
Metacomputing on Commodity

Computers

by

Arash Baratloo

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 1999

Approved:

Zvi M. Kedem

To my family and friends who made my graduate school years

enjoyable.

iii

Acknowledgements

Special thanks go to my friend and advisor, Professor Zvi Kedem. I still re-

member the �rst time he called me into his oÆce and asked \what do you want,

and what are you planning to do?" That was over �ve years ago. Since that day

I have learned much from him, and his continual guidance and support has made

this thesis possible. Last week, in helping me to make an employment decision, he

called me into his oÆce and asked: \what do you want and what are you planning

to do?" I look forward to our continuing friendship.

I am also grateful to my friend Professor Partha Dasgupta whose insights were

the foundation of my work. His thoughts and suggestions have greatly improved

the content and clarity of this dissertation.

In addition to Zvi and Partha, I am deeply indebted to my other committee

members, Emerald Chung, Krishna Palem and Vijay Karamcheti, for giving me

many good suggestions on how to present, position, and think about my work.

I raise my glass in thanks to some special people who made my graduate school

years enjoyable. Of these numerous friends, I can only mention a few, although

I salute them all. Three cheers to Fangzhe Chang, Raoul Daruwala, Ian Jermyn,

Ayal Itzkovitz, Holger Karl, Ilya Lipkind, Fabian Monrose, Jose Moreira, Mehmet

iv

Karaul, Dmitri Krakovsky, Toto Paxia, Rob Rahbari, Naftali Schwartz, Nish Shah,

David Stark, Peter Wycko�, and last but not least, Yuanyuan Zhao. Special thanks

to Amir Salehi, Cheon Kim, and Makis Anagnostou who encouraged me to go back

to graduate school. I would also like to thank my roommates Rodney Christopher

and Greg McCaslin. I �rst moved in with Greg until I could �nd another place to

live. Six years later, I am still there, and I am thankful to him for providing me

with a \home" during these years.

I cannot give enough thanks to Karen Cullen. I wish I only had to thank her for

her patience during the �nal months, but I needed her patience and understanding

throughout these six years. I am very glad she is with me.

To my kind friends who reviewed this dissertation, and to Karen Cullen who

corrected their mistakes, my best wishes. Their careful and constructive comments

improved the overall clarIty aNd readaBiliTy oF this documEnt.

My biggest gratitude, however, goes to my family. This work is dedicated to

my parents, Nasrin Rahbari and Ahmad Baratloo, for their love; to my sister, Moji

Baratloo, who always believed in me; to Cli� Balch my brother-in-law; and to my

one and only niece, Halleh Balch.

v

This research was sponsored by the Defense Advanced Research Projects A-

gency and Rome Laboratory, Air Force Materiel Command, USAF, under agree-

ment number F30602-96-1-0320; and by the National Science Foundation under

grant number CCR-94-11590. The U.S. Government is authorized to reproduce

and distribute reprints for Governmental purposes notwithstanding any copyright

annotation thereon. The views and conclusions contained herein are those of the

author and should not be interpreted as necessarily representing the oÆcial policies

or endorsements, either expressed or implied, of the Defense Advanced Research

Projects Agency, Rome Laboratory, or the U.S. Government.

vi

Contents

Dedication iii

Acknowledgements iv

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Overview . 1

1.2 Metacomputing on Networks of Workstations 2

1.2.1 Challenges . 4

1.2.2 Contributions . 6

1.3 Metacomputing on the World Wide Web 8

1.3.1 Challenges . 9

1.3.2 Contributions . 10

1.4 Outline of the Dissertation . 12

2 Metacomputer, an Overview 14

vii

2.1 Virtual Machine Model . 14

2.1.1 Parallel Programming Model 15

2.1.2 Shared-Memory Semantics 16

2.1.3 Bene�ts . 18

2.2 Key Mechanisms . 20

2.2.1 Eager Scheduling . 21

2.2.2 Idempotent Execution Strategy 22

2.2.3 Bunching . 22

2.2.4 Caching . 23

2.2.5 Scheduling . 24

3 Calypso: Parallel Computing on Networks of Workstations 26

3.1 Introduction . 26

3.2 How to Write Calypso Programs . 30

3.3 How to Compile and Link Calypso Programs 39

3.4 How to Run Calypso Programs . 41

3.5 Implementation . 43

3.6 Experiments . 54

3.6.1 Adapting to Failures . 60

3.6.2 Adapting to Non-uniform Computing Speeds 62

3.6.3 Adapting to Execution Environments 66

3.6.4 Adapting to Dynamic Execution Environments 69

4 Mechanisms for Just-in-Time Resource Allocation 75

4.1 Introduction . 75

viii

4.2 Background . 78

4.3 Design Goals . 80

4.4 Architecture . 82

4.5 User, Job, and Resource Manager Interactions 83

4.5.1 Users' Interaction with the ResourceBroker 84

4.5.2 Interaction of Jobs and ResourceBroker 86

4.6 Mechanisms . 90

4.6.1 Required Conditions . 91

4.6.2 Default Behavior . 92

4.6.3 External Modules . 94

4.7 Experiments . 97

5 Charlotte: Parallel Computing on the World Wide Web 102

5.1 Introduction . 102

5.2 How to Write Charlotte Programs 108

5.3 How to Run Charlotte Programs 113

5.4 Implementation . 115

5.5 Experiments . 119

5.6 Design Alternatives . 129

6 Middleware for Web-Based Applications 131

6.1 Introduction . 131

6.2 Architecture . 134

6.3 Directory Service . 136

6.4 Embedded Class Server . 144

ix

6.5 Inter-applet Communication . 145

6.6 Experiments . 147

6.7 Security Concerns . 148

7 Related Work 150

7.1 Overview . 150

7.2 Parallel Computing on Networks of Workstations 150

7.3 Parallel Computing on the World Wide Web 159

7.4 Overview of Selected Resource Management Systems 163

8 Conclusions 168

8.1 Metacomputing on Networks of Workstations 168

8.2 Metacomputing on the World Wide Web 171

Bibliography 174

x

List of Figures

2.1 Execution of a parallel program . 16

2.2 Memory semantics of parallel programs 17

3.1 Parallel Hello World in Calypso. 32

3.2 Screen snapshot of the Calypso Graphical User Interface 40

3.3 Screen snapshot of the Remote Execution Tool 42

3.4 Screen snapshot of the Execution Monitoring Tool 43

3.5 A Calypso program before and after preprocessing 44

3.6 Pro�les of worker machines. 56

3.7 Scalability comparison of Calypso and PLinda programs 60

3.8 Comparison of Calypso and PLinda programs in presence of failures 62

3.9 Scalability comparison of Calypso, CVM, and BSPlib programs . . 63

3.10 Comparison of Calypso, CVM, and BSPlib programs on fast and

slow machines . 64

3.11 Comparison of Calypso, CVM, and BSPlib programs on non-

uniform machine speeds . 65

3.12 Comparison of Calypso and PVM programs 67

xi

3.13 Scalability comparison of Calypso and PVM programs 68

3.14 Performance on an ideal execution environment 70

3.15 Adapting to fast and slow machines 71

3.16 Adapting to failures . 72

3.17 Adapting to addition of new resources 73

3.18 Adapting to dynamic execution environments 74

4.1 Structure of a global resource manager as a user-level service. . . . 80

4.2 Architectural components of ResourceBroker 82

4.3 The three entities involved in every job execution 84

4.4 Speci�cation language for describing job requirements. 85

4.5 PVM modules to grow, shrink and halt a PVM virtual machine. . . 89

4.6 Representative scenario of how a parallel job acquires another machine. 90

4.7 Adding a dynamically allocated machine (default behavior). 93

4.8 Adding a dynamically allocated machine (using external modules). 95

4.9 Performance of resource reallocation using PVM and rsh
0

. 101

5.1 An execution of a Charlotte program 109

5.2 Matrix multiplication in Charlotte. 112

5.3 Pro�les of volunteer machines. 121

5.4 Scalability experiment of a Charlotte Ising model program. 123

5.5 E�ects of bunching for executing �ne-grain tasks. 124

5.6 Load balancing of a Charlotte Ising model program. 125

5.7 Performance comparison of Charlotte, RMI and JPVM programs. . 127

5.8 Load balancing of Charlotte, RMI and JPVM programs. 128

xii

6.1 Architecture of a typical Web-based program 132

6.2 The layered design of KnittingFactory 134

6.3 The registry service of the initial Charlotte implementation 137

6.4 Architecture of KF Directory Service 140

6.5 Performance of KF Directory Service. 148

xiii

List of Tables

4.1 Performance comparison of rsh
0

and rsh. 98

4.2 Performance of resource reallocation. 99

4.3 Performance of ResourceBroker (using external modules) to dynam-

ically allocate additional resources to PVM and LAM programs. . . 100

5.1 Comparison of sequential, Charlotte, RMI, and JPVM ray tracing

programs. 126

xiv

Chapter 1

Introduction

1.1 Overview

The advantages of utilizing networks of commodity computers as a platform to ex-

ecute compute-intensive parallel programs are well known: commodity computers

are relatively cheap, widely available, and mostly underutilized. For example, here

at the Department of Computer Science at New York University, students have

access (and can login) to over 200 workstations. At the same time, I have seen

individuals use a single workstation to run programs that take hours to complete.

These programs could have been parallelized and made to execute on the network

of available workstations which would have completed in just a few minutes. But

programs were not parallelized|this dissertation addresses the reason behind this.

Utilizing networks of commodity computers to execute parallel programs is

not an original idea|much research has been devoted to this topic, and many

software tools have been built for developing such programs. Given that there are

1

relatively small number of widely available parallel programs that run on networks

of workstations, a valid question to ask is: if the hardware is widely available (which

it is) and if there are tools for building parallel programs (which there are), then

why aren't most programs able to run on networks of workstations? I claim that

major contributing factors are the complexity involved in software development

and the extra e�ort needed to execute such programs. That is, existing software

tools make the development and execution of distributed parallel programs possible

but not always feasible; as a result, the added complexity outweighs the gains.

This dissertation presents a set of techniques for making parallel programs easy

to design, build, and execute on networks of commodity computers. Furthermore,

it presents a series of software systems to validate the feasibility of these techniques.

1.2 Metacomputing on Networks of Workstations

Commercial realities dictate that parallel computations typically will not be given

a dedicated set of homogeneous computers. A number of studies have shown

that in most industrial and educational organizations, a majority of computers

are idle at any given time. This makes networks of commodity workstations a

\free" computing platform if computations can be performed on machines that

would otherwise have been idle. Such computing platforms have the following

characteristics:

� Non-uniform processing speeds: Organizations generally purchase and up-

grade workstations incrementally and as needed. So, naturally workstations

bought at di�erent times will have di�erent processing speeds.

2

� Unpredictable behavior: Networks of workstations are considered a free com-

puting platform only when they are time-shared. Because of external factors,

even a network of identical machines is in e�ect, not homogeneous|di�erent

machines exhibit di�erent characteristics, such as observed processing speed

and available RAM. More importantly, these characteristics can change over

time in unpredictable fashion.

� Transient availability: The set of idle machines changes over time. Hence,

the availability of a workstation to participate in a parallel computation is

transient: a workstation may become available for use by others at any time,

and it may retreat in the middle of a computation.

The above characteristics result from external factors that exist in \real" net-

works of workstations. However, the available software tools for developing parallel

programs do not always address important issues that arise in \real" networks of

workstations. Speci�cally, load balancing, fault masking, and adaptive execution

of programs on a set of dynamically changing workstations are neglected by most

programming systems. The neglect of these issues has complicated the already

diÆcult job of developing parallel programs.

Users can not constantly monitor a network to determine the availability of

transient machines and to arbitrate among the demands of multiple adaptive com-

putations. Adaptive computations are those that can adapt to external changes

in resource availability and internal changes in resource requirements. Typically,

a resource management system is used for this arbitration. However, no exist-

ing resource management system (on commodity systems) is capable of managing

3

several adaptive computations written using di�erent programming tools.

1.2.1 Challenges

The shortcomings discussed above must be addressed to allow the e�ective uti-

lization of networks of workstations and to facilitate the proliferation of parallel

programs that execute on such environments. Speci�cally, a comprehensive solu-

tion must address programmability, adaptivity, load balancing, and the dynamic

management of adaptive programs.

Programmability

It is clearly bene�cial not to force programmers to learn a completely new program-

ming language. The challenge is to provide programmers with a set of high-level

programming constructs that incorporates natural syntax and semantics to ex-

press parallelism. More importantly, programmers should be allowed to develop

programs that are independent of the execution environment. This will allow pro-

grammers to use their knowledge of the problem they are trying to solve, and not

the execution platform, to guide the parallelism of the program.

It is generally agreed that shared-memory systems are more intuitive to pro-

gram than message passing systems. Relaxed (i.e., non-sequential) shared-memory

consistency models were introduced for performance reasons. However, programs

developed for relaxed shared-memory consistency models are diÆcult to write, and

as Lamport has pointed out [85], diÆcult to prove correct since formal methods

for program correctness assume sequential consistency. The challenge is to provide

a well de�ned programming model that maintains the properties needed to argue

4

correctness, while allowing programs developed for that model to perform well on

distributed platforms.

Adaptivity

The parallelism inherent in a speci�c problem is independent of the number of

machine a program for that problem will execute on. So why should the number

of machines, a number that in most cases is unpredictable, in
uence the parallelism

of a program? The challenge is to execute programs on any (reasonable) number

of machines that are available at the time of execution. Because most networked

machines have transient availability patterns, computations should also be able to

integrate newly available machines and tolerate the removal of others. Network

and machine failures are a reality, hence, computations should be able to tolerate

failures as well. Programs that dynamically adapt to changes in resource and

machine availability are referred to as adaptive. A common weakness in most

parallel programming tools is the lack of support for adaptive programs. This

weakness must be addressed.

Load Balancing

The performance of a parallel program is dependent on evenly distributing compu-

tations among participating machines. While a static partitioning of computation-

s might be e�ective for dedicated clusters of workstations, programs running on

shared networks of workstations require dynamic load-balancing to overcome the

unpredictable machine behaviors. The challenge is to load-balance computations

dynamically, and to adapt the computation to the speed of available machines.

5

Dynamic Management of Adaptive Programs

As previously stated, in order to execute multiple adaptive computations on a

shared set of machines, a resource manager is necessary. The resource manager

must monitor resources and communicate the availability (and unavailability) of

transient machines to executing programs. At the same time, programs must com-

municate their (internal) resource requirements to the resource manager. These

communications are necessary to make the arbitration of resources possible. Many

popular parallel programming tools do not provide a functional interface for such

communication to occur. As a result, resource managers are not capable of man-

aging multiple programs written with di�erent programming tools. This severely

limits the execution of parallel programs on a shared network of workstations. The

challenge is to provide a set of mechanisms to overcome this limitation.

1.2.2 Contributions

The contributions of this dissertation include a set of mechanisms to address

programmability, adaptivity, load balancing, and dynamic management of adap-

tive programs. Furthermore, this dissertation presents two software systems that

demonstrate the feasibility of such mechanisms on time-shared networks of work-

stations. Calypso is a parallel programming system and a runtime system designed

for adaptive parallel computing on networks of workstations; it is presented in

Chapter 3. Chapter 4 presents a resource manager called ResourceBroker. Re-

sourceBroker is unique in its ability to manage adaptive programs that were not

developed to have their resources managed by external resource managers. The

6

work on Calypso and ResourceBroker has resulted in several original contributions

which are summarized below:

� Calypso decouples the programming model from the execution environmen-

t: programs are written for a reliable virtual shared-memory computer with

unbounded number of processors, i.e., a metacomputer, but execute on a net-

work of dynamically changing workstations. This presents the programmer

with the illusion of a reliable machine for program development and veri�ca-

tion. Furthermore, the separation allows programs to be parallelized based on

the inherent properties of the problem they solve, rather than the execution

environment.

� Programs without any modi�cations can execute on a single machine, a mul-

tiprocessor, or a network of unreliable workstations. The Calypso runtime

system is able to adapt executing programs to use available resources: com-

putations can dynamically scale up or down as machines become available,

or unavailable. The runtime system implements a technique called two-phase

idempotent execution strategy that allows parts of a computation executing

on remote machines to fail, and possibly recover, at any point without a�ect-

ing the correctness of the computation. Unlike other fault-tolerant systems,

there is no signi�cant additional overhead associated with this feature.

� Calypso automatically distributes the work-load depending on the dynamic-

s of participating machines. The load balancing mechanisms extend self-

scheduling with two techniques called eager scheduling and bunching, respec-

tively. The result is that �ne-grain computations are eÆciently executed in

7

coarse-grain fashion, and faster machines perform more of the computation

than slower machines. Not only is there no cost associated with this feature,

but it actually speeds up the computation, because fast machines are never

blocked while waiting for slower machines to �nish their work assignments|

they bypass the slower machines. As a consequence, the use of slow machines

will never be detrimental to the performance of a parallel program.

� The combination of aggressive shared-memory caching techniques with adap-

tive scheduling policies is used to eÆciently implement the shared-memory

virtual machine on a network of workstations. While providing adaptive exe-

cution, fault tolerance, and dynamic load-balancing, the experiments indicate

that the overhead due to these mechanisms are surprisingly small for medium-

to coarse-grained computations.

� A set of novel mechanisms to allow the management of adaptive parallel pro-

grams that were not developed to have their resources managed by external

systems. ResourceBroker has been implemented to demonstrate these mecha-

nisms. ResourceBroker is the �rst system that can support adaptive programs

written in more than one programming system, and has been tested using a

mix of programs written in PVM [59], MPI [67], Calypso, and PLinda [77].

1.3 Metacomputing on the World Wide Web

The Internet is e�ectively connecting millions of mostly idle machines. Its latest

reincarnation as the World Wide Web has greatly increased the Internet's potential

for utilization, including its potential to be used as a gigantic computing resource.

8

Web browsers' abilities to load and execute untrusted Java applets in a secure

fashion provide the low-level means for metacomputing on the Web. Now the

challenge is to provide a comprehensive end-to-end solution for metacomputing.

The use of local area networks as a metacomputing platform has been explored

for many years. Numerous research projects have aimed at this goal, and based

on their success, attempts have been made to extend existing systems to the Web.

But utilizing the Web as a metacomputing resource introduces new diÆculties and

problems. First, the Web invalidates many of the assumptions used in designing

parallel programming environments for networks of workstations. For example,

the Web lacks a shared �le system and machines are not homogeneous. Second,

no individual user has access-rights, or could possibly hope to have access-rights

to every machine on the Web. As a result, users who control individual machines,

or software agents acting on their behalf, must donate the use of their machines to

others. Users that donate the use of their machines are referred to as volunteers.

1.3.1 Challenges

A comprehensive end-to-end solution for metacomputing on the Web must address

the concerns of programmers, users, and volunteers.

Programmers

The ease with which programs can be developed and maintained is a primary

concern of programmers. Since the set of machines available on the Web is un-

predictable, and the machines and networks may fail at any time, Web-based

programs must be able to adapt to changing execution environments as well as

9

tolerate failures. The challenge is to relieve programmers from unnecessary com-

plexities by providing a set of high-level constructs for parallel programming, as

well as mechanisms for adaptive and fault-tolerant execution of programs.

Users

Users are mostly concerned with the ease, correctness, and eÆciency of program

executions. The machines connected to the Internet are not under a single ad-

ministrative control and do not have a shared �le system. As a result, executing

programs on the Web requires more e�ort than on local area networks. The chal-

lenge is to make executing programs on the Web as simple as executing on local

area networks.

Volunteers

Simplicity and security are important objectives for volunteers. Unless the process

of donating and withdrawing a machine is simple, it is likely that many would-be

volunteer machines will not participate. Furthermore, volunteers need assurance

that the their computers will not be compromised by executing programs written

by \strangers." Thus, the challenge is to provide an infrastructure that enables

volunteers to �nd, join, and leave computations easily, and that executes programs

in secure fashion.

1.3.2 Contributions

This dissertation presents two systems called Charlotte and KnittingFactory which,

in unison, provide a comprehensive solution for metacomputing on the Web. Char-

10

lotte, which is presented in Chapter 5, facilitates the development of parallel pro-

grams and provides a runtime system for adaptive execution of programs on the

Web. The work on Charlotte has resulted in several original contributions, which

are summarized below:

� Charlotte is the �rst parallel programming system to provide one-click com-

puting on the Web. That is, without any administrative e�ort, volunteers

from anywhere on the Internet can participate in any ongoing computation

by a simple click of the mouse.

� Charlotte is the �rst system for parallel computing that uses a secure lan-

guage and executes in a secure sandbox environment. Because the program

is implemented entirely in Java without any native (non-Java binary) code,

volunteers have the same level of trust in running Charlotte programs as they

do in running any other Java applet.

� Existing contributions are leveraged in providing ametacomputer on the Web.

The programming environment is conceptually divided into a virtual machine

model and a runtime system. The virtual machine model, as presented to

the programmer, provides a reliable shared memory machine. The runtime

system implements this model on a set of unreliable machines.

� Previous work originally developed for networks of workstations is extended

to deal with the dynamics of the Web. Three integrated techniques|eager

scheduling , two-phase idempotent execution strategy , and bunching|are used

for load balancing, fault masking, and eÆcient execution of �ne-grain tasks.

11

Charlotte is an example of a system that utilizes Java applets to execute pro-

grams on the Web. To fully utilize the potential of Java applets, the limitations

imposed by the Java security model must be addressed. Chapter 6 presents Knit-

tingFactory, an infrastructure for executing Web-based programs in the presence

of the Java security model. KnittingFactory can facilitate the execution of gener-

al user-applications and can extend the capabilities of higher-level software such

as Charlotte. The contributions of KnittingFactory include mechanisms for the

following services:

� A distributed directory service to assist in �nding Web-based applications on

unknown hosts. This service is unique in migrating most of the computation

away from directory servers to client browsers. In addition, the directory ser-

vice supports a non-uniform name space designed speci�cally to keep parallel

computations localized by assigning volunteers to nearby computations.

� A middleware service for direct applet-to-applet communication. This service

is unique in making it possible for applets of the same distributed session,

which are executing on di�erent machines on the Internet, to directly com-

municate and exchange information.

1.4 Outline of the Dissertation

This dissertation is organized as follows. The concept of metacomputer and the

reliable virtual machine as presented to programmers are presented in Chapter 2.

That chapter also presents a set of runtime mechanisms that realizes the reliable

virtual machine on a set of unreliable commodity computers. Calypso is presented

12

in Chapter 3. Calypso is the �rst system to demonstrate the e�ectiveness of the

mechanisms presented in Chapter 2 in implementing a metacomputer on networks

of workstations. Chapter 4 presents a set of mechanisms and a resource manager

called ResourceBroker to facilitate the execution of adaptive programs, e.g., Ca-

lypso programs, on networks of workstations. The design and implementation of

Charlotte is described in Chapter 5. Charlotte leverages the code-mobility and

secure execution of Java applets to extend the concept of metacomputing to the

World Wide Web. KnittingFactory, which assists the execution of programs on

the Web is presented in Chapter 6. Research e�orts related to parallel comput-

ing on networks of workstations and the World Wide Web, as well as resource

management systems, are presented in in Chapter 7. Chapter 8 concludes this

dissertation.

Acknowledgments

Calypso [10] is a result of a joint research e�ort with Partha Dasgupta and Zvi M.

Kedem. A collaboration with Mehmet Karaul, Zvi M. Kedem, and Peter Wycko�

resulted in Charlotte [15, 16]. The work on KnittingFactory [13, 14] was a joint

e�ort with Mehmet Karaul, Holger Karl, and Zvi M. Kedem. ResourceBroker [12]

is a result of a collaboration with Ayal Itzkovitz, Zvi M. Kedem, and Yuanyuan

Zhao.

13

Chapter 2

Metacomputer, an Overview

2.1 Virtual Machine Model

Distributed multiuser environments consisting of commodity machines typically

exhibit unpredictable characteristics and are prone to failure. As is evident by the

small number of widely available parallel programs, it is extraordinarily diÆcult to

exploit distributed multiuser environments directly or even with existing software

tools. E�ective support for such environments suggests treating the entire collec-

tion of machines as a metacomputer that would present a single, seamless interface

to programmers and users. This allows programs to be developed for execution on

a reliable virtual machine whose binding to physical resources may vary dynami-

cally during the lifetime of any particular execution|programs that dynamically

adapt to available resources at runtime are referred to as adaptive. Furthermore,

to minimize the complexity of distributed program development, a shared memory

programming model accessible from a familiar programming language is needed.

14

This chapter presents such a metacomputer. Sections 2.1.1 and 2.1.2 present an

overview of the programming model and shared memory semantics, respectively.

Section 2.2 presents a set of key techniques that enable implementation of this

metacomputer. These techniques are designed speci�cally for adaptive execution

of programs on unpredictable distributed multiuser environments. Moreover, these

techniques have been implemented by two software systems, Calypso and Charlotte,

which are presented in Chapters 3 and 5, respectively.

2.1.1 Parallel Programming Model

The programming model involves augmenting a familiar sequential programming

language with simple constructs to express parallelism. Parallelism is expressed

by parallel steps within sequential programs. Parallel steps consist of one or more

jobs that (logically) execute in parallel. Parallel steps are generally responsible

for computationally intensive segments of the program. By contrast, sequential

parts of programs are referred to as sequential steps and they generally perform

initialization, input/output, user interactions, etc. A parallel step can occur any-

where in the program, including inside another parallel step, which is referred to as

nested parallelism. Nested parallelism is not supported in current implementations

of Calypso and Charlotte; however, other researchers have extended Calypso with

nested parallelism [73, 119].

Figure 2.1 illustrates the execution of a program with two parallel steps and

three sequential steps. It is important to note that parallel programs are written for

a virtual shared-memory parallel machine irrespective of the number of computers

that participate in a given execution.

15

 ti
m

e

parallel step

parallel step

sequential step

sequential step

sequential step

jobs

Figure 2.1: An execution of a program with two parallel steps and three sequential steps;

the �rst parallel step consists of 9 jobs, the second parallel step consists of 6 jobs.

This programming model is sometimes referred to as a block-structured parbe-

gin/parend or fork/join model [44, 107]. Unlike other programming models where

programs are decomposed (into several �les or functions) for parallel execution,

this model together with shared memory semantics, allows loop-level paralleliza-

tion. As a result, given a working sequential program it is fairly straightforward

to parallelize individual independent loops in an incremental fashion.

2.1.2 Shared-Memory Semantics

Di�erent shared-memory semantics can, and have been supported for the previous-

ly presented programming model. The current implementation of Calypso supports

a generalization of the Concurrent Read Exclusive Write (CREW) programming

model that allows a write operation to coexist with multiple read operations. In

order to avoid race conditions, for instance when two jobs read and write the same

16

// x is 35
// i and j are 20

x = x + 15;j = x;i = x;

 ti
m

e

int x, i, j;
x = 20;

Figure 2.2: A parallel program with a single shared integer, x, and three parallel jobs.

The �rst two jobs (from the left) read x and the third job writes x. Independent of

the actual execution order, the �rst two jobs always read the value x contained at the

beginning of the parallel step.

memory location, jobs execute in the (program) context in which they were cre-

ated. As a consequence, read operations of unmodi�ed data return the value of

variables at the time the parallel step began. Furthermore, the e�ects of write

operations are guaranteed to become visible at the completion of the parallel step,

and not earlier.

Calypso's shared-memory semantics can be viewed as a generalization of the

Bulk Synchronous Parallel (BSP) model [130, 84]. As is with Calypso, BSP guar-

antees that updates to non-local (i.e., shared) data locations become visible (to

other processors) at the next superstep, although the updates might become vis-

ible earlier. In contrast to BSP, Calypso also guarantees that updates will not

become visible earlier. As a result, a correct BSP program will execute correct-

ly under Calypso's shared-memory semantics, but not necessarily the other way

17

round. The di�erence in memory semantics is illustrated in Figure 2.2, where three

jobs concurrently read and write the same shared variable, x. The shared-memory

semantics of Calypso guarantees that the read operations return the value of x

at the beginning of the parallel step, i.e. 20. In contrast, using BSP's memory

semantics the read operations could return either 20 or 35.

