

For each sequence in the test set, we applied multi-segment preserving sampling for one

iteration, preserving all non-CDR3 regions with four different 𝛽 values of 0, 0.1, 0.5, and 0.9.2

Figure 4.3 and Figure 4.4 show the length and log-probability (GPT-2) distributions of the gen-

erated sequences with changes in CDR3 and the test data across all selected 𝛽 values. The CDR3

length distribution of the generated samples matches the natural sequence length distribution for

each value of 𝛽 . The GPT-2 log-probability distribution of the samples has lower overall mean

compared to that of the test distribution but is still within the same range. Both distributions vary

only slightly with different values of 𝛽 . These two results show the effectiveness of the sampling

strategy for generating diverse antibody sequences, restricted to user-defined regions.

In Figure 4.5, we illustrate the distribution of the number of edits in the generated sequences

relative to the input seed sequences, including substitutions, insertions, and deletions. The dis-

tributional mean increases slightly with higher values of 𝛽 . For future work, we plan on a more

systematic understanding of the effects of carry-over strength 𝛽 on sample quality and diversity.

4.2.6 Conclusion

We have proposed a sampling procedure for the deep manifold sampler that explicitly pre-

serves designated segments of the input sequence, allowing variation to occur only in non-

preserved regions. We find that this approach, multi-segment preserving sampling, is applicable

to a number of design problems in the life sciences where we often want to use prior knowledge
2The region annotation was obtained from the OAS data unit files.
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Figure 4.3: The normalized distribution of the CDR3 lengths of the deep manifold sampler-generated
sequences (“Samples") and the test set sequences (“Training (OAS)") with four different 𝛽 parameters.
From Top Left, Clockwise: Samples were generated with 𝛽 = 0, 0.1, 0.9, and 0.5.

made available in these domains. With biological sequence design for example, we want to sam-

ple new, diverse designs that avoid perturbing well-conserved regions of the input. In this way,

we demonstrate the utility of multi-segment preserving sampling by restricting sampling to the

CDR3 regions of a collection of antibody heavy chains with the IGHV1-18 gene and validating

the resulting CDR3 designs against a separate GPT-2 model. As shown in Figure 4.4, the sampled

CDR3 regions admit high log-probability scores by the GPT-2 model, providing evidence that the

samples are plausible. Additionally, the CDR3 length distribution of the samples coincides with

the observed length distribution in the training set, suggesting the model adequately captures

the variability in non-preserved segment lengths, despite the lack of explicit provision during

training. In future work, we will extend our exploration on the effect of the carry-over strength
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Figure 4.4: The normalized distribution of the GPT-2 scores of the deep manifold sampler-generated
sequences (“Samples") and the test set sequences (“Training (OAS)") with four different 𝛽 parameters.
From Top Left, Clockwise: Samples were generated with 𝛽 = 0, 0.1, 0.9, and 0.5.

Figure 4.5: The distribution of edit distances between generated samples and their seed sequences with
varying settings of 𝛽 (0, 0.1, 0.5, and 0.9).
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𝛽 in terms of sample quality as well as its usage in conjunction with the function predictor for

guided sampling proposed in Gligorijević et al. [68].

4.3 Retrospective

The Deep Manifold Sampler is a general approach to non-autoregressive guided sequence

design. We present two steering techniques: function-guided design using a Gene Ontology term

classifier and multi-segment preserving sampling. One future direction for improving the DMS

technology is to emplace specialized tokens that encode various properties such as the taxon

and function. Doing so would enable classifier-free guidance using multi-segment preserving

sampling. Additionally, further evaluation using a similar distributional conformity approach to

Chapter 3 would providemore concrete empirical evidence on the sample validity. Finally, further

benchmarking against newly emerged, multi-step denoising models such as discrete denoising

probabilistic diffusion [64, 65] and discrete flow-matching [177, 178] is necessary to justify the

capabilities of the DMS.

54



5 | Natural language conditioned

protein design

5.1 Introduction

Recent studies [179–182] have shown that oprotein language models (PLMs) exhibit complex

behavior in performative modeling of protein sequence, structure, function, and evolution [183–

186]. These findings elicit interest in augmenting and controlling protein language model be-

havior using additional contextual information, such as functional labels, text, or structure [29,

30, 187–190]. The increasing interest in multimodal representations of proteins emphasizes the

importance of investigating the modalities that, in addition to sequence, may provide contex-

tual information that enriches the foundation model representation and result in performance

improvements on downstream tasks.

In this work, we propose a framework for conditioning on residue and global information

from text (CORGI) and evaluate the influence on model performance of text annotations on two

generative modeling tasks. CORGI fuses a pre-trained protein language model (PLM) with a text

embedding model using feature-wise linear modulation (FiLM) [191]. We postulate that residue-

level and global conditioning enhance generation in complementary ways. Whereas global con-

ditioning enables classifier-free guidance towards regions of sequence space enriched in a specific

functions and properties, residue-level conditioning unlocks fine-grained control by beneficially
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constraining the logits within annotated intervals. To investigate the contribution of natural lan-

guage conditioning, we fine-tune CORGI models on a text-augmented dataset and benchmark

their performance on two downstream generative modeling tasks: mutation effect prediction

and de novo design. For mutation effect prediction, we propagate wildtype annotations onto

mutants and evaluate the contributions of each annotation type compared to a baseline uncon-

ditional model trained on the same dataset. We also demonstrate the capability of CORGI to

accommodate different tasks by showcasing the model’s performance on distinct selection as-

says of mutants with a common genotype. Benchmarking text-conditioned de novo samplers

remains challenging due to the inherent imprecision of natural language prompts; it is often un-

clear whether generated samples truly reflect the intended concept. To address this, we develop

unbiased benchmarks for sequence validity and language alignment, grounded in an established

framework for assessing distributional conformity. Using our evaluation, CORGI models demon-

strate competitive performance compared to other state-of-the-art natural-language conditioned

models.

5.2 Related work

Text conditioned protein modeling: Previous studies have investigated the utility of text

features in both predictive and generative modeling. Protein function prediction models such

as DeepText2GO [192] and OntoProtein [193] demonstrate enhanced performance with multi-

modal inputs from manuscript abstracts and gene ontology (GO) term embeddings. Text anno-

tations and protein classifications often exhibit high mutual information. Duan, et al [190] also

observed the mutual information phenomenon and studied the effects on downstream classifi-

cation tasks of annotation-augmented sequence representations, finding that not all annotations

improve performance.

Multi-modal contrastive learning models such as ProTrek [187] and ProteinCLAP [30] adapt
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CLIP [194] to learn aligned embedding spaces of text and protein. These learned features then fa-

cilitate text-to-protein generation either by latent optimization or internally scoring designs [29].

Text-conditioned generative models span a wide spectrum of ideas and implementations.

Galactica [195] is a multi-purpose autoregressive large language model trained on scientific text

and molecular data. MP4 [32] is a multi-modal encoder-decoder model uses cross-attention to

perform text-to-protein translation. Finally, observing that structure space is a seemingly lower-

dimensional index of function, Pinal [29] mediates text-to-protein generation via a generated 3Di

encoding [100].

Text-conditioned generative model evaluations: Evaluating the performance of natu-

ral language conditioned models is challenging because prompts often express soft, ambiguous

concepts rather than discrete, well-defined labels. While the subject area has not yet reached

consensus on the evaluation metrics that should be adopted for this task, benchmarking typically

entails two criteria: validity and language alignment. Validity metrics assess whether a given

protein sequence is biologically realistic. Multiple works [29, 196] have proposed the pLDDT

score [3] as a proxy for foldability. Other coarse measurements such as amino acid distributions

may be employed to further characterize the sequence validity.

Language alignment measures the coherence between generated text and sequence. Aligned

multimodal embedding spaces such as ProTrek [29] are designed to produce a similarity score

that reflects this alignment. The MP repository [196] provides an estimate of language alignment

via the NLM-sim, which measures the text-to-text similarity between the input prompt and the

output of ProtNLM [197].

5.3 Methods

We consider CORGI in two isolated conditioning settings using residue-level and global text

annotations. We investigate two use cases: (1) Incorporating residue-level annotations from site-

57



specific protein family models, such as HMM signature for homologous protein in InterPro [57],

will sharpen the per-residue logit distributions along annotated intervals. Furthermore, after

pre-training the sharpened logit distributions are useful for downstream applications such as

mutation effect prediction, given that the signal provided by the annotation may contribute to a

more nuanced likelihood estimate. (2) Sequence-wide annotations may be leveraged to directly

steer design via soft prompting. Contrary to prior existing methods, we investigate whether

conditionally sampling using embedding outputs of a pre-trained text encoder enables targeted

molecular programming.

As position-specific annotations outnumber sequence-wide ones by orders of magnitude, we

treat the two annotation types separately, constructing sequence datasets of either type and in-

dividually evaluating trained CORGI models in different settings.

5.3.1 Evaluation

We characterize the influence of text annotations on CORGI models by measuring the perfor-

mance on two downstream generative modeling tasks: mutation effect prediction and molecular

programming. Mutation effect prediction measures the model’s capability to propose meaning-

ful, non-deleterious edits to a protein sequence. Molecular programming is a de novo generation

task in which output samples must be not only realistic, but also align with the input text prompt.

5.3.1.1 Mutation effect prediction benchmark

Mutation effect prediction models assess the impact on fitness of mutations to a reference

sequence. Fitness can be measured in several ways including stability, binding affinity, activity,

expression, or organismal survival. Competitive performance in mutation effect prediction im-

plies the model is capable in making quality, biologically meaningful edits. The ProteinGym [33]

is a collection of deep mutational scanning (DMS) assays that assign experimentally determined

fitness values called DMS scores to sequence variants. Following previous studies, we define the
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mutation effect score as the model’s log-likelihood estimate of a given mutant. To characterize

performance, we compute the Spearman-rank correlation between the mutation effect and the

DMS score and calculate the average correlation over per taxonomic class and per DMS selection

type.

