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In the recent years, evolutionary models for modeling populations36,122 through

interactive individuals have seen a rise in popularity, primarily spurred by the

enormous increase in hardware capabilities and data collection efforts. Such

models have seen considerable use in a wide variety of fields across the board

such as advertisement recommendations107, language evolutions98, population

genetics80, single cell models for tumor growth49, etc. And yet the primary tools

used in these areas are still limited to the classical techniques from statistical

learning like, graphical recommendation models, and ordinary16,12, partial or

stochastic differential equation(ODE/PDE/SDE) models131, and have not yet

seen a similar rise in geometric models for data as those for the deep learning

and manifold learning fields.

This thesis presents a geometric and topological view of data science with a

focus on population models, specifically extended to scenarios where the popu-

lation is an interactive one and where the evolution of the population depends

upon the information content of each individual. In this chapter, we go through

some of the major challenges and questions that are still pending to model in-

teractive populations with rich internal information. We give a brief overview

to some of the techniques currently used for modelling interactive populations

and show their strengths and shortcomings. We then go over the contributions

of this thesis and outline how it tries to extend and enhance the current mod-

els using techniques from Topological Data Analysis and Manifold Learning for

leveraging the geometric nature of data embeddings.
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1.1 Modeling a population

Population modeling is a broad area with a rich history and several different

types of models. Some of the models include

1. Differential equation models, including ODE, PDE, SDE, etc. These have

extensively been used for modelling population growth131.

2. Automata models, like Conway’s Game of Life. These have been histor-

ically used to model interactive cellular systems but have seen a recent

decline in popularity109.

3. Recommendation systems. These have seen a rise in popularity due to

their simple nature and ability to focus on a specified information con-

tent16,12. They have seen frequent use for ad recommendations in Google,

movie recommendations in Netflix, Hulu, etc., buying recommendations in

online stores, such as Amazon.

4. Deep neural networks. These are now being explored as replacements for

some of the above systems but have not yet seen extensive independent

use in any focused scenario1,92.

In this section, we go through the details of two of the preceding models.

1.1.1 Differential Equation models

Using DEs for population modeling primarily focuses on analyzing the size of

the population131,75. In such a scenario we study the size of a population mod-
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eled using a proportional growth rate, r ∈ R≥0, along with a saturation limit,

k ∈ R≥0, which can be seen as:

Ẋ = rX

(
1− X

k

)
, X(0) = 1,

where X = X(t) is the population with respect to time and Ẋ is the rate of

growth.

More complicated models used for investigating multiple subpopulations in-

clude the competition model54, with two sub-populations X and Y , which has

two parameters axy, ayx ∈ R≥0 to represent the population pressure, i.e. the

proportion of the populations that can change from X to Y and Y to X, re-

spectively. Larger values of axy, ayx implies a higher pressure that one sub-

population exhibits towards the other.

Ẋ = rxX

(
1− X + axyY

k

)
, Ẏ = ryY

(
1− Y + ayxX

k

)
.

Even more complicated models utilize stochastic models such as one which

addresses the accumulation of somatic mutations during the embryonic stage52.

Frank, et al.52, introduce a mathematical framework which examines two spe-

cific recessive mutations which are involved in colon cancer by considering the 4

population subtypes depending on the accumulation and the likelihood of a cell

moving across a subtype during division.

DE models are good at scrutinizing the overall types in a population where

there exist distinguished subtypes but they fail to model scenarios where we
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wish to probe for information based on properties present in a population. These

are useful when we are exploring very specific and well defined scenarios and

are mostly used when we know the exact conditions when we travel across sub-

types. For example, if we wish to model a scenario where we have n mutations

and wish to categorize subpopulations based on what mutations are present, we

would have to deal with 2n different subpopulations and each having growth,

suppression parameters with respect to other types. The fact that it is unknown

which of the 2n subtypes are feasible and should be probed leaves us with a very

large parameter space. This shows a lack of extensibility of differential equation

models when we have to deal with parametrized populations.

1.1.2 Automata models

Automata models are one of the oldest mathematical models, as well as one of

the most extensively studied ones109. These models depend on a spatial “grid”

where each node (traditionally called “cells”) can represent an individual or a

subpopulation.

Traditional examples of such models includes the famous Conway’s Game of

Life where the game is played on a 2-D grid with the following rules:

1. Each cell has two states: “dead” or “live”.

2. Any live cell with two or three live neighbours survives.

3. Any dead cell with three live neighbours becomes a live cell.
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4. All other live cells die in the next generation. Similarly, all other dead

cells stay dead.

More complex examples exist, such as one introduced to model brain tumor

growth69, which uses a complex 3-D cellular automaton model, accounting for

proliferative and non-proliferative cells, an isotropic lattice as well as an adap-

tive grid lattice.

Unfortunately, spatial models become too complex to represent and efficiently

simulate without doing abstractions of the grid out to remove the spatial com-

ponent. Such models also depend on specific states of each individual cell and

cannot account for more complex representations of each cell.

1.1.3 Recommender Models

The models are particularly useful in scenarios where you have a population

that responds to external stimuli, like buyers in an online shop such as Ama-

zon, which respond to events such as sales, holidays and even get influenced by

celebrities on TV or social media . In such cases, it is beneficial to model the

population as a two separate populations, one of which is the recommender,

which could be the seller, who would recommend items based on the history

of others who it thinks is “similar” to the current buyer, or it could be the so-

cial media platform such as Facebook or Twitter, who recommend pages and

celebrities to follow based on their perception of what the user enjoys. The sec-

ond population are the buyers or the users, each of which has an internal state

of their own, not directly changeable by the recommender and who take ac-
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tion based on what their decision criterion is. It is this “decision criterion” that

the recommender wants to learn so that they can leverage it to maximize their

profit.

Such recommender systems have seen widespread use, one of the most famous

of which is the Netflix Prize competition, won by Bell, et al.14. The competi-

tion was for developing a better movie recommendation system for Netflix, an

online movie platform. The award winning technique used an ensemble of 107

different recommendation systems to create a final recommendation list. Some

of the techniques involved in a recommendation systems include Boltzmann ma-

chines, collaborative filtering algorithms114,84 and dynamic k-nearest neighbor

models103.

These are different from traditional population models, in that the popula-

tion does not directly interact with each other to the same extent that they do

in a free floating environment. The interactions take place through the recom-

mender which acts as a man-in-the-middle, and can thus act on the information

to manipulate it. Such examples of manipulation have been extensively seen

on social media, the most studied of which are the effects on the political spec-

trum22,132,15.

1.2 Key limitations

We see that some of the key limitations of current models for evolutionary pop-

uations include:

• Populations with rich internal information are hard to capture.
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Internal information blows up concretized stratification of a population

and leads to bottlenecks in analysis based on features.

• Information on evolutionary trajectories is lost.

Keeping a detailed history of large populations is complex unless reducing

it to smaller metadata signatures.

• Populations have extreme representations with respect to information con-

tent.

Models either reduce population representations to subpopulation analysis

(macro representation) or to single individual representations (micro rep-

resentation). There needs to be a flexible set of signatures of a population

which can be changed by hyperparameters to get multiple levels of detail

of a population.

Due to the said limitations of current models, this thesis tries to breach the

gaps between topological intuition and data science, and help develop a more

rigorous toolset.

1.3 Thesis Contributions

One of the key contributions of this thesis is the geometric and topological tools

developed for analyzing evolutionary models. We develop tools which extend

current techniques in Topological Data Analysis, Manifold Learning and Graph

Theory and combine them together to develop a coherent workflow for using

them in concrete settings.
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This thesis contributes the following points to the field of machine learning

and population modelling:

1. We develop a Bayesian echo chamber model for modelling interactive pop-

ulations with internal information which evolve over time. Modeling an

interactive population is made hard due to a multitude of problems:

(a) Imprecise internal knowledge of individuals.

(b) Unstructured representation of internal data.

(c) Low quality data, in the amount of data as well as the time scale.

We showcase a model using the Bayesian Echo Chamber where we observe

political and linguistic data from multiple online communities in Reddit

across several years and use it for predicting unobserved inter commu-

nity interactions. We achieve this goal by using the strength of topologi-

cal similarity metrics on the persistence diagrams of each community and

using deep neural networks to achieve a metric space embedding of each

users’ internal language using word2vec.

2. A new method to perform transfer learning for the cancer survival fore-

casting problem using Suppes Bayes Causal Networks. Here we use Sup-

pes Causal Networks and quantify similarities between cancer subtypes

for patients. Several metrics are proposed and contrasted. We extend an

agony based pseudo-metric to the space of causal networks to model sim-

ilarities between subtypes and use these to boost transfer learning. The

9
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largest contribution of this technique is the generality and extendability to

other problems as the underlying techniques are not restricted to cancer

survival forcasting.

3. A new method for modelling interactive evolutionary processes based on

Digraphons. Creating a refutable hypothesis and giving tools for reject-

ing a hypothesis is an essential utility in any tool box. This method is a

generative model for temporal causal networks which allows us to consider

separate populations and gives a similarity metric to get a sense of dis-

tance between the evolutionary trajectories of said populations. This al-

lows us to create baseline models for several standard evolutionary models

and to apply refutable hypothesis testing by allowing us to use standard

probabilistic tools in a temporal setting.

1.4 Thesis Outline

This thesis is organized as follows. In Chapter 2, we give a literature review of

the mathematical prerequisites for understanding this thesis. This includes a

preliminary introduction to Topological Data Analysis through Persistent Ho-

mology, a brief glance over Suppes Bayes causal networks for modeling temporal

causal relationships and an overview of Graphons and their extensions to Di-

graphons and techniques involved in using these for performing predictions. In

Chapter 3, we use Persistent Homology and Deep Neural Networks to show how

we can model language acquisition and learning in an interactive population in

a Bayesian Echo Chamber model using time series data from Reddit. In Chap-

10



ter 4, we show how to boost learning for cancer survival prediction using trans-

fer learning by using data from different cancers by using a similarity score for

causal networks. In Chapter 5, we develop a theory for Digraphons for creating

a generative model for causal network learning, adopt the theory for graphons

to causal networks and show an efficient algorithm for modeling large evolution-

ary populations using evoution by duplication. We end the thesis in Chapter 6

with concluding remarks and possible extensions for the work presented here.
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2.1 Introduction

The recent advances in mathematics and computer science have had tremendous

impact on the fields of Topological Data Analysis and Manifold Learning and

have culminated in the advent of geometric tools in understanding the workings

of machine learning models. This development has also shaped new theories

in the underlying structures of data science and has had far reaching effects,

even onto Deep Neural Networks, which now are developing a more geometric

intuition to understand the black boxes on DNNs.

In this chapter we go over the mathematical prerequisites for understand-

ing the research in data science with extensions to geometric embedding and

manifold theory that are presented in this thesis. More specifically, the chap-

ter is structured as follows. We start with a brief introduction to Topological

Data Analysis with elements of Persistent Homology and extensions to simi-

larity matrices and data approximation. Then we give a brief overview of the

Suppes Bayes causal networks and its learning algorithms. Finally, we go over

the theory of graphons and its extensions to digraphons while also introducing

similarity metrics on the space of (di)graphons.

2.2 Topological Data Analysis

Topological Data Analysis (TDA) is the study of data as a topological space

and to use topological, geometric and statistical tools together to find structure

in data. One of the classical ways to understand TDA is in the context of clus-
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tering. This is the view that the data points are drawn at random from a popu-

lation and that analyzing the dataset is going to give an accurate approximation

for the underlying distribution. This view is in contrast to computational geom-

etry, which employs similar techniques, but the dataset is assumed to be fixed

and we instead focus on performing optimizations for data representation.

One of the fundamentals of TDA is the field of persistent homology26 and

barcodes. Persistent homology employs a multi-scale approach for studying the

dataset, where we stratify the dataset at intervals, fig. 2.3, to understand how

the shape changes. For most researchers TDA and persistent homology are syn-

onymous, as this is the area of TDA that receives the most attention.

2.2.1 Simplicial complexes and Homology

We start with the basic definition of a simplex, which is the first component in

building the simplicial complex63. Intuitively, a simplex is a k-dimensional

tetrahedron, fig. 2.1. Simplices are used to create simplicial complex, which

are the building block of our topological structures. Intuitively, a simplicial

complex is a “proper” gluing of simplices such that all faces are properly “aligned”.

Definition. 1 (Simplicial Complex).—A set of simplices K is called a simpli-

cial complex if

1. for all simplices T in K, all the faces T are in K.

2. The intersection of any two simplices in K is a face of both of them.

14



A 0 simplex
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B 1 simplex
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B
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2 simplex

A

BC

D
3 simplex

simplicial complex

A1

B

C

D

A2

P
Q

Figure 2.1: Example of 0‐3 dimensional simplices and a simplicial complex. A simplex is the equivalent of a
multi‐dimensional tetrahedron. A simplicial complex is a “valid” attachment of multiple simplices via “gluing”. To
create the simplicial complex, first take two copies of the 3‐simplex and “glue” them along theBCD face. to
get a double sided‐prismA1BCDA2. Next glue a 2‐simplex via an edge to the current simplex atA2C . and
then add two 1‐simplices to get the final shape.

A subset L of K is a subcomplex of K if it is a simplicial complex by itself.

This fact is one of the most important parts of TDA using persistent homology.

We are going to be dependent on the fact that over time, we will be “growing”

our simplex, and the fact that our old simplices are a subset of our evolved sim-

plex, allows us to view topological properties as a changing “feature” and in fact

allows us to map which “features” have changed.

2.2.2 Persistence and barcodes

The first element when we want to introduce persistence is the notion of a fil-

tered simplicial complex. This is a simplicial complex built piece by piece, by

attaching new simplices, but keeping track of the whole history, giving rise to a

filtration across the growth.

Definition. 2 (Filtered simplicial complex).—A filtration of a simplicial com-

15



A B A B

C D

A B

C D

A B

C D

A B

C D

Figure 2.2: A filtered complex with newly added simplices highlighted. At each step the blue highlighted faces
are the added simplices. We start with a 1 simplexAB and in the first attachment, glue three 1‐simplices,
BC,BD,CD. Next we attach a 2 simplexBCD. Then we attach another 2 simplexACD. In the last step,
we attach another 2 simplexABC , to finally arrive at a hollow tetrahedron with one open face.

plex K is represented as a nested subsequence of complexes φ = K0 ⊆ K1 ⊆

· · · ⊆ Km = K.

For generality, we let Ki = Km for all i ≥ m. We call K a filtered complex,

e.g. fig. 2.2.

The generalization of a filtered complex is a persistence complex which orga-

nizes maps across a chain of complexes.

Definition. 3 (Persistence Complex).—A persistence complex C is a family of

simplicial complexes {Ci}i≥0, together with homomorphisms fi : C
i → Ci+1.

A filtered complex with the natural inclusion maps is a persistence complex.

Intuitively, a persistence complex is designed to give a growing picture of a

complex. Wherein, we look at the local topology of a point cloud data, we try

to slowly grow our region of interest and start mapping to progressively larger

neighborhoods, fig. 2.3.

The key observation is that as we increase and decrease the radius of the balls

(which are used to connect the points to create the simplex), new topological

features will appear and old ones will disappear135. For example, when r = 0,

16



Figure 2.3: Constructing a persistence complex by growing balls at sample points.
We draw a sample dataset from a circle and start growing balls around each point. We see that when we have
a sufficiently large radius for the balls, (d), we can topologicaly recover the shape of the original space, image
from126.

we have n connected components, one for each point in the space, that is n dis-

connected balls. As r increases, some of the components may start “dying”, i.e.

they will start merging with other components, until at a point where only one

component remains.

