
Behavior of the Limited-Memory BFGS Method on

Nonsmooth Optimization Problems in Theory and

Practice

by

Azam Asl

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2020

Professor Michael L. Overton

c©Azam Asl

ALL RIGHTS RESERVED, 2020

Dedication

To my family.

iii

Acknowledgements

I would like to express my sincere gratitude to my advisor Michael L. Overton for

providing invaluable guidance throughout my graduate study. In research I have

learned meticulous scrutiny and scientific approach from Michael. In writing and

in particular, in composing the current dissertation, I have gained so much from

his scholarly advice and endless support. Aside from work, and above and beyond

anything, Michael is one of the kindest people I have ever met.

I wish to extend my gratitude to Frank E. Curtis with whom I had a chance

to work and benefited much from his mathematical insight and knowledge. I also

would like to extend my thanks to Margaret H. Wright for arranging funding of my

studies for some parts.

My deep and genuine appreciation goes to Ernest Davis, my master advisor,

whom I have known for a long time and has always been a source of reliance for me.

I am extremely thankful to my friends Alexander Golovnev, Sandro Coretti and

many other friends, who made my time at Courant fun. I also thank Rosemary

Amico and other staff in our department endlessly for their help throughout.

iv

Abstract

The limited memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) method, abbre-

viated L-BFGS, is widely used for large-scale unconstrained optimization, but its

behavior on nonsmooth problems has received little attention. In this thesis we

give the first convergence analysis of the L-BFGS method applied to nonsmooth

functions. We focus on the simplest version of the method, sometimes known

as memoryless BFGS, which uses just one update. L-BFGS can be used with or

without “scaling”; the use of scaling is normally recommended. We consider a

simple class of convex piecewise linear nonsmooth functions that are unbounded

below. On this class of problems, we show that memoryless BFGS with scaling,

using any Armijo-Wolfe line search and initialized at any point where the objective

f is differentiable, generates iterates that converge to a non-optimal point, if a

certain condition relating the Lipschitz constant of f to the line search Armijo

parameter holds. We also present an analysis of the ordinary gradient method with

the same line search applied to the same class of functions, giving conditions under

which it fails. However, scaled memoryless BFGS fails under a weaker condition

relating the Lipschitz constant of the function to the line search Armijo parameter

than that implying failure of the gradient method. Furthermore, in sharp contrast

to the gradient method, if a specific standard Armijo-Wolfe bracketing line search

is used, scaled memoryless BFGS fails if the Lipschitz constant is sufficiently large

regardless of the Armijo parameter. Our experimental results suggest that our

analysis is tight on this class of functions, and that similar results likely hold for

L-BFGS with any fixed number of updates. In contrast, the “full” BFGS method is

remarkably effective for minimizing nonsmooth functions, but it is not a practical

approach when the number of variables is large.

v

We also conduct extensive experiments applying L-BFGS, both scaled and

unscaled, with various choices for the number of updates, on other convex non-

smooth functions, ranging from artificially devised, highly ill-conditioned nonsmooth

problems to eigenvalue optimization problems that are equivalent to semidefinite pro-

gramming problems arising from applications. We also apply L-BFGS to smoothed

versions of these problems. We find that although L-BFGS is usually a reliable

method for minimizing ill-conditioned smooth problems, when the condition number

is so large that the function is effectively nonsmooth, L-BFGS consistently fails.

This behavior is in sharp contrast to the behavior of full BFGS, which is consistently

reliable for nonsmooth optimization problems. We arrive at the conclusion that, for

large-scale nonsmooth optimization problems for which BFGS and other methods

are not practical, it is far preferable to apply L-BFGS to a smoothed variant of a

nonsmooth problem than to apply it directly to the nonsmooth problem.

vi

Contents

Dedication . iii

Acknowledgements . iv

Abstract . v

1 Introduction 1

1.1 Computer Resources Used . 10

1.2 Funding Acknowledgment . 11

2 Analysis of the Gradient Method Applied to a Class of Nonsmooth

Optimization Problems 12

2.1 Convergence Results Independent of a Specific Line Search 13

2.2 Additional Results Depending on a Specific Choice of Armijo-Wolfe

Line Search . 19

2.3 Experimental Results . 26

2.4 Relationship with Convergence Results for Subgradient Methods . . 30

2.5 Concluding Remarks . 32

3 Analysis of the Limited Memory BFGS Method Applied to a Class

of Nonsmooth Optimization Problems 37

3.1 The Memoryless BFGS Method . 38

vii

3.1.1 Existence of Armijo-Wolfe Steps when
a

3pn´ 1q ď a 44

3.2 Failure of Scaled Memoryless BFGS 49

3.2.1 Convergence of the Absolute Value of the Normalized Search

Direction when 2
?
n´ 1 ď a 49

3.2.2 Dependence on the Armijo Condition 55

3.2.3 Results for a specific Armijo-Wolfe line search, independent

of the Armijo parameter . 61

3.3 Experiments . 65

3.4 Concluding Remarks . 71

4 Experiments 73

4.1 Piecewise-Linear Functions . 74

4.1.1 Randomly Generated Problems 75

4.1.2 An Ill-conditioned Problem from Nesterov 76

4.1.3 Smoothed Versions of Nesterov’s Ill-conditioned Problem . . 80

4.2 Eigenvalue Optimization and Semidefinite Programming 89

4.2.1 Max Eigenvalue Problem . 89

4.2.2 Smoothed Max Eigenvalue Problem 94

4.2.3 Semidefinite Programming 99

4.2.4 Max Cut Problem . 100

4.2.5 Smoothed Max Cut Problem 106

4.2.6 Matrix Completion Problem 115

4.2.7 Smoothed Matrix Completion Problem 121

4.3 Concluding Remarks . 123

Bibliography 129

viii

List of Figures

1.1 Mesh Plot . 9

2.1 Wolfe Condition . 22

2.2 Armijo Condition . 23

2.3 Failure Dependence on Positive τ 27

2.4 Failure Rate and Varying τ . 28

2.5 Success and Failure with Negative τ 29

2.6 Gradient Method and Armijo Parameter 34

3.1 Angles of Search Directions . 45

3.2 Scaled L-BFGS-1 Fails When a “ 3 67

3.3 Scaled L-BFGS-1 Fails When a “
?

3 68

3.4 Scaled L-BFGS-1 Succeeds When a “
?

3´ 0.001 68

3.5 Scaling and The Failure Rate of L-BFGS-1 69

3.6 Scaling and The Failure Rate of L-BFGS-m with c1 “ 0.01 71

3.7 Scaling and The Failure Rate of L-BFGS-m with c1 “ 0.001 71

3.8 Scaling and The Failure Rate of L-BFGS-m with c1 “ 0.01- Different

Function . 71

4.1 Random Piecewise-Linear Function 76

ix

4.2 Nesterov Ill-conditioned Function -L-BFGS-1 77

4.3 Nesterov Ill-conditioned Function -L-BFGS-20 79

4.4 Smoothed Nesterov Ill-conditioned Function -L-BFGS-1 85

4.5 Smoothed Nesterov Ill-conditioned Function -L-BFGS-20 86

4.6 Smoothed Nesterov Ill-conditioned Small Problem -L-BFGS-1 . . . 88

4.7 Random Max Eigenvalue Problem -L-BFGS-1 91

4.8 Random Max Eigenvalue Problem -L-BFGS-20 93

4.9 Smoothed Random Max Eigenvalue Problem -L-BFGS-1 95

4.10 Smoothed Random Max Eigenvalue Problem -L-BFGS-20 98

4.11 Penalized Dual Max Cut Problem -L-BFGS-5 104

4.12 Penalized Dual Max Cut Problem -Eigenvalues of the Dual Slack

Matrix -L-BFGS-5 . 104

4.13 Penalized Dual Max Cut Problem -L-BFGS-20 105

4.14 Penalized Dual Max Cut Problem -Eigenvalues of the Dual Slack

Matrix -L-BFGS-20 . 105

4.15 Smoothed Max Cut Problem with K “ 5 ă r˚ 109

4.16 Smoothed Max Cut Problem with K “ 15 ą r˚ 110

4.17 Smoothed Max Cut Problem -Eigenvalues of the Dual Slack Matrix 111

4.18 Smoothed Max Cut Problem -1k Iterations -Large-scale 113

4.19 Smoothed Max Cut Problem - Eigenvalues of the Dual Slack Matrix

-1k Iterations -Large-scale . 113

4.20 Smoothed Max Cut Problem -10k Iterations -Large-scale 114

4.21 Smoothed Max Cut Problem - Eigenvalues of the Dual Slack Matrix

-10k Iterations -Large-scale . 114

4.22 Penalized Dual Matrix Completion Problem -L-BFGS-5 117

x

4.23 Penalized Dual Matrix Completion Problem -Eigenvalues of the Dual

Slack Matrix -L-BFGS-5 . 118

4.24 Penalized Dual Matrix Completion Problem -L-BFGS-20 120

4.25 Penalized Dual Matrix Completion Problem -Eigenvalues of the Dual

Slack Matrix -L-BFGS-20 . 120

4.26 Smoothed Matrix Completion Problem 122

4.27 Smoothed Matrix Completion -Eigenvalues of the Dual Slack Matrix 122

xi

List of Tables

4.1 Top Eigenvalues of Random Max Eigenvalue Problem -LBFGS-1 . . 92

4.2 Top Eigenvalues of Random Max Eigenvalue Problem -LBFGS-20 . 93

4.3 Top Eigenvalues of Smoothed Random Max Eigenvalue Problem

-L-BFGS-1 . 96

4.4 Top Eigenvalues of Smoothed Random Max Eigenvalue Problem

-L-BFGS-20 . 99

4.5 Matrix Completion Problem - Objective Values 123

xii

Chapter 1

Introduction

First-order methods have experienced a widespread revival in recent years, as the

number of variables n in many applied optimization problems has grown far too

large to apply methods that require more than Opnq operations per iteration. Yet

many widely used methods, including limited-memory quasi-Newton and conjugate

gradient methods, remain poorly understood on nonsmooth problems, and even the

simplest such method, the gradient method, is nontrivial to analyze in this setting.

Our interest is in methods with inexact line searches, since exact line searches are

typically out of the question when the number of variables is large.

The gradient method dates back to Cauchy [Cauchy, 1847]. Armijo [Armijo, 1966]

was the first to establish convergence to stationary points of smooth functions

using an inexact line search with a simple “sufficient decrease” condition. Wolfe

[Wolfe, 1969], discussing line search methods for more general classes of meth-

ods, introduced a “directional derivative increase” condition among several others.

The Armijo condition ensures that the line search step is not too large while the

Wolfe condition ensures that it is not too small. Powell [Powell, 1976b] seems

1

to have been the first to point out that combining the two conditions leads to

a convenient bracketing line search, noting also in another paper [Powell, 1976a]

that use of the Wolfe condition ensures that, for quasi-Newton methods, the up-

dated Hessian approximation is positive definite. Hiriart-Urruty and Lemarechal

[Hiriart-Urruty & Lemaréchal, 1993, Vol 1, Ch. 11.3] give an excellent discussion

of all these issues, although they reference neither [Armijo, 1966] nor [Powell, 1976b]

and [Powell, 1976a]. They also comment (p. 402) on a surprising error in [Cauchy, 1847].

Suppose that f , the function to be minimized, is a nonsmooth convex function.

An example of [Wolfe, 1975] shows that the ordinary gradient method with an

exact line search may converge to a non-optimal point, without encountering any

points where f is nonsmooth except in the limit. This example is stable under

perturbation of the starting point, but it does not apply when the line search

is inexact. Another example given in [Hiriart-Urruty & Lemaréchal, 1993, vol. 1,

p. 363] applies to a subgradient method in which the search direction is defined by

the steepest descent direction, i.e., the negative of the element of the subdifferential

with smallest norm, again showing that use of an exact line search results in

convergence to a non-optimal point. This example is also stable under perturbation

of the initial point, and, unlike Wolfe’s example, it also applies when an inexact

line search is used. However, it is more complicated than is needed for the results

we give below because it was specifically designed to defeat the steepest-descent

subgradient method with an exact line search. Another example of convergence

to a non-optimal point of a convex max function using a specific subgradient

method with an exact line search goes back to [Dem’janov & Malozemov, 1971];

see [Fletcher, 1987, p. 385]. More generally, in a “black-box” subgradient method,

the search direction is the negative of any subgradient returned by an “oracle”,

2

which may not be a descent direction if the function is not differentiable at the

point, although this is unlikely if the current point was not generated by an exact

line search since convex functions are differentiable almost everywhere. The key

advantage of the subgradient method is that, as long as f is convex and bounded

below, convergence to its minimal value can be guaranteed even if f is nonsmooth

by predefining a sequence of steplengths to be used, but the disadvantage is that

convergence is usually slow. Nesterov [Nesterov, 2005] improved the complexity

of such methods using a smoothing technique, but to apply it one needs some

knowledge of the structure of the objective function.

The counterexamples mentioned above motivated the introduction of bundle

methods by [Lemaréchal, 1975] and [Wolfe, 1975] for nonsmooth convex functions

and, for nonsmooth, nonconvex problems, the bundle methods of [Kiwiel, 1985]

and the gradient sampling algorithms of [Burke et al., 2005] and [Kiwiel, 2007].

These algorithms all have fairly strong convergence properties, to a nonsmooth

(Clarke) stationary value when these exist in the nonconvex case (for gradient

sampling, with probability one), but when the number of variables is large the cost

per iteration is much higher than the cost of a gradient step. See the recent survey

paper [Burke et al., 2020] for more details. The “full” BFGS method is a very

effective alternative choice for nonsmooth optimization [Lewis & Overton, 2013],

and its Opn2q cost per iteration (for the matrix-vector products that it requires)

is generally much less than the cost of the bundle or gradient sampling methods,

but its convergence results for nonsmooth functions are limited to very special

cases. The limited memory variant of BFGS [Liu & Nocedal, 1989] costs only Opnq

operations per iteration, like the gradient method, but its behavior on nonsmooth

problems is less predictable.

3

In Chapter 2 we analyze the ordinary gradient method with an inexact line

search applied to a simple nonsmooth convex function. We require points accepted

by the line search to satisfy both Armijo and Wolfe conditions for two reasons.

The first is that we carry out a related analysis for the limited memory BFGS

method in Chapter 3 for which the Wolfe condition is essential. The second is that

the inclusion of the Wolfe condition is potentially useful in the nonsmooth case,

where the norm of the gradient gives no useful information such as an estimate

of the distance to a minimizer. For example, consider the absolute value function

in one variable initialized at x0 with x0 large. A unit step gradient method with

only an Armijo condition will require Opx0q iterations just to change the sign

of x, while an Armijo-Wolfe line search with extrapolation defined by doubling

requires only one line search with Oplog2px0qq extrapolations to change the sign of

x. Obviously, the so-called strong Wolfe condition recommended in many books

for smooth optimization, which requires a reduction in the absolute value of the

directional derivative, is a disastrous choice when f is nonsmooth. We mention here

that in a 2017 paper on the analysis of the gradient method with fixed step sizes

[Taylor et al., 2017], Taylor et al. remark that “we believe it would be interesting

to analyze [gradient] algorithms involving line-search, such as backtracking or

Armijo-Wolfe procedures.”

The limited memory BFGS (L-BFGS) method is widely used for large-scale

unconstrained optimization, but its behavior on nonsmooth problems has received

little attention. We give the first analysis of an instance of the method, sometimes

known as memoryless BFGS with scaling, on a specific class of nonsmooth convex

problems, showing that under given conditions the method generates iterates whose

function values are bounded below, although the function itself is unbounded below.

4

The “full” BFGS method [Nocedal & Wright, 2006, Sec. 6.1], independently

derived by Broyden, Fletcher, Goldfarb and Shanno in 1970, is remarkably effective

for unconstrained optimization, but even when the minimization objective f : Rn Ñ

R is assumed to be twice continuously differentiable and convex, with bounded level

sets, the analysis of the method is nontrivial. Powell [Powell, 1976a] gave the first

convergence analysis for full BFGS using an Armijo-Wolfe line search for this class

of functions, establishing convergence to the minimal function value. In the smooth,

nonconvex case it is generally accepted that the method is very reliable for finding

stationary points (usually local minimizers), although pathological counterexamples

exist [Dai, 2002, Mascarenhas, 2004].

At first glance, it might appear that, since BFGS uses gradient differences to

approximate information about the Hessian of f , the use of BFGS for nonsmooth

optimization makes little sense: first, because at minimizers where f is not differ-

entiable, neither the gradient nor the Hessian exists; and secondly, even at other

points where f is twice differentiable, the Hessian might appear to be meaningless:

for example, for a piecewise linear function such as studied in this thesis, the

Hessian is zero everywhere that it is defined. However, the way to make sense of the

applicability of BFGS to a nonsmooth function is to consider its approximation by

a very ill-conditioned smooth function. For example, the function fpxq “ }x}2 can

be arbitrarily well approximated by the smooth function fpxq “
a

}x}22 ` ε
2, where

ε ą 0. As ε Ó 0, the approximation becomes arbitrarily good — but also arbitrarily

ill-conditioned. For any fixed ε ą 0, the BFGS convergence theory applies. As ε Ó 0,

it is not at all clear what impact the property of good approximation via badly

conditioned functions has on the convergence theory, which, of course, does not

apply when ε “ 0. Nonetheless, even for ε “ 0, the method remains well defined,

5

as the gradient is defined everywhere except at the minimizer (the origin). In fact,

it was established recently by Guo and Lewis [Guo & Lewis, 2018] that Powell’s

result for smooth functions mentioned above can be extended, in a nontrivial way,

to show that the iterates generated by BFGS with an Armijo-Wolfe line search,

when applied to fpxq “ }x}2, converge to the origin. Even the case n “ 1, where f

is the absolute value function, is surprisingly complex; it turns out that in this case

the sequence of iterates is defined by a certain binary expansion of the starting

point [Lewis & Overton, 2013]. However, in this simple example it is easy to see

intuitively why BFGS works well. The line search ensures that the iterates oscillate

back and forth across the origin, giving a gradient difference equal to 2 at every

iteration. As the iterates converge to the origin, the result is that the “inverse

Hessian approximation” generated by BFGS converges to zero, resulting in quasi-

Newton steps that also converge to zero. An important consequence is that the

line search never requires many function evaluations. In contrast, when gradient

descent with the same line search is applied to the absolute value function, the

iterates converge to the origin, but each line search requires a number of function

evaluations that increases in a manner inversely proportional to |x|.

More generally, if f is locally Lipschitz, BFGS is still typically well defined,

because such functions are differentiable almost everywhere by Rademacher’s

theorem [Clarke, 1990], and hence f is differentiable at a randomly generated

point with probability one. Furthermore, substantial computational experience

[Lewis & Overton, 2013] shows that when f is a locally Lipschitz nonsmooth func-

tion, the method is remarkably reliable for finding Clarke stationary points (again,

typically local minimizers), and furthermore, this property extends in a certain

sense to constrained problems [Curtis et al., 2017]. Indeed, no non-pathological

6

counterexamples showing convergence to non-stationary values, meaning in particu-

lar examples where the starting point is not predetermined but generated randomly,

are known. The superlinear convergence rate that holds generically for smooth

functions is not attained in the nonsmooth case; instead, full BFGS is observed to

converge linearly, in a sense described in [Lewis & Overton, 2013], on nonsmooth

functions. Furthermore, in general one does not observe the inverse Hessian approx-

imation converging to zero; instead, what seems to be typical is that some of its

eigenvalues converge to zero, with corresponding eigenvectors identifying directions

along which f is nonsmooth at the minimizer. See [Lewis & Overton, 2013, Sec.

6.2] for details.

The full BFGS method maintains and updates an approximation to the inverse

(or a factorization) of the Hessian matrix ∇2fpxq at every iteration, defined by the

known gradient difference information yk´1 “ ∇fpxkq ´ ∇fpxk´1q along sk´1 “

xk ´ xk´1. The use of the Wolfe condition in the line search, requiring an increase

in the directional derivative of f along the descent direction generated by BFGS,

ensures that the updated inverse Hessian approximation is positive definite. The

cost of full BFGS is Opn2q operations per iteration. While this was a great

advance over the cost of Newton’s method in the 1970s, already in the 1980s it was

realized that the cost was too high for problems where n is large, and hence the

limited memory version, L-BFGS, became popular, and is widely used today (see

[Le et al., 2011, Lin et al., 2016], for example).

The standard version of L-BFGS, is discussed in detail in [Nocedal & Wright, 2006,

Sec. 7.2]. For the earlier development of the L-BFGS method see [Liu & Nocedal, 1989]

and the references therein. Let m ! n be given. Instead of maintaining an ap-

proximation to the inverse Hessian, at the kth iteration a proxy for this matrix is

7

implicitly defined by application of the most recent m BFGS updates (which are

defined by saving yj and sj from the past m iterations) to a given sparse matrix

H0
k . One possible choice for H0

k is the identity matrix I, but a popular choice is to

instead use scaling, defining

H0
k “

sTk´1yk´1

yTk´1yk´1

I, (1.0.1)

where the scaler multiplying the identity matrix is sometimes known as a Barzilai-

Borwein approximation [Barzilai & Borwein, 1988]. Analysis of L-BFGS is more

straightforward than analysis of full BFGS in the case that f is smooth and

strongly convex, and is given in [Liu & Nocedal, 1989, Theorem 7.1], where linear

convergence to minimizers is established, regardless of whether scaling is used or not.

Furthermore, it is stated in [Liu & Nocedal, 1989] that scaling greatly accelerates

L-BFGS, and this seems to be the currently accepted wisdom. However, as we show

in Chapter 3, it is exactly the choice of scaling that may result in failure of L-BFGS

on a specific class of nonsmooth functions. This situation is in sharp contrast to

our experience with full BFGS on nonsmooth functions, where the same algorithm

that is normally used for smooth functions works well also on nonsmooth functions.

We consider the class of convex functions

fpxq “ a|xp1q| `
n
ÿ

i“2

xpiq, (1.0.2)

where a ě
?
n´ 1. Note that although f , as is shown in Figure 1.1, is unbounded

below, it is bounded below along the line defined by the negative gradient direction

from any point x with xp1q ‰ 0. The specific choice of objective function f offers

two advantages: one is its simplicity, but another is that there is little difficulty

distinguishing in practice whether a method “succeeds” or “fails” from a given

8

10

x(1)

0

-10-10
-5

x(2)

0
5

10

20

10

40

30

0

-10

50

60

5
|x

(1
) |+

x
(2

)

Figure 1.1: Mesh plot of function f given in (1.0.2), with a “ 5 and n “ 2. The function f is
unbounded below.

starting point: success is associated with a sequence of function values that is

unbounded below, while convergence of the sequence to a finite value implies failure.

In Chapter 2 we analyze the gradient method with any Armijo-Wolfe line search

applied to (1.0.2). We show that if a satisfies a lower bound that depends only on

the Armijo parameter, then the iterates generated by the gradient method with

steps satisfying Armijo and Wolfe conditions converge to a point x̄ with x̄p1q “ 0,

regardless of the starting point, although f is unbounded below. The function

f defined in (1.0.2) was also used by [Lewis & Overton, 2013, p. 136] with n “ 2

and a “ 2 to illustrate failure of the gradient method with a specific line search,

but the observations made there are not stable with respect to small changes

in the initial point. The results of Chapter 2 have recently been published in

[Asl & Overton, 2020b].

In Chapter 3 we analyze scaled L-BFGS with m “ 1, i.e., with just one update

— a method sometimes known as memoryless BFGS [Nocedal & Wright, 2006,

p. 180] — applied to the function (1.0.2), and identify conditions under which

9

the method converges to non-optimal points. In contrast, it is known that when

full BFGS is applied to the same function, eventually the method generates a

search direction on which f is unbounded below [Xie & Waechter, 2017]; see also

[Lewis & Zhang, 2015]. The results of Chapter 3 have recently been published in

[Asl & Overton, 2020a].