Charlotte supports Concurrent Read Concurrent Write Common (CRCW-

Common) programs. This means that within a parallel step, one or more jobs

can read a shared variable, and one or more jobs can write the same value to a

shared variable. Similar to Calypso, results of write operations become visible at

the completion of the parallel step.

2.1.3 Bene�ts

In addition of being isolated from the dynamics of the execution environment, the

programs for the metacomputer have the the following properties:

In isolation execution semantics: The memory semantics ensure that jobs of a

parallel step execute logically in isolation. Thus, (the source code of) a job can be

developed and reasoned, independently of other jobs in that parallel step.

Proper Parallel Composition: A parallel program can be thought of as a com-

position of components. For instance, a parallel step is composed of jobs that

semantically execute in parallel. Chandy et al. [36] de�nes proper composition as

one in which the properties of the components are also the properties of the com-

posed program. Proper composition is obviously helpful to reason about parallel

18

programs. The programming and shared-memory models for the metacomputer,

as previously presented, preserve proper parallel composition.

Determinism: If each job of a (CREW) parallel step is deterministic, then the

parallel step is deterministic as well; di�erent executions of the parallel step pro-

duce identical results. This is clearly a desirable property, but many distributed

shared memory systems do not provide such a guarantee|di�erent executions of

the same program could produce di�erent results depending on the order of events.

This is a speci�c weakness of systems supporting relaxed (i.e., non-sequential)

shared-memory consistency models.

Independence of order semantics: As a consequence of in isolation execution

semantics and determinism properties, the �nal result of a parallel step is inde-

pendent of the order in which jobs were executed. In particular, it is possible for

a sequential process to execute jobs comprising parallel steps in any order (while

manipulating the memory to provide the in isolation execution semantics proper-

ty) and the �nal outcome of the sequential execution will be identical to a parallel

execution. Such a sequential process can be used to debug a deterministic pro-

gram using standard debuggers for sequential programs, and programmers can be

assured that once the program is correct, it will execute correctly on distributed

environments.

19

2.2 Key Mechanisms

To execute parallel programs on networks of commodity computers, in many cases

one assumes a priori knowledge of the number, relative speeds, and reliabilities of

the machines involved in the computation. By having this information, the pro-

gram can then distribute its load evenly for eÆcient execution. This knowledge can

not be assumed for distributed multiuser environments, and hence, it is imperative

that programs adapt to machine availability. That is, a program developed for a

metacomputer must be able to integrate new machines into a running computa-

tion, mask and remove failed machines, and balance the work load in such a way

that slow machines do not dictate the progress of the computation.

The traditional solution to overcome this type of dynamically changing en-

vironment has been to design and develop self-scheduling parallel programs. In

self-scheduling programs, the computation is divided into a large number of small

computational units, or tasks. Participating machines then pick up (in a self-service

manner) and execute a task, one at a time, until every task has been executed.

It is easy to see that faster machines generally do more of the work. For this

reason, self scheduling has been used widely, and in the literature it is called the

master/slave [59], the manager/worker [67] or the bag-of-tasks [33] programming

model.

Self scheduling is a good starting point, but does not solve all the problems

associated with executing programs on distributed multiuser environments. First,

self scheduling does not address machine and network failures. Second, a very slow

machine can slow down the progress of faster machines if it picks up a compute-

20

intensive task. Finally, self scheduling increases the number of tasks comprising a

computation and, hence, increases the e�ects of the overhead associated with the

process of assigning tasks to machines. Depending on the network, this overhead

may be large and, in many cases, unpredictable.

2.2.1 Eager Scheduling

Calypso and Charlotte programs are implicitly self-scheduled. The basic notion of

self scheduling is extended with two mechanisms initially proposed in [80]: eager

scheduling (though this term was coined later) and two-phase idempotent execution

strategy (TIES). Eager scheduling works in a manner similar to self-scheduling at

the beginning of a parallel computation, but once the number of remaining tasks

becomes less than the number of available machines, eager scheduling aggressively

assigns and re-assigns tasks until all tasks have been executed to completion. Con-

current assignment of tasks to multiple machines guarantees that slow machines,

even very slow machines, do not slow down the progress of a computation. Fur-

thermore, if machines crash or become less accessible, for example due to network

delays, the entire computation will �nish as long as one machine is available for a

suÆciently long period of time. Note that eager scheduling masks machine failures

without the need to actually detect failures. In fact, failure is a special case of a

slow machine (an in�nitely slow machine). Eager scheduling is further discussed

in Sections 3.5 and 5.4.

21

2.2.2 Idempotent Execution Strategy

Multiple executions of a program fragment (which is possible when using eager

scheduling) can result in an incorrect program state. TIES ensures idempotent

memory semantics in the presence of multiple executions. The computation of

each parallel step is divided into two phases. In the �rst phase, modi�cations of

the shared data region, that is the write-set of tasks, are computed but kept aside in

a bu�er. The second phase begins when all tasks have executed to completion. At

that time, a single write-set for each completed task is applied to the shared data,

and thus atomically updates the memory. Note that each phase is idempotent,

since its inputs and outputs are disjoint. Put informally, in the �rst phase the

input is shared data and the output is the bu�er, and in the second phase the

input is the bu�er and the output is shared memory. The implementation of TIES

in Calypso and Charlotte are described in Sections 3.5 and 5.4, respectively.

2.2.3 Bunching

The interplay of eager scheduling and TIES addresses fault masking and load

balancing. Dynamic granularity management (or bunching for short) is used to

mask network latencies associated with the process of assigning tasks to machines.

Bunching extends self-scheduling by assigning a set of tasks (a bunch) at once.

We have implemented Factoring [75], which computes the bunch size based on

the number of remaining tasks and the number of currently available machines.

Bunching has three bene�ts. First, it reduces the number of task assignments, and

hence, the associated overhead. Second, it overlaps computation with communica-

22

tion by allowing machines to execute the next task (of a bunch) while the results

of the previous task are on the network. Finally, bunching allows the program-

mer to write �ne-grain parallel programs that are automatically and transparently

executed in a coarse-grain manner.

2.2.4 Caching

When a machine picks up and executes a task, the shared-memory regions (i.e.,

virtual pages) that are accessed by the task are paged-in as needed. If any of

the shared-memory pages is modi�ed as the result of executing a task, the page

is marked dirty , and the modi�cations to all dirty pages are
ushed back to a

memory manager process at the completion of the task. As a result, a software

layer simulates a shared address space on machines that do not share physical

memory. However, simplistic implementations of this software layer will lead to

poor performance because of the high overhead associated with paging-in shared-

memory pages over commodity networks. Caching techniques help to amortize

this overhead by re-using paged-in regions whenever possible.

A parallel program for a metacomputer consists of alternating parallel and se-

quential steps. Hence, it is easy to associate virtual-step numbers with parallel

and sequential steps, where the step numbers increase with the beginning and

ending of each parallel step. When a machine pages-in a shared-memory region,

it immediately creates a twin copy of the page and tags it with the virtual-step

number. After completing a task, a machine compares shared-memory pages with

twin copies to compute the di�erences that resulted from executing the task. These

modi�cations are collated, tagged with the virtual-step numbers, and stored. The

23

structure of metacomputer programs allows an eÆcient caching technique as fol-

lows. Assume that the next task a machine is assigned to execute belongs to the

parallel step of the previously executed task. In this case, the stored twin copies

of shared-memory pages can be used to service page faults. Thus, within a par-

allel step, a machine will never need to retrieve a shared-memory page more than

once. Now assume that the next task a machine is assigned to execute belongs

to the next parallel step. In this case, the collated modi�cations are applied to

twin pages to re
ect the new state of shared memory. The updated memory can

be used to service page faults if and only if no other machine modi�ed the same

page. Hence, shared-memory pages are kept valid and re-used as long as possible.

An implementation of this caching technique is presented in Section 3.5.

2.2.5 Scheduling

A scheduling policy that assigns tasks accessing the same shared-memory pages

to the same machine can reap the bene�ts of the previously described caching

mechanism. Locality of reference can occur within a parallel step or across parallel

steps.

Consider a data-parallel program, for example, a program that was parallelized

by converting a for-loop into a parallel step. Within this parallel step, it is likely

that the data set accessed by neighboring tasks (i.e., tasks created from consecutive

iterations of the for-loop) accesses an overlapping set of shared-memory pages. This

is particularly true for �ne-grain tasks. For such cases, the scheduling policy is to

assign neighboring tasks to the same machine|thereby reducing the number of

page faults by taking advantage of the spatial locality of share data.

24

Now consider a larger program constructed by iterating over the parallel step

described above. In such a case, the task that represents the iteration i of the for-

loop will execute repeatedly and will access the same data set repeatedly. Thus,

the second instance of task i has an aÆnity to the machine that executed this

task before. For such cases, the scheduling policy reassigns continuations of the

same task to the same machine in order to reduce the number of page faults across

parallel steps|thereby taking advantage of the temporal locality of shared data.

25

Chapter 3

Calypso: Parallel Computing on

Networks of Workstations

3.1 Introduction

Commodity networks of workstations (NOWs) can be considered an almost \free"

computing platform for executing parallel programs, if time-shared with conven-

tional interactive users. For example, large numbers of workstations exist in almost

every organization, and as many studies [104, 127, 50, 101, 4, 39] have indicated,

up to 60% of these machines are idle at any given time and can be used for other

purposes. A platform composed of NOWs has been perceived by some as an inade-

quate substitute for a \real" parallel machine. Nevertheless, it is known that many

applications run quite well on NOWs, and this has contributed to the popularity

of systems such as PVM [59], MPI [67], Linda [33], and TreadMarks [2].

26

Challenges

Given that there are many compute-intensive problems that can execute on NOWs,

a valid question to ask is: why have programs that can make use of NOWs not

proliferated? A major reason is that the cost to harness NOWs is too high. That

is, although NOWs are good value in terms of raw computing power (meaning

hardware), the cost to harness this power (meaning software development and

execution) still remains high.

Traditional distributed-program development systems focus on providing a

toolkit, a set of function calls, or programming language constructs, but leave the

programmer with the complex task of \pulling-it-all-together" in the form of a

program. Such systems clearly aid program development, though inadequately.

As evident by the small number of widely available programs that execute on

NOWs, distributed-program development is too complex. This complexity results

from the tight coupling of programs and their execution platforms: after all,

programs execute on the available resources, however these available resources

are not known at the time of development. Thus, it is bene�cial if programmers

can view NOWs as a single virtual metacomputing resource. Programs should be

written for a clean and abstract model; and they should execute on networks of

workstations utilizing resources as they become available.

Two general issues have to be addressed to e�ectively use NOWs as a parallel

processing platform: making distributed application development easy enough for

ordinary (non-specialist) programmers, and making executing such applications

easy enough for ordinary (general) users. The challenging set of problems relat-

27

ed to providing a satisfactory solution for programmers is well understood. Such

problems include programmability to simplify program development, high perfor-

mance and scalability to make eÆcient use of resources, load balancing and fault

masking to free the programmer from unnecessary programming complexity.

Contributions

Calypso is a software system speci�cally to assist programmers in developing paral-

lel programs, and a runtime system to execute the programs on NOWs. Calypso is

the focus of this chapter. Chapter 4 presents ResourceBroker, a resource manage-

ment system to assist users in executing programs on NOWs. These two systems,

in unison, provide an end-to-end solution for metacomputing on NOWs. The work

on Calypso has resulted in several original contributions, which are summarized

below:

� Separation of Logical Parallelism from Physical Parallelism: The parallelism

expressed by a program should be independent of the parallelism provided by

the execution environment, which is tied to the availability of workstations.

Calypso separates the programming model from the execution environment.

Programs are developed for a shared-memory virtual machine but execute

on networks of dynamically changing workstations. The mapping between a

program's parallelism and the execution environment is transparent.

� Adaptivity and Fault Tolerance: The Calypso runtime system is able to adap-

t executing programs to use the available resources, which may change over

time. Calypso executions are resilient to failure. The Calypso runtime sys-

28

tem implements two-phase idempotent execution strategy that allows parts of

a computation executing on remote machines to fail, and possibly recover,

at any point without a�ecting the correctness of the computation. Unlike

other fault-tolerant systems, there is no signi�cant additional cost associat-

ed with this feature|in the absence of failures, the performance of Calypso

is comparable to a non-fault-tolerant system. The impact of adaptivity on

performance is discussed in Section 3.6.

� Dynamic Load Balancing: Calypso automatically distributes the work-load

depending on the dynamics of participating machines. The load balancing

mechanisms extend self-scheduling with eager scheduling. The result is that

faster machines perform more of the computation than slower machines. Fur-

thermore, because fast machines are never blocked while waiting for slower

machines to �nish their work assignments|fast machines can bypass the s-

lower ones|this feature speeds up computations executing on machines of

varying speeds.

� High Performance: The combination of aggressive shared-memory caching

techniques with adaptive scheduling policies are used to eÆciently implement

the shared-memory virtual machine on networks of workstation. While pro-

viding the features listed above, the experiments indicate that the overhead

is surprisingly small for medium- to coarse-grained computations.

� Ease of Programming: The programs are written in a language referred to as

Calypso Source Language (csl). csl is essentially C++, with an added con-

struct to express parallelism. The programming model is based on a shared

29

memory-model and is very easy to learn and use. Important aspects con-

tributing to the ease of programming are the elimination of data partitioning

and the need to specify how and when to move data between workstations.

Section 3.2 presents the syntax and semantics of csl.

Road Map

The rest of this chapter is organized as follows. Sections 3.2 and 3.3 describe

how to write and compile Calypso programs, respectively. The steps involved in

executing programs and the graphical user-interface are presented in Section 3.4.

The implementation is presented in Section 3.5. Experimental results, in partic-

ular, the performance of Calypso programs for dynamic execution environments

are presented in Section 3.6. Section 7.2 compares the Calypso system with other

related work.

3.2 How to Write Calypso Programs

It is best to think of a Calypso program as a sequential program with embedded

parallel steps. Sequential parts of a program, referred to as sequential steps, com-

monly perform initialization, I/O, user interactions, etc., whereas parallel steps

are generally responsible for computationally intensive segments of the program.

A parallel step is a new compound statement and it can be inserted anywhere

in the program. It is important to note that Calypso programs are written for a

virtual shared-memory parallel machine with an unbounded number of processors.

This virtual parallel machine is realized by the Calypso runtime system. Therefore,

30

any program, irrespective of the number of parallel tasks, can run to completion

on any number of machines.

A Calypso program basically consists of the standard C++ programming lan-

guage, augmented by four additional keywords to express parallelism. These four

key words are: parbegin, parend, routine, and shared. Shared memory seman-

tics are provided for global variables that are tagged with the keyword shared.

A parallel step starts with the keyword parbegin and ends with the keyword

parend. Within a parallel step, multiple parallel jobs may be de�ned using the

keyword routine. Completion of a parallel step consists of completion of all its

jobs in an indeterminate order.

Example Program: Parallel Hello World

First, a Calypso program will be described through an illustration. Figure 3.1

contains a parallel implementation of a HelloWorld program. The program consists

of three logical execution blocks: �rst is the sequential step up to the parbegin;

second is the parallel step enclosed within parbegin . . . parend; the rest of the

program constitutes the third execution block, a sequential step. Let us consider

the program in more detail.

� Notice the declaration of the global variable array in lines 5{7. The keyword

shared is used to mark the shared memory regions. The runtime system

guarantees data coherency (across multiple machines) only for shared regions

of memory. Therefore, variables shared between two or more jobs, or between

parallel and sequential steps, must reside in the shared region.

31

== �le: helloWorld.csl

#include <ioastream.h>

#include <calypso.H>

const int size = 100;

shared f == declare the DSM region 5

int array[size];

g

void calypso main(int, char �[]) f

calypso spawnWorker("sunra"); == start three worker processes 10

calypso spawnWorker("coltrane");

calypso spawnWorker("mingus");

for (int i=0; i<size; i++) == initialize the array

shared�>array[i] = �1; 15

int numberOfJobs; == get the number of concurrent jobs

cout << "How many jobs (at most 100)? ";

cin >> numberOfJobs;

20

parbegin == in parallel, initialize the array elements

routine[numberOfJobs](int totalJobs, int myId) f

shared�>array[myId] = myId;

g

parend; 25

for (i=0; i<numberOfJobs; i++)

cout << "Hello World from job number " << shared�>array[i] << endl;

g

Figure 3.1: Parallel Hello World in Calypso.

32

� Analogous to the function named main in standard C++, Calypso programs

begin by executing the calypso main function, as in line 9.

� A Calypso program can spread its execution across multiple machines on

a network. This is done by running worker processes on each remote host.

Three methods are provided for spawning worker processes: Section 3.4 de-

scribes an interactive gui, and Section 3.2 contains two library functions

that can be used for this purpose. In lines 12{14 of this example, the library

function calypso spawnWorker() is used to spawn workers on three di�erent

machines, named sunra, coltrane, and mingus.

� In lines 14{15, the shared array is initialized with �1. Notice how the shared

variable, in this case the array variable, is dereferenced with shared->. This

is a general requirement. In lines 18{19, the user enters the number of parallel

jobs, and this value is stored in the numberOfJobs variable. The program,

thus far, is a standard C++ program.

� Lines 21{25 de�ne a parallel step with only one routine. A parallel step begins

with parbegin and ends with parend keywords. There can be one or more

routine statements within a parallel step, and each routine statement de�nes

zero or more parallel jobs. The statement routine[numberOfJobs] causes

the expression inside hard-brackets to be evaluated at runtime and creates

the speci�ed number of jobs. This means that numberOfJobs syntactically

identical jobs with identi�cations (Ids) 0 through numberOfJobs � 1 will be

created. The value of the expression along with the Id of each job are passed

as formal parameters to each job. In our example, the formal parameters are

33

totalJobs and myId. In line 23, the jobs write their Id at an appropriate

index of array.

� The �nal sequential steps in lines 27{28 produce the following output:

Hello World from job number 0

Hello World from job number 1

. . .

The Calypso Source Language

The programming language for Calypso is called the Calypso Source Language,

or csl. csl is standard C++ with minor enhancements and several features that

have certain structural constraints. This section describes each feature and each

constraint in detail.

File Extension: csl programs use .csl as their �le extension. The Calypso

preprocessor reads in a csl program, expecting the .csl �le extension, and writes

a standard C++ program into a �le with the same pre�x name, but with a .C

extension. For example, if foo.csl is input, the preprocessor will generate foo.C.

Calypso Header: Every csl program must include calypso.H.

Main Function: As previously mentioned, the execution of a Calypso program

begins with a function named calypso main. This is analogous to C++'s main

function.

34

Shared Variables: The Calypso runtime system provides the illusion of a shared-

memory, parallel machine on a network of workstations. Shared-memory semantics

is only provided for shared variables, i.e., variables that are tagged with the shared

keyword. This implies that all (non-temporary) variables accessed inside parallel

steps must be declared as shared. The shared memory coherence model is described

on page 38.

The keyword shared which is used to declare a set of variables as shared, has

the following syntax:

shared f optional member list g

For example, the following code fragment declares integers i and j, and the

character array buffer as shared memory.

shared f

int i, j;

char bu�er[MAX STRING LENGTH];

g

Parallel Steps: A parallel step is a new compound statement that can be inserted

anywhere in the program, except inside another parallel step. (Extensions to, and

subsequent systems based on Calypso that supporting nested-parallel steps are

brie
y mentioned in Section 8.1). A parallel step starts at the keyword parbegin

and ends with the keyword parend. There can be one or more routine statements

de�ned within a parallel step. A parallel step generally has the following form:

35

parbegin

routine [integer�expr] [&foo1 , &foo2] (int num, int id) f

== routine body 1

g

routine [integer�expr] (int num, int id) f 5

== routine body 2

g

routine f

== routine body 3

g 10

parend (boolean�expr);

To better understand parallel steps, consider the events that occur as the re-

sult of the �rst routine of the above code segment. Logically, for each routine

statement the following events occur.

� The (positive integer) expression integer-expr is evaluated and a total of

integer-expr jobs are created and await execution. Each job will execute

the same sequential code segment represented by routine-body.

� Jobs have access two arguments that have the same semantics as formal

arguments of a function. In the above example, variables are called num and

id, respectively. The variables are initialized to the number of processes

created for the speci�c routine (i.e. integer-exp) and to the job Id. Job Ids

are numbered: 0, 1, . . . , integer-exp � 1.

Intuitively, the idea behind the num and id is for a job to control its behavior

based on the number of jobs the routine expands to, and the current job Id.

� Before executing the job with Id j, 0 � j � integer-exp � 1, the function

36

foo1(int, int) is called (with integer-exp and j as actual arguments)

and is executed to completion. Similarly just after job j completes, the

function foo2(int, int) is called with integer-exp and j as arguments,

and is executed to completion. In essence, foo1() and foo2() behave as

initializer and �nalizer of jobs. The rationale behind supporting initializers

and �nalizers is to provide a general mechanism where by programmers can

implement associated commutative operators. Examples of such operators

are reduction, min/max, and sum operations.

The parallel step completes when either (1) all the jobs of a parallel step execute

to completion, or (2) the boolean-expression evaluates to true, and then the

execution continues with the �rst statement after the parend.

It should be noted that in the above example, the �rst routine statement

illustrates the most general form; the second and third routine statements

are special cases (syntactically simpler) and are handled by the preprocessor.

At preprocessing time, the parallel step syntactically expands to the following:

37

parbegin

routine [integer�expr] [&foo1 , &foo2] (int num, int id) f

== routine body 1

g

routine [integer�expr] [void , void] (int num, int id) f 5

== routine body 2

g

routine [1] [void , void] (int, int) f

== routine body 3

g 10

parend (boolean�expr);

Shared Memory Programming Model: Within the body of a routine state-

ment, the following applies:

� Both static and dynamic local variables can be accessed.

� Global shared variables can be accessed with the following restriction: within

a given parallel step, any variable can be written by at most one job and

concurrently be read by any number of jobs. That is, access to the global data

is a generalization of Concurrent Read Exclusive Write (CREW) that allows

a write operation to coexist with multiple read operations. Furthermore,

each job executes in the (program) context in which the job was created.

Thus, read operations of unmodi�ed data return the value of variables at the

time the parallel step began; results of write operations become visible at the

completion of the parallel step.

38

� No other external e�ects are allowed. For instance, I/O statements are not

allowed.

Library Functions

Two Calypso library functions can be called. Their purpose is to give the program

the ability to request, by name or number, other host machines to join in the

computation. The function prototypes are de�ned in calypso.H and are listed

below.

calypso spawnWorker(char �host);

calypso spawnWorker(int num);

The calypso spawnWorker(char *host) function call simply starts a shell on

the (possibly remote) host machine, and spawns a worker process within the shell.

The calypso spawnWorkers(int num) function requires the existence of a

.calypsorc �le in users' home directories. This function selects num names from

the list machines' names in the .calypsorc �le, and spawns worker processes on

each of the machines.

3.3 How to Compile and Link Calypso Programs

A Calypso program may be written in one or more �les with the .csl extension. A

preprocessor translates those �les into standard C++ programs stored in �les with

the .C extension. Each of the �les can be compiled separately, and then linked

with the Calypso library to produce an executable program.

For example, the following instructions preprocess, compile, and then link the

39

Figure 3.2: Screen snapshot of the Calypso Graphical User Interface

helloWorld.csl program seen earlier:

calypsopp helloWorld

g++ �c helloWorld �I$CALYPSO ROOT=include

g++ �o helloWorld helloWorld.o �L$CALYPSO ROOT=lib �lcalypso

The resulting program contains a runtime system that can adapt the program

execution to use any number of machines made available to it. Furthermore, the

runtime system balances the load among participating machines and can mask the

failure of remote machines.

40

3.4 How to Run Calypso Programs

The simplest method of running a Calypso program is to submit the program to

ResourceBroker for execution. ResourceBroker is a resource manager for dynamic

allocation of resources to adaptive programs, and it is described in Chapter 4.

The Calypso Graphical User Interface (cgui) provides an alternative method

of running programs. It has an easy-to-use interface for specifying the calypso

program, starting its execution, monitoring its progress, viewing the utilization of

other computers on the network, and using them in the computation. The main

window of cgui is illustrated in Figure 3.4. In addition to entering the program

name and optional arguments, users can use this window to select any of the

following options:

� Run in xterm: runs the Calypso program within an xterm window

� Timer: measures program execution time

� Local worker: starts a worker process on the workstation running the Ca-

lypso program

� Bunch jobs: allocates a group of several consecutive jobs to each worker

(see Section 2.2.3 on page 22)

� Smart scheduling: scheduler attempts to capitalize on spatial and temporal

locality of shared data in assigning jobs to worker processes (see Section 2.2.5

on page 24)

� Online update: speci�es whether the shared data is updated in real time

(online) or once at the end of each parallel step

41

Figure 3.3: Screen snapshot of the Remote Execution Tool

The cgui also features buttons to activate the Remote Execution Tool and the

Execution Monitoring Tool.

Remote Execution Tool: The Remote Execution Tool is illustrated in Figure 3.4.

With this tool, other computers on the network can be selected individually to

participate in the computations. The utilization of other computers on the network

can also be viewed. The nice gauge is used to set job priorities that can range from

0 to 20, where 0 is the highest priority. Other machine names, not included in the

.calypsorc �le, can be added in the hostname to add �eld.

42

Figure 3.4: Screen snapshot of the Execution Monitoring Tool

Execution Monitoring Tool: Progress of a running program can be monitored

by the Execution Monitoring Tool, which is illustrated in Figure 3.4. In this

graphical tool, the assigned jobs are indicated as red lines. These lines change to

blue when the job is completed.

3.5 Implementation

Preprocessing

A preprocessor takes a Calypso program and translates it into a standard C++

program. During the preprocessing stage the shared-data region is wrapped in

a structure, and sequential code segments that de�ne routines are stripped and

wrapped into functions. Furthermore, the parbegin, parend, and routine state-

ments are replaced with calls to functions implemented by the Calypso library.

43

shared f

int a[100];

char b[50];

g

void calypso main(int ac, char �av[]) f 5

parbegin

routine[100] (int num, int id) f shared�>a[id] = id; g

routine[50] (int n, int i) f shared�>b[i] =
\0
; g

parend;

g 10

(a) Pseudo program

typedef struct f

int a[100];

char b[50];

g Shared;

Shared �shared = new Shared; 5

void calypso main(int ac, char �av[]) f

calypso pt initialize(); == replaces parbegin

calypso pt addJob(100, &f1 0 0); == replaces routine[100] (int num, int id)

calypso pt addJob(50, &f1 1 0); == replaces routine[50] (int n, int i)

calypso manageParallelJobs(); == two lines to replace parend 10

calypso pt
ush();

g

static void f1 0 0 (int num, int id) f shared�>a[id] = id; g

static void f1 1 0 (int n, int i) f shared�>b[i] =
\0
; g

(b) Preprocessed pseudo program

Figure 3.5: Relevant sections of a Calypso program before and after preprocessing.

44

These transformations are illustrated in Figure 3.5.

Execution Overview

A typical execution of a Calypso program consists of a central process, called the

manager, and one or more worker processes, called workers. These processes can

reside on a single machine or they can be distributed on a network. In particular,

when a user starts a Calypso program, in reality, she is starting a manager. Man-

agers immediately fork a child process that executes as a worker. It is important to

note that managers and workers are executions of the same program image, and the

memory layout of both processes are identical. A program runs as a worker when

it is started with the -calypso-worker <host> <port> arguments; otherwise, it

runs as a manager.

The manager is responsible for the management of the computation as well as

the execution of sequential steps. The current Calypso implementation only allows

one manager, and therefore it does not tolerate the failure of this process.

The computation of parallel jobs is left to the workers. There can be zero or

more workers present at any one time, but at least one active worker is needed for

a parallel computation to proceed; otherwise the computation is suspended, until

a worker appears.

