
An Explicit Certified Method for Path Planning for an SE(3) Robot

by

Zhaoqi Zhang

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January, 2025

Chee Yap

© Zhaoqi Zhang

All Rights Reserved, 2025

Acknowledgements

I would like to thank my advisor, Chee Yap, for his full support and invaluable help with my

project. He conceived the SSS framework 10 years ago and has continuously developed the theory until

my generation. He provided tremendous assistance in formalizing the boundary reduction methods and

gave extensive feedback to improve my English writing. He also coined precise and effective terminologies

for my new concepts, which greatly aided me in explaining my ideas.

I am also deeply grateful to all the professors on my Ph.D. defense committee, in addition to Professor

Chee Yap, including Professors Yi-Jen Chiang, Jingjin Yu, Daniele Panozzo, Anirudh Sivaraman, Dan

Halperin, and David Xianfeng Gu. Professor Chiang collaborated with Professor Yap and me on the

Delta robot path-planning project. His insights into computer graphics led to the development of the

principal neighbor data structure, which plays a key role in accelerating the soft subdivision search.

Professor Panozzo introduced me to the libigl library, on which I based all my graphical work. Professor

Gu provided me with deeper insights into computational geometry and offered opportunities to present

the SSS framework to the academic community.

I also want to express my heartfelt gratitude to my family and friends who supported me throughout

my Ph.D. journey. My partner, Y. L., accompanied me through countless days and nights in the U.S.,

offering unwavering emotional support. My undergraduate friend, Xiaohan Yan, who pursues a career

in theoretical mathematics, inspired me with discussions on Poincaré’s duality, which contributed to the

understanding of channel existence in the SSS framework. Finally, I want to thank my parents for their

unwavering support, which enabled me to complete my Ph.D. degree.

iii

Abstract

The design and implementation of theoretically-sound robot motion planning algorithms is challenging,

especially for robots with high degrees of freedom (DOF). This thesis presents an explicit, practical and

certified path planner for a rigid spatial robot with 6 DOFs. The robot is a spatial triangle moving

amidst polyhedral obstacles. Correct, complete and practical path planners for such a robot has never

been achieved. It is widely recognized as a key challenge in robotics. We design such a planner by using

the Soft Subdivision Search (SSS) framework, based on the twin foundations of ε-exactness and soft

predicates. This SSS planner is a theoretical alternative to the standard exact algorithms, and provides

much stronger guarantees than probabilistic or sampling algorithms.

In this thesis, we address technical challenges for the SE(3) robot. First, we establish the founda-

tional theory of SSS framework by proving a general form of the Fundamental Theorem of SSS. Second,

we introduce a topologically correct data structure for non-Euclidean path planning in the SE(3) space.

Third, we analyze the distortion bound of the SE(3) representation. Fourth, we design an approximate

footprint and combine it with the highly efficient feature set technique which leads to its soft predicate.

Finally, we explicitly design the geometric primitives to avoid using a general solver of a polynomial

system. This allows a direct implementation. These contributions represent a robust, practical, and

adaptable solution to robot motion planning.

Keywords— Algorithmic Motion Planning, Subdivision Methods, Resolution-Exact Algorithms,

Soft Predicates, Spatial 6 DOF Robots, Soft Subdivision Search.

iv

Table of Contents

Acknowledgements iii

Abstract iv

List of Figures viii

List of Tables x

List of Appendices xi

1 Introduction to Path Planning and the SSS framework 1

1.1 Preface . 1

1.2 Basic Concepts in Motion Planning and Notations . 4

1.3 Review of Kinematic Motion Planning . 7

1.4 On the SSS Framework . 10

2 SSS Axioms and Fundamental Theorem 14

2.1 SSS Framework Formalization . 14

2.1.1 Lipschitz Continuous . 15

2.1.2 Representation Distortion . 15

2.1.3 Translational Boxes . 16

2.1.4 Effectiveness of Predicates . 18

v

2.2 SSS Axioms and the Fundamental Theorem . 21

2.2.1 SSS Axioms . 21

2.2.2 Fundamental Theorem of SSS . 22

2.2.3 Proof of Resolution Exactness . 23

3 Distortion Bounds for Representations 28

3.1 Representation of SE(3) Configuration Space . 28

3.2 On the Method of Distortion Bound . 30

3.2.1 Distortion Bound for µ2 . 30

3.2.2 Distortion Bound for µ3 . 32

3.3 Atlas Constant for an SE(3) Cspace . 34

3.3.1 Review of SO(3) . 35

3.3.2 Distortion Bound for SE(3) . 37

4 Delta Footprints and Approximations 38

4.1 Delta Exact Footprint . 38

4.1.1 Lipschitz Constant for Delta Fp . 39

4.1.2 Exact Footprint for a Box . 41

4.2 Delta Approximate Footprint . 43

4.2.1 SO(3) approximate footprint . 43

4.2.2 SE(3) approximate footprint . 44

4.2.3 σ-effectiveness of F̃p for Delta footprint . 46

5 Explicit Parameterized Collision Detection 49

5.1 On the Σ2 Decomposition Technique . 50

5.1.1 Σ2 decomposition for F̃p(B) . 50

5.1.2 Σ2 double loop . 52

vi

5.2 Boundary Reduction and Parametric Query . 54

5.3 Explicit Collision Detection for Delta robot . 57

6 Delta Subdivision Scheme and Box Adjacency 62

6.1 Subdivision Scheme . 62

6.1.1 Subdivision Tree . 62

6.1.2 Subdivision Scheme for the Delta Robot . 65

6.2 Data Structure Maintaining Adjacency of Boxes . 68

6.2.1 Reverse of Direction . 68

6.2.2 d-neighbor . 69

6.2.3 Principal d-neighbor . 72

6.2.4 Product Tree . 74

7 Conclusion and Future Plan 76

7.1 Resolution Constant of the Delta Robot . 76

7.2 Performance Analysis . 77

7.3 Future Work . 78

Appendices 80

Bibliography 133

vii

List of Figures

1.1 The canonical placement of the Delta robot. 5

1.2 Footprints that form a path connecting two placements avoiding obstacles. 5

1.3 Square Cspace of disc robot with Ω be the two blue line segments. The green area represents

Cfree, and the red area represents Cstuck . 9

2.1 Translational maps in SSS framework. 19

3.1 The representation µr : ŜO(3)→ SO(3). 29

4.1 Compute clusters. 43

4.2 Construct ball approximations. 43

4.3 Make convex hull. 43

4.4 Degenerate case. 45

5.1 The balls. 52

5.2 The cylinder. 52

5.3 The frustums. 52

5.4 The pyramid. 52

5.5 The F̃p(B). 52

5.6 CAD method for maintaining intersection J . 53

5.7 The ice-cream cone icc(v,o, R) . 58

viii

5.8 When w(Br) ≥ 1, F̃p(Br) is degenerated. 61

7.1 Performance of the algorithm (Demo). 78

A.1 A homothet of a tile. 85

A.2 Aspect ratio in Lemma A.3.2 . 85

B.1 A plane cutting B, C and
√
B through a diagonal if C. 93

B.2 The 2D shapes on the cut plane. 93

B.3 Orange area is U1. 97

B.4 Image of U1 in R2 . 97

D.1 Construction of Π1 expression for the cylinder. 108

D.2 Construction of Π1 expression for the frustum. 108

D.3 Construction of corners of the pyramid. 109

D.4 Construction of the pyramid. 109

D.5 The case when f ∩ TC ̸= ∅ but f ∩ ∂TC = ∅. 120

F.1 Demo Performances of the “GuardedHole”, “TwoTurn” and “Blocked” senarios. 128

F.2 Front view of the Blocked (BL) scene. 129

F.3 Back view of the Blocked (BL) scene. 129

F.4 Front view of the TwoTurn (TT) scene. 130

F.5 Back view of the TwoTurn (TT) scene. 130

F.6 Front view of the GuardedHole (GH) scene. 131

F.7 Back view of the GuardedHole (GH) scene. 131

ix

List of Tables

E.1 Table between C1 and C2 (Cw and Cx) . 122

E.2 Table between C1 and C3 (Cw and Cy) . 123

E.3 Table between C1 and C4 (Cw and Cz) . 123

E.4 Table between C2 and C3 (Cx and Cy) . 124

E.5 Table between C2 and C4 (Cx and Cz) . 124

E.6 Table between C3 and C4 (Cy and Cz) . 125

F.1 Data of the “Blocked” scene. 129

F.2 Data of the “TwoTurn” scene. 130

F.3 Data of the “GuardedHole” scene. 131

x

List of Appendices

A Configuration Space, Physical Space, and SSS framework 80

A.1 Triangle Inequality . 80

A.2 Manifold Structure in Configuration Space . 81

A.3 Structure of Boxes . 85

A.4 Linear Physical Space . 86

A.5 Effective Conditions . 88

A.6 Translational Lemma for More Accurate Resolution . 89

B Differential Geometry and Distortion Bound Problems 92

B.1 An Error Related to Rod and Ring Robots . 92

B.2 Review of Differentiable Manifold . 94

B.3 Riemannian Manifold and Distortion . 98

B.4 Distortion Bounds for a General Class . 101

B.5 Distortion Bound for Diffeomorphism from RP3 to SO(3) 103

C Exact Footprints for Line Segments 105

D Semi-Algebraic Expressions, Linear Approximations and Solid Method 107

D.1 Semi-algebraic Expressions for Π1 Components in F̃p(B) 107

D.2 Linear Approximation for Planar Semi-Quadratic Sets . 109

xi

D.3 Solid Method for Delta Robot . 117

E Explicit Subdivision Methods 121

E.1 How to Achieve the Inheritance Property without F̃p(B) ⊆ F̃p(parent(B)) 121

E.2 Table of Indicator Flips . 122

E.3 Tree-Path Indicator . 125

F Experimental Results 128

xii

Chapter 1

Introduction to Path Planning and the SSS framework

1.1 Preface

The history of motion planning is more than 40 years [36, 12] and continues as an ever-growing re-

search field to the present. The popularity of motion planners is rising with the growing accessibility

of inexpensive commercial robots, including autonomous mobile cleaners and package-delivery drones.

Theoretically, motion planning is a broad field with numerous factors to consider, such as dynamic con-

straints involving forces, velocity, etc., and kinematic constraints related to robot geometry. However,

the core problem is to plan a path for a robot to move from start positions to target positions [25] while

navigating restrictions, such as external obstacles and internal constraints [55].

In this thesis, we will focus on the kinematic constraints only, which is also named as ”Piano Mover’s

Problem” [30]. We concentrate on path planning, which in its elemental form involves finding a collision-

free path from a starting position to a goal position for the robot, given a known map of the environment.

Numerous methodologies for path planning are extensively documented in the literature. Essentially,

there are three main approaches: Exact, Sampling and Subdivision [65]. The research of this thesis will

be based on the subdivision approach.

Exact path planning approaches have been studied since the 1980s [27], and is reduced to the problem

1

of checking connectivity of semi-algebraic sets (e.g., [17]). The output of an exact path planner is either a

robot motion, or a NO-PATH indicator if no path exists. Naively, exact computation means to implement

each step of a mathematically correct algorithm exactly. This would imply (for path planning) that

each step must be computed using algebraic number operations (arithmetic operations, root extraction,

etc) such as the Cylindrical Algebraic Decomposition (CAD) [7]. Unfortunately, such approaches

including CAD are impractical. Even in simpler cases, correct implementations are rare for two reasons:

it requires exact algebraic number computation and has numerous degenerate conditions (even in the

plane) that are hard to enumerate or detect, e.g. [18]. There is a framework called Exact Geometric

Computation (EGC) [54] that deals with this issue. Ultimately, it is to decide the sign of a numerical

quantity x, where x might represent the minimum distance from the path to obstacles and we need x

to be positive. This problem can be reduced to the “Zero Problem”, which is to decide if x = 0. It can

be supported by “EGC Number types” such as [61] or [38]. But in the worst case, it is exponentially

expensive [7, 50].

During the last 30 years, practical path planning algorithms have flourished using the Sampling

Approach. A standard textbook [15, p.201] describes the dominance of Sampling Approach in this area:

“PRM, EST, RRT, SRT, and their variants have changed the way path planning is performed for high-

dimensional robots. They have also paved the way for the development of planners for problems beyond

basic path planning.” Typically, such algorithms use a sampling function to pick samples and check

whether the samples are valid in the environment or not. They use local planners to connect nearby

samples, which grow a graph or a tree respectively by different sampling methods. People in this area

call the discrete graph constructed from the samples a road map. The path-finding is reduced to finding

a path in this graph [48]. Such algorithms face many issues such as how many sample points to take

(before declaring that there is NO-PATH), and even when a path is found, the edges in the graph (given

by local planners) are not guaranteed to be valid [48].

The origins of the Subdivision Approach can be traced to the early days of algorithmic robotics

2

[13, 68]. The approach of this thesis aligns with this approach. However, a new theoretical foundation

is required. The new foundation is based on the interval method [40] and the concept of ε-exactness

[58]. The interval idea, where guarantees for numerical approximations are needed [41], is encoded in the

concept of soft predicates [56]. The ε-exactness approach avoids the “Zero Problem” that afflicts all exact

geometric algorithms. Both of the two concepts that are mentioned above have significant implications

for computational geometry, given that all exact algorithms inherently encounter Zero Problems.

Based on the soft predicates and ε-exactness, the Soft Subdivision Search (SSS) framework for

path planning was formulated as a general framework [59]. There is a series of papers that shows the

implementability and practices of SSS planners [59, 58, 24, 66, 23]. They included planar fat robots

[24] and complex robots [66], as well as spatial 5-DOF robots (rod and ring) [23]. The implementations

on rod and ring robots are the first rigorous and complete planner for 5-DOF spatial robots. In each

case, experimental results demonstrated that SSS planners meet or exceed the performance of leading

sampling algorithms [23]. This outcome is unexpected, given the much stronger theoretical guarantees of

SSS, including its capability to decide NO-PATH.

In this thesis, we will review the SSS framework and rigorously complete the proof of the Resolution-

Exact SSS theorem in [59]. Then we will design a complete, rigorous and practical planner for an

SE(3) = R3 × SO(3) robot. Such a planner is a well-known challenge of path planning. Like similar

challenges in the past (rod for SE(2) and in R3 × S2), we choose a simple SE(3) robot to demonstrate

the principles. The robot is a planar isosceles right triangle AOB in R3, a.k.a. Delta robot. Note that

our Delta robot is not the industrial Delta robot with the four-bar linkage structure.

The structure of this paper will be as follows: in Chapter 1, we clarify the basic concepts and notions,

review the literature on the kinematic motion planning problem, and state the SSS framework. In Chapter

2, we establish the SSS axiom system and provide a complete proof of resolution-exactness theorem. In

Chapter 3, we establish a systematic method by differential geometry for computing the atlas constant in

the SSS framework. In Chapter 4, we compute the Lipschitz constant of the Delta robot and design the

3

approximate footprint for the Delta robot. In Chapter 5, we review the double loop of collision detections

on Σ2 sets and establish the Boundary Reduction Method as an alternative that fixes a weakness of the

double loop. In Chapter 6, we demonstrate the subdivision scheme and design a product structure for

deciding adjacencies of SE(3) boxes. In Chapter 7, we analyze an accurate resolution constant for the

Delta robot; and summarize the experimental results.

1.2 Basic Concepts in Motion Planning and Notations

The concept of configuration space was first introduced in [36]. Later work defines it variably, depending

on the context of each paper. What we consider important is the placement of the robot on each

configuration, which we formalize with a footprint map. We define the configuration space by the footprint

map for different robots.

Suppose we have a Hausdorff space X and a metric space Z. We define the set of all compact subsets

of Z to be a footprint space, denoted by C(Z). Let the distance function on Z be dZ , a Hausdorff

distance defined on the power set of metric space Z, denoted by dH [49, 10], is defined as

dH(A,B) = max

{
sup
a∈A

inf
b∈B

dZ(a, b), sup
b∈B

inf
a∈A

dZ(b, a)

}
.

As a result, the Hausdorff distance restricted to C(Z) forms a metric. A footprint map is a continuous

map

Fp : X → C(Z) (1.1)

with topology on C(Z) induced by dH. The domain X is called the configuration space, denoted by

X = Cspace. Each point in the configuration space is called a configuration. The metric space Z is

called the physical space.

An example of a footprint map discussed in this thesis is the footprint map for the Delta robot.

The robot is denoted by R0 = △AOB. Suppose the canonical placement of R0 is A = e1 = (1, 0, 0),

B = e2 = (0, 1, 0) and O = 0 = (0, 0, 0). The configuration space for R0 is SE(3) = R3 × SO(3),

4

where we represent points in SE(3) by (x, σ) such that x ∈ R3 is a vector and γ ∈ SO(3) is a rotation

transformation on R3. The footprint map for R0 is

SE(3)→ C(R3)

(x, γ) 7→ {x+ sγ(e1) + tγ(e2) : s, t ∈ [0, 1], s+ t ≤ 1},

see Figure 1.1.

Figure 1.1: The canonical placement of

the Delta robot.

Figure 1.2: Footprints that form a path

connecting two placements avoiding ob-

stacles.

For any subset S ⊆ Cspace, the footprint of the set, still denoted by Fp, is the union of footprints

of all configurations in S, i.e.

Fp(S) =
⋃
γ∈S

Fp(γ).

The obstacle set Ω is a compact subset of the physical space Z. We assume it to be a union of

polyherals. In practice, it is represented by a set of features which forms a partition of ∂Ω. The features

consist of corners (points in R3), edges (line segments connecting corners), and facets (triangles formed

by edges and corners). The feature set is denoted by Φ.

Given two subsets A,B ⊆ Z, the separation between two sets is

Sep(A,B) = inf
a∈A

inf
b∈B

dZ(a, b).

Suppose the obstacle set Ω ⊆ Z. For each configuration γ ∈ Cspace, the clearance of the configuration is

5

the separation between its footprint and the obstacle set, denoted by Cl, i.e.

Cl(γ,Ω) = Sep(Fp(γ),Ω),

or simply written as Cl(γ) if Ω is fixed in the context. If Cl(γ) > 0, then γ is called FREE, otherwise γ

is called STUCK. The set of all FREE configurations is called the free space, denoted by Cfree(R0,Ω).

Sometimes, we denote it by Y, i.e.,

Y = Cfree(R0,Ω) = {γ ∈ X : Cl(γ) > 0}. (1.2)

Similarly, the set of all STUCK configurations is called the stuck space, denoted by

Cstuck(R0,Ω). (1.3)

By a motion of the robot R0, we mean a continuous map π : [0, 1] → Cspace. We identify π with

its image π([0, 1]). The clearance of the motion is the separation between its footprint and the obstacle

set, or equivalently, the infimum of clearances of configurations in the motion, still denoted by Cl, i.e.

Cl(π) = inf
γ∈π

Cl(γ) = Sep(Fp(π),Ω).

The motion is called an Ω-avoiding path (or simply, path) if π(t) ∈ Y for all t ∈ [0, 1].

The (basic) path planning problem for R0 is the following: suppose α, β ∈ Cspace, given (α, β,Ω),

compute an Ω-avoiding path from α to β if one exists, otherwise return NO-PATH. An algorithm solving

this problem is called a path planner.

A path planner is said to be resolution-exact (or ε-exact for short) if there exists some constant

K ≥ 1 that is independent to the input, such that for any input (α, β,Ω, ε), the algorithm halts and

satisfies the following two conditions:

� (P) if there is a path of clearance Kε, it returns a path;

� (N) if there is no path of clearance ε/K, it returns NO-PATH.

6

This was first proposed in [59]. Note that if the largest clearance is between ε/K and Kε, then we

can output either a path or NO-PATH. This is a desirable and unique feature of the resolution-exact

path planners.

At the end of this section, we list some notations and symbols used in this thesis. The origin of

Rk is 0. The unit vector with the i-th component equal to 1 is ei. A ball with radius r and origin o is

Ball(o, r). If o = 0, we simply denote it by Ball(r). A line segment connecting two points p and q is pq.

A path in topology space T , [0, 1]→ T , is always denoted by the letter π. The volume (measure) of a set

S is Vol(S). In this thesis, we will use bold font Latin alphabets like p, q to denote vectors and points

in Rk or Z and use greek letters like γ, ζ to denote points in X or Y.

1.3 Review of Kinematic Motion Planning

LaValle [30] provides a comprehensive overview of path planning, while Halperin [22] offers a general

survey of the topic. An early survey [60] describes two universal approaches to exact path planning: cell

decomposition [51] and the retraction method [44, 47]. Since exact path planning is a semi-algebraic

problem [52], it is reducible to general cylindrical algebraic decomposition techniques [6]. However,

treating path planning as a connectivity problem results in single-exponential time complexity [50].

Planar rod, referred to as the “ladder”, was first examined using cell decomposition in [51]. More

efficient quadratic-time methods, based on the retraction approach, were introduced in [45, 46]. Spatial

rods were initially addressed in [53]. The combinatorial complexity of its free space reaches Ω(n4) in the

worst case, and this is closely approximated by an O(n4+ε) time algorithm [29]. Lee and Choset [32]

present a planner for a 3D rod using the retraction method. Outside of SSS planners, a similar approach

to Lee and Choset’s work can be found in Nowakiewicz [43], who employs subdivision of the Cubic Model.

However, like many subdivision techniques, this method ultimately samples configurations (at the corners

or centers) within subdivision boxes and thus it is actually a sampling method. The results were highly

favorable in comparison to pure sampling techniques (PRM). For sampling-based planners, the main task

7

is determining whether a configuration is free, which is a well-known collision detection problem [35].

The sampling approach originated in 1979 [48] and has dominated the field since then. The history

of sampling methods can be divided into four eras: the pre-sampling era, the sampling-advent era, the

sampling-consolidation era, and the optimality and learning era [48]. Methods in the sampling approach,

such as PRM and RRT (which we will refer to as PRM-like), used to face the halting problem. They

can never confirm NO-PATH in sampling. The earliest work appearing to address the NO-PATH issue

is by Zhu and Latombe [68, 67], whose ”hierarchical framework” shares many features with the SSS

framework. They made a nice observation that if there is no path in the adjacency graph of cells that are

either FREE or MIXED, then it constitutes a proof of NO-PATH. But they still cannot detect NO-PATH.

The non-termination issue persists.

Today, the sampling approach incorporates infeasibility proof techniques to construct a ”wall” that

blocks connectivity between start and goal configurations. An early reference for infeasibility proofs is

Basch et al. [5], who aimed to provide proofs when a robot cannot pass through a ”gate” in a 3D wall.

Later, Zhang et al. [63] offered infeasibility proofs by establishing sufficient criteria for classifying a cell

as STUCK. More recently, Li and Dantam [34] pursued infeasibility proofs through learning and other

methods. Practitioners using sampling approaches combine PRM-like methods with infeasibility proofs,

allowing both ’find path’ and ’find wall’ processes to run concurrently until one halts, returning a path or

declaring NO-PATH. However, both processes require specific input guarantees. For PRM-like methods

to find a path if one exists, the Cfree must be ε-good1 [28]. For infeasibility proofs to declare NO-PATH if

no path exists, the Cstuck must be entirely ε-blocked2 [33]. In general, it is not possible to verify whether

Cfree is ε-good or whether Cstuck is entirely ε-blocked. If the input does not satisfy both conditions, the

processes may again fail to terminate.

1Given input (Cspace,Ω), there is a constant ε > 0 such that, for each point p ∈ Cfree, the ratio between the volume of

points connectable to p by local planners and the volume of Cspace is at least ε.
2Given input (Cspace,Ω), there is a constant ε > 0 such that, for each point p ∈ Cstuck, a closed ball of radius ε centered

at p lies entirely within Cstuck.

8

Figure 1.3: Square Cspace of disc robot with Ω be the two blue

line segments. The green area represents Cfree, and the red

area represents Cstuck

Let us see Example 1.3.1 where a sampling approach combining PRM-like methods with infeasibility

proof fails to halt.

Example 1.3.1. Let the footprint map Fp be defined as

Fp : [−4, 4]2 → C(R2)

x 7→ {y ∈ R2 : |x− y| ≤ 1},

representing a planar disc robot with radius 1. The obstacle is Ω = {(x, y) ∈ R2 : |x| ≥ 1, y = 0}. See

Figure 1.3 for illustrations of Cfree and Cstuck. Note that for any ε > 0, there exists a point p ∈ Cfree

such that, for p on y-axis and |p| < min{ 13ε,
1
4}, the volume Vol(S(p)), as described in [28], is bounded

by (4 − |p|)2 tan(2 arctan |p|) < 48|p| < 16ε (volume of Cspace is 16). Additionally, for any ε > 0, the

point 0 ∈ Cstuck is not ε-blocked, as no ball Ball(0, ε) can be entirely contained within Cstuck. Therefore,

Cfree is not ε-good, and Cstuck is not entirely ε-blocked. Thus, the sampling approach would never halt.

The theory of soft subdivision search is the first complete theory of path planning to resolve this

halting issue in non-exact planners. The following series of papers demonstrate that this theory leads to

implementable algorithms whose efficiency beats the state-of-the-art sampling methods, up to 5 DOF:

[58, 56, 24, 66, 23]. This thesis extends these approaches to 6 DOF with SE(3) configuration space,

9

providing considerable efficiency for general cases and offering strong potential for real-time applications

with appropriate heuristics. This represents the first implementation for such a class of robots that is

complete, explicit, and resolves the halting issue.

1.4 On the SSS Framework

The SSS framework is based on the technique of soft predicate and classification on boxes. A tile space

is W:=Rd, where the SSS algorithm operates on tiles in W, where d ≥ 1 is at least the degree of freedom

(DOF) of our robot. For SE(3), d = 7 (not d = 6) because we immerse SO(3) in R4 to achieve the

correct topology of SO(3). We call a surjective local homeomorphism map µ :W → X a representation

of X by W, which requires an atlas on W such that

1. µ restricted to each coordinate chart in the atlas is a homeomorphism;

2. µ−1 is an embedding from X to W restricted to each chart in the atlas.

Along the representation µ, each configuration γ ∈ X will be represented by one of the preimages in

µ−1(γ). We denote the domain of the representation by

B0 = dom(µ). (1.4)

The reason why we use a tile space to compute is that dom(µ) can be decomposed into a union of

tiles, where subdivision can be carried out using tiles. A tile is a d-dimensional, compact, and convex

polytope of Rd. For each tile B0, a subdivision of B0 is a finite set of tiles {B1, . . . , Bm} such that

B0 = ∪mi=1Bi and dim(Bi ∩Bj) < d for all i ̸= j.

General tiles are beyond the present scope, so we restrict them to axes-parallel boxes and restrict

W to box space. Let W = Rd denote a set of boxes that may be used in a subdivision scheme. We

define the footprint of each box B ∈ W by Fp(µ(B)) and simply denote it by Fp(B). In general, for

simplicity, we identify points b ∈ W with µ(b). So Cl(b) is also Cl(µ(b)) for clearance function Cl.

10

Now we have terms for 4 space.

W = Rd, X = Cspace, ,Y = Cfree(R0,Ω), Z = Rk. (1.5)

Since W is a Euclidean space, we use bold font Latin alphabets to denote points also in W throughout

the thesis.

Suppose Expand is a non-deterministic (i.e., multi-valued) function on B ∈ W such that Expand(B)

is a subdivision of B. Using Expand, we can grow a subdivision tree T (B0) rooted in B0 ∈ W by

repeatedly applying Expand to leaves of T (B0). The set of leaves of T (B0) forms a subdivision of B0. Each

of these boxes is represented by the product of intervals B =
∏d

i=1 Ii, where Ii = [ai, bi] ⊆ R. For a box B,

thewidth of B is w(B) = mindi=1 |Ii| = mindi=1 |bi−ai|, and the length of B is ℓ(B) = supx,y∈B dW(x,y).

The aspect ratio is α(B) = ℓ(B)/w(B). Given a point b ∈ W or a point γ ∈ X and a subdivision tree

T (B0), we write Box(b) as the unique leaf in the subdivision tree that contains b or µ−1(γ).

