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Doctoral Dissertation Abstract

This dissertation addresses the problem of dealing with large numbers of set-

based patterns, such as association rules and itemsets, discovered by data mining

algorithms. Since many discovered patterns may be spurious, irrelevant, or trivial,

one of the main problems is how to validate them, e.g., how to separate the \good"

rules from the \bad." Many researchers have advocated the explicit involvement

of a human expert in the validation process. However, scalability becomes an issue

when large numbers of patterns are discovered, since the expert cannot perform the

validation on a pattern-by-pattern basis in a reasonable period of time. To address

this problem, this dissertation describes a new expert-driven approach to set-based

pattern validation.

The proposed validation approach is based on validation sequences, i.e., we rely

on the expert's ability to iteratively apply various validation operators that can

validate multiple patterns at a time, thus making the expert-based validation fea-

sible. We identi�ed the class of scalable set predicates called cardinality predicates

and demonstrated how these predicates can be e�ectively used in the validation

process, i.e., as a basis for validation operators. We examined various properties

of cardinality predicates, including their expressiveness. We also have developed

and implemented the set validation language (SVL) that can be used for manual

speci�cation of cardinality predicates by a domain expert. In addition, we have

proposed and developed a scalable algorithm for set and rule grouping that can be

used to generate cardinality predicates automatically.
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The dissertation also explores various theoretical properties of sequences of val-

idation operators and facilitates a better understanding of the validation process.

We have also addressed the problem of �nding optimal validation sequences and

have shown that certain formulations of this problem are NP-complete. In addition,

we provided some heuristics for addressing this problem.

Finally, we have tested our rule validation approach on several real-life applica-

tions, including personalization and bioinformatics applications.
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Chapter 1

Introduction

1.1 Motivations

The research area of data mining, often also called knowledge discovery in data

(KDD), deals with the discovery of useful information in large collections of data.

In recent years, association rules [8] emerged as one of the most popular types of

data mining patterns, and they are being discovered in a variety of applications.

One fundamental advantage of association rule discovery from a given dataset is

the completeness of data mining results. That is, association rule mining methods

usually �nd all rules (i.e., not only the ones with predetermined dependent variables,

as in various classi�cation methods) that satisfy minimum support and con�dence

requirements speci�ed by the user.

However, this advantage at the same time can become a signi�cant limitation,

since the number of discovered rules often can be huge (e.g., measured in tens

of millions or more). This is particularly common in \dense" datasets [14] or the

datasets with highly correlated attributes. Another very common criticism of many
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association rule discovery algorithms is that they produce not only too many rules,

but also that many of the discovered rules are spurious, trivial, or simply irrelevant

to the application at hand [34, 66, 46, 71, 73, 20, 79, 78, 14].

To address this problem, most previous approaches have focused on develop-

ing various measures of rule interestingness that could be used to prune the non-

interesting rules. Alternatively, these measures could be directly incorporated into

association rule discovery algorithms in order to generate only interesting rules.

Excellent surveys of statistical (or objective) rule interestingness measures can be

found in [42, 81]. Other approaches to deal with large numbers of discovered rules

include multi-level organization and summarization [56], as well as introducing the

subjective measures of rule interestingness, such as unexpectedness [60, 61, 54, 79]

and actionability [73, 1].

Many authors advocate the direct involvement of the user (e.g., domain expert)

in the process of post-analysis (or validation) of data mining results, and the rule

validation problem in the post-analysis stage of the data mining process has been

addressed before. In particular, there has been work done on specifying �ltering

constraints that select only certain types of rules from the set of all the discovered

rules; examples of this research include [46, 53, 55]. In these approaches the user

speci�es constraints but does not do it iteratively. In contrast to this, it has been

observed by several researchers, e.g. [18, 32, 72, 67, 50, 2, 69], that knowledge

discovery should be an iterative and interactive process that involves an explicit

participation of the domain expert. In our research we have followed the latter

approach and applied it to the rule validation process.

Note, that the \quality" of discovered rules can be de�ned in several ways. In
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particular, rules can be \good" because they are:

1. statistically valid;

2. acceptable to a human expert in a given application;

3. \e�ective" in the sense that they result in certain bene�ts obtained in an

application.

In our research, we have focused on the �rst two aspects, i.e., statistical validity

and acceptability to an expert. The third aspect of rule quality is a more complex

issue, and we do not address it in this dissertation, leaving it as a topic for future

research.

1.2 Validation Problem: The Proposed Approach

Before discussing the rule validation problem, we would like to formulate a more

general validation problem and describe our proposed approach to handling it.

Let's assume that we have a �nite set E that contains all possible data points.

Then a dataset D is simply a set of data points, i.e., D � E . Let's assume that the

domain expert has to \validate" some dataset D. Here the concept of validation is

understood as follows.

The domain expert has a set L of possible labels. Let's denote these labels L1,

L2, . . . , Ln. Then, given dataset D, the goal of the validation process is to \label"

each input element e 2 D with one of the labels from L. In other words, the goal

is to split the input set D into n + 1 pairwise disjoint sets V1, V2, . . . , Vn, and U ,

where each Vi represents the subset of D that was labeled with Li and U denotes
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the subset of D that remains unlabeled after the validation process (i.e., some input

elements may remain unvalidated).

For example, in a data mining application, the domain expert may want to

validate the discovered association rules by \accepting" the rules that are relevant

to him/her and rejecting the ones that are irrelevant. Therefore, in this case L

would be de�ned as L := fAccept; Rejectg.

We assume that dataset D contains a large number of data points, because oth-

erwise the domain expert would be able to validate (i.e., to label) all data points

manually, i.e., in a one-by-one manner. However, with many data points to be

validated, their individual validation by an expert is not feasible. To make the

expert-driven validation process feasible, we propose to use validation operators,

i.e., tools that allow the expert to validate multiple rules at a time. More speci�-

cally, instead of validating (labeling) data points one at a time, we propose to use

predicates to specify a class of data points that should be labeled with a particular

label.

In particular, let's denote P to be the set of all possible predicates for validating

input data from E , i.e., let P contain all predicates p of the form:

p : E �! fTrue;Falseg (1.1)

Then, the validation operator is de�ned as follows.

De�nition 1 (Validation Operator) A tuple (l; p), where l 2 L and p 2 P, is

called a validation operator.

In other words, given an unvalidated dataset D and an expert-speci�ed valida-

tion operator o = (l; p), all data points e 2 D for which p(e) = True are labeled
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Validated InputsInput Data

p(e) = False

l = L1

l = L2

l = Ln

p(e) = True

o = (l, p)
Expert:Unvalidated

Inputs

Figure 1.1: Expert-driven validation process.

with l and are considered validated. Data points e 2 D for which p(e) = False

remain unvalidated. Therefore, validation is an iterative process, where in each

iteration the domain expert can specify a new validation operator that validates

another portion of input dataset D. In other words, the validation process can be

described as a sequence of validation operators.

De�nition 2 (Validation Sequence) A sequence of validation operators is called

a validation sequence. We will denote the validation sequence as < o1; o2; : : : ; ok >,

where oi = (li; pi), li 2 L and pi 2 P.

The schematic description of the validation process is presented in Figure 1.1.

Here we have de�ned the general validation problem. In the next chapter we will

discuss the speci�cs of validation operators when dealing with set-based data (i.e.,

sets and rules).

6



1.3 Contributions

The contributions of the research presented in this dissertation are the following.

We have introduced a novel expert-driven approach to validating large numbers

of rules (or itemsets) discovered by association rule mining methods. In fact, our

approach can be straightforwardly generalized to validating large collections of any

set-based data (e.g., collections of sets or rules), and not necessarily only those col-

lections that were discovered by data mining algorithms. This approach is based on

validation sequences, i.e., the expert's ability to iteratively apply various validation

operators that can validate multiple rules at a time, thus making the expert-based

validation feasible.

We identi�ed the class of set predicates called cardinality predicates. We demon-

strated how these predicates can be e�ectively used in the validation process, i.e.,

as a basis for validation operators. We examined various properties of cardinality

predicates, including their expressiveness. We also showed that they can be eÆ-

ciently implemented. In other words, the proposed cardinality predicates scale well,

which is crucial in the post-analysis of data mining results, where the number of

discovered rules can be very large.

We have developed and implemented the set validation language (SVL), which

is an intuitive and user-friendly language that allows the domain expert to specify

validation operators.

We have developed and implemented a novel algorithm for grouping sets and

rules. We also showed that this algorithm is scalable.

We explored various theoretical properties of validation sequences. In particular,
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we have introduced the concepts of sequence permutation, sequence equivalence

and strong equivalence, sequence optimality, and some others. We have proved

various propositions about these concepts, which provides for better understanding

of validation process. We have also addressed the problem of validation sequence

optimization. We have shown that certain formulations of this problem are NP-

complete and provided some heuristics for addressing this problem.

In addition, we have tested our rule validation approach in several real-life ap-

plications. In particular, we have addressed the problem of constructing individual

user pro�les in personalization applications. We have proposed to augment the

traditional factual user pro�les with the behavioral component (i.e., rules). We

used our validation approach to enable the domain expert (i.e., marketing analyst)

to validate the individual user pro�les after the rules have been discovered by data

mining algorithms.

We have also applied the rule validation ideas in the area of bioinformatics.

More speci�cally, we have proposed to use association rule methods to discover

rules in the biological microarray data. Since the numbers of rules discovered in

such data collections are usually huge, we showed how to use the validation tools to

deal with this issue. In other words, we have adapted our validation tools (mainly

the set validation language and the rule grouping algorithm) so that the domain

expert (geneticist/biologist) can analyze these large numbers of rules in a convenient

manner.
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Chapter 2

Validation Operators

2.1 Set Predicates

In our research, we have focused on the validation of set-based data, or more pre-

cisely, on set-based data mining results (i.e., rules and itemsets). For the remain-

der of this dissertation we will assume that there exists a discrete and �nite set

I = fi1; i2; : : : ; ing. We will call I a base set. Also, the elements of I are usually

called items. For example, in a supermarket application I could be the set of all

possible products.

Any set I, such that I � I, is usually referred to as an itemset. Furthermore, an

association rule is de�ned as an implication A ) C, where A and C are itemsets

(i.e., A � I, C � I) and A \ C = ;. In other words, an association rule can be

represented by an ordered pair of two itemsets, i.e., (A;C). Here A is called an

antecedent (or body, left-hand-side) of the rule, and C is called a consequent (or

head, right-hand-side) of the rule.

The general validation process, described in the previous chapter, obviously
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directly applies to the validation of sets and rules. In the case of set validation,

set E (i.e., set of all possible data points to be validated) is simply a set of all

possible itemsets. That is, Eset = Powerset(I). In case of rule validation, naturally,

Erule = f(A;C) : A � I; C � I; A \ C = ;g, i.e., the set of all possible rules.

Most of the research presented in this dissertation applies for both of these cases.

Furthermore, it can also be extended to other validation applications, e.g., where

E consists of relational data tuples.

As mentioned in the previous chapter, we propose to use predicates to specify

a class of data points to be validated at once, rather than validating data points

on a one-by-one basis. Since we are dealing with set-based data, we will be using

set predicates when specifying validation operators. That is, we will be using the

predicates of the form:

p : Powerset(I) �! fTrue;Falseg (2.1)

Set predicates can be applied to sets and rules as follows. Assume, p is an

arbitrary set predicate. We can apply this predicate directly to any itemset I,

i.e., itemset I matches predicate p if and only if p(I) = True. Furthermore, let

R = (A;C) be an arbitrary rule, i.e., A � I, C � I, A \ C = ;. Then p can be

applied to R in several ways, each of which corresponds to a certain itemset of R:

� p can be applied to the body (antecedent) of rule. We will denote it as

predicate p[body]. That is, rule R = (A;C) matches p[body] if and only if

itemset A (i.e., the body of R) matches predicate p;

� p can be applied to the head (consequent) of rule. We will denote it as

predicate p[head]. That is, rule R = (A;C) matches p[head] if and only if
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itemset C (i.e., the head of R) matches predicate p;

� p can be applied to the whole rule. We will denote it as predicate p[rule].

That is, rule R = (A;C) matches p[rule] if and only if itemset A[C (i.e., the

whole rule R) matches predicate p.

An important question is what kind of set predicates we should use for set and

rule validation. When developing a query language or a programming language,

it often comes down to a tradeo� between expressiveness of the language and its

computational complexity. That is, we may choose an elaborate language that

allows the domain expert to express validation decisions in a highly intuitive man-

ner. However, while giving much expressive freedom to the expert, such language

is likely to be computationally expensive, i.e., in many cases it may not be able

to evaluate quickly whether a given set or rule satis�es a predicate. On the other

hand, we may choose a language that works very fast, which obviously is important

in the validation of large numbers of rules discovered by data mining algorithms.

Moreover, such validation is an interactive and iterative process, therefore we def-

initely would like to have the language that is as computationally inexpensive as

possible, so that the domain expert does not have to wait for long periods of time

in order to see the results of the previously applied validation operator. However,

such language is likely to allow only very simple and straightforward predicates, and

therefore the expressive power of the domain expert could be signi�cantly limited.

Having in mind this tradeo� between the expressiveness and the computational

complexity, we propose to use a class of set predicates, called cardinality predicates,

which is a compromise between the two issues. In other words, these predicates are
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both scalable and expressive. We describe cardinality predicates in the next section.

2.2 Cardinality Predicates

2.2.1 De�nition and Basic Properties

Given any itemset X � I, we will de�ne the set [X] as: [X] := f0; 1; 2; : : : ; jXjg.

De�nition 3 (Cardinality Predicate) Given the sets X and S, where X � I

and S � [X], the cardinality predicate CS
X is de�ned as

CS
X(I) =

8<
:

True; if jX \ Ij 2 S

False; otherwise
(2.2)

where I is any itemset, i.e., I � I. Such predicate is called a cardinality predicate,

or c-predicate for short.

In other words, given itemset I, the cardinality predicate CS
X(I) evaluates to

True if and only if the size of the set X \ I is among the sizes speci�ed in S. We

will call I an input set, X a comparison set, and S a cardinality set.

Below is an example of a cardinality predicate.

Example 1 Assume I = fa; b; c; d; eg. Then, cardinality predicate C1
a;b

would match any input itemset I � I that has either a or b item present,

but not both. For example, let I1 = fa; c; dg and I2 = fa; b; eg. Then,

C1
a;b(I1) = True and C1

a;b(I2) = False1.

1Note, that according to the de�nition of cardinality predicates we should write C
f1g
fa;bg(I1),

but we use the C1
a;b(I1) notation here and in the rest of the dissertation for the sake of better

readability.
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Sample Input Cardinality Predicates (CS
X)

Itemsets (I) C1
a;b C0

c C
0;2
b;e C3

a;b;c C
0;1;3
b;c;d;e

fag True True True False True

fa; c; dg True False True False False

fa; b; eg False True True False False

fb; cg True False False False False

fb; d; eg True True True False True

fc; eg False False False False False

fa; b; c; dg False False False True True

Table 2.1: Examples of cardinality predicates.

Example 2 Assume I = fa; b; c; d; eg. Cardinality predicate C1
a;b[body]

then would match any rule R = (A;C) that has either a or b item

present in its body, but not both. For example, let R1 = (fa; c; dg; fbg)

and R2 = (fa; b; eg; fcg). In other words, R1 represents the association

rule a ^ c ^ d) b, and R2 represents the association rule a ^ b ^ e) c.

Then, C1
a;b[body](R1) = True and C1

a;b[body](R2) = False.

More examples of cardinality predicates and their values given certain inputs

can be found in Table 2.1 (assuming I = fa; b; c; d; eg).

Here are some basic properties of cardinality predicates.
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Lemma 1 The following equalities hold for every itemset I � I.

C;
X(I) = False (2.3)

C
[X]
X (I) = True (2.4)

:CS
X(I) = CS

X(I); where S := [X]� S (2.5)

CS1
X (I) ^ CS2

X (I) = CS1\S2
X (I) (2.6)

CS1
X (I) _ CS2

X (I) = CS1[S2
X (I) (2.7)

n̂

i=1

C
jXij
Xi

(I) = C
j[Xij
[Xi

(I) (2.8)

n̂

i=1

C0
Xi
(I) = C0

[Xi
(I) (2.9)

I Follows directly from the de�nition of cardinality predicates. J

2.2.2 Combining Cardinality Predicates Using Boolean Operators

Several cardinality predicates (as de�ned in Section 2.2.1) can be combined into one

more complex set predicate using standard Boolean operations such as conjunction

(^), disjunction (_), and negation (:). The matching semantics of such a predicate

combination is de�ned in a standard manner. That is, :CS
X(I) is True if and only

if CS
X(I) is False; C

S1
X1
^CS2

X2
(I) is True if and only if both CS1

X1
(I) and CS2

X2
(I) are

True; and CS1
X1
_ CS2

X2
(I) is True if and only if at least one of CS1

X1
(I) and CS2

X2
(I) is

True.

In order to distinguish between the simple cardinality predicates of the form

of the form CS
X (as de�ned in Section 2.2.1) and the more complex predicates

that combine several simple cardinality predicates using Boolean operators, we will

call the former atomic cardinality predicates and the latter composite cardinality
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predicates.

2.3 Completeness of Cardinality Predicates

As mentioned earlier, we use set predicates for the purpose of set and rule validation.

That is, any predicate p of the form described in Equation 2.1 can be used for

validation purposes.

From elementary mathematics we know that if we have two �nite sets M and

N , the number of possible functions from M to N (i.e., functions f : M �! N)

is jN jjM j. Therefore, the number of di�erent possible set predicates described by

Equation 2.1 is 2jPowerset(I)j. Furthermore, since the size of Powerset(I) is 2N

(assuming jIj = N), the total number of di�erent set validation predicates is 22
N

.

One way to estimate the expressive power of a particular class C of set predicates

is to determine how many di�erent predicates (out of possible 22
N

) can be speci�ed

(expressed) using the predicates from class C. Let's consider the following simple

class M of set predicates { the set membership predicates. In particular, given an

input itemset I, the set membership predicate mx is de�ned as follows:

mx(I) =

8<
:

True; x 2 I

False; otherwise
(2.10)

More speci�cally, let's denote the class M as containing all possible member-

ship predicates mx (x 2 I) as well as their combinations using standard Boolean

operations AND (^), OR (_), and NOT (:).

Let's assume p is an arbitrary set validation predicate, i.e., p is a function

described by (2.1). Let pT be the set of all possible inputs for which p evaluates
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to True, i.e., pT = fX 2 Powerset(I)jp(X)g. Since Powerset(I) is �nite and

pT � Powerset(I) (by de�nition), pT is also �nite. Therefore, let's enumerate pT ,

i.e., pT = fX1; X2; : : : ; Xkg. Then predicate p can be expressed as follows (for any

input set I � I):

p(I) =
k_
i=1

(
^
x2Xi

mx(I) ^
^
x=2Xi

:mx(I)) (2.11)

Essentially, the above expression is analogous to how every Boolean function

can be expressed using the disjunctive normal form.

Since every set predicate can be expressed with a Boolean combination of mem-

bership predicates, we say that class M is complete. By the same argument, the

class of cardinality predicates is also complete, sincemx = C1
x, i.e., any set predicate

can be expressed using cardinality predicates with the same Boolean combination

as in Equation 2.11, only replacing all mx predicates with C1
x.

2.4 Expressiveness of Cardinality Predicates

While the class of cardinality predicates is complete, as shown in the previous sec-

tion, obviously not every set predicate can be expressed with cardinality predicates

concisely by the domain expert. However, many widely used and universally ac-

cepted set predicates can indeed be expressed concisely using cardinality predicates

and we demonstrate it in this section.

2.4.1 Expressing Simple Membership Predicates

Consider the following simple set membership predicates. INCLUDE ALLX is a

set predicate that evaluates to True for those itemsets I � I that include all items
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from the given set X. Similarly, set predicate INCLUDE NONEX evaluates to

True for all itemsets I � I that include none of the elements from the given set X.

These two predicates can be expressed using cardinality predicates as follows:

INCLUDE ALLX = C jXj
X

INCLUDE NONEX = C0
X

2.4.2 Expressing Subset/Superset Predicates

Consider the standard subset and superset predicates. In particular, set predi-

cate SUPERSETX evaluates to True for those itemsets I � I that are supersets

of the given itemset X. Similarly, set predicate SUBSETX evaluates to True for

those itemsets I � I that are subsets of the given itemset X. Furthermore, let

PROPER SUPERSETX and PROPER SUBSETX be the standard \proper super-

set" and \proper subset" predicates. All these predicates can be concisely expressed

using cardinality predicates as follows:

SUPERSETX = INCLUDE ALLX

= C
jXj
X

SUBSETX = INCLUDE NONEX

= C0
X

PROPER SUPERSETX = SUPERSETX ^ :INCLUDE NONEX

= C
jXj
X ^ :C0

X

= C
jXj
X ^ C

1;:::;jXj

X
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PROPER SUBSETX = SUBSETX ^ :INCLUDE ALLX

= C0
X
^ :C jXj

X

= C0
X
^ C

0;:::;jXj�1
X

Here set X denotes a complement of set X and is de�ned as X := I �X.

2.4.3 Expressing Set Equality/Inequality Predicates

Consider the standard set equality and inequality predicates. In particular, set

predicate EQUALX evaluates to True for those itemsets I � I that are equal to

the given itemset X. Similarly, set predicate NOT EQUALX evaluates to True for

those itemsets I � I that are not equal to the given itemset X. These predicates

can be concisely expressed using cardinality predicates as follows:

EQUALX = SUBSETX ^ SUPERSETX

= C
jXj
X _ C0

X

NOT EQUALX = :EQUALX

= :(C jXj
X ^ C0

X
)

= :C jXj
X _ :C0

X

= C
0;:::;jXj�1
X _ C

1;:::;jXj

X

2.4.4 Expressing Set Size Restriction Predicates

Consider the following set size restriction predicates. In particular, set predicate

SIZEk
X evaluates to True for those itemsets I � I that have exactly k items from

the given set X. Set predicate MAX SIZEk
X evaluates to True for sets that have at
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most k items from the given set X. Set predicate MIN SIZEk
X evaluates to True

for inputs that have at least k items from the given set X. Finally, set predicate

SIZE RANGEa;b
X evaluates to True for inputs that have at least a and at most b

items from the given set X. These sets can be straightforwardly expressed using

cardinality predicates:

SIZEk
X = Ck

X

MAX SIZEk
X = C0;:::;k

X

MIN SIZEk
X = C

k;:::;jXj
X

SIZE RANGEa;b
X = Ca;:::;b

X

If restrictions on absolute set sizes are wanted, simply replace X by I in the above

equations. For example, set predicate SIZEk evaluates to True for itemsets of size

k. It can be expressed using cardinality predicates as follows:

SIZEk = Ck
I

The summary of the commonly used set predicates that can be concisely expressed

using cardinality predicates is presented in Table 2.2.

2.4.5 Limitations of Cardinality Predicates

In this section we discuss several limitations of the expressivity of cardinality pred-

icates.

Note, that we do not assume any speci�c properties about the base set I and its

items. For example, in some application domains, all items in I may be numbers.

In those applications the domain expert might be interested in using predicates
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Set predicate Expression using cardinality predicates

INCLUDE ALLX C
jXj
X

INCLUDE NONEX C0
X

SUPERSETX C
jXj
X

SUBSETX C0
X

PROPER SUPERSETX C
jXj
X ^ C

1;:::;jXj

X

PROPER SUBSETX C0
X
^ C

0;:::;jXj�1
X

EQUALX C
jXj
X _ C0

X

NOT EQUALX C
0;:::;jXj�1
X _ C

1;:::;jXj

X

SIZEkX Ck
X

MAX SIZEkX C
0;:::;k
X

MIN SIZEkX C
k;:::;jXj
X

SIZE RANGEa;b
X C

a;:::;b
X

Table 2.2: Expressing various common set predicates using cardinality predicates.
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with arithmetic capabilities, e.g., \match all itemsets where the sum (or max,

min, avg, or some other function) of its elements is greater than k." Therefore,

predicates that assume something about the \type" of items cannot be expressed

using cardinality predicates. However, this can be viewed as a bene�t as well,

since by speci�cally selecting the class of cardinality predicates for the validation

purposes, we stayed independent of speci�c application domains. Because of that,

our validation approach can be easily adapted for such diverse application domains

as personalization and bioinformatics, as will be shown in Chapters 5 and 6.

Another limitation of cardinality predicates CS
X is that they use only one com-

parison set X. Therefore, it is not possible to express certain useful set predicates,

even when combining several cardinality predicates using Boolean operations. One

example of such potentially useful set predicate would be: \given comparison sets

X and Y , match all input itemsets that have more items from set X than from set

Y ." Or more speci�cally, in the supermarket application: \match all shopping bas-

kets that have more dairy products than meat products." Cardinality predicates

that have more than one comparison set is one of the topics for our future research.

2.5 Computational Complexity of Cardinality Predicates

Given an atomic cardinality predicate CS
X and an input itemset I, it is easy to show

that the computational complexity of calculating the value of CS
X(I) is O(jIj), if we

store the sets X and S in data structures that allow to perform a set membership

test operation in constant time. Obviously, there are many such data structures

(e.g., bitmaps, lookup tables, hash structures), and the choice of a particular data
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Input: Comparison set X

Cardinality set S

Input set I

Output: Value of CS
X(I), i.e., True or False.

begin

(1) cnt := 0;

(2) for each (i 2 I)

(3) if (i 2 X) then cnt++;

(4) if (cnt 2 S) then return True;

(5) else return False;

end

Figure 2.1: An implementation of a cardinality predicate.

structure is up to the programmer.

The straightforward algorithm for implementing a cardinality predicate is pre-

sented in Figure 2.1. Since the algorithm essentially consists of jIj+1 set member-

ship test operations, its computational complexity is O(jIj).

In this analysis we ignored the cost for setting up the data structures for sets

X and S. For example, using the lookup table-based data structures, the setup

can be performed fairly eÆciently in at most jIj steps. However, these setup costs

occur only once, and subsequently large numbers of sets (or rules) can be validated
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using the same setup. Hence, we assume that the computational complexity of the

validation of large dataset dominates the complexity of the one-time setup cost,

and therefore we can say that computational complexity of cardinality predicates

is linear with respect to the size of its input.

If we have a Boolean expression of t atomic cardinality predicates then in general

its computational complexity given the input itemset I is O(tjIj). However if we

have a conjunction of t atomic cardinality predicates, i.e., p :=
Vt

i=1C
Si
Xi
, then in

certain special cases we can achieve computational complexity that is better than

O(tjIj), for example:

� If all comparison setsXi are equal, then, based on Lemma 1, p can be expressed

as a single atomic cardinality predicate p = C\Si
Xi

. Therefore, its computational

complexity would be O(jIj) instead of O(tjIj).

� If all comparison sets Xi are pairwise disjoint (i.e., Xi \Xj = ; when i 6= j),

then obviously a single lookup table is suÆcient to host all of the comparison

sets, making O(jIj) computational complexity possible.

2.6 Set Validation Language (SVL)

In this chapter, we present a language for the validation of set-based data { mainly

for the validation of large numbers of itemsets and/or rules discovered by asso-

ciation rule mining algorithms. This language is called SVL (for Set Validation

Language), and it allows the domain expert to specify various validation operators

based on cardinality predicates. In other words, SVL is the language in which do-

main expert can specify what types of rules he or she wants to label as belonging
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to a certain class, e.g., the class of Rejected (unimportant) rules. After a template

is speci�ed, unvalidated rules are \matched" against it. Data (sets or rules) that

match a template are labeled with the corresponding label (speci�ed by the valida-

tion operator) and are considered validated. Rules that do not match a template

remain unvalidated.