In Chapter 4 we report on extensive experiments applying L-BFGS, both scaled

and unscaled, with various choices for the number of updates, on many other

classes of convex nonsmooth functions, ranging from artificially devised, highly

ill-conditioned nonsmooth problems to eigenvalue optimization problems that are

equivalent to semidefinite programming problems arising from applications. We also

apply L-BFGS to smoothed versions of these problems. We find that although L-

BFGS is usually a reliable method for minimizing ill-conditioned smooth problems,

when the condition number is so large that the function is effectively nonsmooth,

L-BFGS consistently fails. This behavior is in sharp contrast to the behavior of

full BFGS, which is consistently reliable for nonsmooth optimization problems.

We arrive at the conclusion that, for large-scale nonsmooth optimization problems

for which BFGS and other methods are not practical, it is far preferable to apply

L-BFGS to a smoothed variant of a nonsmooth problem than to apply it directly

to the nonsmooth problem.

1.1 Computer Resources Used

Throughout this thesis all computations are performed in matlab. Most experi-

ments are implemented in matlab (R2019a) running on a macOS 10.14.6 laptop

computer with an Intel Core i7 processor with 2.5 GHz speed, 6MB of cache and

10

16GB of RAM. The larger experiments were run on the NYU HPC cluster Prince

which runs Linux CentOS 7.4 operating system on its nodes. The experiments in

§4.1.3 were run on partition c28 with Intel(R) IvyBridge @ 3.00GHz CPU type, on

a single node with 2 CPUs. The experiments in §4.2.5 were run on partition c42

with Intel(R) Skylake @ 2.40GHz CPU type, on a single node with 10 CPUs. All

BFGS/L-BFGS methods are taken from the implementation available in hanso1.

1.2 Funding Acknowledgment

Funding for my PhD studies was provided primarily by the Graduate School of

Arts and Science, NYU, and, for several semesters, by a grant from the Simons

Foundation (417314, MHW). The National Science Foundation also provided some

summer support under grant DMS-1620083.

1www.cs.nyu.edu/overton/software/hanso/

11

Chapter 2

Analysis of the Gradient Method

Applied to a Class of Nonsmooth

Optimization Problems

In this chapter, we analyze the behavior of the gradient method applied to the simple

nonsmooth convex function (1.0.2). The chapter is organized as follows. In §2.1 we

establish the main theoretical results, without assuming the use of any specific line

search beyond satisfaction of the Armijo and Wolfe conditions. In §2.2, we extend

these results assuming the use of a bracketing line search that is a specific instance of

the ones outlined by [Powell, 1976b] and [Hiriart-Urruty & Lemaréchal, 1993]. In

§2.3, we give experimental results, showing that our theoretical results are reasonably

tight. We discuss connections with the convergence theory for subgradient methods

in §2.4. We make some concluding remarks in §2.5.

12

2.1 Convergence Results Independent of a Spe-

cific Line Search

First let f denote any locally Lipschitz function mapping Rn to R, and let xk P Rn,

k “ 0, 1, . . . , denote the kth iterate of an optimization algorithm where f is

differentiable at xk with gradient ∇fpxkq. Let dk P Rn denote a descent direction

at the kth iteration, i.e., satisfying ∇fpxkqTdk ă 0, and assume that f is bounded

below on the line txk ` tdk : t ě 0u. Let c1 and c2, respectively the Armijo and

Wolfe parameters, satisfy 0 ă c1 ă c2 ă 1. We say that the step t satisfies the

Armijo condition at iteration k if

Aptq : fpxk ` tdkq ď fpxkq ` c1t∇fpxkqTdk (2.1.1)

and that it satisfies the Wolfe condition if 1

W ptq : f is differentiable at xk ` tdk with ∇fpxk ` tdkqTdk ě c2∇fpxkqTdk.

(2.1.2)

The condition 0 ă c1 ă c2 ă 1 ensures that points t satisfying Aptq and W ptq exist,

as is well known in the convex case and the smooth case; for more general f , see

[Lewis & Overton, 2013]. The results of this section are independent of any choice

of line search to generate such points. Note that as long as f is differentiable at

the initial iterate, defining subsequent iterates by xk`1 “ xk ` tkdk, where W ptq

holds for t “ tk, ensures that f is differentiable at all xk.

1There is a subtle distinction between the Wolfe condition given here and that given in
[Lewis & Overton, 2013], since here the Wolfe condition is understood to fail if the gradient of f
does not exist at xk` tdk, while in [Lewis & Overton, 2013] it is understood to fail if the function
of one variable s ÞÑ fpxk ` sdkq is not differentiable at s “ t. For the example analyzed here,
these conditions are equivalent.

13

We now restrict our attention to f defined by (1.0.2), with

dk “ ´∇fpxkq “ ´

»

—

–

sgnpx
p1q
k qa

1

fi

ffi

fl

, (2.1.3)

where 1 P Rn´1 denotes the vector of all ones. We have

fpxk ` tdkq “ a
ˇ

ˇ

ˇ
x
p1q
k ´ sgnpx

p1q
k qat

ˇ

ˇ

ˇ
`

n
ÿ

i“2

x
piq
k ´ pn´ 1qt.

We assume that a ě
?
n´ 1, so that f is bounded below along the negative gradient

direction as tÑ 8. Hence, xk`1 “ xk ` tkdk satisfies

x
p1q
k`1 “ x

p1q
k ´ sgnpx

p1q
k qatk and x

piq
k`1 “ x

piq
k ´ tk for i “ 2, . . . , n. (2.1.4)

We have

∇fpxkqTdk “ ´pa2
` n´ 1q (2.1.5)

and

∇fpxk ` tkdkqTdk “ ´pa2 sgnpx
p1q
k`1qsgnpx

p1q
k q ` n´ 1q. (2.1.6)

For clarity we summarize the underlying assumptions that apply to all the

results in this section.

Assumption 1 Let f be defined by (1.0.2) with a ě
?
n´ 1 and define xk`1 “

xk ` tkdk, with dk “ ´∇fpxkq, for some steplength tk, k “ 1, 2, 3, . . ., where x0 is

arbitrary provided that x
p1q
0 ‰ 0.

Lemma 2.1.1 The Armijo condition Aptkq (i.e., (2.1.1) with t “ tk), is equivalent

14

to

c1tkpa
2
` n´ 1q ď fpxkq ´ fpxk`1q (2.1.7)

and the Wolfe condition W ptkq (i.e., (2.1.2) with t “ tk) is equivalent to each of

the following three conditions:

sgnpx
p1q
k`1q “ ´sgnpx

p1q
k q, (2.1.8)

tk ą
|x
p1q
k |

a
(2.1.9)

and

atk “ |x
p1q
k`1 ´ x

p1q
k | “ |x

p1q
k | ` |x

p1q
k`1|. (2.1.10)

Proof: These all follow easily from (2.1.4), (2.1.5) and (2.1.6), using c2 ă 1 and

a ě
?
n´ 1.

Thus, tk satisfies the Wolfe condition if and only if the iterates xk oscillate back

and forth across the xp1q “ 0 axis.2

Theorem 2.1.2 Suppose tk satisfies Aptkq and W ptkq for k “ 1, 2, 3, . . . , N and

define SN “
řN´1
k“0 tk. Then

c1pa
2
` n´ 1qSN ď fpx0q ´ fpxNq ď pn´ 1qSN ` a|x

p1q
0 |, (2.1.11)

so that SN is bounded above as N Ñ 8 if and only if fpxNq is bounded below.

Furthermore, fpxNq is bounded below if and only if xN converges to a point x̄ with

x̄p1q “ 0.

2The same oscillatory behavior occurs if we replace the Wolfe condition by the Goldstein
condition fpxk ` tdkq ě fpxkq ` c2t∇fpxkqT dk.

15

Proof: Summing up (2.1.7) from k “ 0 to k “ N ´ 1 we have

c1pa
2
` n´ 1qSN ď fpx0q ´ fpxNq. (2.1.12)

Using (2.1.4) we have

x
piq
0 ´ x

piq
N “

N´1
ÿ

k“0

px
piq
k ´ x

piq
k`1q “ SN for i “ 2, . . . , n,

so

fpx0q ´ fpxNq “ a|x
p1q
0 | ´ a|x

p1q
N | ` pn´ 1qSN ,

using (1.0.2). Combining this with (2.1.12) and dropping the term a|x
p1q
N | we obtain

(2.1.11), so SN is bounded above if and only if fpxNq is bounded below. Now suppose

that fpxNq is bounded below and hence SN is bounded above, implying that tN Ñ 0,

and therefore, from (2.1.10), that x
p1q
N Ñ 0. Since fpxNq “ a|x

p1q
N | `

řn´1
i“2 x

piq
N is

bounded below as N Ñ 8, and since, from (2.1.4), for i “ 2, . . . , n, each x
piq
N is

decreasing as N increases, we must have that each x
piq
N converges to a limit x̄piq. On

the other hand, if xN converges to a point p0, x̄p2q, . . . , x̄pnqq then fpxNq is bounded

below by
řn´1
i“2 x̄

piq.

Note that, as f is unbounded below, convergence of xN to a point p0, x̄p2q, . . . , x̄pnqq

should be interpreted as failure of the method.

We next observe that, because of the bounds (2.1.11), it is not possible that

SN Ñ 8 if

a ą

d

pn´ 1q

ˆ

1

c1

´ 1

˙

(in addition to a ě
?
n´ 1 as required by Assumption 1).

16

It will be convenient to define

τ “ c1 `
pn´ 1qpc1 ´ 1q

a2
. (2.1.13)

Since c1 P p0, 1q and a ě
?
n´ 1, we have ´1 ă ´1` 2c1 ă τ ă c1 ă 1, with τ ą 0

equivalent to c1pa
2 ` n´ 1q ą n´ 1.

Corollary 2.1.3 Suppose Aptkq and W ptkq hold for all k. If τ ą 0 then fpxkq is

bounded below as k Ñ 8.

Proof: This is now immediate from (2.1.11) and the definition of τ .

So, the larger a is, the smaller the Armijo parameter c1 must be in order to have

τ ď 0 and therefore the possibility that fpxkq Ñ ´8.

At this point it is natural to ask whether τ ď 0 implies that fpxkq Ñ ´8. We

will see in the next section (in Corollary 2.2.4, for τ “ 0) that the answer is no.

However, we can show that there is a specific choice of tk satisfying Aptkq and

W ptkq for which τ ď 0 implies fpxkq Ñ ´8. We start with a lemma.

Lemma 2.1.4 Suppose W ptkq holds. Then Aptkq holds if and only if

p1` τq
atk
2
ď |x

p1q
k |. (2.1.14)

Proof: Suppose x
p1q
k ą 0. Since W ptkq holds, using (2.1.8), we can rewrite the

17

Armijo condition (2.1.7) as

c1tkpa
2
` n´ 1q ď fpxkq ´ fpxk`1q

“

˜

ax
p1q
k `

n
ÿ

i“2

x
piq
k

¸

´

˜

´apx
p1q
k ´ atkq `

n
ÿ

i“2

x
piq
k ´ pn´ 1qtk

¸

ô tk

´

c1pa
2
` n´ 1q ` a2

´ pn´ 1q
¯

ď 2ax
p1q
k

ô tka
2
pτ ` 1q ď 2ax

p1q
k ,

giving (2.1.14). A similar argument applies when x
p1q
k ă 0.

Theorem 2.1.5 Let

tk “
2|x

p1q
k |

pτ ` 1qa
. (2.1.15)

Then

(1) Aptkq and W ptkq both hold.

(2) if τ ď 0, then fpxkq is unbounded below as k Ñ 8.

Proof: The first statement follows immediately from (2.1.9) (since |τ | ă 1) and

Lemma 2.1.4. Furthermore, (2.1.10) allows us to write (2.1.14) equivalently as

p1` τq|x
p1q
k`1| ď p1´ τq|x

p1q
k |. (2.1.16)

Since tk is the maximum steplength satisfying (2.1.14), it follows that (2.1.16) holds

with equality, so |x
p1q
k`1| “ C|x

p1q
k |, where

C “
1´ τ

1` τ
,

18

and hence

|x
p1q
k`1| “ Ck`1

|x
p1q
0 |.

Then, we can rewrite (2.1.15) as

tk “
2Ck|x

p1q
0 |

apτ ` 1q
.

When ´1 ă τ ď 0, we have C ě 1, so SN “
řN´1
k“0 tk Ñ 8 as N Ñ 8 and hence,

by Theorem 2.1.2, fpxNq Ñ ´8.

2.2 Additional Results Depending on a Specific

Choice of Armijo-Wolfe Line Search

In this section we continue to assume that f and dk are defined by (1.0.2)

and (2.1.3) respectively, with a ě
?
n´ 1, and that Aptq and W ptq are de-

fined as earlier. However, unlike in the previous section, we now assume that

tk is generated by the Armijo-Wolfe bracketing line search given in Algorithm 1,

which is taken from [Lewis & Overton, 2013, p. 147] and is a specific realiza-

tion of the line searches described implicitly in [Powell, 1976b] and explicitly in

[Hiriart-Urruty & Lemaréchal, 1993]. Since the line search function s ÞÑ fpxk`sdkq

is locally Lipschitz and bounded below, it follows, as shown in [Lewis & Overton, 2013],

that at any stage during the execution of Algorithm 1, the interval rα, βs must

always contain a set of points t with nonzero measure satisfying Aptq and W ptq,

and furthermore, the line search must terminate at such a point. This defines the

steplength tk. A crucial aspect of Algorithm 1 is that, in the “while” loop, the

19

Armijo condition is tested first and the Wolfe condition is then tested only if the

Armijo condition holds. We already know from Theorem 2.1.2 and Corollary 2.1.3

αÐ 0
β Ð `8

tÐ 1
while true do

if Aptq fails (see (2.1.1)) then
β Ð t

else if W ptq fails (see (2.1.2)) then
αÐ t

else
stop and return t

end if
if β ă `8 then

tÐ pα ` βq{2
else

tÐ 2α
end if

end while

Algorithm 1: Armijo-Wolfe Bracketing Line Search

that, for any set of Armijo-Wolfe points, if τ ą 0, then fpxNq is bounded below.

In this section we analyze the case τ ď 0, assuming that the steps tk are generated

by the Armijo-Wolfe bracketing line search. It simplifies the discussion to make

a probabilistic analysis, assuming that x0 “ px
p1q
0 , x

p2q
0 , . . . , x

pnq
0 q is generated ran-

domly, say from the standard normal distribution. Clearly, all intermediate values

t generated by Algorithm 1 are rational, and with probability one all corresponding

points x “ px
p1q
0 ´ sgnpx

p1q
0 qat, x

p2q
0 ´ t, . . . , x

pnq
0 ´ tq where the Armijo and Wolfe

conditions are tested during the first line search are irrational (this is obvious

if a is rational but it also holds if a is irrational assuming that x0 is generated

independently of a). It follows that, with probability one, f is differentiable at these

20

points, which include the next iterate x1 “ px
p1q
1 , x

p2q
1 , . . . , x

pnq
1 q. It is clear that,

by induction, the points xk “ px
p1q
k , x

p2q
k , . . . , x

pnq
k q are irrational with probability

one for all k, and in particular, x
p1q
k is nonzero for all k and hence f is differentiable

at all points xk.

Let us summarize the underlying assumptions for all the results in this section.

Assumption 2 Let f be defined by (1.0.2), with a ě
?
n´ 1, and define xk`1 “

xk ` tkdk, with dk “ ´∇fpxkq, and with tk defined by Algorithm 1, k “ 1, 2, 3, . . .,

where xk “ px
p1q
k , x

p2q
k , . . . , x

pnq
k q, and x0 “ px

p1q
0 , x

p2q
0 , . . . , x

pnq
0 q is randomly

generated from the standard normal distribution. All statements in the theorems,

lemmas and corollaries in this section are understood to hold with probability one.

Lemma 2.2.1 Suppose τ ď 0 and suppose |x
p1q
k | ą a. Define

rk “

S

log2

|x
p1q
k |

a

W

so that a2rk´1
ă |x

p1q
k | ă a2rk . (2.2.1)

Then, tk “ 2rk .

Proof: Since |x
p1q
k | ą a any steplength t ď |x

p1q
k |{a satisfies Aptq but fails W ptq.

Starting with t “ 1, the “while” loop in Algorithm 1 will carry out rk doublings

of t until t ą |x
p1q
k |{a, i.e., W ptq holds. Hence, in the beginning of stage rk ` 1,

we have α “ 2rk´1 (a lower bound on tk), t “ 2rk and β “ `8. At this point, t

satisfies W ptq and since τ ď 0, it also satisfies (2.1.14), i.e. Aptq. So tk “ 2rk .

Theorem 2.2.2 Suppose τ ď 0 and |x
p1q
0 | ą a. Then after j ď r0 iterations we

have |x
p1q
j | ă a, where r0 is defined by (2.2.1), and furthermore, for all subsequent

iterations, the condition |x
p1q
k | ă a continues to hold.

21

Proof: For any k with |x
p1q
k | ą a we know from the previous lemma that tk “ 2rk

with rk ą 0. From (2.1.10) and (2.2.1) we get

|x
p1q
k`1| “ atk ´ |x

p1q
k | ă a2rk ´ a2rk´1

“ a2rk´1. (2.2.2)

See Figure 2.1 for an illustration with n “ 2, with x
p1q
k ą 0, so ´a2rk´1 ă x

p1q
k`1 ă 0.

Hence, either |x
p1q
k`1| ă a, or a ă |x

p1q
k`1| ă a2rk´1, in which case from (2.2.1) and

(2.2.2) we have

rk`1 ď rk ´ 1.

So, beginning with k “ 0, rk is decremented by at least one at every iteration

until |x
p1q
k | ă a. Finally, once |x

p1q
k | ă a holds, it follows that the initial step t “ 1

satisfies the Wolfe condition W ptq, and hence, if Aptq also holds, tk is set to one,

while if not, the upper bound β is set to one so tk ă 1. Hence, the next value

x
p1q
k`1 “ x

p1q
k ´ sgnpx

p1q
k qatk also satisfies |x

p1q
k`1| ă a.

xp2q

xp1q

xk

x
p1q
kx

p1q
k ´ a2rk´1x

p1q
k`1 “ x

p1q
k ´ a2rk

2rk
?
a2 ` 1

2rk´1
?
a2 ` 1

Figure 2.1: Doubling t in order to satisfy W ptq.

Theorem 2.2.2 shows that for any τ ď 0 and sufficiently large k using Algorithm 1

we always have |x
p1q
k | ă a. In the reminder of this section we provide further details

on the step tk generated when |x
p1q
k | ă a. In this case, the initial step t “ 1 satisfies

22

W ptq but not necessarily Aptq. So Algorithm 1 will repeatedly halve t, until it

satisfies Aptq. See Figure 2.2 for an illustration.

xp2q

xp1q

x
p1q
k

xk

x
p1q
k ´ a

?
a2 ` 1

x
p1q
k ´ a{2

?
a2 ` 1

2

x
p1q
k ´ a{4

?
a2 ` 1

4

Figure 2.2: Halving t in order to satisfy Aptq.

Suppose for the time being that τ “ 0 and define pk by

pk “

S

log2

a

|x
p1q
k |

W

so that
a

2pk
ă |x

p1q
k | ă

a

2pk´1
. (2.2.3)

For example, in Figure 2.2, pk “ 2. So, a{4 ă |x
p1q
k | ă a{2. Hence t “ 1{2 satisfies

W ptq. In fact it also satisfies Aptq, because for τ “ 0, we have

p1` τqat

2
“
a

4
ă |x

p1q
k |,

which is exactly the Armijo condition (2.1.14). So, Algorithm 1 returns tk “ 1{2.

On the other hand if we had τ ď ´1{2, t “ 1 would have satisfied the Armijo

condition (2.1.14) since

p1` τqa

2
ď
a

4
ă |x

p1q
k |.

By taking τ into the formulation we are able to compute the exact value of tk in

the following theorem.

23

Theorem 2.2.3 Suppose τ ď 0 and |x
p1q
k | ă a. Then tk “ minp1, 1{2qk´1q, where

qk “

S

log2

p1` τqa

|x
p1q
k |

W

,

so

p1` τqa

2qk
ă |x

p1q
k | ă

p1` τqa

2qk´1
. (2.2.4)

Note that, unlike rk and pk, the quantity qk could be zero or negative.

Proof: If |x
p1q
k | ą p1` τqa{2, then t “ 1 satisfies the Armijo condition (2.1.14)

as well as the Wolfe condition, so tk is set to 1. Otherwise, qk ą 1, so 1{2qk´1 ă 1

and Algorithm 1 repeatedly halves t until Aptq holds. We now show that the first

t that satisfies Aptq is such that |x
p1q
k | ă at, i.e., it satisfies W ptq as well. Since

τ ď 0, the second inequality in (2.2.4) proves that steplength t “ 1{2qk´1 satisfies

W ptq. Moreover, the first inequality is the Armijo condition (2.1.14) with the

same steplength. Furthermore, the second inequality in (2.2.4) also shows that

t1 “ 2t “ 1{2qk´2 is too large to satisfy the Armijo condition (2.1.14). Hence

t “ 1{2qk´1 is the first steplength satisfying both Aptq and W ptq. So, Algorithm 1

returns tk “ 1{2qk´1.

Note that if τ “ 0, pk and qk coincide, with pk ě 1 since |x
p1q
k | ă a, and hence

tk “ 1{2pk´1 ď 1. Furthermore, pk “ 1 and hence tk “ 1 when a{2 ă |x
p1q
k | ă a.

Corollary 2.2.4 Suppose τ “ 0. Then xk converges to a limit x̄ with x̄p1q “ 0.

Proof: Assume that k is sufficiently large so that |x
p1q
k | ă a. From (2.2.3) we

have a{2pk ă |x
p1q
k |. Using Theorem 2.2.3 we have tk “ 1{2pk´1 and therefore

|x
p1q
k`1| “ atk ´ |x

p1q
k | ă

a

2pk´1
´

a

2pk
“

a

2pk

24

(see Figure 2.2 for an illustration). So pk`1 ě pk ` 1. Using Theorem 2.2.3 again

we conclude tk`1 ď 1{2pk and so tk`1 ď tk{2. The same argument holds for all

subsequent iterates so SN “
řN´1
k“0 tk is bounded above as N Ñ 8. The result

therefore follows from Theorem 2.1.2.

Corollary 2.2.5 If τ ď ´0.5 then eventually tk “ 1 at every iteration, and

fpxkq Ñ ´8.

Proof: As we showed in Theorem 2.2.2, for sufficiently large k, |x
p1q
k | ă a and

therefore t “ 1 always satisfies the Wolfe condition, so tk ď 1. If |x
p1q
k | ą p1` τqa{2,

then t “ 1 also satisfies the Armijo condition (2.1.14), so tk “ 1. If |x
p1q
k`1| ą

p1 ` τqa{2 as well, then tk`1 “ 1 and hence x
p1q
k`2 “ x

p1q
k . It follows that tj “ 1

for all j ą k ` 1. Hence, by Theorem 2.1.2, fpxkq Ñ ´8. Otherwise, suppose

|x
p1q
k | ă p1 ` τqa{2 (in case |x

p1q
k | ą p1 ` τqa{2 and |x

p1q
k`1| ă p1 ` τqa{2 just shift

the index by one so that we have |x
p1q
k´1| ą p1` τqa{2 and |x

p1q
k | ă p1` τqa{2).

Since |x
p1q
k | ă p1` τqa{2, from the definition of qk in (2.2.4) we conclude that

2 ď qk, i.e. 1{2qk´1 ď 1{2, so from Theorem 2.2.3 we have tk “ 1{2qk´1 ď 1{2.

Since |x
p1q
k | ă p1` τqa{2

qk´1 and 1` τ ď 1{2 we have

|x
p1q
k | ă

a

2qk
. (2.2.5)

So by (2.1.10)

|x
p1q
k`1| “ atk ´ |x

p1q
k | ě

a

2qk´1
´

a

2qk
“

a

2qk
ą
p1` τqa

2qk´1
(2.2.6)

25

and using (2.2.4) again we conclude qk`1 ď qk ´ 1. So,

tk`1 “ min

ˆ

1,
1

2qk`1´1

˙

ě min

ˆ

1,
1

2qk´2

˙

“
1

2qk´2
“ 2tk

and therefore, applying this repeatedly, after a finite number of iterations, say at

iteration k̄, we must have tk̄ “ 1 for the first time. Furthermore, from (2.2.5) and

(2.2.6) we have |x
p1q
k | ă |x

p1q
k`1|, and applying this repeatedly as well we have |x

p1q

k̄
| ă

|x
p1q

k̄`1
|. From the Armijo condition (2.1.14) at iteration k̄ we have p1`τqa{2 ď |x

p1q

k̄
|

and therefore

p1` τqa

2
ă |x

p1q

k̄`1
|.