Let Fp be the footprint map from Cspace to C(Z), Cl be the clearance function. An exact predicate

C is a classification defined on each box B ∈ W, which is a map from W to {FREE, MIXED, STUCK} by

C(B) =

FREE ∀b ∈ B, Cl(b) > 0

STUCK ∀b ∈ B, Cl(b) = 0

MIXED otherwise

To avoid exact computations, a soft predicate C̃ is introduced. C̃ is an approximation for C such that it

is conservative and convergent, i.e.,

� (conservative) C̃(B) ̸= MIXED implies C̃(B) = C(B);

� (convergent) if limi→∞ Bi = {b}, then there is n ∈ N such that when i > n, C̃(Bi) = C(b).

The SSS framework introduces a MIXED priority queue Q and a FREE graph G to proceed with

searches. The priority queue Q is a collection of MIXED-leaves (by C̃) with w(B) ≥ ε that is waiting to be

searched which is added from some Expand. The graph G is the collection of all FREE boxes (by C̃) with

11

w(B) ≥ ε where a Union-Find structure is maintained to trace if the boxes containing α and β (start

and goal) are in the same connected component or not.

The general SSS framework process is the following:

SSS Framework

Input: Start configuration α, goal configuration β, obstacle Ω, resolution parameter ε.

Output: A path P̄ or NO-PATH.

1. ▷ Initialization

While (C̃(Box(α)) ̸= FREE),

if w(Box(α)) < ε, return NO-PATH;

else, Expand(Box(α)).

While (C̃(Box(β)) ̸= FREE),

if w(Box(β)) < ε, return NO-PATH;

else, Expand(Box(β)).

2. ▷ Main Loop

While (Find(Box(α)) ̸= Find(Box(β)),

if Q is empty, return NO-PATH

B ← Q.GetNext()

Expand(B).

3. ▷ Search

Compute a FREE channel P from Box(α) to Box(β)

Generate and return the canonical path P inside P .

The path P is defined as follows:

12

� Find the centers of the boxes in P ;

� Find the centers of facets shared by adjacent boxes in P ;

� Connecting the centers of boxes with their adjacent centers of facets by line segments;

� Return the union of the line segments as the path P .

An important property for an SSS planner is that it is resolution-exact if the footprint map, the

soft predicates and the subdivision schemes used in the planner satisfies 5 axioms. If there is a path π

in Y with clearance higher than Kε, the SSS planner will construct a channel P . If there is no path

π in Cfree with essential clearance at least ε/K, the SSS planner will output NO-PATH. By a path

with essential clearance ε/K, we mean a path π : [0, 1] → Y, such that there is a, b ∈ [0, 1], such that

Sep(π([a, b]),Ω) > ε/K. We define the term essential in order to avoid the possibility that α and β

may be as close to Ω as possible. For example, given the input in Example 1.3.1 and any additional

input resolution parameter ε, the SSS planner will return NO-PATH, since there is no path with essential

clearance ε. This is the way that a SSS planner can avoid the halting problem. Compared to the

sampling approach where PRM-like methods require Cfree be ε-good and infeasibility proof requires

Cstuck be entirely ε-blocked, the SSS planner detects resolution conditions by itself. The SSS framework

provides an adaptive statement as output caters to different input.

In the next chapter, we will introduce the 5 axioms for SSS framework and prove that the SSS

planner is resolution-exact by a Fundamental Theorem.

13

Chapter 2

SSS Axioms and Fundamental Theorem

Recall that the SSS framework consists of the following parts:

� We have a box space W = Rd, a configuration space X = Cspace, a free space Y = Cfree, and a

physical space Z = Rk;

� There is a representation µ : W → X which is a surjective local homeomorphism, and there is a

continuous footprint map Fp : X → C(Z);

� Subdivision of boxes takes place on box space W, and the SSS path planner will find a channel P

in the subdivision tree such that µ(P) ⊆ Y or return NO-PATH.

The subdivision process begins by splitting an initial box B0 to form a subdivision tree T (B0). We

denote the set of all leaves in a subdivision tree T (B0) by L(T (B0)).

In this chapter, we will discuss the 5 axioms of SSS framework with a simplified description, and

prove the resolution-exactness of the SSS planner given the 5 axioms.

2.1 SSS Framework Formalization

Before talking about the axioms and the Fundamental theorem, we introduce the concepts of Lipschitz

continuous, distortion, translational boxes and σ-effectiveness which are used in the axioms.

14

2.1.1 Lipschitz Continuous

We assume that the Cspace X is a metric space and denote the distance function of X by dX . The

distance function on C(Z) is, by definition, the Hausdorff distance dH. Since both X and C(Z) are metric

spaces, the continuity of Fp can be described by the usual ε-δ language, which is

∀γ ∈ X , ∀ε > 0, ∃δ > 0, when dX (γ, ζ) < δ, dH(Fp(γ),Fp(ζ)) < ε.

Moreover, if there is a constant L0, such that ∀γ, ζ ∈ X , we have

dH(Fp(γ),Fp(ζ)) ≤ L0dX (γ, ζ),

we say that the footprint map Fp is Lipschitz continuous, and the constant L0 is called a Lipschitz

constant. A Lipschitz continuous Fp is uniformly continuous1.

We can prove that the clearance Cl is a continuous function over X . Let the obstacle Ω ⊆ Z be a

fixed closed set. Lemma A.1.1 in Section A.1 then implies that ∀γ, ζ ∈ X ,

|Cl(γ)− Cl(ζ)| = |Sep(Fp(γ),Ω)− Sep(Fp(ζ),Ω)| ≤ dH(Fp(γ),Fp(ζ)).

The continuity of Fp proves that Cl is a continuous function.2

The free space Y is the subset of X where ∀γ ∈ Y, Cl(γ) > 0. Since the clearance function is

continuous, Y is open in X .

2.1.2 Representation Distortion

Representation map is a locally homeomorphism µ : W → X such that its inverse is an embedding

restricted to each chart in an atlas. Assume that both W and X are metric spaces. Given p,q ∈ W

where γ = µ(p) and ζ = µ(q), the distortion of µ between p and q is

tortp,q(µ) =
dX (γ, ζ)

dW(p,q)
.

1∀ε > 0, there is δ = ε/L0, such that when dX (γ, ζ) < δ, dH(Fp(γ),Fp(ζ)) ≤ L0dX (γ, ζ) < ε.
2∀ε > 0, there is δ > 0, such that when dX (γ, ζ) < δ, |Cl(γ)− Cl(ζ)| ≤ dH(Fp(γ),Fp(ζ)) < ε.

15

The range of this ratio for p,q ∈ W is the distortion of µ, denoted by tort(µ). i.e.

tort(µ) =

{
τ > 0 : inf

p,q∈W

dX (γ, ζ)

dW(p,q)
≤ τ ≤ sup

p,q∈W

dX (γ, ζ)

dW(p,q)

}
.

For simplicity, we define lower boundm(µ) = infp,q∈W
dX (γ,ζ)
dW(p,q) and upper boundM(µ) = supp,q∈W

dX (γ,ζ)
dW(p,q) .

Then, tort(µ) = [m(µ),M(µ)].

A distortion bound is a number C0 ≥ 1 such that tort(µ) ⊆ [1
C0

, C0]. If the distortion tort(µ) has

a bound C0, then for all p,q ∈ W, we have

1

C0
dW(p,q) < dX (γ, ζ) < C0dW(p,q),

for γ = µ(p), ζ = µ(q) ∈ X .

2.1.3 Translational Boxes

“Translational” is a property of the footprint map that describes the translation motion of the robots.

Suppose we have a purely translational robot R0 whose canonical placement is E . The footprint map for

the robot R0 is defined as:

R3 → C(R3)

x 7→ {x} ⊕ E ,

where ⊕ is the Minkowski sum defined in Section A.4. If there is an obstacle set Ω ⊆ R3, then we can

explicitly describe Cstuck(R0,Ω), which is

Cstuck(R0,Ω) = Ω⊕ E .

When both Ω and E are polyhedral sets, Cstuck(R0,Ω) is also polyhedral. Then the complement

Cfree(R0,Ω) can be easily decomposed into polyhedral cells [3], which is the foundation of many ex-

act path planning algorithms.

The exact methods are hard to apply when rotation of robots are involved. The free space Cfree(R0,Ω)

is no longer easily decomposable into cells. To deal with the problem, we exploit the translational prop-

erty of X , namely, it can be written as X = X t × X r, where the translational space X t represents

16

translations of the robot, and the rotational space X r represents rotations of the robot. The two

subspaces are combined by a Cartesian product. For the Delta robot AOB, the configuration space

X = SE(3) = R3 × SO(3), where R3 corresponds to the translations and SO(3) corresponds to the

rotations.

A footprint map Fp is said to be translational if the domain X = X t ×X r such that X t = Z and

for any closed subsets I ⊆ X t = Z, K ⊆ X r,

Fp(I × K) = I ⊕ Fp({0} × K). (2.1)

In this case, Cspace X is called a translational configuration space. We say Fp({0}×{id}) the canonical

placement of the robot. Note that X r can be the space with identity only. So the footprint maps of

purely translational robots are translational. Moreover we can prove that the footprint map for the Delta

robot is also translational:

Proposition 2.1.1. The footprint map for the Delta robot is translational.

Proof. For the Delta robot, X = R3 × SO(3) where R3 = Z and the footprint map for any I ⊆ R3 and

K ⊆ SO(3) satisfies,

Fp(I × K) = {x+ sσ(e1) + tσ(e2) : x ∈ I, σ ∈ K, s, t ∈ [0, 1], s+ t ≤ 1}

= I ⊕ {0+ sσ(e1) + tσ(e2) : σ ∈ K, s, t ∈ [0, 1], s+ t ≤ 1}

= I ⊕ Fp({0} × K).

In this thesis, for simplicity, we identify Fp({0}×K) with Fp(K) for any rotational subsets K. Then

a translational footprint map is

Fp(I × K) = I ⊕ Fp(K).

In SSS framework, a translational box space is W = Wt ×Wr and for each box B ∈ W = Rd,

17

B = Bt ×Br for Bt ∈ Wt = Rk and Br ∈ Wr = Rd−k and

Fp(Bt ×Br) = Bt ⊕ Fp(Br). (2.2)

Boxes with property in Equation 2.2 are called translational boxes. Given a translational footprint map

defined in Equation 2.1, we can construct suchW by requiring the representation µ to be decomposable.

That is, there are representations µt :Wt → X t and µr :Wr → X r such that µt is the identity map for

Wt = X t = Z = Rk and µ((bt, br)) = (µt(bt), µr(br)) for any bt ∈ Wt and br ∈ Wr.

Example 2.1.2. Let µ : R4 → R2 × SO(2) be

(x, y, z, w) 7→ (x, y, arctan(w/z)).

Then µ is decomposable as µ : R2 × R2 → R2 × SO(2) such that

µt :Wt = R2 → X t = R2(x, y) 7→ (x, y)

and

µr :Wr = R2 → X r = SO(2)(z, w) 7→ arctan(w/z)

A translational footprint map and a decomposable representation gives us a simple correspondence

from the box space to the physical space via the Minkowski sum. As a summary, we review the corre-

spondences throughout the representation and footprint maps according to Figure 2.1. The box space

W represents the configuration space X by the representation map µ. Moreover, the box space can

be decomposed into W = Wt × Wr where Wt and Wr represents X t and X r via µt and µr respec-

tively. The footprint map Fp maps subsets in X into subsets in Z. For each subsets I × K ⊆ X

such that I ⊆ X t and K ⊆ X r, Fp(I × K) = I ⊕ Fp(K). Especially, for Bt ∈ Wt and Br ∈ Wr,

Fp(µ(Bt ×Br)) = Bt ⊕ Fp(Br).

2.1.4 Effectiveness of Predicates

Recall that the classification of boxes in the SSS framework are based on soft predicates, that is a map

from W to {FREE, MIXED, STUCK} such that it is conservative and convergent. For resolution-exactness,

18

Figure 2.1: Translational maps in SSS framework.

we need another property: a soft predicate C̃ is effective if there is an effectivity factor σ ≥ 1 such

that for each box B ∈ W, if the exact predicate C(σB) = FREE, then C̃(B) = FREE. Such an effective

soft predicate is called σ-effective [59]. The conservative of C̃ and its σ-effectiveness results in the two

direction predicate:

� If C̃(B) = FREE, then C(B) = FREE;

� If C(σB) = FREE, then C̃(B) = FREE.

Note that an exact predicate is always an σ-effective soft predicate with σ = 1.

There is a general method to design σ-effective soft predicates which exploits methods of features

[56]. Recall that the input of Ω is given by the primitive features. For each B ∈ W, the exact feature

set of B is

ϕ(B):={f ∈ Φ(Ω) : f ∩ Fp(B) ̸= ∅}.

19

The exact predicate is given by the exact feature set as follow:

C(B) =

FREE ϕ(B) = ∅, ∃b ∈ Fp(B),b /∈ Ω

STUCK ϕ(B) = ∅, ∃b ∈ Fp(B),b ∈ Ω

MIXED ϕ(B) ̸= ∅

However, the exact feature set is too hard to compute, and we only want to design a soft predicate.

The soft predicate will base on a similar process with an approximate feature set ϕ̃(B) with the

properties ϕ(B) ⊆ ϕ̃(B) and, to make it σ-effective, ϕ̃(B) ⊆ ϕ(σB). This approximate feature set, for

implementation, is defined by an approximate footprint F̃p, such that

ϕ̃(B):={f ∈ Φ(Ω) : f ∩ F̃p(B) ̸= ∅}.

As required by the conservative and σ-effective, the approximate footprint F̃p should satisfy:

Fp(B) ⊆ F̃p(B) ⊆ Fp(σB)

for each B ∈ W [56].

A quick example of approximate footprint is a purely translational square robot D = [−1, 1]2 whose

footprint map is

Fp : R2 → C(R2)

x 7→ {x} ⊕ D

The box spaceW for robot D is still R2 where the exact footprint for each box B = [a, a+h]× [b, b+h] ∈

W is Fp(B) = [a− 1, a+h+1]× [b− 1, b+h+1]. The approximate footprint for each B can be defined

as

F̃p(B) = Ball((a+ h/2, b+ h/2),
√
2(h+ 2)/2),

which is the circumscribed ball of Fp(B). It is immediately that

Fp(B) ⊆ F̃p(B) ⊆ Fp(
√
2B).

20

And hence, the soft predicate based on this approximate footprint is
√
2-effective.

The effectiveness gives adequate conditions for classification of boxes. See Section A.5 for more

details.

2.2 SSS Axioms and the Fundamental Theorem

We have introduced the formalization of some important concepts in the SSS framework. More general

concepts are introduced in Appendix A including the concept of aspect ratio. See Section A.3 for more

details.

2.2.1 SSS Axioms

The resolution exactness of the SSS framework is based on the 5 axioms. They are:

Axiom 2.2.1 ((A0) Soft predicate.). The soft predicate C̃ is σ-effective.

Axiom 2.2.2 ((A1) Bounded aspect ratio.). Cspace is a manifold and function Expand(B) splits each

box B into at most finite subboxes. Moreover, there is a constant D0 ≥ 1 such that for all boxes B ∈ W,

the aspect ratio α(B) ≤ D0, i.e., l(B) ≤ D0w(B).

Axiom 2.2.3 ((A2) Lipschitz footprint.). The footprint map Fp is Lipschitz continuous, i.e., there is a

constant L0 > 0 such that for all γ, ζ ∈ X ,

dH(Fp(γ),Fp(ζ)) ≤ L0dX (γ, ζ).

Axiom 2.2.4 ((A3) Good atlas.). The distortion of representation tort(µ) is bounded, i.e., there is a

constant C0 > 1 such that ∀p,q ∈ W with γ = µ(p), ζ = µ(q) ∈ X ,

1

C0
dW(p,q) < dX (γ, ζ) < C0dW(p,q).

The constant C0 is called atlas constant.

21

Axiom 2.2.5 ((A4) Translational box.). Footprint map Fp is translational, representation µ is decom-

posable, and each box B ∈ B0 is translational.

The halting problem of the SSS framework has been fully answered in [59]. In this section, we will

prove that an SSS planner satisfying the 5 axioms is a resolution-exact planner. This result is called the

Fundamental Theorem of SSS.

2.2.2 Fundamental Theorem of SSS

Recall that a resolution-exact path planner

� (P) returns a path if there is a path of clearance Kε;

� (N) returns NO-PATH if there is no path of clearance ε/K.

The Fundamental Theorem is the following:

Theorem 2.2.6 (Effective Fundamental Theorem). An SSS planner satisfying (A0),(A1),(A2),(A3)

and (A4) axioms is resolution-exact with an exact constant K = max{L0C0D0σ, 4D
2
0L0C0, 4}.

An SSS planner with Axiom (A0) sufficiently guarantees a correct path with positive clearance. The

Lemma A.5.2 provides the correctness:

Lemma 2.2.7 (Correctness). If an SSS planner satisfies Axiom (A0), the canonical path P given by

the SSS planner has positive clearance.

Proof. By the construction of P , for each b ∈ P , b is in a FREE box B that is contained in the channel

P . By Lemma A.5.2, Cl(b) > 0. Recall that Cl is continuous. For each point b ∈ P , there is an open

neighborhood Ub of b, such that Cl(Ub ∩ P) ≥ 1
2Cl(b) > 0. Then, since P is a finite closed set, by

the Heine–Borel theorem [20], we can find a finite cover of P from ∪b∈PUb. i.e. P ⊆ ∪ni=1Ubi for some

b1, . . . ,bn ∈ P . Therefore,

Cl(P) ≥
n

min
i=1

Cl
(
Ubi
∩ P

)
≥ 1

2

n
min
i=1

Cl(bi) > 0.

22

Hence, P has positive clearance.

The Axiom (A1) declares the Cspace to be a manifold so that the root of the subdivision tree B0 is

restricted to a compact manifold. The manifold structure guarantees an important connectivity according

to the Poincaré’s duality. See more details in Section A.2 in Appendix A. As a simpler summary, we use

Lemma 2.2.8 in this section.

Lemma 2.2.8 (Channel Lemma). If SSS planner satisfies axiom (A1), then for each path π : [0, 1]→W

and any subdivision tree T (B0), there is a channel P ⊆ L(T (B0)) that exactly covers π, i.e.

i. π(0) ∈ B1, π(1) ∈ Bn;

ii. for each box Bi ∈ P , there is t ∈ [0, 1] such that π(t) ∈ Bi.

Proof. Proposition A.2.2 shows Cover(π) is a connected compact boxed homology manifold. Corollary

A.2.4 constructs a channel connecting any pair of boxes in Cover(π). We pick B1 to be a box containing

π(0) and Bn to be a box containing π(1) and construct a channel connecting B1 and Bn to be the channel

P . This channel P satisfies all conditions in the lemma.

2.2.3 Proof of Resolution Exactness

The proof of resolution exactness considers the worst case for an SSS planner to try to find a path, where

all boxes in the subdivision tree that are not ε-small are splitted. i.e. All leaves of the subdivision tree are

ε-small (with width between ε/2 and ε). We call this special subdivision tree an ε-uniform subdivision

tree. We briefly explain the logic of the proof.

For the (P) part of resolution-exactness, if an SSS planner cannot find a path when there is a path π

of clearance Kε, the subdivision tree when the planner halts will only consist of FREE boxes, STUCK boxes

and ε-small boxes. Splitting each FREE or STUCK box will not change connectivity of the FREE zone, since

no more distinct classifications will be formed. It is not a matter to keep subdividing the tree until it

is uniformly ε. We can construct a channel in the ε-uniform subdivision tree that exactly covers π and

23

prove that the channel is FREE by the axioms. Then the resulting channel contradicts the assumption

that the SSS planner cannot find a path, which proves the (P) part.

For the (N) part of resolution-exactness, if an SSS planner returns a path when there is no path π

with essential clearance ε/K, we compute the essential clearance of P and find it to be at least ε/K. The

contradiction proves the (N) part.

We formulate the arguments of the two parts by two Lemmas 2.2.9 and 2.2.10.

Lemma 2.2.9 (Effective SSS). If the SSS planner satisfies axiom (A0), (A1), (A2) and (A3), then

the SSS planner can find a path P in a FREE channel P , if there exists a path π ⊆ W with clearance

L0C0D0σε, where P exactly covers π.

Proof. Suppose we have the uniformly ε subdivision tree T (B0). Then there is a channel P that exactly

covers π in L(T (B0)) by Lemma 2.2.8. For each box B ∈ P , we compute the clearance of σB. Since P

exactly covers π, there is t ∈ [0, 1] such that π(t) ∈ B ⊆ σB. For each b ∈ σB,

|Cl(b)− Cl(π(t))| ≤ dH(Fp(b),Fp(π(t))) (Lemma A.1.1)

< L0dX (µ(b), µ(π(t))) (A2)

< L0C0dW(b, π(t)). (A3)

≤ L0C0ℓ(σB) (box structure)

≤ L0C0D0w(σB) (A1)

< L0C0D0σε. (Proposition A.3.1)

So ∀b ∈ σB,

Cl(b) > Cl(π(t))− L0C0D0σε ≥ 0.

By Lemma A.5.1, each B in P is FREE in the SSS planner. So P will be found as a channel in the graph

G of the SSS planner, and the planner will return a canonical path P from P .

Lemma 2.2.10 (Translational). If the SSS planner satisfies (A0), (A1), (A2) and (A4), then the

canonical path P given by the SSS planner has essential clearance ε
K for K = max{4D2

0L0C0, 4}.

24

Proof. Let P be the canonical path given by the SSS planner. The obstacle set is Ω. Recall that P is

constructed by consecutive line segments that connect the centers of boxes with centers of facets that

are shared by their adjacent boxes alternatively from channel P . Suppose that W = Wt × Wr, µ is

decomposed into µt and µr, B = Bt×Br is any box in P and B′ = B′t×B′r is one of its adjacent boxes,

F = F t×F r is the shared facet between B and B′. Note that B and B′ may be different sized, and F is

always a facet of the smaller box between B and B′. For m(B) = m = (mt,mr) and m(F) = p = (pt, pr),

let’s estimate Cl(mp).

Since P collects boxes classified as FREE by C̃, by Lemma A.5.2, Cl(B) > 0 and hence Sep(Fp(B),Ω) >

0.

Then by (A4), Sep(Bt ⊕ Fp(Br),Ω) = Sep(Fp(B),Ω) > 0, which implies

∀b = (bt, br) ∈mp, Cl(b) = Sep(Fp(b),Ω) (definition)

≥ Sep(Fp({bt} ×Br),Ω) (definition)

= Sep({bt} ⊕ Fp(Br),Ω) ((A4))

≥ Sep({bt}, ∂Bt), (Lemma A.4.2)

Similarly, since both B and B′ are FREE, F is also FREE and hence Cl(F) > 0. Then

Cl(p) = Sep(Fp(p),Ω) (definition)

≥ Sep(Fp({pt} × F r),Ω) (definition)

≥ Sep({pt} ⊕ Fp(F r),Ω) ((A4))

≥ Sep({pt}, ∂F t) (Lemma A.4.2)

25

≥ 1

2
ε. (box structure)

Now, for all b = (bt, br) ∈mp, if dW(b,p) < ε
4L0C0

,

|Cl(b)− Cl(p)| ≤ dH(Fp(b),Fp(p)) (Lemma A.1.1)

≤ L0dX (µ(b), µ(p)) ((A2))

< L0C0dW(b,p) ((A3))

<
ε

4
,

and Cl(b) ≥ Cl(p)− ε
4 ≥

ε
4 ; otherwise,

Cl(b) ≥ Sep({bt}, ∂Bt) (previous result)

≥ 1

α(B)
dWt(bt, pt) (Corollary A.3.3)

≥ 1

α(B)

1

D0
dW(b,p) ((A1))

≥ 1

D2
0

dW(b,p) ((A1))

=
ε

4D2
0L0C0

.

Therefore,

Cl(mp) = inf
b∈mp

Cl(b) ≥ ε

max{4D2
0L0C0, 4}

.

Let K = max{4D2
0L0C0, 4}. Each of the line segments connecting centers of boxes with centers of faces

has minimum clearance ε
K , so without the line segments connecting start and goal configurations, the

union of those line segments also has minimum clearance ε
K . Therefore P has essential clearance ε

K

Now we supplement the proof of the Fundamental Theorem.

Proof of the Fundamental Theorem 2.2.6. If there is a path of clearance L0C0D0σε, then by Lemma

2.2.9, the SSS planner can find a path P in a FREE channel P . Lemma 2.2.7 shows the correctness of the

path. The (P) part is proved.

26

If there is no path of clearance ε
max{4D2

0L0C0,4} but SSS planner still finds a path, then by Lemma

2.2.10, the path found by the SSS planner contradicts to the assumption. The contradiction implies the

SSS planner must not find a path. The (N) part is proved.

As the result, the resolution constant is K = max{L0C0D0σ, 4D
2
0L0C0, 4}.

In fact, we have a more accurate resolution constant for SSS planners using purely box subdivisions.

See Section A.6.

27

Chapter 3

Distortion Bounds for Representations

Recall that the resolution-exactness of an SSS planner is given by the 5 axioms (A0)-(A4) and the

resolution constant K is determined by constants σ, D0, L0 and C0. The constant C0 in Axiom (A3)

requires a bounded distortion for the representation map µ, where the distortion of µ is

tort(µ) = [m(µ),M(µ)] =

{
τ > 0 : inf

p,q∈W

dX (γ, ζ)

dW(p,q)
≤ τ ≤ sup

p,q∈W

dX (γ, ζ)

dW(p,q)

}
.

The minimum distortion bound C0 = max{ 1
m ,M}.

Given an arbitrary Cspace X , it is not obvious to inspire the smallest atlas constant C0. Previous

works computed atlas constants for Cspace = R2×S1 [24] and Cspace = R3×S2 [23] by direct geometry

arguments. As a remark, there is an error in [23]. See Example B.1.1 in Section B.1 for more detail.

In this chapter, we apply a systematic method to compute the atlas constant for the Delta robot

AOB. This method is discussed in Section B.3. We apply it to a special class of representations and

combine the result with a double covering map.

3.1 Representation of SE(3) Configuration Space

The configuration space SE(3) is a non-Euclidean 6-dimensional space that lives naturally in 7-dimensions.

To compute a path by box subdivisions, we use a decomposable representation map µ as follow:

28

� For representation of the translational subspace Wt → X t = R3, µt is the identity map;

� For representation of the rotational subspace Wr → X r = SO(3), µr is

µr : ∂[−1, 1]4 → S3 → SO(3)

(w, x, y, z) 7→ (a, b, c, d) 7→

2(a2 + b2)− 1 2(bc− ad) 2(bd+ ac)

2(bc+ ad) 2(a2 + c2)− 1 2(cd− ab)

2(bd− ac) 2(cd+ ab) 2(a2 + d2)− 1

 ,

where (a, b, c, d) = (w, x, y, z)/
√
w2 + x2 + y2 + z2. Note that this µr is actually a double covering

map with µr(w, x, y, z) = µr(−w,−x,−y,−z). We identify (w, x, y, z) with (−w,−x,−y,−z) and

such quotient space is denoted by ŜO(3).

� The representation of SE(3) is

µ : R3 × ŜO(3)→ R3 × SO(3)

(x, γ) 7→ (x, µr(γ))

The space R3 × ŜO(3) is denoted by ŜE(3).

The ŜE(3) representation was first know to [14]. See Figure 3.1 for a model of µr.

Figure 3.1: The representation µr : ŜO(3)→ SO(3).

29

3.2 On the Method of Distortion Bound

In this section, we discuss the distortion bound problem for a special class of representations, based on

the Corollary B.3.2 in Section B.3. The idea of the distortion bound method turns the ratio of distance

functions into ratios between tangent vectors. Let the Cspace X be Sn for any arbitrary n ∈ N+. There

is a class of representations:

µn : ∂[−1, 1]n+1 → Sn

x 7→ x

|x|

The distortion tort(µn) = [1
n+1 , 1], see Theorem B.4.1 in Section B.4. As examples, we compute the

low-dimensional cases (n = 2, 3) explicitly for a correction of paper [23] and as a lemma for the distortion

bounds for representation of SE(3).

3.2.1 Distortion Bound for µ2

The case for n = 2 is the Proposition 3.2.1:

Proposition 3.2.1. The distortion of representation

µ2 : ∂[−1, 1]3 → S2

(x, y, z) 7→
(x
r
,
y

r
,
z

r

)
,

where r =
√
x2 + y2 + z2 is [13 , 1].