The problem of post-analysis of large numbers of discovered rules using �ltering

methods has been studied before in the KDD literature [3, 43, 46, 53, 57, 70, 77],

and we utilize some of this work in our approach. In particular, Klemettinen et

al [46] and Imielinski et al [43] present the methods for the users to specify classes

of patterns in which they are interested by providing pattern templates expressed

in a certain speci�cation language. However, the pattern speci�cation languages

in most of the previous approaches are ad hoc, while SVL is based strictly on the

class of cardinality predicates.

The formal BNF speci�cation of the SVL syntax is presented in Figure 2.2. In

the rest of this section we will brie
y overview the SVL language and some of its

features. Some examples of SVL templates can also be found in Chapters 5 and 6.

2.6.1 Basic SVL Syntax

SVL is based on cardinality predicates that were introduced earlier in this chapter.

That is, SVL is a tool that allows the domain expert to specify the cardinality pred-

icates in a intuitive and human-readable form. In its simplest form, any cardinality

predicate CS
X , where X � I and S � [X], can be expressed using SVL as follows:

InputSetIndicator HAS S FROM X (2.12)
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Validation Operator ::= Label : SVL Template

SVL Template ::= PredicateConjunction j

PredicateConjunction OR CompositeTemplate

PredicateConjunction ::= AtomicPredicate j

AtomicPredicate AND PredicateConjunction

AtomicPredicate ::= [NOT] InputSetIndicator HAS CardinalitySet

FROM [CO] ComparisonSet [ONLY]

InputSetIndicator ::= ITEMSET j BODY j HEAD j RULE

CardinalitySet ::= CardinalityItem j CardinalityItem, CardinalitySet

ComparisonSet ::= ComparisonItem j ComparisonItem, ComparisonSet

CardinalityItem ::= CardinalityValue j CardinalityRange

ComparisonItem ::= Item j ItemGroup j ItemAndValues

CardinalityRange ::= ANY j NOTALL j NOTZERO j SOME j

CardinalityValue � CardinalityValue

CardinalityValue ::= NONE j ALL j CardinalityNumber

ItemAndValues ::= Item EqOp f ValueSet g

EqOp ::= = j !=

ValueSet ::= Value j Value, ValueSet

Figure 2.2: The syntax of the template speci�cation language (in BNF).
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where InputSetIndicator can be of the following keywords: ITEMSET, BODY,

HEAD, or RULE. It represents the part of the input element (i.e., set or rule) on

which constraint is being placed. Keyword ITEMSET is used if and only if the

input data consists of sets (itemsets). When dealing with input data consisting of

rules, other three terms { BODY, HEAD, or RULE { should be used to indicate

the part of the rule on which the constraints (restrictions) should be placed. More

speci�cally, when InputSetIndicator is speci�ed as BODY, the cardinality predicate

represented by the above SVL template is applied to sets of items comprising the

bodies (i.e., antecedents or left-hand-sides) of all the unvalidated rules in the input

data. In other words, such template represents predicate CS
X [body]. Similarly, if

InputSetIndicator is HEAD, the SVL template represents predicate CS
X [head] and is

applied to the sets of items from rule heads (i.e., consequents or right-hand-sides).

Finally, if InputSetIndicator is RULE, the template represents predicate CS
X [rule]

and is applied to the set of items comprising the whole rule, i.e., to the union set

of rule body and head.

Furthermore, in Equation 2.12, X represents the comparison set of the underly-

ing cardinality predicate, i.e., it represents the items against which the input data

points should be compared. It is speci�ed as a comma-separated list x1; x2; : : : ; xN

(where xi 2 I). Finally, S is a comma-separated list s1; s2; : : : ; sM (where si 2 [X])

that represents the cardinality set of the cardinality predicate.

In addition, the atomic templates from Equation 2.12 can be combined into

more complex templates using Boolean operations AND and OR.

Below we present some examples of cardinality predicates and the corresponding

SVL statements, assuming I = fa; b; c; d; eg.
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Cardinality predicate Corresponding SVL statement

C1
a;b ITEMSET HAS 1 FROM a,b

C0;1;2
b;c;e [body] BODY HAS 0,1,2 FROM b,c,e

C1
a [body] ^ C0

b [head] BODY HAS 1 FROM a AND

HEAD HAS 0 FROM b

2.6.2 Extended SVL Syntax

To make SVL more user-friendly we have augmented the atomic SVL template,

shown in 2.12, with the several useful features. Note, that all features described

in this section are purely for the convenience of the domain expert. That is, they

do not add any expressive power to the language { all SVL statements can still be

expressed using cardinality predicates.

[NOT] InputSetIndicator HAS CardinalitySet FROM [CO] X (2.13)

Item Groups Instead of having to specify the comparison set by listing each

item individually, the domain expert can �rst de�ne a group of items, and then

subsequently use the group name in SVL statements. For example, suppose we

are dealing with the analysis of supermarket transactional data (i.e., all shopping

baskets purchased over some period of time) and we need to validate all the frequent

shopping baskets that were discovered using some association rule mining algorithm.

Therefore, in this case I would be the set of all products sold in the store. Suppose,

we want to �nd all the input rules that contain one or two milk products in their

antecedents. One way to write this statement would be to list all the milk products
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individually, i.e.,

BODY HAS 1; 2 FROM SkimMilk; 2%Milk;WholeMilk;ButterMilk; : : :

On the other hand, the domain expert can de�ne a group MilkProducts of items,

i.e., MilkProducts = f SkimMilk, 2%Milk, WholeMilk, ButterMilk, . . . g, and then

rewrite the above SVL template as

BODY HAS 1; 2 FROM MilkProducts

De�ning item groups is a domain-speci�c issue and it is up to the expert that

performs validation to de�ne the groups that are useful to him/her. However,

we do provide an expert with one pre-de�ned item group, named AllItems. This

group contains all possible items for a given application, i.e., AllItems basically

represents set I. This group is often very useful when we want to place absolute

size restrictions on input elements. For example, to match all the rules that have

exactly 3 items in their antecedents, we would use the following template:

BODY HAS 3 FROM AllItems

Cardinality Synonyms For better readability and intuitiveness, the domain ex-

pert can use keywords NONE and ALL in SVL templates to represent cardinality

numbers 0 and jXj, where X is a comparison set speci�ed in the SVL template.

Suppose, for example, that we would like to validate the shopping baskets that con-

tain all of the following products (and possibly some others): orange juice, wheat

bread, eggs, and bacon. We can state the corresponding SVL template as:

ITEMSET HAS ALL FROM OrangeJuice;WheatBread;Eggs;Bacon
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Similarly, if we want to select the shopping baskets that have no milk products, we

can employ the following SVL template that also uses the group MilkProducts as

de�ned earlier:

ITEMSET HAS NONE FROM MilkProducts

Cardinality Ranges Sometimes the desired cardinality set contains several car-

dinality numbers that are consecutive. For example, among all frequent shopping

itemsets we would like to �nd those that have either less than 3 or more than 5

milk products in them. Assuming there are 10 di�erent milk products available, we

could write the corresponding SVL template as:

ITEMSET HAS 0; 1; 2; 6; 7; 8; 9; 10 FROM MilkProducts

On the other hand, we allow to specify a range of numeric values in a more straight-

forward manner, i.e.,

ITEMSET HAS 0� 2; 6� 10 FROM MilkProducts

Furthermore, using the cardinality synonyms de�ned earlier, we could rewrite the

above template as:

ITEMSET HAS NONE� 2; 6� ALL FROM MilkProducts

We also provide several "standard" ranges that can be speci�ed using keywords

ANY, NOTALL, NOTZERO, SOME. Here ANY stands for the range 0-ALL, NO-

TALL stands for 0-(ALL-1), NOTZERO stands for 1-ALL, and SOME stands for

1-(ALL-1). For example, the following template matches all itemsets that have at

least one milk product:

ITEMSET HAS NOTZERO FROM MilkProducts
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Complement of Comparison Set Suppose we would like have a template that

matches all the itemsets containing at least three non-milk products. Assuming we

have group MilkProducts de�ned, this template can be speci�ed as:

ITEMSET HAS 3� ALL FROM CO MilkProducts

Here we are using the optional CO keyword which indicates that the actual com-

parison set for this template is the complement of the set indicated in the template.

As de�ned earlier, the complement set X of any set of items X (X � I) is de�ned

as X := I �X.

Negation of the Atomic Template By specifying the optional keyword NOT in

front of the atomic SVL template, we negate this template. The matching behavior

of the negated template is de�ned in a standard way. That is, if input element e

matches template NOT T if and only if e does not match T .

As mentioned before, each atomic SVL template represents some cardinality

predicate CS
X . From Lemma 1 we have that :CS

X = CS
X , where S = [X] � S.

Therefore, the negation of a given atomic SVL template essentially implies the

complementation of the speci�ed cardinality set in this template. Therefore, for

example, if we want to write a template that matches all itemsets except those that

have exactly 2 milk products in them, we could write it as:

NOT ITEMSET HAS 2 FROM MilkProducts

Macro Capabilities of SVL As shown in Section 2.4, many useful set predicates

(e.g., set equality, subset, superset predicates) can be expressed using cardinality
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predicates. For this purpose, we have implemented the mechanism for specifying

simple textual macros using SVL templates. Some of the built in macros include:

SUBSET(InpSet; X) := InpSet HAS NONE FROM CO X

SUPERSET(InpSet; X) := InpSet HAS ALL FROM X

PR SUBSET(InpSet; X) := InpSet HAS NONE FROM CO X AND

InpSet HAS NOTALL FROM X

PR SUPERSET(InpSet; X) := InpSet HAS ALL FROM X AND

InpSet HAS NOTZERO FROM CO X

EQUAL(InpSet; X) := InpSet HAS ALL FROM X AND

InpSet HAS NONE FROM CO X

SIZE(InpSet; k) := InpSet HAS k FROM AllItems

More examples of SVL macros can be found in Chapter 6.
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Chapter 3

Grouping of Set-Based Data

3.1 Motivations

As stated earlier, validation operators provide a way for the domain expert to

examine multiple rules at a time. This examination process can be performed in

the following two ways. First, the expert may already know some types of rules that

he or she wants to examine and validate based on the prior experience. Therefore,

it is important to provide capabilities allowing him or her to specify such types

of rules. The set validation language SVL (described in the previous chapter)

that allows the domain expert to specify validation operators based on cardinality

predicates serves precisely this purpose. Second, the expert may not know all the

relevant types of rules in advance, and it is important to provide methods that

group discovered rules into classes that he or she can subsequently examine and

validate. In this chapter we propose the similarity-based grouping method that can

group sets or rules into groups according to some expert-speci�ed grouping criteria.

Therefore, the proposed grouping method can be used in a couple of di�erent
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ways. First, it can be used in conjunction with SVL in the process of set or rule

validation. If, after specifying several validation operators using SVL, there are

still many unvalidated rules remaining and the expert is not sure what validation

operator to specify next, he or she can apply the grouping algorithm instead. In

this case the groups generated by this method can be viewed as potential validation

operators. That is, the domain expert can examine the groups and validate (label)

some of them, as if he/she were specifying validation operators for these groups.

And second, the proposed grouping method can be used in various data mining

applications as a stand-alone post-analysis tool and not be a part of an interactive

validation process.

In this chapter we will be mostly discussing the grouping of association rules.

However, most of the ideas in this chapter can be straightforwardly applied to

grouping itemsets as well. The main contribution of this chapter lies in that it

proposes a grouping method for set-based data (i.e., sets and rules) that is 
exible,

scalable, intuitive and easy for the end-user to use in many data mining applications,

especially in the validation process or simply where there is a need to evaluate large

numbers of discovered rules.

3.2 Similarity-Based Grouping Approach

There can be many \similar" rules among all the discovered rules, and it would

be useful for the domain expert to evaluate all these similar rules together rather

than individually. In order to do this, some similarity measure that would allow

grouping similar rules together needs to be speci�ed.
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Figure 3.1: An example of an attribute hierarchy for similarity-based grouping.

3.2.1 Attribute Hierarchies

In this paper, we propose a method to specify such a similarity measure using

attribute hierarchies. An attribute hierarchy is organized as a tree by the human

expert in the beginning of the validation process.1 The leaves of the tree consist

of all the attributes of the data set to which rule discovery methods were applied,

i.e., all the attributes that can potentially be present in the discovered rules. The

non-leaf nodes in the tree are speci�ed by the human expert and are obtained by

combining several lower-level nodes into one parent node. For instance, Figure 3.1

presents an example of such a hierarchy, where nodes A1 and A2 are combined into

node A6 and nodes A3, A4 and A5 into node A7, and then nodes A6 and A7 are

combined into node A8. Another example of an attribute hierarchy is presented in

Figure 3.5. We call non-leaf nodes of an attribute hierarchy aggregated attributes.
1In certain domains, e.g., groceries, such hierarchies may already exist, and some well-known

data mining algorithms, such as [26, 76], explicitly assume the existence of attribute (or, more

generally, feature) hierarchies. Alternatively, attribute hierarchies may possibly be constructed

automatically in certain other applications. However, automatic construction of such hierarchies

is beyond the scope of this paper.
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3.2.2 Basic Steps of Grouping Algorithm

The attribute hierarchy is used for determining similar rules and grouping them

together. More speci�cally, the semantics of the similarity-based grouping approach

is de�ned as follows.

1. Specifying rule aggregation level. Rules are grouped by specifying the

level of rule aggregation in the attribute hierarchy which is provided by the

human expert. Such a speci�cation is called a cut, and it forms a subset of

all the nodes of the tree (leaf and non-leaf), such that for every path from a

leaf node to the root, exactly one node on such path belongs to this subset.

Therefore, given a cut, every leaf node has its corresponding cut node. Given

a cut C, we de�ne for any leaf node Xi its corresponding cut node cutC (Xi)

as follows:

cutC(Xi) =

8<
:

Xi; if Xi 2 C

cutC(parent(Xi)); otherwise

Figure 3.1 presents several di�erent cuts of an attribute hierarchy that are

represented by shaded regions. For example, for the cut from Figure 3.1(c),

cut3c(A2) = A2 and cut3c(A3) = A7. Moreover, the cut node of any leaf node

can be calculated in constant time by implementing a straightforward lookup

table for that cut.

2. Aggregating rules. Given a cut C, a rule X1 ^ :::^Xk ) Xk+1 ^ :::^Xl is

aggregated by performing the following syntactic transformation:
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cutC (X1 ^ ::: ^Xk ) Xk+1 ^ ::: ^Xl) =

cutC (X1) ^ ::: ^ cutC (Xk) ) cutC (Xk+1) ^ ::: ^ cutC (Xl)

where cutC(Xi) maps each leaf node of the attribute hierarchy into its corre-

sponding cut node as described in Step 1 above. The resulting rule is called

an aggregated rule.

Since several di�erent leaf nodes can have the same cut node, sometimes

after aggregating a rule we can get multiple instances of the same aggregated

attribute in the body or in the head of the rule. In this case we simply

eliminate those extra instances of an attribute. Consider, for example, the

rule A2^A3^A4 ) A5. By applying cut (c) from Figure 3.1 to this rule, we

will get the aggregated rule A2 ^ A7 ^ A7 ) A7, and by removing duplicate

terms A7 in the body of the rule we �nally get A2 ^ A7 ) A7.2 Given

a cut, the computational complexity of a single rule aggregation is linearly

proportional to the size of the rule (i.e., total number of attributes in the

rule), as will be described later.

3. Grouping rules. Given a cut C, we can group a set of rules S into groups

by applying C to every rule in S as described in Step 2 above. When a

cut is applied to a set of rules, di�erent rules can be mapped into the same
2Note that, while the just obtained aggregated rule A2 ^A7 ) A7 may look like a tautology,

it is not. As mentioned above, aggregated rules are obtained from the originally discovered rules

using purely syntactic transformations. Therefore, the above mentioned aggregated rule does not

make any logical statements about the relationship between attributes A2 and A7 in the given

data, but simply denotes the class of rules of the particular syntactic structure.
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Initial Rule groups obtained from rule set S using cuts :

rule set S cut 3(b) cut 3(c) cut 3(d)

A1 ) A3 A6 ) A3 (3) A7 ) A7 (2) A6 ) A7 (3)

A1 ^ A2 ) A3 A3 ^ A6 ) A5 (2) A2 ^ A7 ) A1 (2) A6 ^ A7 ) A7 (3)

A1 ^ A2 ^ A3 ) A5 A3 ) A5 (1) A2 ^ A7 ) A7 (2) A6 ^ A7 ) A6 (2)

A2 ^ A3 ) A4 A3 ^ A5 ) A4 (1) A1 ) A7 (1) A7 ) A7 (2)

A2 ^ A3 ) A5 A3 ^ A6 ) A4 (1) A2 ) A7 (1)

A2 ) A3 A4 ^ A6 ) A6 (1) A1 ^ A2 ) A7 (1)

A2 ^ A4 ) A1 A5 ^ A6 ) A6 (1) A1 ^ A2 ^A7 ) A7 (1)

A3 ) A5

A2 ^ A5 ) A1

A3 ^ A5 ) A4

Figure 3.2: Grouping a Set of Rules Using Several Di�erent Cuts from Figure 3.1 (the

number of rules in groups is speci�ed in parentheses).

aggregated rule. For example, consider rules A2 ^ A3 ^ A4 ) A5 and A2 ^

A5 ) A3. After applying cut (c) from Figure 3.1 to both of them, they are

mapped into the same rule A2^A7 ) A7. More generally, we can group a set

of rules based on the cut C as follows. Two rules R1 and R2 belong to the same

group if and only if cutC(R1) = cutC(R2). Naturally, two di�erent aggregated

rules represent two disjoint groups of rules. As an example, Figure 3.2 presents

the results of grouping a set of rules based on the attribute hierarchy and

several di�erent cuts shown in Figure 3.1.
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The grouping algorithm described above allows the user to group rules into sets

of similar rules, where similarity is de�ned by the expert who selects a speci�c cut of

the attribute hierarchy. Moreover, instead of examining and validating individual

rules inside each group, the user can examine the group of these rules as a whole

based on the aggregated rule (that is common for all the rules in the group) and

decide whether to accept or reject all the rules in that group at once based on this

aggregated rule.

In addition, note that aggregated rules produced by the grouping algorithm can

be expressed as cardinality predicates. E.g., aggregated rule A6) A3 (taken from

Figure 3.2) can be expressed as:

C1;2
A6 [body] ^ C0

A6
[body] ^ C1

A3[head] ^ C0
A3
[head]

Therefore, grouping algorithm can be used as a generator of potential validation

operators.

3.2.3 Extended Attribute Hierarchies

So far, we assumed that the leaves in the attribute hierarchies are speci�ed by

the attributes of the data set. However, we also consider the case when attribute

hierarchies include values and aggregated values of attributes from the data set. For

example, assume that a data set has attribute Month. Then Figure 3.3 presents

an attribute hierarchy with 12 values as the leaves representing speci�c months of

the year that are grouped together into four aggregated values: winter , spring,

summer , and fall .

For these extended hierarchies, cuts can include not only attribute and aggre-
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Attributes

Aggr. values

Values

Aggr. attributes

YES NO YES NO YES NO

Coupon
Manuf.

Coupon
Store

Sale
Store

12 1 2 3 4 5 6 7 8 11109

winter spring summer fall

Month

Discount Type

..... .....

Figure 3.3: A fragment of attribute hierarchy which includes attribute values.

gated attribute nodes, but also value and aggregated value nodes. For example,

consider the extended attribute hierarchy presented in Figure 3.3 that includes 12

values for the attribute Month and the boolean values for the attributes StoreSale,

StoreCoupon, and ManufCoupon. Also consider the cut from Figure 3.3 speci�ed

with a shaded line, and the following three rules: (1)Month=3 ) StoreSale=YES,

(2) Month=5 ) ManufCoupon=NO, (3) Month=10 ) StoreSale=YES. The

cut presented in Figure 3.3 maps rules (1) and (2) into the same aggregated rule

Month=spring ) DiscountType. However, rule (3) is mapped into a di�erent

aggregated rule Month=fall ) DiscountType by the cut. Therefore rule (3) will

be placed into a di�erent group than rules (1) and (2).

3.3 Implementation Issues and Computational Complexity

The grouping approach based on attribute hierarchies provides a 
exible way for

the expert to group rules according to the granularity important to that expert.
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This provides the expert with the ability to evaluate larger or smaller number of

groups of similar rules based on his or her preferences and needs. Moreover, an

eÆcient algorithm that implements the grouping approach has been developed and

is presented in Figure 3.4. The procedure GROUP performs the grouping using a

single pass over the set of discovered rules (the foreach loop statement in lines 3-7

in Figure 3.4). For each rule r in the input rule set R (line 3) we compute its

aggregated rule r0 using the procedure AGGR ATTRS (lines 5-6).

The procedure AGGR ATTRS (lines 11-15) performs the aggregation of a set of

attributes. Using the mapping cutC , each element of an attribute set is aggregated

in constant time. Moreover, since the attribute set AttrSet is implemented as a

hash table, an insertion of an aggregated attribute into the resulting set A0 (line 13,

inside the loop) also takes constant time. Therefore, the total running time of the

procedure AGGR ATTRS is linear in the size of the attribute set.

As the result, the running time of a rule aggregation (lines 5-6) is linear in

the size of the rule (i.e., total number of attributes in the body and the head of

the rule). Also, since the group set GroupSet is implemented as a hash tree data

structure (similar to the one described by [75]), an insertion of a group into the

resulting group set G (line 7) is also linear in the size of the rule. Consequently, the

running time of the whole grouping algorithm is linear in the total size of the rules

to be grouped. Note also that, besides the computational space needed to store

the resultant rule groups, the algorithm uses virtually no additional computational

space (except for several local variables).

In summary, the grouping algorithm presented in Figure 3.4 scales up well, which

is very important for personalization applications dealing with very large numbers
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1 GROUP ( RuleSet R, Map cutC ) f

2 GroupSet G := ;;

3 foreach r from R f

4 r0 := new Rule;

5 r0:body := AGGR ATTRS(r:body, cutC);

6 r0:head := AGGR ATTRS(r:head, cutC);

7 G := G [ r0;

8 g

9 return G;

10 g

11 AGGR ATTRS( AttrSet A, Map cutC ) f

12 AttrSet A0 := ;;

13 foreach a from A f A0 := A0 [ cutC [a]; g

14 return A0;

15 g

Figure 3.4: Algorithm for similarity-based rule grouping.
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of rules.

3.4 Bene�ts of the Proposed Grouping Method

The proposed rule grouping method has the following distinguishing features that

make it useful in the data mining applications requiring post-analysis of large num-

bers of discovered rules. First, unlike the traditional clustering methods [28], where

the user has only a limited control over the structure and sizes of resulting clusters,

an expert has an explicit control over the granularity of the resulting rule groups

in our approach. That is, a domain expert can specify di�erent aggregation levels

in the attribute hierarchy, which allows grouping the discovered rules according to

the granularity important to that expert (i.e., depending on how he or she wants

to explore the rules). This property is very useful in the applications dealing with

very large numbers of discovered rules (e.g., millions), because traditional cluster-

ing methods may still generate an unmanageable number of clusters. Moreover, the

proposed method allows the domain expert to incorporate the domain knowledge

into the grouping process by specifying an attribute hierarchy.

Second, the rule groups (denoted by di�erent aggregated rules) obtained by

the proposed rule grouping method are equivalence classes, since any two rules

R1 and R2 belong to the same rule class if and only if they are mapped into the

same aggregated rule, given a speci�c gene aggregation level. This means that

we can determine what rule class the particular rule R belongs to based solely on

the structure of rule R. This property makes the proposed rule grouping method

consistent and predictable, since the domain expert knows to what class a rule
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belongs regardless of what other discovered rules are. This is in contrast to some

of the traditional distance-based clustering methods, where any two rules may or

may not be in the same cluster depending on the other discovered rules.

Third, one of the limitations of some of the other rule grouping approaches

(e.g., [83]), lies in that it is not clear how to describe concisely the resulting rule

cluster to the end-user for the purpose of evaluation, since rules belonging to the

same cluster may have substantially di�erent structures. In contrast, in our pro-

posed grouping approach that is based on attribute hierarchies, every rule cluster

(group) is uniquely represented by its aggregated rule (common to all rules in that

cluster), that is both concise and descriptive.

Finally, the proposed rule grouping method works with large numbers of at-

tributes, both numerical and categorical. Also, it scales up well. In fact, using

lookup tables for attribute hierarchies and hash table-based structures for storing

aggregated rules, the grouping algorithm is linear in the total size of the rules to

be grouped. This is especially important in applications dealing with very large

numbers of rules.

3.5 Related Work

There have been related approaches to rule grouping proposed in the literature

[51, 86] that consider association rules in which both numeric and categorical at-

tributes can appear in the body and only categorical attributes in the head of a rule.

However, [51] take a more restrictive approach by allowing only two numeric at-

tributes in the body and one categorical attribute in the head of a rule, whereas [86]
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allow any combination of numeric and categorical attributes in the body and one

or more categorical attributes in the head of a rule. Both of the approaches merge

adjacent intervals of numeric values in a bottom-up manner, where [51] utilize a

clustering approach to merging and [86] maximize certain interestingness measures

during the merging process. It is interesting to observe that interval merging can

also be supported in our rule grouping operator by letting a domain expert spec-

ify the cuts at the value and aggregated-value levels of the attribute hierarchy (as

shown in Figure 3.3).

The two approaches [51] and [86] would work well for medium-sized problems

having moderately large number of rules (e.g., 10's of thousands). However, in

large-scale applications, such as personalization or bioinformatics applications (as

described in Chapters 5 and 6), that can generate millions of rules, the two ap-

proaches would still produce too many clusters to be of practical use. Therefore,

in order to allow the domain expert to validate very large numbers of rules within

a reasonable amount of time, such applications require more powerful grouping

capabilities that go beyond the interval merging techniques for attribute values.

Therefore, our approach di�ers from [51, 86] in that it allows the grouping of rules

with di�erent structures, at di�erent levels of the attribute hierarchy and also not

only for numerical but for categorical attributes as well. Moreover, the domain

expert has the 
exibility to specify the relevant cuts in the attribute hierarchy,

whereas the interval merging approaches do the merging automatically based on

the built-in heuristics.

Still another related approach to grouping is proposed by [83] where a distance

between two association rules is de�ned as the number of transactions on which two
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rules di�er. Using this distance measure, [83] group all the rules into appropriate

clusters. One of the limitations of this approach lies in that the distance measures

selected for rule clustering are somewhat arbitrary. Moreover, it is not clear how to

describe concisely the rule cluster to the user for the purpose of evaluation, since

rules belonging to the same cluster may have substantially di�erent structures. In

contrast, in our proposed similarity-based grouping approach every rule cluster is

uniquely represented by its aggregated rule (common to all rules in that cluster),

that is concise and descriptive.

Still other approaches related to grouping are presented in [55, 36], where [55]

describes a method for extracting \most important" (direction-setting) rules from

large numbers of discovered rules, and [36] presents data mining methods using

two-dimensional optimized association rules.

3.6 Experiments

We tested the proposed grouping method on a \real-life" personalization applica-

tion that analyzes individual customer responses to various types of promotions,

including advertisements, coupons, and various types of discounts. The application

included data on 1903 households that purchased di�erent types of non-alcoholic

beverages over a period of one year. The data set contained 21 �elds characterizing

purchasing transactions. The whole data set contained 353,421 records (on aver-

age 186 records per household). We ran an association rule discovery algorithm

on the transactional data for each of the 1903 households and generated 1,022,812

association rules in total.
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Cut 5(a) Size

(1) Time related ) Product 4431

(2) Deal type ) Product 446

(3) Store ) Deal type 245

(4) Ad place ) Product 38

(5) Store ^Ad place ) Product 24

Cut 5(b) Size

(6) Day of week ) Product 2682

(7) Store ) Product 2193

(8) Season ) Product 1435

(9) Store ) Total price 1143

(10) Day of week ^ Season ) Product 314

(11) Store coupon ) Store 191

Table 3.1: Sample rule groups produced by the cuts from Figure 3.5.
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Figure 3.5: Fragment of an attribute hierarchy used in a marketing application.