Hence, t “ 1 also satisfies the Armijo condition (2.1.14) at iteration k̄ ` 1. With

tk̄ “ 1 and tk̄`1 “ 1 , we conclude x
p1q

k̄`2
“ x

p1q

k̄
. It follows that tj “ 1 for all

j ą k̄ ` 1. Hence fpxkq Ñ ´8 by Theorem 2.1.2.

2.3 Experimental Results

In this section we again continue to assume that f and dk are defined by (1.0.2) and

(2.1.3) respectively. For simplicity we also assume that n “ 2, writing u “ xp1q and

v “ xp2q for convenience. Our experiments confirm the theoretical results presented

in the previous sections and provide some additional insight. We know from

Theorem 2.1.2 that when the gradient algorithm fails, i.e, xk converges to a point

p0, v̄q, the step tk converges to zero. However, an implementation of Algorithm 1

in floating point arithmetic must terminate the “while” loop after it executes a

maximum number of times. We used the Matlab implementation in hanso, which

limits the number of bisections in the “while” loop to 30.

26

u

-3 -2 -1 0 1 2 3

v

0

1

2

3

4

5

6
f(u,v) = 2|u|+v. x_0 = (-2.264; 5), c_1=0.1, τ =-0.125

(a)

u

-3 -2 -1 0 1 2 3

v

0

1

2

3

4

5

6
f(u,v) = 5|u|+v. x_0 = (-2.264; 5), c_1=0.1, τ =0.064

(b)

Figure 2.3: Minimizing f with n “ 2, u “ xp1q, v “ xp2q and c1 “ 0.1. Left, with a “ 2, so
τ ă 0 and fpuk, vkq Ñ ´8 (success). Right, with a “ 5, so τ ą 0 and puk, vkq Ñ p0, v̄q (failure).

Figure 2.3 shows two examples of minimizing f with a “ 2 and a “ 5, with

c1 “ 0.1 in both cases, and hence with τ ă 0 and τ ą 0, respectively. Starting from

the same randomly generated point, we have fpxkq Ñ ´8 (success) when τ ă 0

and xk Ñ p0, v̄q (failure) when τ ą 0.

For various choices of a and c1 we generated 5000 starting points x0 “ pu0, v0q,

each drawn from the normal distribution with mean 0 and variance 1, and measured

how frequently “failure” took place, meaning that the line search failed to find an

Armijo-Wolfe point within 30 bisections. If failure did not take place within 50

iterations, i.e., with k ď 50, we terminated the gradient method declaring success.

Figure 2.4 shows the failure rates when (top) c1 is fixed to 0.05 and a is varied and

(bottom) when a “
?

2 and c1 is varied. Both cases confirm that when τ ą 0 the

method always fails, as predicted by Corollary 2.1.3, while when τ ď ´0.5, failure

does not occur, as shown in Corollary 2.2.5.

27

10
0

10
1

a

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Failure rate

 = c
1
+(c

1
-1)/a 2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

c
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Failure rate

 = c
1
+(c

1
-1)/a 2

Figure 2.4: Failure rates (small circles) for f with n “ 2 when (top) c1 is fixed to 0.05 and a is
varied and (bottom) a is fixed to

?
2 and c1 is varied. The solid curves show the value of τ . Each

experiment was repeated 5000 times.

28

u

-100 -50 0 50 100
v

-100

-80

-60

-40

-20

0

20

40

60

80

100
a =2.5166 c_1=0.05 τ =-0.1

u

-100 -50 0 50 100

v

-100

-80

-60

-40

-20

0

20

40

60

80

100
a =3.9791 c_1=0.05 τ =-0.01

u

-100 -50 0 50 100

v

-100

-80

-60

-40

-20

0

20

40

60

80

100
a =4.316 c_1=0.05 τ =-0.001

Figure 2.5: Mixed success and failure when τ “ ´0.1 (top), τ “ ´0.01 (middle) and τ “ ´0.001
(bottom). Each plot shows 5000 points. The green circles show starting points for which the
method succeeded, generating xk “ puk, vkq P R2 for which fpxkq is apparently unbounded below,
while the red crosses show starting points for which the method failed, generating xk converging
to a point on the v-axis.

29

As Figure 2.4 shows, when τ ă 0 with |τ | small, the method may or may not fail,

with failure more likely the closer τ is to zero. Further experiments for three specific

values of τ , namely ´0.1,´0.01 and ´0.001, using a fixed value of c1 “ 0.05 and a

defined by a “
a

p1´ c1q{pc1 ´ τq, confirmed that failure is more likely the closer

that τ gets to zero and also showed that the set of initial points from which failure

takes place is complex; see Figure 2.5. The initial points were drawn uniformly

from the box p´100, 100q ˆ p´100, 100q.

We know from Corollary 2.2.4 that, for τ “ 0, with probability one tk Ñ 0, so

even if high precision were being used, for sufficiently large k an implementation in

floating point must fail. It may well be the case that failures for τ ă 0 occur only

because of the limited precision being used, and that with sufficiently high precision,

these failures would be eliminated. This suggestion is supported by experiments

done reducing the maximum number of bisections to 15, for which the number

of failures for τ ă 0 increased significantly, and increasing it to 50, for which the

number of failures decreased significantly.

2.4 Relationship with Convergence Results for

Subgradient Methods

Let h be any convex function. The subgradient method [Shor, 1985, Bertsekas, 1999]

applied to h is a generalization of the gradient method, where h is not assumed to

be differentiable at the iterates txku and hence, instead of setting ´dk “ ∇hpxkq,

one defines ´dk to be any element of the subdifferential set

Bhpxkq “

g : hpxk ` zq ě hpxkq ` g
T z @z P Rn

(

.

30

The steplength tk in the subgradient method is not determined dynamically, as in

an Armijo-Wolfe line search, but according to a predetermined rule. The advantages

of the subgradient method with predetermined steplengths are that it is robust,

has low iteration cost, and has a well established convergence theory that does

not require h to be differentiable at the iterates txku, but the disadvantage is

that convergence is usually slow. Provided h is differentiable at the iterates, the

subgradient method reduces to the gradient method with the same steplengths, but

it is not necessarily the case that f decreases at each iterate.

We cannot apply the convergence theory of the subgradient method directly to

our function f defined in (1.0.2), because f is not bounded below. However, we

can argue as follows. Suppose that τ ą 0, so that we know (by Corollary 2.1.3)

that for all x0 with x
p1q
0 ‰ 0, the iterates xk generated by the gradient method with

Armijo-Wolfe steplengths applied to f converge to a point x̄ with x̄p1q “ 0. Fix

any initial point x0 with x
p1q
0 ‰ 0, and let M “ fpx̄q, where x̄ is the resulting limit

point (to make this well defined, we can assume that the Armijo-Wolfe bracketing

line search of Section 2.2 is in use). Now define

f̃pxq “ max
´

M ´ 1, a|xp1q| `
n
ÿ

i“2

xpiq
¯

.

Clearly, the iterates generated by the gradient method with Armijo-Wolfe steplengths

initiated at x0 are identical for f and f̃ , with f (equivalently, f̃) differentiable

at all iterates txku, and with fpxkq “ f̃pxkq Ñ M . Furthermore, the theory of

subgradient methods applies to f̃ . One well-known result states that provided the

steplengths ttku are square-summable (that is,
ř8

k“0 t
2
k ă 8, and hence the steps

are “not too long”), but not summable (that is,
ř8

k“0 tk “ 8, and hence the steps

31

are “not too short”), then convergence of f̃pxkq to the optimal value M ´ 1 must

take place [Nedić & Bertsekas, 2001]. Since this does not occur, we conclude that

the Armijo-Wolfe steplengths ttku do not satisfy these conditions. Indeed, the “not

summable” condition is exactly the condition SN Ñ 8, where SN “
řN´1
k“0 tk, and

Theorem 2.1.2 established that the converse, that SN is bounded above, is equivalent

to the function values fpxkq being bounded below. This, then, is consistent with

the convergence theory for the subgradient method, which says that the steps must

not be “too short”; in the context of an Armijo-Wolfe line search, when c1 is not

sufficiently small, and hence τ ą 0, the Armijo condition is too restrictive: it is

causing the ttku to be “too short” and hence summable.

Of course, in practice, one usually optimizes functions that are bounded below,

but one hopes that a method applied to a convex function that is not bounded

below will not converge, but will generate points xk with fpxkq Ñ ´8. The main

contribution of our paper is to show that, in fact, this does not happen for a

simple well known method on a simple convex nonsmooth function, regardless of

the starting point, unless the Armijo parameter is chosen to be sufficiently small —

how small, one does not know without advance information on the properties of f .

2.5 Concluding Remarks

Should we conclude from the results of this chapter that, if the gradient method

with an Armijo-Wolfe line search is applied to a nonsmooth function, the Armijo

parameter c1 should be chosen to be small? Results for a very ill-conditioned

convex nonsmooth function f̂ devised by Nesterov [Nesterov, 2016] suggest that

32

the answer is yes. The function is defined by

f̂pxq “ maxt|x1|, |xi ´ 2xi´1|, i “ 2, ..., nu. (2.5.1)

Let x̂1 “ 1, x̂i “ 2x̂i´1 ` 1, i “ 2, ..., n. Then f̂px̂q “ 1 “ f̂p1q although }x̂}8 « 2n

and }1}8 “ 1, so the level sets of f̂ are very ill conditioned. The minimizer is x “ 0

with f̂pxq “ 0. Figure 2.6 shows function values computed by applying five different

methods to minimize f̂ with n “ 100. The five methods are: the subgradient

method with tk “ 1{k, a square-summable but not summable sequence that

guarantees convergence; the gradient method using the Armijo-Wolfe bracketing line

search of Section 2.2; the limited memory BFGS method [Nocedal & Wright, 2006]

with 5 and 10 updates respectively (using “scaling”); and the full BFGS method

[Nocedal & Wright, 2006, Lewis & Overton, 2013]; the BFGS variants also use the

same Armijo-Wolfe line search.3 The top and bottom plots in Figure 2.6 show the

results when the Armijo parameter c1 is set to 0.1 and to 10´6 respectively. The

Wolfe parameter was set to 0.5 in both cases. These values were chosen to satisfy

the usual requirement that 0 ă c1 ă c2 ă 1, while still ensuring that c1 is not

so tiny that it is effectively zero in floating point arithmetic. All function values

generated by the methods are shown, including those evaluated in the line search.

The same initial point, generated randomly, was used for all methods; the results

using other initial points were similar.

For this particular example, we see that, in terms of reduction of the function

3In our implementation, we made no attempt to determine whether f̂ is differentiable at a
given point or not. This is essentially impossible in floating point arithmetic, but as noted earlier,
the gradient is defined at randomly generated points with probability one; there is no reason to
suppose that any of the methods tested will generate points where f̂ is not differentiable, except
in the limit, and hence the “subgradient” method actually reduces to the gradient method with
tk “ 1{k. See [Lewis & Overton, 2013] for further discussion.

33

0 100 200 300 400 500 600 700 800 900 1000

all methods except subgradient use Armijo-Wolfe line search

10
-2

10
-1

10
0

a
ll

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

Nesterov Les Houches, n=100, Armijo = 0.1

subgradient, t
k
=1/k

gradient
L-BFGS-5
L-BFGS-10
BFGS

0 200 400 600 800 1000

all methods except subgradient use Armijo-Wolfe line search

10
-2

10
-1

10
0

a
ll

fu
n
c
ti
o
n
 e

v
a
lu

a
ti
o
n
s

Nesterov Les Houches, n=100, Armijo = 1e-06

subgradient, t
k
=1/k

gradient
L-BFGS-5
L-BFGS-10
BFGS

Figure 2.6: Comparison of five methods for minimizing Nesterov’s ill-conditioned convex
nonsmooth function f̂ . The subgradient method (blue crosses) uses tk “ 1{k. The gradient,
limited-memory BFGS (with 5 and 10 updates respectively) and full BFGS methods (red circles,
green squares, magenta diamonds and black dots) all use the Armijo-Wolfe bracketing line search.
All function evaluations are shown. Top: Armijo parameter c1 “ 0.1. Bottom: Armijo parameter
c1 “ 10´6.

34

value within a given number of evaluations, the gradient method with the Armijo-

Wolfe line search when the Armijo parameter is set to 10´6 performs better than

using the subgradient method’s predetermined sequence tk “ 1{k, but that this is

not the case when the Armijo parameter is set to 0.1. The smaller value allows the

gradient method to take steps with tk “ 1 early in the iteration, leading to rapid

progress, while the larger value forces shorter steps, quickly leading to stagnation.

Eventually, even the small Armijo parameter requires many steps in the line search

— one can see that on the right side of the lower figure, at least 8 function values

per iteration are required. One should not read too much into the results for one

example, but the most obvious observation from Figure 2.6 is that the full BFGS

and limited memory BFGS methods are much more effective than the gradient or

subgradient methods. This distinction becomes far more dramatic if we run the

methods for more iterations: BFGS is typically able to reduce f̂ to about 10´12 in

about 5000 function evaluations, while the gradient and subgradient methods fail

to reduce f̂ below 10´1 in the same number of function evaluations. The limited

memory BFGS methods consistently perform better than the gradient/subgradient

methods but worse than full BFGS. The value of the Armijo parameter c1 has little

effect on the BFGS variants.

These results are consistent with substantial prior experience with apply-

ing the full BFGS method to nonsmooth problems, both convex and nonconvex

[Lewis & Overton, 2013, Curtis et al., 2017, Greenbaum et al., 2017, Guo & Lewis, 2018].

However, although the BFGS method requires far fewer operations per iteration

than bundle methods or gradient sampling, it is still not practical when n is large.

Hence, the attraction of limited-memory BFGS which, like the gradient and subgra-

dient methods, requires only Opnq operations per iteration. In the next chapter, we

35

investigate under what conditions the limited-memory BFGS method applied to the

function f studied in this chapter generates iterates that converge to a non-optimal

point, and, more generally, how reliable a choice it is for nonsmooth optimization.

36

Chapter 3

Analysis of the Limited Memory

BFGS Method Applied to a Class

of Nonsmooth Optimization

Problems

In this chapter, we analyze the behavior of a specific variant of limited-memory

BFGS (L-BFGS) applied to the same nonsmooth convex function (1.0.2) that we

considered earlier. The chapter is organized as follows. In §3.1, we define the scaled

memoryless BFGS method (scaled L-BFGS with just one update), using any line

search satisfying the Armijo and Wolfe conditions, and derive some properties of the

method applied to the function f in (1.0.2), initiated at any point x0 with x
p1q
0 ‰ 0.

In §3.1.1, we show that if a ě
a

3pn´ 1q, the algorithm is well defined in the sense

that Armijo-Wolfe steplengths always exist. In §3.2, we give our main theoretical

results. First, in §3.2.1, we show that if a ě 2
?
n´ 1, in the limit the absolute

37

value of the normalized search direction generated by the method converges to a

constant vector. Then, in §3.2.2, we show that if a further satisfies a condition

depending on the Armijo parameter, the method converges to a non-optimal point

x̄ with x̄p1q “ 0. Furthermore, this condition is weaker than the corresponding

condition for gradient method.

In §3.2.3, we show that, if the Armijo-Wolfe bracketing line search defined in

Algorithm 1 in §2.2 is used, scaled memoryless BFGS converges to a non-optimal

point when a ě 2
?
n´ 1 regardless of the Armijo parameter. This is in sharp

contrast to the gradient method using the same line search, for which success or

failure on the function f depends on the Armijo parameter. In §3.3, we present some

numerical experiments which support our theoretical results, and which indicate

that the results may extend to scaled L-BFGS with any fixed number of updates m,

and to more general piecewise linear functions. We make some concluding remarks

in §3.4.

3.1 The Memoryless BFGS Method

First let f denote any locally Lipschitz function mapping Rn to R, and let xk´1 P Rn

denote the pk ´ 1qth iterate of an optimization algorithm where f is differentiable

at xk´1 with gradient ∇fpxk´1q. Let dk´1 P Rn denote a descent direction, i.e.,

satisfying ∇fpxk´1q
Tdk´1 ă 0. As earlier, let c1 and c2 denote the Armijo and

Wolfe parameters, satisfying 0 ă c1 ă c2 ă 1.

To keep this chapter self-contained let us restate the Armijo and Wolfe line

search conditions, using slightly different notation from that used earlier. We say

38

that the steplength t satisfies the Armijo condition at iteration k ´ 1 if

fpxk´1 ` tdk´1q ď fpxk´1q ` c1t∇fpxk´1q
Tdk´1 (3.1.1)

and that it satisfies the Wolfe condition if

∇fpxk´1` tdk´1q exists with ∇fpxk´1` tdk´1q
Tdk´1 ě c2∇fpxk´1q

Tdk´1. (3.1.2)

It is known that if f is smooth or convex, and bounded below along the direction

dk´1, a point satisfying these conditions must exist (see [Lewis & Overton, 2013,

Theorem 4.5] for weaker conditions on f for which this holds). Note that as

long as f is differentiable at the initial iterate, defining subsequent iterates by

xk “ xk´1`tk´1dk´1, where (3.1.2) holds for t “ tk´1, ensures that f is differentiable

at xk.

We are now ready to define the memoryless BFGS method (L-BFGS with

m “ 1), also known as L-BFGS-1, with scaling, i.e., with H0
k defined by (1.0.1).

39

The algorithm is defined for any f , but its analysis will be specifically for (1.0.2).

d0 “ ´∇fpx0q (3.1.3)

for k “ 1, 2, 3, . . . ,define

tk´1 “ t satisfying p3.1.1q and p3.1.2q

xk “ xk´1 ` tk´1dk´1 (3.1.4)

sk´1 “ xk ´ xk´1 (3.1.5)

yk´1 “ ∇fpxkq ´∇fpxk´1q (3.1.6)

Vk´1 “ I ´
yk´1s

T
k´1

yTk´1sk´1

(3.1.7)

Hk “
sTk´1yk´1

yTk´1yk´1

V T
k´1Vk´1 `

sk´1s
T
k´1

sTk´1yk´1

(3.1.8)

dk “ ´Hk∇fpxkq (3.1.9)

end

Algorithm 2: Scaled memoryless BFGS, with input x0

Let us adopt the convention that if no steplength t exists satisfying the Armijo

and Wolfe conditions (3.1.1) and (3.1.2), the algorithm is terminated. Hence, for

any smooth or convex function, termination implies that a direction dk´1 has been

identified along which fpxk´1 ` tdk´1q is unbounded below.

Now let us restrict our attention to the convex function f given in (1.0.2). The

question we address in this chapter is whether memoryless BFGS will succeed

in identifying the fact that f is unbounded below, either because it generates a

direction d for which no steplength t satisfying the Armijo and Wolfe conditions

exists (in which case the algorithm terminates), or, alternatively, that it generates

a sequence txku for which Armijo-Wolfe steplengths always exist, with fpxkq Ó ´8.

40

If neither event takes place, tfpxkqu is bounded below, which is regarded as failure,

since f is unbounded below.

For the function (1.0.2), requiring tk´1 to satisfy (3.1.2), regardless of the value

of the Wolfe parameter c2 P p0, 1q, implies, via (3.1.4), the condition

sgnpx
p1q
k q “ ´sgnpx

p1q
k´1q. (3.1.10)

Via (3.1.5) we see that (3.1.10) is equivalent to the condition

|s
p1q
k´1| “ |x

p1q
k´1| ` |x

p1q
k |. (3.1.11)

Without loss of generality, we assume that the initial point x0 has a positive first

component, i.e., x
p1q
0 ą 0, so that

∇fpxkq “

»

—

–

p´1qka

1

fi

ffi

fl

, (3.1.12)

where 1 P Rn´1 is the column vector of all ones. Via (3.1.10) and (3.1.12), (3.1.6)

is simply

yk´1 “

»

—

–

p´1qk2a

0

fi

ffi

fl

, (3.1.13)

where 0 P Rn´1 is the column vector of all zeros. Note that from (3.1.4) and (3.1.5)

it is immediate that for any k ě 1

sk´1 “ tk´1dk´1. (3.1.14)

41

For i “ 2, . . . , n, let

θ
piq
k´1 “ arctan

˜

d
piq
k´1

d
p1q
k´1

¸

,

with θ
piq
k´1 P r´π{2, π{2s. Note that |θ

piq
k´1| is the acute angle between dk´1 and the

xp1q axis when it is projected onto the pxp1q, xpiqq plane. From (3.1.3) and (3.1.12)

we have

1

a
“ tan θ

p2q
0 “ tan θ

p3q
0 “ . . . “ tan θ

pnq
0 . (3.1.15)

The assumption of the initial inverse Hessian approximation being a multiple of

the identity is embedded in the definition (3.1.8), and therefore we know that dk´1

(and consequently sk´1) is in the subspace spanned by the two gradients in (3.1.12)

(see [Gill & Leonard, 2003, Lemma 2.1]). Since both gradients are symmetric w.r.t.

the components xp2q, . . . , xpnq, it follows that dk´1 has the same property. The same

symmetry holds in the definition of the objective function (1.0.2). Since (3.1.15)

holds, we conclude inductively that, for k ą 1, tan θ
p2q
k´1 “ tan θ

p3q
k´1 “ . . . “ tan θ

pnq
k´1.

So, let us simply write

bk´1 “ tan θk´1 “
d
piq
k´1

d
p1q
k´1

“
s
piq
k´1

s
p1q
k´1

, for all i “ 2, . . . , n. (3.1.16)

From (3.1.13) we have

sTk´1yk´1 “ p´1qk2as
p1q
k´1, (3.1.17)

so we can rewrite Vk´1 in (3.1.7) in terms of bk´1 as

Vk´1 “

»

—

–

0 ´bk´11T

0 In´1

fi

ffi

fl

. (3.1.18)

42

This leads us to write Hk in (3.1.8) as

Hk “
sTk´1yk´1

yTk´1yk´1

»

—

–

0 0T

0 b2
k´111T ` In´1

fi

ffi

fl

`
ps
p1q
k´1q

2

sTk´1yk´1

»

—

–

1 bk´11T

bk´11 b2
k´111T

fi

ffi

fl

.

From (3.1.17) we can see that the fractions in front of the first and second matrices

are the same, i.e.,

sTk´1yk´1

yTk´1yk´1

“
ps
p1q
k´1q

2

sTk´1yk´1

“
|s
p1q
k´1|

2a
. (3.1.19)

Hence, we obtain the following much more compact form

Hk “ γk

»

—

–

1 bk´11T

bk´11 2b2
k´111T ` In´1

fi

ffi

fl

, (3.1.20)

where

γk “
|s
p1q
k´1|

2a
(3.1.21)

is the scale factor in (1.0.1). Finally, with the gradient defined in (3.1.12) we can

compute the direction generated by Algorithm 1 in (3.1.9) as

dk “ ´
|s
p1q
k´1|

2a

»

—

–

p´1qka` pn´ 1qbk´1
´

p´1qkabk´1 ` 2pn´ 1qb2
k´1 ` 1

¯

1

fi

ffi

fl

. (3.1.22)

So, from definition (3.1.16) we can write bk recursively as

bk “
p´1qkabk´1 ` 2pn´ 1qb2

k´1 ` 1

p´1qka` pn´ 1qbk´1

. (3.1.23)

43

3.1.1 Existence of Armijo-Wolfe Steps when
a

3pn´ 1q ď a

In the next lemma we prove that if
a

3pn´ 1q ď a, then the tbku alternate in sign

with |bk| ď 1{a.

Lemma 3.1.1 Suppose
a

3pn´ 1q ď a . Define bk as in (3.1.23) with b0 “ 1{a.