Similarly, at a certain radius, fig. 2.3 (d), we see that the our complex has

an inner “hole”. Now if we were to keep increasng the radius of each ball to the

radius of the hole, the hole will get filled and it will “die”.

Thus each feature has a “birth” and a “death” time associated with them135.

This process allows us to calculate the persistence barcodes of this filtered com-

plex, as a series of intervals which represent features that are born across the

timeline of the complex and die when moving to a later time as they are filled

with the appearance of a new simplex.

This discussion brings us to the notion of persistence diagrams, which are a

way of representing the barcodes such that we can use them as signatures of a

space for comparisons, such as getting a distance metric for a notion of similar-
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Figure 2.4: Barcode of a persistence complex.
Each “hole” is ‘born’ at some value of the neighborhood radius and ‘dies’ when the neighborhoods become large
enough to cover it. These ‘birth’‐‘death’ time intervals are the barcode of that hole or ‘feature ’. We can then
also visualize these barcodes as points inR2

≥0 which form the persistence diagram. There are many advantages
of the persistence diagram, the most important of which is a distance metric, definition 5, which allows us to
check for similarities between these diagrams. Image from124.

ity, fig. 2.4.

Definition. 4 (Persistence Diagram).—A persistence diagram is the a 2-D grid

plotting points (xi, yi) which are the persistence intervals for a persistence com-

plex, e.g. fig. 2.4.

For technical purposes, for a persistence diagram, X, of the points {(ai, bi)i∈{1...n}},

we will also include the points on the line x = y, and think of X = {(ai, bi)i∈{1...n}}∪

{(x, x)}x∈R≥0
. This inclusion of extra points is needed for allowing comparisons

between persistence diagrams with different numbers of actual features, defini-

tion 5.

Persistence diagrams are an intuitive representation of the birth-death no-

tion presented above. There are many advantages to the persistence diagrams

as they allow for better visualization and a more intuitive understanding of the
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nodes mapped to x = y

x = yy axis

x axis

Figure 2.5: Bottleneck distance between persistence diagrams. The points in the first diagram (blue) are
mapped to the nearest points in the second diagram (red) or to the line x = y if it reduces total distance or
no other points exist.

underlying topological features. The noise in the dataset due to real world con-

straints warns us that there may be misleading features in the TDA analysis.

We see that this has a very simple fix in TDA terms, as most noisy features

are those which are very short lived. In the space of persistence diagrams, this

translates to points which are close to the x = y line. This observation allows

us to rectify our persistence diagrams with a hyperparamter for truncating our

diagrams by shifting the line for viewing only features which have a significant

lifetime.

2.2.3 Metrics on Persistence Diagrams

The importance of persistence diagrams stems from the fact that they can be

used as a signature for a topological space. In the sense that they have a met-

ric defined on them and we can use that as a similarity measure between two
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spaces. The standard metric used on the persistence diagrams is the bottleneck

distance, defined as follows.

Definition. 5 (bottleneck distance).—Given two persistence diagrams X,Y ,

we define the bottleneck distance between, dB(X,Y ) as

dB(X,Y ) = inf
γ∈Bij(X,Y )

sup
x∈X

‖x− γ(x)‖∞

We are guaranteed that a bijection will always exist as both persistence dia-

grams have been artificially inflated to contain an infinite number of points.

To generalize this distance, we can also define the bottleneck metric for other

p-norms and change the definition to infγ∈Bij(X,Y ) supx∈X ‖x− γ(x)‖p. For most

practical purposes, using the ∞-norm and the Euclidean norm suffice.

The advantage of the bottleneck distance is the relative ease of computation.

The problem can be reduced to a minimum weight bipartite matching on a

graph, as evidenced by creating a bipartite graph with the two sets representing

points in X and Y with the edge weights being the distance betweent the two

points.

A better generalization is the Wasserstein distance defined as follows.

Definition. 6 (Wasserstein distance).—Given two persistence diagrams X,Y ,

the p− q Wasserstein distance is defined by

Wp,q(X,Y ) = inf
γ∈Bij(X, Y)

(∑
x∈X

‖x− γ(x)‖pq

) 1
p
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The advantage of the Wasserstein distance is that we can recover the bottle-

neck distance by taking p = q → ∞. Hence theoretical techniques can focus

on the analysis of the Wasserstein distance, which in itself is also a very use-

ful function, which has seen wide use as in statistical tools, as an alternative to

the asymmetric KL-divergence. For many practical applications it is enough to

consider the case where p = q. We have the added benefit of knowing that the

information content of the Wasserstein distance decreases with the value of p as

referenced by the following lemma.

Lemma. 2.2.1. For two persistence diagrams X,Y and p < p′ ∈ R≥1, we have

that

Wp′(X,Y ) ≤ Wp(X,Y )

If we wish to use a metric on the persistence diagrams, which is as close to

the Gromov-Hausdorff distance as possible, we would want to use a smaller

value of p. Unfortunately, a similar result of stability for the Wasserstein dis-

tance does not exist. The closest current results introduce error terms which are

non-trivially large and not feasible for geometric analysis113.

Stability of Persistence Diagrams

One of the key points of the distance functions defined apriori is the notion of

stability. On one hand we have two topological spaces and on the other hand

we have two persistence diagrams. The natural distance function defined on the

two topological spaces is the Gromov-Hausdorff distance function, which uses

isometric embeddings to make the two spaces belong to a single parent space.
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Definition. 7 (Gromov-Hausdorff distance).—Given two compact metric spaces

X,Y , then we define the Gromov-Hausdorff distance, dGH(X,Y ) as

dGH(x, Y ) = inf
ex,ey

dH(ex(X), ey(Y ))

where ex and ey are two isometric embeddings of X and Y into a shared metric

space M and dH represents the standard Hausdorff distance.

This is the standard distance for comparing two abstract spaces, but as is

clear, it is made enormously difficult by the presence of all possible isomet-

ric embeddings. We instead use the fact that we have a persistence signature

present and we have that the bottleneck distance respects the Gromov-Hausdorff

distance.

We first define the notion of a monotone function f , over a simplicial com-

plex, K, such that f takes values for each simplex in K. And here f is mono-

tone over the inclusion map over the simplices, i.e. σ ⊂ σ′ =⇒ f(σ) ≤ f(σ′).

This notion naturally extends to a function over a persistence complex. We are

specifically interested in the distance function dk, which maps each simplex to

its diameter in the metric space defined by dk.

The importance of this notion comes as a lower bound for the Gromov-Hausdorff

distance as evidenced by the following theorem.

Theorem. 2.2.1 (Stability of the bottleneck distance32). For two metric spaces
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(X, dx) and (Y, dy), and for each n ∈ N, we have that

dB(Dn(X, dx), Dn(Y, dy)) ≤ dGH((X, dx), (Y, dy))

where Dn represents the n’th dimentional persistence diagram for a space.

This lower bound is tight in the sense that many real world examples do

achieve this bound. A simplified example is the case where X is a set of two

points with distance 2 and Y is a set of two points with distance 2 + 2ε. They

can both be isometrically embedded into R with the representations, X =

{0, 2}, Y = {−ε, 2 + ε}, to get dGH(X,Y ) = ε. We have that the 0-dimensional

barcodes of X for its Vietoris Rips complex are (0,+∞), (0, 1), as the two balls

touch when they have radius 1, and for Y are (0,+∞), (0, 1 + ε). These have a

bottleneck distance of ε, thereby achieving our desired lower bound.

2.2.4 Real World Approximations

In the real world, a lot of the times, the data size is very cumbersome to work

with for all calculations. Especially with topological analysis where we have to

deal with pairwise distances, we always have a non-trivial lower bound of O(n2).

It is possible to reduce it to a more practical scenario with k-D trees and fast

local approximate nearest neighbor (FLANN) algorithms, it is not desirable to

introduce such complexity for a preliminary task.

The practical answer to this scenario is the introduction of the witness com-

plex, which can be thought of as an approximation to the Delaunay triangula-
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tion, while removing the exponential time complexity (curse of dimensionality)

associated with the triangulation.

In simple terms, the witness complex is a simplicial complex built from a

dataset D and a subset L ⊆ D, termed the landmarks. This means that we will

be restricting our attention to the distance matrix M = L×D, with any suitable

metric being used. In later sections we will introduce more involved metrics on

the space of digraphs and digraphons, which will allow us to adapt this theory

to the space of digraphons.

In addition to the standard witness complex, W (M), also called the parameter-

free witness complex, we also have parametrized versions W (M ; r, v), where

v = 0, 1, 2, and r is the feature-size hyper-parameter, which dictates the max-

imum sized balls to have around our data points. As any such family can be

used to create a filtration, we can hence subsume them into persistent filtrations

to get our desired topological signatures.

This approach while not having concrete footholds in theoretical results sim-

plifies a lot of problems relating to computation costs and has had significant

real world success. Some of the key points in favor of the witness complex in-

clude

• The computational matrix is orders of degrees smaller, which enables us

to get signatures with larger ‘feature-length’. This simplification allows

us to gain better insight and do a better analysis into the topological fea-

tures.

• Other than the number of and choice of landmarks, no other parameters
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need to be set, unless upper bounding the feature length.

• A randomized sampling of landmarks allows us to filter noise in the dataset,

especially related to low length barcodes. Multiple landmark sets sampled

using a maxmin criterion, where we choose successive landmarks using a

max of min distance optimization relative to current landmarks, which

enables us to get a very clear picture of the topology.

The witness complex, W (Ml×n), is constructed through an intermediary strict

witness complex, W∞(M).

1-skeleton . The edge [a, b] belongs to W∞(M), iff there exists a data point w, such

that (a, w) and (b, w) are the two smallest entries in the w’th column of

M , in some order. Here w is called the witness for the 1-simplex [ab].

p-skeleton . Inductively, the p-simplex, [a0a1 . . . ap] belongs to W∞(M), iff there ex-

ists a witness datapoint w such that, the entries, (a0, w), (a1, w), . . . , (ap, w)

are the p+ 1 smallest entries of the w’th column.

This computation is a bit cumbersome due to the inductive hypothesis, and

we define the simplified W (M) as the smallest complex W∞(M) ⊆ W (M), such

that

• W (M) has the same 1-skeleton as W∞(M).

• [a0a1 . . . ap] belongs to W (M), if all of its edges belong to W (M).

This relaxation allows us to get a better computational complexity and ob-

tain a more robust pipeline for analysis.
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2.3 Suppes Bayes Causal Networks

For many years, the dominant paradigm for understanding cancer has been one

of continual stochastic mutation and selection. In this process some mutations

— called driver mutations — are culpable in continued proliferation and the

acquisition of phenotypic hallmarks61 while others — so called passengers — are

mere incidental alterations that are preserved via clonal expansion. In cancer

genomics two problems go in to progression modeling. The first is the identifi-

cation of driver mutations from the whole of genetic information. This has been

addressed by efforts such as The Cancer Genome Atlas (TCGA) and the Cat-

alogue Of Somatic Mutations In Cancer (COSMIC). The second task, and the

one with which we concern ourselves, is the task of reconstructing the history in

which driver mutations were acquired.

For the purposes of this thesis, we focus on a particular progression model

where the partial order is due to a particular selective advantage relation. This

relationship is called prima facie causality because it was originally developed

as such in the philosophical literature by Patrick Suppes116. For this reason we

keep the term causality for our progression models but remark that there is a

close correspondence between this relation and the evolutionary accumulation of

mutations that is of interest to us.

Definition. 8 (Prima-Facie Causality).—An event c is a prima facie cause of

another event e if the following two conditions hold:

• (Temporal Priority) tc < te, where t∗ is the time of observation of an
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event.

• (Probability Raising) Pr[e|c] > Pr[e|¬c].

Two remarks are in order. The first is that the notion of prima facie causal-

ity here is different from the type of causality more commonly considered in

the computer science literature102 using counter factual possible worlds or do-

calculus or structural equations . However, it is not entirely distinct and the

probability raising condition maps to the same counterfactual intuitions that

underlie clinical trials and the “do calculus.” An additional and critical similar-

ity is that we are able to construct causal graphs, a topic to which we return

shortly.

The second remark is that this approach to causality mirrors the biological

processes of the accumulation of driver genes106. Suppose at some time t1 a pa-

tient undergoes a mutation in KRAS causing the tumor to grow rapidly. As this

process continues the cells in the mass will begin to experience hypoxia, which

necessitates an alteration of behavior to angiogenesis or to metastasis. In this

condition a mutation in, for example, VEGF, at time t2 > t1 would lead to

necessary metabolic changes (e.g. angiogenesis) to ensure continued growth.

Observe also that without the initial mutation in KRAS the VEGF mutation

would not have provided any advantage so it is presumably less likely to occur.∗

∗We acknowledge that rigorously stating this would require specifying base-rate mutations
in VEGF the tumor. The thrust of the argument is that there is selective pressure on the
tumor as a whole to survive hypoxia and as such the clones that survive and are biopsied are
those which have such an advantageous mutation.
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Definition. 9 (Suppes Bayes Causal Network (alpha)).—A Suppes Bayes

Causal Network (alpha†) (SBCN) is a DAG where for every edge vi → vj, Sup-

pes conditions for prima facie causation hold, that is:

Pr[vi] > Pr[vj] and Pr[vj|vi] > Pr[vj|¬vi]

For our purposes the input to learning an SBCN is cross-sectional patient

data, that is a binary matrix D ∈ Zn×m
2 where n is the number of patients

and m is the number of genes that are being considered. The learning of an

SBCN structure from data can be implemented efficiently using open source

software37. For the purposes of this chapter, we consider only point mutations

do not account for the variant type (e.g. missense, nonsense).

While we have chosen to work with this particular notion of causality, our

methods in this chapter are agnostic as to the semantics of the underlying pro-

gression model. We chose Suppes causation because it has previously been ap-

plied in biology and is computationally tractable for large data sets105.

2.3.1 Real World Optimizations

In real world setting, where we have to deal with noise and incomplete datasets,

Suppes conditions are not enough to get a robust and noise free model. The

model will have a lot of false positives as there is not enough evidence (num-

ber of events) to justify is difference in probabilities. Hence, even though the
†This is our preliminary definition which we will further enhance with Bayesian optimiza-

tion techniqes.
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Figure 2.6: An example of an SBCN extracted from the Adult dataset, UCI. The graph edges denote causal
relations satisfying the prima facie causality, definition 8, while the edge weights denote the increase in the
probabilistic causation. Image taken from18.

network may satisfy Suppes constraints, there will be “spurious” edges. To ac-

count for this, in general a structural conditions are used to guarantee simple

networks. An alternative to that is the use of the Bayesian Information Crite-

rion (BIC) as a regularizer for the likelihood score, which prioritized simpler

networks to be used.

For a given graph G and dataset D, with s samples, select a subset E ′ ⊆ E,

which maximizes

scoreBIC(D,G) = LogLikelihood(D|G)− log s

2
dim(G)

where dim(G) is the number of parameters of the dataset.

Thus we see that the regularizer term log s
2
dim(G) prioritizes sparser graphs,
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in terms of number of edges. Note that the log likelihood implicitly depends on

the number of points in the graph, so we do not need to worry about optimizing

number of vertices separately.

Given an SBCN we can now look at the confidence score as an output of the

relationships between nodes. Using the conditional probabilities for every pair

of nodes in the graph, connected by an edge, we expect to have several obser-

vations of any possible combination of the variables. For this reason, we can

simplify the estimate for the node probabilities by counting the observations in

the data. And we then use this to define the confidence of the edge.