Proof. Since the 6 faces B1, . . . , B6 are symmetric, we may use the face B6 (z = 1) without loss of

generality. For the point p = (x, y, 1) ∈ B6 where r =
√

x2 + y2 + 1, µ2 maps it to the point

γ = (a, b, c) =

(
x

r
,
y

r
,
1

r

)
.

30

For each vp = dx ∂
∂x + dy ∂

∂y ∈ TpB6, the push forward map (µ2)∗ is given by

da
∂

∂a
+ db

∂

∂b
+ dc

∂

∂c
= (µ2)∗

(dx dy

) ∂
∂x

∂
∂y

=

(
dx dy

)
(µ2)∗

 ∂
∂x

∂
∂y

 (Push forward is linear)

=

(
dx dy

)
Jµ2

∂
∂a

∂
∂b

∂
∂c

where Jµ2

is the Jacobian of µ2 on B6, i.e.,

Jµ2 =

 ∂a
∂x

∂b
∂x

∂c
∂x

∂a
∂y

∂b
∂y

∂c
∂y

 .

For any γ ∈ TγS
2, gS2⟨vγ , vγ⟩ is given by the Riemannian metric inherited from R3, which is

gS2⟨vγ , vγ⟩ = (da,db,dc)(da,db,dc)T .

Therefore, for any vp ∈ TpB6 such that gB6
⟨vp, vp⟩ = 1, where gB6

is also inherited from R3 which

implies 1 = gB6
⟨vp, vp⟩ = (dx,dy)(dx,dy)T ,

µ∗
2⟨vp, vp⟩ = gS2⟨(µ2)∗(vp), (µ2)∗(vp)⟩

=

(
da db dc

)(
da db dc

)T

=

(
dx dy

)
Jµ2

JT
µ2

(
dx dy

)T

=
1

(x2 + y2 + 1)2

(
dx dy

) y2 + 1 −xy

−xy x2 + 1

 dx

dy

=

(xdx− ydy)2 + (dx2 + dy2)

(x2 + y2 + 1)2
.

The bounds for the last fraction can be estimated by the following two methods:

31

1.

(xdx− ydy)2 + (dx2 + dy2)

(x2 + y2 + 1)2
≤ (x2 + y2)(dx2 + dy2) + (dx2 + dy2)

(x2 + y2 + 1)2
(Cauchy’s inequality)

=
1

x2 + y2 + 1
(dx2 + dy2 = 1)

≤ 1.

where the maximum reaches when x = y = 0 for any (dx,dy) ∈ R2.

2.

(xdx− ydy)2 + (dx2 + dy2)

(x2 + y2 + 1)2
=

(xdx− ydy)2 + 1

(x2 + y2 + 1)2
(dx2 + dy2 = 1)

≥ 1

(x2 + y2 + 1)2
((xdx− ydy)2 ≥ 0)

≥ 1

9
.

where the minimum reaches when x = y = 1 for (dx,dy) =
(√

2
2 ,

√
2
2

)
.

By Corollary B.3.2, tort(µ2) = [13 , 1].

Corollary 3.2.2. The atlas constant for an R3×S2 robot (rod, ring ,etc.) by the representation R3× Ŝ2

[23] is 3. But one can define W = R3 × ∂[−
√
3
−1

,
√
3
−1

]3 to reduce the distortion bound down to
√
3.

3.2.2 Distortion Bound for µ3

The case for n = 3 is the Lemma 3.2.3:

Lemma 3.2.3. The distortion of representation

µ3 : ∂[−1, 1]4 → S3

(w, x, y, z) 7→
(w
r
,
x

r
,
y

r
,
z

r

)
,

where r =
√

w2 + x2 + y2 + z2 is [14 , 1].

32

Proof. ∂[−1, 1]4 is the union of 8 cubes with w, x, y, z = ±1 respectively on different cubes. We use the

cube B1 = {(w, x, y, z) ∈ ∂[−1, 1]4 : w = 1} as an example. By the similar process in Proposition 3.2.1,

for any p = (1, x, y, z) ∈ B1 and any vp = dx ∂
∂x + dy ∂

∂y + dz ∂
∂z ∈ TpB1 such that gB1⟨vp, vp⟩ = 1,

µ∗
3⟨vp, vp⟩ =

(
dx dy dz

)
Jµ3J

T
µ3

(
dx dy dz

)T

=
1

(1 + x2 + y2 + z2)2

(
dx dy dz

)

y2 + z2 + 1 −xy −xz

−xy x2 + z2 + 1 −yz

−xz −yz x2 + y2 + 1

dx

dy

dz

The bounds for the quadratic form can be estimated by the following two methods:

1.

µ∗
3⟨vp, vp⟩ =

(1 + x2 + y2 + z2)− (xdx + ydy + zdz)2

(1 + x2 + y2 + z2)2
(dx2 + dy2 + dz2 = 1)

≤ 1 + x2 + y2 + z2

(1 + x2 + y2 + z2)2
((xdx + ydy + zdz)2 ≥ 0)

≤ 1 (1 + x2 + y2 + z2 ≥ 1)

where the maximum reaches when x = y = z = 0 for any (dx,dy,dz) ∈ R3.

2.

µ∗
3⟨vp, vp⟩=

(xdy− ydx)2 + (xdz− zdx)2 + (ydz− zdy)2 + (dx2 + dy
2 + dz

2)

(1 + x2 + y2 + z2)2

=
(xdy− ydx)2 + (xdz− zdx)2 + (ydz− zdy)2 + 1

(1 + x2 + y2 + z2)2
(dx2 + dy

2 + dz
2 = 1)

≥ 1

(1 + x2 + y2 + z2)2

≥ 1

16
.

where the minimum reaches when x = y = z = 1 for (dx,dy,dz) =
(√

3
3 ,

√
3
3 ,

√
3
3

)
.

By Corollary B.3.2, tort(µ3) = [14 , 1].

33

3.3 Atlas Constant for an SE(3) Cspace

The SE(3) rotational subspace X r = SO(3) is not exactly the manifold S3 in the Lemma 3.2.3. There

is a double covering map from S3 to SO(3). The box subspace Wr = ŜO(3) is also a double covering

map from ∂[−1, 1]4 but whose metric is inherited from the double covering. So the metric on ŜO(3) is

the same as the metric on ∂[−1, 1]4. Their relation can be given by the following commutative diagram,

we will follow the symbols along the diagram throughout this section:

The representation µr is the composition of ρ and µ3. By Lemma 3.2.3, tort(µ3) = [14 , 1]. However,

the distortion bound for ρ is indeterminate without an explicit metric on SO(3). The choice of an essential

metric on SO(3) is a problem.

In Huynh’s paper [26], 6 different metrics are defined on SO(3) under different representations. In

the paper [26], metric Φ1 is the Euclidean distance between Euler angles ∥(∆α,∆β,∆γ)∥2, Φ2 is the norm

of the difference of quaternions (S3) min{|q1 − q2|, |q1 + q2|}, Φ3 is the angle between unit quaterions

arccos |q1 ·q2|, Φ4 is one minus the absolute value of inner product of unit quaterions 1−|q1 ·q2|, Φ5 is the

Frobenius norm of identity matrix minus the transition matrix ∥I −R1R
T
2 ∥F , and Φ6 is the distance by

the exponential map ∥ log(R1R
T
2)∥. Note that Φ3 is the metric induced by ρ, i.e., Φ3(q1, q2) = gS3(q1, q2),

and we choose Φ6 as the essential metric on SO(3). This Φ6 will be used to compute both atlas

constant C0 and Lipschitz constant L0. In the paper [26], it is pointed out that Φ6 = 2Φ3, therefore

tort(ρ) = {2} and the distortion for µr = ρ ◦ µ3 is tort(µr) = [12 , 2]. To explain the metrics defined in

[26] and the choice of essential metric, let’s first review the space SO(3).

34

3.3.1 Review of SO(3)

The Cspace SO(3) consists of all positively defined orthogonal maps on R3. It is the set of all 3×3 matrices

R such that RTR = I. Let R ∈ SO(3), for each v ∈ R3, |Rv| = (Rv)T (Rv) = vTRTRv = vtv = |v|.

Therefore, the norm of all eigenvalues of R are 1. The characteristic polynomial pR(λ) = det(R−λI) is a

real coefficient polynomial with degree 3 and hence there is a real root for pR(λ). This real root is +1 (not

−1) since R is positively defined, otherwise for the eigenvector v corresponds to −1, vTRv = −vT v < 0.

Then the two image roots are eiθ and e−iθ for some θ ∈ S1. The unit eigenvector v ∈ S2 corresponding

to 1 is called the axis of the rotation, while the angle θ for the image roots is called the angle of the

rotation [4] (the identity map has no axis or angle). The rotation matrix with axis v ∈ S2 and angle

θ ∈ S1 is denoted by R(v, θ). The Lie Bracket of an axis v = (x, y, z) is a map [·] : R3 → so(3), where

so(3) is the set of all 3× 3 matrices V with V + V T = 0, such that

[v] =

0 −z y

z 0 −x

−y x 0

 .

The Lie bracket of an axis represents its cross product with other vectors, i.e., ∀u, v ∈ R3, [v]u = v × u,

and [v]3 = −|v|2[v]. The exponential map on θ[v] for axis v and angle θ returns the rotation matrix

with the Euler-Rodrigues formula [37]:

R(v, θ) = eθ[v] = I + sin θ[v] + (1− cos θ)[v]2.

The logarithm of a matrix R(v, θ) ∈ SO(3) is log(R(v, θ)) = θ[v] defined by this exponential map.

For the metric Φ6 in Huynh’s paper [26], R(v, θ) = R1R
T
2 is the transition map from R2 to R1 since

(R1R
T
2)R2 = R1(R

T
2 R2) = R1. Then Φ6(R1, R2) = ∥ log(R1R

T
2)∥ = ∥θ[v]∥ = θ is the angle of this

transition map. This natural angle defines the essential metric on SO(3).

The quaternion representaion of SO(3) is a diffeomorphism from RP3 to SO(3). The unit quater-

nion Q is the space S3 endowed with a division ring structure, such that for each r ∈ Q, r = a+bi+cj+dk

35

where i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j [1]. The component w is called

the real part of r while bi+ cj+ dk is called the image part of r. The conjugate of a unit quaternion

r = a+ bi+ cj+ dk is r = a− bi− cj− dk. Obviously, rr = 1 for any r ∈ Q, which implies r = r−1. A

unit quaternion with real part w = 0 is called a pure quaternion. Such pure quaternions can represent

vectors in R3 by identifying bi+ cj+ dk with (b, c, d), which form a subgroup by products in Q, denoted

by Hp [19]. For any pure quaternion v = vii+ vjj+ vkk ∈ Hp and any θ ∈ S1, r = cos θ + v sin θ defines

a unit quaternion. Moreover, such a unit quaternion defines a group action on Hp [19] by r ◦ u = rur−1

for any r ∈ Q and any u ∈ Hp. This group action on Hp is crucial since it defines the correspondence

ρ : S3 = Q→ SO(3) by

ρ(r)(u) = rur−1, ∀u ∈ Hp = R3

It can be prove that for r = cos θ + v sin θ, ρ(r) = R(v, 2θ), see Theorem B.5.1 in Section B.5 [19]. Since

r and −r induce the same action on Hp, ρ is a double covering map with r ∼ −r. For the metric Φ3 in

Huynh’s paper [26], if for q1, q2 ∈ Q, r = cos θ + v sin θ = q1q
−1
2 , θ ∈ [0, π], then

Φ3(q1, q2) = arccos |q1 · q2|

= arccos |(cos θ + v sin θ)q2 · q2|

= arccos | cos θq2 · q2 + sin θ(vq2) · q2|

= arccos | cos θ + 0|

= min{θ, π − θ},

where (vq2) · q2 = 0 is a direct computation. Note that when Φ3(q1, q2) = π − θ (θ > π
2), 2Φ3(q1, q2) =

2Φ(q1,−q2) = 2θ−2π ∼= 2θ ∈ S1. Therefore, Φ6(ρ(q1), ρ(q2)) = 2θ = 2Φ3(q1, q2) for any pair of q1, q2 ∈ Q.

It proves that Φ6 = 2Φ3.

By definition, the distortion for map ρ : S3 → SO(3) is tort(ρ) = {2}.

36

3.3.2 Distortion Bound for SE(3)

The map µr = ρ ◦ µ3 where the distortion of µ3 is [14 , 1] and the distortion of ρ is {2}. Therefore, the

distortion of µr is [12 , 2].

The Cspace X = SE(3) is a combination of R3 and SO(3), where the distortion bound on R3, as an

identity map, is 1. There are different ways to combine the metrics to form a metric on SE(3), but they

are all equivalent. Basically, such metrics are defined as, for some p ≥ 1,

dpX ((x, γ), (y, ζ)) = p

√
dR3(x,y)p + dSO(3)(γ, ζ)p, ∀x,y ∈ R3, γ, ζ ∈ SO(3),

or

d∞X ((x, γ), (y, ζ)) = max
{
dR3(x,y), dSO(3)(γ, ζ)

}
, ∀x,y ∈ R3, γ, ζ ∈ SO(3).

Their distortions are always controlled by the distortion bounds for the greater component (similar for

d∞X) since

dpX ((x, γ), (y, ζ)) ⊆ p

√
dR3(x,y)p + tort(µr)pd

ŜO(3)
((µr)−1(γ), (µr)−1(ζ))p

⊆ p

√
tort(µr)pdR3(x,y)p + tort(µr)pd

ŜO(3)
((µr)−1(γ), (µr)−1(ζ))p

= tort(µr)dpW((x, (µr)−1(γ)), (y, (µr)−1(ζ)))

and to reach the bound, we can choose points in W such that x = y where the distortions are the same

with µr. Therefore, the distortion of µ is the same with its of µr, i.e., tort(µ) = tort(µr) = [12 , 2]. We can

take C0 = 2 as our atlas constant in axiom (A3) for the representation µ, and we have the Proposition

3.3.1.

Proposition 3.3.1. The atlas constant of an SE(3) robot is C0 = 2.

37

Chapter 4

Delta Footprints and Approximations

Recall that a Delta robot is an isosceles right triangle robot R0 = △AOB with its canonical placement

A = (1, 0, 0), B = (0, 1, 0) and O = (0, 0, 0). The footprint map for the robot is

Fp : R3 × SO(3)→ C(R3)

(x, γ) 7→ {x+ sγ(e1) + tγ(e2) : s, t ∈ [0, 1], s+ t ≤ 1},
(4.1)

where e1 = (1, 0, 0) ∈ R3, e2 = (0, 1, 0) ∈ R3. In chapter 2, we have proved that this footprint map Fp

is translational. It is continuous due to the continuity in both x and γ. But this is not enough. The

axiom (A2) in SSS framework requires the footprint map to be Lipschitz continuous. The axiom (A0)

requires that the classification of boxes in W are based on an approximate footprint that is σ-effective.

In this chapter, we will prove the Lipschitz continuity of Fp and design an approximate footprint that is

σ-effective.

4.1 Delta Exact Footprint

The Lipschitz constant of Fp in Equation 4.1 depends on the choice of a metric on SE(3). In the last

chapter, we have analyzed the essential metric for SO(3) (i.e., Φ6 in [26]), and determined the atlas

38

constant C0 = 2 for SE(3) metrics based on Φ6. In this chapter, we fix the metric for SE(3), say

dX ((x, γ), (y, ζ)) = dR3(x,y) + dSO(3)(γ, ζ).

Our goal is to estimate the Lipschitz constant and find a heuristic to construct the approximate

footprint from the exact footprint of a box in W.

4.1.1 Lipschitz Constant for Delta Fp

To estimate the Lipschitz constant, a key problem is to estimate dH between different Fp(γ) and Fp(ζ).

Recall that each rotation in SO(3) is determined by an axis v ∈ S2 and an angle θ ∈ S1, i.e., by

Euler-Rodrigues formula [37], the rotation matrix is

R(v, θ) = eθ[v] = I + sin θ[v] + (1− cos θ)[v]2.

The metric dSO(3) is defined as dSO(3)(γ, ζ) = θ for R(v, θ) = γζ−1. The rotation by Euler-Rodrigues

formula itself restricts the change of the entire space R3 by Lemma 4.1.1:

Lemma 4.1.1. For any R(v, θ) ∈ SO(3) and any u ∈ R3,

|R(v, θ)u− u| ≤ θ|u|.

Proof. It is sufficient to show that

(R(v, θ)− I)T (R(v, θ)− I) = R(v, θ)TR(v, θ)− (R(v, θ)T +R(v, θ)) + I

= 2I − (R(v,−θ) +R(v, θ))

= 2I − ((I − sin θ[v] + (1− cos θ)[v]2) + (I + sin θ[v] + (1− cos θ)[v]2))

= 2(cos θ − 1)[v]2

Note that [v]2 = −diag{y2+ z2, x2+ z2, x2+ y2} for v = (x, y, z)T ∈ S2, which is a diagonal matrix with

all diagonal entries ranged by [−1, 0]. Therefore, each eigenvalue of (R(v, θ)− I)T (R(v, θ)− I) is ranged

by

[0, 2(1− cos θ)] ⊆ [0, θ2].

39

Hence

|R(v, θ)u− u|2 = uT (R(v, θ)− I)T (R(v, θ)− I)u ≤ θ2uTu = (θ|u|)2,

which implies |R(v, θ)u− u| ≤ θ|u|.

Corollary 4.1.2. For any γ, ζ ∈ SO(3) and u ∈ R3,

|γ(u)− ζ(u)| ≤ dSO(3)(γ, ζ)|u|.

Proof. For R(v, θ) = γζ−1, we have

|γ(u)− ζ(u)| = |R(v, θ)(ζ(u))− ζ(u)| ≤ θ|ζ(u)| = dSO(3)(γ, ζ)|u|

Under dX , we can compute the Lipschitz constant L0 for the Delta footprint, see Theorem 4.1.3:

Theorem 4.1.3. For any x,y ∈ R3, and γ, ζ ∈ SO(3),

dH(Fp(x, γ),Fp(y, ζ)) ≤ dX ((x, γ), (y, ζ)).

The Lipschitz constant L0 for the Delta Robot is 1.

Proof. Let’s begin with the case when x = y, where

dX ((x, γ), (x, ζ)) = dSO(3)(γ, ζ).

For each point p ∈ Fp(x, γ), p = x+sγ(e1)+ tγ(e2) for some s, t ∈ [0, 1], s+ t ≤ 1. Note that γ is linear,

so

p = x+ γ(se1 + te2),

and there is q = x+ ζ(se1 + te2) ∈ Fp(x, ζ), such that

|p− q| = |γ(se1 + te2)− ζ(se1 + te2)| ≤ dSO(3)(γ, ζ)|se1 + te2| ≤ dSO(3)(γ, ζ).

Thus ∀p ∈ Fp(x, γ),

Sep({p},Fp(x, ζ)) ≤ |p− q| ≤ dSO(3)(γ, ζ),

40

which implies

sup
p∈Fp(x,γ)

Sep({p},Fp(x, ζ)) ≤ dSO(3)(γ, ζ).

Similar,

sup
q∈Fp(x,ζ)

Sep({q},Fp(x, γ)) ≤ dSO(3)(γ, ζ).

Therefore

dH(Fp(x, γ),Fp(x, ζ)) ≤ dSO(3)(γ, ζ).

In the end, for x ̸= y, we have the triangle inequality:

dH(Fp(x, γ),Fp(y, ζ)) ≤ dH(Fp(x, γ),Fp(x, ζ)) + dH(Fp(x, ζ),Fp(y, ζ))

≤ dSO(3)(γ, ζ) + dR3(x,y)

= dX ((x, γ), (y, ζ)).

Remark 4.1.4. An enlarged Delta robot Rλ
0 is a footprint map

Fp : SE(3)→ C(R3)

(x, γ) 7→ {x+ λ(sγ(e1) + tγ(e2)) : s, t ∈ [0, 1], s+ t ≤ 1},

for some λ > 0. Its canonical placement is an enlarged triangle with lengths of the legs becoming λ. It

is easy to show that the Lipschitz constant for Rλ
0 is max{1, λ} by the Corollary 4.1.2.

4.1.2 Exact Footprint for a Box

It is not easy to characterize the exact footprint for a box B = Bt × Br ∈ W. But we can get some

approximations from its behaviour along line segments. Let us first get rid of the translational component

Bt which only affects the footprint by a Minkowski sum. We only consider the footprints for Fp(Br),

which by definition, is Fp({0} × Br). Note that given a box Br and any points p,q ∈ Br, the line

segment pq is the shortest curve connecting p and q, which is the one that defines d
ŜO(3)

(p,q). Then

41

µ(pq) is correspondingly the shortest curve connecting γ = µ(p) and ζ = µ(q), which is the curve given

by the single exponential map connecting γ and ζ, i.e.,

µ(pq) = et log(γζ
−1)ζ, t ∈ [0, 1].

The exponential map defines the footprint by rotating the robot along a fixed axis. We can classify

the footprints Fp(pq) by the different cases of a triangle rotating along different fixed axes; see Example

C.0.1 in the appendix. For any x ∈ R3, let Fpx be the footprint map defined by

Fpx : SO(3)→ C(R3)

γ 7→ {γ(x)},

i.e., the footprint of purely point x. As a lemma to be used later, we summarize the behaviour of

footprints of a single point, see Lemma 4.1.5.

Lemma 4.1.5. Let Br ∈ Wr. For any p,q ∈ Br, if a ball Ball(o, s) ⊆ R3 contains both Fpx(p) and

Fpx(q), such that the radius s < |x|, then

Fpx(pq) ⊆ Ball(o, s).

Proof. By the deductions on the effect of µr on shortest curves, µr(pq) is the arc of a circle center at

the origin of R3 with radius |x|, connecting µr(p) and µr(q). This arc is always contained in such balls

Ball(o, s) when s < |x|.

When applying Lemma 4.1.5 to point A, i.e., x = e1, and point B, i.e., x = e2, balls with radius less

than 1 that includes the footprints of endpoints can always include the whole arc of footprints of A or B.

A box Br in ŜO(3) is the convex hull of its 8 corners bi for i = 1, . . . , 8. If we collect the footprints FpA

and FpB (identifying by representation µr) at the 8 corners and use balls SA and SB to contain them

respectively, then the footprints of any connection FpA(bibj) and FpB(bibj) will also be contained in the

corresponding balls, as well as the footprints of connections between points on the connections, i.e., the

whole box. Then since the robot R0 = △AOB is also convex, the convex hull of O and those balls will

42

include the footprints Fpx(b) of all points x in the robot R0 for any b ∈ Br. This is a heuristic for our

approximate footprint. We develop its algebraic construction in the next section.

4.2 Delta Approximate Footprint

In this section, we develop the algebraic construction of the approximate footprint for the Delta robot

R0 on a given box B ∈ W. As mentioned, Fp is translational and so we can begin with Fp(Br) for

Br ∈ Wr.

4.2.1 SO(3) approximate footprint

For Br = ŜO(3), the footprint Fp(ŜO(3)) is the whole ball Ball(1), and we define it as F̃p(ŜO(3)). We

consider when Br ̸= ŜO(3).

Our F̃p(Br) is constructed by the following process. Note that A is e1 and B is e2:

Figure 4.1: Compute clusters. Figure 4.2: Construct ball ap-

proximations.

Figure 4.3: Make convex hull.

43

Design of F̃p(Br)

� Compute the 8 corners of Br, denote them by bi for i = 1, . . . , 8, construct Fpek
(bi) for

i = 1, . . . , 8 and j = 1, 2. Each of the sets {Fpek
(bi) : i = 1, . . . , 8} is called a cluster. It is

A-cluster if j = 1 and is B-cluster if j = 2. See Figure 4.1.

� Let m(ek, B
r) = 1

8

∑
i Fpek

(bi) for j = 1, 2, and

d(Br) = max
i=1,...,8,j=1,2

{
Fpek

(bi)−m(ek, B
r)
}
,

define two balls F̃pek
(Br) = Ball(m(ek, B

r),d(Br)) containing each cluster respectively. See

Figure 4.2.

� Define the approximate footprint to be the convex hull of two balls and 0, i.e.,

F̃p(Br) = Chull{F̃pe1
(Br), F̃pe2

(Br),0}.

See Figure 4.3.

The behavior of F̃p(Br) in the process designed above is the following:

Recall that the child of ŜO(3) are Cw = {(−1, x, y, z) : x, y, z ∈ [−1, 1]}, Cx = {(w,−1, y, z) :

w, y, z ∈ [−1, 1]}, Cy = {(w, x,−1, z) : w, x, z ∈ [−1, 1]} and Cz = {(w, x, y,−1) : w, x, y ∈ [−1, 1]}. The

F̃p for these four boxes are the same. They are still Ball(1), since they share the same 8 corners. When

Br is half size of the Cw, Cx, Cy and Cz, the F̃p(Br) is only the convex hull of the two balls F̃pek
(Br),

see Figure 4.4.. When Br is smaller, the F̃p is the shape in Figure 4.3.

4.2.2 SE(3) approximate footprint

Since Fp is translational, Fp(Bt × Br) = Bt ⊕ Fp(Br). To approximate Bt, we simply use the cir-

cumscribed ball of Bt, denoted by Ball(Bt) = Ball(m(Bt), r(Bt)), where r(Bt) = 1
2ℓ(B

t). Then the

44

Figure 4.4: Degenerate case.

approximate footprint for B = Bt ×Br is

F̃p(B) = Ball(Bt)⊕ F̃p(Br).

We have an explicit expression for F̃p(B) by Theorem 4.2.1 based on the lemma of Minkowski sum of

convex hulls, see Lemma A.4.3.

Theorem 4.2.1. For B = Bt ×Br,

F̃p(B) = Chull

{
Ball

(
m(e1, B

r) + m(Bt), d(Br) + r(Bt)
)
, Ball

(
m(e2, B

r) + m(Bt), d(Br) + r(Bt)
)
, Ball(Bt)

}
.

Proof.

F̃p(B) = Ball(Bt)⊕ F̃p(Br)

= Ball(m(Bt), r(Bt))⊕ Chull
{
F̃pe1

(Br), F̃pe2
(Br),0

}
= Ball(m(Bt), r(Bt))⊕ Chull {Ball(m(e1, B

r),d(Br)),Ball(m(e2, B
r),d(Br)),0}

= Chull
{
Ball(m(Bt), r(Bt))⊕ Ball(m(e1, B

r),d(Br)),

Ball(m(Bt), r(Bt))⊕ Ball(m(e2, B
r),d(Br)),

Ball(m(Bt), r(Bt))
}

= Chull
{
Ball
(
m(e1, B

r) + m(Bt), d(Br) + r(Bt)
)
,Ball

(
m(e2, B

r) + m(Bt), d(Br) + r(Bt)
)
,Ball(Bt)

}

45

4.2.3 σ-effectiveness of F̃p for Delta footprint

In this section we prove the σ-effectiveness of the F̃p defined above. We summarize the result as Theorem

4.2.2.

Theorem 4.2.2. F̃p(B) = Ball(Bt) ⊕ F̃p(Br) is σ-effective with σ = 3
2D0, where D0 is the bound in

axiom (A1) for aspect ratios of boxes in W.

Proof. For the conservativeness of F̃p(B), we first consider the conservativeness of F̃p(Br). Note that,

for any pair of corners bi,bj of Br, Fpek
(bi) ∈ F̃pek

(Br) and Fpek
(bj) ∈ F̃pek

(Br) for k = 1, 2. By

Lemma 4.1.5, ∀p ∈ bibj , Fpek
(p) ∈ F̃pek

(Br). Then for any b ∈ Br, there is p ∈ bibj and q ∈ blbm

such that b ∈ pq, which also by Lemma 4.1.5, implies that Fpek
(b) ∈ F̃pek

(Br) for k = 1, 2, and hence

Fpek
(Br) ⊆ F̃pek

(Br) for k = 1, 2. By linearity of SO(3), for any x = se1 + te2 such that s, t ∈ [0, 1],

s+ t ≤ 1, and any b ∈ Br,

Fpx(b) = sFpe1
(b) + tFpe2

(b) ∈ Chull
{
0,Fpe1

(b),Fpe2
(b)
}
.