Then |bk| ď 1{a and furthermore tbku alternates in sign with

|bk| “
1` pn´ 1qb2

k´1

a´ pn´ 1q|bk´1|
´ |bk´1|. (3.1.24)

Proof: Suppose
a

3pn´ 1q ď a. Using a change of variable such that βk “ bk

when k is even, and βk “ ´bk when k is odd, (3.1.23) becomes

βk “
1` pn´ 1qβ2

k´1

a´ pn´ 1qβk´1

´ βk´1. (3.1.25)

From (3.1.15) we have β0 “ 1{a. Using induction we prove that 0 ă βk ď 1{a.

This is clearly true for k “ 0. Suppose we have 0 ă βk´1 ď 1{a. Hence

βk´1 ă
1

a´ pn´ 1qβk´1

ă
1` pn´ 1qβ2

k´1

a´ pn´ 1qβk´1

,

so, dropping the middle term and moving βk´1 to the R.H.S., we get exactly the

definition of βk according to (3.1.25). So, we have 0 ă βk. Next, starting from

44

K´ K`

xp1q

xp2q

∇f`

d0 “ ´∇f`

∇f´

´∇f´

dk

θ0θ0

θ0 θ0

θk

Figure 3.1: Angles of Search Directions. Let n “ 2, let ∇f` “ ra 1sT and let ∇f´ “
r´a 1sT , so, since x

p1q
0 ą 0 by assumption, we have d0 “ ´∇f`. It follows from Lemma 3.1.1 that

bk “ d
p2q
k {d

p1q
k alternates in sign for k “ 1, 2, . . ., with absolute value bounded above by 1{a, and

hence that θk “ arctanpbkq alternates in sign for k “ 1, 2, . . ., with |θk|, the acute angle between
the xp1q axis and the search direction dk, bounded above by θ0. Furthermore, Lemma 3.1.2 states
that the function f is unbounded below along all directions in the open cones K´ and K`, and
bounded below along all other directions (except the vertical axis). Note, however, that points
satisfying the Wolfe condition may exist along directions d P K` emanating from iterates on the
left side of the xp2q axis, but not along directions d P K´ emanating from the left side, because
the former cross the xp2q axis and the latter do not, and vice versa. Finally, Theorem 3.1.3 implies
that, under the assumption a ě

?
3, we have |θk| ď θ0 ď π{6, for all k ą 0 (see the discussion

after the theorem), so dk does not lie in K´ or in K` and hence the algorithm does not terminate.

45

a

3pn´ 1q ď a, we show that βk ď 1{a:

3pn´ 1q

a
ď añ

pn´ 1q

a
` 2pn´ 1qβk´1 ď añ

a2 ` n´ 1

a
ď 2pa´ pn´ 1qβk´1q ñ

a2 ` n´ 1

apa´ pn´ 1qβk´1q
ď 2.

Multiplying both sides by βk´1 we get

aβk´1 ` 1

a´ pn´ 1qβk´1

´
1

a
ď 2βk´1,

and finally by moving 1{a to the right and 2βk´1 to the left we get

1` pn´ 1qβ2
k´1

a´ pn´ 1qβk´1

´ βk´1 ď
1

a
.

The L.H.S. is βk as it’s defined in (3.1.25), so βk ď 1{a. Recalling the change of

variable in the beginning of the proof it follows that βk “ |bk|. So, from (3.1.25) we

get (3.1.24).

Putting (3.1.23) and (3.1.24) together we can rewrite (3.1.22) as

dk “ ´
|s
p1q
k´1|

2a
pa´ pn´ 1q|bk´1|q

»

—

–

p´1qk

|bk|1

fi

ffi

fl

. (3.1.26)

Before stating the main result of this section we give the following simple lemma.

46

Lemma 3.1.2 Let x P Rn be given, define

d` “ ´

»

—

–

1

β1

fi

ffi

fl

and d´ “ ´

»

—

–

´1

β1

fi

ffi

fl

, (3.1.27)

where β ą 0, and define f by (1.0.2). Let d be either d` or d´. Then hptq “

fpx` tdq ´ fpxq is unbounded below if and only if
a

n´ 1
ă β.

Proof: We have

hptq “ a|xp1q ˘ t| ´ a|xp1q| ´ pn´ 1qβt.

So,

pa´ pn´ 1qβq t´ 2a|xp1q| ă hptq ă pa´ pn´ 1qβq t.

The result follows.

Note that stating that h is unbounded below is not equivalent to saying that

Armijo-Wolfe points do not exist along the direction d emanating from x. Such

points may exist if the sign of dp1q is opposite to the sign of xp1q.

Theorem 3.1.3 When Algorithm 1 is applied to (1.0.2) with
a

3pn´ 1q ď a, using

any Armijo-Wolfe line search, with any starting point x0 such that x
p1q
0 ‰ 0, the

method generates directions dk that are nonnegative scalar multiples of d` or d´,

defined in (3.1.27), with β ă a{pn´ 1q. It follows that the steplength tk satisfying

the Armijo and Wolfe conditions (3.1.1) and (3.1.2) always exists and hence the

method never terminates.

Proof: The proof is by induction on k. Without loss of generality assume

x
p1q
0 ą 0, so d0 “ ´∇fpx0q “ ad` with β “ 1{a. Since

a

3pn´ 1q ď a, we have

47

1{a ă a{pn´ 1q and hence the initial Armijo-Wolfe steplength t0 exists by Lemma

3.1.2. Now, suppose that the result holds for all j ă k, so dk in (3.1.26) is well

defined. Since by Lemma 3.1.1 we know that |bk´1| ď 1{a ď a{pn´ 1q, the leading

scalar in (3.1.26) is negative and therefore dk is a nonnegative scalar multiple of

d` or d´ with β “ |bk| ď 1{a ă a{pn ´ 1q. Hence f is bounded below along the

direction dk emanating from xk and so there exists tk satisfying the Armijo and

Wolfe conditions at iteration k, which implies that the algorithm does not terminate

at iteration k.

Using Figure 3.1 we can provide an alternative informal geometrical proof for

Theorem 3.1.3. We have

1

a
ď

1
?

3
ñ θ0 “ arctan

1

a
ď arctan

1
?

3
“
π

6
.

According to Lemma 3.1.1, we have |bk| ď 1{a, and so, |θk| ď θ0 and hence,

2θ0 ` |θk| ď
π

2
.

It follows (see Figure 3.1) that dk R K` YK´. This means that the method never

generates a direction along which f is unbounded below.

However, Theorem 3.1.3 does not imply that Algorithm 1 converges to a non-

optimal point under the assumption that
a

3pn´ 1q ď a, because the existence of

Armijo-Wolfe steps tk for all k does not imply that the sequence tfpxkqu is bounded

below. This issue is addressed in the next section.

48

3.2 Failure of Scaled Memoryless BFGS

3.2.1 Convergence of the Absolute Value of the Normal-

ized Search Direction when 2
?
n´ 1 ď a

Define

b “
a´

a

a2 ´ 3pn´ 1q

3pn´ 1q
(3.2.1)

and note that when
a

3pn´ 1q ď a, then

1

2a
ď b ď

1

a
.

Next we show the sequence t|bk|u converges to b under a slightly stronger assumption.

Theorem 3.2.1 For 2
?
n´ 1 ď a the sequence defined by (3.1.24) converges and

moreover

lim
kÑ8

|bk| “ b.

Proof: We continue to use the same change of variable as before, that is βk “ bk

when k is even, and βk “ ´bk when k is odd. In this way, (3.1.25) is equivalent

to (3.1.24), and we prove that if 2
?
n´ 1 ď a, then tβku converges. From a little

rearrangement in (3.1.25) we can easily get

apβk ` βk´1q “ 1` 2pn´ 1qβ2
k´1 ` pn´ 1qβk´1βk, (3.2.2)

and by moving pn´ 1qβk´1βk to the left and adding 1 to both sides we get

apβk ` βk´1q ´ pn´ 1qβk´1βk ` 1 “ 2
´

1` pn´ 1qβ2
k´1

¯

. (3.2.3)

49

For further simplification we define

ρk “
1` pn´ 1qβ2

k

a´ pn´ 1qβk
, (3.2.4)

so we can rewrite (3.1.25) as

βk`1 “ ρk ´ βk. (3.2.5)

By applying (3.2.5) recursively we obtain

βk`1 ´ βk´1 “ ρk ´ ρk´1. (3.2.6)

Note that from (3.2.4) we have

ρk ´ ρk´1 “
1` pn´ 1qβ2

k

a´ pn´ 1qβk
´

1` pn´ 1qβ2
k´1

a´ pn´ 1qβk´1

“

´

1` pn´ 1qβ2
k

¯´

a´ pn´ 1qβk´1

¯

´

´

1` pn´ 1qβ2
k´1

¯´

a´ pn´ 1qβk

¯

´

a´ pn´ 1qβk

¯´

a´ pn´ 1qβk´1

¯

“

pβk ´ βk´1qpn´ 1q
´

apβk ` βk´1q ´ pn´ 1qβk´1βk ` 1
¯

´

a´ pn´ 1qβk

¯´

a´ pn´ 1qβk´1

¯ . (3.2.7)

The last factor in the numerator is the L.H.S. in (3.2.3), so

ρk ´ ρk´1 “

pβk ´ βk´1qpn´ 1q2
´

1` pn´ 1qβ2
k´1

¯

´

a´ pn´ 1qβk

¯´

a´ pn´ 1qβk´1

¯ . (3.2.8)

Hence, since all of the factors in this product except pβk ´ βk´1q are known to be

positive, we have

pρk ´ ρk´1qpβk ´ βk´1q ě 0. (3.2.9)

50

Putting (3.2.6) and (3.2.9) together we conclude

pβk`1 ´ βk´1qpβk ´ βk´1q ě 0. (3.2.10)

As the next step we will show that

pβk`1 ´ βkqpβk ´ βk´1q ď 0. (3.2.11)

Since a ě 2
?
n´ 1 and using 1{a ě βk´1 we get

´

a2
´ 4pn´ 1q

¯´

a2
` pn´ 1q

¯

ě 0 ñ

a2
´ 3pn´ 1q ě

4pn´ 1q2

a2
ñ

a2
´ 3pn´ 1q ě 4pn´ 1q2β2

k´1 ñ

a2
´ 3pn´ 1q ´ 4pn´ 1q2β2

k´1 ě 0.

By adding and deducting 2pn´ 1q2βkβk´1 to the L.H.S. above we get

a2
´ 2pn´ 1q

´

1` 2pn´ 1qβ2
k´1 ` pn´ 1qβk´1βk

¯

` 2pn´ 1q2βkβk´1 ´ pn´ 1q ě 0.

By combining this with (3.2.2) we get

a2
´ 2pn´ 1qapβk ` βk´1q ` 2pn´ 1q2βkβk´1 ´ pn´ 1q ě 0.

By moving some of the terms to the R.H.S. and factorizing the L.H.S. we get

´

a´pn´1qβk

¯´

a´pn´1qβk´1

¯

ě apn´1qpβk`βk´1q´ pn´1q2βkβk´1`pn´1q,

51

which we can write as

1 ě
pn´ 1q

´

apβk ` βk´1q ´ pn´ 1qβkβk´1 ` 1
¯

´

a´ pn´ 1qβk

¯´

a´ pn´ 1qβk´1

¯ . (3.2.12)

Now, suppose βk ´ βk´1 ě 0. Multiplying both sides of the inequality (3.2.12) by

βk ´ βk´1, according to (3.2.7) we get

βk ´ βk´1 ě ρk ´ ρk´1,

so,

ρk´1 ´ βk´1 ě ρk ´ βk

which means that via (3.2.5) we have shown βk ě βk`1. Alternatively, if we had

βk ´ βk´1 ď 0 above, then we would get βk ď βk`1. Hence, we always have

pβk`1 ´ βkqpβk ´ βk´1q ď 0, which is exactly inequality (3.2.11).

Since we start with β0 “ 1{a, according to Lemma 3.1.1 we have β1 ď β0. Using

(3.2.11) inductively we get

β1 ´ β0 ď 0, 0 ď β2 ´ β1, β3 ´ β2 ď 0, . . .

and from applying (3.2.10) to each one of these inequalities we conclude

β2 ´ β0 ď 0, 0 ď β3 ´ β1, β4 ´ β2 ď 0, . . .

which shows that we can split tβku into two separate monotonically decreasing and

52

increasing subsequences:

0 ă . . . β4 ď β2 ď β0 “ 1{a,

0 ă β1 ď β3 ď β5 . . . ă 1{a.

By the bounded monotone convergence theorem we conclude that each one of these

subsequences converge, i.e.

lim
kÑ8

|βk`2 ´ βk| “ 0,

and recalling (3.2.6) we get

lim
kÑ8

|ρk`1 ´ ρk| “ 0.

On the other hand, looking at the equality in (3.2.7) we know that except pβk`1´βkq

all the factors in the numerator and denominator are bounded away from zero. So

therefore we must have

lim
kÑ8

|βk`1 ´ βk| “ 0,

and hence, since the even and odd sequences both converge, they must have the

same limit. Using the definition of βk`1 in (3.1.25) we get

lim
kÑ8

ˇ

ˇ

ˇ

ˇ

1` pn´ 1qβ2
k

a´ pn´ 1qβk
´ 2βk

ˇ

ˇ

ˇ

ˇ

“ 0.

Since the denominator is bounded away from zero we must have

lim
kÑ8

3pn´ 1qβ2
k ´ 2aβk ` 1 “ 0.

53

The two roots of the limiting quadratic equation are

a˘
a

a2 ´ 3pn´ 1q

3pn´ 1q
.

The smaller root is b as defined in (3.2.1) and the larger root is greater than 1{a,

which according to Lemma 3.1.1 is not possible. Hence,

lim
kÑ8

βk “ lim
kÑ8

|bk| “ b.

Note that the convergence result established in this theorem does not require any

assumption of symmetry with respect to variables 2, 3, . . . , n, in the initial point

x0. The only assumption on x0 is that x
p1q
0 ą 0. We need x

p1q
0 ‰ 0 so that f is

differentiable at x0; the assumption on the sign is purely for convenience.

Assumption 1. For the subsequent theoretical analysis we assume that

2
?
n´ 1 ď a.

With this assumption, as a direct implication of Theorem 3.2.1, for any given

positive ε there exists K such that for k ě K we have

||bk| ´ b| ă
ε

n´ 1
. (3.2.13)

As we showed in Lemma 3.1.1, for k ě 0 we have |bk| ď 1{a and therefore

3pn´ 1q

a
ď a´

n´ 1

a
ď a´ pn´ 1q|bk|. (3.2.14)

54

Thus, a´ pn´ 1q|bk| is positive and bounded away from zero.

Since |bk| converges by Theorem 3.2.1, we see that in the limit the normalized

direction dk{}dk}2 alternates between two limiting directions. For an illustration,

see Figures 3.2 and 3.3. It is this property that allows us to establish, under some

subsequent assumptions, that scaled memoryless BFGS generates iterates xk for

which fpxkq is bounded below even though f is unbounded below.

3.2.2 Dependence on the Armijo Condition

Combining (3.1.12) and (3.1.26) we get

∇fpxkqTdk “ ´|dp1qk |

»

—

–

p´1qka

1

fi

ffi

fl

T »

—

–

p´1qk

|bk|1

fi

ffi

fl

“ ´|d
p1q
k | pa` pn´ 1q |bk|q ,

(3.2.15)

so the Armijo condition (3.1.1) with t “ tk at iteration k is

c1tk|d
p1q
k | pa` pn´ 1q |bk|q ď fpxkq ´ fpxk ` tkdkq. (3.2.16)

If tk satisfies the Wolfe condition, i.e. tk is large enough that the sign change

(3.1.10) occurs, then we must have

|x
p1q
k | ă tk|d

p1q
k |. (3.2.17)

Given this we can derive fpxkq ´ fpxk ` tkdkq using the definition of bk in (3.1.16)

as follows:

fpxkq ´ fpxk ` tkdkq “ 2a|x
p1q
k | ´ pa´ pn´ 1q|bk|q tk|d

p1q
k |. (3.2.18)

55

By defining ϕk as follows

ϕk “
c1 pa` pn´ 1q|bk|q ` a´ pn´ 1q|bk|

2a
, (3.2.19)

we can restate the Armijo condition in the following lemma.

Lemma 3.2.2 Suppose tk satisfies the Wolfe condition (3.1.10). Then for tk to

satisfy the Armijo condition (3.2.16) we must have

ϕktk|d
p1q
k | ď |x

p1q
k |. (3.2.20)

Proof: Combining (3.2.18) and (3.2.16) we get

c1tk|d
p1q
k | pa` pn´ 1q |bk|q ď 2a|x

p1q
k | ´ pa´ pn´ 1q |bk|q tk|d

p1q
k |,

and using the definition of ϕk in (3.2.19), (3.2.20) follows.

From (3.2.17) and (3.2.20) we see that ϕk is the ratio of the lower bound and the

upper bound on the steplength tk provided by the Wolfe and Armijo conditions

respectively. The next lemma provides bounds on ϕk.

Lemma 3.2.3

pn´ 1q|bk|

a
ă ϕk. (3.2.21)

Proof: Using Lemma 3.1.1 we know 3pn´ 1q|bk| ď a for all k, and so

2pn´ 1q|bk| ď a´ pn´ 1q|bk|,

56

and since

a´ pn´ 1q|bk|

2a
“ ϕk ´ c1

a` pn´ 1q|bk|

2a
,

and c1 ą 0, (3.2.21) follows.

Corollary 3.2.4 For k ě 1 we have

|s
p1q
k | ď |s

p1q
k´1|

1´ ϕk´1

ϕk
. (3.2.22)

Proof: Summing the Armijo inequality (3.2.20) for two consecutive iterations we

obtain

|s
p1q
k´1|ϕk´1 ` |s

p1q
k |ϕk ď |x

p1q
k´1| ` |x

p1q
k |,

and noticing that the R.H.S., according to (3.1.11), is equal to |s
p1q
k´1| we get (3.2.22).

Lemma 3.2.5 For any given ε ą 0 let K be the smallest integer such that for any

k ě K, (3.2.13) holds. Then for all N ą K we have

fpxKq ´ fpxNq ă a|x
p1q
K | ` ppn´ 1q b` εq

N´1
ÿ

k“K

|s
p1q
k |. (3.2.23)

Proof: Using tkdk “ sk and xk`1 “ xk` sk in (3.2.18) and then applying (3.2.13)

we obtain

fpxkq ´ fpxk`1q ă 2a|x
p1q
k | ´ a|s

p1q
k | ` ppn´ 1q b` εq |s

p1q
k |. (3.2.24)

57

Summing up (3.2.24) from k “ K to k “ N ´ 1 and recalling (3.1.11), we get

fpxKq ´ fpxNq ă

a
N´1
ÿ

k“K

|s
p1q
k | ` a|x

p1q
K | ´ a|x

p1q
N | ´ a

N´1
ÿ

k“K

|s
p1q
k | ` ppn´ 1q b` εq

N´1
ÿ

k“K

|s
p1q
k |.

Canceling the first and fourth terms and dropping ´a|xN |, we arrive at (3.2.23).

From applying Theorem 3.2.1 to the definition of ϕk in (3.2.19) it is immediate

that tϕku converges. Let

ϕ “
c1 pa` pn´ 1qbq ` a´ pn´ 1qb

2a
, (3.2.25)

so

lim
kÑ8

ϕk “ ϕ. (3.2.26)

Lemma 3.2.6 Assume

0 ă ε ď

a

a2 ´ 3pn´ 1q

3
, (3.2.27)

and let K be defined as in Lemma 3.2.5. Then for any k ě K we have

ˇ

ˇ

ˇ

ˇ

1´ ϕk´1

ϕk
´

1´ ϕ

ϕ

ˇ

ˇ

ˇ

ˇ

ă
15

a
ε. (3.2.28)

Proof: By rearranging terms in (3.2.1) and using (3.2.27) we get

pn´ 1qb` ε ď pn´ 1qb`

a

a2 ´ 3pn´ 1q

3
“
a

3
. (3.2.29)

58

Using (3.2.13) and (3.2.29), for k ě K we have

0 ă a´ pn´ 1qb´ ε ă a´ pn´ 1q|bk|.

Combining this with (3.2.21) we get

0 ă
a´ pn´ 1qb´ ε

2a
ă ϕk ă 1.

Hence,

1 ă
1

ϕk
ă

2a

a´ pn´ 1qb´ ε
ď

2a

a´ a
3

“ 3.

Since 0 ă c1 ă 1, from (3.2.13), (3.2.19), (3.2.25) and (3.2.26) we get

|ϕk ´ ϕ| ă
p1` c1qε

2a
ă
ε

a
.

So,

ˇ

ˇ

ˇ

ˇ

1´ ϕk´1

ϕk
´

1´ ϕ

ϕ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

ϕk
´ 1`

ϕk ´ ϕk´1

ϕk
´

1

ϕ
` 1

ˇ

ˇ

ˇ

ˇ

ă

ˇ

ˇ

ˇ

ˇ

ϕ´ ϕk
ϕkϕ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ϕk ´ ϕk´1

ϕk

ˇ

ˇ

ˇ

ˇ

ă
ε

aϕk

ˆ

1

ϕ
` 2

˙

.

Note that 1 ă 1{ϕk ă 3 applies to all ϕk (as well as the limit ϕ) with k ě K, and

therefore we conclude (3.2.28).

Let

ψε “
1´ ϕ

ϕ
`

15

a
ε. (3.2.30)

59

If Lemma 3.2.6 applies then from (3.2.22) and (3.2.28) we conclude

|s
p1q
k | ă ψε|s

p1q
k´1|. (3.2.31)

That is to say, with ε satisfying (3.2.27), after at most K iterations, (3.2.31) holds.

Consequently, with the additional assumption ψε ă 1, we obtain

N´1
ÿ

k“K

|s
p1q
k | ă |s

p1q
K |

1

1´ ψε
. (3.2.32)

Now we can prove the main result of this subsection. Recall that c1 ă 1.

Theorem 3.2.7 Suppose c1 is chosen large enough that

1

c1

´ 1 ă
a

pn´ 1qb
(3.2.33)

holds. Then, using any Armijo-Wolfe line search with any starting point x0 with

x
p1q
0 ‰ 0, scaled memoryless BFGS applied to (1.0.2) fails in the sense that fpxNq

is bounded below as N Ñ 8.

Proof: It follows from (3.2.33) and (3.2.25) that ϕ ą 1{2. Therefore, using

(3.2.30), we can choose ε small enough such that ψε ă 1 holds in addition to (3.2.27).

Applying Lemmas 3.2.5 and 3.2.6, we conclude that there exists K such that for

for any N ą K, (3.2.32) holds, and, substituting this into (3.2.23) we get

fpxKq ´ fpxNq ă a|x
p1q
K | ` |s

p1q
K |
pn´ 1q b` ε

1´ ψε
. (3.2.34)

This establishes that fpxNq is bounded below for all N ą K.

Using (3.2.1) we see that the failure condition (3.2.33) for scaled memoryless BFGS

60

with any Armijo-Wolfe line search applied to (1.0.2) is equivalent to

1´ c1

c1

pn´ 1q ă a2
` a

a

a2 ´ 3pn´ 1q. (3.2.35)

The corresponding failure condition for the gradient method on the same function,

again using any Armijo-Wolfe line search, is, as we showed in Chapter 2

1´ c1

c1

pn´ 1q ă a2. (3.2.36)

Hence, scaled memoryless BFGS fails under a weaker condition relating a to the

Armijo parameter than the condition for failure of the gradient method on the

same function with the same line search conditions. Indeed, Assumption 1 implies

a2
` a

a

a2 ´ 3pn´ 1q ě 4pn´ 1q ` 2
?
n´ 1

?
n´ 1 “ 6pn´ 1q.

So, if the Armijo parameter c1 ě 1{7, then (3.2.35) holds. In contrast, the same

assumption implies that if c1 ě 1{5, then (3.2.36) holds. So, scaled memoryless

BFGS with any Armijo-Wolfe line search applied to (1.0.2) fails under a weaker

condition on the Armijo parameter than the gradient method does.