In particular, for each edge (v, u) ∈ E∗, involving a relationship between two

nodes u, v ∈ V , we define the confidence score, W (u, v) = P (v|u)P (v|¬u), which

intuitively, tries to estimate how many the the observations contribute to the

event where the cause u is followed by its effect v, that is Pr(v|u), and the ones

where this is not observed due to the lack of the prior cause, Pr(v|¬u), because

of imperfect causal regularities. Note that, by the constraints discussed above,

we have that Pr(v|u) > P (v|¬u) and, thus, each weight is positive and no larger

than 1, i.e., W : E∗ → [0, 1]. Combining all the previous observations, we define

the generalized SBCN.

Definition. 10 (Suppes Bayes Causal Network).—Given an input dataset D of

m Bernoulli random variables and s samples, and given a partial order r of the

variables, the Suppes Bayes Causal Network S = (V,E∗,W ) is a weighted DAG

which satisfies the following constraints

1. [SBCNa] The graph S is an SBCNa, that is, it satisfies all Suppes con-
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straints.

2. [Simplification] If E ′ is the set of all edges which satisfy Suppes con-

straints (which is a superset of E∗), then E∗ should be the one which

maximizes the BIC score

E∗ = argmax
E⊆E′,G=(V,E)

LL(D|G)− logs

2
dim(G)

3. [Score] For each edge u, v ∈ E∗, define the score

W (u, v) = Pr(u|v)− Pr(u|¬v)

We present the hill climbing algorithm for learning the SBCN in algorithm 1,

which is an iterative approach for doing optimization along the manifold of all

valid solutions.

The StoppingCriterion() mentioned in the algorithm is the amalgamation of

the two cases

1. We have exceeded the number of maximum iterations, which is controlled

by a hyper parameter, typically set to a valid large enough number to en-

sure a wide search space coverage.

2. None of the neighbors of the current fitted Gf have a better BIC score

than our current fit.
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Algorithm 1 SBCN learning algorithm
function SBCN(Dataset D, Int m, Int s, Int r)

# m - number of Bernoulli variables
# s - number of samples
# r - partial ordering of events
for all pairs of variables u, v

# SBCNa
if r(u) < r(v) and Pr(v|u) > Pr(v|¬u) then

Add (u, v) to the SBCN
end if

end for
# Maximize Log Likelihood by hill climbing
Start with the empty fitting Gf (V,E

∗,W ) = φ
while !StoppingCriterion()

Let G∗ be set of neighbours of Gf , constructed by adding/removing a
single edge from Gf .

Prune G∗ to only include graphs which satisfy SBCNa.
Consider random neighbor G′ in G∗
if scoreBIC(D,G′) > scoreBIC(D,Gf ) then

Gf = G′

for each edge u, v ∈ Ef

Wf (u, v) = Pr(u|v)− Pr(u|¬v)

end for
end if

end while
return Gf

end function
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2.4 Graphons and Digraphons

Let W denote the space of all symmetric, bounded, measurable functions W :

[0, 1]2 → R. This is defined as the set of all kernels , reminiscent of the kernels

used in Support Vector Machines. If we restrict our attention to the set of func-

tions W ∈ W0 such that 0 ≤ W ≤ 1, we arrive at the space of graphons. If we

drop the condition of symmetry, we arrive at the space of digraphons.

For our purposes, we do not distinguish between the functions which are

equal almost everywhere, as with most analytical scenarios, it is not possible

to distinguish between such functions. We will soon see that this is actually not

the only equivalence we want to put on the functions, as we will need to also

equate a larger class of functions to each other for the sake of exchangeability,

which is important for statistical modeling.

The notion of graphons is an important one where we want to look at limits

of graph sequences. Such graph sequences arise in a variety of different natural

scenarios, such as social networks, recommendation systems for advertisements,

shopping, etc., and also in biological scenarios, such as genetic mutations, evolu-

tionary models, population dynamics. As a general rule of thumb, any scenario

where we have a dynamic population with potential for growth in event space is

a candidate for getting sequence of graphs.

Natural questions arise in how to analyze such a sequence. Does the growth

follow a pattern? Are there noticeable features of this graph that are preserved

across its growth? Does the graph sequence converge to any discernible end ob-
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ject? The theory of graphons (and digraphons) tries to answer many such ques-

tions in a rigorous form.

For us to have a notion of convergence and similarity, we need to start with

a notion of a distance between digraphs. There are many distances defined on

the space of digraphs, the distances introduced by the Lp norms, nuclear norms,

etc.; we will restrict our attention to the more interesting cut distance.

Definition. 11 (Cut Distance).—For two directed graphs G,G′, on the same

set of vertices V , the cut distance is defined as

d�(G,G′) = max
S,T⊆V

eG(S, T )− eG′(S, T )

|V |2

where eG(S, T ) denotes the number of edges between S and T in the graph G.

If we let d1(G,G′) be the L1 distance on the adjacency matrices of G and G′

we get the inequality d�(G,G′) ≤ d1(G,G′). Hence we see that the two dis-

tances give differing information. As an example, for two Erdos-Renyi graphs

with p = 1/2, we get that E[d1(G,G′)] = 1/2 while E[d�(G,G′)] = θ(1/
√
n).

For unlabeled graphs on the same set of nodes, the intuitive extension to the

cut distance is to define it via equivalence on node relabelings, which turns out

to be the correct one. Let G,G′ be two graphs on same number of nodes, then

the cut distance is overloaded as

d�(G,G′) = min
φ∈Hom(G,G′)

d�(φ(G), G′).

Here we minimize over all homomorphims of G into G′. For generalized mea-
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surable digraphons, we first define the cut norm

‖W‖� = sup
S,T⊆[0,1]

∫
S×T

W

Which can then be extended to the cut distance as d�W,W ′ = ‖W −W ′‖�.

Similar to the finite case, we achieve the inequalities between norms

‖W‖� ≤ ‖W‖1 ≤ ‖W‖p ≤ ‖W‖∞ ≤ 1

Again, similar to the finite case of the cut distance, where we have “relabel-

ings” via measure preserving homomorphisms of φ : [0, 1] → [0, 1].

d�(W,W ′) = inf
φ∈Hom([0,1])

d�(φ(W ),W ′)

It is important to note that finite graphs can be represented as a specific

case of a graphon by using step functions. For example, a digraph on [n] with

the adjacency matrix Ai,j can be canonically viewed as a digraphon W , with

W ( i
n
, j
n
) = A[i, j]. This allows us to treat even finite graphs as a graphons and

simplify our analysis, where we no longer have to distinguish between sequences

of graphs vs sequence of graphons.

We see that any measure preserving transformation of a digraphon has zero

cut-distance to the original. An important theorem states that the only di-

graphons which have cut distance zero are the ones under measure preserv-

ing transformations of the original or of one which is equal almost everywhere,

termed as weakly isomorphic pairs.
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Theorem. 2.4.1 (Weak isomorphism theorem89). Let W,W ′ be two digraphons,

then d�(W,W ′) = 0 if and only if there exists a digraphon Z, such that W = Z

almost everywhere and W ′ is a measure preserving homomorphism of Z‡.

This result is one of the most important ones for the analysis of digraphons,

as this gives confidence to our sampling algorithms. Indeed, the proof of this

theorem itself relies on the canonical digraphon and sampling state introduced.

Then we generalize the distance for two digraphons W,W ′ by round robin chas-

ing across the commutative diagram,

d�(W, Sample(W )) ↔ d�(W,W ′) ↔ d�(W
′, Sample(W ′))

Lemma. 2.4.1 (Convergence in norm). Let Wn, n = 1, 2, . . . , be a sequence

of digraphons such that ‖Wn‖� → 0. Then for all dikernels Z, we have that

‖WnZ‖� → 0.

2.4.1 Sampling

One of the important parts of digraphons are the guarantees that a finite sam-

pling is going to converge to the underlying digraphon. The sampling works as

follows.

Given a digraphon W and an ordered set S = (x1, . . . , xn), xi ∈ [0, 1], we

create a weighted digraph H(S,W ) on the node set [n] with the edge weights

H(i, j) = W (xi, xj). Now from such an H we can create a random simple un-
‡In particular this also covers the case where W = Z everywhere.
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weighted digraph by trying to sample G and adding an edge G(i, j) with proba-

bility H(i, j).

For example, if W is the uniform function with W (i, j) = p, 0 ≤ p ≤ 1,

we would get the standard Erdos-Renyi graphs with probability p. If W =

WG, the canonical digraphon for a digraph G, then if we sample k points from

WG, it is the “almost” the same as calculating a random subgraph of G. It

is not the same as we might have sampled xi, xj from the same step in WG.

To have an exact subgraph sampling, we need to condition on the fact that

xi, xj need to be from different steps in WG. In particular, we are removing

sequences(x1, . . . , xn), with repetitions, which has
(
k
2

)
such sequences, and hence

a measure of (k
2
)

n
. This gives us that the average distance between a randomly

chosen subgraph, R(k,G) and a randomly sampled digraphonR(k,WG) is

d(R(k,G), R(k,WG)) ≤
(
k

2

)
1

n

Now that we know how to sample, we can start looking at how sampling

helps in parameter estimation. For such a scenario, we want to start with a no-

tion of “good” parameters, which we can hope to be estimable. As it will turn

out, most of the real world scenarios are going to be good and can be estimated

using sampling. We wish to achieve some notions similar to the limit theorems

for classical statistics which will give us confidence on doing real world analytics

using EM or MAP algorithms for estimations.

A reasonably smooth graph parameter is defined as a function f(G([S])),

which is to say of a sampling of a digraphon, which satisfies that |f(G)−f(G′)| <
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1, for two graphs G,G′ on the same set of nodes, whose edges differ only for a

single vertex. We then achieve a sample concentration theorem

Theorem. 2.4.2 (Sample concentration theorem for digraphons87).

Let f be a reasonably smooth graph parameter, and let W be a digraphon,

k > 1 ∈ N. Let f0 = E[f(R(k,WG))], then for all t > 0,

Pr
[
f(R(k,WG)) > f0 +

√
2tk
]
< e−t

This theorem gives credibility to the fact that our intuitive sampling algo-

rithms are going to be working correctly on standard simulations. In fact, we

can achieve an even better result which states.

Theorem. 2.4.3 (Cut distance confidence87). Let k > 1 ∈ N and let G be a

digraph on k nodes. Then with probability at least 1 − exp (− k
2 log k

), we have

that

d�(G,R(k,WG)) ≤
20√
log k

Now with such a result, we can employ our standard statistical tools to carry

out prior/posterior estimations and simulations using generative models. In-

deed, we develop a maximum a posteriori (MAP) estimation algorithm for the

Dirichlet priors on digraphon generative models and due to this result, we can

be somewhat confident in the fact that we are achieving a good result, subject

to proper maximum optimizations in the log likelihood estimation.
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3
Language acquisition and learning

through interaction
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3.1 The Intuit language

∗The mystery of language evolution and its (co-)evolution with learning contin-

ues to arouse intense debates. There are only a handful of conceptual frame-

works for human languages that have found common acceptance: (i) Human

language is a biological artefact, as opposed to a cultural artifact81. (ii) Hu-

man language builds on a hierarchical structure, whose depth is not upper-

bounded30. (iii) Human language acquisition occurs over a surprisingly short

period aided primarily by positive examples24,83. However, there are many other

corollaries that seem to have found neither acceptance in theory nor utilization

in tool-boxes that aim to automate natural language processing.

There are other similar questions in the biology of evolution: e.g., codon evo-

lution and evolution of intercellular signaling, which are important in the emer-

gence of cellularization and multi-cellular organisms, respectively110. The theo-

retical framework for them can be built on information-asymmetric games and

their conventional Nash equilibria, and can be tested experimentally in artificial

cells with unnatural bases (and the resulting codons), and in modified cells with

chimeric receptors, for instance. There are few natural experiments that shed

light on these processes, e.g., mitochondria and tumor cells, and they have also

played an important role in our understanding of evolution of these systems2,77.

These systems, like human language, can also be thought of encoding some

form of inter-agent coordination (not necessarily faithfully)121. They also share

few other traits: e.g., (i) Universality, (ii) Stability and (iii) Near Optimality
∗Co-authored with R. Rinberg, S. Chakraborty, B. Mishra, arXiv:2102.12382
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(with respect to suitably selected utility); we will call them USNO-theories. A

rigorous theory for human languages may seek to build on similar traits: (i) A

universal grammar (with some flexibility for parametrization)34, (ii) Stability

(with faithful acquisition using meager amount of positive stimuli)44,97 and (iii)

Near Optimality (as a solution to minimal design specifications)47,27. However,

hypotheses related to physiology of a language organ or the genetics of linguis-

tic phenotypes are not readily testable experimentally as human language is

unique to humans thus imposing stringent ethical barriers against their exper-

imental manipulation. Some analysis of bird-songs have been useful, but not

very conclusive (for obvious reasons). In silico models that work reasonably in

the context of machine learning and artificial intelligence have focused on large

text corpora and semi-supervised learning (with massive number of counter-

examples) that do not capture the human context and remain orthogonal to the

biology of languages33.

Interesting natural experiments that are thought to have lent support to

USNO-theories are in the creolization process, where a group of individuals from

Old World are assembled with no common human language to use for coordi-

nation, but who give rise to a second generation of New World speech commu-

nity that invent a human language (Creole) with a new parametrization of the

universal grammar, but also enjoying the stability and near-optimality, with

respect to any communication criterion, that is common to already-existing hu-

man languages111. However, while Creole languages can be studied, their evolu-

tion remains poorly understood as there exists no data recording their historical
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Figure 3.1: Overview of an intuit. A linguistic object intuit consists of an image, a hashtag and a short de‐
scription of the intuit. A language starts with a small number of such intuits in a core germinal population and
accrues additional users who add additional intuits, and use them to communicate. External to this dynamics,
we can examine the time‐stamped representations of the vocabulary of intuits and observe the evolution of
the representation through time. This analysis will help us in understanding the social vs. inherent evolution of
the representations and of language, based on the changes of the similarities of the intuits over time. Analyzing
the data on a per user basis will give us hitherto unknown knowledge of the socio‐cultural effects of interac‐
tions and community effects on dialects of the language. But, motivated to study the language as a whole, as
opposed to just a pair of intuits and their similarities, we were led to novel mathematics to analyze topological
differences in representations over time.
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dynamics66. As Crick’s Frozen Accident hypothesis and the Cambrian explosion

have been used to explain codon evolution or multi-cellularity, there has been

human language evolution’s Pop hypothesis that suggests creolization would

happen suddenly and freeze quickly, not thawing ever again76. The alternative

experimentally-supported hypothesis suggesting emergence of a human language

as a stable separating Nash equilibria of an information asymmetric game would

be more explanatory and hence appealing65,29.

Motivated thus, we have proposed using crowd-sourcing to create a super

sized speech-community with a massively scalable socio-technological version

of creolization. The elements of these systems would be intuits (with more de-

tails in later sections), and eventually a grammar that linearizes (or even pla-

narizes) Intuits in a stable manner. We call this idea “Creolization of the Web”

and here, we study various algorithmic issues related to machine learning, nat-

ural language processing and evolutionary processes to study the feasibility of

such a creolization experiment(s). In particular, we focus on (i) definition of In-

tuits, the building blocks of the creolization combining images, hashtags, and

short tweet-like (140 characters) description, (ii) their dynamic geometric rep-

resentation and (iii) evolution of the representation via a Bayesian echo cham-

ber. We illustrate the process with Reddit data involving political subreddits to

identify evolutionary patterns that emerge in a dynamic population interaction

model (fig. 3.1,60).