We postulate that conditioning on residue-level and global annotations during training will

improve predictive performance on the ProteinGym assessment. To test this hypothesis, we prop-

agate wild-type annotations onto mutants. For substitution assays, direct transfer of these an-

notations is sufficient. For indels, we adjust the annotation intervals according to the alignment

betweenwildtype andmutant. We choose to transfer annotations based on the intuition that non-

deleterious mutations will be tolerated by the model via a correspondence between the condition-

ing information and the sequence. For deleterious mutations where the wildtype annotation no

longer applies, the mismatch in conditioning will decrease the overall likelihood.

5.3.1.2 Molecular Programming Benchmark

Constructing the molecular programming benchmark requires two inputs: a database of an-

notated protein records with a vector index of their function documents and a collection of test

prompts. Our database is populated with SwissProt [53] records and is indexed by nomic-embed-

text-v1 [198] text representations. The MP repository [196] contains a collection of test prompts

as well as generated sequences from MP4 [32].

5.3.1.3 Concept-conditioned distributional conformity score

To assess the model’s capability in generating aligned sequences to a text concept, we in-

stantiate a conformal transducer system [199, 200] based on the distributional conformity score

(DCS) [201]: the concept-conditioned distributional conformity score (C2DCS), that measures con-

formity to a specific reference distribution of sequences with an aligned concept. The schematic

of the score construction is depicted in Figure 5.1. We define the “induced sequence neighbor-
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Figure 5.1: Schematic of the concept-conditioned distributional conformity score. Protein records are
stored in a vector database indexed by the annotation text representation. Sequence representations of
the nearest annotations are used to parameterize the conformity model. The conformity model in turn
scores generated sequences by their sequence embeddings.

hood” (ISN) N(𝑧) as the set of protein sequences retrieved by querying the 𝑘-nearest neighbors

to the annotation description representation 𝑧 from a vector database of document embeddings.

The induced sequence neighborhood embeddings are used to parameterize a conformity scoring

model. First, we divide the ISN into disjoint training and calibration sets. The training set is used

to fit a density estimator 𝐴N(‡) which serves as the concept-conditioned conformity measure for

the ISN of 𝑧. For each element of the calibration set Ncal(𝑧) = {𝑟𝑖 ∈ R𝑑 | 𝑖 = 1, . . . ,𝑚}, we

compute its conformity measurement 𝛼𝑖 = 𝐴N(𝑧) (𝑟𝑖). For a query sequence 𝑠𝑞 , we compute its

sequence embedding 𝑟𝑞 and in turn its conformity measurement 𝛼𝑞 = 𝐴N(𝑧) (𝑟𝑞) and calculate the

C2DCS:

C2DCS(𝛼𝑞 ;𝛼1, . . . 𝛼𝑚) :=
1
𝑚

𝑚∑︁
𝑖=1
[𝛼𝑖 < 𝛼𝑞] . (5.1)

More information on the construction and specific instantiation of the C2DCS in this work can

be found in Appendix C.3.

60



Whereas other evaluation criteria were tightly coupled to point-evaluations of underlying

models with subtle biases, our method is de-coupled from any specific model and relies on its

output distributions rather than point-wise evaluations. This gives way to a more versatile metric

that naturally accounts for systematic biases or preferences in the underlying criteria.

5.3.2 Text-augmented training data

The CORGI framework consumes protein sequences with global and residue-level text anno-

tations. Every annotation is a tuple of the form (𝑠, 𝑡, 𝑑), where [𝑠, 𝑡] is an index interval stating

the region along which the text description 𝑑 applies. Global annotation intervals are trivally

[0, ℓ] where ℓ is the length of the annotated sequence. The text description 𝑑 comes in the form

of either a natural language document or discrete label code. For the latter, we map the label

code to its long-form explanation. We embed each annotation description using a pre-trained

text encoder.

We collected 510,747 protein sequence records from the SwissProt database [53] with either

text annotations, discrete labels, or residue-level annotations. Global annotations were restricted

to relevant categories such as function, structural subunit, catalytic activity, cofactors, pathway,

Gene Ontology (GO) [11] terms, Enzyme Commission (EC) [202] numbers, InterPro labels [57],

and other miscellaneous comments. For each collected record, we create a description document

by combining all of its text annotations and discrete label descriptions together with a template.

For each residue-level annotation, we use a long-form description of its “type” (domain, family,

binding site, active site, etc) rather than the label itself. These annotations function as coarse yet

still informative markers of regions of interest. Each long-form description is generated using a

large language model by prompting it to expand on the term in the context of protein structure

and function.

We embed all text descriptions and region-level explanations using nomic-embed-text-v1 [198].

Region explanation vectors are compiled into an embedding matrix 𝐸 ∈ R𝑁×𝑑 such that 𝐸𝑖 corre-
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sponds to the residue label type 𝑦𝑖 ∈ {𝑦0, . . . , 𝑦𝑁−1}.

5.3.3 CORGI model description

COnditioning on Residue-level and Global Information (CORGI) 
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Figure 5.2: CORGI model schematic.

CORGI (Figure 5.2) fuses a text conditioning network with a protein foundation model via

feature-wise linear modulation (FiLM). Text annotations are processed through a pre-trained text

encoder and subsequently incorporated into the hidden blocks of a pre-trained PLM via gain

and bias terms [191]. To process residue-level annotations, we construct a matrix 𝐶residue = 𝐴𝐸
𝑇

where 𝐸 ∈ R𝑁×𝑑 is the residue label type embedding matrix described in Section 5.3.2 and 𝐴 ∈

{0, 1}ℓ×𝑁 is such that𝐴𝑖, 𝑗 = 1 if residue index 𝑖 is annotated with the label 𝑗 . The global annotation

vector is row-expanded to a matrix𝐶global the same dimensions as𝐶residue. The final conditioning

representation 𝐶 = 𝐶global +𝐶residue is subsequently transformed through the context processing

module.

For our experiments, we fine-tuned the baseline ESM2-150Mmodel [203] on the text-augmented

dataset described in Section 5.3.2. Additionally, we provide a study of CORGI training at scale

and task-specific inference in Appendix C.6 using ProGen-2 [94].

We train twoCORGI variants: one as amasked languagemodel (MLM) using the cross entropy

objective function and the other as awalk-jump sampler (WJS) formulated according to the neural

empirical Bayes (NEB) framework [20].
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Each model is regularized by annotation dropout (with 𝑝𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.2) to accept no additional

context as input. By virtue of this dropout, the user is able to specify to eithe rmodel a contrastive

weight𝑤 that considers both unconditional and conditional gradients as shown in Equation 5.2.

𝑠𝜙 (𝑦, 𝑧,𝑤) = (1 +𝑤)𝑔𝜙 (𝑦, 𝑧) −𝑤𝑔𝜙 (𝑦, ∅) (5.2)

We refer the reader to Appendix C.4.1 for more in-depth description on the architecture, train-

ing, and sampling. A brief analysis justifying the choice of the noise level 𝜎 is provided in Ap-

pendix C.5.

5.4 Results

We trained two CORGI models based on ESM2-150M and benchmarked them on two down-

stream generative modeling tasks. We evaluate the impacts of text conditioning on mutation

effect predictionwith the text-augmented ProteinGym (Section 5.3.1.1) and the distributional con-

formity of generated molecular programming samples using the Molecular Programming repos-

itory ( Section 5.3.1.2).

5.4.1 Mutation Effect Prediction

Conditional generative models of protein sequence should not only produce plausible samples

conforming to the concept of interest, but also make biologically meaningful edits. To test this

desired trait, we evaluate each model on the ProteinGym by computing mutation effect scores of

each mutant. For the masked language model versions, we follow previous works and define the

mutation effect score as the model’s total log-likelihood estimate of the variant. For the model’s

optimizedwith theNEB loss (EquationC.3), define themutation effect score by the relative change
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in gradient norm between the mutant and wildtype:

Δ𝜙 (𝑦mut, 𝑦wt) =
∥𝑔𝜙 (𝑦mut)∥ − ∥𝑔𝜙 (𝑦wt)∥

∥𝑔𝜙 (𝑦wt)∥
(5.3)

where the mutant and wildtype 𝑦mut and 𝑦𝑤𝑡 smoothed by additive isotropic Gaussian noise with

variance 𝜎 .

Tables 5.1 and 5.2 provide the Spearman averages across selection and taxon type respectively.

Notably, the masked language model CORGI variant outperforms the baseline by a large margin

in every taxon category and all selection types apart from binding, where the performance gain

is more modest.

Table 5.1: Performance comparison of the baseline to each CORGI model and setting and averaged per
(selection type, mutation type) pair. The columns Model and Setting indicate the underlying CORGI
model and inference setting. The acronyms MLM and NEB stand for Masked Language Model and Neu-
ral Empirical Bayes respectively. “Baseline” stands for the masked language model trained as a control
without annotations on the same dataset as the other CORGI models. The abbreviations “R”, “G”, and ∅
designate whether residue-level, global, or no annotation features were provided at inference time. Each
column (Expression, Organismal Fitness, Stability, Activity, and Binding) represents the DMS se-
lection type and is followed by the mutation type. “Indels” stand for the edits that change the original
sequence length by at least one insertion or deletion. “Subs” represent substitutions, or mutations that
do not change the original sequence length.

Expression Organismal Stability Activity Binding
Fitness

Model Setting Indels Subs. Indels Subs. Indels Subs. Indels Subs. Subs.