Figure 3.5 shows the fragment of an attribute hierarchy3 that was used in this

application along with the two sample cuts that we used for rule grouping. Also,

Table 3.1 presents some sample groups generated with these cuts. Moreover, Ta-

ble 3.2 summarizes the grouping statistics for the same two cuts from Figure 3.5.

As we can see from Figure 3.2, taking the \coarser" of the two cuts (i.e., cut

that is further from the leaf nodes - in this particular case it is cut (a)) reduces the

number of groups substantially (2,742 vs. 24,920 groups). Moreover, the percentage

of rules in the largestN groups also increases substantially (e.g. from 3.7% to 17.8%

for N = 10) along with the sizes of the groups (e.g. 23,891 vs. 5,022 for the largest

groups respectively). Therefore, when using the coarser cut, the user has to deal

with fewer groups (e.g., browse through and evaluate them) than when using the

�ner cut. However, it is more diÆcult to validate coarser groups since their syntactic
3In order not to clutter the diagram in Figure 3.5, the attribute hierarchy does not contain

levels representing attribute values and aggregate attribute values.

47



Various results Cut 5(a) Cut 5(b)

# of groups 2,742 24,920

# of rules in the biggest group 23,891 5,022

# of rules in 10 biggest groups 181,681 (17.8%) 38,336 (3.7%)

# of rules in 20 biggest groups 320,018 (31.3%) 68,241 (6.7%)

# of rules in 50 biggest groups 568,570 (55.6%) 151,890 (14.9%)

Table 3.2: Summary of the groupings produced by the cuts from Figure 3.5.

representations are not as informative as the ones of �ner groups.

In addition, Figure 3.6 shows the percentage of all the rules contained in N

largest groups for both cuts. As expected, the coarser cut produces groups contain-

ing many more rules in their largest N groups than the �ner cut. For example, 100

largest groups (out of the total of 2,742 groups) produced by the coarser cut contain

75% of all the discovered rules. Also, Figure 3.7 illustrates how many groups of

each particular size were generated, based on the same two cuts from Figure 3.5.

3.7 Discussion

In this chapter, we presented an approach to grouping and summarizing large num-

bers of discovered rules into classes based on user-speci�ed attribute hierarchies.

Then these groups of rules can be browsed by the user during the post-analysis

stage of the data mining process in order to evaluate their relevance. This method

allows the user to control the grouping process by selecting appropriate cuts in the

attribute hierarchy. Moreover, it works well not only with the numeric data as the

48



0

20

40

60

80

100

0 50 100 150 200

P
er

ca
nt

ag
e 

of
 to

ta
l n

um
be

r 
of

 r
ul

es
 c

on
ta

in
ed

 in
 to

p 
N

 g
ro

up
s

Top N groups

Cut 5(a)
Cut 5(b)

Figure 3.6: Comparison of the groups produced by two cuts from Figure 3.5.
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clustering methods do, but equally well with the categorical data. Also, it can be

determined from the structure of the rule itself to which group it belongs, making

this method more consistent and predictable than some standard clustering meth-

ods. Finally, our method is eÆcient and scalable since it is linear in the total size

of the rules to be grouped.

The user can apply the grouping method presented in this paper in an interac-

tive manner during the post-analysis stage of the data mining process in order to

evaluate relevance of discovered rules. Moreover, the user can recursively examine

some of the large groups of similar rules by specifying �ner cuts for these large

groups. This process of iteratively specifying cuts, examining the resulting groups

and specifying additional cuts for some of the selected groups of rules can continue

until the user completes the examination process.

In its current version of our grouping method, we do not provide statistical prop-

erties of the formed groups of rules beyond simple counts. One of the interesting

extensions of this work is to develop a set of statistics that would characterize these

groups of rules in the ways meaningful to the end-users, and we are planning to

work on supporting such statistics in the future.
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Chapter 4

Optimizing Validation Process

When large amounts of data need to be validated, the performance of the validation

process is crucial. Therefore, as described in previous chapters, in our research we

have focused on making the validation tools and methods (e.g., cardinality pred-

icates, grouping algorithm) as scalable as possible. In this chapter, however, we

tried to look at a di�erent aspect of validation performance, i.e., the performance

of the validation sequence as a whole (as opposed to the performance of individual

validation operators). This issue may be important in the applications where, for

example, there is a continuous stream of data to be validated. In such cases, the

domain expert may validate a sample of data, thus generating some validation se-

quence. After the sequence is generated, it could perform the subsequent validation

of the continuous data stream by itself, i.e., without the domain expert. Then, the

question is: can we optimize this sequence to be as eÆcient as possible, while re-

taining the exact validation behavior initially encoded by the domain expert? We

address this issue in this chapter.
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4.1 Sequence Optimization Problem Formulation

In this section, we will formulate the problem of validation sequence optimization.

In fact, we will formulate this problem for general validation sequences and not just

the ones that validate set-based data (i.e., sets or rules).

4.1.1 General Validation Sequences

As mentioned in Section 1.2, we de�ne general validation sequences as follows. Let's

assume that the domain expert has to validate input dataset D, where D � E is a

set of certain input elements. We will assume that E is a �nite set that contains

all possible input elements, i.e., all possible inputs that may be present in datasets

to be validated. For example, in the case of itemset validation, E = Powerset(I),

where I is a base set (as described earlier).

Furthermore, the domain expert has a set L of possible labels (let's call them

L1, L2, . . . , Ln) to be used to label (validate) individual input elements e 2 D.

Also, let P be the set of all possible predicates for validating input data from E ,

i.e., let P contain all predicates p of the form:

p : E �! fTrue;Falseg (4.1)

As in the case of set and rule validation, the validation of D � E is achieved by

the domain expert by producing a sequence of validation operators. Let's denote

this sequence s. In other words, let s =< o1; o2; : : : ; ok >, where k > 0 and each

oi represents a validation operator, i.e., oi = (li; pi), li 2 L and pi 2 P. As a

result of this validation, the input set D is divided into n+ 1 pairwise disjoint sets

V1, V2, . . . , Vn, and U , where each Vi represents the subset of D that was labeled
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with Li, and U denotes the subset of D that remains unlabeled after the validation

process.1 We will denote V Is(D) := (V1; V2; : : : ; Vn) (validated input elements) and

UIs(D) := U (unvalidated input elements).

Then, informally, the validation sequence optimization problem could be for-

mulated as follows. Given an expert-speci�ed sequence s, �nd the \best" sequence

s� among all the sequences \equivalent" to s (i.e., sequences that have exactly the

same validation \behavior" as s). In other words, s� should be the \best" sequence

among those which produce the same results as s for any given dataset D. In the

rest of Section 4.1 we will de�ne precisely the notion of validation sequence equiv-

alence as well as the sequence performance metric to be used in the optimization

problem.

4.1.2 Equivalence of Validation Sequences

Here we introduce the notion of equivalent validation sequences.

De�nition 4 (Equivalent Validation Sequences) Validation sequences s and

s0 are equivalent if and only if V Is(D) = V Is0(D) for every input D. If s and s0

are equivalent, we will denote it as s � s0. If s and s0 are not equivalent, we will

denote it as s 6� s0.

Alternatively, the equivalence of a validation sequence can also be de�ned as

follows.

Lemma 2 s � s0 () V Is(E) = V Is0(E).
1That is, U contains the input elements that were not matched by any predicates in the

validation sequence.
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I Follows directly from the equivalence de�nition above, since (8D � E) V Is(D) =

V Is0(D) () V Is(E) = V Is0(E). J

The equivalence of validation sequences can be viewed as a binary relation on the

set of all possible validation sequences. Let's denote this relation R�. Note, that

R� is a true equivalence relation, since it is re
exive, symmetric, and transitive, as

shown below.

Lemma 3 Relation R� is a true equivalence relation.

I R� is re
exive. Obviously, s � s for all s, since V Is(E) = V Is(E).

R� is symmetric. For any validation sequences s and s0, if s � s0 then s0 � s,

because V Is(E) = V Is0(E) obviously implies V Is0(E) = V Is(E).

R� is transitive. For any validation sequences s, s0, and s00, if s � s0 and

s0 � s00, then s � s00, because V Is(E) = V Is0(E) and V Is0(E) = V Is00(E) implies

V Is(E) = V Is00(E). J

Example 3 Assume that we are dealing with an application for validat-

ing frequent shopping itemsets (i.e., shopping baskets). That is, assume

that E contains all possible shopping baskets, P contains all cardinal-

ity predicates, and L = fAccept; Rejectg. Let s =< (Accept; C1
Bread ),

(Accept; C1
Milk) > and let s0 =< (Accept; C1

Milk), (Accept; C
1
Bread ) >.

Both sequences have two validation operators and clearly s 6= s0. In

fact, s0 is a reverse of s. However, s � s0, since clearly both s and s0

will validate (i.e., label with Accept) the same inputs, given any input

dataset.
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4.1.3 Sequence Optimization Problem and Related Issues

Now that we have de�ned the notion of validation sequence equivalence, we can

formulate the validation sequence optimization problem more precisely:

s� = argmin
s0�s

cost(s0) (4.2)

where cost(s) is some performance measure for validation sequences.

In order to be able to address the problem speci�ed by Equation 4.2, we should

address the following issues:

� Exactly how should the cost(s) function be de�ned?

� How do we �nd the sequences that are equivalent to s? In other words, what

is the search space of our optimization problem?

� How to �nd the optimal sequence eÆciently? That is, even if we know how

to determine all possible equivalent sequences and how to calculate the cost

function for each of them, there may be too many of these sequences, and

therefore, the exhaustive search may not be practical for solving the opti-

mization problem (4.2).

4.1.4 De�ning the Cost of Validation Sequence

One natural way to de�ne the cost of a validation sequence would be through the

performance of a validation sequence, e.g., the amount of time it takes to perform

validation. However, we would like to note that the cost of validation sequence

may highly depend on the input dataset that the sequence is being used on. For

example, on the one hand, validation sequence s might be able to validate the entire
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dataset D1 with its �rst validation operator (i.e., if all elements of D1 match the

predicate of the �rst operator), therefore the subsequent validation operators would

not even have to be invoked. On the other hand, the same validation sequence s

might not be able to validate any elements of dataset D2. That is, all validation

operators would have to be invoked on all input elements of D2.

Therefore, we de�ne the validation sequence optimization problem in the con-

text of a speci�c dataset D. That is, given an expert-speci�ed validation sequence

s and an input dataset D, which of the sequences that are equivalent to s would

have the best performance validating dataset D? Ideally, we would like to use the

running time as the performance measure for validation sequences. While we gen-

erally would be able to compute the running time of the expert-speci�ed sequence

s (i.e., during the initial validation process), it obviously would be diÆcult to esti-

mate running time of other sequences theoretically. However, we can overcome this

diÆculty with certain simplifying assumptions.

We will assume that it takes a certain �xed time for an arbitrary validation

operator o = (l; p) to validate an arbitrary input element e 2 D, i.e., to check

whether e satis�es predicate p. Based on this assumption, we can de�ne the cost

function (given a validation sequence s and inputD) to be the total number of predi-

cate/input satisfaction checks performed by s to validate inputD. More speci�cally,

assume that sequence s consists of k validation operators o1, o2, . . . , ok and each

of the operators oi validated ni number of elements from input dataset D. That

is, operator o1 checked all jDj inputs and validated n1 of them. Subsequently, o2

checked the remaining jDj � n1 inputs and validated n2 of them, and so on. Then,
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the cost of validating D using sequence s can be de�ned as:

cost(s;D) = jDj+ (jDj � n1) + (jDj � n1 � n2) + : : :+ (jDj �
k�1X
j=1

nj)

= kjDj �
k�1X
i=1

(k � i) ni (4.3)

Furthermore, let's de�ne cost0(s;D) to be the worst possible cost scenario, when

not a single input from D is validated by s, i.e., all ni = 0. Therefore, cost0(s;D) =

kjDj. Then, we can de�ne bene�t function as follows:

bene�t(s;D) = cost0(s;D) � cost(s;D)

=

k�1X
i=1

(k � i)ni (4.4)

Based on the above de�nitions of cost and bene�t functions, our optimization prob-

lem is now formulated as:

s� = argmin
s0�s

cost(s0; D) = argmax
s0�s

bene�t(s0; D)

Now that we have de�ned the cost and bene�t functions, we have to decide

how we will be searching for equivalent sequences. An interesting question is:

in what ways we are allowed to change sequence s, so that the newly obtained

sequence s0 remains equivalent to s? Example 3 from Section 4.1.2 can provide

some intuition. In that example, we had two equivalent sequences s and s0, where

s0 was a permutation of s. That is, s0 had exactly the same operators as s, but not

necessarily in the same order. Therefore, given validation sequence s, we will be

searching for the solution to our optimization problem among the permutations s0

of sequence s such that s � s0.

In the next section, we formally introduce the concept of validation sequence

permutation.
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4.1.5 Permutations of Validation Sequences

De�nition 5 (Permutation) Let s and s0 be validation sequences, i.e., s =<

o1; o2; : : : ; ok > and s0 =< o01; o
0
2; : : : ; o

0
k >. Sequence s0 is called a permutation of

sequence s if and only if the sets fo1; o2; : : : ; okg and fo01; o
0
2; : : : ; o

0
kg are equal.

In other words, s0 is a permutation of s if it contains the exact same validation

operators, but not necessarily in the same order.

Let s =< o1; o2; : : : ; ok > be a validation sequence and let u be some validation

operator. We will say that s contains u (and denote u 2 s) if there exists x 2

f1; : : : ; kg such that u = ox. In such case we will say that s contains u at a position

x and denote poss(u) := x.

Let u and v be validation operators contained in the validation sequence s, i.e.,

u; v 2 s. Then we will say that u precedes v in sequence s if poss(u) < poss(v). We

will denote it as u �s v.

De�nition 6 (Permutation Distance) Let s be a validation sequence, i.e., let

s =< o1; o2; : : : ; ok >. Let s
0 =< o01; o

0
2; : : : ; o

0
k > be some permutation of s. We will

de�ne the distance between s and s0 as the number of inversions between s and s0,

i.e., the number all distinct pairs of validation operators u, v, such that u �s v and

v �s0 u. More precisely,

dist(s; s0) := jf(u; v) : u 2 s; v 2 s; u �s v; v �s0 ugj (4.5)

De�nition 7 (Simple Permutation) Let s be a validation sequence, and let s0 be

a permutation of s, such that dist(s; s0) = 1. Then s0 is called a simple permutation

of s.
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In other words, validation sequence s0 =< o01; o
0
2; : : : ; o

0
k > is a simple permuta-

tion of s =< o1; o2; : : : ; ok > if and only if there exists i 2 f1; : : : ; k � 1g such that

oi = o0i+1 and oi+1 = o0i, and for all j (j 6= i and j 6= i + 1) oj = o0j holds true.

Lemma 4 If s0 is a permutation of s, then UIs(D) = UIs0(D) for every input

dataset D.

I Let's assume otherwise, i.e., that there exists dataset D such that UIs(D) 6=

UIs0(D). Consequently, there must exist e 2 D such that e 2 UIs(D) and e =2

UIs0(D). (The proof for the case e =2 UIs(D) and e 2 UIs0(D) would be essentially

the same.)

Since e =2 UIs0(D), e must be validated by some validation operator in s0, say,

operator u. However, because s0 is a permutation of s, s contains all the operators

that s0 does, including u. Therefore, s contains a validation operator that validates

e. Consequently, e =2 UIs(D). This is a contradiction, since we de�ned e to be such

that e 2 UIs(D).

Therefore, our initial assumption that there exists datasetD such that UIs(D) 6=

UIs0(D) was incorrect. J

De�nition 8 (Safe Permutation) Let s be a validation sequence. Then s0 is a

safe permutation of s if and only if s0 is a permutation of s and s � s0.

4.2 Equivalence of Sequence Permutations

In this section, we will describe several di�erent equivalence relations on validation

sequence permutations and will prove some of their fundamental properties.
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4.2.1 Deriving Equivalence Criteria for Sequence Permutations

The following theorem states necessary and suÆcient conditions for s 6� s0, where

s0 is a permutation of s.

Theorem 5 Let s =< (l1; p1); : : : ; (lk; pk) > and s0 =< (l01; p
0
1); : : : ; (l

0
k; p

0
k) > be

validation sequences, where s0 is a permutation of s. Then s 6� s0 if and only if they

contain a pair of validation operators u = (lu; pu) and v = (lv; pv) that satisfy all of

the following conditions:

1. u precedes v in s, but v precedes u in s0, i.e., u �s v and v �s0 u;

2. u and v have di�erent labels, that is, lu 6= lv;

3. There exists an element e 2 E such that the following Boolean expression is

true:

pu(e) ^ pv(e) ^
x�1̂

i=1

:pi(e) ^

y�1^
j=1

:p0j(e) (4.6)

where x = poss(u) and y = poss0(v).

I First, let's assume that validation sequences s and s0 contain validation operators

u and v that satisfy all three conditions described above. We will show that s 6� s0.

Based on the condition 3, there exists an input element e that satis�es the

Boolean expression 4.6. Because this expression is a conjunction of several subex-

pressions, e satis�es each of these subexpressions. Based on this we derive the

following.

Since both pu(e) and
Vx�1

i=1 :pi(e) hold, we have that e satis�es predicate pu

(which is at the position x in s), but does not satisfy any of the predicates p1, p2,
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. . . , px�1. These predicates are at positions 1, 2, . . . , x� 1 respectively in sequence

s, therefore all predicates that precede pu in the validation sequence would not

match e. Consequently, in the sequence s, e would be matched by predicate pu and

labeled with lu. Obviously, u �s v, since otherwise v (and not u, as we just showed)

would match the input e in sequence s.

Similarly, since both pv(e) and
Vy�1

j=1 :p
0
j(e) hold, we have that e satis�es predi-

cate pv (which is at the position y in s0), but does not satisfy any of the predicates

p01, p
0
2, . . . , p

0
y�1. Therefore, in the sequence s0, e would be matched by operator pv

and labeled with lv. Obviously, v �s0 v, since otherwise u (and not v, as we just

showed) would match the input e in sequence s0.

Since both u �s v and v �s0 u, condition 1 is satis�ed automatically.

Based on the condition 2, lu 6= lv. Therefore, s would validate e di�erently than

s0. Therefore, when D = feg, we have V Is(D) 6= V Is0(D). Hence, s 6� s0.

Now let's assume that s 6� s0. We will show that these sequences contain

validation operators u and v that satisfy all three conditions mentioned above.

s 6� s0 ) (9D)(V Is(D) 6= V Is0(D)). Let's denote V Is(D) = (V1; V2; : : : ; VjLj)

and V Is0(D) = (V 0
1 ; V

0
2 ; : : : ; V

0
jLj). Here Vi (i = 1; : : : ; jLj) is a subset of D labeled

with the label Li by sequence s. Similarly, V 0
i (i = 1; : : : ; jLj) is a subset of D

labeled with the label Li by sequence s0. Since V Is(D) 6= V Is0(D), we have that

(V1; : : : ; VjLj) 6= (V 0
1 ; : : : ; V

0
jLj). Therefore, there exists i such that Vi 6= V 0

i .

Since Vi 6= V 0
i , let's assume (without loss of generality) that there exists an

entity e 2 D such that e 2 Vi, but e =2 V 0
i . (It could also be e 2 V 0

i and e =2 Vi, in

which case the proof would be virtually the same as below.) Since e =2 V 0
i , there
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exists j 2 f1; : : : ; jLjg such that i 6= j and e 2 V 0
j . Note that, e can not remain

unvalidated by s0, as shown in Lemma 4.

Because e 2 Vi, there must exist a validation operator u = (Li; pu) in the

sequence s (say, at the position x, i.e., poss(u) = x) that validates e (i.e., pu(e) is

True), but none of the preceding operators do (i.e., :pi(e) for all i = 1; : : : ; x� 1).

Therefore, both pu(e) and
Vx�1

i=1 :pi(e) hold.

Similarly, because e 2 V 0
j , there must exist a validation operator v = (Lj; pv) in

the sequence s0 (say, at the position y, i.e., poss(v) = y) that validates e (i.e., pv(e)

is True), but none of the preceding operators do (i.e., :p0j(e) for all j = 1; : : : ; y�1).

Therefore, both pv(e) and
Vy�1

i=1 :p
0
j(e) hold.

The previous two paragraphs combined show that condition 3 holds. Condition

2 also holds, since u and v operators described above have di�erent labels (i.e., Li

and Lj, i 6= j). Finally, condition 1 holds as well, because the same input element

e is validated by u in sequence s and by operator v in sequence s0, which would

be impossible when either of operators u and v precedes the other one in both

sequences, since they both match e. J

The following corollary states necessary and suÆcient conditions for s � s0,

where s0 is a permutation of s.

Corollary 6 Let s =< (l1; p1); : : : ; (lk; pk) > and s0 =< (l01; p
0
1); : : : ; (l

0
k; : : : ; p

0
k) >

be validation sequences, where s0 is a permutation of s. Then s � s0 if and only if

every possible pair of validation operators u = (lu; pu) and v = (lv; pv) (i.e., u 2 s,

v 2 s, u 6= v) must satisfy at least one of the following conditions:

1. Either u precedes v in both s and s0, or v precedes u in both s and s0;

62



2. u and v have the same label, that is, lu = lv;

3. For all possible input elements e 2 E, the following Boolean expression is true:

:(pu(e) ^ pv(e)) _
x�1_
i=1

pi(e) _

y�1_
j=1

p0j(e) (4.7)

where x = poss(u) and y = poss0(v).

I Follows directly from Theorem 5, which states conditions that are necessary and

suÆcient for s and s0 to be non-equivalent. Simply by taking logical negation of

these conditions, we obtain the necessary and suÆcient conditions for s � s0. J

The following corollary states necessary and suÆcient conditions for s � s0,

where s0 is a simple permutation of s.

Corollary 7 Let s =< o1; : : : ; ok > be a validation sequence where oi = (li; pi), and

let s0 =< o01; : : : ; o
0
k > be a simple permutation of s. That is, (9! x 2 f1; : : : ; k �

1g) ((ox = o0x+1) ^ (ox+1 = o0x)), and also oi = o0i for all i 2 f1; : : : ; kg such that

i 6= x and i 6= x+ 1.

Then s � s0 if and only if at least one of the following two conditions is satis�ed:

1. ox and ox+1 have the same label, that is, lx = lx+1;

2. For all possible input elements e 2 E , the following Boolean expression is true:

:(px(e) ^ px+1(e)) _
x�1_
i=1

pi(e) (4.8)

I Since s0 is a permutation of s, Corollary 6 gives us the necessary and suÆcient

conditions for s � s0. We will show that when s0 is a simple permutation of s, these

conditions are equivalent to the two conditions above.
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More speci�cally, when s0 is a simple permutation of s, there is only one inversion

of operator precedence in s0 with respect to s. Therefore, all pairs of validation

operators u; v 2 s except one (i.e., ox and ox+1) automatically satisfy condition 1

of Corollary 6. Consequently, s � s0 if and only if the remaining pair of validation

operators, i.e., ox and ox+1, satis�es at least one of the remaining two conditions of

Corollary 6.

Therefore, ox and ox+1 must either have the same label, or the Equation 4.7 must

be satis�ed, i.e., :(px(e) ^ px+1(e)) _
Wx�1

i=1 pi(e) _
Wy�1

j=1 p
0
j(e) must be True, where

x = poss(ox) and y = poss0(ox+1). Because ox = o0x+1 and ox+1 = o0x, we have that

y = poss0(ox+1) = poss0(o0x) = x. We also know that oi = o0i when i < x. Therefore

Equation 4.7 in our case can be rewritten as :(px(e) ^ px+1(e)) _
Wx�1

i=1 pi(e). J

4.2.2 \Connectedness" of Equivalent Sequence Permutations

In this section, we will prove some facts that will provide some understanding about

the \space" of equivalent validation sequence permutations.

First, we will prove a simple lemma that will be useful in the subsequent proofs.

Lemma 8 Let s =< o1; o2; : : : ; ok > be a validation sequence. Let s0 be some

permutation of s. Then, for every pair of validation operators oi and oj such that

oi �s oj (i.e., i < j), but oj �s0 oi, there exists x such that i � x � j � 1 and

ox+1 �s0 ox.

I Case 1: j � i = 1. Let x := i. Therefore, ox = oi and ox+1 = oj. We have that

ox+1 �s0 ox, since oj �s0 oi.

Case 2: j � i > 1. Let's assume otherwise, that for every x such that i � x �
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j � 1, we have ox �s0 ox+1. Therefore we have, that in the sequence s0: oi precedes

oi+1, oi+1 precedes oi+2, . . . , oj�1 precedes oj. Hence, by transitivity, oi �s0 oj. This

is a contradiction, since oj precedes oi in s0. Therefore, our assumption that for

every x such that i � x � j � 1, ox �s0 ox+1 was incorrect. J

Theorem 9 Let s =< o1; o2; : : : ; ok > be a validation sequence. Let s0 be some safe

permutation of s such that dist(s; s0) = d(d � 1). Then there exists a sequence s00

that is a safe simple permutation of s, such that s0 � s00 and dist(s0; s00) = d� 1.

I Let x be the largest number from the set f1; : : : ; kg, such that ox+1 �s0 ox.

Then, let's construct the sequence s00 =< o001; : : : ; o
00
k > as follows. Let o00i := oi, for

all i, such that 1 � i � x� 1 or x + 2 � i � k. Also, let o00x = ox+1 and o00x+1 = ox.

Essentially, sequence s00 is the same as s except for ox and ox+1 that are swapped.

Obviously, s00 is a simple permutation of s, thus dist(s; s00) = 1.

Now we will show that s � s00. Since s00 is a simple permutation of s, Corollary 7

gives us two conditions to be satis�ed in order to have s � s00.

Assume ox and ox+1 have the same label, i.e., lx = lx+1, then the �rst condition

from Corollary 7 is satis�ed. Therefore, s � s00. In case ox and ox+1 do not have

the same label, the only way for s � s00 to be true is for ox and ox+1 to satisfy the

second condition from Corollary 7. For the remainder of this proof we will assume

that ox and ox+1 do not have the same label, and we will show that they satisfy the

second condition from Corollary 7, i.e.,

:(px ^ px+1) _
x�1_
i=1

pi (4.9)

Let's go back to sequences s and s0 for a moment. Since s � s0, from Corollary 6

we have that all pairs of operators from s, including ox and ox+1, must satisfy at
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least one of the three necessary and suÆcient conditions for s � s0. Let's consider

the pair ox and ox+1.

Since ox precedes ox+1 in s, but ox+1 precedes ox in s0 (that's how we chose

ox in the beginning of the proof), the �rst condition is not satis�ed by these two

operators. These operators do not satisfy the second condition as well, since they

do not have the same label (according to our assumption). Therefore, since s � s0,

ox and ox+1 must satisfy the third condition of Corollary 6, namely:

:(px ^ px+1) _
x�1_
i=1

pi _

y�1_
j=1

p0j (4.10)

where y is the position of ox+1 in s0. Therefore, ox+1 = o0y. Also note, that by

construction, none of o0j (j 2 f1; : : : ; y � 1g) can be equal to ox or ox+1, since

ox+1 = o0y and ox+1 �s0 ox.

We will show that every o0j (j 2 f1; : : : ; y � 1g) is from among o1; : : : ; ox�1.

Suppose otherwise, there exists j 2 f1; : : : ; y � 1g such that o0j = oz, where x �

z � k. Since, as mentioned above, none of o0j (j 2 f1; : : : ; y � 1g) can be equal to

ox or ox+1, we can obtain an even tighter bound for z, i.e., x + 1 < z � k.