Therefore

Fp(Br) = ∪x=se1+te2
Fpx(B

r)

⊆ Chull
{
0,Fpe1

(Br),Fpe2
(Br)

}
⊆ Chull

{
0, F̃pe1

(Br), F̃pe2
(Br)

}
= F̃p(Br).

Then for any B = Bt ×Br,

Fp(B) = Bt ⊕ Fp(Br) ⊆ Ball(Bt)⊕ F̃p(Br) = F̃p(B),

which proves that F̃p is conservative.

For the effectiveness of F̃p(B), be aware that we have proved that Fp and µ satisfy axioms (A2)

46

and (A3) with L0 = 1 and C0 = 2, so as Fpek
for k = 1, 2. We have for B = Bt ×Br,

d(Br) ≤ 1

2
sup

p,q∈Br,k=1,2
dH(Fpek

(p),Fpek
(q))

≤ 1

2
L0 sup

pq∈Br

dSO(3)(µ
r(p), µr(q))

≤ 1

2
L0C0 sup

pq∈Br

d
ŜO(3)

(p,q)

≤ 1

2
L0C0ℓ(B

r)

≤ 1

2
L0C0ℓ(B)

≤ 1

2
L0C0D0w(B)

≤ 1

2
L0C0D0w(B

t),

which implies F̃pek
(Br) ⊆ Ball(m(ek, B

r), 1
2L0C0D0w(B

t)) for k = 1, 2. Hence

F̃p(Br) = Chull
{
F̃pe1

(Br), F̃pe2
(Br),0

}
⊆ Chull

{
Ball

(
m(e1, B

r),
1

2
L0C0D0w(B

t)

)
,Ball

(
m(e2, B

r),
1

2
L0C0D0w(B

t)

)
,0

}
⊆ Chull {m(e1, B

r),m(e2, B
r),0} ⊕ Ball

(
1

2
L0C0D0w(B

t)

)
⊆ Fp(Br)⊕ Ball

(
1

2
L0C0D0w(B

t)

)
.

Therefore

F̃p(B) = Ball(Bt)⊕ F̃p(Br)

= Ball

(
m(Bt),

1

2
ℓ(Bt)

)
⊕ F̃p(Br)

⊆ Ball

(
m(Bt),

1

2
D0w(B

t)

)
⊕ Ball

(
1

2
L0C0D0w(B

t)

)
⊕ Fp(Br)

= Ball

(
m(Bt),

1

2
(L0C0 + 1)D0w(B

t)

)
⊕ Fp(Br)

⊆
(
1

2
(L0C0 + 1)D0B

t

)
⊕ Fp(Br)

⊆
(
1

2
(L0C0 + 1)D0B

t

)
⊕ Fp

(
1

2
(L0C0 + 1)D0B

r

)
= Fp

(
1

2
(L0C0 + 1)D0B

)

47

We plug in L0 = 1 and C0 = 2, which results in

F̃p(B) ⊆ Fp

(
3

2
D0B

)
,

which proves that F̃p is 3
2D0-effective.

48

Chapter 5

Explicit Parameterized Collision Detection

Recall that the classification of soft predicates is given by the method of features [56], defined by

C̃(B) =

FREE if ϕ̃(B) = ∅, ∃b ∈ F̃p(B),b /∈ Ω

STUCK if ϕ̃(B) = ∅, ∃b ∈ F̃p(B),b ∈ Ω

MIXED if ϕ̃(B) ̸= ∅

,

where

ϕ̃(B) = {f ∈ Φ(Ω) : f ∩ F̃p(B) ̸= ∅}.

The process of maintaining ϕ̃(B) has been described in [56], which is the following:

Maintaining ϕ̃(B)

� Initialize ϕ̃(B0) by Φ(B).

� After each split, for each child B from parent(B), initialize ϕ̃(B) by ∅. For each f ∈

ϕ̃(parent(B)), check if f ∩ F̃p(B) ̸= ∅. If so, insert f into ϕ̃(B). Repeat this step for all

f ∈ ϕ̃(parent(B)).

The correctness of the process is based on two aspects. The first is ϕ̃(B) ⊆ ϕ̃(parent(B)) for any

B ∈ W, which we call the inheritance of feature set. The second is the criterion for f ∩ F̃p(B) ̸= ∅,

or equivalently, Sep(f, F̃p(B)) > 0. The first technique is based on the subdivision scheme, which we will

49

develop in the next chapter. The second technique is solving the inequality Sep(f, F̃p(B)) > 0 exactly.

The solution for solving this inequality requires a semi-algebraic representation for F̃p(B) which turns

the inequality into solving polynomial inequalities. Note that the latter requires a solution for the “Zero

Problem” which by [61] is not practical to implement for polynomials with high degrees. It is important

to reduce the degree of all numbers that are operated throughout the SSS planning, at most degree 4,

over Q.

In this chapter, we will begin with the Σ2 decomposition for F̃p(B) to give it a semi-algebraic

representation, and develop an explicit process for collision detections, i.e., checking if Sep(f, F̃p(B)) > 0.

5.1 On the Σ2 Decomposition Technique

An algebraic set I is a set of points that satisfy a set of algebraic equations. A semi-algebraic set

I ⊆ Rk is an extension to the algebraic sets that allows the constraints to include inequalities [30]. I is

simple if there is an algebraic set I such that I ⊆ I and dim(I) = dim(I). We call I the algebraic

span of I. Our feature set Φ(Ω) consist of simple sets such as a point, which is called a corner feature,

a line segment, which is called an edge feature, a triangle, which is called a facet feature, where their

algebraic spans are point/line/plane respectively.

The technique of Σ2 decomposition is based on expressing F̃p as a Σ2 set, which was first introduced

in [23]. A Σ2 set is a finite union of intersections of elementary sets. We say a set K ⊆ R3 is elementary

if K = {x ∈ R3 : f(x) ≤ 0} for some polynomial f : R3 → R of total degree at most 2, and the coefficients

of f are algebraic numbers. Examples of elementary sets include half-spaces, infinite cylinders, doubly-

infinite cones, ellipsoids, hyperbolas, etc. A Π1-set is a finite intersection of elementary sets and a Σ2-set

is a finite union of Π1 sets.

5.1.1 Σ2 decomposition for F̃p(B)

Our F̃p(B) for Delta robot is decomposed into a union of Π1 sets in Example 5.1.1.

50

Example 5.1.1. The decomposition is the following:

F̃p(B) as union of Π1 sets

� Each F̃pej
(B) = Ball(Bt)⊕ F̃pej

(Br) = Ball(m(ej , B
r)+m(Bt),d(Br)+ r(Bt)) for j = 1, 2

is a ball that is elementary. F̃p0(B) = Ball(Bt) is also a ball that is elementary.

We denote mA(B) = m(e1, B
r)+m(Bt), mB(B) = m(e2, B

r)+m(Bt), d(B) = d(Br)+r(Bt)

and r(B) = r(Bt).

And also SA(B) = F̃pe1
(B) = Ball(mA(B),d(B)), SB(B) = F̃pe2

(B) = Ball(mB(B),d(B)),

SO(B) = F̃p0(B) = Ball(m(Bt), r(B)). See Figure 5.1.

� There is a cylinder Cylinder(B) whose union with SA(B) and SB(B) is Chull{SA(B),SB(B)}.

See Figure 5.2.

� There are two frustums FrustumA(B) and FrustumB(B) such that SO(B)∪FrustumA(B)∪

SA(B) = Chull{SO(B),SA(B)} and SO(B)∪FrustumB(B)∪SB(B) = Chull{SO(B),SB(B)}

. See Figure 5.3.

� There is a pyramid Pyramid(B) whose union with all other Π1 sets forms the convex hull

Chull{SO(B),SA(B),SB(B)}. See Figure 5.4.

� The union of all Π1 sets above is F̃p(B). See Figure 5.5.

The Σ2 decomposition for approximate footprint for B ∈ W of the Delta robot is then

F̃p(B) = SO(B) ∪ SA(B) ∪ SB(B) ∪ Cylinder(B) ∪ FrustumA(B) ∪ FrustumB(B) ∪ Pyramid(B).

The algebraic inequalities defining each Π1 set in Example 5.1.1 are put into Examples D.1.1, D.1.2

and D.1.3 in the appendix.

51

Figure 5.1: The balls. Figure 5.2: The cylin-

der.

Figure 5.3: The frus-

tums.

Figure 5.4: The pyra-

mid.

Figure 5.5: The F̃p(B).

5.1.2 Σ2 double loop

A Σ2 set I can be written as

I =

m⋃
i=1

n⋂
j=1

Kij ,

where Kij are elementary sets. Each Ji = ∩nj=1Kij is an Π1 set. There is a simple double loop that can

answer if f ∩ I = ∅ for any feature f :

52

Figure 5.6: CAD method for maintaining intersection J .

Σ2-Collision Detection(f,A)

Input: f and I = ∪mi=1 ∩nj=1 Kij .

Output: success if I ∩ f = ∅, failure else.

For i = 1 to m

J ← f

For j = 1 to n

J ← J ∩ Kij (*)

If J = ∅, break

If J ̸= ∅, return failure

Return success

The step (∗) maintains J as the intersection of f with successive primitives. If f is a corner or

an edge, this is trivial. When f is a facet, this could still be solved in the previous paper for rod and

ring robots [23]. But for the Delta robot R0 = △AOB, maintaining a planar set bounded by curves

of degree 2 is required. We can use cylindrical algebraic decomposition (CAD) [30] to exactly maintain

the set J , see Figure 5.6 for a reference, but the complexity of algebraic numbers are not easily to be

controlled when many planar quadratic equations are involved. We could also use linear approximations

of J to maintain it with an effectiveness, see definition D.2.1 and examples D.2.2, D.2.4 and D.2.6 and

53

their corresponding propositions in Section D.2 for a reference. But it involves additional approximations

other than the soft predicates in the SSS framework which plugs in more effective ratios to affect the

resolution constant. In fact, we have a much more concise technique that only requires solving explicit

quadratic equations without any approximations to exactly decide if Sep(f, F̃p(B)) > 0. This technique

is the so-called parametric separation query and it is endowed with a boundary reduction method.

5.2 Boundary Reduction and Parametric Query

We write F̃p(B) = ∪iJi where each Ji is a Π1 set defined in Example 5.1.1. The statement Sep(f, F̃p(B)) >

0 is equivalent to Sep(f,Ji) > 0 for all i. The technique to decide the statement is the parametric sepa-

ration query solved by boundary reduction method.

A parametric separation query is a query asking if Sep(I,K) > s for some I,K ⊆ Rk and s ≥ 0.

The idea of asking this query comes from the fact that F̃p(B) = Ball(Bt) ⊕ F̃p(Br) where by Lemma

A.4.1 in Chapter 2, Sep(f, F̃p(B)) > 0 is equivalent with Sep(f ⊕{−m(Bt)}, F̃p(Br)) > r(B). A solution

to this query is the boundary reduction method which comes from the idea of Lagrange Multiplier [11].

Given two algebraic sets I and K in Z, the extreme pair between I and K is a set of pairs

(p,q) ∈ I ×K where each pair in the set is a local minima or maxima for the function dZ(p,q), denoted

by ext(I,K). We say (I,K) is degenerate, if ext(I,K) is not a finite set. The construction for ext(I,K)

is described in Lemma 5.2.1.

Lemma 5.2.1. Let Z = Rk. Suppose that fi(x) = 0 for i = 1, . . . ,m are constraints for algebraic set

I ⊆ Z and gj(x) = (0) for j = 1, . . . , n are constraints for algebraic set K ⊆ Z.

ext(I,K) =

(p,q) ∈ I × K : p− q =
∑
i

λi∇fi(p) =
∑
j

νjgj(q),∃λi, νj ∈ R

Proof. We use Lagrange multipliers to find the local optimas for dZ(p,q), which are also the local optimas

for dZ(p,q)
2. We define the Lagrangian to be

L(p,q, λ, ν) = dZ(p,q)
2 − 2

∑
i

λifi(p) + 2
∑
j

νjgj(q)

54

for some multipliers λ = (λi) and ν = (νj). The optimas are the pairs such that ∇pL = ∇qL = 0. So

0 = ∇pL = 2(p− q)− 2
∑
i

λi∇fi(p),

and

0 = ∇qL = 2(q− p) + 2
∑
i

νi∇gi(q),

which proves the lemma.

When I and K are 1-dimensional curves or 2-dimensional surfaces, we have explicit expressions for

ext(I,K), see corollaries 5.2.2 and 5.2.3. Their proofs are obvious.

Corollary 5.2.2. Suppose that a tangent vector for a curve K at q ∈ K is tq, then ∀(p,q) ∈ ext(I,K),

(p− q) ⊥ tq.

Corollary 5.2.3. Suppose that the normal vector for a surface I at p ∈ I is np, then ∀(p,q) ∈ ext(I,K),

(p− q)//np.

Lemma 5.2.1 is applicable for Z = Rk for all k and any algebraic sets I and K. Construction of

extreme pairs is the process of finding algebraic roots for the equation system 5.1:

fi(p) = 0

gj(q) = 0

(p− q) +
∑
i

λi∇fi(p) = 0

(p− q) +
∑
j

νj∇gj(q) = 0

(5.1)

This is actually a “Zero Problem”. However, SSS planner only finds roots when I and K are spans

for elementary sets, where for all equations above in the system, their degrees are at most 2 and their

dimensions are 3. Solving such a set of equations with bounded degrees and dimensions is O(1) for inputs

of different coefficients, which is implementable.

For any semi-algebraic sets I, we denote its interior by I◦. The technique of boundary reduction is

based on the Theorem 5.2.4.

55

Theorem 5.2.4. Let I and K be two compact semi-algebraic sets in Z = Rk. Then Sep(I,K) > s for

some s ≥ 0, if and only if

1. ∀(p,q) ∈ ext(I,K) ∩ (I × K), dZ(p,q) > s;

2. Sep(∂I,K) > s;

3. Sep(I, ∂K) > s.

Proof. Sep(I,K) > s always implies the others, so we only show the sufficiency.

Since I and K are compact, there are p0,q0 ∈ I ×K, such that dZ(p0,q0) = Sep(I,K). If p0 ∈ ∂I

or q0 ∈ ∂K, then we know dZ(p0,q0) > s since Sep(∂I,K) > s and Sep(I, ∂K) > s. Now suppose that

p0 ∈ I◦ and q0 ∈ K◦. We show that this pair (p0,q0) ∈ ext(I,K). Since (p0,q0) ∈ (I × K)◦, there is

an open neighborhood Up0q0 ⊆ I◦ × K◦ such that it is a local minima for function dZ(p,q) in Up0q0 .

Moreover Up0q0
⊆ I × K which implies (p0,q0) is also a local minima for function dZ(p,q) in I × K.

Then by definition, (p0,q0) ∈ ext(I,K).

Corollary 5.2.5. Let I and K be two compact semi-algebraic sets in Z = Rk. Then Sep(I◦,K◦) > s for

some s ≥ 0, if and only if ∀(p,q) ∈ ext(I,K) ∩ (I × K), dZ(p,q) > s.

Based on the Theorem 5.2.4, the process of querying if Sep(f, F̃p(B)) is clear. The boundary of

any compact semi-algebraic sets is either an empty set or a finite union of semi-algebraic sets [2]. One

can begin with asking an initial query if Sep(f, F̃p(B) = ∪iJi) > 0, and for each Ji, recursively asking

those queries of boundary primitives. Each recursion will always reduce the dimension of primitives in

the queries until a point or an empty set. Note that the separation from an empty set to any other sets

is always +∞. The separation between two points is the distance, which is trivial to compute. Hence

this reduction is always haltable and computable for non-degenerated (f, F̃p(B)).

The next section will apply Lemma 5.2.4 to give a very efficient process of answering the query

Sep(f, F̃p(B)) for the Delta robot.

56

5.3 Explicit Collision Detection for Delta robot

In this section, we will introduce a very special class of geometric solids, which is a key to simplify the

parametric separation query for F̃p(B) of Delta robots. By a solid, we mean a special bounded Π1 or

Σ2 set, where the Π1 set may be one of the following types:

line segments, triangle, trapezoid, right cylinder, right cone, right frustum, pyramid. (5.2)

By right cylinder, we mean the intersection of an infinite cylinder with two half-spaces whose bounding

planes are perpendicular to the axis of the cylinder. The notion of right frustum is similar, but using a

doubly-infinite cone instead of a cylinder. Thus the two “ends” of a right cylinder and a right frustum

are bounded by two discs, rather than general ellipses. A right cone is a special case of a right frustum

when one disc is just a single point. The pyramid is that special polyhedron Pyramid(B) for each box

B ∈ W.

A right cone can be parametrized by Cone(v, c, r), where v is its apex, c is the center of the base,

and r is the radius of the base. The conic surface of the right cone is denoted by tc(v, c, r), which we

call a traffic cone. The base disc is disc(c,n, r), where n = v − c is a normal vector to the base. The

very special geometric solid is a right cone Cone(v, c, r) unioned with the unique special ball Ball(o, R)

that is tangent to tc(v, c, r), see Figure 5.7. We call this special solid an ice-cream cone, denoted by

icc(v,o, R). The relation between parameters of the two solids (right cone and ball) in icc(v,o, R) is

given by Lemma 5.3.1.

Lemma 5.3.1. In the ice-cream cone

icc(v,o, R) = Cone(v, c, r) ∪ Ball(o, R),

let h = |vo| = |v − o|, we have

r =
R

h

√
R2 − h2,

57

and

c =
1

R2

(
(R2 − r2)v + r2o

)
.

Figure 5.7: The ice-cream cone icc(v,o, R)

The proof of the lemma is based on classical geometry of similarity between triangles, which is

obvious.

As an application of the boundary reduction method, we decide the process of answering the para-

metric separation query for Sep(f, icc(v,o, R)) > s by Lemma 5.3.2.

Lemma 5.3.2. Let c and r be the values defined by Lemma 5.3.1. Sep(f, icc(v,o, R)) > s for some s > 0

if and only if

Sep(f, {v}) > s ∧ Sep(f, tc(v, c, r)◦) > s ∧ Sep(f,Ball(o, R)) > s ∧ Sep(f,Cone(v, c, r)◦) > 0.

Proof. The necessity is obvious, we show the sufficiency.

By reduction to boundaries,

icc(v,o, R) = Cone(v, c, r) ∪ Ball(o, R)

= ∂Cone(v, c, r) ∪ Ball(o, R) ∪ Cone(v, c, r)◦

= ({v} ∪ tc(v, c, r)◦ ∪ disc(c,v − c, r)) ∪ Ball(o, R) ∪ Cone(v, c, r)◦

= {v} ∪ tc(v, c, r)◦ ∪ Ball(o, R) ∪ Cone(v, c, r)◦

58

The last equality is true since disc(c,v − c, r) ⊆ Ball(o, R). The fourth predicate only checks if

Sep(f,Cone(v, c, r)◦) > 0 since Cone(v, c, r) = R3 where distances of minima pairs are always 0.

Note that the pair in the fourth query is degenerate. But we can avoid computing infinite pairs by

only checking if for an arbitrary p ∈ f , p /∈ Cone(v, c, r), based on the success of the second query. Based

on Lemma 5.3.2, the reduction process for an ice-cream cone is the following:

Query Sep(f, icc(v,o, R)) > s?

Input: v,o ∈ R3, feature f ⊆ R3, R > 0, s ≥ 0.

Output: true if Sep(f, icc(v,o, R)) > s, false else.

If Sep(f, {v}) > s is false, return false.

If Sep(f,Ball(o, R)) > s is false, return false.

If Sep(f, tc(v, c, r)◦) > s is false, return false.

Choose a point p ∈ f ,

if p ∈ Cone(v, c, r)◦, return false;

else return true.

In [23], the values of Sep(f,J) for any features f and linear solids J or a ball already have an

explicit computing process. What’s not included is detecting if Sep(f, tc(v, c, r)◦) > s. We develop these

techniques. See Lemma D.3.1, Example D.3.2 and Lemma D.3.3 and their corresponding algorithms in

the appendix.

The power of solid is that we can answer the query Sep(f, F̃p(B)) > 0 by 4 simple sub-queries. We

summarize the result into a Theorem 5.3.3.

Theorem 5.3.3. For any box B = Bt ×Br ∈ W and feature f , Sep(f, F̃p(B)) > 0 if and only if

(Sep(iccA(B), f) > r(B)) ∧ (Sep(iccB(B), f) > r(B))

∧
(
Sep(mA(B)mB(B), f) > d(B)

)

59

∧ (Sep(Pyramid(B), f) > 0)

where iccA(B) = icc(m(Bt),mA(B), d(Br)) and iccB(B) = icc(m(Bt),mB(B), d(Br)).

Proof. We rearrange our approximate footprint in this way:

F̃p(B) = (SA(B) ∪ FrustumA(B) ∪ SO(B))

∪ (SB(B) ∪ FrustumB(B) ∪ SO(B))

∪ (SA(B) ∪ Cylinder(B) ∪ SB(B))

∪ Pyramid(B).

Notice that:

SA(B) ∪ FrustumA(B) ∪ SO(B) = iccA(B)⊕ Ball(r(B))

SB(B) ∪ FrustumB(B) ∪ SO(B) = iccB(B)⊕ Ball(r(B))

SA(B) ∪ Cylinder(B) ∪ SB(B) = mA(B)mB(B)⊕ Ball(d(B))

By Lemma A.4.1, Sep(f, F̃p(B)) > 0 if and only if the four queries in the conjunction form described in

the theorem all succeed.

Remark 5.3.4. When F̃p(Br) is degenerated, the ball SO(B) ⊆ Cylinder(B). In this case, the solid

decomposition for F̃p(B) is reduced to purely Cylinder(B), i.e., F̃p(B) = Cylinder(B), see Figure 5.8.

Therefore, the SSS planner only needs to check if Sep(mA(B)mB(B), f) > d(B) in this degenerated case.

60

Figure 5.8: When w(Br) ≥ 1, F̃p(Br) is degenerated.

61

Chapter 6

Delta Subdivision Scheme and Box Adjacency

An SSS planner plans a path by subdividing the box space W = R7 until finding a channel from the

start to the goal box. The channel is constructed from the graph G of FREE boxes. The planner can

use standard discrete search strategies such as Breadth First Search (BFS), the Dijkstra Algorithm [16],

the A∗ Method [62], etc. The graph G depends on two aspects, the subdivision scheme and the data

structure maintaining the subdivision. In this chapter, we will discuss the subdivision scheme for the

Delta robot and design a product tree structure to maintain the subdivision.

6.1 Subdivision Scheme

Recall that the subdivision in the SSS framework is based on the technique of the well-developed interval

method (also called interval arithmetic) [40]. Based on the interval method, the framework builds a

subdivision tree. We will first review concepts related to subdivision trees [8].

6.1.1 Subdivision Tree

We first consider subdivision of the standard cube B0 = [−1, 1]d in d ≥ 1 dimensions. A subdivision

tree T (B0) is a finite tree rooted at [−1, 1]d whose nodes are subboxes of [−1, 1]d. Each internal node

has 2k congruent children for some k ∈ {1, . . . , d}. The set of leaves of T (B0) constitute a subdivision

62

of [−1, 1]d. Nodes of T (B0) are called aligned boxes and every aligned box has a natural depth, where

the root has depth 0.

Given an interval I, we denote I− to be the negative endpoint of I and denote I+ to be the positive

endpoint of I.

Let k = −1, 0, . . . , d. Two boxes B,B′ are k-adjacent if B ∩ B′ is an k-dimensional box. If they

are d-adjacent, we say B and B′ overlap. If they are (d− 1)-adjacent, we say they are neighbors. As

a matter of fact, if B and B′ are overlapping aligned boxes, then either B ⊆ B′ or B′ ⊆ B.

An indicator is an array of entries d ∈ {1, 0, 1}d. For example, (1, 1, 0) is an indicator for d = 3. A

flip of an indicator d exchanges 1 with 1, denoted by flip(d). For instance, flip(1, 1, 0) = (1, 1, 0).

If an indicator d has no 1, such as (1, 0, 1, 0), we call it a split indicator. The sum of all its entries

is the order of the split indicator, denoted by ord(d). Given a leaf B in a subdivision T (B0) and a split

indicator d, the split of B by split indicator d, splitd(B), is the set of 2ord(d) congruent children, such

that the j-th components Ij of B =
∏d

i=1 Ii indicated by 1 in d are subdivided into 2 equal subintervals.

If ord(d) = d, then we call it a total split. The subdivision tree T (B0) is constructed by repeatedly

splitting the root B0.

If an indicator d has exactly one non-zero component, such as (0, 0, 1, 0), we call it a direction; if

the non-zero component is 1, it is a positive direction, otherwise it is a negative direction, as in

(0, 0, 1, 0). The direction with j-th component positive is ej and with j-th component negative is −ej .

The set of all directions is Dir = {±ej : j = 1, . . . , d}.

If an indicator d has no zero components, such as (1, 1, 1), we call it a child indicator. Child

indicators uniquely identify each child in a total split. For example, in splitting [−1, 1]3, the child

corresponding to (1, 1, 1) is [0, 1] × [−1, 0] × [−1, 0]. We denote the child indicator of a non-root box B

as childId(B).

Given a box B, we can project it in one of d directions: Proji(B):=
∏d

j=1,j ̸=i Ij is a (d−1) dimensional

63

box for i ∈ {1, . . . , d},. We also have a reverse process of projections, ⊗i, defined as

B = Proj
i

(B)⊗i Ii

for any box B and any i ∈ {1, . . . , d}.

Any box B has k-dimensional faces for k = 0, . . . , d. If k = 0, we call the face a corner. If k = d−1,

we call the face a facet. The facet in the direction ej is

facetej
(B) = Proj

j
(B)⊗j I

+
j

and the facet to the direction −ej is

facetej (B) = Proj
j

(B)⊗j I
−
j .

Given two boxes B,B′ ∈ T (B0), if B is a child of B′, we write B = child(B′) and B′ = parent(B).

If B and B′ are (d−1)-adjacent, there is a unique direction d such that B′ is adjacent to B in direction

d, denoted by B
d−→ B′. Note that if B

d−→ B′, then B ∩B′ ⊆ facetd(B).

Now for B0 = Bt
0 × ŜO(3) box space, the subdivision tree is T (B0) = T (Bt

0) × T (ŜO(3)), where

T (Bt
0) and T (ŜO(3)) are called template tree. Each node B of T (B0) is represented by a pair of nodes

(Bt, Br) in T (Bt
0) × T (ŜO(3)). We will demonstrate this product operation later in the next section.

Here, we describe the construction of the two templates.

In this thesis, we only make total splits on both of the two template trees T (Bt
0) and T (ŜO(3)).

The total splits in T (Bt
0) are called T -splits and the total splits in T (ŜO(3)) are called R-splits. The

template tree of T (Bt
0) is the same as the standard subdivision tree of [−1, 1]3, which we call an oct-tree.

The template tree of T (ŜO(3)) differs slightly. The root of T (ŜO(3)) is the ŜO(3). Its first split divides

ŜO(3) into 4 children:

Cw = {(−1, x, y, z) : (x, y, z) ∈ [−1, 1]3},

Cx = {(w,−1, y, z) : (w, y, z) ∈ [−1, 1]3},

Cy = {(w, x,−1, z) : (w, x, z) ∈ [−1, 1]3},

64

Cz = {(w, x, y,−1) : (w, x, y) ∈ [−1, 1]3}.

The four boxes Cw, Cx, Cy, Cz are called the subroots of T (ŜO(3)), and we alternatively denote them

as C1, C2, C3, C4, respectively. Subsequent splits occur within one of the subroots. Each subroot forms

a tree, T (Ci) for i = 1, 2, 3, 4, where each T (Ci) is an oct-tree, except that all indicators for each T (Ci),

including split indicators, child indicators and directions, adds a “∗” to the i-th component. For example,

a split of a box B in Cw = C1 ⊆ ŜO(3) by a split indicator (∗, 0, 1, 0) results in 4 boxes whose child

indicators are (∗, 1, 0, 1), (∗, 1, 0, 1), (∗, 1, 0, 1), and (∗, 1, 0, 1) respectively.