MLM Baseline 0.266 0.276 0.161 0.271 0.272 0.297 0.275 0.254 0.262
MLM R+G 0.337 0.398 0.335 0.344 0.471 0.465 0.506 0.431 0.278
MLM R 0.323 0.399 0.334 0.341 0.468 0.465 0.503 0.432 0.290
MLM G 0.359 0.391 0.372 0.345 0.473 0.465 0.497 0.423 0.278
MLM ∅ 0.361 0.396 0.329 0.346 0.477 0.470 0.509 0.427 0.285
NEB R+G 0.005 0.009 0.019 0.000 0.050 0.001 -0.016 -0.003 -0.009
NEB R -0.003 -0.005 0.011 0.003 0.051 0.000 -0.004 0.009 0.012
NEB G -0.016 0.000 -0.005 0.001 0.048 0.003 -0.091 0.001 -0.007
NEB ∅ 0.037 0.006 -0.010 0.001 0.051 -0.003 0.048 0.000 0.000

Providing any specific combination of annotation at inference time does not appear to have
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a measurable effect on performance, suggesting that perhaps the performance benefits originate

from modifications adjustments to the attention heads during training. We also note that the

walk-jump sampler’s mutation effect score does not correlate with mutation effects.

Table 5.2: Performance comparison of the baseline to each CORGI model and setting and averaged per
(taxon, mutation type) pair. Each column (Eukaryote, Human, Prokaryote, and Virus) stand for the
taxonomic classification of each wildtype provided by the ProteinGym. See Table 5.2 for a complete de-
scription of theModel and Setting columns as well as the abbreviations therein.

Eukaryote Human Prokaryote Virus
Model Setting Indels Subs. Indels Subs. Indels Subs. Indels Subs.

MLM Baseline 0.267 0.318 0.286 0.301 0.288 0.275 0.137 0.114
MLM R+G 0.508 0.439 0.473 0.446 0.401 0.358 0.331 0.221
MLM R 0.494 0.432 0.489 0.448 0.385 0.372 0.312 0.201
MLM G 0.516 0.436 0.466 0.443 0.417 0.352 0.353 0.234
MLM ∅ 0.505 0.436 0.479 0.447 0.422 0.370 0.339 0.218
NEB R+G 0.066 -0.002 0.032 0.001 -0.004 0.001 0.087 -0.001
NEB R 0.071 -0.003 0.038 0.006 -0.018 -0.003 0.076 0.008
NEB G 0.049 0.001 0.037 0.004 -0.013 -0.005 0.076 -0.001
NEB ∅ 0.066 -0.007 0.039 0.004 -0.007 -0.003 0.086 -0.006

5.4.2 Text-conditioned de novo design

Using the text-conditioned walk-jump sampler, we sample one trajectory per prompt in the

Molecular Programming repository using 𝑤 = −1, 0, and 1 to test performance as an uncondi-

tional, conditional, and contrastive sampler respectively.

We evaluate the validity and language alignment of the highest ranking generated samples,

comparing to Pinal [29] and MP4 [32] and display the results in Figure 5.3. We note that the

CRATE-WJS model outperforms MP4 and is competitive with Pinal. One possible explanation

for the higher proportion of exceptionally high distributional conformity scores in Pinal is the

choice to incorporate a structure intermediate during generation.
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Figure 5.3: Left : Validity of samples assessed by proxy via the ESM2-35M negative log-likelihood (NLL).
Smaller NLL values correspond to more valid examples. The NLL distributions for every model stand
within an acceptable range (i.e., below 1). Right : Empirical cumulative distributions of concept conditional
conformity scores. Given a C2DCS value 𝛼 on the 𝑥-axis, the corresponding value on the 𝑦-axis may be
interpreted as the fraction of examples that reject the null hypothesis that the samples are exchangeable
with the reference distribution at significance level 𝛼 .

5.4.3 Discussion

CORGI is a fine-tuning framework that enables amodel to consume external text-based condi-

tioning information during training and inference via feature-wise linear modulation. We trained

CORGI variants using themasked languagemodeling (MLM) and neural emprical Bayes objective

functions and evaluated their performance on downstream protein design tasks.

We find that the neural empirical Bayes and masked language modeling variants of CORGI

perform well on different downstream tasks. Whereas the masked language model excels at

mutation effect prediction, the walk-jump sampler is better at de novo generation. We intuit that

this performance discrepancy between the CORGI variants is due to the theoretical difference in

objective functions. Whereas the MLM cross-entropy loss is motivated by matching individual
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token-level distributions, the NEB loss is focused on globally matching the distribution gradients.

These findings motivate future work in combining the two model variants to deploy a two-step

de novo design pipeline. The first step is a walk-jump sampling trajectory that navigate towards

a specific region of sequence space enriched in the concept of interest. The second step is a local

refinement step that updates the initial design candidates with iterative unmasking.

Another promising direction is in target site-specific redesign, or sequence in-painting. Given

a local specification for a specific sequence interval, we are interested in using CORGI to resample

this region. However, provided that the MLM variant did not benefit from any specific inference-

time provision of residue-level or global features, we expect this to perhaps be the case as well

for the walk-jump sampler. This phenomenon warrants further investigation that may reveal po-

tential methods to correct it. For example, learned token-level, position-specific representations

such as those learned in the scaling experiment provided in Appendix C.6 may alleviate this issue.

Finally, given that text representations are known to exhibit semantic clustering favorable

to concept algebra via vector arithmetic [204], we are curious to test whether this phenomenon

enables generation of samples imbued with or restricted from multiple concepts.

5.5 Conclusion

In this work, we investigated the contribution of both residue-level and global text annota-

tion representations to downstream generative modeling tasks in protein design and engineering.

We introduce the CORGI approach and demonstrate its improvement over baseline methods in

both mutation effect prediction and de novo sampling. We modified the distributional conformity

score [201] to measure sequence plausibility conditioned on a specific concept. Training two

different CORGI variants with masked language modeling and neural empirical Bayes objective

functions reveals interesting results in the benefits of text for either model in both downstream

tasks. Additionally, we demonstrated training and inference at scale. We defined a greedy invari-

67



ant for annotation subset selection and find that specific selection types benefit from only certain

subsets of annotations. Our findings indicate promising directions in not only multi-modal, text-

conditioned design, but also conditional evaluation for abstract concepts.
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6 | Conclusion

Proteins are molecular machines that participate in virtually every biosynthetic process. Due

to their apparent ubiquity, designing protein sequences is a long sought after grand challenge

with many potential applications in areas such as therapeutic discovery and agriculture. The

combinatorially expansive design space of protein sequences prohibits exhaustive evaluation,

therefore calling for intelligent methods that propose realistic and functional protein sequences

suited for a specific task. Protein design and engineering methodologies have sophisticated over

the last 50 years from site-specific mutagenesis, to directed evolution, and finally with mecha-

nistic computational modeling. Now with the advent of larger sequence repositories and highly

expressive, data hungry technologies such as deep neural networks, the protein design challenge

is suited to be cast as a generative modeling problem. However, as with any generative modeling

endeavor, new challenges emerge in steering sampling in order to produce diverse, yet on-target

sequences. This dissertation describes methods that address these challenges by presenting not

only novel samplers, but also versatile distributional evaluation criteria.

In Chapter 3, we introduce the discrete walk-jump sampler (dWJS), a generative model for

antibodies. We show with a distributional conformity analysis and other accompanying metrics

that the Neural Empirical Bayes methodology is applicable to protein family diversification and

targeted control of sampling along the sequence. The dWJS is trained from scratch, however since

then follow up works have leveraged pre-trained models to enhance model capacity. Despite

the strong performance of the dWJS, the method was only tested with Aho-aligned antibody
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sequences, motivating the exploration of more versatile methods.

In Chapter 4, we propose the Deep Manifold Sampler (DMS) for generalized protein design.

Alongside a denoising autoencoder that supports de-corrupting indels, the DMS uses an length

posterior to propose novel lengths to denoised proteins. We demonstrate function guided design

using a function predictor trained on the model’s hidden representation. Notably, the DMS suc-

cessfully transitions between proteins of distinct functions. Using the DMS, we also proposed

another sampling methodology – multi-segment preserving sampling (MSPS) – that allows the

injection of expert knowledge to preserve specific regio s of the sequence. MSPS is again ap-

plied to antibody sequences and shown to produce in-distribution complementarity-determining

regions.

Using the learnings of Chapter 3 and Chapter 4 in generative modeling and steerable ge-

neation, we then consider the task of text-driven protein design and engineering in Chapter 5.

Natural language is utile in expressing complex concepts that do not adhere to a discrete label

scheme or otherwise, making it an advantageous modality for design. We propose conditioning

on residue-level and global information from text (CORGI), a fine-tuning framework that enables

any pre-trained model to accept latent text-conditioning information at either scale. We show

that CORGI can be applied to diverse model types including causal language models and walk-

jump samplers and demonstrate the performance of trained CORGI models on mutation effect

prediction and molecular programming. We found that CORGI not only enhances mutation ef-

fect prediction performance, but also enables task-specific annotation selection using a greedy

algorithm. We also showed that CORGI is competitive in generating in-distribution de novo de-

signs from text prompts. To do so, we adapted the distributional conformity score first proposed

in Chapter 3 to support text concept conditioning. This concept conditional distributional con-

formity score is more robust and flexible than previous language alignment metrics because it de-

couples the reliance on point-wise evaluations of specific models. We found the text-conditioned

CORGI model to perform competitively with state-of-the-art contemporary models using this
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metric. We also observed the benefit of structure conditioning, leading to a concrete next step in

CORGI fine-tuning of walk-jump samplers to explore structure-informed models as well.

The body of work described in this thesis serves as a methodological prescription for deep-

learning driven conditional and unconditional protein design. We explored the utility of classifier-

guided and classifier-free technologies for this purpose and investigated extensions to natural

language conditioning. This work is timely as the emergence of large language models as pow-

erful tools to enhance productivity in scientific research has only just begun. Indeed, while these

methods are not general solutions to molecular modeling or understanding, they are effective

in statistically sampling complex, natively discrete sequence manifolds. Whereas large language

models are generalist, the methods described in this dissertation are specialized and capable. As

the field progresses, especially with multi-modal integrations such as text-driven design, it will

be interesting to use methods such as these to function as tools for not only human researchers,

but also artificially intelligent agents. A possible future for accelerated molecular design is to in-

corporate bespoke sampling methodologies as tool calls to agent-based scientific models. Agents

with access to such tools may be able to research, rank, and produce candidates that human

experts can then supervise and provide feedback.
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A | Supplementary Material For

Chapter 3

A Supplementary Material For Chapter 3

A.1 Network architectures and training details

A.1.1 Discrete Walk-Jump Samplers

For all experiments we use an identical architecture for the EBM consisting of three Conv1D

layers with kernel sizes 15, 5, and 3 and padding 1, ReLU non-linearities and an output linear layer

of size 128. The denoising model is a 35-layer ByteNet [205] architecture with a hidden dimension

of 128, trained from scratch. The Bytenet architecture has been shown to perform competitively

with transformers for protein sequence pretraining tasks [80]. All models were trained with the

AdamW [206] optimizer in PyTorch [207]. We used a batch size of 256, an initial learning rate of

1 × 10−4, and trained with early stopping.