Then, consider validation operators ox+1 and oz. ox+1 precedes oz in s, because

x+1 < z. However, oz precedes ox+1 in s
0, because poss0(ox+1) = y and poss0(oz) <

y. From Lemma 8 we have, that there exists t, x + 1 � t � z � 1, such that ot+1

precedes ot in s0.

Thus, we showed that there exists t � x + 1 > x, such that ot+1 precedes ot

in s0. However, by de�nition x is the largest number, such that ox+1 precedes ox

in s0 (i.e., we chose x to be the largest such number in the �rst paragraph of this

proof). We derived a contradiction, therefore our assumption that there exists
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j 2 f1; : : : ; y � 1g such that o0j = oz, where x � z � k is incorrect. This implies

that every o0j (j 2 f1; : : : ; y � 1g) is from among o1; : : : ; ox�1. Therefore, every p0j

(j 2 f1; : : : ; y � 1g) is from among p1; : : : ; px�1. Consequently, the third necessary

condition 4.10 of s � s0 in this case is equivalent to:

:(px ^ px+1) _
x�1_
i=1

pi (4.11)

Hence, based on the fact that s � s0, we proved that the Boolean expression 4.11

holds for every element e 2 E . However, this expression is exactly the same as the

one described by Equation 4.9, which was needed to prove that s � s00 (when ox

and ox+1 do not have the same label). Therefore, ox and ox+1 satisfy the second

suÆcient condition of Corollary 7 and, hence, s � s00.

Now we have s � s0 and s � s00. Because of the transitivity and the symmetry of

the relation R� (see Lemma 3), s0 � s00 is also true. Also, we know that dist(s; s0) =

d and dist(s; s00) = 1. Because of how we constructed s00, s0 has all the same

precedence inversions with respect to s00 as with respect to s, except for one. More

speci�cally, ox and ox+1 have the same precedence in both s
0 and s00. Therefore, the

distance between s0 and s00 is one less than between s0 and s, i.e., dist(s0; s00) = d�1.

J

Theorem 10 Let s =< o1; o2; : : : ; ok > be a validation sequence. Let s0 be some

permutation of s such that dist(s; s0) = d � 1). Then, s � s0 if and only if there

exists d+ 1 validation sequences s0, s1, . . . , sd, such that s0 = s, sd = s0, and si is

a safe simple permutation of si�1 for every i = 1; : : : ; d.

I Assume s � s0. Let's denote s0 := s and sd := s0. Based on Theorem 9,

there exists sequence s1, such that s1 is a safe simple permutation of s0, and also
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s1 � sd, and dist(s1; sd) = d � 1. Repeat this process for s1 and sd to obtain s2,

etc. In general, when we have si, such that si � sd and dist(si; sd) = d � i, we

can obtain si+1 (which is a safe simple permutation of si), such that si+1 � sd and

dist(si+1; sd) = d� i� 1. Hence, there exists d+ 1 validation sequences s0, s1, . . . ,

sd, such that s0 = s, sd = s0, and si is a safe simple permutation of si�1 for every

i = 1; : : : ; d.

Now assume, that there exists d + 1 validation sequences s0, s1, . . . , sd, such

that si is a safe simple permutation of si�1 for every i = 1; : : : ; d. In other words,

for every i = 1; : : : ; d, si�1 � si. By transitivity of the equivalence relation: s0 � sd.

Hence, s � s0. J

The above results give us a better understanding about equivalent permutations

of a given validation sequence.

Let's assume that s is an arbitrary validation sequence. We can visualize the

space of all permutations of s by constructing a permutation graph, where each

vertex corresponds to a di�erent permutation of s. Furthermore, in this graph, two

vertices will have an edge connecting them if one of them is a simple permutation

of the other. An example of such graph for a sequence consisting of four validation

operators is presented in Figure 4.1.

Obviously, any two permutations are connected by a path (in fact, multiple

paths) in this permutation graph. Theorem 10 states that if two permutations,

say s1 and s2, are equivalent, there exists a minimal path from s1 to s2 that goes

only through \intermediate" permutations that are equivalent to s1 and s2, where

\minimal paths" between s1 and s2 are the paths with the length (i.e., number of

edges comprising the paths) equal to the permutation distance between s1 and s2.
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Figure 4.1: Permutation graph of a validation sequence.
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Figure 4.1 illustrates this fact. More speci�cally, let s1 :=< o1; o2; o3; o4 >.

Also, let s2 be a permutation of s1 such that s2 :=< o4; o3; o1; o2 >. The distance

between s1 and s2 is 5, since there are 5 operator inversions in s2 with respect to

s1, i.e., (o4; o3), (o4; o2), (o4; o1), (o3; o2), (o3; o1). Figure 4.1 highlights all the paths

of length 5 between s1 and s2.

A useful fact about Theorem 10 is that it suggests a \search space" of equivalent

validation sequence permutations, and we could try and take advantage of it in

solving our sequence optimization problem.

Let's assume that we have an expert-speci�ed validation sequence s. Let's also

assume that we have a cost function de�ned for each permutation of s (we will

address this issue in later sections). Then, we could search for the optimal permu-

tation by traversing the permutation graph (such as depicted in Figure 4.1) by doing

only safe simple permutations, starting from vertex s. Theorem 10 guarantees that

we will encounter the optimal permutation s� along the way.

We could use various graph traversal techniques, such as depth-�rst search or

breadth-�rst search. However, if the validation sequence s has k validation op-

erators, then the number of possible permutations is k!. When k is large, the

exhaustive search techniques would not be scalable.

On the other hand, obviously, the largest possible distance between two permu-

tations is (k � 1) + (k � 2) + : : : + 2 + 1 = k(k � 1)=2 (i.e., the largest possible

number of inversions between two permutations { where everything is inverted).

Therefore, there exists a path between the expert-speci�ed validation sequence s

and the optimal sequence s� that is not longer than k(k � 1)=2. Consequently,

based on the speci�c cost function, we would like to �nd a greedy algorithm that
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allows us to choose the right path and not have to traverse the whole graph.

One obstacle with this approach is that we must be able to determine whether

a given simple permutation is safe. Corollary 7 gives us two conditions { at least

one of them has to be met by a simple permutation in order for it to be safe.

Assume s =< o1; : : : ; ok > be a validation sequence where oi = (li; pi), and let

s0 =< o01; : : : ; o
0
k > be a simple permutation of s. That is, (9!x 2 f1; : : : ; k �

1g)((ox = o0x+1) ^ (ox+1 = o0x)), and also ox = o0x for all i 2 f1; : : : ; kg such that

i 6= x and i 6= x+1. The �rst condition of Corollary 7, lx = lx+1, is easily veri�able.

The second condition, i.e., whether the following expression holds for all possible

inputs e 2 E

:(px(e) ^ px+1(e)) _
x�1_
i=1

pi(e)

obviously is not easily solvable analytically.

We will later show that even when we restrict the validation sequence optimiza-

tion problem, it remains very computationally complex. More speci�cally, we will

show that one special case of our problem is NP-complete.

Therefore, we will try to simplify (restrict) the validation sequence optimization

problem. For this purpose, we will introduce more restrictive concepts of permu-

tation equivalence, i.e., strong equivalence and very strong equivalence of validation

sequence permutations in the remainder of Section 4.2. But �rst, in the next sec-

tion, we will introduce the notion of predicate orthogonality, which will be useful to

us throughout this chapter.
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4.2.3 Predicate Orthogonality

In this section, we de�ne the concept of predicate orthogonality and prove some of

its basic properties.

De�nition 9 (Predicate Orthogonality) Two predicates p and q are orthogonal

if (8e 2 E) (:(p(e) ^ q(e))). If p and q are orthogonal, we will denote it p?q. If p

and q are not orthogonal, we will denote it p 6 ?q.

Simply put, two predicates are orthogonal if they can never both match the

same input element.

Example 4 By de�nition, cardinality predicates C0
Milk and C

1
Milk would

never match the same itemset. Hence, C0
Milk?C

1
Milk .

Lemma 11 (8p 2 P)(p?:p).

I Follows directly from the de�nition of predicate orthogonality, since :(p(e) ^

:p(e)) = :p(e) _ p(e) is True for any e 2 E . J

Predicate orthogonality can be viewed as a binary relation on the set of all pred-

icates. Let's denote this relation R?. R? has the following properties: symmetric,

but neither re
exive nor transitive, as shown below.2

Lemma 12 Binary relation R? is symmetric, but neither re
exive nor transitive.
2These are the properties that one may intuitively expect an orthogonality relation to have,

e.g., orthogonality relation on the set of straight lines on a two-dimensional plane has the exact

same properties.
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I R? is not re
exive. In order for R? to be re
exive, for every predicate p,

p?p must hold. Based on the predicate orthogonality de�nition, p?p () (8e 2

E) (:(p(e) ^ p(e))) () (8e 2 E) (:p(e)). However, clearly there exists a set

predicate that does not evaluate to False on every itemset.3 Hence, R? is not

re
exive.

R? is symmetric. For any predicates p and q, if p?q then q?p. This follows

directly from the de�nition of predicate orthogonality, since obviously :(p(e) ^

q(e)) = :(q(e) ^ p(e)).

R? is not transitive. For any predicates p, q, and r, if p?q and q?r, it does not

necessarily imply that p?r. For example, let a be an arbitrary predicate and let's

de�ne predicates p, q, r as follows: p := a, q := :a, and r := a. From Lemma 11,

p?q and q?r, since a?:a. However, p and r are not orthogonal, since R? is not

re
exive, as shown above. J

Lemma 13 Let p1, : : :, pm and q be predicates. Let p := p1 ^ : : : ^ pm. If there

exists i 2 f1; : : : ; mg such that pi?q, then p?q.

I Consider the following set predicate expression:

:(p ^ q) = :(p1 ^ : : : ^ pm ^ q)

= :p1 _ : : : _ :pm _ :q

= (:p1 _ :q) _ : : : _ (:pm _ :q)

= :(p1 ^ q) _ : : : _ :(pm ^ q)

Now assume pi?q. By orthogonality de�nition, :(pi^q) holds for all possible inputs.

Therefore,
Wm

j=1 :(pj^q) holds for all possible inputs. Based on the equalities above,
3E.g., the predicate that always returns True regardless of input.
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:(p ^ q) holds for all inputs. Therefore, p?q. J

Corollary 14 Let p := p1^: : :^pm and q := q1^: : :^qn. If (9i 2 f1; : : : ; mg) (9j 2

f1; : : : ng)(pi?qj), then p?q.

I Assume pi?qj. From Lemma 13, pi?q. Again from Lemma 13, p?q. J

Lemma 15 Let p1, : : :, pm and q be predicates. Let p := p1 _ : : : _ pm. Then p?q

if and only if (8i 2 f1; : : : ; mg) (pi?q).

I Consider the following predicate expression:

:(p ^ q) = :((p1 _ : : : _ pm) ^ q)

= :(p1 ^ q) _ : : : _ (pm ^ q)

= :(p1 ^ q) ^ : : : ^ :(pm ^ q)

Assume p?q. From orthogonality de�nition we have, that :(p ^ q) holds for all

possible inputs. Then, based on the equalities above, we have that all the expres-

sions :(pi ^ q) (where i 2 f1; : : : ; mg) must hold for all inputs. Consequently, pi?q

for all i 2 f1; : : : ; mg.

Now assume pi?q for all i 2 f1; : : : ; mg. From orthogonality de�nition we have

that :(pi ^ q) holds on all inputs for all i 2 f1; : : : ; mg. Based on the equalities

above, :(p ^ q) always holds. Therefore, p?q. J

Corollary 16 Let p := p1 _ : : : _ pm and q := q1 _ : : : _ qn. Then p?q if and only

if (8i 2 f1; : : : ; mg) (8j 2 f1; : : : ng)(pi?qj).

I Follows directly from Lemma 15. J
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4.2.4 Strongly Equivalent Permutations

De�nition 10 (Strongly Equivalent Permutation)

Let s =< (l1; p1); : : : ; (lk; pk) > and s0 =< (l01; p
0
1); : : : ; (l

0
k; p

0
k) > be validation se-

quences, where s0 is a permutation of s. s0 is said to be a strongly equivalent per-

mutation of s if and only if every possible pair of validation operators u = (lu; pu)

and v = (lv; pv) (i.e., u 2 s, v 2 s, u 6= v) satis�es at least one of the following

conditions:

1. Either u precedes v in both s and s0, or v precedes u in both s and s0;

2. u and v have the same label, that is, lu = lv;

3. pu and pv are orthogonal, i.e., pu?pv.

If s0 is a strongly equivalent permutation of s, we will denote it as s � s0.

Lemma 17 s � s0 =) s � s0

I Follows straightforwardly from the de�nition of strong equivalence and Corol-

lary 6.

More speci�cally, since s � s0, every pair of validation operators u and v (i.e.,

u 2 s and v 2 s) must satisfy one of the three conditions from De�nition 10. Con-

sequently, u and v satisfy the corresponding suÆcient condition from Corollary 6.

Hence, s � s0. J

The strong equivalence of validation sequence permutations can be viewed as a

binary relation on the set of all possible permutations of a given validation sequence.

Let's denote this relation R�. Note, that R� is a true equivalence relation, since it

is re
exive, symmetric, and transitive, as shown below.
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Lemma 18 Relation R� is a true equivalence relation.

I R� is re
exive. Obviously, s � s for all s, since no operators are permuted.

That is, condition 1 of De�nition 10 is satis�ed for all pairs u; v of operators in

sequence s.

R� is symmetric. For any two validation sequences s and s0, where s0 is a

permutation of s, if s � s0 then s0 � s, since all three conditions in De�nition 10

treat sequences s and s0 in a symmetric manner.

R� is transitive. For any validation sequences s, s0, and s00, where s0 and s00 are

permutations of s, if s � s0 and s0 � s00, then s � s00.

Assume otherwise, i.e., there exist sequences s, s0, and s00, such that s � s0

and s0 � s00, but s 6� s00. If s 6� s00, there exist validation operators u = (lu; pu)

and v = (lv; pv) in sequence s that do not satisfy any of the three conditions

in De�nition 10. Without loss of generality, let's assume that u �s v. More

speci�cally, all of the following must be true: u �s v, v �s00 u, lu 6= lv, and pu 6 ?pv.

Since s � s0, we have that all pairs of operators, including u and v, should

satisfy the three conditions of strong equivalence of s and s0. As we have shown in

the previous paragraph, lu 6= lv, and pu 6 ?pv, therefore, conditions 2 and 3 do not

hold. Consequently, condition 1 must hold in order to have s � s0. Since u �s v,

then u �s0 v (according to condition 1).

If we repeat the same argument for s0 � s00, we would see that operators u and

v again have to satisfy condition 1, because conditions 2 and 3 cannot hold for

the same reasons as described in the previous paragraph. Since we derived earlier

that u �s0 v, then u �s00 v (according to condition 1 for s0 � s00). We derived

a contradiction, since v �s00 u (assuming R� is not transitive). Hence, R� is a
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transitive relation. J

Also, we can show that for strongly equivalent sequence permutations there exist

similar \connectedness" results as for safe (equivalent) sequence permutations. But

�rst let's derive the necessary and suÆcient conditions of strong equivalence for

simple permutations.

Lemma 19 Let s =< o1; : : : ; ok > be a validation sequence where oi = (li; pi), and

let s0 =< o01; : : : ; o
0
k > be a simple permutation of s. That is, (9! x 2 f1; : : : ; k �

1g)((ox = o0x+1) ^ (ox+1 = o0x)), and also oi = o0i for all i 2 f1; : : : ; kg such that

i 6= x and i 6= x+ 1.

Then s � s0 if and only if at least one of the following two conditions is satis�ed:

1. ox and ox+1 have the same label, that is, lx = lx+1;

2. px?px+1.

I De�nition 10 gives us three conditions that have to be satis�ed in order to have

s � s0. Since s0 is a simple permutation of s, these conditions are equivalent to the

two conditions above.

More speci�cally, when s0 is a simple permutation of s, there is only one inversion

of operator precedence in s0 with respect to s. Therefore, all pairs of validation

operators u; v 2 s except one (i.e., ox and ox+1) automatically satisfy condition 1 of

De�nition 10. Consequently, s � s0 if and only if the remaining pair of validation

operators, i.e., ox and ox+1, satis�es at least one of the remaining two conditions.

J
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Theorem 20 Let s =< o1; o2; : : : ; ok > be a validation sequence. Let s0 be some

strongly equivalent permutation of s (i.e., s � s0) such that dist(s; s0) = d � 1).

Then there exists a sequence s00 that is a strongly equivalent simple permutation of

s (i.e., dist(s; s00) = 1 and s � s00), such that s0 � s00 and dist(s0; s00) = d� 1.

I Let x be any number from the set f1; : : : ; kg, such that ox+1 �s0 ox. Then, let's

construct the sequence s00 =< o001; : : : ; o
00
k > as follows. Let o00i := oi, for all i, such

that 1 � i � x� 1 or x+2 � i � k. Also, let o00x = ox+1 and o
00
x+1 = ox. Essentially,

sequence s00 is the same as s except for ox and ox+1 that are swapped. Obviously,

s00 is a simple permutation of s, thus dist(s; s00) = 1.

Now we will show that s � s00. Since s00 is a simple permutation of s, Lemma 19

gives us two conditions to be satis�ed in order to have s � s00.

Assume ox and ox+1 have the same label, i.e., lx = lx+1, then the �rst condition

from Lemma 19 is satis�ed. Therefore, s � s00. In case ox and ox+1 do not have

the same label, the only way for s � s00 to be true is for ox and ox+1 to satisfy the

second condition from Lemma 19, namely px?px+1.

However, since s � s0, from De�nition 10 we have that all pairs of operators

from s, including ox and ox+1, must satisfy at least one of the three conditions for

s � s0. Let's consider the pair ox and ox+1.

Since ox precedes ox+1 in s, but ox+1 precedes ox in s0 (that's how we chose

ox in the beginning of the proof), the �rst condition is not satis�ed by these two

operators. These operators do not satisfy the second condition as well, since they

do not have the same label (according to our assumption). Therefore, since s � s0,

ox and ox+1 must satisfy the third condition of De�nition 10, namely px?px+1,

which is exactly what we needed to prove.

78



Now we have s � s0 and s � s00. Because of the transitivity and the symmetry

of the relation R� (see Lemma 18), s0 � s00 is also true. Also, we know that

dist(s; s0) = d and dist(s; s00) = 1. Because of how we constructed s00, s0 has all the

same precedence inversions with respect to s00 as with respect to s, except for one

{ ox and ox+1 have the same precedence in both s0 and s00. Therefore, the distance

between s0 and s00 is one less than between s0 and s, i.e., dist(s0; s00) = d� 1. J

Theorem 21 Let s =< o1; o2; : : : ; ok > be a validation sequence. Let s0 be some

permutation of s such that dist(s; s0) = d � 1). Then, s � s0 if and only if there

exists d+ 1 validation sequences s0, s1, . . . , sd, such that s0 = s, sd = s0, and si is

a strongly equivalent simple permutation of si�1 for every i = 1; : : : ; d.

I Assume s � s0. Let's denote s0 := s and sd := s0. Based on Theorem 20,

there exists sequence s1, such that s1 is a strongly equivalent simple permutation

of s0, s1 � sd, and dist(s1; sd) = d� 1. Repeat this process for s1 and sd to obtain

s2, etc. In general, when we have si, such that si � sd and dist(si; sd) = d � i,

we can obtain si+1 (which is a strongly equivalent simple permutation of si), such

that si+1 � sd and dist(si+1; sd) = d � i � 1. Hence, there exists d + 1 validation

sequences s0, s1, . . . , sd, such that s0 = s, sd = s0, and si is a strongly equivalent

simple permutation of si�1 for every i = 1; : : : ; d.

Now assume, that there exists d + 1 validation sequences s0, s1, . . . , sd, such

that si is a strongly equivalent simple permutation of si�1 for every i = 1; : : : ; d.

In other words, for every i = 1; : : : ; d, si�1 � si. By transitivity of the strong

equivalence relation: s0 � sd. J
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Now that we have de�ned the notion of the strong equivalence for validation

sequence permutations, we can formulate the restricted validation sequence opti-

mization problem as follows:

s� = argmin
s0�s

cost(s0; D)

= argmax
s0�s

bene�t(s0; D)

= argmax
s0�s

k�1X
i=1

(k � i)n0i (4.12)

4.2.5 Very Strongly Equivalent Permutations

In Section 4.2.4, we introduced a subclass of equivalent (safe) permutations called

strongly equivalent permutations. Let's restrict the class of strongly equivalent

permutations even further and introduce the class of very strongly equivalent per-

mutations. We will use this new class to prove NP-completeness of the restricted

optimization problem.

De�nition 11 (Very Strongly Equivalent Permutation)

Let s =< (l1; p1); : : : ; (lk; pk) > and s0 =< (l01; p
0
1); : : : ; (l

0
k; p

0
k) > be validation se-

quences, where s0 is a permutation of s. s0 is said to be a very strongly equivalent

permutation of s if and only if every possible pair of validation operators u = (lu; pu)

and v = (lv; pv) (i.e., u 2 s, v 2 s, u 6= v) satis�es at least one of the following

conditions:

1. Either u precedes v in both s and s0, or v precedes u in both s and s0;

2. pu?pv.

If s0 is a very strongly equivalent permutation of s, we will denote it as s u s0.
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Lemma 22 s u s0 =) s � s0

I Follows straightforwardly from the de�nitions of strong equivalence and very

strong equivalence of validation sequence permutations. J

One could also prove that the relation of very strong equivalence is a true equiva-

lence relation in the same manner as it was done for equivalent validation sequences

and strongly equivalent validation sequences. The \connectedness" results for very

strongly equivalent permutations can also be obtained in a straightforward man-

ner using the same techniques as were used to prove the \connectedness" for both

equivalent and strongly equivalent validation sequences in Section 4.2.2.

Let's further restrict the optimization problem:

s� = argmax
s0�s

bene�t(s0; D)

and consider its special case:

s� = argmax
s0us

bene�t(s0; D)

We will show that this problem is equivalent to a known NP-complete problem.

By inserting in the de�nition of the bene�t function, we obtain that

s� = argmax
s0us

k�1X
i=1

(k � i)n0i

where n0i are the numbers of data points from D validated by each validation oper-

ator o0i in sequence s0. Since, we know only the numbers ni (i.e., numbers of data

points from D validated by each validation operator oi in sequence s), we will have

to estimate n0i theoretically.

Assume, s0 is a very strongly equivalent permutation of s. Let's consider an

arbitrary operator oi 2 s, i.e., poss(oi) = i. Also, let's assume that in the permuted
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sequence s0, oi would be at some position j, i.e., oi = o0j or poss0(oi) = j. Finally,

let's also assume that oi validated ni data points from dataset D. How many data

points will oi validate in the permuted sequence s0 being at a position j? The

answer is, it will validate exactly ni points again, regardless of position j it was

placed in the permuted sequence s0, as demonstrated below.

Lemma 23 Let s =< o1; : : : ; ok > be a validation sequence and let n1, . . . , nk be

the numbers of data points validated by each of the validation operators in s, given

some dataset D. Let s0 =< o01; : : : ; o
0
k > be a very strongly equivalent permutation

of s (i.e., s u s0) and let n01, . . . , n
0
k be the numbers of data points validated by

each of the validation operators in s0, given the same dataset D. Then for every

i 2 f1; : : : ; kg: ni = n0j where j = poss0(oi).

I Let's assume s u s0 and let's consider an arbitrary validation operator oi from

sequence s, i.e., poss(oi) = i. Also, let j = poss0(oi). We have to show that ni = n0j.

We will show this by showing that oi validates exactly the same subset of D in both

s and s0.

Assume otherwise, that there exists e 2 D such that either (1) oi validates e in

s but not in s0, or (2) oi validates e in s0 but not in s. We will provide the proof

for the �rst of these two situations. The proof for the second one is essentially

identical.

Since there exists e 2 D such that oi validates e in s but not in s0, there must

exist a validation operator ox such that ox �s0 oi and ox validates e. However,

oi �s ox, because otherwise oi would not be able to validate e in s (i.e., ox would

validate e before oi). Therefore, we have two validation operators oi and ox such
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that oi �s ox, ox �s0 oi, and pi 6 ?px (since there exists e 2 D that can be validated

by both oi and ox). This is a contradiction, because by the de�nition of very strong

equivalence all pairs of validation operators must satisfy one of two conditions (see

De�nition 11), whereas the pair oi and ox satis�es neither.

Therefore, given s and s0, where s0 is very strongly equivalent to s, each valida-

tion operator validates exactly the same subset of inputs from D in both s and s0.

Hence, for all i: ni = n0j, where j = poss0(oi). J

Given validation sequence s =< o1; : : : ; ok > and some permutation s0, De�ni-

tion 11 speci�es several conditions that must be satis�ed by every pair of validation

operators u 2 s and v 2 s, so that s u s0. We will show that these conditions are

equivalent to specifying a certain partial order on the set of validation operators in

s.

More speci�cally, let Gs = (V;E) be a directed acyclic graph with k vertices,

where each vertex i 2 V is associated with a di�erent validation operator oi (i 2

f1; : : : ; kg). Furthermore, the set E of edges is de�ned as follows. For every pair

of validation operators oi = (li; pi) and oj = (lj; pj) such that oi �s oj (i.e., i < j),

add an edge from vertex i to vertex j to set E if pi 6 ?pj. We will call this graph a

precedence graph of sequence s.

Note, that if precedence graph Gs has an edge from i to j, then any permutation

s0 that is very strongly equivalent to s must have oi �s0 oj. If that were not the case,

i.e., if there existed a very strongly equivalent permutation s0 such that oj �s0 oi,

then we would derive a contradiction, since validation operators oi and oj would

not satisfy either of the two conditions from De�nition 11 and it would imply that

s 6u s0.
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It is easy to see that Gs represents a partial order over the set of validation

operators o1, . . . , ok. As we showed above, those permutations of s that satisfy

this partial order are very strongly equivalent to s, and the ones that do not satisfy

this order are not very strongly equivalent to s. Also, since we have not placed

any restrictions on what kind of predicates can be used in validation operators, the

resulting precedence graph in general can represent any possible partial order.

Therefore, we have transformed the restricted validation sequence optimization

problem

s� = argmax
s0us

k�1X
i=1

(k � i)n0i

into the following validation operator \scheduling" problem:

s� = arg max
s0 satis�es Gs

k�1X
i=1

(k � i)n0i (4.13)

where n0i = nx, if poss0(ox) = i (according to Lemma 23). In other words, the

problem is to �nd a \scheduling" of operators o1, . . . , ok such that it obeys the

precedence graph G and the corresponding permutation of n1, . . . , nk maximizes

the bene�t function.

Let's assume that we know how to eÆciently compute whether two predicates

are orthogonal (we will show how to do that for cardinality predicates later in

this chapter). Therefore, let's assume that, given validation sequence s, we can

eÆciently construct precedence graph Gs. Then, we will show that the above

scheduling problem (speci�ed in Equation 4.13) is NP-complete, by showing that

solving it is equivalent to solving a known NP-complete problem, described in the

next section.
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4.3 NP-Completeness of Restricted Optimization Problem

In this section, we will show that our restricted optimization problem (i.e., its search

space restricted only to very strongly equivalent permutations) is equivalent to the

NP-complete task sequencing problem, described below.

4.3.1 Task Sequencing to Minimize Weighted Completion Time

The following problem is often referred to as the problem of \Task Sequencing on

a Single Processor to Minimize Weighted Completion Time" [37].

Assume, that a set of tasks T has to be sequenced for processing by a single

machine. The sequencing of the tasks must obey the precedence constraints imposed

by a given directed acyclic graph G = (V;E), where each vertex v 2 V is associated

with a di�erent task (therefore, jT j = jV j). In other words, G imposes a partial

order on T . Task t0 2 T must precede task t00 2 T if there is a directed path from

t0 to t00 in G.