6.1.2 Subdivision Scheme for the Delta Robot

For simplicity, the SSS planner for Delta robot will only apply one of T -split or R-split when splitting a

node of T (B0), which we refer to as a TR-subdivision scheme, or simply a TR-scheme. Note that in

previous papers [56], this term was used to refer to the process of first performing purely T -splits until

w(Bt) < ε, and then performing R-splits. The W for the Delta robot is defined as all possible boxes

that may be obtained from the TR-subdivision scheme, from the initial B0 = Bt
0 × ŜO(3). In the case

of TR-scheme, if T -split is applied, we have w(Bt) = 1
2w(parent(B)t), and if R-split is applied, we have

w(Br) = 1
2w(parent(B)r). Additionally, we have ℓ(Bt) =

√
3w(Bt) and ℓ(Br) =

√
3w(Br) for any box

B ∈ W.

The subdivision scheme for an SSS planner is required to guarantee the inheritance of the feature

set and satisfy the Axiom (A1). We discuss these two problems next.

Let us first consider the inheritance property of approximate feature sets. Recall that ϕ̃(B) is the

approximate feature set of B. The inheritance property is ϕ̃(B) ⊆ ϕ̃(parent(B)), which is implied by

F̃p(B) ⊆ F̃p(parent(B)). Since we only do T -split or R-split each time, it is either Bt = parent(B)t or

Br = parent(B)r. For the second case, the inheritance is obvious, since

F̃p(B) = Ball(Bt)⊕ F̃p(Br)

65

= Ball(Bt)⊕ F̃p(parent(B)r))

⊆ Ball(parent(B)t)⊕ F̃p(parent(B)r))

= F̃p(parent(B))

For the first case, it looks true for general cases except when w(Br) = 1 or w(Br) = 2, where w(Br) = 2

implies Br = Cw or Cx or Cy or Cz, and parent(B)r = ŜO(3). But this is easy to fix since we can define

F̃p(Br) as a larger ball when w(Br) ≥ 1. The general case is given by a Conjecture 6.1.1.

Conjecture 6.1.1. Let B1 ∈ W. If w(B1) ≤ 1, then for any box B2 ⊆ B, F̃p(Br
2) ⊆ F̃p(Br

1).

We discovered this conjecture by experiments using Geogebra. We observe experimentally that balls

F̃pek
(Br) for k = 1, 2 are monotonically shrinking when shrinking B for w(B) ≤ 1. We have not proved

this conjecture yet. But there is a method to show that the feature set defined by collecting features only

from the parent still works for the SSS framework. We will introduce this method in Example E.1.1 in

the appendix.

Based on the conjecture, the F̃p satisfies the inheritance property since when Bt = parent(B)t for

w(Br) ≤ 1
2 ,

F̃p(B) = Ball(Bt)⊕ F̃p(Br)

= Ball(parent(B)t)⊕ F̃p(Br))

⊆ Ball(parent(B)t)⊕ F̃p(parent(B)r))

= F̃p(parent(B)).

The bound D0 in (A1) is achieved by bounding the aspect ratio for each B in the scheme. In fact,

for purely T -split or purely R-split, aspect ratios α(Bt) = α(Bt
0) and α(Br) =

√
3 are always constants.

For the TR-scheme, one only needs to bound the ratio w(Bt)/w(Br) for each box B = Bt × Br. This

depends on the details of our subdivision scheme for the Delta robot. We should decide for each box B,

when to do T -split and when to do R-split. We propose the following scheme for the Delta robot:

66

Delta Subdivision Scheme TR(B)

Input: box B ∈ W.

Output: “T -split” or “R-split”.

If w(Bt) > 0.25, return “T -split”.

If w(Br) > 0.25, return “R-split”.

If w(Bt) ≥ w(Br), return “T -split”.

return “R-split”.

We design this scheme so that in each split, the reduction in the volume of F̃p(B) is approximately

maximized. For simplicity, no matter what D0 is, we assume that for B0 = ∪ni=1Bi, each Bi satisfies

α(Bi) ≤ D0. Otherwise, we can preprocess B0 by cutting the longest edges of Bi until each Bi satisfies

α(Bi) ≤ D0. Then, this special scheme TR has a bounded aspect ratio D0 independent to input. We

summarize it into Proposition 6.1.2.

Proposition 6.1.2. Let B0 = dom(µ) . The TR scheme has a bounded aspect ratio

D0 = 9
√
3.

Proof. When w(Bt) > 1
4 , it is true by assumption of the initial box. When w(Bt) ≤ 1

4 and w(Br) > 1
4 ,

we will not do T -split, so w(Bt) ≥ 1
8 . Since ℓ(ŜO(3)) = 2

√
3, we have

α(B) ≤ (ℓ(ŜO(3)) + ℓ(Bt))/w(Bt) = 9
√
3.

When w(Bt) ≤ 1
4 and w(Br) ≤ 1

4 . If w(B
t) ≥ w(Br), we will not do R-split, so w(Br) ≥ 1

2w(B
t). Then

α(B) ≤ (ℓ(Bt) + ℓ(Br))/w(Br) ≤ 3
√
3. The case when w(Bt) ≤ 1

4 and w(Br) ≤ 1
4 but w(Bt) < w(Br)

is the same. Therefore, α(B) ≤ 9
√
3 for any B ∈ W.

Corollary 6.1.3. The maximum aspect ratio for ε-small boxes in the TR scheme is 2
√
3 when ε < 0.125.

67

6.2 Data Structure Maintaining Adjacency of Boxes

We have discussed the subdivision scheme for the Delta robot and showed that it has the inheritance

property. The aspect ratio is bounded by 9
√
3. The other problem is to maintain the adjacency of boxes

in the subdivision tree. This process requires quickly finding adjacent boxes given a new FREE box B,

and it is based on the data structure of subdivision trees.

To describe the method of finding neighbors, we introduce the concepts of reverse direction, d-cousin,

and principal d-neighbor.

6.2.1 Reverse of Direction

We use T (B∗
0) to denote either T (Bt

0) or T (ŜO(3)). Given a box B in the T (B∗
0) and d ∈ Dir, the

reverse direction of d is revB(d) ∈ Dir such that if B
d−→ B′, then B′ revB(d)−−−−−→ B. The reverse direction

is well defined according to Theorem 6.2.1, since we can define revB(d) by the unique smallest-depth box

B′ such that B
d−→ B′.

Theorem 6.2.1. revB2
(d) = revB1

(d) for any B2 that in T (B1) that is a boundary of B1 in direction

d ∈ Dir.

Proof. This is because B1 and B2 share the same facet, that is, facetd(B2) ⊆ facetd(B1). For any B3

such that B1
d−→ B3 and B4 such that B2

d−→ B4,

B2 ∩B4 ⊆ facetrevB2
(d)(B4),

and

B2 ∩B4 ⊆ B1 ∩B3 ⊆ facetrevB1
(d)(B3).

Then facetrevB2
(d)(B4) ∩ facetrevB1

(d)(B3) ̸= ∅ implies revB2(d) = revB1(d).

In fact, if B
d−→ B′, then either facetd(B) ⊆ facetrevB(d)(B

′) or facetd(B) ⊇ facetrevB(d)(B
′).

68

In T (Bt
0), the direction revBt(d) is −d for any box Bt. Similar result for Br in ŜO(3) tree if Br is

not a boundary of Ci for any i ∈ {w, x, y, z}, since it is locally R3 around facet facetd(B
r). For Br that

is a boundary of Ci, revBr (d) is given by Proposition 6.2.2 and Corollary 6.2.3.

Proposition 6.2.2. Given an oct-tree T (ŜO(3)), for any i, j ∈ {1, 2, 3, 4}, i ̸= j, revCi
(ej) = ei and

revCi
(−ej) = −ei.

Proof. Since

facetej (Ci) = facetej

(
[−1, 1]3 ⊗i {−1}

)
= [−1, 1]2 ⊗i {−1} ⊗j {1}

= facet−ei

(
[−1, 1]3 ⊗j {1}

)
= facet−ei

(
[1,−1]3 ⊗j {−1}

)
= facetei

(
[−1, 1]3 ⊗j {−1}

)
= facetei

(Cj),

we have revCi
(ej) = ei. The other case is similar.

Corollary 6.2.3. Given an oct-tree T (ŜO(3)), for any i, j ∈ {1, 2, 3, 4}, i ̸= j, revBr (ej) = ei for

boundary Br ⊆ Ci in direction ej.

6.2.2 d-neighbor

Recall that a d-neighbor of a box B is a box B′ such that B
d−→ B′. Given T (B∗

0), box B′ is called a

d-cousin of box B if B′ is a d-neighbor of B such that depth(B) = depth(B′). In this case, B ∩ B′ =

facetd(B). Since the depth of the cousins are the same, the width of a box is the same with its cousins.

If B′ is a d-cousin of B, then it is always the unique d-cousin, denoted by cousind(B). Note that

cousind(B) = NULL if it is not a boundary in direction d or it is a root or the root or subroot of B has

no d-neighbor or all its d-neighbors are “piblings”. By a similar convention, a d-sibling B′ of B means

69

that B′ is a sibling of B and B
d−→ B′, denoted by B′ = siblingd(B). Note that siblingd(B) = NULL if B

is a boundary of its parent in direction d or it is a root or a subroot. Since the depths between siblings

are always the same, the siblingd(B) is unique and siblingd is well defined.

There are relations between child indicators of a box B with its d-cousin.

Theorem 6.2.4. Assume that the splits in the subdivision tree are all total splits. Let B2 be a child of

B1. If childId(B1) = childId(B2), then

childId(cousind(B1)) = childId(cousind(B2))

provided that cousind(B1) and cousind(B2) are not NULL.

Proof. Let d = ek, B3 = cousinek
(B1), and B4 = cousinek

(B2). We have assumed that the splits are

total, therefore the indicators of splits for B1 and B2 are the same, so as B3 and B4. Let tj be the indicator

of Bj in its split for j = 1, 2, 3, 4. Then childId(B1) = childId(B2) implies t1 = t2. Since cousinek
exists

for B1 and B2, the ek-neighbors of B1 and B2 cannot be their siblings, hence facetek
(B2) ⊆ facetek

(B1).

Let t′i be the indicator of facetek
(Bi). Then since facetek

(Bi) = Projek
(Bi) ⊗k {1} for positive ek and

facetek
(Bi) = Projk(Bi)⊗k {−1} for negative ek, we always have Projk(ti) = t′i. It implies that t′1 = t′2.

As B3 = cousinek
(B1), and B4 = cousinek

(B2), we have facetek
(B1) = facetrevB1

(ek)(B3) and

facetek
(B2) = facetrevB2

(ek)(B4). Therefore t′1 = t′3 and t′2 = t′4. Since B2 is a boundary of B1 in

direction d, by Theorem 6.2.1, revB1
(ek) = revB2

(ek). So if revB1
(ek) is positive, then

t3 = t′3 ⊗k {1} = t′1 ⊗k {1} = t′2 ⊗k {1} = t′4 ⊗k {1} = t4,

70

and similar when revB1
(ek) is negative. Therefore, t3 = t4, which implies childId(B3) = childId(B4),

since the indicators of splits for B3 and B4 are the same.

According to Theorem 6.2.4, an SSS plannar only need to decide the childId(cousind(B)) according

to childId(B) for B is a root or a subroot. Let us discuss the relation between childId(cousind(B)) and

childId(B) for roots and subroots B in T (Bt
0) and T (ŜO(3)).

Proposition 6.2.5. For boxes B in T (Bt
0),

childId(cousin±ej (B)) = flipj(childId(B)).

One can show that by enumerating the first split of Bt
0. It is also true for B in T (ŜO(3)) if B is

not a boundary of Cj for j = 1, 2, 3, 4, since it is locally R3 within each Cj . For B is a boundary of Cj ,

we have another formula given by the flip operation. Note that, in relation between childId for different

subroots in T (ŜO(3)), ∗ is counted as 1 since our boxes Ci fix i-th component as −1.

Proposition 6.2.6. Assume all splits are total splits. For B in T (ŜO(3)) such that B is a boundary of

Cj in direction ej,

childId(cousinej
(B)) = flip(childId(B)).

For B in T (ŜO(3)) such that B is a boundary of Cj in direction ej,

childId(cousin−ej (B)) = childId(B).

Proof. We call the box that is a child of a subroot in T (ŜO(3)) a Family Patriarch (FP). The key

point is that any two FPs from different subroots in T (ŜO(3)) exactly share a unique same corner among

the 8 corners of each subroots. The child indicator for each FP is a substitution from (w, x, y, z) of a

corner to {1, 1, ∗}4. For an FP box B in Ci, childId(B)i = ∗. If B shares corner b, then if bi = −1,

childId(B)j =

1 bj = 1

1 bj = −1
and if Bi = 1, childId(B)j =

1 bj = 1

1 bj = −1
. Boxes to the negative

directions will move to a negative FP in the subroot, so its childId will not change except a substitution

between ∗ and 1. Boxes to the positive directions will move to a positive FP in the subroot, so its childId

71

will flip with a substitution between ∗ and 1. These observations prove the proposition for FP boxes.

The proposition is true by Theorem 6.2.4.

To give out an explicit view, the childId relations between any pair of adjacent FPs B1 and B2 are

given in a table in Table E.2.1 in appendix.

In principle, the techniques for child indicators are already enough for determining the d-cousin of

boundary boxes. But we have a much more powerful data structure that can trace tree-path indicators

for all boxes with very few space occupancy. We depict this data structure in Example E.3.1 in the

appendix.

6.2.3 Principal d-neighbor

The key point to quickly suggest neighbors is the technique of principal neighbors. This idea was first used

in [21]. Given a subdivision tree T (B0), a principal d-neighbor princd(B) of box B is a d-neighbor

of box B that is as small as possible, such that each leaf in T (B0) that is a d-neighbor of B is either

princd(B) or a child of princd(B). For each box B in T (B0), its principal d-neighbor is encoded as a

pointer to a box in T (B0). Each box B ∈ T (B0) has 2d pointers points to ±ej-principal neighbors for

j = 1, . . . , d.

Given a subdivision tree T (B0), there is a very natural strategy to assign a principal d-neighbor for

any subdivision tree, see the process below:

72

Principal Neighbor princd(B)

Input: box B in T (B0), direction d = ±ej for some j.

Output: princd(B).

If B = B0, return NULL.

If B is a subroot, return cousind(B).

If siblingd(B) ̸= NULL, return siblingd(B).

If cousind(B) ̸= NULL, return cousind(B).

return princd(parent(B)).

Note that this process can be dynamically programmed by recording pointers of princd so that during

each expansion, princd(parent(B)) is just called from the pointer from the parent(B). The princd(B)

defined by the process is correct by Lemma 6.2.7.

Lemma 6.2.7. Any leaf d-neighbor of a box B is a boundary of princd(B) in direction revd(B) defined

in the process “Principal Neighbor”.

Proof. When B is the root or a subroot, it is obvious. We consider B′ be any d-neighbor of B such

that depth(B′) ≥ depth(B). If siblingd(B) ̸= NULL, B is not a d-boundary child, so facetd(B) =

facetrevB(d)(siblingd(B)) ⊇ facetrevB(d)(B
′) which implies B′ is a descendant of siblingd(B). Similar

when cousind(B) ̸= NULL, under after this case, B is always a d-boundary child of parent(B). In this case,

if princd(parent(B)) statiesfies this Lemma 6.2.7, then facetrevB(d)(B
′) ⊇ facetd(B) ⊇ facetd(parent(B))

implies B′ is a descendant of princd(parent(B)).

For any subdivision tree with purely total splits, the process “Principal Neighbor” defines princd(B)

for each box B by a d-neighbor B′ such that depth(B) is maximized restricted to depth(B′) ≤ depth(B).

This applies for the oct-trees for both T (Bt
0) and T (ŜO(3)).

73

6.2.4 Product Tree

Fix two template trees T (Bt
0) and T (ŜO(3)). To preserve adjacency between any two boxes in B0, we

combine them into a product tree T (B0) = T (Bt
0)× T (ŜO(3)), where each node in T (B0) contains two

pointers which points to two nodes, one in T (Bt
0) and one in T (ŜO(3)). Initially, T (Bt

0) and T (ŜO(3)) are

trivial trees rooted at Bt
0 and ŜO(3) respectively. They grow as splits occur in T (B0). When performing

T -split on a box B = Bt × Br, we first split Bt in T (Bt
0) if Bt is a leaf of T (Bt

0), and then construct

children of B by assigning the appropriate products of Bt and Br. Similar operations for R-split.

The directions in B0 are coded by directions in Rd for d = 7. ±ej is classified as a direction in Bt
0 if

j ≤ 3, and is classified as a direction in ŜO(3) if j ≥ 4. For simplicity, given a direction d, we say it is a

T -direction for a direction in Bt
0 or it is an R-direction otherwise.

The child indicator for each box B in T (B0) is a pair (childId(Bt), childId(Br)). The d-sibling and

d-cousins in T (B0) are defined by a similar process. A box B is a d-root if Bt is a root when d is a

T -direction or Br is a root when d is an T -direction. A box B is a d-subroot if Br is a subroot and d is

an T -direction.

Based on root, subroot, sibling and cousin, the principal neighbor for an ŜE(3) box is defined by the

“Principal Neighbor”, and we have proved that it can correctly find possible neighbors based on Lemma

6.2.7. The explicit process for finding all possible neighbors is the following:

74

Find all neighbors of a box B in T (B0): AllNeighbor(B)

Input: box B ∈ T (B0).

Output: the set of all neighbors of B in T (B0).

S← ∅.

For each δ = ±1, j = 1, . . . , 7,

Initialize Q as an empty queue of boxes.

d← δej .

if (princd(B) = NULL), continue.

Q.insert(princd(B)).

While (!Q.empty())

B1 ←Q.pop().

For each child B2 of B1 in direction revB(d),

if (B2 is leaf) and (B
d−→ B2)

S.insert(B2).

else if (B
d−→ B2)

Q.insert(B2).

return S.

The process AllNeighbor(B) always halts since there are finite children in princd(B). It is correct

by Lemma 6.2.7.

75

Chapter 7

Conclusion and Future Plan

This thesis has completed the SSS Axioms and proven the Fundamental Theorem of the SSS framework,

thereby concluding the series of work initiated in [59]. Based on these Axioms, the thesis designed

approximate footprints and subdivision schemes for the Delta robot △AOB and demonstrated that the

designed SSS planner for the Delta robot satisfies all five Axioms in the SSS framework. Moreover, this

planner is the first explicit, certified, and practical path planner for an SE(3) robot that also does not

have the halting problem. It serves as proof that the SSS framework is a truly practical method.

We have made an exhaustive analysis of the resolution of the Delta robot, and implemented the

methods in this thesis. We discuss the results in this chapter.

7.1 Resolution Constant of the Delta Robot

The theory for the Delta robot △AOB can be fully deduced by the Fundamental Theorem 2.2.6. By

Proposition 6.1.2, the subdivision constant D0 = 9
√
3. By Proposition 3.3.1, the atlas constant C0 = 2.

By Theorem 4.1.3, the Lipschitz constant L0 = 1. By Theorem 4.2.2, the effective constant σ = 3
2D0.

Therefore, by Theorem 2.2.6, the resolution constant

K = max{L0C0D0σ, 4D
2
0L0C0, 4} = 8D2

0 = 1944.

76

This number is quite huge, however we have a more accurate estimation. Our subdivision method

only applies box subdivisions, and therefore, for the resolution lower bound, we can apply Lemma A.6.1.

Moreover, Lemma 2.2.9 is given by a uniformly ε subdivision. Usually, our ε < 0.125. By Corollary 6.1.3,

our ε-small boxes in the subdivision scheme applied to the Delta robot have maximum aspect ratio
√
6.

Therefore, the atlas constant can be reduced to

K = max{L0C0D0σ, 2} = max{3D2
0, 2} = 18.

We summarize the conclusion as Theorem 7.1.1.

Theorem 7.1.1. The resolution constant for the Delta robot is K = 18.

7.2 Performance Analysis

Let r0 = 1 which is the length of the legs of △AOB. Ideally, to work out a valuable scene that requires

the robot to rotate to avoid the obstacles, the clearance of the possible paths in the scene should be

fewer than r0. The Fundamental Theorem depicts that we will output a path when there is a path with

clearance Kε where K = 36. Hence for the scenarios requiring the robot to fully rotate, ε should be

small enough such that Kε < r0 = 1, or equivalently ε < 1
18 . Suppose that the range of the environment

has width w(Bt
0), to get an ε small box, one need to split m+(n+1) depths in the subdivision tree such

that 2m > 18w(Bt
0) and 2n > 18 where m is the depths of T -split and n+1 is the depths of R-split. The

solution gives n = 5 and m = 6 even when W is small like 3 which allows the Delta robot to translately

move in the environment.

The subdivision tree for the Delta robot is generally an oct-tree, except for the first R-split. In the

worst case, there are 4× 8m+n boxes for a uniformly ε subdivision. Based on the estimation in the last

paragraph, m+ n = 11, where the amount of boxes raises up to 235 ≈ 3.4× 1010. This number of boxes

makes exhaustive traversal infeasible.

A heuristic is a priority function that dictates priority of each MIXED leaf in the subdivision tree,

77

which applies to the priority queue Q in the SSS framework. This priority plays a key role in accelerating

the subdivision search to avoid the thorough traverse in the subdivision tree. We have attempted several

heuristics. Some of the heuristics give considerable efficiency. See Figure 7.1.

Figure 7.1: Performance of the algorithm (Demo).

See more data in Appendix F.

7.3 Future Work

The limitations of this research are primarily related to efficiency, which appears suboptimal. The

heuristic function is critical to the planner’s performance. Indeed, the search strategy is the main factor

influencing the efficiency of an SSS planner, and a well-optimized strategy is still needed for the Delta

robot. The near future work will focus on this problem.

Beyond the Delta robot, future work will extend the framework to accommodate arbitrary rigid-

body robots. A challenge is to design appropriate approximate footprints. The approximate footprints

for the Delta robot are the convex hull of the balls containing the exact footprints of all corners. A

straightforward extension would involve designing approximate footprints for rigid-body robots again by

the convex hull of the balls containing the exact footprints of all corners in the robot. A very primitive

extension is the tetrahedron robot, which will be the first type that is researched. Subsequently, we will

78

explore efficient methods to decompose arbitrary rigid body robots into tetrahedrons and then design a

general approximate footprint strategy for those robots. An ultimate experimental target is the alpha

puzzle [64].

Kinematic path planning is the immediate application of the SSS framework. We also look forward

to extending the SSS framework into the kyno-dynamic path planning area. Unlike the configuration

space in the kinematic path planning, the state space for kyno-dynamic path planning is not purely a

Euclidean typed space (where each component is independent to another). There are extra relations

between different components like between x and ẋ. The appropriate definition for the footprint map is

a challenge and it is also hard to design subdivisions in the state space. Future research will also combine

with soft-exact methods for solving differential equations, which is a potential footprint map in the state

space.

79

Appendix A

Configuration Space, Physical Space, and SSS frame-

work

Configuration space and physical space are two fundamental elements in the definition of footprint map.

They play key roles in the path planning problem. To guarantee stronger results, we need to fully

understand the conditions that the two spaces are required to have.

A.1 Triangle Inequality

This section proves the triangle inequality between Separation and Hausdorff distance.

Lemma A.1.1 (Triangle Inequality). Let Z be a metric space. Then for any subsets R,S, T ⊆ Z,

|Sep(R, T)− Sep(S, T)| ≤ dH(R,S).

80

Proof. Let dZ be the metric of Z. Then,

Sep(R, T) = inf
r∈R

Sep({r}, T)

= inf
r∈R

(
inf
t∈T

dZ(r, t)

)
≤ inf

r∈R

(
inf
t∈T

(dZ(r, s) + dZ(s, t))

)
, ∀s ∈ S

≤ inf
r∈R

(
d(r, s) + inf

t∈T
d(s, t)

)
, ∀s ∈ S

= inf
r∈R

(d(r, s) + Sep({s}, T)) , ∀s ∈ S

= inf
r∈R

d(r, s) + Sep({s}, T), ∀s ∈ S

= Sep(R, {s}) + Sep({s}, T), ∀s ∈ S

Taking the inferior of the right side, we get

Sep(R, T) ≤ inf
s∈S

(Sep(R, {s}) + Sep({s}, T))

≤ sup
s∈S

Sep(R, {s}) + inf
s∈S

Sep({s}, T)

≤ dH(R,S) + Sep(S, T)

And hence, Sep(R, T)− Sep(S, T) ≤ dH(R,S). Similarly, Sep(S, T)− Sep(R, T) ≤ dH(S,R) = dH(R,S).

Therefore,

|Sep(R, T)− Sep(S, T)| ≤ dH(R,S).

A.2 Manifold Structure in Configuration Space

In the SSS framework, the finding path process is to find a path π connecting α and β. It is achieved

by finding a FREE channel covering the proposed path π. Specifically, when X is a manifold, since Y is

an open subset of X , it is still a manifold. This guarantees the existence of the channel if α, β ∈ Y are

81

in the same path-connected component, as ensured by the Poincaré’s Duality. In this section, we discuss

the role of Poincaré’s Duality in the manifold Cspace.

The Poincaré’s Duality guarantees a path in the dual manifold which is the channel aimed by the

SSS planner. We here give a brief review of Poincaré’s Duality [42]:

Poincaré’s Duality is an important theorem in algebraic topology and it is described in standard

textbooks. We use Munkres [42] as our main reference. Munkres [42] describes Poincaré’s Duality in

a compact triangulated homology manifold. Naively, it is a union of essentially disjoint compact

simplices. It is analogous to the subdivision of the boxes, where a subdivision of a box is a union of

essentially disjoint compact boxes. Given a subdivision tree rooted at B0, the corners and edges of the

subboxes of B0 form a graph, denoted by G(B0). The duality implies the existence of a path in the dual

graph of the graph G(B0). This path in the dual graph is the channel that an SSS planner aims to find.

The formalized proof of this process can be easily and rigorously derived by a corollary of the Poincaré’s

Duality in [42]. We take it as our core lemma:

Lemma A.2.1 (Munkres 65.2). Let X be a compact triangulated homology n-manifold. If X is connected,

then for any two n-simplices σ, σ′ of X, there is a sequence

σ = σ0, σ1, . . . , σm = σ′

of n-simplices of X such that σi ∩ σi+1 is an n− 1 simplex of X for each i.

For simplicity, we define two simplices/boxes to be adjacent if they share a codimension 1 facet, as

in Lemma A.2.1.

If X is a manifold, by the representation map, B0 = dom(µ) = µ−1(X) is also a manifold, and it

is a union of boxes. Given a subdivision tree T (B0), for any α, β ∈ B0 and a path π ⊆ B0 such that

π(0) = α and π(1) = β, we call the collection of leaves in T (B0) that covers π the cover of π, denoted

by Cover(π), i.e.,

Cover(π) = {B ∈ L(T (B0)) : B ∩ π ̸= ∅}.

82

The SSS framework aims to find a channel in Cover(π), if it exists. The existence of the channel is based

on an “observation”, an “operation” and an “extension”.

The first is an “observation”, which gives Proposition A.2.2.

Proposition A.2.2 (Cover of path). For any path π ⊆ B0 and any finite subdivision of B0, the union

of collection Cover(π) is a connected compact manifold.

Proof. The space Cover(π) as a subset of L(T (B0)) is always a compact space. Let Cover(π)◦ be the

interior of Cover(π), which is a manifold as an open subset of B0. Moreover, for each point γ ∈ π, γ

is always an inner point, since if γ is not the inner point of some box, we can construct an open ball

with radius less than the minimum width in L(T (B0)), where the minimum exists since the subdivision

is finite. The open ball will be contained in a union of boxes in Cover(π). Hence π ⊆ Cover(π)◦ which

implies Cover(π)◦ is path-connected. Hence Cover(π) is a connected compact manifold.

The second is an “operation”, which results in Theorem A.2.3.

Theorem A.2.3. The boxes in a subdivision tree of a manifold B0 can be decomposed into triangulated

homology manifold C0 such that

1. Each box is decomposed into a connected triangulated manifold where each simplex σ in C0 is

uniquely contained in a box B in B0;

2. If σi and σj are adjacent simplices in C0, where σi is a child of Bi and σj is a child of Bj for some

distinct boxes Bi and Bj in M , then Bi and Bj are adjacent.

