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Abstract

In developmental biology, modeling and simulation play an important role in understanding

cellular behavior. We suggest a simple language, the Cell Programming Language (CPL),

to write computer programs to describe this behavior. Using these programs, it is possible

to simulate and visualize cell behavior.

A genome is the program for the development of an organism. The genome, in con-

junction with the environment, determines the behavior of each cell of the organism. The

program for each cell (written in CPL) plays the role of its genome.

The program for an individual cell consists of a set of states. In each state, rules are

speci�ed which determine the cell properties (i.e. shape, motility, concentrations of various

molecular species, etc.). Di�erent states of the same cell signify di�erent phases in the cell's

life. Each cell has a tissue type associated with it. Cells of the same tissue type execute the

same CPL program.

We use the discrete time simulation model. At every time step, each cell executes all

the instructions in its present state sequentially. All cells are assumed to be executing in

parallel, with synchronization performed after every time step.

The cells are two-dimensional. Each cell has a physical location comprising a collection

of discrete connected points. This physical presence imparts to the cells the attributes of

area, perimeter, and neighbors (other cells). The neighbor attribute forms the basis for all

intercellular communication.

The language contains features for specifying:

� the location, area, and shape of the cells;

� the concentrations of various chemicals in each cell, the equations of their catalysis,

and di�usion;

� the direction and speed of cell motion;

� the rates of cell growth and division;

� cell di�erentiation: the evolution of cell behavior during its lifetime.
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We have employed CPL to model the following: aggregation in cellular slime mold in

response to a chemotactic agent; the formation of skeletal elements in the vertebrate limb;

and cellular segregation due to di�erential adhesion.
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Chapter 1

Biological motivation

Developmental biology is the study of the process by which a single cell develops into an

adult organism. A basic tenet of developmental biology, and for that matter of all science,

is that structure and simplicity prevail at some level of organization. Though various

phenomena may appear exceedingly complex, at some level of organization structure can

be discovered. The processes involved in embryonic development are extremely complex

and involve a great number of physical and chemical transformations which are not well

understood at present. Amazingly the developmental processes and stages are strikingly

similar in the entire animal kingdom (from hydra to humans). This similarity provides

hope of deciphering the developmental plan. We have all wondered as to how a single small

cell gives rise to such a complicated body plan with a myriad of tissues (neurons, muscle,

cartilage, skin, etc.) and organs (heart, stomach, kidney, etc.) all organized intricately. An

early school of thought believed that the sperm contained a miniature human fetus inside

its head, and growth into an adult was by simple expansion. We now realize that the cell

contains only a blueprint (genome) of the body plan. This blueprint unfolds with time, and

in conjunction with the environment, physical laws and chemical laws gives rise to an adult

organism.

All the cells of an organism are created due to repeated division from a single ancestor

cell. While they divide they retain the genetic information; however, they come to occupy

di�erent regions. The cells determine their own function based on the genetic plan and

their environment.

Cells are about halfway in the biological hierarchy, and constitute an important struc-

ture in the understanding of development. Much has been learned about the biochemistry

of cells. It was realized that organisms are comprised of cells. All cells are basically similar.

Schleiden and Schwann are credited with the �rst sound formulation of cell theory. They

believed the cell to be a bag full of chemical substances that interact according to the laws

of physics and chemistry. Today the cell is known to be a highly complex, but structured,

1



CHAPTER 1. BIOLOGICAL MOTIVATION 2

entity. Cells contain cytoplasm and a nucleus. Inside the cytoplasm are membrane-bounded

organelles including the mitochondria. The nucleus carries the genetic material in the form

of chromosomes. The chromosomes contain DNA (deoxyribonucleic acid). The DNA

macromolecules are composed of four types of nucleotides: adenine (A), cytosine (C), gua-

nine (G), and thymine (T). DNA is a double stranded structure with each strand composed

of a sequence of these nucleotides joined together by phosphodiesterase molecules. Triplets

of these nucleotides specify an amino acid. These 64 (43) possible triplets specify just 20

di�erent amino acids (some amino acids are speci�ed by more than one triplet). These

amino acids combine to form proteins which are half the dry weight of a cell. The amino

acid sequence determine both the three dimensional structure and function of the protein.

Much of the cell biochemistry revolves around proteins. The molecular mechanisms of de-

velopment are only now being discovered and are responsible for renewed excitement in the

�eld.

We will not attempt to summarize developmental biology. Such summaries can be found

in any introductory text on biology and in great detail in Gilbert's book on developmental

biology [Gil91]. We instead consider a few developmental processes (in which the constituent

cells play major roles) to provide motivation. In particular, we consider the following

phenomena.

Slime mold aggregation

Dictyostelium discoidea1 is a free-living amoeba and is considered by some to be the hy-

drogen atom of developmental biology. Dictyostelium is a bridge between unicellular and

multicellular organisms, since Dictyostelium cells spend portions of their life in each mode.

In their unicellular existence, they eat bacteria and reproduce by binary �ssion. Exhaustion

of food supply causes tens of thousands of these amoebae to join together, to form mov-

ing streams of cells that converge into conical mounds. These conical aggregates modify

their shape to form a slug (worm-like structure). The slug migrates in search of better

environmental conditions, where the cells in the slug di�erentiate into stalk cells and spore

cells, which together form a fruiting body. The spore cells disperse, each one becoming a

new amoeba. This is a simple, yet intriguing, life cycle and a rich source for problems in

development.

The cellular aggregation is randomly initiated. Cells do not move directly towards these

random centers; rather, they join with each other to form streams; the streams converge into

larger streams, and eventually all streams merge in the center. This motion has been shown

to be due to chemotaxis2, the chemical involved being cyclic adenosine monophosphate

1Also referred to as the cellular slime mold.
2Chemotactic movement is caused by the di�usion of chemical substances through a medium. Cells may

detect and move along such chemical gradients.
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(cAMP). There is no dominant cell or predetermined center; whichever amoebae happen to

secrete cAMP �rst become aggregation centers. Other amoebae respond to the cAMP by

initiating movement towards the cAMP source and by releasing cAMP of their own3. In

chapter 5, we explore this aggregation in detail.

Limb skeleton formation

The organization of the bones in the limbs is regarded as a classical example of development.

What kind of process would create an increasing number of progressively smaller bones in the

limb along the proximo-distal axis (from the shoulder to the �ngers): a single humerus; the

radius and the ulna; and the �ve metacarpals-digits? This basic theme plays out in almost

all vertebrates with minor di�erences. In addition, variations are observed often enough in

the number of digits to conclude that the number of these bones is not preordained, but

realized due to some process at a certain stage of development. In chapter 6, we explore

this subject in greater detail.

Sponge reconstitution

Sponges are simple protozoans which possess a remarkable property. Wilson in 1907 ob-

served that if a sponge is dissociated into its individual cells by passing through a sieve, the

cells reaggregate to form a functional sponge [Wil07]. This reconstitution is species-speci�c;

if cells from sponges of di�erent species are mixed together, each of the reformed sponges

contains cells only from its own species. This helped prove that cells can recognize other

cells of their own kind. Later experiments by Moscona, Holtfreter, and Steinberg have es-

tablished that cells from other organisms also recognize cells of their own kind, and tend

to segregate when mixed with other cells. These experiments established that cells have

an identity, and it became possible to visualize development in terms of the constituent

cells. In section 3.2, we examine a model which attempts to explain this phenomena, and

in chapter 7, we employ simulations to explore the theories in greater detail.

Thesis Organization

The preceding remarks refer to Chapter 1: Biological motivation. The �rst half of the

thesis is organized as follows. Chapter 2: Introduction to the model and language

provides an overview of Cell Programming Language (CPL).Chapter 3: Cellular models

presents and explains some of the relevant models of developmental behavior that have

inuenced the design of CPL.Chapter 4: Details of the Cell Programming Language

presents the instruction set of the CPL, along with some implementation details.

3This summary has been paraphrased from Gilbert [Gil91].
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The second half of the thesis contains a discussion of the biological problems that we

have modeled and explored using programs written in CPL, along with the simulation

results obtained by running those programs. This includes Chapter 5: Aggregation in

slime mold; Chapter 6: Limb skeleton formation; Chapter 7: Segregation of

tissues; and Chapter 8: Assorted applications. Chapter 9: Conclusions presents

an overall analysis of the thesis, including a variety of open problems. The grammar for

CPL is included in the appendix.



Chapter 2

Introduction to the model and the

language

Cells communicate with each other and organize themselves in useful patterns to exhibit

extraordinary developmental behavior. The genome inside the cells plays a major role in

directing cellular behavior. This thesis explores the possibility of describing developmental

behavior in simple terms. The success of our attempt would show that it is possible to write

short programs describing cellular behavior. It is our hope that most cellular behavior is

similar enough that it will be possible to encode developmentally crucial phenomena using

a simple programming language described below. These considerations motivate the design

of the Cell Programming Language (CPL). The idea of encoding each cell by a sequence of

instructions has been proposed in various forms by Gordon [Gor66], Odell et al. [OOAB81]

and Schwartz [Sch88]. Our proposed solution is inspired by these ideas, and also provides

an implementation.

2.1 Structure of CPL programs

A CPL program for a single cell consists of a set of states. In each state, rules are speci�ed

which determine the cell properties (i.e. shape, motility, concentrations of various molecular

species, etc.). Di�erent states of the same cell signify di�erent phases in the cell's life. Thus,

at some point of time a cell could be in a state awaiting a signal, and once it receives a

signal, it enters a di�erent state in which chemotactic movement takes place.

Each cell has a tissue type associated with it1. Cells of the same tissue type execute the

same program.

1The association of a tissue type with each cell may be regarded as a technical convenience, but we feel
it is an important one, which lends to the understanding of the model and the language.

5



CHAPTER 2. INTRODUCTION TO THE MODEL AND THE LANGUAGE 6

We use the discrete time simulation model. At every time step, each cell executes all

the instructions in its present state sequentially. All cells are assumed to be executing in

parallel, with synchronization performed after every time step.

CPL provides us with a mechanism for specifying operations on cell attributes. The

main cell attributes are:

� Tissue Type: Each cell has a speci�c tissue type which dictates the cell's response

to its environment. The tissue type determines what program the cell executes. The

program may be thought of as representing the cell's genome, the e�ect of the envi-

ronment on the cell, and the physical chemistry of the cell constituents.

� Biochemicals: The concentrations of all the biochemicals present in a cell, along

with their equations of catalysis and di�usion, can be speci�ed. These concentrations

may represent either the interior or the surface concentrations. Cells are modeled to

be homogeneous; therefore, the biochemical concentration are uniform inside the cell.

� Physical presence: A cell has the attributes of area, perimeter, and neighbors

(other cells). Only cells in direct physical contact are treated as neighbors. This

neighbor attribute forms the basis for all intercellular communication. Cells can sense

the attributes of their neighbors and react accordingly. Biochemical di�usion also

depends on the biochemical concentrations in the neighbors.

� Neighbor's attributes: A cell can sense its neighbor's attributes: tissue type, bio-

chemical concentrations, area, perimeter, the contact length between the two cells, as

well as the direction in which that neighbor lies.

In addition to the biologically motivated attributes listed above, other attributes are

required to write programs for these cells. These are variables used to store information

about the cell. The variables have speci�c types and may either be integer, real, or direction.

Direction variables store values of the form (x,y), where x,y are integers or reals. Direction

variables may be used to compute and store the direction of di�usion of a biochemical.

Integer or real variables may store the number of divisions, time in a particular state, etc.

To access and modify the cell attributes described above, a set of instructions is provided;

these are summarized in section 2.2 and explained in detail in chapter 4.

2.2 Introduction to CPL

In this section, we outline some of the CPL instructions to provide a avor of the language.

Complete details for each instruction are contained in chapter 4.
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� assignment: In addition to the regular assignment statements, CPL provides a spe-

cial assignment for biochemicals, which e�ects the biochemical value only at the next

time step. Such assignments are prefaced with the reserved word deriv.

� if-then-else: The if-then-else instruction provides conditional execution of instruc-

tions.

� move: The move instruction causes the cell to move in a speci�ed direction by ex-

changing the location of the cell with that of a neighboring cell in the given direction.

� goto: This instruction speci�es a state switch.

� for each neighbor do: This permits the execution of an instruction (or a block of

instructions) using the parameters of each of the cell neighbors in sequence.

� with neighbor in direction: This instruction is used to employ the attributes of a

single speci�ed neighbor.

� divide: The divide instruction causes the area of a cell to be split up equally between

two daughter cells.

� grow: The grow instruction causes the cell to grow in area by the given size in the

speci�ed direction.

� roundup: The execution of this instruction rounds up the cell by modifying the cell

boundary to form a more cohesive unit.

� die: This results in cell death; no more instructions of this cell are executed.

This thesis explores the power and limitations of this simple instruction set.

2.3 Physical representation of cells

Physically, an actual cell is a solid which may be approximated by a polygonal structure with

a speci�ed area. It is generally many-sided and not necessarily convex. A cell changes shape,

grows in area, divides into two, and moves, depending on its own state and the environment.

The chosen model should permit all these operations, and above all be exible so as to be

able handle additions to the set of operations.

A majority of the models that have been designed for cells so far, including the one

CPL uses, model the cell as two dimensional2 . One such model, used by a number of

researchers, treats the cell as a rigid body of �xed size and shape. This model does not

2Three dimensional modeling is computationally expensive.
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Figure 2.1: Hexagonal topology: each cell occupies one or more hexagons.

permit variable sized cells or cells with di�erent shapes. An extension of this model, where

each cell is modeled as an aggregate of a large number of discrete rigid objects, overcomes

these de�ciencies, as it permits cells to have arbitrary shape and size. This is the most

general discrete representation. 3

In CPL, we chose to represent each cell by a collection of discrete connected points.

These points can be regarded as the points in a hexagonal lattice.4 Figure 2.1 contains an

hexagonal lattice structure. In hexagonal lattices, each point has six equidistant neighbors.

A hexagon in the �gure represents a lattice point. Each cell can occupy one or more of

the lattice points. All the lattice points occupied by one cell should be connected i.e. a cell

cannot be disjoint.

The physical representation of cells is mainly a technical issue and has not for the

most part inuenced the design of CPL. The representation of cells could be modi�ed

without signi�cant alterations to CPL. The representation of cells is mostly inuenced by the

computational frontier. Polygonal representation of cells could be a viable computational

alternative in the future.

3If all cells have the same shape and size, then each cell can be represented by a single point, providing
an optimal representation.

4The hexagonal structure where each lattice point has six neighbors is better de�ned than the four or
eight neighbor lattice structure, as the latter violate the Jordan Curve Theorem.



Chapter 3

Cellular models

A model for a real-world system is an abstract representation of the system. A computer

model may be described as a sound scienti�c model which is amenable to computer sim-

ulation. Once a model is programmed on a computer, it becomes relatively simple to run

simulations with di�erent sets of data. In addition, if the model is not performing as well

as expected, it is possible to �ne-tune the model to achieve desired performance.

There is a body of literature on models in developmental biology. Pioneering work in the

mathematical treatment of development is credited to D'Arcy Thompson and Waddington

[Tho17,Wad66]. Ransom presented a good, non-mathematical survey of the �eld [Ran81].

Mostow's collection of papers involving on the di�erential adhesion hypothesis is also note-

worthy [Mos75].

In section 3.1, we discuss the various generalized models of development that have been

proposed including Turing's morphogen model. Section 3.2 examines Steinberg's di�erential

adhesion hypothesis. Section 3.3 focuses on the choices various models have made regarding

the physical representation of cells.

3.1 Generalized models of development

This section includes a discussion of Turing's morphogen model, which attempts to explain

pattern formation; a mechanical model proposed by Odell et al., which examined cell sheet

buckling; Gordon's general model; and cellular automata and lindenmayer systems, which

are theoretical models of parallel computation. We also briey describe two recent models:

the connectionist model, which is used to predict the segmentation genes in the Drosophila;

and a model that aims to grow arti�cial neural networks.

9
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s s

s

Inhibitor (I)

s

(a) (b)

(c) (d)

Activator (A)

Figure 3.1: Regions of high and low activator concentration arise from a small perturbation
in the initial uniform activator level. Each of the �gures shows the activator and inhibitor
values along the one-dimensional system. The sub�gures a,b,c,d show the progression in
time.

3.1.1 Turing's morphogen model

Turing, in a seminal paper in 1952, proposed a dynamic mathematical developmental model

[Tur52]. He suggested that reaction-di�usion systems obeying physical laws could lead to

various stable patterns. A system of chemical substances, called morphogens, reacting

together and di�using through the tissue may account for morphogenesis. Even if the

morphogens have uniform concentrations, minor random uctuation can lead to instabilities.

One of Turing's �ndings was that under certain conditions periodic patterns arise: high and

low peaks of morphogen concentration could occur, forming, for example, a series of stripes

of regular width. The wavelength of these periodic patterns is determined by the di�usion

constants and rates of reactions of the morphogens. Turing briey considered real systems

in terms of his model, including the hydra and the whorls of leaves of certain plants.

Let us consider a simple Turing system with two morphogens called the activator (A) and

the inhibitor (I). The rate of change in these chemicals is given by the following equations:

�A

�t
= kaA� kiI + �

�2A

�s2

�I

�t
= kaA � kiI +K�

�2I

�s2

The �2

�s2
terms represent the di�usion in space. Consider the case:
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� If ka is positive, an increase in the concentration of the activator A leads to an increase

in the concentration of both A and I.

� If ki is positive, an increase in the concentration of I leads to a decrease in the con-

centrations of both A and I.

� If K > 1, then I di�uses faster than A.

To understand this system, let us consider a one-dimensional system with both A and I

present in uniform concentrations. Figure 3.1 illustrates what happens when the activator

value is perturbed upwards at a point. This may happen due to random noise. This increase

in the activator A leads to a greater increase in A, and also an increase in I. But, since I

di�uses faster than A it spreads out further as is shown in �gure 3.1(b). Thus, the inhibitor

di�uses to points in space where the activator value has not yet risen. This increase in

inhibitor leads to the activator level falling below the equilibrium (c). Therefore, highs and

lows of the activator are established throughout the system (d). The reactions themselves

predict these extremes to be unbounded, but other physical constraints impose saturation

values. In a two-dimensional system this activator-inhibitor system can lead to circular

standing waves.