Furthermore, each task t is assigned a processing time p(t) 2 Z+ and a weight

w(t) 2 Z. Given a speci�c sequencing of T , e.g., s =< t1; : : : ; tk >, the completion

time of each task ti is denoted as C(ti) and can be calculated as

C(ti) =
iX

j=1

p(tj) (4.14)

where we assume that the processing of the �rst task begins immediately (i.e., at

time 0) and there is no idle time between consecutive jobs.

The objective of the sequencing problem is to �nd the feasible sequence (i.e., that

obeys the partial order imposed by G) s =< t1; : : : ; tk > (ti 2 T ) that minimizes the

weighted total completion time WTCT (s), de�ned as a weighted sum of individual

85



completion times, i.e.,

WTCT (s) =
kX
i=1

w(ti) C(ti) (4.15)

Lawler [49] showed that the above problem is NP-complete. Furthermore, it was

also shown that the above problem remains NP-complete even when all w(t) = 1.

Assuming w(t) = 1 for all t 2 T and using the de�nition of C(t) from Equa-

tion 4.14, the weighted total completion time of sequence s =< t1; : : : ; tk > can be

expressed as

WTCT (s) =
kX
i=1

C(ti) (4.16)

=
kX
i=1

iX
j=1

p(tj) (4.17)

=
kX
i=1

(k + 1� i) p(ti) (4.18)

4.3.2 Equivalence of the Two Problems

As indicated above, the problem of �nding the task sequence that obeys the speci�ed

partial order andminimizes the weighted total completion time is NP-complete. We

will show that the problem of �nding the task sequence that obeys the speci�ed par-

tial order and maximizes the weighted total completion time is also NP-complete.

Let G = (V;E) be an acyclic directed graph representing the partial order to be

imposed on tasks T . Then we will de�ne a \reverse" graph G0 = (V 0; E 0) as follows.

Let V 0 = V and let E 0 contain the same edges as E, only each edge should point

in the reverse direction. That is, E 0 := f(u; v) : (v; u) 2 Eg.

We will show that s =< t1; : : : ; tk > minimizes WTCT with respect to par-

tial order G if and only if s0 =< tk; : : : ; t1 > (i.e., s0 is the reversed sequence s)
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maximizes WTCT with respect to partial order G0.

Theorem 24 s =< t1; : : : ; tk > minimizes WTCT with respect to partial order G

() s0 =< tk; : : : ; t1 > maximizes WTCT with respect to partial order G0.

I Let's assume that sequence s =< t1; : : : ; tk > minimizes WTCT with respect

to partial order G. We will show that the reverse sequence s0 =< t01; : : : ; t
0
k > then

maximizes WTCT with respect to partial order G0. Because s0 is a reverse of s,

we have that t0i = tk+1�i for all i 2 f1; : : : ; kg. Obviously, since s obeys the partial

order of G, the reverse sequence s0 obeys the partial order of the "reverse" graph

G0.

Assume otherwise, i.e., s0 does not maximizeWTCT with respect to G0. There-

fore, there exists a di�erent sequencing of tasks z0 =< u01; : : : ; u
0
k >, such that

z0 6= s0, z0 obeys G0 and WTCT (s0) < WTCT (z0). Therefore, we have

0 < WTCT (z0)�WTCT (s0)

=
kX
i=1

(k + 1� i) p(u0i)�
kX
i=1

(k + 1� i) p(t0i)

=
kX
i=1

(k + 1� i) (p(u0i)� p(t0i))

Let's denote z =< u1; : : : ; uk > to be the reverse of z0, i.e., u0i = uk+1�i for all

i 2 f1; : : : ; kg. Since z0 satis�es partial order constraints speci�ed by G0, z must

satisfy the ones speci�ed by G. Also, s0 6= z0 implies s 6= z. Then the above
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equations can be rewritten as:

0 <
kX
i=1

(k + 1� i) (p(u0i)� p(t0i))

=
kX
i=1

(k + 1� i) (p(uk+1�i)� p(tk+1�i))

=
kX

j=1

j (p(uj)� p(tj)) (4.19)

where in the last expression above, we simply changed the summation index from

i to j, where j = k + 1� i.

Note, that s =< t1; : : : ; tk > and z =< u1; : : : ; uk > are two di�erent sequences

of the same task set, therefore

kX
j=1

p(tj) =
kX

j=1

p(uj) )

kX
j=1

(p(uj)� p(tj)) = 0 )

(k + 1)
kX

j=1

(p(uj)� p(tj)) = 0 )

kX
j=1

(k + 1) (p(uj)� p(tj)) = 0 (4.20)

By puting together Equations 4.19 and 4.20 we have:

kX
j=1

(k + 1) (p(uj)� p(tj)) <
kX

j=1

j (p(uj)� p(tj))

)
kX

j=1

(k + 1� j) (p(uj)� p(tj)) < 0

)
kX

j=1

(k + 1� j) p(uj) <
kX

j=1

(k + 1� j) p(tj)

) WTCT (z) < WTCT (s)
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Therefore, we have showed that there exists sequence z (z 6= s) that obeys

partial order speci�ed by G and has smaller weighted total completion time than s.

We derived a contradiction, because by de�nition s is the sequence that minimizes

WTCT with respect to G. Therefore, our assumption that s0 does not maximize

WTCT with respect to G0 was incorrect.

The proof in the other direction is essentially identical. J

The above theorem indicates that solving the problem of task sequencing to

minimize weighted completion time subject to partial order constraints is equiva-

lent to solving the problem of task sequencing to maximize weighted completion

time subject to partial order constraints. Since the former problem has been shown

to be NP-complete [49], consequently the latter problem is NP-complete as well. In

addition, the latter problem is equivalent to our restricted validation sequence op-

timization (i.e., bene�t maximization) problem (Equation 4.13), since in both cases

we are searching for the sequence that satis�es the given partial order and maxi-

mizes essentially the same function.4 Hence, our restricted optimization problem is

NP-complete as well.

4.4 Greedy Heuristic for Validation Sequence Improvement

In the previous section we showed that, given validation sequence s, the problem

of �nding the optimal sequence among all the sequences that are very strongly

equivalent to s is NP-complete. Note, that this problem is already NP-complete

without even taking into account the computation of the precedence graph G. In
4Actually, the functions in two problems di�er, but only by a constant, which does not depend

on a particular sequencing and, therefore, does not a�ect the solution.
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the case of the task scheduling problem, described in Section 4.3.1, the precedence

graph is given (i.e., it is part of the input). However, in our problem, we have to

calculate the precedence graph ourselves. In other words, we have to be able to

calculate which pairs of operators must preserve their precedence in the permuted

sequence, based on the orthogonality of their predicates.

Note, that the precedence graph calculation depends on the class of predicates

used in validation operators. If the predicates are complex, it may be very diÆcult

(or impossible) to show whether two given predicates are orthogonal or not. Since

the problem is NP-complete even when the graph is already given, in this section

we will present a general (i.e., independent of the class of predicates used) heuristic-

based approach to improving the validation sequence when a precedence graph G

is given as an input. We will separately address the issue of how to construct the

precedence graph for cardinality predicate-based validation sequences later in this

chapter.

4.4.1 Precedence Graph for Strongly Equivalent Permutations

For the purpose of proving the NP-completeness of the optimization problem, we

showed earlier how to construct the precedence graph based on very strong equiv-

alence constraints. For our heuristic approach, we will construct the precedence

graph based on less restrictive equivalence { strong equivalence { constraints. This

way, our heuristic will have a potentially larger search space to work with and,

therefore, may generate permutations with better performance improvements.

Given validation sequence s =< o1; : : : ; ok > and some its permutation s0, De�-

nition 10 speci�es several conditions that must be satis�ed by every pair of valida-
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tion operators u 2 s and v 2 s so that s � s0. We will show that these conditions

are equivalent to specifying a certain partial order on the set of validation operators

in s.

More speci�cally, let Gs = (V;E) be a directed acyclic graph with k vertices,

where each vertex i 2 V is associated with a di�erent validation operator oi (i 2

f1; : : : ; kg). Furthermore, the set E of edges is de�ned as follows. For every pair

of validation operators oi = (li; pi) and oj = (lj; pj) such that oi �s oj (i.e., i < j),

add an edge from vertex i to vertex j to set E if both li 6= lj and pi 6 ?pj.

Note, that if precedence graph Gs has an edge from i to j, then any permutation

s0 that is strongly equivalent to s must have oi �s0 oj. If that were not the case, i.e.,

if there existed a strongly equivalent permutation s0 such that oj �s0 oi, then we

would derive a contradiction, since validation operators oi and oj would not satisfy

all three conditions from De�nition 10 and it would imply that s 6� s0.

Let's assume that we know how to eÆciently compute whether two predicates

are orthogonal (we will show how to do that for cardinality predicates later in this

chapter). Therefore, let's assume for now that, given validation sequence s, we can

eÆciently construct precedence graph Gs.

4.4.2 Sequence Improvement using a Simple Permutation

Let s =< o1; : : : ; ok > be a validation sequence. Also, let G be a precedence graph

based on sequence s. As mentioned earlier, the cost of s given speci�c input data

D is:

cost(s;D) = kjDj �
k�1X
i=1

(k � i) ni
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where ni is the number of input data points fromD validated (labeled) by validation

operator oi.

Also, let s0 =< o01; : : : ; o
0
k > be a simple permutation of s. That is, (9! x 2

f1; : : : ; k � 1g)((ox = o0x+1) ^ (ox+1 = o0x)), and also oi = o0i for all i 2 f1; : : : ; kg

such that i 6= x and i 6= x + 1. Also, let's assume that there is no precedence

constraint between operators ox and ox+1, i.e., there is no edge from ox to ox+1 in

G. Therefore, s � s0. Consequently, s � s0 and therefore s0 will produce the same

validation results as s. What is the cost of s0? To be able to answer this, we have

to estimate the numbers n0i, i.e., the number of data points from dataset D that

each validation operator o0i (from permuted sequence) would validate.

First, it is clear that ni = n0i for all i < x, since only the operators ox and ox+1

are permuted. That is, �rst x�1 operators in both sequences s and s0 are the same

and will produce the same validation results.

It is also easy to see that ni = n0i for all i > x+ 1. This is the case, because the

set of �rst x+1 validation operators is the same in both sequences (not necessarily

in the same order). Obviously, the exact same subset of input dataset D would

remain unvalidated after x+1 operators in both.5 In addition, oi = o0i for i > x+1.

Therefore, ni = n0i for all i > x + 1.

We still need to estimate n0x and n
0
x+1. Let's consider operators ox = (lx; px) and

ox+1 = (lx+1; px+1). We know that o0x = ox+1 and o0x+1 = ox. Since s � s0 and s0

is a simple permutation of s, according to Lemma 19 we have one of the following

two possibilities:

� px?px+1. This means that validation operators ox and ox+1 can never both
5For more precise reasoning, consider the two sequences of length x+ 1 and see Lemma 4.
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match the same input data point. Therefore, it does not matter whether ox

precedes ox+1 (as in sequence s) or ox+1 precedes ox (as in sequence s0), they

will still validate the same exact data points as before. Hence, n0x = nx+1 and

n0x+1 = nx.

� lx = lx+1. Since ox+1 will precede ox in sequence s0, obviously, it will be able

to validate at least as many data points in s0 as in s, therefore n0x � nx+1.

As mentioned above, the set of �rst x+ 1 validation operators is the same in

both sequences (not necessarily in the same order) and the exact same subset

of input dataset D would remain unvalidated after x + 1 operators in both.

Therefore,
Px+1

i=1 ni =
Px+1

i=1 n
0
i. However, since ni = n0i for (i < x), we have

that nx + nx+1 = n0x + n0x+1. Furthermore, since n
0
x � nx+1 (as we have just

shown), we have that n0x+1 � nx.

Therefore, in both cases above it is true that nx+nx+1 = n0x+n0x+1 and n
0
x+1 �

nx. Now, let's estimate how much di�erent is the cost of sequence s from the cost

of sequence s0, when s � s0 and s0 is a simple permutation of s.

In general, let's denote the improvement of sequence s0 over sequence s as �s!s0

and de�ne it as follows:

�s!s0 := cost(s;D)� cost(s0; D) (4.21)

In other words, �s!s0 speci�es how much more eÆcient s0 is with respect to

s. Based on de�nitions of cost and bene�t functions (Equations 4.3 and 4.4), it is

obvious that:

�s!s0 = bene�t(s0; D)� bene�t(s;D) (4.22)
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In the case where s0 is a simple permutation of s, we get (by applying the

above analysis and also by plugging in the de�nition of the bene�t function from

Equation 4.4):

�s!s0 = bene�t(s0; D)� bene�t(s;D)

=
k�1X
i=1

(k � i) n0i �
k�1X
i=1

(k � i) ni

=
k�1X
i=1

(k � i)(n0i � ni)

= (k � x)(n0x � nx) + (k � x� 1)(n0x+1 � nx+1)

= (k � x)(n0x + n0x+1 � nx � nx+1) + (nx+1 � n0x+1)

= nx+1 � n0x+1

� nx+1 � nx (4.23)

where in the last equation we have an equality in the case when px and px+1 are

orthogonal.

Therefore, we have that whenever we perform a simple permutation that is

permissible (i.e., allowed by the precedence graph), we are guaranteed to decrease

the cost (or increase the bene�t) of the validation sequence by at least nx+1 � nx.

Based on this simple idea, in the next section we propose a heuristic-based method

for reducing the cost of validation sequences.

4.4.3 Greedy Heuristic Based on Simple Permutations

We will construct the improved validation sequence s0 =< o01; : : : ; o
0
k > from s =<

o1; : : : ; ok > as follows. In the beginning, let o0i := oi and n0i := ni for each i. Also,

let's initialize variable �Total to 0. Then, the following steps should be performed.
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1. Take all k�1 pairs of adjacent validation operators in s0, i.e., (o01; o
0
2), (o

0
2; o

0
3),

. . . , (o0k�1; o
0
k). Discard pairs (o0i; o

0
i+1) that have a precedence constraint be-

tween them, i.e., there is an edge from validation operator o0i to operator o
0
i+1

in the precedence graph G. If all pairs are discarded at this point then we are

done, since no more simple permutations are permissible.

2. Among the remaining pairs, choose the one with biggest Æi := n0i+1�n0i value.

Assume, we chose (o0x; o
0
x+1). If Æx is negative or zero then we are done, since

none of the remaining simple permutations would improve the total bene�t

(or decrease the total cost) of the sequence.

3. If in the previous step we found Æx that is positive, then we exchange positions

of o0x and o
0
x+1 in s

0 (and, correspondingly, we also swap values of n0x and n
0
x+1).

We also increase the value of �Total by Æx, i.e., �Total := �Total + Æx. That is,

using a \greedy" approach, among all possible simple permutations that are

permitted by the precedence graph we chose the one that improves the total

bene�t (or decreases total cost) the most. Then, repeat the same process from

step 1.

The heuristic is not guaranteed to give us an optimal solution to the sequence

optimization problem. However, it can be shown that �s!s0 � �Total, where �Total

is calculated by the heuristic. More precisely,

�Total =
X

i: (oi�soi+1)^(oi+1�s0oi)

(ni+1 � ni) (4.24)

To show that �s!s0 � �Total, one can straightforwardly extend the argument

from Section 4.4.2 which showed that �s!s0 � nx+1� nx for simple strongly equiv-
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alent permutations. Furthermore, it can be shown that the above lower bound is

tight, i.e., �s!s0 = �Total, when all simple permutations performed by the above

heuristic involved pairs of operators with orthogonal predicates, i.e., when all per-

mutations are very strongly equivalent.

Consider, for example, a validation sequence s =< o1; o2; o3 >. Assume, that

this sequence was used to validate dataset D consisting of 1000 data elements, and

that o1 validated 200 (n1), o2 validated 100 (n2), and o3 validated 400 (n3) of them.

Thus, cost(s;D) = 1000 + 800 + 700 = 2500. Furthermore, let's assume that our

heuristic produced the following equivalent permutation s0 =< o3; o1; o2 > by �rst

swapping operators o2 and o3, and then o1 and o3. According to the heuristic,

�Total = (n3 � n2) + (n3 � n1) = (400� 100) + (400� 200) = 500. Therefore, we

are guaranteed to have cost(s0; D) � 2000.

Because at every iteration we perform a simple permutation that satis�es the

precedence graph, the sequence on every iteration remains strongly equivalent to

the original sequence. In addition, note that on every iteration we perform a simple

permutation only if Æx > 0. Because of this, we are guaranteed not to \swap" the

same two validation operators more than once. Therefore, the maximal number

of iterations performed by the above heuristic is equal to the maximal number of

\swaps" you can do in a sequence without \swapping" anything twice. Obviously,

this number is equal to the number of possible validation operator inversions, i.e.,

k(k�1)=2 (assuming the validation sequence has k operators). Moreover, since the

computational complexity of a single iteration is O(k) (i.e., dealing with k�1 pairs

of operators), the worst case computational complexity of the heuristic is O(k3).
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This heuristic assumes that the precedence graph is already created. Creating

a graph is a separate (predicate-speci�c) problem, and we address this problem for

cardinality predicate-based validation operators in the next section.

4.5 Improving Itemset Validation Sequences That Are

Based on Cardinality Predicates

In this section, we will show how to construct the precedence graph for the val-

idation sequences that are based on cardinality predicates. After the graph is

constructed, the heuristic from Section 4.4.3 can be directly used to generate the

improved validation sequence.

4.5.1 Orthogonality of Atomic Cardinality Predicates with Singleton

Cardinality Sets

Let's consider two cardinality predicates Ck1
A1

and Ck2
A2
, where A1 � I, A2 � I, and

k1 and k2 are cardinality numbers, i.e., k1 2 [A1] and k2 2 [A2]. In other words, let's

consider two cardinality predicates with singleton cardinality sets. The following

theorem presents necessary and suÆcient conditions for Ck1
A1
?Ck2

A2
.

Theorem 25 Let p1 := Ck1
A1

and p2 := Ck2
A2
. p1?p2 if and only if either of the

following inequalities hold: 6

jA2 � A1j < k2 � k1 (4.25)

jA1 � A2j < k1 � k2 (4.26)

6Obviously, (4.25) and (4.26) cannot both hold at the same time, otherwise k1 + jA2 � A1j <

k2 < k1 � jA1 �A2j ) k1 < k1 (since both jA2 �A1j and jA1 �A2j are non-negative).
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I Claim: if (4.25) holds, then (p1?p2).

Let's denote A1�2 := A1�A2, A2�1 := A2�A1, and A12 := A1\A2. Note, that

sets A1�2, A2�1, and A12 are pairwise disjoint.

Assume, (4.25) holds, i.e., k1+ jA2�1j < k2. We want to prove that p1?p2. Let's

assume otherwise, that p1 and p2 are not orthogonal. Hence, by the de�nition of

orthogonality, there must exist an itemset I such that both p1(I) and p2(I) are

True. More speci�cally, (9I � I) ((jI \A1j = k1) ^ (jI \A2j = k2)). Let's analyze

jI \ A1j = k1 and jI \ A2j = k2 further.

By analyzing jI \ A2j = k2 further, we have k2 = jI \ A2j = jI \ (A2�1 [

A12)j = j(I \ A2�1) [ (I \ A12)j = jI \ A2�1j + jI \ A12j, since A2�1 \ A12 = ;.

Therefore, jI \ A12j = k2 � jI \ A2�1j. Furthermore, since k2 > k1 + jA2�1j and

jI \A2�1j � jA2�1j, we have jI \A12j = k2� jI \A2�1j > k1+ jA2�1j � jA2�1j = k1.

That is, jI \ A12j > k1.

On the other hand, by analyzing jI \A1j = k1 further, we have k1 = jI \A1j =

jI \ (A1�2 [ A12)j = j(I \ A1�2) [ (I \ A12)j = jI \ A1�2j + jI \ A12j � jI \ A12j,

since jI \ A1�2j � 0. Hence, jI \ A12j � k1.

Based on our assumption that p1 and p2 are not orthogonal, we derived both

jI \A12j > k1 and jI \A12j � k1. Therefore, our assumption was incorrect. Hence,

p1?p2.

Note that, because of the symmetry of the orthogonality relation, the proof for

(4.26) ) (p1?p2) is essentially the same as for (4.25) ) (p1?p2) described above,

only cardinality predicates p1 and p2 need to switch places.
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Claim: (p1?p2)) ((k1+ jA2�A1j < k2)_ (k2+ jA1�A2j < k1)). We will prove

this by showing that if both (4.27) and (4.28) inequalities hold, then p1 and p2 are

not orthogonal.

jA2 � A1j � k2 � k1 (4.27)

jA1 � A2j � k1 � k2 (4.28)

Let's consider 4 cases: (1) k1 � jA12j and k2 � jA12j; (2) k1 � jA12j and

k2 < jA12j; (3) k1 < jA12j and k2 � jA12j; (4) k1 < jA12j and k2 < jA12j. We will

consider each of these cases individually.

Case (1): k1 � jA12j and k2 � jA12j.

By de�nition, k2 � jA2j. Therefore, k2 � jA2j = jA2�1j + jA12j � jA2�1j + k1.

Hence, (4.27) holds automatically.

Similarly, k1 � jA1j = jA1�2j + jA12j � jA1�2j + k2. Hence, (4.28) holds auto-

matically.

We will show that cardinality predicates p1 and p2 are not orthogonal by con-

structing an itemset I such that jI \ A1j = k1 and jI \ A2j = k2.

We will construct three sets, �, �, and 
, in the following manner. Let � = A12.

Since k1 � jA12j, let � be any subset of A1�2 such that j�j = k1 � jA12j. Similarly,

Since k2 � jA12j, let 
 be any subset of A2�1 such that j
j = k2 � jA12j.

Consider itemset I := �[� [
. jI \A1j = jI \ (A12 [A1�2)j = j(I \A12)[ (I \

A1�2)j = jI \A12j+ jI \A1�2j = j�j+ j�j = k1. Therefore, I satis�es p1. Similarly,

jI \ A2j = jI \ (A12 [ A2�1)j = j(I \ A12) [ (I \ A2�1)j = jI \ A12j + jI \ A2�1j =

j�j+ j
j = k2. Therefore, I satis�es p2. Hence, p1 and p2 are not orthogonal.

Case (2): k1 � jA12j and k2 < jA12j.
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As in case (1), k2 � jA2j = jA2�1j + jA12j � jA2�1j + k1. Hence, (4.27) holds

automatically.

Assume, (4.28) also holds, i.e., k1 � k2 + jA1�2j.

We will construct two sets, � and �, in the following manner. Since k2 < jA12j,

let � be any subset of A12 such that j�j = k2. Also, since k1� k2 � jA1�2j, let � be

any subset of A1�2 such that j�j = k1 � k2.

Consider itemset I := � [ �. jI \ A1j = jI \ (A12 [ A1�2)j = j(I \ A12) [ (I \

A1�2)j = jI \A12j+ jI \A1�2j = j�j+ j�j = k1. Therefore, I satis�es p1. Similarly,

jI\A2j = jI\(A12[A2�1)j = j(I\A12)[(I\A2�1)j = jI\A12j+jI\A2�1j = j�j = k2.

Therefore, I satis�es p2. Hence, p1 and p2 are not orthogonal.

Case (3): k1 < jA12j and k2 � jA12j.

Because of the symmetry of the orthogonality relation, the proof for case (3) is

essentially the same as for case (2).

Case (4): k1 < jA12j and k2 < jA12j.

Assume k1 � k2 (without loss of generality). In this case, (4.27) holds automat-

ically, because k2 � k1 � k1 + jA2�1j.

Assume, (4.28) also holds, i.e., k1 � k2 + jA1�2j.

As in case (2), we will construct two sets, � and �, in the following manner.

Since k2 < jA12j, let � be any subset of A12 such that j�j = k2. Also, since

0 � k1 � k2 � jA1�2j, let � be any subset of A1�2 such that j�j = k1 � k2.

Consider itemset I := � [ �. jI \ A1j = jI \ (A12 [ A1�2)j = j(I \ A12) [ (I \

A1�2)j = jI \A12j+ jI \A1�2j = j�j+ j�j = k1. Therefore, I satis�es p1. Similarly,

jI\A2j = jI\(A12[A2�1)j = j(I\A12)[(I\A2�1)j = jI\A12j+jI\A2�1j = j�j = k2.

Therefore, I satis�es p2. Hence, p1 and p2 are not orthogonal. J
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Therefore, in order two calculate whether Ck1
A1

and Ck2
A2

are orthogonal we only

need to check whether one of Equations 4.25 and 4.26 holds. In order to perform

this check we need to compute numbers jA2 � A1j and jA1 � A2j. Obviously, this

can be done in O(jA1j + jA2j) time. Since A1 � I and A2 � I, the worst case

computational complexity is O(jIj).

Based on the above theorem we can also show that if sets A1 and A2 are disjoint

then Ck1
A1

and Ck2
A2

are not orthogonal.

Corollary 26 If A1 \ A2 = ; then cardinality predicates Ck1
A1

and Ck2
A2

are not

orthogonal.

I If sets A1 and A2 are disjoint, then jA1�A2j = jA1j and jA2�A1j = jA2j. Also,

by de�nition, 0 � k1 � jA1j and 0 � k2 � jA2j.

Assume, (4.25) holds. Then, k1+jA2j < k2 � jA2j ) jA2j < jA2j. Contradiction.

Similarly, assume that (4.26) holds. Then, k2+ jA1j < k1 � jA1j ) jA1j < jA1j.

Contradiction.

From Theorem 25 we have that Ck1
A1

and Ck2
A2

are not orthogonal, since neither

(4.26) nor (4.25) holds. J

4.5.2 Orthogonality of Atomic Cardinality Predicates with Arbitrary

Cardinality Sets

In this section we will present a method for checking whether two arbitrary car-

dinality predicates are orthogonal. Let CS1
X1

and CS2
X2
, where X1 � I, X2 � I,

S1 � [X1], and S2 � [X2].
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Based on Lemma 1 (in Chapter 2), we can rewrite the above cardinality predi-

cates as:

CS1
X1

= Ck1
X1
_ Ck2

X1
_ : : : _ C

kn1
X1

CS2
X2

= C l1
X2
_ C l2

X2
_ : : : _ C

ln2
X2

where S1 = fk1; k2; : : : ; kn1g and S2 = fl1; l2; : : : ; ln2g.

Furthermore, from Corollary 16 we have that CS1
X1
?CS2

X2
if and only if Cki

X1
?C

lj
X2

for all i 2 f1; : : : ; n1g and all j 2 f1; : : : ; n2g. Therefore, we can use the result

from the previous section for checking the orthogonality of cardinality predicates

with singleton cardinality sets (there will be jS1j � jS2j such checks). Note, that

comparison sets X1 and X2 are the same in all checks. Therefore, we need to

calculate numbers jX2 � X1j and jX1 � X2j only once. Therefore, computational

complexity of the whole process is O(jX1j+ jX2j+ jS1j � jS2j), which in the worst

case scenario could be O(jIj2).

4.5.3 Orthogonality of Cardinality Predicate Conjunctions

In this section we will present a suÆcient condition for determining whether two

cardinality predicate conjunctions are orthogonal. Let p1 := CS1
X1
^ : : : ^ C

Sm1

Xm1
and

p2 := CT1
Y1
^ : : : ^ C

Tm2

Ym2
, where Xi � I, Si � [Xi], Yj � I, and Tj � [Yj].