In general, the number of workers and the resources they can devote to parallel

computations can dynamically change in a completely arbitrary manner, and the

program adapts to the available machines. In fact, the arbitrary slowdown of

workers due to other executing programs on the same machine, failures due to

process and machine crashes, and network inaccessibility due to network partitions

45

are tolerated. Furthermore, workers can be added at any time to speed up an

already executing system and to increase fault tolerance. Arbitrary slowdown of

the manager is also tolerated; this would, of course, slow down the overall execution

though.

Manager Process

The manager is responsible for the management of the computation. This man-

agement includes the following services: scheduling service, memory service, and

computing service.

Scheduling Service

Upon reaching a parallel step, the manager calculates the number of jobs each

routine de�nes and populates a dispatch table. A simpli�ed version of the dispatch

table for the program fragment in Figure 3.5 on page 44 is shown below:

Step Address Instances Id Done Assignments

2 &f1 0 0 100 0 yes -

2 &f1 0 0 100 1 no 2

.

2 &f1 1 0 50 0 no 4

2 &f1 1 0 50 1 no 1, 3

.

To explain the entries, consider the last (non-empty) row of the table. The

�elds indicate that: (1) the program is executing step number 2; (2) the code for

46

this job resides at (function) address &f1 1 1; (3) the routine created 50 instances

of this job; (4) this is job number 1; (5) the job has not completed; and (6) workers

1 and 3 are currently executing this job.

The dispatch table is used to track the progress of the parallel step and to

schedule jobs for workers. As previously stated, jobs are assigned to workers based

on a self-scheduling policy. The manager waits until a worker requests a job, and

then gives the worker an un�nished job (or a set of un�nished jobs as explained

below) to execute.

Notice that the manager has the option of assigning a job repeatedly until it

is executed to completion by at least one worker. This is referred to as eager

scheduling as de�ned earlier in Section 2.2.1. Extending self-scheduling with eager

scheduling provides the following bene�ts:

� As long as at least one worker does not fail continually, all jobs will be

completed, if necessary, by this one worker.

� New workers are easily integrated into the computation, even in the middle

of a parallel step.

� A slow worker asks for jobs less frequently, and thus does less work.

� jobs assigned to workers that later failed are automatically reassigned to other

workers; thus crash and network failures are tolerated.

� Because workers on fast machines can re-execute jobs that were assigned to

slow machines, they can bypass a slow worker to avoid delaying the progress

of the program.

47

In addition to eager scheduling, Calypso's scheduling service implements several

other scheduling techniques for improved performance. Bunching (as introduced

in Section 2.2.3 on page 22) is used to mask network latencies associated with the

process of assigning jobs to workers. Bunching extends self-scheduling by assigning

a set of jobs (a bunch) to each worker at once. This is implemented by sending

the worker a range of job Ids in each assignment. The overhead associated with

this implementation is one extra integer value per job assignment message, which

is negligible. The bene�ts of bunching are described in Section 2.2.3.

Furthermore, the scheduling service attempts to assign jobs to workers so as

to minimize (shared) page-faults. For example, within a parallel step it seems

likely that the data set accessed by neighboring jobs (i.e. with consecutive job

Ids) are mapped to an overlapping set of virtual pages. This is particularly true

for data-parallel programs. Calypso's scheduling service assigns neighboring jobs

to the same worker|thereby reducing the number of page-faults by taking advan-

tage of the spatial locality of share data. A similar technique is used to reduce

the number of page-faults across parallel steps|thereby taking advantage of the

temporal locality of shared data. These techniques are implemented by Calypso's

scheduling service and are described in Section 2.2.5.

Memory Service

Calypso implements a software-based distributed shared memory on NOWs for a

well de�ned CREW programming model. Notice that multiple and possibly partial

executions of jobs caused by eager scheduling will lead to an inconsistent memory

state without special care. Furthermore, eÆcient program execution on commodity

48

networks, with relatively high latency and low bandwidth such as TCP/IP on

Ethernet, relies on eÆcient caching techniques. The implementation of the memory

service addresses these issues as follows.

A Calypso program consists of alternating parallel and sequential steps. A

virtual-step number is associated with each of alternating steps and the numbers

are incremented with the beginning and ending of each parallel step. A manager

constructs and maintains a vector of timestamps, LMT, to indicate the last virtual-

step number a shared data page was modi�ed. This vector is initialized with zeros

before a manager executes the main body of a Calypso program which is virtual-

step number one. The speci�c use of the LMT vector is described in the next

section.

A manager write-protects (using a Unix system call mprotect()) the shared

pages|the pages on which all and only shared variables are located|before exe-

cuting sequential steps. During a sequential step if a manager attempts to write to

a shared page, the generated (Unix SIGSEGV) signal is caught and handled by the

manager itself. The signal handler �rst updates the LMT vector then unprotects

the shared page that caused the signal. This mechanism serves to maintain correct

entries in the LMT vector at all times. Subsequent write operations to the same

page will proceed undisturbed and with no overhead.

Before each parallel step, a manager creates a twin copy of the shared pages and

unprotects the shared region. The memory management service then waits until a

worker either requests a page or reports the completion of a job. The manager uses

the twin copy of the shared pages to service worker page requests. The message

that workers send to the manager to report the completion of a job also contains the

49

modi�cations that resulted from executing the job. Speci�cally, workers logically

bit-wise xors the modi�ed shared pages before and after executing the job, and

send the results (di�s) to the manager. When a manager receives such a message, it

�rst checks whether the job has been completed by another worker. If so, the di�s

are discarded, otherwise, the di�s are applied (by an xor operation) to manager's

memory space. Notice that the twin copies of the shared pages, which are used to

service worker page requests, are not modi�ed. The �nalizer associated with the

completed job is then executed, so that the �nalizer executes in the context of the

new updates. The memory management of a parallel step halts once all the jobs

have run to completion, at which point the LMT vector is updated to re
ect the

changes. The program execution then continues with the next sequential step.

It is important to reiterate the bene�ts of this implementation scheme. First, it

provides idempotent (i.e. exactly-once) memory semantics even in the presence of

multiple job executions resulting from eager scheduling. The collating technique

(bu�ering di�s, accepting the �rst update and discarding others) in fact imple-

ments a two-phase idempotent execution strategy as de�ned in Section 2.2.2. As a

consequence, program correctness is assured in spite of the multiplicity of execu-

tions. Second, by exploiting the structure of a CREW programming model, logical

coherence and synchronization are both provided while false sharing is avoided.1

Notice that di�erent jobs can read and modify di�erent regions of the same shared

page of memory without causing page-shuttling. Third, jobs execute in the (pro-
1False sharing is when two concurrent processes need to access di�erent partitions of a given page.

Distributed shared-memory system needs to move this shared page back-and-forth between these two

processes, causing what is called page shuttling.

50

gram) context in which the jobs were created since the memory modi�cations are

not made visible until the completion of the parallel step. Hence, the �nal result

is independent of the execution order. Finally, because jobs execute in isolation

and maintain the proper parallel composition property, as de�ned by Chandy et

al. [37], it is easy to prove the correctness of Calypso programs.

Computing Service

In addition to executing the sequential steps, the manager is responsible for exe-

cuting the initializers and �nalizers of jobs as previously described.

Worker Process

We now turn to the implementation of worker processes. Recall that workers are

responsible only for executing jobs of parallel steps.

A worker establishes a TCP/IP connection to the manager at instantiation

and maintains this connection throughout the computation. A worker repeatedly

contacts the manager for jobs to execute. The manager sends the worker an as-

signment (a bunch of jobs) speci�ed by the following parameters: the address of

the function, the number of instances of the job, and a range of job Ids. The work-

er now executes this assignment for each of the job Ids assigned to it, as follows.

The worker �rst access-protects the shared pages, and then calls the function that

represents the current job. During this execution, the �rst time a worker accesses a

protected shared variable a (Unix SIGSEGV) signal is raised (i.e. page-faults). The

signal handler sends a request and fetches the appropriate page from the manager,

installs it in the worker's process space, and unprotects the page for future use so

51

that subsequent accesses to the same page will proceed undisturbed. If the signal

was raised because of a read operation, the computation proceeds; otherwise, for

write operations the worker creates a twin copy of the page before proceeding.

The execution of the function proceeds to completion. Then the worker identi�es

all the modi�ed shared pages and sends the di�s|which are xor of twin pages

(which contains the before values) and the modi�ed pages|to the manager. The

worker then starts executing the next job in the assignment. Notice how bunching

overlaps computation with communication by allowing a worker to execute the

next job while the di�s are on the network heading to the manager.

Two optimizations have been implemented that improve the performance of

Calypso computations, in particular, caching and prefetching.

Caching: Managers send the LMT vector to workers the �rst time a worker is

assigned a job in a new parallel step. This vector consists of one integer for

each shared page and it is piggybacked on a job assignment, hence, the associated

network overhead is negligible. In addition to receiving manager's LMT vector, each

worker constructs and maintains a similar vector that re
ects, for each shared data

page, the last virtual-step the worker had read and modi�ed it. The LMT vector

that workers receive from the manager contains the virtual-step number of the

(program) context at which jobs should execute. The LMT vector that is constructed

and maintained by each worker contains, for each shared page, the latest virtual-

step number that the page is valid (i.e. not outdated) for that worker. Thus on

page-faults, a worker can compare the two values for the page that caused the fault

and locally determine whether it needs to get a fresh and updated copy from the

52

manager or use its local (cached) copy. So for instance, if a shared page was last

modi�ed in step number 4, it was read by a worker in step 6, and that worker is

working on a job in step 8, then the worker does not fetch the page but accesses

its cached copy.

This caching strategy is a low cost (almost free) strategy that produces sig-

ni�cant performance bene�ts. Notice that shared pages that have paged-in by

workers are kept valid as long as possible without a need for an invalidation pro-

tocol. Modi�ed shared pages are re-fetched only when necessary. Furthermore,

read-only shared pages are fetched by a worker at most once and write-only shared

pages are never fetched. As a result, programmer does not declare the type of

coherence or caching technique to use, rather, the system dynamically adapts. In-

validation requests are piggybacked on work assignment messages and bear very

little additional cost.

Prefetching: Prefetching refers to obtaining a portion of the data before it is

needed, in the hope that it will be required sometime in the future. Prefetching

has been used in a variety of systems with positive results. A Calypso worker

implements prefetching by monitoring its own data access patterns and page-faults,

and it tries to predict future data access based on past history. The predictions

are then used to pre-request shared pages from the manager. Depending on the

regularity of a program's data access patterns, prefetching has shown positive

results.

53

3.6 Experiments

A number of Calypso programs, including pattern matching, graphics, image pro-

cessing, computational physics, scienti�c, and �nancial applications have been im-

plemented. This section presents the performance the performance of several Ca-

lypso programs and compares the results with similar programs developed using

other parallel programming systems.

We are interested in the behavior of a Calypso program on a network of worksta-

tions, which represents the \real world." Hence, the same program was executed

several times in diverse and dynamic settings. In particular, experiments were

conducted to analyze the following characteristics of Calypso programs:

1. The performance in an ideal execution environment when there are no fail-

ures, slow-downs, nor any need for load balancing or fault tolerance.

2. The contribution of load-balancing mechanisms to programs executing on

various combinations of fast and slow machines.

3. The eÆciency with which failures are masked, i.e., adapting to failures.

4. The eÆciency of integrating additional machines into a running computation,

i.e., adapting to a larger set of resources.

5. The ability of the runtime system to dynamically adapt a program execu-

tion to environments where some machines either die, become available, or

suddenly slow at various times.

54

Machine Pro�les

In order to experiment with heterogeneous machine speeds, ten machine pro�les

were de�ned. A pro�le determines a machine's behavior. Machine pro�les are

graphically illustrated in Figure 3.6 and further described below.

� Machine A is a perfect fast machine. It makes 100% of its CPU available

to Calypso computations. This is a machine that does not fail or slow down

during program executions. Machines with pro�le A model non-faulty work-

stations that are dedicated to parallel computations.

� Machine B is a non-faulty machine that is 50% slower than machines of

pro�le A. The slowdown was achieved by running a high-priority background

process; the slowdown was veri�ed by ensuring that executions of a standard

benchmark took 200% longer to execute with the background process running.

Machines with pro�le B model slower, and maybe older, workstations.

� Machines C, D, and E are faulty machines that crash after 100, 200, and 300

seconds, respectively, from the start of a Calypso computation. This is done

by killing the Calypso worker process manually at corresponding times.

� Machines F, G, and H are not available for Calypso programs at the begin-

ning of a computation, but become available at a later time. Machines F, G,

and H become available after 300, 200, and 100 seconds have elapsed form the

start of the computation, respectively. This is achieved by starting Calypso

worker processes manually at the corresponding times.

55

Machine C

200100 300

1.0

0.5
time

availability

Machine I

200100 300

1.0

0.5
time

availability

Machine J

200100 300

1.0

0.5
time

availability

Machine A

200100 300

1.0

0.5
time

availability

Machine B

200100 300

1.0

0.5
time

availability

Machine G

200100 300

1.0

0.5
time

availability

Machine D

200100 300

1.0

0.5
time

availability

Machine E

200100 300

1.0

0.5
time

availability

Machine F

200100 300

1.0

0.5
time

availability

1.0

0.5

Machine H

200100 300

time

availability

Figure 3.6: Pro�les of worker machines.

56

� Machine I is a transient machine. For the �rst 100 seconds, 100% of its CPU

cycles are made available for a computation, it then crashes and remains

down for 200 seconds, at which time it recovers and continues to use 100% of

its CPU cycles for the duration of the computation.

� Machine J models a shared workstation with
uctuating speed. For the �rst

100 seconds a computation, 100% of the CPU cycles of a machine with pro�le

J is made available to the computation, then 50% for the next 200 seconds,

and 100% for the duration of the computation.

At least one machine with pro�le A was used in each of the experiments. That

machine ran a Calypso manager as well as a worker. Other participating machines

ran workers.

Cost Model

This section describes the cost model used to report the performance experiments.

Each machine with pro�le P is de�ned by the function availability
P
. Availability is

a function of time and depicts the fraction of the CPU resources made available to

a computation. Thus, the availability of 1 denotes a machine that is fully available,

and 0 denotes a machine that is unavailable. Then, if a computation lasts for time

T , the work contributed by a machine is
R
T

t=0 availabilityP dt. The work contributed

by a machine is illustrated by the area of the shaded region for the time interval

[0; T] in each of the graphs in Figure 3.6.

In general, there will be several machines in a computation, say n machines

with pro�les, P1, . . . , Pn, respectively. If a computation lasts for time T , then the

57

total work is:

W =
nX
i=1

Z
T

t=0
availability

Pi
dt:

The work W is the \charge" incurred by a computation for having machines avail-

able. Since machine availability is an external function, a computation is charged

whenever a machine is available, whether the machine is e�ectively used or not.

Given this charging method, it is obvious that the overhead includes the network

time, the time wasted by redoing computations, the time taken to move data be-

tween workers and the manager, the time spent by the operating system, and other

system activities.

Given work W , one can compute the number of equivalent perfect machines

available to a computation. This is computed by:

Number of Equivalent Perfect Machines =
W

T
:

The interesting metric for users is the speedup of a parallel execution with

respect to a sequential execution. The achieved speedup must be compared with

the highest possible theoretical speedup given the same set of machines. In the

absence of super-linear speedups, the number of equivalent perfect machines (as

calculated above) is the upper bound on the obtainable speedup.

We now turn to computing the speedup of a parallel execution with respect to

a sequential execution. The time it takes a sequential program to execute on a

machine with pro�le A is referred to as Tsequential. If a parallel program executes

in time T , then for that execution the speedup is given by:

Speedup =
Tsequential

T
:

58

Of course, as stated above:

Tsequential

T
�

W

T
:

The closer the speedup is to the number of equivalent perfect machines, the

better the performance of the system. To normalize speedup, eÆciency, which is

another measure of performance is used. EÆciency is de�ned as:

EÆciency =
Wsequential

W
:

EÆciency ranges between 0 and 100%: a value of 100% means that the execution

achieved optimal speedup with respect to the best achievable. EÆciency measures

how well resources that \happened to be available" are used in a computation.

Execution Environment

All experiments, unless noted, were conducted on up to 17 identical 200 MHz

PentiumPro machines running Linux version 2.0.3, and connected by a 100Mbps

Ethernet through a non-switched hub. The network was isolated to eliminate out-

side e�ects. In this environment, copying a memory page (4096 bytes) takes 5.4�s,

bit-wise xoring two pages (creating di�s) takes 14.5�s, changing the protection of

a page (using mprotect()) takes 4.4 �s, handling a (Unix SIGSEGV) signal takes

11.8 �s, round trip latency of a 32 byte message (a typical control message) takes

155.0 �s, and round trip latency of a 4096 byte message (a page) takes 881.4 �s.

Reported times are \wall clock" elapsed times, and not CPU or virtual times.

It should be stressed that at the beginning of the measurements, workers did not

have the shared data, and that at the end of the measurements, the manager

had received and processed the modi�ed data. Thus, overheads associated with

59

0

200

400

600

800

1000

1200

Seq 2 4 6 8 10 12 14 16

number of machines

tim
e

(s
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

ef
fic

ie
nc

y

Calypso PLinda

Calypso PLinda

Figure 3.7: Scalability comparison of Calypso and PLinda biological pattern discovery

programs.

networking, swapping, and updating shared data regions are included in the mea-

surements.

3.6.1 Adapting to Failures

The �rst set of experiments presents the performance of Calypso and Persistent

Linda (PLinda) [77] programs and compares how they can tolerate failures.

A biological pattern discovery program is used for this set of experiments.

The program traverses a directed acyclic graph to �nd commonly occurring sub-

sequences in sets of protein sequences. The parallelism is accomplished by con-

currently traversing di�erent paths of a graph. The PLinda program [89] imple-

mented load balancing with an adaptive master process; the Calypso program was

60

a straightforward parallelization of the sequential program without explicit load

balancing|the runtime system was responsible for load balancing. The results of

executing these programs on 1 to 17 machines are presented in Figure 3.7.

The x-axis in Figure 3.7 shows the number of machines used and the label

\Seq" indicates the execution of a sequential C++ program; the left y-axis reports

the execution times; the right y-axis reports the execution eÆciency as compared

with the sequential run. The experiments show that a sequential program runs

approximately 10% faster than a Calypso program on one machine. However, the

Calypso program scales well with the number of machines as it is able to maintain

its eÆciency and outperforms the PLinda program by nearly 20% on 16 machines.

Furthermore, the experiments illustrate that the load balancing provided by Calyp-

so's runtime system is able to outperform the explicit load balancing implemented

by the PLinda program.

PLinda adds fault tolerance to Linda programs by using light-weight transac-

tions, whereas Calypso uses the combination of eager scheduling and two-phase

idempotence execution strategy to mask failures. To measure the impact of dif-

ferent mechanisms used for fault tolerance, the same biological pattern discovery

programs were executed on 16 machines, but in each run a process was forced to

fail anywhere from 1 to 8 times. A failure consisted of crashing the process and

immediately starting another process. The results are illustrated in Figure 3.8.

The experiments show that the Calypso program is able to tolerate 8 process

crashes and integrate 8 new processes into a running program with only 10% eÆ-

ciency degradation. Note that PLinda's light-weight transactions tolerate crashes

by detecting failed processes. However, eÆcient detection of failed processes is

61

0
10

20
30
40
50

60
70
80

90
100

0 1 2 3 4 5 6 7 8
number of failures

tim
e

(s
)

0.4

0.5

0.6

0.7

0.8

0.9

1

ef
fic

ie
nc

y

Calypso PLinda

Calypso PLinda

Figure 3.8: Comparison of Calypso and PLinda biological pattern discovery programs in

the presence of failures.

not possible for all cases, e.g., in the case of network failures. Because of eager

scheduling, Calypso is able to mask failures without detecting them, while being

more eÆcient than light-weight transactions.

3.6.2 Adapting to Non-uniform Computing Speeds

The next set of experiments examines how a Calypso program performs when the

computing speeds of participating machines are di�erent, and compares the results

with programs developed using CVM version 0.5 [128] and BSPlib version 1.4 [69,

70].

A standard matrix multiplication program that multiplies two 1024 � 1024

matrices �lled with pseudo-random numbers using the trivial cubic time algorithm

62

0

10

20

30

40

50

60

70

80

90

Seq
: 2 4 6 8 10 12 14 16

number of machines

tim
e

(s
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

ef
fic

ie
nc

y

C V M BSPLib Calypso
C V M BSPLib Calypso

Figure 3.9: Scalability comparison of Calypso, CVM, and BSPlib matrix multiplication

programs.

was used for these experiments. The Calypso program was parallelized using 1024

parallel tasks (independent of the number of machines it ran on). The CVM

and BSPlib programs were parallelized using k processes, where k was set to the

number of machines used in each execution; it should be noted that setting k

equal to the number of machines produced the best performance for CVM and

BSPlib programs. The results of executing these programs on 1 to 16 machines

are presented in Figure 3.9.

Figure 3.9 shows that the Calypso program outperforms both CVM and BSPlib

implementations. The BSPlib program does not scale well beyond 8 machines

because of network contention. This network contention seems to have been caused

by the implementation of the BSPlib communication library. Given that CVM is

63

0
10
20
30
40
50
60
70
80
90

(1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8)

machines (100%, 50%)

tim
e

(s
)

0

0.2

0.4

0.6

0.8

1

ef
fic

ie
nc

y

C V M BSPLib Calypso
C V M BSPLib Calypso

Figure 3.10: Comparison of Calypso, CVM, and BSPlib matrix multiplication programs

running on a combination of fast and slow machines.

designed to demonstrate novel mechanisms for performance, whereas Calypso is

designed to demonstrate novel mechanisms for adaptivity and fault tolerance, it is

interesting to see that the Calypso program scales better than the CVM program.

This is because bunching overlaps computation with communication, which results

in computations continuously using the network (sending the results of �ne-grained

tasks) and, hence, better utilization of the network bandwidth.

The second set of experiments presents the performance of the same set of pro-

grams when the participating machines have di�erent processing speeds. Specif-

ically, the programs execute on 1 to 8 machines pairs, where each machine pair

consists of one machine of pro�le A (perfect machine) and one machine of pro�le

B (50% slower than the frist machine). The results are presented in Figure 3.10,

64

0
10
20
30
40
50
60
70
80
90

4

4+
25

%

4+
50

%

4+
75

% 5

5+
25

%

5+
50

%

5+
75

% 6

machines

tim
e

(s
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

ef
fic

ie
nc

y

C V M BSPLib Calypso
C V M BSPLib Calypso

Figure 3.11: Comparison of Calypso, CVM, and BSPlib matrix multiplication programs

running on non-uniform machine speeds.

and illustrate that for CVM and BSPlib programs, slower machines dictate the

progress of computations. In contrast, the combination of self scheduling and ea-

ger scheduling allows slow machines to be used e�ectively in Calypso computations,

while ensuring that they do not slow down computations.

The third set of experiments extends the previous experiments by further look-

ing at the e�ects of non-uniform machine speeds. Speci�cally, the programs were

executed on 4, 5, and 6 machines, but at most one of the machines was signi�-

cantly slower than the rest. The results are shown in Figure 3.11. In the �gure,

the label 5 indicates the executions of 5 machines with uniform speed; and labels

5+25%, 5+50%, and 5+75% represent the executions on 6 machines where one

of the machines was slowed down to 25%, 50%, and 75% the speed of the other 5

65

machines, respectively. The results indicate an addition of one slow machine can

signi�cantly slow down CVM and BSPlib computations, but this does not occur

for Calypso computations. As expected, Calypso computations are eÆcient in us-

ing slow machines (compare the eÆciencies of Figures 3.9 and 3.11), which results

in predictable performance.

3.6.3 Adapting to Execution Environments

At the time of program development, a developer of a parallel program may not

know the exact number of machines that will be used to execute the �nal program.

Hence, it is important for programs to adapt to the number of machines they

will execute on. This set of experiments examines the bene�ts of this type of

adaptation. In particular, performance of Calypso and PVM [59] implementations

of a ray tracing program using di�erent degrees of parallelism and running on

di�erent numbers of machines is compared.

Ray trace is a graphical application for rendering and visualizing complex

scenes. It implements a well known technique called ray tracing [49], which renders

a scene (as seen) from a speci�c viewpoint. The algorithm \shoots" light rays from

the position of the eye and traces their paths to compute the color and the bright-

ness of the scene's pixels. There is obvious parallelism, and degrees of parallelism,

across the rays shot through di�erent pixels.

A publicly available sequential ray tracing program [41] was used as the starting

point, then ported to Calypso and PVM. A 512 � 512 image containing only a

single sphere was traced in every experiment. Figure 3.12 reports the eÆciencies

of Calypso and PVM implementations using 4 to 512 parallel tasks and running

66

1 4 16 64 25
6

16

10

4

0

0.2

0.4

0.6

0.8

1

ef
fic

ie
nc

y

number of tasks

number of
machines

(a) PVM
1 4 16 64 25

6

16

10

4

0

0.2

0.4

0.6

0.8

1

ef
fic

ie
nc

y

number of jobs

number of
machines

(b) Calypso

Figure 3.12: Comparison of Calypso and PVM ray tracing programs.

67

0

10

20

30

40

50

60

1 2 4 6 8 10 12 14 16
number of machines

tim
e

(s
)

0

0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

1

ef
fic

ie
nc

ycalypso pvm

calypso pvm

Figure 3.13: Scalability comparison of Calypso and PVM ray tracing programs.

on 1 to 16 machines. See Figure 3.12 (a). In the case of PVM, for a given

number of machines the computation's eÆciency peaks at a speci�c number of

tasks. This is an expected result: for a �xed number of machines, too few tasks

results in an imbalance of work loads, too many tasks introduces a contention spot

at the manager. Furthermore, the overhead of task assignment overshadows the

computation. The results, however, demonstrate that only the Calypso program

with �ne-grained tasks, e.g., 512 parallel tasks, adapts to di�erent numbers of

machines. This is illustrated in Figure 3.12 (b).

Figure 3.13 shows the performance of the Calypso program with 512 tasks

and the performance of a PVM program with the optimal number of tasks. It

is encouraging to see that the cost of dynamic adaptivity, load balancing, and

fault tolerance mechanisms provided by the Calypso runtime system is at most 4%

68

compared to the optimal PVM program.

3.6.4 Adapting to Dynamic Execution Environments

A matrix multiplication program written in an older version of Calypso that did

not implement bunching is used to demonstrate dynamic adaptivity of Calypso.

Setup

Experiments were conducted on up to 5 identical Sun SparcStation SLC work-

stations in a public laboratory connected by a 10 Mbps Ethernet through a non-

switched hub. The tests were run in the middle of the night in order to minimize

external e�ects. Since we had no control over external e�ects, test results may un-

derestimate the potential performance. The �ve workstations were disk-less and,

hence, swapped on the network.

Performance Results

Five families of experiments were conducted. The results are graphed showing the

total time, the achieved speedup, and the number of equivalent perfect machines

(which sets the upper bound for the speedup). The performance graphs are la-

beled with machine pro�les. For example, 3A+2D label indicates that a particular

execution was charged for the work of 3 machines with pro�le A and 2 machines

with pro�le D.

Ideal execution environment: The �rst family of experiments examines the per-

formance of a Calypso computation using from 1 to 5 machines of pro�le A, which

69

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Seq 1A 2A 3A 4A 5A
Experiments

T
im

e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
q

u
iv

al
en

t
M

ac
h

in
es

/

S

p
ee

d
u

p

Time Equivalent Machines Speedup

Figure 3.14: Performance of a Calypso program in an ideal execution environment.

devote all their resources to the computation.

The results are illustrated in Figure 3.14. The label \Seq" indicates the exe-

cution of a sequential C++ program. The comparison of the sequential execution

time with the case 1A, where the manager and a worker were on one machine,

indicates that 4% performance degradation is due to the Calypso runtime system.