Meinhardt has explored in great detail various morphogen systems and the stable pat-

terns arising from them [Mei82]. Such reaction-di�usion (activator-inhibitor) systems ac-

count for a signi�cant share of the proposed models in developmental biology. Ouyang

and Sweeney have recently discovered that stable patterns can arise in chemical systems

from reaction di�usion [OS91]. These patterns formed spontaneously by varying a control

parameter. They observed both hexagonal and striped patterns.

3.1.2 Mechanical model

Odell et al. presented a mechanical model to explain the folding of embryonic epithelia

[OOAB81]. This was based on hypothesized properties of the cytoskeleton. They observed

that if a cell that was part of a layer (or a ring) contracted it would stretch the other cells

in the layer. They hypothesized that stretching cells beyond a point induced a contraction

resulting in a smaller than original apical1 surface with the volume remaining constant.

This cascade e�ect of reduction in apical surface would cause a buckling in the cell sheet

producing an invagination, which may be made to resemble gastrulation in Sea Urchin,

ventral furrow formation in Drosophila, and neuralation in amphibians. Odell et al. also

emphasized the importance of not assigning each cell an autonomous program of shape

change:

1The outer surface of the epithelium is termed apical, and the inner is termed basal.
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\In this study we want to minimize both the number of complex instructions (e.g.

morphogens and clocks) as well as the genetic programming required to generate

morphogenetic patterns. It is, of course, conceivable that each individual cell

in the blastula is genetically programmed to execute a sequence of instructions

directing each movement that the cell performs as well as its precise timing.

However, we regard such a view as evolutionarily implausible." [OOAB81, page

454]

3.1.3 Gordon's model

Gordon, in 1966, suggested a general model for development. According to Gordon, an

organism may be regarded as an ensemble of cells, each cell capable of making decisions

based on its own state and the environment. The environment would include the con�g-

uration of cells around it, and the chemical and electrical messages (surface interactions,

hormones, nerve impulses, etc.) it receives. The internal state of a cell could include its

state of di�erentiation, a limited memory, and an internal clock. A cell could take the

following actions: do nothing; reset its internal clock; di�erentiate; communicate with other

cells; divide; expand or shrink; fuse with a neighbor; move; and die.

The interactions between cells are probabilistic due to incomplete or inaccurate infor-

mation about its own state and the environment, and varying initial states. Genetic control

of development is indirect in this model. The genes presumably determine the next state

function, albeit implicitly.

3.1.4 Cellular automata and Lindenmayer systems

A cellular automaton is a theoretical model of a parallel computer. It is an interconnection

of identical cells. Each cell computes an output from local inputs. These inputs are received

from a �nite set of cells forming its neighborhood and possibly from an external source. Each

cell houses a �nite state machine, which is formally denoted by the 4-tuple (Q;�; �; q0). Q

is a �nite set of states, � is a �nite input alphabet, � is the transition function mapping

Q � � to Q, and q0 in Q is the initial state. The concept is the same as that of a �nite

automaton in computational theory, except that there is no �nal state.

A cellular automaton that allows cells to divide into daughter cells and allows the dis-

appearance, or death, of cells is known as a dynamic cellular automaton or a Lindenmayer

system. In other words, a Lindenmayer system is an array of interconnected automata,

along with the provisions:

� The input to an automaton are the states of its neighboring automaton. Automaton

on the border of the array may also have external (environmental) inputs. Therefore,

� � Qk, where k is the maximum number of neighbors providing input to the cell.
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� The automaton array is not limited to its starting size. It can expand and contract by

the reproduction or death of automata. This is modeled by modifying � : Q��! Q

to � : Q��! (�; Q;Q�Q), where � corresponds to the disappearance of an automaton

and Q �Q to the duplication of one.

This system is of interest to theoretical biologists as a model for the growth and de-

velopment of organisms. Lindenmayer used cellular automata to grow branching and non-

branching �laments, which exhibit various developmental patterns, such as a constant api-

cal pattern, non-dividing apical zone, and banded patterns [Lin68]. He employed a one-

dimensional cellular array with two neighbors for every automaton, and all the automata

were identical. The state transition table for a Lindenmayer system that produces branch-

ing �laments is shown in �gure 3.2. In this example, the only input each automaton takes

is its own state.

Present state 1 2 3 4 5 6 7 8 9

Next state 2�3 2 2�4 2�5 6�5 7 8 9�[3] 9

Figure 3.2: State transition table for the Lindenmayer system. � indicates division. []
indicates a new branch.

Time Filament
1 1

2 23
3 224
4 2225

5 22265
6 222765

7 2228765
8 2229[3]8765

9 2229[24]9[3]8765
10 2229[225]9[24]9[3]8765

11 2229[2265]9[225]9[24]9[3]8765
12 2229[22765]9[2265]9[225]9[24]9[3]8765

13 2229[228765]9[22765]9[2265]9[225]9[24]9[3]8765
14 2229[229[3]8765]9[228765]9[22765]9[2265]9[225]9[24]9[3]8765

15 2229[229[24]9[3]8765][229[3]8765]9[228765]9[22765]9[2265]9[225]9[24]9[3]8765

Figure 3.3: A sample calculation for 15 time steps of the automaton. A diagrammatic
representation is provided in �gure 3.4.

Figure 3.3 displays a sample calculation for 15 time steps of the automaton. Figure 3.4

shows a diagrammatic representation of the �nal state of the �lament. This models the de-

velopmental pattern for a particular red algae, Callithamnion roseum, and has the following
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Figure 3.4: A branching �lament obtained by using a cellular automaton after 15 time steps.
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features:

� the main �lament has at its base three cells that do not bear branches;

� each successive cell above these on the main �lament bears one branch;

� in all stages four cells below the tip of the main �lament have no branches;

� each primary or higher order branch repeats the pattern of the main �lament.

To�oli and Margolus have described various application of cellular automata in mod-

eling [Tof87]. Prusinkiewicz has used Lindenmayer systems to design plants with intricate

patterns [PL90].

3.1.5 Connectionist model

Mjolsness, Reinitz, and Sharp have provided a \systematic method for discovering and

expressing correlations in experimental data on gene expression and other developmental

processes" [RMS90,MSR91]. This connectionist model uses grammar rules to model state

changes, and a �xed type of di�erential equation to model behavior within the state. The

di�erential equations are of the form:

dvai
dt

= ga(
X

b

T abvbi + ha)� �av
a
i

These equations describe the time dependence of the various protein (a) concentrations.

vai are the protein concentrations for object i (which may be a cell, nucleus, or synapse),

ga are sigmoidal threshold functions, T ab are connectionist threshold elements, and ha are

the threshold terms. Both T ab and ha are adjusted (trained) to �t the experimental data.

This allows them to compute the coupling between the various genes (which produce the

proteins), and thus predict the concentration pro�les for similar systems (mutants). They

have tested the system on the segmentation genes in the Drosophila blastoderm.

3.1.6 A model for growing arti�cial neural networks

Fleischer and Barr have designed a simulation system for studying multicellular pattern

formation [FB93]. This system has been designed to simulate evolution, so that eventually

they can create arti�cial neural networks to solve problems. The cells have a genome

represented by a set of di�erential equations. The di�erential equations code for the cell's

chemical, mechanical, genetic, and electrical activity. This representation eases evolution,

since cells can modify genetic information (i.e. exchange some of their di�erential equations)

by either mutation or during cell meiosis. The choice of di�erential equation to model cell



CHAPTER 3. CELLULAR MODELS 16

activity permits �ne control of their behavior; however, the computational cost associated

with solving them restricts the simulations to a few hundred cells. Currently, the cells

are modeled as two dimensional disks with possibly di�erent radii. They have conducted

simulations which exhibited cell migration, cell di�erentiation, gradient following, clustering,

lateral inhibition, and neurite outgrowth.

3.2 Di�erential adhesion hypothesis

The di�erential adhesion model aims to explain general cell movement, with segregation

and engulfment in particular. Along with di�erential adhesion, we also examine the various

biological mechanisms which may explain di�erential adhesion. Some criticisms of this

model are presented, and alternatives are mentioned.

Cell adhesions play a major role in the process of development. Adhesion is the force

of attraction between heterogeneous or homogeneous cells, and cohesion is the force of

attraction between homogeneous cells. Adhesion includes cohesion.

Early experiments by H.V. Wilson in 1907 revealed that dissociated single sponge2

cells reaggregate into a functional Sponge. Holtfretter, in 1944, conducted experiments on

reaggregation of cells from di�erent embryonic tissues demonstrating that cells could �nd

their proper locations, and that reaggregation was not due to redi�erentiation3. Cells were

not modifying their behavior depending on the location to which they moved; rather, they

were moving to a location where they could exhibit their characteristic behavior. In other

words, cells segregate according to their tissue type.

Steinberg observed that cell aggregates from embryonic tissue have a tendency to round

up in vitro. In fact, there are quantitative di�erences in this rounding up; limb bud tissue

rounds up more than heart tissue, which in turn rounds up more than liver tissue [Ste78].

If limb bud cells and heart cells are intermixed, the limb bud cells migrate centrally. If

heart cells and liver cells are intermixed, the heart cells migrate centrally (i.e. the liver cells

envelop the heart cells). A transitivity in this central migration is also observed; thus, if

limb bud cells and liver cells are intermixed, then the limb bud cells migrate centrally.

Cell segregation, rounding up, central migration, and transitivity of migration are prop-

erties observed in non-living liquids too. Liquids tend to round up in the absence of external

forces. Some liquids, when intermixed, segregate. This segregation may involve one of the

liquids being suspended as a droplet inside the other (central migration). In liquids this

behavior is known to be due to surface tension forces, which arise due to di�erences in adhe-

sion between molecules of di�erent liquids. This led Steinberg to postulate the di�erential

2A sea animal of the phylum Porifera.
3Di�erentiation is the process (often irreversible) by which cells modify themselves for a special function

or purpose.
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(a) (b)

Figure 3.5: Homogeneous cells with (a) zero adhesive energy (no clumping) (b) positive
adhesive energy (rounding up).

adhesion hypothesis which states that cells adhere di�erently to one another. Accordingly,

the arrangement of embryonic tissues in vitro can be explained by the forces generated by

the surface tension due to di�erential adhesion [Ste70,Ste75].

Surface tension acts to minimize the surface area of liquids/cell aggregates. Surface free

energy is the e�ect of this force (tension) per unit area, and is equal to the reversible work

required to expand the surface by unit area (also known as work of adhesion per unit area).

Adhesive cells have a greater work of adhesion per unit area.

Cell surfaces have a �xed amount of surface available for binding to other cells. One

can associate a free energy with this cell surface, which decreases as adhesions form. The

cells move around till this free energy (V ) of the aggregate is minimized, or equivalently,

the adhesive energy (E) is maximized. Thus, E+V can be regarded to be a constant. This

holds for both homogeneous and heterogeneous cell aggregates.

To formalize the notion of adhesive energy for a cell aggregate, let us consider cell types:

1; 2; . . .n. Let Eij be the adhesive energy per unit area between cell types i and j. Eii is

the cohesive energy per unit area for cell type i. E is symmetric, i.e. Eij = Eji. If Aij is

the contact area between cell types i and j, then the total adhesive energy of an aggregate

of the cells is
P

i<=j EijAij . The maximization of this adhesive energy leads to the cell

aggregate being thermodynamic equilibrium.

There are two equilibrium cell con�gurations for the single tissue case (n = 1). For the

sake of simplicity we assume that all the cells have the same size and shape. Examples of

these two con�gurations are given in �gure 3.5.

(a) E11 = 0. The cells do not clump together; the energy of the aggregate is 0, irrespective

of the cell con�guration.

(b) E11 > 0. The adhesive energy is maximized when cell contacts (A11) are maximized
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(c)

(b)

(d)

(a) 2 1

2 1

Figure 3.6: Two types of cells with di�erent adhesive energies (a) E12 = 0 round up
separately (b) E12 > (E11 + E22)=2 checkerboard pattern (c) E11 � E12 < (E11 + E22)=2
onion pattern (d) 0 < E12 < E11 < (E11 +E22)=2.

or when free cell surface is minimized. The cells thus form clumps which are shaped,

so that they have minimum exposed surface area for the given volume (sphere in three

dimensions and disk in two dimensions).

For the two tissue case (n = 2), without loss of generality, we assume that E11 < E22.

The interesting con�gurations occur only when 0 < E11. Four interesting equilibrium cell

con�gurations are shown in �gure 3.6.

(a) E12 = 0. Contacts between di�erent cell types do not increase adhesive energy. This

results in cells of each type behaving as if the cells of the other type were absent, and

each cell type forms spherical aggregates with cells of its own kind. Thus, segregation

into separate spheres/disks occurs.

(b) E12 > (E11 + E22)=2. In this case, heterogeneous contacts (between di�erent cell

types) are preferred to homogeneous contacts. The adhesive energy is maximum for

a checkerboard pattern, with the two cell types alternating.

(c) E11 � E12 < (E11 + E22)=2. Since adhesions (E12) are quite strong, the entire cell

aggregate will shape into a sphere to minimize free surface area. On the surface type 1

cells are preferable, since E11 < E22. Segregation occurs because the average cohesion
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is less than the average adhesion (E12 < (E11 + E22)=2). This results in a spherical

ball of type 2 cells covered by a shell of type 1 cells. This pattern is often observed

when two cell types are mixed in experiments and is referred to as the onion pattern.

(d) 0 < E12 < E11 < (E11 + E22)=2. The adhesive interaction are the weakest but non-

zero. In one limiting case, E12 = E11, we have a type 2 sphere enclosed by a type

1 shell (case (c)). In the other limiting case, E12 = 0, we have the cells separating

into disjoint spheres (case (a)). Between the two limiting cases, type 1 cells do not

completely surround type 2 cell but recede slightly, exposing some type 2 cell surface.

The closer E12 is to zero, the more they recede.

There are numerous con�gurations involving the intermixing of more than two tissue

types. Goel et al. [GCG+75] provide a detailed description of all possible con�gurations of

two and three types of cells.

3.2.1 Mechanisms responsible for type speci�c adhesions

What type of microscopic cell properties are consistent with observed macroscopic cell

adhesion behavior? The adhesive transitivity observed suggests that quantitative di�erences

in the microscopic properties may account for di�erential cell adhesion.

Steinberg has proposed a theory in which all cells (even of di�erent types) have the same

kind of immobile adhesive sites [Ste75]. However, the number of adhesive sites depends on

the cell type. The adhesive energy is proportional to the number of sites per unit area

in apposition. Let the probability of an adhesive sites at a given location be fl for cell

type l = 1; 2; . . .n. Without loss of generality, we assume that if i < j then fi � fj ; we

are simply arranging the cell types in increasing order of number of contact sites. The

probability of apposition of sites in the cell pair i; j is given by fifj (since the location of

sites are independent events). Consider i < j,

fi � fj

Multiplying both sides by fi:

f2i � fifj (3:1)

Also

(fi � fj)
2 � 0

) 2fifj � f2i + f2j

) fifj �
f2i + f2j

2
(3:2)
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Combining equations 3.1 and 3.2, we obtain

f2i � fifj �
f2i + f2j

2

Introducing the proportionality constant k, the adhesive energy being Eij = kfifj , the

above equation can be rewritten as

Eii � Eij �
Eii +Ejj

2
(3:3)

which is recognized (from page 18 case (c)) as the adhesive relationship that leads to the

onion pattern with tissue i = 1 enveloping tissue j = 2. This microscopic explanation

explains the onion pattern which is frequently seen in biological experiments concerning

mixing and segregation of tissues. In this system, segregation and engulfment always occur

(unless fi = fj), and the engulfment is transitive. Consider a third tissue k, and if j < k )

fj � fk, then tissue j would envelop tissue k. But since i < j and j < k ) i < k) fi � fk ,

tissue i would envelop tissue k, yielding the transitivity property in central migration.

A di�erent microscopic model has been suggested by Childress and Percus [CP78]. This

has di�erent assumptions but makes similar predictions. Steinberg considered the proba-

bility of apposition of two adhesive sites from distinct cell pairs to be proportional to fifj .

Childress and Percus consider mobile adhesive sites; thus, the number of contact sites in

their model is proportional to min(fi; fj). We assume fi � fj . The sites being mobile, each

of the type i sites would move until it found a type j site to itself. The expression for the

adhesive energy is

Eij = (ki + kj) min (fi; fj) (3:4)

ki can be viewed as the potential adhesion energy at a single site of cell type i. Therefore,

an i,j contact site gives rise to ki + kj adhesive energy. This model predicts the transitive

property of central migration, like the immobile receptor site model of Steinberg. It can be

also shown that if tissue k engulfs tissue j and tissue j engulfs tissue i, then tissue k must

engulf tissue i.

Both the Steinberg and Childress & Percus explanations for the microscopic behavior

fail to account for partial engulfment, which requires Eij < Eii, and separation, which

requires Eij = 0. Yet each presents reasonable explanations for the most common cell

con�gurations.

3.2.2 Critique

Harris has raised some objections to Steinberg's di�erential adhesion hypothesis [Har76].

There are a number of crucial distinctions between intermolecular attraction (in liquids)
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and intercellular adhesion (in cell aggregates), namely4

� Liquid drops are closed systems thermodynamically whereas aggregates of living cells

can generate an indeterminate amount of metabolic energy capable of altering cell

positions and adhesions.

� Intercellular adhesions are more than just close range interactions since cells can be

held together by forces (for example, enzyme-substrate, antibody-antigen etc.) in

addition to those which originally pulled them together.

� The breakage of intercellular adhesions need not be simply the reverse, thermody-

namically, of the formation of those adhesions.

� Intercellular adhesions being concentrated at relatively small foci such as desmosomes,

a maximization of the intercellular adhesion does not necessarily require a maximiza-

tion of intercellular contact area, or vice versa.

Harris also proposes various alternative hypotheses, most of which are minor variants

of Steinberg's hypothesis. In addition,

\a di�erential surface contraction hypothesis is proposed, according to which

cell sorting and related phenomena are the results of cell surface contraction

induced to occur over those portions of the cell surface, which are exposed

to the surrounding culture medium. There is reason to believe that various

invagination type movements of embryonic epithelium are caused by cell surface

contractions, which suggests the feasibility of the di�erential surface contraction

hypothesis for cell sorting etc."[Har76]

3.2.3 Models and simulations

In spite of the objections of Harris, the di�erential adhesion hypothesis remains popular,

and various researchers have built models and conducted simulation to further explore the

hypothesis.