Transformer implementation of dWJS denoising model In addition to the ByteNet imple-

mentation, we implemented a transformer-based architecture for the denoising network, with 12

hidden layers, 8 attention heads, a dimension of 2048 for the feed-forward layers, 256 features
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in the encoder/decoder inputs, and SiLU activations. The score-based dWJS with a transformer

architecture exhibits comparable performance to the ByteNet architecture, indicating that the

performance of our method is not reliant on a particular architecture, and any sufficiently ex-

pressive architecture will work.

Taxonomy of Smoothed Discrete Sampling Because of the decoupled walk and jump steps,

there are many natural implementations of Smoothed Discrete Sampling. Empirically, we find

that Algo. 1 takes advantage of both energy- and score-based modeling to produce the highest

quality, novel, unique, diverse samples. Four natural choices for performing sampling, which

arise from different combinations of energy- and score-based parameterizations, are summarized

in Table A.1. Discrete Walk-Jump Sampling refers to walking with the EBM, 𝑓𝜃 (𝑦), and jumping

with the denoising network,𝑔𝜙 (𝑦). Score-based dWJS uses𝑔𝜙 (𝑦) for bothwalking and jump steps.

The Deep Energy Estimator Network (DEEN) [125] approach uses a denoiser that is trained by

taking the derivative of an energy and using the same learning objective as Eq. 3.5. DEEN can be

thought of as an energy parameterization of a score-based generative model. Finally, dWJS-EBM

uses an EBM for sampling and the gradient of the energy, ∇𝑓𝜃 (𝑦), for denoising. Empirically, we

find that the most performative method in terms of efficiency, sample quality, and diversity is the

EBM walk and denoiser jump, which we refer to as Discrete Walk-Jump Sampling.

Table A.1: Smoothed Discrete Sampling implementations.

Model Walk (sampling) Jump (denoising)

dWJS (energy-based) EBM Denoiser
dWJS (score-based) Denoiser Denoiser
Deep Energy Estimator Network Denoiser (energy) Denoiser (energy)
dWJS-EBM EBM EBM
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A.1.2 dWJS stabilizes and simplifies training

We observe that the dWJS algorithm prevents instabilities during maximum likelihood train-

ing. EBMs commonly exhibit issues with training stability and divergences in the energy, due

to the energy landscape becoming too complicated to sample. Noising the data provides strong

regularization that prevents overfitting and instabilities. This is seen over a range of noise levels

𝜎 ∈ [0.5, 4.0] for EBMs trained over 3,000 steps. Training instabilities recur for 𝜎 < 0.5. We in-

vestigate the effects of discarding many of the techniques for improved EBM training that, while

introduced to ameliorate challenges with EBMs, also introduce complexities that make EBMs

brittle, inflexible, and difficult to optimize. In particular, we discard the replay buffer, the ℓ2 norm

penalty loss term to regularize the energies, Metropolis rejection sampling, and time step anneal-

ing. We use the Langevin MCMC algorithm (Algo. 10) from [208] and eliminate the need for

careful hyperparameter finetuning; 𝜎 is the only free hyperparameter in dWJS.

A.1.3 Diffusion baselines

In our comparison study we use the Sequence-based Variational Diffusion Model (SeqVDM)

proposed by Kingma et al. [119], adapted for protein sequence data. The model deals with the

discrete sequences by first projecting them into a continuous latent space and then performing the

discrete denoising diffusion in the latent space. The VDM learns the data distribution bymodeling

the reverse of a diffusion process in a latent space. In all our experiments we used𝑇 = 1000 steps

with the fixed noise schedule 𝛾𝑚𝑖𝑛 = −13 and 𝛾𝑚𝑎𝑥 = 5. The encoder, decoder and score network

model are parameterized with 3 blocks of residual MLP layers applied on flattened 1-hot encoding

representations of sequences. TheMLP layers project the initial sequence representation down to

a 𝑑 = 512 dimensional latent space. The model is simultaneously trained to optimize the diffusion

loss (i.e., the score-matching loss) and the sequence reconstruction loss. SeqVDM is trained on

paired OAS with the AdamW optimizer and the initial learning rate of 2 × 10−4 for 50 epochs.
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The sampling is done by starting from a latent vector initialized with Gaussian noise.

A.1.4 Language model baselines

We generate samples from IgLM using the prompt given in Appendix A.4. IgLM is a GPT2-

style model trained to conditionally generate antibody heavy and light chains. It is therefore a

strong autoregressive baseline for antibody design.

To mimic the ab initio generation task presented in Table 3.2, we increase the masking per-

centage of the masked language model ESM2 [121] as high as possible (40%) and infill validation

set sequences to generate new samples. Beyond 40% masking, the model produces invalid se-

quences containing non-amino acid characters. As a masked language model, ESM2 is capable of

limited infilling tasks, but it is not designed to perform true ab initio protein discovery. Indeed,

it does not generate antibody-like sequences, and the high 𝐸dist and IntDiv scores are therefore

meaningless. We include it purely as a familiar and powerful general protein language model

baseline to show the gap in performance between a general, pre-trained protein MLM and our

methods.

A.1.5 Effect of choice of 𝜎

In Table A.2 we show sample quality results for score-based dWJS as a function of the noise

level, 𝜎 . We see that 𝜎 = 0.5 produces the best quality samples, while maintaining uniqueness and

diversity. Setting the noise too low (𝜎 = 0.1) leads to samples that do not capture the biophysical

property distribution of the training set (high𝑊𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦) and have extremely high edit distances

from the training set (𝐸𝑑𝑖𝑠𝑡 > 120). This is because at low 𝜎 , the density is not smoothed and

sampling does not perform well. At extremely high noise level (𝜎 = 3), the samples more closely

match the training distribution, but they start to show signs of “mode collapse" (lower average edit

distance to the training set and lower internal diversity), because the density is over-smoothed.
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Table A.2: 𝜎 , ablikeness metrics, uniqueness, diversity for score-based dWJS.

𝜎 𝑊property ↓ Unique ↑ 𝐸dist ↑ IntDiv ↑

0.1 0.378 1.0 120.6* 60.0
0.5 (From Table 3.2) 0.065 1.0 62.7 65.1
3.0 0.130 0.995 44.2 30.0

A.1.6 Estimation of 𝜎𝑐 hyperparameter
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Figure A.1: Histogram of 𝜒𝑖𝑖′ values for random samples from the paired observed antibody space Olsen,
Boyles, and Deane [2] dataset.

A.2 Additional algorithms

A.2.1 Gradient flow enables local minima finding

We define the gradient flow as 𝑦′(𝑡) = −∇ log 𝑓 (𝑦 (𝑡)), where sampling is performed by fol-

lowing the flow of the gradient of the probability density function in a deterministic dynam-

ics, rather than stochastic Langevin dynamics. We initialize sampling from noise at 𝑡 = 0,
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𝑦0 = 𝜀0, 𝜀0 ∼ N(0, 𝐼𝑑), and sample noisy samples𝑦′(𝑡) following the gradient flow. In this way, we

discover local “attractors" on the data manifold that correspond to local minima of the learned

energy function. The algorithm for discrete gradient flow is given in Algo. 3.
Algorithm 3: Discrete gradient flow
Input: Denoiser, 𝑔𝜙 (𝑦), energy-based model, 𝑓𝜃 (𝑦)

Output: Denoised samples 𝑥 (𝑦, 𝑡)

1 𝑦0 ∼ N(0, 𝜎2𝐼𝑑)

2 for 𝑡 = 0, . . . ,𝑇 − 1 do

3 𝑦𝑡+1 ← 𝑦𝑡 − 𝛿 ∇𝑦 𝑓𝜃 (𝑦𝑡 )

4 end

5 𝑥𝑇 ← 𝑦𝑇 + 𝜎2𝑔𝜙 (𝑦𝑇 )

6 return arg max𝑥𝑇
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A.2.2 Langevin MCMC Update

Algorithm 4: Walk-jump sampling [20] using the discretization of Langevin diffusion

by [208]. Lines 6-13 correspond to walk step and line 14 is the jump step.
Input: 𝛿 (step size), 𝑢 (inverse mass), 𝛾 (friction), 𝐾 (steps taken), Learned score function

𝑔𝜃 (𝑦) ≈ ∇ log𝑝 (𝑦) and noise level 𝜎

Output: 𝑥𝐾

1 𝑦0 ∼ N(0, 𝜎2𝐼𝑑) + U𝑑 (0, 1)

2 𝑣0 ← 0

3 for 𝑘 = 0, . . . , 𝐾 − 1 do

4 𝑦𝑘+1 ← 𝑦𝑘 + 𝛿
2𝑣𝑘

5 𝑔𝑘+1 ← 𝑔𝜃 (𝑦𝑘+1)

6 𝑣𝑘+1 ← 𝑣𝑘 + 𝑢𝛿
2 𝑔𝑘+1

7 𝜀 ∼ N(0, 𝐼𝑑)

8 𝑣𝑘+1 ← exp(−𝛾𝛿)𝑣𝑘+1 + 𝑢𝛿
2 𝑔𝑘+1 +

√︁
𝑢 (1 − exp(−2𝛾𝛿))𝜀

9 𝑦𝑘+1 ← 𝑦𝑘+1 + 𝛿
2𝑣𝑘+1

10 𝑥𝐾 ← 𝑦𝐾 + 𝜎2𝑔𝜃 (𝑦𝐾 )

A.2.3 Neural Empirical Bayes

Here, we include additional discussion and motivation for Neural Empirical Bayes and gener-

ating discrete samples with decoupled walk and jump steps. Discrete data in this work is viewed

as taking continuous values (embedded in Euclidean space) in the NEB formalism, and by choos-

ing large noise levels we can smooth out the original distribution greatly which makes it easier

to sample from. In addition, we can use single-step denoising back to discrete values. In short,

the walk-jump sampling is especially well suited for discrete data.