Figure 3.14 shows that the eÆciency of the Calypso program ranges from 96%

to 89%. It is encouraging to see that when there are no failures or slow-downs,

Calypso bears little overhead, even though it is \prepared" to handle such adverse

cases.

Adapting to imbalance of computing speeds: The second family of experiments

examines how a Calypso computation performs when some of the machines are fast

(pro�le A) and some are slow (pro�le B).

70

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5B 1A+4B 2A+3B 3A+2B 4A+1B 5A
Experiments

T
im

e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
q

u
iv

al
en

t
M

ac
h

in
es

/

S

p
ee

d
u

p

Time Equivalent Machines Speedup

Figure 3.15: Performance of a Calypso program on a mix of fast and slow machines.

The results are illustrated in Figure 3.15. The label 5B indicates that 5 slow

machines were used, the label 2A+3B indicates 2 fast and 3 slow machines were

used. The speedups ranged from 2.34 for 5B (where the best possible speedup is

5 � 0:5 = 2:5), to 3.92 for 4A+1B. One case is worth discussing. Note that the

speedup in case 4A+1B (3.92) is better than in case 4A (3.59) and poorer than in

case 5A (4.47). This is in contrast to systems that do not provide automatic load

balancing, the addition of one slow machine helped the 4 fast machines, rather

than slowing down the computation.

Adapting to failures: The third family of experiments examines the e�ects of

process crashes on a running Calypso computation. Three experiments were con-

ducted. In each case, a Calypso computation was started on 5 machines, and 2 were

crashed after 100 (3A+2C), 200 (3A+2D), and 300 (3A+2E) seconds, respectively.

71

0

200

400

600

800

1000

1200

1400

1600

1800

2000

3A+2C 3A+2D 3A+2E 5A
Experiments

T
im

e
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
q

u
iv

al
en

t
M

ac
h

in
es

/

S

p
ee

d
u

p

Time Equivalent Machines Speedup

Figure 3.16: Performance of a Calypso program on a set of faulty machines.

The results are illustrated in Figure 3.16, which also reports 5A for comparison.

The results indicate that speedups of 3.06 for 3A+2C, 3.51 for 3A+2D, and 4.11 for

3A+2E were achieved. Again, note the e�ective use of the C, D, and E machines:

as the speedup for 3A+2E is better than 3A+2D, which is better than 3A+2E, and

all three are better than just 3A (2.76). Thus the speedup increased monotonically

with additional machine availability. The overhead remains quite low, as shown

by the eÆciency, which ranges from a high of 91% to a low of 90%.

Adapting to the addition of new resources: This family of experiments exam-

ines how well the Calypso runtime system can utilize workstations that become

available after computations have begun. Three experiments were conducted. In

each case a Calypso computation was initially started on three machines (3A).

Then two additional machines joined the computation 100 (2F), 200 (2G) and 300

72

0

200

400

600

800

1000

1200

1400

1600

1800

2000

3A+2F 3A+2G 3A+2H 5A
Experiments

T
im

e
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
q

u
iv

al
en

t
M

ac
h

in
es

/

S

p
ee

d
u

p

Time Equivalent Machines Speedup

Figure 3.17: Performance of a Calypso program on a growing set of machines.

(3H) seconds later.

The results are illustrated in Figure 3.17. Again, the �gure includes the case

of 5 machines machines with pro�le A for comparison. The speedups are: 3.38 for

3A+2F, 3.68 for 3A+2G, and 4.15 for 3A+2H. Here, the eÆciency ranged from a

high of 92% to a low of 90%. These experiments show that the Calypso runtime

system is able to e�ectively utilize machines that dynamically (and unpredictably)

join a computation while in progress.

Adapting to dynamic execution environments: The �nal family of experiments

illustrates the ability of the Calypso runtime system to adapt a program execution

to an environment where machines crash, recover, slowdown, and speedup while

the program is executing.

The results are illustrated in Figure 3.18. These experiments examine how a

73

0

200

400

600

800

1000

1200

1400

1600

1800

2000

3A+2I 3A+2J 5A
Experiments

T
im

e
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
q

u
iv

al
en

t
M

ac
h

in
es

 /

S
p

ee
d

u
p

Time Equivalent Machines Speedup

Figure 3.18: Performance of a Calypso program in a dynamic execution environment.

computation performs when 2 out of 5 machines (a) slow down to 0% and then

recovered (3A+2J), and (b) slow down to 50% and then recovered (3A+2I). As the

results indicate, the eÆciency ranges from a high of 89% to a low of 88%. These

experiments demonstrate the ability of our system to utilize resources as they

become available, even if availability changes over time. The Calypso runtime

system does not \give up" on machines that can still help the computation, even

if they are slow, because such machines will not slow down the computation.

74

Chapter 4

Mechanisms for Just-in-Time

Resource Allocation

4.1 Introduction

At the New York University's Distributed Systems Laboratory we have been de-

veloping and experimenting with adaptive parallel programs that run on networks

of machines. Most master/slave PVM [59] programs, self-scheduling MPI [67]

programs, bag-of-tasks Linda [33] programs, and all Calypso [10] programs are

adaptive. For PVM, MPI, and Linda, programs must be written so that they are

able to tolerate machine removals; whereas for Calypso, this service is provided by

the runtime layer.

While working with adaptive programs we encountered a resource contention

caused by having a number of users running a mix of sequential and parallel jobs.

Interactive users were experiencing slow turnaround and non-responsiveness. Users

75

running parallel jobs were measuring widely-varied execution timings for repeated

runs of the same program. This was somewhat unexpected, particularly since we

have nearly twice as many machines as users: nearly half of the machines on our

network have no monitors and are located in an isolated machine-room. Hence, we

were anticipating that excess resources would eliminate contention. Our �ndings

indicate that in order to achieve the 2:1 rule reported by Arpaci et al. [4], that \a

NOW [Networks Of Workstations] cluster of approximately 60 machines can easily

sustain a 32-node parallel workload in addition to the sequential load placed upon

it by interactive users," intelligent allocation of resources is necessary.

In order to allocate, deallocate, and reallocate idle machines to running jobs,

a resource management system|resource manager for short|is needed. Ideally,

this service should be available to any compiled executable and should not require

explicit programming. For eÆcient utilization of resources, machines should be

allocated to computations only when requested and not pre-allocated and reserved.

We refer to this ability as just-in-time allocation of resources. Furthermore, a

resource manager should be able to simultaneously manage programs developed

using di�erent programming systems. As discussed in Sections 4.2 and 7.4, existing

user-level resource managers for adaptive jobs do not support multiple standard

parallel programming systems. This severely limits their applicability.

Contributions

The technical contribution of this chapter is a set of novel mechanisms for just-in-

time allocation of machines to jobs. The mechanisms enable transparent manage-

ment of adaptive parallel programs that were not developed to have their resources

76

managed by external systems. To validate the feasibility of these mechanisms,

a resource management system called ResourceBroker has been developed. Re-

sourceBroker is unique in providing a set of features previously not available in

any system. These features include:

� Just-in-time allocation of resources: Machines are allocated to running jobs as

their resource requirements grow, and as machines become available|that is,

just-in-time. Furthermore, machines can also be reallocated to meet speci�ed

policies and constraints.

� Support for diverse programming systems: Supports a collection of unmodi-

�ed parallel programming systems; ResourceBroker is the �rst resource man-

ager that can simultaneously manage programs written in PVM, LAM [106]

(an implementation of the MPI standard), Calypso, and PLinda [77] (an

implementation of Linda with atomic transactions). Sequential and non-

adaptive parallel programs are also supported.

� System independence: Parallel programming systems are treated as Commer-

cial O� The Shelf (COTS) components. ResourceBroker does not require any

modi�cations to programming systems and it works with existing compiled

binary programs.

� User privilege: Super-user privileges are not required. The only privilege

required for installation, con�guration, and use are user-level access to man-

aged machines. Thus, ResourceBroker does not compromise the security of

the network.

77

Road Map

The rest of this chapter is organized as follows. Section 4.2 brie
y describes the

advantages of just-in-time allocation of resources, and the challenges that need to

be addressed to provide such a service. The goals and the architecture of Resource-

Broker are presented in Sections 4.3 and 4.4, respectively. Section 4.5 describes

the speci�cation language for conveying resource requirements to ResourceBroker,

and ResourceBroker's techniques to communicate resource availability to program-

s. Section 4.6 describes the mechanism used to dynamically allocate, deallocate,

and reallocate resources among running jobs. Experimental results are presented

in Section 4.7. An overview of selected resource management systems, with an

emphasis on resource allocation for adaptive jobs, is given in Chapter 7.

4.2 Background

On networks of machines that support both parallel jobs and interactive users,

machine loads change over time. A number of studies [104, 127, 50, 101, 4, 39]

indicate that in most institutions up to 60% of machines are idle at any given

time. A machine is referred to as idle and, hence, available to participate in

a computation when it is not used by its owner and its CPU cycles are mostly

unused. The availability of machines is unpredictable because of users running

remote jobs and machine owners re-claiming their machines for exclusive use.

The performance of parallel programs is very sensitive to machine loads and

availability. Parallel programs with interdependent components cannot make

progress if some of the participating machines become unavailable or heavily

78

loaded during a computation. In the experiments conducted by Arpaci et al. [4],

when machines were shared by two parallel jobs, the jobs were slowed down by at

least a factor of eight, and for some by a factor of 50. Thus, in environments where

machines availabilities and their loads change over time, just-in-time allocation

and reallocation of resources is essential in order to provide acceptable perfor-

mance. The challenge is to provide the just-in-time allocation and reallocation of

resources to programs written using multiple parallel programming systems.

Parallel programming systems such as PVM, MPI, Calypso, and Linda have a

built-in resource manager that is of limited functionality. It is common for this type

of resource manager to (1) schedule parallel tasks among the (already) allocated

machines, and to (2) assist in adding explicitly-named machines to a computation.

This type of resource manager is referred to as an intra-job resource manager, since

its primary responsibility is to manage resources within one job. For example,

PVM's default intra-job resource manager uses round-robin scheduling to assign

PVM tasks to PVM daemons; and Calypso's intra-job resource manager employs

Eager Scheduling to assign tasks to running worker processes. To di�erentiate from

the resource manager built into parallel programming systems, inter-job resource

manager is used to refer to the system that manages all the machines among all

the executing jobs. The concept of separating these two types of managers was

�rst discussed in the work on the Benevolent Bandit Laboratory [54].

Dynamic allocation and reallocation of machines to jobs requires communica-

tion between multiple inter-job resource managers and the intra-job resource man-

ager. The lack of a common interface introduces a challenge to inter-job resource

manager developers: how can their software system communicate with a variety

79

Figure 4.1: Structure of a global resource manager as a user-level service.

of parallel systems, especially with systems that do not provide an interface? The

lack of a common interface is the reason existing resource managers for adaptive

programs restrict themselves to supporting only a single programming system.

ResourceBroker is the �rst resource manager to use low-level features common

to popular parallel programming systems for its communication. Hence, it is able

to manage unmodi�ed PVM, MPI, Calypso, and PLinda programs.

4.3 Design Goals

The goal of ResourceBroker is to provide a comprehensive resource management

service that is able to dynamically allocate machines among multiple competing

computations written in di�erent parallel programming systems. The following is

a list of the key objectives met in this system:

� It treats parallel programming systems as COTS. Unlike other resource man-

agers, it does not expect programming systems to be modi�ed or adapted to

take advantage of its services. ResourceBroker can manage executables that

80

were compiled and linked for environments with no global resource manage-

ment service.

� It treats operating systems as COTS. The current implementation runs on top

of unmodi�ed Linux 2.0.34. The mechanisms are general and are applicable

to other Unix-type operating systems.

� The use of the resource manager is optional. To emphasize its unobtrusive

availability, it is sometimes referred to as a \service." Figure 4.1 depicts this

service in relation to programming systems and user programs. A user can

choose to use ResourceBroker's services at each invocation of a job.

� The service can dynamically reallocate resources among adaptive jobs, as

resource requirements grow and as machines become available.

The policy employed by resource managers in assigning resources to compu-

tations is a signi�cant part of their service. Here the policy and the underlying

mechanisms are separated, and focus of the ResourceBroker is on the mechanisms.

But in order to test these mechanisms, the following policy has been implemented

for ResourceBroker. User jobs are divided into two classes: adaptive, and other-

s. Similarly, machines are divided into two classes: private and public. Private

machines belong to individuals and the owner has absolute priority over its use,

where as public machines are available to all users and typically reside in a public

laboratory. The policy implemented by ResourceBroker is to allocate private ma-

chines only to adaptive jobs. Hence, adaptive jobs running on a privately owned

machine can be deallocated once the owner of the machine returns. In other cases,

ResourceBroker tries to \fairly" partition machines to running jobs.

81

agent
sub-
agent

sub-
agent

sub-
agent

resource manager

agent
sub-
agent

sub-
agent

resource
management
layer

agent layer

applications
layer

calypso computation pvm computation

Figure 4.2: The components of ResourceBroker that comprise of the resource manage-

ment and the agent layers

4.4 Architecture

ResourceBroker consists of two weakly coupled layers: the resource-management

layer and the agent layer. Figure 4.2 depicts the software layers during the execu-

tion of two parallel jobs. Our research focuses on the mechanisms employed by the

agent layer, but to validate and test the overall approach, the resource-management

layer has also been implemented.

The resource management layer consists of a single network-wide resource man-

ager process and a single daemon process on each machine. It is possible to run

the resource manager process with non-privilege user access rights, as opposed to

administrator access rights. The resource manager process spawns the daemon

processes at startup and restarts them if they fail. Daemons are responsible for

monitoring resources such as the CPU status, the users who are logged on, the

number of running jobs, and the keyboard- and the mouse-status on the machine.

This information is periodically reported to the resource manager process. The

82

resource manager process is responsible for deciding which jobs can use which

machines.

The agent layer consists of dynamically changing sets of processes. A user

who wants to use ResourceBroker's services �rst starts an agent process then sub-

mits the job for execution. As the job extends its execution to remote machines,

subagent process are automatically started to monitor the new processes. This is

illustrated in Figure 4.2. The combination of agent and subagent processes form

the agent layer. The agent layer provides the means for the resource manager

process to monitor and actively intervene in the execution of adaptive jobs. In

a broader sense, it acts as a broker between the resource management layer and

the running jobs, and is able to coerce programs to achieve the allocation policy

determined by the resource management layer.

Many existing resource managers [92, 141, 103, 68] employ a single-level archi-

tecture, where the monitoring daemon processes also carry out the responsibilities

of agent and subagent processes. The purpose behind a two-level architecture is

to allow ResourceBroker to run with user-level privileges only. Although resource-

management layer processes run with a user privilege, it is able to manage other

user's jobs. These mechanisms are described in Section 4.6.

4.5 User, Job, and Resource Manager Interactions

In the presence of a resource manager, there are three types of entities in every

job invocation: (1) the resource manager, (2) the user, and (3) the job submitted

for execution. Figure 4.3 depicts the three entities and their interactions. The

83

input/
output

scheduling
service

resource
requirements

resource manager

dynamic resource
availability

runtime
request for
resources

user

parallel job

Figure 4.3: The three entities involved in every job execution, i.e., the resource manager,

the user, and the job, and their interactions.

interaction between a user and the resource manager and the interactions between

running jobs and the resource manager are of particular interest and are discussed

next.

4.5.1 Users' Interaction with the ResourceBroker

Users communicate with the resource manager to query the availability of ma-

chines, to learn the status of queued jobs, to submit jobs for execution, and to

specify a job's resource requirements. ResourceBroker adopted the Resource Spec-

i�cation Language of Globus [57], and extended it to support adaptive program-

s. Speci�cally, adaptive, start script, and module parameters were added to

describe adaptive jobs. The supported speci�cation grammar is presented in Fig-

ure 4.4. As an example, the following speci�cation

84

specification := request

request := multirequest | conjunction | disjunction | parameter

multirequest := "+" request-list

conjunction := "&" request-list

disjunction := "|" request-list

request-list := "(" request ")" request-list | "(" request ")"

parameter := parameter-name op value

op := "=" | ">" | "<" | ">=" | "<=" | "!="

parameter-name:= "adaptive" | "arch" | "count" |

"max time" |"module" | "start script" | "start time"

value := ([a..Z][0..9][])+

Name Default Semantics

adaptive false whether the job is adaptive

arch linux execution architecture

count 1 number of machines to allocate

max time inf maximum allocated time

module NULL (external) module name for communication

start script NULL program to execute after allocation of

resources and before invocation of the job

start time now time to start the job

Figure 4.4: Speci�cation language for describing job requirements.

85

+(count<=8)(adaptive=1)(start script="my script")

is a request to execute an adaptive program (as speci�ed by adaptive=1) on

up to eight machines. The start script="my script" requests the execution

of my script after the resources have been allocated, but before the job starts.

The names of the allocated machines are passed as arguments to the start-scripts.

A typical script to initialize a host�le is the following:

#! /bin/sh

echo add $* > $HOME/hostfile

PVM, LAM, and Calypso programs can use a host�le to initialize the available

pool of machines. As an additional example,

+(count>=4)(arch="i86Linux")(module="pvm")

is a request to execute a PVM program on at least four Intelx86 Linux machines

(as speci�ed by arch="i86Linux"). The module option (module="pvm") speci�es

that ResourceBroker should use external modules to carry out some of its respon-

sibilities. External modules are discussed in Section 4.5.2

4.5.2 Interaction of Jobs and ResourceBroker

Interactions between resource managers and jobs is complicated by the fact that

these two software components are typically developed independently. To address

this, ResourceBroker relies on a set of common features to build an interface be-

tween intra- and inter-job resource managers.

86

Communication from Job to ResourceBroker

Most of the parallel programming systems' intra-job resource managers are capa-

ble of relinquishing machines, but are unable to locate additional underutilized

machines. As the requirements of adaptive jobs change over time, the resource

manager must be alerted to these changes. Thus, at a minimum, adaptive jobs

must inform the resource manager of their desire to add additional machines to a

computation.

On Unix, the rsh command and the rexec() system call are the com-

mon underlying mechanisms to start program executions on remote machines,

although the actual command available to the programmer is likely to be

higher-level. For instance, Calypso and PVM computations grow by calling the

calypso spawnWorker() and the pvm addhosts() library functions, respectively.

In both cases, the function call results in a rsh command. This is also true if the

computation pool is grown using the Calypso graphical user interface or using the

PVM console.

The Unix rsh command requires an explicit machine name argument, as in

\rsh host <command>."

ResourceBroker intercepts rsh commands issued by jobs running under its con-

trol. Intercepted rsh commands with symbolic host names, e.g. anyHost, are

interpreted as intra-job resource managers' requests for assistance; rsh with real

host names are allowed to proceed. This way, a job can inform ResourceBroker of

its intention to add an additional machine by issuing \rsh anyHost <command>."

Symbolic host names are also used as a request speci�cation. For example, anyLin-

87

ux indicates any machine running Linux, and anyLinuxMem128 indicates a Linux

machine with 128Megs of RAM. As shown in Section 4.6, it is easy to make existing

programs issue rsh commands with symbolic host names.

Communication from ResourceBroker to Job

Once ResourceBroker decides to allocate a machine to a running job, the action is

carried out by the agent process (see Section 4.4) responsible for that job. Parallel

programming systems that allow anonymous machines to join a computation are

handle slightly di�erently from the systems that do not. The default behavior of

the agent process is to replace the symbolic host-name with a real name and then to

allow the rsh command to proceed|in a sense, the agent process redirects the rsh

command to a machine unknown (anonymous) to the job. The default behavior

is appropriate for Calypso, PLinda and sequential jobs. Some parallel program-

ming systems, such as PVM and LAM, do not allow an unexpected (anonymous)

machine to join a computation. In such cases, the agent process relies on external

modules to communicate the real host name to the job and to coerce the job to

accept it. Modules are executable programs, or shell scripts, that are external

to ResourceBroker. This architecture allows future support for as yet unde�ned

programming systems without having to recompile the resource manager.

When a user submits a job along with a module option, as in module="xxx",

ResourceBroker assumes the existence of three external programs named xxx grow,

xxx shrink, and xxx halt, to assist in growing, shrinking, and halting the job

respectively. According to this naming scheme, PVM modules would be called

pvm grow, pvm shrink, and pvm halt. Figure 4.5 depicts the source code for PVM

88

#! =bin=bash

echo add $1 > $HOME=.pvmrc

echo quit >> $HOME=.pvmrc

pvm > =dev=null

rm $HOME=.pvmrc 5

(a) pvm grow

#! =bin=bash

echo delete $1 > $HOME=.pvmrc

echo quit >> $HOME=.pvmrc

pvm > =dev=null

rm $HOME=.pvmrc 5

(b) pvm shrink

#! =bin=bash

echo halt > $HOME=.pvmrc

pvm > =dev=null

rm $HOME=.pvmrc

(c) pvm halt

Figure 4.5: PVM modules to grow, shrink and halt a PVM virtual machine.

89

node00 node01

rsh daemon

client app

3app

1

rsh node01 <cmd...>

2

4

Figure 4.6: Representative scenario of how a parallel job acquires another machine.

modules. Consider pvm grow for example: it writes a sequence of commands to

$/.pvmrc and then invokes a PVM console to execute the commands. Notice how

PVM modules are simple scripts that simulate users' actions; this is also true for

LAM modules.

4.6 Mechanisms

To provide the context used in illustrating the mechanisms behind ResourceBroker,

a representative scenario of how parallel jobs acquire resources in the absence of

resource managers is brie
y described. A user wants to run a program named app

on machine node00, and wants the computation to grow to node01 when needed.

The user prepares a host�le, named .hosts, containing node01. On node00 the

user types:

$app <arguments>.

The program starts executing. At some point app decides to spawn a process

on another machine. Figure 4.6 depicts the steps involved in this process (note

90

the step numbers marked on the arrows). The app process consults .hosts for a

machine name, reads node01, and issues the command \rsh node01 <command>",

as depicted in step 1 of Figure 4.6. In the job's source code this could have been a

higher-level function, but ultimately it translated to the standard rsh command.

The rsh command contacts the remote shell daemon (rshd) on node01 (step 2),

which spawns a process on node01 on behalf of app (step 3). This new process

establishes a communication stream with app (step 4). This completes the addition

of node01 to the computation.

When using ResourceBroker, selection of the second machine can be delayed

until the job is ready to use the machine. It is the responsibility of the agent process

to coerce the job into using a machine that is selected at runtime. Schematically,

the agent process needs to accomplish the following tasks:

1. realize that the job \wants" to spawn a remote process

2. notify the resource manager that a new machine has been requested

3. obtain the name of the target machine that is \most appropriate"

4. spawn, or cause to be spawned, the second process on the target machine

5. enable the two processes to establish a communication stream

6. fade in to the background, so as not to impose an overhead

4.6.1 Required Conditions

ResourceBroker is capable of dynamically selecting resources for unmodi�ed exe-

cutables as long as the following requirements are met:

91

� The program does not contain hard-coded machine names. This is a natural

assumption, because otherwise the program is not targeted for execution

anywhere other than on a speci�c set of machines, which was de�ned at

compile time.

� The program does not have the absolute path of the rsh command hard-

coded. This is a natural assumption since in most cases either the user's

default path is searched or, in the case of PVM and LAM, the location of

rsh is speci�ed during the installation of the programming system.

� For programming systems that do not allow anonymous machines joining a

computation, there must be a command line interface for users to grow the

pool of machines used in a computation. This is a common feature for many

parallel programming systems, including PVM and LAM.

� For programming systems that do not allow anonymous machines joining a

computation, it then must tolerate failed attempts to add additional ma-

chines. This is the case for PVM, LAM, Calypso and PLinda.

4.6.2 Default Behavior

Continuing with the previous example (page 90), to use ResourceBroker a user

does two things. First, the user prepares the .hosts �le containing anyLinux, a

symbolic machine name. Second, on host00 the user types:

$agent app <arguments>.

This starts an agent process, which immediately spawns a child process to exe-

cute app. Figure 4.7 depicts the steps involved for app to spawn a process on

92

node01node00

1
app

rsh daemon

client app

6

7

10

resource manager

agent

sub-
agent

9

8

3

rsh node01 subagent...

5

2 4

rsh' anylinux <cmd...>

Figure 4.7: Adding a dynamically allocated machine (default behavior).

another machine when executing under ResourceBroker's control. When app

decides to grow, it consults .hosts, �nds anyLinux, and issues the command

\rsh anyLinux <arguments>". See step 1 of Figure 4.7, where our implemen-

tation of rsh is depicted as rsh
0

. Realizing that anyLinux is a symbolic machine

name, ResourceBroker intervenes. The rsh
0

process contacts the agent (step 2),

which contacts the resource manager process with a request for a machine (step 3).

Once a target machine name is given to the agent, say node01, it noti�es rsh
0

of

this machine name (step 4). Then rsh
0

uses the standard rsh to spawn a sub-

agent process on node01 (steps 5-7). The subagent contacts the agent process for

a program to execute (step 8), and spawns the appropriate process (step 9) on

node01. The newly created process contacts the original app (step 10) and the job

continues executing normally. Notice how the agent layer redirects the rsh to use

a target machine selected at runtime.

From this point, until resources need to be reallocated, there is no interaction

between app and ResourceBroker. The various agent-layer processes remain dor-

93

mant, and no overhead is imposed by their existence. Future interactions can begin

in two ways: �rst, by the job attempting to add another machine; second, by the

resource manager deciding to reallocate machines. To take away node01 from app,

the subagent sends a standard Unix signal to the child process, and if the child

does not terminate within a speci�ed amount of time, the subagent terminates the

child process.

The default behavior described above is used for Calypso and PLinda programs,

for parallelizable tasks such as make, and for executing sequential jobs remotely.

4.6.3 External Modules

In reviewing the default behavior, note that app running on node00 attempted

to spawn a process on a machine it believed to be anyLinux, whereas the process

was spawned on node01. Generally, redirecting the rsh goes unnoticed. However,

PVM and LAM programs will refuse to accept processes from machines other than

those they attempted to spawn.

To handle this type of situation, ResourceBroker relies on external modules to

carry out its responsibilities. A similar mechanism is used for both PVM and LAM

programs: the \plug-in" external module approach makes the design extensible and

thus able to accommodate various programming systems concurrently. A PVM-

speci�c scenario, as illustrated below, is used as a representative usage of external

modules.

Knowing that app is a PVM program, the user types:

$agent pvm --(module="pvm").

94

node01node00

1

master
pvmd

resource manager

rsh' anylinux <cmd...>

agent

2 4

3

5

(a) Phase I

node01node00

2

master
pvmd

rsh daemon

pvmd

6

7

10

resource manager

sub-
agent

9

rsh node01 subagent...

5
rsh' node01 <cmd...>

agent

3 4

1

8

(b) Phase II

Figure 4.8: Adding a dynamically allocated machine (using external modules).

95

This submits the PVM console program, pvm, to an agent process and instructs

ResourceBroker to use PVM-speci�c modules. The agent process immediately

spawns pvm, which in turn starts the master PVM daemon. The user can create a

PVM virtual machine and start PVM programs as usual.

PVM's virtual machine can grow in two ways: at the PVM console, the user

can type

pvm> add anyLinux,

or the program can call the pvm addhosts() library function with anyLinux as the

host name argument. In both cases, this results in the master PVM daemon issuing

\rsh anyLinux <arguments>". ResourceBroker intervenes when it detects an rsh

with a symbolic host name. The allocation of resources using external modules

happens in two phases. Figure 4.8 depicts the steps involved in this process.

Once the PVM daemon issues \rsh anyLinux <arguments>" (step 1 of Fig-

ure 4.8(a)), rsh
0

contacts the agent (step 2), which asks the resource manager

process for a machine (steps 2 and 3). The resource manager process knows that

the job is a PVM task and propagates this information to rsh
0

(steps 3 and 4).