From Corollary 14 we have that p1?p2 if (9i 2 f1; : : : ; m1g) (9j 2 f1; : : :m2g)

(CSi
Xi
?C

Tj
Yj
). Note, that this is only a suÆcient condition, but not necessary. We

can use the method provided in the previous section to check whether two given

cardinality predicates are orthogonal. There would be m1 �m2 such checks in the

worst case (we can stop as soon as one of the checks gives a positive result).
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4.5.4 Applying the Heuristic: Experiments

Now we have all we need to use the heuristic presented in Section 4.4.3 for car-

dinality predicate-based validation sequences for itemset validation. Let s =<

o1; : : : ; ok > be a validation sequence, where oi = (li; pi) and pi is a conjunction of

atomic cardinality predicates. Also, let n1; : : : ; nk be the numbers of itemsets from a

given dataset D that were validated by validation operators o1; : : : ; ok respectively.

Then, we can build a precedence graph Gs directly using the procedure de-

scribed in Section 4.4.1. Subsequently, we can directly use the heuristic presented

in Section 4.4.3 to generate sequence s0 (s0 � s) that improves the cost of validation

sequence s.

We performed a simple experiment to illustrate how the proposed heuristic

works. More speci�cally, we created a base set I that consisted of 50 elements, i.e.,

jIj = 50. We generated the dataset of 5,000,000 random itemsets, where the small-

est itemset was of size 1, and the largest itemset was of size 20 (average itemset

size was between 7 and 8). Then we arbitrarily speci�ed 40 validation operators.

15 of them were speci�ed manually, i.e., using set validation language SVL. The

remaining 25 were speci�ed using our proposed grouping method, i.e., after per-

forming various groupings, we chose to validate some of the groups discovered by

the grouping algorithm. Each validation operator oi = (li; pi) was speci�ed using

one of two labels, i.e., Accept or Reject. Also, each predicate pi was speci�ed as

a conjunction of atomic cardinality predicates.

After initial validation, about 88% of the dataset was validated (i.e., accepted or

rejected). More importantly, the value of the cost function for our initial sequence

s was above 74,000,000. Using the proposed heuristic, we obtained sequence s0,
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the value of the cost function for which was approximately 53,000,000. Therefore,

while the heuristic obviously does not guarantee the optimal solution, it could

still signi�cantly (e.g., by about 28% in our case) improve the performance of the

validation sequence.

4.6 Future Work

Note, that we illustrated the heuristic using a validation sequence for itemsets. The

same can also be done for rules. Since most of the results derived in this chapter

pertain to general validation sequences (i.e., not just itemset validation sequences),

these results will also be true speci�cally for rule validation sequences. Further-

more, since we use cardinality predicates not only for itemset validation, but for

rule validation as well, similar methods can be used for determining the orthogonal-

ity of rule validation predicates (for the purpose of building the precedence graph),

as were used for itemset validation predicates (described in Sections 4.5.1, 4.5.2,

and 4.5.3). However, in the case of rule predicates, some additional orthogonality

results need to be derived, since each rule has several di�erent itemsets (i.e., an-

tecedent, consequent, whole rule) to which predicates can be applied. For example,

the orthogonality of rule cardinality predicates CS1
X1
[body] and CS2

X2
[body] can be cal-

culated simply by calculating the orthogonality of cardinality predicates CS1
X1

and

CS2
X2

using the methods described in this chapter. The same obviously cannot be

said about calculating the orthogonality of CS1
X1
[body] and CS2

X2
[rule]. We plan to

examine this issue in the future.

Our ability to improve the performance of validation sequences is in part due to
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the fact that we use a fairly simple class of predicates (i.e., cardinality predicates)

in our validation operators. Because of their simplicity, we were able to analyze

them and derive the orthogonality conditions, which allowed us to determine which

permutations are \safe" and which are not. Therefore, another interesting area for

future research would be to see if we could enhance the class of predicates used in

validation operators (i.e., to give even more 
exibility to the domain expert), but

at the same time to still be able to derive \workable" orthogonality conditions.
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Part II

Practical Applications of

Expert-Driven Validation

Techniques
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Chapter 5

Validating Rule-Based User

Models in Personalization

Applications

5.1 Motivations and Related Work

In various e-commerce applications, ranging from dynamic Web content presenta-

tion, to personalized ad targeting, to individual recommendations to the customers,

personalization has become an important business problem [63, 64]. For example,

the personalized version of Yahoo (myYahoo) provides to its customers person-

alized content, such as local weather or interesting events in the area where the

customer lives. As another example, Amazon.com and Moviecritic.com provide

recommendations on what books to read and movies to see respectively. In general,

there is a very strong interest in the industry in personalized (one-to-one) market-

107



ing applications [63, 10] and in recommender systems [23, 45, 12, 74] that provide

personal recommendations to individual users for products and services that might

be of interest to them. The advantages of these personalized approaches over more

traditional segmentation methods are well documented in the literature [63, 64, 10].

One of the key issues in developing such e-commerce applications is the problem

of constructing accurate and comprehensive pro�les of individual customers that

provide the most important information describing who the customers are and how

they behave. This problem is so important for building successful e-commerce

applications that some authors propose that companies treat customer pro�les as

key economic assets in addition to more traditional assets such as plant, equipment

and human assets [39, 40]. Although some work on how to construct personal user

pro�les has been published in the academic literature (and we will review it below),

a lot of work has been done in the industry as well.

There are two main approaches to addressing the pro�ling problem developed

by di�erent companies. In the �rst approach, taken by such companies as En-

gage Technologies [www.engage.com] and Personify [www.personify.com], pro�les

are constructed from the customers' demographic and transactional data and con-

tain important factual information about the customers. Examples of such factual

information include (a) demographic attributes, such as age, address, income and a

shoe size of a customer, and (b) certain facts extracted from his or her transactional

data, such as that the average and maximal purchase amounts of that customer

over the last year were $23 and $127 respectively, or that the favorite newspaper of

a particular Travelocity customer is the New York Times and her favorite vacation

destination is Almond Beach Club in Barbados. This factual data comprises the
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pro�le of a customer and is typically stored in a relational table.

According to the other approach, taken by such companies as Art Technology

Group [www.atg.com] and BroadVision [www.broadvision.com], customer pro�les

contain not only factual information but also rules that describe on-line behavioral

activities of the customers. However, these rules are de�ned by experts (e.g., a

marketing manager working on a particular marketing application). For example,

a manager may specify that if a customer of a certain type visits the Web site of the

on-line groceries shopping company ShopTillUStop.com on Sunday evenings, that

customer should be shown the discount coupons for diapers. This approach di�ers

from the previous approach in that the pro�les contain behavioral rules in addition

to the factual information about the customer. However, these behavioral rules

are not constructed in a truly one-to-one manner since these rules are speci�ed by

the expert rather than learned from the data and are applicable only to groups of

customers.

In addition to the developments in the industry, the pro�ling problem was also

studied in the data mining academic community in [30, 31, 6, 2, 24]. In particular,

[30, 31] studied this problem within the context of fraud detection in the cellular

phone industry. This was done by learning rules pertaining to individual customers

from the cellular phone usage data using the rule learning system RL [26]. However,

these discovered rules were used not for the purpose of understanding the personal

behavior of individual customers, but rather to instantiate generalized pro�lers

that are applicable to several customer accounts for the purpose of learning fraud

conditions.

[6] study the problem of on-line mining of customer pro�les speci�ed with asso-
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ciation rules, where the body of a rule refers to the demographic information of a

user, such as age and salary, and the head of a rule refers to transactional informa-

tion, such as purchasing characteristics. Moreover, [6] present a multidimensional

indexing structure for mining such rules. The proposed method provides a new

approach to deriving association rules that segment users based on their transac-

tional characteristics. However, it does not derive behavior of an individual user in

a one-to-one fashion [63].

Still another approach to the pro�ling problem was presented by [24] in the

context of providing personalized Web search. In this approach the user pro�le

consists of a Web Access Graph summarizing Web access patterns by the user,

and a Page Interest Estimator characterizing interests of the user in various Web

pages. Although the approach presented by [24] goes beyond building simple factual

pro�les, these pro�les are specialized to be used in speci�c Web-related applications,

i.e., to provide personalized Web search. This means that they do not attempt

to capture all aspects of the on-line behavior of individual users. One speci�c

consequence of this specialization is that [24] does not use behavioral rules as a

part of a user pro�le.

In [2], we presented an initial approach to the pro�ling problem. The expanded

and improved version of our methodology is presented here (as well as in [3, 5]).

In particular, we present a framework for building behavioral pro�les of individual

users. These behavioral pro�les contain not only factual information about the

users, but also capture more comprehensive behavioral information using associ-

ation rules that are learned from user transactional histories using various data

mining methods. However, there are caveats to this approach due to the nature of
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personalization applications. In particular, as mentioned in Chapter 1, the behav-

ioral rules learned about individual users can be unreliable, irrelevant, or obvious.

Therefore, post-analysis, including rule validation, becomes an important issue for

building accurate personalized pro�les of users. This validation process is performed

by the domain expert who can iteratively apply various rule validation operators.

In particular, we describe how di�erent validation tools described in earlier chap-

ters can be used to validate individual user pro�les in personalization applications.

Finally, in this chapter we also describe a case study of testing the proposed pro�le

validation method on a marketing application.

5.2 A Proposed Approach to Pro�ling

5.2.1 De�ning User Pro�les

In order to explain what user pro�les are and how they can be constructed, we �rst

focus on the data that is used for constructing these pro�les.

Data Model

Various e-commerce personalization applications can contain di�erent types of data

about individual users. However, this data can be classi�ed in many applications

into two basic types { factual and transactional. Simply put, the factual data

describes who the user is and the transactional data describes what the user does.

Example 5 In a marketing application based on purchasing histories of

customers, the factual data could be the demographic data of customers,

such as name, gender, birth date, address, salary, social security number,
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BirthDate

Doe John
Brown Jane

0730021

0721134
0721168

Adams Robert

11/17/1945
05/20/1963
06/02/1959

Gender

Male
Female
Male

0721134
0721134
0721168

Date

0721134

CustomerId CouponUsed

0730021
0730021
0721168

10:18am
07/09/1993
07/09/1993
07/10/1993
07/10/1993
07/10/1993
07/10/1993
07/12/1993

10:18am

10:29am
07:02pm
08:34pm
08:34pm
01:13pm

Time

CustomerId LastName FirstName

Store

GrandUnion
GrandUnion

GrandUnion

Edwards

Edwards
Edwards

RiteAid

Product

WheatBread
AppleJuice

AppleJuice
BabyDiapers

SkimMilk
LemonJuice
SourCream NO

NO
NO
NO
YES

NO
YES

Factual

Transactional

0730021 07/12/1993 01:13pm GrandUnion WheatBread NO

Figure 5.1: Fragment of data in a marketing application.

etc. The transactional data could consist of records of purchases the cus-

tomer made over a speci�c period of time. A record of a purchase could

include the following attributes: date of purchase, product purchased,

amount of money spent, use or no use of a coupon, value of a coupon if

used, discount applied, etc. An example of a fragment of such data is

presented in Figure 5.1.

Pro�le Model

A pro�le is a collection of information that describes a user. One of the open issues

in the pro�le construction process is what information should be included in a user

pro�le. In their simplest form, user pro�les contain factual information that can be

described as a set of individual facts that, for example, can be stored in a record of a

relational database table. These facts may include demographic information about
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the user, such as name, address, date of birth, and gender, that are usually taken

from the user description data. The facts can also be derived from the transactional

and item description data. Examples of such facts are \the favorite beer of user

ALW392 is Heineken", \the biggest purchase made by ALW392 was for $237", \the

favorite movie star of ALW392 is Harrison Ford." The construction of factual

pro�les is a relatively simple and well-understood problem, and keyword-based

factual pro�les have been extensively used in recommender systems.

A user pro�le can also contain a behavioral component that describes behavior

of the user learned from his or her transactional history. One way to de�ne user

behavior is with a set of conjunctive rules, such as association [9] or classi�cation

rules [19]. Examples of rules describing user behavior are: \when user ALW392

comes to the Web site Y from site Z, she usually returns back to site Z immediately",

\when shopping on the NetGrocer.com Web site on weekends, user ALW392 usually

spends more than $100 on groceries", \whenever user ALW392 goes on a business

trip to Los Angeles, she stays there in expensive hotels." More examples of the

association rules discovered for a particular customer are presented in Figure 5.2.

The use of rules in pro�les provides an intuitive, declarative and modular way

to describe user behavior and was advocated in [31, 2]. These rules can either be

de�ned by domain experts, as is done in systems developed by BroadVision and Art

Technology Group, or derived from the transactional data of a user using various

data mining methods. We describe this derivation process in the next section.
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Discovered rules

(for John Doe)

(1)  Product = LemonJuice   =>   Store = RiteAid  (2.4%,95%)

(2)  Product = WheatBread   =>   Store = GrandUnion (3%,88%)

(3)  Product = AppleJuice   =>   CouponUsed = YES (2%, 60%)

(4)  TimeOfDay = Morning   =>   DayOfWeek = Saturday (4%, 77%)

(5)  TimeOfWeek = Weekend  &  Product = OrangeJuice   =>   Quantity = Big (2%,75%)

(6)  Product = BabyDiapers   =>   DayOfWeek = Monday (0.8%, 61%)

(7)  Product = BabyDiapers  &  CouponUsed = YES   =>   Quantity = Big (2.5%, 67%)

Figure 5.2: Sample of association rules discovered for an individual customer in a mar-

keting application.

5.2.2 Pro�le Construction

Since we focus on personalization applications, rule discovery methods should be

applied individually to the transactional data of every user, thus, capturing truly

personal behavior of each user.

Such rules can be discovered using various data mining algorithms. For example,

to discover association rules, we can use Apriori [9] and its numerous variations.

Similarly, to discover classi�cation rules, we can use CART [19], C4.5 [68], or

other classi�cation rule discovery methods. We would like to point out that our

approach is not restricted to any speci�c representation of data mining rules and

their discovery methods.

Note that, since data mining methods discover conjunctive rules for individual

customers, these methods work better for the applications containing many trans-

actions for individual customers, such as credit card, grocery shopping, on-line

browsing, and certain stock trading applications. In applications containing few
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transactions, such as car purchasing or air travel, individual rules are generated

from relatively few transactions for most customers and tend to be statistically less

reliable.

One of the serious problems with many rule discovery methods is that they

tend to generate large numbers of patterns, and often many of them, while being

statistically acceptable, are trivial, spurious, or just not relevant to the application

at hand [66, 73, 53, 20, 78, 60, 61]. Therefore, post-analysis of discovered rules

becomes an important issue, since there is a need to validate the discovered rules.

For example, assume that a data mining method discovered the rule stating that,

whenever customer ALW392 goes on a business trip to Los Angeles, she mostly

stays in expensive hotels there. In particular, assume that ALW392 went to Los

Angeles 7 times over the past 2 years and 5 out of 7 times stayed in expensive hotels.

Before this rule can be placed into ALW392's pro�le, it needs to be validated, since

it may not be immediately clear whether this rule really captures the behavior of

ALW392, or whether it constitutes a spurious correlation or is simply not relevant

to the application at hand.

Therefore, we focus on the two phases of the pro�le building process: rule

discovery and validation (Figure 5.3). In the next section we present methods for

validating behavioral rules in user pro�les.

5.3 Validation of User Pro�les

As we mentioned earlier, a common way to perform the post-analysis of data min-

ing results is to let the domain expert perform this task, and several data mining

115



Data ProfilesRules

Phase I

Data Mining Validation

Phase II

Figure 5.3: The simpli�ed pro�le building process.

systems support this capability. For example, MineSet [22] provides a wide range

of visualization techniques allowing the end-user to examine visually the results

discovered by its data mining tools and thus evaluate the quality of these results.

In our approach, individual rules discovered during the data mining stage are

validated by the expert, and, depending on how well they represent the actual

behaviors of the users, some rules are \accepted" and some \rejected" by the expert.

That is, in this particular application, the domain expert usually has the label set

L that consists of two labels: Accept and Reject. After the validation process is

complete, the accepted rules form the behavioral pro�les of users.

One of the main issues about validating individual rules of users by a human

expert is scalability. In many e-commerce personalization applications the number

of users tends to be very large. For example, the number of registered users at major

Web sites is measured in millions. If we discover a hundred rules per customer on

average, then the total number of rules for such sites would be measured in hundreds

of millions. Therefore, it would be impossible for a human expert to validate all

the discovered rules on a one-by-one basis in such applications.

We address this problem by providing a framework allowing the human expert
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rules
DiscardedIndividual

data
Individual

rules
Individual

profiles

accepted

undecided

All
Rules

Accepted
Rules

rejected

Validation

Expert

operator +

Phase II
ValidationData Mining

Phase I

Figure 5.4: The pro�le building process.

validate large numbers of rules (instead of individual rules) at a time with relatively

little input from the expert. This is done by applying di�erent rule validation

operators that were introduced earlier in the dissertation. Then rule validation

becomes an iterative process and is described in Figure 5.4. In particular, the

pro�le building activity is divided into two phases. In Phase I, the data mining

phase, rules describing behaviors of individual users are generated from the users'

transactional data as was described in Section 5.2.2.

Phase II constitutes the rule validation process. Rule validation, unlike rule dis-

covery (Phase I), is not performed separately for each user, but rather for all users

at once. The reason we propose performing rule validation collectively (rather than

individually) for all users is that there are usually many similar or even identical

rules across di�erent users. For example, the rule \when shopping on the NetGro-

cer.com Web site on weekends, user ALW392 usually spends more than $100 on

groceries" can be common to many users. In addition, although rules \when user
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ALW392 comes to our Web site from site Y, she usually returns back to site Y im-

mediately," and \when user KTL158 comes to our Web site from site Z, she usually

returns back to site Z immediately," are not identical, they are quite \similar" and

can be examined by the expert together. The collective rule validation allows one

to deal with such common rules once, thus signi�cantly reducing validation e�ort.

Therefore, in the beginning of Phase II, rules from all the users are collected into

one set. Each rule is tagged with the ID of the user to which it belongs, so that each

accepted rule could be put into the pro�le of that user at the end of the validation

phase.

After rules from all users are collected into one set, the rule validation process

is performed as a second part of Phase II. This process is described in Figure 5.5.

All rules discovered during Phase I (denoted by Rall in Figure 5.5) are considered

unvalidated. The human expert selects various validation operators and applies

them successively to the set of unvalidated rules. The application of each validation

operator results in validation of some of the rules. In particular, some rules get

accepted and some rejected (sets Oacc and Orej in Figure 5.5). Then the next

validation operator would be applied to the set of the remaining unvalidated rules

(set Runv). This validation process stops when the TerminateValidationProcess

condition is met. This condition is set by the human expert and is discussed later

in this section. After the validation process is stopped, the set of all the discovered

rules (Rall) is split into three disjoint sets: accepted rules (Racc), rejected rules

(Rrej), and possibly some remaining unvalidated rules (Runv). At the end of Phase

II all the accepted rules are put into the behavioral pro�les of their respective

users. This is possible, because all the rules have been tagged with the user ID in
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Input: Set of all discovered rules Rall.

Output: Mutually disjoint sets of rules Racc, Rrej, Runv,

such that Rall = Racc [Rrej [ Runv.

(1) Runv := Rall, Racc := ;, Rrej := ;.

(2) while (not TerminateValidationProcess()) begin

(3) Expert specifies a validation operator (e.g., o).

(4) o is applied to Runv. Result: disjoint sets Oacc and Orej.

(5) Runv := Runv �Oacc �Orej, Racc := Racc [Oacc, Rrej := Rrej [ Orej.

(6) end

Figure 5.5: An algorithm for the rule validation process.

the beginning of Phase II as described above.

As was already stated above and shown in Figure 5.5, various validation oper-

ators are successively applied to the set of the unvalidated rules until the stopping

criterion TerminateValidationProcess is reached. The stopping criterion can be

speci�ed by the expert and may include such conditions as:

� Only few rules remain unvalidated;

� Only few rules are being validated at a time by one or several validation

operators;

� The total elapsed validation time exceeds the predetermined validation time.

In this section we described the overall validation process. We present the

detailed description of various speci�c validation operators in the next section.
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5.4 Validation Tools

Validation operators provide a way for the domain expert to examine multiple rules

at a time. This examination process can be performed in the following two ways.

First, the expert may already know some types of rules that he or she wants to

examine and accept or reject based on the prior experience. For this purpose the

domain expert can use a template-based rule validation operator that is based on

the SVL language introduced earlier as well as some interestingness-based �ltering

operators. Second, the expert may not know all the relevant types of rules in

advance, and it is important to provide methods that group discovered rules into

classes that he or she can subsequently examine and validate. For this purpose

the domain expert can use our similarity-based rule grouping method that was

described in detail in Chapter 3. In addition, we describe other tools that can

be used in the validation process, including visualization, statistical analysis, and

browsing tools.

5.4.1 Template-based rule �ltering

Template-based rule �ltering tool allows the domain expert to specify in general

terms the types of rules that he or she either wants to accept (accepting template) or

reject (rejecting template), i.e., it allows the expert to specify validation operators.

After a template is speci�ed, unvalidated rules are \matched" against it. Rules

that match an accepting template are accepted and put into user pro�les, and rules

that match a rejecting template are rejected. Rules that do not match a template

remain unvalidated.
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This template-based rule �ltering tool allows one to de�ne various constraints

that the expert can impose on:

� The syntactic structure of the body (antecedent) and the head (consequent)

of the rule. This part of the tool is based on SVL. As we have shown, the

computational complexity of predicates speci�ed with SVL (i.e., cardinality

predicates) is linear in the total size of the rules to be �ltered.

� Basic statistical parameters of the rule. During the rule validation process,

restrictions on basic statistical parameters (e.g., support and con�dence for

association rules) can be imposed using the following template:

STATS f par1 op1 val1; par2 op2 val2; ::: g

where pari is the name of a statistical parameter (e.g., conf for con�dence,

supp for support); opi is a comparison operator, such as >, �, <, �, =, 6=;

and vali is a value of a statistical parameter. This template matches the

rules, parameters of which satisfy all the speci�ed restrictions pari opi vali.

Examples of such restrictions are conf < 80% and supp � 35%.

The computational complexity of this �lter is linear in the number of rules

since each rule requires a constant time to check if it satis�es the constraint.

� The factual information about a user for whom the rule was discovered. As

mentioned in Section 5.2.1, we assume that the factual information of each

user can be stored as a record in a relational table. Our template speci�cation

language allows one to formulate a restriction on the factual information of
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users for the purpose of obtaining only the rules that belong to this \restricted"

set of users. Formally, such a template is speci�ed as follows:

FACTS f restriction g

This type of �lter works in two steps. First, the following SQL statement that

returns a set of \qualifying" users (i.e., users that satisfy the restriction) is

generated and executed:1

SELECT UserId FROM FactualData WHERE restriction

And, second, the rule set is �ltered to include only the rules of the users

returned by the SQL query described above.

In our template-based �ltering tool, each of the above templates can be used

individually or several templates can be combined into one using boolean operations

AND, OR, and NOT.

The proposed language is related to the data mining query languages, such as

the ones described in [46, 70, 41, 54, 77, 57, 43], among them M-SQL [43] and the

template language of [46] being the closest to our proposal. For this application,

we enhanced our set validation language SVL so that it can validate not only the

association rules that contain items, but also the ones containing attribute-value

pairs. We have also included features arising from idiosyncrasies of personalization
1Therefore, the syntax of the restriction element in the FACTS �lter allows any expression

that is acceptable in the WHERE clause of an SQL SELECT statement.
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applications, such as the existence of individual data mining rules and of factual

information about the users. Furthermore, since the subset and superset predicates

were heavily used in this application, we made the syntax of subset and superset

macros more intuitive. Some examples of �ltering operators are provided below.

1. Accept all the rules that refer to Grand Union stores:

ACCEPT : RULE � f Store = GrandUnion g

2. Reject all the rules that have attribute Product in the body (possibly among

other attributes) and the head of the rule has eitherDayOfWeek orQuantity =

Big in it:

REJECT : BODY � f Product g

AND HEAD � f DayOfWeek ; Quantity = Big g

3. Accept all the rules that involve any combination of attributes DayOfWeek

(only when value is Mon or Wed), TimeOfDay, and Product , in the body of

the rule, that also have con�dence greater than 65%:

ACCEPT : BODY � f DayOfWeek = f Mon ; Wed g; TimeOfDay ;

Product g AND STATS f conf > 65% g

4. Reject all the rules that have the attribute Product present in their bodies

and, possibly, DayOfWeek or TimeOfDay (but no other attributes besides

these):

REJECT : BODY � f Product g

AND BODY � f DayOfWeek ; TimeOfDay ; Product g

5. Reject all the rules that refer to the purchase of a luxury car for the low-income
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users:

REJECT : RULE � f Product = LuxuryCar g

AND FACTS f YearlyIncome = Low g

6. The �ltering tool can take advantage of an attribute hierarchy that was de-

scribed in Section 3.2 and was used in the similarity-based grouping tool.

That is, aggregated attributes and aggregated values can also be used in a

template. For example, if we would like to accept all the rules that involve

any type of discount in the body and specify any spring month in the head

(based on the attribute hierarchy from Figure 3.3), we would use the following

template:

ACCEPT : BODY � f DiscountType g

AND HEAD = f Month = spring g

As we have shown above, the template-based �ltering tool is computationally

inexpensive. Therefore, as with the similarity-based rule grouping tool, this tool

also scales well for very large numbers of rules.

5.4.2 Interestingness-based rule �ltering

As described above, our proposed template-based rule �ltering tool allows the do-

main expert to accept or to reject the discovered rules based on their structure,

statistical parameters, and factual characteristics of the users. In addition to this,

we propose using a �ltering tool that selects only the most \interesting" rules ac-

cording to some interestingness criteria.

There has been much research done in recent years quantifying \interestingness"

of a rule, and several metrics have been proposed and used as a result of this work.
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Among \objective" metrics, besides con�dence and support [8], there are gain [36],

variance and chi-squared value [59], gini [58], strength [27], conviction [20], sc- and

pc-optimality [13], etc. \Subjective" metrics include unexpectedness [73, 53, 79, 60]

and actionability [66, 73, 1].

Any of these metrics can be used as a part of the interestingness-based �lter-

ing tool, and the validation system can support di�erent interestingness criteria.

Moreover, the domain expert can specify interestingness-based �lters using a syntax

similar to the syntax of the template-based �lters. For example, the �lter

ACCEPT : INTERESTINGNESS f gain > 0:5; unexpected g

speci�es that all the high-gain and unexpected rules should be accepted. Moreover,

the uniform syntax for both template-based and interestingness-based �lter speci�-

cations allows to combine �lters of both types into one. For example, the following

template accepts all actionable rules that mention the purchase of a luxury car in

the body of the rule:

ACCEPT : BODY � f Product = LuxuryCar g

AND INTERESTINGNESS f actionable g

We would like to point out that such interestingness-based �lters can be added

to the pro�le validation system as external modules, thus making the system more

versatile. The eÆciency of such interestingness-based �lters depends on their in-

herent complexity (i.e., some interestingness measures are inherently more complex

to calculate than others) and their particular implementation.

Redundant rule elimination. One class of non-interesting rules are redun-

dant rules. For example, consider the association rule \Product = AppleJuice )
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Store = Grand Union (supp=2%, conf=100%)" that was discovered for customer

ALW392. This rule appears to capture a speci�c aspect of the customer behavior:

customer ALW392 buys apple juice only at Grand Union, and we may add it to his

behavioral pro�le. However, assume, that is was also determined from the data that

this customer does all of his shopping at Grand Union. Then the above mentioned

rule constitutes a special case of this �nding.

The redundant rule elimination �lter �nds all the redundant rules and removes

them from the user pro�les. In other words, this tool eliminates the rules that, by

themselves, do not carry any new information about the behavior of a user. One

particular case of redundancy occurs when the consequent Y of a high-con�dence

rule X ) Y has a high support. For instance, following the previous example, the

rule \Product = AppleJuice ) Store = GrandUnion (supp=2%, conf=100%)"

would be removed from the pro�le of user ALW392 and only the fact \Store =

GrandUnion (supp=100%)" (i.e., this customer shops only at Grand Union) will

be kept.