Goel et al. have conducted numerous simulations modeling cells as rigid objects with

preassigned adhesive properties [LG71,GCG+75,GR78,RG78]. These cells form a regular

square tessellation of the plane. The medium is modeled as just another cell type. Neigh-

boring pairs of cells are allowed to interchange positions, if this interchange increases the

total adhesive energy. Their model assumes di�erential a�nities between cells of di�erent

types and local motility of cells.

4Quoted from [Har76].
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Goel et al. considered two-dimensional rectangular aggregates of cells of two to four

di�erent types [GCG+75]. They derived all the absolutely stable patterns (maximum adhe-

sive energy) in such aggregates, by considering the di�erent adhesive strengths between cell

types. According to Goel et al., \none of those con�gurations was found to be signi�cantly

histologically interesting." They ran computer simulations of cell movement, from various

randomly chosen starting cell distributions, of two cell types. They used di�erent plausi-

ble motility rules in a bid to reach the maximum adhesive energy con�guration. Most of

these trials failed to reach global maxima and were trapped in locally stable con�gurations.

However, some locally stable con�guration (maximal adhesive energy) were found to be

histologically signi�cant (rings and sheets of cells).

Antonelli et al. [ARW75, Appendix A] observed that Goel et al. [GCG+75] ignored

the e�ects of boundary conditions on the simulations they conducted. The calculations of

Goel et al. assume that the cell array size is large enough to be able to ignore boundary

e�ects; yet their experiments are conducted on small cell arrays, where the boundary e�ect

is substantial.

Goel and Leith considered anisotropic cells [GL75]. Di�erent sides of the cells have

di�erent adhesive properties. Some of the maximal adhesive energy patterns obtained were

histologically interesting; they were able to produce open and closed rings which can be

looked upon as the two dimensional analog of vesicles, closed shell and epithelial patterns.

They still had problems with the segregation not proceeding to completion and the simula-

tions ending at local maxima.

Leith and Goel investigated the e�ects of di�erent motility rules on segregation exper-

iments with two cell types [LG75]. They tested the e�ects of 21 di�erent motility rules,

which varied in the selection, direction, distance and type of the motile cell, and the mini-

mum change in energy required for movement. Most of these rules had little e�ect on the

�nal results; the only factor that seemed signi�cant was the range of the interaction between

the cells.

Antonelli et al. examined simulations involving hexagonal cells. Their exchange prin-

ciple only allowed moves between nearest neighbors that increased total adhesive energy

[ARW75]. Three or more cell types (one being medium) were used to model tissue en-

gulfment. They considered a hexagonal tessellation of the plane. Each cell occupies a

cavity in the hexagonal lattice. Two neighbors are allowed to exchange positions if that

exchange does not lead to a decrease in total surface adhesion. Their simulations did not

yield the central clumping reported in other experiments. Their model achieved relatively

rapid formation of small internally segregating clumps.

Goel and Rogers investigated non-local exchange procedures for cells [GR78]. They

overcame the di�culty of tissue segregation ending at a local energy maxima and were able

to successfully simulate, among other things, tissue engulfment. Movement was considered
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Figure 3.7: An example of Goel and Rogers's distant exchange being viewed as a series
of local exchanges. EXX = 1; EXY = EY Y = 0. Consider 4 neighbors for each cell
(left,right,top, and bottom) (a) The maximum positive �E = 2 is for cell (1,2). The
smallest negative �E = �1 is for cell (3,1). (b) The exchange of (1,2) and (3,1) visualized
as a series of local exchanges.

only for cells on interfaces between two di�erent cell types, since these moves are the only

ones that change the global energy. For every cell position on an interface, the change

in energy �E resulting from switching the cell type was computed. The lists of cells on

the interface were split into positive �E (sorted in non-increasing order) and negative �E

(sorted in non-decreasing order). If the sum of the �E's in position m = (1; 2; . . .) in both

the lists was greater than zero, then the corresponding cells were switched. The switch at

position 1 corresponds to the swap that results in the greatest increase in adhesive energy

of all heterogeneous pairs at the tissue interface. This procedure was repeated for every

interfacial boundary in turn5.

The swaps dictated by the above rule may not be local. They may correspond to the

shift of a whole cell aggregate by an array position. Goel et al. believe that this distant

exchange of cell types along the interface does not violate the basic motility rule that a cell

can move only one cell diameter per simulated time step. Rather, a single distant exchange

may be visualized as a series of simultaneous neighborly exchanges within the interfacial

areas (illustrated in �gure 3.7). In spite of this observation, the distant exchange is still a

cause for concern, since non-local information is used to make the exchanges.

Goel and Rogers also considered di�ering neighborhoods for computing the adhesive

energy Ei of the cell at location i [GR78]. In general, the energy for a cell, considering

interactions up to D layers, would be

Ei =
DX

j=1

8jX

k=1

KjEi;jk

5In CPL, we use a generalized version of this procedure to implement the round up instruction.
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The jth layer has 8j cells, Kj is a weight given to interactions with cells in the jth

layer, and Ei;jk is the value of the adhesion parameter between the type of the ith cell

and the type of the kth cell in the jth layer. Long range interaction (e�ect of cells in

layers j = (2; 3; . . .D)) may be justi�ed by the extension of processes (such as �lopodia,

pseudopodia) over multiple cell diameters.

They successfully simulated engulfment of two and three tissues, of equal size, starting

from an initial con�guration of rectangular clumps of each cell type in contact. The overall

behavior of this model agrees quite well with the experimental observations.

Rogers and Goel extended this work by simulating segregation of mixtures of two dif-

ferent cell types into separate phases [RG78]. Whether the two cell types sorted out or not

and the �nal con�guration reached were found to be dependent on the initial concentration

of the cell types and the range of the interaction.

Matela and Fletrick have also conducted simulation cellular segregation using a graph

to model the cell structure. This is discussed at length in section 3.3.4.

In summary, the di�erential adhesion hypothesis has not gained universal acceptance,

but it does seem to be the most popular one. The simulations have produced mixed results.

Our simulations in chapter 7 shed some more light on the di�erential adhesion model; in par-

ticular, we were able to obtain improved segregation and engulfment results by introducing

some random motion.

3.3 Representation of cells

The array is an obvious data structure; most of the early cell growth and division models

revolve around it. In the previous section, we have already seen the use of the array in

cell segregation simulations by Goel et al. The one dimensional �laments (which simulated

algae growth) by Ransom, Conway's game of life, and Gordon's stochastic spirals preceded

Goel in his use of arrays to represent cells [Ran81]. In fact, all these models are special cases

of the cellular automata model that we have examined earlier. However, these do present

models of varying biological activity.

More recently, researchers have employed voronoi diagrams, graphs, and polygons to

represent cells.

3.3.1 Simple array models

Ransom has employed one dimensional arrays to simulate algae �lament growth [Ran81].

If \1" represents a cell and \0" an empty location, then �laments grows by replacing each

successive 0 by a 1. Thus, successive stages of the �lament are:
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1000000000

1100000000

1110000000
...

1111111110

In most two dimensional models each cell has four neighbors, and the structure is a

square tessellation of the plane. The possible implementations of cell division are worth

investigating.

Only cells on the boundary, with a free space in the neighborhood, are allowed to

divide. One can study the various patterns formed, as a result of choosing di�erent rules

which determine the order of division of the boundary cells, and the neighboring location

that the cell divides into, in case of multiple vacancies.

If all cells are allowed to divide, the internal cells divide by placing the daughter cell

into the nearest empty location they can �nd. However, this leads to the daughter cell not

being adjacent to the parent. Alternatively, the daughter cell are placed next to the mother

cell, and space is created for the new cell by pushing the other cells out. Various strategies

may be used for pushing the cells. We can either push all the cells on the straight line

path from the dividing cell to the nearest boundary out. Alternatively, we can replace a

neighbor of the parent cell by the daughter cell, and then try to place this cell, in one of its

neighboring locations. This strategy bubbles cells out, not necessarily in a straight line.

The �nal suggestion was to use a variable size cell, occupying either 2 or 3 array locations.

The cell grows from 2 to 3 locations, and then grows into 4 locations dividing immediately

into 2 cells occupying 2 locations each. These variable sized cells do not result in visible

improvements in the simulation.

3.3.2 The game of life

The game of life was devised by J.H. Conway and made popular by Martin Gardner. This

model is worth mentioning more for its popularity than for its biological signi�cance. It

consists of a two dimensional array, with each array position designated a cell. Each cell

has 8 neighbors (4 orthogonal, 4 diagonal). Each cell can have one of two states: full or

empty. The rules of the game are:

� Each full cell with 0 or 1 full neighbor dies (from isolation).

� Every full cell with 2 or 3 full neighbors survives for the next generation.

� Each full cell with 4 or more full neighbors dies (from overpopulation).
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� Each empty cell adjacent to exactly 3 full neighbors is born.

Birth is the process that changes an empty cell to full, while death is the reverse process.

These simple rules lead to various periodic patterns that move both in space and time.

3.3.3 Gordan's spirals

Richard Gordon, in 1966, developed a model to simulate the growth of a spiral by stochastic

means [Gor66]. Using a two dimensional array, Gordon de�ned two types of cells, I and

S. Growth of these cells occurs into the orthogonal neighboring empty array positions.

Growth is essentially division into an empty neighboring cell. Only cells on the boundary

are permitted to grow. One of the S cells is designated the leader and is the only S cell

which may divide. (It corresponds to the tip of the spiral.) The cell it produces becomes

the new leader. Growth of S cells is directional; the leader cell grows into the site to its left

(relative to the vector from its parent, directed to itself). In the case where the site on its

left is occupied, it attempts to occupy either the forward or the right site, in that order of

preference.

If S cells were the only ones present, it would result in a tight square spiral. The I cells

are used to open up the spiral. The I cells grow randomly, akin to tumor cells.

If the I cells divide too often they may totally surround the S cells, killing the spiral. On

the other hand, if they grow too slowly the spiral will get very tight, since the S cells would

completely surround the I cells. If each cell grows at a speci�c, intrinsic rate, independent

of the rest, it is termed local growth. If the leading S cell could count the number of active

I cells (for example, by being sensitive to a hormone di�using from them), and the S cell

grows at a rate proportional to this count, it results in an Archimedean spiral.

The growth of S cells is reminiscent of apical meristem in plants, which only grows at

the tip of a shoot, inhibiting growth below. Also, vines tend to spiral in one direction.

3.3.4 Topological model

The advantages of the discrete cell models discussed in the previous sections, in terms of

speed and ease of manipulation, are obvious. However, these models ignore the fact that

cells have shape, their geometry need not remain �xed, and that cells move, while slowly

changing their contacts with their neighbors. Polygonal cell models avoid these drawbacks;

however, most operations on them are not so easily de�ned. For example, the issue of

adjusting the surrounding polygons, so as to give a growing polygon some additional space,

is not resolved.

Matela and Fletterick have used graphs to represent cell maps [RM84,MR85]. They

represent each cell by a vertex. If two cells share a common boundary, there is an edge
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between the two respective vertices. The graph so obtained is planar and is the dual of the

cell map. In most of these simulations they restrict the graph to be triangulated, which

implies that in the cell map no corner has a degree more than three (i.e. no four cells meet

at a point).

The advantages of this model are that it permits cells with di�erent shapes (any n-gon),

and graphs are computationally well studied structure. However, representing the cell map

by its dual graph has its own share of problems. The graph does not de�ne a unique cell

map, nor does it specify the size of each cell or the contact length with other cells.

In the graph model, it is possible to demonstrate segregation of tissues using only local

information [MF80]. Consider a graph containing two di�erent types of vertices correspond-

ing to di�erent cell types. Initially the graph is quite random, in the sense that the vertices

are connected by edges picked at random to form a triangulated graph. An edge represents

the boundary between the cells. The cells are sorted by adopting an exchange rule. Each

quadrilateral in this graph is inspected in turn. Every quadrilateral has exactly one diagonal

(since the graph is triangulated). Replacing this diagonal by the other one leads to a new

triangulated graph. In terms of the dual (the cell map), we have replaced the contact edge

between two cells by a contact edge between two other cells. If this replacement (exchange)

is guided to ensure only pro�table exchanges, then enough iterations of this mechanism

would yield the cell map with the highest adhesive energy.6

Their experiments have shown that a large degree of isotypic cell association may be

produced by using a topological model. However, it is obvious that this exchange tech-

nique would lead to the simulation being stuck in local minima, and not lead to complete

segregation.

Ransom and Matela have also addressed the problem of cell division in terms of the

graph model [RM84].

3.3.5 Voronoi diagrams

The voronoi diagram model is computationally feasible. This cellular model was �rst sug-

gested by Hisao Honda in 1978 [Hon78] and was also employed by Sulsky [Sul82]. A voronoi

diagram enables one to represent a cell by a single point called the nucleus. The cells are

modeled as convex polygons in the voronoi diagram model.

The nuclei have coordinates s1; s2; . . . ; sN in a region 
 � R2. De�ne the half spaces

Hij = fs 2 
 : js� sij � js� sj jg

6Any triangulated graph can be transformed into any other triangulated graph on the same number of
vertices with a �nite number of edge exchanges. This guarantees that the highest adhesive energy graph is,
in theory, reachable from every starting con�guration.
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Hij is the set of all points closer to si than to sj . De�ne the polygon or cell corresponding

to the nuclei si as Pi =
TN
j=1Hij . Therefore, Pi is the set of all points closer to si than to

any other nuclei sj . Pi is convex and polygonal, since it is an intersection of a �nite number

of half spaces. The edges of Pi are made up of points s such that js� sij = js� sj j for some

neighbor j. These edges represent the cell boundaries.

The advantage voronoi polygons have over arbitrary polygons is that each voronoi poly-

gon can be de�ned by a single point, its nucleus. Thus, N cells can be speci�ed by exactly

N points. In the case of arbitrary polygons one has to specify each of the corner points,

and there may be in�nite corner points in an arbitrary planar graph with N faces.

Not all polygonal subdivisions of a space correspond to voronoi diagrams. In fact,

voronoi diagrams form a small speci�c class, and even their own projections at an angle,

or a scaling along one axis, are not voronoi. Honda studied in detail what kind of patterns

occurring in nature are voronoi [Hon78]. He devised a metric that measures the deviation of

a polygonal subdivision from the closest voronoi subdivision. Based on this metric Honda

categorized patterns occurring in nature. Pattern of alveoli (lung cells), the coenabial algae

|Pediastrum Boryanum, epithelial cells of chick embryo, and endothelial cells of rabbit

aorta were all categorized as roughly voronoi.

Sulsky carried out simulations using voronoi regions to represent polygons [Sul82]. Of-

ten, columnar cells are observed in embryos, whose height is inversely proportional to their

cross-sectional area. These cells can be regarded as right prisms with polygonal cross-

sections determined by voronoi polygons. Faces of these polyhedra represent cell mem-

branes.

Forces, responsible for cell movement, act along cell membranes and are equivalent to

surface tensions at these interfaces. The model generates motion in the cell con�guration

by maximizing the rate of free energy decrease, subject to a dissipation constant. The form

of this constraint is suggested by continuum mechanics, resulting in aggregate motion that

resembles a viscous uid driven by surface tension forces.

The model was used to simulate cell reaggregation and sorting experiments. In addition,

the embryological process of neuralation, in which a circular monolayer of cells changes to

a keyhole shape, was modeled. These simulations were accomplished by choosing a regular

grid of cells and the initial distribution of interfacial surface tensions. Cell movement was

directed by the variational principle.

3.3.6 Polygonal cell division models

D'Arcy Thompson considered the problem of cell division | especially when patterns are

produced as a direct consequence of the cellular divisions [Tho17]. Thompson suggested

that the following rules should hold during cell division:
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� The dividing partition should cut across the longest axis of the cell.

� Each partition must run at right angles to its immediate predecessor.

He hoped that a partition chosen with the above rules would be the smallest that

generates equal volume daughter cells.

Cowan and Morris have used similar rules in their simulations [CM88]. They considered

polygonal cells and examined various rules for choosing the division line. They postulated an

imaginary organism, Tessellata elegans, which grows in a monolayer on a planar medium. It

starts with a single convex polygonal cell. It divides by connecting two sides of its membrane

by a line segment, giving rise to two daughter cells, both again convex polygons. Uniform

expansion of the organism accommodates cell growth. Cell division is synchronous, but

division lines are chosen independently. A division line does not meet a vertex, and neither

does it distort the membrane that it meets (i.e. the angle in the neighboring cell remains

at 180�). Their experimental results are mainly concerned with the statistical distribution

of cell types. The type of the cell is the number of edges in the cell. They investigate the

e�ects of choosing dividing lines through di�erent sides of the cell.

To apply these concepts to generate epithelial patterns they suggest:

� reducing the junction angles from 180� by repositioning the cell membranes,

� choosing the dividing line of a cell to have one end on the line that partitioned its

mother, and

� having rough equality in sibling areas.

Section 8.2.2 contains a simulation image generated by CPL which is similar to that

obtained by Cowan and Morris.

In this section, we have examined a variety of physical representations for cells, which

have been employed at various points of time. CPL has borrowed ideas from all these

models, and to a greater extent from the cellular models discussed in the earlier sections of

this chapter.



Chapter 4

Details of the Cell Programming

Language

This chapter discusses the syntax and the semantics for the instructions in CPL. The im-

plementation issues are discussed in the last section of this chapter.

CPL reserved words appear in this thesis in the typewriter type style. Names be-

tween \<" and \>" represent templates. <expression> refers to any expression, <integer-

expression> refers to any expression evaluating to an integer, <direction-expression> refers

to any expression evaluating to a direction, <instruction> refers to any single instruction,

or a block of instructions enclosed in curly braces. CPL uses curly braces in the style of

the programming language C++ to mark the beginning and end of blocks, and semicolons

to separate instructions [Str91].

In CPL, all non-reserved words (with the �rst character being a letter and the following

characters alphanumeric or underscores) are valid identi�ers (used for biochemical, tissue,

state, and variable names). Distinctions are made between upper and lower case letters,

and all the reserved words are in lower case.