In line 1 of Algorithm 1, we followed the initialization scheme in [209], since here the discrete
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Table A.3: Model size, sampling time and memory consumption.

Model Parameters (M) GPU time / sample (ms) ↓ GPU memory (MB) ↓

dWJS (energy-based) 9.87 64.89 4734.76
dWJS (score-based) 1.03 327.60 16.7
SeqVDM 12.31 940.40 246.39
DEEN 1.03 976.99 16.72
IgLM 12.89 2800 —
ESM2 7.8 5.25 —

data is viewed as being embedded in Euclidean space. Typically having the normal distribution

as part of the initialization is more important for high noise levels, and we chose the uniform

distribution for simplicity.

The walk and jump steps are completely decoupled. The models used for denoising and sam-

pling can have the same parameterization, but they can also be trained separately. Because the

walk and jump steps do not depend on each other in any way, we consider them to be decou-

pled. The energy and score are related by a derivative with respect to the inputs, and any model

that gives access to a score can be used for sampling via Langevin MCMC. However, EBMs and

score-based models are trained in completely different ways with different loss functions and ar-

chitectures, so the empirical performance can differ greatly. DEEN models are not trained with

contrastive divergence, so the EBM formulation is completely distinct in terms of parameteriza-

tion, training, and sampling.
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A.3 Performance profiling

A.4 Few-shot, in-context learning and prompts

A.4.1 GPT 4 prompt

GPT 4 accessed on April 27, 2023. Prompt was repeated 20 times to generate additional sam-

ples for statistics.

Prompt: You are an expert antibody engineer.I am going to give you examples of CDR H3

variants of trastuzumab that were reported binders to the HER2 antigen in the paper "Opti-

mization of therapeutic antibodies by predicting antigen specificity from antibody sequence

via deep learning". You will generate 100 new CDR H3 variants that you predict will also

bind to HER2. Output the 100 samples as a python list. Here are the examples:

['WHINGFYVFH','FQDHGMYQHV','YLAFGFYVFL','WLNYHSYLFN','YNRYGFYVFD','WRKSGF ⌋

YTFD','WANRSFYAND','WPSCGMFALL','WSNYGMFVFS','WSMGGFYVFV','WGQLGFYAYA ⌋

','WPILGLYVFI','WHRNGMYAFD','WPLYSMYVYK','WGLCGLYAYQ']

↩→

↩→

Response: As an AI language model, I can’t run simulations or generate sequences based

on actual molecular interactions. However, I can use patterns found in your provided list

to generate new sequences that may resemble the CDR H3 variants you’ve shared. Keep in

mind that these new sequences have not been validated experimentally and may not bind to

HER2.

A.4.2 GPT 3.5 prompt

GPT 3.5 accessed onMay 2, 2023. Prompt was repeated 5 times to generate additional samples

for statistics.
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Prompt: You are an expert antibody engineer. I am going to give you examples of antibody

heavy chain variable regions from the paired observed antibody space database. You will

generate 10 new antibody heavy chains that are not in the database. Output the 10 samples

as a python list. Here are the examples:

['QLQLQESGPGLVKPSGTLSLICAVAGSSVTTSNVYWDWIRQPPGKGLEWIGTISYSATT','YYNPSLKSR ⌋

VTLFVDTSKNQFSLKLNSVTAADTAMYYCARHVVDCTGGRCLWKTGFDYWGQGTLVTVSS','QVQLVE ⌋

SGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYY','ADSVKGRFTISR ⌋

DNSKNTLYLQMNSLRAEDTAVYYCARDQGLSTYYGYDKDSSYGMDVWGQGTTVTVSS','EVQLVESGG ⌋

GLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSSISSSSSYIYY','ADSVKGRFTISRDNA ⌋

KNSLYLQMNSLRAEDTAVYYCARDFGYCSGGSCSGWGQGTLVTVSS','QVQLKESGPGLVQPSQTLSL ⌋

TCTVSGFSLTSYHVHWVRQPPGKGLEWMGVMWSDGDTSYN','SALKSRLSISRDTSKSQVFLKMSSLQ ⌋

TEDTATYYCARSGKAVMDAWGQGASVTVSS','QVQLVQSGAEVKKPGSSVKVSCKASGGPFRGSTINW ⌋

VRQAPGQGLEWMGRIIPILNAPNY','AQNFHGRVTITADKSTSTAYMELSSLTSDDTALYFCATYSGT ⌋

YHMAPGAFDIWGHGTMVTVSS']

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

Response: Sure, I can help you generate 10 new antibody heavy chains. Here’s a list of 10

new antibody heavy chains that are not in the given database: ...

These heavy chains were generated using the antibody engineering tools and techniques

to create novel heavy chains. The generated sequences have a similar length and structure

as the provided examples, but they have different amino acid sequences, and are unique.

A.4.3 IgLM prompt

IgLM samples were generated using the prompt in the IgLM README, adjusted to produce

2000 samples for comparison with other methods.
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iglm_generate --prompt_sequence EVQ \\

--chain_token [HEAVY] \\

--species_token [HUMAN] --num_seqs 2000

A.5 in vitro validation

A.5.1 Experimental results

Figure A.2: Expression yield (mg) and binding affinity (pKD) of sequence designs from our method tar-
geting the ERBB2 antigen.

A.5.2 Experimental details

in vitro validation of generated antibody proteins was performed following [210]. Discrete

Walk-Jump Sampling (dWJS) was used to generate antibody sequences, which were then ex-

pressed and purified in the laboratory. Surface plasmon resonance (SPR) measurements were

used to determine binding affinity.
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Plasmid Construction and Antibody Production: synthesized DNA (provided by Twist Bio-

sciences) of antibody variable domains were cloned into mammalian expression vectors using

Gibson assembly. We amplified the whole vector using PrimeStar Max polymerase (Takeda). We

transfected PCR products transiently in 1mL Expi293 cell culture. Expression lasted 7 days be-

fore harvest. We affinity purified antibodies over a MAb Select SuRe resin (Cytiva), and measured

their concentration by optical density at 280nM.

Binding Affinity Measurements: we measured affinity of the antibodies towards their target

antigen by surface plasmon resonance (SPR) at 37 °C on a Biacore 8K instrument (Cytiva) in

HBS-EP+ buffer (10 mM Hepes, pH 7.4, 150 mM NaCl, 0.3mM EDTA and 0.05% vol/vol Surfactant

P20). We captured antibodies on a Protein A chip and injected their target antigens for 5 minutes

and allowed them to dissociate for 10 minutes at 30 ul/min. We regenerated the surface between

cycles with 10 mM glycine pH 1.5. We obtained affinity constants using Biacore Insight (Cytiva)

using a 1:1 binding kinetics model.

A.6 Further discussion of distributional conformity

score

Given a new example 𝑧, we use the conformal transducer, A, to measure how similar 𝑧 is

to (𝑧1, . . . , 𝑧𝑛). The conformal transducer is then defined as a system of p-values where for

each label 𝑦 ∈ Y, a reference sequence (𝑧1, . . . , 𝑧𝑙 ) ∈ Z𝑙 , and a test example 𝑥 ∈ 𝑋 , we have:

𝑝𝑦 := 𝑝𝑦 (𝑧1, . . . , 𝑧𝑙 , (𝑥,𝑦)) = 1
𝑙+1

∑𝑙+1
𝑖=1 [𝛼𝑦𝑖 < 𝛼𝑦𝑙+1] where (𝛼𝑦1, ..., 𝛼𝑦𝑙 , 𝛼𝑦𝑙+1) := 𝐴(𝑧1, ..., 𝑧𝑙 , (𝑥,𝑦)).

Intuitively, 𝑝𝑦 is the fraction of examples that have a smaller degree of conformity to the reference

distribution than (𝑥,𝑦).

The difference between DCS and property alignment (𝑊property) provides valuable insights

into the nature of the DCS statistic. DCS, being a measure of joint distribution alignment, might

prioritize capturing relationships among properties as opposed to alignment of individual prop-
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erties. Additionally, given that DCS uses KDE, it might be more influenced by extreme data points

within the distribution. These factors suggest that DCS offers a distinct perspective on the overall

quality of generative model performance.

We considered sequence-based properties (calculated with BioPython [118]) of average hyd-

prophilicity, molecular weight, grand average of hydropathy, as well as two structure-based prop-

erties (calculated with the Therapeutic Antibody Profiler [211]): surface hydrophobicity patches

around the CDR region and the symmetry of structural variable chain charges.

No multiple sequence alignment or pre-processing of the sequences is required. For con-

venience and because we have small numbers of examples and low dimensions, we use kernel

density estimation (KDE) to compute the joint density. However, DCS is completely general and

can be combined with any density estimator.

Kernel density estimation was performed using Gaussian kernels as implemented in the open-

source library awkde available at https://github.com/mennthor/awkde. We estimated the global

bandwidth of the kernel using Silverman’s method, set the adaptive local kernel bandwidth to

0.15, and employed a diagonal covariance matrix.