3.2.3 Results for a specific Armijo-Wolfe line search, inde-

pendent of the Armijo parameter

Considering only the first component of the direction dk in (3.1.26) we have

2a

a´ pn´ 1q|bk´1|
|d
p1q
k | “ |s

p1q
k´1|. (3.2.37)

61

Using (3.1.14), it follows that if

tk ă
2a

a´ pn´ 1q|bk´1|
, (3.2.38)

we have |s
p1q
k | ă |s

p1q
k´1|. Note that the R.H.S. of (3.2.38) is greater than two.

However, as shown in the next lemma, except at the initial iteration (k “ 0), t “ 2

is always large enough to satisfy the Wolfe condition, implying that there exists

t ď 2 satisfying both the Armijo and Wolfe conditions.

Lemma 3.2.8 For k ě 1, the steplength tk “ 2 always satisfies the Wolfe condition

(3.1.10), i.e., we have

|x
p1q
k | ă 2|d

p1q
k |. (3.2.39)

Proof: Since k ě 1, we know that the Armijo and Wolfe conditions hold at

iteration k´ 1 by definition of Algorithm 1. So, using (3.2.20) and (3.1.14) we have

ϕk´1|s
p1q
k´1| ď |x

p1q
k´1|. (3.2.40)

Using the inequality (3.2.21) in the L.H.S. and the equality (3.1.11) in the R.H.S.

we get

pn´ 1q|bk´1|

a
|s
p1q
k´1| ă |s

p1q
k´1| ´ |x

p1q
k |,

i.e.

|x
p1q
k | ă |s

p1q
k´1|

a´ pn´ 1q|bk´1|

a
.

Substituting (3.2.37) into the R.H.S., we obtain (3.2.39).

Consider the Armijo-Wolfe bracketing line search Algorithm 1 in §2.2. It is

known from the results in [Lewis & Overton, 2013] that provided f is bounded

62

below along dk´1 (as we already established must hold for directions generated by

Algorithm 2 in §3.1), the Armijo-Wolfe bracketing line search will terminate with a

steplength t satisfying both conditions. In the following lemma we show that if we

use this line search, it always generates tk ď 2 for k ě 1.

Lemma 3.2.9 When scaled memoryless BFGS is applied to (1.0.2), using Algo-

rithm 1 in §2.2 it always returns steplength tk ď 2 for k ě 1.

Proof: The line search begins with the unit step. If this step, t “ 1, does not

satisfy the Armijo condition (3.1.1), then the step is contracted, so the final step

is less than one. On the other hand, if t “ 1 satisfies (3.1.1), then the line search

checks whether the Wolfe condition (3.1.2) is satisfied too. If it is, then the line

search quits; if not, the step is doubled and hence the line search next checks whether

t “ 2 satisfies (3.1.2). At the initial iteration pk “ 0q, several doublings might be

needed before (3.1.2) is eventually satisfied. But for subsequent steps (k ě 1), we

know that t “ 2 must satisfy the Wolfe condition, so the final step must satisfy

tk “ 2 (if t “ 2 satisfies (3.1.1)) or tk ă 2 (otherwise). Thus, for k ě 1 we always

have tk ď 2.

Now we can present the main result of this subsection: using a line search with the

property just described, the optimization method fails.

Theorem 3.2.10 If scaled memoryless BFGS is applied to (1.0.2), using an

Armijo-Wolfe line search that satisfies tk ď 2 for k ě 1, such as Algorithm 1

in §2.2 then the method fails in the sense that fpxNq is bounded below as N Ñ 8.

Proof: Recalling tk`1d
p1q
k`1 “ s

p1q
k`1 again, using (3.2.37) and tk`1 ď 2 we find that

|s
p1q
k`1| ď

a´ pn´ 1q|bk|

a
|s
p1q
k |. (3.2.41)

63

Let ε ą 0 satisfy

δε ”
a´ pn´ 1qb

a
`
ε

a
ă 1.

Define K as in Lemma 3.2.5, so that (3.2.13) holds, and hence

a´ pn´ 1q|bk|

a
ă δε.

Applying this inequality to (3.2.41) we get

|s
p1q
k`1| ď δε|s

p1q
k |, (3.2.42)

and since δε ă 1 we have

N´1
ÿ

k“K

|s
p1q
k | ă |s

p1q
K |

1

1´ δε
. (3.2.43)

By substituting this into (3.2.23) we get

fpxKq ´ fpxNq ă a|x
p1q
K | ` |s

p1q
K |
pn´ 1q b` ε

1´ δε
,

which shows fpxNq is bounded below.

Finally, we have the following corollary to Theorems 3.2.7 and 3.2.10. Recall that

γk is the scale factor (see (3.1.21)).

Corollary 3.2.11 If the assumptions required by either Theorem 3.2.7 or 3.2.10

hold, then

lim
NÑ8

γN “ 0 (3.2.44)

64

and xN converges to a non-optimal point x̄ such that

x̄ “ r0, x̄p2q, . . . , x̄pnqsT . (3.2.45)

Proof: It is immediate from (3.2.32) or (3.2.43) that |s
p1q
N | Ñ 0 as N Ñ 8, so

from (3.1.21), we conclude (3.2.44). Also due to (3.1.11) we have |x
p1q
N | Ñ 0, and

since fpxNq “ a|x
p1q
N | `

řn´1
i“2 x

piq
N is bounded below, so is

řn´1
i“2 x

piq
N . Due to (3.2.14)

and (3.1.26), we have d
piq
N´1 ă 0, for i “ 2, 3, . . . , n, so tN´1d

piq
N´1 “ x

piq
N ´ x

piq
N´1 ă 0,

and therefore x
piq
N is strictly decreasing as N Ñ 8. Hence, x

piq
N converges to a limit

x̄piq.

Due to the symmetry we discussed earlier, the total decrease along each compo-

nent, x
piq
0 ´ x̄piq “

řN
k“0 s

piq
k , is the same for i “ 2, 3, . . . , n.

Finally, note that it follows from Corollary 3.2.11 together with (3.1.20) that,

when the assumptions hold, the matrix HN converges to zero. In contrast, when

full BFGS is applied to the same problem, it is typically the case that a direction

is identified along which f is unbounded below within a few iterations, and that

at the final iterate, one eigenvalue of the inverse Hessian is much smaller than the

others, with its corresponding eigenvector close to the first coordinate vector, along

which f is nonsmooth.

3.3 Experiments

Our experiments were conducted using the BFGS / L-BFGS Matlab code in

hanso. This uses the Armijo-Wolfe bracketing line search given in Algorithm 1 in

§2.2. Consequently, according to the results of §3.2.3, scaled memoryless BFGS

65

(L-BFGS with m “ 1) should fail on function (1.0.2) when a satisfies Assumption 1:

2
?
n´ 1 ď a. This is illustrated in Figure 3.2, which shows an experiment where

we set a “ 3 and n “ 2 and ran scaled memoryless BFGS, the gradient method,

and full BFGS, starting from the same randomly generated initial point. We see

that scaled memoryless BFGS fails, in the sense that it converges to a non-optimal

point, while the gradient method succeeds, in the sense that it generates iterates

with fpxkq Ó ´8. In contrast to both, full BFGS succeeds in the sense that it finds

a direction along which f is unbounded below in just five iterations. These three

different outcomes respectively illustrate the three different ways that the hanso

code terminated in our experiments: (i) convergence to a non-optimal point, which

is detected when the steplength upper bound β in Algorithm 1 in §2.2 converges

to zero indicating that Armijo-Wolfe points exist, but the line search terminates

without finding one due to rounding errors; (ii) divergence of the fpxkq to ´8

although the line search always finds Armijo-Wolfe steplengths; and (iii) generation

of a direction along which f is apparently unbounded below, which is detected

when β in Algorithm 1 in §2.2 remains equal to its initial value of 8 while the lower

bound α is repeatedly doubled until a limit is exceeded.1 In the results reported

below for function (1.0.2), termination (i) is considered a failure while terminations

(ii) and (iii) are considered successes. We note that, provided
?
n´ 1 ď a, the

gradient method can never result in termination (iii), and whether it results in

termination (i) or (ii) depends on the Armijo parameter as was shown in Chapter 2.

In our experiments, L-BFGS, with or without scaling and with one or more updates,

always resulted in termination (i) or (iii), while full BFGS invariably resulted in

1Although in principle the code would alternatively terminate if a termination tolerance was
met or an upper bound on the number of iterations was exceeded, we set these so small and large
respectively that they virtually never caused termination.

66

-10 -8 -6 -4 -2 0 2 4 6 8 10

x(1)

-25

-20

-15

-10

-5

0

x
(2

)

f(x(1),x(2)) = 3|x(1)|+x(2), x
0
 = (8.28, 2.18), n =2, c

1
=0.05

BFGS

LBFGS-1

Gradient method

Figure 3.2: Full BFGS (green circles), scaled memoryless BFGS (red asterisks) and the gradient
method (blue squares) applied to the function (1.0.2) defined by a “ 3 and n “ 2. Scaled
memoryless BFGS fails while full BFGS and the gradient method succeed.

termination (iii) (as we know it must from the results in [Xie & Waechter, 2017]).

Although the proof of Theorem 3.2.1 does require Assumption 1 we observed

that
a

3pn´ 1q ď a suffices for t|bk|u and consequently |dk|{}dk}2 to converge.

In Figure 3.3 we repeat the same experiment with a “
?

3 and n “ 2, showing

that scaled memoryless BFGS still fails. In this case, as noted in Section 3.2,

the normalized direction is the same as the normalized direction generated by

the gradient method, but unlike in the gradient method, the magnitude of the

directions dk converge to zero so scaled memoryless BFGS fails.

However, if we set a to
?

3´ 0.001 the method succeeds. This is demonstrated

in Figure 3.4: observe that although one at first has the impression that xk is

converging to a non-optimal point, a search direction is generated on which f is

unbounded below “at the last minute”.

Extensive additional experiments verify that the condition
a

3pn´ 1q ď a, as

67

-10 -8 -6 -4 -2 0 2 4 6 8 10

x(1)

-35

-30

-25

-20

-15

-10

-5

0

x
(2

)

f(x(1),x(2)) = 1.732|x(1)|+x(2), x
0
 = (8.28, 2.18), n =2, c

1
=0.05

BFGS

LBFGS-1

Gradient method

Figure 3.3: Full BFGS (green circles), scaled memoryless BFGS (red asterisks) and the gradient
method (blue squares) applied to the function (1.0.2) defined by a “

?
3 and n “ 2. Scaled

memoryless BFGS fails while full BFGS and the gradient method succeed.

-10 -8 -6 -4 -2 0 2 4 6 8 10

x(1)

-35

-30

-25

-20

-15

-10

-5

0

x
(2

)

f(x(1),x(2)) = 1.731|x(1)|+x(2), x
0
 = (8.28, 2.18), n =2, c

1
=0.05

BFGS

LBFGS-1

Gradient method

Figure 3.4: Full BFGS (green circles), scaled memoryless BFGS (red asterisks) and the gradient
method (blue squares) applied to the function (1.0.2) defined by a “

?
3´ 0.001 and n “ 2. All

methods succeed.

68

9.318 9.32 9.322 9.324 9.326 9.328 9.33 9.332 9.334 9.336

a

0

0.5

1

F
a

ilu
re

 r
a
te

n=30, f(x) = a|x
(1)

|+
i=2

n
 x

(i)
, (3(n-1))

0.5
 = 9.327, c

1
=0.05, #runs = 5000

Scaling on

Scaling off

Figure 3.5: The failure rate of memoryless BFGS with scaling (magenta asterisks) and without
scaling (cyan squares) applied to function (1.0.2) with n “ 30 and 21 different values of a, initiating
the method from 5000 random points. With scaling, the failure rate is 1 for 9.327 ď a. Without
scaling, the failure rate is 0 regardless of a.

opposed to Assumption 1, is sufficient for failure, as illustrated by the magenta

asterisks in Figure 3.5. Starting from 5000 random points generated from the

normal distribution, we called scaled memoryless BFGS to minimize function (1.0.2)

with n “ 30 and for values of a ranging from 9.317 to 9.337, since for n “ 30,
a

3pn´ 1q « 9.327. We see that for 9.327 ď a the failure rate is 1 (100%), while for

9.32 ą a the failure rate is 0. In comparison to the similar experiment in Figure 2.4

in Chapter 2 for the gradient method, the transition from failure rate 0 to 1 is quite

sharp here. This might be explained by the fact that the gradient method fails

because the steplength tk Ñ 0, whereas for scaled memoryless BFGS, tk does not

converge to zero; it is the scale γk and consequently the norm of dk which converges

to zero. Hence, rounding error prevents the observation of a sharp transition in

the results for the gradient method, as explained in Chapter 2; by comparison,

rounding error plays a less significant role in the experiments reported here.

The cyan squares in Figure 3.5 show the results from the same experiment for

memoryless BFGS without scaling, i.e., with H0
k “ I instead of (1.0.1), using the

same 5000 initial points. In this case, the method is successful regardless of the

value of a.

Experiments suggest that the theoretical results we presented for scaled L-BFGS

69

with only one update might extend, although undoubtedly in a far more complicated

form, to any number of updates. In Figure 3.6 we show results of experiments

with a variety of choices of m and a, running scaled L-BFGS-m (L-BFGS with m

updates) initiated from 1000 randomly generated points for each pair pm, aq. The

horizontal axis shows m, the number of updates, while the vertical axis shows the

observed failure rate. We set the Armijo parameter c1 “ 0.01 and n “ 4, so that
a

3pn´ 1q “ 3, and show results for values of a ranging from 2.99 to 300. Figure

3.7 shows results from the same experiment except that c1 “ 0.001. The results

shown in Figure 3.8 use a different objective function; instead of (1.0.2), we define

fpxq “ a|bT1 x| ` b
T
2 x, where b1 and b2 were each chosen as a random vector in R10

and normalized to have length one. The Armijo parameter was set to c1 “ 0.01. In

all of Figures 3.6, 3.7 and 3.8 we observe that as a gets larger for a fixed m, the

failure rate increases. On the other hand, as m gets larger for a fixed a, the failure

rate decreases. Comparing Figures 3.6 and 3.7, we see that the results do not

demonstrate a significant dependence on the Armijo parameter c1; in particular, as

we established in Section 3.2.3, there is no dependence on c1 when m “ 1 because

we are using the line search in Algorithm 1 in §2.2. However, we do observe small

differences for the larger values of m, where the failure rate is slightly higher for the

larger Armijo parameter. This is consistent with the theoretical results in §3.2.2 as

well as those in Chapter 2 where, if a is relatively large, then to avoid failure c1

should not be too large.

70

m

1 2 3 4 5 6 7 8 9 10

F
a
il
u
re

 r
a
te

0

0.2

0.4

0.6

0.8

1

n=4, f(x) = a|x
(1)

|+ Σ
i=2

n
 x

(i)
, c

1
=0.01, #runs = 1000

a = 2.99

a = 3

a = 10

a = 30

a = 100

a = 300

Figure 3.6: The failure rate for each scaled L-BFGS-m, where the number of updates m ranges
from 1 to 10, applied to function (1.0.2) with a “ 2.99 (blue pluses), a “ 3 (orange circles),
a “ 10 (yellow asterisks), a “ 30 (purple crosses), a “ 100 (green triangles) and finally a “ 300
(cyan diamonds), with c1 “ 0.01 and n “ 4 and hence

a

3pn´ 1q “ 3, and with each experiment
initiated from 1000 random points.

m

1 2 3 4 5 6 7 8 9 10

F
a

il
u

re
 r

a
te

0

0.2

0.4

0.6

0.8

1

n=4, f(x) = a|x
(1)

|+ Σ
i=2

n
 x

(i)
, c

1
=0.001, #runs = 1000

a = 2.99

a = 3

a = 10

a = 30

a = 100

a = 300

Figure 3.7: The same experiment as in Figure 3.6 except that c1 “ 0.001.

m

1 2 3 4 5 6 7 8 9 10

F
a

il
u
re

 r
a

te

0

0.2

0.4

0.6

0.8

1

n=10, f(x) = a|b
1

T
x|+ b

2

T
x, c

1
=0.01, #runs = 1000

a = 3

a = 10

a = 30

a = 100

Figure 3.8: The same experiment as in Figure 3.6 except that fpxq “ a|bT1 x| ` bT2 x where
b1, b2 P R10 were chosen randomly.

3.4 Concluding Remarks

We have given the first analysis of a variant of L-BFGS applied to a nonsmooth

function, showing that the scaled version of memoryless BFGS (L-BFGS with

just one update) applied to (1.0.2) generates iterates converging to a non-optimal

71

point under simple conditions. One of these conditions applies to the method with

any Armijo-Wolfe line search and depends on the Armijo parameter. The other

condition applies to the method using a standard Armijo-Wolfe bracketing line

search and does not depend on the Armijo parameter. Experiments suggest that

extended results likely hold for L-BFGS with more than one update, though clearly

a generalized analysis would be much more complicated.

We do not know whether L-BFGS without scaling applied to the same function

can converge to a non-optimal point, but numerical experiments suggest that

this cannot happen. Furthermore, we observed that L-BFGS without scaling

obtains significantly more accurate solutions than L-BFGS with scaling when

applied to a more general piecewise linear function that is bounded below. In

the next chapter, we further investigate whether scaling is generally inadvisable

when applying L-BFGS to nonsmooth functions, despite its apparent advantage for

smooth optimization.

72

Chapter 4

Experiments

In this chapter we present extensive numerical experiments investigating the behav-

ior of L-BFGS on a variety of convex nonsmooth optimization problems, as well as

some experiments on smooth approximations to nonsmooth problems. L-BFGS is

applicable to nonconvex problems, too, but we decided to restrict our investigation

to convex functions.

The functions to be minimized in this chapter are all bounded below. Con-

sequently, terminations of kind (ii) and (iii) discussed in § 3.3 are not possible,

and the only possible terminations are: (a) convergence to some point, possibly

optimal, which is detected when the steplength upper bound β in Algorithm 1

in § 2.2 converges to zero indicating that Armijo-Wolfe points exist, but the line

search terminates without finding one due to rounding errors: this termination is

called type (i) in Chapter 3; (b) a limit on the number of iterations (or the number

of function evaluations) is exceeded (not relevant in Chapter 3 as the limit was set

so large that it was never active, but relevant in this chapter) and (c) a termination

tolerance was met (not relevant in either Chapter 3 or here because this was set so

73

small that it was never active). In this chapter, if termination (a) occurs far from

an optimal solution, we sometimes refer to this as “break-down”.

We emphasize that in these experiments we follow the same philosophy used

throughout this thesis: in the presence of floating point arithmetic, it does not

make sense to try to determine whether, at a given point x, the function f being

minimized is actually differentiable at x. Convex functions (and indeed all locally

Lipschitz functions) are differentiable almost everywhere, though frequently not at

optimal solutions, and since none of the methods being tested are biased towards

generating points where f is actually nonsmooth, except in the limit, computing

gradients without first checking for differentiability makes sense. Indeed, it is the

huge variation in gradients near points where a function is nonsmooth that provides

BFGS with the information it needs to effectively minimize nonsmooth functions:

see [Lewis & Overton, 2013] for further discussion of this point. Note also that

this means, as noted already in § 2.5, that our implementation of the subgradient

method is equivalent to a gradient method with predetermined stepsizes.

4.1 Piecewise-Linear Functions

We first consider piecewise linear functions. In §4.1.1 we consider randomly gener-

ated problems, while in §4.1.2 we consider a class of highly ill-conditioned nonsmooth

problems devised by Nesterov.

74

4.1.1 Randomly Generated Problems

Consider the following max function

fpxq “ max
i“1,...p

tbTi x´ riu, (4.1.1)

where x P Rn and b1, ..., bp are uniformly randomly generated vectors in Rn and

r1, ..., rp are random scalars. These quantities were fixed for the experiment reported

here but similar results were obtained for other choices. Note that, under the tacit

assumption that f is differentiable at x just discussed, i.e., that the index j attaining

the maximum value of bTi x ´ ri is unique, we have ∇fpxq “ bj. We set n “ 10

and p “ 50, obtaining a problem that, unlike those studied in previous chapters, is

bounded below. For the experiments in this subsection, the iteration limit was set

large enough (5000) that the only form of termination was type (a): convergence to

some point, possibly optimal, which is detected when the steplength upper bound

β in Algorithm 1 in § 2.2 converges to zero indicating that Armijo-Wolfe points

exist, but the line search terminates without finding one due to rounding errors.

Consequently, we evaluated how successful the runs were by comparing the final

function value to the optimal value f˚ that we obtained via linear programming

using mosek1 with the tolerance set to 10´14. Figure 4.1 shows the median

accuracy obtained by L-BFGS-m, for m “ 1, . . . , 10, with and without scaling, over

5000 random starting points independently generated from the standard normal

distribution. L-BFGS with scaling does not achieve a median accuracy better than

10´2, even when m “ 10. Without scaling, the accuracy of the results improves

substantially, to a median accuracy of about 10´9 with m “ 9. Strangely, for this

1https://www.mosek.com/

75

1 2 3 4 5 6 7 8 9 10

m

10
-10

10
-5

10
0

M
e
d

ia
n
(f

B
 -

 f
*)

n=10, p= 50, f(x) = max
i=1,..,p

b
i
Tx+ r

i
, c

1
=0.01, #runs = 5000

Scaling on

Scaling off

Figure 4.1: Median accuracy of the solution fB found by L-BFGS-m with m “ 1, . . . , 10 for the
piecewise linear function defined in (4.1.1), with n “ 10 and p “ 50, compared with the value f˚
obtained from the linear optimizer in mosek using high accuracy. Scaled L-BFGS-m does not
obtain accurate solutions even with m “ 10. In contrast, with scaling off, L-BFGS-9 obtains a
median accuracy of about 10´9.

problem, and many different instances of it that we tried, L-BFGS-10 performs

worse than L-BFGS-9. The median accuracy of the solution found by full BFGS

(with or without scaling the initial inverse Hessian approximation) is significantly

better: about 10´14.

4.1.2 An Ill-conditioned Problem from Nesterov

In this section, we revisit Nesterov’s ill-conditioned Les-Houches problem that we

introduced in § 2.5. In that section, our focus was on the behavior of the gradient

method with different choices of the Armijo parameter, but we also included a

comparison of the L-BFGS-5 and L-BFGS-10 methods with scaling, as well as the

full BFGS method and the subgradient method with prescribed steplength tk “ 1{k.

There, Figure 2.6 showed results for all these methods on the Les-Houches problem

with n “ 100, displaying all function values that were computed, including those

generated in the line search. Here, in Figure 4.2, we show results for L-BFGS-

1 (memoryless BFGS), with and without scaling, as well as full BFGS and the

subgradient method with tk “ 1{k, for the Les-Houches problem with n “ 500.

Again, we display all the function values that were computed. We put a limit of

76

10,000 function evaluations for each method. The starting point x0 (used by all the

methods) was drawn randomly from the ball of radius 0.1 centered at the vector of

all ones, using the normal distribution.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f

Nonsmooth Nesterov Les Houches Function, n= 500

Full BFGS

No-LBFGS-1

Subgradient Method

Sc-LBFGS-1

Figure 4.2: Comparing BFGS, L-BFGS-1 with scaling on and off and the subgradient method
on the ill-conditioned Les-Houches problem (2.5.1) with n “ 500.

We see from Figure 4.2 that scaled L-BFGS-1 (magenta dots) breaks down,

with failure in the line search (termination (a)) after fewer than 2000 function

evaluations. In contrast, unscaled L-BFGS-1 (cyan) runs for the full 10,000 function

evaluations. However its scattered plot indicates that the method performs many

function evaluations per iteration (in the line search), indicating that, perhaps not

surprisingly given its name, the search directions it generates are not well scaled.

Despite this, the method obtains a somewhat lower answer than the subgradient

method (dark blue). Full BFGS (black) performs much better than any of the

other methods, reducing the function value to about 10´5 (recall that the optimal

value is zero). It is interesting to note that its convergence rate picks up rapidly

right after it has lowered the function value down to 1. We do not know the reason

for this.