4.1 Expressions

CPL expressions follow the rules of C or C++ [Str91]. In particular, expressions evaluating

to zero are regarded as false and those not evaluating to zero as true.

CPL expressions use a subset of the language C's operators. CPL operators are listed

in �gure 4.1.

The possible operands in these expressions may be:

� constants: integer, real, and direction (of the form point(integer,integer));

0Much of the contents of this chapter have appeared earlier in a technical report [Aga93].

30
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Operator Use/Meaning

!;&&; jj logical not, and, or

^ exponentiation

*, /, % multiplication, division, modulo

+, � addition, subtraction

==, ! =, >, <, >=, <= relational operators

= assignment operator

Figure 4.1: CPL operators

� variable names;

� biochemical names;

� cell attributes: perimeter, area, cell number, location;

� neighbor attributes: neighbor.direction, neighbor.contact length,

neighbor.perimeter, neighbor.area, neighbor.cell number, neighbor.state and

neighbor.tissue type1;

� simulation attributes: time, time interval, steps (steps = time/time interval); and

� functions: sqrt:real!real, int:real!int, and random:(integer�integer)!integer2.

The non-trivial operands are discussed in section 4.6.

4.2 Instructions

Examples of CPL instruction sequences are highlighted by placing them in rectangular

boxes in this thesis.

The programs written for cells are called tissue de�nitions because the same program is

used by all the cells of the same kind or tissue. In addition, there are cell de�nitions, which

contain information about the starting location (and chemical concentrations) of the initial

cells.

The repertoire of instructions that the cell may choose to execute is listed in this section,

along with descriptions of the syntax and semantics of each of them.

1neighbor.state and neighbor.tissue type may only be tested for equality or inequality to name strings to
check the state or tissue type of the neighbor.

2random returns a random integer uniformly distributed between the two given integers.
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� assignment: The assignment instruction is used to assign new values to variables.

CPL has the simple assignment statement,

clock = 1

The positive and negative accumulator assignments (as in the language \C") are also

permitted.

clock += 1

clock �= 1

In addition, derivatives of biochemicals may be speci�ed, and that assignment takes

the form:

deriv BcOne = k * BcTwo * BcThree

deriv is a reserved word and indicates that the expression on the right hand side

(RHS) is added onto the previous BcOne value (and not assigned). The RHS is also

implicitly multiplied by the size of the time step3 in the simulation. Moreover, the

addition to biochemical values is only e�ected at the end of the time period. The

above equation assumes the following reaction:

BcTwo +BcThree! BcOne

with the rate of production of BcOne (d BcOne=dt) being given by

deriv BcOne

�t
= k �BcTwo �BcThree

deriv BcOne = (k �BcTwo �BcThree) ��t

The biochemical assignment statement in CPL resembles the above equation, though

the multiplication of the right hand side by �t is implicit. �t should be small for the

equation to be valid.

3The time step is explained in section 4.3
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In addition, the biochemical concentrations can also be set to a speci�ed value by

using the simple assignment (without using the deriv reserve word). In that case,

there is no implicit multiplication of the RHS by the time interval.

BcOne = 1.0

This sets the concentration of BcOne to 1:0 at the end of the next time step. This

statement is primarily used to set initial concentrations.

Thus the assignment statement has the following possible forms:

deriv <biochemical> = <expression>

<biochemical> = <expression>

<variable> = <expression>

<variable> +=<expression>

<variable> �=<expression>

� move: The move instruction causes the cell to move by exchanging the location of

the cell with that of a neighboring cell in the speci�ed direction. The move is well

de�ned if the two cells exchanged are of equal size; however, the move is not as well

de�ned when cells of unequal sizes are involved.4

move direction1

The general form of the move instruction is:

move <direction-expression>

A move changes the neighborhood and location of both the cells involved. This may

require recomputation of values for some of the cell variables, particularly the bio-

chemical gradients.

The direction speci�ed is relative to the location of the cell.

� goto: A goto instruction speci�es a state switch. A cell executes all the instructions

in its present state at each time unit; the goto provides a mechanism for switching

this set of instructions. Typically, gotos would be used to cycle between a set of states

(such as waitForSignal, readyToSignal, and signal ).5 These states consist of a set of

instructions speci�ed by the user. There are no prede�ned states.

4In the unequal area case, the move conserves the areas of all the cells involved; however, their shape
need not be conserved.

5These states are employed in the cellular slime mold example in chapter 5.
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The general form of the goto instruction is:

goto <state-name>

goto waitForSignal

The execution of the goto ceases execution of the rest of the program for that time

step. In other words, the goto instruction, if executed, is the last instruction executed

for a cell at any time step. At the next time step, instructions belonging to the new

state are executed.

� di�erentiate to: This instruction is a form of the goto instruction. The

differentiate to instruction can be used to specify the type of tissue the cell should

di�erentiate into. This is employed to specify a major change, often irreversible, in

the cell's life history. From the programmer's perspective, it is possible to eliminate

one of the two instructions: goto or differentiate to; however, they serve di�erent

biological purposes (cycling between a set of states and irreversible change).

The general form of the differentiate to instruction is:

differentiate to <tissue-name>

differentiate to epithelial

The differentiate to instruction changes the CPL program that the cell executes.

The execution of the differentiate to ceases execution of the rest of the program

for that time step. At the next time step, the program for the new tissue is executed.

� for each neighbor do: This permits the execution of an instruction (or a block

of instructions) using the parameters of each of the neighbors in sequence. This

instruction takes another instruction as its argument. Some extra read-only variables

are available for in the scope of the for each neighbor do, speci�cally, the area of the

neighbor; the direction to the neighbor; contact length with the neighbor; the tissue

type and state of the neighbor; the biochemical concentrations inside the neighbor;

and the variable values inside the neighbor.

The for each neighbor do executes the block of instruction with each neighbor in

turn. It randomly picks up the �rst neighbor and then cycles through the remaining

neighbors by going around the cell boundary. The exit instruction may be used to

exit the loop prematurely. Nested for each neighbor do's are not allowed.

The general form of the for each neighbor do instruction is:
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for each neighbor do <instruction>

for each neighbor do

deriv BcOne = (neighbor.BcOne � BcOne)=Drate;

The above instruction sequence illustrates a possible representation of di�usion. An

amount proportional to the di�erence in the concentration of BcOne between the

cell and the neighbor is added to the concentration of BcOne.6 In a similar fashion,

di�usion for the other biochemicals in the cell could be represented. The variable

Drate determines the rate of di�usion. A larger Drate would indicate slower di�usion.

dirBcOne = point(0,0);

for each neighbor do f

deriv BcOne = (neighbor.BcOne - BcOne)/Drate;

dirBcOne += neighbor.direction * (neighbor.BcOne - BcOne)/Drate;

g

The above instruction sequence demonstrates the accumulation of the direction of the

biochemical di�usion, which is the sum of the direction to its neighbors weighted by

the amount of the biochemical di�using from the respective neighbor.

� if-then-else: The if-then-else instruction provides conditional execution of instruc-

tions. The conditions can depend on any of the cell attributes, including the neigh-

bor attributes (only when if-then-else is used inside a for each neighbor do or

with neighbor in direction).

The general forms of this instruction are:

if <expression> <instruction>

if <expression> <instruction> else <instruction>

If the expression evaluates to a non-zero value, the condition is taken to be true.

if (area > 100) divide horizontal

6The user should ensure that the cells do not cheat in di�using biochemicals. If a cell receives some
amount of biochemical due to di�usion, some other cell must lose an equal amount of it; therefore, the
language user must write code ensuring the conservation of biochemicals during di�usion. The language
facilitates this since all the cells access the same biochemical values at any time. It is impossible to change
the biochemical value inside a cell until the end of a time step.
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� exit: The exit may only be used inside a for each neighbor do, and the remain-

ing instructions inside the for each neighbor do are not executed. The execution

resumes at the instruction succeeding the for each neighbor do. exit may be used

to help determine a neighbor with a particular property. The neighbor is unde�ned

on an exit from the loop; therefore, some variable (indicating the direction to the

neighbor) must be set to determine the neighbor to use (if any) after exiting the loop.

The general form of the exit instruction is:

exit

� with neighbor in direction: This instruction is used to employ the attributes of

a single speci�ed neighbor. It takes two parameters: a direction variable and an

instruction (or block of instructions). It �nds the neighbor in the given direction

and executes the instruction(s) using the attributes of this neighbor. Frequently,

for each neighbor do and with neighbor in direction are used in conjunction.

The for each neighbor do may cycle through all the cell's neighbors to determine

the direction to a speci�c neighbor, such as a neighbor with a given tissue type.

with neighbor in direction then enables accessing the attributes of this speci�c

neighbor.

The general form of the with neighbor in direction instruction is:

with neighbor in direction <direction-expression> <instruction>

The net ow of BcOne can be determined, as in the for each neighbor do example;

with neighbor in direction can then be used to move in that direction.

with neighbor in direction dirBcOne f

if (neighbor.tissue type == tissueA) move dirBcOne;

g

If the neighbor in the direction of the di�usion is of tissue type A, the cell swaps

locations with this neighbor.

� divide: The divide instruction causes the area of a cell to be split up into equal

halves. The instruction has an option specifying the direction of the cell division line.

The choices are horizontal, vertical, perpendicular to last division, and random (any)

dividing lines.7 In addition to the area division, the values of the variables of the

7Each of these choices is represented by a reserved word.
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parent (except biochemicals which are split equally) are copied to the children. One

of the two daughter cells then �nishes executing the state de�nition8.

divide perpendicular

This causes the cell to divide perpendicular to its last axis of division.

� grow: The grow instruction causes the cell to grow in area by the given size in

the speci�ed direction. The size can be any expression evaluating to an integer. A

negative size reduces the area of the cell (the cell shrinks). The direction can either

be a speci�ed by a variable (perhaps representing a biochemical gradient, in which

case the cell grows preferentially along that direction), or random direction, in which

case the direction of cell growth is randomly chosen.

The general form of the grow instruction is:

grow <integer-expression> <direction-expression>

grow 5 random direction

The above instruction causes the cell to grow in area by a unit in each of 5 randomly

chosen directions9.

� roundup: The execution of this instruction rounds up the cell by examining the cell

boundary and exchanging boundary points so as to for a more cohesive unit. This

instruction does a�ect the shape of the neighboring cells, since rounding up this cell

requires modifying the boundaries of the neighbors. Repeated executions of roundup

may lead to varying boundaries. The general form is:

roundup

� die: As the name suggests, this results in cell death; no more instructions of this cell

are executed. The general form is:

die

This concludes our discussion on the instructions in CPL that are directly inuenced by

the cell biology.

8We still cannot determine if it is necessary to be able to distinguish between the daughter cells; therefore,
we have adopted this arbitrary solution that one daughter cell �nishes execution, since its implementation
is the easiest.

9A cell is represented as a collection of discrete points. Growth by 5 units is equivalent to adding 5 lattice
points to the cell.
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4.3 Meta-instructions

The instructions discussed in this section enable us to control the simulation, aid program

readability, and help visualize the results.

� simulation size: Since the cells are modeled as a collection of discrete integral points,

the user has to specify the maximum size (area) the simulation may occupy. This

declaration must be the �rst statement in the program.

simulation size ( <integer>, <integer>)

simulation size ( 25, 30)

In the above example, the simulation is carried out for x coordinates ranging from 0

to 25, and y coordinates ranging from 0 to 30. The lower left hand corner is always

(0,0), and the user speci�es the upper right hand corner. Enough simulation space

should be provided to ensure that the cells do not grow past any boundary.

� time interval: The user can specify the time interval at which the program for each

cell is executed. The right hand sides of the di�erence equations of biochemical catal-

ysis and di�usion are implicitly multiplied by this quantity. Thus, if time interval=

5, the cells execute their program at time 5,10,15. . ., which makes the simulation run 5

times faster. However, time interval = 0.5 slows down the simulation by half. Only

in the assignments to the derivatives of the biochemicals (deriv) is the time interval

implicit; the other instructions in the program have to use the time interval ex-

plicitly. Thus, if some variable is monitoring the elapsed time in a cell, it should be

incremented by time interval. It is emphasized that the time interval should be a

small number; otherwise, the validity of the discrete time simulation is questionable.

The default value of the time interval is 1. It may be overridden by a declaration

following the simulation size declaration.

time interval = <real>

� echo takes a string in double quotes as an argument and prints out this string on

standard output when this instruction is executed. '\n' in the string is treated as a

newline character.

echo \<string>"

� write takes an expression as an argument and prints out the expression value followed

by a space on standard output.
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write <expression>

write state

write neighbor.state

write tissue type

write neighbor.tissue type

The last four forms of this instruction print out the numerical representation of the

corresponding state or tissue type. These are useful for printing out cell motion

information.

� image takes a biochemical or variable name as an argument and prints for each lattice

point the particular biochemical/variable's value in the cell located at that lattice

point. This can be used to visualize simulation results in image form. Alternatively,

it can be used to print out a matrix of numerical representations of the tissue types

or the states of various cells.

image <biochemical-name>

image <variable-name>

image state

image tissue

� save: This instruction saves the system state in a �le; the simulation can be restarted

from the last saved state.

save

� constants: The language permits C style #de�ne's to de�ne constants.

� comments: In addition to instructions, the language also permits comments. It

ignores everything on the line after encountering a ==.

The meta-instructions aid us both in writing readable CPL programs and in producing

results that may be easily visualized.

4.4 Variable declarations

CPL has simple variables, and it has biochemicals.

4.4.1 Biochemicals

Each biochemical appearing in a CPL program must be declared as such. The general form

of the declaration is:

biochemical <id-list>
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<id-list> is a list of identi�ers separated by commas.

Biochemicals can also be of either the integer or oating point variety, and their storage

type is declared akin to the storage type declaration for the other variables.

4.4.2 Other variables

CPL variables have two characteristics: storage type (integer, oat, or direction) and scope

(static or local).

� Storage type: The variables must be declared to be either integer, oat, or direction.

The general forms for the declarations are:

integer <id-list>

float <id-list>

direction <id-list>

� Scope: Each cell has a di�erent copy of most user de�ned variables, including

biochemicals, and it retains this copy throughout its lifetime. Such variables are

termed local variables. This is the default condition of all variables. In addition,

static variables are made available, whose values are shared by all the cells. Thus, a

static variable has the same value no matter from which cell it is accessed, as opposed

to a local variable which has di�erent values in di�erent cells. static variables are

useful for collecting statistics about the cell aggregate, such as the count of cells of

a speci�ed tissue type, or the total amount of a biochemical present in the entire

tissue. In fact, it is di�cult to justify using static variables for any purpose other

than data collection, since in the biological context static variables permit non-local

communication. The general form of the static declaration is:

static <id-list>
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Figure 4.2: The map transforming the square lattice to a hexagonal lattice.

4.5 Cell declarations

Before running a simulation, the locations of the cells that are initially present have to be

speci�ed. Here is an example of an initial cell de�nition:

cell f

type generic; // Tissue type of the cell

start up area rectangle(20,20,21,21); // starts up with area 4

g

The following instructions may be used inside a cell de�nition and serve to elucidate the

above example:

� type declares the tissue type of the cell. Its general form is:

type <tissue-name>

� assignment statement may be used to initialize the biochemical concentrations, as

well as other variables. It has the same structure as the assignment previously dis-

cussed. Assignments to derivatives of biochemicals are not useful in initialization of

cells.

� start up area indicates the starting size and location of the cell. For the purpose of

de�ning starting locations of cells, the user can specify the points on a square lattice.

The CPL implementation uses the map given in �gure 4.2 to convert this square lattice

to a hexagonal lattice (since cells contain points on the hexagonal lattice). Six of the

eight neighboring point on the square lattice map to the neighbors for the hexagonal

lattice.
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The general form of the start up area is:

start up area <object> [union <object>]+

where <object> is either rectangle, circle, triangle, or hexagon. The union

operator enables the speci�cation of composite shapes for the cell.

� rectangle declares a rectangular region of points as part of a cell. It takes four integers

as parameters (x1, y1, x2, y2), where (x1, y1) are the coordinates of the lower left

hand corner, and (x2, y2) are the coordinates of the upper right hand corner. This

instruction if present must be part of the start up area instruction. It takes 4 integer

parameters:

rectangle ( <integer>, <integer>, <integer>, <integer>)

� circle declares a disk of points as part of the cell. It takes three integers as parameters

(x, y, r), where (x, y) is the center of the circle, and r is its radius. This instruction

if present must be part of the start up area instruction.

circle ( <integer>, <integer>, <integer>)

The circle produced is a circle on the square lattice. Mapping it to the hexagonal

lattice distorts it.

� hexagon declares a hexagon of points as part of the cell. It takes three integers as

parameters (x, y, r), where (x, y) is the center of the hexagon, and r is its radius.

This does not de�ne a unique hexagon, but a family of hexagons. The hexagon with

corners on (x�r; y+r); (x; y+r); (x+r; y); (x+r; y�r); (x; y�r); (x�r; y) is chosen

because under the map in �gure 4.2, it maps onto a regular hexagon. This instruction

if present must be part of the start up area instruction.

hexagon ( <integer>, <integer>, <integer>)

The hexagon on a hexagonal lattice has the property that all the points on its perime-

ter are equidistant from its center. It corresponds to a circle in the continuous domain.

� triangle declares a triangle of points as part of the cell. It takes six integers as param-

eters, namely the coordinates of the three corner points (x1; y1); (x2; y2); (x3; y3) of the

triangle. This instruction if present must be part of the start up area instruction.

triangle ( <integer>, <integer>, <integer>, <integer>, <integer>, <integer>)

� unit area A typical simulation may have thousands of cells. To avoid repeating the

initial code for each cell, CPL provides notation for declaring arrays of cells of unit area

(i.e. single point cells). If the �rst statement in a cell de�nition is the reserved word

unit area, then the entire area of the cell is split up into distinct cells, each possessing
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the same tissue type and unit area. This enables the de�nition of arbitrary shaped

cellular array (with the constraint that each have unit area). Thus, the following

example declares an array of 10� 10 = 100 cells, starting from point (11, 11) to point

(20, 20).

cell f

unit area; // Declares it to be an array of unit area cells

type generic; // Tissue type of the cell

start up area rectangle(11, 11, 20, 20);

g

Cells are initialized with their areas in the order of their de�nition; thus, if their areas

overlap, the cell declared last receives the area in question.