The rsh
0

then terminates with an error status code (step 5). The �rst phase is

completed with the result that (1) the master PVM daemon sees a failed attempt

to grow the virtual machine, but more importantly, (2) ResourceBroker recognizes

the request for an additional resource.

Figure 4.8(b) depicts the steps in the second phase of this process. Following

ResourceBroker's recognition of PVM's request for an additional machine, phase

two begins by the agent executing the external module pvm grow with argument

96

host01 (step 1). This script consists of �ve lines and is shown in Figure 4.5. The

script opens another PVM console, asks the master PVM daemon to add machine

host01 to the virtual machine, and closes the console. This results in the PVM

daemon issuing another rsh command with node01 as the machine name (step 2).

The second phase proceeds like the default case and results in starting a PVM

daemon process on host01 (steps 3-10).

Three important features are worth emphasizing. First, the PVM daemon was

coerced into accepting host01 . Second, PVM's second attempt to add a host

proceeds as usual; allocating \a suitable machine at the time of request" became

an \invisible" service. Finally, as machines become available, ResourceBroker is

able to asynchronously initiate the second phase to increase the size of PVM's

virtual machine.

4.7 Experiments

This section presents experimental results that validate the proposed mechanisms.

Experiments were conducted using up to 16 200MHz PentiumPro machines running

Linux RedHat 4.0, that were connected by a Fast Ethernet hub. Reported times

are median measured elapsed times taking into account all overheads. In this

section, we use rsh to denote the standard Unix remote shell program, and rsh
0

to denote ResourceBroker's version.

97

Operation Time (s)

rsh n01 null 0.4

rsh
0

n01 null 0.6

rsh
0

anyLinux null 0.6

rsh n01 loop 36.9

rsh
0

n01 loop 37.0

rsh
0

anyLinux loop 37.1

Table 4.1: Performance comparison of rsh
0

and rsh.

Micro Benchmarks

The �rst set of experiments compares the performance rsh and rsh
0

. The results

are shown in Table 4.1. Two sequential applications were used for this experiment:

null, a C program with an empty main() function; and loop, a C program with

a tight loop that ran in 34.4 seconds. For this experiment, two idle machines, n00

and n01, were used. The commands in Table 4.1 were issued on n00 and directed

to execute on n01. Thus, the command \rsh
0

n01 loop" results in executing loop

on n01. The anyLinux keyword is interpreted as \any available Linux machine."

Thus, the command \rsh
0

anyLinux loop" allows the resource manager to choose

a machine to execute loop. In this particular experiment, the available set of

machines was limited to n01, so in fact n01 was always chosen. As the results

indicate, the overhead associated with rsh
0

is approximately 0.2 seconds, which is

hardly noticeable by users. The small overhead also indicates that replacing the

system-wide rsh with rsh
0

is feasible, even if some users do not use the features

98

Operation Time (s)

rsh n01 null 0.4

rsh
0

anyLinux null 1.5

rsh n01 loop 38.2

rsh
0

anyLinux loop 37.9

Table 4.2: Performance of resource reallocation.

provided by ResourceBroker.

The second set of experiments measured the required times to reallocate ma-

chines. The results are shown in Table 4.2. Three machines were used in this

experiment: n00, n01, and n02. An adaptive Calypso program ran on n01 and

n02. Similar to the previous experiment, the commands of Table 4.2 were issued

on n00, and in every case resulted in the allocation of n01. In the case of rsh
0

,

ResourceBroker terminated the Calypso process running on n01 before satisfying

the request. The results show that a reallocation completes in approximately 1

second. It is also interesting to note that in the case of loop (and other compute-

intensive jobs), users experience a faster turnaround time since n01 is cleared of

external processes before executing the job.

Parallel Computations

This section presents the performance of ResourceBroker when managing parallel

jobs. In particular, the e�ects of external modules within the agent layer are

measured.

This experiment measured the performance of rsh
0

when used by parallel pro-

99

Operation 1 machine 2 machines 4 machines 8 machines

(s) (s) (s) (s)

pvm w/ rsh 0.5 1.1 2.3 6.7

pvm w/ rsh
0

host 0.6 1.4 3.2 7.1

pvm w/ rsh
0

anyLinux 2.1 3.6 9.1 17.6

lam w/ rsh 1.8 1.8 2.1 2.0

lam w/ rsh
0

host 2.5 2.8 2.4 2.4

lam rsh
0

anyLinux 4.2 8.8 16.8 33.5

Table 4.3: Performance of ResourceBroker (using external modules) to dynamically al-

locate additional resources to PVM and LAM programs.

grams. The results are shown in Table 4.3. The operation \pvm w/ rsh
0

host"

means the PVM program explicitly named the machines it wanted to use, and

\pvm w/ rsh
0

anyLinux" means the PVM program left the choice of the machine

to the resource manager. The results illustrate that when the machines are explic-

itly named, ResourceBroker introduces less than 0.1 milliseconds of overhead per

machine. Allowing ResourceBroker to choose a machine (i.e, rsh
0

anyLinux) incurs

approximately 1.4 seconds overhead for PVM and 3.5 seconds for LAM programs.

This overhead occurs once per machine, and only at startup. This result reinforces

the �nding that replacing the system-wide rsh with rsh
0

is feasible, and that this

will go unnoticed by users who do not use the additional features provided by rsh
0

.

The next experiment measures the time to reallocate resources for parallel

jobs. The setting of the experiment was as follows. An adaptive Calypso job

ran on every machine. A PVM virtual machine was created several times, and

100

1
1.9

2.9
3.8

4.8
5.9

6.9
8

8.9
9.9

10.9
11.8

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12
number of machines

tim
e

(s
)

Figure 4.9: Performance of resource reallocation using PVM and rsh
0

.

each time a di�erent size (denoted by n) virtual machine was built. To satisfy

the PVM requests, machines had to be taken away from the Calypso job �rst.

Figure 4.9 reports the elapsed times from the invocation until the resources were

made available. The results show that the reallocation completes in approximately

1 second per machine (which is consistent with the second set of experiments), and

that this number scales linearly to at least 12 machines.

The �nal experiment measures the utilization factor of a dynamic environment.

The setting was as follows. An adaptive Calypso job initially ran on eight machines.

Every 100 seconds, a script started a sequential program that ran for t minutes,

where t was chosen uniformly from the interval [1,10]. After �ve hours the total

detected idleness was less than 1%. This number indicates the eÆciency of the

reallocation mechanisms. Furthermore, it shows that in the presence of adaptive

programs, a resource manager can boost utilization of a network to above 99%.

101

Chapter 5

Charlotte: Parallel Computing on

the World Wide Web

5.1 Introduction

A recent report [102] indicates that the number of registered Internet Protocol

(IP) [117] addresses has been growing at 50%{80% per year, in the last decade, and

as of July 1998 there are over 36 million registered addresses. Other reports [104,

127, 50, 101, 4, 39] indicate that most networked machines in typical commercial

organizations and universities are underutilized and mostly idle. Given this wealth

of unused computing power, it is not surprising that several projects [46, 47, 116,

115, 114, 138] have used the Internet to execute programs that are too compute-

intensive even for a supercomputer. For example, in discovering the world's largest

known prime number [136], PrimeNet reported a sustained throughput of more

than 200 billion
oating point instructions per second, the equivalent of seven

102

fully-equipped Cray T916 supercomputers at peak performance [137]. In another

case, during the �rst successful brute force \crack" of a DES-encrypted message,

it was observed that within a single 24-hour period nearly 14,000 machines joined

the computation [42]; this is a tremendous amount of computing power.

The diÆculties encountered by these projects arose from developing and de-

ploying programs. For example, Curtin et al. [42] reported that because those

who wanted to volunteer had to download and install a client software, \know

what it did, and usually had to put forth some e�ort to keep it running," this

limited the number of machines that joined the computation. Furthermore, 40

di�erent versions of the client program|for a variety of hardware and operating

system|had to be implemented to ensure that the most popular platforms could

join the computation. In addition, the programs had to implement load balancing

and fault masking. Clearly, a software system that resolves these diÆculties could

contribute to a proliferation of Web-based computing.

There are many software systems [141, 32, 35, 45, 10, 112] for developing and

executing programs using idle CPU cycles in networks of workstations. Based

on their success and as a natural evolutionary step, attempts have been made to

extend such systems to the Web.

However, the challenges involved in utilizing the Web as a parallel processing

resource are di�erent from the challenges involved in utilizing networks of worksta-

tions, and many of the assumptions made for networks of workstations are not valid

for the Web. For example, the machines on the Web do not have a common shared

�le system, no single individual has access-rights (user-account) on every machine,

and the machines are not homogeneous. Another important distinction is the con-

103

cept of users. On networks of workstations, there are two entities (individuals or

groups of individuals) involved in developing and executing programs: program-

mers who develop programs, and users who execute these programs. To execute

a parallel program typically the user �rst logs onto a machine under her control

(i.e. the local machine), then from the local machine logs onto other machines on

the network (i.e. remote machines) and initializes the execution environment, and

then starts the program. In the case of the Web, no user can possibly hope to have

the ability to log onto remote machines. Thus, another set of users who control

remote machines, or software agents acting on their behalf, must voluntarily allow

others access. To distinguish the two types of users, this chapter uses the term end-

users to refer to individuals who start the execution (on their local machines) and

await results, and volunteers to refer to individuals who voluntarily run parts of

end-users' programs on their machines (remote to end-users). Similarly, volunteer

machines is used to refer to machines owned by volunteers.

Challenges

An end-to-end solution for metacomputing on the Web must address the concerns

of programmers, end-users, and volunteers.

Programmers: As with other programs, the ease with which Web-based pro-

grams are developed and maintained is the main concern of programmers. Pro-

grammers prefer to use a high-level programming language with simple syntax and

well-understood semantics. Programmer usually prefer to avoid the complexities

associated with the development of programs for failure-prone and unpredictable

104

environments. The Web is a highly failure-prone and unpredictable environment|

much more so than local area networks. I conjecture that if the Web is to become a

practical metacomputing environment, the programming model must be decoupled

from the execution environment. Then programs can be developed for a reliable

virtual machine|thus isolating programmers from the dynamics of the Web|

and execute on a pool of unreliable machines. Furthermore, the virtual machine

concept facilitates the development of portable and heterogeneous programs|two

important and time consuming issues for programmers.

End-users: End-users are mostly concerned with the ease, correctness, and ef-

�ciency of program executions. On local area networks, end-users can log onto

multiple machines to execute a parallel program. This is made possible by having

a single administrative control (to allow remote logins), and the existence of a

shared �le system (to make the program available on all machines). This is not a

possible scenario for the Web, but it is desirable to have a software system that

allows program executions on the Web to be as simple as local area networks. Fi-

nally, end-users need assurance that parts of their program executing on untrusted

machines will not harm the accuracy of the computation. Validating the work

performed on untrusted machines has been addressed in [99].

Volunteers: Simplicity and security are important objectives for volunteers. Un-

less the process of volunteering a machine is simple|for example as simple as a

single mouse-click|and the process of withdrawing a machine is simple, it is likely

that many would-be volunteer machines will be left idle. Furthermore, volunteers

105

need assurance that the integrity of their computer and �le system will not be

compromised by allowing \strangers" to execute computations on their machines.

Without such an assurance, it is natural to assume security concerns will outweigh

the charitable willingness volunteering.

The combination of the Java programming language and Java-capable browsers

has successfully addressed some of the diÆculties of Web-based computing. Java's

platform independence solves the problem of heterogeneity. The growing number of

browsers able to seamlessly load applets from remote sites reduces administration

diÆculties. The applet security model, which in most parts enables Web browsers

to execute untrusted applets in a controlled environment, alleviates some of the

volunteers' security concerns. These factors make the combination of Java applets

and Java-capable browsers a good starting point to seamlessly bring distributed

computing to every-day users. Charlotte builds on these advances by providing a

comprehensive programming system.

Contributions

A comprehensive solution to facilitate Web-based computing involves assisting

programmers, end-users and volunteers. We have designed and implemented two

systems: Charlotte [15] and KnittingFactory [13], which in unison provide such

a solution. Charlotte is an implementation of the metacomputer presented in

Chapter 2 and is the focus of the present chapter; KnittingFactory is discussed in

Chapter 6. The work on Charlotte has resulted in several original contributions,

which are summarized below:

106

� Charlotte is the �rst parallel programming system to provide one-click com-

puting. The idea behind one click computing is to allow volunteers from

anywhere on the Web, and without any administrative e�ort, to participate

in ongoing computations by simply directing a standard Java-capable brows-

er to a Web site. A key ingredient in one-click computing is its lack of

requirements: user-accounts are not required, the availability of the program

on a volunteer's machine is not assumed, and system-administration is not

required.

� Charlotte is the �rst system for parallel computing that uses a secure language

and execute in a secure sandbox environment. It is implemented entirely in

Java without any native (non-Java binary) code. Therefore, volunteers have

the same level of trust in running Charlotte programs as they do in running

any other Java applet.

� Existing contributions are leveraged in providing a Virtual Metacomputer

on the Web. The programming environment is conceptually divided into a

virtual machine model and a runtime system. The virtual machine model,

as presented to the programmer, provides a reliable shared memory machine.

The runtime system implements this model on a changing set of unpredictable

machines.

� Our previous work developed for networks of workstations is extended to

deal with the dynamics of the Web. Three integrated techniques|eager

scheduling , two-phase idempotent execution strategy , and bunching|are used

for load balancing, fault masking, and eÆcient execution of �ne-grain tasks.

107

Road Map

The rest of this chapter is organized as follows. Section 5.2 provides the syntax

and semantics of Charlotte programs. The steps involved in executing Charlotte

programs are presented in Section 5.3. Charlotte implements some of the mecha-

nisms described in Chapter 2, speci�cally, eager-scheduling, TIES, and bunching.

The Charlotte-speci�c implementation issues of these mechanisms are described in

Section 5.4. Performance results are presented in Section 5.5. Section 7.3 compares

Charlotte with other related systems.

5.2 How to Write Charlotte Programs

A Charlotte program is written by inserting any number of parallel steps onto a se-

quential Java program referred to as sequential steps. A parallel step is composed

of one or more routines, which must complete for the program to proceed to the

next step. A routine is a (sequential) thread of control capable of executing on re-

mote machines. Figure 5.1 shows an example of a Charlotte computation with two

parallel steps. Charlotte's programming model is sometimes referred to as a block-

structured fork/join model [44, 107]. As previously mentioned, this programming

model along with shared memory semantics allows loop-level parallelization. Thus,

given a working sequential Java program it is fairly straightforward to parallelize

individual loops in an incremental fashion.

108

 ti
m

e

// sequential code
parBegin();
addRoutine(r1, 9);
parEnd();

// sequential code

parBegin();
addRoutine(r2, 6);
parEnd();
// sequential code

parallel step

parallel step

sequential step

sequential step

sequential step

job

Figure 5.1: An execution of a Charlotte program with two parallel steps and three

sequential steps; the �rst parallel step consists of 9 routines, the second parallel step

consists of 6 routines.

109

Parallel Steps

A parallel step starts and ends with the invocation of parBegin() and parEnd()

methods, respectively. A routine is written by subclassing the Droutine class and

overriding its drum() method. Within a parallel step, routines are speci�ed by

invoking the addRoutine() method with two arguments: a routine object and an

integer, n, representing the number of routine instances to execute. To execute

a routine, the Charlotte runtime system invokes the drun() method of routine

objects, and passes as arguments the number of routine instances created (i.e. n)

and an identi�er in the range (0; � � � ; n] representing the current instance.

Distributed Shared Class Types

Charlotte programs are written for a shared memory virtual machine and they

execute on the Web|obviously a shared-nothing environment. A program's data

is logically partitioned into private and shared segments. Private data is local to a

routine and is not visible to other routines; shared data, which consists of shared

class-type objects, is distributed and is visible to all routines. The runtime system

maintains the coherence of shared data.

For every basic data-type de�ned in Java, Charlotte implements a correspond-

ing distributed shared class-type. For example, Java provides int and float

data-types, whereas Charlotte provides Dint and Dfloat classes. The class-types

are implemented as standard Java classes, and are instantiated by invoking their

corresponding newInstance() method. Shared class-types are read and written

by invoking get() and set() method calls, respectively.

110

Shared class-types must be instantiated in the same order at each site. The

rationale behind this requirement is that the system needs to form a one-to-one

mapping between class-type object instances at the various sites; instantiating

them in the same order allows each object to be assigned the same identi�er on all

sites. This requirement is typically met by instantiating all class-type objects in

the constructor of a single class.

Shared Memory Programming Model

Charlotte leverages its structured fork-join programming model in providing an

intuitive shared memory semantics: Concurrent Read, Concurrent Write Common

(CRCW-Common). This means that within a parallel step one or more routines

can read the value of a variable, and one or more routines can write the same value

to a variable. Read operations of unmodi�ed data return the value of variables

at the time the parallel step began; results of write operations become visible at

the completion of the parallel step. The advantage of Charlotte's memory model

is that, semantically, routines execute in isolation, and hence the �nal result is

independent of the execution order.

Example Program: Parallel Matrix Multiply

Figure 5.2 shows the relevant fragments of a program to multiply two 500 � 500

matrices in parallel; there are 500 routines, each responsible for computing a s-

ingle row of the resultant matrix. This simple example illustrates the following

important points:

� The parallelism re
ects the parallelism inherent in the algorithm and not the

111

import charlotte.�; == import the Charlotte class �les

public class MatrixMult extends Droutine f

public static int Size = 500;

public D
oat a[][] = new D
oat[Size][Size]; 5

public D
oat b[][] = new D
oat[Size][Size];

public D
oat c[][] = new D
oat[Size][Size];

public MatrixMult() f

== instantiate a, b and c 10

g

public void drun(int numTasks, int id) f

int sum;

for(int i=0; i<Size; i++) f 15

sum = 0;

for(int j=0; j<Size; j++)

sum += a[id][j].get()�b[j][i].get();

c[id][i].set(sum);

g 20

g

public void run() f

== initialize elements of a and b

parBegin(); 25

addDroutine(this, Size);

parEnd();

g

g

Figure 5.2: Matrix multiplication in Charlotte.

112

execution environment. The same program can execute on one or any number

of machines.

� The programmer need not be aware of the fact that the program executes on

a distributed platform.

� Integrating machines onto the computation, load balancing, fault masking,

and data coherence are transparent in the program.

� The Charlotte API does not require any language or compiler modi�cations.

Charlotte is implemented as a Java package without any native code. Hence,

Charlotte programs are compiled as standard Java programs.

5.3 How to Run Charlotte Programs

To run a Charlotte program, the end-user must �rst start running the program on

her local machine, then volunteers can join the running program from anywhere

on the Internet. The end-user's machine is required to be non-faulty; volunteer

machines can join and leave a running program, and crash at any time. As long

as at least one volunteer machine does not continuously crash, programs will run

to completion.

To start a program called RayTrace, the end-user types:

$java RayTrace <arguments>.

The program starts as a single process called the manager, which executes the

sequential steps of the program. At startup, a manager produces an output similar

to the following:

113

host = sunra.milan.cs.nyu.edu=128.122.142.137

port = 1096

Accepting computation requests at http:==sunra.milan.cs.nyu.edu:1097=index.html

Accepting status requests at http:==sunra.milan.cs.nyu.edu:1097=status.html

Registered with http:==milan.milan.cs.nyu.edu=knittingfactory 5

The �rst two lines of the output contain the name, the IP address of the ma-

chine executing the manager, and its port number; the next two lines contain the

URL [21] addresses where volunteer computations are accepted and status report-

s are served (this service is provided by KnittingFactory class servers, which are

described in Section 6.4); the last line contains the address of the KnittingFac-

tory directory server where the program is registered (KnittingFactory directory

services are described in Section 6.3).

The parallel routines are executed by worker processes running on volunteer

machines. Worker processes can start in three ways. The �rst method is to run a

worker as a Java application. This is done by typing the following:

$java charlotte.Cdaemon <host> <port>.

Where the <host> and <port> are the host name and the port number of

the manager. In the above example, the host and the port number are

sunra.milan.cs.nyu.edu and 1096, respectively. A more
exible method is to

run a worker as a Java applet. This is simply done by directing a Java-capable

Web browser to the manager's URL where computations are accepted. For

example, the following command starts a Web browser, loads the code for the

Charlotte worker process, and starts executing it:

114

$netscape http://sunra.milan.cs.nyu.edu:1097/index.html.

By running a worker as an applet, the program code is transmitted to the volun-

teers' machines, thus alleviating the need for having the code local to each machine.

Furthermore, since applets run in a secure sand-box environment, volunteers can

safely execute untrusted code. There is an implicit assumption that volunteers

\know" a priori the URL address of Charlotte managers. This is a reasonable

assumption for small networks, but not for the Web. The third method of starting

a worker relies on a directory service to overcome this limitation. As previously

indicated, managers can register with a KnittingFactory directory server during

initialization. Once this happens, a volunteer can direct a Java- and JavaScript-

capable browser to any KnittingFactory directory server to �nd a running program.

5.4 Implementation

Worker Process

A Charlotte worker process is implemented by the Cdaemon class which can run

either as a Java application or as a Java applet. It requires two arguments, namely

the host and the port of a Charlotte manager process to initialize. At instantiation,

a Cdaemon object establishes a TCP/IP connection to the manager and maintains

this connection throughout the computation. A worker process repeatedly per-

forms the following sequence of tasks:

1. invalidates shared class-type objects,

2. contacts the manager for work,

115

3. receives a set of routines to execute,

4. downloads and instantiates the routine objects, if it hasn't done so already,

5. executes each routine in turn by calling its drun() method, and

6. sends the modi�ed values to class-type objects back to the manager.

Two implementation features are worth noting. First, since Cdaemon is imple-

mented as an applet (as well as an application), the code does not need to be

present on volunteer machines before the computation starts. By simply embed-

ding the Cdaemon applet in an HTML page, browsers can download and execute

the worker code. Second, the Cdaemon class, unlike its counterpart the Calypso

worker, is independent of the Charlotte program it executes. Thus, not only are

Charlotte workers able to execute parallel routines of any Charlotte program, but

only the necessary code segments are transfered to volunteer machines.

Manager Process

A manager process begins with the main() method of a program and executes the

non-parallel steps in a sequential fashion. It also manages the progress of parallel

steps by providing scheduling and memory services to workers.

The manager's scheduling service is responsible for assigning routine(s) to vol-

unteer workers. At the beginning of each parallel step, the scheduling service pop-

ulates DispatchTable from the addRoutine() method calls. The DispatchTable

records which routines need to be assigned, which routines have been completed,

and which routines have been assigned but not yet completed. As workers request

116

work from the manager, the routines that have not been assigned to any worker

are scheduled �rst. If, however, some of the routines have been assigned but have

not yet completed, the scheduler will aggressively re-assign the routine, or one of

the routines, that has been assigned the least number of times|this technique is

referred to as eager scheduling and is described in Section 2.2.1. Eager scheduling

is able to mask failed worker processes resulting from crashed machines, network-

s, and volunteers stopping the process. Furthermore, because fast machines can

re-execute routines that were initially assigned to slow machines, a slow volunteer

machine will not slow down the progress of the program.

As mentioned in Section 2.2.3 Charlotte employs bunching to execute �ne-grain

parallel tasks in a coarse-grain manner. The scheduling service assigns a group of

routines to workers by specifying a range of id values. The worker executes each

routine in turn, sending the shared data modi�cations to the manager before exe-

cuting the next routine. Bunching not only reduces the number of times routines

are assigned to workers, but it overlaps computation with communication by al-

lowing workers to execute routines while the shared memory modi�cations are sent

back to the manager. The performance improvements due to bunching are report-

ed in Section 5.5, which describes the results of running the same computation

with and without bunching.

Distributed Shared Class Types

While executing a parallel routine, a worker process must page-in the values of

shared objects necessary for its execution. Similarly, it must return the modi�ca-

tions to shared objects at the end of its execution.

117

Charlotte's distributed shared memory is implemented in pure Java at the data-

type level; that is, through Java classes as stated above. For each primitive Java

type like int and float, there is a corresponding Charlotte class-type Dint and

Dfloat. The member variables of these classes are a value �eld of the corre-

sponding primitive type, and a state
ag that can be not valid, readable, or

dirty. A not valid state indicates that the object does not contain a correc-

t value; readable indicates that the object contains a correct value; and dirty

indicates that the local value is correct and that it has been modi�ed.

A read operation on a readable or a dirty object returns its value. A read

operation on a not valid object causes a \page-fault," that is, its value is retrieved

from the manager and it changes state to readable before its value is returned. To

reduce the number of page-faults, a set of several values is retrieved on each page-

fault. Retrieving a set of values roughly corresponds to retrieving a \page" of data,

but the size of the page can dynamically change to accommodate the program. A

write operation on a class-type object modi�es the value �eld of the object and

changes its state to dirty. A dirty object propagates its modi�ed value back

to the manager at the completion of the routine. There is a cost associated with

collecting the set of modi�ed class-type objects at the end of each routine. For

Calypso as well as other standard distributed shared memory systems, a large por-

tion of this cost is caused by producing the page-level di�erences (or di�s) needed

to send back to the manager [140]. In Charlotte this approach would correspond to

scanning all (of the dirty pages) of the shared region for modi�ed data. Charlotte's

implementation, however, reduces this cost by maintaining a set of dirty objects.

This implementation is possible because shared memory is provided at the object

118

level. Section 5.5 compares the performance of both implementations.

Recall that Charlotte implements two-phase idempotent execution strategy,

which speci�es that shared memory modi�cations may not be visible until the

parallel step completes. This is implemented at the manager side by bu�ering the

modi�cations until every routine (in the current parallel step) has been executed

at least once, at which point the modi�cations are applied to the manager's

local memory. In addition, the implementation ensures that late updates (i.e.

modi�cations for a routine that has already been completed) are discarded.

It is important to note that di�erent parts of the shared data can be updated by

di�erent worker processes without false-sharing, as long as the CRCW-Common

condition is met. The shared memory is always logically coherent, independently

of the order in which routines are executed.

5.5 Experiments

A computational physics and a graphical application were used to evaluate the

performance of Charlotte. Experiments were conducted on a set of machines under

di�erent patterns of slowdowns, failures, and recoveries.

Setup

All experiments, unless noted, were conducted on up to 17 identical 200 MHz Pen-

tiumPro machines running Linux version 2.0.34 operating system, and connected

by a 100Mbps Ethernet through a non-switched hub. The network was isolated to

eliminate outside e�ects.

119

Programs were compiled and executed in the Java Virtual Machine (JVM)

packaged with Linux JDK 1.1.5 v7. TYA version 0.07 [82] provided just-in-time

compilation. All programs were compiled with optimization. A C program would

run faster than a Java program; however, as Java compilers and virtual machines

continue to improve, they will provide better performance and it is expected that

the results will carry over transparently.

Reported times are \wall clock" elapsed times, and not CPU or virtual times.

It should be stressed that at the beginning of the measurements, volunteers did

not have the shared data, and at the end of the measurements, the manager had

received and processed the modi�ed data. Thus, overheads associated with net-

working, swapping, and updating shared data regions are included in the measure-

ments.

In order to experiment with heterogeneous machine speeds, several machine

pro�les were de�ned. A pro�le determines a machine's behavior. Below are the

descriptions of each machine pro�le, see also Figure 5.3.

� Machine A100 makes 100% of its CPU available to the computation. This is

a machine that does not fail or slow down during the execution. A machine

with pro�le A100 models a perfect fast machine.

� Similarly, Machines A75, A50, and A25, contribute to the computation with

only 75%, 50%, and 25% of their CPU cycles, respectively. The slowdowns

were achieved by running a (parameterized) high priority background process

called the hog. The slowdowns were veri�ed by ensuring that the execution

of a standard benchmark took 133%, 200%, and 400%, respectively, longer

120

profile A100

CPU availability

100%

25%
50%
75%

time

profile A75

CPU availability

100%

25%
50%
75%

time

profile A50

CPU availability

100%

25%
50%
75%

time

profile A25

CPU availability

100%

25%
50%
75%

time

profile CR(i)

CPU availability

100%

25%
50%
75%

time

i

Figure 5.3: Pro�les of volunteer machines.