77

We now increase the number of updates m from 1 to 20 and repeat this

experiment: see the top plot in Figure 4.3. Unlike scaled L-BFGS-1, scaled L-

BFGS-20 does not quit early, and furthermore it also demonstrates a suddenly

faster convergence rate toward the end of the experiment similar to that of full

BFGS (although the final answer it obtains is not nearly as accurate as full BFGS).

It obtains a function value of size 0.47, whereas unscaled L-BFGS-20 gets a final

answer of about 0.998 and the subgradient method obtains 1.083. This experiment

shows that increasing the number of updates enhanced the performance of scaled

L-BFGS far more than it did for unscaled L-BFGS.

The middle panel of Figure 4.3 shows the same plot as in the top panel, except

in log scale, making it easier to see how the fast phase of scaled L-BFGS compares

to that of full BFGS.

The bottom panel is a zoomed-in view of the middle plot, focused at the

point where scaled L-BFGS is transitioning to its fast convergence phase. What

seems interesting is that before this point, scaled L-BFGS behaved similarly to

the subgradient method, performing almost exactly one function evaluation per

iteration, and hence, using a stepsize of one (see the Armijo-Wolfe bracketing

line-search Algorithm 1 in § 2.2). Eventually, a stepsize of one no longer satisfies

the Armijo-Wolfe conditions and therefore the line search requires multiple function

evaluations before it finds a satisfactory step. In general, in its fast phase, scaled

L-BFGS-20 performs more than one function evaluation per iteration, although

not as many as full BFGS does.

The conclusion from both experiments is that with a small m, unscaled L-BFGS-

m performs better and with a larger m it is the scaled variant which performs

better. However, neither method performs nearly as well as full BFGS.

78

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f

Nonsmooth Nesterov Les Houches Function, n= 500

Full BFGS

No-LBFGS-20

Subgradient Method

Sc-LBFGS-20

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10
-4

10
-3

10
-2

10
-1

10
0

f

Full BFGS

No-LBFGS-20

Subgradient Method

Sc-LBFGS-20

9580 9600 9620 9640 9660 9680 9700 9720 9740

Total function evaluations

0.6

0.7

0.8

0.9

1

1.1

1.2

f

Full BFGS

No-LBFGS-20

Subgradient Method

Sc-LBFGS-20

Figure 4.3: Top: Comparing BFGS, L-BFGS-20 with scaling on and off and the subgradient
method on the ill-conditioned Les-Houches problem given in (2.5.1) with n “ 500. Middle: The
same plot as in the top except in semi-log-y scale. Bottom: The same plot as in the middle,
when zoomed-in around the point where scaled L-BFGS transitions to a faster convergence rate.

79

4.1.3 Smoothed Versions of Nesterov’s Ill-conditioned Prob-

lem

We revisit function (2.5.1). Suppose A P Rnˆn with

A “

»

—

—

—

—

—

—

—

–

1 0 0 . . . 0

´2 1 0 . . . 0

...
...

...
...

...

0 . . . 0 ´2 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let y “ Ax. Then, (2.5.1) is equivalent to the following vector-max function

g : Rn Ñ R

gpyq “ max
i
tyi ,´yiu for i “ 1, 2, ..., n, (4.1.2)

that is

fpxq “ gpAxq. (4.1.3)

Consider the Nesterov smoothing [Nesterov, 2005] of the vector-max problem

(4.1.2):

gµpyq “ µ log
n
ÿ

i“1

`

eyi{µ ` e´yi{µ
˘

´ µ logp2nq. (4.1.4)

Without the constant term ´µ logp2nq, this function is also known as the softmax

function [Boyd & Vandenberghe, 2004]. The unique minimizer of gµpyq is y˚µ “ 0

with g˚µ “ 0. Since A is full-rank (although one of its singular values converges to

zero as nÑ 8), via (4.1.3) we know that the unique minimizer of fµpxq, x
˚
µ, is also

0 and with the same optimal value f˚µ “ 0.

To see how the conditioning of (4.1.4) is dependent on µ we derive its gradient

and Hessian. For brevity let s be the sum inside the log in (4.1.4), i.e., s “

80

řn
i“1

`

eyi{µ`e´yi{µ
˘

. Let σ and σ̄ respectively be the vectors with elements σi “
eyi{µ

s

and σ̄i “
e´yi{µ

s
. The partial derivative of (4.1.4) w.r.t. y is

Bgµ
Byi

“
eyi{µ ´ e´yi{µ

s
“ σi ´ σ̄i.

So we have ∇ygµ “ σ ´ σ̄. Note that at y “ 0, we get σ “ σ̄, so ∇gµp0q “ 0. The

second derivative ∇2
ygµ is

∇2
ygµ “

1

µ

´

Diag pσ ` σ̄q ´ pσ ´ σ̄qpσ ´ σ̄qT
¯

. (4.1.5)

Since pσ ´ σ̄qpσ ´ σ̄qT is a rank-one positive semidefinite matrix we have

∇2
ygµ ď

1

µ
Diag pσ ` σ̄q . (4.1.6)

At y “ 0, this inequality holds with equality. In fact, it is not hard to see that at

y “ 0, since s “ 2n we have ∇2
ygµp0q “

1

nµ
I.

The diagonal of the matrix in the right hand side in (4.1.6) sums up to one:
řn
i“1pσi ` σ̄iq “ 1, so its largest eigenvalue is at most one, i.e.,

}∇2
ygµ} ď

1

µ
. (4.1.7)

Turning to the variation of fµ w.r.t. the original variable x, the gradient is

∇xfµ “ AT∇ygµ, and the Hessian is

∇2
xfµ “ AT∇2

ygµA, (4.1.8)

81

so applying (4.1.7) to the right hand side we get

}∇2
xfµ} ď

1

µ
}A}2.

Hence, the Lipschitz constant of the gradient ∇xfµ is L “
1

µ
}A}2. From applying

the triangle inequality to }A} we know that }A} ď 3, so we get L ď
9

µ
. Note that

although the bound on the norm of the Hessian is unbounded as µÑ 0, the norm

is only large near points where the original function f is nonsmooth. For example,

let x0 be the same randomly generated starting point that was used in the previous

subsection § 4.1.2.

We find that the norm of ∇2
xfµpx0q decays exponentially as µ Ñ 0, with

}∇2fµpx0q} « 10´7 even for µ “ 10´2. This phenomenon should not be surprising.

For example, very ill-conditioned smooth approximations to the absolute value

function have a large second derivative at zero but a nearly zero second derivative

everywhere else.

If we follow the standard approach [Boyd & Vandenberghe, 2004, Sec 9.1] to

defining the condition number of the strongly convex function fµ as

κpfµq “
´

max
xPS

}∇2fµpxq}
¯´

max
xPS

}p∇2fµpxqq
´1
}

¯

(4.1.9)

where S “ tx : fpxq ď fpx0qu, then we find

κpfµq "
1

µ

as µÑ 0 since the first factor in (4.1.9) is at least }∇2fµp0q} “ }A}
2{µ, while the

second factor is enormous as all eigenvalues of ∇2fµpx0q are tiny for µ ď 10´2.

82

We now report on experiments we conducted applying full BFGS and L-BFGS,

with and without scaling, to the smoothed function (4.1.4), with n “ 500 as before.

We did not include the subgradient method in the comparison. The top panel of

Figure 4.4 shows the final function value computed by full BFGS and L-BFGS-1

with and without scaling as a function of the smoothing parameter µ using a log-log

scale. Let us focus first on the results for full BFGS (black circles).

BFGS always finds a solution with magnitude smaller than 10´15, even for a

very small µ, when the function is extremely ill conditioned. This is a remarkable

property of full BFGS: its accuracy does not deteriorate significantly2 as the

condition number κpfµq of the smoothed problem blows up with µ Ñ 0. In fact,

when µ is sufficiently small, say µ “ 10´16 (which is approximately the rounding

unit in IEEE double precision used by matlab).

The smoothed problem is precisely equivalent to the original nonsmooth problem

when rounding errors are taken into account, so the top panel shows the remarkable

transition of the accuracy of full BFGS from smoothed variants of the problem to

the limiting nonsmooth problem. The bottom panel shows the number of iterations

that were required, again as a function of the smoothing parameter µ and again

using a log-log scale. The maximum number of iterations (not function evaluations)

was set to 104 for each µ. Remarkably, we see that the number of iterations required

for full BFGS to accurately minimize fµ does not significantly increase as µÑ 0,

even though the condition number κpfµq blows up as µ decreases to zero, and the

number required for the effectively nonsmooth instance µ “ 10´16 is not much more

than the number required for much better conditioned smoothed problems arising

2Surprisingly, the accuracy increases somewhat as µ decreases, but this is at the level of
rounding errors and could perhaps be explained by a rounding error analysis. Certainly the
scatter at the bottom left corner of the plot is a consequence of rounding error.

83

from moderate values of µ.

The results for L-BFGS-1 are very different. Unscaled L-BFGS-1 (cyan squares)

finds an accurate answer for µ ě 10´3, but the number of iterations required

increases rapidly as µ is decreased so the maximum number allowed is reached

for µ ranging from 10´4 to 10´9. However, starting with µ “ 10´10, unscaled

L-BFGS-1 breaks down before reaching the maximum number of iterations allowed.

The behavior of scaled L-BFGS-1 (magenta asterisks) is similar except that it

breaks down only for µ “ 10´16. Note that in this subsection, since we limit the

number of iterations, not the number of function evaluations, the performance of

unscaled L-BFGS-1 looks better than it really is: the scaled version is computing

substantially fewer function evaluations per line search.

When we increase the number of updates to m “ 20, scaled L-BFGS reacts much

better than unscaled L-BFGS; see the top panel in Figure 4.5. Unscaled L-BFGS-20

finds accurate answers for µ ě 10´4 before hitting the iteration limit, while the

scaled version does so for µ ě 10´5. Furthermore, when the maximum iteration

limit is reached, scaled L-BFGS-20 achieves an answer of magnitude « 10´2,

whereas unscaled L-BFGS-20 is still giving an answer of magnitude « 100, similar

to unscaled L-BFGS-1. But overall, both are still doing poorly compared to full

BFGS.

84

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

f

Smoothed Nesterov Les Houches Function, n=500

BFGS

L-BFGS-1-scale

L-BFGS-1-noscale

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
1

10
2

10
3

10
4

it
e
ra

ti
o
n
s
 n

e
e
d
e
d

BFGS

L-BFGS-1-scale

L-BFGS-1-noscale

Figure 4.4: Comparing BFGS and L-BFGS-1 with scaling on and off on the smoothed Nesterov-
Les-Houches (4.1.4) for n “ 500. The top panel shows the final function value and the bottom
panel shows the iteration count, both as a function of the smoothing parameter µ. The maximum
number of iterations is set to 104.

85

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

f

Smoothed Nesterov Les Houches Function, n=500

BFGS

L-BFGS-20-scale

L-BFGS-20-noscale

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
1

10
2

10
3

10
4

it
e
ra

ti
o
n
s
 n

e
e
d
e
d

BFGS

L-BFGS-20-scale

L-BFGS-20-noscale

Figure 4.5: Comparing BFGS and L-BFGS-20 with scaling on and off on the smoothed Nesterov-
Les-Houches problem (4.1.4) for n “ 500. The top panel shows the final function value and the
bottom panel shows the iteration count, both as a function of the smoothing parameter µ. The
maximum number of iterations is set to 104.

86

Finally, we performed experiments for a much smaller variant of the problem,

with n “ 5, and with the maximum iteration limit set to 106, so we could see how

well L-BFGS-1 performs when it terminates without reaching the iteration limit.

Scaled L-BFGS-1 now performs remarkably well, finding a good approximation

to the optimal solution for µ ě 10´14, with the required number of iterations

increasing log-linearly as µ is decreased. Interestingly though, and in contrast to

full BFGS, it breaks down in the nonsmooth limit. On the other hand, unscaled

L-BFGS-1 performs poorly, finding an accurate solution only for µ ě 10´7.

Our conclusions from this subsection are consistent with the generally accepted

wisdom concerning L-BFGS. For smooth problems, even very ill-conditioned ones,

it is best to use the scaled version of L-BFGS, and choosing the number of updates

m to be larger rather than smaller gives better performance, although, in contrast

to full BFGS, the number of iterations required increases significantly with the

conditioning of the problem. Again in contrast with full BFGS, when the ill-

conditioning increases to the nonsmooth limit implicit in consideration of rounding

errors, scaled L-BFGS generally fails to converge to an optimal solution. For

the smooth but ill-conditioned problems considered in this subsection, unlike the

nonsmooth problems considered in Chapter 3 and in Figures 4.1 and 4.2 in the

current chapter, unscaled L-BFGS offers no advantage compared to scaled L-BFGS.

The most important conclusion is that, while applying full BFGS directly to

nonsmooth problems works remarkably well, this is not the case for L-BFGS; at

least for the Les-Houches problem, it is far preferable to apply scaled L-BFGS to a

smoothed approximation to the nonsmooth problem.

87

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
-35

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

f

Smoothed Nesterov Les Houches Function, n=5

BFGS

L-BFGS-1-scale

L-BFGS-1-noscale

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
1

10
2

10
3

10
4

10
5

it
e
ra

ti
o
n
s
 n

e
e
d
e
d

BFGS

L-BFGS-1-scale

L-BFGS-1-noscale

Figure 4.6: Comparing BFGS and L-BFGS-1 with scaling on and off on the smoothed Nesterov-
Les-Houches problem (4.1.4) for n “ 5. The top panel shows the final function value and
the bottom panel shows the iteration count, both as a function of the smoothing parameter µ.
Maximum number of iterations is set to 106.

88

4.2 Eigenvalue Optimization and Semidefinite

Programming

In this section we consider two closely related problems: eigenvalue optimization

and semidefinite programming. We begin with the first.

4.2.1 Max Eigenvalue Problem

Let SN denote the space of N ˆN real symmetric matrices and let A : SN Ñ Rn

denote a linear operator acting on X as follows:

AX “

»

—

—

—

—

–

xA1, Xy

...

xAn, Xy

fi

ffi

ffi

ffi

ffi

fl

, (4.2.1)

with Ai P S
N for i “ 1., . . . , n. Its adjoint operator; AT : Rn Ñ SN , is defined by

ATy “
n
ÿ

i“1

yiAi. (4.2.2)

The Max Eigenvalue problem is to minimize the function

fpyq “ λmaxpC ´ATyq, (4.2.3)

where C P SN and λmax : SN Ñ R denotes largest eigenvalue of its argument. It

is well known that λmax is a convex function on SN . Early papers on Eigenvalue

Optimization include [Overton, 1988].

89

Assuming the maximum eigenvalue of C ´ATy is simple, the gradient of f is

∇fpyq “ ´ApqqT q “ ´rqTA1q, ¨ ¨ ¨ , q
TAnqs

T ,

where q is a normalized eigenvector corresponding to λmaxpC ´ATyq. As earlier in

the thesis, our philosophy in implementing algorithms for nonsmooth optimization

is not to attempt to determine whether f is differentiable at a given point, which is

essentially impossible in the presence of rounding errors, as already explained in the

beginning of Chapter 4, so we will tacitly assume that f is differentiable at algorithm

iterates. However, at optimal solutions, we generally expect that C ´ATy has a

multiple largest eigenvalue and hence f is not differentiable. As is well known, eigen-

value optimization problems are instances of semidefinite programs, and hence small

problems can be solved using CVX [Grant & Boyd, 2014],[Grant & Boyd, 2008].

Using the standard normal distribution, we generated a random instance of

this problem, defining A and C with N “ 50 and n “ 49. Figure 4.7 shows the

performance of full BFGS, L-BFGS-1 with and without scaling, and the subgradient

method (as before with tk “ 1{k) for minimizing (4.2.3). All methods are terminated

after 104 function evaluations. Each function evaluation fpyq requires a call to the

matlab function eig to compute all the eigenvalues of C ´ATy.

90

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

(f
 -

 f
*)

/f
*

Max Eigenvalue Problem, N=50, n=49

Full BFGS

No-LBFGS-1

Subgradient Method

Sc-LBFGS-1

Figure 4.7: Comparing BFGS, L-BFGS-1 with scaling on and off and the subgradient method
on a randomly generated Max Eigenvalue problem (4.2.3) with N “ 50 and n “ 49. All of the
methods are terminated after 104 function evaluations.

The vertical axis shows the final value of the relative error |pf ´ f˚q{f˚|, where

we used the SDPT3 solver in CVX to obtain the optimal solution f˚ with accuracy

10´14. As in the experiment on the nonsmooth Les-Houches problem reported in

Figure 4.2, scaled L-BFGS-1 (magenta dots) breaks down early. Unlike in that

experiment, however, here unscaled L-BFGS-1 (cyan dots) also breaks down early,

and as a result the subgradient method (green dots) obtains a better answer, though

not nearly as good as full BFGS (black dots).

It’s also of interest to examine the multiplicity of the eigenvalues of C ´ATy

at the optimal solution y˚ and its computed approximations. From SDPT3, we

know that the optimal multiplicity for this problem is 5. Table 4.1 shows the top 6

eigenvalues of the final answer found by each method. Besides SDPT3, only BFGS

and the subgradient method are able to determine the correct optimal multiplicity.

BFGS finds a solution with 11 correct digits and the subgradient method one with

3 correct digits. Both variants of L-BFGS-1 converge to answers with multiplicity

91

4. Although the multiplicity is wrong, the unscaled L-BFGS-1 gets a better answer

than its scaled counterpart, with 2 correct digits, albeit in more CPU time.

SDPT3 BFGS Sc L-BFGS-1 No L-BFGS-1 subgradient

7.82702970305352 7.82702970306035 8.08455876518360 7.85155000878711 7.82953885641783

7.82702970305349 7.82702970306035 8.08455876518359 7.85155000044960 7.82746561454846

7.82702970305348 7.82702970306034 8.08197715145863 7.85154996050940 7.82673229360627

7.82702970305346 7.82702970306031 8.05541534062475 7.85141043900471 7.82472408900949

7.82702970305334 7.82702970306017 7.84362627205676 7.69075549655739 7.82286893229481

7.70350538019538 7.70350432059448 7.56258926523925 7.48734455288558 7.70188538367848

Table 4.1: Top 6 eigenvalues of C´AT y for Max Eigenvalue problem (4.2.3) where y is computed
by SDPT3, full BFGS, scaled/unscaled L-BFGS-1 and the subgradient method for a randomly
generated problem with N “ 50 and n “ 49. The optimal multiplicity is 5. The maximum
number of function evaluations is set to 104.

Next, we repeat this experiment on the same problem, increasing the number of

L-BFGS updates from m “ 1 to m “ 20. See Figure 4.8 as well as Table 4.2 which

presents the top 6 eigenvalues for the final answer obtained by scaled and unscaled

L-BFGS-20. Both methods find the right multiplicity, with scaled L-BFGS-20

obtaining 3 correct digits and unscaled L-BFGS-20 obtaining 4 correct digits.

92

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

(f
 -

 f
*)

/f
*

Max Eigenvalue Problem, N=50, n=49

Full BFGS

No-LBFGS-20

Subgradient Method

Sc-LBFGS-20

Figure 4.8: Comparing BFGS, L-BFGS-20 with scaling on and off and subgradient method
on a randomly generated Max Eigenvalue problem (4.2.3) with N “ 50 and n “ 49. All of the
methods are terminated after 104 function evaluations.

Sc L-BFGS-20 No L-BFGS-20

7.82959659952176 7.82735384547039

7.82959659952176 7.82735380191247

7.82959659952174 7.82735377961470

7.82959659952166 7.82735377236995

7.82959659950328 7.82735372682267

7.62982269438813 7.69181664817458

Table 4.2: Top 6 eigenvalues of C´AT y for Max Eigenvalue problem (4.2.3) where y is computed
by scaled and unscaled L-BFGS-20 for the same problem reported in Table 4.1. The optimal
multiplicity is 5.

In summary, we observe that for the Max Eigenvalue problem, unlike the Les-

Houches problem, increasing m from 1 to 20 does not result in scaled L-BFGS

doing better than unscaled L-BFGS.

93

4.2.2 Smoothed Max Eigenvalue Problem

Consider now Nesterov smoothing of the Max Eigenvalue problem (4.2.3), taken

from [Vandenberghe, 2019]:

fµpyq “ µ log
N
ÿ

i“1

exppλipC ´ATyq{µq ´ µ logN, (4.2.4)

where λ1pW q ě λ2pW q ě . . . ě λNpW q denote the ordered eigenvalues of a

symmetric matrix W P SN . Thus, λ1 is equivalent to λmax. Unlike the Les-Houches

problem, where the nonsmooth optimal value is equal to the smoothed optimal

value, that is f˚ “ f˚µ “ 0, for any µ as µÑ 0, the same statement is not true for

the Max Eigenvalue problem in general. The Smoothed Max Eigenvalue problem

requires a complete eigendecomposition in order to get every eigenvalue for the

given matrix, and since CVX does not allow such functions but only those that

it knows to be convex such as the maximum eigenvalue function, we could not

compute the optimal value f˚µ from CVX. Instead, we use full BFGS with the max

number of iterations set to a large number (105 in the following experiments) to

minimize (4.2.4) to high accuracy: we denote this computed value by fBµ .

In Figure 4.9 we report on an experiment using the smoothed version of the same

instance of the randomly generated Max Eigenvalue problem as in the previous

part with n “ 49 and N “ 50, using L-BFGS-1 to minimize (4.2.4). The top panel

shows the final value computed by scaled (magenta asterisks) and unscaled (cyan

squares) L-BFGS-1 shifted by fBµ (the answer found by full BFGS), as a function of

the smoothing parameter µ, in log-log scale. The bottom panel shows the number

of iterations as a function of µ, also in log-log scale. The maximum number of

iterations is 105.

94

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

smoothing parameter mu

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

f
-f

B

Smoothed Max Eigenvalue Function, n=49, N=50, maxit = 100000

L-BFGS-1-scale

L-BFGS-1-noscale

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

smoothing parameter mu

10
2

10
3

10
4

10
5

it
e

ra
ti
o

n
s
 n

e
e

d
e

d

Smoothed Max Eigenvalue Function, n=49, N=50, maxit = 100000

BFGS

L-BFGS-1-scale

L-BFGS-1-noscale

Figure 4.9: Comparing L-BFGS-1 with scaling on and off on the smoothed Max Eigenvalue
problem (4.2.4) for N “ 50 and n “ 49. The top panel shows the final function value, shifted by
fBµ , the optimal value computed by BFGS, and the bottom panel shows the iteration count, both
as a function of the smoothing parameter µ. The maximum number of iterations is set to 105.

95

In the top panel we see that for µ “ 1 down to µ “ 10´4 both methods yield

about the same accuracy as each other, but that this deteriorates as µ decreases.

Scaled L-BFGS-1 continues to obtain a reasonable approximation to the presumed

accurate solution fBµ for µ down to 10´9, although this accuracy continues to

decrease as µ is reduced. Looking at the bottom panel, we see that starting with

µ “ 10´10 scaled L-BFGS-1 hits the maximum iteration limit and starting with

10´12 it breaks down before reaching the maximum iteration limit. In contrast,

unscaled L-BFGS-1 hits the maximum iteration limit for µ “ 10´5 and breaks

down for µ ď 10´8.

Table 4.3 shows the top 6 eigenvalues of the final answer found by BGFS and

L-BFGS-1 for the smoothed Max Eigenvalue problem with µ “ 10´7. We also

repeat the optimal top 6 eigenvalues of the solution to the original nonsmooth

function f found by SDPT3 for the sake of comparison. Note that the result

computed by applying scaled L-BFGS-1 to the smoothed problem agrees with the

nonsmooth optimal value f˚ to 8 digits, compared to 0 digits when applied directly

to the nonsmooth problem (Table 4.1).