4.6 Accessing cell attributes

In section 2.1, the cell attributes were briey listed; in this section each of them is discussed

in greater detail, and both syntax and semantics are provided.

� tissue type: Although the issue type is a primary attribute, it is not necessary to use

its value in the program for the tissue; as a program is written for each speci�c tissue

type, the tissue type is implicitly coded in each instruction of the program.

� biochemical: All the biochemicals declared are assumed to be present in all the

cells in the simulation space, though possibly in di�erent concentrations. Any valid

identi�er can be chosen to represent a biochemical concentration. That identi�er may

be used as a legal variable in all situations, with the caveat that all assignments to

this variable are deferred until the end of the simulation time step. All biochemical

concentrations are updated simultaneously and synchronously at the end of each time

step. Thus, when cells access biochemical concentrations of their neighbors, they are

all consistent and independent of the order of execution of the cell programs. It is

recommended that assignments to biochemicals use the special deriv assignment to

highlight this di�erence.

� area: The cell area may be used in di�erent contexts, such as determining if the cell

has grown to a su�cient size for division. The cell area is a non-negative integer.

Its value indicates the number of discrete points that form the cell's internal repre-

sentation. It is possible to ignore the internal meaning of the area and use it as a
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representation of the relative areas of di�erent cells. area is a reserved word and

may only be used as a read-only variable. Its value cannot be changed by the assign-

ment statement. There exists a separate instruction called grow that can modify this

variable.

� perimeter: The cell perimeter is the number of discrete points (in the internal rep-

resentation) on the boundary of the cell. It may be used to determine the fraction

of the cell boundary that may be in contact with a particular cell. perimeter is a

reserved word and may only be used as a read-only variable, whose value is a�ected

by the instructions grow, divide, and roundup. A positive growth would tend to

increase the perimeter; negative growth, division, and rounding up tend to decrease

the perimeter.

� location: The physical location of a cell may be accessed for programming purposes,

such as setting up initial conditions. This is guaranteed to be a lattice point belonging

to the cell. For cells with unit area, this provides the unique x and y coordinates of

the cell's location in direction form (i.e. point(x,y)).

� cell number: This provides a unique integer identifying the cell, and images of its

value may be used for identifying cell boundaries.

� Neighbor attributes: The physical layout implicitly de�nes the group of immedi-

ate neighbors of each cell. The attributes of a neighbor may be accessed in the

cell's tissue program. These attributes are read-only and available only inside the

for each neighbor do and with neighbor in direction instructions.

{ neighbor.area is the area of the neighboring cell.

{ neighbor.contact length is the size of the interface with the neighboring cell.

{ neighbor.perimeter is the perimeter of the neighboring cell.

{ neighbor.direction is the direction to the neighboring cell. This is the direc-

tion perpendicular to the boundary between the two cells and is determined by

a walk along the boundary with the neighbor. The magnitude of this vector

represents the size of the contact.

{ neighbor.<biochemical name> is the biochemical concentration in the neigh-

boring cell of the given biochemical. The biochemical concentration accessed is

the concentration in the neighbor at the previous time instance. This may be

used to compute the biochemical gradient at a given time, which would help

determine the biochemical concentrations at the next time instance.
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{ neighbor.<variable> accesses the value of the neighbor's variable. Cells may

have a variable, say age, that tracks their lifetime in a certain state, and its

neighboring cells may access this information (neighbor.age) so as to synchronize

their own life cycle.

{ neighbor.tissue type is the tissue type of the neighboring cell. This may only

be tested for equality or inequality with an identi�er representing a tissue name

(i.e. neighbor.tissue type == Dictyostelium).

{ neighbor.state is the current state of the neighboring cell. This may only be

tested for equality or inequality with an identi�er representing a state name (i.e.

neighbor.state == waitForSignal).

� time: It is reasonable to assume that cells have some idea of their lifetime. This

variable captures the notion of lifetime, by storing the current running time of the

simulation. The time attribute is useful for deciding when to switch cell states or

perform other actions. It has a real value that starts from 0 and is automatically

incremented by the time interval at the start of each time cycle. This is a read-only

variable; cell programs cannot modify its value.

� time interval: This is a user de�ned constant, and it sets the pace of the simulation.

A description of its signi�cance is provided in section 4.3.

� steps: This is a system variable that provides the number of simulation time steps

taken so far. It is equal to the time divided by time interval.

� random: This provides random numbers, which may be used to take probabilistic

actions. random(x; y) is a function call that provides a random integer between x

and y. For example, this may be used to di�erentiate a tissue into two di�erent types

with roughly half the cells of each type. Actual cells do not have random number

generators, but some of their processes are stochastic, and this probabilistic nature is

captured by providing a random number generator.

if (random(0,1) == 0) differentiate to tissueA;

else differetiate to tissueB;

4.7 Other CPL features

In this section, we describe some additional CPL features and provide modeling suggestions

that enable the writing of CPL programs.
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� The �rst state in the tissue is the default state. Cells belonging to the tissue start by

executing the code of the �rst state in the tissue. If a tissue has just one state, it need

not be named. This is accomplished by omitting the state name declaration.

tissue simple f

// state simpleOne f not needed

<instruction-list>

g

� A tissue environment is de�ned by default. The lattice points in the simulation space

that are not de�ned explicitly as belonging to a tissue, belong to this environment

tissue.

� A cell of tissue type observer is de�ned by default; however, a program for the tissue

observer has to be de�ned. This special cell always executes its instructions at the

end of every time cycle and may be used to collect results (or display images). In

addition, the static variables that are collecting data over the entire cell aggregate may

be reinitialized after each time step in the code for the observer, since the observer

always executes after all the other cells have executed for the current time value, and

before they execute for the next time value.

� Cells of the same tissue type exhibit similar behavior (with minor di�erences) even in

their di�erent states. CPL contains a feature like that enables us to specify if a state

is similar to another. This is accomplished by:

tissue amoeba f

state One: like amoebaCore f
...

g

state amoebaCore f
...

g

g

In e�ect, this executes the code for the state amoebaCore before executing the code

for state One. Normally, each multi-state tissue should have a core state (like amoe-

baCore) containing all the biochemical interaction and di�usion equations, because
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these are, for the most part, invariant during a cell's history.

� We do not model intercellular space implicitly; instead, intercellular space may be

modeled by specifying dummy cells which act as intercellular space.

� The chemical concentration of the biochemicals in the environment is assumed to be

zero at all times. Control over the concentration of biochemicals in the environment

can be achieved by surrounding the cell aggregate by some other tissue type and

specifying a program for this user de�ned tissue type.

� Even though the time step of the simulation can be speci�ed by the user, the discrete

simulation, by de�nition, assumes a \small" step size. In particular, the largest time

step for running the simulation is limited by the fact that di�usion in a time step

should at best equalize the concentration between neighbors. The biochemical should

not uctuate in a cell between extremes with every time step. In that case, di�usion

is being modeled incorrectly.

4.8 Implementation

Our exercise of writing programs for developmental behavior began with writing special

purpose programs for various developmental phenomena (notably, cell segregation and en-

gulfment). However, we soon realized that these programs were for the most part similar,

and it should be possible to write simpler descriptions (in program form) of this develop-

mental behavior. A small lexical analyzer (using lex) and a parser (using yacc) were written

for CPL. The initial CPL programs were converted into quadruples, which were in turn in-

terpreted. The interpreter was written in C++. Eventually, the interpreter was discarded in

favor of a CPL to C++ translator to improve execution speed. The current implementation

provides a library of functions for CPL instructions. The parser replaces CPL instructions

with calls to C++ functions. These are then compiled and linked with the library to produce

fast optimized code for the speci�c application.

4.8.1 Function libraries

Two libraries are provided: the �rst library (called UNIT) is optimized for CPL programs

that only use cells with unit area, and the second library (called MULTI) provides func-

tions equipped to handle cells with non-unit area. UNIT provides greater simulation speed

and has been extensively tested; MULTI is more general and still awaits serious biological

applications.

For unit area cells (UNIT), the instructions grow, divide, and roundup are not needed.

Each cell has a �xed perimeter, which makes it trivial for cells to identify their neighbors.
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If a cell moves, it is easy to identify (and tag) what other cells it may have e�ected, and

only those cells need to recompute their neighborhoods.

In the general case (MULTI), a single cell operation (move, grow, divide, or roundup)

may a�ect the geometry of a large number of cells. Thus, each operation may necessitate

recomputation of a large number of cell boundaries. Overhead is also involved in ensuring

that the cells remain connected, and that their areas are correct, since operations on other

cells may change a cell's area.

4.8.2 Cell execution order

The implementation of CPL is sequential. At each time instant the code for all the cells is

executed in random order. This reduces any e�ects that may be introduced by executing

the code for the cells in a speci�c order.

4.8.3 Stability of neighborhoods

Before executing the code at any time instant, a cell recomputes its neighborhood to account

for any changes that may have taken place. This is reasonable, if a sizable number of cells

move at each time instant. If only a few of them move at each time instant, a more e�cient

scheme is utilized. In this case, neighborhoods are only recomputed if they may have

been modi�ed. Each time a cell moves, it tags all its old and new neighbors, informing

them of possible changes in their neighborhood. Only such tagged cells recompute their

neighborhood. A compiler directive enables the user to choose between the two alternatives.

The default is to recompute the neighbors at each time instant.

The recomputation of the neighborhood is accomplished by selecting a neighbor at ran-

dom, and then traversing the boundary and forming a list of neighbors along the boundary.

Thus, unless the neighborhood is recomputed, the for each neighbor do instruction will

access the neighbors in the same order at every time step.

4.8.4 Choice of topology

The hexagonal topology is the default. For multiple area cells, this is the only well de�ned

topology. However, for unit area cells, the user may choose the eight neighbor topology

with a compiler directive.

4.8.5 Cell shape and area modi�cation

In this subsection, we discuss the implementation of CPL instructions that may e�ect the

shape or area of some cells. The implementations are di�cult only when at least some cells

have non-unit area.
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Move

A cell can only move to a location occupied by another cell. 10 The move instruction is

implemented as a complete exchange of the lattice points occupied by the two cells. The

implementation is trivial if both the cells have equal area. If they have unequal area, then

the move temporarily changes their area; however, the original area is restored by growing

(shrinking) the cells by the requisite amounts. This may modify the shapes of the cells

involved, and possibly other cells11.

A move, where cells of unequal area are involved, is computationally expensive, since it

requires recomputation of neighborhoods for a potentially a large number of cells.

Divide

The divide instruction should split the lattice points that comprise the cell equally between

the two daughter cells. Thus, each daughter cell should end up with half the lattice points.

The division should also ensure that the two daughter cells are connected. A cell is connected

if and only if between each pair of lattice points (l0 and ln) belonging to the cell:

� There is a path of lattice points (l0l1 . . . ; ln�1ln) belonging to the cell, where l1; . . . ; ln�1 2

cell.

� On the path of lattice points, li and li+1 (for all i = 0; 1; . . . ; n� 1) should be neighbors

on the hexagonal grid.

The divide is implemented by �nding the two extreme points on the cell in a direction

perpendicular to the choice of dividing line. Thus, if a horizontal dividing line is desired,

the topmost and the bottommost points on the cell serve as the seeds for the daughter

cells. Lattice points from the mother cell are added to the daughter cell alternatively. Only

lattice points which are neighbors of the lattice points already belonging to the daughter

cells may be considered for addition to the daughter cell. This strategy ensures that the

two daughter cells are connected, and halts when no more lattice points may be added to

one of the daughter cells. The procedure may halt due to two reasons. All the lattice points

in the mother cell may have been divided (which ends the divide procedure), or one of the

daughter cells may have cut o� the path (for the other daughter cell) to the remaining

lattice points in the mother cell. In the second case, the remaining lattice points in the

mother cell are added to the daughter cell that has access (by means of a path) to them.

Subsequently, the grow instruction is employed to correct the imbalance in area between

the two daughter cells (by reducing the area of one and increasing the area of the other).

10The space between cells is modeled as just another cell type.
11Other cells are a�ected, since the grow instruction has a non-local e�ect.
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Grow

An implementation of growth is accomplished by walking from the cell's center of mass in

the chosen direction until its boundary is encountered; the boundary point so encountered

(belonging to another cell) is stolen. This cell in turn steals a point from its neighbor by

performing a walk in the same direction from its center of mass. With this implementation,

if a rectangular cell is grown horizontally, the cell does not remain a rectangle; rather, only

its center line expands. This does not have the desired e�ect, since we would like to be able

to grow cells so that they maintain their shape. We also note that this implementation of

grow is an extension of the implementations proposed in section 3.3.1.

An alternative improved implementation12 of growing a cell in a direction is by com-

puting its boundary and randomly picking the requisite number of points on the boundary.

The chosen point should be such that their neighboring point in the direction of growth

belongs to a di�erent cell. This cell then steals these neighboring points. The neighboring

cells then steal from their neighbors in turn until the e�ect ripples out of the cell aggregate.

With this implementation, if a rectangular cell is grown horizontally, all the points on the

vertical edges would have an equal chance of being chosen, resulting in a rectangular cell.

This implementation is not perfect either, since the outward ripple e�ect alters the shape

of the exterior cells.

Roundup

The implementation of roundup is based on an extension of a algorithm proposed by Goel

and Rogers, in 1978 [GR78]. Their procedure for non-local exchange of cells was designed to

cause segregation and engulfment of tissues13. We have modi�ed it to cause cells to round

up. This is not surprising, since the same adhesive force is responsible for cells rounding

up, and tissue segregation and engulfment.

Description of the rounding up procedure:

1. Consider the boundary lattice points on a cell that are shaded dark in �gure 4.3.

These points have a varying number (P) of adjoining points belonging to the cell.

Since we use a hexagonal topology, P varies between 1 and 514. Order these points

in increasing order of P. Observe that points with low P are responsible for jagged

cells, and removing them from the cell would round up the cell. However, this would

reduce the area of the cell.

2. Now consider the boundary lattice points on a cell that are shaded light in �gure 4.3).

12This is the currently available implementation.
13This is discussed in section 3.2.3
14Points on the boundary cannot have 6 cell point neighbors.
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Cell

Boundary lattice points belonging to the cell

Boundary lattice points not belonging to the cell

Figure 4.3: Cell rounding up. The thick line is the cell boundary. The cell is comprised of
the dark shaded cells on the boundary and the light interior. The thin double-edged lines
indicate possible lattice point exchanges that will round up the cell.

Consider their P number (the number of adjoining lattice points belonging to the

cell to be rounded up), which again varies between 1 and 5. Order these points in

decreasing order of P. Observe that points with high P are responsible for incisions

into the cell under consideration, and adding them to the cell would round up the cell.

However, this would increase the area of the cell and reduce the area of a neighboring

cell.

We combine the previous two steps to balance the additions and deletions of lattice

point to the cell. This rounds up the cell under consideration. The lattice points deleted

from the cell are added to a neighboring cell. We keep track of additions and deletions to

neighboring cells, and if they don't cancel out, we invoke the grow procedure for the cell

to correct its area. This grow invocation can undo the rounding up, and thus repeated

invocation of round up may be required to achieve cohesive cells. In practice, the rounding

up performs well.

In this chapter, we have discussed the details of the Cell Programming Language. In the

next few chapters, we explore its power through various biological applications.



Chapter 5

Aggregation in slime mold

5.1 Theory

Dictyostelium discoidea, a free-living amoeba, is often called the hydrogen atom of develop-

mental biology. It has an intriguing life cycle. In its vegetative cycle, solitary amoebae eat

and multiply. Upon exhausting their food supply, tens of thousands of these amoebae join

together forming moving streams of cells that converge at a central point. There they form

a conical mound, which eventually absorbs all the streaming cells. This amoeba aggregate

bends over to produce a migrating slug. The cells in the slug di�erentiate into two varieties:

stalk cells and spore cells, which together form a fruiting body. The spore cells disperse,

each one becoming a new amoeba.

The cellular aggregation is not due to a simple radial movement. Rather, cells join

with each other to form streams; the streams converge into larger streams, and eventu-

ally all streams merge in the center. Sometimes amoebae will even move away from the

center to join a stream. This directed amoeba motion has been shown to be due to chemo-

taxis (movement along a chemical gradient), the chemical involved being cyclic adenosine

monophosphate (cAMP). There is no dominant cell or predetermined center. Neighboring

cells respond to the cAMP in two ways: they initiate a movement towards the cAMP pulse,

and they release cAMP of their own. Following this stage the cell is unresponsive to further

cAMP pulses for several minutes [Gil91].

This life cycle has been well researched, and there is a wealth of experimental data

available [Bon67,AM74,New77,Rap84]. Tomchik and Devreotes observed the cAMP wave

patterns, and accumulated quantitative data on them [TD81]. Wessels et al. have con-

ducted experiments on measuring Dictyostelium response to cAMP waves [WMS92]. They

concluded that Dictyostelium amoebae respond primarily to the leading edge of the cAMP

52
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wave (temporal gradient), rather than to the absolute value of cAMP or the spatial gra-

dient of cAMP1. Martiel and Goldbeter have presented a model based on cAMP-receptor

desensitization, which explains both the relayed and autonomous pulses of cAMP [MG87].

Tyson and Murray have built mathematical models and conducted numerical simulations

on the cAMP wave patterns [TM89]. Cohen and Robertson have mathematically analyzed

the aggregation process suggesting that signalling delay (and not intercellular di�usion)

limits wave velocity [CR71]. They also show that the amoeba concentration has a critical

density, below which cAMP waves cannot propagate, and thus aggregation cannot occur.

Parnas and Segel simulated the aggregation of 40 amoebae arranged in a row (one-

dimensional) [PS77,PS78]. Novak and Selig conducted simulations on a two-dimensional

(49 � 49) aggregate of slime mold cells [NS76]. Mackay has conducted extensive simula-

tions on various aspects of slime mold aggregation [Mac78], with images that closely mimic

Dictyostelium aggregation. Our results are similar to those obtained by Mackay, but are

achieved using a versatile discrete model.

5.2 Aggregation: a quantitative examination

Dictyostelium amoebae are typically 10�m in diameter, and their aggregation may involve

up to 100,000 amoebae from as far as 20 mm. The initial stimulus needed to initiate

aggregation is starvation. This induces in some cells the ability to produce slow rhythmic

pulses of cAMP with an initial frequency of approximately 1 pulse every 7{10 minutes.