A.7 Further discussion of related work

Contrastive divergence [25] training using Gibbs sampling was proposed to estimate the gra-

dient of the log partition function, wherein input data is usually discrete and MCMC chains are

initialized from training data, leading to long mixing times in high dimensions. Using continuous

inputs and Langevin MCMC initialized from uniform noise with a replay buffer of past samples,

efficient training was achieved [212]. The Langevin MCMC approach to sampling and maxi-

mum likelihood training yield advantages in simplicity (only one network is trained), flexibility

(no constraints imposed by a prior distribution), and compositionality (energy functions can be

summed). Whereas our approach relies on smoothing discrete data and learning energies and
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scores over the smooth distribution, [213] formulates discrete score matching by constructing a

faithful approximation of continuous score matching via an inductive prior on the local topology

of the data space.

Although generative modeling is widely adopted in image and natural language generation,

successful applications of generative modeling in the sciences are few and far between, due to

the over-representation of image and text datasets, challenges in evaluation, and the need for

generating samples that are novel and diverse while respecting the underlying symmetries and

structure of a particular domain. We consider the application of designing new molecules, fo-

cusing on therapeutic antibodies. Antibodies are proteins consisting of a heavy and light chain

that can be represented as discrete sequences of amino acids (AAs), which comprise a standard

vocabulary of 20 characters.
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B.1 Seqence corruption process

The noise-corruption processes, 𝐶 (𝑋̃ |𝑋 ), is modeled by perturbing the original sequence by

applying one of three procedures:

• removing Δ𝐿 residues from randomly chosen positions in the input sequence,

• inserting Δ𝐿 randomly chosen residues at randomly chosen positions in the input sequence,

or

• mutating Δ𝐿 randomly chosen residues.

where the length difference is randomly chosen from a predefined range, Δ𝐿 ∈ [−Δ𝐿𝑚𝑎𝑥 ,Δ𝐿𝑚𝑎𝑥 ].

B.2 Data collection

Unsupervised training of our model is done using ∼20M sequences from the protein family

database, Pfam. Sequences longer than 1000 residues and shorter than 50 residues are removed
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from our training set. The dataset is randomly partitioned into training and validation sets using

an 80:20 ratio. Supervised training of the function predictor is done using protein sequences

with annotations for at least one Molecular Function Gene Ontology (GO) term from the Uniprot

database [214]. Only GO terms with at least 50 training examples are considered.
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B.3 Training

We use a Transformer-like architecture [215] to model the encoder and decoder using a

stacked MHA layer and point-wise, fully connected layers with residual connections followed

by a layer normalization.

During training, both perturbed input 𝑥 and target sequence 𝑦 are given to the model, and

the model is aware of their lengths. However, during inference the length of the target sequence

has to be predicted first. Given a sequence-level embedding vector, 𝑧𝑝𝑜𝑜𝑙 we train the model to

predict the length difference between 𝑙𝑦 and 𝑙𝑥 . In our implementation, 𝑝 (𝑙𝑦 − 𝑙𝑥 |𝑧𝑝𝑜𝑜𝑙 ) is modeled

as a softmax probability distribution that covers the length difference [−Δ𝐿𝑚𝑎𝑥 ,Δ𝐿𝑚𝑎𝑥 ]. During

inference, the length of the target sequence automatically adapts itself by first predicting the

length difference and then by transforming the input sequence into the target sequence using the

upsampling step presented in Section 4.1.4.1.
Algorithm 5: Manifold sampling
Input: input sequence: 𝑋 0; GO term index 𝑖 , param 𝜖

Output: sampled sequences: {𝑋 1, 𝑋 2, . . . , 𝑋𝑇𝑠𝑡𝑒𝑝𝑠

1 for 𝑡 = 0, . . . ,𝑇𝑠𝑡𝑒𝑝𝑠 do

2 Perturb sequence 𝑋̃ 𝑡 ∼ 𝐶 (𝑋̃ |𝑋 𝑡 );

3 Compute latent representation: 𝑍 𝑡 ∼ 𝑄𝜃 (𝑍 |𝑋̃ 𝑡 );

4 Compute gradient of the target GO term label probability w.r.t. classifier’s internal

states: ∇𝑡
𝑍
=

𝜕𝑃𝑊 (𝑌=𝑌𝑖 |𝑍 )
𝜕𝑍

;

5 Apply gradients to latent representation to increase activation of desired function;

6 Sample length difference: Δ𝐿𝑡 ∼ 𝑃𝜂 (Δ𝐿 |𝑍 );

7 Compute latent representation of the target sequence: 𝑍 𝑡 = 𝑓𝜎 (𝑍 + 𝜖∇𝑡
𝑍
,Δ𝐿𝑡 ) Sample

new sequence from the decoder: 𝑋 𝑡+1 ∼ 𝑃𝜙 (𝑋 |𝑍 𝑡 )

8 end
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Figure B.1: Architecture of the sequence DAE.

B.4 Designing protein seqences with novel secondary

structures

We explore the possibility of designing a protein with an all-alpha fold – a secondary structure

that is almost exclusively 𝛼-helical – starting from a sequence of a protein having all-beta fold,

with a secondary structure composed almost exclusively of 𝛽-sheets). We started with Beta-2-

microglobulin protein (PDB: 4N0F, chain B) which is composed only of beta-sheets. We perform

the sampling by conditioning on ion transmembrane transporter activity (GO:0015075). 𝛼-helices

are the most common protein structure elements embedded in membranes, so the designed se-

quence is expected to be composed of 𝛼-helices. The sampling results after seven MCMC steps

are shown in Fig. B.2. The designed sequence has no known homologs in the PDB and has only

maximal 36% sequence identical to the sequences in the Uniprot database. The sequence is folded

using trRosetta package [157]. Using an external protein function classifier, we show that the

designed sequence is predicted to have a desired function.
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Input sequence:
>>IQRTPKIQVYSRHPAENGKSNFLNCYVSGFHPSDIEVDLLKNGERIEKVEHSDLSFSKDW
SFYLLYYTEFTPTEKDEYACRVNHVTLSQPKIVKWDRDM

Designed sequence:
>>IRPPQQVRHYPENNKKMMHFYAELLKYLKKGEEKVVAKRASFPQLAAYYSW
LLEEAVTTQQPKKFDDAALYYALLTTVYLPAAFLVDDM

PDB: 4N0F (chain B)

Known functions:

protein binding
identical protein binding
protein homodimerization activity
protein dimerization activity

trRosetta:

GO term Name Prob Reliability

GO:0055085 transmembrane transport 0.962 H

GO:0034220 ion transmembrane transport 0.942 H

GO:0051171 regulation of nitrogen compound metabolic process 0.926 H

GO:0006811 ion transport 0.916 H

GO:0019222 regulation of metabolic process 0.915 H

GO:1903506 regulation of nucleic acid-templated transcription 0.911 H

GO:0006810 transport 0.910 H

GO:0051252 regulation of RNA metabolic process 0.909 H

Predicted functions:

Re-designed by conditioning on 
“ion transmembrane transporter 
activity” (GO:0015075)

Figure B.2: A designed sequence of 𝛼-helical protein obtained by altering the sequence of a 𝛽-protein by
conditioning the sampling process with ion transmembrane transporter activity function label.
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C.1 Annotation coverage

We investigated the frequency distribution of sequence-wide and residue-level annotations.

A similar coverage analysis of sequence-wide annotations in SwissProt (Figure C.1) reveals

that tokenized functional descriptions are long and a large majority of sequences are annotated

with at least one discrete label.

C.2 More information on long form descriptions

Combining seqence-wide SwissProt comments We collect text annotations and label codes

directly from the SwissProt XML file found on the UniProt FTP server. The text annotations

and label codes can be found in comment and dbReference tags, respectively. We create the

final description document of each record by formatting its associated text data into a specified

Jinja2 [216] template, as shown in C.2.
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Figure C.1: Summary information on the SwissProt text-augmented dataset. The left plot depicts the
length distribution for functional descriptions and protein sequences. The right plot indicates the count
distribution of label codes per protein.

C.3 More information on conditional distributional

conformity score

The concept conditional distributional conformity score (C2DCS) described in Section 5.3.1.3

uses the induced sequence neighborhood N(𝑧) a query description 𝑧. We compute the ESM2

embedding of each sequence to form a collection of reference “concept-conditional” features using

the esm2_t12_35M_UR50D model available on Huggingface Hub [176].

The conformity measure is a Gaussian mixture model (GMM) fit to the reference embeddings,

for which we scan for the number of mixture components 𝑘 that maximizes the area under the

receiver operating characteristic (AUROC) in distinguishing a validation set as in or out of distri-

bution. We allocate 10% of the reference set to the calibration set, 10% to the validation set and 80%

to the training set. After finding the optimal number of components, we train a new GMM on the

90% of the data not allocated for calibration. All models are trained using the Scikit-learn [217]
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{% if 'comment_doc' in request %}
*Comments*:
{{request['comment_doc']}}
{% endif %}
{% if ('dbrefs' in request) and (request['dbrefs'] | length > 0) %}
*Labels*:
{% for dbref in request['dbrefs'] %}
- {{dbref['id']}}{% if 'name' in dbref %} ({{dbref['name']}}) {% endif %}:

{{dbref['def']}}↩→

{% endfor %}
{% endif %}

Figure C.2: Jinja2 template for functional descriptions. The template accepts a parameter request with
optional fields: comment_doc the molecular description of the protein collected from <comment> fields and
dbrefs: a list of dictionaries containing the label codes, definitions, and names of each <dbReference>
field.

package sklearn.mixture with covariance_type = ’full’.

We sampled 16 different records from SwissProt and used their respective embedding neigh-

borhoods to calculate the distribution of concept conditional distributional conformity scores

for in- and out-of-distribution examples. Out-of-distribution examples are randomly selected se-

quences not found in the induced sequence neighborhoods of interest. For each neighborhood,

we optimize a GMM by a subset of train, validation, and test embeddings and measure the C2DCS

on positive and negative test examples using a held out calibration set.

Figure C.3 demonstrates the capability of C2DCS to distinguish distributional conformity.