The computational complexity of such redundant rule elimination �lter is linear

in the number of rules to be �ltered, because for each rule we only have to check

whether its consequent has a very high support measure. This check can be done in

constant time using a lookup table that holds a most frequent value of each attribute

(along with its actual frequency). There is no extra work needed to create such

table, since it can be obtained as a by-product of a rule discovery algorithm (e.g.,

Apriori) from the set of frequent 1-itemsets.

We implemented the redundant rule elimination tool described above as a part

of the validation system. However, we would like to point out that this is just one

126



of many possible redundant rule elimination approaches. Other approaches, e.g.,

based on ideas presented in [7, 14, 13, 55], can also be used in the rule validation

process.

5.4.3 Other Validation Tools

Although rule grouping and �ltering proved to be the most useful and frequently

used validation tool as is demonstrated in Section 5.8, they can be complemented

with various other validation tools. We brie
y describe some of these tools below.

� Visualization Tools. Allow the expert to view the set of unvalidated rules

or various parts of this set in di�erent visual representations (histograms, pie

charts, etc.) and can give the expert insights into what rules are acceptable

and can be included in pro�les.

� Statistical Analysis Tools. Statistical analysis tools can compute various

statistical characteristics (value frequencies, attribute correlation, etc.) of

unvalidated rules. This allows the expert to have many di�erent \views" of

these rules, therefore helping him or her during the rule validation process.

� Browsing Tools. As mentioned above, visualization and statistical analysis

tools allow the expert to have \aggregated" views of the unvalidated rules

through various visual representations and statistical characteristics. Brows-

ing tools, on the other hand, can help the expert to inspect individual rules

directly.

Browsing tools are especially useful when combined with the similarity-based

grouping method described in Section 3.2. Instead of browsing through indi-
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vidual rules and manually validating (accepting or rejecting) them on the one-

by-one basis, the expert can apply the grouping algorithm and then browse

the resulting groups (aggregated rules) and manually validate the selected

groups.

Browsing tools can have some additional capabilities, such as being able to

sort the content to be browsed in various ways. For example, it might be

helpful for the expert to be able to sort rules by the user ID or by some

interestingness measure, sort groups by their size, etc.

5.5 Incremental Pro�ling

In most e-commerce applications user transactional histories usually change over

time since users continue their browsing and purchasing activities. Therefore, user

behavioral pro�les usually change over time, and there is a need to keep these

pro�les current by removing behavioral rules that are no longer valid and adding

new rules that characterize user's emerging behaviors.

A straightforward approach to maintaining user pro�les would be to rebuild

them periodically \from scratch." However, this is, clearly, a very computationally

intensive and time consuming process, especially since pro�les often do not change

signi�cantly with new data.

An alternative approach would be to develop eÆcient incremental pro�le con-

struction techniques that would adjust user pro�les based on the new data without

rebuilding them from scratch. One way to accomplish this would be to keep track

of the sequence of all the validation operators < o1; : : : ; ok > that were performed
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during the initial pro�le validation process. Then, when new incremental data �D

is added to the initial dataset D, the previously used data mining algorithm can be

applied to the dataset D [�D to discover all the new rules Rnew. After that, each

of the previously used validation operators oi can be applied to the set of rules Rnew

in the same sequence as they were applied during the initial validation process. We

would like to point out that this technique provides for automatic incremental val-

idation of user pro�les without any additional participation of the domain expert

(until he or she decides to revisit the sequence of validation decisions).

Moreover, this incremental validation method can be improved further by using

one of the existing incremental rule discovery techniques [25, 33, 82] instead of

using the \from-scratch" rule discovery method considered before. Data monitoring

triggers, such as the ones proposed in [85, 1], can also be used for this purpose.

5.6 Case Study

We implemented the tools described in the previous section in the 11Pro system.2

The 11Pro system takes as inputs the factual and transactional data stored in a

database and generates a set of validated rules capturing personal behaviors of

individual users following the approach illustrated in Figure 5.4. The 11Pro system

can use any relational DBMS to store user data and various data mining tools for

discovering rules describing personal behaviors of users. In addition, 11Pro can

incorporate various other tools that can be useful in the rule validation process,

such as visualization and statistical analysis tools as mentioned in Section 5.4.
211Pro stands for One to One Pro�ling System.
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The current implementation of 11Pro uses association rules to represent be-

haviors of individual users. Also, the current implementation of 11Pro supports

similarity-based grouping, template-based �ltering, redundant rule elimination, and

browsing tools.

We tested 11Pro on a \real-life" marketing application that analyzes the pur-

chasing behavior of customers. The application included data on 1903 households

that purchased di�erent types of beverages over a period of one year. The data set

contained 21 �elds characterizing purchasing transactions, including the informa-

tion about the time of purchase, product purchased, amount spent, coupons used,

and related advertisements seen. The whole data set contained 353,421 records (on

average 186 records per household). The data mining module of 11Pro executed

a rule discovery algorithm on the individual household data for each of the 1903

households and generated 1,022,812 association rules in total, on average about 537

rules per household. Minimal values for the rule support and con�dence were set

at 20% and 50%, respectively.

It is interesting to observe that the majority of discovered rules pertain to a

very small number of households. For example, nearly 40% of all the discovered

rules (407,716 in total) pertain only to �ve or fewer households (out of the total of

1903), and half of those rules (196,384 in total) apply only to a single household.

This demonstrates that many discovered rules capture truly idiosyncratic behavior

of individual households. Since the traditional segmentation-based approaches to

building customer pro�les, such as the ones described in Section 5.1, do not cap-

ture idiosyncratic behavior, this means that these methods would not be able to

identify many of the rules discovered in this application. On the other extreme,
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Validation Number of rules:

tool accepted rejected unvalidated

1. Redund. elimination 0 186,727 836,085

2. Filtering 0 290,427 545,658

3. Filtering 0 268,157 277,501

4. Filtering 6,711 0 270,790

5. Filtering 0 233,013 37,777

6. Grouping (1,046 gr.) 16,047 1,944 19,786

7. Grouping (6,425 gr.) 4,120 863 14,803

Final: 26,878 981,131 14,803

Figure 5.6: Example of a validation process for a marketing application: promotion

sensitivity analysis.

several discovered rules were applicable to a signi�cant portion of the households.

For example, nine rules were pertained to more than 800 households. In particu-

lar, the rule \DayOfWeek=Monday ) Shopper=Female" was applicable to 859

households.

Three case studies of user pro�le validation were performed for this application.

In the �rst case study, we performed promotion sensitivity analysis, i.e., analysis

of customer responses to various types of promotions, including advertisements,

coupons, and various types of discounts. As a part of this application, we wanted

to construct customer pro�les that re
ect di�erent types of individual customer

behaviors related to promotional activities. Since we are very familiar with this

application, we assumed the role of the domain experts. In the second case study, we
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performed seasonality analysis, i.e., we constructed customer pro�les that contain

individual rules describing seasonality-related behaviors of customers, such as the

types of products that a customer buys under speci�c temporal circumstances (e.g.,

only in winter, only on weekends) and the temporal circumstances under which a

customer purchases speci�c products. In the third case study, we asked a marketing

expert to perform the seasonality analysis from her point of view. To illustrate the

validation process, we describe the �rst case study in detail below. We also report

the results from the other two case studies in this section.

5.6.1 Analysis of Sensitivity to Promotions

As mentioned above, we performed the role of experts in the promotion sensitivity

analysis and validated the 1,022,812 discovered rules ourselves using the sequence

of validation operators presented in Figure 5.6. As shown in Figure 5.6, we �rst

applied the redundant rule elimination tool that examined the heads of all the

rules and removed those rules whose heads by themselves are \implied" by the

data in the sense explained in Section 5.4.2. It turned out that this operator re-

jected about 18% from the set of all the discovered rules, namely 186,727. Then

we performed the �ltering operation (operation 2 in Figure 5.6) that rejects all

the rules with household demographics-related information in their heads. As a

result of this �ltering operation, the number of unvalidated rules was reduced from

836,085 to 545,658. After that, we performed several additional �ltering operations

(3, 4 and 5 in Figure 5.6). One of them (3) rejected rules where either body or

head contains only the market research company-speci�c attributes without any

other information. Another �ltering operation (4) accepted rules that state di-
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rect relationship between kinds of products purchased and various promotions, i.e.,

rules that have product information (possibly among other attributes) in the body

and promotion-related information (discount, sale, coupon used, or advertisement

seen) in the head. Another �ltering operation (5) rejected all the rules that do

not have any promotion-related information in the body as well as in the head

of the rule. By performing all these �ltering operations, we reduced the number

of unvalidated rules to 37,777. Then we applied two grouping operations, using

the attribute hierarchy, a fragment of which is presented in Figure 5.7. First, we

applied the grouping tool using the cut presented in Figure 5.7(a) to get fewer,

but more aggregated (therefore, less descriptive) groups (operator 6 in Figure 5.6).

This operation grouped the remaining 37,777 unvalidated rules into 1,046 groups,

where the biggest group contained 2,364 rules and the smallest group had just 1

rule in it. We inspected the 50 biggest groups and were able to validate 38 of them

(31 accepted and 7 rejected), which brought the unvalidated rule count down to

19,786. We were unable to decide on whether to accept or reject the remaining

12 groups (out of 50) and left them as \undecided" for further analysis. Finally,

we applied another grouping operation (operation 7) to the remaining unvalidated

rules using the cut presented in Figure 5.7(b). We obtained 6,425 groups. The

biggest group had 237 rules but about 80% of groups contained 5 rules or less.

Again, we inspected 50 biggest groups and validated 47 of them (34 accepted and

13 rejected). As the result, we validated 4,983 more rules.

We stopped the validation process at this point because there were no large

groups that we could validate as a whole and it started taking us more and more

time to validate smaller and less \understandable" groups. The whole valida-
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Figure 5.7: Fragment of an attribute hierarchy used in a marketing application.

tion process, including expert and computing time, took about 1.5 hours,3 during

which we validated 98.5% of the initially discovered rules (only 14,803 rules out of

1,022,812 remained unvalidated). The total number of accepted and rejected rules

constituted 2.6% and 95.9% respectively of the initially discovered rules. The total

number of rules accepted and put into pro�les was 26,878 (on average, about 14

rules per household pro�le).

We performed the validation process described above on all the 1,022,812 rules

generated by the rule discovery algorithm. Alternatively, we could have speci�ed

constraints, for example, using the methods proposed by [77] or [14], on the types

of rules that we are interested in prior to the data mining stage. As a result of this,

fewer data mining rules would have been generated, and there would have been
3This time includes several minutes of computing time and the remainder constitutes the time

for the expert to browse through the rules, think, and decide on the validation operations to be

performed. This time does not include rule discovery and the construction of attribute hierarchies.
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no need to apply some of the elimination �lters described in this case study. For

example, we could have speci�ed the constraints corresponding to the validation

operations (1) and (2) in Figure 5.6 before applying a rule discovery algorithm. As a

result, we would have generated only 545,658 rules, all of them satisfying these two

conditions, and there would have been no need to apply validation operations (1)

and (2) in the post-analysis stage. Although very useful, the constraint speci�cation

approach cannot replace rule validation in the post-analysis stage of the knowledge

discovery process. We will elaborate on this further in Section 5.7.

5.6.2 Seasonality Analysis

In addition to the analysis of customer responses to promotions described in detail

above, we used the same set of discovered rules to perform another related market

research task { seasonality analysis. In particular, in the second case study, we

constructed customer pro�les that contain individual rules describing seasonality-

related behaviors of customers, such as the types of products that a customer buys

under speci�c temporal circumstances. It took us about one hour to perform this

task. As the result, we validated 97.2% of the 1,022,812 discovered rules, where

40,650 rules were accepted and 953,506 rules were rejected. The summary of the

validation process is presented in Figure 5.8.

More speci�cally, we started the validation process by eliminating redundant

rules and followed it with the application of several �ltering operators, most of

which were rule elimination �lters. Elimination of redundant rules and repeated

application of rule �lters helped us validate 93.4% of the rules.

After we managed to validate a large number of rules with relatively few �ltering
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Validation Number of rules:

tool accepted rejected unvalidated

1. Redund. elimination 0 186,727 836,085

2. Filtering 0 285,528 550,557

3. Filtering 0 424,214 126,343

4. Filtering 0 48,682 77,661

5. Filtering 10,052 0 67,609

6. Grouping (652 gr.) 23,417 6,822 37,370

7. Grouping (4,765 gr.) 7,181 1,533 28,656

Final: 40,650 953,506 28,656

Figure 5.8: Example of a validation process for a marketing application: seasonality

analysis.
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operations, we next decided to switch to a more \subtle" validation process and

apply the grouping tool to the remaining unvalidated rules. The grouping algorithm

generated 652 groups. After that, we examined several of the largest groups and

validated the rules belonging to them. As a result, we managed to validate all

but 37,370 rules. We then again applied the grouping tool to these remaining

rules, this time using a di�erent \cut," and validated another set of 8,714 rules.

At this point, we encountered the law of diminishing returns (each subsequent

application of a validation operator managed to validate smaller and smaller number

of rules), and we stopped the validation process. It took us one hour to perform

the whole validation process (including the running time of the software and the

expert validation time). As a result, we validated 97.2% of all the rules, among

which 4.0% were accepted and 93.2% rejected.

As a result of the validation process, we reduced the average size of the cus-

tomer pro�le from 537 unvalidated rules to 21 accepted rules. An example of an ac-

cepted rule for one of the households is: \Product=FrozenYogurt & Season=Winter

) CouponUsed=YES", i.e., during the winter, this household buys frozen yogurt

mostly using coupons. This rule was accepted because it re
ects an interesting

seasonal coupon-usage pattern. An example of a rejected rule for one of the house-

holds is: \Product=Beer ) Shopper=Male", i.e., the predominant buyer of beer

is male in this household. This rule was rejected because of its obviousness.

5.6.3 Seasonality Analysis: Marketing Analyst

For the third case study, we asked a marketing analyst to perform seasonality anal-

ysis with 11Pro. She started the analysis with applying redundant rule elimination
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and several template-based �ltering rejection operations to the rules (e.g., reject

all the rules that are not referring to the Season or the DayOfWeek attributes).

After that, she grouped the remaining unvalidated rules, examined several result-

ing groups, and then stopped the validation process. At that point, she felt that

there is nothing more to reject and decided to accept all the remaining unvalidated

rules.4 As a result, she accepted 42,496 rules (4.2% of all the discovered rules) and

spent about 40 minutes on the whole validation process.

The results of all the three case studies are summarized in Figure 5.9.

We received the following feedback from the marketing expert at the end of the

validation process. First, she liked the 
exibility of 11Pro and the ability to apply a

variety of validation tools in the analysis. In particular, she liked our grouping and

�ltering tools, but felt that we should provide better ways for presenting results,

including certain visualization capabilities. Second, we observed that her validation

\style" was to keep rejecting groups of irrelevant rules and accept all the remaining

rules when there was nothing left to reject further. Such style can be explained by

the fact that the expert was only marginally familiar with 11Pro and did not utilize

fully its capabilities to reject and accept groups of rules in an interleaving manner.

Third, we discussed the issue of the \quality" of the validated rules. The marketing

expert felt that the rule evaluation process is inherently subjective because di�erent

marketing experts have di�erent opinions, experiences, understanding the speci�cs

of the application, etc. Therefore, she believed that di�erent marketing experts

would arrive at di�erent evaluation results using the validation process described
4Although she accepted all the remaining rules, we personally felt that if she continued the

validation process she could have found some more \bad" rules.
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Number of rules Case Study I Case Study II Case Study III

Rejected 981,131 (95.9%) 953,506 (93.2%) 980,316 (95.8%)

Accepted 26,878 (2.6%) 40,650 (4.0%) 42,496 (4.2%)

Unvalidated 14,803 (1.5%) 28,656 (2.8%) 0 (0.0%)

Figure 5.9: Summary of case studies.

in this paper because of the various biases that they have.

We would like to point out that the accepted rules, although valid and relevant

to the expert, may not be e�ective in the sense that they may not guarantee ac-

tionable results, such as decisions, recommendations, and other user-related actions.

Therefore, to address the e�ectiveness issue, we are currently working on connecting

11Pro to a recommendation system to produce recommendations to the customer.

We believe that the resulting system will provide more e�ective recommendations

to customers than a stand-alone recommendation system. Our proposed framework

on how to improve traditional recommender systems is outlined in [4].

5.7 Discussion

The experiments performed on a medium-size problem (1903 households, 21 �elds,

and 1,022,812 discovered rules) reported in the previous section produced encourag-

ing results: based on the �rst case study, we managed to validate 98.5% of 1,022,812

rules in only 1.5 hours of inspection time. The results of this and other case studies

produce several important observations and raise several questions.
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\Quality" of generated rules. One of the central questions is how \good" the

pro�les are that were generated by the domain expert. In other words, would it

be possible for the domain expert to discard \good" and retain \bad" rules in

the user pro�les during the validation process. As was pointed out earlier, the

terms \good" and \bad" can take di�erent meanings, such as statistical validity,

acceptability by an expert, and e�ectiveness. Generating statistically valid rules is

the prerogative of data mining algorithms and objective interestingness metrics that

can be applied to the discovered rules in the post-analysis stage. We considered the

problem of validating the rules by an expert in our research. As was pointed out in

the previous section, there is no single objectively \correct" set of validated rules

that the expert should be able to discover because di�erent experts have di�erent

evaluation biases. One possible approach lies in assigning a certain metric to the

rules and then measuring the quality of validated rules according to this metric. For

example, in the context of recommender systems, one can measure the quality of

discovered and validated rules in terms of the quality of recommendations that these

rules generate.5 However, this approach deals with the rule e�ectiveness issues. As

pointed out in Chapter 1, the problem of generating e�ective rules has not been

addressed in this paper and is left as a topic of future research.

Scalability. Our experimental results indicate that 11Pro can handle medium-

size problems well. An interesting question is how well our approach would scale

up to large problems having millions of users and dozens of attributes. If the
5In fact, we have started looking into this issue in [84] and are planning to conduct this

research by using recommender systems and judging the quality of pro�les via the quality of

resulting recommendations.
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number of attributes increases, then the rule mining methods, such as Apriori, will

generate exponentially larger number of rules and would constitute a bottleneck

of the pro�le generating process (rather than the rule validation phase). If the

number of attributes is �xed and the number of users grows, then an application of

validation operators should scale up linearly with the total number of users. This

is the case, because, our proposed validation operators run in time linear in the

total size of the rules, and we observed that the number of discovered rules grows

linearly with the number of users.6

Constraint-based rule generation vs. post-analysis. In our experiments we ap-

plied a rule discovery algorithm to generate all the association rules for pre-speci�ed

con�dence and support levels and then applied several �ltering operators to remove

\uninteresting" rules from this set (e.g., as shown in Figure 5.6). Alternatively, we

could have applied a constraint-based version of association rule discovery methods,

such as the ones presented in [77, 14]. As a result, we could have obtained the num-

ber of rules smaller than 1,022,812 produced by the unconstrained rule discovery

algorithm.

Although the constraint-based approach reported in [77, 14] provides a partial

solution to the validation problem by reducing the total number of rules generated

during the initial data mining stage, it does not provide the complete solution for

the following reason. It is very hard to �gure out all the relevant constraints before

the data mining algorithms are launched. The human expert, most likely, will be

able to come up with many important �lters only after inspecting data mining

results using browsing, grouping, or visualization tools. Alternatively, an expert
6Although we have not conducted rigorous experiments to prove this point.
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can make a mistake and specify a �lter that happens to be too strict (i.e., rejects

too many rules). If such constraint was speci�ed before mining, the whole rule

discovery algorithm would have to be reexecuted with the correct constraint, which

is more computationally expensive than to reexecute a correct �ltering operator in

the post-analysis phase. The bene�ts of iterative analysis of data mining results

are also pointed out by several researchers, including [32, 72, 67, 50, 69].

Therefore, neither post-analysis nor the pre-speci�cation of constraints works

best as a stand-alone method, and the two approaches should be combined into one

integral method. The main question pertaining to this combination is what kinds

of constraints should be pre-speci�ed by the user for the rule generation phase

and what functionality should be left for the post-analysis phase. This topic was

addressed by several researchers within the rule discovery context [67, 38]. We are

currently working on extending this line of work to the personalization problem.

Examination of groups of rules. One of the main features of our approach is the

ability for the domain expert to examine groups of rules and to decide whether to

accept or reject a group as a whole. One of the concerns for such method is that

the domain expert can make mistakes by accepting \bad" and rejecting \good"

rules. This issue is addressed in 11Pro by providing the capability for the domain

expert to evaluate a group of rules recursively in case the expert is unable to decide

whether or not to accept or reject this group as a whole. In other words, the expert

can apply validation operators just to this particular group of rules and examine

its subgroups. By examining smaller subgroups, the expert can then make more

reliable decisions.

Future research. This paper opens several directions for future work. One
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of such directions includes studies of measures of e�ectiveness of discovered rules

and development of eÆcient algorithms for discovering such rules. Moreover, the

marketing expert pointed to us that some additional validation tools could be added

to our system, and we plan to work on this issue. Finally, we plan to study tradeo�s

between constraint-based generation and post-analysis of rules in the context of

personalization applications.

5.8 11Pro System

We implemented the methods presented in this chapter as a part of the 11Pro

system.The 11Pro system takes as inputs the factual and transactional data stored

in a database or 
at �les and generates a set of validated rules capturing personal

behaviors of individual customers as illustrated in Figures 5.3 and 5.4. The 11Pro

system can use any relational DBMS to store customer data and various data

mining tools for discovering rules describing personal behaviors of customers. In

addition, 11Pro can also incorporate various other tools that can be useful in the

rule validation process, such as visualization and statistical analysis tools.

The architecture of the 11Pro system follows the client-server model and is

presented in Figure 5.10. The server component of the 11Pro system consists of

the following modules:

1. Coordination module. It is responsible for the coordination of the pro�le

construction process, presented in Figures 5.3 and 5.4, including the process

of generating behavioral rules of the customers from the data stored in the

database and the subsequent validation process.
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Figure 5.10: Architecture of the 11Pro system.

2. Validation module. It is responsible for validating the rules discovered by

data mining tools according to the methods presented in Section 5.4. The

current implementation of the 11Pro system supports similarity-based group-

ing, template-based �ltering, redundant rule elimination, and browsing tools.

3. Communications module. It is responsible for all the communications with

the 11Pro client.

4. Interfaces to the external modules. As stated above, 11Pro can use various

external modules, such as a DBMS, a data mining and visualization tools.

Each of these modules requires a separate interface, and the 11Pro server

provides such interfaces as shown in Figure 5.10.

The client component of 11Pro contains the graphical user interface (GUI) and

the communications modules. The GUI module allows the expert to specify various
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validation operations described in Section 5.4 and view the results of the iterative

validation process. In particular, the communication module takes the validation

request speci�ed by the expert and sends it to the server. The server receives

validation operators and passes them through the coordination module to the vali-

dation component of 11Pro for subsequent processing. Since some of the validation

tools, such as the statistical analysis tools, generate outputs, these outputs are sent

from the validation module of the server to the GUI module of the client via the

communication modules of the server and the client.

One of the design objectives of 11Pro is to make it an open system so that it

would be easy to incorporate a broad range of various data sources, data mining,

visualization, and statistical analysis tools into it. Therefore, the database interface

is designed to support a broad range of various types of data sources, including

relational databases (such as Oracle and SQL Server), 
at �les, Web logs, etc.

We used association rule discovery methods to build customer pro�les in the

current implementation of 11Pro. However, our methods are not restricted to a

particular structure of the rules nor to any particular algorithm that discovers

these rules. Other commercial and experimental data mining tools can be easily

plugged into 11Pro, that generate behavioral pro�les based on methods other than

association rules, such as decision tree methods [19]. The main diÆculty in this

process is the need to convert the rule representation formats used by these tools

into our internal rule formats. This is accomplished by developing rule converters

for each of the external data mining tools interfaced with 11Pro.

The server component of the 11Pro system is running on Linux/Unix platforms

and is implemented in C and Perl. The client component of the 11Pro system was
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implemented in Java and can run either on the same or on a di�erent machine as

the server component. It can also run from a Web browser or as a stand-alone

application.
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Chapter 6

Handling Very Large Numbers of

Association Rules in the Analysis

of Microarray Data

6.1 Motivations and Related Work

One of the major goals of molecular biology is to study how di�erent genes regulate

each other, and a major research e�ort is targeted towards understanding and

discovery of gene regulation patterns. Over the past 10 years, the microarray

method [65] became very popular for these discovery purposes. This method allows

biologists to monitor behavior of large number of genes on a single microarray chip

(e.g., up to 40,000 genes [17]) in order to pro�le gene expressions under various

environmental conditions, therapeutic agents, types of tissues, and other factors

a�ecting gene expressions. Typically, biologists would generate a sample of tests
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using the microarray method, where a single test would contain information on the

genes that are being pro�led, and the sample size would range from a few dozens

to a few hundred or even thousands of tests. Then biologists need to analyze these

samples to discover gene regulation patterns. For example, one may discover that

whenever gene X is upregulated and gene Y is downregulated, then gene Z is

usually also upregulated.

Many bioinformatics and data mining researchers have been working on applying

data mining methods to the analysis of microarray data. In particular, clustering

methods, �rst proposed for this problem in [29], group genes into clusters that

exhibit "similar" types of behavior in the experiments. Also, Tamayo et al [80]

used Self-Organizing Maps to organize human genes into biologically relevant clus-

ters with respect to the problem of hematopoietic di�erentiation. The clustering

methods allow biologists to design experiments helping them to understand further

the relationships among the genes. However, they do not provide deep insights

into speci�c relationships among the genes and understand underlying biological

processes in the cell.

In order to identify previously unknown functions of the genes, Brown et al [21]

proposed to use Support Vector Machines (SVMs) that build classi�ers predicting

gene functions. One of the distinctive features of SVM is that they learn classi-

�ers using both positive and negative examples. In cases when it is diÆcult to

collect negative examples, Pavlidis et al [62] proposed a new probabilistic method

using the techniques borrowed from biological sequence analysis. In addition, Kurra

et al [48] described a classi�cation method to discriminate two types of leukemia

using heuristic feature selection and a certain variant of perceptron-based classi-
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�cation method that separates these two classes of leukemia. Also, Friedman et

al [35] used Bayesian networks to analyze gene expression data and to discover

and describe interactions between genes. Furthermore, Barash and Friedman [11]

used context-speci�c Bayesian clustering method to help in understanding the con-

nections between transcription factors and functional classes of genes. Moreover,

Bicciato et al [16] presented a neural network-based method to �nd relationships

among di�erent genes involved in major metabolic pathways and to relate speci�c

genes to di�erent classes of leukemia.

Since gene expression data is often represented in the binary or ternary form

(i.e., gene expressions are up- or down-regulated [52], or unchanged, as will be dis-

cussed in the next section) and since biologists often look for interactions among

various genes, it is natural to use association rules [8] to represent interactions

among multiple genes. Besides providing the relationship between gene expres-

sion pro�les, association rules also provide the direction of the relationship unlike

other techniques, such as clustering and classi�cation. Some initial work on using

association rules to capture these interactions has been reported in [15] and [47].

While Berrar et al [15] used the standard association rule discovery algorithm (Apri-

ori [9]), Kotala et al [47] introduced a new method for discovering associations in

the microarray data that is based on Peano count trees (P-Trees).

However, association rule methods face certain challenges when applied to mi-

croarray data that have not been addressed in [15] and [47]. Since microarray

data has a very large number of variables (i.e., genes are often measured in thou-

sands), association rule discovery methods tend to generate very large numbers of

rules (often measured in hundreds of millions or even billions). Although some of
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these rules contain very important biological relationships among di�erent genes,

other rules often represent spurious, irrelevant and already known relationships.