Meanwhile, the rest of the starving population produce cAMP receptors on their surface

which enables them to receive the pulsed signal. The cAMP signal does not di�use far

from the centers of its production but is destroyed within 57�m (� 6 cell diameters) by

acrasinase (a phosphodiesterase enzyme) also produced by the starving amoebae.

An amoeba receiving a cAMP signal responds by moving in the direction of the signal

source for 100 seconds covering 20�m, and the amoeba itself emits a pulse of cAMP ap-

proximately 12 seconds after receiving the signal (signalling delay). The amoebae respond

to the leading edge of the cAMP wave (they are positive edge triggered). The trailing

edge elicits no response from the amoebae. The amoeba's own cAMP signal bolsters the

cAMP wave. Eventually the wave di�uses away. The amoeba then waits for the arrival of a

new wave. By this system of relay, a series of waves of cAMP production, destruction and

response, move outward from the center as the amoebae move inward. Due to the relay

of the pulse by the responding amoebae, the amoebae tend to gather into streams. The

streams increasingly act as strong local sources of attraction. Amoebae can, at times, even

be observed to move outward from the center in order to join a stream that happens to run

1In an earlier technical report [Aga93], we have reported the aggregation results assuming the amoebae
respond to the spatial gradient.
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behind them. Eventually, the amoebae in these moving streams all reach the aggregation

center, and a conical mound of cells is formed. This summary of the aggregation procedure

has been taken from Newell2 [New77].

5.3 Model

We wrote programs in CPL to model this aggregation. We considered each amoeba to be

a square with 10�m sides. We modeled each Dictyostelium amoeba by a single point in

our discrete space. Typically, we used a discrete space of 100 � 100, which translates to

1mm� 1mm of real space. The number of amoebae is about 10% of the total points, about

1000, giving them a density of 103 mm�2, or 105 cm�2, which is also a typical density for

laboratory experiments.

The concentration of cAMP varies between 10�8M and 10�6M . The signal duration

and the strength of the signal are not known; however, the cAMP waves experienced by

the ameobae have been described by Tomchik and Devreotes [TD81]. In fact, the cAMP

waves (also termed pulses) resemble the positive half of a sine wave with a width of 1 to

3:3 minutes, and a period of 7 minutes. The waves used in the CPL program are shown in

�gure 5.1. The cAMP signal duration and strength, and phosphodiesterase activity for the

simulation, were selected to produce cAMP waves with the same high and low concentrations

(between 10�8M and 10�6M), and duration (1 to 3.3 minutes). Phosphodiesterase removed

a constant fraction (1/12) of the cAMP above the base value (10�8M) in an amoeba3.

The cAMP signal strength of each amoeba was 33 � 10�8M , and it lasted for 60 seconds.

This allowed the concentration of cAMP to build up to about 10�6M . The exact peak

concentration depends upon the density of the amoebae4.

Figure 5.1 exhibits the typical cAMP concentrations within an amoeba that has just

begun releasing cAMP, and at a distance of 60�m from the amoeba. The cAMP pulse is

observed to weaken in intensity, due to di�usion, with increasing distance from the �ring

amoeba.

Only amoebae within 57�m from a �ring amoeba can detect and react to the cAMP

pulse. This translates to approximately 6 cell diameters; thus, amoebae within 6 discrete

points of a �ring amoeba in our simulation space can react. Figure 5.2 exhibits the maximum

cAMP concentration, spatial gradient, and temporal gradient as a function of cell distance

from a single �ring (cAMP releasing) amoeba. From the temporal gradient graph, we

2Some additions and subtractions have been made to the summary.
3If we assume a Dictyostelium amoeba to be a cube with sides of 10�m, then a concentration 10�8M

corresponds to about 6000 molecules per cell. Since all the amoebae have identical volume in our model, we
can use concentrations instead of number of molecules for di�usion purposes.

4In our representation, we scaled the concentration of cAMP by 108, thus instead of varying between
10�8M and 10�6M it varies between 1 and 100.
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Figure 5.1: cAMP signal strength in 10�8M as a function of time at the �ring amoeba
(top), and 60�m from the �ring amoeba (bottom). The y-axis scale is di�erent for the two
graphs.
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Figure 5.3: cAMP concentration as a function of time (in seconds). Successive subplots
display cAMP concentration at points 18 cell diameters further away from the �rst �ring
cell.

minor e�ect on wave speed.

Each time step in our simulation represents 1 second. The signalling delay is 12 seconds;

the amoebae start releasing cAMP 12 seconds after they detect the cAMP wave. The cAMP

receptors on the cells require time to recover from a cAMP wave before they are able to

detect a new wave, which is termed the relay refractory period and ranges from 3 to 7

minutes. In response to the cAMP wave, the amoebae move 20�m = 2 cell diameters in

about 100 seconds. The amoebae also have a random instantaneous velocity of 5�m=min

(observed by sampling the displacement every half second) [WMS92]. This does not cause

much overall displacement, but a random motion does help the aggregation process7, and

we model it as 1 cell diameter every 2{4 minutes.

7Random motion makes the e�ective density of amoebae higher, since due to random motion amoebae
will stray into the cAMP relaying �eld, and act as beacons for other amoebae. This enables aggregation
over larger territories.
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5.4 Program

CPL program 5.1 (pages 59{61) has been used to produce the aggregation images in �g-

ure 5.1. It describes a tissue of type generic, which is rectangular in shape (101�101). The

outermost cells in this tissue die; thus, their biochemical concentration are frozen. They

act as a barrier to di�usion to the environment. A tenth of the inner cells are then chosen

at random to act as Dictyostelium, while the remaining act as space cells. These space

cells are conduits for di�usion, and remove cAMP at each point due to the action of the

phosphodiesterase enzyme. These properties of the space cells are also properties of all

other cells (slimeMold and PaceMaker).

A central cell is chosen to act as a pacemaker (an autonomous source of cAMP). Its job

is to release cAMP every relay period (RelayPeriod = 420 seconds) for the signal duration

(SignalDuration = 60 seconds).

The slime mold cells cycle between three states. Each amoeba maintains a clock, whose

value determines after how much time will the amoeba be responsive to another cAMP

signal. This clock is decremented after each time interval. A zero or negative value indicates

the amoeba is able to respond to cAMP. A positive clock indicates that the amoeba has

received a cAMP signal and is in the process of chemotactic movement and cAMP pulse

relay. Upon receiving a cAMP pulse the amoeba's clock is set to the RelayPeriod, indicating

the time for which it will be unresponsive to further cAMP pulses. Once the clock falls to

a value RelayPeriod � SignalDelay the amoeba starts signalling (i.e. relaying) the cAMP

pulse, and the amoeba relays as long as the clock is greater than RelayPeriod � SignalDelay

� SignalDuration. The RelayPeriod of the amoeba is decremented by 10 seconds after every

relay cycle.

All the other states are like the core state. In the core state, the amoeba computes the

change in cAMP due to reaction with phosphodiesterase, and the di�usion. If the amoeba

has received a cAMP pulse (clock > 0), then it also moves about two cell diameters every

relay period in the direction of the source of the cAMP signal. It also moves one cell

diameter every two minutes in a random direction.

The three states that the amoeba cycles between are:

� waitForSignal: waiting for a cAMP signal to arrive (detected by the temporal gradient

of cAMP being greater than 0.02);

� readyToSignal: waiting a short period (SignalDelay) until ready to relay the signal;

� signal: relaying the signal for SignalDuration, and then reverting to the state of waiting

for a signal.
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Di�erences in CPL programs for the various simulation images

For simulation image 5.2, a higher cAMP wave speed is obtained by multiplying the time

parameters (SignalDuration, SignalDelay etc.) by a factor of ten. This causes the wave to

spread out much quicker, and the signal delay is the major limiting factor.

In simulation images 5.4 and 5.5, there is no amoeba signalling autonomously; instead,

one of the amoebae releases a single pulse of cAMP to initiate the aggregation. Only the

amoebae in the bottom half of the array start with zero clock (ready to respond to cAMP),

the top half do not respond to cAMP signals for until 400 seconds. The initial relay period

is also set to 600 seconds, instead of the 420 seconds in the other simulations.

#define SignalStrength (33)

#define BaseCAMP (1)

#define SignalDuration 60

#define OutputPeriod (500)

#define SignalDelay 12

#define FACTOR 8.0

#define TAU 12.0

simulation_size (102,102);

biochemical cAMP;

float cAMP,cAMPchange,clock;

vector cAMP_dir,r_dir;

integer RelayPeriod;

tissue generic{

if (location == point(51,51))

differentiate_to PaceMaker;

for_each_neighbor_do

if (neighbor.tissue_type == environment) die;

if (random(1,100) <= 10)

differentiate_to slimeMold;

else differentiate_to space;

}

tissue space{

deriv cAMP = -(cAMP-BaseCAMP)/TAU; // cAMP removal due to phosphodiesterase

for_each_neighbor_do

deriv cAMP = (neighbor.cAMP - cAMP)/FACTOR; // diffusion

}
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tissue slimeMold{

state waitForSignal:like core {

// amoeba wait in this state for cAMP signal to arrive

if (cAMPchange > 0.02 && clock < 0) {

// This value reaches cells up to 57um away

// once a signal arrives they determine the direction of the signal

cAMP_dir = point(0,0);

for_each_neighbor_do

cAMP_dir += neighbor.direction * (neighbor.cAMP-cAMP);

clock = RelayPeriod;

goto readyToSignal;

}

}

state readyToSignal:like core {

if (clock <= RelayPeriod-SignalDelay) goto signal;

}

state signal:like core {

deriv cAMP = SignalStrength;

if (clock <= RelayPeriod-SignalDelay-SignalDuration){

RelayPeriod -= 10;

if (RelayPeriod < 180) RelayPeriod = 180;

goto waitForSignal;

}

}

state core{

clock -= time_interval;

deriv cAMP = -(cAMP-BaseCAMP)/TAU;

cAMPchange = 0;

for_each_neighbor_do

cAMPchange += (neighbor.cAMP- cAMP)/FACTOR;

deriv cAMP = cAMPchange;

if (random(1, RelayPeriod) <= 2 && clock > 0) // move twice every relay period

with_neighbor_in_direction cAMP_dir

if (neighbor.tissue_type == space) move cAMP_dir;

else clock = neighbor.clock;

if (random(1,240) <= 1) { // one cell diameter every 4 minutes

r_dir = random_direction;

with_neighbor_in_direction r_dir

if (neighbor.tissue_type == space) move r_dir;

}

}

}
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tissue PaceMaker{

clock -= time_interval;

if (clock < 0)

deriv cAMP = SignalStrength;

if (clock + SignalDuration <=0)

clock = RelayPeriod-SignalDuration-SignalDelay; // quit signalling

deriv cAMP = -(cAMP-BaseCAMP)/TAU;

for_each_neighbor_do

deriv cAMP = (neighbor.cAMP - cAMP)/FACTOR;

}

tissue observer{

if (int(time) mod OutputPeriod == 1)

image state;

}

cell {

unit_area;

type generic;

start_up_area rectangle(1,1,101,101);

cAMP = BaseCAMP;

clock = 0;

cAMP_dir = point(0,0);

RelayPeriod = 420;

}

CPL program 5.1: Aggregation in Dictyostelium.

5.5 Simulation results

Simulation images 5.1 (page 63) and 5.2 (page 64) show Dictyostelium aggregation results.

The pacemaker is located in the center for each subframe. Both the simulation images

contain about a thousand amoebae in an array of 100� 100. The only di�erence between

the two is the wave speed. In the second one, the wave speed is closer to what is experi-

mentally observed. However, the �rst simulation takes a tenth of the simulation time. The

aggregation results are very similar in both cases, and the wave speed seems to have little

or no e�ect on the aggregation in small territories (1mm� 1mm).

The e�ect of the choice of hexagonal topology is quite evident in these images. The

streams have a tendency to form along the six preferred directions. However, the succeeding

images illustrate that the streams are not always formed along the six directions dictated

by the choice of topology.



CHAPTER 5. AGGREGATION IN SLIME MOLD 62

Simulation image 5.3 (page 65) exhibits the aggregation with lower amoeba density (only

� 300 amoebae in the same sized territory 1mm � 1mm). In this simulation image, the

streaming is more evident, and the hexagonal topology does not seem to have an e�ect on

the streams. Some streams seem to bend away from the center to join a larger stream. The

local distribution of the amoebae determines the location of streams. Due to the limited

signalling range at lower densities, all amoebae do not receive the relayed signal from the

central pacemaker, and some amoebae on the fringe do not join the aggregation process

at this stage. Thus, if the amoebae are present in lower densities then the aggregation

territories are smaller,

The streaming is a result of the limited signalling range of the amoebae. Decreasing the

signalling range increases the amount of streaming seen. However, a smaller signalling range

makes signal propagation more di�cult, and the signal may not reach the more isolated

amoebae. Thus, a higher density is needed for propagation to take place.

Simulation images 5.4 (page 66) and 5.5 (page 67) show Dictyostelium aggregation re-

sults with no autonomous pacemaker. Both these simulation images contain about a thou-

sand amoebae in an array of about 200� 60. The Dictyostelium in the top half of the array

are not responsive to cAMP until 400 seconds of the simulation8. The cAMP wave passes

only through the Dictyostelium in the lower half of the array. After 400 seconds, the Dic-

tyostelium in the top half become responsive, and the cAMP wave circles back. It travels in

opposite directions in the top and bottom halves. Thus, a self-sustaining cAMP wave may

be set up. This leads to a rotating stream of amoebae, with other streams spiraling into it.

Eventually, the rotating stream collapses. The rotating stream requires that there are no

Dictyostelium within it; however, this need not be arti�cially created. In fact, such holes

arise naturally due to the streaming process and the rotating cAMP wave.

Distributing the amoebae into disjoint halves, such that the amoebae in the top half

are not responsive until 400 seconds, is possibly an arti�cial initial situation. However,

similar results are obtained when unresponsive amoebae are randomly interspersed with

responsive amoebae. Mackay's simulations yielded very similar results [Mac78]. The spirals

are observed in only some of the aggregations, and if the responsive and response-delayed

amoebae are interspersed, the spirals are not as prominent and seem to collapse sooner.

In simulation image 5.4 (page 66), the amoeba that initiates the aggregation by releasing

a cAMP pulse is located in the center of the array (100; 30). In simulation image 5.5

(page 66), the amoeba that initiates the aggregation by releasing a cAMP pulse is located

in the left center of the array (30; 30). In simulation image 5.5, the aggregation territory

breaks up into two halves with two rotating cAMP waves.

8The relay period is 600 seconds in these simulations.
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Simulation image 5.1: Aggregation in Dictyostelium. Each point represents a Dictyostelium
amoeba. The subframes are images taken after every 1000 seconds of the simulation run.
The last subframe shows the �nal aggregate and is after 20,000 seconds of the simulation.
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Simulation image 5.2: Aggregation in Dictyostelium. Almost identical aggregation is ob-
served by doubling the wave speed to 300�m. All other parameters are the same as in the
previous simulation image.
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Simulation image 5.3: Aggregation in Dictyostelium present at low density. Only 3% of the
points are occupied by amoebae, thus their density is 0:3� 105 cm�2. The subframes are
images taken after every 1000 seconds of the simulation run. The last subframe shows the
�nal aggregate and is after 20,000 seconds of the simulation.
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Simulation image 5.4: The amoebae in the top half of the �rst subimage do not react to the
cAMP until a later time. This sets up a rotating cAMP wave throughout the aggregate,
causing the amoebae to spiral (clockwise) around an spontaneously created empty-center.
The subframes are images taken after every 2000 seconds of the simulation run.
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Simulation image 5.5: Two spirals are created by choosing a di�erent aggregation initiating
amoeba. The left spiral rotates anticlockwise and the right one clockwise. The subframes
are images taken after every 2000 seconds of the simulation run.
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5.6 Simulation speed

A simulation for a thousand Dictyostelium amoebae on a lattice of 100� 100 points for 100

time steps on SPARCstation-10 takes about 30 seconds. Thus, typical aggregation runs

of 20,000 seconds (or time steps) can be completed in about 100 minutes of CPU time9.

The running time for the Dictyostelium simulation for a lattice size of 200 � 200 for 100

time steps is about 120 seconds. Pro�les of the program indicate that most of the compute

time is spent calculating the biochemical values at each lattice point. We estimate the

complexity of the simulation to be approximately O(lw), where l,w are the length, width

of the simulation lattice. There is also a slight dependence on Dictyostelium density since

each amoeba requires added computation as compared to a amoeba-free lattice point.

5.7 Future re�nements

There are some approximations we have made, regarding the cAMP reaction-di�usion me-

chanics and the granularity of the movement and time, which can be improved upon. Sim-

ulations on larger territories should also produce interesting results.

� We have not modeled the detailed reaction mechanics as proposed by Martiel and

Goldbeter [MG87]. Instead, we have assumed the mechanics of the cAMP wave, and

modeled the amoeba signalling so as to produce a cAMP wave in conformity with

that experimentally observed by Tomchik and Devreotes [TD81].

� Modeling each amoeba by a single point provides a simple simulation, but the draw-

back is that the motion of each amoeba is extremely discrete. The smallest step it can

move is its own diameter. Reducing the smallest step size may reduce the e�ect of

the choice of topology. In fact, Mackay in his simulations found pronounced vertical

and horizontal streaming if the movement step size was large [Mac78]. The hexagonal

topology negates some of that e�ect.

� We are unable to conduct simulations on aggregation in territories larger by an order

of magnitude then our current 1mm� 1mm due to limitations of computer memory

and time. Simulations on territories of size at least 10mm � 10mm are needed to

observe the spiraling cAMP wave patterns.

9There is approximately an order of magnitude improvement over interpreted CPL programs. In the
current implementation, CPL programs are translated into C++ and then compiled into object code.



Chapter 6

Limb skeleton formation

\The morphogenesis of the vertebrate limb, and its skeleton in particular, has

long fascinated embryologists as a conspicuous and experimentally accessible

example of the developmental process. The wide spectrum of adult limb forms

found in di�erent vertebrates, which nonetheless represent variations on a com-

mon structural theme, has stimulated a search for embryological mechanisms

consistent with such degrees of freedom and constraints." [New88]

6.1 Theory

The limb bud is composed of mesenchymal cells encased by epithelial cells. Some of these

mesenchymal cells form condensations (or clusters), and they di�erentiate to form chondro-

cytes. Chondrocytes are the precursors of cartilage. Bone eventually replaces cartilage by

the process of ossi�cation.