In-distribution examples are those examples for which the null hypothesis (i.e., that the sample

was drawn IID with respect to the reference) is true. These positive examples are assigned 𝑝-

values uniformly as expected. Out-of-distribution examples, those for which the null hypothesis

is false, are assigned low 𝑝-values, providing evidence that the C2DCS reliably distinguishes out-

of-distribution examples.
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Figure C.3: Concept conditional distributional conformity scores for a selected subset of description
embedding neighborhoods.

C.4 Architecture and training details

We provide more information on the architectural and training choices for each CORGI net-

work.

C.4.1 Global annotation network

The global annotation model accepts as input a Gaussian-smoothed one-hot encoding. Since

ESM2 does not natively support continuous vector inputs, we replace the discrete embedding

layer by instead multiplying noisy token representations against the token embedding matrix.

This approach differs from the L-WJS [218] in that the noise is applied on the one-hot sequence

rather than the token embeddings, implying the learned score-model is a R𝑑 → R𝑑 mapping

where 𝑑 is the vocabulary size. We justify this choice by the observation that the squared error
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in denoising a continuous embedding is not rotation-invariant. However, denoising a one-hot

encoded sequence is invariant to rotation and therefore does not require any additional regular-

ization terms.

During fine-tuning, themodel optimizes the least squares loss in Equation C.3 using the Adam

optimizer with learning rate 1× 10−4, weight decay set to 0.01, momentum parameters (𝛽1, 𝛽2) =

(0.9, 0.999) and noise level 𝜎 = 0.5. We justify this choice of noise level in Appendix C.5.

Sampling starts from a randomly initialized sequence and proceeds with 1024 Langevin up-

dates using the update described in [219] and the score function in Equation 5.2. We compute

the expectation in Equation C.4 at each step to study and select from the complete sampling

trajectory. The sampling parameters are provided in Table C.1.

Table C.1: Sampling parameters for molecular programming experiments

Parameter Value

Step size 0.5
Friction 0.5
Lipsschitz constant 1.0
Noise level 0.5

C.5 Estimating the optimal noise level

Neural empirical Bayes [220] requires the selection of a sufficient noise level 𝜎 that grants

sufficient overlap between 𝑖-spheres, or the volume occupied by Gaussian smoothed data points.

The critical noise level 𝜎𝑐 represents the noise level at which all 𝑖-spheres have some degree

of overlap. In practice, discrete walk-jump sampler models have benefited from training with

so-called extreme noise, or some 𝜎 > 𝜎𝑐 . Therefore, we must choose a noise level be used during

training that exceeds this 𝜎𝑐 threshold. An estimate of the critical noise level for aligned antibody

sequences was computed in [201]. However, since our data are samples of unaligned and diverse

protein sequences, we re-estimate 𝜎𝑐 to justify our choice of 𝜎 .
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The critical noise level 𝜎𝑐 is the infinity norm max𝑖𝑖′ 𝜒𝑖𝑖′ of the distance matrix 𝜒 with entries

𝜒𝑖𝑖′ =
∥𝑋𝑖 − 𝑋𝑖′ ∥

2
√
𝑑

(C.1)

where 𝑋𝑖, 𝑋𝑖′ are samples drawn from the training dataset. Previous work estimated 𝜎𝑐 based

on distances of one-hot encoded sequences; while this approach was applicable for antibodies,

we believe computing distances between pooled ESM2 vector embeddings better captures the

𝑖-sphere distances. This approach is motivated by prior work demonstrating that ESM2 embed-

dings capture biologically meaningful similarities, such as sequence homology and functional re-

lationships. These pooled embeddings are known to be spatially organized in a way that reflects

intuitive biological semantics, making them a suitable proxy for the underlying organization of

sequences prior to fine-tuning.

Sampling the distance matrix 𝜒 Computing all entries of 𝜒 is not only costly, but largely un-

necessary since 𝜎𝑐 is an extreme value. We develop a method to sample entries 𝜒𝑖𝑖′ grounded in

the intuition that embedding distance is connected to sequence similarity. In particular, we com-

pute vector distances between and within sequence clusters. The inter-cluster distances 𝜒 inter are

calculated between cluster representatives. The intra-cluster distances 𝜒𝜅 for a specific cluster

index 𝜅 are calculated between the cluster member and cluster representatives. Since cluster rep-

resentatives are centroids, the inter-cluster critical noise 𝜎 inter
𝑐 can be regarded as a low estimate

of the true 𝜎𝑐 . In turn, the intra-cluster critical noise 𝜎𝜅𝑐 can be understood as the maximal extent

of the cluster radius.

Using this intution, we estimate the total 𝜎𝑐 by adding the maximum inter-cluster distance to

the maximum intra-cluster diameter over all clusters:
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𝜎𝑐 ≈ 𝜎 inter
𝑐 + 2 max

𝜅
𝜎𝜅𝑐 (C.2)
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Empirical findings Using the methodology outlined above, we sampled 4096 cluster repre-

sentatives with at most 50% sequence similarity from SwissProt and computed inter- and intra-

cluster distances. Sequence clusters were computed using MMSeqs2 [47]. Figure C.4 shows the

distributions of calculated distances.
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Figure C.4: Histogram of embedding distances.

Table C.2 provides summary statistics of the distance matrix entries. Using equation C.2, we

arrive at a final estimate of 𝜎𝑐 of 0.40. This analysis therefore justifies the choice of noise level

𝜎 = 0.5 to enter the extreme noise regime described by the authors of neural empirical Bayes.

Table C.2: Summary statistics of elements of the distancematrix 𝜒 , for 4096 50% sequence identity cluster
representatives.

mean median max

inter-cluster 0.069 0.068 0.155
intra-cluster 0.022 0.021 0.123
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C.6 Scaling CORGI on large seqence databases

To test the influence of residue-level text annotations at scale we train CORGI on an inner

join of UniRef90 and InterPro. We fine-tune a CORGI model with a ProGen2-small [94] base and a

baseline ProGen2-small without conditioning. We compare the performance of the baseline mode

to various settings (no annotations, all annotations, and a greedy subset of annotations) of the

fine-tuned CORGI model. Prior to evaluation, we run InterProScan on the wildtypes sequences

of ProteinGym and propagated the residue-level annotations onto their mutants using the same

method described in Section 5.3.1.1. .

C.6.1 Model details

C.6.1.1 Residue-level annotation network

We fine-tune the small variant of ProGen2 [94] using the CORGI framework on the text aug-

mented UniRef90 [49] dataset described in Section C.6.2.3. To capture position-specific annota-

tion dependencies along the sequence, we implement a bidirectional Llama [221] block in the

context processing module subsequent to the residue annotation combining step described in

Section 5.3.3.

C.6.2 Residue-level annotation network

The fine-tuning follows the recommendations of the authors of ProGen-2. Our model opti-

mizes a cross-entropy loss using the AdamW [15] optimizer with the hyperparameters with linear

warmup of 3000 steps up to a learning rate of 4 × 10−5 followed by cosine annealing. We retain

the same weight decay and momentum parameters described in ProGen2.

During training, we regularize the model in two ways: annotation dropout and sequence

reversal. Annotation dropout enforces that model retains native support for unannotated se-
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quences. With probability 𝑝𝑑𝑟𝑜𝑝 = 0.5, all annotations of a given sample are removed. Sequence

reversal is a strategy to learn direction-agnostic token likelihoods with a causal language model.

With probability 𝑝𝑟𝑒𝑣 = 0.5, the sequence is reversed. Specialized start and end tokens signify the

directionality of the sequence. In all of our experiments using ProGen2-small, we follow Nijkamp

et al. [94] and compute the bidirectional sequence likelihood score by evaluating the model/an-

notations twice in forward and reverse configuration.

C.6.2.1 Greedy annotation subset selection

There is no guarantee that every label positively informs model likelihood. For example, the

presence of an annotation stemming from a protein family with low homology may collapse

the logit distribution such that mutant residues are assigned artificially low log-probabilities. In

order to find a subset of label types that positively impact the Spearman correlation, we employ

a greedy algorithm for optimal subset selection. Starting from an empty set of labels, the greedy

algorithm populates a “greedy subset” under the invariant that the label in question together

with the running greedy subset improves the running best average Spearman correlation. This

construction allows the user to focus the algorithm on a specific subset of assays, for example the

group of assays with the same selection and mutation type, allowing for adaptation of CORGI to

select different contextual information depending on the selection assay or mutation type.

C.6.2.2 Pre-training dataset

For pre-training, we inner joined UniRef90 [49] sequences with InterPro [57] annotations and

UniProtKB [50] binding/active site annotations, resulting in 43729 different InterPro label types,

552 different site label types, and 105,347,199 sequences with a significant amount of annotation

coverage per sequence (Section C.1). We denote each label as 𝑦0, . . . , 𝑦44280.

In order to condition on text information at the residue-level, we embed the long-form de-

scriptions of each InterPro/site label type present in the training dataset NV-Embed-v2 [222]. We
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apply dimensionality reduction using principal component analysis (PCA) to reduce the original

NV-Embed-v2 hidden dimension from 4096 to 1024. For the UniProt sites that did not already

have long-form abstracts, we generated them by prompting Llama-3-1B [223] to elaborate on the

short-form name of the term (see Section C.6.2.3). In this way, each label type 𝑦𝑘 ∈ {𝑦0, . . . , 𝑦𝑁−1}

is assigned a corresponding embedding.

C.6.2.3 Global annotation network

For global annotation conditioning with application to molecular programming, we choose

to fine-tune ESM2 [203] using the Neural Empirical Bayes (NEB) framework [201, 220]. Doing

so effectively converts the model into a programmable sampler, combining previous works on

conditional walk-jump sampling [133] and leveraging pre-trained PLMs [218]. To the best of our

knowledge, this is a novel application of conditional discrete walk-jump sampling to generalized

protein families.