Proof. Suppose that we have a subdivision B0 = ∪mi=1Bi. We use Lexicographic Triangulations [31] to

decompose each Bi and result in C0 = ∪nj=1σj . Since each box is a convex polytope, it is always a

connected manifold and the triangulation makes it into a connected triangulated manifold. The triangu-

lation takes place respectively in each box and hence each simplex σ is contained in a unique box B. For

any adjacent simplices σi and σj in C0, σi ∩ σj is a shared facet with codimension 1. Then, as a result,

83

dim(M) > dim(Bi ∩ Bj) ≥ dim(σi ∩ σj) = dim(M) − 1 since σi ∩ σj ⊆ Bi ∩ Bj and Bi is distinct with

Bj . Hence dim(Bi ∩Bj) = dim(M)− 1 and Bi and Bj are adjacent.

The third extension gives Corollary A.2.4.

Corollary A.2.4. Let B0 be a compact box (homology) d-manifold. If B0 is connected, then for any two

d-boxes B,B′ of B0, there is a sequence

B = B1, B2, . . . , Bn = B′

of d-boxes of B0 such that Bi ∩Bi+1 is a (d− 1)-facet of B0 for each i.

Proof. Let C0 be the compact triangulated d-manifold described in theorem A.2.3. By Lemma A.2.1,

there is a sequence

σ = σ1, σ2, . . . , σm = σ′

of d-simplices of C0 such that σj ∩ σj+1 is a (d− 1)-simplex of C0 for each j.

We do two operations on the sequence σ1, σ2, . . . , σm:

1. For each σj in the sequence, let Bi be the unique box that contains it, substitute σi by Bi in the

sequence;

2. For each loop shaping Bi = Bi0 , Bi1 , Bi2 , . . . , Bil = Bi, substitute by Bi.

Note that step 2. also removes any consecutively repeating Bi.

After the two operations, let the sequence σ1, σ2, . . . , σm become B1, B2, . . . , Bn. Since Bi and Bi+1

are generated from adjacent σj and σj+1 by operations for each i, by Theorem A.2.3, Bi and Bi+1 are

also adjacent. Therefore, we have constructed the sequence as required in the corollary.

As a summary, the cover of any path π in any finite subdivision tree can be triangulated into

a triangulated homology manifold, where we can always construct a channel connecting any pair of

simplices, from which we can construct a corresponding channel for the SSS planner.

84

A.3 Structure of Boxes

The subdivision takes place on tiles in W. In general, a tile B is the convex hull of a set of points

w1, . . . ,wn ∈ W, denoted by B = Chull{w1, . . . ,wn}. The relative center of the tile B is its center of

gravity, denoted by m(B) = 1
n

∑n
i=1 wi. Given any σ > 0, we define a σ-homothet of B as

σB = Chullni=1{m(B) + σ(wi −m(B))},

see Figure A.1 for a sketch map.

Figure A.1: A homothet of a tile. Figure A.2: Aspect ratio in Lemma

A.3.2

In practice, we usually do not use arbitrary polytopes in subdivisions. The choice of polytopes

depends on the subdivision scheme. Let W denote a set of polytopes. For instance, W may be the

set of all simplices, or the set of all boxes. Recall that in Chapter 1, we have restricted our tiles into

such boxes and defined the width of a box B =
∏d

i=1 Ii to be w(B) = mindi=1 |Ii| and the length of

B is ℓ(B) = supx,y∈B dW(x,y). The aspect ratio is α(B) = ℓ(B)/w(B). By definition, ∀x,y ∈ B,

dW(x,y) ≤ ℓ(B). The relation between a box B and its homothet σB includes:

Proposition A.3.1.

w(σB) = σw(B), ℓ(σB) = σℓ(B), α(σB) = α(B).

Another method of estimating the clearance of a path, we introduce the lemma A.3.2 of aspect ratio:

85

Lemma A.3.2. For any box B ∈ W and any point p ∈ ∂B, the sine of angle between the line segment

connecting p with m = m(B) and any facet containing p is lower bounded by 1/α(B), i.e., if F is the

facet of B containing p,

Sep({m}, F)

dW(m,p)
≥ 1

α(B)
.

Proof. Since m is the relative center, as a result, Sep({m}, F) ≥ 1
2w(B) and dW(m,p) ≤ 1

2ℓ(B). Hence

Sep({m}, F)

dW(m,p)
≥ w(B)

ℓ(B)
=

1

α(B)
.

The similarity of triangles implies corollary A.3.3.

Corollary A.3.3. For any box B ∈ W and any point p ∈ ∂B, for any n in the line segment pm,

Sep({n}, ∂B)

dW(n,p)
≥ 1

α(B)
.

Remark A.3.4. The Lemma A.3.2 and Corollary A.3.3 can be extended to any tile if w(B) and ℓ(B)

are defined properly. The SSS framework may not be restricted to subdivision of purely boxes. The

Fundamental Theorem for general tile subdivisions is still correct. But this will be future work.

A.4 Linear Physical Space

The physical space Z is generally a metric space. But in practice, it is a subset of the universe which is

locally Euclidean. The Euclidean spaces are linear spaces where we can use vector operations to design

approximate footprints. In the SSS framework, Z = Rk for some positive integer k, which is a linear

space. The linear space have Minkowski sum operation.

Given a linear space Z, the Minkowski sum on I,K ⊆ Z is defined as

I ⊕ K = {ι+ κ : ι ∈ I, κ ∈ K}.

The key usage of Minkowski sum is to estimate the clearance of configurations. A set I is called a

fat K, if I = K ⊕ Ball(s) for some s > 0. Usually, we only require Cl(γ) > 0 for a configuration γ to be

86

FREE. But we can simplify the computation of checking Cl(γ) > 0 when Fp(γ) is a fat polyhedral set.

The process called parametric reduction is based on Lemma A.4.1:

Lemma A.4.1. Let E ,Ω ⊆ Rk = Z be closed sets. Then Sep(E⊕Ball(s),Ω) > 0 if and only if Sep(E ,Ω) >

s.

Proof.

Sep(E ⊕ Ball(s),Ω) > 0⇔ ∀e ∈ E ,∀f ∈ Ω,Sep({e} ⊕ Ball(s), {f}) > 0

⇔ ∀e ∈ E ,∀f ∈ Ω, dH({e}, {f}) = dZ(e, f) > s

⇔ Sep(E ,Ω) > s.

The lemma A.4.1 estimates the separation Sep(E ,Ω) based on knowing Sep(E ⊕D,Ω) > 0 when D

is a ball. We can extend this result to the case where D is not a ball, but any closed set. It results in

Lemma A.4.2.

Lemma A.4.2 (Separation of Sum). Suppose that closed sets D, E ,Ω ⊆ Rk = Z. If Sep(E ⊕D,Ω) > 0,

then for any d ∈ D, Sep(E ⊕ {d},Ω) ≥ Sep({d}, ∂D).

Proof. We denote the complement of a set S in Rk by Rk/S. Sep(E ⊕ D,Ω) > 0 implies that Ω ⊆

Rk/(E ⊕D). Since E ⊕ {d} ⊆ E ⊕D, we have

Sep(E ⊕ {d},Ω) ≥ Sep(E ⊕ {d},Rk/(E ⊕D))

87

= Sep(E ⊕ {d}, ∂(Rk/(E ⊕D)))

= Sep(E ⊕ {d}, ∂(E ⊕D))

= inf
(e′+d′)∈∂(E⊕D)

inf
e∈E

dZ(e+ d, e′ + d′)

≥ inf
d′∈∂D

inf
e∈E

inf
e′∈∂E

dZ(e+ d, e′ + d′)

≥ inf
d′∈∂D

inf
e∈E

dZ(e+ d, e+ d′)

= inf
d′∈∂D

dZ(d,d
′)

= Sep({d}, ∂D).

Minkowski Sum of convex sets can be easily computed as Lemma A.4.3.

Lemma A.4.3. Let K be a convex set, Ii ⊆ Rk for i = 1, . . . ,. Then

K ⊕ Chull{Ii} = Chull{K ⊕ Ii}.

Proof.

K ⊕ Chull{Ii} =

{
κ+

∑
i

aiιi : κ ∈ K, ιi ∈ Ii, ai ∈ [0, 1],
∑
i

ai = 1

}

=

{∑
i

ai(κ+ ιi) : κ ∈ K, ιi ∈ Ii, ai ∈ [0, 1],
∑
i

ai = 1

}

= Chull{K ⊕ Ii}.

A.5 Effective Conditions

A σ-effective soft predicate gives sufficient and necessary conditions for declaring a positive clearance as

in Lemma A.5.1 and Lemma A.5.2.

88

Lemma A.5.1 (Effective Sufficient Condition). If the soft predicate C̃ is σ-effective, then a box B ∈ W

is FREE in SSS process if for each point b ∈ σB, Cl(b) > 0.

Proof. We see these relations:

∀b ∈ σB, Cl(b) > 0⇒ C(σB) = FREE

⇒ C̃(B) = FREE

⇒ B is FREE in SSS.

Lemma A.5.2 (Effective Necessary Condition). For soft predicate C̃, a box B ∈ W is FREE in SSS

process only if for each point b ∈ B, Cl(b) > 0.

Proof. We see these relations:

B is FREE in SSS⇒ C̃(B) = FREE

⇒ C(B) = FREE

⇒ ∀b ∈ B, Cl(b) > 0.

A.6 Translational Lemma for More Accurate Resolution

The translational lemma in Lemma 2.2.10 can be easily extended to general tile subdivisions. In fact, all

lemmas in the proof are exactly applicable to general tiles. For the special box space subdivisions, we

have a better translational lemma with a much more accurate resolution. In fact, the resolution constant

for the (N) part can be reduced to exactly 2. Let us see Lemma A.6.1.

Lemma A.6.1. If an SSS planner applies only box subdivisions that satisfies (A0) and (A4), then the

there is a path in µ−1(Cfree) that has essential clearance
ε
K for K = 2 if the SSS planner outputs a path.

89

Proof. Suppose that T (B0) is the subdivision tree when the SSS planner outputs a path. We continue

splitting T (B0) until it becomes ε-uniform. Then we can still find a channel in this ε-uniform subdivision

tree. We pick one channel P ′ and construct the canonical path P
′
from P ′. We show that P

′
has essential

clearance ε
2 .

Let B1 = Bt
1 × Br

1 and B2 = Bt
2 × Br

2 be the two adjacent boxes in P ′, where Bt
1, B

t
2 ⊆ Wt = Z.

Their centers are m1 = mt
1 ×mr

1 and m2 = mt
2 ×mr

2 respectively. The line segment connecting m1 and

m2 is m1m2. Since dim(B1 ∩ B2) = d − 1, either Bt
1 = Bt

2 or Br
1 = Br

2 . We discuss these two cases

respectively.

� When Bt
1 = Bt

2 = Bt, mt
1 = mt

2 = mt. For any b ∈ m1m2, we write b = mt × br. Since, B1 and

B2 are FREE boxes,

C̃(B1) = C̃(B2) = FREE⇒ Fp(B1) ∩ Ω = ∅ and Fp(B2) ∩ Ω = ∅(A0)

⇒ (Fp(B1) ∪ Fp(B2)) ∩ Ω = ∅

⇒
((
Bt ⊕ Fp(Br

1)
)
∪
(
Bt ⊕ Fp(Br

2)
))
∩ Ω = ∅(A4)

⇒
(
Bt ⊕ (Fp(Br

1) ∪ Fp(Br
2))
)
∩ Ω = ∅

As mt ∈ Bt, Fp(mr
1m

r
2) ⊆ (Fp(Br

1) ∪ Fp(Br
2)). By Lemma A.4.2,

Cl(m1m2) = Sep(mt⊕Fp(mr
1m

r
2),Ω) ≥ Sep(mt⊕(Fp(Br

1) ∪ Fp(Br
2)) ,Ω) ≥ Sep({mt}, ∂Bt) ≥ 1

2
ε.

� When Br
1 = Br

2 = Br, mr
1 = mr

2 = mr. For any b ∈m1m2, we write b = bt ×mr. Since, B1 and

B2 are FREE boxes,

C̃(B1) = C̃(B2) = FREE⇒ Fp(B1) ∩ Ω = ∅ and Fp(B2) ∩ Ω = ∅(A0)

⇒ (Fp(B1) ∪ Fp(B2)) ∩ Ω = ∅

90

⇒
((
Bt

1 ⊕ Fp(Br)
)
∪
(
Bt

2 ⊕ Fp(Br)
))
∩ Ω = ∅(A4)

⇒
((
Bt

1 ∪Bt
2

)
⊕ Fp(Br)

)
∩ Ω = ∅.

As b ∈ Bt
1 ∪Bt

2, by Lemma A.4.2,

Cl(m1m2) = inf
b∈m1m2

Sep(bt⊕Fp(Br),Ω) ≥ inf
b∈m1m2

Sep({bt}, ∂(Bt
1∪Bt

2)) = Sep(mt
1m

t
2, ∂(B

t
1∪Bt

2)) ≥
1

2
ε.

Both of the two cases can deduce that Cl(m1m2) ≥ 1
2ε for any pair of adjacent boxes B1, B2 in P ′.

Therefore, the path P
′
has essential clearance 1

2ε.

91

Appendix B

Differential Geometry and Distortion Bound Problems

B.1 An Error Related to Rod and Ring Robots

In this section, we give the intuition of the error in [23].

Example B.1.1. In [23], the footprint map of a rod robot ℓ is

Fpℓ : R3 × S2 → C(R3)

(x,v) 7→ {x+ tv : t ∈ [0, 1]}.

The rotational space S2 is represented by

µr : ∂[−1, 1]3 → S2

(x, y, z) 7→ (a, b, c) =
1√

x2 + y2 + z2
(x, y, z).

The paper states that
√
3 is a bound for the distortion of µr. Let C = [−1, 1]3 and B is the ball whose

boundary is S2. In the Appendix B.1. of [23], it states that B ⊆ C ⊆
√
3B and according to this to

deduce that, for any geodesics α ⊆ ∂B = S2, α′ =
√
3α ⊆ ∂

√
3B and α̂ ⊆ ∂C such that µr(α̂) = α,

|α| ≤ |α̂| ≤ |α′|, which results in 1 ≤ |α̂|
|α| ≤

√
3 and C0 =

√
3. However, the statement |α̂| ≤ |α′| is false.

The proof can be given by the primary geometry.

92

Consider a plane crossing a diagonal of C that intersects B, C and
√
3B simultaneously, see Figure

B.1 for a sketch of the cut and Figure B.2 for the shapes on that cutting plane.

Figure B.1: A plane cutting B, C and
√
B

through a diagonal if C.

Figure B.2: The 2D shapes on the cut plane.

Let us estimate the distortion between P and C referring to the Figure B.2 when they are very close

to each other. In the figure, the smaller circle with A, B, C and D represents the image of B = S2

cut by the plane, and the larger circle with A′, B′, C ′ and D′ represents the image of
√
3B cut by the

plane. The rectangle A′B′D′C ′ represents the image of ∂C cut by the plane. The rotational component

µr maps µr(C ′) = C and µr(Q) = P . The distortion between P and C is approximately PC
QC′ . When P

and C are close enough, P ′P is approximately parallel to C ′C and P ′P is approximately perpendicular

to P ′C ′. Then

PC

QC ′
=

1√
3

P ′C ′

QC ′
≈ 1√

3
sin∠P ′Q′C ′ ≈ 1√

3
sin∠QC ′C =

1√
3

A′B′

B′C ′
=

1

3
.

The closer P is to C, the closer the distortion is 1
3 . Thus the distortion of µr is actually bounded by 3

where the atlas constant C0 is at least 3 instead of
√
3.

93

B.2 Review of Differentiable Manifold

We restrict our Cspace to Riemannian manifolds which may be involved by most research in motion

planning. The differential structures and Riemannian metrics are the keys to compute distortion bounds

systematically.

A differentiable manifold is a topological manifold with a globally defined differential structure. We

cite its description from a standard mathematics textbook [57].

Definition B.2.1. Let M be an n-dimensional manifold. M is a Ck differentiable manifold, if there

is a countable open cover Ui, i ∈ N on M , which means ∪i∈NUi = M , such that they satisfy the following

properties:

1. For each Ui, there is a homeomorphic map ϕi : Ui → Rn, each (Ui, ϕi) is called a chart (or local

chart);

2. For any two charts (Ui, ϕi) and (Uj , ϕj), the transition map ϕij = ϕj ◦ ϕ−1
i is a Ck map on

ϕj(Ui ∩ Uj).

Assume that both W and X to differentiable manifolds. When dom(µ) = B0 = ∪ni=1Bi and Bi are

disjoint closed boxes, the differential structure on W requires an atlas of charts on each box Bi. The

boxes Bi are closed, but charts are defined on open sets in the Definition B.2.1. To make it compatible,

we extends the charts on Bi to an open neighborhood Ui of Bi, such that Bi is the unique box among

B1, . . . , Bn that makes Bi ⊆ Ui for each i. As an example, we consider the representation of S2 by

µ : ∂[−1, 1]3 → S2

94

x 7→ x

|x|

The dom(µ) is B0 = Ŝ2 = ∪6i=1Bi where

B1 = {−1} × [−1, 1]× [−1, 1]

B2 = {1} × [−1, 1]× [−1, 1]

B3 = [−1, 1]× {−1} × [−1, 1]

B4 = [−1, 1]× {1} × [−1, 1]

B5 = [−1, 1]× [−1, 1]× {−1}

B6 = [−1, 1]× [−1, 1]× {1}.

The chart defined on each Bi is a projection map by removing the constant component. See Figure B.3

and Figure B.4 for a reference which is the scene viewed from −x direction. The constructions of such

charts is given in Example B.2.2. The transition maps between different charts are differentiable which

defines a differential structure on B0.

Example B.2.2. We pick two adjacent faces as an example to show that their local charts can be

extended to an open neighborhood where the transition map between the intersections are differentiable.

Let (U1, ϕ1) be the chart containing B1, which is

U1 = B1 ∪ [−1,−0.8)× {−1} × [−1, 1]

∪ [−1,−0.8)× {1} × [−1, 1]

∪ [−1,−0.8)× [−1, 1]× {−1}

∪ [−1,−0.8)× [−1, 1]× {1}

such that

ϕ1 : U1 → R2

95

(−1, y, z) 7→ (−y, z) for (−1, y, z) ∈ B1

(x,−1, z) 7→ (x+ 2)(1, z) for (x,−1, z) ∈ B3

(x, 1, z) 7→ (x+ 2)(−1, z) for (x, 1, z) ∈ B4

(x, y,−1) 7→ (x+ 2)(−y,−1) for (x, y,−1) ∈ B5

(x, y, 1) 7→ (x+ 2)(−y, 1) for (x, y, 1) ∈ B6

Let (U6, ϕ6) be the chart containing B6, which is

U6 = B6 ∪ {−1} × [−1, 1]× (0.8, 1]

∪ {1} × [−1, 1]× (0.8, 1]

∪ [−1, 1]× {−1} × (0.8, 1]

∪ [−1, 1]× {1} × (0.8, 1]

such that

ϕ6 : U6 → R2

(x, y, 1) 7→ (−y, x) for (x, y, 1) ∈ B6

(−1, y, z) 7→ (z − 2)(y, 1) for (−1, y, z) ∈ B1

(1, y, z) 7→ (z − 2)(y,−1) for (1, y, z) ∈ B2

(x,−1, z) 7→ (z − 2)(1,−x) for (x,−1, z) ∈ B3

(x, 1, z) 7→ (z − 2)(−1,−x) for (x, 1, z) ∈ B4

The transition maps between (U1, ϕ1) and (U6, ϕ6) is ϕ16 = ϕ6 ◦ ϕ−1
1 , i.e.,

ϕ16 : R2 → R2

(x, y) 7→ (y − 2)(−x, 1) for (x, y) ∈ ϕ1(B1 ∩ U6)

96

(x, y) 7→ (x/y, y − 2) for (x, y) ∈ ϕ1(U1 ∩B6)

(x, y) 7→ (y/x− 2)(1,−(x− 2)) for (x, y) ∈ ϕ1(U1 ∩ U6 ∩B3)

(x, y) 7→ −(y/x+ 2)(1, x+ 2) for (x, y) ∈ ϕ1(U1 ∩ U6 ∩B4)

The unique possible singular point for ϕ16 is (x, y) = (0, 0), which is not in ϕ1(U6). Hence ϕ16 is

differentiable over U1 ∩ U6.

Figure B.3: Orange area is U1. Figure B.4: Image of U1 in R2

The differential structure on ŜO(3) = Cw ∪ Cx ∪ Cy ∪ Cz are similar.

Given differential structures on W and X , the representation µ induces a push forward between the

two differential structures. This push forward is defined by the correspondence between tangent spaces.

Recall that a tangent space is a collection of tangent vectors. Given a differentiable manifold M , let

Ck(M) be the set of all k-differentiable functions on M . A tangent vector at a point p ∈M is a linear

function vp from Ck(M)→ R, such that [39] for any f, g ∈ Ck(M),

vp(fg) = f(p)vp(g) + g(p)vp(f).

The set of all tangent vectors forms a linear space by defining (avp + bwp)(f) = avp(f) + bwp(f) for

any f ∈ Ck(M) and any two tangent vectors vp and wp, which is the tangent space of M at point p,

denoted by TpM . For example, given a smooth curve π : [0, 1]→M , and s ∈ [0, 1], the map vp for point

97

p = π(s) defined by

vp(f) =
d(f(π(t))

dt

∣∣∣
t=s

is a tangent vector of M at point p. This tangent vector is called the derivative of π at point p, denoted

by π′(s). The set of all curves πi passing the point p identifying in each chart (U, ϕ) by πi ∼ πj if

dϕ(πi(t))
dt =

dϕ(πj(t))
dt is the tangent space at p. For b ∈ W and µ(b) = γ ∈ X , the push forward

of representation µ is a linear map µ∗ : TbW → TγX [39], such that for any vb ∈ TbW and for any

f ∈ Cd(X),

µ∗(vb)(f) = vb(f ◦ µ).

B.3 Riemannian Manifold and Distortion

ARiemannian manifold (M, gM) is a differentiable manifold with a continuous bilinear function gM ⟨·, ·⟩

which called a Riemannian metric [9]. We restrict W and X to Riemannian manifolds. The represen-

tation µ induces a pull back µ∗ that makes each Riemannian metric gX on X into a Riemannian metric

on W by

µ∗(gX)⟨vb, wb⟩ = gX ⟨µ∗(vb), µ∗(wb)⟩.

Given a Riemannian manifold (M, gM), the length of a tangent vector vp ∈ TpM is

|vp| =
√

gM ⟨vp, vp⟩.

The length of a curve π : [0, 1]→M is defined as

ℓ(π) =

∫ 1

0

|π′(t)|dt =
∫ 1

0

√
gM ⟨π′(t), π′(t)⟩dt.

Given p, q ∈M , the distance between p and q is defined as the length of the shortest curve connecting p

and q, i.e.,

dM (p, q) = inf
π:[0,1]→M,π(0)=p,π(1)=q

ℓ(π). (B.1)

98

The metric on M is induced by this distance function dM . When the manifolds areW and X , the metrics

dW and dX are also defined by (Equation B.1). Therefore, the distortion between p,q ∈ dW where

µ(p) = γ, µ(q) = ζ is

dX (γ, ζ)

dW(p,q)
=

inf
∫ 1

0

√
gX ⟨(µ ◦ π)′(t), (µ ◦ π)′(t)⟩dt

inf
∫ 1

0

√
gW⟨π′(t), π′(t)⟩dt

=
inf
∫ 1

0

√
µ∗(gX)⟨π′(t), π′(t)⟩dt

inf
∫ 1

0

√
gW⟨π′(t), π′(t)⟩dt

.

We see a bound for this term by Theorem B.3.1.

Theorem B.3.1.

tort(µ) = [m(µ),M(µ)],

where

m(µ)2 = inf
b∈W,vb∈TbW

µ∗(gX)⟨vb, vb⟩
gW⟨vb, vb⟩

and

M(µ)2 = sup
b∈W,vb∈TbW

µ∗(gX)⟨vb, vb⟩
gW⟨vb, vb⟩

.

Proof. Let mµ and Mµ be two positive numbers such that

m2
µ = inf

b∈W,vb∈TbW

µ∗(gX)⟨vb, vb⟩
gW⟨vb, vb⟩

and

M2
µ = sup

b∈W,vb∈TbW

µ∗(gX)⟨vb, vb⟩
gW⟨vb, vb⟩

.

Given p,q ∈ W, where µ(p) = γ, µ(q) = ζ, for any path π connecting p and q, we have an estimation

ℓ(µ ◦ π) =
∫ 1

0

√
µ∗(gX)⟨π′(t), π′(t)⟩dt

≤
∫ 1

0

√
M2

µgW⟨vb, vb⟩dt

= Mµ

∫ 1

0

√
gW⟨vb, vb⟩dt

= Mµℓ(π).

Similarly, ℓ(µ ◦ π) ≥ mµℓ(π).

99

For any p,q ∈ W, for any π : [0, 1] → W, π(0) = p, π(1) = q, there is µ ◦ π : [0, 1] → W, µ ◦ π(0) =

γ, µ ◦ π(1) = ζ, such that ℓ(µ◦π)
ℓ(π) ≤M(µ), which implies that

infπ ℓ(µ ◦ π)
infπ ℓ(π)

≤Mµ,

and

dX (γ, ζ)

dW(p,q)
≤Mµ.

Moreover, since µ is a locally homeomorphism, for the shortest π : [0, 1] → X , π(0) = γ, π(1) = ζ,

µ−1 ◦ π can be placed in a branch of dom(µ). So µ−1 ◦ π exists and

ℓ(π) ≤ 1

mµ
ℓ(µ−1 ◦ π).

Therefore,

infπ ℓ(µ
−1 ◦ π)

infπ ℓ(π)
≤ 1

mµ
,

and

dX (γ, ζ)

dW(p,q)
≥ mµ.

Hence m(µ) ≥ mµ and M(µ) ≤Mµ.

To prove the equality, we observe that for any ε > 0, there is b ∈ W and vb ∈ TbW, such that

µ∗(gX)⟨vb, vb⟩
gW⟨vb, vb⟩

> M2
µ − 2ε

or

gW⟨vb, vb⟩
µ∗(gX)⟨vb, vb⟩

>
1

m2
µ

− 2ε.

We suppose the former, the latter is similar. Let π be a flow starting at b with π′(0) = vb, we define

a sequence of paths πi(t) = π(it) for i = 1, 2, 3, Since gW and gX are continuous, there is an open

neighborhood Ub of b such that for any p ∈ Ub,

µ∗(gX)⟨vb, vb⟩
gW⟨vb, vb⟩

> M2
µ − ε.

100

Then when i is large enough, there is i ∈ N such that πi ⊆ Ub, and we have

ℓ(µ ◦ π)
ℓ(π)

>
√

M2
µ − ε.

This is true for any ε > 0, therefore the bound Mµ is strict, and

M(µ) = Mµ.

Corollary B.3.2.

tort(µ) = [m(µ),M(µ)],

where

m(µ)2 = inf
b∈W,gW⟨vb,vb⟩=1

µ∗(gX)⟨vb, vb⟩
gW⟨vb, vb⟩

and

M(µ)2 = sup
b∈W,gW⟨vb,vb⟩=1

µ∗(gX)⟨vb, vb⟩
gW⟨vb, vb⟩

.

B.4 Distortion Bounds for a General Class

This section shows a theorem that is a general version of distortion bounds for representations µn.

Theorem B.4.1. The range of distortion of representation

µn : ∂[−1, 1]n+1 → Sn

x 7→ x

|x|
,

where |x| =
√
x2
i is [1

n+1 , 1].

Proof. We simply write B0 = ∂[−1, 1]n+1 and X = Sn. Suppose that µn(x) = (yi) where x = (xj) for

i, j = 0, . . . , n. When i = j,

∂yi
∂xi

=
|x|2 − x2

i

|x|3
;

101

and when i ̸= j,

∂yi
∂xj

= −xixj

|x|3
.