We realize that the ultimate system that combines elements of wiki, Twitter,

emoticons, and Facebook could provide enormous utility in web-search, social
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networking, and shared economy, possibly displacing English as the defacto in-

termediate language of the web. Creation of a suitable infrastructure for Intuits

remains a secondary but critical goal.

3.2 Language evolution by interaction

We aim to build a database of a pictorial language called, intuits, which will

help in the process of learning language evolution. The building blocks of this

language, called an intuit, is a token for any word in the vocabulary, where the

token contains richer information than just the word, by storing (1) a title (a

hashtag unique identifier, (2) a brief (140 character) description of the title and

(3) an image of the title. The presence of this database to track the change of

meanings of the intuits over time will give important insights to the theory of

language evolution.

In this chapter, we give a baseline minimal model, based on the Bayesian

Echo Chamber 60, which is applicable to any evolutionary method and also has

the flexibility to be individualized to any language using concrete grammars and

objective semantics specific to that language. To experimentally verify the plau-

sibility of such a model, we analyze real world data from Reddit , which is an

online community of users – sufficiently active and engaged to model communi-

cation interactions in a population. Reddit is structured as a collection of “sub-

reddits”, which are communities dedicated to a particular topic, such as gaming

, sports , technology , etc. Each user of Reddit is generally subscribed to a few

of the subreddits, focusing on the content that the user generally browses and is
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The Bayesian Echo Chamber

Internal Representations
(word2vec)

Randomized 
ConversationsPopulation graph

Sequential Updates

Figure 3.2: Overview of the Bayesian Echo Chamber (BEC). In the model of the Bayesian Echo Chamber, the
population is represented as a graph of individuals, called (language) learners, where the edges denote inter‐
actions (conversations) between learners. Each learner has their own internal representation of the language,
which they use in their conversations with their neighbors. The conversations happen based on a particular
topic. And the words in the conversation are chosen based on the similarities of the words with the topic in the
internal representation of the learner.

exposed to. The Reddit community has been frequently divided on many top-

ics, most recent of which has been on the political spectrum. This discordance

provides a very rich environment to measure the effects of social stratification of

language due to dissenting views between communities. We started with a syn-

thetic model of intuits for a large population interacting panmictically, i.e. by

random interaction (or as determined by an expander population graph), as it

provides a baseline for an idealized theoretical model and a null model for hy-

potheses testing.
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Figure 3.3: Synthetic simulations using word2vec models for small BECs with various parameters of connectiv‐
ity and size. The simulations show a fast convergence in the representation of individuals and a small drift over
time after convergence. These results agree with the accepted theories of language evolution which predict
fast stabilization and small drifts in language representations57,51.
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The change in language is measured using computational tools (originally de-

veloped for Natural Language Processing, NLP), specifically word2vec, to get a

feature rich, high dimensional embedding of the elements of a language associ-

ated with individual speakers. These embeddings can be thought of as the rep-

resentation of the language for the individual and the difference in the represen-

tations gives us a measure of the dissimilarity between the interpretations of the

language in the population. Each representation being a corpus of high dimen-

sional points (“point clouds”), there is no standard notion of a distance between

two such comparable representations. We propose to apply a topological met-

ric using persistent homology 43,25, which is an emerging field of computational

mathematics, quantifying a sense of difference between two representations.

The advantages of using the topological metric is the rich information content,

which provides insights into the local features of a space as well as measuring

the global differences between two representations6,112.

3.3 Analyzing Reddit communities

3.3.1 Confirmation of Echo Chambers in Reddit

The existence of echo chambers in any society can be manifested in many forms,

such as the presence of dialects across the physical distribution of a population

or the prevalence of accepted norms and ideologies in a community. The fre-

quent divide in the political spectrum within a population, popularly described

as the “left and right-wing extremisms”, is an interesting part of language that

can be harnessed to understand political ideologies in subreddits.
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Figure 3.4: To define the distance between representations we start with a topological metric, as it gives infor‐
mation about the representation as well as the differences between two representations. We examine features
in the word2vec embeddings of the vocabulary of a learner and calculate the distances based on the geometric
embeddings. Two words will be close to each other in the word2vec space iff they are semantically nearly syn‐
onymous in the vocabulary of the learner. Now we can calculate the persistent homologies of the embedding
and obtain the persistence diagrams of the space. This computation gives us the bottleneck distance between
the two diagrams, and equips us with a sense of how dis‐similar two embeddings are.
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Figure 3.5: The embeddings of each user were generated using the state of the art word2vec models and their
Reddit data from the June 2015 till November 2017; using which, we calculated the distances between each
pair of users using the persistent homology metric. To visualize and quantify the clusters formed using this
metric, we performed t‐SNE in 2‐D plane, as t‐SNE gives higher probabilities to cluster pairs which have small
distance while not clustering larger distance pairs.
The resulting clusters, visualized via a simple min‐max similar to k‐means, show a stark similarity between the
users of /r/politics and /r/worldnews , while those of /r/The_Donald are clustered separately. This behavior is
mimicked in all dimensions, though less clearly in dimension 2, suggesting that there is very little communica‐
tion happening between the users of /r/The_Donald and others.
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To examine this hypothesis explaining a spectrum in the communities, we

proceeded to analyze the three most popular political subreddits which are

widely believed to cater to different groups, namely /r/politics , /r/worldnews

, /r/The_Donald . /r/politics is the subreddit focused on US politics; the user

base of /r/politics has been thought to be largely liberal59. /r/worldnews fo-

cuses more on international news and has frequent discussions on international

relations between countries. /r/The_Donald is another US politics focused

group, which was founded in June 2015, and has a more republican user base.

We collected the top fifty most frequent and popular users from each subred-

dit, to infer a model of the user base of the subreddit. We took the Reddit data

for each user over a period of two years from June 2015 to November 2017. Us-

ing this as a data corpus for the word2vec model we created word embeddings

for each user to get a point cloud of the vocabulary of the user. Persistent ho-

mology was then used to calculate the barcodes of the word2vec embeddings of

each user. Based on the barcodes of each user, the bottleneck distance metric

provided a similarity score to every pair of users, which was used by t-SNE to

get a low-dimensional clustering embedding of the population, fig. 3.5. The ad-

vantage of the t-SNE clustering is the ability to find highly probable clusters

(i.e., with a large likelihood), while low probability clusters are ignored,127.

Based on the t-SNE clusterings, we see a stark similarity between the users

of /r/politics and /r/worldnews . This structure not only supports the hypoth-

esis postulating existence of largely liberal user bases in the two subreddits, but

also gives a clear method to find echo chambers across the whole Reddit com-
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munity. The users of /r/The_Donald are shown to be hugely dissimilar to those

of /r/politics and /r/worldnews as the political ideologies of republicans have

many contrasting accepted notions than those of democrats.

The idea for using these embeddings and the topological similarity can also

be extended to any other spatial model, such as the embeddings computed by

GloVE, fasttext, sense, etc. Sense embeddings have the additional characteris-

tic of being able to identify polysemy. Thus Topological Data Analysis (TDA)

can take advantage of this feature to characterize measures of polysemy between

different languages. Nonetheless, one needs to be careful, when considering the

potential effects of prevalent topics in the subreddits and to ensure that sec-

ondary structures do not dominate the embedding criterion. This goal can be

ensured by restricting the topic base to a particular subset so that the vocabu-

lary of the topics remains largely consistent through the subreddits.

3.3.2 Comparison of subreddits gives details of divergence over time

One of the main reasons for performing temporal analysis of language in Reddit

is to be able to identify the effects of communications (or lack thereof) between

the population on the language of each community. To analyze this effect, we

took the most popular topics from each month, from June 2015 till Novem-

ber 2017, in each subreddit and made an incremental word2vec model. This

incremental model presented to us a highly dynamic picture of each subreddit

through time, which we used as an input to the persistent homology toolbox to

rigorously quantify the changing similarities over time fig. 3.6.
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Figure 3.6: Bottleneck distance between subreddits. We collect the most popular posts from every month
in each subreddit to build a temporal model for language representation. Using the bottleneck distance of
persistence diagrams we can calculate the distance between the language representation over time and see
the effects of the community structure. The consistent increase in the distance between the representations
confirms the hypothesis of echo chambers in subreddits, leading to a divergence in representations and topic
focus between the subreddits.
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Figure 3.7: Intra‐subreddit distance. The individualized embeddings inside each subreddit can help us under‐
stand the convergence of language over time and the stability of the language after convergence. The current
user distances remain stable over a period of two years suggesting a stable distribution of language representa‐
tions, where the divergence observed a priori is an effect of the drift in language due to shifts in the topic focus
over time.
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We observe that there is a consistent increase in the relative pair-wise dis-

tances of the subreddits. This dispersion corresponds to the formation of com-

munities and how the nascent communities differ in interpreting semantic na-

ture and sentiments of words in the subreddits. The increase in the bottleneck

distances can be seen as one effect of the widening division in the population

based on political creeds and affiliations.

3.3.3 Non-isotropy of language embeddings

Language isotropy has been thought of as a reason for the robustness of the

word2vec models and any embedding tool in general. Isotropy in a geometric

sense is the measure of uniformity of the word embeddings across the inherent

embedding space. The core idea that is assumed to support the word embed-

dings (and approaches based on them) is as follows: All natural languages must

be able to describe all concepts in the language model using minimal combi-

nations of words. This property is facilitated as the words become uniformly

distributed across the space5.

Persistent homology offers an easy way to measure the isotropy of any word

embedding model by looking at the point cloud of the embeddings. The pres-

ence of holes in the embedding space can be thought of as parts of the space

which are poorly described using the current geometry and for which news words

should either be introduced or words can be remapped to new meanings, remi-

niscent of Moran processes in evolution and linguistics120.

We took the subreddit data from each of the three political subreddits and
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calculated the embeddings of the word corpus to get a representation of the

words at the end of 2017. We observed the presence of multiple large homology

groups suggesting inconsistencies with the hypothesis of isotropy of word2vec

embeddings. Our observation, albeit in a limited context provokes additional

analysis of word2vec models and their effectiveness. Another potential inves-

tigation is the location of the homologies and identifying the regions of space

contributing to the homologies. This strategy may lead to a tool for analyzing a

text corpus and identifying topics which can be misrepresented. Such a tool can

point to potential pitfalls of the embeddings and also new approaches to avoid

them.

3.3.4 Using user data to find similarities of subreddits

One of the reasons for conducting the experiment on a per user basis is to be

able to identify the communities from population data and minimal structural

information. This new individualized data prompted us to re-perform the pre-

vious analysis of subreddit distance based on only the user data. We took the

word corpus for each user and made an incremental word2vec model to get tem-

poral embeddings of the each user from June 2015 till November 2017. Using

these embeddings, we calculated the average distance between each pairs of

users in the subreddits to observe changes in the language representations.

The average user distance between the subreddits remained largely unchanged

throughout the time period of analysis, painting a different picture than the

more robust analysis from the overall subreddit data. This discrepancy prompts
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a more detailed analysis of using personalized data to gather succinct informa-

tion to compare communities. This approach also faces a problem in identifying

communities based on individualized data, where no proper means of learning

the underlying population graph exists. In a setting where conversations take

place with multiple users, the problem of inferring the communication hyper-

graph is a harder problem72.

3.3.5 Intra-subreddit language drift using users

To observe the drift in language over time we examine the distance between

the representations of each user over time (fig. 3.6). The user data has many

limitations, namely, initialization process is slow; vocabulary remains limited;

length of conversations is typically short; and most importantly, the best exist-

ing data corpus is inadequately small. Due to these limitations, any kind of user

based analysis of subreddits has proven difficult. We notice a small pattern of

increasing distance, reminiscent of the subreddit distance metric. But the fluc-

tuations in first two homologies show the effect of lack of data on the bottleneck

distance.

One way of getting around this limitation is to have robust user data to con-

struct good individual representations of the language. The design of intuits

is such that the crowd-sourced natural experiments can yield better individual

representations, each of which can be tracked over time to get drift of the lan-

guage and observe the community effects on the representation. Collecting more

focused data, such as the ones to be gathered by the intuit project, will help
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reveal much more about various linguistic hypotheses – ranging from origins of

the language to its universality and stability.

3.4 Extensions of the model

We conclude that design and launch of intuit’s large-scale crowd-sourced cre-

olization experiment constitutes a feasible project – proviso, serious attention

is given to language’s convergence properties (and subsequent stability). Our

computational simulation of Bayesian Echo Chamber and the mathematical

analysis of convergence to equilibria within it appear promising for the follow-

ing reasons: (i) by providing the right tools to a crowd-sourced wiki-like public

effort, it seems conceivable to creolize a natural language more suitable for the

world-wide web and (ii) furthermore, by not ignoring the effects of naturally oc-

curring population (graph) structures (e.g., reddit), it seems possible to avoid

certain natural limitations, usually exhibited as disparate Echo Chambers, co-

existing, but in fundamental disagreement with one another. Thus there must

be significant efforts to bridge the differences between the idealized theoretical

model and extant empirical models, which may be achieved by simply prompt-

ing conversations among key individuals, who could facilitate rapid mixing in

the population graph. Theories of random graphs, expander graphs and alge-

braic analysis of graphs provide powerful mathematical tools to achieve these

goals algorithmically.

We hypothesize further that a properly designed intuit experiment will parametrize

the universal grammar (assuming and validating its existence) common to nat-
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ural languages; it will quickly converge to a highly stable Nash equilibrium; and

it will optimize certain information-theoretic utility functions for the utterer-

hearer pairs. These hypotheses are, separately and together, refutable. The

data collected from this natural experiment will shed important light on the

biological mechanisms responsible for the emergence of human languages, while

spurring the emergence of a new wave of language creation.

The experiment also raises additional questions:

How will the intuit language relate to the ongoing research in Artificial In-

telligence? Currently there is much interest in using deep learning for natural

language processing, especially for language translation, text-tagging, caption-

ing images, etc. – all relying on some form of word2vec embeddings based on

large corpora from multiple languages. There is a lack of a proper theory in

deep learning explaining its spectacular successes and intriguing failures (e.g.,

adversarial perturbations,96) that this version of AI (sub-symbolic, black-boxes)

exhibits. Our work on the signalling-game-theoretic models, as initiated here,

could be useful in injecting robustness to the future AI research. A particu-

larly colorful example of a confusing experiment in AI involves Microsoft’s Tay,

which was effortlessly hijacked by a millenials’ echo chamber.

How will the intuit language relate to the current thinking in Mathematical

Data Science? We have shown here that topological analysis of point-cloud-

data provides a powerful tool that could be widely applicable. Some applied

works on evolutionary studies in virology and oncology have been influential,

but wider applications remain unexplored, especially in the context of the evo-
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lution of languages, social norms, social contracts, social institutions, etc., – all

topics of immense importance as intelligence/information technologies have be-

gun to disrupt long-standing, hitherto stable institutions in unpredictable man-

ners. Creolization’s deeper relations to topological data analysis (TDA), Man-

ifold Learning, Information Geometry, Game Theory etc. are thus important

topics of future research.

How will the intuit language relate to the current thinking in Biology? Our

experiments anticipate support for the usefulness of distributional methods of

representing semantics in a language. Our approach is supported by the anal-

ysis by Arora et al.5, who were able to identify a semantically-relevant low-

dimensional shared representation of fMRI responses. Their experiments and

analysis were conducted in an unsupervised fashion and involved views of mul-

tiple subjects watching the same natural movie stimulus. These studies point to

some fundamental questions about the biology of languages and how it evolved

in a relatively short period. Our analysis using intuits – with its multimodal

emoji like structures – is hoped to raise more challenges and resolve ancient

mysteries.