The network optimizes a least-squares loss

L𝑦∼𝑝 (𝑦 |𝑧) = ∥𝑥 − 𝑓𝜙 (𝑦, 𝑧)∥ (C.3)

such that

𝑓𝜙 (𝑦, 𝑧) = 𝑦 + 𝜎2𝑔𝜙 (𝑦, 𝑧). (C.4)

where 𝜎 is the noise level, 𝑦 = 𝑥 + N(0, 𝜎2𝐼𝑑) is the one-hot encoded sequence 𝑥 smoothed with

isotropic Gaussian noise and 𝑧 is the function description vector. The trained model 𝑔𝜙 (𝑦, 𝑧) ≈

∇𝑦 log𝑝 (𝑦 | 𝑧) represents a score function of the smoothed space that in practice be used to

“walk” the noisy manifold according to Langevin dynamics [24]. The “jump”, implemented us-

ing Tweedie’s formula [23] and shown in Equation C.4, may be computed at any step along the

trajectory.
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Residue-level annotations For pre-training, we inner joined UniRef90 [49] sequences with

InterPro [57] annotations and UniProtKB [50] binding/active site annotations, resulting in 43729

different InterPro label types, 552 different site label types, and 105,347,199 sequences with a

significant amount of annotation coverage per sequence (Section C.1). We denote each label as

𝑦0, . . . , 𝑦44280.

In order to condition on text information at the residue-level, we embed the long-form de-

scriptions of each InterPro/site label type present in the training dataset NV-Embed-v2 [222]. We

apply dimensionality reduction using principal component analysis (PCA) to reduce the original

NV-Embed-v2 hidden dimension from 4096 to 1024. For the UniProt sites that did not already

have long-form abstracts, we generated them by prompting Llama-3-1B [223] to elaborate on the

short-form name of the term (see Section C.6.2.3). In this way, each label type 𝑦𝑘 ∈ {𝑦0, . . . , 𝑦𝑁−1}

is assigned a corresponding embedding.

Generating long-form descriptions for residue-level annotations We condition CORGI

models on natural-language embeddings of annotation descriptions. In order to generate descrip-

tion embeddings for the 552 different UniProt sites without natural language abstracts we first

constructed for each site type a short form phrase of the form site_type: site_name if a site

name was provided or otherwise just site_type. Using the short form phrase, we prompted

Llama-3-1B to generate abstracts based on the following prompt.

You are an expert molecular biologist with over 30 years of experience and an

extensive knowledge of protein structure and function. Youwill be providedwith

a technical, short-form phrase. Generate a long-form description (no more than

500 words) that expands on the subject. Provide only the long-form description,

without any explanation or comment otherwise.

We expand the short-form phrase into a long-form description with the intuition that the

longer context creates a more informative description embedding.
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Figure C.5: Annotation coverage distributions across a random subsample (10%) of the scaled training
dataset. Left. The distribution of percent coverages per sequence (covered are counted once per sequence).
Right. The distribution of percent coverage when we repeat the count of residues participating in multiple
annotations.

C.6.2.4 Residue-level annotation coverage

To understand the annotation density in the UniRef90-InterPro inner join, we calculated cov-

erage statistics (Figure C.5). Most residues in the the majority of sequences have at least one

residue-level annotation. We note that since he overlapping annotations may contain redundant

or inconsistent information, the model may learn to preference certain labels over others, there-

fore motivating the greedy selection algorithm described in Section C.6.2.1.

C.6.3 Results

We trained a CORGI model using ProGen2-small by fine-tuning the pre-trained weights using

the procedure described in Section 5.3.3 and evaluated its performance on the text-augmented
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Table C.3: Performance comparison for different CORGI settings and the baseline averaged per (selection
type, mutation type) pair.

Expression Organismal Stability Activity Binding
Fitness

Model Indels Subs. Indels Subs. Indels Subs. Indels Subs. Subs.

Baseline 0.3594 0.3923 0.4212 0.3449 0.4885 0.3655 0.5109 0.3619 0.2822

CORGI∅ 0.3645 0.3937 0.4244 0.3573 0.4936 0.3646 0.5245 0.3664 0.2550

CORGIall 0.3571 0.4062 0.4476 0.3724 0.5072 0.3910 0.5158 0.4062 0.2680

CORGIgreedy 0.3645 0.3995 0.4708 0.3628 0.5666 0.4264 0.5304 0.3702 0.2770

ProteinGym. For fairness in evaluation, we also fine-tune a baseline ProGen2-small architecture

with no modifications to the training set. We compare three different inference modes of CORGI

to the baseline: CORGI∅ (no annotations are provided), CORGIall, (all annotations are provided),

and CORGIgreedy, (only the greedy optimal subset of annotations is provided). Table C.3 shows

that CORGI either outperforms or ties the baseline model on all but one assay/mutation type

category. We also note that in certain cases, the greedy subset of annotations outperforms the all-

in setting, CORGIall, and sometimes vice versa. The cases where the greedy subset outperforms

the all-in settings indicate that indeed a certain tuned subset of labels are perhaps independently

correlated with the output signal. The latter cases, where the all-in setting exceeds the greedy

one, may be explained by the existence of dependencies between the labels that were not tested

during the course of the greedy algorithm.

Table C.4 similarly shows favorable performance of CORGI models to the baseline in all but

one setting. These ablations provide evidence that conditioning on residue-level information

improves downstream mutation effect prediction performance.

104



Table C.4: Performance comparison for different CORGI settings and the baseline averaged per group of
(mutation-type, taxon division) pairs.

Taxon Mutation type CORGIall CORGI∅ Baseline

Eukaryote Indels 0.5057 0.5299 0.5372
Subs. 0.3981 0.3758 0.3831

Human Indels 0.5438 0.5015 0.4921
Subs. 0.4091 0.3846 0.3791

Prokaryote Indels 0.4148 0.3802 0.3647
Subs. 0.3507 0.3375 0.3210

Virus Indels 0.4698 0.5068 0.5007
Subs. 0.2956 0.2808 0.2721

C.6.4 Task-specific conditioning

VKOR1 is a transmembrane protein that drives the vitamin K cycle playing a role in blood clot-

ting. VKOR1 contains 3-4 transmembrane domains and 4 conserved functional cysteine residues [224],

depicted in Figure C.6. CORGI-trained models can be adapted at inference time to task-specific

conditions; here, we compared the performance of two different CORGI variants to the baseline

model on two different assay selection types, abundance and activity, for the same VKOR1 pheno-

type. Not only do the CORGI variants outperform the baseline on each assay, they also correctly

exhibit different behaviors from distinct annotation inputs.

In order to demonstrate the differences in CORGI performance for the separate tasks, we

illustrate the logit distributions in two different ways. For the abundance assay, we visualize

the logit standard deviations calculated per-position, per-token across each mutant to focus on

the variance across the sequence (see Figure C.6B and Figure C.6C). The greedy annotation set

and propagated VKOR1 labels have one label in common “Vitamin K epoxide reductase complex

subunit I” (IPR042406). As shown in Figure C.6, the annotation collapses token distributions in

and surrounding the transmembrane domains, contributing to a slightly more robust mutation

105



VKOR1

Task specific inference on VKOR1

Figure C.6: Left. VKOR1 case study on task specific inference. Right. AlphaFold 2 [3] predicted structure
of VKOR1. Highly conserved functional cysteine residues are shaded in blue. (A, D) Position specific per-
plexities for CORGI and the baseline (orange) averaged over abundance (A) and activity (D) phenotypes.
Shaded regions represent trans-membrane domains and dashed lines represent positions of conserved,
functional cysteine residues. (B, C) Logit standard deviations across abundance phenotypes for CORGI-
greedy (B) and the baseline (C). Positions with higher variance are shaded with more intensity. (E, F)
Softmax probabilities calculated from activity phenotypes for CORGI-all (E) and the baseline (F). Posi-
tions with higher probability mass are shaded with more intensity. Black boxes represent the softmax
probability of conserved cysteines.

effect prediction. By contrast, the baseline model has much higher variance per token which

may contribute to a more erroneous prediction. For the activity assay, we visualize the softmax

probabilities per-token computed across each mutant (see Figure C.6E and Figure C.6F). Notably,

CORGI correctly places most probability mass on 3/4 of the conserved cysteine residues (as op-

posed to the baseline), which echoes the findings in Chiasson et al. [224] that only 3/4 of the

conserved cysteines may be relevant to retain activity, supporting the notion that there is rele-

vant information in the annotations that further collapses the softmax probabilities, resulting in

more effective mutation effective prediction.

C.7 Analysis of CORGI-WJS sampling trajectories

We examined the correspondence between sampling step and the concept-conditioned dis-

tributional conformity score over long sampling chains for the WJS variety of CORGI models.
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Figure C.7(a) depicts the weighted average of distributional conformity scores along the trajec-

tory. We find that the trajectories of the unconditional, contrastive, and conditional settings of

the text-conditioned walk-jump sampler (tcWJS) behave as expected. The unconditional setting

does not improve in average score during the trajectory beyond the first steps. The slight increase

in conformity at the beginning of sampling likely corresponds with the score model steering the

random sequence onto a region of the smooth manifold with higher density. The conditional and

contrastive settings do indeed steadily improve in conformity over the trajectory however. In

particular, the conditional setting is driven to the highest average conformity and the contrastive

setting takes a more measured approach. The latter observation can be explained by the formu-

lation of equation 5.2, in which setting 𝑤 = 1 forces the sampler to take a half step using the

unconditional setting for every full step with the conditional.

As discussed in Chapter 1, a full-scale protein design protocol involves several steps besides

generation and evaluation, in particular ranking. For each prompt in the Molecular Program-

ming repository, we sorted them by their concept-conditioned distributional conformity score

and selected the highest scoring samples. Figure C.7(b) shows a histogram of sampling steps of

each of these highest ranking samples. We observe that the samples generated in the later term

of the trajectory are selected more often for the conditional and contrastive models, whereas un-

conditional steps are more uniformly distributed. This observation provides more evidence that

indeed the distribution of conformity scores over the course of the sampling trajectory increases

over time and excludes the possibility that the selected samples are outliers from earlier steps in

the trajectory.
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Figure C.7: Visualizations of conformity over a long chain of sampling and the highest ranking.
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