For any vx ∈ TxB0 such that gW⟨vx, vx⟩ = 1, where gW is the Rn+1 metric which implies 1 = gW⟨vx, vx⟩ =∑
i dx

2
i ,

µ∗
n⟨vx, vx⟩ =

∑
i

dy2i

=
∑
i

∂yi
∂xj

∂yi
∂xk

dxjdxk

=
1

|x|6
∑
j

(|x|2 − x2
j)

2 +
∑
i̸=j

x2
ix

2
j

 dx2j

− 1

|x|6
∑
j ̸=k

(|x|2 − x2
j)(xjxk) + (|x|2 − x2

k)(xkxj)−
∑
i ̸=j,k

x2
ixjxk

 dxjdxk

=
1

|x|6
∑
j

(
(|x|2 − x2

j)
2 + (|x|2 − x2

j)x
2
j

)
dx2j

− 1

|x|6
∑
j ̸=k

(
(|x|2 − x2

j) + (|x|2 − x2
k)− (|x|2 − x2

j − x2
k)
)
xjxkdxjdxk

=
1

|x|4
∑
j

(|x|2 − x2
j)dx

2
j −

∑
j ̸=k

xjxkdxjdxk

=

1

|x|4
∑
j

∑
k ̸=j

x2
kdx

2
j −

∑
j ̸=k

xjxkdxjdxk

 .

We consider the facet with x0 = 1 in B0, and estimate the sum by the following two methods:

1.

1

|x|4
∑
j

∑
k ̸=j

x2
kdx

2
j −

∑
j ̸=k

xjxkdxjdxk

 =
1

|x|4
∑
k

x2
k(1− dx2k)−

∑
j ̸=k

xjxkdxjdxk

=

1

|x|4

∑
k

x2
k −

∑
k

(xkdxk)
2 +

∑
j ̸=k

xjxkdxjdxk

=

1

|x|4

|x|2 −(∑
k

xkdxk

)2

≤ 1

|x|2

102

≤ 1,

where the maximum reaches when xi = 0 for all i > 0 and any vx such that gW⟨vx, vx⟩ = 1.

2.

1

|x|4
∑
j

∑
k ̸=j

x2
kdx

2
j −

∑
j ̸=k

xjxkdxjdxk

 =
1

|x|4
∑
j

∑
k<j

(xjdxk − xkdxj)
2

=
1

|x|4
∑
0<j

 ∑
0<k<j

(xjdxk − xkdxj)
2 + dx2j

≥ 1

|x|4

≥ 1

(n+ 1)2
,

where the minimum reaches when xi = 1 for all i and dxi =
1√
n
for all i > 0.

By Corollary B.3.2, the distortion of tort(µn) = [1
n+1 , 1].

B.5 Distortion Bound for Diffeomorphism from RP3 to SO(3)

This section shows the proof of ρ(cos θ + v sin θ) = R(v, 2θ).

Theorem B.5.1. Let r = cos θ + v sin θ where v ∈ Hp and θ ∈ R. For any u ∈ Hp, the map ρ(r) : u 7→

rur−1 is a rotation in Hp = R3 such that its axis is v and the rotation angle is 2θ [19].

Proof. A fact for v ∈ Hp is v2 = −1. When u = v,

ρ(r)(v) = rvr−1

= rur

= (cos θ + v sin θ)v(cos θ − v sin θ)

= (v cos θ − sin θ)(cos θ − v sin θ)

= v(cos2 θ + sin2 θ)− (1 + v2) sin θ cos θ

103

= v

Thus ρ(r) fix v.

For any u ∈ Hp = R3 such that u · v = 0, define w = vu and we have w = −(u · v) + u× v = u× v in

R3. {v, u, w} now forms a frame in R3, and any q ∈∈ R3 is a linear combination of {v, u, w}. We observe

that

ρ(r)(u) = rur−1

= rur

= (cos θ + v sin θ)u(cos θ − v sin θ)

= (u cos θ + vu sin θ)(cos θ − v sin θ)

= u cos2 θ + vu sin θ cos θ − uv sin θ cos θ − vuv sin2 θ

= u cos2 θ + 2vu sin θ cos θ + v2u sin2 θ

= u(cos2 θ − sin2 θ) + 2w sin θ cos θ

= u cos 2θ + w sin 2θ.

and similarly, ρ(r)(w) = −u sin 2θ + w cos 2θ. Therefore ρ(r) rotates the frame {v, u, w} based on v by

2θ degree, which proves that ρ(r) = R(v, 2θ).

104

Appendix C

Exact Footprints for Line Segments

Given p,q ∈ Br ∈ Wr, the motion on pq is a pure rotation with a fixed axis. For simplicity, we build

a local frame such that the rotation axis is the z-axis. For each b ∈ pq, the coordinates of A and B

under the local frame are (xA, yA, zA) and (xB, yB, zB) respectively. Note that zA and zB will not change

during the rotations. Fp(pq) are classified based on different relations between zA, zB and 0:

Example C.0.1. When zA < 0 < zB, Fp(pq) is a subset of
z ≥ zA

√
x2+y2

x2
A+y2

A
,

z ≤ zB
√

x2+y2

x2
B+y2

B
,

x2+y2

(xB−xA)2+(yB−yA)2 −
(z−zA+t)2

(zB−zA)2 ≤ x2
A+y2

A
(xB−xA)2+(yB−yA)2 −

t2

(zB−zA)2 ,

where

t = (zB − zA)
(xB − xA)xA + (yB − yA)yA
(xB − xA)2 + (yB − yA)2

.

105

When 0 < zA < zB, Fp(pq) is a subset of

z ≥ zA
√

x2+y2

x2
A+y2

A
,

z ≤ zB
√

x2+y2

x2
B+y2

B
when z ≤ zτ ,

x2+y2

(xB−xA)2+(yB−yA)2 −
(z−zA+t)2

(zB−zA)2 ≤ x2
A+y2

A
(xB−xA)2+(yB−yA)2 −

t2

(zB−zA)2 when z ≤ zτ ,

z ≥ zB
√

x2+y2

x2
B+y2

B
when z > zτ ,

x2+y2

(xB−xA)2+(yB−yA)2 −
(z−zA+t)2

(zB−zA)2 ≥ x2
A+y2

A
(xB−xA)2+(yB−yA)2 −

t2

(zB−zA)2 when z > zτ ,

where zτ satisfies

(
x2
B + y2B

z2B [(xA − xB)2 + (yA − yB)2]
− 1

(zA − zB)2

)
z =

2t′ − zB
(zA − zB)2

− zB(x
2
B + y2B)

z2B [(xA − xB)2 + (yA − yB)2]
,

where

t′ = (zA − zB)
(xA − xB)xB + (yA − yB)yB
(xA − xB)2 + (yA − yB)2

.

When 0 < zA = zB, Fp(△AOB) is
z ≥ zA

√
x2+y2

x2
A+y2

A
= zB

√
x2+y2

x2
B+y2

B
,

z ≤ (zA + zB)
√

x2+y2

(xA+xB)2+(yA+yB)2 .

106

Appendix D

Semi-Algebraic Expressions, Linear Approximations

and Solid Method

D.1 Semi-algebraic Expressions for Π1 Components in F̃p(B)

Example D.1.1. Let uAB(B) = mB(B)−mA(B)
|mB(B)−mA(B)| .

The Cylinder(B) is the semi-algebraic set of x ∈ R3 with constraints:

∣∣∣(x−mA(B))× uAB(B)
∣∣∣ ≤ d(B)

(x−mA(B)) · uAB(B) ≥ 0

(x−mB(B)) · uAB(B) ≤ 0

.

See Figure D.1.

Example D.1.2. Let pA(B) = d(B)m(Bt)−r(B)mA(B)
d(B)−r(B) , uOA(B) = mA(B)−mO(B)

|mA(B)−mO(B)| , QA(B) = [uOA(B)]T [uOA(B)]−

r(B)2

|pA(B)|2 I, where [·] is the Lie-bracket of R3 vectors, I is 3× 3 identity matrix.

The FrustumA(B) is the semi-algebraic set of x ∈ R3 with constraints:

107

Figure D.1: Construction of Π1 expression for the cylinder.

xTQA(B)x− 2pA(B)QA(B)x+ pA(B)TQA(B)pA(B) ≤ 0

(x−m(Bt)) · uOA(B) ≤ − r(B)2

|pA(B)|

(x−mA(B)) · uOA(B) ≤ −d(B)r(B)
|pA(B)|

.

See Figure D.2.

Figure D.2: Construction of Π1 expression for the frustum.

Example D.1.3. The pyramid is the convex hull of 3 parallel line segments. Their end points are

SA(B) ∩ Cylinder(B) ∩ FrustumA(B),

SB(B) ∩ Cylinder(B) ∩ FrustumB(B),

SO(B) ∩ FrustumA(B) ∩ FrustumB(B)

respectively.

Let uOA(B) = mA(B)−mO(B)
|mA(B)−mO(B)| , uOB(B) = mB(B)−mO(B)

|mB(B)−mO(B)| , and uAB(B) = mB(B)−mA(B)
|mB(B)−mA(B)| .

108

The constraints for x ∈ SA(B) ∩ Cylinder(B) ∩ FrustumA(B) are
x · uAB(B) = 0

x · uOA(B) = −d(B)r(B)
|pA(B)|

|x−mA(B)| = d(B)

.

Similar for x ∈ SB(B) ∩ Cylinder(B) ∩ FrustumB(B).

The constraints for SO(B) ∩ FrustumA(B) ∩ FrustumB(B) are
x · uOA(B) = −d(B)r(B)

|pA(B)|

x · uOB(B) = −d(B)r(B)
|pB(B)|

|x−mO(B)| = r(B)

.

The pyramid is the convex hull of the 6 end points. See Figure D.4.

Figure D.3: Construction of corners of the pyra-

mid.

Figure D.4: Construction of the pyramid.

D.2 Linear Approximation for Planar Semi-Quadratic Sets

The linear approximation for maintaining R in the double loop is given by the following theory. The key

idea is the linear approximation scheme. Since our elementary sets are semi-algebraic sets with degree

at most 2, their intersections with a parametric plane can be classified as one of ellipse, parabola and

hyperbola. The linear approximation scheme is applied to these primitives (Π1 sets).

109

Definition D.2.1. Given a set S of primitives, a linear approximation scheme is the set of two

operators · and · such that for each Sp ∈ S, Sp and Sp are two linear semi-algebraic sets and

Sp ⊆ Sp ⊆ Sp.

Example D.2.2. When Sp is an ellipse, we design the following approximations:

First, we first find the longer axis and shorter axis of the ellipse, then find the endpoints of the two

axes. The four end points form a diamond which is the inscribing approximation.

Second, we find the tangents of the ellipse that are parallel to the edges of the inscribed approxima-

tion. The four tangents form another diamond which is the circumscribing approximation.

Given the structure of the two approximations, we have the following geometric fact:

Proposition D.2.3. The circumscribing and inscribing approximations above of the ellipse are homoth-

etic1 with a ratio
√
2.

Proof. Let the ellipse to be

x2

a2
+

y2

b2
= 1.

We can apply an affine transformation τ on R2 by x′

y′

 =

 1
a 0

0 1
b

 x

y

 .

Then τ maps the ellipse to a circle and keeps the inscribing relationship between ellipse and its two

approximations. Hence, the image of τ gives the unit circle, and the image of the inscribing approximation

1We refer to the homothety between tiles defined in Chapter 2.

110

of the ellipse is the inscribing approximation of the unit circle, and the image of the circumscribing

approximation of the ellipse is the circumscribing approximation of the unit circle.

From the unit circle, we see that the two approximations of the unit circle are homothetic with ratio
√
2.

Since the affine transformation keeps homotheticity and the ratio, we know that the two approximations

of the ellipse are still homothetic with ratio
√
2.

Example D.2.4. When Sp is a parabola, we need to involve the universal boundary and we design the

following approximations:

First, we find the vertex of the universal boundary that projects the maximum onto the symmetric

axis of the parabola with positive direction to be the opening direction of the parabola. Then, we set a

perpendicular line through the vertex to be the finite boundary of the infinite parabola.

Second, we take the triangle formed by the vertex of the parabola and the two intersections between

the finite boundary with the parabola as the inscribed approximation of Sp.

Third, we find two tangent lines on the parabola that are parallel to the two edges of Sp. The two

tangent lines and the finite boundary together form another triangle which we take it as the circumscribing

111

approximation of Sp.

Given the structure of the two approximations, we have the following geometry fact:

Proposition D.2.5. The circumscribing and inscribing approximations above of the parabola are homo-

thetic with ratio 5
4 .

Proof. Let the parabola be P : y2 = 2px, where p is the distance between the focal and the directrix. Let

the finite boundary given by the vertex of the universal boundary be l : x = c. By a quick calculation, the

two intersections between P and l are (c,±
√
2pc). Hence the ”slopes” of the two non-vertical edges are

dx
dy = ±

√
c
2p . The points on the parabola that has the same ”slopes” should satisfies ±

√
c
2p = dx

dy = y
p .

Hence the two tangent points are (c4 ,±
√

pc
2). Then, the equation of the two tangent lines are (x− c

4) =

±
√

c
2p (y∓

√
pc
2). Taking y to be 0 in the equation, we have x = c

4−
√

c
2p

√
pc
2 = − c

4 . Hence the left vertex

of the circumscribing approximation is (− c
4 , 0). Therefore, the height of the inscribing approximation

and circumscribing approximation based on l are c and 5
4c respectively. Since the edges between the

two approximations are always parallel, the two triangles have to be homothetic. The ratio between the

height is 5
4 which is also the ratio of the homthety.

Example D.2.6. When Sp is a hyperbola, we refer to one of its branches. We also involve the universal

boundary and we design the following approximations:

First, we set the same kind of perpendicular line through a vertex of the universal boundary to be

the finite boundary of the infinite hyperbola branch.

112

Second, we take the triangle formed by the vertex of the hyperbola branch and the two intersections

between the finite boundary with the hyperbola branch as the inscribing approximation of Sp.

Third, we find two tangent lines on the hyperbola branch that are parallel to the two edges of Sp.

The two tangent lines and the finite boundary together form another triangle which we take it as the

circumscribing approximation of Sp.

Given the structure of the two approximations, we have the following geometry fact:

Proposition D.2.7. The circumscribing and inscribing approximations above of the hyperbola branch

are similar with ratio less than 5
4 .

Proof. For any hyperbola, we can always apply an affine transformation so that its equation becomes

x2 − y2 = 1. The affine transformations keep the homotheticity and ratio, so we study the case under

x2 − y2 = 1.

Let the vertical boundary be x = c. Suppose that the ”slope” of the upper non-vertical edge of Sp

is to be dx
dy = t. Then the equation of the edge is x− 1 = ty. The two solutions of the equations

x− 1 = ty

x2 − y2 = 1

is (1, 0) and (1+t2

1−t2 ,
2t

1−t2). Hence, we have the relation c = 1+t2

1−t2 = 2
1−t2 − 1.

Consider the point on the hyperbola whose tangent is parallel to the edge of Sp, we will have

y
x = dx

dy = t and x2 − y2 = 1. The solution for the upper edge is (1√
1−t2

, t√
1−t2

). Hence the equation of

the upper non-vertical edge of Sp is x− 1√
1−t2

= t(y− t√
1−t2

). Taking y = 0, we have the intersection on

x-axis to be (
√
1− t2, 0). Substitute t with c. The intersection is (

√
2

1+c , 0).

Since the edges between Sp and Sp are parallel respectively, the two triangles have to be homothetic.

The ratio is the ratio of heights taking x = c as the relative center, which is
c−
√

2
1+c

c−1 .

Let’s study the function f(c) =
c−
√

2
1+c

c−1 on c ∈ (1,+∞).

113

We set g(ω) = f(c) with ω =
√

2
1+c , then c = 2

ω2 − 1. By calculation,

g(ω) =
2
ω2 − 1− ω
2
ω2 − 1− 1

=
2− ω2 − ω3

2− 2ω2

=
ω2 + 2ω + 2

2ω + 2

=
1

2

(
(ω + 1) +

1

ω + 1

)
.

Hence, g(ω) is monotonic increasing on (0,+∞). Since c = 2
ω2 − 1 is monotonic decreasing on (0,+∞),

and c = 1 if and only if ω = 1, we have f(c) is monotonic decreasing on (1,+∞). Therefore,

f(c) < lim
c→1

f(c) = lim
ω→1

g(ω) =
5

4
.

This proves that the ratio of homothety between Sp and Sp is always less than 5
4 . This ratio keeps

unchanged under affine transformations, so it is applicable to all hyperbolas.

The validation of inscribe and circumscribing approximations, similar to approximate footprints, can

be defined as σ-effectiveness.

Definition D.2.8. Given a set S of primitives Sp, a fixed approximation scheme · and · is σ-effective

for σ ≥ 1, if for each Sp ∈ S, we have

Sp ⊆ Sp ⊆ σSp

and

Sp ⊆ Sp ⊆ σ2Sp.

114

Given a set S of primitives Sp, a sequence of approximation schemes ·k and ·k is σ-effective for σ ≥ 1,

if each of the schemes is σ-effective, and moreover, for all k ∈ N,

Sp
k
⊆ Sp

k+1
⊆ Sp

and

Sp ⊆ Sp
k+1 ⊆ Sp

k
,

we require that
+∞⋃
k=1

Sp
k
= Sp

and
+∞⋂
k=1

Sp
k
= Sp.

Proposition D.2.9. A fixed approximation scheme for a set of convex primitives is σ-effective if for

each Sp ∈ S,

Sp ⊆ σSp.

Proof. Since σ ≥ 1, when the scheme satisfies that for each Sp ∈ S, Sp ⊆ σSp, and since Sp is convex,

we have

Sp ⊆ Sp ⊆ Sp ⊆ σSp ⊆ σ2Sp.

Hence, the scheme is σ-effective.

A very important property that is used to prove the σ-effective condition is the homothety property.

Here we have the following lemma:

Lemma D.2.10. Suppose that two convex polyhedrons P1 and P2 are homothetic with ratio τ > 1 and

P2 ⊆ P1. Let the relative center of the homothety be c and we denote d = m(P2). Define

κ = sup

{
r < 0

∣∣∣d+
1

r
(c− d) ∈ P2

}
.

Then for σ = (1− κ)τ + κ, P1 ⊆ σP2. Especially, if m(P1) = m(P2), then for σ = τ , P1 ⊆ σP2.

115

Proof. Since P2 ⊆ P1, we have c ⊆ P2.

For each y ∈ P1, since P1 and P2 are homothetic, there is x ∈ P2 such that y− c = τ(x− c). Hence

we have

y − d = (y − c) + (c− d)

= τx− τc+ c− d

= τ(x− d) + (1− τ)(c− d).

Hence

ρP2
(y) = inf

{
r > 0

∣∣∣d+
1

r
(y − d) ∈ P2

}
= inf

{
r > 0

∣∣∣d+
1

r
(τ(x− d) + (1− τ)(c− d)) ∈ P2

}
≤ inf

{
r > 0

∣∣∣d+
1

r
(τ(x− d) + (1− τ)κ(x− d)) ∈ P2

}
= inf

{
r > 0

∣∣∣d+
(1− κ)τ + κ

r
(x− d) ∈ P2

}
= (1− κ)τ + κ.

When y, c and d are on the same line, the equality above can be reached. Hence supy∈P1
ρP2(y) =

(1− κ)τ + κ. Thus when σ = (1− κ)τ + κ, we have P1 ⊆ σP2.

When bc(P1) = bc(P2), since the unique fixed point of homothety is the relative center c, we have

c = d, and therefore, κ = 0. Hence σ can reach τ .

116

As a result, the approximation scheme we defined for ellipse in previous section is
√
2-effective,

the approximation scheme we defined for parabola in previous section is 11
8 -effective, the approximation

scheme we defined for hyperbola branch in previous section is also 11
8 -effective. By comparison,

√
2 ≈

1.414 > 1.375 = 11
8 , so our approximation scheme for planar quadratic primitives is

√
2-effective in

general.

D.3 Solid Method for Delta Robot

Detecting if Sep(f, tc(v, c, r)◦) > s is done by reductions by f . The feature f can be corner, edge or facet.

Their corresponding algebraic spans are point, line and plane. We describe the method of answering those

queries from point, to line, and to plane.

Lemma D.3.1. Let f be a corner with the corresponding point be q. Let T be the plane containing v, c

and q. Then, Sep(f, tc(v, c, r)◦) > s if and only if Sep(f, T ∩ tc(v, c, r)◦)) > s, where T ∩ tc(v, c, r)◦ is

a union of two intersecting open line segments.

Proof. Let p be a point in tc(v, c, r)◦ such that (p,q) is an extreme pair, np be the normal vector of

the traffic cone at p. By Corollary 5.2.3, np//(p− q). As a geometric property of a cone, np is a linear

combination of v − c and v − p. Therefore, p − q is a linear combination of v − c and v − p, which

implies that p ∈ T . So Sep(f, tc(v, c, r)◦) > s if and only if Sep(f, T ∩ tc(v, c, r)◦)) > s.

Base on Lemma D.3.1, the process for detecting Sep(f, tc(v, c, r)◦) > s is follow:

117

Sep(f, tc(v, c, r)◦) > s?

Input: v, c ∈ Z = R3, feature f = {q} ⊆ R3, r > 0, s ≥ 0.

Output: boolean (Sep(f, tc(v, c, r)◦) > s).

T ← plane(v, c,q).

l1 ∪ l2 ← T ∩ tc(v, c, r).

For i = 1, 2

If Sep(li, f) ≤ s,

Let p ∈ li such that |p− q| = Sep(li, f)

If p ∈ tc(v, c, r)◦,

return false.

return true.

Example D.3.2. Given an edge f , checking if Sep(f, tc(v, c, r)◦) > s is generally done by boundary

reduction by Theorem 5.2.4. The step Sep(∂f, tc(v, c, r)◦) > s is recursively done by Lemma D.3.1. The

problem is to collect extreme pairs in ext(f, tc(v, c, r). To simplify the problem, let us set v = (0, 0, 0),

c = (0, 0,−1) and tc(v, c, r) is CONE = {(x, y, z) : x2 + y2 − r2z2 = 0}. General cases can be given

after isometry transformations. Suppose that l is parametrized by q(t) = q0 + ut for t ∈ R, where

u = (a, b, c). Given a point p ∈ CONE, the normal vector of p is np. Suppose that p = (x, y, z), then

np = (x, y,−r2z). By Corollary 5.2.2, np ⊥ u. This yields two equations to be solved

x2 + y2 = r2z2 (D.1)

ax+ by = r2cz (D.2)

Let κ:=rc. Multiplying Equation D.1 by κ2 and subtracting square of Equation D.2, we get a

quadratic equation for x and y:

(κ2 − a2)x2 + (κ2 − b2)y2 − 2abxy = 0,

118

which is equivalently: (
x y

) κ2 − a2 −ab

−ab κ2 − b2

 x

y

 = 0.

Let

A =

 κ2 − a2 −ab

−ab κ2 − b2

 .

Then

det(A) = (κ2 − a2)(κ2 − b2)− a2b2 = κ2(κ2 − a2 − b2).

When det(A) > 0, the equation has no real non-trivial (x = y = 0 is trivial) solution. Hence

ext(CONE, f) = ∅.

When det(A) ≤ 0, the equation has real non-trivial solutions (κ2 − a2)x + (ab ±
√
−det(A))y = 0,

which are one or two planes. We denote the planes by P1 and P2. To find the exact p and q, one only

need to notice that q1 = P1 ∩ f and q2 = P2 ∩ f (Pi ∩ f ̸= ∅ since p ⊥ f and Pi contains the direction

of p). Then the corresponding pairs (pj ,qi) are given by Lemma D.3.1.

Lemma D.3.3. Let f be a facet feature such that Sep(∂f, tc(v, c, r)) > s, and Sep(f, ∂tc(v, c, r)) > s.

Then Sep(f, tc(v, c, r)) > s if and only if f ∩ vc = ∅.

Proof. Let TC = tc(v, c, r), CONE = TC. The necessity of the lemma is obvious. We discuss sufficiency

by classification of f ∩ CONE, where f is a plane and CONE is an infinite double cone.

The set f ∩CONE is the intersection between a cone and an infinite double cone, which may be an

ellipse, a parabola, a hyperbola, a line, an intersection of two lines, or a point, where the last 3 are called

degenerate intersection. When the intersection is degenerate, the apex of the cone v is always in the

intersection, which contradicts that Sep(f, ∂TC) > s. Therefore, the intersection cannot be degenerated.

Suppose that ext(f,CONE) ∩ (f ×TC) ̸= ∅, otherwise by Theorem 5.2.4, Sep(f,TC) > s. The case

ext(f,CONE)∩ (f ×TC) ̸= ∅ implies that f ∩TC ̸= ∅. We prove that under this assumption, we always

have f ∩ vc ̸= ∅.

119

When f ∩CONE is a parabola or hyperbola, the intersection is unbounded. Under this case, to make

f ∩TC finite, the infinite curve f ∩CONE has to be cut down either by ∂f or by ∂TC. Whichever case

contradicts either Sep(∂f,TC) > s or Sep(f, ∂TC) > s. Hence these two cases are always impossible.

When f∩CONE is an ellipse. When f∩∂TC ̸= ∅, to avoid that f∩TC reaches ∂TC, the intersection

curve has to be cut down by ∂f . It contradicts Sep(∂f,TC) > s. When f ∩ ∂TC = ∅, let J be the

interior of the ellipse disc given by f ∩ TC. It is obvious that f ∩ vc = J ∩ vc ̸= ∅ since vc is in the

interior of the “convex” area bounded by CONE. So in this case, we conclude f ∩ vc, see Figure D.5 for

a reference. The classifications prove the lemma.

Figure D.5: The case when f ∩ TC ̸= ∅ but f ∩ ∂TC = ∅.

Based on Lemma D.3.3, the process for checking Sep(f, tc(v, c, r)) > s for facet f is done by the

followings:

Sep(f, tc(v, c, r)◦) > s?

Input: v, c ∈ Z = R3, feature f = △abc ⊆ R3, r > 0, s ≥ 0.

Output: boolean (Sep(f, tc(v, c, r)◦) > s).

If (Sep(∂f, tc(v, c, r)◦) ≤ s), return false.

Return Sep(f,vc) > 0.

120

Appendix E

Explicit Subdivision Methods

E.1 How to Achieve the Inheritance Property without F̃p(B) ⊆

F̃p(parent(B))

Example E.1.1. Suppose we have current F̃p(B) for all B ∈ W. We define a reduced-approximate

footprint by induction of F̂p(B) = F̃p(B)∩F̂p(parent(B)) for all B ∈ W other than B0, where F̂p(B0) =

F̃p(B0). This F̂p is still σ-effective since by induction

Fp(B) = Fp(B) ∩ Fp(parent(B)) ⊆ F̃p(B) ∩ F̂p(parent(B)) = F̂p(B)

and

F̂p(B) ⊆ F̃p(B) ⊆ Fp(σB).

Now we define ϕ̂(B) be the feature set of F̂p(B), i.e.,

ϕ̂(B) = {f ∈ Φ(Ω) : f ∩ F̂p(B) ̸= ∅}.

This feature set surely satisfies the inheritance property since F̂p(B) ⊆ F̂p(parent(B)). Moreover, by

definition of ϕ̃(B), which is constructed from the inheritance property, it is the same with ϕ̂(B) for each

B in T (B0). Therefore, we can view the ϕ̃(B) = ϕ̂(B) as the feature set for F̂p(B), which provides an

σ-effective SSS planner.

121

E.2 Table of Indicator Flips

Example E.2.1. We demonstrate the explicit process to determine the relationships between child

indicators across the boundary of Ci for i = 1, 2, 3, 4. We use C1 and C2 for example. For the box

indicated by (∗, 1, 1, 1) in C1, one of its corners is (−1,−1,−1,+1) ∈ B0. This point is a corner of

(1, ∗, 1, 1) in C2. So (∗, 1, 1, 1) and (1, ∗, 1, 1) share the same corner, which implies they are adjacent. Since

(∗, 1, 1, 1) is −e2 boundary box, which means it moves to C2 in −e2 direction. Similar for (1, ∗, 1, 1). For

the box indicated by (∗, 1, 1, 1) in C1, one of its corners is (−1,+1,−1,+1) ∈ B0. This point is identified

with (+1,−1,+1,−1) ∈ B0, which is a corner of (1, ∗, 1, 1) in C2. The follow-ups are the same.