The formation of condensations is mediated by the protein �bronectin, which is present

at the site of these condensations. Interference with �bronectin activity disrupts the con-

densations. The transforming growth factor-� (TGF-�) stimulates the production of both

�bronectin and itself, and is non-uniformly distributed in precartilage tissue. There is evi-

dence that TGF-� could be the primary morphogen that forms the standing waves for the

reaction-di�usion model (Turing model, discussed in section 3.1.1) proposed by Newman et

al. to account for the condensations [NF79,New88,LFF+91].

The formation of the vertebrate limb involves the formation of an increasing number

of skeletal elements (cartilage/bone) from the base of the limb bud towards its tip1 (i.e.

along the proximo-distal axis). Wilby and Ede (1975) proposed a model which, given

the proximo-distal pattern, simulates the anterior-posterior positioning of skeletal elements

[WE75]. They were able to produce patterning resembling the layout of the bones in

1This is also referred to as the in vivo condensation pattern.
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(a) Leg (b) Wing

Figure 6.1: The precartilage condensation patterns in leg and wing mesenchyme. Alcin
blue-stained six day cultures are shown. Both tissues were isolated from stage 24 (4 1/2
day) chicken embryos. Culture diameter � 5mm. Pictures courtesy of Downie and Newman
[DN].

the limb (humerus; radius and ulna; metacarpals; digits). These patterns were produced

by computer simulations using only local cell interactions, with one computer cell being

equivalent to a hundred real cells. A single morphogen system was used, and a wave of this

morphogen was set up in the system using simple rules, including a boundary layer of cells

that actively destroys this morphogen.

Newman and Frisch mathematically analyzed a single morphogen model for the appear-

ance of the precartilage elements [NF79]. They determined a system that would permit

standing waves of a morphogen. The number of such waves along the anterior-posterior

axis depends on the proximo-distal length of the system. A shorter proximo-distal axis

would yield a larger number of standing waves. The proximo-distal length decreases from

the humerous to the radius-ulna to the digits, and correspondingly the number of skeletal

elements increases.

Newman et al. have studied the formation of precartilage (chondrogenic) condensations

in chick limb bud mesenchyme in vitro [FJN89,LFF+91]. The condensation patterns in

the wing and leg mesenchyme are di�erent [DN]. As can be observed from �gure 6.1, the

condensations in the leg are focussed, while the wing condensations are unable to stay

focussed, and merge to form larger but weaker condensations.
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6.2 In vitro model

In conjunction with Stuart Newman and J.K. Percus, we explored possible models that

would explain the di�erences in the precartilage condensations. A simple activator-inhibitor

model is proposed which accounts for these condensations.2 The model was tested using

CPL. The condensations are formed in regions of high �bronectin activity. Our model

assumes the �bronectin concentration is linked to an activating biochemical (A) that di�uses

(possibly TGF-�). In addition, a fast di�using inhibitor (I) is present. The two interact

according to the following equations:
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from the six neighboring cells (we assume a hexagonal topology). It is a linear system with

characteristics observed in the Turing system of section 3.1.1. Observe that I di�uses faster

than A. The interaction of A and I provides zones of inuence of A and I. The constant

Iresponse determines how rapidly the inhibitor I responds to changes in the concentration

of both A and I. If Iresponse is very low, then an increase in the activator level A spreads

rapidly (the inhibitor being too slow to respond), and most of the region is inuenced by

A. However, if Iresponse is high, then an increase in the activator is quickly controlled (in

area), since I is produced rapidly, and its quicker di�usion contains the region of inuence

of A. Simulations with di�erent value of this parameter Iresponse yield patterns similar to

those of the condensations in leg and wing mesenchyme. The variations in Iresponse are

biologically plausible; the presence or absence of certain catalysts could presumably alter

the speed of the reaction. Alternatively, Iresponse may be considered as a concentration

of a distinct biochemical substance, and this concentration varies between the wing and the

leg.

The simulation result for the activator and �bronectin concentrations leg tissue are

shown in simulation images 6.1 and 6.3 (Iresponse = 1:0) and for the wing in simulation

image 6.2 and 6.4 (Iresponse = 0:01) respectively. The �bronectin concentration pro�le

mirrors the activator pro�le except for a smoother gradient. Cells that have an activator

level higher than the equilibrium level manufacture �bronectin, and its production is as-

sumed to deplete a resource. The simulation are on aggregates of about 50� 50 cells. The

activator and inhibitor concentrations in the cells are at equilibrium initially. There is no

2This model is only one possible explanation. However, the results of this model are encouraging in that
the same model yields both the in vivo and in vitroo precartilage patterns in vertebrate limbs.
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Simulation image 6.1: The activator concentrations for the in vitro condensation pattern in
the chick leg. The subframes are at every 30 time steps starting from 0.

di�usion across the aggregate boundary; i.e. it is a closed system. Minor random positive

perturbations in the activator concentrations of randomly chosen cells over the course of

the simulation time result in variations in the activator-inhibitor values in the cells. Each

perturbation results in unbounded maxima and minima. However, the simulation results

improve if the concentrations are bounded; this is also more realistic, since concentrations

cannot have in�nite range, especially in biological systems.

Downie and Newman have also observed the e�ect of addition of TGF-� on the conden-

sation patterns (see �gure 6.2 on page 75). The e�ect of this additional TGF-� is to make

the condensations almost uniform in both the leg and wing. The same e�ect is observed in

the CPL simulations due to the addition of extra TGF-� (see simulation image 6.5).

The CPL program 6.1 provides details of the simulation parameters. The simulation

running speed is comparable to that of the Dictyostelium simulations; however, the sim-

ulation has to run for only about 300 time steps as opposed to the 20,000 time steps for

Dictyostelium.
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Simulation image 6.2: The activator concentrations for the in vitro condensation pattern in
the chick wing. The subframes are at every 30 time steps starting from 0. The inhibitor has
little inuence, resulting in the activator being present throughout in high concentration.

6.3 In vivo model

The choice of random cells with perturbations in activator values produces in vitro con-

densation patterns as previously shown. Remarkably, modifying the boundary to permit a

slight leakage of the activator yields the in vivo condensation patterns, which is the pat-

tern of the skeletal elements in the limb. This leakage could be explained by the ectoderm

(epitheleal) cells surrounding the tissue as having slightly lower activator levels.

This leakage gives rise to banded patterns of activator concentration. The number of

bands depends upon the width (anterior-posterior dimension) of the cellular aggregate,

and the strength of response of the inhibitor (Iresponse). For a 50 cell wide aggregate

Iresponse = 0:01; 0:08; 0:5 yields 1, 2, and 5 bands of precartilage respectively, which

corresponds to the humerus, radius-ulna, and metacarpals, simulation image 6.6. Thus, if

the width of the cellular aggregate is held constant, then increasing Iresponse increases the

number of waves, and thus increases the number of precartilage elements3. For constant

Iresponse, increasing the width of the cellular aggregate increases the number of waves.

Thus, the cellular aggregate widths and Iresponse can be selected to produce the desired

number of precartilage bands. The talpid mutant of the chick has a wider limb bud and

not surprisingly a larger number of skeletal elements [NF79,WE75], which is predicted by

3If Iresponse is modeling a biochemical substance, then the appearance of each successive precartilage
element along the proximo-distal axis is marked by an increase in the concentration of Iresponse.
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Simulation image 6.3: The �bronectin concentrations for the in vitro condensation pattern
in the chick leg. The subframes are at every 30 time steps starting from 0. In contrast to
the activator pro�le in simulation image 6.1, this has more clump-like formations.
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Simulation image 6.4: The �bronectin concentrations for the in vitro condensation pattern
in the chick wing. The subframes are at every 30 time steps starting from 0. In contrast to
the activator pro�le in simulation image 6.2, the overlapping clumps can be observed. This
clumps in this simulation are also in contrast with the more focussed clumps in the leg case
(simulation image 6.3).

(a) Leg (b) Wing

Figure 6.2: The precartilage condensation patterns in leg and wing mesenchyme on treat-
ment with TGF-� (1 ng/ml TGF-�1 for 5 hours on day 1 after plating). Alcin blue-stained
six day cultures are shown. Both tissues were isolated from stage 24 (4 1/2 day) chicken
embryos. Culture diameter � 5mm. Pictures courtesy of Downie and Newman [DN].
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(a) (b) (c)

Simulation image 6.5: The e�ect of addition of TGF-� to the in vitro condensations in the
chick leg and wing. In the leg mesenchyme, (a) almost uniform �bronectin concentration is
observed at low resolution; (b) at high resolution some condensations can be distinguished.
In the wing mesenchyme, (c) uniform �bronectin concentration is observed at all resolutions.

our model. The Iresponse may also be adjusted to compensate for di�erent widths of limb

buds so as to produce the same number of skeletal elements. Assuming that Iresponse is

the concentration of a catalyst, and in a wider limb bud the catalyst is present in lower

concentrations, then this could generate wider (but the same number of) skeletal bands.

In this model, the proximo-distal dimension has no e�ect on the number of skeletal

elements formed.

In the simulation image 6.6, the proximo-distal dimensions (length of the cellular ag-

gregate) were arbitrarily selected to be 70, 50, and 30 cells (corresponding to the humerus,

radius-ulna, and metacarpals). These 3 aggregates are isolated from each other (no di�usion

across boundaries). This is biologically justi�able, since the precartilage forms along the

proximo-distal axis at di�erent times, and thus when the skeletal elements for the radius-

ulna are being formed those for the humerus are already developed, while the metacarpals

etc. have not yet been initiated.

Simulation image 6.7 presents the e�ects of varying the anterior-posterior dimension

and Iresponse. Either thicker or more bands of precartilage may be obtained by varying

the Iresponse and increasing the anterior-posterior dimension.

It is evident that introducing some uctuation in the activator/inhibitor level is neces-

sary to change the uniform equilibrium condition. We have examined the e�ects of ran-

dom uctuations (producing the in vitro pattern), and external leakage (producing the in

vivo pattern). For completeness, the simulation image obtained by introducing both these

phenomena together is exhibited. Simulation image 6.8 exhibits both external leakage of

activator, and random uctuations in activator concentration at all cells. As can be seen,

the leakage dominates the exterior pattern (producing stripes), and the random uctuations

dominate the interior pattern (producing foci). Moreover, the size of the stripes and the
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#define Iresponse 1.0

// 0.01 for wing, 1.00 for leg

#define TS 30

#define ConsumptionRate 40.0

#define BaseAct 0.9

#define BaseInh 1.0

#define Amplitude 0.8

float Act, Inh, resource, fibronectin;

biochemical Act, Inh, resource, fibronectin;

tissue mesenchyme{

if (Act < BaseAct-Amplitude) Act = BaseAct-Amplitude;

else if (Act > BaseAct+Amplitude) Act = BaseAct+Amplitude;

deriv Act = (0.1+ Act/9.0-Inh/5.0)

+ (random(1,1000) == 1)*0.001*random(0,100);

// produces the random positive perturbations

deriv Inh = Iresponse*(0.1+ Act/9.0-Inh/5.0);

for_each_neighbor_do

// closed system, diffusion only to mesenchyme

if (neighbor.tissue_type == mesenchyme){

deriv Act = (neighbor.Act-Act)/50.0;//Inh diffuse faster than Act

deriv Inh = (neighbor.Inh-Inh)/7.0;

deriv resource = (neighbor.resource-resource)/40.0;

// consumable resource required to make fibronectin

}

if (Act > BaseAct) {

// resource is consumed to produce fibronectin

deriv fibronectin = resource/ConsumptionRate;

deriv resource = - resource/ConsumptionRate;

}

}

tissue observer{

if (int(time) mod TS == 0)

image fibronectin;

}

cell{

unit_area;

type generic;

start_up_area hexagon(26,26,25);

Act = BaseAct;

Inh = BaseInh;

fibronectin=0.0;

ConsumptionRate = 1.0;

}

CPL program 6.1: CPL program for the in vitro condensation pattern in the chick limb.
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Simulation image 6.6: The activator concentrations for the in vivo precartilage pattern in
vertebrate limb. The subframes are at every 50 time steps starting from 0. The prox-
imo-distal axis is from left to right in each subimage. The anterior-posterior axis is 50 cells
high in each subimage. The humerus, radius-ulna, and the metacarpals/digits appear as
bands of 1,2, and 5 precartilage elements in aggregates with length 70, 50, and 30 cells along
the proximo-distal axis respectively.

(a) (b) (c)

Simulation image 6.7: The activator concentrations for the in vivo precartilage pattern in
a wider vertebrate limb. In (a), we have a 50 cell high image with a 1{2{5 skeletal pattern.
In (b) and (c), the images have 100 cells along the height (anterior-posterior). However, in
(b) it still produces the 1{2{5 pattern with thicker bands (smaller Iresponse), but in (c) it
produces a 2{4{10 pattern with thinner bands (greater Iresponse). Other parameters are
identical in the three subimages.
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Simulation image 6.8: The activator concentrations in the case of both external leakage
and random centers. The subframes are at every 30 time steps starting from 0. The
proximo-distal axis is from left to right in each subimage. The anterior-posterior axis is 50
cells high in each subimage.

foci depend on the Iresponse. The Iresponse values and other parameters are the same as

in simulation image 6.6 (except for the addition of random activator uctuations).

6.4 Commentary

What are the characteristics of this model that provide this range of developmental behav-

ior? This is but one possible model. This model requires activation and inhibition resulting

in the formation of stationary waves. For the in vitro case, the stationary wave centers

are randomly distributed resulting in simple clumps; in the in vivo case, the centers align

themselves, and the stationary wave fronts travel in unison resulting in a striped pattern.

In addition, the model employs the fact that the inhibitor may react at di�erent speeds to

changes in its environment, which changes the wavelength of the stationary waves. In the

leg mesenchyme, the inhibitor reacts quickly (smaller wavelength), and sit reacts slowly in

the wing mesenchyme (larger wavelength). As long as the reaction-di�usion model displays

these characteristics, it is possible to obtain the aforementioned developmental behavior.

One unsatisfactory aspect of this model is that the in vitro condensations require random

positive perturbations in the activator level4. It may be di�cult to organize a system such

that only positive uctuations in a biochemical concentration are permitted. However, a

system that permits both positive and negative random perturbations in a biochemical

concentration is easily achieved. The negative perturbations have the e�ect of creating

disks of high inhibitor concentrations in which no clumps would form. This is not observed

4The same e�ect is obtained by permitting negative perturbations in the inhibitor.
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in experiments; thus, permitting random negative perturbations in the activator provides

unsatisfactory results.



Chapter 7

Segregation of tissues

7.1 Theory and simulations

Dissociated embryonic tissue reaggregates to resemble the original structure. Wilson in

1907 discovered that a dissociated sponge cells would reaggregate to form a functional

sponge structure. Steinberg has extensively investigated the phenomena of reaggregation

and sorting out of cells in embryonic tissue [Ste70] [Gil91, page 532]. The theory has been

extensively discussed in sections 3.2, 3.2.1 and 3.2.3. To summarize, Steinberg observed

that:

� A fragment of tissue rounds up into almost spherical shape.

� If two di�erent cell types are mixed with each other, they segregate, with one of the

cell types aggregating centrally and the other cell type surrounding it. For example,

heart cells migrate towards the center when mixed with pigmented retinal cells, and

pigmented retinal cells migrate towards the center when mixed with neural retinal

cells.

� The central migration is transitive. If A sorts internally to B and B sorts internally

to C, then A sorts internally to C. In fact, there is a complete hierarchy among cell

types of such central migration.

Steinberg concluded that cells adhere to one another with varying strengths, and they

try to maximize adhesive energy (or minimize free energy). This thermodynamic model

was termed the \Di�erential Adhesion" model. In section 3.2.3, we have already discussed

some of the simulations that have employed this model.1

1The volume by Mostow is a comprehensive collection of papers on cellular sorting and engulfment
[Mos75].
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We tested the di�erential adhesion hypothesis using CPL. The results we obtained are

in accordance with the hypothesis. In fact, they are signi�cantly better than the results

obtained by Goel et al. [GR78]. The simulations by Goel et al. produced only local clumping.

Other researchers have had great di�culty in producing anything more than local clumping.

Their clumping results resemble those in simulation image 7.1. The improved clumping we

observed was due to the addition of random motion (simulation images 7.2 and 7.3). Our

experiments show that clumps of any size can be obtained provided random motion persists.

Thus, clump size can be directly correlated to the duration of cell motility.

Engulfment is observed if two tissues of di�erent adhesive strengths are placed besides

each other. One of the tissues envelops the other. This is observed both in experiments

and in the simulations we conducted (simulation images 7.4 and 7.5). Goel et al. were able

to simulate engulfment but only by using a distant exchange mechanism. It is signi�cant

that the same e�ect can be observed by utilizing purely local mechanisms. No engulfment

would be observed if there was no random motion, since the adjacent tissue are in a state

of local adhesive energy maxima. The random motion eventually takes them to an even

higher adhesive energy (through a path of lower adhesive energies).

The di�culty of getting the smaller clumps to combine and to form larger clumps in-

creases exponentially with clump size. Experimental data on clump formation in laboratory

experiments has been di�cult to obtain. The size of the clumps obtained in the lab is lim-

ited, but the relationship of clump size with respect to time is not known to us. Possibly

the slow motion of the cell clumps plays a role in their merging.

Simulation image 7.1 contains the tissue segregation obtained in the absence of any

random motion. No cell motion is observed after 13 time steps, since each cell is at a local

adhesive energy maxima. This is in contrast to the next few simulation images (7.2{7.5) in

which the cells had random motion.

Simulation image 7.2 (page 84) represents segregation of two di�erent tissue types. The

more adhesive tissue migrates centrally, and the periphery is occupied by cells belonging to

the less adhesive tissue. Simulation image 7.3 (page 85) represents the central movement

that occurs when three di�erent tissues are mixed together. The most adhesive tissue

rounds up centrally; the cells of the tissue with the medium adhesivity form a shell around

the most adhesive tissue; the periphery is occupied by cells belonging to the least adhesive

tissue. Thus, an onion layered pattern is seen.