Last but not least, how will the intuit language relate to the current think-

ing in Linguistics? Noam Chomsky and his followers have played a dominant

role in shaping the current theories of language, but in isolation from other evo-

lutionary researchers and their theories, such as cellularization (codons), en-

dosymbiosis, multi-cellularity, speciation,etc. However, human spoken language

is hypothesized to be a biological artefact (postulating a yet-to-be identified lan-
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guage organ; related to the so-called I-language; and supporting distributional

semantics), but leads to theories that are unexperimentable (“not-even-wrong”).

The existence of WWW and crowd-sourcing drastically changes the situation by

enabling scalable and experimental inventions of new artificial natural languages

using large number of communicating human learners.

However, our biggest challenges will remain in the engineering of the intuit

Linguistic System, focusing on how the data should be collected and how it

should be analyzed. We can use existing efforts developed in cloud computing

(e.g., BigTable, BigQuery, etc.), enabling construction of such a system with

relatively small man-power. But given that internet is already affecting how

younger generations communicate (with hashtags, emojis, acronyms, etc.), the

window of opportunity for the natural experiments based on intuit may be

closing soon, particularly as the field gets crowded by powerful monolithic cor-

porations, namely, the so-called unicorns e.g. Twitter (tweets), Facebook (iden-

tity systems) and Google (Language Translations).
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4
Efficient Agony Based Transfer Learning

for Survival Forecasting
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4.1 Causation and Progression

∗Cancer progression modeling is a mature subfield of cancer informatics41. The

desirable models seek to recapitulate or forecast the accumulation of genomic

events in the course of a patient’s disease. Given these purposes, progression

models often take the form of hierarchical combinatiorial structures such as phy-

logenetic trees3 67 or various forms of Bayesian networks13,50. In this chapter

we consider a cancer progression model (CPM) to be a directed acyclic graph

(DAG) defined over a collection of (epi)genomic events. This view encompasses

the structures of both phylogenetic trees and Bayesian networks and is agnos-

tic with respect to probabilistic assumptions or interpretations of any particular

CPM.

Research on CPMs often focuses on accurately recreating an underlying ground

truth. Most research pipelines, involve the presentation of a new algorithm and

showing empirically or rigorously that this algorithm reconstructs a latent CPM

correctly. These methods are, for the most part, retrospective and are predi-

cated on the theory that understanding the course of evolution of a particular

patient population will shed insight into the nature of that particular cancer

and, hopefully, its treatment.

To our knowledge CPMs have not yet made this final clinical leap. In partic-

ular while similarities between CPMs have been explored via edit distances70,

the similarity between progression models across different cancer types have not

been exploited. As cancer progression seems to correlate with phenotype it fol-
∗Co-authored with J. Bannon, B. Mishra, bioRxiv:2021.02.24.432695
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lows that patients with similar disease progressions will be similar in terms of

clinical presentation.

This chapter contains two main contributions that address these issues. In

order to compare progression models across different cancer types we first in-

troduce a notion of similarity based on the graph theoretic concept of “agony.”

This is an alternate notion of distance that measures the preservation of struc-

tural (involving driver genes) relationships in a progression model. Thus the se-

mantics of looking at agony directly correspond to the orderings of events given

by two CPMs.

The second contribution of this chapter involves using this notion of distance

to automate transfer learning, with specific experiments directed towards sur-

vival forecasting. In transfer learning one seeks to leverage the learned capa-

bility to perform source task to improve the ability to perform a target task.

Usually the choice of source and target based on the fact that they are in some

ways similar. Here we assume that similar progression models correspond to

similar phenotypes. We fix the target task as forecasting survival time for a

particular cancer and then choose the source task as predicting survival from

the cancer which has the smallest agony based distance from the target task,

fig. 4.2. We show empirically that the comparison metric introduced corre-

sponds to meaningful biological similarities and that agony-guided transfer learn-

ing significantly improves performance in some cases.

The rest of the chapter is structured as follows. In section 4.1, we review the

necessary background material. In particular we review progression models, sur-
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Figure 4.1: The grey lines represent the minimal rank function, and the red arrows are the edges contributing to
the agony. In this case the agony distance is 4.

vival forecasting, and transfer learning and we introduce the notion of agony a

way of measuring the similarity of two progression models. Then in section 4.2,

we report on two experiments in using agony for bioinformatic purposes. The

first experiment consists of clustering patients in different cancers using pairwise

agony dissimilarity. The second experiment automates source task selection in

transfer learning using minimum-agony distance as defined in section 4.1. Fi-

nally in section 4.3 we provide a discussion and pointers to future work. We

include an online appendix where we include all technical details †.

4.1.1 Graph Agony

Agony 53 is one of many measures assessing hierarchies in directed graphs, some

of these are known to be computationally intractable42. Agony, however, is

computable in polynomial time. In particular, agony is a measure of the degree

to which a directed graph is acyclic117,118. To our knowledge it is the only com-

putationally tractable method for comparing pairs of directed acyclic graphs,
†https://github.com/epsilon-0/pan-cancer
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and yet approximates as close as other graph distance functions.

Definition. 12 (Rank function).—A rank function on a graph G = (V,E) is a

map r : V → {1, . . . , |V |}.

Intuitively the rank function can be thought of as specifying an ordering on

the nodes of the graph. In the context of a progression model the rank function

could be thought of as a hypothesized temporal ordering or as assigning certain

mutations to levels in a hierarchy.

Definition. 13 (Agony of a Graph With Respect to a Rank Function).—For a

graph G = (V,E), V = {v1, . . . , vn} and a rank function r : V → {1, . . . , n} the

agony of G, with respect to r, is defined as

A(G, r) =
∑

vi→vj∈E

max(0, r(vj)− r(vi) + 1) (4.1)

Clearly from eq. (4.1) the larger the difference in rank between a parent node

and its child, the larger the agony. In practice a given rank function r is not

available a priori which is an issue because the value of A(G, r) is highly depen-

dent on r. In light of this, we define the general agony of a graph as follows:

Definition. 14 (Agony).—For a graph G we define the agony of the graph G

to be

A∗(G) = min
r:V→{1,...,n}

A(G, r) (4.2)

For the rest of this chapter, whenever we refer to the agony of a graph we

mean it as given in definition 14 unless otherwise stated. It is not obvious from
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the form of eq. (4.2) that A∗ is computationally tractable. However, if one con-

structs the dual problem to eq. (4.2) one arrives at the maximal Eulerian sub-

graph problem, which can be solved efficiently. We refer the reader to117 for

details.

Definition. 15 (Agony Between Graphs).—For two graphs G1, G2 on the same

set of nodes, V , let G′ be the union of the two graphs, without duplicate edges.

The agony between G1, G2 is defined as

A∗(G1, G2) = A∗(G′) (4.3)

In the case where G1, G2 are progression models then eq. (4.3) can be thought

of as a measure of mutual inconsistency. If there are conflicting or contradicting

paths in G1 and G2 then A∗ > 0, fig. 4.1. For the case where G1, G2 are in fact

progression models, eq. (4.3) possesses properties useful for comparing them.

Indeed, the algorithm to compute the agony goes about by finding the small-

est cycles to remove from the combined graph, until what remains is a valid

progression model.

Lemma. 4.1.1 (Agony Pseudometric). The agony between graphs can be used

as a pseudometric on the space of directed acyclic graphs. That is for any two

directed acyclic graphs G1, G2 the following hold:

A∗(G1, G2) = 0 if G1 = G2 (4.4)

A∗(G1, G2) = A∗(G2, G1) (4.5)
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In general, the triangle inequality — necessary for the status of being a full

metric — does not hold. However, most of the generally occurring cases have

the triangle inequality to be valid, which we leverage for using this as a fast ap-

proximation for a proper metric.

As a consequence of lemma 4.1.1 we can use eq. (4.3) to compare two progres-

sion models derived from different patient populations. We can then investigate

whether or not two patient populations that have similar progression models are

phenotypically similar. In this chapter, we look at one highly relevant pheno-

type: disease aggressiveness as measured by forecasted patient survival time.

4.1.2 Survival Forecasting

A common problem in clinical oncology — and clinical care in general — is fore-

casting the time until a meaningful change in the patient’s condition occurs. For

example the time until death, the time until disease progression, or the time

until the acquisition of a particular hallmark. Data of this type consists of a

duration, which is usually measured from the beginning of an observation pe-

riod (e.g. a clinical trial) until the event of interest occurs. In general a time-to-

event data set D for a survival forecasting problem involves observations of the

form

{xi, ti, δi}ni=1

where xi = (xi1 , . . . , xim) is a vector of covariates, ti is the time of the event

or censorship, and δi is an indicator variable marking that the event was truly

observed (δi = 1) or if censorship has occurred (δi = 0). There are many ap-
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proaches to survival analysis – most either involve learning a function f(x) that

returns a predictive survival time or compute a hazard ratio for a specific value

of x. The most well-known approach is Cox’ proportional hazard model35 which

assumes that the probability that the event occurs at time t follows an exponen-

tial distribution. We refer the reader to the two monographs79,94 for a thorough

treatment.

The machine learning literature has also attempted to address the survival

problem with standard methods such as the support vector machine130,48 and

deep neural networks133,133. For our experiments we used a deep neural net-

work model called SurvivalNet as our survival forecasting method. We chose

this method because the software had pre-implemented several important neu-

ral network techniques such as drop-out and Bayesian optimization for model

hyperparameters133‡.

The most common method for evaluation of survival forecasting is the con-

cordance measure62 which compares the relative risk assigned to patients by the

model to the order in which they actually died. Correctly ordered pairs are re-

warded and incorrectly ordered pairs are penalized. We evaluate our survival

forecasting models by concordance on a test set and prove the translational util-

ity of the system.
‡Unlike the blackbox models from SVM and DNN, SBCN can provide an evolution-

ary/causal explanation for the cancer prognostics.
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4.1.3 Transfer Learning

Transfer learning100,31 is a technique in machine learning where information

from a source task is used to improve performance on a target task. For exam-

ple if the task is to recognize cars in natural images a transfer learning approach

might be to train a system to recognize trucks and then apply it to images look-

ing for cars. Clearly part of the consideration here is that trucks and cars are,

in some ways, similar. While research in transfer learning focuses on many dif-

ferent aspect of the process of transferring knowledge100, the source and target

tasks are usually treated as given. For clinical oncology, source and target tasks

should be similar in a way that is biologically significant. For example, in133, the

authors augment the training data for BRCA cancers with patient data from

OV and UCEC because they are all hormone-driven tumors.

We generalize this by performing experiments where we augment the data by

choosing the cancer with the closest (least agony) progression model. Specif-

ically we begin with a target task T which is the survival forecasting problem

for a particular cancer C, and then choose as the source task the data from the

cancer C ′ which has the smallest agony distance from C.

4.2 Analysis of TCGA pan-cancer dataset

Our aim is to be able to evaluate the utility of agony as a (dis)similarity mea-

sure between different cancer (sub)types. To evaluate how well agony is cap-

turing biological information we first performed two clustering experiments,
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Figure 4.2: Pipeline for transfer learning with patient clusters with their Suppes Bayes Causal Network(SBCN).
Each cluster has its own progression model, which are then used to calculate the distance between clusters.
This in turn is used to automate transfer learning by selecting low agony pairs to boost the dataset information
content for enhancing the survival forecasting toolbox.

detailed in section 4.2.1. In order to make our approach translational we per-

formed transfer learning experiments between low agony and high agony can-

cers, and show empirically that low agony transfer learning improves perfor-

mance more than high agony. We report on these results in section 4.2.2.

Data Sources and Preprocessing

For our experiments we used the data from the TCGA 2018 PanCancer At-

las accessed via cBioPortal. This data consists of approximately 11,000 genes

spread across 33 different tumor types. Before all experiments the mutation

data from each cancer was processed into a binary matrix D ∈ Zn×m
2 where each

row corresponded to one of the n patients. The m genes were filtered to be only

those that were either included in both tiers of COSMIC or those considered to
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Figure 4.3: Heatmap for agony distance between different cancer types. We plot the ln(agony) between the
cancer types, with the red representing lower agony measure.

be driver genes by TCGA.

4.2.1 Agony Recovers Biologically Meaningful Dissimilarity

Agony across clusters shows biologically significant similarities

The first experiment was to explore the similarities between cancers based on

their respective progression models. The first step involved fitting, for each can-

cer type C, a SBCN GC(V,E). For each cancer type the top 100 most frequently

mutated genes were selected and a SBCN was constructed using point muta-

tions in these genes as the nodes. Each SBCN had approximately 1,000 edges.

For each pair of graphs we calculated the agony distance between the pair in

accordance with eq. (4.3). In fig. 4.3 we plot the pairwise agony values for each

cancer type on a logarithmic scale, and show a clustering of the data using a

multi-dimensional scaling (MDS) embedding of the data into two dimensional
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Figure 4.4: Concordance as a function of agony distance. Out of the chosen low‐agony pairs, we plot the in‐
crease in concordance vs agony and we notice a higher concentration of pairs with a larger increase in con‐
cordance for low agony measure. The histogram shows a decrease in density for pairs which can do transfer
learning to increase concordance, validating our hypothesis.

space.

We observe that skin cutaneous melanoma has a high dissimilarity to other

cancers, which may be hypothesized to be due to the central role played by

BRAF in controlling growth and apoptosis. Further analysis, such as using

phenotype matching, would be necessary to validate this hypothesis. We also

note that in the MDS clustering the hormone-driven cancers UV, BRCA, and

UCEC are farther from the other subtypes, which suggests the agony distance

has recovered this distinction. However we expected these three to be close to

each other in agony distance, which is not the case. Our hypothesis is that since

BRCA has well delineated subtypes71, due to Simpsons’ paradox125 the overall

BRCA population is not representative and that combining them loses informa-
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tion. We check this in the next subsection.

Agony across BRCA subtypes captures known dissimilarities

To see if agony could capture well-known subtypes, and to assess if Simpson’s

paradox played a roll in the overall dissimilarity of BRCA to other cancers, we

stratified the TCGA PanCancer BRCA patients into the five subtypes given in

the data: Luminal A (LumA, n = 499), Luminal B (LumB, n = 197, Her2-

Enriched (Her2, n = 78), Basal-like (Basal, n = 171), and Normal/Untyped

(Normal, n = 36).

In fig. 4.5 we present the pairwise agony distances across the BRCA subtypes.

From the data in fig. 4.3 and fig. 4.5 we hypothesize that agony is recovering

meaningful discrepancies in progression models and as well as meaningful phe-

notypic differences. This hypothesis motivated our use of agony as a metric for

selecting the source task in transfer learning, which we try to validate by ob-

serving the boost (or lack thereof) in the concordance obtained by black box

learning.

4.2.2 Transfer Learning

In the following experiments we split the data into train (60%), validation (20%),

and test (20%) sets. Survival net was run with default values including auto-

matic procedures for regularization and hyperparameter fitting. In our transfer

learning experiments we did the actual transferring by adding the data from the

source cancer to the training data.
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Figure 4.5: Heatmap for agony distances between the BRCA subtypes.

Low agony identifies similar cancer types, by improving concordance

We refer to fig. 4.3(b) to infer that most of the high concordance increase hap-

pens in the region of low agony metric, giving a confidence boost to the fact

that lower agony distance is a good indicator of the accuracy gained from trans-

fer learning.