121

to execute with the hog running. Machines with pro�les A75, A50, and A25

model slower machines.

� Machine CR(i) crash-fails after i seconds from the start of the computation

and immediately recovers. This is achieved by manually killing the volunteer

process at the corresponding time and then starting a new process. Experi-

ments with machines of pro�le CR(i) illustrate how well failures are masked

and how eÆciently a new volunteer can be incorporated into an ongoing

computation.

Ising Model

Ising is a scienti�c application from statistical physics, which computes a 3D Ising

model [24]. This is a simpli�ed model of magnets on a three dimensional lattice

and is used to qualitatively describe the behavior of small systems. Computing the

Ising model involves a large number of independent tasks and little data movement.

A sequential program to compute the Ising model with a period of 23 was im-

plemented in 288 lines of code. The program executes in 440.5 s; this number was

used as the base case for computing speedups and eÆciencies of a parallel imple-

mentation. A Charlotte program for exactly the same problem was implemented in

302 lines of code. The program consisted of a sequential initializing step, followed

by a parallel step with 1023 routines, and a closing sequential step to collate the

results. The same Charlotte program was used in each case and the runtime pa-

rameters did not change. The manager ran on a A100 machine and various pro�les

were used for volunteer machines. Four series of experiments were conducted as

122

0

50

100

150

200

250

300

350

400

450

500

Seq 2 4 6 8 10 12 14 16
Volunteers

T
i
m
e

(
s
)

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p

time

achieved speedup
linear speedup

Figure 5.4: Scalability experiment of a Charlotte Ising model program.

described below.

The �rst series of experiments illustrates the speedup and scalability of Char-

lotte. The execution times of the same program, with the same runtime parameters,

using a range of 1 to 16 A100 volunteer machines are reported in Figure 5.4. The

speedup ranged from 0.99 for one volunteer to 14.55 for 16 volunteers. These num-

bers are gratifying, given such a high-level programming model and the lack of

low-level optimizations.

The next set of experiments illustrates the importance of two optimization

techniques: bunching, and avoiding the scan to collect modi�ed class-type objects.

Figure 5.5 compares the eÆciency of the Charlotte program (the same as the pre-

vious series), with a modi�ed version that does not perform bunching, and with

another modi�ed version that scans the entire shared memory region to collect

modi�ed objects. The results indicate that bunching and maintaining a list of

123

0 %

1 0 %
2 0 %

3 0 %

4 0 %
5 0 %
6 0 %

7 0 %

8 0 %
9 0 %

1 0 0 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Volunteers

E
ffi

ci
en

cy

w/bunching and w/o scanning

w/o bunching and w/o scanning

w/bunching and w/scanning

Figure 5.5: E�ects of bunching for executing �ne-grain tasks.

modi�ed objects improve the eÆciency of the computation by approximately 27%

and 20%, respectively.

The third series of experiments illustrates load-balancing capabilities of Char-

lotte. The execution times of the same Charlotte program with the same runtime

arguments, but with volunteer machines of varied speeds were measured. Each test

had some � A100 machines and � A50 machines. The constraint 1:0� + 0:5� = 8

was observed in all experiments, thus assuming \volunteering potential" equivalent

to eight fast machines. In fact the number of machines ranged from 8 to 16. See

Figure 5.6 where a label of �A100 + �A50 represents � A100 machines and � A50

machines. The speedup ranged from 7.26 to 7.53 using (the equivalent of) eight

volunteer machines. The results show that load balancing has a low overhead.

The �nal series of experiments illustrates Charlotte's ability to mask crashed

volunteers and to incorporate new volunteers into computations. The following

124

0

10

20

30

40

50

60

70

80

0A
10

0+
16

A50

1A
10

0+
14

A50

2A
10

0+
12

A50

3A
10

0+
10

A50

4A
10

0+
8A

50

5A
10

0+
6A

50

6A
10

0+
4A

50

7A
10

0+
2A

50

8A
10

0+
0A

50

Volunteers

T
im

e
(s

)
0

2

4

6

8

10

12

14

16

S
pe

ed
up

time speedup

Figure 5.6: Load balancing of a Charlotte Ising model program.

�ve experiments started with four volunteer machines, but some of the volunteer

machines were of type CR(i). Such a volunteer machine ran for i seconds, then its

JVM crashed, and then came up as a new volunteer. (This combined experiment

was conducted in the interest of concise presentation.) Speci�cally, in the reference

experiment there were four machines with pro�le A100; in the �rst, there was one

type CR(20) machine and three type A100 machines; in the second, there was one

type CR(20) machine, one type CR(40) and two type A100 machines; in the third,

there was one type CR(20) machine, one type CR(40), one type CR(60), and one

type A100 machine; in the fourth, there was one type CR(20) machine, one type

CR(40), one type CR(60), and one type CR(80). The speedups ranged from 3.90

(the reference experiment) to 3.52 (the fourth experiment). This is a satisfying

125

number of �les lines of code (LOC) relative increase of LOC

sequential 1 476 N/A

Charlotte 1 538 13%

RMI 3 627 31%

JPVM 3 689 45%

Table 5.1: Comparison of sequential, Charlotte, RMI, and JPVM ray tracing programs.

result, as the program managed the speedup of 3.52 while coping with four crashes

and integrating four volunteers during the computation.

Ray Tracing

A publicly available sequential ray tracing program [98] was used as the starting

point to implement parallel versions in Charlotte, Java RMI [52], and JPVM [55].

Java RMI is an integral part of Java 1.1 standard and, therefore, it is a natural

choice for comparison. JPVM is a Java implementation of one of the most widely

used parallel programming systems called PVM [59].

The Charlotte program was parallelized at the row-level, so each routine com-

puted one row of the �nal image. The RMI and the JPVM programs were imple-

mented using the manager-worker programming model (for basic load-balancing)

and a runtime argument determined the granularity of parallel tasks. Table 5.1

compares the lines of code and the number of �les used for the four di�erent imple-

mentations. As depicted, the Charlotte program is the shortest of the three parallel

implementations. An important di�erence (that is hard to measure) is the struc-

ture of the programs: in implementing the Charlotte program the structure of the

126

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15
volunteers

ef
fe

ci
en

cy
0
2

4

6

8

10

12

14

16

sp
ee

du
p

Charlotte JPVM RMI

Charlotte JPVM RMI

Figure 5.7: Performance comparison of Charlotte, RMI and JPVM programs.

sequential program was not changed and the modi�cations were localized; in con-

trast, the RMI and JPVM implementations required restructuring the sequential

program and decomposing it into several �les.

For the experiments a 500 � 500 image was traced. The sequential program

took 154 s to complete, and this number is used as the base in calculating the

speedups.

The �rst series of experiments compares the performance of the three parallel

implementations of RayTrace, see Figure 5.7. In the case of Charlotte, the same

program with the same runtime arguments was used for every run|the program

tuned itself to the execution environment. For RMI and JPVM programs, on the

other hand, executions with di�erent grain sizes were timed and the best results

are reported|the programs were hand-tuned for the execution environment. The

results indicate that when using 16 volunteers, the Charlotte implementation runs

127

0

0.2

0.4

0.6

0.8

1

2.5 5 7.5 10
effective volunteers

ef
fe

ci
en

cy

0
1
2
3
4
5
6
7
8
9
10

sp
ee

du
p

Charlotte JPVM RMI

Charlotte JPVM RMI

Figure 5.8: Load balancing of Charlotte, RMI and JPVM programs.

within 5% and 10% of hand-tuned JPVM and RMI implementations, respectively.

It is encouraging to see that the performance of Charlotte is competitive with other

systems that do not provide load balancing and fault masking.

The �nal set of experiments illustrates the eÆciency of the programs when

executing on machines of varying speeds|a common scenario when executing pro-

grams on the Web. Exactly the same programs with the same granularity sizes as

the previous experiment were run on n, 1 � n � 4, groups of volunteers, where

each group consisted of one A100, one A75, one A50, and one A50 pro�le machine.

Each group has a computing potential of 2.5 volunteers of pro�le A100. The re-

sults are depicted in Figure 5.8. As the results indicate, the Charlotte program

is the only one able to maintain its eÆciency: the eÆciency of the Charlotte pro-

gram degraded by approximately 5%; in contrast, the eÆciency of RMI and PVM

128

programs dropped by as much as 60% and 45%, respectively.

5.6 Design Alternatives

There are two traditional approaches to implementing distributed shared memory

at the software level. The most common approach (e.g., [90, 34, 22, 10, 2]) uses the

hardware support for virtual memory, and requires assistance from the operating

system. This is not a practical option for Charlotte because the JVM prohibits

access to virtual pages. The second approach is to instrumenting the object code to

detect and service shared memory read and write operations. The instrumentation

can be done by a compiler at the source code-level [140], or by a rewriting tool

at the binary-level [121]. If this approach was used for the �rst implementation

of Charlotte, the extensions made to JVM [133] would have required changes to

Charlotte before it could run again. Hence, instrumentation of the object code is

also not a good solution.

To overcome the above limitations, Charlotte's shared memory is implemented

by shared objects. The
exibility of this technique, however, comes at a cost: ac-

cessing builtin Java data-types is orders of magnitude faster than accessing objects

through method invocations. The experiments of Section 5.5 had very little data

access and, hence, overheads due to method invocations are not visible. But, in

general, this overhead can not be ignored.

Karl [79] has proposed a series of intermediate solutions to remove this over-

head. He has shown that using a set of annotations to provide the runtime system

with data access patterns, the entire read set can be propagated to worker pro-

129

cesses along with job assignments. This technique removes the method invocation

overhead as well as the network latency due to page faults. Although this approach

unnecessarily complicates the task a shared memory system attempts to simplify, it

is a feasible alternative given JVM's lack of support for object management. How-

ever, as Java extend from a programming language to an operating environment,

e.g., JavaOS [94], it is desirable to have the necessary object management support

within the JVM. Such a support could enable a more eÆcient implementation of

distributed shared objects.

130

Chapter 6

Middleware for Web-Based

Applications

6.1 Introduction

The combination of the Java programming language and Web browsers' ability to

load and execute untrusted Java applets in a secure sandbox has made distributed

computing over the Web a possibility. Consistent with Java terminology, the term

applet refers to a Java program that is typically loaded from the Internet and

executes inside a browser. Browsers generally impose the host-of-origin policy [125]

for secure execution of applets loaded from remote machines: browsers disallow

applets from accepting and initiating network connections, except from and to the

machine from which they were downloaded. In order to comply with this security

model, distributed programs that utilize browsers and Java applets generally have

the following characteristics:

131

server

Java
application

HTTP
server

code &
communication

code &
communication

code &
communication

code &
communication

Browser
& Applet

Browser
& Applet

Browser
& Applet

Browser
& Applet

Figure 6.1: Architecture of a typical Web-based parallel or collaborative computation.

� The program is composed of a Java application and one or more Java applets.

� The Java application executes on the end-user's (de�ned in Section 5.1,

page 102) local machine and is not under the scrutiny of the applet secu-

rity model. The end-user's machine also runs an HTTP server to handle

requests for applets.

� Volunteers (de�ned on page 102) are required to know a priori the URL

address of the end-user's machine that is running the HTTP server.

� Once an applet loads and executes inside a volunteer's browser, it estab-

lishes network connections to its associated application. This application is

responsible for transmitting information from one applet to another.

This is illustrated in Figure 6.1, and applies to parallel programming systems

such as Javelin [31] and Bayanihan [120], and to collaborative applications such as

Java Collaborator Toolset [83] and Jada/PageSpace [40].

In an ideal case, end-users should not be required to run an HTTP server on

their machine; volunteers should not be required to have a priori knowledge of the

132

URL of the end-user's machine; and collaborative applets belonging to the same

distributed application should be able to communicate directly. This is the goal

of KnittingFactory middleware presented next.

Contributions

This chapter presents KnittingFactory, a Java middleware layer that facilities the

development and execution of Web-based applications and extends the capabilities

of high-level programming environments. The contributions of KnittingFactory are

mechanisms for the following services:

� A distributed directory service to assist in �nding Web-based applications on

unknown hosts. This service is unique in utilizing the existing Web infras-

tructure to provide its service, and to migrate most of the computation away

from the directory servers and onto Web browsers. It is designed to support

applications that frequently register and deregister, such as parallel program-

s, and provides a non-uniform namespace that allows lookup operations to

�nd an appropriately \close" computation.

� A light-weight embedded class server to eliminate the need for external HTTP

servers and to provide a portal into applications and the means for applica-

tions to communicate with browsers via dynamic HTML �les.

� A middleware service for direct inter-applet communication. This service is

unique in making it possible for applets of the same distributed session, which

are executing in multiple browsers on the Internet, to directly communicate

and exchange information.

133

application/
applet

application/
applet

application/
applet

parallel
programming
environment

collaborative
system

Java Virtual Machine

KnittingFactory

Figure 6.2: KnittingFactory in a layered design. It supports distributed applications and

provides an infrastructure for other higher-level software systems.

Road Map

The rest of this chapter is organized as follows. Section 6.2 presents an overview

of KnittingFactory and the architecture of the software system. The design and

implementation of the three services, namely, the directory service, the embedded

class server, and inter-applet communication, are presented in Sections 6.3, 6.4,

and 6.5, respectively. Security concerns regarding inter-applet communication are

discussed in Section 6.7.

6.2 Architecture

While many other systems provide high-level functionality to programmers and

users, KnittingFactory is concerned with providing the infrastructure for such sys-

tems. KnittingFactory was initially designed to support high-level programming

systems such as Charlotte, however, it can also be used by user applications. Fig-

ure 6.2 depicts its relation to user applications and programming environments.

Readers interested in its application to collaborative programs and other user-

134

applications should consult [13]. KnittingFactory provides the following services:

� KF Directory Service: a distributed name service to assist users in �nding

networked applications on unknown hosts. This makes it possible for the

user to �nd such applications on the Internet by performing a lookup at any

site o�ering this service. The goal is to support applications which register

and deregister frequently. The challenge is to provide this functionality in

a decentralized fashion, but more importantly, in a way that works with

\simple" clients such as Web browsers.

� KF Class Server : an embedded HTTP server to eliminate the need for ex-

ternal servers. A user who wishes to initiate a distributed application might

not have access to a host running an HTTP server and it may be inconve-

nient or impossible to install such a server on the local host. This service

provides a light-weight mechanism for users to run a distributed application

on any host. In addition, this service provides a simple means and browsers

to communicate through HTTP requests and dynamic HTML �les.

� KF Applet : enables direct applet-to-applet communication. The host-of-

origin policy imposed by browsers prevents direct network connections be-

tween applets. This service allows applets of the same distributed session,

executing in multiple browsers on the Internet, to directly communicate and

exchange information.

The design and implementation of these services are presented next.

135

6.3 Directory Service

Consider the scenario of dynamically changing set of managers (each in charge of a

computation) and a dynamic set of available machines willing to run volunteers for

managers. In this scenario, the diÆculty lies in associating each volunteer machine

with a computation. It is only when this association has been established, and

the necessary program fragment has been made accessible to the volunteer ma-

chine, that the machine can contribute to a computation. The term match-making

is used to refer to this problem. There are some obvious requirements for this

match-making process: a simple API to work with Web browsers; a distributed

architecture to achieve scalability, non-uniform namespace to keep parallel compu-

tations localized by assigning volunteers to nearby computations, and decentralized

(i.e. having no single point of failure) to tolerate failures.

Motivation

The initial Charlotte implementation [15] did not address the match-making issue

in a scalable and
exible fashion. At that time, Charlotte computations advertised

with a single registry process, which would add an entry in a speci�c HTML �le

on their behalf. Volunteers directed their browsers to that HTML �le for the list

of active computations, then with a mouse click they could download and execute

a cooperating applet. Figure 6.3 shows the Web site as volunteers would have seen

it. This architecture was not scalable due to the single registry process, and it was

also prone to process and network failures. In addition, volunteers required a priori

knowledge of the registry's URL address. Following our initial work on Charlotte

136

Figure 6.3: The registry service for the initial Charlotte implementation. Parallel com-

putations are seen as entries in the HTML �le; volunteers would chose a computation

and click on the entry to participate.

137

there have been several other programming systems [31, 120, 30, 126] for Web-based

volunteer computing. However in all of them, the solution for the match-making

problem has the same set of limitations as our initial implementation.

In an ideal situation, the match-making should be performed by a distributed

service: end-users that need computational help should register with a local process

(either on the same machine or on the local network); volunteers should contact

a local service that may be di�erent from the ones end-users register with; and

a directory service should assist in the match-making while respecting parallel

computations' preference to execute as locally.

Design Goals and Considerations

While there are many classical directory service implementations, for example

CORBA name servers [122], and many new proposals for a general purpose di-

rectory service, such as Lightweight Directory Access Protocol (LDAP) [134, 135],

these are ill-suited in our context for three reasons.

� First, directory services such as LDAP de�ne a uniform namespace: everyone

has the same view of the data no matter where the request comes from. For

example, if two volunteers, one in North America and one in Europe, search

a uniform namespace for Charlotte computations, they would see the same

set of computations. This is a desirable property for many applications but

not for parallel computations. For eÆcient use of networks, the volunteer in

North America should �nd and contribute to a programs executing nearby:

on the same local area network if possible, otherwise in the same building,

138

the same city, and so on. Resources should not be wasted in providing a

uniform namespace when it is not necessary.

� The second reason popular directory services are not well suited for our pur-

pose relates to the nature of entries in the directory servers. Since parallel

computations are dynamic in nature, a directory service must accommodate

highly dynamic registration and deregistration of entries. The frequent reg-

istration and deregistration would make replication of information among

distributed servers unattractive because it would also require frequent invali-

dations. But without replication, the server processes will have to perform a

considerable amount of work to service lookup operations that don't succeed

locally.

For instance, LDAP directory servers are not allowed to redirect client re-

quests [134], and hence, the servers are expected to chase down referrals.

Thus, the CPU cycles and network bandwidth of the machine hosting the

LDAP server is highly burdened. It would be bene�cial to move some of the

work from the server machines to clients' machine.

� Finally, existing directory services were not designed for Web-based comput-

ing from the outset, hence, they do not capitalize on the Web infrastructure.

For example, system administrators are encouraged to install LDAP server-

s [129] where existing HTTP servers are able to provide the necessary services.

The lack of a general solution to address the de�ciencies discussed above kept

Charlotte (and other volunteer-based computing systems) from incorporating a

directory service.

139

<kf server, url>
<kf server, url>

....
<service, url>
<service, url>

....
java script

CGI
script

KF Directory components

directory server

HTTP
server

directory server

directory server
directory server

Internet

directory server

Figure 6.4: KF Directory Service components comprising a single HTML �le and two

CGI scripts.

Implementation

KF Directory Service capitalizes on the existing Web infrastructure. In particular,

it does not introduce a process to act as a directory server; existing HTTP servers

are used for this purpose. KF Directory Service is implemented by a single HTML

�le and two CGI scripts. To run an instance of KF Directory Service, a machine

needs access to three �les and it needs to run a standard HTTP server. Figure 6.4

illustrates the components of KF Directory Service.

The HTML �le is logically separated into three regions. The �rst region con-

tains a table of entries. Entries in the �rst region represent other directory servers.

An entry is a tuple containing a string (i.e., service name); a URL address (location

140

of the service provider); and optional �elds for category, password, and comments.

For example, the directory server in the bottom of Figure 6.4 is aware of three

other servers (represented by out-going edges), and hence the HTML �le contains

an entry for each of the servers. In this way the distributed servers form a directed

graph. Although reachability (of every machine from every other) is a desirable

property, there are no restrictions on the structure of the graph. Thus, users and

administrators can customize the directory service to best suit their needs, for

example, to re
ect geographical proximity. The second region of the HTML �le is

also a table of entries as well, but the entries represent clients that have registered

with this server (such as Charlotte programs). In practice, the �rst two regions

are treated uniformly and stored in one table, and the category �eld is used to

distinguish between entry types. The third region of the HTML �le contains a

JavaScript program, which performs the actual lookup. Note that while HTML

�les residing on di�erent machines contain an identical JavaScript program, their

directory entries generally di�er.

The two CGI scripts are used to add and to remove entries in the HTML �le.

This design allows standard HTTP POST messages to serve as registration and

deregistration requests. Furthermore, the uniform treatment of the entries makes

it possible to dynamically add and remove table entries through Web browsers.

A lookup operation begins with a volunteer directing a browser to any one of

the KF Directory Service sites and entering a request. This results in loading

the HTML �le containing directory entries as well as the JavaScript program. By

being loaded, the JavaScript program starts executing and analyzes the entries on

its own HTML �le. If it �nds an entry matching the search string, the browser

141

is instructed to load the corresponding link, which terminates the lookup. If the

JavaScript program does not �nd a suitable match, the search must continue to

one of the other sites listed, but the host-of-origin policy would prevent it from

contacting other network sites. This problem is overcome as follows. If a match is

not found, the JavaScript program constructs a new URL containing the address of

the next server and its (program) state as a URL tag. The program state consists

of a list of sites visited so far and a list of sites to visit next. The browser is

then instructed to load the newly constructed URL. Loading the new HTML �le

causes execution of another identical JavaScript program and stops the execution

of the current program, thus destroying its state. However, the newly executing

program can reconstruct the previous program state by reading the tag �eld, and

can continue to operate where the last program left o�. This technique does not

violate the limitations imposed by the tainting [56] (which prevents a JavaScript

program from inspecting pages coming from other sites) and host-of-origin policies.

The lookup operation is interesting in its ability to move most of the compu-

tation away from directory-server processes and onto Web browsers: the actual

search takes place in the user's browser, putting minimal strain on servers; the

only service required from the server to send one HTML �le. Furthermore, admin-

istration is reduced since the client-side code is downloaded automatically by the

browser. Measurements (presented in Section 6.6) show that a successful lookup

completes in approximately 500 milliseconds, and for unsuccessful lookups each

hop accounts for about 200 milliseconds|this is the time o�oaded from servers.

142

Application to Java RMI

This section presents how KF Directory Service can be used by systems other than

volunteer based computing. In particular, KF Directory Service is applied to the

client/server architecture of Java Remote Method Invocation (RMI) [52].

In Java RMI terminology, a registry is a remote interface for providing basic

name server functionality. The rmiregistry program packaged in the JDK 1.1 is

a shell script that invokes RegistryImpl, an implementation of the registry. Two

methods provided by the registry are of special interest: bind() and lookup() for

registering and locating a server object, respectively. The existing RegistryImpl

binds a server object only if it is local to its machine. In the absence of a network-

wide directory service, this means that client RMI applications must have a priori

knowledge of the host running the server objects.

KnittingFactory can overcome this restriction by providing a directory service

to RMI registries through a wrapper class around RegistryImpl. In addition to

passing bind operations to the RMI registry, the wrapper class can add a cor-

responding entry in a KF Directory Service under a speci�ed service name. A

lookup operation can use the KF Directory Service to �rst search the network for

the host running a registry with the appropriate server, and then to contact that

registry for the server's remote reference. Thus, with the help of the KF Directory

Service, RMI servers can execute anywhere on the network, and RMI clients can

transparently �nd them without knowing which hosts to search.

143

6.4 Embedded Class Server

For volunteer computing, volunteer applets are loaded from an HTTP server and

execute in a volunteer's Web browser. Volunteer applets typically establish a net-

work connection to a process that coordinates their e�orts. This is the case for

applications written in Charlotte, Javelin, and the Java Collaborator Toolset a-

mong others. In the case of Charlotte, the coordinating process is the manager.

The applet security model dictates that the manager process must run on the same

machine as the HTTP server, which might not be convenient in some cases.

KnittingFactory addresses this problem by providing a light-weight HTTP serv-

er. KF Class Server implements the essential functionalities needed to serve ap-

plets, and is designed to be embedded into any Java application. As a result, it is

the application itself that dynamically serves classes to browsers upon request. We

had two goals in designing KF Class Server . First, it gives end-users the
exibility

to initiate a Charlotte computation on any machine. Second, it serves as the means

for applications and browsers to communicate through standard HTTP requests.

KF Class Server is implemented by the KF Server class. A Java application

can instantiate a KF Server object to use its services. KF Server's constructor

takes an applet's name (to include in the initial HTML �le) and a call-back object

(which will become clear below) as arguments. It then starts handling HTTP

requests for index.html and Java class �les; unrecognized requests are handed

over to the application through the call-back object, and the response is sent

back to the requesting browser. This gives applications a simple mechanism to

communicate with external processes. In particular, Charlotte uses this feature

144

to provide a portal to the manager process, and allows browsers to monitor the

progress of computations. Note that this is possible only because of the embedded

nature of the HTTP server. The practicality of such a service, although simple,

justi�es its integration into KnittingFactory.

6.5 Inter-applet Communication

This section addresses facilitation of direct communication among multiple applets

belonging to the same session and why this is bene�cial. The security concerns

regarding such inter-applet communication will be discussed in Section 6.7.

Motivation

The host-of-origin policy disallows applets (loaded over a network and) running on

di�erent machines from communicating through network connections. This ham-

pers the \collaborativeness" of Web-based applications implemented by applets.

Solutions to overcome this limitation rely on untrusted code or a single forwarding

agent. Untrusted code, used either as native-methods [8] or browser plug-ins [17],

is not subject to the host-of-origin policy and is free to establish network connec-

tions to any machine. The use of untrusted code, however, breaks the security

guarantees provided by Java and prevents the use of o�-the-shelf browsers. As an

alternative method and as previously described on page 131, a Java application

can be used as a forwarding agent to propagate information from one applet to

another (see Figure 6.1). This technique has been used in several software sys-

tems [31, 83, 40], but as previously mentioned, the shortcomings of this approach

145

include a single point of failure and limited scalability.

In an attempt to alleviate some of the restrictions imposed by the host-of-origin

policy, signed applets and certi�cates [125, 124] were introduced in Java 1.1. In

addition, permission speci�cations and �ne-grain access control will be added to

a future release of Java [124]. Under the future model, the Java runtime system

will maintain mappings from code source (i.e., the URL location and a correspond-

ing certi�cate), to a protection domain, to user-de�ned permissions. Thus, users

will be able to selectively override the host-of-origin policy by trusting certain

code-providers. However, this requires code-providers to acquire a certi�cate, but

contacting a certifying authority for a certi�cate is a tedious process for most ca-

sual application developers. KnittingFactory provides a
exible solution for inter-

applet communication without burdening the user with the problematic choice of

where to put trust, and without burdening the developer with the need to obtain

a certi�cate.

Implementation

KnittingFactory's inter-applet communication is implemented through two Java

classes: KF Registry and KF Applet. The KF Registry class encapsulates an

RMI registry service along with a KF Class Server . This way, browsers can re-

quest and get all the applets belonging to the same distributed application from

a KF Registry object. Consistent with Java terminology, a remote object is an

object whose methods can be invoked from other Java virtual machines, and a

remote reference is a reference to a remote object. KF Applet is a remote object.

Furthermore, KF Applet extends the standard Java applet class as follows. First,

146

immediately after it is loaded in a browser and before the standard applet code has

executed, it (1) registers its remote reference with the parent KF Registry, and

(2) gets a list of all other applets (siblings) that have registered with the parent

KF Registry. Second, through RMI calls it noti�es its siblings of its intension to

join the distributed application. After this bootstrapping phase, the KF Registry

is no longer needed|applets can use their mutually known remote references to

communicate directly.

Sample Application

To demonstrate the viability of the KF Applet concept, a stand-alone whiteboard

application was modi�ed to work as a collaborative distributed application. The

necessary changes were few and straightforward. First, the whiteboard applet was

derived from KF Applet instead of java.awt.applet. And second, AWT events

were propagated to other members of the collaborative session using simple RMI

calls to sibling objects.

6.6 Experiments

The following experiments were conducted on 200 MHz PentiumPro machines

running the Linux version 2.0.34 operating system, and connected by a 100Mbps

Ethernet through a non-switched hub.