The results for all these processes are summarized in the tables below. The base corner is the corner

in B0 that demonstrates the adjacency. childId(B) and childId(B′) are child indicators of the adjacent

two boxes. The “relation” indicates the direction and its reverse between the two boxes.

Base Corner childId(B) relation childId(B′)

(−1,−1,−1,−1) (∗, 1, 1, 1)
−e2−−⇀↽−−
−e1

(1, ∗, 1, 1)

(−1,+1,−1,−1) (∗, 1, 1, 1)
+e2−−⇀↽−−
+e1

(1, ∗, 1, 1)

(−1,−1,+1,−1) (∗, 1, 1, 1)
−e2−−⇀↽−−
−e1

(1, ∗, 1, 1)

(−1,+1,+1,−1) (∗, 1, 1, 1)
+e2−−⇀↽−−
+e1

(1, ∗, 1, 1)

(−1,−1,−1,+1) (∗, 1, 1, 1)
−e2−−⇀↽−−
−e1

(1, ∗, 1, 1)

(−1,+1,−1,+1) (∗, 1, 1, 1)
+e2−−⇀↽−−
+e1

(1, ∗, 1, 1)

(−1,−1,+1,+1) (∗, 1, 1, 1)
−e2−−⇀↽−−
−e1

(1, ∗, 1, 1)

(−1,+1,+1,+1) (∗, 1, 1, 1)
+e2−−⇀↽−−
+e1

(1, ∗, 1, 1)

Table E.1: Table between C1 and C2 (Cw and Cx)

122

Base Corner childId(B) relation childId(B′)

(−1,−1,−1,−1) (∗, 1, 1, 1)
−e3−−⇀↽−−
−e1

(1, 1, ∗, 1)

(−1,+1,−1,−1) (∗, 1, 1, 1)
−e3−−⇀↽−−
−e1

(1, 1, ∗, 1)

(−1,−1,+1,−1) (∗, 1, 1, 1)
+e3−−⇀↽−−
+e1

(1, 1, ∗, 1)

(−1,+1,+1,−1) (∗, 1, 1, 1)
+e3−−⇀↽−−
+e1

(1, 1, ∗, 1)

(−1,−1,−1,+1) (∗, 1, 1, 1)
−e3−−⇀↽−−
−e1

(1, 1, ∗, 1)

(−1,+1,−1,+1) (∗, 1, 1, 1)
−e3−−⇀↽−−
−e1

(1, 1, ∗, 1)

(−1,−1,+1,+1) (∗, 1, 1, 1)
+e3−−⇀↽−−
+e1

(1, 1, ∗, 1)

(−1,+1,+1,+1) (∗, 1, 1, 1)
+e3−−⇀↽−−
+e1

(1, 1, ∗, 1)

Table E.2: Table between C1 and C3 (Cw and Cy)

Base Corner childId(B) relation childId(B′)

(−1,−1,−1,−1) (∗, 1, 1, 1)
−e4−−⇀↽−−
−e1

(1, 1, 1, ∗)

(−1,+1,−1,−1) (∗, 1, 1, 1)
−e4−−⇀↽−−
−e1

(1, 1, 1, ∗)

(−1,−1,+1,−1) (∗, 1, 1, 1)
−e4−−⇀↽−−
−e1

(1, 1, 1, ∗)

(−1,+1,+1,−1) (∗, 1, 1, 1)
−e4−−⇀↽−−
−e1

(1, 1, 1, ∗)

(−1,−1,−1,+1) (∗, 1, 1, 1)
+e4−−⇀↽−−
+e1

(1, 1, 1, ∗)

(−1,+1,−1,+1) (∗, 1, 1, 1)
+e4−−⇀↽−−
+e1

(1, 1, 1, ∗)

(−1,−1,+1,+1) (∗, 1, 1, 1)
+e4−−⇀↽−−
+e1

(1, 1, 1, ∗)

(−1,+1,+1,+1) (∗, 1, 1, 1)
+e4−−⇀↽−−
+e1

(1, 1, 1, ∗)

Table E.3: Table between C1 and C4 (Cw and Cz)

123

Base Corner childId(B) relation childId(B′)

(−1,−1,−1,−1) (1, ∗, 1, 1)
−e3−−⇀↽−−
−e2

(1, 1, ∗, 1)

(+1,−1,−1,−1) (1, ∗, 1, 1)
−e3−−⇀↽−−
−e2

(1, 1, ∗, 1)

(−1,−1,+1,−1) (1, ∗, 1, 1)
+e3−−⇀↽−−
+e2

(1, 1, ∗, 1)

(+1,−1,+1,−1) (1, ∗, 1, 1)
+e3−−⇀↽−−
+e2

(1, 1, ∗, 1)

(−1,−1,−1,+1) (1, ∗, 1, 1)
−e3−−⇀↽−−
−e2

(1, 1, ∗, 1)

(+1,−1,−1,+1) (1, ∗, 1, 1)
−e3−−⇀↽−−
−e2

(1, 1, ∗, 1)

(−1,−1,+1,+1) (1, ∗, 1, 1)
+e3−−⇀↽−−
+e2

(1, 1, ∗, 1)

(+1,−1,+1,+1) (1, ∗, 1, 1)
+e3−−⇀↽−−
+e2

(1, 1, ∗, 1)

Table E.4: Table between C2 and C3 (Cx and Cy)

Base Corner childId(B) relation childId(B′)

(−1,−1,−1,−1) (1, ∗, 1, 1)
−e4−−⇀↽−−
−e2

(1, 1, 1, ∗)

(+1,−1,−1,−1) (1, ∗, 1, 1)
−e4−−⇀↽−−
−e2

(1, 1, 1, ∗)

(−1,−1,+1,−1) (1, ∗, 1, 1)
−e4−−⇀↽−−
−e2

(1, 1, 1, ∗)

(+1,−1,+1,−1) (1, ∗, 1, 1)
−e4−−⇀↽−−
−e2

(1, 1, 1, ∗)

(−1,−1,−1,+1) (1, ∗, 1, 1)
+e4−−⇀↽−−
+e2

(1, 1, 1, ∗)

(+1,−1,−1,+1) (1, ∗, 1, 1)
+e4−−⇀↽−−
+e2

(1, 1, 1, ∗)

(−1,−1,+1,+1) (1, ∗, 1, 1)
+e4−−⇀↽−−
+e2

(1, 1, 1, ∗)

(+1,−1,+1,+1) (1, ∗, 1, 1)
+e4−−⇀↽−−
+e2

(1, 1, 1, ∗)

Table E.5: Table between C2 and C4 (Cx and Cz)

124

Base Corner childId(B) relation childId(B′)

(−1,−1,−1,−1) (1, 1, ∗, 1)
−e4−−⇀↽−−
−e3

(1, 1, 1, ∗)

(+1,−1,−1,−1) (1, 1, ∗, 1)
−e4−−⇀↽−−
−e3

(1, 1, 1, ∗)

(−1,+1,−1,−1) (1, 1, ∗, 1)
−e4−−⇀↽−−
−e3

(1, 1, 1, ∗)

(+1,+1,−1,−1) (1, 1, ∗, 1)
−e4−−⇀↽−−
−e3

(1, 1, 1, ∗)

(−1,−1,−1,+1) (1, 1, ∗, 1)
+e4−−⇀↽−−
+e3

(1, 1, 1, ∗)

(+1,−1,−1,+1) (1, 1, ∗, 1)
+e4−−⇀↽−−
+e3

(1, 1, 1, ∗)

(−1,+1,−1,+1) (1, 1, ∗, 1)
+e4−−⇀↽−−
+e3

(1, 1, 1, ∗)

(+1,+1,−1,+1) (1, 1, ∗, 1)
+e4−−⇀↽−−
+e3

(1, 1, 1, ∗)

Table E.6: Table between C3 and C4 (Cy and Cz)

E.3 Tree-Path Indicator

Example E.3.1. We begin with T (Bt
0).

Suppose we have a subdivision tree for an interval I0, denoted by T (I0). The child indicator for each

interval I ∈ T (I0) is then only one number in {1, 1}. We define a tree-path of I a string β of {1, 1}, such

that the i-th bit in the string is the child indicator of I ′, which is the ancestor of I such that depth(I ′) = i.

The tree path for the root is the empty string ϵ. For each box Bt ∈ T (Bt
0), a tree-path indicator is a

vector of strings, denoted by pathID(Bt), such that the j − th component is the tree-path for Projĵ(B
t),

where Projĵ(B
t) is the interval representing the j-th component of Bt. For example, suppose we have

a leaf given by 3 total splits where under each level, the ancestor is (1, 1, 1), (1, 1, 1), (1, 1, 1). Then the

tree-path indicator is

pathID(Bt) = (111, 111, 111).

As a result, the depth of a box under total splits the length of the string of each tree-path. The length

of ϵ is 0. For simplicity, we call tree-path “path” for the rest of the example.

125

For each path string, we call the string where every bit is 1 the negative boundary (e.g. “11111111”)

and the string where every bit is 1 the positive boundary (e.g. “111111111”). As a result, a box B is

a d-boundary of Bt
0, if and only if for each component j, if dj = 1, then its j-th path string is a positive

boundary, if dj = −1, then its j-th path string is a negative boundary. The bar of a string β is flipping

all alphabets in the string (e.g. if bar(11111) = 11111). The flip of a string is flipping its last alphabet

(e.g. if flip(11111) = 11111). The adj of a string is flipping consecutive alphabets from the end of the

string such that they are all 1 or all 1 until reach the beginning of the string or a different alphabet in

the string (e.g. adj(11111) = 11111).

Given a subdivision tree of intervals T (I0) the +1-neighbor of I is the interval represented by

adj(pathID(I)) if pathID(I) is ending with 1 and is the interval represented by flip(pathID(I)) if pathID(I)

is ending with 1. The latter case represents a +1-sibling, while the former case represents that I is the +1

boundary of the interval represented by the string before its consecutive 1s. If there is no such interval

in T (I0), then it is the interval represented by the longest substring reading from the left. For example,

suppose that pathID(I) = 11111111, adj(pathID(I)) = 11111111. If there is no interval whose path string

is 11111111, then it may be 1, or 11, or 111, or 1111, The one existing with the longest such path

string is the +1-neighbor. The case for −1-neighbor is symmetric.

For a subdivision tree of boxes T (Bt
0), the d-cousin is the box given by path indicator that is

correspondingly adj or flip to each component according to the value of d at that component. For example,

the path indicator for e2-cousin of (111, 111, 111) is (111, 111, 111) , for −e3-cousin of (111, 111, 111) is

(111, 111, 111). Note that to get the principal neighbor of Bt, one only needs to trace the string from

the left until it is a leaf or the string ends, since its the d-neighbor B′ with maximal depth subject to

depth(B′) ≤ depth(B).

Now we turn to the case T (ŜO(3)). By Proposition 6.2.6, the child indicator for +ej-cousin to +ej

boundary is flipped in each level of each component. Then, to get the corresponding path indicator, one

only needs to operate the strings by bar. For −ej-cousin, the child indicators are unchanged, so the

126

path indicator is also unchanged. Using all these techniques, all operations for child indicators can be

transferred to a corresponding operation for path indicators.

The power of a path indicator is even stronger than above. For each path string β, we have an

integer representation int(β). It’s done by the following:

Integer Representation for Tree-Path strings int(β)

Input: string β.

Output: int(β).

Substitute each 1 in β by ‘0’ and form β1.

Add a 1 before the string β1 and form β2.

Return the integer whose binary string is β2.

For example,

111→ 010→ (1010)2 → (10)10,

so int(111) = 10.

The operators depth, bar, flip and adj can also be done by simple integer operations. When rep-

resented by integers, flip and adj can be uniformed into one operation. The integer of path string of

+1-neighbor of I is just int(pathID(I)) + 1 and the integer of path string of −1-neighbor of I is just

int(pathID(I))− 1. We don’t need to distinguish if the neighbor is a sibling or a cousin any more. The

depth of an integer representation n is ⌊log2 n⌋. The bar of an integer representation n is 2depth(n)+1−n.

As a trick, to separate the child indicator at level k from a path string whose integer representation

is n, one only need to return “n >> (depth(n)− k)&1” in C++, where 1 represents 1 and 0 represent 1.

Using integer representation, one can compress child indicators for 31 levels into a single integer

typed variable, which saves the disk space a lot.

127

Appendix F

Experimental Results

In this chapter, we present data collected from the demo program developed in this work. We test three

scenarios, including a totally blocked scene (BL), a two-turns scene (TT) and a guarded-hole scene (GH).

In each scenario, we vary ε and apply different heuristics (Qtype), and collect data including the time

costs (in seconds), outputs including a Path (P) or NO-PATH (N) or “Memory Limit Exceeded” (M),

the number of FREE (F), STUCK (S), MIXED (M) and ε-small (ε) boxes, the number of boxes that were split

(#Box), and the minimums width of the boxes in the subdivision trees (Min w). To avoid disk overload

(“Memory Limit Exceeded”), we set the maximum boxes that can be split to be 170001. Time values

beyond this number of splits are denoted as > 30000(s).

Figure F.1: Demo Performances of the “GuardedHole”, “TwoTurn” and “Blocked” senarios.

128

This page shows the data of the “Blocked” scene (three walls blocking α and β).

Figure F.2: Front view of the Blocked (BL)
scene.

Figure F.3: Back view of the Blocked (BL)
scene.

Env Start Conf. Goal Conf. ε Qtype time(s) Path F/S/M/ε #Box Min w

BL

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.1 recursive 2.2352 N 338/4/3431/0 431 0.125

BL

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.2 recursive 0.5789 N 338/4/879/2552 431 0.125

BL

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.1 random > 30000 M 84115/31930/385114/962827 170001 0.0625

BL

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.2 random 10.3094 N 2427/1153/10668/59552 9225 0.125

Table F.1: Data of the “Blocked” scene.

129

This page shows the data of the “TwoTurn” scene (two walls with gaps towards different directions).

Figure F.4: Front view of the TwoTurn (TT)
scene.

Figure F.5: Back view of the TwoTurn (TT)
scene.

Env Start Conf. Goal Conf. ε Qtype time(s) Path F/S/M/ε #Box w Min w

TT

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.1 recursive 20.9203 Y 11837/4495/32046/24086 8642 0.0625

TT

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.2 recursive 0.0484 N 8/0/64/8 10 0.125

TT

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.4 recursive 0.0442 N 0/0/56/16 9 0.25

TT

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.1 random > 30000 M 85153/24773/473496/763368 170001 0.0625

TT

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.2 random 0.0482 N 8/0/64/8 10 0.125

TT

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.4 random 0.0395 N 0/0/56/16 9 0.25

Table F.2: Data of the “TwoTurn” scene.

130

This page shows the data of the “GuardedHole” scene (a hole on a wall with two boxes guarding the

hole).

Figure F.6: Front view of the GuardedHole
(GH) scene.

Figure F.7: Back view of the GuardedHole
(GH) scene.

Env Start Conf. Goal Conf. ε Qtype time(s) Path F/S/M/ε #Box w Min w

GH

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.1 recursive 9.5230 Y 3115/1069/8621/6728 2996 0.0625

GH

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.2 recursive 34.5132 N 7714/0/9112/26880 4793 0.125

GH

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.4 recursive 0.9968 N 321/0/800/2368 398 0.25

GH

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.1 random > 30000 M 80238/42383/397983/833168 170001 0.0625

GH

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.2 random 52.5353 N 3036/1825/15307/86120 13286 0.125

GH

−3.50
−3.50
−3.50
1.00
0.00
0.00
0.00

3.50
3.50
3.50
0.00
0.00
0.00
1.00

0.4 random 6.2883 N 660/296/2972/16744 2584 0.25

Table F.3: Data of the “GuardedHole” scene.

131

As a result, the recursive heuristic method gives a much better performance than the purely random

heuristic method. However, our goal is to give out a real-time path planning method. There is still future

work to do to accelerate the recursive method.

132

Bibliography

[1] Jr. Alexander Kirillov. An Introduction to Lie Groups and Lie Algebras. Cambridge studies in

advanced mathematics, 2008. ISBN: 978-1-316-61410-5.

[2] M.F. Atiyah and I.G. MacDonald. Introduction To Commutative Algebra. Addison-Wesley series in

mathematics. Avalon Publishing, 1994.

[3] F. Avnaim, J.D. Boissonnat, and B. Faverjon. A practical exact motion planning algorithm for

polygonal objects amidst polygonal obstacles. In Proceedings. 1988 IEEE International Conference

on Robotics and Automation, pages 1656–1661 vol.3, 1988.

[4] A.T. Fomenko B.A. Dubrovin and Sergei Petrovich Novikov. Modern Geometry – Methods and

Applications. Original Russian edition published by Nauka, 1979. Part I. The Geometry of Surfaces,

Transformation Groups, and Fields. Second Edition.

[5] Julien Basch, Leonidas J Guibas, David Hsu, and An Thai Nguyen. Disconnection proofs for motion

planning. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation

(Cat. No. 01CH37164), volume 2, pages 1765–1772. IEEE, 2001.

[6] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real algebraic geometry. Springer, 2006.

[7] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic Geometry.

SPRINGER, Berlin, Heidelberg, 2006.

133

[8] Huck Bennett and Chee Yap. Amortized analysis of smooth quadtrees in all dimensions. Computa-

tional Geometry, 63:20–39, 2017.

[9] G. Besson, J. Lohkamp, P. Pansu, and P. Petersen. Riemannian geometry. Springer, 2006.

[10] Temistocle Birsan and Dan Tiba. One hundred years since the introduction of the set distance

by dimitrie pompeiu. In System Modeling and Optimization: Proceedings of the 22nd IFIP TC7

Conference held from July 18–22, 2005, in Turin, Italy 22, pages 35–39. Springer, 2006.

[11] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, Cam-

bridge, U.K., 2004.

[12] R. A. Brooks and T. Lozano-Perez. A subdivision algorithm in configuration space for findpath with

rotation. Systems Man and Cybernetics IEEE Transactions on, SMC-15(2):224–233, 1982.

[13] Rodney A Brooks and Tomas Lozano-Perez. A subdivision algorithm in configuration space for

findpath with rotation. IEEE Transactions on Systems, Man, and Cybernetics, (2):224–233, 1985.

[14] John Canny. The complexity of robot motion planning. MIT press, 1988.

[15] H. Choset, K. M. Lynch, S. Hutchinson, G.Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.

Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston, 2005.

[16] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,

pages 269–271, 1959.

[17] M.S.E. Din and E. Schost. A nearly optimal algorithm for deciding connectivity queries in smooth

and bounded real algebraic sets. J.ACM, 63(6):48:1–48:7, 1983.

[18] Ioannis Z Emiris and Menelaos I Karavelas. The predicates of the apollonius diagram: algorithmic

analysis and implementation. Computational Geometry, 33(1-2):18–57, 2006.

[19] H. Eves. An Introduction to the History of Mathematics. The Saunders series. Saunders College

Pub., 1990.

134

[20] J. A. Fridy. Introductory Analysis - The Theory of Calculus. Academic Press, 2000. ISBN

9780122676550.

[21] Andrew S Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics and applica-

tions, 4(10):15–24, 1984.

[22] Dan Halperin, Oren Salzman, and Micha Sharir. Algorithmic motion planning. In Handbook of

Discrete and Computational Geometry, pages 1311–1342. Chapman and Hall/CRC, 2017.

[23] Ching-Hsiang Hsu, Yi-Jen Chiang, and Chee Yap. Rods and rings: Soft subdivision planner for Rˆ3

x Sˆ2. In Proc. 35th (SoCG 2019), pages 43:1–43:17, 2019.

[24] Ching Hsiang Hsu, John Paul Ryan, and Chee Yap. Path planning for simple robots using soft

subdivision search. In Sandor Fekete and Anna Lubiw, editors, 32nd International Symposium on

Computational Geometry, SoCG 2016, Leibniz International Proceedings in Informatics, LIPIcs,

pages 68.1–68.5. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing,

June 2016.

[25] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive configuration spaces, volume 3.

1997.

[26] Du Q. Huynh. Metrics for 3d rotations: Comparison and analysis. J Math Imaging Vis, 35:155–164,

2009.

[27] T. Jacob, Schwartz, Micha, and Sharir. On the piano movers’ problem: II. General techniques for

computing topological properties of real algebraic manifolds. Advances in Appl. Math., 4:298–351,

1983.

[28] Lydia E Kavraki, Jean-Claude Latombe, Rajeev Motwani, and Prabhakar Raghavan. Random-

ized query processing in robot path planning. In Proceedings of the twenty-seventh annual ACM

symposium on Theory of computing, pages 353–362, 1995.

135

[29] Vladlen Koltun. Pianos are not flat: Rigid motion planning in three dimensions. In Symposium

on Discrete Algorithms: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete

algorithms, volume 23, pages 505–514. Citeseer, 2005.

[30] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006.

[31] Carl W. Lee and Wendy Weber. Recovering lexicographic triangulations, 2017.

[32] Ji Yeong Lee and Howie Choset. Sensor-based planning for a rod-shaped robot in three dimensions:

Piecewise retracts of r3× s2. The International Journal of Robotics Research, 24(5):343–383, 2005.

[33] Sihui Li and Neil T Dantam. Exponential convergence of infeasibility proofs for kinematic motion

planning. In International Workshop on the Algorithmic Foundations of Robotics, pages 294–311.

Springer, 2022.

[34] Sihui Li and Neil T Dantam. Scaling infeasibility proofs via concurrent, codimension-one, locally-

updated coxeter triangulation. IEEE Robotics and Automation Letters, 2023.

[35] Ming C Lin and Dinesh Manocha. Collision detection. In Handbook of Data Structures and Appli-

cations, pages 889–902. Chapman and Hall/CRC, 2018.

[36] Tomás Lozano-Pérez and Michael A. Wesley. An algorithm for planning collision-free paths among

polyhedral obstacles. Communications of the ACM, (11):560–570, 1979.

[37] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. Cambridge

University Press, 2017. ISBN: 9781107156302.

[38] Kurt Mehlhorn. From theory to Library of Efficient Data types and Algorithms (LEDA) and algo-

rithm engineering. In Cristian Calude, editor, The Human Face of Computing, pages 59–72. Imperical

College Press, 2015. Chapter in Volume.

[39] John M.Lee. Introduction to Smooth Manifolds. Second Edition. Graduate Texts in Mathematics,

2013. http://www.springer.com/series/136.

136

[40] Ramon E Moore. Interval analysis, volume 4. prentice-Hall Englewood Cliffs, 1966.

[41] Ramon E Moore, R Baker Kearfott, and Michael J Cloud. Introduction to interval analysis. SIAM,

2009.

[42] James Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984. ISBN 0-201-04586-9.

[43] Michal Nowakiewicz. Mst-based method for 6dof rigid body motion planning in narrow passages.

In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5380–5385.

IEEE, 2010.

[44] Colm Ó’Dúnlaing, Micha Sharir, and Chee K Yap. Retraction: A new approach to motion-planning.

In Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 207–220,

1983.

[45] Colm Ó’Dunlaing, Micha Sharir, and Chee K Yap. Generalized voronoi diagrams for moving a

ladder. i: Topological analysis. Communications on Pure and Applied Mathematics, 39(4):423–483,

1986.

[46] Colm Ó’Dunlaing, Micha Sharir, and Chee K Yap. Generalized voronoi diagrams for moving a ladder

ii: efficient computation of the diagram. Algorithmica, 2:27–59, 1987.

[47] Colm Ó’Dúnlaing and Chee K Yap. A “retraction” method for planning the motion of a disc. Journal

of Algorithms, 6(1):104–111, 1985.

[48] Andreas Orthey, Constantinos Chamzas, and Lydia E. Kavraki. Sampling-based motion planning:

A comparative review. Annual Reviews., 25:6–9, 2023.

[49] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science &

Business Media, 2009.

137

[50] Mohab Safey el Din and Éric Schost. A baby steps/giant steps probabilistic algorithm for computing

roadmaps in smooth bounded real hypersurface. Discrete & Computational Geometry, 45(1):181–220,

2011.

[51] Jacob T Schwartz and Micha Sharir. On the “piano movers’” problem i. the case of a two-dimensional

rigid polygonal body moving amidst polygonal barriers. Communications on pure and applied math-

ematics, 36(3):345–398, 1983.

[52] Jacob T Schwartz and Micha Sharir. On the “piano movers” problem. ii. general techniques for

computing topological properties of real algebraic manifolds. Advances in applied Mathematics,

4(3):298–351, 1983.

[53] Jacob T Schwartz and Micha Sharir. On the piano movers’ problem: V. the case of a rod mov-

ing in three-dimensional space amidst polyhedral obstacles. Communications on Pure and Applied

Mathematics, 37(6):815–848, 1984.

[54] Vikram Sharma and Chee K. Yap. Robust geometric computation. In Jacob E. Goodman, Joseph

O’Rourke, and Csaba Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 45,

pages 1189–1224. Chapman & Hall/CRC, Boca Raton, FL, 3rd edition, 2017.

[55] Nir Shvalb, Boaz Ben Moshe, and Oded Medina. A real-time motion planning algorithm for a

hyper-redundant set of mechanisms. Robotica, 31(8):1327–1335, 2013.

[56] Cong Wang, Yi-Jen Chiang, and Chee Yap. On soft predicates in subdivision motion planning.

Comput. Geometry: Theory and Appl. (Special Issue for SoCG’13), 48(8):589–605, September 2015.

[57] A. Wittig. An Introduction to Differential Algebra and the Differential Algebra Manifold Represen-

tation. Astrodynamics Network AstroNet-II, 2016.

[58] Chee Yap. Soft subdivision search in motion planning. In A. Aladren et al., editor, Proc. 1st

Workshop on Robotics Challenge and Vision (RCV 2013), 2013. A Computing Community Con-

138

sortium (CCC) Best Paper Award, Robotics Science and Systems Conf. (RSS 2013), Berlin. In

arXiv:1402.3213.

[59] Chee Yap. Soft subdivision search and motion planning, II: Axiomatics. In Frontiers in Algorithmics,

volume 9130 of Lecture Notes in Comp. Sci., pages 7–22. Springer, 2015. Plenary talk at 9th FAW.

Guilin, China. Aug. 3-5, 2015.

[60] Chee-Keng Yap. Algorithmic motion planning. In Advances in Robotics, Vol. 1: Algorithmic and

geometric issues, pages 95–143. Lawrence Erlbaum Associates, 1987.

[61] Jihun Yu, Chee Yap, Zilin Du, Sylvain Pion, and Hervé Brönnimann. The design of core 2: A

library for exact numeric computation in geometry and algebra. In Komei Fukuda, Joris van der

Hoeven, Michael Joswig, and Nobuki Takayama, editors, Mathematical Software – ICMS 2010, pages

121–141, Berlin, Heidelberg, 2010. Springer.

[62] W. Zeng and R. L. Church. Finding shortest paths on real road networks: the case for A*. Interna-

tional Journal of Geographical Information Science, 23(4):531–543, 2009.

[63] Liangjun Zhang, Young J Kim, and Dinesh Manocha. Efficient cell labelling and path non-existence

computation using c-obstacle query. The International Journal of Robotics Research, 27(11-12):1246–

1257, 2008.

[64] Xinya Zhang, Robert Belfer, Paul G Kry, and Etienne Vouga. C-space tunnel discovery for puzzle

path planning. ACM Transactions on Graphics (TOG), 39(4):104–1, 2020.

[65] Zhaoqi Zhang, Yi-Jen Chiang, and Chee Yap. Theory and explicit design of a path planner for an

SE(3) robot. WAFR, 41(2), 2024.

[66] Bo Zhou, Yi-Jen Chiang, and Chee Yap. Soft subdivision motion planning for complex planar robots.

Computational Geometry, 92, January 2021. Article 101683. Originally, in 26th ESA, 2018.

139

[67] David Zhu and J-C Latombe. Constraint reformulation in a hierarchical path planner. In Proceed-

ings., IEEE International Conference on Robotics and Automation, pages 1918–1923. IEEE, 1990.

[68] David Zhu, Jean-Claude Latombe, et al. New heuristic algorithms for efficient hierarchical path

planning. Department of Computer Science, Stanford University, 1989.

140