For showcasing actual cancer pairs we chose LUAD as the dataset to be aug-

mented. For LUAD two cancers which have a low agony distance are PRAD

and MESO. These have 566, 494, and 87 patients, respectively. We performed

two transfer learning experiments on these three cancers. First we evaluated

SurvivalNet on LUAD alone, achieving a mean concordance 0.552 and a me-

dian concordance of 0.554 over 93 rounds of training and testing. We then aug-

mented the LUAD training data with the data from PRAD (100 rounds), which

lead to an increase in mean and median concordance to 0.735 and 0.7324 re-

74



Data Mean Concordance Median Concordance Log Agony
LUAD 0.5522, [0.5421, 0.5620] 0.5542, [0.5424, 0.5663] —

LUAD+PRAD 0.7353, [0.7263, 0.7440] 0.7324, [0.7225, 0.7389] 3.16
LUAD+MESO 0.6317, [0.6204, 0.6432] 0.6395, [0.6524, 0.6251] 0

STAD 0.5714, [0.5574, 0.5855] 0.5759, [0.5680, 0.5926] —
PAAD 0.6120, [0.5966, 0.6278] 0.6239, [0.6524, 0.6066] —

STAD+PAAD 0.5748, [0.5672, 0.5826] 0.5780, [0.5671, 0.5920] 7.11891

Table 4.1: Confidence intervals and statistics for agony based dissimilarity.
We report the mean and median concordances for our experiments along with bootstrap 95% confidence
intervals, across 60 runs. A single cancer name represents running survival net on that data alone. Other rows
take the form of TARGET+SOURCE. For transfer learning experiments we give the pairwise log agony distance.

spectively. The difference in distribution means was statistically significant

(Wilcoxon p =2e-16). To check that this was not simply the result of an in-

creased amount of training data, we performed the same experiment with MESO

(83 rounds) as the source. This analysis shows a modest increase in mean (0.631)

and median (0.639) (p = 6.025e-16). A figure demonstrating the improvement is

given in the appendix.

High agony identifies vastly different types does not improve con-

cordance

It is possible that simply combining any two datasets might yield increased

concordance. To test this we performed the same experiments as above but

with a high agony pair. Specifically we performed survival forecasting on STAD

(n = 440) and PAAD (n = 184) and then a transfer-learning with PAAD as

the source. In this context survival net performed well on STAD (54 rounds)

and PAAD (60 rounds) individually but in the transfer learning context (44
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Figure 4.6: Transfer learning with large agony for cancer types Pancreatic Adenocarcinoma (PAAD) and Stom‐
ach Adenocarcinoma (STAD) shows no improvements in concordance score.

rounds) performance the concordance did not meaningfully change. A Wilcoxon

test on the concordance of STAD and STAD+PAAD has a p-value of 0.7659,

so we fail to reject the null hypothesis that the distributions are the same. We

show the lack of improvement citing the results in fig. 4.3(b) and table 4.1 for

STAD+PAAD. The regression curves show a distinct decrease in concordance

gain with the increase in the agony metric, in addition to which the showcased

example, STAD+PAAD, shows a statistically insignificant change in the accu-

racy values.

While these results are not definitive, they suggest that agony is capturing a

meaningful distinction phenotypically and could be used to guide further trans-

fer learning experiments. Such information is useful for important clinical appli-

cations, which include drug repurposing104, early intervention7 and immunother-

apy55.
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4.3 Extensions of the model

We have proposed agony as a novel method of quantifying the (dis)similarity

between progression models by discovering conflicts in their hierarchical rela-

tionships. We have shown empirically that this measure recovers known biolog-

ical similarities and differences in cancer types. Finally we showed the poten-

tial for clinical utility by using agony to automate the choice of a source task in

transfer learning experiments. To our knowledge this is the first biological at-

tempt to automatically solve the source-selection problem, which is of research

interest in the artificial intelligence community. Our experiments showed a cor-

respondence between low agony distance and increased task performance.

Our approach can be easily generalized. Agony clustering is agnostic to the

semantics of the underlying CPM but, since it measures pairwise inconsistency,

it directly accounts for the semantics of whichever CPM is chosen. Also, our

transfer learning methodology is amenable to any machine learning technique.

An obvious next step is to use agony to compare different progression models.

Another option is to vary the machine learning task in question. One can even

generalize beyond machine learning to investigate whether populations with

similar progression models are similar in any interesting phenotypic character-

istic.

In the near term we hope to expand on the theoretical foundations of agony

to large graph limits and to graphons87. This generalization would allow us to

bring large sample theory to bear on the techniques presented in this chapter,
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and potentially allow us to generalize SBCNs to cases of continuous variables,

e.g. gene expression. Graphons have also received growing attention from the

machine learning literature4,45. We believe that even its current form graph

agony can be a valuable tool for both clinical and research cancer bioinformati-

cians.
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5
Efficient Evolutionary Models with

Digraphons
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5.1 Introduction

Graphical models are one of the most important tools used in machine learn-

ing74 and arise in most applications which involve pairwise interactions, such

as mutations in cancer evolution134, protein networks58,129, hierarchical net-

work models39, influence in social networks91,108,56, population dynamics17 and

many more. In machine learning, there are various techniques which forgo the

use of these graphs and instead employ more algebraic representations to take

advantage of the underlying theories, such as latent variable models86, network

or dynamic models82, deep neural networks (DNN)123,93, clustering models23,28.

The key advantage of the later techniques is the reliance of the abundance of

techniques developed in linear algebra and optimized algorithms for doing fast

implementations to get efficient real world analysis.

One of the main motivations of this study is the case of evolutionary popula-

tions, where the evolution is modeled as interactions between individuals of the

populations, such as mutations, genotypic variations and phenotypic selection.

In such cases, evolution of the gene regulatory network (GRN) or the protein-

protein interaction (PPI) network happens by specific events, such as insertion,

deletion, duplication, point mutations, translocation and inversion68,46. Of these

the insertion, deletion and duplication events have the most noticeable effect on

the networks and have an easily observable effect on the phenotype. If we think

of genes as nodes in a graph and gene interactions as edges, these events can be

thought of as an edge or node insertion, deletion or duplication.
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When our network starts evolving and growing in size, we naturally think

about what the outcome of such a process would be. As our network keeps on

increasing in size, we need to extend our definition of a graph and naturally

arrive at the intuition of a limit graph, i.e. a graph on an infinite number of

nodes, which we analyze not by looking at properties on non-empty subsets of

the graph. These dynamics can be represented in terms of limit networks with

the help of digraphons. A digraphon is measurable function G : [0, 1]2 → [0, 1].

Given a digraphon G, there is a corresponding countably infinite exchangeable,

definition 16, graph G(N, G), with the adjacency matrix (Gij)i,j∈N defined by the

generative model

Ui
iid∼ Uniform[0, 1] ∀ i ∈ N

Gij|Ui, Uj
ind∼ Bernoulli(G(Ui, Uj))

Thus the digraphons are an ideal object to use for a generative model for evo-

lutionary networks. Any useful tool which is to be used for real world analysis

must also support hypothesis refutability, which necessitates the notion of sim-

ilarity between digraphons. The space of digraphons have many norms defined

on it, such as the lp norm

‖G‖p =
(∫

(i,j)∈[0,1]2
(Gij)

p

) 1
p

or the more interesting, cut norm, which can be thought of as the maximum
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dissimilarity in a bounded region,

‖G‖� = sup
S,T⊆[0,1]

∫
S×T

G

The cut metric is quite complex to calculate and does not yield the most in-

tuitive results for causal models. One of the key points which we wish to cap-

ture between two causal models, is a notion of contradictory information among

them. We wish to penalize larger contradictions more than smaller ones. Edges

which are a part of larger cycles should be given a higher penalty than as the

presence of a large cycle would imply that many of the edges could be spurious,

which is a bad position for a causal model to be in. The agony heuristic53, defi-

nition 14, helps us bypass this by using an error metric dependent on the length

of the cycle.

These techniques for analyzing digraphons have recently been developed and

have yet to see a wider use in conjunction with the standard Bayesian statistical

tools prevalent in machine learning. The notions of limit graphs and asymptotic

behaviours of evolutionary models are very important in using generative mod-

els from Bayesian statistics as the above model for digraphons seems to suggest

an intuitive method for reasoning an approximation of the parameters.

The current black box learning from DNNs falls short of generating an ex-

plainable hypothesis which is needed for refutability. Indeed such scenarios

have previously been observed such as the universal adversarial perturbations,

which have then been leveraged to design adversarial networks. But these still

fall short of an ideal answer.
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The importance of these tools has been seen in many places, such as those

used for signaling games78, population dynamics and biomolecular networks sec-

tion 1.1, mesh network topologies38, 3-D neural imaging reconstruction64, etc.

These techniques work directly in complement to the notions from deep neural

networks by providing an explainable AI which can then be used as a hyperpa-

rameter in designing the DNNs by affecting their layer hierarchies, activation

functions, dropout scenarios and memory length estimates.

5.1.1 Contributions

We present two main contributions. We show a generative model for digraphons

using a finite basis of subgraphs, which is representative of biological networks

with evolution by duplication99. We then show a MAP estimate on the Bayesian

non parametric model using the Dirichlet Chinese restaurant process representa-

tion, with the help of a Gibbs sampling algorithm to infer the prior. We discuss

how this can be generalized to other priors due to the simplicity and extensibil-

ity of the model.

Next we show an efficient implementation to do simulations on finite basis

segmentations of digraphons. This implementation is used for developing fast

evolutionary simulations with the help of an efficient 2-D representation of the

digraphon using dynamic segment-trees with the square-root decomposition rep-

resentation. We further show how this representation is flexible enough to han-

dle changing graph nodes and can be used to also model dynamic digraphons

with the help of an amortized update representation to achieve an efficient time
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complexity of the update at O(
√
n log n), where n is the number of nodes in the

digraph.

5.2 Background

Starting in 2006, in a series of papers by László Lovász, et al.,19,88,20,21 the the-

ory of large graphs and graph limits has developed an elegant and delightful

theory unifying parts of topology and analysis for graph theory. This theory has

been developed for dense graphs and has connections to graph homomorphisms,

graph property testing, extremal graph theory, Szemeredi’s regularity lemma,

etc.

Intuitively, a graph property (characterized by presence of a subgraph H in

G) is testable if, as G grows larger, the ratio of copies of H in G also converges.

This notion is important in evolutionary models, as biomolecular networks from

by duplication, where duplication happens by preferential attachment, which

very closely resembles the aforementioned model.

Such limit graphs depend on the notion of exchangeability, which is important

for ensuring that the order of sampling our initial conditions does not affect our

final outcome.

Definition. 16 (Exchangeability).—Let {Xi}i∈N be a sequence of binary ran-

dom variables. They are exchangeable if

Pr (Xi = ei ∀ i ∈ [1 . . . n]) = Pr
(
Xi = eπ(i) ∀ i ∈ [1 . . . n]

)
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for all n and all permutations π, ei ∈ {0, 1}.

This is used in the famous De Finetti’s theorem, which says

Theorem. 5.2.1 (De Finetti40,73). Let (Xi)i∈N be a binary, exchangeable se-

quence, then

1. X∞ = lim
n→∞

X1 + . . .+Xn

n
, exists with probability 1.

2. There is a probability distribution η on [0, 1], given by η(S ⊆ [0, 1]) =

Pr(X∞ ∈ S) and

Pr(Xi = ei ∀ i ∈ [1 . . . n]) =

∫ 1

0

xs(1− x)n−s η(dx)

where s =
∑n

i=1Xi.

The crux of this theorem is to allow us to observe events, not necessarily in-

dependent, in a random order and still be able to give an estimate of the limit

sequence. This is also known as De Finetti’s Strong Law of Large Numbers.

This is crucial in evolutionary networks where we are almost never going to

have independence.

For graphical models, aka directed graphs, the notion of exchangeability is

the same as saying that the distribution is invariant under vertex re-orderings,

(Gi,j)i,j∈N ∼ (Gπ(i),π(j))i,j∈N

And is also equivalent to saying that the permutation is invariant under all fi-

nite re-orderings of vertices.
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Definition. 17 (Digraphons and dikernels).—A digraphon is a bounded, mea-

surable function : [0,1]2 → [0,1].

Dropping the condition on the image space, a dikernel is a digraphon where

the image space is R, K : [0, 1]2 → R.

For our purposes, we will be focusing on digraphons as they have enough in-

formation to model evolutionary networks. It can be shown that all directed

graphs (in our case, evolutionary models) can be obtained from such digraphon

limits by theorem 5.2.2.

Theorem. 5.2.2 (Diaconis–Janson40). Every exchangeable random, countably

infinite, directed graph can be obtained as a mixture of G(N,W), for some ran-

dom digraphon W.

5.2.1 Evolution by Duplication

Graph and network evolution has a rich history, from a variety of real world

applications, such as social networks, recommendation systems, language model-

ing, ad systems, etc. The history can be traced back to the works of Erdös and

Rényi, and a number of other models have been developed since then.

Biological networks have important non-intuitive properties, such as clus-

tering, small world property (small degrees of separation)128 and pronounced

groups, aka “hubs”, where most of the interactions take place11. Any network

model for evolution is expected to capture these properties in the model. Even

more complex information theoretic asymmetry can be incorporated when using

game theory to model these networks101,8,115.
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Small World models

Erdös and Rényi graphs have a low tendency for clustering, where clustering is

calculated from the degree distribution of the graph. For ER graphs, the degree

distribution, for edge probability p and n graph nodes, is given by the Poisson

distribution in the limit:

Pr(deg(v) = k) =

(
n− 1

k

)
pk(1− p)(n−k−1)

∼ exp(−λ)
λk

k!
, λ = pn, n → ∞

Which results in a clustering coefficient of p
n
. This is a very low clustering co-

efficient, which is not exhibited by the real world biomolecular networks85. To

rectify this, the small world models were introduced128. Such a graph is con-

structed as a ring lattice, in a two step process, for some hyper parameter K

1. wire: connect every node to K/2 nodes on either side of the ring.

2. rewire: for every edge to a node, add another edge with probability p.

The wire step ensures presence of local clusters, while the rewire step en-

sures the presence of small degrees of separation. This results in a average of

(1 + p)nK edges in the graph and a clustering coefficient of 3(K−2)
4(k−1)

, which is in-

dependent of the graph size. This solves two of the three major points needed

for real world models but leaves out the last one, hubs or high degree nodes.
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Scale free networks with preferential attachment

It is hypothesized that most biomolecular networks have scale-free properties11,9,

i.e. the number of nodes, nk, of degree k is independent of the size of the graph

and is instead inversely proportional to k,

nk ∝ k−β

for some β > 1, called the coefficient characteristic of the network, with the

value of β ∈ [2, 3] for eukaryotic organisms. In scale free networks, there are

nodes with high degrees with a relatively larger probability, termed as fat tail

distributions. These distributions are better than exponentially decaying dis-

tributions found from small world models and allow for the emergence of hubs

with an inverse polynomial probability. Power law distribution is more common

in social interaction networks, such as internet and phone call maps and inter-

personal collaboration networks.

Preferential Attachment.

Preferential attachment models are a specific subtype of scale free networks,

in which evolution occurs by duplication at a local scale10. The evolution hap-

pens using local growth rules which lead to global characteristics from the small

world and scale free models as a consequence of the power law distribution.

Given a graph G0 and a probability p, the preferential attachment can hap-

pen in two ways

1. vertex step: Add a new vertex v and an edge (u, v) by randomly selecting

88



the u proportional to its degree

2. edge step: Add a new edge (u, v), by selecting u and v proportional to

their degrees.

Thus at each step the number of nodes increases with probability p and the

number of edges always increases. Thus after time t, et = t + 1 and expected

number of nodes is E[nt] = 1 + pt.

It can be shown that this leads to a scale-free network with β = 2 + p
2−p

.

These networks also have the hierarchicity, i.e. the local clustering coefficient is

proportional inversely proportional to k, the size of the cluster,

C(k) ∝ k−α

where α is called the hierarchy coefficient.