SDPT3 BFGS Sc L-BFGS-1 No L-BFGS-1

7.82702970305352 7.82702976093363 7.82702978971152 7.82703432112405

7.82702970305349 7.82702968960443 7.82702971836333 7.82703424950540

7.82702970305348 7.82702966768912 7.82702969644540 7.82703422776180

7.82702970305346 7.82702963829977 7.82702966707913 7.82703419808905

7.82702970305334 7.82702954704101 7.82702957585856 7.82703410710019

7.70350538019538 7.70350539089203 7.70374015675041 7.69886385782543

Table 4.3: Top 6 eigenvalues of C ´ AT y for Max Eigenvalue problem where y is computed
by applying BFGS, scaled L-BFGS-1 and unscaled L-BFGS-1 to fµ with µ “ 10´7, for the
same instance of the randomly generated Max Eigenvalue problem as in Table 4.1. The optimal
multiplicity is 5. The first column gives the top 6 eigenvalues of the solution to the original
nonsmooth problem.

96

We repeat this experiment with m “ 20, reported in Figure 4.10, and as one

would hope, we observe that the slope of the magenta line in the top panel in Figure

4.9 decreases, indicating that the loss of accuracy in L-BFGS as a function of µ is

less pronounced with 20 updates. Roughly speaking, overall the error decreases

by a factor of 10´2. In the bottom panel we see that neither scaled nor unscaled

L-BFGS-20 reaches the maximum iteration limit, but that both methods break

down for sufficiently small µ. The top eigenvalues produced by L-BFGS-20 for

µ “ 10´7 are shown in Table 4.4: compared with those obtained by L-BFGS-1,

they agree slightly more closely with those found by full BFGS (see Figure 4.3).

In summary, as with the Les Houches problem, it is much more effective to apply

L-BFGS to the smoothed max eigenvalue problem than directly to the nonsmooth

problem. As earlier, this is in sharp contrast to the behavior of full BFGS.

97

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

smoothing parameter mu

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

f
-f

B

Smoothed Max Eigenvalue Function, n=49, N=50, maxit = 100000

L-BFGS-20-scale

L-BFGS-20-noscale

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

smoothing parameter mu

10
2

10
3

10
4

10
5

it
e

ra
ti
o

n
s
 n

e
e

d
e

d

Smoothed Max Eigenvalue Function, n=49, N=50, maxit = 100000

BFGS

L-BFGS-20-scale

L-BFGS-20-noscale

Figure 4.10: Comparing L-BFGS-20 with scaling on and off on the smoothed Max Eigenvalue
problem (4.2.4) for N “ 50 and n “ 49. The top panel shows the final function value, shifted by
fBµ , the optimal value computed by BFGS, and the bottom panel shows the iteration count, both
as a function of the smoothing parameter µ. The maximum number of iterations is set to 105.

98

Sc L-BFGS-20 No L-BFGS-20

7.82702976201688 7.82702976326908

7.82702969067290 7.82702969273000

7.82702966877706 7.82702966880138

7.82702963938214 7.82702964120678

7.82702954813253 7.82702954355970

7.70348252862186 7.70344821498698

Table 4.4: Top 6 eigenvalues of C ´ AT y for Max Eigenvalue problem where y is computed
by applying BFGS, scaled L-BFGS-20 and unscaled L-BFGS-20 to fµ with µ “ 10´7, for the
same instance of the randomly generated Max Eigenvalue problem as in Table 4.1. The optimal
multiplicity is 5.

4.2.3 Semidefinite Programming

Consider the following primal and dual semidefinite problems (SDP) in standard

form [Helmberg & Rendl, 2000, Helmberg et al., 2014]

max
XPSN

xC,Xy (4.2.5)

subject to AX “ b and X P SN` ,

min
yPRn

bTy (4.2.6)

subject to Z “ ATy ´ C and Z P SN` ,

where b P Rn, C P SN and A : SN Ñ Rn is a linear operator as defined in

(4.2.1),(4.2.2). Here SN` Ď SN denotes the cone of positive semidefinite N ˆ N

matrices. Let us assume that strong duality holds and the optimal values are

attained, so that the optimal primal and dual values are the same. It follows that

if X˚ is an optimal solution to the primal problem (4.2.5) and Z˚ is an optimal

solution to the dual problem (4.2.6), we have X˚Z˚ “ 0. Further assume that X˚

is nonzero, and consequently, Z˚ has at least one eigenvalue equal to zero.

99

Then the dual problem (4.2.6) is equivalent to the following unconstrained

eigenvalue optimization problem

min
yPRn

fpyq, (4.2.7)

with the exact penalty dual function [Ding et al., 2019]

fpyq “ bTy ` αmaxtλmaxpC ´ATyq, 0u, (4.2.8)

for sufficiently large α, where λmax denotes maximum eigenvalue as earlier. Note

that this exact penalty function differs from the eigenvalue optimization formulation

in [Helmberg & Rendl, 2000], namely

bTy ` αλmaxpC ´ATyq

which does not include the maxt¨ , 0u operator. In that formulation, to give a

correct equivalence α must be exactly equal to a critical value, as opposed to greater

than or equal to this value. For the SDP problems we consider in the following we

already know valid lower bounds for α. Note that at an optimal solution y˚ the

maximum eigenvalue of ´Z˚ “ C ´ATy˚ is zero, often with multiplicity greater

than one, and hence f is nonsmooth at y˚.

4.2.4 Max Cut Problem

Our first example of semidefinite programming (SDP) arises from the Max Cut

problem. This subsection and a subsequent one on the Matrix Completion problem

were motivated by the recent paper [Ding et al., 2019] and the observation made

100

there that the first-order algorithms they used to minimize the penalized dual

function (4.2.8) arising from Max Cut SDPs were slow. Here we compare full BFGS,

scaled and unscaled L-BFGS and the subgradient method (again with tk “ 1{k)

on penalized dual functions arising from Max Cut SDPs. We note that one of the

key ideas in [Ding et al., 2019] is that, when the primal SDP optimal solution X˚

has rank much less than N , an accurate estimate of the optimal value of the SDP

obtained from minimizing the penalized dual function allows the use of a novel

method for obtaining efficient low-rank solutions to the primal SDP even when N

is large.

Let A be the adjacency matrix of an undirected simple graph G with the set of

vertices V and edges E. The matrix A is square with size N “ |V|; its off-diagonal

entries aij are the non-negative weights of the edge pi, jq and its diagonal entries

are zero. For an unweighted graph the adjacency matrix is a zero-one matrix: entry

pi, jq is zero if there is no edge from vertex vi to vj, and otherwise is one. The

max-cut problem is to divide V into two disjoint sets, say S and VzS, such that

the total weight of the edges crossing from S to its complement set is maximized.

Thus, we would like to maximize
ř

pi,jqPE, iPS, jPVzS aij. If we label the vertices

belonging to S by `1, and the rest by ´1, then we can equivalently maximize
ř

pi,jqPE aijp1´liljq{2, where li is the label of vertex vi. We can impose the constraint

li “ ˘1 by writing l2i “ 1, so we obtain

max
1

2

ÿ

pi,jqPE

aijp1´ liljq (4.2.9)

subject to l2i “ 1, li P R.

This problem is NP-hard. But we can relax it by lifting variables li to higher

101

dimension RN , and replacing the scalar multiplication lilj with the dot product

xli, ljy in (4.2.9) and further noticing that the resulting matrix with entry pi, jq

equal to xli, ljy is positive semidefinite. This relaxed problem can be expressed as

an SDP. To do so, we introduce the degree matrix D of G, a square diagonal matrix

of size N where dii is the degree of the vertex vi, when G is unweighted, and the

total weight coming out of vertex vi when G is weighted. Define the Laplacian

matrix L “ D ´A P SN . The primal SDP Max Cut problem and its dual are then

as follows [Bandeira, 2015]:

max
X

1

4
xL,Xy (4.2.10)

subject to Diag pXq “ 1 and X P SN` ,

min
yPRn

1Ty (4.2.11)

subject to Z “ Diag pyq ´
1

4
L and Z P SN` .

Note that these are instances of the primal and dual SDP introduced in (4.2.5) and

(4.2.6), respectively. By definition for the SDP Max Cut problem we have n “ N .

The penalized dual function (4.2.8) for the Max Cut problem is

fpyq “ 1Ty ` α maxtλmaxpL´Diag pyqq, 0u. (4.2.12)

Due to the constant trace property of the primal Max Cut SDP (4.2.10), the trace

(nuclear) norm of the primal optimal solution is known, i.e. we have }X˚}˚ “ N ,

and hence any solution y˚ to the penalized dual max cut problem (4.2.12) with α ě

}X˚}˚, is also a solution to the dual SDP (4.2.11) and vice versa [Ding et al., 2019,

Lem. 6.1].

102

We picked graph G1 from the Gset group in the sparse matrix collection

[Gse, 2014] for the following experiment. G1 is an unweighted graph with N “ 800

vertices and the adjacency matrix A is a sparse symmetric matrix with 38352

nonzero entries (they are all equal to 1). Since N is relatively small we can apply

the SDPT3 solver via CVX to the primal SDP (4.2.10), obtaining the optimal

primal and dual value f˚ “ 12083.19765. The rank r˚ of the optimal primal solution

X˚ is 13, and strict complementarity holds, so the nullity of the dual solution Z˚

is also 13.

The experiment is presented in Figure 4.11. We compare the performance of

full BFGS, L-BFGS-5 with and without scaling, and the subgradient method (with

tk “ 1{k) to minimize the penalized dual function (4.2.12) with α “ 2N “ 1600.

As before, the maximum allowed number of function evaluations is set to 104. In

contrast to the two experiments presented in Figure 4.7 and 4.8 respectively, for

the nonsmooth Max Eigenvalue problem, the results of this experiment are in favor

of L-BFGS when compared to the subgradient method. Both scaled L-BFGS-5

(magenta dots) and unscaled L-BFGS-5 (cyan dots) reduce the relative error down

to « 10´2 where as the subgradient method (blue dots) gives an answer of « 100.

Full BFGS (black dots) reduces the error to « 10´6.

In Figure 4.12, we show the negative of the top 20 eigenvalues of the final negative

dual slack matrix ´Z (equivalently, the smallest 20 eigenvalues of Z) obtained

by the four methods, along with values obtained by SDPT3. It is interesting to

note that full BFGS approximates the eigenvalues well, in the sense that it clearly

separates the first 13 approximately zero eigenvalues from the approximations to

the nonzero eigenvalues, although not as decisively as SDPT3. However, the final

eigenvalues obtained by L-BFGS-5 are not clearly separated.

103

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10
-6

10
-4

10
-2

10
0

10
2

(f
 -

 f
*)

/f
*

Full BFGS

No-LBFGS-5

Sc-LBFGS-5

Subgradient Method

Figure 4.11: Comparing BFGS, L-BFGS-5 with scaling on and off and the subgradient method
on penalized dual Max Cut problem (4.2.12).

0 2 4 6 8 10 12 14 16 18 20

Eigenvalues

10
-15

10
-10

10
-5

10
0

10
5

Full BFGS

No-LBFGS-5

Sc-LBFGS-5

Subgradient Method

SDPT3

Figure 4.12: Comparing smallest 20 eigenvalues of the dual slack matrix Z obtained by BFGS,
L-BFGS-5 with scaling on and off and the subgradient method on penalized dual Max Cut problem
(4.2.12) for G1 graph with n “ 800. The maximum number of function evaluations is 104. The
nullity of the optimal dual slack matrix Z˚ is 13. The smallest 20 eigenvalues obtained from
SDPT3 are shown as well. The lack of monotonicity at the left end of some of the plots occurs
because we actually plotted the absolute values of the ordered largest eigenvalues of ´Z, and
some of these eigenvalues are positive, either because of rounding errors or insufficient accuracy
in the optimization.

Next we repeat the same experiment in Figures 4.13 and 4.14, only with m “ 20.

104

The result for BFGS and the subgradient method are shown again for comparison.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10
-6

10
-4

10
-2

10
0

10
2

(f
 -

 f
*)

/f
*

Full BFGS

No-LBFGS-20

Sc-LBFGS-20

Subgradient Method

Figure 4.13: Comparing BFGS, L-BFGS-20 with scaling on and off and the subgradient method
on penalized dual Max Cut problem (4.2.12).

0 2 4 6 8 10 12 14 16 18 20

Eigenvalues

10
-15

10
-10

10
-5

10
0

10
5

Full BFGS

No-LBFGS-20

Sc-LBFGS-20

Subgradient Method

SDPT3

Figure 4.14: Comparing smallest 20 eigenvalues of the dual slack matrix Z obtained by BFGS,
L-BFGS-5 with scaling on and off and the subgradient method on penalized dual Max Cut problem
(4.2.12) for G1 graph with n “ 800. The maximum number of function evaluations is 104. The
nullity of the optimal dual slack matrix Z˚ is 13. The smallest 20 eigenvalues obtained from
SDPT3 are shown as well. See legend of Figure 4.12 regarding eigenvalue monotonicity.

We see that scaled L-BFGS-20 now reduces the relative error down to 10´4 and

105

unscaled to about 10´3, compared to about 10´2 for scaled and unscaled L-BFGS-5.

However, the eigenvalue plot is similar to the corresponding plot for L-BFGS-5:

neither variant is able to discover that the nullity of the optimal dual slack matrix

Z˚ is 13.

4.2.5 Smoothed Max Cut Problem

Consider now Nesterov smoothing of the penalized dual Max Cut problem (4.2.12):

fµpyq “ 1Ty`αµ log

˜

1`
n
ÿ

i“1

exp pλipL´Diag pyqq{µq

¸

´αµ logpn`1q. (4.2.13)

Note the presence of the term “1” which does not appear in (4.2.4): this reflects the

presence of the maxt¨ , 0u operator in the penalty function (4.2.8). This smoothing

requires a complete eigendecomposition and hence it is expensive to evaluate (for a

matrix of size N , it is OpN3q). Since we are interested in solving Max Cut problems

for large N , we now introduce an approximation of this function which only needs

the top K eigenvalues of the given matrix, here the negative dual slack matrix:

´Z “ L´Diag pyq:

fµ,Kpyq “ 1Ty ` αµ log

˜

1`
K
ÿ

i“1

exppλipL´Diag pyqq{µq

¸

´ αµ logpK ` 1q.

(4.2.14)

The justification is that, since the eigenvalues are ordered algebraically, the largest

ones dominate the smoothed approximation. The function fµ,K is guaranteed

to be smooth at y only if λKpL ´ Diag pyqq is larger than λK`1pL ´ Diag pyqq

[Overton & Womersley, 1993]. This implies that K should be no smaller than the

optimal dual nullity (primal rank) r˚. Except as noted below, we use matlab’s

106

eigs to compute the largest K eigenvalues via the Lanczos method. This is in

contrast to the nonsmooth experiment in Figures 4.11 and 4.13 where we used

matlab’s eig, which calls a backwards stable algorithm from LAPACK to compute

all the eigenvalues, in order to determine the maximal eigenvalue.

In Figures 4.15 and 4.16, we show several experiments, each one applying full

BFGS, scaled L-BFGS-5 and scaled L-BFGS-20 to (4.2.14) with K P t5, 15, 20u and

with µ “ 10´7 for all of them. We do not include the unscaled variants of L-BFGS

because it is clear that these offer no advantage on smooth problems. In all cases,

the underlying Max Cut problem, G1, is the same instance as in the nonsmooth

experiment in Figure 4.11, with n “ 800, f˚ “ 12083.19765 and the optimal primal

rank and dual nullity r˚ “ 13. All of the methods start form the same initial point

used in the previous section. The plots show the relative error pfµ,K ´ f
˚q{f˚ as

a function of the iteration count, where f˚ is the optimal value of the nonsmooth

instance of the primal problem. The maximum number of iterations is set to 103.

In these experiments we used eigs except in the bottom plot in Figure 4.15,

where we computed the eigenvalues of ´Z by eig, using only the top 5 of them,

in order to demonstrate the difference it makes in the result for this experiment.

When K “ 5, all the methods break down early when computing the eigenvalues via

eigs, but when using the more stable eig, none of them break down. The reason

for the breakdown may be that eigs is computing the eigenvalues less accurately

than eig, perhaps exacerbated by the failure to make K, the number of eigenvalues

requested from eigs, larger than the expected multiplicity at the optimal solution.

When function values are not computed accurately, the typical result is failure of

the line search to satisfy the Armijo condition, resulting in termination. Indeed,

BFGS performs much better for K “ 5 when using eig instead of eigs. Increasing

107

K to 15, using eigs, results in both full BFGS and L-BFGS-20 finding a better

answer, most likely because when K “ 5 ă r˚, the function fµ,Kpyq is not a valid

smoothing, as noted above. However, L-BFGS-5 continues to break down early,

even when K is further increased to 20, and full BFGS computes a worse answer

with K “ 20 than it does for K “ 15. The conclusion we reach from this is that

results using eigs are somewhat inconsistent and unpredictable, which is perhaps

not surprising, given the general reputation of the reliability of eigs versus eig.

However, when we turn to much larger graphs, increasing n “ N substantially, we

have little choice: the only option is to use the more efficient L-BFGS, not full

BFGS, and the more efficient eigs, not eig, as we do in the final experiments in

this section.

108

0 50 100 150 200 250 300 350 400 450 500

Iteration

10
-2

10
-1

10
0

(f
,K

-f
*)/

f*

Scaled L-BFGS-5

Scaled L-BFGS-20

BFGS

0 100 200 300 400 500 600 700 800 900 1000

Iteration

10
-3

10
-2

10
-1

10
0

(f
,K

-f
*)/

f*

Scaled L-BFGS-5

Scaled L-BFGS-20

BFGS

Figure 4.15: Comparing scaled L-BFGS-5, scaled L-BFGS-20 and BFGS on the smoothed
approximate Max Cut problem (4.2.14) for G1 graph with n “ 800 for K “ 5. f˚ “ 12083.19765.
The smoothing parameter is µ “ 10´7. The maximum number of iterations is 103. Top: Using
matlab’s eigs. Bottom: Using matlab’s eig.

109

0 100 200 300 400 500 600 700 800 900 1000

Iteration

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(f
,K

-f
*)/

f*

Scaled L-BFGS-5

Scaled L-BFGS-20

BFGS

0 100 200 300 400 500 600 700 800 900 1000

Iteration

10
-3

10
-2

10
-1

10
0

(f
,K

-f
*)/

f*

Scaled L-BFGS-5

Scaled L-BFGS-20

BFGS

Figure 4.16: Comparing scaled L-BFGS-5, scaled L-BFGS-20 and BFGS on the smoothed
approximate Max Cut problem (4.2.14) for G1 graph with n “ 800 for different values of K.
f˚ “ 12083.19765. The smoothing parameter is µ “ 10´7. The maximum number of iterations is
103. Top: K “ 15. Bottom: K “ 20.

In Figure 4.17, we plot the negative of the top K eigenvalues of the matrix

´Z “ L´Diag pyq which we get from the final answer y obtained by each method.

Equivalently, these are the smallest K eigenvalues of Z. Notice that, as with the

110

experiments on the original nonsmooth problem, full BFGS is able to separate the

approximately zero first 13 eigenvalues of Z from the rest, for K “ 15 and, less

clearly, K “ 20, but L-BFGS is not.

0 5 10 15

Eigenvalues

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Scaled L-BFGS-5

Scaled L-BFGS-20

BFGS

0 2 4 6 8 10 12 14 16 18 20

Eigenvalues

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Scaled L-BFGS-5

Scaled L-BFGS-20

BFGS

Figure 4.17: Comparing scaled L-BFGS-5, scaled L-BFGS-20 and BFGS on the smoothed
approximate Max Cut problem (4.2.14) for G1 graph with n “ 800 for different values of K.
f˚ “ 12083.19765. The smoothing parameter is µ “ 10´7. The maximum number of iterations is
103. Top: Smallest K “ 15 eigenvalues of Z. Bottom: Smallest K “ 20 eigenvalues of Z.

111

For the last experiment on the Max Cut problem we select a much larger graph

from Gset [Gse, 2014], Graph G55. The adjacency matrix is a random sparse

binary matrix with 0.05% uniformly distributed density and N “ 5000. In the

following we present the result of applying scaled L-BFGS-5 and L-BFGS-20 to the

smoothed Max Cut function (4.2.14) with K “ 100 and µ “ 10´6, using eigs to

compute the eigenvalues. Figure 4.18 shows the function value fµ,K at each iteration.

Figure 4.19 shows the 100 smallest eigenvalues of Z computed from the final

answer we get from each method. We see that L-BFGS-20 is able to reduce the

smallest eigenvalue of Z to about 10´3, but none of the eigenvalues obtained by

L-BFGS-5 are close to zero, indicating that the computed solution is nowhere near

optimal.

So, we increased the maximum number of iterations to 104 to allow the ex-

periment run for longer. See Figures 4.20 and 4.21. Now we see that the result

for L-BFGS-5 improves significantly, but even so, the result it obtains after 104

iterations is still worse than the result L-BFGS-20 obtained after 103 iterations. In

contrast, the result obtained by L-BFGS-20 after 104 iterations is not much better

than it obtained in 103 iterations. Since we don’t know the optimal value for this

problem, further investigation would be needed to investigate the accuracy of the

result obtained by L-BFGS-20. Furthermore, it is difficult to draw any conclusion

about the optimal nullity of Z from the eigenvalue plot.

112

0 100 200 300 400 500 600 700 800 900 1000

Iteration

1

1.5

2

2.5

3

3.5

4

4.5
f

,K
10

4

Scaled L-BFGS-5

Scaled L-BFGS-20

Figure 4.18: Comparing scaled L-BFGS-5 and scaled L-BFGS-20 on smoothed Max Cut problem
(4.2.14) with K “ 100 for G55 graph with N “ 5000. The smoothing parameter is µ “ 10´6. The
maximum number of iterations is 103.

0 10 20 30 40 50 60 70 80 90 100

Eigenvalues

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Scaled L-BFGS-5

Scaled L-BFGS-20

Figure 4.19: Comparing smallest 100 eigenvalues of the dual slack matrix Z obtained by scaled
L-BFGS-5, and scaled L-BFGS-20 on the smoothed Max Cut problem (4.2.14) with K “ 100 for
G55 graph with N “ 5000. The smoothing parameter is µ “ 10´6. The maximum number of
iterations is 103.

113

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

1

1.5

2

2.5

3

3.5

4

4.5
f

,K
10

4

Scaled L-BFGS-5

Scaled L-BFGS-20

Figure 4.20: Comparing scaled L-BFGS-5 and scaled L-BFGS-20 on smoothed Max Cut problem
(4.2.14) with K “ 100 for G55 graph with N “ 5000. The smoothing parameter is µ “ 10´6. The
maximum number of iterations is 104.

10 20 30 40 50 60 70 80 90 100

Eigenvalues

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Scaled L-BFGS-5

Scaled L-BFGS-20

Figure 4.21: Comparing smallest 100 eigenvalues of the dual slack matrix Z obtained by scaled
L-BFGS-5, and scaled L-BFGS-20 on the smoothed Max Cut problem (4.2.14) with K “ 100 for
G55 graph with N “ 5000. The smoothing parameter is µ “ 10´6. The maximum number of
iterations is 104.

An issue that would be worth investigating in the future is whether passing an

114

initial starting vector to eigs based on the previous iterate would result in signifi-

cant improvements in either running time or accuracy; [Mitchell & Overton, 2016]

suggests using the average of all the vectors returned by eigs in the previous

function call.

4.2.6 Matrix Completion Problem

The Matrix Completion problem is as follows. Suppose X P RN1ˆN2 denotes a

low-rank matrix for which we only have access to some of its entries and would like

to recover entirely by minimizing the rank over all matrices whose entries agree

with the known values. This rank minimization problem is NP-hard, so we relax it

by minimizing a well-known convex surrogate for the rank: the nuclear norm (sum

of all the singular values). Let Ω be the set of pairs pi, jq for which Xij is known.

Then the nuclear norm (a.k.a. trace norm) minimization problem can be expressed

as the following SDP [Recht et al., 2010]

max
XPSpN1`N2q

´Tr pW1q ´ Tr pW2q (4.2.15)

subject to Uij “ Xij, pi, jq P Ω,

X “

»

—

–

W1 U

UT W2

fi

ffi

fl

P S
pN1`N2q

` .