An important performance characteristic of a directory service is the time to

register and deregister servers, and the time observed by clients to perform a

lookup operation. Six KF Directory Services (HTTP servers) were link together

147

0
200
400
600
800

1000
1200
1400
1600

1 2 3 4 5 6
No. of visited directory servers

T
im

e
(m

s)

Figure 6.5: Lookup times for KF Directory Service in milliseconds. The x-axis shows

the number of directories searched before the lookup operation succeeds.

in a con�gured in a chain-like structure. To measure registration and lookup times

while abstracting away network delays, the KF Directory Server ran on the same

machine as the browser that issued the commands. The measurements showed

that registration of a new service takes 665 milliseconds and deregistration takes

685 milliseconds. The measured times for lookup operations are illustrated in

Figure 6.5. The �gure shows that a successful lookup completes in approximately

500 milliseconds, and for unsuccessful lookups, each hop accounts for about 200

milliseconds.

6.7 Security Concerns

Web browsers are expected to guarantee the execution of untrusted applet code in

a safe manner. The host-of-origin policy, which is the most widely used security

model, disallows applets from (1) initiating a network connection to any host other

148

than the one from which they came, and (2) listening for network connections

initiated elsewhere. It is apparent that the RMI mechanisms used by KF Applet

(tested using Java Developers Kit version 1.1.3, and HotJava Browser Version

1.1 running on Linux and Windows NT 4.0) violate the host-of-origin policy in

providing direct applet-to-applet communication.

The following justi�cation is given for the host-of-origin policy, \the intent is

to prevent applets from using network connections to circumvent �le protections

or people's expectations of privacy" [123]. The host-of-origin policy also serves to

protect machines located behind a �rewall from an attack by an applet downloaded

from the outside. As discussed earlier, the typical solution [23, 125, 74] to overcome

the limitations host-of-origin is to use a stand-alone application to route messages

between applets. KF Applet has been designed to work only for applets belonging

to the same session. In some sense, this does not violate the spirit of Java, but

only the speci�c technical mechanisms. This work demonstrates the usefulness

of inter-applet communication, and it may be possible to formally and securely

incorporate certain forms of inter-applet communication in future versions of Java.

149

Chapter 7

Related Work

7.1 Overview

Many research e�orts have attempted to e�ectively harness computer resources in

distributed platforms. Existing designs, however, separate certain related issues

needed to achieve this goal. As a result, existing systems address issues such as

programming ease, unpredictable machine behavior, fault-masking, and resource

management, in isolation. This section provides a brief summary of ongoing re-

search e�orts and highlights in particular those research activities that are most

relevant to the goals of this dissertation.

7.2 Parallel Computing on Networks of Workstations

Current distributed systems for networks of workstations fall into three general cat-

egories: message passing systems, remote procedure call systems, and distributed

shared memory systems. This section discusses research related to each category

150

in turn, followed by several selected research projects.

Message Passing Systems

PVM [59], P4 [93], and MPI [67] are representative of message passing system-

s. Such systems typically provide a portable communication library and system

independent mechanisms to start and control programs on remote machines. Fur-

thermore, they provide synchronization primitives such as barriers and high-level

communication services such as one-to-many and many-to-one messages. They are

also very eÆcient.

Developing programs with message passing systems is made diÆcult mainly be-

cause of a lack of high-level support for program development. This is a common

limitation with all message passing systems because they resemble the underlying

hardware: they are low level, require the programmer to marshal and unmarshal

data, and explicitly perform synchronization. Furthermore, the systems mentioned

above do not provide any support for load balancing, fault masking, or compre-

hensive resource management, factors that limit their use as a metacomputing

framework. For instance, PVM's failure detection is based on \best e�ort" with-

out any guarantees. Nonetheless, PVM and MPI have become the most widely

used parallel programming tools, primarily because of performance.

Remote Procedure Call Systems

Remote procedure call systems add structure to message passing. Concert/C [5],

DCE-RPC and CORBA [19] are examples of mature and portable packages. In the

context of a metacomputing framework, they su�er from all the shortcomings of

151

message passing systems. In addition, the synchronous nature of a procedure call

con
icts with the notion of concurrency, further limiting this approach for parallel

computation.

Distributed Shared Memory Systems

Another class of systems for distributed computing focuses on providing a virtual

Distributed Shared Memory (DSM) across loosely-coupled machines. IVY [90],

Midway [22], Munin [20, 34], TreadMarks [2], and Quarks [81] are representative

of DSM systems. Traditional DSM systems su�er from performance problems,

partially due to false sharing. In an attempt to improve performance, weaker and

sometimes multiple memory-consistency semantics have been introduced. The

decision as to which consistency model should be used, and when, is left to the

programmer, thus complicating a task the researchers were seeking to simplify.

Furthermore, none of the DSM systems mentioned above has architectural support

for scalability, load balancing, or fault masking.

Linda [33] is a variant of DSM that provides a common global space. Piran-

ha [60, 32] is a system built on top of Linda that allows machines to join an ongoing

computation as they become idle and to retreat when reclaimed. Piranha, however,

can not tolerate failures. With the exception of limited load balancing, Linda and

Piranha su�er from all the shortcomings of DSM systems, as well as some of the

shortcomings of message passing systems since programmers have to marshal and

unmarshal data in tuples. Linda and other related systems are further described

below.

152

Fault Tolerant Systems

Fault-tolerant systems such as Isis/Horus [25, 132], Ensemble [131], and Transis [48]

utilize reliable and ordered multicast to provide virtual synchrony: an environment

to mask unpredictable asynchronous network behavior. Programming, however, is

based on message passing, and the programmer is responsible for dealing with

failures once they are detected. In such systems, the overhead for fault tolerance

is high, and this overhead is present even in the absence of failures.

Other work aimed at providing fault tolerance has mainly involved augmenting

existing systems with conventional techniques, such as check-pointing and process

migration (FS-PVM [88]), transaction wrappers (PLinda [77]), and active replica-

tion (FT-Linda [7]). In such systems, tolerating failures is never transparent and

requires a special programming e�ort.

Combined Approaches

Several projects address related issues without speci�cally targeting the goals of

our research. The Berkeley NOW project [108] aims to utilize all resources on

a network. They target speci�c areas: using of low-latency active messages for

�ne-grain data sharing; using the aggregate DRAM on a network as a giant disk;

using software implementations of RAID to increase data bandwidth and to re-

move single points of failure; and utilizing idle CPU cycles. The Wisconsin Wind

Tunnel [113] provides a middle-level communication interface. Tempest [71] is

a low-level communication substrate for implementing message passing, shared

memory, and hybrids of the two.

153

Linda and Friends

Linda programs communicate using tuples. A tuple is a sequence of typed values.

For example, ("hello", "world"), and (10.0, 42) are tuples. A template is a

sequence consisting of types and typed values. For example, ("hello", ?cPtr),

and (?f, 42) are templates. The �elds of a template whose values are speci�ed

are actuals and the other �elds are formals.

A tuple space is a virtual shared bag that houses tuples. Programs communicate

by placing and removing tuples from the tuple space. Six operations are provided

for this purpose. A Linda process can add a tuple to the tuple space using the

out operation, remove a tuple form the tuple space using the in operation, and

query the tuple space to determine the existence of a tuple using the rd operation.

The in and rd return a tuple, if one exist, from the tuple space that matches the

type of the template. Both in and rd operators are synchronous and block until

a matching tuple appears. There might be times when the synchronous behavior

is not desirable. The inp and rdp are asynchronous operators analogous to in

and rdp, respectively. There is a special operation for process creation. The eval

operator takes a template as argument and creates a processes for each actual

argument. When all the spawned processes have terminated, the tuple is created

and put in the tuple space.

Linda

Linda is highly tuned for performance. It comprises of two separate software

modules: a preprocessor and a runtime library.

154

The Linda preprocessor replaces the six operations (discussed above) with ap-

propriate function calls to the Linda runtime library. A major portion of perfor-

mance optimizations occur at this stage. The preprocessor statically analyzes the

program to spatially partition the tuples and the templates into equivalent class.

This way, each operation can be targeted to a speci�c tuple space partition. The

preprocessor also determines the best data structure to use for each equivalent

class. For example, if a partition consists of only (``work'') tuples, then the

tuples will be represented as a single integer counter.

The Linda runtime library implements the six operations. The initial imple-

mentation was based on a centralized tuple server; distributed implementations

were introduced later. An important performance question that Linda addresses

well is where to store the tuple space. The following choices are viable: keep tuples

local to the machine that generates them, replicate tuples across all machines, or

have a home machine for each equivalent class. Linda tries to utilize all three

approaches, however, the latter is the most widely used.

Piranha

Piranha enables Linda programs to run on idle workstations. It allows workstations

to join an ongoing computation as they become idle and to retreat when reclaimed

by their users. The Piranha encourages programmers to write their program in

a restricted form of the master/worker paradigm, whereby each Piranha process

reads a work tuple, does some computation, outputs a tuple, then dies. Unlike

Calypso, Piranha does not address fault tolerance and other unpredictable machine

characteristics that arise from time-sharing.

155

Persistent Linda

Persistent Linda (PLinda) adds fault-tolerance to Linda by using atomic trans-

actions. It extends the standard six Linda operations with xstart and xcommit

to indicate the start and end points of a transaction, and xrecover for process

recovery. The xcommit operation stores the local state of a process (continuation)

in the tuple space. This continuation tuple can be read by a recovering process to

restore its state. Database transactions are generally known to be heavy weight

and not appropriate for parallel computations. To address this problem, PLin-

da uses lightweight transactions (level-two commit protocol). Furthermore, the

xcommit operation is an in-memory operation|the idempotence nature of parallel

computations makes this an attractive solution. Fault tolerance in Calypso, unlike

PLinda, is transparent to programmers and the executing program.

Dome

Distributed Object Migration Environment (Dome) [3, 18] is notable because ease

of use, load balancing, and fault tolerance were address at the onset. Dome provides

data-level parallelism through a set of pre-de�ned C++ classes libraries and runs

on top of PVM.

Load balancing is achieved as follows. When a dome object is instantiated, its

data is partitioned and distributed among participating machines. The system then

tracks the speed of each machine and dynamically repartitions the data to achieve

a balanced load. Fault tolerance is addressed through checkpointing. In what is

called the high-level heterogeneous checkpointing, programmers are responsible for

156

explicitly storing program states and later for recovering to a consistent state. This

is the only implemented technique. The low level checkpointing consists of regular

core dumps. In this case, determining a consistent state is a diÆcult issue since the

failure could have occurred during process communication. Dome's architecture

allows it to be portable and heterogeneous. In fact, there are several di�erent ports

Dome.

Programming e�ort is kept to a minimum as long as the Dome's pre-de�ned

objects suÆce. Otherwise, for user-de�ned objects to enjoy the bene�ts of load-

balancing and fault-tolerance, they must abide by and mesh into the rest of the

Dome runtime system. This means that the programmer must use PVM com-

munication mechanisms to partition, distribute, and redistribute data, and to im-

plement checkpointing. This extra e�ort requires specialized programming, which

limits Dome's use. The e�ectiveness of Dome's load-balancing technique is limited

as well. According to published results, an experiment was conducted to evalu-

ate load balancing [3, 18]. When one slow machine (slowed down by a factor of

67%) was added to �ve other machines performing a large matrix multiplication

operation, performance dropped by almost 50%.

Cilk-NOW

Cilk-NOW [28] is a software system designed to run parallel programs on networks

of workstations. A macroscheduler, which schedules Cilk processes on idle work-

stations, provides Cilk-NOW programs with adaptive parallelism. A centralized

resource manager called the job broker implements the macroscheduler.

The Cilk-NOW runtime system supports a subset of the parallel Cilk [26]

157

language|a multithreaded extension of C. A Cilk program contains one or more

Cilk procedures, and each procedure contains one or more Cilk threads. A Cilk

procedure is the parallel equivalent of a C function, and a Cilk thread is a non-

suspending piece of a procedure. A Cilk program (procedure) achieves parallelism

by spawning successor and child threads: typically, child threads are used for par-

allelism, and successor threads are used by parent threads to synchronize with

child threads. Threads communicate through arguments and return values only:

Cilk-NOW does not provide distributed shared memory on networks of worksta-

tions.

Cilk, and similarly, Cilk-NOW, uses the \work stealing" algorithm [27] to sched-

ule threads on participating machines. The work-stealing scheduler works as fol-

lows: a process with no (runnable) threads randomly steals threads from neigh-

boring victim processes. The work-stealing algorithm is provably eÆcient and

predictable for identical speed processors.

Cilk-NOW provides transparent fault tolerance as follows. First, Cilk-NOW

ensures that subcomputations execute in isolation, i.e., the work done by one sub-

computation is not visible by others until the subcomputation �nishes and its

result is returned. Second, once a failure is detected, other remaining processes

check to make sure that they have not been an earlier victim of the failed process.

If a process detects that it has been a victim, it assumes responsibility for exe-

cuting the computations that were stolen (and never �nished) due to the failure.

Additionally, each surviving process checks the list of computations assigned to it,

and removes any computations that were stolen from the failed process. This step

also involves informing other processes that might have stolen subcomputations

158

of aborted computations. Finally, the computations lost due to the failure are

recovered from the last checkpoint image. Checkpointing occurs periodically and

is transparent to Cilk programs.

Cilk-NOW provides adaptive parallelism, automatic load balancing, and fault

tolerance. In contrast to Calypso, it does not provide a virtual shared memory,

and its scheduler was not designed for processors with di�erent and unpredictable

speeds.

7.3 Parallel Computing on the World Wide Web

The Use of the Internet to form large metacomputers out of geographically dis-

tributed machines has resulted in a number of research projects with various points

of focus.

The Legion system [65] attempts to create a single virtual computer out of

distributed computers, leveraging diverse technologies such as object-oriented

programming, wide-area gigabit networks, cryptography and parallel compilers.

Globus [57] targets computational grids for providing dependable, consistent, and

pervasive access to high-end computational resources. Legion provides a highly

organized view of the distributed system, that is, every component is represented

by a corresponding object. Globus, on the other hand, follows a bag of services

architecture, and provides services such as resource management and security,

from which developers can select based on their needs'. Legion and Globus have

a much larger focus than Charlotte. As a result, they do not address issues like

ease of programming, load-balancing and adaptive execution of programs, and

159

distributed shared memory, all of which are major concerns in Charlotte.

Important concerns for distributed computing systems include security, system

heterogeneity, and program distribution. A considerable number of systems con-

centrate on using Java to solve some or all or of these problems. These systems can

be broadly classi�ed into two categories: systems that use o�-the-shelf Java compil-

ers and Java Virtual Machines (JVM); and systems that modify and extend JVMs.

An orthogonal classi�cation can also be made according to the programming model

that is o�ered. In particular, message passing or DSM systems are of interest due

to their close relationship to programming models found for parallel computing.

Metacomputing is in principle possible using distributed object technologies, such

as those o�ered by Voyager [105], Aglets [86], and Java Remote Method Invocation

(RMI) [52]. However, these systems do not target metacomputing; rather, they

provide a starting point to build higher-level systems for metacomputing. These

systems are not therefore directly comparable to a metacomputing project such as

Charlotte.

Examples of projects that do not rely on Pure Java are Atlas [8], IceT [64],

Java/DSM [139], and ParaWeb [29]. Atlas adapts Cilk's work stealing mechanism

to the Web. It implements a tree-like hierarchy of managers on top of (volunteer)

compute servers. In addition to having compute servers steal work from one an-

other, the managers move work from one subtree to another for inter-cluster load

balancing. This architecture is similar to KF Directory Service in that the compu-

tations tend to stay localized. However, unlike KF Directory Service, the managers

perform the lookup searches, and the Web-infrastructure is not utilized. More im-

portantly, because the managers are an integral part of Atlas's programming

160

model, it is not clear how this architecture can be applied to other programming

systems. Furthermore, Atlas uses native code to circumvent the Java sandbox

security model. IceT is concerned with integrating legacy and native-language

libraries into Java programs while still o�ering code mobility. Java is used as a

wrapper language for portability and existing native-language libraries are used

for the actual computational engine of an application. Security concerns are ad-

dressed via a special analysis of the Java bytecode. Java/DSM modi�es the JVM

to interface with the Treadmarks DSM system. All Java objects are allocated in

a shared memory region, and the garbage collector is modi�ed to maintain con-

servative estimates of cross-machine object references. The use of the page-based

Treadmarks system complicates maintaining heterogeneity and requires modi�ca-

tion of the Java object-layout. ParaWeb modi�es the JVM to allow Java threads

to be instantiated on any remote machine and adds a release-consistency DSM ab-

straction to implement a single global namespace across threads. The basic Java

synchronization mechanisms are used as synchronization points for the consistency

mechanism.

Previously mentioned systems rely on native-code or non-standard JVM imple-

mentations to provide a parallel programming environment. While this approach

allows the �ne-tuning of communication and memory management systems, it does

not maintain Java's secure execution environment and it requires installation of

additional software. Therefore, such an approach may not be applicable or desir-

able in many circumstances; speci�cally, because it breaks the basic requirements

of one-click computing.

JPVM [55] and mpiJava [6] provide a message passing interface on top of s-

161

tandard Java. These two software systems provide the same bene�t to programs

written in Java that PVM and MPI (respectively) provide to programs written in

C: they provide a set of low-level mechanisms to send and receive messages. Unlike

Charlotte, those software systems do not provide any support for load-balancing

and fault-masking, and more importantly, programs written in JPVM and mpi-

Java can not execute as Java applets, which makes them ill-suited for Web-based

computing.

JavaParty [109] and Nin
et [126] are Java-based systems for distributed com-

puting. JavaParty provides mechanisms (built on top of Java RMI) for transpar-

ently distributing remote objects. Nin
et is an infrastructure for migrating objects,

which targets parallel computing on idle CPU cycle. Unlike Charlotte, JavaParty

and Nin
et programs are Java applications, and hence they are not able to execute

in Web browsers. Furthermore, they do not transparently handle faults and they

do not load balance parallel applications.

Javelin [31] and Bayanihan [120] are systems that address volunteer-based com-

puting. In Javelin a standalone application, called the broker, acts as the central

task repository and scheduler. Javelin provides multiple communication models,

including PVM and Linda models, and the broker is used to forward messages

from one volunteer to another. In contrast, Charlotte provides a predictable vir-

tual machine model and a runtime system that implements this machine on the

unpredictable machines of the Web. Bayanihan is similar to Charlotte in the ser-

vices it provides for volunteer-based computing. The two major components of the

Bayanihan system are the communication module and the scheduler. Currently,

Bayanihan provides communication in the form of migrating objects, which are

162

implemented on top of the HORB [72] system. The current implementation of

Bayanihan uses eager scheduling, and thus is able to provide transparent fault

tolerance and load balancing like Charlotte.

Since the initial work on Charlotte, there have been several other programming

systems [31, 120, 30] that strive to realize one-click computing. In every case,

their solution for matching volunteers with computations, i.e., match-making, has

the same limitations as the initial implementation. For example, in the case of

Nin
et, server daemons (processes that volunteer to do work) and client processes

(computations that need help) are given the URL address of a dispatcher by ini-

tiating users. The dispatcher is a process responsible for assigning computations

to servers. Thus, Nin
et relies on a single process for match-making, and assumes

the user's a priori knowledge of the process' URL address. This is also true for

Javelin and POPCORN [30] (where the centralized match-making process is called

the broker and market, respectively). Distributed match-making is not addressed

in Bayanihan. Charlotte, through the use of KF Directory Service, is the �rst

Web-based metacomputing system to overcome this limitation.

7.4 Overview of Selected Resource Management Systems

Load Dispersion for Sequential Jobs

Early systems for resource management were designed to disperse the execution of

jobs among available machines on a network. To use their services, users submit

programs to the underlying system for execution. The system then selects the

machines to execute the programs. Executing programs' input and output are

163

generally redirected to provide the user with the output of the remotely executing

program. Systems like NEST [1], V [127], Sprite [50], MOSIX [9], and Remote

Unix [91] provide such a service at the operating system level. Coshell [58] provides

a similar service, not as a part of the operating system but as a Unix shell. The

only privilege Coshell requires is rsh access to remote hosts.

To manage the transient availability of machines, systems such as Remote Unix,

Sprite, and MOSIX utilize checkpointing and process migration to move processes

once machines become unavailable. Coshell provides user-level process migration

through CosMiC [39].

In contrast to ResourceBroker, the focus of the above systems is to support

sequential computations, and they do not make any special provision for parallel

programs.

Static Allocation of Parallel Jobs

Several research and commercial products such as Condor [92], Utopia [141] (now

LSF [110]), DQS [53] (now CODINE [61]), Portable Batch System (PBS) [68],

and IBM's LoadLever [76] were developed for managing heterogenous resources of

networks of workstations. These systems are typically Queue Management Systems

and were originally intended to be used with batch sequential jobs. With the

increased popularity of parallel programming systems such as PVM and MPI,

previously mentioned systems extended their support to parallel interactive jobs.

Globus [57] and Legion [38] are large-scale resource managers designed to unite

machines from multiple administrative domains. While well-suited to what they

do, the above systems are in some sense batch-like and limited to a static allocation

164

of resources.

To use the above systems, a user submits a job to the resource manager and

speci�es the number and type of machines required. The resource manager then

selects a set of appropriate machines, starts up daemon processes, and performs

other necessary tasks to prepare the parallel job for execution. In some cases the

resource manager even starts and monitors the job, and then informs the user when

the job completes. An important characteristic of such resource managers is the

inherently static allocation of machines to jobs: machines are allocated only once

and before the jobs starts executing. This is a limiting factor. In a recent study

at the NASA Ames Research Center [78], six commercial and research resource

managers were evaluated. The researchers in this study reported \[. . .] the bad

news is the con�rmation of a continuing lack of JMS [Job Management System]

support for parallel applications, parallel systems, and clusters of workstations."

Attempts have been made to dynamically load-balance parallel jobs using tech-

niques employed for sequential jobs: process checkpointing and migration. Re-

source managers such as GLUnix [62], PRM [103], and DynamicPVM [45] were

designed to use this technique. Under such systems, when a machine becomes

busy, processes executing on that machine are migrated to an underloaded remote

machine. Although some researchers have argued that process checkpointing and

migration are not e�ective for parallel jobs [4, 87], the literature is still undecided

on the subject [51].

A dynamic allocation of machines to jobs is more e�ective if machine-loads, as

well as job resource requirements, can change over time. In contrast to previous

systems, ResourceBroker can dynamically allocate and reallocate resources to jobs.

165

Dynamic Management of Adaptive Jobs

Systems such as Piranha [60, 32], Cilk-NOW [28], MPVM [35], Con-

dor/CARMI [111], and DRMS [100] speci�cally target adaptive parallel

computations, and are capable of dynamically allocating machines to a run-

ning job as resources become available as well as deallocating machines if they are

needed elsewhere.

Piranha and Cilk-NOW are examples of a resource manager integrated with a

parallel programming system. Piranha is an extension of Linda, and Cilk-NOW is

an implementation of Cilk. Both allow jobs to expand their execution to remote idle

machines, and to retreat when machines are reclaimed. Piranha represents a great

step forward in providing adaptive parallelism. However, it required modi�cations

to the Linda system, and only supported Linda programs that had been modi�ed

to use Piranha. Similarly, Job Broker, the Cilk-NOW's resource manager, can only

support adaptive Cilk programs.

Condor/CARMI proposed that \[. . .] all RM [resource management] func-

tionality be removed from PPE [parallel programming environments] code, and

migrated into one or more processes which are dedicated to handling resource

management requests." This proposal lead to major modi�cations of version 3.3

of PVM's intra-job management services: the functionalities were isolated and

removed form PVM daemons to made into PVM tasks. As a result, PVM now

supports a well-de�ned interface for intra-job management. Both Condor/CARMI

and MPVM utilized this interface to support adaptive PVM programs. Howev-

er, the approach taken by Condor/CARMI and MPVM is PVM-speci�c, required

166

assistance from the implementers of PVM, and can not be applied to other pro-

gramming systems such as MPI.

Distributed Resource Management System (DRMS) is a service that runs on

the IBM SP2 computer and manages MPI and HPF jobs (that are compiled to

use MPI at a lower level). It is parallel application aware, in that it can grow

and shrink a job's \node count." However, it is tightly integrated with the SP2

system and the MPI implementation (it modi�es routing tables to redirect MPI

messages). Its dynamic services are also limited to programs that are explicitly

programmed for DRMS.

The above mentioned resource managers are tightly integrated with either the

underlying operating system or with the parallel programming system they sup-

port. In fact, unlike ResourceBroker, none of the systems support adaptive pro-

grams written using di�erent parallel programming system.

167

Chapter 8

Conclusions

8.1 Metacomputing on Networks of Workstations

External factors that exist in multiuser networks of workstations give rise to un-

predictable machine and network behavior. To eÆciently use such environments,

programs must adapt to these changes. A common weakness in most parallel pro-

gramming tools is the lack of high-level support for developing adaptive programs,

and hence, programmers are left with responsibility for this task. Chapters 3 and 4

presented Calypso and ResourceBroker which in unison provide a comprehensive

solution for metacomputing on networks of workstations. Several novel ideas have

been validated by Calypso, including Eager scheduling , two-phase idempotent ex-

ecution strategy (TIES), bunching , aggressive shared-memory caching techniques,

and adaptive scheduling policies. ResourceBroker has validated a technique for

managing adaptive computations that is based on intercepting and interpreting

low-level actions performed by computations.

168

Eager scheduling , (TIES), and bunching were shown to be e�ective in providing

transparent load balancing and fault tolerance. The interplay of eager scheduling

and TIES result in distributing the work load on the bases of processor speeds.

In addition, because faster machines are able to bypass slower machines, the addi-

tion of a slow machines to a parallel computation will never be detrimental to the

performance|this is not the case with most other programming systems. Further-

more, the combination of eager scheduling and TIES allows a failure to be viewed

as a special case of an in�nitely slow machine. Bunching demonstrated how the

eager scheduling and TIES can be extended to eÆciently execute �ne-grain tasks

in a coarse-grain fashion.

In addition to the above techniques, it was shown that the combination of ag-

gressive shared-memory caching techniques with adaptive scheduling policies can

be used to eÆciently implement a virtual machine on networks of workstations.

Calypso's caching and prefetching algorithms leverage the structure of fork/join

programming style to minimize the number of (false) page-faults and to amortize

the overhead associated with fetching shared data over the network. The caching

algorithm along with CREW programming model alleviates page-shuttling. Fur-

thermore, Calypso's scheduler assists the caching mechanisms by attempting to

schedule jobs based on its estimate of spatial and temporal locality of shared data.

The contributions resulting from Calypso being an operational system for sev-

eral years are satisfying. A number of applications have been parallelized using Ca-

lypso, including from the general areas of graphics, image processing, �nance [11],

scienti�c [11], and computational physics. Calypso has also been used as a teaching

tool in a graduate seminar course at New York University. Furthermore, other re-

169

searchers have used Calypso as a stepping-stone for other original work. Examples

include:

� Huang et al. [73] showed that nested parallelism, i.e., a parallel step insid-

e another parallel step, allows programming
exibility and implemented a

system to demonstrate this. That work had its roots in Calypso.

� The experiences and lessons learned during a successful port of Calypso to

Windows NT were reported in [43, 96].

� Sardesai et al. [118, 119] used the core mechanisms of Calypso (i.e., eager

scheduling and TIES) in developing Chime. Chime is an elegant program-

ming system, which among others, supports nested parallelism, distributed

cactus stacks, inter-routine communication, and it implements the CC++[36]

programming language on networks of workstations.

� In the context of Chime, McLaughlin et al. [95, 97] extended the bunching

mechanism of Calypso with thread migration and preemptive scheduling for

improved performance and resilience to failures.