These distributions suggest the presence of small dense subgraphs which are

connected to each other via “hubs”. In other words, there is a lot of clustering,

more than random graphs, but at a smaller scale than generic scale free mod-

els. Hence these models have a much higher error tolerance, which is similarly

exhibited by biological networks.

5.3 Evolution by Duplication

In many scenarios, preferential attachment happens at a larger scale than a sin-

gle vertex, where multiple parts, aka clusters, of the network get duplicated.

This process is hard to model in a one shot setting where we have to duplicate
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the parts one at a time. For added robustness, we expand the definition of pref-

erential attachment to allow duplicating subgraphs.

We specifically want to model graphs for evolutionary events, such as graph-

ical models and causal networks. Each node represents an event that can take

place, while each edge (potentially weighted) represents the influence from an

event to another. We call this the event graph and represent this as a weighted

adjacency matrix. An example of such a network that is the Suppes Bayes causal

network (SBCN).

We define evolution by duplication as an extension of the preferential attach-

ment model, where we allow extending the graph by duplicating a larger sub-

graph. This subsumes the original case where preferential attachment of a single

node and allows for a larger, more robust evolutionary model.

Definition. 18 (Evolution by Duplication).—Let G be a directed graph, and

let X = [ai, . . . , aj]× [bk, . . . , bl] ⊂ [1, . . . , n]2. A preferential attachment of X

on G, with the weight function θ, is the new digraphon G′, defined by

G′ = (1− θ(X)) ·G+ θ(X) ·G|X

Typically, we want to randomly select segments which are going to be at-

tached. This is carried out with the help of a weight function θ, which is in-

versely proportional to the measure of the attached segment, θ(X) ∝ 1∫
XG

=

1∑
x∈[ai,...,aj ]
y∈[bk,...,bl]

w(ax,by)
. This weighting implies that smaller segments are easier to at-

tach than larger segments, which mimics the biological characteristics, wherein
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it is easier to duplicate smaller, simpler networks over complex multi-path net-

works.

Figure 5.1: Segment basis for a digraph.
The colored rectangles denote segments for a digraph, which can be duplicated by preferential attachment. It is
not necessary for the segments to be non‐intersecting, the overlapped regions will be attached multiple times
through different segments. Each segment also has an associated weight, which influences the evolutionary
priority of duplicating that segment.

Due to the exponentially large size of the segment space, it is preferred to

have a smaller finite collection of segments of interest. In biological networks,

such as those for cancer somatic mutations, we typically want to restrict our at-

tention to either driver genes or those known to interact with cancer mutations

up to some extent. For example, The Cancer Genome Atlas (TCGA) program

or the Catalogue of Somatic Mutations in Cancer (COSMIC) databases are the

main places which give information about important genes.

Definition. 19 (Segmented Digraph).—A segmented digraph, fig. 5.1, is a di-

graph with a finite collection of weighted segments (Xi, wi), Xi = [ai, bi]× [ci, di],

with weights wi ∈ R+,
∑

wi = 1.

We can also allow dynamic sized vertices by allowing an attachment to intro-

duce a node, thereby adding a row or a column to our adjacency matrix. For
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our current analysis, we restrict ourselves to static sized attachments, which

only affect weights of the graph.

It is important to note that this is an exchangeable process; relabeling the

segments, Xi, does not lead to a different simulation, we only depend upon the

weights of the segments. Thus we can leverage all the theoretical properties of

digraphons, such as asserting that any such evolutionary process, wherein we

do simulations either by attachments to make larger graphs, or by performing

weighted boosting, is going to converge to a final digraphon.

a b

c d e

f g

h

a b

c d e

f g

h

Figure 5.2: Evolution by subgraph attachment via duplication.
Preferential attachment of the segment [d, f, g, h]2. The same effect can be seen for more than one segment
attachment, as evidenced by preferentially attaching [d, f, g]× [f, g, h].

5.4 Finite Modeling and Implementations

To model such an evolutionary process is non trivially complex, as the graphs

can have large number of nodes and edges. Naive algorithms for doing preferen-

tial attachment of a segment [i, j]× [k, l], have a time complexity of (j − i) · (k−

l) = O(n2). In addition to that, to do a weighted sample, we need to get the

current weight of a segment, which would also take O(n2). This strategy is fea-

sible in cases of small segments, but has an undesirable asymptotic behaviour,
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which we improve upon. In this section, we detail an efficient data structure for

simulating the preferential attachment framework on a digraph.

There are two key operations that we want our model to access:

1. Get the current weight of a segment X.

2. Preferentially Attach a segment, X, with a particular weight, θ(X).

We note that we can perform (2) in two steps - (a) Multiply the whole graph

by (1− θ(X)), (b) Multiply the segment X by 1
1−θ(x)

.

Hence, our data structure needs to support the following operations:

1. Multiply a segment [a, b]× [c, d] by some value c.

2. Return the sum of all elements in a segment [a, b]× [c, d].

For a finite model implementation, we assume that the size of the digraph

is fixed.

We represent the digraph G using the square-root decomposition along

the rows and a segment tree along the columns for each group of
√
n rows,

fig. 5.3.

Each Ti represents a collection of
√
n rows with a segment tree. An update

of a segment X = [a, b] × [c, d] can span across segment trees. The square root

decomposition facilitates fast updates in O(
√
n log n) time.

For each segment tree, it is possible to do range sum together with range mul-

tiply using lazy propagation in O(log n), algorithm 2 and algorithm 3.
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T0

T1

T2

Figure 5.3: Graph data structure for preferential attachment.
We break the graph into

√
n groups along the rows and create a segment tree, Ti, for each of these groups.

We see that any preferential attachment that is done can be broken down into
√
n parts, where we do updates

for each tree, with a total of
√
n updates. The overlaps are handled efficiently using lazy propagation in the

segment tree, which allow us to do the weight updates inO(log n) for each individual tree.

To prove that the whole data structure works in the time complexity de-

scribed above, we break the analysis into two parts. First, we show that in an

individual segment tree, we can solve range sum and range multiplication in

O(log n). Then we show how to extend this across rows by grouping multiple

trees together.

5.4.1 Segment Tree - Lazy Multiply and Sum

The per row simplification of this problem boils down to

Problem. 5.4.1 (Lazy Multiply and Sum). Given an array of numbers, [a1, . . . , an],

perform the following operations in O(log n)

1. Find the sum of all numbers in a contiguous range [i, j].

2. Multiply all numbers in a contiguous range [i, j] by some value k.
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[a1, . . . , an]− {sum = s0,mult = m0}

[a1, . . . , an/2]− {s1,m1} [an/2+1, . . . , an]− {s2,m2}

...

[ ]

Figure 5.4: Segment tree for lazy propagation.
For each node in the segment tree, we store the subtree range along with two additional parameters, current
sum and propagated multiplicand. The multiplicand is not propagated fully until a subrange is updated in a sub‐
sequent query or until a subrange weight is queried. And even in those cases, we only propagate it optimally
with lazy propagation.

We solve this by creating a segment tree of nodes, fig. 5.4 ,with each node

containing the following metadata:

• low, high - the lower and upper end points of the range of the node

• sum - current sum of all values in the range of the node

• mult - current multiplicand not yet propagated to lower nodes

• left, right - left and right children nodes of current node

The lazy multiplication algorithm, algorithm 2, works by manipulating the

mult parameter to keep track of the accumulated multiplication and only propa-

gating it when intersecting ranges are updated.

Theorem. 5.4.1 (Lazy Multiply). The running time of algorithm 2 is O(log n)

for all ranges [l, r].
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Algorithm 2 Segment Tree - Lazy Multiply
1: function LazyMultiply(Segment Tree Node node, int l, int r, int c)
2: # Multiplies the part of the range [l, r] contained inside node by c
3: # Time complexity = O(log n)
4: if node.low > r or node.high < l then
5: # No intersection, nothing to do
6: return
7: elseif node.low ≥ l and node.high ≤ r then
8: # Fully contained, multiply current multiplicand by c
9: node.mult ∗= c

10: node.sum ∗= c
11: else
12: LazyMultiply(node.left, node.low, node.high, node.mult)
13: LazyMultiply(node.right, node.low, node.high, node.mult)
14: node.mult = 1
15: LazyMultiply(node.left, l, r, c)
16: LazyMultiply(node.right, l, r, c)
17: node.sum = node.left.sum+ node.right.sum
18: end if
19: end function
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Proof. Notice that the recursion stops at any node at which the range of the

node is full contained inside the range to be updated. For example, if our tree is

on [1, . . . , 8], we will have 15 total nodes,

[1, 8], [1, 4], [5, 8], [1, 2], [3, 4], [5, 6], [7, 8], [1, 1], . . . , [8, 8]

. If we wish to do a range multiplication on [4, 7], the algorithm will stop at the

top most nodes possible which unify up to our desired range, which in this case

- [4, 4], [5, 6], [7, 7], which is strictly smaller than 4, the range to be updated.

Notice that we will only ever update a maximum of two nodes of the same

length, and they will never be neighbours, as the recursion would instead stop

at the parent node. Hence, to represent our range [l, r], as a unification of k

ranges - [l, r] = ∪k
i=1[xi, yi], we can only have k < 2 log n, as the maximum

size of a node’s subrange is n/2.

This argument shows that we will only ever visit O(log n) nodes, proving our

running time proposition.

We can reach the desired worst case of ∼ 2 log n for a tree of range [1, 2n] and

a range update for [2, 2n − 1].

Theorem. 5.4.2 (Lazy Sum). The running time of algorithm 3 is O(log n) all

ranges [l, r].

The proof is identical to that of the lazy multiplication, where we only look at

the top level nodes.
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Algorithm 3 Segment Tree - Lazy Sum
1: function LazySum(Segment Tree Node node, int l, int r)
2: # Returns the sum of the part of the range [l, r] in node
3: # Time complexity = O(log n)
4: if node.low > r or node.high < l then
5: # No intersection
6: return 0
7: elseif node.low ≥ l and node.high ≤ r then
8: # Fully contained
9: return node.sum

10: else
11: LazyMultiply(node.left, node.low, node.high, node.mult)
12: LazyMultiply(node.right, node.low, node.high, node.mult)
13: node.mult = 1
14: return LazySum(node.left, l, r) + LazySum(node.right, l, r)
15: end if
16: end function

5.4.2 Lazy Attach

To utilize the previous algorithms for a 2-D structure, we have to make certain

modifications.

We first create a segment tree for each row and then group them together

in groups of size
√
n. For each group, create a parent segment tree, with the

same metadata, except that for each node, store the parent.sum =
∑

i∈rows

row.sum. The parent tree stores the aggregate information across all rows,

which allows us to do range queries across the whole group in O(log n).

It is vital to note that this is only for the whole group and not a subset of

the group. To query for a subset of the group, we have to go to each individual

row and query its segment tree. Due to the fact that each group is of size
√
n,
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we are guaranteed that each operations only touches a maximum of
√
n groups,

out of which only two groups need to ever do individual row updates, as show in

algorithm 4.

Algorithm 4 Preferential Attachment on a Digraph
1: function PreferentialAttach(Digraph G, Segment X, Weight k)
2: # Modifies G in place by attaching the 2-D segment X = [a, b]× [c, d]
3: # Time complexity = O(

√
n log n)

4: for Ti ∈ [1,
√
n]

5: LazyMultiply(Ti.root, 1, n, 1− k)
6: end for
7: for Ti ∈ [a, b]
8: # These trees are fully inside the range and can be updated as a

group
9: LazyMultiply(Ti.root, c, d, k)

10: end for
11: for boundary trees Ta and Tb

12: # These two trees have partial intersection with the range [a, b] and
must be updated manually

13: # Each individual row is also represented as a segment tree
14: for Ri ∈ Ta, Tb and i ∈ [a, b]
15: LazyMultiply(Ri.root, c, d, 2)
16: end for
17: end for
18: end function

Real World Optimizations

There are some factors that can be considered for optimizations.

• If it is known that segment sizes to be updated are within a certain bounded

width w, then it is possible to create segment groups of size w instead of
√
n, this implies, that there will only ever be O(w log n) maximum time.
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• For really small width segments, it can also be possible to use data struc-

tures such as a Quad Tree or a k-D tree.

• If working with large segments, but a small number of such segments, it is

beneficial to look at binary space partition (BSP) trees and pre-partition

segments into non intersecting parts. This can quickly become complex,

with a growth in number of segments. BSPs are used in computer vision

to do segmentation, which allows us to use highly optimized implementa-

tions, if such a scenarios is feasible.

5.5 Learning and Inference

Sampling of a digraphon is done by the Chinese Restaurant Process(CRP),

which is a staple tool to model the Dirichlet distribution119,90. The CRP pro-

cess aims to model how people are assigned tables when sitting at a shared seat-

ing restaurant. With higher probability, people wish to sit next to others for a

more pleasant experience, while with a lower probability, they wish to get a new

table. This is formalized as follows.

Let α ∈ (0, 1) be a hyperparameter. At any point of time n, let us have k

groups of size [g1, . . . , gk], which are a partition of [1, . . . , n]. At time n + 1, we

wish to assign a group to the element n+ 1 which is done as follows:

• With probability (1−α)|gi|
n+1

, n+ 1 is assigned to group i.

• With probability α
n+1

, n+ 1 is assigned to a new group gk+1
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As we scale n → ∞, we achieve a distribution of the set N, which is the

Dirichlet distribution with scaling parameter α. The CRP representation is very

useful convenient when performing finite sampling and parameter estimation.

Another advantage of the CRP representation is the ease of computation and

the fast simulations, which are important for larger models.

5.5.1 Sampling a Digraphon

Similar to Bayesian statistical models, we need a generative model for a di-

graphon to be able to get insights using parameter estimation. The most com-

mon generative models used are the Dirichlet prior, which do leverage using the

CRP model.

Let α be the hyper parameter affecting the CRP model to get the clustering

assignment of the vertices and let β be another hyper parameter for the stan-

dard Dirichlet process, such as the gamma representation.

The generative model for the digraphon is as follows, where we generate a

digraph on n vertices:

1. Draw clustering assignments, ζ, for each vertex,

ζ ∼ CRP (α)

2. Draw weights for the edges, for each pair of groups r 6= s

ηr,s|β ∼ Dirichlet(β)
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3. Set the edge using the measure of the partition

Gij = Categorical(ηζi,ζj)

We see that this is an exchangeable process as well, as the clustering assign-

ments are generated irrespective of the actual labels of the vertices. This rea-

soning implies that as the number of vertices n → ∞, the generated digraph

converges to the digraphon.

5.5.2 MAP inference

Let G be the final digraph generated from the digraphon generative model. Our

aim is to infer the weights ηr,s.

The likelihood that G is sampled is given by

Pr(G|ζ) =
∏
r 6=s

(ζr,s)
mr,s

where mr,s denotes the number of edges from cluster r to cluster s and we

assume no self loops for simplicity.

Pr(ζ|α) =
∏

r 6=s(ζr,s)
(α−1)

B(α)

where B(ω) =
∏

i Γ(ωi)

Γ(
∑

i ωi)
is the multivariate beta function.
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Pr(G|α) =
∫

Pr(G|ζ) · Pr(ζ|α)

=

∫ ∏
r 6=s(ζr,s)

mr,s
∏

r 6=s(ζr,s)
(α−1)

B(α)

=
1

B(α)

∏
r 6=s

∫
ζmr,s+α−1
r,s dζr,s

=
1

B(α)

∏
r 6=s

B(mr,s + α)

We can remove the constant 1
B(α)

and maximize the negative log likelihood∑
r 6=s logB(mr,s + α) at

ζr,s =
mr,s + α(

n

2

)
· α +

∑
r 6=s

mr,s

5.6 Discussion

As final concluding remarks, we have seen how to use digraphons as generative

models for directed graphs for evolutionary models. We have further developed

a robust modeling data structure for fast simulations which is easily extendable

for other evolutionary mechanisms, as the data structure allows for generic oper-

ations which can be used for other world models. This opens up further testing

grounds for hypothesis checking by comparing simulations to real world dynam-

ics.