We write the primal problem in the max form in order to be consistent with the

SDP form (4.2.5), with N “ N1 `N2. Define the constraint Uij “ Xij for pi, jq P Ω

in linear operator form BpUq “ b, where b P Rn with n “ |Ω| is the vector consisting

of the known entries of X in some prescribed order and B : RN1ˆN2 Ñ Rn, with BT

115

its adjoint operator. The dual SDP is

min
yPRn

bTy

subject to Z “

»

—

–

0N1ˆN1 BT pyq

pBT pyqqT 0N2ˆN2

fi

ffi

fl

´
`

´ IpN1`N2q

˘

, Z P S
pN1`N2q

` .

The dual can be represented more compactly as:

min
yPRn

bTy (4.2.16)

subject to Z “

»

—

–

IN1 BT pyq
`

BT pyq
˘T

IN2

fi

ffi

fl

, Z P S
pN1`N2q

` ,

The exact penalty dual function (4.2.8) for the Matrix Completion problem is then

[Ding et al., 2019]

fpyq “ bTy ` αmax

#

λmax

¨

˚

˝

´

»

—

–

IN1 BT pyq
`

BT pyq
˘T

IN2

fi

ffi

fl

˛

‹

‚

, 0

*

. (4.2.17)

For the experiment in this part, we generated a low-rank random matrix X

of size N1 “ 20 by N2 “ 160 with rank R “ 3. We then selected the ordered

pairs in Ω randomly with the probability of each pi, jq being included set to 0.2.

For this problem instance we got |Ω| “ n “ 587. We then applied the various

methods to minimize (4.2.17) with α “ 2}X˚}˚ “ 2 Tr pX˚q “ ´2f˚ “ 3.0796,

where f˚ “ ´1.5398 and X˚ P S
pN1`N2q

` were obtained from solving the SDP

(4.2.16) via SDPT3. Note that the optimal value is negative because of the minus

sign in the ‘max formulation of the primal SDP.

116

Figure 4.22 and Figure 4.23 show the performance of full BFGS, L-BFGS-5

with and without scaling, and the subgradient method (with tk “ 1{k). The y-axis

in Figure 4.22 shows the relative error pf ´ f˚q{|f˚| and the maximum allowed

number of function evaluations is set to 104. As is evident from the plot, both

variants of L-BFGS-5 outperform the subgradient method, even though scaled

L-BFGS-5 quits early before 5000 evaluations and unscaled L-BFGS-5 right before

10000 evaluations.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10
-6

10
-4

10
-2

10
0

10
2

10
4

(f
 -

 f
*)

/|
f*

|

Full BFGS

No-LBFGS-5

Subgradient Method

Sc-LBFGS-5

Figure 4.22: Comparing BFGS, LBFGS-5 with scaling on and off and the subgradient method
on penalized dual Matrix Completion problem (4.2.17). The maximum number of function
evaluations is 104.

117

0 2 4 6 8 10 12 14 16 18 20

Eigenvalues

10
-15

10
-10

10
-5

10
0

Full BFGS

No-LBFGS-5

Sc-LBFGS-5

Subgradient Method

SDPT3

Figure 4.23: Comparing smallest 20 eigenvalues of the dual slack matrix Z obtained by BFGS, L-
BFGS-5 with scaling on and off and the subgradient method on penalized dual Matrix Completion
problem (4.2.17). See legend of Figure 4.12 regarding eigenvalue monotonicity.

Figure 4.23 presents the negative of the top 20 eigenvalues of the final negative

dual slack matrix ´Z, or equivalently, the 20 smallest eigenvalues of Z, obtained

by the four methods, along with values obtained by SDPT3. As before, BFGS

is able to separate the zero and nonzero eigenvalues of Z˚, agreeing with SDPT3

that the nullity of Z˚ is effectively 11. Note that this is larger than R “ 3, the

rank of the original matrix X , implying that 20% was not enough observations to

reconstruct X . It is interesting that the eigenvalues of the solution found by scaled

L-BFGS-5 do suggest a nullity of 3, but this may just be a coincidence.

In the following experiment in Figures 4.24 and 4.25, we increase m to 20 and

again we compare the relative error and the smallest 20 eigenvalues of the dual

slack matrix, respectively. In both plots the result from BFGS and the subgradient

method are repeated for comparison. In Figure 4.24, neither L-BFGS-20 method

quits early this time; the unscaled variant gets a slightly lower answer. The

eigenvalues shown for L-BFGS-20 in Figure 4.25 do not suggest any conclusion

118

about the nullity of Z˚.

119

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10
-6

10
-4

10
-2

10
0

10
2

10
4

(f
 -

 f
*)

/|
f*

|
Full BFGS

No-LBFGS-20

Subgradient Method

Sc-LBFGS-20

Figure 4.24: Comparing BFGS, LBFGS-20 with scaling on and off and subgradient method
on penalized dual Matrix Completion problem (4.2.17). The maximum number of function
evaluations is 104.

0 2 4 6 8 10 12 14 16 18 20

Eigenvalues

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Full BFGS

No-LBFGS-20

Sc-LBFGS-20

Subgradient Method

SDPT3

Figure 4.25: Comparing smallest 20 eigenvalues of the dual slack matrix Z obtained by BFGS, L-
BFGS-20 with scaling on and off and the subgradient method on penalized dual Matrix Completion
problem (4.2.17). See legend of Figure 4.12 regarding eigenvalue monotonicity.

120

4.2.7 Smoothed Matrix Completion Problem

Nesterov smoothing of the penalized dual Matrix Completion problem (4.2.17)

gives

fµpyq “ bTy (4.2.18)

` αµ log

¨

˚

˝

1`
N1`N2
ÿ

i“1

exp

¨

˚

˝

λi

¨

˚

˝

´

»

—

–

IN1 BT pyq
`

BT pyq
˘T

IN2

fi

ffi

fl

˛

‹

‚

{µ

˛

‹

‚

˛

‹

‚

´ αµ logpN1 `N2 ` 1q.

In Figure 4.26 followed by Figure 4.27, we show the result of applying full BFGS,

scaled L-BFGS-5 and scaled L-BFGS-20 to (4.2.18) with µ “ 10´7. As with the

smoothed max-cut experiments, we do not include the unscaled L-BFGS variants

because it is clear that they offer no advantage on smooth problems. The underlying

reference matrix, X , is the same matrix as in the nonsmooth experiment in Figure

4.22, with N1 “ 20, N2 “ 160, f˚ “ ´1.5398. We set α “ 3.0796 as before. All of

the methods start from the same initial point used in the nonsmooth section. Unlike

the experiments in the smoothed Max Cut sections, where we used matlab’s eigs

to compute the top K eigenvalues of the negative dual slack matrix ´Z, here we

used eig to compute all of the eigenvalues of ´Z in (4.2.18), so here it makes sense

to compare the objective value obtained by scaled L-BFGS-5 and L-BFGS-20 in

Figures 4.22 and 4.24, respectively, performed on the nonsmooth Matrix Completion

problem (4.2.17), with the smoothed experiment which we are about to present.

The maximum number of function evaluations is set to 104. Figure 4.27 shows

the 20 smallest eigenvalues of Z computed from the final answer we get from each

method.

121

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Total function evaluations

10
-4

10
-2

10
0

10
2

10
4

(f
-f

*)/
|f

* |

Scaled L-BFGS-5

Scaled L-BFGS-20

BFGS

Figure 4.26: Comparing scaled L-BFGS-5, scaled L-BFGS-20 and BFGS on Smoothed Matrix
Completion problem (4.2.18) for the same problem as in the Nonsmooth Matrix Completion
problem. The smoothing parameter is µ “ 10´7. The maximum number of function evaluations
is 104.

0 2 4 6 8 10 12 14 16 18 20

Eigenvalues

10
-8

10
-6

10
-4

10
-2

10
0

Scaled L-BFGS-5

Scaled L-BFGS-20

BFGS

Figure 4.27: Comparing scaled L-BFGS-5, scaled L-BFGS-20 and BFGS on Smoothed Matrix
Completion problem (4.2.18) for the same problem as in the Nonsmooth Matrix Completion
problem. The smoothing parameter is µ “ 10´7. The maximum number of function evaluations
is 104. See legend of Figure 4.12 regarding eigenvalue monotonicity.

122

We see in Figure (4.26) that although the relative error obtained by scaled

L-BFGS-20 and full BFGS are about the same as when applied to the nonsmooth

function, scaled L-BFGS-5 gets a lower error when it is applied to the smoothed

function, and more importantly, it does not break down early. Table 4.5 shows the

final answers we obtained from full BFGS, scaled L-BFGS-20 and scaled L-BFGS-5

on the smoothed and nonsmooth Matrix Completion problem. The optimal SDP

value f˚ is also shown for comparison.

SDP-optimal -1.53978555575175

BFGS-smooth -1.53941270679104

BFGS-nonsmooth -1.53946718487809

L-BFGS-20-smooth -1.52686081626082

L-BFGS-20-nonsmooth -1.52864965852708

L-BFGS-5-smooth -1.51868588317043

L-BFGS-5-nonsmooth -1.50422184883968

Table 4.5: Final objective value we obtained from full BFGS, scaled L-BFGS-20 and scaled
L-BFGS-5 on the smoothed and nonsmooth Matrix Completion problem present in Figures 4.26,
4.24 and 4.22 respectively. The optimal SDP value f˚ is also shown for comparison.

We see from the eigenvalue plot in Figure 4.27 that, as in the nonsmooth case

reported in Figure 4.25, BFGS is able to separate the zero and nonzero eigenvalues

of Z˚, agreeing with SDPT3 that the nullity of Z˚ is effectively 11, but L-BFGS-5

an L-BFGS-20 are not.

4.3 Concluding Remarks

In this chapter we have presented many different nonsmooth problems and inves-

tigated the behavior of L-BFGS both on the given nonsmooth function and on

smoothed approximations to it. When applied to the nonsmooth function directly,

L-BFGS, especially its scaled variant, often breaks down early. Unscaled L-BFGS

123

conducts far more function evaluations per iteration than scaled L-BFGS does, and

thus it is slow. Nonetheless, it is often the case that both variants obtain better

results than the provably convergent, but slow, subgradient method.

On the other hand, when applied to the smoothed function, scaled L-BFGS

invariably obtains a lower value than unscaled L-BFGS, often obtaining good

results even when the problem is quite ill-conditioned. In particular, scaled L-BFGS

seems to be a reasonable approach to minimizing smoothed exact penalty dual

functions arising in large-scale semidefinite programs, although further investigation

is needed to investigate the practicality of this approach and to compare it with other

approaches, in particular the spectral bundle method [Helmberg & Rendl, 2000].

Minimization of the SDP exact penalty dual function is a key component of

a recently proposed method for solving large-scale SDPs with low-rank primal

solutions [Ding et al., 2019].

Most importantly, we find that although L-BFGS is often a reliable method

for minimizing ill-conditioned smooth problems, when the condition number is so

large that the function is effectively nonsmooth, L-BFGS consistently fails. This

behavior is in sharp contrast to the behavior of full BFGS, which is consistently

reliable for nonsmooth optimization problems. We arrive at the conclusion that, for

large-scale nonsmooth optimization problems for which BFGS and other methods

are not practical, it is preferable to apply L-BFGS to a smoothed variant of a

nonsmooth problem than to apply it directly to the nonsmooth problem.

124

Bibliography

[Gse, 2014] (2014). The university of florida sparse matrix collection: Gset
group. http://www.cise.ufl.edu/research/sparse/matrices/Gset/index.

html (accessed 2019-10-10). 103, 112

[Armijo, 1966] Armijo, L. (1966). Minimization of functions having Lipschitz
continuous first partial derivatives. Pacific J. Math., 16, 1–3. 1, 2

[Asl & Overton, 2020a] Asl, A. & Overton, M. L. (2020a). Analysis of limited-
memory BFGS on a class of nonsmooth convex functions. IMA Journal of
Numerical Analysis. drz052. 10

[Asl & Overton, 2020b] Asl, A. & Overton, M. L. (2020b). Analysis of the gradient
method with an Armijo–Wolfe line search on a class of non-smooth convex
functions. Optimization Methods and Software, 35(2), 223–242. 9

[Bandeira, 2015] Bandeira, A. S. (2015). Approximation Algorithms and
Max-Cut. Lecture Note for Topics in Mathematics of Data Science,
MIT Open Courseware, http://ocw.mit.edu/courses/mathematics/

18-s096-topics-in-mathematics-of-data-science-fall-2015/

lecture-notes/MIT18_S096F15_Ses21.pdf, (accessed 2020-2-10). 102

[Barzilai & Borwein, 1988] Barzilai, J. & Borwein, J. M. (1988). Two-point step
size gradient methods. IMA Journal of Numerical Analysis, 8(1), 141–148. 8

[Bertsekas, 1999] Bertsekas, D. (1999). Nonlinear Programming. Athena Scientific,
second edition. 30

[Boyd & Vandenberghe, 2004] Boyd, S. & Vandenberghe, L. (2004). Convex Opti-
mization. Cambridge University Press. 80, 82

[Burke et al., 2020] Burke, J. V., Curtis, F. E., Lewis, A. S., Overton, M. L., &
Simões, L. E. A. (2020). Gradient Sampling Methods for Nonsmooth Optimization.
Cham: Springer International Publishing. 3

125

http://www.cise.ufl.edu/research/sparse/matrices/Gset/index.html
http://www.cise.ufl.edu/research/sparse/matrices/Gset/index.html
http://ocw.mit.edu/courses/mathematics/18-s096-topics-in-mathematics-of-data-science-fall-2015/lecture-notes/MIT18_S096F15_Ses21.pdf
http://ocw.mit.edu/courses/mathematics/18-s096-topics-in-mathematics-of-data-science-fall-2015/lecture-notes/MIT18_S096F15_Ses21.pdf
http://ocw.mit.edu/courses/mathematics/18-s096-topics-in-mathematics-of-data-science-fall-2015/lecture-notes/MIT18_S096F15_Ses21.pdf

[Burke et al., 2005] Burke, J. V., Lewis, A. S., & Overton, M. L. (2005). A robust
gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J.
Optim., 15(3), 751–779. 3

[Cauchy, 1847] Cauchy, A. (1847). Méthode générale pour la résolution des systèmes
d’équations simultanées. Comp. Rend. Sci. Paris., 25, 135–163. 1, 2

[Clarke, 1990] Clarke, F. H. (1990). Optimization and nonsmooth analysis, vol-
ume 5 of Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, second edition. 6

[Curtis et al., 2017] Curtis, F. E., Mitchell, T., & Overton, M. L. (2017). A
BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and
its evaluation using relative minimization profiles. Optimization Methods and
Software, 32(1), 148–181. 6, 35

[Dai, 2002] Dai, Y.-H. (2002). Convergence properties of the BFGS algorithm.
SIAM J. Optim., 13(3), 693–701 (2003). 5

[Dem’janov & Malozemov, 1971] Dem’janov, V. F. & Malozemov, V. N. (1971).
The theory of nonlinear minimax problems. Uspehi Mat. Nauk, 26(3(159)),
53–104. 2

[Ding et al., 2019] Ding, L., Yurtsever, A., Cevher, V., Tropp, J. A., & Udell,
M. (2019). An Optimal-Storage Approach to Semidefinite Programming using
Approximate Complementarity. arXiv:1902.03373. 100, 101, 102, 116, 124

[Fletcher, 1987] Fletcher, R. (1987). Practical methods of optimization. A Wiley-
Interscience Publication. John Wiley & Sons, Ltd., Chichester, second edition.
2

[Gill & Leonard, 2003] Gill, P. E. & Leonard, M. W. (2003). Limited-Memory
Reduced-Hessian Methods for Large-Scale Unconstrained Optimization. SIAM
Journal on Optimization, 14(2), 380–401. 42

[Grant & Boyd, 2008] Grant, M. & Boyd, S. (2008). Graph implementations for
nonsmooth convex programs. In V. Blondel, S. Boyd, & H. Kimura (Eds.), Recent
Advances in Learning and Control, Lecture Notes in Control and Information
Sciences (pp. 95–110). Springer-Verlag Limited. http://stanford.edu/~boyd/
graph_dcp.html. 90

[Grant & Boyd, 2014] Grant, M. & Boyd, S. (2014). CVX: Matlab software for
disciplined convex programming, version 2.1. http://cvxr.com/cvx. 90

126

http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx

[Greenbaum et al., 2017] Greenbaum, A., Lewis, A. S., & Overton, M. L. (2017).
Variational analysis of the Crouzeix ratio. Math. Program., 164(1-2, Ser. A),
229–243. 35

[Guo & Lewis, 2018] Guo, J. & Lewis, A. (2018). Nonsmooth variants of Powell’s
BFGS convergence theorem. SIAM Journal on Optimization, 28(2), 1301–1311.
6, 35

[Helmberg et al., 2014] Helmberg, C., Overton, M., & Rendl, F. (2014). The
spectral bundle method with second-order information. Optimization Methods
and Software, 29(4), 855–876. 99

[Helmberg & Rendl, 2000] Helmberg, C. & Rendl, F. (2000). A spectral bundle
method for semidefinite programming. SIAM Journal on Optimization, 10(3),
673–696. 99, 100, 124

[Hiriart-Urruty & Lemaréchal, 1993] Hiriart-Urruty, J.-B. & Lemaréchal, C. (1993).
Convex analysis and minimization algorithms. I, volume 305 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin. 2, 12, 19

[Kiwiel, 1985] Kiwiel, K. C. (1985). Methods of descent for nondifferentiable opti-
mization, volume 1133 of Lecture Notes in Mathematics. Springer-Verlag, Berlin.
3

[Kiwiel, 2007] Kiwiel, K. C. (2007). Convergence of the gradient sampling algorithm
for nonsmooth nonconvex optimization. SIAM Journal on Optimization, 18(2),
379–388. 3

[Le et al., 2011] Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., & Ng,
A. Y. (2011). On optimization methods for deep learning. In Proceedings of the
28th International Conference on International Conference on Machine Learning,
ICML’11 (pp. 265–272). USA: Omnipress. 7

[Lemaréchal, 1975] Lemaréchal, C. (1975). An extension of Davidon methods to
non differentiable problems. Math. Programming Stud., (3), 95–109. 3

[Lewis & Overton, 2013] Lewis, A. S. & Overton, M. L. (2013). Nonsmooth opti-
mization via quasi-Newton methods. Math. Program., 141(1-2, Ser. A), 135–163.
3, 6, 7, 9, 13, 19, 33, 35, 39, 62, 74

[Lewis & Zhang, 2015] Lewis, A. S. & Zhang, S. (2015). Nonsmoothness and a
variable metric method. J. Optim. Theory Appl., 165(1), 151–171. 10

127

[Lin et al., 2016] Lin, H., Mairal, J., & Harchaoui, Z. (2016). An Inexact Variable
Metric Proximal Point Algorithm for Generic Quasi-Newton Acceleration. arXiv
e-prints, (pp. arXiv:1610.00960). 7

[Liu & Nocedal, 1989] Liu, D. C. & Nocedal, J. (1989). On the limited memory
BFGS method for large scale optimization. Math. Programming, 45(3, (Ser. B)),
503–528. 3, 7, 8

[Mascarenhas, 2004] Mascarenhas, W. F. (2004). The BFGS method with exact
line searches fails for non-convex objective functions. Math. Program., 99(1, Ser.
A), 49–61. 5

[Mitchell & Overton, 2016] Mitchell, T. & Overton, M. L. (2016). Hybrid expan-
sion–contraction: a robust scaleable method for approximating the H8 norm.
IMA Journal of Numerical Analysis, 36(3), 985–1014. 115

[Nedić & Bertsekas, 2001] Nedić, A. & Bertsekas, D. P. (2001). Incremental sub-
gradient methods for nondifferentiable optimization. SIAM J. Optim., 12(1),
109–138. 32

[Nesterov, 2005] Nesterov, Y. (2005). Smooth minimization of non-smooth func-
tions. Math. Program., 103(1, Ser. A), 127–152. 3, 80

[Nesterov, 2016] Nesterov, Y. (2016). Private communication. Les Houches, France.
32

[Nocedal & Wright, 2006] Nocedal, J. & Wright, S. J. (2006). Numerical Optimiza-
tion. New York: Springer, 2nd edition. 5, 7, 9, 33

[Overton, 1988] Overton, M. (1988). On minimizing the maximum eigenvalue of a
symmetric matrix. SIAM J. Matrix Anal. Appl., 9, 256–268. 89

[Overton & Womersley, 1993] Overton, M. & Womersley, R. (1993). Optimality
conditions and duality theory for minimizing sums of the largest eigenvalues of
symmetric matrices. Mathematical Programming, 62(1-3), 321–357. 106

[Powell, 1976a] Powell, M. J. D. (1976a). Some global convergence properties of
a variable metric algorithm for minimization without exact line searches. In
Nonlinear Programming (pp. 53–72). Providence: Amer. Math. Soc. SIAM-AMS
Proc., Vol. IX. 2, 5

[Powell, 1976b] Powell, M. J. D. (1976b). A view of unconstrained optimization. In
Optimization in action (Proc. Conf., Univ. Bristol, Bristol, 1975) (pp. 117–152).:
Academic Press, London. 1, 2, 12, 19

128

[Recht et al., 2010] Recht, B., Fazel, M., & Parrilo, P. A. (2010). Guaranteed
Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Mini-
mization. SIAM Review, 52(3), 471–501. 115

[Shor, 1985] Shor, N. Z. (1985). Minimization Methods for Non-differentiable
Functions. Springer Series in Computational Mathematics, Springer. 30

[Taylor et al., 2017] Taylor, A. B., Hendrickx, J. M., & Glineur, F. (2017). Exact
worst-case performance of first-order methods for composite convex optimization.
SIAM Journal on Optimization, 27(3), 1283–1313. 4

[Vandenberghe, 2019] Vandenberghe, L. (2019). Optimization Methods for Large-
Scale Systems. http://www.seas.ucla.edu/~vandenbe/236C/lectures/

smoothing.pdf, Lecture Note for ECE236C, (accessed 2019-10-10). 94

[Wolfe, 1969] Wolfe, P. (1969). Convergence conditions for ascent methods. SIAM
Rev., 11, 226–235. 1

[Wolfe, 1975] Wolfe, P. (1975). A method of conjugate subgradients for minimizing
nondifferentiable functions. Math. Programming Stud., (3), 145–173. 2, 3

[Xie & Waechter, 2017] Xie, Y. & Waechter, A. (2017). On the convergence of
BFGS on a class of piecewise linear non-smooth functions. arXiv:1712.08571. 10,
67

129

http://www.seas.ucla.edu/~vandenbe/236C/lectures/smoothing.pdf
http://www.seas.ucla.edu/~vandenbe/236C/lectures/smoothing.pdf

	Dedication
	Acknowledgements
	Abstract
	Introduction
	Computer Resources Used
	Funding Acknowledgment

	Analysis of the Gradient Method Applied to a Class of Nonsmooth Optimization Problems
	Convergence Results Independent of a Specific Line Search
	Additional Results Depending on a Specific Choice of Armijo-Wolfe Line Search
	Experimental Results
	Relationship with Convergence Results for Subgradient Methods
	Concluding Remarks

	Analysis of the Limited Memory BFGS Method Applied to a Class of Nonsmooth Optimization Problems
	The Memoryless BFGS Method
	Existence of Armijo-Wolfe Steps when 3(n-1)a

	Failure of Scaled Memoryless BFGS
	Convergence of the Absolute Value of the Normalized Search Direction when 2n-1 a
	Dependence on the Armijo Condition
	Results for a specific Armijo-Wolfe line search, independent of the Armijo parameter

	Experiments
	Concluding Remarks

	Experiments
	Piecewise-Linear Functions
	Randomly Generated Problems
	An Ill-conditioned Problem from Nesterov
	Smoothed Versions of Nesterov's Ill-conditioned Problem

	 Eigenvalue Optimization and Semidefinite Programming
	Max Eigenvalue Problem
	Smoothed Max Eigenvalue Problem
	Semidefinite Programming
	Max Cut Problem
	Smoothed Max Cut Problem
	Matrix Completion Problem
	Smoothed Matrix Completion Problem

	Concluding Remarks

	Bibliography