The e�ective utilization of transient resources relies on resource manager's abil-

ity to communicate resource availability to adaptive computations, and adaptive

computations' ability to communicate their resource requirements to the resource

manager. Unfortunately there is no standard interface for this two-way commu-

nication. Hence, existing resource managers did not support adaptive programs

written with di�erent parallel programming system. Chapter 4 presented a tech-

nique to e�ectively built this communication interface, even to programs that were

170

not developed to work with resource managers. The technique is based on inter-

cepting and interpreting low-level actions common to many parallel programming

systems. Indeed, our initial goal was to support PVM and Calypso programs;

only after the initial design we realized that MPI and PLinda programs can be

supported as well.

Chapter 4 also presented the design and implementation of ResourceBroker,

a resource manager to demonstrate the above technique. ResourceBroker is the

�rst resource manager that can dynamically allocate, deallocate, and reallocate

machines to adaptive programs written using PVM, MPI, Calypso, and PLinda.

The use of external plug-in modules enables future support for as yet unde�ned

programming systems. Furthermore, ResourceBroker executes with user-level priv-

ileges, and hence, it does not compromise the security of networked machines even

if it malfunctions. The focus of this work, so far, has been on a general mechanism

to coerce unmodi�ed programs in using suitable machines at runtime. This is a

starting point for more extensive research on allocating general resources to un-

modi�ed programs. The
exibility is needed in order to provide Quality-of-Service

guarantees that enhance the execution of users' programs.

8.2 Metacomputing on the World Wide Web

Chapters 5 and 6, respectively, presented Charlotte and KnittingFactory, which in

unison, provide a comprehensive solution for metacomputing on the Web. Char-

lotte leverages Web browsers' abilities to load and execute untrusted Java applets

in a secure fashion to assist programmers with developing parallel programs and

171

a runtime system for the execution of the programs on the Internet. KnittingFac-

tory is an infrastructure that facilities the execution of collaborative and parallel

applications. The lessons learned by having an operational system are summarized

below.

Users wanting to execute programs on the Internet can not be expected to

have access-right to every machine. Therefore, Charlotte was based on the concept

of (1) volunteers who would allow their machines to participate in someone else's

computation, and (2) one-click computing, which allows volunteers to participate in

ongoing computations by directing a Java-capable browser to a Web site. Charlotte

is the �rst such system.

The success of projects that use the Internet for executing compute-intensive

programs (described in Section 5.1) indicates that a large number of people will

voluntarily donate the use of their machines. Thus, the concept of volunteer-

computing seems to have been a good choice in designing Charlotte.

Several other systems also implement one-click computing, but to the best of

my knowledge, and for valid reasons, one-click computing has not been used in

solving any \real world" problems. One-click computing is implemented in Java

and relies on the browser's ability to download and execute Java applets. Thus, the

success of one-click computing relies on the acceptability of Java as a language for

compute-intensive programs. It is generally agreed that current implementations

of Java produce unacceptably slow programs [42]. It is possible that with continued

improvements of Java compilers and virtual machine implementations [63, 66], Java

and, in turn, one-click computing will become a viable choice for compute-intensive

programs.

172

The initial implementation of Charlotte, as well as subsequent volunteer-based

computing systems [31, 120, 30, 126], neglected the problem of matching volun-

teers with computations. KnittingFactory addresses this problem by providing a

directory service. This directory service supports a non-uniform namespace to keep

parallel computations localized, and it implements a novel technique to migrate

most of the computations to the client side. In addition to the directory service,

KnittingFactory provides the means to implement portals into Charlotte managers.

As a result, standard browsers can be used to monitor the progress computations.

KnittingFactory has contributed to the usability of Charlotte, and thus far, it been

successful in meeting its goals. But it is not tied to Charlotte in any way; it will

be gratifying to see KnittingFactory applied to other systems as well.

Mechanisms such as eager scheduling, two-phase idempotent execution strategy,

and bunching are used for load balancing, fault masking, and eÆcient execution

of �ne-grain tasks. These mechanisms were �rst implemented in Calypso and

proved e�ective for networks of workstations. Experiments with Charlotte indi-

cate that these mechanisms are also e�ective for the Web, an environment that

is more prone to failures and more unpredictable than networks of workstations.

These mechanisms have since in
uenced other research projects, such as Bayani-

han [120]|which is gratifying.

173

Bibliography

[1] R. Agrawal and E. Ezzat. Location independent remote execution in NEST.

IEEE Transactions on Software Engineering, 1987.

[2] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,

and W. Zwaenepoel. TreadMarks: Shared Memory Computing on Networks

of Workstations. IEEE Computer, 1996.

[3] J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, and

P. Stephan. Dome: Parallel programming in a heterogeneous multi-user envi-

ronment. In Proceedings of the International Parallel Processing Symposium,

1996.

[4] R. Arpaci, A. Dusseau, L. Vahdat, L. Liu, T. Anderson, and D. Patterson.

The interaction of parallel and sequential workloads on a network of work-

stations. In SIGMETRICS, 1995.

[5] J. Auerbach, A. Goldberg, A. Gopal, M. Kennedy, and J. Russell. Con-

cert/C: A language for distributed programming. In Proceedings of the Win-

ter USENIX Conference, 1994.

174

[6] M. Baker, B. Carpenter, G. Fox, S. Ko, and X. Li. mpiJava: A Java interface

to MPI. In Proceedings of the ACM Workshop on Java for High Performance

Network Computing, 1998.

[7] D. Bakken and R. Schlichting. Supporting fault-tolerant parallel program-

ming in Linda. IEEE Transactions on Parallel and Distributed Systems,

1995.

[8] J. Baldeschwieler, R. Blumofe, and E. Brewer. Atlas: An infrastructure for

global computing. In Proceedings of the ACM SIGOPS European Workshop,

1996.

[9] A. Barak, S. Guday, and R. Wheller. The MOSIX distributed operat-

ing system|load balancing for Unix. Lecture Notes in Computer Science,

Springer-Verlag, 1993.

[10] A. Baratloo, P. Dasgupta, and Z. M. Kedem. Calypso: A novel software

system for fault-tolerant parallel processing on distributed platforms. In

Proceedings of International Symposium on High-Performance Distributed

Computing (HPDC), 1995.

[11] A. Baratloo, P. Dasgupta, Z. M. Kedem, and D. Krakovsky. Calypso goes

to wall street: A case study. In Proceedings of the International Conference

on Arti�cial Intelligence Applications on Wall Street, 1995.

[12] A. Baratloo, A. Itzkovitz, Z. M. Kedem, and Y. Zhao. Mechanisms for just-

in-time allocation of resources to adaptive parallel programs. In Proceedings

175

of the International Parallel Processing Symposium & Symposium on Parallel

and Distributed Processing (IPPS/SPDP), 1999.

[13] A. Baratloo, M. Karaul, H. Karl, and Z. M. Kedem. An infrastructure for

network computing with Java applets. In Proceedings of the ACM Workshop

on Java for High-Performance Network Computing, 1998.

[14] A. Baratloo, M. Karaul, H. Karl, and Z. M. Kedem. An infrastructure for

network computing with Java applets. Concurrency: Practice and Experi-

ence, 1998.

[15] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wycko�. Charlotte: Meta-

computing on the Web. In Proceedings of the International Conference on

Parallel and Distributed Computing Systems, 1996.

[16] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wycko�. Charlotte: Metacom-

puting on the Web. To appear in International Journal on Future Generation

Computer Systems, 1999.

[17] L. Beca, G. Cheng, G. Fox, T. Jurga, K. Olszewski, M. Podgorny, P. Sokol-

wski, and K. Walczak. Web technologies for collaborative visualization and

simulation. Technical Report SCCS-786, Northeast Parallel Architectures

Center, 1997.

[18] A. Beguelin, E. Seligman, and P. Stephan. Application level fault tolerance in

heterogeneous networks of workstations. Journal of Parallel and Distributed

Computing on Workstation Clusters and Network-based Computing, 1997.

[19] R. Ben-Natan. Corba. McGraw-Hill, 1995.

176

[20] J. Bennett, J. Carter, and W. Zwaenepoel. Munin: Distributed shared mem-

ory based on type-speci�c memory coherence. In Proceedings of the Sympo-

sium on Principles and Practice of Parallel Programming (PPoPP), 1990.

[21] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform resource locators

(URL). RFC 1738, 1994.

[22] B. Bershad, M. Zekauskas, and W. Sawdon. The Midway distributed shared

memory system. In Proceedings of the International Computer Conference

(COMPCON), 1993.

[23] D. Bhatia, V. Camuseva, M. Camuseva, G. Fox, W. Furmanski, and G. Prem-

chandran. Web-Flow|a visual programming paradigm for Web/Java based

on coarse grain distributed computing. Concurrency: Practice and Experi-

ence, 1997.

[24] N. Biggs. Interaction models: Course given at Royal Hollaway College, Uni-

versity of London. Cambridge University Press, 1977.

[25] K. Birman. Replication and fault-tolerance in the ISIS system. ACM Oper-

ating Systems Review, 1985.

[26] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou.

Cilk: An eÆcient multithreaded runtime system. The Journal of Parallel

and Distributed Computing, 1996.

[27] R. Blumofe and C. Leiserson. Scheduling multithreaded computations by

work stealing. In Proceedings of the Annual Symposium on Foundations of

Computer Science (FOCS), 1994.

177

[28] R. Blumofe and P. Lisiecki. Adaptive and reliable parallel computing on

networks of workstations. In Proceedings of the USENIX Annual Technical

Conference, 1997.

[29] T. Brecht, H. Sandhu, M. Shan, and J. Talbot. ParaWeb: Towards world-

wide supercomputing. In Proceedings of the ACM SIGOPS European Work-

shop, 1996.

[30] N. Camiel, S. London, N. Nisan, and O. Regev. The POPCORN project|

an interim report: Distributed computation over the internet in Java. In

Proceedings of the International World Wide Web Conference, 1997.

[31] P. Cappello, B. Christiansen, M. Ionescu, M. Neary, K. Schauser, and D. Wu.

Javelin: Internet-based parallel computing using Java. Concurrency: Prac-

tice and Experience, 1997.

[32] N. Carriero, E. Freeman, D. Gelernter, and D. Kaminsky. Adaptive paral-

lelism and Piranha. Computer, 1995.

[33] N. Carriero and D. Gelernter. Linda in context. Communications of the

ACM, 1989.

[34] J. Carter, J. Bennett, and W. Zwaenepoel. Implementation and performance

of Munin. In Proceedings of Symposium on Operating Systems Principles

(SOSP), 1991.

[35] J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J. Walope. MPVM:

A migration transparent version of PVM. Computing Systems, 1995.

178

[36] M. Chandy and C. Kesselman. Compositional C++: Compositional parallel

programming. In Proceedings of the International Workshop on Languages

and Compilers for Parallel Computing, 1992.

[37] M. Chandy and C. Kesselman. Compositional C++: Compositional parallel

programming. Lecture Notes in Computer Science, 1993.

[38] S. Chapin, D. Katramatos, J. Karpovich, and A. Grimshaw. Resource man-

agement in Legion. International Journal on Future Generation Computer

Systems (to appear), 1999.

[39] E. Chung, Y. Huang, and S. Yajnik. Checkpointing in CosMic: A user-level

process migration environment. In Proceedings of Paci�c Rim Symposium

on Fault-Tolerant Computing, 1997.

[40] P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and A. Knoche. Redesign-

ing the Web: From passive pages to coordinated agents in PageSpaces. In

Proceedings of the International Symposium on Autonomous Decentralized

Systems, 1997.

[41] R. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. Computer

Graphics, 1984.

[42] M. Curtin and J. Dolske. A brute force search of DES keyspace. ;login:, May

1998.

[43] P. Dasgupta. Parallel processing with Windows NT networks. In The

USENIX Windows NT Workshop, 1997.

179

[44] E. Dijkstra. Solution of a problem in concurrent programming. Communi-

cations of the ACM, 1965.

[45] L. Dikken, F. van Der Linden, J. Vesseur, and P. Sloot. DynamicPVM: Dy-

namic load balancing on parallel systems. In Proceedings High-Performance

Computing and Networking, 1994.

[46] distributed.net. Project Bovine. Available at http://www.distributed.

net/rc5.

[47] distributed.net. Project Monarch. Available at http://www.distributed.

net/des.

[48] Dolev and Malki. The Transis approach to high availability cluster commu-

nication. Communications of the ACM, 1996.

[49] H. Donald and M. Baker. Computer Graphics, C version. Prentice Hall, 2nd

edition, 1997.

[50] F. Douglis and J. Ousterhout. Transparent process migration: Design alter-

natives and the Sprite implementation. Software|Practice and Experience,

1991.

[51] A. Downey and M. Harchol-Balter. A note on \the limited performance

bene�ts of migrating active processes for load sharing". Technical report,

University of California at Berkeley, 1995.

[52] T. Downing. Java RMI: Remote Method Invocation. IDG Books Worldwide,

1998.

180

[53] D. Duke, T. Green, and J. Pasko. Research toward a heterogeneous networked

computer cluster: The Distributed Queuing System version 3.0. Supercom-

puter Computations Research Institute, Florida State University, 1994.

[54] R. Felderman, E. Schooler, and L. Kleinrock. The Benevolent Bandit Lab-

oratory: A testbed for distributed algorithms. IEEE Journal on Selected

Areas in Communications, 1989.

[55] A. Ferrari. JPVM|network parallel computing in Java. In Proceedings

Workshop on Java for High-Performance Network Computing, 1998.

[56] D. Flanagan. JavaScript The De�nitive Guide. O'Reilly & Associates, Inc.,

1997.

[57] I. Foster and C. Kesselman. The Globus project: A status report. In Pro-

ceedings IPPS/SPDP '98 Heterogeneous Computing Workshop, 1998.

[58] G. Fowler. The shell as a service. In Proceedings of the Summer USENIX

Conference, 1993.

[59] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM: Parallel virtual machine. MIT Press, 1994.

[60] D. Gelernter and D. Kaminsky. Supercomputing out Recycled Garbage:

Preliminary Experience with Piranha. In Proceedings of ACM International

Conference on Supercomputing, 1992.

[61] GENIS Software GmbH. CODINE 4.1.1, Technical Description. Available

at http://www.genias.de/products/codine/tech_desc.html.

181

[62] D. Ghormley, D. Petrou, S. Rodrigues, and A. Vahdat. GLUnix: A Global

Layer Unix for a network of workstations. Software Practice and Experience,

1998.

[63] J. Gosling. The state of Java technology: Reality strikes! Kenote Speech,

JavaOne Conference, 1998. Available at http://java.sun.com/javaone/

javaone98/keynotes/gosling/index.htm.

[64] P. Gray and Sunderam V. IceT: Distributed computing and Java. In Pro-

ceedings of the ACM Workshop on Java for Science and Engineering Com-

putation, 1997.

[65] A. Grimsaw and W. Wulf. Legion|view from 50,000 feet. In Proceedings of

the International Symposium on High-Performance Distributed Computing

(HPDC), 1996.

[66] D. Griswold. The Java HotSpot virtual machine architecture. Available at

http://java.sun.com/products/hotspot/whitepaper.html, 1998.

[67] W. Gropp, E. Lust, and A. Skjellum. Using MPI: Portable parallel program-

ming with the message-passing interface. MIT Press, 1994.

[68] R. Henderson and D. Tweten. Portable Batch System. NAS Scienti�c Com-

puting Branch, NASA Ames Research Center, 1995.

[69] J. Hill, B. McColl, D. Stefanescu, M. Goudreau, K. Lang, S. Rao, T. Suel,

T. Tsantilas, and R. Bisseling. BSPlib: The BSP programming library.

Technical Report May, Oxford University Computing Laboratory, 1997.

182

[70] J. Hill and D. Skillicorn. Lessons learned from implementing BSP. In High

Perfomance Computing and Networking (HPCN'97). Springer-Verlag,, 1997.

[71] M. Hill, J. Larus, and D. Wood. Tempest: A substrate for portable par-

allel programs. In Proceedings of the International Computer Conference

(COMPCON), 1995.

[72] S Hirano. HORB: Distributed execution of Java programs, worldwide com-

puting and its applications. In Springer Lecture Notes in Computer Science,

1997.

[73] S. Huang and Z. M. Kedem. Supporting a
exible parallel programming mod-

el on a network of workstations. In Proceedings of International Conference

on Distributed Computing Systems, 1996.

[74] S. Hummel, T. Ngo, and H. Srinivasan. SPMD programming in Java. Con-

currency: Practice and Experience, 1997.

[75] S. F. Hummel, E. Schonberg, and L. E. Flynn. Factoring a method for

scheduling parallel loops. Communications of the ACM, 1992.

[76] IBM. IBM LoadLeveler: General information, 1993.

[77] K. Jeong, D. Shasha, S. Talla, and P. Wycko�. An approach to fault toleran-

t parallel processing on intermittently idle, heterogeneous workstations. In

Proceedings of the IEEE International Symposium on Fault-Tolerant Com-

puting (FTCS), 1997.

183

[78] J. Jones and C. Brickell. Second evaluation of job queuing/scheduling soft-

ware: Phase I report. Technical report, NAS Technical Report NAS-97-013,

1997.

[79] H. Karl. Bridging the gap between distributed shared memory and message

passing. In Proceedings of the ACM Workshop on Java for High-Performance

Network Computing, 1998.

[80] Z. M. Kedem, K. Palem, and P. Spirakis. EÆcient Robust Parallel Compu-

tations. In Proceedings of the ACM Symposium on the Theory of Computing

(STOC), 1990.

[81] D. Khandekar. QUARKS: Distributed shared memory as a building block

for complex parallel and distributed systems. Master's thesis, Department

of Computer Science, The University of Utah, March 1996.

[82] A. Kleine. Tya archive. Availabe at http://www.dragon1.net/software/

tya.

[83] B. Kvande. The Java collaborator toolset, a collaborator platform for the

Java environment. Master's thesis, Department of Computer Science, Old

Dominion University, 1996.

[84] Valiant. L. A bridging model for parallel computation. Communications of

the ACM, 1990.

[85] Leslie Lamport. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Transaction on Computers, 1979.

184

[86] D. Lange, M. Oshima, G. Kargoth, and K. Kosaka. Aglets: Programming

mobile agents in Java. Lecture Notes in Computer Science, 1997.

[87] E. Lazowska, L. Eager, and J. Zahorjan. The limited performance bene�ts

of migrating active processes for load sharing. In Performance Evaluation

Review, 1988.

[88] J. Leon, A. Fisher, and P. Steenkiste. Fail-Safe PVM. In Proceedings of the

Workshop on Cluster Computing, 1992.

[89] B. Li. Free Parallel Data Mining. PhD thesis, New York University, 1998.

[90] K. Li. IVY: A shared virtual memory system for parallel computing. In

Proceedings International Conference on Parallel Processing, 1988.

[91] M. Litzkow. UNIX: Turning idle workstations into cycle servers. In Proceed-

ings the Summer USENIX Conference, 1987.

[92] M. Litzkow, M. Livny, , and M. Mutka. Condor: A hunter of idle work-

stations. In Proceedings International Conference on Distributed Computing

Systems, 1988.

[93] R. Lusk and R. Butler. Portable parallel programming with P4. In Proceed-

ings of the Workshop on Cluster Computing, 1992.

[94] P. Madany. JavaOS: A standalone Java environment, a white paper, 1996.

Available at http://www.sun.com/javaos.

[95] D. McLaughlin. Scheduling Fault-tolerant, Parallel Computations in a Dis-

tributed Environment. PhD thesis, Arizona State University, December 1997.

185

[96] D. McLaughlin, S. Sardesai, and P. Dasgupta. Calypso NT : Reliable, eÆcient

parallel proces using on Windows NT networks. Arizona State University.

Available at http://calypso.eas.asu.edu, 1997.

[97] D. McLaughlin, S. Sardesai, and P. Dasgupta. Preemptive scheduling for dis-

tributed systems. In Proceedings of the International Conference on Parallel

and Distributed Computing Systems, 1998.

[98] L. McMillan. An instructional ray-tracing renderer written for UNC COM-

P 136 fall '96. Available at http://graphics.lcs.mit.edu/~capps/iap/

class3/RayTracing/RayTrace.java, 1996.

[99] F. Monrose, P. Wycko�, and A. Rubin. Distributed execution with remote

audit. In Proceedings of the Network and Distributed System Security Sym-

posium, 1999.

[100] J. Moreira, V. Naik, and R. Konuru. A programming environment for dynam-

ic resource allocation and data distribution. In Proceedings of the Workshop

on Languages and Compilers for Parallel Computing, 1996.

[101] M. Mutka and M. Livny. The available capacity of a privately owned work-

station environment. In Performance Evaluation, 1991.

[102] Network Wizards. Internet Domain Survey, July 1998. Available at http:

//www.nw.com/zone/WWW/report.html.

[103] C. Neuman and S. Rao. The Prospero resource manager: A scalable frame-

work for processor allocation in distributed systems. Concurrency: Practice

and Experience, 1994.

186

[104] D. Nichols. Using idle workstations in a shared computing environment. In

Proceedings of SOSP, 1987.

[105] ObjectSpace, Inc. ObjectSpace Voyager Core Technology|The Agent ORB

for Java, 1998.

[106] Ohio Supercomputer Center, Ohio State University. MPI primer/developing

with LAM, 1996.

[107] OpenMP Architecture Review Board. OpenMP: A Proposed Industry Stan-

dard API for Shared Memory Programming, 1997.

[108] D. Patterson, D. Culler, and T. Anderson. A case for NOW (networks of

workstations)|abstract. In Proceedings of the ACM Symposium on Princi-

ples of Distributed Computing (PODC), 1995.

[109] M. Philippsen and M. Zenger. JavaParty|Transparent Remote Objects in

Java. In Proceeding of the Symposium on Principles and Practice of Parallel

Programming (PPoPP), 1997.

[110] Platform Computing Corporation. LSF User's and administrator's guide,

1993.

[111] J. Pruyne and M. Livny. Parallel processing on dynamic resources with

CARMI. Lecture Notes in Computer Science, 1995.

[112] J. Pruyne and M. Livny. Interfacing condor and pvm to harness the cycles of

workstation clusters. Journal on Future Generations of Computer Systems,

1996.

187

[113] S. Reinhardt, M. Hill, J. Larus, A. Lebeck, J. Lewis, and D. Wood. The

Wisconsin Wind Tunnel: Virtual prototyping of parallel computers. In Pro-

ceedings of the ACM Sigmetrics Conference on Mesurement and Modeling of

Computer Systems, 1993.

[114] RSA Data Security. RSA Factoring Challenge.

[115] RSA Data Security. RSA Laboratories DES Challenge II. Available at http:

//www.rsa.com/rsalabs/des2.

[116] RSA Data Security. RSA Laboratories Secret-Key Challenge. Available at

http://www.rsa.com/rsalabs/97challenge.

[117] P. Salus. Casting the Net: From Arpanet to Internet and Beyond. Addison-

Wesley, 1995.

[118] S. Sardesai. Chime: A Versatile Distributed Parallel Processing Environment.

PhD thesis, Arizona State University, July 1997.

[119] S. Sardesai, D. McLaughlin, and P. Dasgupta. Distributed Cactus Stacks:

Runtime stack-sharing support for distributed parallel programs. In Proceed-

ings of the International Conference on Parallel and Distributed Processing

Techniques and Applications, 1998.

[120] L. Sarmenta. Bayanihan: Web-based volunteer computing using Java. In

International Conference on World-Wide Computing and its Applications,

1998.

[121] D. Scales and K. Gharachorloo. Towards transparent and eÆcient software

188

distributed shared memory. In Proceedings of Symposium on Operating Sys-

tems Principles (SOSP), 1997.

[122] Jon Siegel. CORBA Fundementals and Programming. Wiley, 1997.

[123] Sun Micro Systems Inc. Frequently Asked Questions - Java Security. Avail-

able at http://java.sun.com/sfaq.

[124] Sun Micro Systems Inc. JDK 1.2 Beta 2 Documentation.

[125] Sun Micro Systems Inc. Secure Computing with Java: Now and the Future.

[126] H. Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi, M. Satoh, and U. Na-

gashima. Nin
et: a migratable parallel objects framework using Java. In

Proceedings of the ACM Workshop on Java for High-Performance Network

Computing, 1998.

[127] M. Theimer and K. Lantz. Finding idle machines in a workstation-based

distributed system. IEEE Transactions on Software Engineering, 1989.

[128] K. Thitikamol and P. Keleher. Multi-threading and remote latency in soft-

ware DSMs. In Proceedings of the International Conference on Distributed

Computing Systems (ICDCS), 1997.

[129] University of Michigan. The SLAPD and SLURPD Administrators Guide,

Release 3.3, 1996.

[130] L. Valiant. Bulk-synchronous parallel computers. In Parallel Processing and

Arti�cial Intellligence. Wiley, 1989.

189

[131] R. Van Renesse, K. Birman, M. Hayden, and A. Vaysburd. Building adaptive

systems using ensemble. Software Practice and Experience, 1998.

[132] R. van Renesse, K. Birman, and S. Ma�eis. Horus: A
exible group commu-

nication system. Ccmmunications of the ACM, 1996.

[133] Bill Venners. Inside the Java Virtual Machine. McGraw-Hill, 1998.

[134] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol.

RFC 1777, 1995.

[135] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol

(v3). RFC 2251, 1997.

[136] G. Woltman. GIMPS discovers 37th. known Mersenne prime. Available at

http://www.mersenne.org/3021377.htm, 1998.

[137] G. Woltman. Internet PrimetNet server. Available at http://www.

entropia.com/primenet/status_htm, 1998.

[138] George Woltman. Great internet Mersenne prime search. Available at http:

//www.mersenne.org/.

[139] A. Yu, W. Cox. Java/DSM: A platform for heterogeneous computing. In

Proceedings of ACM Workshop on Java for Science and Engineering Com-

putation, 1997.

[140] M. Zekauskas, W. Sawdon, and B. Bershad. Software write detection for a

distributed shared memory. In Proceedings of USENIX Symposium on OSDI,

1994.

190

[141] S. Zhou, J. Wang, X. Zheng, and P. Delisle. Utopia: A load sharing facility

for large, heterogeneous distributed computing systems. Computer Systems

Research Institute, University of Toronto, 1992.

191

Metacomputing on Commodity Computers

by

Arash Baratloo

Advisor: Zvi M. Kedem

External factors such as unpredictable behavior of computers and failures compli-

cate the e�ective use of distributed multiuser environments as a parallel processing

platform. This dissertation presents a uni�ed set of techniques to build a metacom-

puter, that is, a reliable virtual shared-memory computer, on a set of unreliable

computers. The techniques are speci�cally designed for adaptive execution of par-

allel programs on dynamic and faulty distributed environments. The dissertation

presents four software systems to validate the feasibility of these techniques, both

for networks of commodity workstations and for the World Wide Web, which lacks

a shared �le system and user-access control.

Calypso is a programming and a runtime system to address the diÆculties

of parallel programming on networks of workstations. The parallelism expressed

by Calypso programs re
ect the problem rather than the execution environment.

The Calypso runtime system adapts computations to eÆciently use the available

resources: the number of workstations may grow and shrink dynamically, and the

workstations may fail and slowdown at unpredictable times. ResourceBroker is a

resource manager to facilitate the use of otherwise idle workstations. Resource-

Broker demonstrates a novel technique to dynamically manage adaptive programs

that were not designed to work with external resource managers. As a result, a

mix of adaptive programs, written using diverse programming systems can execute

side-by-side on a set of workstations.

Charlotte leverages the code-mobility and secure execution of Java applets to

extend the concept of metacomputing to the World Wide Web. Charlotte is the

�rst parallel programming system to provide volunteer-based one-click computing:

it allows any user on the Internet, without any administrative e�ort, to participate

in ongoing computations by a simple click of the mouse. The Charlotte's runtime

system transparently provides load-balancing and fault-masking. KnittingFactory

is a software infrastructure that facilitates the execution of Charlotte programs.

The contributions of KnittingFactory include a distributed directory service that

migrates most of the computations to the client side, and a middleware service for

direct applet-to-applet communication.