There are many extensions that have yet to be explored using the theory of
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digraphons, of which an important one is the use of the various distance metrics

on the digraphon space. There are many metrics, such as the ones induced by

the Lp norm , nuclear norm, and the more interesting cut-distance, which are

used. Some of the more interesting questions are presented below.

(1) Can we use the metric on the digraphon space to measure similarity of

models for two distinct populations?

An example of such a scenario would be, given data for two distinct popula-

tions, we wish to know if they have evolved from a common ancestor popula-

tion. If so, how far back did they diverge? Can we quantify the divergence of

populations? Even more thoroughly, can we find the evolutionary pathway used

by the populations to reach the current state?

(2) Do the metrics induce a EM-type convergence for learning algorithms?

Given multi-dimensional data for a population, we wish to stratify it into sub-

populations with individuals having a similar evolutionary patterns. This prob-

lem is reminiscent of k-means clustering where we wish to use the digraphon

metric to perform the clustering. There has been extensive work in the analysis

of Euclidean norms for showing convergence (if only to a local minima for the

error function), which would be important to translate to the digraphon spaces.

The work by Lovász, et al.,89 has shown many convergence results which may

be helpful for such scenarios.
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6
Conclusions and Extensions
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In this thesis, we established a general pipeline to use of topology and geome-

try as tools for understanding and analyzing high dimensional point cloud data

for evolving populations, using persistence homology and limit digraphons. We

further showed a simple learning model for digraphons using Dirichlet processes

and gave an efficient implementation to model large evolutionary populations.

Our goal was to create an intuitive and reusable pipeline for leveraging rigorous

mathematical tools to gain insights into biological mechanisms. As a case study,

we implemented these techniques and used them in the context of language evo-

lution and cancer progression.

Our pipelines use the inherent geometric nature of point clouds to analyze

relationships between populations clusters. Most current models only analyze

similarities between individuals, while we are working at a higher level to under-

stand the relationships between populations. In particular, we also look at the

temporal nature of the point cloud data to understand how two different popu-

lations are evolving.

The current work in using topological metrics and geometric embeddings is

very rudimentary and has a multitude of avenues yet unexplored. We present

some of the more important questions below with our current insights and hy-

pothesized steps to tackle the problems.

1. Given the temporal point cloud data of an evolving population, where it

consists of multiple (unknown) communities, can we recreate the commu-

nities?

This question naturally arises in terms of cancer progressions models.
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Given temporal data for a cancer type, can we find the cancer subtypes?

This is a very important question hitherto left unanswered. Recreating

cancer subtypes is currently done using phenotype information and impor-

tant genetic information is lost in the translation. In chapter 4, we showed

how to use transfer learning to great effect to boost information content

of ‘similar’ cancers. This prompts us to theorize that a k-means type

learning algorithm, where we use the agony distance or the cut distance

for clustering may produce similar results. As an example of adapting the

classical k-means to the agony distance, we present algorithm 5 which we

hope to use for reconstructing the unknown clusters.

Algorithm 5 Probabilistic K-means with Agony
function Agony-k-means(Dataset D, Int k)

# k is a hyperparameter for number of clusters
Π0 = initial partition D into k random sets
for t = 0 to max iterations (or no change)

# Similar to centroid calculation, we calculate the SBCN of each
cluster

Gt
i = SBCN(Πt

i) ∀ 1 ≤ i ≤ k
# Recalculate log-likelihood of each point for all SBCNs
# and reassign point to cluster with highest LL
Πt+1(j) = argmax

1≤i≤k
LL(Dj|Gt

i) ∀ 1 ≤ j ≤ |D|

end for
end function

2. Can we use the digraphon models to find the divergent points for two

populations? Can we do early predictions of events using the Digraphons/SBCNs?

This problem arises in terms of finding cancer subtypes, where we wish

to have a robust knowledge of different subtypes. We discussed how to
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reconstruct subtypes, which themselves are important for personalized

medicine. Knowing the full trajectories of cancer types and their divergent

branches, informs us about the temporal parameters yet to be taken into

account.

3. Can we reconstruct the topology of the fitness landscape based on the

paths of the populations? Can we identify key bottlenecks in traversing

the landscape?

Our setting of using an evolutionary population is a rich playground for

using ideas related to the mapping of the landscape. The topology of the

landscape is dynamic, due to the diverse and ever changing nature of the

environment, population individuals, change in both genotypic and phe-

notypic information. Such problems force us to only do small scale models

as full computational simulations are very expensive. Our work on the

digraphon model implementation allows us to circumvent a few of these

problems, yet many still remain unsolved.

Some important points worth noting about the landscape which have di-

rect translations to topological terms include the notion of a (a) saddle

point, where our populations halt for an extended period of time and (b)

evolutionary bottlenecks, where the population has reached a local minima

and needs a certain threshold of variance before it starts to re-evolve. An-

other interesting extension is the tying of pheontypic information to the

bottleneck points in the landscape by using the topological information of

the evolutionary paths manifested by our sample population.
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4. In the context of the Bayesian echo chamber, given a population, is it pos-

sible to identify individuals with high ‘influence’ and ‘information flow’?

Can we identify ‘trending’ topics? Knowing such information, how easy

is it to manipulate the network to make artificial information flow? Can

we identify if there has been artificial tampering with the information net-

work?

Information flow in social networks is a very important topic due to the

prevalence of large online social communities with very low moderation

and high participation. Such scenarios lead to the spread of ‘fake news’

and more grossly incorrect information, which is not vetted by any au-

thoritative third party.

Given many of the open problems above, there is ample space to expand

upon the use of these topological and geometric tools to further the study of

evolutionary models. Topological and geometric tools are still new to the field

of machine learning, with manifold learning being the closest technique in simi-

larity. The tools developed in this thesis venture to show a general and usable

pipeline robust enough for most applications and fast enough for large scale

simulations. Our belief is that these tools will help us get a more human read-

able information from these models and develop an explainable AI as opposed

to the multitude of black box learning which is currently prevalent.
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Appendix A - Persistence Homology

In this appendix we detail the mathematial foundations and algorithms for cal-

culating persistence homology.

Persistence

First we start with algebraically defining a simplex.

Definition. 20.—Given a set T = {a0, · · · , ak} of affinely independent points

in Rn, a k-simplex, denoted by σT , is the convex-hull of T . The simplices σU ,

U ⊂ T are called the faces of T . k is called the dimension of σT .

We first define an orientation of95 a simplex σ = {a0, · · · , ap} is the equiva-

lence class of permutations which have the same sign.

Given a simplicial complex K, let Cp be the free group generated by the set

of oriented p-simplices of K, with [α] = −[β] if α and β are the same simplex

with opposite orientations.

Hence Cp =

{∑
i

niαi | αi ∈ K, dim(αi) = p

}
, is a free group.
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We have a homomorphism δp : Cp → Cp−1 which is defined on the generators

as

δ([a0, · · · , ap]) =
p∑

i=0

(−1)i[a0, · · · , ai−1, ai+1, · · · , ap]

This is called the boundary operator as it sends each simplex to a sum of its

faces.

It has the property that δp−1δp = 0.

We define subgroups of Cp which will be used to define the homology groups.

Let Zp = Ker(δp) be the p-cycle group and Bp = Im(δp+1) be the p-boundary

group.

Due to the previous observation we have that Bp ⊆ Zp ⊆ Cp.

We define the p-homology group as Hp = Zp/Bp. We can change the base

ring of computations R (which as of now is Z) to define Cp as a module over

this ring instead of a free group. This allows us to define the homology groups

over non-trivial rings.

If the base ring is a PID then the structure theorem of modules over PID (a

generalization of the structure theorem for finite abelian groups) gives us the

composition of the module.

Over a field of the kind R,C,Zp, this module does not have a torsion com-

ponent and is instead a vector space, which is fully described by its rank, βp,

which is called the p-th betti number of K.

We can calculate the homology of a simplicial complex by representing the

boundary operator as a matrix and calculating the rank of the operator.

Represent δp in the standard bases of Cp, Cp−1 as a matrix Mp of order rp−1 ×
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rp. The null space of Mp is Zp and the image space is Bp−1. If we can calculate

rank of Zp and Bp−1 for all p, we have βp = rank(Zp)− rank(Bp).

Using elementary row(column) operations of the form

• exchange row(column) i and j

• multiply row(column) i by −1

• replace row(column) i by i+ q · j(column) (i 6= j)

we can reduce Mp to its Smith normal form



a1

. . . 0

alp

0 0


where ai ≥ 1, ai|ai+1.

Here we have that rank(Mp) = lp = rank(Bp−1) and rank(Zp) = rp− lp. Hence

βp = rp − lp − lp+1. This reduction can be done in O(n3) time (n p-simplices

in K), hence we can find all the homologies of a simplicial complex in O(m3)

where we have m simplices in K (a gross over estimate).

Definition. 21.—Given a set T = {a0, · · · , ak} in R[n] the ε-Vietoris-Rips

complex of T , denoted by V Rε(T ) is defined as

{U ⊂ T | d(ai, aj) ≤ ε ∀ ai, aj ∈ U}
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We see that if ε < ε′ then V Rε(T ) ⊂ V Rε′(T ). This gives us a filtration with

varying values of ε. Also note that at a large value of ε the complex does not

change as it is consists of all possible subsets of T .

Definition. 22.—Given an open cover of S, U = {Ui}i∈I , the nerve of U de-

noted by N , is given by

1. φ ∈ N .

2. if ∩j∈JUJ 6= φ, then J ∈ N .

A cover is called good if all the sets ∩j∈JUj, where J is finite, are contractible.

Lemma. 6.0.1. The underlying space of the nerve of a good cover is homotopy

equivalent to the union of the sets in the cover.

Definition. 23.—A filtered simplicial complex is a chain of subcomplexes

φ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K

Given a filtered simplicial complex we have a chain of homology groups

0 = Hp(K0) → Hp(K1) → · · · → Hp(Kn) = Hp(K)

for each dimension p, induced by the inclusion from Ki → Kj for i ≤ j.

Call the maps f i,j
p : Hp(Ki) → Hp(Kj).

Definition. 24.—The p-persistent homology groups H i,j
p = Im(f i,j

p ), the

images of the homomorphisms. The p-persistent Betti numbers are the ranks

of the corresponding homology groups, βi,j
p = Rank(H i,j

p ).
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Figure 6.1: Ck
d represents the d‐dimensional chain complex of the k’th persistence module in our filtration. In

the iterative growth setting, each column represents the state of the current simplicial complex at a designated
radius. As we are growing our complex, one step at a time, each simplicial complex is contained inside the one
succeeding it, giving rise to the natural inclusion maps, which we can use in lieu of the morphisms fk .

Definition. 25.—A persistence complex C is a chain of complexes {Ci
∗}i≥0 over

a ring R, e.g. fig. 6.1,

C0
∗ C1

∗ · · ·f0 f1

Definition. 26.—A persistence module is a chain of R modules

M0 M1 · · ·φ0 φ1

Definition. 27.—A persistence complex (module) is of finite type if each com-

ponent complex (module) is a finitely generated R module and the maps f i (φi)

are isomorphisms for i ≥ m for some m.
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Definition. 28.—A P-interval is an ordered pair (i, j), 0 ≤ i < j ∈ Z∞ =

Z ∪ {∞}

Lemma. 6.0.2. There is an equivalence of categories between the category of

finitely generated non-negatively graded R[t] modules and the category of per-

sistence modules of finite type over R.

Lemma. 6.0.3. There is an equivalence of categories between the category of

finite sets of P-intervals and the category of finitely generated non-negatively

graded R[t] modules.

These representation allows us to translate the homology groups from mod-

ules over R[t] to P-intervals. Hence we can restructure our problem to finding

the P-intervals of a given persistence complex.

We shall use the following simplicial complex as an example and do the com-

putations over Z2.

Let αi, βi be the standard bases for Ck and Ck−1 We assign degrees to each

simplex in the complex which represent the time at which this simplex came

into the complex. The persistence complex we are dealing with has the follow-

ing degrees

a b c d ab bc ac bd ad abc abd

0 0 1 1 1 2 2 2 2 3 4

The representation of the boundary matrix of δk, say Mk, is characterized by

having

deg(βi) + deg(Mk[i, j]) = deg(αj)
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Here we have

M1 =



ab bc ac bd ad

d 0 0 0 t t

c 0 t t 0 0

b t t2 0 t2 0

a t 0 t2 0 t2


(6.1)

To calculate the homology of the persistence complex we need to first repre-

sent the boundary matrix relative to the bases of Ck and Zk−1 and reducing the

matrix to a column echelon form. We find the representation of the matrix in-

ductively as follows. For the base case we have the standard representation of

M1, as shown above. Now suppose we have a representation Mk of δk relative to

the standard basis {αi} of Ck and a homogeneous basis {βi} of Zk−1. What we

want is a homogeneous basis of Zk and to represent δk+1 relative to this basis.

First we sort βi in reverse order of degree, as above. Then reduce Mk to col-

umn echelon form M̃k, as shown.



λ11 0 . . . 0

λ22 0 . . . 0

... ... ... ...

λij 0 · · · 0

... 0


Every λij represents a pivot and the corresponding row(column) is a pivot

row(column). The basis elements for non-pivot columns are the desired basis
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of Zk, in our case after reducing to column echelon form we have that

M̃1 =



bd bc ab z1 z2

d t 0 0 0 0

c 0 t 0 0 0

b t2 t2 t 0 0

a 0 0 t 0 0


(6.2)

where z1 = ac− bc− t · ab and z2 = ad− bd− t · ab.

We can get the column echelon form by using elementary column operations

similar to the ones in Gaussian elimination.

Lemma. 6.0.4. The pivots in the column echelon form are the same as the di-

agonal elements in the normal form. Moreover, the degree of the basis elements

on pivot rows is the same in both forms.

What we want from this is the following corollary which tells us how to get

the P-intervals from the description of the matrix.

Corollary..—Let M̃k be the column echelon form for δk relative to the bases

αi of Ck and βi of Zk−1. If row i has pivot tn, then it contributes a P-interval

(deg(βi), deg(βi) + n), else it gives (deg(βi),∞), in the description of Hk−1.

In our case we have M̃1[2, 2] = t the element contributes a P-interval (1, 2) to

H0.

So to represent δk+1 in terms of the homogeneous basis that we have for Zk

we first make a few observations. We have that MkMk+1 = 0 as δkδk+1 = 0.
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As we have only performed column operations on Mk to get M̃k we have that

M̃kMk+1 = 0. We see that we can get the basis representation by removing the

rows of Mk+1 which correspond to non-zero pivot columns in M̃k.

Lemma. 6.0.5. To represent δk+1 relative to the bases of Ck+1 and Zk, we

delete the rows corresponding to non-zero pivot columns in M̃k.

The second boundary map, for δ2 is

M2 =



abc abd

bc t 0

ad 0 t2

ac t 0

bd 0 t2

ab t2 t3


(6.3)

To represent it in terms of Z2 we need to remove the last three rows to get

M̃2 =


abc abd

z1 t 0

z2 0 t2

 (6.4)

Which is the representation that we need.
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