Therefore, the challenge is to be able to explore and analyze very large numbers

of biological relationships (rules) in an e�ective manner and to separate "good"

relationships from the "bad." One way to deal with the combinatorial explosion

problem is to specify tight constraints on the types of association rules that are of

interest to the biologists using constraint-based mining methods such as the ones

proposed in [14, 77], including the selection of only particular gene types to be used

as inputs for the association rule generation algorithms. For example, Berrar et

al [15] followed this strategy and restricted the set of genes used for the generation

of association rules from 1500 to only 20 and the number of drugs from 1500 to

only 20. However, restricting the problem to only 20 genes and 20 drugs created

a potentially very limiting situation of leaving out important variables and, there-

fore, missing important relationships among the genes because some of the genes

involved in these relationships might be omitted.

Our research addresses the challenge of analyzing very large numbers of discov-

ered rules in the post-processing stage of the data mining process by providing the

biologist with a set of tools necessary for the analysis of very large numbers of as-

sociation rules generated by standard association rule generation algorithms (such

as Apriori [9]) on the microarray data. These tools leverage the knowledge about

genomics that biologists have and let biologists play a central role in the discovery

process through close interactions between the tools and the biologist. By utilizing

these tools in an interactive and exploratory manner, the biologist can identify and

focus on really important rules and separate them from the irrelevant, trivial or
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already known relationships among the genes.

In the rest of this chapter is we formulate the gene regulation pattern discovery

and post-analysis problem. We also present rule exploration methods to address

this problem. Finally, we present a case study that tested our methods on some

microarray data.

6.2 Problem Formulation

One way to understand how di�erent genes regulate each other is to measure gene

expression levels [52] produced by a cell using microarray technologies [65]. Typi-

cally, biologists conduct a number of experiments measuring gene expression levels

of a cell or a group of cells under various conditions a�ecting these expression levels.

Biologists are interested in how di�erent gene expressions change depending on the

type of a tissue, age of the organism, therapeutic agents, and environmental con-

ditions. From the computational point of view, the expression level is represented

as a real number. Therefore, the result of a single experiment is an array of N

real numbers. Moreover, the set of genes used in microarrays is determined by a

biologist and remains the same for all the experiments. Therefore M microarray

experiments result in an M � N matrix fxijgi=1;M; j=1;N , where xij represents the

expression level of gene j in experiment i. Depending on a particular biological

application, the number of experiments M can vary from a few dozens to several

hundreds or even thousands, and the number of genes N can vary from several

hundred to tens of thousands (e.g., [17] reports putting 40,000 genes on a single

microarray chip). Moreover, the biologists are more interested in how gene expres-
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sions vary in these experiments relative to normal expression levels in an organism,

rather than in their absolute values. Therefore, biologists typically normalize ex-

pression levels xij according to certain normalization criteria and the results are

discretized according to whether they exceed certain predetermined thresholds or

not. This process results in a discretized M �N matrix frijgi=1;M; j=1;N where the

values rij are of three di�erent levels: unchanged (denoted as #), upregulated [52]

(denoted as "), and downregulated [52] (denoted as #). Certainly, one may choose

more than 3 levels of gene expression level discretization. However, in many appli-

cations biologists assume these three levels of discretization, and we will follow this

assumption in the paper.

Given normalized and discretized gene expressions frijgi=1;M; j=1;N , we can dis-

cover gene regulation relationships in the form of association rules. In particular, an

experiment i can be represented as a transaction [8] consisting of N items (genes)

frijgj=1;N , each item rij taking one of the three values (#,",#). Given this data, we

want to �nd all the association rules with speci�ed levels of con�dence and support

and let the biologists select only these rules that are interesting to them from a bio-

logical point of view. As mentioned earlier, one of the problems with this approach

lies in large numbers of associations generated by rule discovery methods. Depend-

ing on the number of genes N in the gene expression matrix M � N and on the

particular values of con�dence and support, the number of discovered association

rules can be measured in billions.

As mentioned earlier, one can impose constraints on the types of generated asso-

ciation rules, as was done in [14, 77]. However, we either (1) still may end up with

a very large number of discovered association rules, or (2) impose overly restrictive
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constraints on the data and many potentially important biological relationships

may be missed. In Section 3 we present an approach that addresses this problem

by providing a biologist with a set of tools for exploring very large numbers of

discovered association rules in an iterative and systematic manner.

6.3 Analyzing Discovered Gene Regulation Patterns

In this section we adapt our rule post-processing methods allowing biologists to

analyze very large numbers of regulation relationships among genes and select those

that are of interest to them.

Post-processing of discovered gene regulation relationships is an iterative and

interactive process in which the biologist selects speci�c rule exploration tools,

such as rule �ltering, rule grouping and other rule analysis tools and applies them

to the set of discovered gene regulation relationships. As a result, the biologist can

examine groups of relationships at a time, decide which groups are interesting and

worth further exploration, which groups of rules are irrelevant, trivial, or already

known, and discard these relationships from further consideration. By selecting

these rule exploration tools in an interactive manner, the biologist can quickly

focus on the rules that are of interest to him or her. We will further elaborate on

this when we present our case study. In the rest of this section, we will describe

speci�c rule exploration tools, such as �ltering, grouping and others.
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6.3.1 Rule Filtering

This tool allows the biologist to impose various constraints on the syntactic struc-

ture of the discovered biological rules using templates in order to reduce the number

of rules to be explored. In other words, biologists have the ability to "focus" their

analysis and exploration e�orts only on the subset of rules that is of a speci�c inter-

est to them. For this purpose, we have adapted our set validation language SVL to

the domain of microarray data analysis. We will brie
y present the \adapted" SVL

language and show how it can be used by the biologists to specify rule templates.

Rule templates �lter biological rules from the total set of discovered rules by

specifying various restrictions on the combinations of genes and their expression

levels that can appear in the body and the head of the rule. These templates can

be speci�ed using the following notation:

RulePart HAS Quanti�er OF C1; C2; : : : ; CN [ONLY] (6.1)

Here RulePart can be BODY, HEAD, or RULE, and it speci�es the part of

the rule (antecedent, consequent, or the whole rule, respectively) on which the

constraint is being placed. C1; C2; : : : ; CN is a comparison set, i.e., it represents

a list of genes (possibly with their expression levels) against which the discovered

rules will be compared. Each element Ci of this list can be one of the following:

� A gene, e.g., G17;

� A gene with a particular expression level, e.g., G17 ";

� A gene with a list of allowable or unallowable expression levels, e.g., G17 =

f";#g or G17 6= f#g;
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� A group (or category) of genes1, represented by the name of the gene cate-

gory, e.g., [DNA Repair]. We use square brackets with category names to

di�erentiate between the category names and gene names;

� A group of genes with an expression level, e.g., [DNA Repair] ";

� A group of genes with a list of allowable or unallowable expression levels, e.g.,

[DNA Repair] = f";#g or [DNA Repair] 6= f#g.

Quanti�er is a keyword or an expression that speci�es how many genes spec-

i�ed by the C1; C2; : : : ; CN list have to be contained in RulePart in order to be

accepted by this template. We use parentheses to enclose the quanti�er expression.

Quanti�er can be one of the following:

� Either (ALL), (NOTZERO), or (NONE), specifying the number of genes (all

of them, at least one of them, none of them, respectively) from C1; C2; : : : ; CN

the RulePart must have;

� A numeric value; e.g., (2), which speci�es that a rule must have exactly 2

genes from the comparison set;

� A range of numeric values; e.g., (1-3), which speci�es that a rule must have

1, 2, or 3 genes from the comparison set;

� A list of numeric values and/or ranges; e.g., (1, 3, 5-7), which speci�es that a

rule must have either 1, 3, 5, 6, or 7 genes from the comparison set in order to
1Genes can often be categorized or grouped according to various (standardized) gene categories,

e.g., by their function.

155



be accepted by this template; keywords ALL and NONE (but not NOTZERO)

can also be present in this list, e.g., (NONE, 2, 3) or (1, 3-ALL).

Finally, an optional keyword ONLY can be used to indicate that RulePart can

have only the genes that are present in the C1; C2; : : : ; CN list.

Some examples on how to use templates to �lter biological rules are provided

below.

� All rules that contain at least one of the following genes: G1, G5, and G7:

RULE HAS NOTZERO OF G1; G5; G7

For example, rule G1 ") G3# matches this template, and rule G2 ") G3#

does not.

� All rules that contain some of the genes G1, G5, G7, but no other genes:

RULE HAS NOTZERO OF G1; G5; G7 ONLY

For example, rule G1 ") G5 " matches this template, and rule G1 ") G3#

does not.

� All rules that contain exactly one of the following genes: G1, G5, G7. More-

over, only rules with upregulated G1, downregulated G5, and upregulated or

downregulated (but not unchanged) G7 are acceptable:

RULE HAS 1 OF G1 "; G5 #; G7 = f"; #g

For example, rule G1 ") G3# matches this template, and rule G1 ") G7 "

does not.
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� All rules that contain either both G1 and G2 in the body (antecedent) or none

of them:

BODY HAS NONE;ALL OF G1; G2

For example, rule G5 ") G3# matches this template, and rule G1 ") G7 "

does not.

� All rules that contain a DNA repair gene (i.e., a gene that belongs to the DNA

repair group of genes) in the head (consequent):

HEAD HAS NOTZERO OF [DNA Repair ]

� All rules that contain exactly 3 genes in the body. In addition, all of them

must be upregulated:

BODY HAS 3 OF [ALL GENES ] "

As mentioned before, in our template-based rule �ltering tool each of the above

templates can be used individually or several templates can be combined into one

using Boolean operations AND, OR, and NOT. We now present some examples of

composite templates that use these Boolean operations.

� All rules that have up to 3 DNA repair genes and no other genes in the body,

as well as gene G7 in the head of the rule:

BODY HAS 1� 3 OF [DNA Repair ] ONLY AND

HEAD HAS NOTZERO OF G7
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� All rules that have exactly 2 genes in the body and at least one of them

belongs either to DNA repair or to Transcription category:

BODY HAS 2 OF [ALL GENES ] AND

BODY HAS NOTZERO OF [DNA Repair ]; [Transcription]

� All rules that have no DNA repair genes, but 2 or more upregulated Tran-

scription genes present:

RULE HAS NONE OF [DNA Repair ] AND

RULE HAS 2� ALL OF [Transcription] "

As with SVL, we use cardinality predicates as a basis for the biological rule

templates. Therefore, we implemented them in a very eÆcient manner using lookup

table-based data structures. Using our implementation, the �ltering algorithm runs

in the time linear in the total size of the rules to be �ltered.

To make it more intuitive for biologists, we also provide a number of prede�ned

templates (i.e., macros) that directly support speci�c questions that biologists may

ask. For example, a biologist may want to explore whether one group of genes

in
uences (implies) another group of genes and vice versa. We provide a macro

template

POSSIBLE INFLUENCE(GeneSet1 ;GeneSet2 )

that returns all the rules that contain some genes from GeneSet1 in the body (and

possibly some other genes) and a gene from GeneSet2 in the head or vice versa,

some genes from GeneSet2 in the body (and possibly some other genes) and a gene
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from GeneSet1 in the head. Using our template speci�cation language, this macro

template was de�ned as:

POSSIBLE INFLUENCE(GeneSet1 ;GeneSet2 ) :=

BODY HAS NOTZERO OF GeneSet1 AND

HEAD HAS NOTZERO OF GeneSet2 OR

BODY HAS NOTZERO OF GeneSet2 AND

HEAD HAS NOTZERO OF GeneSet1

Consider the following template:

POSSIBLE INFLUENCE(fG1; G2g; fG3; G4g)

Then, the ruleG1 " ^G7 ") G3 "matches this template, and the ruleG1 ") G2 "

does not.

Another example of a macro template is the CONTRADICT operator, that

allows the biologist to gather all the rules that "contradict" a certain hypothesis in

the sense de�ned in [20, 23, 29]. This macro template was de�ned as follows:

CONTRADICT(GeneExprSet ; G;ExpLevel) :=

BODY HAS ALL OF GeneExprSet AND

HEAD HAS ALL OF G 6= f ExpLevel g

That is, if a biologist believes that a certain set of gene expressions GeneExprSet

(possibly with some other genes) induces a particular gene G to have a certain ex-

pression level ExpLevel, the operator CONTRADICT can be used to check if there
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are any rules that contradict this belief, i.e., if there are any rules where GeneEx-

prSet (possibly with some other genes) induces gene G to have the expression level

other than ExprLevel. Assume, for example, that we have a template:

CONTRADICT(fG1 "; G2 "g; G4; #)

That is, we are assuming (e.g., based on previous biological knowledge) that

whenever G1 and G2 are both upregulated, G4 should be downregulated. The

above template would match any rule that includes G1 " and G2 " in its body and

G4 " or G4# in its head, e.g., the rule G1 " ^G2 " ^G23 #) G4 ".

In summary, we took our proposed validation language SVL that is based on

cardinality predicates and adapted it for the purpose of exploring the results of

association rule mining algorithms on the biological microarray data. Note, that

our validation approach is very 
exible { we did not have any problems incorporat-

ing the speci�c knowledge from the domain of genomics, such as gene hierarchies,

speci�c values of gene expression levels in �lters, and the genomics-speci�c macros,

including the CONTRADICT macro template.

6.3.2 Rule Grouping

There can be many "similar" rules among the discovered rules, and it would be

useful for biologists to be able to explore and analyze all these similar rules together

rather than individually for several reasons. First, instead of potentially dealing

with millions of rules, a biologist can be provided with a much smaller number of

rule classes (groups), which is easier to handle from the scalability point of view.

Second, the ability to group the discovered rules provides a biologist with a high-
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level overview of the rules and with the capability of the exploratory top-down rule

analysis of the rules. Therefore, it is important to provide methods that could group

discovered rules into classes, according to some similarity criteria, that biologists

could subsequently explore and analyze. For this purpose, we use our proposed

similarity-based rule grouping method, described in Chapter 3.

In particular, we introduce a gene hierarchy that is speci�ed by the domain

expert in a form of a tree (some of these hierarchies are standardized already by

biologists and he/she only needs to select the right one). Moreover, genes can

be grouped in several di�erent ways, and the biologist needs to select the most

appropriate grouping of genes for the problem at hand. For example, one can

organize genes based on their functions, e.g., several genes of the yeast (S.cerevisiae)

are categorized by the biologists as having the DNA repair function. Therefore, the

leaves of the attribute hierarchy represent all the genes from the microarray dataset

to which rule discovery methods were applied, i.e., all genes that can potentially

be present in the discovered rules. The non-leaf nodes in the tree are obtained

by combining several lower-level nodes (genes) into one parent node (functional

category of the genes). For instance, Figure 6.1 presents an example of such a

hierarchy, where genes G1, G2, and G3 are combined into functional category F1

and genes G4 and G5 are combined into functional category F2. Then, functional

categories F1 and F2 are further combined into a category ALL that represents all

genes and corresponds to the root node of the tree.

Given a gene hierarchy, the discovered rules are grouped by specifying the gene

aggregation level in this hierarchy. A gene aggregation level is de�ned by the subset

of all the nodes (leaf and non-leaf) of the gene hierarchy, such that for every path
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F1 F2

G4 G5G3G2G1

ALL

Figure 6.1: An example of a gene hierarchy.

F1 F2

G4 G5G3G2G1

ALL

F1 F2

G4 G5G3G2G1

ALL
(a) (b)

Figure 6.2: Examples of di�erent gene aggregation levels.

from a leaf node to the root, exactly one node on such path belongs to this subset.

Figure 6.2 presents several examples of gene aggregation levels. As mentioned

earlier, the gene aggregation level is usually provided by a biologist.

After the rule aggregation level is speci�ed, the discovered rules are aggregated by

performing the following syntactic transformation: individual genes and their values

(expression levels) in the rules are replaced with the corresponding node in the

speci�ed aggregation level. Consider, for example, the rule G1 " ^G2 #) G5 # that

indicates that whenever gene G1 is upregulated and gene G2 is downregulated, gene

G5 is usually downregulated. By applying the aggregation level from Figure 6.2(a),
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we will get the aggregated rule F1) F2, since both G1" and G2# will be replaced

with F1 in the body of the rule and G5# will be replaced with F2 in the head of

the rule.

When a set of rules is aggregated, di�erent rules could be mapped into the

same aggregated rule. For example, consider the rules G1 " ^G2 #) G5 # and

G1 ") G4 ". Using the aggregation level from Figure 6.2(a), both of these rules

are mapped into the same aggregated rule F1 ) F2. Therefore, we can group a

set of biological rules as follows. Two rules R1 and R2 belong to the same group

according to the speci�ed aggregation level if and only if they are mapped into the

same aggregated rule R. Therefore, two di�erent aggregated rules represent two

disjoint groups of rules.

Note, that all attributes (i.e., genes) in the microarray dataset have exactly the

same set of possible values (i.e., expression levels ", #, and #). Therefore, we can

use the expression level information in the grouping process, therefore providing

even more 
exibility to biologists.

Consider, for example, rule G1 ") G4 ". As demonstrated above, if we use the

gene aggregation level from Figure 6.2(a) and do not use expression level informa-

tion in the aggregation process, this rule will be mapped into the aggregated rule

F1 ) F2. However, if we choose to use the expression level information in the

aggregation process, the rule G1 ") G4 " will be mapped into the aggregated rule

F1 ") F2 ". Which of these grouping schemes to use (i.e., to use the expression

values or not) in the rule grouping process is up to the biologist. Note that, given

the same gene aggregation level, using the gene expression levels in the grouping

process will always produce more groups than not using them. Some examples of
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Groups obtained by grouping S using gene

Initial rule set S aggregation level from Figure 6.2(a)

without exp. levels with exp. levels

1) G1 #) G4 # F1) F1 (rules 3,5) F1 ") F1 # (rules 3,5)

2) G1 #) G5 # F1) F2 (rules 1,2,4) F1 #) F2 # (rules 1,2)

3) G3 ") G1 # F1 " ^F1 #) F2 # (4)

4) G1 " ^G3 #) G5 #

5) G1 " ^G2 ") G3 #

Table 6.1: Grouping of biological rules using di�erent grouping schemes.

rule grouping using these two di�erent grouping schemes are presented in Table 6.1.

The proposed rule grouping method has the following distinguishing features

that make it useful in the biological data mining applications requiring post-analysis

of large numbers of discovered rules. First, unlike the traditional clustering meth-

ods [28], where the user has only a limited control over the structure and sizes

of resulting clusters, a biologist has an explicit control over the granularity of the

resulting rule groups in our approach. That is, a biologist can specify di�erent

gene aggregation levels in the gene hierarchy, which allows grouping the discovered

rules according to the granularity important to that biologist (i.e., depending on

how he or she wants to explore the rules). This property is very useful in the

applications dealing with very large numbers of discovered rules (e.g., millions), be-

cause traditional clustering methods may still generate an unmanageable number

of clusters. Moreover, the proposed method allows the biologist to incorporate the

domain knowledge into the grouping process by specifying a gene hierarchy.
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Second, the rule groups (denoted by di�erent aggregated rules) obtained by the

proposed rule grouping method are equivalence classes, since any two biological

rules R1 and R2 belong to the same rule class if and only if they are mapped into

the same aggregated rule, given a speci�c gene aggregation level. This means that

we can determine what rule class the particular biological rule R belongs to based

solely on the structure of rule R. This property makes the proposed rule grouping

method consistent and predictable, since the biologist knows to what class a rule

belongs regardless of what other discovered rules are. This is in contrast to some

of the traditional distance-based clustering methods, where any two rules may or

may not be in the same cluster depending on the other discovered rules.

Third, one of the limitations of some of the other rule grouping approaches (e.g.,

[31]), as applicable to the analysis of microarray data, lies in that it is not clear how

to describe concisely the resulting rule cluster to the end-user for the purpose of

evaluation, since rules belonging to the same cluster may have substantially di�erent

structures. In contrast, in our proposed grouping approach that is based on gene

hierarchies, every rule cluster (group) is uniquely represented by its aggregated rule

(common to all rules in that cluster), that is concise and descriptive.

Finally, the proposed rule grouping method works with large numbers of at-

tributes, both numerical and categorical. Also, it scales up well. In fact, using

lookup tables for gene hierarchies and hash table-based structures for storing ag-

gregated rules, the grouping algorithm is linear in the total size of the rules to be

grouped. This is especially important in bioinformatics applications dealing with

very large numbers of rules.
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6.3.3 Other Rule Processing Tools

Besides rule �ltering and grouping tools, we have also developed rule browsing

and data inspection tools. The rule browsing tool allows the biologist to view

either individual rules or groups of rules based on the rule structure and select

particular rules or groups of rules for a more in-depth analysis. Also, it turns out

that biologists often want to know which experiments (transactions) a particular

rule "covers," i.e., which experiments support (contribute) to this particular rule.

To realize this requirement, we have implemented the data inspection tool that

returns all the experiments on which the rule holds. Finally, all the rule exploration

tools described in this section are combined into one integrated system that allows

biologists to select them out of a "toolbox" and apply to the rulebase of genomic

relationships in an iterative and interactive manner.

6.4 Case Study

We tested our methods on an A�ymetrix GeneChip microarray data described

in [44]. This data contained information on how cells of yeast (S.cerevisiae) respond

to various environmental and chemical damaging factors, such as methylmethane

sulfonate (MMS), 4-nitroquinoline n-oxide (4NQO), tert-butyl hydroperoxide (t-

BuOOH), 
-radiation, and other factors. Yeast cells were treated by these various

factors, and gene expression levels were recorded before the treatment and at 10, 30,

and 60 minutes after the treatment. Altogether, 28 measurements were recorded

on 28 microarray chips, each chip containing expression levels of the whole yeast

genome containing approximately 6200 genes.
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The biologists wanted to know how yeast cells respond to various damaging

factors. To answer this broad question, they formulated several more speci�c ques-

tions that we explored with them using the methods described in Section 3. To

demonstrate how our method works on this particular genomic problem, we focus

on the following two biological questions that were of interest to the biologists:

1. When genes involved in the DNA repair are upregulated, what other gene

categories are also up- or downregulated?

2. What genes induced after 10 minutes a�ect the transcription of genes induced

after 30 minutes?

Since each of these questions deals with speci�c groups of genes, we applied

di�erent constraints to the association rule generation algorithm (using the method

similar to the one described in [28]) for each of these two questions and therefore,

generated di�erent association rule sets for these two questions. This allowed us

to generate fewer association rules for each question than we would have generated

for the union of all possible questions. For example, based on the advise from

biologists, one of the constraints for the �rst question was to generate only the

rules that contain up to 4 genes (i.e., up to 3 genes in the body of the rule, 1 in

the head). In the rest of this section, we will describe how we used our proposed

biological rule �ltering and grouping methods to handle these two questions.

The �rst question was relatively simple. The association rule discovery algo-

rithm generated about 70,000,000 rules based on our initial constraints. To �nd all
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the rules that are relevant to this question we �rst applied the following template

BODY HAS ANY OF [DNA Repair ] " ONLY AND

HEAD HAS ANY OF [ALL GENES ] = f"; #g

which �nds all rules of the form X1 ^ : : :^Xk ) Y , where each gene expression Xi

(i = 1; : : : ; k) represents an upregulated gene belonging to the DNA repair category,

and Y is a gene expression involving a gene (any gene) that is either upregulated

or downregulated, but not unchanged. This template matched 1,673 rules.

Then we identi�ed similar rules among all the rules that matched the above

template. Two rules were said to be similar if they could be mapped into the

same aggregated rule by using the primary functional category of each gene as its

aggregation level. Based on this similarity speci�cation, we grouped these 1,673

rules into 78 groups. For example, 328 of the 1,673 identi�ed rules belonged to

the group [DNA Repair ] ") [Protein Synthesis] #, which contains all the rules

that have only upregulated DNA repair genes in the body and some downregulated

protein synthesis gene in the head. These resulting 78 groups were of direct interest

to biologists, and they were able to explore them further.

The second question was more involved. To answer this question, we grouped

genes into three groups: group GrpA contained all the genes that were induced

(i.e., up- or down-regulated) after 10 minutes, group GrpB contained all the genes

induced only after 30 minutes (but not after 10), and group GrpC contained all

the genes induced only after 60 minutes (but not after 10 or 30). Then the second

question is reduced to the following more speci�c three questions:

� How genes in GrpA a�ect genes in GrpB;
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� How genes in GrpA a�ect genes in GrpC;

� How genes in GrpB a�ect genes in GrpC.

To answer these questions, we started with the generation of the association rules

pertinent to them. In particular, we used the constraints that removed genes with

unknown function (category), the genes that were always upregulated (at all times),

and a few other heuristics. Moreover, we used con�dence and support levels of 70%

and 5 records respectively. As a result, we managed to reduce the total number of

genes from 6200 to 1809 as elements of single-item itemsets. Among these genes,

118 belonged to GrpA, 175 to group GrpB and 245 to GrpC. Using these genes,

we generated 485,999 rules of the form X ) Y , i.e., one gene expression in the

body implies one gene expression in the head. Since in this case the biologists

were interested in knowing how pairs of genes a�ect each other, we limited our

considerations only to this type of rules for this question.

Because the other two questions were processed in a similar fashion, we will focus

only on the �rst question in this paper, i.e., how genes in GrpA a�ect genes in GrpB.

A fragment of the exploratory analysis performed for this question is presented in

Figure 6.3. In particular, we started our explorations with the following template.

Template 1:

BODY HAS 1 OF [GrpA] = f"; #g AND

HEAD HAS 1 OF [GrpB ] = f"; #g

This template matched 1,725 rules. We next decided to re�ne the previous

template in the following way.
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Template 2:

BODY HAS 1 OF [GrpA] " AND

HEAD HAS 1 OF [GrpB ] #

which produced no rules at all (this discovery was con�rmed by the biologists based

on their prior knowledge about behavior of these two groups of genes). Then we

decided to apply the following template.

Template 3:

BODY HAS 1 OF [GrpA] " AND

HEAD HAS 1 OF [GrpB ] "

and it produced 1,654 rules. Finally, we decided to apply the grouping tool that

grouped these 1,654 rules into 140 groups, based on the functional categories of

genes. These groups were examined by biologists, and some interesting groups

were identi�ed. Sample groups that were discovered (among the above- mentioned

140 groups):

� [Stress Response] ") [Amino Acid Metabolism] #

This group contained 15 rules.

� [Transcription] ") [Protein Degradation] "

This group contained 3 rules.

As a result of doing this type of analysis using our system, we managed to

provide answers to the questions about gene regulation relationships that were of

interest to the biologists.
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Template 2 (no rules)

Template 1 (1,725 rules)

Template 3 (1,654 rules)

Group rules based on their
functional categories.
Result: 140 groups

Figure 6.3: A sample exploratory analysis of biological rules.

6.5 Conclusions

One of the main challenges related to applying association rule discovery methods

to microarray data is the scalability issue. Since the number of genes placed on

microarray chips is often measured in thousands, association rule discovery methods

tend to generate very large numbers of association rules describing how di�erent

genes regulate each other.

We addressed this problem by presenting several rule validation tools, such as

rule �ltering, grouping, browsing and data inspection tools that help the biologists

explore and analyze very large numbers of discovered rules in an interactive and

systematic manner. We tested our methods on some microarray data together with

the biologists that produced the data. As a result, we managed to answer the

questions about gene regulation relationships that were of interest to them using

our methods.

Our approach empowers biologists by providing them with a set of tools that
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allow them to systematically analyze biological data on their own without any

explicit help from the data miners. We believe that the development of such end-

user tools is one of the major trends in data mining and believe that our work

contributes in a signi�cant way to this e�ort. Although we applied our system

to the analysis of microarray data, our methods are more general and are also

applicable to the analysis of other types of biological data, including proteomic and

pharmacogenomic data.
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