Simulation images 7.4 and 7.5 exhibit the engulfment of a tissue by a tissue of lower

adhesive strength, when the two tissues are placed in contact. The shapes of the tissues are

di�erent in the two �gures. However, engulfment occurs for both rectangular and hexagonal

tissues in contact, illustrating that it does not depend upon initial shape.
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Simulation image 7.1: Segregation of two tissues using adhesivity di�erences without any
random motion. Each point represents a cell, and the two di�erent tissue types are repre-
sented by light and dark points. The subframes are after simulation time steps 1, 10, and
20.

7.2 Program

CPL program 7.1 (page 88) was used to test the di�erential adhesion hypothesis. The

program speci�es a simulation starting with a hexagonal arrangement of cells in a hexagon

of radius (side) 25, each cell of unit area. These cells, numbering about 2000, are of a

generic tissue type, and randomly choose the number of contacts on their surface to be

either 1 or 4. The adhesion between cells is proportional to the product of the contacts on

their surface. Thus, cells with di�erent contacts represent di�erent tissue types.

The �rst de�nition is that of a generic tissue, which uses a random number generator

to split the tissue into cells with di�ering contact strengths. Each cell at every time step

computes its own energy by summing up the number of contact sites on the cells surrounding

it. The adhesive energy is given by the product of these contact sites and the number of

the cell's own contact sites. The cell computes the move to a neighboring point that would

result in the maximum increase in the adhesive energy, and with probability half makes

that move. Cells also move in a random direction once every 4 time steps.

7.3 Simulation speed

The cell segregation simulations have algorithmic complexity of approximately O(lw) (iden-

tical to the Dictyostelium simulations). The running time for the cell segregation simulation

for a lattice size of 100� 100 for 100 time steps is about 240 seconds. The running time

is greater compared to the Dictyostelium simulations due to increased cell motion. Cell

motion requires recomputation of the neighborhood, which is expensive.



CHAPTER 7. SEGREGATION OF TISSUES 84

Simulation image 7.2: Segregation of two tissues using adhesivity di�erences. Each point
represents a cell, and the two di�erent tissue types are represented by light and dark points.
The subframes are after 1, 20, 60, 120; 200, 300, 500, 800; 1300, 2000, 3000, 5000; 10,000,
15,000, 20,000 and 25,000 simulation time steps.
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Simulation image 7.3: Segregation of tissues using adhesivity di�erences. The darkest points
belong to the tissue with the highest adhesivity (they aggregate centrally), and the lightest
ones have the weakest adhesivity (they aggregates externally). The subframes are after 1,
20, 60, 120, 200; 300, 500, 800, 1300, 2000; 3000, 6000, 9000, 12,000, 15,000; 18,000, 21,000,
24,000, 27,000 and 30,000 simulation time steps.
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Simulation image 7.4: Engulfment of tissues placed in contact using adhesivity di�erences.
The dark squares represent cells (496 in number) belonging to the tissue with the higher
adhesivity, and the lighter ones (465 in number) have the weaker adhesivity. The subframes
are after every 200 simulation time steps starting from time 0. In the last subframe (at
2200 time steps) the tissue is rounded up, since random motion is discontinued after time
step 2000.
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Simulation image 7.5: Engulfment of tissues placed in contact using adhesivity di�erences.
The dark squares represent cells (331 in total) belonging to the tissue with the higher
adhesivity, and the lighter ones (also 331) have the weaker adhesivity. The tissue with the
weaker adhesivity envelops the more adhesive tissue.
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#define ContactA 2

#define ContactB 1

simulation_size (53,53);

integer contactSum, contact, bestEnergy, exchangeEnergy;

direction dir;

tissue generic{

state splitUp{

if (random(0,1) == 0) contact = ContactB;

else contact = ContactA;

goto motion;

}

state motion{

contactSum = 0;

for_each_neighbor_do

contactSum += neighbor.contact;

bestEnergy =0;

for_each_neighbor_do

if (neighbor.contact != contact) { //different tissue type

exchangeEnergy =

contactSum*neighbor.contact+neighbor.contactSum*contact -

(contactSum*contact+neighbor.contactSum*neighbor.contact) -

(contact - neighbor.contact)*(contact - neighbor.contact);

if (exchangeEnergy > bestEnergy) {

bestEnergy = exchangeEnergy;

dir = neighbor.direction;

}

} // end for_each_neighbor_do

if (bestEnergy > 0 and random(0,1) == 0) move dir;

// half the time the best move is made

if (random(0,3) == 0) move random_direction;

// quarter of the time a random move is made

}

}

tissue observer{

image contact;

}

cell{

unit_area;

type generic;

start_up_area hexagon(26,26,25);

}

CPL program 7.1: Segregation of tissues using adhesivity di�erences.



Chapter 8

Assorted applications

In the previous three chapters, we have discussed detailed models of di�erent aspects of

developmental behavior. In this chapter, we examine through simple models various sim-

ple developmental phenomena that may possibly be used as building blocks for complex

behavior.

8.1 Unit area cells

Each subsection displays a simulation with the patterns being formed mainly by the con-

trolled motion of cells, each cell having unit area.

8.1.1 Stripe formation

Utilizing a sorting mechanism, similar to that employed in chapter 7 but restricting cell

motion to be parallel to one axis, one can obtain striped patterns (simulation image 8.1).

Stripes are frequently seen developmental patterns, and this example illustrates one tech-

nique for obtaining them. Alternatively, they may be obtained by the interaction of di�using

biochemicals (Turing's stationary wave patterns).

8.1.2 Cell migration

The ability of cells to follow biochemical gradients is useful in pattern formation. The

Dictyostelium cells exhibit an extreme sensitivity to cAMP gradients, and are able to move

in direction of higher cAMP (discussed in chapter 5). In a smaller example, in simulation

image 8.2, we exhibit the trail left by a single cell following a biochemical gradient due to

its di�usion. There is a single source of the biochemical at the top of circular cell aggregate.

Leakage of the biochemical by the peripheral cells acts as the sink. This establishes a

biochemical gradient. The motile cell is initially present at the bottom of the circle, and
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Simulation image 8.1: Striped pattern formation using lateral sorting.

Simulation image 8.2: Cell migration along a chemical gradient in a circular aggregate of
cells.

wanders randomly. On detecting the biochemical gradient it heads, more or less, in a

straight line for the biochemical source.

There are numerous examples in developmental biology of cells moving around, appar-

ently at random, until they happen to arrive at their destination, whence they loose their

motility (for example, the migration of mesenchyme cells in the blastula). Simulation im-

age 8.3 exhibits this phenomena with a central spine acting as the destination. One could

envision the central spine to be an underlying tissue to which the wandering motile cells

stick. In part (a) of the simulation image, the motile cells have not yet gained motility, and

are stuck to the periphery. On gaining motility, by random wandering alone they are able

to �nd the spine and stick to it.



CHAPTER 8. ASSORTED APPLICATIONS 91

(a) (b) (c)

Simulation image 8.3: This assumes an underlying adhesive tissue along the central spine.
The outer cells move randomly and stick on contact to the spine. (a) before the cells become
mobile (b) some of the mobile cells have already found the central spine (c) the spine is
covered by the mobile cells.

Simulation image 8.4: Three layers of tissues being formed using timing hypothesis of
segregation.

8.1.3 Segregation using the timing hypothesis

This example demonstrates the formation of bands of tissues. Simulation image 8.4 exhibits

an image of three layers of tissue. Initially, cells of all three kinds are randomly intermixed

in the aggregate. We assume that the cells have a tendency to stick to the outer layer, and

that di�erent tissue types regain their adhesivities at di�erent times. The tissue type that

regained adhesivity �rst would form the outermost layer, and the tissue regaining adhesivity

last would form the innermost layer. A similar explanation called timing hypothesis of

segregation has also been used to explain cellular sorting. In chapter 7, we examined a more

convincing explanation of segregation.
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(a) (b) (c) (d)

Simulation image 8.5: Cell growth from 37 points to 2537 points by adding points in
random directions. (a) Initial 37 point cell (b) After random growth by 2500 points (c)
After rounding up the boundary from previous simulation image (d) After rounding up the
boundary at each stage of the growth process (50 stages).

8.2 Multiple area cells

It is not a coincidence that the previous three chapters examined models that all involved

cells of the same size and shape. In this section, we will grow and divide cells.

8.2.1 Cell growth

Simulation image 8.5 contains images of cell growth. Originally the cell is small (area = 37).

The cell grows by stealing points from its neighbors, which in this case is the environment.

The second image reveals a rather jagged cell. Since, in nature, cell growth does not lead

to such angular features, it is evident that a rounding up of the cell is needed to ensure

cohesiveness. Simulation image 8.5(c) exhibits the e�ect of rounding up this jagged cell.

Rounding up is e�ective in removing the jagged edges, but the cell still has a jagged skeleton.

As simulation image 8.5(d) shows, the best results are obtained by rounding up the cell at

each stage of the growth process. This cell was grown by adding 50 points at each time

step in randomly chosen directions.

8.2.2 Cell division

Simulation image 8.6 demonstrates the e�ect of repeated cell division on a reasonably large

cell. Successive divisions are made at right angles to the previous one. Cell division lines

have to be chosen with care, so as to divide the cell into daughter cells of equal area, while

maintaining the connectivity of cells. The e�ect of the choice of hexagonal topology and

the division algorithm is evident in the division lines1 .

1Refer to the implementation note on the division algorithm in section 4.8.5.
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Simulation image 8.6: Repeated cell division.

(a) (b) (c)

Simulation image 8.7: Tissue grows by about 3500 points. The cells also divide upon
reaching a size of 400 points. (a) Initial 37 point cell (b) After growth and division (c) After
a few stages of rounding up the cells.

8.2.3 Cell growth and division example

Simulation image 8.7 combines the cell growth and division of the previous two examples.

The simulation commences with a cell with an area of 37 points (as in the growth example).

The cell increases in area by 50 points at every time step, and rounds up after every

growing step. The cells divide if their area surpasses 400 points. Successive divisions are

again perpendicular to the previous one. The rounding up is seen to have a positive e�ect

on cell shape in simulation image 8.7 (c).

These growth and division examples reveal interesting patterns but lack serious bio-

logical signi�cance. Growth and division are intrinsically three dimensional activities. We

would like to explore examples of development where two dimensional growth and/or divi-

sion play signi�cant roles in pattern formation.
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(a) (b) (c)

Simulation image 8.8: Cellular automaton based (a) fractal (b) dendrite formation by con-
trolled growth (c) di�using gas

8.3 Cellular automaton

Simulation image 8.8 includes traditional cellular automaton simulations. Similar ones may

be found in To�oli's book on Cellular Automata [Tof87]. Simulation image 8.8(a) exhibits an

image with a fractal avor. (b) exhibits dendrite formation by allowing only cells that have

exactly one neighboring cell of dendritic form, to di�erentiate to form dendrites. (c) exhibits

a di�using gas. Each cell is a gas molecule, and random motion causes it to di�use. Thus,

although CPL has a distinct developmental biology avor, it can be employed for other

cellular automaton applications. However, CPL programs, being versatile, compromise on

speed compared to other cellular automaton programs: cellular [Eck91] and SLANG [SC91].



Chapter 9

Conclusions

The aim of this thesis was to develop a simple language (a means of description) for a

variety of developmental behavior. This language took the shape of a programming language

(CPL). The various models we developed emphasized the scope of CPL. The modeling of

Dictyostelium aggregation involved chemotactic movement due to biochemical di�usion.

The formation of skeletal elements in limb was explained by a Turing reaction-di�usion

model. The segregation and engulfment of tissues involved minimization of free energy and

dealt with mechanical forces in the form of contact, adhesion, and motion.

The examination of the instruction sequences for the applications we have developed

has also proved useful.

� The CPL programs serve as succinct descriptions of the cell's activities.

� Comparison between the instruction sequences of distinct cells has highlighted both

the similarity and the di�erences between them.

Running simulations on aggregates of these cells has yielded developmental behavior.

We have been able to encode various hypothesis regarding developmental behavior in terms

of these instruction sequences, and the simulation results have at times reinforced or weak-

ened the hypothesis. Some simulations have suggested possible experiments to con�rm

hypotheses. For example, an experiment on the time required to double clump size due to

cell segregation is suggested.

CPL is similar in some respects to Fleischer and Barr's work on designing a system

to study multicellular pattern formation [FB93]. Both CPL and Fleischer's work are con-

cerned with observing pattern formation in multicellular simulations. However, the goals

are di�erent: Fleischer and Barr want to create arti�cial genomes to simulate evolution,

while CPL's intention is to shed light on natural processes by making it easy to model

di�erent possible explanations. Fleischer and Barr employ a continuous model with di�er-

ential equations, whereas CPL utilizes a discrete model with di�erence equations. CPL can
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model a larger number of cells, but the di�erence equations involved make our calculations

more approximate than the continuous model of Fleischer and Barr.

Computational power

CPL takes an approach akin to the cellular automata approach; however, the cells are in-

fused with more power. In cellular automata, cells compute simple next state functions

based on their own and their neighbors current states. Cellular automata arrays can repre-

sent logical circuits, and thus they are Turing computable (since circuits are Turing com-

putable). In CPL, each cell is Turing computable, and we believe this adds to its descriptive

power. Most cellular automatons use a cryptic language with a compact and e�cient syn-

tax. Run-time computational e�ciency is their primary concern. CPL is designed with

a speci�c objective | modeling in developmental biology | and can a�ord to be more

descriptive. In CPL, we write programs for cells and not equations for grid points. CPL

is a high-level language as opposed to the assembly language appearance of most cellular

automaton models.

Open problems

Major problems in the realm of growth, division, and motion of arbitrary sized cells are

still unresolved. The solutions CPL adopts for these problems are unsatisfactory. CPL has

drawn inspiration from biology for the design of its instruction set, but simple biological

models of growth, division, and motion are not available. Motion can be managed if all the

cells are similar in shape and size, but in other cases our solution is somewhat ad hoc.

Most development is essentially three-dimensional. It is evident that the two-dimensional

models are in most cases approximations to reality. In the Dictyostelium, the conical mound

that forms is three-dimensional and removes cells from the two-dimensional aggregation

plane. This provides extra space for the Dictyostelium streams to converge. Cellular seg-

regation is a three-dimensional process, and critics have even questioned the thermody-

namic validity of the two-dimensional model. The extension of CPL to three-dimensions

is straightforward (essentially the neighborhood function has to be modi�ed). However,

the extra computational memory and time such simulations require raise questions about

the choice of discrete representation of cells. Spheres and /or ellipsoids of varying radii, or

polyhedrons with a limited number of surfaces, are possibilities for cell representations in

three dimensions.

The current implementation of CPL is a sequential one, but cells inherently work in

parallel. The behavior of cells would be further illuminated if we adopted a parallel im-

plementation that mimics their natural behavior. Cells only have local information, and

they utilize it to decide their next state. If they move or grow, this e�ect is felt by their
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immediate neighbors, and through them by the rest of the aggregate. By utilizing such

local schemes, the entire cell aggregate is able to maintain energetically favorable shapes.

We still need better understandings of exactly how local behavior determines global shape

and size. That knowledge would enable us to assign processes to each cell which work

semi-synchronously, and would make a good parallel implementation.

In addition to the problems mentioned above, each of the models we have discussed

raises some questions and has possibilities for re�nements. These have been discussed in

the appropriate chapters.



Appendix

BNF Grammar for CPL

The syntax is described in extended Backus-Naur Form (BNF) [Mac87, page 159{169].

Only terminals are in boldface. The following symbols are meta-symbols belonging to the

BNF formalism, and are not symbols of the language.

::= j [ ] � +

program ::= [hash de�nes]� simSize [ declarations]� [tissue]+ [cell]+

hash de�nes ::= #de�ne identi�er value

simSize ::= simulation size ( integer, integer );

[time interval = real;]

declarations ::= [ biochemical j integer j oat j direction j

global j static identi�er [, identi�er]+ ;]+

tissue ::= tissue tissue name f state+ g j bracedCommands

state ::= state state name [:like statename] bracedCommands

commands ::= bracedCommands j command ;

bracedCommands ::= f [command ;]+ g

command ::= assignment j if then j go to state j di�erentiate to j

ForNeighbor j WithNeighbor j exit j die j

grow j divide j move j roundupj

image j write j echo

assignment ::= variable = expression j

biochem name = expression j

deriv biochem name = expression j

variable += expression j

variable �=expression
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if then ::= if expression then commands j

if expression then commands else commands

go to state ::= goto state name

di�erentiate to ::= di�erentiate to tissue name

ForNeighbor ::= for each neighbor do commands

WithNeighbor ::= with neighbor in direction direction commands

grow ::= grow size direction

divide ::= divide divide option

divide option ::= horizontal j vertical j perpendicular j any

move ::= move direction

image ::= image [ tissue j state j cell number j

biochem name j variable ]

write ::= write expression

echo ::= echo \string"

tissue name ::= identi�er j environment j observer

state name ::= identi�er

variable ::= identi�er

biochem name ::= identi�er

size ::= expression

distance ::= expression

direction ::= identi�er j random direction

expression ::= ( expression ) j

+ expression j

� expression j

expression + expression j

expression � expression j

expression ^ expression j

expression � expression j

expression = expression j

expression == expression j

expression ! = expression j

expression <= expression j

expression >= expression j

expression < expression j

expression > expression j

expression and expression j

expression or expression j
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not expression j

sqrt( expression ) j

point( integer, integer) j

time j

steps j

time interval j

area j

perimeter j

cell number j

location j

random( integer, integer) j

neighbor.contact length j

neighbor.area j

neighbor.perimeter j

neighbor.direction j

neighbor.variable j

neighbor.biochem name j

neighbor.tissue type == tissue name j

neighbor.tissue type != tissue name j

neighbor.state == state name j

neighbor.state != state name j

integer j

real j

variable

cell ::= cell f initialization g

initialization ::= [ unit area; ]

type tissue name ;

start up area cell location ; variable init

cell location ::= object j cell location union object

object ::= rectangle( integer, integer, integer, integer) j

circle( integer, integer, integer) j

hexagon( integer, integer, integer) j

triangle( integer, integer, integer, integer,

integer, integer)

variable init ::= variable init variable = expression ; j [ ]
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